

Lecture Notes in Computer Science 3489
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

George T. Heineman Ivica Crnkovic
Heinz W. Schmidt Judith A. Stafford
Clemens Szyperski Kurt Wallnau (Eds.)

Component-Based
Software Engineering

8th International Symposium, CBSE 2005
St. Louis, MO, USA, May 14-15, 2005
Proceedings

13

Volume Editors

George T. Heineman
WPI, Department of Computer Science
100 Institute Road, Worcester, MA 01609, USA
E-mail: heineman@cs.wpi.edu

Ivica Crnkovic
Mälardalen University, Department of Computer Science and Engineering
Box 883, 72123 Västerås, Sweden
E-mail: ivica.crnkovic@mdh.se

Heinz W. Schmidt
Monash University, School of Computer Science and Software Engineering
Wellington Road, Clayton VIC 3800 , Australia
E-mail: Heinz.Schmidt@csse.monash.edu.au

Judith A. Stafford
Tufts University, Department of Computer Science
161 College Avenue, Medford, MA 02155, USA
E-mail: jas@cs.tufts.edu

Clemens Szyperski
Microsoft
One Microsoft Way, Redmond, WA 98053, USA
E-mail: cszypers@microsoft.com

Kurt Wallnau
Carnegie Mellon University, Software Engineering Institute
Pittsburgh, Pennsylvania 15213-3890, USA
E-mail: kcw@sei.cmu.edu

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, D.1.5, D.3, F.3.1

ISSN 0302-9743
ISBN-10 3-540-25877-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25877-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11424529 06/3142 5 4 3 2 1 0

Preface

On behalf of the Organizing Committee I am pleased to present the proceedings
of the 2005 Symposium on Component-Based Software Engineering (CBSE).
CBSE is concerned with the development of software-intensive systems from
reusable parts (components), the development of reusable parts, and system
maintenance and improvement by means of component replacement and cus-
tomization. CBSE 2005, “Software Components at Work,” was the eighth in a
series of events that promote a science and technology foundation for achieving
predictable quality in software systems through the use of software component
technology and its associated software engineering practices.

We were fortunate to have a dedicated Program Committee comprised of 30
internationally recognized researchers and industrial practitioners. We received
91 submissions and each paper was reviewed by at least three Program Commit-
tee members (four for papers with an author on the Program Committee). The
entire reviewing process was supported by CyberChairPro, the Web-based paper
submission and review system developed and supported by Richard van de Stadt
of Borbala Online Conference Services. After a two-day virtual Program Com-
mittee meeting, 21 submissions were accepted as long papers and 2 submissions
were accepted as short papers.

We are grateful for the assistance provided by the organizers of the ICSE con-
ference, in particular the General Chair, Gruia-Catalin Roman, and the Work-
shops and Co-located Events Co-chair André van der Hoek. We also wish to
thank the ACM Special Interest Group on Software Engineering (SIGSOFT) for
their sponsorship of CBSE 2005. The proceedings you now hold were published
by Springer and we are grateful for their support. Finally, we must thank the
many authors who contributed the high-quality papers contained within these
proceedings. As the international community of CBSE researchers and practi-
tioners continues to grow, we expect the CBSE Symposium series to similarly
attract widespread interest and participation.

March 2005 George T. Heineman
Worcester, MA
USA

VI Organization

Organization

CBSE 2005 was sponsored by the Association for Computing Machinery
(ACM) Special Interest Group in Software (SIGSOFT). CBSE 2005 was a co-
located event with the 27th International Conference on Software Engineering
(ICSE 2005).

Organizing Committee

Program Chair George T. Heineman (WPI, USA)

Steering Committee Ivica Crnkovic
(Mälardalen University, Sweden)

Heinz W. Schmidt
(Monash University, Australia)

Judith A. Stafford (Tufts University, USA)
Clemens Szyperski (Microsoft Research, USA)
Kurt Wallnau

(Software Engineering Institute, USA)

Program Committee

Luca de Alfaro University of California, Santa Cruz, USA
Rob Armstrong Sandia National Laboratories, USA
Uwe Aßmann Dresden University of Technology, Germany
Jakob Axelsson Volvo Car Corporation, Sweden
Mike Barnett Microsoft Research, USA
Judith Bishop University of Pretoria, South Africa
Jan Bosch Nokia Research Center, Finland
Michel Chaudron University Eindhoven, The Netherlands
Ivica Crnkovic Mälardalen University, Sweden
Susan Eisenbach Imperial College London, UK
Wolfgang Emmerich University College London, UK
Dimitra Giannakopoulou NASA Ames, USA
Richard Hall LSR-IMAG, France
Dick Hamlet Portland State University, USA
George T. Heineman WPI, USA
Tom Henzinger EPFL, Switzerland and UC Berkeley, USA
Paola Inverardi University of L’Aquila, Italy
Bengt Jonsson Uppsala University, Sweden
Magnus Larsson ABB, Sweden
Kung-Kiu Lau University of Manchester, UK
Nenad Medvidovic University of Southern California, USA
Rob van Ommering Philips Research, The Netherlands

Organization VII

Program Committee (cont.)

Otto Preiss ABB Corporate Research Centers, Switzerland
Ralf Reussner University of Oldenburg, Germany
Douglas Schmidt Vanderbilt University, USA
Heinz W. Schmidt Monash University, Australia
Jean-Guy Schneider Swinburne University of Technology, Australia
Judith A. Stafford Tufts University, USA
Kurt Wallnau Software Engineering Institute, USA
Dave Wile Teknowledge, Corp., USA

Co-reviewers

Eddie Aftandilian
Mikael Åkerholm
Somo Banerjee
Steffen Becker
Dirk Beyer
Egor Bondarev
Ivor Bosloper
Guillaume Brat
Reinder J. Bril
Arindam Chakrabarti
Robert Chatley
Sybren Deelstra
Viktoria Firus
Kathi Fisler
Eelke Folmer
Johan Fredriksson
Esther Gelle
Falk Hartmann
Mugurel T. Ionita
Vladimir Jakobac
Anton Jansen

Xiaohong Jin
Merijn de Jonge
Hugo Jonker
Thomas E. Koch
Emanuel Kolb
Sten Löcher
Rikard Land
Ling Ling
Markus Lumpe
Frank Lüders
Wolfgang Mahnke
Sam Malek
Antinisca Di Marco
Chris Mattmann
Hailiang Mei
Raffaela Mirandola
Johan Muskens
Martin Naedele
Ioannis Ntalamagkas
Owen O’Malley
Fernando C. Osorio

Joachim Parrow
Corina Pasareanu
Paul Pettersson
Roshanak Roshandel
Chris Sadler
Johanneke Siljee
Marco Sinnema
James Skene
Antony Tang
Faris M. Taweel
Perla Velasco Elizondo
Björn Victor
Erik de Vink
Lucian Voinea
Anders Wall
Zheng Wang
Wang Yi
Yang Yu

Previous CBSE Workshops and Symposia

7th International Symposium on CBSE, Lecture Notes in Computer Science,
Vol. 3054, Crnkovic, I.; Stafford, J.A.; Schmidt, H.W.; Wallnau, K. (Eds.),
Springer, Edinburgh, UK (2004)

6th ICSE Workshop on CBSE: Automated Reasoning and Prediction
http://www.sei.cmu.edu/pacc/CBSE6. Portland, Oregon (2003)

VIII Organization

Previous CBSE Workshops and Symposia (cont.)

5th ICSE Workshop on CBSE: Benchmarks for Predictable Assembly
http://www.sei.cmu.edu/pacc/CBSE5. Orlando, Florida (2002)

4th ICSE Workshop on CBSE: Component Certification and System Prediction.
Software Engineering Notes, 26(10), November 2001. ACM SIGSOFT Author(s):
Crnkovic, I.; Schmidt, H.; Stafford, J.; Wallnau, K. (Eds.)
http://www.sei.cmu.edu/pacc/CBSE4-Proceedings.html. Toronto, Canada,
(2001)

3rd ICSE Workshop on CBSE: Reflection in Practice
http://www.sei.cmu.edu/pacc/cbse2000. Limerick, Ireland (2000)

2nd ICSE Workshop on CBSE: Developing a Handbook for CBSE
http://www.sei.cmu.edu/cbs/icse99. Los Angeles, California (1999)

1st Workshop on CBSE
http://www.sei.cmu.edu/pacc/icse98. Tokyo, Japan (1998)

Table of Contents

Prediction, Analysis and Monitoring of System
Architecture

Performance Prediction of J2EE Applications Using Messaging
Protocols . 1
Yan Liu, Ian Gorton

EJBMemProf – A Memory Profiling Framework for Enterprise
JavaBeans . 17
Marcus Meyerhöfer, Bernhard Volz

Model-Driven Safety Evaluation with State-Event-Based Component
Failure Annotations . 33
Lars Grunske, Bernhard Kaiser, Yiannis Papadopoulos

Optimizing Resource Usage in Component-Based Real-Time Systems 49
Johan Fredriksson, Kristian Sandström, Mikael Åkerholm

Evaluating Performance Attributes of Layered Software Architecture 66
Vibhu Saujanya Sharma, Pankaj Jalote, Kishor S. Trivedi

Component-Level Dataflow Analysis . 82
Atanas Rountev

Architecture and Design of Component-Based
Systems

Exogenous Connectors for Software Components . 90
Kung-Kiu Lau, Perla Velasco Elizondo, Zheng Wang

Qinna, a Component-Based QoS Architecture . 107
Jean-Charles Tournier, Jean-Philippe Babau, Vincent Olive

Architecture Based Deployment of Large-Scale Component Based
Systems: The Tool and Principles . 123
Ling Lan, Gang Huang, Liya Ma, Meng Wang, Hong Mei, Long Zhang,
Ying Chen

Component-Based Open Middleware Supporting Aspect-Oriented
Software Composition . 139
Bert Lagaisse, Wouter Joosen

X Table of Contents

An Empirical Study on the Specification and Selection of Components
Using Fuzzy Logic . 155
Kendra Cooper, João W. Cangussu, Rong Lin,
Ganesan Sankaranarayanan, Ragouramane Soundararadjane,
Eric Wong

Finding a Needle in the Haystack: A Technique for Ranking Matches
Between Components . 171
Naiyana Tansalarak, Kajal Claypool

Extra-Functional System Properties of Components
and Component-Based Systems

A Contracting System for Hierarchical Components 187
Philippe Collet, Roger Rousseau, Thierry Coupaye, Nicolas Rivierre

Tailored Responsibility Within Component-Based Systems 203
Elke Franz, Ute Wappler

Efficient Upgrading in a Purely Functional Component Deployment
Model . 219
Eelco Dolstra

Real-Time Scheduling Techniques for Implementation Synthesis from
Component-Based Software Models . 235
Zonghua Gu, Zhimin He

A Component-Oriented Model for the Design of Safe Multi-threaded
Applications . 251
Reimer Behrends, R.E. Kurt Stirewalt, Laura K. Dillon

TeStor: Deriving Test Sequences from Model-Based Specifications 267
Patrizio Pelliccione, Henry Muccini, Antonio Bucchiarone,
Fabrizio Facchini

Components at Work

A CCA-compliant Nuclear Power Plant Simulator Kernel 283
Manuel Dı́az, Daniel Garrido, Sergio Romero, Bartolomé Rubio,
Enrique Soler, José M. Troya

Experience with Component-Based Development of a
Telecommunication Service . 298
Gregory W. Bond, Eric Cheung, Healfdene H. Goguen,
Karrie J. Hanson, Don Henderson, Gerald M. Karam, K. Hal Purdy,
Thomas M. Smith, Pamela Zave

Table of Contents XI

Reusable Dialog Component Framework for Rapid Voice Application
Development . 306
Rahul P. Akolkar, Tanveer Faruquie, Juan Huerta, Pankaj Kankar,
Nitendra Rajput, T.V. Raman, Raghavendra U. Udupa,
Abhishek Verma

Unlocking the Grid . 322
Chris A. Mattmann, Nenad Medvidovic, Paul M. Ramirez,
Vladimir Jakobac

Experience Report: Design and Implementation of a Component-Based
Protection Architecture for ASP.NET Web Services 337
Konstantin Beznosov

Concept Index . 353

Author Index . 357

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 1-16, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Performance Prediction of J2EE Applications Using
Messaging Protocols

Yan Liu, Ian Gorton

National ICT Australia (NICTA),
1430, NSW, Australia

{jenny.liu, ian.gorton}@nicta.com.au

Abstract. Predicting the performance of component-based applications is diffi-
cult due to the complexity of the underlying component technology. This prob-
lem is exacerbated when a messaging protocol is introduced to create a loosely
coupled software architecture. Messaging uses asynchronous communication,
and must address quality of service issues such as message persistence and flow
control. In this paper, we present an approach to predicting the performance of
Java 2 Enterprise Edition (J2EE) applications using messaging services. The
prediction is done during application design, without access to the application
implementation. This is achieved by modeling the interactions among J2EE and
messaging components using queuing network models, calibrating the perform-
ance model with architecture attributes associated with these components, and
populating the model parameters using a lightweight, application-independent
benchmark. Benchmarking avoids the need for prototype testing in order to ob-
tain the value of model parameters, and thus reduces the performance predic-
tion effort. A case study is carried out to predict the performance of a J2EE ap-
plication with asynchronous communication. Analysis of the resulting predic-
tions shows the error is within 15%.

1 Introduction

Many software component models utilize synchronous communication protocols,
such as Enterprise JavaBeans (EJB) based on RMI, and RPC-based CORBA or
COM+ components. Synchronous communication dictates that the client process
blocks until the response to its request arrives. More loosely coupled software archi-
tectures can be constructed using asynchronous invocations. These place an interme-
diary messaging service between the client and server, decoupling their execution. In
addition, asynchronous invocations are desirable for applications with high perform-
ance and scalability requirements. For these reasons, component technologies have
been integrated with messaging protocols to support the development of applications
with asynchronous architectures.

Messaging services are implemented by message-oriented middleware (MOM),
such as Microsoft MSMQ, IBM WebSphere MQ, CORBA Notification Services and
Sun’s JMS (Java Messaging Service). JMS is a Java interface specification, which
provides a standard way for Java applications to access enterprise messaging infra-

2 Yan Liu and Ian Gorton

structure. MOM typically supports two forms of messaging: point-to-point (PTP) and
publish/subscribe (Pub/Sub). In the PTP model, the message producer posts a mes-
sage to a queue, and the message consumer retrieves the message from the queue. In
the Pub/Sub model, a message producer publishes a message to a topic, and all con-
sumers subscribing to the same topic retrieve a copy of the message. MOMs also
define a set of reliability attributes for messaging, including non-persistent or persis-
tent and non-transactional or transaction queues [18].

A component-based application using messaging protocols hence exploits an asyn-
chronous, queue-based communication paradigm. It must also address additional
architectural considerations such as the topology of component connections, message
persistence and flow control. All of these factors can heavily influence the resulting
application’s performance [18].

However, the choice of application architecture must to be made early in the appli-
cation life cycle, long before substantial coding takes place. Unwise decisions at
design-time are often very difficult to alter, and could make it impossible to achieve
the required performance level once the system has been delivered [5][6]. Conse-
quently, the designer needs to be able to predict the performance of asynchronous
components, working from an abstract design but without access to a complete im-
plementation of the application.

Our previous work in [9] develops an approach to predicting the performance of
only synchronous J2EE applications from design-level descriptions. The contribution
of this paper is the extension of our approach to predict the performance of applica-
tions comprising both synchronous and asynchronous communications. This is
achieved by modeling the component infrastructure that implements the messaging
service. We then execute benchmarks to obtain values of model parameters associated
with the performance characteristics of the underlying component infrastructure and
the messaging service. We validate our approach through a case study, in which we
compare predicted versus actual performance of an example application.

2 Related Work

Our previous work in [9] integrates analytical modeling and benchmark testing to
predict the performance of J2EE applications using EJB components. A case study
showed that without access the application source code, prediction can be accurate
enough (prediction error is below 15%) to evaluate an architecture design. However,
this work only addresses synchronous communication between components.

Performance modeling is a useful approach for performance analysis [16]. Tradi-
tional performance modeling techniques can be manually applied to applications
based on Message-Oriented Middleware (MOM). [17] analyzes a multilayered queue
network that models the communication between clients and servers via synchronous
and asynchronous messages. [11] applies a layered QNM for business process inte-
gration middleware and compares the performance for both synchronous and asyn-
chronous architectures. However, explicit values for performance parameters are
required to solve these models, such as the CPU time used by each operation.

Performance Prediction of J2EE Applications Using Messaging Protocols 3

However, such performance parameters cannot be accurately estimated during an
application design. A common practice therefore is to build a prototype and use this
to obtain measures for the values of parameters in the model. For a complex applica-
tion, this is expensive and time-consuming. Progress has been made to reduce the
prototyping effort with tool support for automatic generation of test beds [1][3]. Al-
though prototype testing can produce empirical evidence of the suitability of an archi-
tecture design, it is inherently inefficient in predicting performance as the application
architecture inevitably evolves. Under change, the test bed has to be regenerated and
redeployed, and the measurement has to be repeated for each change.

In related research towards software performance engineering, many approaches
translate architecture designs mostly in United Modeling Language (UML) to analyti-
cal models, such as Queuing Network models [7], stochastic Petri nets [14] or sto-
chastic process algebras [2]. In these approaches, the application workflow is pre-
sented in a sequence or state diagram, and a deployment diagram is used to describe
the hardware and software resources, their topology and characteristics.

Importantly however, the component infrastructure and its performance properties
are not explicitly modeled. These approaches therefore generally ignore or greatly
simplify the details of the underlying component infrastructure performance. As a
result, the models are rather inaccurate or non-representative. [8] developed a simu-
lated model of CORBA middleware but the work is specific to threading structure of
a CORBA server. Hence, little work has been done to develop an engineering ap-
proach to predict during design the runtime performance of messaging applications.

3 Major Performance Factors of J2EE Applications

J2EE includes several different component types, including EJB. EJB components act
as servers and execute within a component container. A request to an EJB is passed
through a method invocation chain implemented by the container and finally reaches
the EJB method specified in the request. The invocation chain is used by the con-
tainer to call security and transaction services that the EJB methods specify.

The container provides the hosting environment for EJBs and manages their life-
cycle according to the context information of the request. The container also coordi-
nates the interaction between EJBs and other J2EE services and facilities access to
external data source connection pools. To improve performance and scalability, the
container is multi-threaded and can service multiple simultaneous EJB requests. Mul-
tiple instances of threads, EJBs and database connections are pooled to provide effi-
cient resource usage in the container. Incoming requests are queued and wait for a
container thread if none are available from the fixed size thread pool.

Concurrent EJB requests experience contention at three points inside the container.
These are during request dispatching to an EJB, during container processing and
during access to external data sources. As a result, apart from the underlying hard-
ware and software environment, the performance of a deployed J2EE application
depends on a combination of the following factors:

 behavior of its application-specific EJB components and their interactions;
 particular implementation of the component infrastructure, or container;

4 Yan Liu and Ian Gorton

 selected configuration settings for the container (e.g. thread pool size);
 attribute settings of both the application components (e.g. the persistence at-

tribute of EJBs) and the infrastructure components (e.g. the transaction isola-
tion level of the container);

 simultaneous request load experienced at a given time by the application [5].
Integrating a JMS messaging service with EJB components introduces further per-
formance considerations. These include the topology of component connections,
message persistence needs, and flow control. For instance, non-persistent messaging
has better performance than persistent messaging [18]. However persistent messaging
creates an application that is guaranteed not to lose messages, and hence is more
reliable. For an architect, the ability to quantify this performance/reliability trade-off
without building each solution is desirable, as is determination of the level of per-
formance that the overall system provides under load.

4 The Performance Prediction Approach

A performance prediction approach for J2EE applications with messaging protocol
needs to encompass the following three aspects. First, the performance model should
explicitly represent the component container, the MOM service and their communica-
tion with application components. Second, the service time of a request depends on
the container and MOM attributes. For example, in MOM-based applications, the
setting of a messaging attribute is an architectural design decision and the effect on
performance should be modeled as a function of the messaging attributes of interest.
Third, an application-independent performance profile of the container and the MOM
infrastructure is required. This is because the container and message server imple-
mentation and the operating system/hardware platform must be taken into account to
be able to make accurate application performance predictions.

The relationship between the performance model and the component container per-
formance profile for a selected architecture model are represented as a performance
prediction framework in [9]. In this framework, a queueing network model (QNM) P
models the component infrastructure by identifying the main components of the sys-
tem, and noting where queuing delays occur.

An architect has several alternatives to fulfill the same functionality using EJB
technology. For example, a server side EJB component can be made either stateless
or stateful, simply by setting an attribute. Each architecture alternative impacts the
service time of the component container. Therefore the component architecture model
fA is a function of the service time of the components participating in an architecture
A. The output of fA is the input to P.

Performance profiles are required to solve the parameter values of the performance
model. They are obtained from benchmarking measurements. The benchmark appli-
cation differs from an application prototype in that the business logic of the bench-
mark is much simpler than a prototype. The operations of the benchmark are designed
simply to exercise performance sensitive elements of the underlying component con-
tainer. The aim is to determine the performance profile of the container itself, and not
to evaluate the overall application performance (the traditional aim of benchmarking).

Performance Prediction of J2EE Applications Using Messaging Protocols 5

By using a simple benchmark application, we can remove any unpredictability in
performance due to application business logic.

The model is finally populated using the performance profile and used for per-
formance prediction. This approach enables performance prediction during the design
of software applications that are based on a specific component technology.

A comprehensive description of this approach can be found in [9][10]. It is de-
signed to support the following use cases during performance engineering:

 Support efficient performance prediction under architecture changes where
components are added or modified.

 Capacity planning of the system, such as predicting the average response time,
throughput and resource utilization under the expected workload.

 Reveal performance bottlenecks by giving insight into possible flaws in archi-
tecture designs.

 The requirements of this approach are:
 Ensuring a reasonable level of accuracy for performance prediction. According

to [12] (page 116), prediction error within 30% is acceptable.
 Cost effective. The approach must be faster than prototyping and testing.

5 The Performance Model

A performance model should capture the component container behavior when proc-
essing a request from a client. For this reason, we focus on the behavior of the con-
tainer in processing EJB method invocation requests. As EJB containers process
multiple simultaneous requests, the threading model utilized must also be represented.
The QNM in Fig. 1 models the main infrastructure components involved and their
interactions.

...

Clients

Request queue Container queue JMS Server

m1 m'

MDB queue

m2

DataSource queue

Closed Queue Open Queue

Fig. 1. The QNM model of a J2EE server with a JMS Queue

The model comprises two sub-networks, a closed and an open QNM. A closed
QNM is appropriate for components using synchronous communication, as compo-
nent containers employ a finite thread pool that effectively limits the maximum re-
quests active in the server. An open QNM models asynchronous communication as a
component container sends a message to a JMS queue, and the message is forwarded
to a message driven bean (MDB) to process the business logic.

6 Yan Liu and Ian Gorton

In the closed model, application clients represent the ‘proxy clients1’ (such as serv-
lets in a web server) of the EJB container. Consequently, a client is considered as a
delay resource and its service time equals the thinking time between two successive
requests. A request to the EJB container is interpreted and dispatched to an active
container thread by the request handler. The request handler is modeled as a single
server queue with no-load dependency. It is annotated as Request queue in the QNM.

The container is multi-threaded, and therefore it is modeled as a multi-server
queue with the thread capacity m1 and no load dependency. It is annotated as Con-
tainer in the QNM. The database clients are in fact the EJBs that handle the client
request. Database access is therefore modeled as a delay server with load dependency.
Its active database connections are denoted as k in the QNM, and the operation time
at the database tier contributes to the service demand of the DataSource queue.

In the open model, asynchronous transactions are forwarded by the container to a
queue managed by a JMS server. The JMS server is multi-threaded, and has a thresh-
old for flow control to specify the maximum number of the messages pending in the
JMS server. Assuming that the arrival rate of requests is a Poisson distribution with
rate requests per second and the service time is exponential, we can model the JMS
server as an M/M/m’/W queue, where m’ is the number of JMS server threads and W
is its flow control threshold.

A message is subsequently removed from the queue by a MDB instance, which
implements the business logic. MDBs are asynchronous message-handling façades
for data access carried out in entity beans. MDB instances are also managed by the
EJB container and are associated with a dedicated server thread pool. So the MDB
queue is modeled as a load-independent multi-server queue.

The implementation of an EJB container and JMS server is complex and vendor
specific. This makes it extremely difficult to develop a performance model that covers
all the relevant implementation-dependent features, especially as the EJB container
source code is not available. For this reason, our quantitative model only covers the
major factors that impact the performance of applications, and ignores many other
factors that are less performance sensitive. Specifically, we do not currently consider
workloads that include large data transfers. As a result, the network traffic is ignored
and the database contention level is reduced.

5.1 The Architecture Model

The task of solving the QNM in Fig. 1 involves obtaining the service demand of each
queue. We need to calibrate the component container that will host the alternative
designs in order to obtain the service demands of each request on each queue.

The service demand of the Request queue equals the service time of a request be-
ing accepted by the server and dispatched to the Container queue. It can thus be con-
sidered as a constant. The Container, DataSource, JMS and MDB queues are respon-
sible for processing the business logic and this comprises the majority of the service
demands on these queues.

1 As opposed to clients driven by human interaction, proxy clients such as servlets continually

handle requests that arrive at a web server.

Performance Prediction of J2EE Applications Using Messaging Protocols 7

Fig. 2 shows the state diagram for processing transactions in an EJB container.
The container has a set of operations that a request must pass through, such as initial-
izing a set of container management services, invoking the generated skeleton code
for a bean instance, registering a transaction context with the transaction manager,
finalizing a transaction and reclaiming resources.

CS

ContainerSM JMSSM

psynchronous pasynchronous

Fig. 2. Overall state diagram of the J2EE server

These container operations are identical for all requests, and the service time can
again be considered constant, denoted as 0T . For convenience, these states as a whole
are referred to as a composite, CS. Synchronous transactions are processed by the
Container queue, modeled as a compound state machine ContainerSM with a prob-
ability psynchronous, while asynchronous messages are posted to the JMS server, mod-
eled as a compound state machine JMSSM with a probability pasynchronous. Contain-
erSM and JMSSM are further decomposed into models of different component archi-
tectures. The service times of operations in Container, DataSource, JMS and MDB
queue are modeled as cf , df , jf and mf respectively.

From the above analysis, we know that cf and df are determined by the compo-
nent architecture in ContainerSM (e.g. optimizing data access to an entity bean by
different cache management schemes). The comprehensive architecture models are
developed in [9][10]. The models for container managed persistence of entity beans
are listed below as an example:

21)1(ThhTf c (1)

storeloadfindd pTTTf (2)

 h is the entity cache hit ratio;
 p is the ratio of operations updating entity data;
 T1 is the service time for the container to access the entity data in its cache;
 T2 is the service time of the container to load/store an entity bean instance

from/to disk;
 Tfind is the service time of identifying the entity instance by its primary key;
 Tload is the service time of loading data from the database into the entity bean

cache;
 Tstore is the service time of storing updates of an entity bean data.

8 Yan Liu and Ian Gorton

For each business transaction, the necessary behavioral information can be extracted
from design descriptions, such as use case diagram, and sequence diagrams [9][10].
This must capture the number and type of EJBs participating in the transaction, as
well as the component architecture selected. Therefore for each transaction r the ser-
vice demand at the Container and DataSource queue can be calculated as

beaneach
cContainerr fTD 0, (3)

beaneach
dDataSourcer fD , (4)

The execution demands of a message façade for entity beans in the MDB queue is
exactly the same as the session façade for entity beans in the Container queue. There-
fore the service demands of the MDB queue can be modeled in the same way, namely:

beaneach
cMDBr fTD 0, (5)

In this paper we assume the JMS server is co-located in the same container with the
EJB components to minimize communications overheads. The JMS queue used to
communicate between components can be configured as persistent or non-persistent,
depending on the reliability requirement of the application. In this paper, we consider
the following messaging attributes:

 Non-persistent messages: Messages are not persisted in the JMS.
 Persistent messages with cache-flush: A message is first copied into memory

and then flushed to the disk. The transaction cannot be committed until all of
writes have been flushed to disk.

 Persistent messages with disabled cache-flush: Disabled means that transac-
tions complete as soon as file store writes are cached in memory, instead of
waiting for the writes to successfully reach the disk.

Fig. 3 shows the JMSSM decomposition for these messaging attributes. For non-
persistent messages, the message is delivered directly. For persistent messages with
the cache-flush setting, the message is copied to memory and then written to a file
store. The XA transaction manager forces a two-phase commit if there is more than
one transaction participant. When cache-flush is disabled, the transaction ends once
the message is cached and the message is persisted to the file store in a background
thread. The following parameters in Table 1 are necessary for calculating the JMSSM
architecture model in equation (6)-(8) for three messaging attributes.

Jsend
persistentnon

j Tf (6)

jJremoveJsendJxaJwriteJcache
flushcache

j TTTTTf (7)

JsendJxaJcache
disabled
j TTTf (8)

Note that disabled
jf is calculated along the branch consuming the least service time in

Fig. 3 (c). The service demand of a JMS server queue with a specific messaging at-
tribute is:

jjms fD (9)

Performance Prediction of J2EE Applications Using Messaging Protocols 9

JMSSM

Delivery

JMSSM

Cache

Disk Write

XA Commit

Delivery

Remove

JMSSM

Cache

Delivery

Disk Write

XA Commit

Remove

(a) Non-Persistent (b) Persistent (cache-flush) (c) Persistent (disabled)

Fig. 3. The JMS sub-state machine decomposition

Table 1. Parameters of JMSSM architecture models

TJcache The service time of copying a message into memory
TJxa The service time of an XA transaction commit
TJwrite The service time of writing a message to disk
TJsend The service time of sending a message to its destination
TJremove The service time of removing the message from its persisted list

6 Benchmarking

Benchmarking is the process of running a specific program or workload on a machine
or system and measuring the resulting performance [15]. In our approach, bench-
marking is used to provide values for certain parameters in the performance models
that are used for prediction.

6.1 Benchmark Design and Implementation

The key innovation of our modeling method is that we model the behavior solely of
component infrastructure itself, and augment this with architecture and application-
specific behavior extracted from the application design. This implies that the bench-
mark application should have the minimum application layer possible to exercise the
component infrastructure in a meaningful and useful way. Component technologies
leverage many standard services to support application development. The benchmark
scenario is thus designed to exercise the key elements of a component infrastructure
involved in the application execution.

We have designed and implemented a benchmark suite to profile the performance
of EJB-based applications on a specified J2EE implementation. The implementation
of the benchmark involves a session bean and an entity bean. The benchmark sce-
nario is shown in Fig. 4. In order to explore the JMS server and MDB container’s

10 Yan Liu and Ian Gorton

performance profiles, a new scenario is introduced in Fig. 5, which involves a JMS
queue and a MDB object. Table 2. lists the J2EE services and design patterns used by
each transaction in the benchmark application. The benchmark scenario can easily be
extended for other performance profiles, such as creating/removing an EJB instance.

Client SessionBean EntityHome EntityBean

setValue
findByPrimaryKey

getValue

setValue

getValueSet findByNonPrimaryKey

getAllValues

*[for each entity]

Client Queue Message
Driven Bean

EntityHome Entity BeanSession Bean

getValue

send
deliver

findByPriamryKey

getValue

acknowledge

 Fig. 4. The basic benchmark scenario Fig. 5. The benchmark scenario with JMS and
MDB

The benchmark suite also comprises a workload generator, monitoring utility and

profiling toolkit. A monitoring utility is implemented using the Java Management
Extensions (JMX) API. It collects performance metrics for the application server and
the EJB container at runtime, for example the number of active server threads, active
database connections and the hit ratio of the entity bean cache.

Table 2. J2EE service and design pattern usage matrix

Transaction J2EE service Design Pattern
setValue Session façade, service loca-

tor, read mostly
getValueSet

EJB 2.0 (stateless session bean,
entity bean with container man-
aged persistence), container
managed transaction, JNDI,
security

Session façade, service loca-
tor, read mostly, aggressive
loading

getValue Above services and JMS, MDB Message façade, service loca-
tor, read mostly

A profiling toolkit OptimizeIt [13] is also employed. OptimizeIt obtains profiling

data from the Java virtual machine, and helps in tracing the execution path and col-
lecting statistics such as the percentage of time spent on a method invocation, from
which we can estimate the percentage of time spent on a key subsystems of the J2EE
server infrastructure. Profiling tools are necessary for black box COTS component
systems, as instrumentation of the source code is not possible.

The benchmark clients simulate requests from proxy applications, such as servlets
executing in a web server. Under heavy workloads, this kind of proxy client has an
ignorable interval between two successive requests. Its population in a steady state is

Performance Prediction of J2EE Applications Using Messaging Protocols 11

consequently bounded 2 . Hence the benchmark client spawns a fixed number of
threads for each test. Each thread submits a new service request immediately after the
results are returned from the previous request to the EJB. The ‘thinking time’ of the
client is thus effectively zero. The benchmark also uses utility programs to collect the
measurement of black-box metrics, such as response time and throughput.

Table 3. Hardware and software configuration

Machine Hardware Software
Client Pentium 4 CPU 2.80 GHz,

512M RAM
Windows XP Prof. BEA We-
bLogic server 8.1,

Application
and database
server

Xeon Dual Processors, 2.66
GHz, HyperThreading en-
abled, 2G RAM

WindowsXP Prof. BEA We-
bLogic server 8.1, JDK1.4 with
settings –hotspot, –Xms512m and
–Xmx1024m. Oracle 9i

6.2 Measurement

The benchmark suite must be deployed on the same platform (both software and
hardware) as the target application. In our case study, the benchmarking environment
consists of two machines, one for clients, and the other for application and database
server. They are connected by a 100MB Ethernet LAN. The hardware and software
configuration is listed in Table 3. For the application and database server machine,
HyperThreading is enabled, effectively making four CPUs available. Two CPUs are
allocated for the application server process and the other two CPUs are allocated for
the database server process.

Subscriber

GetHoldingStatement

Create Account

Update Account

Query Stock Value

Buy Stock

Sell Stock PrintQueue

StockValueFeed

Update Stock Value

StockDBMS

Fig. 6. Stock-Online use case

2 A web server has configuration parameters to limit the active workload. For example, Apache uses Max-

Client to control the maximum number of workers, thus the concurrent requests to the application server
are bounded.

12 Yan Liu and Ian Gorton

Each experiment has three phases, rampUp, steadyState and rampDown. The system
is started and initialized in the rampUp stage for 1 minute. The system then transfers
to steadyState for 10 minutes. Each experiment is run several times to achieve high
levels of confidence that the performance difference between two runs under the
same initialization conditions is not significant (below 3%). The values of parameters
obtained from benchmarking are listed in Table 5. They populate the performance
model we developed above with specific hardware/software configuration in Table 3.

Table 4. Default Stock-Online business models

Usage Pattern Transaction Transaction Mix

Read-only point
(read one record)

Query stock 70%

Read-only multiple
(read a collection of records)

Get stockholding 12%

Create account 2%
Update account 2%
Buy stock 7%

Read-write (inserting records, and updat-
ing records; all requiring transactional
support)

Sell stock 7%

7 Case Study: Performance Prediction of Stock-Online

Stock-Online [4] is a simulation of an on-line stock-broking system. It models typical
e-commerce application functions and aims to exercise the core features of a compo-
nent container. Stock-Online supports six business transactions, two of which are
relatively heavyweight, write intensive transactions, and four others that are light-
weight read or write transactions. Its use case diagram is shown in Fig. 6. The sup-
porting database has four tables to store details for accounts, stock items, holdings
and transaction history. The application transaction mix can be configured to model a
lightweight system with read-mostly operations, or a heavyweight one with intensive
update operations. The default transaction mix is listed in
Each experiment has three phases, rampUp, steadyState and rampDown. The system
is started and initialized in the rampUp stage for 1 minute. The system then transfers
to steadyState for 10 minutes. Each experiment is run several times to achieve high
levels of confidence that the performance difference between two runs under the
same initialization conditions is not significant (below 3%). The values of parameters
obtained from benchmarking are listed in Table 5. They populate the performance
model we developed above with specific hardware/software configuration in Table 3.
Table 4. Suppose that Stock-Online is to be implemented using EJB components. A
common solution architecture is to use Container Managed Persistence (CMP) entity
beans, using the standard EJB design pattern of a session bean as a façade to the en-
tity beans. A single session bean implements all transaction methods. Four entity
beans, one each for the database tables, manage the database access.

Buy and Sell transactions are the most demanding in terms of performance, each
involving all four entity beans. For this reason, in our implementations Buy and Sell

Performance Prediction of J2EE Applications Using Messaging Protocols 13

transactions operate asynchronously3, while the remaining short-lived transactions are
always called synchronously. In this asynchronous architecture, the session façade
EJB sends a request as a message to a JMS queue and returns immediately to the
client. The queue receives the message and triggers the onMessage method inside a
MDB instance. onMessage embodies the business logic and accesses the entity beans
for data access. The Stock-Online architecture can be modeled using the QNM devel-
oped in Fig. 1, in which the stereotypes <<session>> and <<entity>> beans are in-
cluded in the Container queue, <<MDB>> bean are included in the MDB queue and
<<Queue>> is modeled as the JMSServer queue.

Table 5. Parameters from
benchmarking

To
7.833

T1
1.004

T2 35.85
6

Tcreate 0.497
Tload 0.215
Tstore 0.497
Tinsert 0.497
TJxa 10.97

2
TJsend 0.929
TJwrite +TJremove 109.718
Cache hit ratio (h) 0.69

 Table 6. Stock-Online service demands

Transaction,Queue Service demand
All,Request 0.204
NewAccount, Container 34.726
NewAccount,DataSource 0.497
UpdateAccount,Container 35.777
UpdateAccount, DataSource 0.927
BuyStock, MDB 81.959
BuyStock, DataSource 2.780
SellStock, MDB 70.844
SellStock, DataSource 2.780
QueryStockValue, Container 19.641
QueryStockValue, DataSource 0.430
GetStockHolding, Container 76.708
GetStockHolding, DataSource 0.516
BuyStock and SellStock/JMS
(non-persistent)

 0.929

BuyStock and SellStock/JMS
(cache-flush)

122.623

BuyStock and SellStock/JMS
(disabled)

 12.905

Assume Stock-Online is to be deployed on the platform described in Table 3. In
order to predict its performance, we need to estimate the service demand of each
transaction imposed on each queue in the QNM. As we have discussed, the necessary
behavioral information of each transaction must be captured such as the number and
type of EJBs participating in the transaction, as well as the component architecture
selected. For example, the transaction to query stock value has read-only access to
one entity bean StockItem, and we use the performance profile in Table 5 to populate
Equation (10), hence its service demand on the Container queue can be calculated as:

210,)1(ThhTTD ContainerValueQueryStock = 19.641 (10)

Table 6 lists the Stock-Online’s service demand for each transaction in each queue
using equation (3)-(9).

3 This is exactly how online stock broking sites such as E-Trade operate.

14 Yan Liu and Ian Gorton

7.1 Predicting Performance for Different Messaging Attributes

With the benchmark results, the performance model can be populated with perform-
ance profiles, and solved to predict the performance of Stock-Online with the three
different messaging quality of service attributes. The arrival rate of requests for the
open QNM depends on the throughput of the application server sending asynchro-
nous Buy/Sell requests, while the load imposed on the DataSource queue by the open
QNM affects the response time of the closed QNM. The overall model is solved itera-
tively between the two QNMs using the Mean Value Analysis (MVA) algorithm.

In order to validate the accuracy of these predictions, Stock-Online has been im-
plemented and deployed. A workload generator injects six types of transactions into
the Stock-Online application. The response time and throughput of both the EJB
server and the JMS server are measured for a range of client loads.

Fig. 7 and 8 show the predictions for response time and throughput, respectively.
Most prediction errors are less than 10% and the maximum error is within 15%. The
predictions demonstrate that throughput achieved with the cache flush disabled option
for persistent messages is approximately 96% of that achieved by non-persistent mes-
sages. Hence these two architectures are comparable in term of performance. This is
verified by measurement of the Stock-Online implementation, where the cache flush
disabled option provides 95% throughput of non-persistent messaging.

Persistent messages with cache-flush are much slower, because of disk write op-
erations. We predict that the performance of cache-flush message persistency de-
grades approximately 28%. The actual measures show that performance degradation
is approximately 32%. Hence the case study demonstrates that our approach is accu-
rate enough to support messaging architecture evaluation in terms of performance.

Buy and Sell transactions have higher service demands than the others transactions.
Dispatching them to the JMS server reduces the load in the EJB server. Therefore the
average application response time is smaller than the JMS server with MDB. This can
also be observed from our predictions.

8 Conclusions

In this paper, we present an approach for predicting, during the design phase, the
performance of component-based applications with both synchronous and asynchro-
nous communications. It combines analytical models of the component behavior and
benchmark measurements of a specific platform. The case study is a J2EE application
using the JMS API. Our approach is applied to predict the performance of three dif-
ferent MOM QoS attributes and two entity bean cache architectures. Without access
to the application source code, the error of prediction is below 15%.

Currently, predictions are carried out manually. However it is possible to automate
much of the process by leveraging research in the software engineering community.
For example, the benchmark application can be generated and run automatically using
the tool developed by Cai at el. [1]. An on-going research project is to automatically
generate the performance model and the benchmark suite from a design. Also more
evidence is required that the approach is broadly applicable and scalable. To this
end we are working to (1). Apply this approach to other middleware platforms, such

Performance Prediction of J2EE Applications Using Messaging Protocols 15

0

50

100

150

200

250

20 30 40 50 60 70 80 90 100 110

No. of clients

R
es

po
ns

e
tim

e
 (

m
s)

Measured APP Server RT Modeled APP Server RT
Measured JMS RT Modeled JMS RT

(a) Non-persistent

0

100

200

300

400

500

600

20 30 40 50 60 70 80 90 100 110

No. of clients

Th
ro

ug
hp

ut
 (t

ps
)

M easured APP Server TPS M odeled APP Server TPS
M easured JM S TPS M odeled JM S TPS

(a) Non-persistent

0

50

100

150

200

250

20 30 40 50 60 70 80 90 100 110
No. of clients

R
es

po
ns

e
tim

e
 (

m
s)

Measured APP Server RT Modeled APP Server RT

Measured JMS RT Modeled JMS RT
(b) Persistent-disabled

0

100

200

300

400

500

600

20 30 40 50 60 70 80 90 100 110

No. of clients

Th
ro

ug
hp

ut
 (t

ps
)

M easured APP Server TPS M odeled APP Server TPS
M easured JM S TPS M odeled JM S TPS

(b) Persistent-disabled

0
50

100
150
200
250
300
350

20 30 40 50 60 70 80 90 100 110

No. of clients

R
es

po
ns

e
tim

e
 (

m
s)

Measured APP Server RT Modeled APP Server RT
Measured JMS RT Modeled JMS RT

(c) Persistent-cache-flush

0

100

200

300

400

500

20 30 40 50 60 70 80 90 100 110

No. of clients

Th
ro

ug
hp

ut
 (t

ps
)

M easured APP Server TPS M odeled APP Server TPS
M easured JM S TPS M odeled JM S TPS

(c) Persistent-cache-flush

Fig. 7. Response Time with three messaging
attributes (measured vs. predicted)

Fig. 8. Throughput with three messaging
attributes (measured vs. predicted)

as NET and CORBA; (2) Test the approach on more complex applications; and (3)
Design software engineering tools that hide the complexity of the modeling and
analysis steps in our performance prediction approach from an architect.

16 Yan Liu and Ian Gorton

References

[1] Cai, Y.; Grundy, J.; Hosking, J.: Experiences Integrating and Scaling a Performance Test
Bed Generator with an Open Source CASE Tool, Proc. IEEE Int. Conf. on Automated
Software Engineering (ASE), September, 2004.

[2] Canevet, C.; Gilmore, S.; Hillston, J.; Prowse, M.; Stevens, P.: Performance modeling with
UML and stochastic process algebras. IEE Proc. Computers and Digital Techniques,
150(2):107-120, 2003.

[3] Denaro, G.; Polin, A.; Emmerich, W.: Early Performance Testing of Distributed Software
Applications. Proc. Int. Workshop on Software and performance (WOSP), pp. 94–103,
January 2004.

[4] Gorton, I.: Enterprise Transaction Processing Systems, Addison-Wesley, 2000.
[5] Gorton, I. and Liu, A.; Performance Evaluation Of Alternative Component Architectures

For EJB Applications, IEEE Internet Computing, vol.7, no. 3,2003, pp.18-23.
[6] Gorton, I.; Haack, J.: Architecting in the face of uncertainty: an experience report, Proc. 26th

Int. Conf. on Software Engineering (ICSE), pp. 543- 551, 2004.
[7] Gu, G. P.; Petriu, D. C: XSLT transformation from UML models to LQN performance

models, Proc. Int. Workshop on Software and performance (WOSP), pp. 227-234, 2002.
[8] Harkema, M.; Gijsen B.M.M.; Mei, R.D.; Hoekstra, Y.: Middleware Performance: A Quan-

titative Modeling Approach, Proc. Int. Sym. Performance Evaluation of Computer and
Communication Systems (SPECTS), 2004.

[9] Liu, Y.; Fekete, A.; Gorton, I.: Predicting the performance of middleware-based applica-
tions at the design level, Proc. Int. Workshop on Performance and Software Engineering
(WOSP), pp 166-170, 2004.

[10] Liu, Y.: A Framework to Predict the Performance of Component-based Applications, PhD
Thesis, University of Sydney, Australia, 2004.

[11] Liu, T.K.; Behroozi, A.; Kumaran, S. A performance model for a business process integra-
tion middleware, IEEE Int’l Conf. on E-Commerce, 2003, pp. 191-198.

[12] Menascé, D.A.; Almeida, V.A.F.; Capacity Planning for Web Performance, Metrics,
Models, and Methods. Prentice-Hall, 1998.

[13] OptimizeIt Suite, http://www.borland.com/optimizeit/
[14] P. King and R. Pooley: Derivation of Petri Net Performance Models from UML Specifica-

tions of Communications Software, Proc. Int. Conf. on Tools and Techniques for Com-
puter Performance Evaluation (TOOLS), 2000.

[15] Saavedra, R. H., Smith, A. J.: Analysis of benchmark characteristics and benchmark per-
formance prediction, ACM Transactions on Computer System, vol. 14, no. 4, pp. 344-
384,1996.

[16] Simeoni, M.; Inverardi, P.; Di Marco, A.; Balsamo, S. Model-Based Performance Predic-
tion in Software Development: A Survey. IEEE Transactions on Software Engineering,
vol. 30, no. 5, pp 295-310, 2004.

[17] Sridhar R., Perros, H. G.: A multilayer client-server queueing network model with syn-
chronous and asynchronous messages, IEEE Trans. on Software Engineering, vol. 26, no.
11, pp. 1086-1100, 2000.

[18] Tran, P.; Gosper, J.; Gorton, I.: Evaluating the Sustained Performance of COTS-based
Messaging Systems, in Software Testing, Verification and Reliability, vol 13, pp 229-240,
2003.

EJBMemProf – A Memory Profiling Framework for
Enterprise JavaBeans

Marcus Meyerhöfer and Bernhard Volz

Friedrich-Alexander University of Erlangen and Nuremberg
{Marcus.Meyerhoefer,sibevolz}@immd6.informatik.uni-erlangen.de

Abstract. Deriving resource properties of components such as memory con-
sumption is a requirement for the specification of non-functional properties of
software components, enabling developers to make a selection among compo-
nents not solely based on their function. In this paper we present a profiler for
Enterprise Java Beans components that has been specifically adapted to the char-
acteristics of such components. It facilitates focussing on the component concept
whithout getting caught up in the details of the objects that actually constitute a
component and offers several views concerning what to attribute to the memory
consumption of a component. Our implementation is based on JVMPI and uses
filtering inside the agent to generate the component profiles.

1 Introduction

The application of component-based software engineering (CBSE) to industrial soft-
ware development has risen with the propagation of mature component models in the
last years, especially on the server side. CBSE offers many advantages, among them
reuse of pre-existing, well-tested solutions or increased productivity through develop-
ing a new software application by combining existing components. Therefore, nowa-
days, one major task in developing software is to select appropriate components often
written by different vendors. Such a selection process is obviously first of all based
on the functional specification a component has to fulfill, but finally non-functional
properties (NFPs) [1] are even more important, because if an application exhibits unac-
ceptable performance, consumes too much resources or does not scale well, it might be
of no use. Because of that, NFPs should be considered in the development process from
the beginning and a developer should be able to choose among components based on
non-functional constraints (e.g. run-time or resource consumption). Moreover, to have
precise information about the non-functional properties of the selected components is
a necessary prerequisite to estimate the non-functional behaviour of the application
before it is actually built. In this paper we introduce the architecture and concepts of
a memory profiling environment for components following the Enterprise Java Beans
(EJB) specification [2].

In the COMQUAD project1 we have implemented a memory profiling solution for
EJB components enabling us to measure the memory consumption of EJBs, with the

1 ‘‘COMponents with QUantitative properties and ADaptivity” is a project funded by the Ger-
man Research Council (DFG FOR 428). It started October 1, 2001, at Dresden University of
Technology and Friedrich-Alexander University of Erlangen and Nuremberg.

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 17–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 Marcus Meyerhöfer and Bernhard Volz

long-term objective to generate a specification that includes such resource properties
[3]. The profiler was designed to measure EJBs in an isolated environment, as we are
interested in precise data and this requires the use of an event-based technique, which
has a significant overhead not tolerable in production environments. In this paper we
argue that most current profilers lack specific support for EJB profiling and we present
our solution offering four different views on memory consumption of an EJB. Further-
more, we show different techniques for memory profiling and explain why we chose a
Java Virtual Machine Profiler Interface (JVMPI) [4] based approach. Applying several
filters inside the profiler agent adapted to the characteristics of EJBs, we are able to
focus the profiling process on these software components. After giving some impres-
sions of the performance of our current prototype, we conclude with a discussion of the
specialities as well as drawbacks of our proposed solution.

2 Related Work

There exist several approaches to determine the amount of resources a Java applica-
tion comsumes; however, the most common one is the usage of a profiler to gather
detailed information about memory and CPU consumption2. Especially for Java a lot of
solutions exist, both commercial and open source ones. Most of them have similar prop-
erties: they are based on JVMPI or, additionally, on some kind of proprietary bytecode
instrumentation and mainly differ in their frontends. Most of them count the number
of objects allocated, as well as classes loaded, and some are able to apply basic text
based filters in their frontends. Unfortunately, they are usually bound to their frontend
application and no API is supplied that would enable to integrate the profiling agent
into our own solution. At the beginning profiling solutions were only available for reg-
ular Java applications and they did not offer specific support for multi-tiered enterprise
applications. Basically, a component-oriented application developed using Enterprise
Java Beans can be profiled with such a tool as well, but the user will be distracted from
the EJBs he is interested in. This is because the profiling will not only show the EJB
invocations, but the whole runtime infrastructure, including the application server, as
well.

The OptimizeIt Profiler Enterprise Edition 6 from Borland [5] is thought to be a
performance monitor for J2EE applications. But memory is not specified on basis of
components but on the basis of objects that have been allocated. Through the front-
end, the user can filter the incoming data retrieved by the profiling agent by applying a
simple text filter, which does not allow the identification of objects created dynamically
by an application server during the deployment phase.

The JProbe analyser suite [6] is able to set up filters based on an EJB jar file, that
is the classes and interfaces contained in that archive. These filters are later used to re-
trieve the objects related to an EJB instance, but JProbe does not differentiate between
two EJBs: memory allocation data and the memory consumption is displayed in the
same window. In order to separate different EJBs from each other, the profiling process

2 Some profilers have additional capabilites, e.g. they allow for the analysis of lock contention.
As we are only interested in memory consumption we will focus only on that aspect.

EJBMemProf – A Memory Profiling Framework for Enterprise JavaBeans 19

must be done repeatedly, with the filter being parameterized not to choose all classes/in-
terfaces from an EJB archive but only those related to the EJB of concern. The filtering
also includes instances of classes dynamically created at runtime but an exact identifi-
cation of them is missing: e.g the dynamic proxies generated during EJB deployment
inside the JBoss3 server are simply named as $ProxyNNwhere NN is a positive integer
number.

JProfiler 3 from ej-technologies [7] also supports filters being able to cope with
dynamically generated classes but the filter process itself is based on a name comparison
of a type name and filter string, which causes all proxy classes—such as those of the
JBoss application server—to be accounted for the memory consumption and not only
those of the profiled EJB. Additionally the profiler does not separate different EJBs—all
data validated through the filter definitions is displayed instead.

Most of the open source solutions do not offer as sophisticated interfaces as com-
mercial ones do: HProf [8] is a sample implementation of a profiler provided by Sun
Microsystems and lacks special support for J2EE. The latest version already employs
the JVMT interface for collecting data by bytecode instrumentation. For earlier ver-
sions of the JDK a version using the JVMP interface is still available. Memory alloca-
tion data of this profiler contains the instance count for classes and the memory amount
consumed by these instances. The Heap Analyzer Tool (HAT) facilitates the creation of
HTML pages from the binary files written by HProf. The JBoss-Profiler [9] is a pro-
filer agent based on the JVMPI and AOP developed by JBoss, but it seems to be in
a very early stage and apparently does not recognize Enterprise Java Beans. It gener-
ates compressed logfiles, which after the profiling run can be parsed by a separate web
application.

In addition to the profiler agent implementations introduced above there are sev-
eral academic frameworks, based on JVMPI as well as on bytecode instrumentation.
Dmitriev [10] describes the application of dynamic bytecode instrumentation support of
the experimental profiling system JFLUID to the selective profiling of Java applications.
Based on the capability of a special virtual machine, enabling code hotswapping of run-
ning methods, the tool uses automatic call graph revelation to instrument dynamically
only the methods of interest. Obviously, this technique aims at selective CPU profiling
of only code parts of interest, instead of profiling the whole application, but could be
applied to selective memory profiling as well. The evaluation shows that although par-
tial profiling provides a considerable reduction of overhead, the absolute overhead can
easily reach more than 100 per cent. For larger applications like J2EE Dmitriev argues
that the overhead becomes acceptable, as benchmarks show substantially lower over-
heads ranging from 2 to 12 per cent. The dynamic bytecode instrumentation approach
is already available for production use in the NetBeans environment as a profiler plu-
gin [11], but its frontend only displays the overall memory consumption of the VM at
present.

Reiss and Renieris [12] describe a three-layer architecture to generate Java trace
data based on JVMPI. The profiler agent TMon creates output streams for each thread.
The frontend TMerge merges several streams providing consistency and uniqueness and
generates a comprehensive trace file. Analysis and visualization is provided by TFilter,

3 http://www.jboss.orghttp://jboss.org

20 Marcus Meyerhöfer and Bernhard Volz

depending on the data from TMerge. Because there is no filtering inside the first layer,
the TMon agent, they have generated more than 1.6 GB data for a 25 seconds run of
an unnamed server application [12, ch. 4]. The aim of this approach is not to filter, but
to collect as much data as possible for later program visualization. Therefore, a later
publication [13] discusses several interesting methods to compress the data by different
encoding techniques, like run-length encoding, grammar-based encoding and finite state
automata encoding which might be useful for our profiler as well.

The Java Performance Monitoring Toolkit (JPMT) [14] supports event filtering at
run-time. It offers event-driven measurement as well as time-driven measurement. The
authors do not consider a component concept in general or EJBs in particular, but nev-
ertheless, they describe the modification of bytecode in order to insert callbacks to the
profiler agent into classes of interest during the class loading event handling. An adap-
tion of that approach could allow efficient filtering for EJB method entries, in order to
activate and deactivate memory profiling selectively at EJB method entry and exit to
reduce the overhead of filtering necessary with JVMPI solutions.

Form denotes a framework [15] for building tools for dynamic analysis and profiling
of Java code in general and can be adapted to the EJB component model. It is based on a
three-tier architecture, consisting of profiler agents to collect all available data through
JVMPI events and send these to the additional middle-tier, the controllers. Controllers
collect the data from one or more agents and provide support for filtering, applying two
filter stages: the first is used to create a mapping from an incoming event to interested
views, the second stage decides which event is sent and which not, based on include-
and exclude filters. The regular frontend tier of usual profiling systems is called views,
which re-use the controllers and agents through an interface. Multiple views can be
attached to one controller and each view can analyze a different scenario, e.g. one is
interested in time spent in certain methods while the second analyzes the memory con-
sumption. Obviously, in that architecture the agents must deliver everything they can
catch which leads to a huge amount of collected data, but on the other hand, the agents
are much simpler and just have to collect and transfer data.

3 Background and Environment

Before we introduce the concepts of our solution, we will explain some necessary back-
ground knowledge. We will give a deeper coverage of the JVMPI compared to the new
JVMTI, because when we started our work JVMTI was still in an early stage4 and the
old standard is still suitable for memory profiling (see discussion in Sect. 4).

JVMPI Versus JVMTI With the publication of version 1.2 of the Java software devel-
opment kit in 1998 the JVMP interface (JVMPI) [4] especially designed for profiling
purposes was added to the standard and has since been widely used for the creation
of profilers5. JVMPI incorporates an event-driven mechanism for the development of
profiling software into the Java Virtual Machine (VM): there are more than 30 events

4 Beta1 was not yet available.
5 However, the status of that interface never changed from its initial “experimental” status.

EJBMemProf – A Memory Profiling Framework for Enterprise JavaBeans 21

defined, such as loading of a class into the VM, object allocation or object destruction.
A registered profiler will be notified whenever an event of interest occurs. Although this
interface is mainly based on events, the programmer is given the additional ability to
perform instrumentation of the Java bytecode inside the profiler by reacting to an event
that notifies the profiler about the loading of the bytecode for one class.

With the new version 5.0 (codename “Tiger”) of the Java SDK, which has been
released in autumn 2004, a new interface for profiling tools was introduced: the Java
Virtual Machine Tool Interface (JVMTI) [16]. It combines the JVMPI and the Java
Virtual Machine Debugger Interface6 (JVMDI). The most important change of the new
specification is that the event-driven mechanism of JVMPI are being superceded by
a new profiling paradigm: the new architecture now relies on bytecode engineering.
JVMPI and JVMDI will still be available in v5.0 but are marked as “deprecated” and
will be removed sometime in the future.

Profiling Agents Profilers for the Java platform are generally split into two parts: the
core part (called profiler agent or just agent) is implemented as a platform-specific
library that is loaded by the VM into the address space of the profilee where it is able
to collect data of interest; the second part is optional and usually responsible for the
subsequent processing of the collected data. It might be very simple and just displays the
data. Commercial solutions usually offer very sophisticated graphical user interfaces but
also use the same split architecture. It is obvious that the profilers differ in their usability
and the presentation of the gathered information; however, as the functionality of the
agent is based on the standard JVMP interface the profiling possibilities themselves are
quite similar.

Architecture of a JVMPI-Based Profiler The basic architecture of a profiler based
on the JVMP interface can be found in [4]. In the subsequent section we will only
highlight the core parts. A profiler agent written for the JVMP interface mainly consists
of three parts: the first part is used to do necessary initialization (including activation
of the events of interest), the second one for processing the incoming events and the
last one for deinitializing the profiler agent when the VM process exits. The entry point
JVM OnLoad() is used for initializing the profiler agent. It is called sometime during the
startup process when the VM has not been fully initialized yet. Its purpose is only to
initialize the profiler agent; basically, it has to register a callback handler for incoming
events and then enable the events of interest for the startup process. Registration of the
central callback function (CF) for incoming events is easily done by setting a pointer to
the callback function which has to suffice a given signature. The CF is usually a large
switch construct using the supplied event type contained in the parameter of the callback
function. According to the event type that parameter contains different information. It
is important to understand that this event handler might be called by different threads
and thus synchronization is necessary if the event handler itself accesses common data
structures. When starting up, all events offered by the VM are disabled by default. In

6 Another part of the former standards mainly adressing the support for debugging of Java soft-
ware.

22 Marcus Meyerhöfer and Bernhard Volz

order to receive event notifications, the events of interests have to be enabled first. This
is done for each event separately using the method EnableEvent(). The JVMP interface
does not allow enabling/disabling of events globally as some events significantly reduce
the speed of the profilee. One event especially interesting for startup and intialization
of the profiler agent is the JVMPI EVENT JVM INIT DONE event as it signals the end
of the initialization process of the VM to the profiler agent. After the signaling of that
event it is safe to call certain JVMPI functions like CreateSystemThread() to create a
new thread. Furthermore, now the events of interest to the profiler should be enabled,
e.g. JVMPI EVENT CLASS LOAD to retrieve information about classes and their load
time or JVMPI EVENT OBJECT ALLOC to be notified of object allocations.

4 Proposed Solutions

Before introducing our solution to EJB memory profiling we explain different possi-
ble techniques together with their advantages and disadvantages. This discussion also
clarifies why we have chosen the event-driven approach.

Bytecode Instrumentation Bytecode instrumentation is a technique that applies ma-
nipulations to the Java bytecode in order to reach a specific goal. There are several
libraries available (e.g. BCEL or JavaAssist) that support developers in modifying byte-
code. There are many possible ways where such modifications can take place: they can
be done statically prior to execution of an application or component or dynamically at
runtime by using a custom classloader or using the profiling agent to apply them during
class loading events. If this approach is to be used for memory profiling, the bytecode
of a class would have to be manipulated such that it reports for instance the creation of
objects to a specially designated listener or that it just counts class instances.

Obviously, among the advantages of bytecode instrumentation is the fact that it is a
very generic approach that makes it possible to tune the profiling for different settings;
for example, it is easy to only generate code for those pieces of the program that are of
interest. This will usually result in faster profiling code as compared to solutions that
have to profile all code or no code at all. Additionally, the profiler itself only has to
display the values set by the injected bytecode and need not apply complex processing
of the gathered data. On the other hand this is also the biggest disadvantage: all pieces
that should be taken into account have to be instrumented. This means that the profiler
might also have to take the classes of the JDK or third party libraries into account
and all those classes have to be instrumented as well. Besides the rising complexity of
instrumentation, now filtering, too, has to be done according to the classes instrumented.

As an example for this consider a class Foo with one method public void foo() which
allocates several objects of type String. If the JDK class java.lang.String is instrumented,
all allocations of String objects happening outside of the class of interest Foo will be
taken into account, too. These “miss-generated events” then have to be filtered out—
either by the injected bytecode or the profiler. Furthermore the class String might make
use of other data types, which also should be taken into account if they have been
created by a String object created by the method foo(). It is obvious, that if a profiler

EJBMemProf – A Memory Profiling Framework for Enterprise JavaBeans 23

is interested in all memory transitively allocated by an object, filtering will be a major
task beside instrumentation.

Event-Driven Approaches Another approach for profiling Java applications and EJBs
is the solution offered by JVMPI, which is based on events: the virtual machine gener-
ates various events, e.g. at load time of a class, for object allocations or when an object
is freed by the garbage collector. The advantage is obvious: code does not need to be
changed and thus no unwanted sideeffects can make their way into a profilee. Every
class and every object, allocated with the operator new, can be found by object alloca-
tion events. Local variables of primitive types are more complicated and are not part of
the data provided with every single event.

The amount of data which can be collected by this approach is massive: if every
single object allocation is taken into account this can exceed the megabyte limit within
minutes, which is exaggeraged if a complex application like an application server is
being profiled. Therefore, filtering all incoming events and removing the uninteresting
ones is a major task in this approach. Another pitfall of event-driven approaches is the
speed of the profilee: event generation inside the virtual machine does not depend on the
actual profiling interests—they just happen for every single object allocation and thus
filtering for the interesting events can become very expensive. In fact this is the major
problem of event-driven profilers: having algorithms to sort out the unwanted events as
soon and as fast as possible.

Static Analysis A completely different way is to analyze the bytecode or even the
source code of EJBs in order to derive the necessary information. This approach is
rather fast as it does not concern EJBs actually running in an application server. Even
information about dynamically allocated resources could—theoretically—be extracted
by taking into account which parameters might be passed on to a method exposed by
an EJB. But this requires a lot of knowledge about the semantics of each method which
might be rather hard to extract. The main advantage is that this method only gives infor-
mation about the resources the EJB methods allocate and use: the part of the application
server does not need to be filtered out separately—it is not included in the static analy-
sis. On the other hand this might also be a disadvantage when choosing among different
application servers, as they will usually differ in the amount of resources for hosting an
EJB.

Statistical Methods Similar to the static analysis is a statistical approach. The profiler
scans the objects of the Java heap and separates the objects of the application server
from the ones belonging to a component. Doing this in regular intervals yields informa-
tion about the living objects. This sampling-based approach is a well-known technique
for CPU load profiling of a program (not by sampling the objects allocated, but the
threads active), but it is a rather coarse way to find the allocated amount of memory:
during the time the profiler is not sampling objects, the EJB might have allocated and
freed resources. Generally, sampling techniques can not give the precision of event-
based solutions as they sample the current state at discrete points in time; however, if

24 Marcus Meyerhöfer and Bernhard Volz

the sampling interval is chosen correctly the overhead is lower as compared to event-
based methods and that is why many commercial profilers offer sampling-based and
event-based profiling side by side.

4.1 Profiling Enterprise Java Beans Components

As explained above there are various profiling techniques usable for Java profilers. In
order to choose the most suitable method, it has to be clear what data to acquire: in
the context of Java, memory profiling basically means gathering information about the
life cycle of objects, e.g. when and where they have been created or when destroyed.
Adressing EJBs, this topic gets more complicated: an EJB consists of several classes,
which are themselves hosted inside an application server. Again, these classes might
create further objects. Should they also be part of the memory allocation picture the
profiler has to create?

Obviously, there is no general answer to those questions, as on some occasions for
example the whole transitive memory consumption of an EJB is of interest while on
others only the consumption of the EJB instance itself should be determined. Further-
more, it might even be interesting to have the infrastructure used by the application
server accounted for the memory consumption—this then would allow us to compare
certain application servers. In order to integrate all those viewpoints, we decided to have
four different kind of views on the memory allocation data:

1. The Restricted View contains all objects that are instances of the classes contained
in the archive of the profiled Enterprise Java Bean. This allows measuring only
the objects of the EJB itself without any other infrastructure the EJB needs for
providing its service.

2. The EJB Center View contains the Restricted View and additionally all objects cre-
ated by the business and internal helper methods. This provides for a detailed view
on how much memory an EJB consumes, where this memory is allocated and how
much memory the EJB needs for providing its service.

3. The Complete View contains the EJB Center View and additionally all objects cre-
ated by the application server that are used for hosting the profiled EJB.

4. The Application Server Restricted View contains only those objects created by the
application server in order to host the profiled EJB. This view allows the compar-
ison of application servers by different vendors as not the EJB itself is of interest
but the internals of the application server.

Therefore, a memory profiler for EJBs should be able to generate output for each
view. Considering the different possible approaches discussed at the beginning of Sect.
4 and taking into account that Java is an environment supported by a garbage collector
and the profiler is interested in an exact memory consumption, the statistical and the
static bytecode analysis approaches are not useful. Instead, an event-driven approach
is chosen. The generation of the necessary events can either be achieved by bytecode
instrumentation or by using VM-driven event reports.

In order to support all four views mentioned above, it is necessary to collect all
objects the EJBs allocate during their lifecycle. Thus, it is better to rely on the event

EJBMemProf – A Memory Profiling Framework for Enterprise JavaBeans 25

reporting mechanism of the Java Virtual Machine as otherwise the bytecode instrumen-
tation approach would converge against the event reports in terms of performance, as
filtering is needed as well. But, for compliance with future versions of the Java pro-
gramming environment, the architecture of the agent should be designed such that the
bytecode instrumentation approach can be implemented easily.

4.2 Searching the Needle in the Haystack: Filtering

In order to implement the different views described above a profiler agent has to sub-
scribe to allocation events, which then will notify it of all objects created during the
run of a profiled component-based application inside an application server. The main
task of the profiler is filtering the incoming events. Doing so, it is necessary to know
which objects have to be accounted for the memory consumption of a given EJB. Ob-
jects identified to be part of the EJBs memory consumption will be called “valid”, the
others “invalid”, respectively.

The objects directly belonging to the EJBs can be detected by comparing the class
of an allocated object with the classes of the EJB archive. All objects that are instances
of a type contained in the EJB archive can be added to the memory consumption. The
filter doing the class comparison will be called class filter7.

Objects created by methods of the EJB can be found searching the call stack of an
object allocation. If the call stack contains a method which is part of a type of the EJB
classes, it again can be added to the memory consumption. This filter will be called call
stack filter. Listing 1.1 shows which data can be retrieved by the class and call stack

public class Foo {
2 public void foo () {

byte aData [] = new byte [2 0] ; / / c a l l s tack f i l t e r
4 }

}
6

public class FooBar {
8 public s ta t ic void main (S t r i ng sArgs []) {

Foo oFoo = new Foo () ; / / c lass f i l t e r
10 oFoo . foo () ;

}
12 }

Listing 1.1. An example for the data the class and call stack filter can retrieve.

filters: it contains two classes Foo and FooBar. Foo should be considered a class of
the EJB (all infrastructure belonging to the EJB has been left out for better readability)
which provides one method foo(). This method allocates an array of byte values
(line 3).

The class filter is parameterized such that it accepts objects of type Foo, the call
stack filter such that it accepts objects created by methods of the class Foo. This adds
the following objects to the memory consumption:

7 The classes and interfaces an EJB consists of are given by the EJBs specific deployment de-
scriptor which is contained in the archive.

26 Marcus Meyerhöfer and Bernhard Volz

– Line 9: the object oFoo is of type Foo and thus is validated by the class filter.
– Line 3: when the method foo() is called, it creates a byte array. This array aData

is then validated by the call stack filter.

The class and call stack filters only accumulate the memory of objects directly re-
lated to the profiled EJB. The infrastructure8 of the hosting application server is missed.
In order to include it as well, a third filter called inheritance filter is introduced: an ob-
ject is accounted for the memory consumption of the application servers part of the EJB
if the object’s class is, directly or indirectly, derived from a class of the EJB or imple-
ments an interface of the EJB—like the local-home interface. The class and inheritance
filter can be applied during the load time of a class. The latter filter also covers classes
that are dynamically created during runtime. This, however, makes it more difficult to
retrieve information about a type, like which interfaces are implemented and of which
super classes the class derives. Therefore, our solution applies a native library to parse
the bytecode while the class loading event.

By implementing these three filters, all views on the allocation data mentioned in
Sect. 4.1 can be retrieved as follows:

– The Restricted View: only the class filter is switched on.
– The EJB Center View: the class and call stack filters are parameterized.
– The Complete View: all three filters are active.
– The Application Server Restricted View: only the inheritance filter is used.

4.3 The Architecture of EJBMemProf

Our profiler EJBMemProf follows the canonical architecture of profilers for the Java
environment and consists of two parts: the profiling agent as a platform specific li-
brary, which is responsible for collecting the profiling data and a frontend responsible
for visualisation. The agent and its frontend are connected via a TCP/IP connection
for bidirectional communication using a simple XML-based message format. The data
collected by the agent is sent to the frontend as soon as possible. The order of events
issued by the virtual machine is preserved by that communication and additionally, all
data carry timestamps and sequence numbers to identify the times at which the events
have been issued by the VM and their order.

Currently, the JVMPI-based agent runs under the Linux operating system with the
Sun Java software development kit (JDK) version 1.4.2. As it is written completely in
C++ and uses just open source libraries we expect the agent to be easily portable to
other platforms. The frontend is written in Java and should run on any platform having
a JRE version 1.5 available and the SWT GUI library (v3) installed.

Figure 1 gives an overview of the processing of incoming events and the inter-
nal structure of the profiling agent9. The core elements of the profiler are the central

8 Such infrastructure could comprise dynamically generated proxy objects for an EJB.
9 Please note that this figure shows only the main events necessary for memory profiling. There

are some other events like initialisation of the VM or garbage collection runs the profiler has
to register for as well; those events are left out for ease of presentation.

EJBMemProf – A Memory Profiling Framework for Enterprise JavaBeans 27

Fig. 1. The data flow inside the profiler agent.

dispatcher responsible for thread synchronization and passing the event to the corre-
sponding handler methods, a class file parser and the several filter implementations
which store information about classes and objects into repositories. Moreover, there are
modules for writing log information and sending the relevant data to the frontend or
receiving commands from it.

The events shown in Fig. 1 address the complete lifecycle of an object, that is al-
location, its lifetime while being used and finally its destruction. Before an object is
instantiated the very first time, the bytecode of its class has to be loaded. The process is
interrupted by a CLASS_LOAD_HOOK event of the profiler which internally activates
the class file parser to retrieve the implemented interfaces of the class loaded. At the
time the VM loads a class a CLASS_LOAD event is issued. This triggers the generation
of descriptive information inside the agent, which will be combined with the informa-
tion gathered by the class file parser described above. Afterwards, the class and inher-
itance filters are applied, checking whether the loaded class is contained in the list of
valid classes (class filter) to be profiled or whether the class derives from a given set of
valid superclasses or implements at least one interface of a given set of valid interfaces
(inheritance filter). Finally, the class information is stored and if the class is considered
valid, an event report is sent to the frontend. After loading a class, it can be instantiated.
The profiler then receives an OBJECT_ALLOC notification and has to check whether
its class has been marked valid before. If not, the call stack filter has to search the call
stack whether the object has been created in the context of a valid method. If valid, the
information is stored and an event sent to the frontend.

28 Marcus Meyerhöfer and Bernhard Volz

It is a common misconception that there are no events addressing an object during its
lifetime. Unfortunately, the virtual machine might move an object around in memory,
caused by a garbage collector run. This changes the object id by which an object is
identified. Therefore, the agent has to take care of OBJECT_MOVE events because the
old id might be reassigned to either newly created objects or different objects moved by
the virtual machine.

Finally, if an object gets destroyed an OBJECT_FREE event is raised. If the object
has been tagged valid by the profiler, it has to update its data structures and notify
the frontend. However, there is still another possiblity of freeing objects. The garbage
collector can free a whole arena of memory, thus implicitly freeing all objects stored
inside. Therefore, if an ARENA_DELETE event occurs the agent has to check its object
repository for objects that were stored in the given arena. To be complete, classes can
be unloaded by the virtual machine. The corresponding event CLASS_UNLOAD has to
be handled by the agent as well.

4.4 Performance of the Enterprise Java Beans Profiler

Execution of additional profiling code always results in a loss of performance inde-
pendent of the technique used to retrieve the data of interest. As already described in
Sect. 2 this problem is common to all current profilers even if they apply sophisticated
optimizations like JFluid [10]. We have conducted different measurements10 to investi-
gate the performance of our solution and to identify areas for further improvement. The
test application was an MPEG4-compliant video codec consisting of about ten entity
beans with different components closely interacting and using many objects as interme-
diate return value wrappers. This application, therefore, can be regarded as a real-life
example exhibiting a worst-case like behaviour of the profiler. For the purpose of the
measurements, we encoded a very short video sequence consisting of three pictures.

Fig. 2. Comparison of average processing times of XviD EJB.

10 We used a PC with 512MB RAM, 800MB swap space and an AMD Athlon 1600 processor
(1.4GHz). The machine was fitted with Gentoo Linux 2004.3 using the Linux Kernel 2.6.9. As
application server JBoss 3.2.3 (default configuration as distributed with JBoss) was installed
along with the Sun JDK v1.4.2.06. The frontend and profiler agent were running on the same
machine.

EJBMemProf – A Memory Profiling Framework for Enterprise JavaBeans 29

We did not expect our solution to be low overhead, because JVMPI does only allow
enabling object allocation events globally and therefore all incoming events have to be
filtered, even if only a small amount actually matter. Additionally, both the special kind
of filtering employed by the analysis of the call stack of each invocation and the need
of synchronisation and context switching in a JVMPI-based profiler agent introduce a
large amount of overhead.

Our expectations were met by the measurements: the startup time of the used appli-
cation server JBoss is nearly doubled if the agent is attached (we measured the startup
time ten times and took the average value; in the simple case the time is 52 seconds
while it is 92 seconds with profiling). This is mainly caused by the interception of every
class loaded and filtering it as described. The runtime overhead is even higher when
profiling our demo application. A run of three images took about nine seconds with-
out profiling and about 20 to 27 times that, depending on the kind of profiling view
selected (see Fig. 2). However, if a component was invoked more often by a client, we
were able to measure a significant decrease in overhead as the application server used
object pooling. Generally, as expected, the overhead is mostly caused by object alloca-
tion events when the call stack filter is involved, which currently uses a simple string
comparison-based implementation. Nevertheless, our prototype was able to cope with
such a demanding application and several ways of possible improvement are currently
under consideration. Besides that, our solution—as mentioned in Sect. 1—is targeted at
a specific measurement scenario where such overhead is tolerable. Clearly it is currently
not apt for use in productive environments.

4.5 Discussion

Our current implementation does not employ bytecode instrumentation for the genera-
tion of events. This is because, based on the four different kinds of view on the data,
bytecode instrumentation offers no advantages when retrieving the memory allocation
data. As shown in Sect. 4, many classes would have to be instrumented in order to
generate data for all four views, but filtering the allocation data would still be needed.
That would barely reduce the overhead of filtering. Furthermore, often EJBs of third
party distributors have to be measured. Here, it is sometimes illicit to alter the code of
a program as most vendors prohibit this in their license terms for a component. By not
using instrumentation, no license regulation is violated. However, with the new JDK
v1.5.0, the JVMP interface is marked as deprecated and superceded by a new instru-
mentation based one (see [16]); it is therefore important that the existing structure of
the agent be easily re-usable and altered such that it can use the JVMTI as well. Any-
how, a lot of application servers still run with the older version 1.4.x and are able to use
the JVMPI. Nevertheless, we already have a prototype profiler using the new interface
and are planning to migrate our solution to this new technique.

The EJBMemProf memory profiler has been designed to work with the Enterprise
Java Beans component model. To this end, the filters have been designed in such a way
that they only generate data reports containing resources directly or indirectly related to
one or more EJBs when parameterized correctly. As pointed out in Sect. 2, many profil-
ers for the Java platform are readily available, but nearly all of them generate too much
data which distracts the user from the actual EJBs of interest or are unable to distinguish

30 Marcus Meyerhöfer and Bernhard Volz

between the resources only related to the application server, only related to one or more
EJBs and that resources related to an EJB as well as to the application server. As our
solution is specialized on EJBs, a minimum knowledge about the component is needed
in order to do profiling at all. It is not necessary to know which classes are instantiated
by one EJB as the filters are retrieving them automatically. The only information neces-
sary is the set of classes and interfaces a EJB consists of, which can easily be extracted
from the deployment descriptor.

Although the profiler focusses on EJBs and uses several filtering mechanisms, it
still can, according to the parameterization of the filters, generate large reports for the
frontend. This is why it is not uncommon for a more complicated scenario with several
EJBs involved being profiled for a longer time, to generate two or more gigabytes11. As
the network could be a bottleneck with such a huge amount of data, our prototypical
implementation allows for the storage of the profiling data to a file on the server side.
However, our current frontend holds all profiling data in memory as well—independent
of whether it receives the data via the network or from a local file—which leads to high
memory consumption on the client in such scenarios.

In contrast to that, the very detailed allocation data paves the way for extensive
statistical calculations without specifying the kind of calculation and the data involved
at the start of the profiling process: calculating, for instance, the amount of memory
allocated by one specific method/object/EJB is simply a query on the data and doing
the calculation again for a second method/object/EJB is just a repetition of the query
with other conditions. Thus, it can be interesting to split the profiling process into two
phases: in the first one all the data is collected and stored to files or in a database, which
allows more complex queries on the gathered data. After the data collection has been
finished, the data can be analyzed without having the profiler agent running on a system.
This is not a novel approach as some profilers like the JBoss-profiler (see Sect. 2) use it
to decouple the data collection process from the load generated by an analysis.

An interesting aspect of the proposed solution is the possibility to compare appli-
cation servers of different vendors: the complete view is not restricted to the objects
allocated by the EJB itself, but also reports those created by the application server for
providing its service. Application servers might have implemented the EJB service dif-
ferently. The memory used by these objects could also be accounted to the memory
allocated by the EJB—that makes it possible to compare application servers. However,
we did not exploit that possibility yet.

Considering the accuracy of our event-based solution, the profiler generally recog-
nizes every object allocation reported by the VM through the OBJECT_ALLOC event.
This does not cover objects allocated in native code which has been invoked through
the Java Native Interface if these objects are not Java objects. But, on the other hand,
there is no need to catch these allocations as the current version of the EJB specifica-
tion (2.1) forbids loading a native library and calling native code from an EJB anyway,
for its ability to compromise security (see chapter 25.1.2 of [2])12. Local variables of

11 Profiling our MPEG4 component application with an input movie consisting of only three
pictures generated already a file of size 2.6GB.

12 If the profiler agent is interested in this memory, additional profiling techniques suitable for
retrieving memory allocations from native code must be introduced. The filters cannot be pa-

EJBMemProf – A Memory Profiling Framework for Enterprise JavaBeans 31

primitive types like int, float or boolean are exempt from the object allocation
event of the JVMPI. If a method uses the Java wrapper classes for the primitive types
(e.g. Integer for int), these local variables are included. It is safe to state that every
object is contained in the event for which the new operator is called to instantiate it.
This definition includes arrays where the elements are of a primitive type like int[].

If the profiling is done twice for the same EJB, the user may notice that not exactly
the same memory consumption is reported—even if the EJB processed requests with the
same data. As the Java environment uses a garbage collector, the point in time when ob-
jects are freed depends on the parameterization and the type of garbage collector of the
JVM used. This causes the difference in the actual and maximum memory consumption
values for two profiling sessions. As a result the value measured for the overall mem-
ory consumption for one scenario is not solely determined by the value of one single
profiling session, but by a range measured for more sessions. The lower bound of this
range is given by the lowest maximum memory consumption and the upper bound by
the highest maximum memory consumption contained in the measurement series.

Regarding performance, we already discussed some areas of improvement, e.g. a
more sophisticated string comparison algorithm in the call stack filter. Furthermore, as
it is necessary to switch to JVMTI for the future anyway, there might be some perfor-
mance gains because the costs for context switching between Java code and the C++
profiler agent code will be reduced significantly. But still, excessive filtering will be
inescapable in the current architecture. Therefore, we currently consider an enhanced
architecture where object allocation events—independent of whether generated by byte-
code instrumentation or by an event based API—can be selectively enabled only when
a thread enters an EJB and can be switched off again after it leaves it (see discussion in
Sect. 2 addressing [14]).

5 Conclusion

In this paper we have described the architecture and implementation of an event-based
memory profiler that has been specifically designed for Enterprise Java Beans compo-
nents. Most current profilers for the Java platform either do not adapt to the specialities
of component profiling—with the consequence that a user has to dig through a lot of
data he is not interested in or is not able to interpret—or do not differentiate what
should be presented to the user. Additionally, there is usually no API by which a differ-
ent frontend could use a given profiling agent. After presenting several approaches to
EJB memory profiling, we have argued that an event-based mechanism is necessary to
offer a precise look at memory consumption. We have introduced four different views
on the memory allocation of an EJB and have shown how these can be implemented by
applying three different filter mechanisms inside the agent, with the advantage of signi-
ficantly reducing the amount of data necessary to be transferred to a frontend. We have
given a first impression of the performance of our prototypical JVMPI-based imple-
mentation and have identified the advantages as well as the drawbacks of our approach
in the discussion.

rameterized such that they also include native objects (only if the profiler is not used with
EJBs).

32 Marcus Meyerhöfer and Bernhard Volz

Basically, as the overhead of the profiler is still very high in complex scenarios,
especially if the call stack filter is involved, a use in production environments is pro-
hibitively expensive. This fact, however, is alleviated as we primarily designed our solu-
tion to be used in a stand-alone measurement environment targeted at the generation of
a component specification including resource usage. As a next step we want to improve
our implementation in order to reduce its overhead; ideally, a solution usable in pro-
duction environments will result, which then could make it possible to check resource
specifications of components at runtime or have the application server adapt to resource
constraints. To achieve this, bytecode instrumentation will be a necessary technique to
reduce context switches; but this has to be accompanied by selectively switching on and
off the event-generation depending on the business method of interest of a component.
Otherwise, the main task of a bytecode instrumentation approach will also be filtering
again.

References

[1] Brahnmath, G., Raje, R.R., Olson, A., Bryant, B., Auguston, M., Burt, C.: A quality of
service catalog for software components. In: Proc. Southeastern Software Engineering
Conf. (Huntsville, Alabama, April). (2002) 513–520

[2] Sun Microsystems: Enterprise Java Beans Specification, Version 2.1. (2003)
[3] Röttger, S., Zschaler, S.: CQML+: Enhancements to CQML. In Bruel, J.M., ed.: Proc.

1st Intl. Workshop on Quality of Service in Component-Based Software Engineering,
Toulouse, France, Cépaduès-Éditions (2003) 43–56

[4] Sun Microsystems: Java Virtual Machine Profiler Interface. (1998) URL http://java.sun.
com/j2se/1.4.1/docs/guide/jvmpi/jvmpi.html, downloaded at 2004-10-19.

[5] Borland: OptimzeIt Enterprise Edition 6 (2004) http://www.borland.com/optimizeit/.
[6] Quest Software: JProbe (2004) http://www.quest.com/jprobe/index.asp.
[7] ej Technologies GmbH: JProfiler (2004) http://www.jprofiler.com.
[8] O’Hair, K.: HPROF: A Heap/CPU Profiling Tool in J2SE 5.0. (2004) URL http://java.sun.

com/developer/technicalArticles/Programming/HPROF.html, downloaded at 2004-12-18.
[9] JBoss.org: Jboss-profiler documentation (2004) URL http://www.jboss.org/wiki/Wiki.jsp?

page=JBossProfilerDocumentation, downloaded at 2004-12-08.
[10] Dmitriev, M.: Profiling java applications using code hotswapping and dynamic call graph

revelation. In: Proceedings of the fourth international workshop on Software and perfor-
mance, ACM Press (2004) 139–150

[11] Netbeans.org: The NetBeans profiler project (2004) URL http://profiler.netbeans.org.
[12] Reiss, S.P., Renieris, M.: Generating Java trace data. In: Proceedings of the ACM 2000

conference on Java Grande, ACM Press (2000) 71–77
[13] Reiss, S.P., Renieris, M.: Encoding program executions. In: Proceedings of the 23rd In-

ternational Conference on Software Engineering, Toronto, Ontario, Canada, IEEE (2001)
221–230

[14] Harkema, M., Quartel, D., Gijsen, B.M.M., van der Mei, R.D.: Performance monitoring
of Java applications. In: Proceedings of the Third International Workshop on Software and
Performance, ACM Press (2002) 114–127

[15] Sounder, T., Mancoridis, S., Salah, M.: Form: A Framework for Creating Views of Program
Execution (2001) Drexel University, Departement of Mathematics and Computer Science.

[16] Sun Microsystems: The JVM Tool Interface (JVMTI). (2004) URL http://java.sun.com/
j2se/1.5.0/docs/guide/jvmti/jvmti.html, downloaded at 2004-12-10.

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 33-48, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Model-Driven Safety Evaluation with State-Event-Based
Component Failure Annotations

Lars Grunske1, Bernhard Kaiser2, and Yiannis Papadopoulos3

1School of Information Technology and Electrical Engineering ITEE,
University of Queensland, Brisbane, QLD 4072, Australia

grunske@itee.uq.edu.au
2Fraunhofer IESE, Sauerwiesen 6, 67661 Kaiserslautern, Germany

bernhard.kaiser@iese.fraunhofer.de
3Department of Computer Science, University of Hull, HU67RX, U.K.

y.i.papadopoulos@hull.ac.uk

Abstract. Over the past years, the paradigm of component-based software en-
gineering has been established in the construction of complex mission-critical
systems. Due to this trend, there is a practical need for techniques that evaluate
critical properties (such as safety, reliability, availability or performance) of
these systems. In this paper, we review several high-level techniques for the
evaluation of safety properties for component-based systems and we propose a
new evaluation model (State Event Fault Trees) that extends safety analysis
towards a lower abstraction level. This model possesses a state-event semantics
and strong encapsulation, which is especially useful for the evaluation of com-
ponent-based software systems. Finally, we compare the techniques and give
suggestions for their combined usage.

1 Introduction

Safety critical systems are systems that pose potential hazards for people and the
environment. Recently though, the ability to implement cost effectively complex
functions in software has yielded a plethora of computer controlled safety critical
systems in areas that include automotive electronics, aviation, industrial process con-
trol and medical applications. The safety assessment of such systems is currently
performed using a range of classical techniques, which include Fault Tree Analysis
(FTA), Failure Modes and Effects Analysis (FMEA) and Hazard and Operability
Studies (HAZOPS) (for a review of these techniques the reader is referred to [2, 17,
28]). During the safety assessment process, a team of analysts manually applies a
combination of these techniques to identify possible hazards, analyze the risk associ-
ated with these hazards, and devise strategies to mitigate the level of risk where this is
necessary.

Although there are many commercial tools that automate the quantitative, mathe-
matical analysis of such models, the construction of evaluation models and the overall
application of hazard and safety analysis techniques remain manual processes, which
are performed by expert analysts. For relatively simple systems, safety and reliability
analysis is a manageable process, although fault trees and other analyses can rapidly

34 Lars Grunske, Bernhard Kaiser, and Yiannis Papadopoulos

become very elaborate [2]. With increasing system complexity however, manual
analysis becomes laborious, error prone and questions are therefore asked as to its
applicability to complex technologies.

New computer-based systems deliver increased functionality on increasingly more
powerful electronic units and networks. Such systems introduce new complex failure
modes, which did not arise in older electromechanical designs. Such failure modes,
for instance, include commission failures, i.e. conditions in which functions are being
provided in the wrong context of operation (e.g. inadvertent and wrong application of
brakes in a vehicle control system). As the density of implementation per electronic
unit increases over time in such systems, and as functions are being distributed on
networks of embedded components, the possibility of common cause failure and
unpredicted dependent failure of critical functions caused by malfunction of non-
critical functions also become greater concerns. Beyond those new safety concerns,
difficulties are also caused by increasing scale and complexity. To deal with the com-
plexity, new assessment processes are needed in the context of which composability
and reuse of component safety analyses in the construction of system safety cases will
be possible [25]. Such processes are also demanded by modern standards. The
CENELEC railway standards [5], for example, introduce the concept of composable
safety cases, according to which the safety case (i.e. the collective evidence of safety)
of a system is composed of the safety cases of its sub-systems or components, which
in theory could be certified independently. This type of composability in safety analy-
sis is expected to bring similar benefits to those introduced by well-tested and trusted
software components in general software engineering [25]. A body of work is already
developing looking into techniques for specification and application-level reuse of
component-based safety analyses. This paper reviews this work and proposes a new
component-based safety evaluation model (State Event Fault Trees), which is appro-
priate for the representation and analysis of components and systems that exhibit
probabilistic and deterministic behavior.

The rest of the paper is organized as follows: In Section 2, recently proposed tech-
niques for safety analysis of component-based systems are reviewed. In Section 3, we
introduce State Event Fault Trees (SEFTs), a new model for safety analysis and de-
scribe the proceeding of a component-based safety analysis with these SEFTs. The
case study of a fire alarm system in Section 4 demonstrates application of SEFTs.
Finally, we discuss the benefits, limitations and differences of the proposed tech-
niques in Section 5, and we conclude and describe relevant future work in Section 6.

2 Safety Evaluation for Component-Based Systems:
Earlier Models

To place the proposed work in context, this section reviews earlier work on safety
evaluation of component-based systems. To deal with the modular nature of compo-
nent-based systems, safety evaluation models also need to be modular and should be
capable of describing the failure behavior of components with respect to all possible
environments. A number of models have been proposed to meet these requirements.
In this section, we examine three models, which we believe will help to illustrate the

Model-Driven Safety Evaluation 35

principle and value of modular safety analysis as well as the limitations of current
work in this area. These models are: Failure Propagation and Transformation Nota-
tion (FPTN), tabular failure annotations in Hierarchically Performed Hazard Origin
and Propagation Studies (HiP-HOPS) and Component Fault Trees (CFT).

2.1 Failure Propagation and Transformation Notation (FPTN)

The Failure Propagation and Transformation Notation (FPTN) described in [9] is the
first approach that introduces modular concepts for the specification of the failure
behavior of components.

The basic entity of the FPTN is a FPTN-Module. This FPTN-Module contains a
set of standardized sections. In the first section (the header section) for each FPTN-
module an identifier (ID), a name and a criticality level (SIL) are given. The second
section specifies the propagation of failures, transformation of failures, generation of
internal failures and detection of failures in the component. Therefore, this section
enumerates all failures in the environment that can affect the component and all fail-
ures of the component that can effect the environment. These failures are denoted as
incoming and outgoing failures and are classified by the failure categorization of
Bondavalli and Simoncini [3] (reaction too late(tl), reaction too early(te), value fail-
ure(v), commission(c) and omission(o)). In the example which is given in Fig. 1 the
incoming failures are A:tl, A:te, A:v,and B:v and the outgoing failures are C:tl, C:v,
C:c and C:o. The propagation and transformation of failures is specified inside the
module with a set of equations or predicates (e.g for propagation: C:tl=A:tl and for
transformation C:c=A:te&&A:v and C:v=A:t||B:v). Furthermore a component can also
generate failures (e.g C:o) or handle an exiting failure (e.g B:v). For this, it is neces-
sary to specify a failure cause or a failure handling mechanism and a probability.
FPTN-Modules can also be nested hierarchically. Thus, FPTN is a hierarchical nota-
tion, which allows the decomposition of the evaluation model based upon the system
architecture. If a FPTN-module contains embedded FPTN-modules the incoming
failures of one module can be connected with the outgoing failures of another mod-
ule. Such a connection can be semantically interpreted as failure propagation between
these two modules.

Fig. 1. Abstract FPTN-Module

36 Lars Grunske, Bernhard Kaiser, and Yiannis Papadopoulos

2.2 Tabular Failure Annotations and HIP-HOPS (Hierarchically Performed
Hazard Origin and Propagation Studies)

Building on earlier work on FPTN, Papadopoulos and McDermid proposed HiP-
HOPS [19], a model-based semi-automatic safety and reliability analysis technique
that uses tabular failure annotations as the basic building block of analysis at compo-
nent level. In HiP-HOPS a structural model of the system (hierarchical if required to
manage complexity) is first annotated with tables that contain formalized logical
descriptions of component failures and their local effects. The annotated model is
used as a basis for the automatic construction of fault trees and FMEAs for the sys-
tem. Application of the technique starts once a concept of the system under design
has been interpreted into an engineering model, which identifies components and
material, energy or data transactions among components.

In HiP-HOPS, failure annotations at component level contain sets of logical ex-
pressions, which show how output failures of each component can be caused by in-
ternal malfunctions of the component and deviations of the component inputs. A
technique called Interface Focused FMEA (IF FMEA) [18] has been proposed as a
means of deriving such failure annotations. Analysts will typically apply this tech-
nique on components to identify plausible output failures such as the omission, com-
mission, value (hi, low) or timing (early, late) failures at each output and then to de-
termine the local causes of such events as combinations of internal component mal-
functions and input failures. Once this analysis has been inserted into the model, the
structure of the model is then used to automatically determine how the local failures
specified in failure annotations propagate through connections in the model and cause
functional failures at the outputs of the system. This global view of failure is captured
in a set of fault trees, which are automatically constructed by traversing the model
and by evaluating the local failure expressions encountered during the traversal. In
HiP-HOPS, synthesized fault trees form a directed acyclic graph sharing branches
and basic events that arise from dependencies in the model, e.g. common inputs.
Thus, qualitative or quantitative analysis can be automatically performed on the graph
to establish whether the system meets its safety or reliability requirements. In recent
work [20], the authors also showed that the graph can be automatically reduced into a
simple table, which is equivalent to a classical FMEA.

2.3 Component Fault Trees (CFT)

Component Fault Trees (CFTs) [12] are an extension of basic Fault Trees (FTs) [11,
26] to analyze complex component-based systems. This extension allows arbitrarily
defining partial FT that corresponds to the actual technical components.

CFTs can be modeled and archived independently from each other, because they
are encapsulated entities using input and output ports to connect the components.
CFTs are treated as a set of propositional formulas describing the truth-values of each
output failure port as a function of the input failure ports and the internal events.
CFTs are acyclic graphs with one or more output ports. Each component constitutes a
namespace and hides all internal failure events from the environment. Components
may be instantiated several times and can be reused in other projects. Thus, all neces-

Model-Driven Safety Evaluation 37

sary preconditions for an application of safety analysis to component-based systems
are fulfilled. Apart from the component and port concepts, CFTs are ordinary FTs and
provide the same expressive power and analysis techniques.

Fig. 2 gives an example of a CFT and the hierarchical decomposition. The left
CFT describes the failure behavior of the system, i.e. an instance of the top-level
component-class C1. The system incorporates two instances Sub1 and Sub2 of an-
other component type C2 as its subcomponents. On the higher hierarchy level, sub-
components are represented as black boxes that show only the ports, representing the
external interface of the embedded CFT. As in UML, colons are used to separate
instances from classes, e.g. Sub1:C2 denotes that Sub1 is a component (instance) of
component-class C2. Note that the internal events Sub1.E1 and Sub2.E1 within the
two subcomponents (not visible on top system level) are two distinct instances of:
C2.E1 and thus independent events, while System.E1 is another distinct event and a
common failure cause to both subcomponents.

System:C1

&

:C2

Sub1:C2 Sub2:C2

:C1.E1

&

:C2.E1:C2.In1

:C2.Out1:C1.Out1

Fig. 2. Example of a Component Fault Tree

The application of CFTs for component-based systems is described in [10]. This
includes the annotation of CFTs to components and a model-based construction algo-
rithm of system-level CFTs (safety cases) based on the structure specification and the
component fault trees of the used components. This construction algorithm is similar
to the generation of fault trees in HiP-HOPS.

3 State Event Fault Trees

While the preceding section describes established and industry-proven component-
based safety analysis techniques, this section presents a very recent technique, the
State-Event-Fault-Trees (SEFTs). We first give an informal introduction and briefly
describe the syntax and semantics of SEFTs. Then we summarize how to analyze
hazard probabilities with SEFTs and present the application to component-based
systems.

38 Lars Grunske, Bernhard Kaiser, and Yiannis Papadopoulos

3.1 Informal Introduction and Syntax of SEFT

SEFTs are a visual model that integrates elements from discrete state-based models
with FTs. The principal distinction from standard FTs is that states (that last over a
period of time) are distinguished from events (sudden phenomena, in particular state
transitions). The graphical elements are adopted from traditional FTA and from State-
charts (or derived notations like ROOMcharts [24] or UML 2.0 State Diagrams) that
are widely used in industry. An explicit event symbol is introduced and causal edges
show cause-effect relations, connected by logical gates, as usual in FTA.

State transitions occur due to three different reasons: either the state changes de-
terministically when a certain sojourn time in a state has elapsed, or it changes sto-
chastically according to an exponential distribution of the sojourn time, or it changes
because some other event caused, or triggered the state change. The latter relation
between two events is denoted by a causal edge, which can be graphically distin-
guished from a temporal edge that denotes the predecessor/successor relation be-
tween states and events.

As in FTA, gates add logical connectors to the causal paths. The fundamental gates
are AND, OR and NOT in their different variants. Semantically, SEFTs are an ex-
tended state-machine model and no longer a purely combinatorial model as standard
FTs are. Consequently, SEFT gates are typed in the sense that they have different
semantics depending on whether they are applied to state terms or to event triggering
relations. The shift from a combinatorial model towards a state-based model enables
new kinds of gates (e.g. Duration gate, History-AND) and allows for a more formal
definition of gates that have traditionally been used in FTA (e.g. Priority-AND, In-
hibit). Similar to CFTs, SEFTs also extend the plain tree structure to Directed Acyclic
Graphs (the same cause triggers multiple effects) and deal with repeated events or
states correctly. Causal cycles without explicit delay are not allowed, because this
would raise some semantic problems during analysis. SEFTs are structured by com-
ponents. Components are defined as types (component classes) that can be instanti-
ated as subcomponents in other components. Subcomponents appear as black boxes
on the next higher level where only the ports are visible. This results in a component
hierarchy, of which the topmost component is the system to be examined. Ports
achieve information flow between components across hierarchical levels. To enforce
consistency, we distinguish input from output ports and type ports as state ports and
event ports. Examples can be found in the case study in Section 4. Event ports trans-
fer triggering relations from one component to another, without backward conse-
quences and without forcing synchronization of both components. The semantics of a
state port is that the destination component has access to the information whether or
not the state in the source component is active, again without the possibility to back-
ward influence this state. A main difference to standard FTs is that states and events
that appear in the model are not necessary failures; normal operational states can, in
conjunction with other states or events, become safety issues upstream in the causal
chain. The following figure sums up the graphical elements of SEFTs.

Model-Driven Safety Evaluation 39

Fig. 3. Syntactic Elements of SEFT

3.2 Transformational Semantics and Analysis of SEFT with DSPNs

To analyze a traditional Fault Tree, the underlying Boolean formula is converted into
a Binary Decision Diagram (BDD) [4]. Due to the state-based nature, SEFTs cannot
be evaluated this way. Instead we propose a translation to Deterministic and Stochas-
tic Petri Nets (DSPNs) [1] since DSPNs are a concurrent model possessing all needed
kinds of transitions and provide analysis techniques for the properties we are inter-
ested in. Assuming some basic knowledge about Petri Nets we briefly point out the
main features of DSPNs: DSPNs are a timed variant of Petri Nets, i.e. the (determi-
nistic or probabilistic) time that a transition waits before firing after becoming en-
abled is explicitly specified in the model. There are three kinds of transition that dif-
fer by their way of firing: immediately after activation, after a deterministic delay
(specified by an annotated time parameter) or after an exponentially distributed ran-
dom delay (specified by an annotated rate parameter). Firing of transitions is atomic
and takes no time. In the graphical representation, black bars depict immediate transi-
tions, empty rectangles depict transitions with exponentially distributed firing time,
and black filled rectangles depict transitions with deterministic firing time. Transi-
tions are joined to places by input arcs, output arcs or inhibitor arcs. The latter forbid
firing as long as the corresponding place is marked; whereas the other arcs are as in
standard Petri Nets. Priorities can be attached to immediate transitions to resolve
conflicts: the transition with the highest priority number wins. Alternatively, weights
can be assigned to decide conflicts probabilistically. Places can have a capacity of
more then one token and arcs can have a multiplicity of greater than one, but we cur-
rently do not exploit this property. We assume the underlying time scale to be con-
tinuous. Analysis of DSPNs has been described in [6] and several tools are available
to apply it. We are using the tool TimeNET [29] from Technische Universität Berlin
for analysis and/or simulation.

The translation of SEFT states and events to DSPN places and transitions is
straightforward: each state is mapped to a place and each event to a transition. For
ports and trigger relations, special DSPN structures are applied that inhibit backward

40 Lars Grunske, Bernhard Kaiser, and Yiannis Papadopoulos

influence. SEFT gates are translated as a whole by looking up the corresponding
DSPN structure in a dictionary that has been introduced in [14]. An excerpt is given
in Fig. 4. This figure also exemplifies the meaning of typed gates: the AND joining
two states is distinct from the AND joining a state and an event, and so on. The
graphical symbols for both the State/Event-AND and the State-AND are identical to
the AND gate from traditional FTA, but a confusion is impossible due to the different
type of one input port. This is comparable to method overloading in OO program-
ming languages, where the arguments passed decide which actual function need to be
executed. A central feature of SEFTs is that, in contrast to standard FTs, all events
can occur more often than once, and repair or reset can be modeled. This is reflected
in the DSPN structures chosen as gate equivalents.

In the figure, dashed places or transitions signify import places/transitions, i.e.
references to places/transitions in other partial DSPNs. During flattening (integration
of the partial nets), the import elements are merged with corresponding export
elements by resolving a reference table.

Sequential-AND (Event x Event)

AND (State x State) OR (State x State)

NOT (State)

History-AND (Event x Event)

Tin1

Prio=1

Prio=2

Prio=1

Prio=2
Tout

Tin2

Pin

Pout

Prio=1Tin1

Prio=2

Tout

Prio=1

Prio=2

Tin2

Pin1

Pout

Pin2 Pin1

Pout

Pin2

Tin1

Tout

Tin2

OR (Event x Event)

Pin.state

Prio=1

Tin.event

Prio=2

Tout

AND (State x Event)

Fig. 4. Gate Translation Dictionary (Excerpt)

Model-Driven Safety Evaluation 41

After states and events have been translated to places and arcs and after the partial
DSPNs corresponding to the gates, the remaining steps of the translation are simplifi-
cation, flattening and parameter translation. Flattening turns the hierarchical DSPN
(due to the component structure) into one flat DSPN. Flattening is an automatic pro-
cedure, based on the unique IDs of the ports. This enables creating semi-automatic
safety cases for component-based systems. The resulting flat DSPN can be stochasti-
cally analyzed and/or simulated with the tool TimeNET. The requested measure (e.g.
average probability of a state term that is connected to an output port) must be trans-
lated into a measure that can be determined by the DSPN analysis tool (e.g. the mark-
ing probability for a place that corresponds to the system state of interest). Currently
we start the analysis manually, but we are working towards an integrated solution,
started from the GUI of our own tool ESSaRel [7].

3.3 A Safety Evaluation Method with SEFTs

The last two sections introduced SEFTs and gave a brief overview of their syntax,
semantics and analyzability. Based on the foundation of SEFT we want to describe a
methodology for model-based hazard analysis for component-based software sys-
tems. The underlying model is the architecture specification, which could be specified
with an architectural description language (e.g., AADL[8] or MetaH[27]) or with the
UML 2.0. This architecture specification is the basic construction plan of the system.
It describes how the system or a component is decomposed into smaller components
and which of them interact during the runtime of the system as well as which soft-
ware components are deployed on which hardware platform.

The methodology for hazard analysis with SEFT can be structured into three
phases. In the first phase, a SEFT must be manually constructed for each component-
class instantiated in the architecture. This SEFT describes the behavior of the compo-
nent on a low-level, i.e. referring to detailed states and events. This behavioral model
can be derived from the model for the normal functional behavior, as specified in the
system design phase. However, it is not the same as a functional model: it is reduced
by details that are not relevant to safety and on the other hand, it may be extended by
potential faulty behavior, which is of course not part of a functional model.

In the second phase, a SEFT is constructed for the entire architecture. All neces-
sary details for this construction are contained in the architectural model and the
SEFTs of the subcomponents. The algorithm for the construction first instantiates
recursively all SEFTs of the subcomponents and connects the ports of two SEFT (in
ports with out ports), if there is a dependency between the relating components. Then
the algorithm creates ports in the SEFT if there is an unconnected port in the SEFT of
a subcomponent.

The result of the previous phases is a SEFT for the complete system. This SEFT
can be analyzed quantitatively to determine the probability of the relevant system
failures or hazards. To do so, the analyst must further specify which output ports or
which combinations of output failures lead to a hazard, which is preferably done
using the Fault Tree modeling elements. Some output states or events are marked as
the critical ones (hazards or system failures), of which the probability has to be calcu-
lated. Quantitative analysis is performed on the underlying DSPN. If the calculated

42 Lars Grunske, Bernhard Kaiser, and Yiannis Papadopoulos

hazard probabilities are lower than the tolerable hazard probabilities defined in the
requirements specification, the system fulfils its safety requirements.

The benefit of this methodology is the tight coupling between the architectural
model and the hazard analysis. Once the architecture or a SEFT of a used component
is changed, a new SEFT for the complete system can be constructed and a new hazard
analysis can be applied.

4 Case-Study

We exemplify the usage of SEFTs for safety analyses of component-based systems by
the case study of a fire alarm system. We start our example by introducing the system
components and environment and finally present the system model that shows the
architecture and specify the hazard to be examined. For brevity, we do not explain the
analysis of the example; this step can be found in [13,14].

The system consists of a software-implemented controller unit, a smoke sensor and
a sprinkler. The hazard to be examined is the case that a fire breaks out and the sprin-
kler is not turned on within a given delay. The fire is an event that occurs in the envi-
ronment; it is a particularity of the new SEFT method that system and environment
are described in the same modeling technique and thus failure-on-demand situations
can be modeled easily. The hardware components of the fire alarm system can fail;
therefore, inspection and repair is foreseen on a regular basis and a hardware watch-
dog restarts the controller on a periodical basis.

The first component to be modeled is the sensor (Fig. 5, left side). It is modeled as
a system with two states (ready and defect), one event input and one event output. If
the input fire breaks out is triggered while the sensor is in state ready, the output
detect smoke is triggered. If the sensor is in state defect while the fire breaks out,
nothing happens at the output. The transition from the state ready to the state defect
occurs probabilistically with a constant rate of 1/107 hours. Like all figures in this
example, this is a fictitious number; in reality, one would have to insert a number that
has been derived from failure statistics, experiments or mathematical models. The
way back from the state defect to the state ready corresponds to repair, which is also
modeled by a constant rate as well, corresponding to the periodical visits of a service
technician.

The sprinkler (Fig. 5, right side) is a component with three states: ready, sprin-
kling, defect. In this component, deterministic behavior (triggering) is mixed with
probabilistic behavior (going to state defect). Again, failure and repair are modeled by
constant rates. The transitions from ready to sprinkling and back are triggered transi-
tions: it is the controller that commands start and stop of the sprinkling. The two
event inputs sprinkler on and sprinkler off are technical interfaces in the sense that
these are actually the spots where the controller interacts with the sprinkler, e.g. via
an electrical line. The state output sprinkling is an interface to the environment; it
does not correspond to a technical interface but represents that sprinkling is obviously
visible to an outside observer.

Model-Driven Safety Evaluation 43

Fig. 5. SEFT of the Sensor and Sprinkler

The next part of the system is the controller; which is designed with software and
hardware. The hardware has two states, working and defect. The transition from
working to defect is again probabilistic with constant rate; it triggers the event output
hardware fails that causes the software to enter the state of unavailable (off). The
transition of the hardware back to state working is this time not a probabilistic one,
but is triggered by a reset input that will later be connected to the reset output of a
separate watchdog component. A reset of the hardware immediately triggers the re-
boot of the software. The software is modeled with three states: off, ready, alarm.
Alarm is the state when the sprinkler is turned on. Entrance to this state triggers the
sprinkler on output, leaving this state triggers the sprinkler off output. This state
alarm is entered when the detect smoke input (connected to the sensor output) is
triggered. The sprinkler operation is limited by the software controller to 120 sec-
onds; this is denoted by a deterministic delay transition. There are self-transitions
from the state ready and alarm that produce output I am alive! if the input are you
alive? is received. The OR connection at the event output means (in FT notation) that
the component can send the output I am alive! in both states.

The last technical component to be considered is the watchdog (Fig. 7, left side) –
usually a highly reliable separate hardware timer. It is modeled as a component with
two states, ready and awaiting reply, failure of the watchdog is so rare that it does not
have to be modeled. Every 10 seconds the watchdog sends an event are you alive? to
an output which will be connected to the input of the controller software with the
same name. If the response I am alive! arrives from the software, the watchdog goes
back to ready state for another 10 seconds. If the response does not arrive within 1
second, the watchdog triggers a reset of the controller hardware.

Fig. 6. SEFT of the Fire-Alarm Control System (Hardware and Software)

44 Lars Grunske, Bernhard Kaiser, and Yiannis Papadopoulos

Fig. 7. SEFT of the Watchdog and Assumptions about the Systems Environment

The environment is modeled in Fig. 7, right side. It has just one state, which has no
name. It signifies that probabilistically, with an assumed rate of once per year, a fire
breaks out. The event output means that the beginning of the fire can be noticed by
other components, particularly the sensor in our example.

The overall scenario including the FT for the hazard to be examined is shown in
Fig. 8. The system components are connected to each other according to matching
port names (not shown in the figure). In the upper part of the figure, the fault tree
elements describe the hazard scenario: The hazard is the state that is present if the
sprinkler is not enabled 10 seconds upon a fire breaks out. The probability of the
hazard has to be calculated. The evaluation is as described in [14]: Translation of all
components to a Deterministic and Stochastic Petri Net (DSPN), flattening of the
component hierarchy and analysis and/or simulation using one of the existing DSPN
tools.

Delay t=10s

&

Upon
=1

S

Sprinkler

Sensor

Environment WatchdogControler HW

Controler SW

Fig. 8. Hazard Description: fire breaks out and the sprinkler is not turned on within 10s

Model-Driven Safety Evaluation 45

5 Discussion and Comparison of the Different Modeling
Techniques

So far, four different safety-analysis techniques for component-based systems have
been introduced: FPTN, HiP-HOPS with their tabular annotations, CFTs and SEFTs.
All of them have emerged during the last decade. They all have in common that they
reflect hierarchical component and system structures and allow composing of the
system safety case out of the safety models of the components. All of them allow
probabilistic estimation of failure frequencies.

CFTs are closest to the traditional FTA technique. They introduce the port concept
(input and output ports) and thus allow arbitrarily cutting a system into components
and reusing the component models. Standard combinatorial FTs cannot handle time
dependencies and order of events and durations (in contrast to SEFTs). The FT events
can be low-level events or faulty states of components, but also general propositions
on a higher level. CFTs by themselves do not provide help in finding appropriate
failure categories.

HiP-HOPS and FPTN share the component and port oriented view of the system
that CFTs offer. Both techniques offer guide words to failure identification and are
focused on data flows, in particular the flow of failures. They also are unsuitable to
model timing issues directly, but among the proposed failure classifications are key-
words like “too early” and “too late” that allow expressing timing faults. While
FPTNs are a graphical notation, failure propagation tables of HiP-HOPS are a tabular
notation. Note, that this is merely an ergonomical issue: graphical notations are often
easier to capture for humans, but large amounts of data are better collected and re-
viewed in tables. There are other differences between the two techniques. In FPTN, a
failure specification is developed in parallel to the system model while in HiP-HOPS
failure annotations are only added to that model. Thus, in FPTN, special arrows are
used to represent the explicit failure propagation between FPTN modules while in
HiP-HOPS specified component failures propagate implicitly through deviations of
material, energy or data flows in the model. In FPTN a number of predefined failure
classes are only examined (provision, timing and value failures) while in HiP-HOPS
analysts are free to define their own failure classes. To simplify the analysis and cap-
ture common causes of failure, HiP-HOPS also allows simultaneous hierarchical
annotation of the model at subsystem and component levels. Apart from these differ-
ences, in their basic form FPTN and HiP-HOPS can be considered equivalent and can
thus be applied in combination. A combination with CFTs is also possible, as CFTs
could be used explain the different failure modes and their relations, provided that the
failure inputs and outputs are named according to the FPTN / HiP-HOPS specifica-
tions.

SEFTs are a new and quite different approach, because they model the system on a
lower level. They introduce a more precise semantics and distinguish states from
events. They mix fault tree notation elements with state-based modeling elements;
their overall semantics is state-based. Thus they can model low-level behavior of
(especially software) components well and can be seen as a contribution to fill the
gap between safety analysis techniques and formal methods. The main difference to
the former techniques is that SEFTs do not model failures and hazards, but behavior

46 Lars Grunske, Bernhard Kaiser, and Yiannis Papadopoulos

in general (although the analyst preferably models only those aspects of the behavior
that have an influence on system-level failures or hazards). For instance, SEFTs do
not express that an event occurs too late, but rather the time when it occurs. Only on a
high level, upstream in the tree, the occurrence time of an event is compared to an
acceptable delay or to another event and if the acceptable delay is exceeded, this
constitutes a failure.

In summary, SEFTs work on a lower abstraction level and model more details, but
this richness in detail can be a drawback when it comes to analysis performance (state
explosion problem). Moreover, many of the needed detail information is only present
at design or implementation stage of the system, while more informal considerations
can be conducted from the earliest development phases. In practice, it is not possible
to model very complex systems in all detail. A possible recipe for practitioners is to
apply FPTN or HiP-HOPS on system level and to apply SEFTs on component level
where the origin of some relevant behavior must be explained. For instance, an SEFT
output indicating that some event occurs later than expected provides the probability
of the “too late” failure mode in a FPTN.

6 Conclusion and Future Work

Hazard analysis techniques for safety critical systems are concerned with (1) identify-
ing the causal relationships between elementary failure modes (causes) and system
level hazards (effects) and (2) with a quantitative or qualitative evaluation of these
relationships [9, 15, 22, 28]. Both tasks are currently performed using a range of
classical techniques, which include Fault Tree Analysis (FTA), Failure Modes and
Effects Analysis (FMEA) and Hazard and Operability Studies (HAZOPS). However,
these techniques are not suitable to analyze component-based systems, because the
underlying evaluation models lack of composability and the evaluation methods can-
not deal with hierarchical component structures. New evaluation models (FPTN,
tabular failure annotations in HiP-HOPS, CFT) have been proposed to allow hazard
analysis for component-based systems. The semantics of these techniques is con-
cerned with failure propagation or failure flow between components. These tech-
niques are suitable to analyze high-level system structures at an abstract level. In this
paper, we presented a new evaluation model called State Event Fault Trees, which
has state-event semantics and is suitable to describe the stochastic behavior of a com-
ponent on a low level, i.e. referring to detailed states and events. The state event se-
mantics allows expressing facts that cannot be expressed in standard Fault Trees and
many other safety analysis techniques (e.g. temporal order of events or duration). The
state-event semantics is similar to the one used in behavioral modeling techniques in
the design phase of software and hardware systems. Due to this compatible semantics,
it is possible to integrate SEFTs with behavioral models of a component or even to
derive them automatically. Additionally SEFT are strongly encapsulated (providing.
information hiding and strict interfaces) and typed (SEFT-components). As a result,
safety cases can be composed hierarchically according to the component structure of
complex systems.

Model-Driven Safety Evaluation 47

For the techniques CFT and HiP-HOPS, tools are already available on a prototype
level (e.g. UWG3 [7] supports CFTs or an extension of Matlab-Simulink support
HiP-HOPS [21]). The integration of SEFTs into a usable tool is part of our current
research. The platform is the project ESSaRel [7], a user-friendly Windows-based
tool encompassing different modeling techniques has already been built within this
project. In the end, we are working towards an integrated tool chain for safety and
reliability analysis of embedded systems that enable the model-based hazard analysis.
For further integration of safety analysis and systems modeling, we plan a filter to
import models from CASE-Tools that can be integrated into SEFTs. As SEFTs are a
state-based technique, performance issues have to be resolved in the future using
suitable reduction and abstraction techniques. All mentioned techniques have been
tried out in industrial environment, but a large body of experience is not yet available.

References

1. Ajmone Marsan, M., Chiola, G.: On Petri nets with deterministic and exponentially distrib-
uted firing times. European Workshop on Applications and Theory of Petri Nets 1986. Lec-
ture Notes in Computer Science, volume 266, pages 132-145. Springer 1987

2. Birolini, A.: Reliability engineering: theory and practice, New York, Springer, (1999)
3. Bondavalli A., Simoncini, L.: Failure Classification with Respect to Detection, in: Pre-

dictably Dependable Computing Systems, Task B, Vol. 2, May (1990)
4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transac-

tions on Computers, C-35(8), Aug. (1986) 677--691
5. CENELEC: Railway applications The specification and demonstration of dependability,

reliability, availability, maintainability and safety (RAMS), European Committee for Elec-
trotechnical Standardisation, Brussels, Standard EN 50126, 128, 129, (2000-2002)

6. Ciardo, G., Lindemann, C.: Analysis of deterministic and stochastic Petri nets. In Proc. of
the Fifth Int. Workshop on Petri Nets and Performance Models (PNPM93), Toulouse,
France, Oct. 1993

7. ESSaRel: Embedded Systems Safety and Reliability Analyser, The ESSaRel Research
Project, Homepage: http://www.essarel.de/index.html

8. Feiler, P., Lewis, B., Vestal, S.: The SAE Avionics Architecture Description Language
(AADL) Standard: A Basis for Model-Based Architecture-Driven Embedded Systems En-
gineering. RTAS 2003 Workshop on Model-Driven Embedded Systems, 2003

9. Fenelon, P., McDermid, J.A., Nicholson, M., Pumfrey, D. J.: Towards Integrated Safety
Analysis and Design, ACM Applied Computing Review, (1994).

10. Grunske, L.: Annotation of Component Specifications with Modular Analysis Models for
Safety Properties, In Proceedings of the 1st International Workshop on Component
Engineering Methodology, (WCEM 03), (2003), pp. 31-41

11. IEC 61025: International Standard IEC 61025 Fault Tree Analysis. International
Electrotechnical Commission. Geneva(1990)

12. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A New Component Concept for Fault Trees. in
Proceedings of the 8th Australian Workshop on Safety Critical Systems and Software
(SCS'03), Adelaide, (2003)

13. Kaiser, B.: Extending the Expressive Power of Fault Trees. Accepted for Publication of the
51st Annual Reliability & Maintainability Symposium (RAMS05), January 24-27, Alexan-
dria, VA, USA

48 Lars Grunske, Bernhard Kaiser, and Yiannis Papadopoulos

14. Kaiser, B., Gramlich, C.: State-Event-Fault-Trees - A Safety Analysis Model for Software
Controlled Systems. In: Computer Safety, Reliability, and Security. 23rd International
Conference, SAFECOMP 2004, Potsdam, Germany, September 21-24, 2004, Proceedings.
Lecture Notes in Computer Science, Vol. 3219 2004, p. 195-209

15. Laprie, J.C.(ed.): Dependability: Basic Concepts and Associated Terminology. Vol.5,
Dependable Computing and Fault-Tolerant Systems Series,Vienna: Springer (1992)

16. Meyer, B.: Applying design by contract. IEEE Computer 25, 10, (1992) 40-51
17. Musa, J.D., Iannino, A., Okumoto, K.: Software Reliability - Measurement, Prediction,

Application, McGraw-Hill International Editions, (1987)
18. Papadopoulos, Y., McDermid, J.A., Sasse, R., Heiner, G.: Analysis and Synthesis of the

Behavior of Complex Programmable Electronic Systems in Conditions of Failure, Reliabil-
ity Engineering and System Safety, 71(3), Elsevier Science, (2001) 229-247.

19. Papadopoulos, Y., McDermid, J. A.: Hierarchically Performed Hazard Origin and Propaga-
tion Studies, SAFECOMP '99, 18th Int. Conf. on Computer Safety, Reliability and Secu-
rity, Toulouse, LNCS, 1698 (1999) 139-152

20. Papadopoulos Y., Parker D., Grante C.: A method and tool support for model-based semi-
automated Failure Modes and Effects Analysis of engineering designs, 9th Australian
Workshop Safety Critical Programmable Systems (SCS'04), Brisbane, Conferences in Re-
search and Practice in Information Technology, Vol. 38, Australian Computer Society
(2004).

21. Papadopoulos, Y., Maruhn M.: Model-based Automated Synthesis of Fault Trees from
Simulink models, Int’l Conf. on Dependable Systems and Networks, (2001), pp. 77-82

22. Pumfrey, D. J.: The Principled Design of Computer System Safety Analyses, Dissertation,
University of York, (1999).

23. Reussner, R., Schmidt, H., Poernomo, I.: Reliability Prediction for Component-Based
Software Architectures, Journal of Systems and Software, 66(3), Elsevier, The Nether-
lands, (2003) 241--252

24. Selic B., Gullekson G., Ward P. T.: Real-Time Object-Oriented Modeling. Wiley, New
York, (1994)

25. Szyperski, C.: Component Software. Beyond Object-Oriented Programming. ACM Press/
Addison Wesley, (1998)

26. Vesely, W. E., Goldberg, F. F., Roberts, N. H.,. Haasl, D. F.: Fault Tree Handbook. U. S.
Nuclear Regulatory Commission, NUREG-0492, Washington DC, (1981)

27. Vestal, S.: MetaH Programmer’s Manual, Version 1.09. Technical Report, Honeywell
Technology Center, April 1996.

28. Villemeur A.: Reliability, Availability, Maintainability, and Safety Assessment, John
Willey and Sons, ISBN: 0-47193-048-2 (2000).

29. Zimmermann, A., German, R., Freiheit, J., Hommel, G.: TimeNET 3.0 Tool Description.
Int. Conf. on Petri Nets and Performance Models (PNPM'99), Zaragoza, Spain, 1999

Optimizing Resource Usage in

Component-Based Real-Time Systems

Johan Fredriksson, Kristian Sandström, and Mikael Åkerholm

Mälardalen Real-Time Research Centre,
Department of Computer Science and Engineering,
Mälardalen University, Box 883, Väster̊as, Sweden

http://www.mrtc.mdh.se
johan.fredriksson@mdh.se

Abstract. The embedded systems domain represents a class of systems
that have high requirements on cost efficiency as well as run-time prop-
erties such as timeliness and dependability. The research on component-
based systems has produced component technologies for guaranteeing
real-time properties. However, the issue of saving resources by allocating
several components to real-time tasks has gained little focus. Trade-offs
when allocating components to tasks are, e.g., CPU-overhead, footprint
and integrity. In this paper we present a general approach for allocating
components to real-time tasks, while utilizing existing real-time analy-
sis to ensure a feasible allocation. We demonstrate that CPU-overhead
and memory consumption can be reduced by as much as 48% and 32%
respectively for industrially representative systems.

1 Introduction

Many real-time systems (RTS) have high requirements on safety, reliability and
availability. Furthermore the development of embedded systems is often sensitive
to system resource usage in terms of, e.g., memory consumption and processing
power. Historically, to guarantee full control over the system behavior, the devel-
opment of embedded systems has been done using only low level programming.
However, as the complexity and the amount of functionality implemented by
software increase, so does the cost for software development. Also, since product
lines are common within the domain, issues of commonality and reuse are central
for reducing cost. Component-Based Development (CBD) has shown to be an
efficient and promising approach for software development, enabling well defined
software architectures as well as reuse. Hence, CBD can be used to achieve goals
such as cost reduction, and quality and reliability improvements.

In embedded RTS timing is important, and scheduling is used to create pre-
dictable timing. Furthermore, these systems are often resource constrained; con-
sequently memory consumption and CPU load are desired to be low. A prob-
lem in current component-based embedded software development practices is
the allocation of components to run-time tasks [1]. Because of the real-time re-
quirements on most embedded systems, it is vital that the allocation considers

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 49–65, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 Johan Fredriksson, Kristian Sandström, and Mikael Åkerholm

temporal attributes, such as worst case execution time (WCET), deadline (D)
and period time (T). Hence, to facilitate scheduling, components are often allo-
cated to tasks in a one-to-one fashion. However, for many embedded systems it
is desired to optimize for memory and speed [2], thus the one-to-one allocation
is unnecessarily memory and CPU consuming.

Embedded RTS consist of periodic and sporadic events that usually have end-
to-end timing requirements. Components triggered by the same periodic event
can often be coordinated and executed by the same task, while still preserving
temporal constraints. Thus, it is easy to understand that there can be profits
from allocating several components into one task. Some of the benefits are less
memory consumption in terms of stacks and task control blocks or lower CPU
utilization due to less overhead for context switches. Different properties can be
accentuated depending on how components are allocated to tasks, e.g., mem-
ory usage and performance; Hence, there are many trade-offs to be made when
allocating components to tasks.

Allocating components to tasks, and scheduling tasks are both complex prob-
lems and different approaches are used. Simulated annealing and genetic algo-
rithms are examples of algorithms that are frequently used for optimization
problems. However, to be able to use such algorithms, a framework to calculate
properties, such as memory consumption and CPU-overhead, is needed. The
work presented in this paper describes a general framework for reasoning about
trade-offs concerning allocating components to tasks, while preserving extra-
functional requirements. Temporal constraints are verified and the allocations
are optimized for low memory consumption and CPU-overhead. The framework
is evaluated using industrially relevant component assemblies, and the results
show that CPU-overhead and memory consumption can be reduced by as much
as 48% and 32% respectively.

The idea of assigning components to tasks for embedded systems while con-
sidering extra-functional properties and resource utilization is a relatively un-
covered area. In [3, 4] Bondarev et. al. are looking at predicting and simulating
real-time properties on component assemblies. However, there is no focus on
increasing resource utilization through component to task allocation. The prob-
lem of allocating tasks to different nodes is a problem that has been studied by
researchers using different methods [5, 6]. There are also methods proposed for
transforming structural models to run-time models [7, 8, 1], but extra-functional
properties are usually ignored or considered as non-critical [9]. In [10], an archi-
tecture for embedded systems is proposed, and it is identified that components
has to be allocated to tasks, however there is no focus on the allocation of com-
ponents to tasks. In [9] the authors propose a model transformation where all
components with the same priority are allocated to the same task; however no
consideration is taken to lower resource usage. In [11], the authors discuss how
to minimize memory consumption in real-time task sets, though it is not in the
context of allocating components to tasks. Shin et. al [12] are discussing the code
size, and how it can be minimized, but does not regard scheduling and resource
constraints.

Optimizing Resource Usage in Component-Based Real-Time Systems 51

The outline for the rest of the paper is as follows; section 2 gives an overview of
the component to task allocations, and describes the structure of the components
and tasks. Section 3 describes a framework for calculating the properties of
components allocated to tasks. Section 4 discusses allocation and scheduling
approaches, while evaluations and simulations are presented in section 5. Finally
in section 6, future work is discussed and the paper is concluded. Detailed data
regarding the simulations can be found in [13].

2 Allocating Components to Real-Time Tasks

In RTS temporal constraints are of great importance and tasks control the execu-
tion of software. Hence, components need to be allocated to tasks in such a way
that temporal requirements are met, and resource usage is minimized. Given an
allocation we determine if it is feasible and calculate the memory consumption
and task switch overhead. To impose timing constraints, we define end-to-end
timing requirements and denote them transactions. Transactions are defined by
a sequence of components and a deadline. Thus, the work in this paper has three
main concerns:

1. Verification of allocations from components to tasks.
2. Calculating system properties for an allocation
3. Minimizing resource utilization

CBSE is generally not used when developing embedded RTS, mostly due
to the lack of efficient mappings to run-time systems and real-time properties.
One approach that allows an efficient mapping from components to a RTS is the
Autocomp technology [14]. An overview of the Autocomp technology can be seen
in Fig 1. The different steps in the figure are divided into design-time, compile-
time, and run-time to display at which point in time during development they are
addressed or used. The compile-time steps, illustrated in Fig 1, incorporate an
allocation from the component-based design, to a real-time model and mapping
to a real-time operating system (RTOS). During this step the components are
allocated to real-time tasks and the component requirements are mapped to
task-level attributes.

By combining the notion of transactions and the pipe-and-filter interaction
model we get a general component model that is easy to implement for a large
set of component technologies for embedded systems such as Autocomp [14],
SaveCCM [15], Rubus [16], Koala [17], Port-based objects [18], IEC61131[19]
and Simulink[20]. The component model characteristics are described in the
section 2.1 and the task model characteristics are described in section 2.2.

2.1 Component Model Characteristics

In this section we describe characteristics for a general component model that
is applicable to a large set of embedded component models. Both component
and task models described are meta-models for modelling the most important

52 Johan Fredriksson, Kristian Sandström, and Mikael Åkerholm

Design-
TimeComponent model

Component to Task
Allocation

Real-time modelReal-Time
Analysis

tt

Compile-
Time

Synthesis

Run-
Time

RTOS

Target Application

Fig. 1. Autocomp system description

attributes of an allocation between components and tasks. The component inter-
action model used throughout this paper is a pipe-and-filter model with trans-
actions. Each component has a trigger; a time trigger or an event trigger or a
trigger from a preceding component. A component transaction describes an or-
der of components and defines an end-to-end timing requirement. In Fig 2, the
notation of a component assembly with six components and four transactions is
described. The graphical notation is similar to the one used in UML.

The component model chosen is relatively straight forward to analyse and
verify. The pipe-and-filter interaction model is commonly used within the em-
bedded systems domain. Many component models for embedded systems have
the notion of transactions built in; however, if a component model lacks the
notion of transactions, there are often possibilities to model end-to-end timing
requirements and execution order at a higher abstraction level. In general a sys-
tem is described with components, component relations, and transactions (flow)
between components. The component model is described with:

Component ci is described with the tuple < Si, Qi, Xi, Mi >, where Si is
a signal from another component, an external event or a timed event. Qi

represents the minimum inter arrival time (MINT) in the case of an external
event. It represents the period in the case of a timed trigger and it is unused
if the signal is from another component. The parameter Xi is the WCET for
the component, and Mi is the amount of stack required by the component.

Isolation set I defines a relation between components that should not be allo-
cated. It is described with a set of component pairs I =< (c1, c2), (c3, c4) >
that define what components may not be allocated to the same task. There

Optimizing Resource Usage in Component-Based Real-Time Systems 53

may be memory protection requirements or other legitimate engineering rea-
sons to avoid allocating certain combinations of components; for example,
if a component has a highly uncertain WCET. The isolation set is indexed
with subscripts denoting next inner element, i.e., I1 = (c1, c2) and I12 = c2.

Component Transaction ctri is an ordered relation between components
Ni = c1, c2, ..., cn, and an end-to-end deadline dci. The deadline is relative
to the event that triggered the component transaction, and the first com-
ponent within a transaction defines the transaction trigger. A component
transaction can stretch over one or several components, and a component
can participate in several component transactions. Component ca should ex-
ecute before component cb and component cb should execute before cc to
produce the expected results. The correct execution behavior for the set
N = c1, c2, ..., cn is formalized by the regular expression denoted in (1).

c1Σ
∗c2Σ

∗...cn (1)

Where Σ∗ denotes all allowed elements defined by N .
In a component assembly, event triggers are treated different from the peri-

odic triggers as the former is not strictly periodic. There is only a lower boundary
restricting how often it can occur, but there is no upper bound restricting how
much time may elapse between two invocations. Thus, if an event trigger could
exist inside or last in a transaction, it would be impossible to calculate the re-
sponse time for the transaction, and hence a deadline could never be guaranteed.

c1

c5

c2

c3

c4

c6 Actuator

Actuator

Event

Timer

Timer

tr1

tr2

tr3

tr4

Trigger

Transaction

Event Trigger

Time Trigger

cn

Component

Fig. 2. Graphical notation of the component model.

2.2 Task Characteristics

The task model specifies the organization of entities in the component model
into tasks and transactions over tasks. During the transformation from com-
ponent model to run-time model, extra-functional properties like schedulability
and response-time constraints must be considered in order to ensure the correct-
ness of the final system. Components only interact through explicit interfaces;
hence tasks do not synchronize outside the component model. The task model

54 Johan Fredriksson, Kristian Sandström, and Mikael Åkerholm

is for evaluating schedulability and other properties of a system, and is similar
to standard task graphs as used in scheduling theory, augmented with exclusion
constraints (isolation). The task model is described with:

System K is described with the tuple < A, τ, ρ > where A is a task set sched-
uled by the system. The constant τ is the size of each task control block,
and can be considered constant and the same for all tasks. The constant
ρ is the time associated with a task switch. The system kernel is the only
explicitly shared resource between tasks; hence we do not consider blocking.
Also blocking is not the focus of this paper.

Task ti is described with the tuple < Ci, Ti, wceti, stacki > where Ci is an
ordered set of components. Components within a task are executed in se-
quence. Components within a task are executed at the same priority as the
task, and a high priority task pre-empts a low priority task. Ti is the period
or minimum inter arrival time of the task. The parameters wceti and stacki

are worst case execution time and stack size respectively. The wceti, stacki

and period (Ti) are deduced from the components in Ci. The wceti is the
sum of all the WCETs for all components allocated to the task. Hence, for
a task ti, the parameters wceti and stacki are calculated with (2) and (3) .

wcetn =
∑

∀i(ci∈Cn)

(Xi) (2)

stackn = ∀i(ci ∈ Cn)max(Mi) (3)

Task transaction ttri is a sequence of tasks Oi = t1, t2, ..., tk and a relative
deadline dti. Oi defines an ordered relation between the tasks, where in the
case of O = t1, t2; t1 is predecessor to t2. The timing and execution order
requirements of a task transaction ttri are deduced from the requirements
of the component transactions ctri. The task transaction ttri has the same
parameter as the component transactions ctri but t1, t2,..., tk are the tasks
that map the component ca, cb, ..., cn, as denoted in Fig 4. If several task
transactions ttri span over the exact same tasks, the transactions are merged
and assigned the shortest deadline. An event-triggered task may only appear
first in a transaction. Two tasks can execute in an order not defined by the
transactions. This depends on that the tasks have different period times, and
thereby suffer from period phasing; hence transactions can not define a strict
precedence relation between two tasks. Fig 3 is an execution trace that shows
the relation between tasks and transactions. The tasks and transactions are
the same as in Fig 4, left part.

3 Allocation Framework

The allocation framework is a set of models for calculating properties of allo-
cations of components to tasks. The properties calculated with the framework
are used for optimization algorithms to find feasible allocations that fulfil given
requirements on memory consumption and CPU-overhead.

Optimizing Resource Usage in Component-Based Real-Time Systems 55

t1 = {C1,T1,wcet1,stack1} = {{c1,c2,c3},4,1,10}

t2 = {C2,T2,wcet2,stack2} = {{c4,c5},9,2,10}

1 5 10 15 20 25 30 35

ttr3 = {O3,dt1} = {{t3},5} t3 = {C3,T3,wcet3,stack3} = {{c6},6,1,10}

ttr1 = {O1,dt1} = {{t1 ,t2},11}

ttr2 = {O2,dt1} = {{t2},3}
Priority

Tasks Transactions

Components

c1 = {S1,Q1,X1,M1} = {T,4,0.5,5}

c2 = {S2,Q2,X2,M2} = {c1,-,0.3,3}

c3 = {S3,Q3,X3,M3} = {c2,-,0.2,2 }

c4 = {S4,Q4,X4,M4} = {T,9,1,6}

c5 = {S5,Q5,X5,M5} = {c4,-,1,4}

c6 = {S6,Q6,X6,M6} = {E,6,1,10}

Fig. 3. Task execution order and task transactions.

For a task set A that has been mapped from components in a one-to-one fash-
ion, it is trivial to calculate the system memory consumption and CPU-overhead
since each task has the same properties as the basic component. When several
components are allocated to one task we need to calculate the appropriateness
of the allocation and the tasks properties. For a set of components, c1,...,cn,
allocated to a set of tasks A, the following properties are considered.

– CPU-overhead pA

– Memory consumption mA

Each component ci has a memory consumption stack. The stack of the task is the
maximum size of all components stacks allocated to the task since all components
will use the same stack. The CPU overhead p, the memory consumption m for
a task set A in a system K are formalized in equations (4) and (5):

pA =
∑

∀i(ti∈A)

ρ

Ti
(4)

mA =
∑

∀i(ti∈A)

(stacki + τ) (5)

Where pA represents the sum of the task switch overhead divided by the period
for all tasks is the system, and mA represents the total amount of memory used
for stacks and task control blocks for all tasks in the system

3.1 Constraints on Allocations

There is a set of constraints that must be considered when allocating compo-
nents. These are:

56 Johan Fredriksson, Kristian Sandström, and Mikael Åkerholm

c1

c5

c2

c3

c4

c6 Actuator

Actuator

Event

Timer

Timer

tr1

tr2

tr3

tr4

t1 Actuator

Actuator

Event

Timer

Timer

tr1

tr23

tr4

t2

t3

c1

c5

c2

c3

c4

c6 Actuator

Actuator

Event

Timer

tr1

tr2

tr3

tr4

t1 Actuator

Actuator

Event

Timer

tr1

tr2

tr3

tr4

t2

t3

t4

Event

Event

c1

c5

c2

c3

c4

c6 Actuator

Actuator

Event

Timer

Timer

tr1

tr2

tr3

tr4

t1 Actuator

Actuator

Event

Timer

Timer

tr1

tr23

tr4

t2

t3

c1

c5

c2

c3

c4

c6 Actuator

Actuator

Event

Timer

tr1

tr2

tr3

tr4

t1 Actuator

Actuator

Event

Timer

tr1

tr2

tr3

tr4

t2

t3

t4

Event

Event

Fig. 4. Two allocations from components to tasks dependent on intersecting
transactions.

– Component isolation
– Intersecting transactions
– Trigger types and period times
– Schedulability

Each constraint is further discussed below:

Isolation It is not realistic to expect that components can be allocated in an
arbitrary way. There may be explicit dependencies that prohibits that certain
components are allocated together, therefore the isolation set I defines which
components may not be allocated together. There may be specific engineering
reasons to why some components should be separated. For instance, it may
be desired to minimize the jitter for some tasks, thus components with highly
uncertain WCET should be isolated. There may also be integrity reasons to
separate certain combinations of components. Hence it must be assured that
two components that are defined to be isolated do not reside in the same task.
This can be validated with equation (6):

Iso(a, b) : ca has an isolation requirement to cb

¬∃i(∀j∀k(cj ∈ Ci ∧ ck ∈ Ci ∧ Iso(j, k))) (6)

Where there must not exist any task ti that has two components cj and ck,
if these components have an isolation requirement.

Intersecting Transactions If component transactions intersect, there are dif-
ferent strategies for how to allocate the component where the transactions in-
tersect. The feasibility is described in equations 7 and 8. A component in the
intersection should not be allocated with any preceding component if both trans-
actions are event triggered; the task should be triggered by both transactions

Optimizing Resource Usage in Component-Based Real-Time Systems 57

to avoid pessimistic scheduling. A component in the intersection of one time-
triggered transaction and one event-triggered transaction can be allocated to a
separate task, or with a preceding task in the time-triggered transaction. A com-
ponent in the intersection of two time-triggered transactions can be allocated
arbitrarily. In Fig 4, two different allocations are imposed due to intersecting
event-triggered transactions. In the left part of Fig 4 there is an intersection be-
tween a time triggered and an event triggered transaction. Then the intersecting
component c3 is allocated to the task triggered by the time triggered transaction.
In the right part of the figure, where two event triggered transactions intersect,
the component c3 is allocated to a separate task, triggered by both transactions.

TE(tr) : transaction is event triggered

TT (tr) : transaction is time triggered

P (a, b, d) : ca is predecessor to cb in the set Nd

Xbc
a = ca ∈ Nb ∧ ca ∈ Nc

Y c
ab = ca ∈ Cc ∧ cb ∈ Cc

¬∃i(∀j∀k∀l∀m(Xjk
l ∧ Y i

lm ∧ TE(ctrj) ∧ TE(ctrk) ∧ (P (m, l, k) ∨ P (m, l, j)))) (7)

¬∃i(∀j∀k∀l∀m(Xjk
l ∧ Y i

lm ∧ cm ∈ Nk ∧ TT (ctrj) ∧ TE(ctrk) ∧ P (cm, cl, Nk))) (8)

Where there must not exist any task ti that has two components cl and cm

in a way that two component transactions ctrj and ctrk intersect in cl, and cm

precedes cl in the transactions ctrj or ctrk, if ctrj or ctrk are event-triggered.

Triggers Some allocations from components to tasks can be performed without
impacting the schedulability negatively. A component that triggers a subsequent
component can be allocated into a task if it has no other explicit dependencies,
see (1) in Fig 5. Components with the same period time can be allocated together
if they do not have any other explicit dependencies, see (2) in Fig 5. To facilitate
analysis, a task may only have one trigger, so time triggered components with
the same period can be triggered by the same trigger and thus allocated to the
same task. However, event triggered components may only be allocated to the
same task if they in fact trigger on the same event, and have the same minimum
inter arrival time, see (3) in Fig 5. Components with harmonic periods could also
be allocated to the same task. However, harmonic periods create jitter. Consider
two components with the harmonic periods five and ten that are allocated to
one task. The component with the period five will run every invocation, while
the other component will run every second invocation, which creates a jitter;
therefore we have chosen not to pursue this specific issue.

Schedulability Schedulability analysis is highly dependent on the scheduling
policy chosen. Depending on the system design, different analyses approaches
have to be considered. The task and task transaction meta-models are con-
structed to fit different scheduling analyses. In this work we have used fixed
priority exact analysis. However, the model can easily be extended with jitter

58 Johan Fredriksson, Kristian Sandström, and Mikael Åkerholm

A B => A B (1)

T T => T T (2)

E E => (3)A A EA EA

Fig. 5. Component to task allocation considering triggers.

and blocking for real-time analysis models that use those properties. The frame-
work assigns each task a unique priority pre run-time, and it uses exact analysis
for schedulability analysis, together with the Bate and Burns [21] approach for
verifying that the transaction deadlines are met.

4 Using the Framework

An allocation can be performed in several different ways. In a small system all
possible allocations can be evaluated and the best chosen. For a larger system,
however, this is not possible due to the combinatorial explosion. Different al-
gorithms can be used to find a feasible allocation and scheduling of tasks. For
any algorithm to work there must be some way to evaluate an allocation. The
proposed allocation framework can be used to calculate schedulability, CPU-
overhead and total memory load. The worst-case allocation is a one-to-one allo-
cation where every component is allocated to one task. The best-case allocation
on the other hand, is where all components are allocated to one single task. To
allocate all components to one task is very seldom feasible. Also, excessive allo-
cation of components may negatively affect scheduling, because the granularity
is coarsened and thereby the flexibility for the scheduler is reduced.

Simulated annealing, genetic algorithms and bin packing are well known al-
gorithms often used for optimization problems. These algorithms have been used
for problems similar to those described in this paper; bin packing, e.g., has been
proposed in [22] for real-time scheduling. Here we briefly discuss how theses al-
gorithms can be used with the described framework, to perform component to
task allocations.

Bin Packing is a method well suited for our framework. In [23] a bin pack-
ing model that handles arbitrary conflicts (BPAC) is presented. The BPAC
model constrains certain elements from being packed into the same bin,
which directly can be used in our model as the isolation set I, and the
bin-packing feasibility function is the schedulability.

Genetic algorithms can solve, roughly, any problem as long as there is some
way of comparing two solutions. The framework proposed in this paper give

Optimizing Resource Usage in Component-Based Real-Time Systems 59

the possibility to use the properties memory consumption, CPU-overhead
and schedulability as grades for an allocation. In, e.g., [24] and [25], genetic
algorithms are used for scheduling complex task sets and scheduling task
sets in distributed systems.

Simulated annealing (SA) is a global optimization technique that is regu-
larly used for solving NP-Hard problems. The energy function consists of a
schedulability test, the memory consumption and CPU-overhead. In [6][26]
simulated annealing is used to place tasks on nodes in distributed systems.

5 Evaluation

In order to evaluate the performance of the allocation approach the framework
has been implemented. We have chosen to perform a set of allocations and com-
pare the results to a corresponding one-to-one allocation where each component
is allocated to a task. We compare the allocations with respect to if the allocation
is feasible (real-time analysis), memory consumption and CPU overhead.

The implementation is based on genetic algorithms (GA) [27], and as Fig 6
shows, each gene represents a component and contains a reference to the task it
is assigned. Each chromosome represents the entire system with all components
assigned to tasks. Each allocation produced by the GA is evaluated by the frame-
work, and is given a fitness value dependent on the validity of the allocation, the
memory consumption and the CPU overhead.

t1
 t2

 t3
 t4t2

 t3 t4
 t1

 t2
 t1

c1 c2 c4
 c5c3 c6 c7

 c8 c9
 c10

gene

chromosome

Fig. 6. The genetic algorithm view of the component to task allocation; a system
with ten components, allocated to four tasks.

5.1 Fitness Function

The fitness function is based on the feasibility of the allocation together with
the memory consumption and CPU overhead. The feasibility part of the fitness
function is mandatory, i.e., the fitness value for a low memory and CPU over-
head can never exceed the value for a feasible allocation. The feasibility function
consists of: I which represents component isolation, IT representing intersecting
transactions, Tr representing trigger types and period times, and finally Sc rep-
resent scheduling. Consider that each of these feasibility tests is assigned a value

60 Johan Fredriksson, Kristian Sandström, and Mikael Åkerholm

greater than 1 if they are true, and a value of 0 if they are false. The parameter
n represents the total number of components. Then, the fitness function can be
described as with equation (9).

Fitness =
(
(I + IT + Tr + Sc)F +

(n

mA
+

∑
∀i(ti∈A)

ρ · n
Ti

)
O

)
· (I · IT · Tr ·Sc + 1) (9)

Where the fitness is the sum of all feasibility values times a factor F, added
with the inverted memory usage and performance overhead, times a factor O,
and F >> O. The total fitness is multiplies with 1 if any feasibility test fail, and
the products of all feasibility values plus 1 if all feasibility tests succeed.

5.2 Simulation Set Up

This section describes the simulation method and set up. For each simulation
the genetic algorithm assigns components to tasks and evaluates the allocation,
and incrementally finds new allocations.

The system data is produced by creating a random schedulable task set, on
which all components are randomly allocated. The component properties are
deduced from the task they are allocated. Transactions are deduced the same
way from the task set. In this way it is always at least one solution for each
system. However, it is not sure that all systems are solvable with a one-to-one
allocation. The components and component transactions are used as input to
the framework. Hereafter, systems that are referred to as generated systems
are generated to form input to the framework. Systems that come out of the
framework are referred to as allocated systems. The simulation parameters are
set up as follows:

– The number of components of a system is randomly selected from a number
of predefined sets. The numbers of components in the systems are ranging
in twenty steps from 40 to 400, with a main point on 120 components.

– The period times for the components are randomly selected from a predefined
set of different periods between 10 and 100 ms.

– The worst case execution time (WCET) is specified as a percentage of the
period time and chosen from a predefined set. The WCETs together with
the periods in the system constitutes the system load.

– The transaction size is the size of the generated transactions in percentage
of the number of components in the system. The transaction size is ran-
domly chosen from a predefined set. The longer the transactions, the more
constraints, regarding schedulability, on how components may be allocated.

– The transaction deadline laxity is the percentage of the lowest possible trans-
action deadline for the generated system. The transaction deadline laxity is
evenly distributed among all generated systems and is always greater or
equal to one, to guarantee that the generated system is possible to map.
The higher the laxity, the less constrained transaction deadlines.

Optimizing Resource Usage in Component-Based Real-Time Systems 61

One component can be involved in more than one transaction, resulting in more
constraints in terms of timing. The probability that a component is participating
in two transactions is set to 50% for all systems.

To get as realistic systems to simulate as possible, the values used to gen-
erate systems are gathered from some of our industrial partners. The industrial
partners chosen are active within the vehicular embedded system segment. A
complete table with all values and distributions, of the system generation val-
ues, can be found in [13]. The task switch time used for the system is 22 μs, and
the tcb size is 300 bytes. The task switch time and tcb size are representative of
commercial RTOS tcb sizes and context switch times for common CPUs.

The simulations are performed for four different utilization levels, 30%, 50%,
70% and 90%. For each level of utilization 1000 different systems are generated
with the parameters presented above.

5.3 Results

A series of simulations have been carried out to evaluate the performance of
the proposed framework. To evaluate the schedulability of the systems, FPS
scheduling analysis is used. The priorities are randomly assigned by the genetic
algorithm, and no two tasks have the same priority. We compare the allocation
approach described in this paper to one-to-one allocations. Table 1 summarizes
the results from the simulations. The columns entitled ”stack” and ”CPU” dis-
plays the average memory size (stack + tcb) and CPU overhead respectively,
for all systems with a specific load and transaction deadline laxity. The column
entitled ”success” in the 1-1 allocation section displays the rate of systems that
are solvable with the 1-1 allocation. The column entitled ”success” in the GA
allocation section displays the rate at which our framework finds allocations,
since all systems has at least one solution. The stack and CPU values are only
collected from systems where a solution was found.

The first graph for the simulations (Fig 7) shows the success ratio, i.e., the
percentage of systems that were possible to map with the one-to-one allocation,
and the GA allocation respectively. The success ratio is relative to the effort of
the GA, and is expected to increase with a higher number of generations for
each system. Something that might seem confusing is that the success ratio is
lower for low utilization than for high utilizations, even though, intuitively, it
should be the opposite. The explanation to this phenomenon is that the timing
constraints become tighter as fewer tasks participate in each transaction (lower
utilization often leads to fewer tasks). With fewer tasks the task phasing, due to
different periods, will be lower, and the deadline can be set tighter.

The second graph (Fig 8) shows that the deadlines are relaxed with higher
utilization, since the allocations with relaxed deadlines perform well, and the
systems with a more constrained deadline show a clear improvement with higher
utilization.

The third graph (Fig 9) shows for both approaches the average stack size for
the systems at different utilization. The comparison is only amongst allocations
that are have been successfully mapped by both strategies. The memory size

62 Johan Fredriksson, Kristian Sandström, and Mikael Åkerholm

Load Laxity
1-1 allocation GA allocation

Stack CPU success stack CPU success

30%

All 28882 4,1% 74% 17380 2,0% 87%
1.1 25949 3,5% 39% 14970 1,6% 58%
1.3 33077 4,4% 78% 21005 2,2% 97%
1.5 26755 4,1% 95% 15503 2,0% 99%

50%

All 37277 4,8% 82% 24297 2,4% 90%
1.1 35391 4,3% 49% 23146 2,3% 64%
1.3 38251 4,8% 88% 25350 2,5% 96%
1.5 37043 4,9% 98% 23740 2,3% 100%

70%

All 44455 5,1% 85% 30694 2,7% 91%
1.1 44226 5,0% 58% 31638 2,7% 73%
1.3 44267 5,1% 94% 30686 2,7% 98%
1.5 44619 5,2% 98% 30232 2,6% 100%

90%

All 46943 5,6% 87% 37733 3,1% 93%
1.1 54858 5,7% 65% 41207 3,4% 80%
1.3 49607 5,5% 92% 35470 3,0% 98%
1.5 53535 5,7% 98% 38260 3,1% 99%

Table 1. Memory, CPU overhead and success ratio for 1-1 and GA allocations

consists of the tcb and the stack size, and the tcb size is 300 bytes. As described
earlier, each task allocates a stack that is equal to the size of the largest stack
among its allocated components.

The fourth graph (Fig 10) shows the average task switch time in micro sec-
onds for the entire system. The task switch overhead is only dependent on how
many tasks there are in the system. The average improvement of GA allocation
in comparison to the 1-1 allocation is, for the success ratio, 10%. The memory
size is reduced by 32%, and the task switch overhead is reduced by 48%. Hence
we can see a substantial improvement in using smart methods to map com-
ponents to tasks. A better strategy for setting priorities would probably lead
to an improvement in the success ratio. Further we observe that lower utiliza-
tion admits larger improvements than higher laxity of the deadlines; and since
lower utilization in the simulations often gives tighter deadlines, we can conclude
that the allocation does not negatively impact schedulability. However, regard-
ing the improvements, the more components the more constrains are put on each
transaction, and thereby on the components, making it harder to perform good
allocations.

6 Conclusions and Future Work

Resource efficiency is important for RTS, both regarding performance and mem-
ory. Schedulability, considering resource efficiency, has gained much focus, how-
ever the allocation between components to tasks has gained very little focus.
Hence, in this paper we have described an allocation framework for allocating

Optimizing Resource Usage in Component-Based Real-Time Systems 63

50%

60%

70%

80%

90%

100%

0,3 0,5 0,7 0,9

Utilization

GA mapping

1-1 mapping

Fig. 7. Average success ratio

50%

60%

70%

80%

90%

100%

0,3 0,5 0,7 0,9

Utilization

Deadline laxity
10%

Deadline laxity
30%

Deadline laxity
50%

Average

Fig. 8. Success rate for allocations

10

20

30

40

50

60

0,3 0,5 0,7 0,9

Utilization

K
B

yt
e 1-1 mapping

GA mapping

Fig. 9. Average memory size

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

0,3 0,5 0,7 0,9

Utilization

1-1 mapping

GA mapping

Fig. 10. Average task switch over-
head

components to tasks, to facilitate existing scheduling and optimization algo-
rithms such as genetic algorithms, bin packing and simulated annealing. The
framework is designed to be used during compile-time to minimize resource us-
age and maximize timeliness. It can also be used iteratively in case of design
changes; however with some obvious drawbacks on the results. The framework
can easily be extended to support other optimizations, besides task switch over-
head and memory consumption. Results from simulations show that the frame-
work gives substantial improvements both in terms of memory consumption and
task switch overhead. The described framework also has a high ratio in find-
ing feasible allocations. Moreover, in comparison to allocations performed with
a one-to-one allocation our framework performs very well, with 32% reduced
memory size and 48% reduced task switch overhead. The simulations show that
the proposed framework performs allocations on systems of a size that covers
many embedded systems, and in a reasonable time for an off-line tool. We have
also shown how CPU load and deadline laxity affects the allocation. Future work
includes adding other allocation criteria, e.g., by looking at jitter requirements,
and blocking. By adding jitter constraints and blocking, trade-offs arise between
switch overhead and memory size versus deviation from nominal start and end
times and blocking times. Furthermore, a more efficient scheduling policy and
priority assignment will be applied. Due to the nature of GA it is easy to add
new optimizations as the ones suggested above.

64 Johan Fredriksson, Kristian Sandström, and Mikael Åkerholm

References

[1] Mills., K., Gomaa, H.: Knowledge-based automation of a design method for con-
current systems. IEEE Transactions on Software Engineering 28 (2002)

[2] Crnkovic, I.: Component-based approach for embedded systems. In: Ninth Inter-
national Workshop on Component-Oriented Programming, Oslo. (2004)

[3] Bondarev, E., Muskens, J., de With, P., Chaudron, M., Lukkien, J.: Predicting
real-time properties of component assemblies: a scenario-simulation approach. In:
Proceedings of the 30th Euromicro conference, Rennes, France, IEEE (2004)

[4] Bondarev, E., Muskens, J., de With, P., Chaudron, M.: Towards predicting real-
time properties of a component assembly. In: Proceedings of the 30th Euromicro
conference, Rennes, France, IEEE (2004)

[5] Hou., C., Shin, K.G.: Allocation of periodic task modules with precedence and
deadline constraints in distributed real-time system. IEEE Transactions on Com-
puters 46 (1995)

[6] Tindell, K., Burns, A., Wellings, A.: Allocating hard real-time tasks (an np-hard
problem made easy). Real-Time Systems 4 (1992)

[7] Douglas, B.P.: Doing Hard Time. 0201498375. Addison Wesely (1999)
[8] Gomaa, H.: Designing Concurrent Distributed, and Real-Time Applications with

UML. 0-201-65793-7. Addison Wesely (2000)
[9] Kodase, S., Wang, S., Shin, K.G.: Transforming structural model to runtime

model of embedded software with real-time constraints. In: In proceeding of
Design, Automation and Test in Europe Conference and Exhibition, IEEE (1995)
170–175

[10] Shin, K.G., Wang, S.: An architecture for embedded software integration using
reusable components. In: proceeding of the international conference on Compilers,
architectures, and synthesis for embedded systems, San Jose, California, United
States, IEEE (2000) 110–118

[11] Gai, P., Lippari, G., Natale, M.D.: Minimizing memory utilization of real-time
task sets in single and multi-processor systems-on-a-chip. In: Proceedings of the
Real-Time Systems Symposium, London (UK) Dec, IEEE (2001)

[12] Shin, K.G., Lee, I., Sang, M.: Embedded system design framework for minimizing
code size and guaranteeing real-time requirements. In: Proceedings of the 23rd
IEEE Real-Time Systems Symposium, RTSS 2002, Austin, TX, December 2-5,
IEEE (2002)

[13] Fredriksson, J., Sandström, K., Åkerholm, M.: Optimizing resource usage
in component-based real-time systems - appendix. Technical report, Techni-
cal Report, Mälardalen Real-Time Research Centre, Väster̊as, Sweden (2005)
http://www.mrtc.mdh.se/publications/0836.pdf.

[14] Sandström, K., Fredriksson, J., Åkerholm, M.: Introducing a component technol-
ogy for safety critical embedded real-time systems. In: Proceeding of CBSE7 In-
ternational Symposium on Component-based Software Engi-neering, IEEE (2004)

[15] Hansson, H., M.Åkerholm, Crnkovic, I., Törngren, M.: Saveccm - a component
model for safety-critical real-time systems. In: Euromicro Conference, Special
Session Component Models for Dependable Systems Rennes, France, EEE (2004)

[16] Arcticus: Arcticus homepage: http://www.arcticus.se (2005)
[17] van Ommering, R., van der Linden, F., Kramer, J.: The koala component model

for consumer electronics software. In: IEEE Computer, IEEE (2000) 78–85
[18] Stewart, D.B., Volpe, R.A., Khosla, P.K.: Design of dynamically reconfigurable

real-time software using port-based objects. In: IEEE Transactions on Software
Engineering, IEEE (1997) 759–776

Optimizing Resource Usage in Component-Based Real-Time Systems 65

[19] IEC: International standard IEC 1131: Programmable controllers (1992)
[20] Mathworks: Mathworks homepage : http://www.mathworks.com (2005)
[21] Bate, A., Burns, I.: An approach to task attribute assignment for uniprocessor

systems. In: Proceedings of the 11th Euromicro Workshop on Real Time Systems,
York, England, IEEE (1999)

[22] Oh, Y., Son, S.H.: On constrained bin-packing problem. Technical report, Tech-
nical Report, CS-95-14, Univeristy of Virginia (1995)

[23] Jansen, K., R, O.S.: Approximation algorithms for time constrained scheduling.
In: proceeding of Workshop on Parallel Algorithms and Irregularly Structured
Problems, IEEE (1995) 143–157

[24] Monnier, Y., Beauvis, J.P., Deplanche, J.M.: A genetic algorithm for schedul-
ing tasks in a real-time distributed system. In: Proceeding of 24th Euromicro
Conference, IEEE (1998) 708–714

[25] Montana, D., Brinn, M., Moore, S., Bidwell, G.: Genetic algorithms for com-
plex, real-time scheduling. In: Proceeding of IEEE International Conference on
Systems, Man, and Cybernetics, IEEE (1998) 2213–2218

[26] Cheng., S.T., K., A.A.: Allocation and scheduling of real-time periodic tasks with
relative timing constraints. In: Second International Workshop on Real-Time
Computing Systems and Applications (RTCSA), IEEE (1995)

[27] Fonseca., C.M., Flemming, P.J.: An overview of evolutionary algorithms in mul-
tiobjective optimization. Evolutionary computation 3 (1995)

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 66-81, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Evaluating Performance Attributes of Layered Software
Architecture

Vibhu Saujanya Sharma1, Pankaj Jalote1, Kishor S. Trivedi2

1 Department of Computer Science and Engineering, Indian Institute of Technology Kanpur,
Kanpur, INDIA, 208016

{Vsharma, Jalote}@cse.iitk.ac.in
2 Department of Electrical and Computer Engineering, Duke University,

Durham, NC 27708, USA
Kst@ee.duke.edu

Abstract. The architecture of a software system is the highest level of abstrac-
tion whereupon useful analysis of system properties is possible. Hence, per-
formance analysis at this level can be useful for assessing whether a proposed
architecture can meet the desired performance specifications and can help in
making key architectural decisions. In this paper we propose an approach for
performance evaluation of software systems following the layered architecture,
which is a common architectural style for building software systems. Our ap-
proach initially models the system as a Discrete Time Markov Chain, and ex-
tracts parameters for constructing a closed Product Form Queueing Network
model that is solved using the SHARPE software package. Our approach pre-
dicts the throughput and the average response time of the system under varying
workloads and also identifies bottlenecks in the system, suggesting possibilities
for their removal.

1 Introduction

Software architecture is an important phase in software lifecycle as it allows taking
early design decisions about a system. Moreover it is also the earliest point in system
development at which the system to be built could be analyzed [7], [9]. Analysis of a
system at the architectural level enables the choice of the right architecture for the
system under consideration, thus saving major potential modifications later in the
development cycle or tuning the system after deployment.

Out of the various attributes that could be assessed, performance attributes are
most sought after in any software system. Performance is an umbrella term describing
various aspects, such as responsiveness, throughput, etc. of the system. Assessing and
optimizing these aspects is essential for the smooth and efficient operation of the
software system. There have been many approaches [2],[3],[4],[5],[12] for perform-
ance evaluation of software systems, the pioneering work being done by C.U. Smith,
[2] which introduced the concept of Software Performance Engineering (SPE).

Layered software architecture is a very prevalent software architectural style that is
followed by almost all client-server and web based systems. Layered architecture

Evaluating Performance Attributes of Layered Software Architecture 67

helps to structure applications that can be decomposed into n groups of subtasks in
which each group is at a particular level of abstraction with well-defined interfaces
[8]. The ith layer could communicate with only the (i-1)th and the (i+1)th layer. Lay-
ered architecture is widely used in almost all web-based systems where performance
is a critical factor. Hence, performance analysis of layered systems is of much impor-
tance to system architects. Moreover as a large number of layered systems already
exist, performance predictions with varying number of clients or with the addition or
scaling up of components in the system would be beneficial to system administrators,
who manage such systems.

In this paper, we present an approach for performance evaluation of software sys-
tems following the layered architectural style. In the past SPE has been largely seen
as an activity, which requires specialized skills and in-depth knowledge of both soft-
ware architecture and performance modeling. Thus one of the motivating factors of
our effort is to provide an approach that could be used by software engineers for
designing new systems and system administrators for tweaking existing systems alike.
The aim of the approach is to output the traditional performance parameters as well as
suggest to the user bottleneck components that need to be scaled up. Our system thus
removes the performance analyst from the loop in that the activities traditionally
performed by him/her are automated.

Our approach consists of modeling the layered software system as a closed Product
Form Queueing Network (PFQN) [1], and then solving it for finding performance
attributes of the system. One of our aims is to ask for specifications that are easy to
provide even for someone who is not an expert in this field. After getting the specifi-
cations we model the system initially as a Discrete Time Markov Chain (DTMC),
with each layer in the system, corresponding to a state in the DTMC [13]. This
DTMC is then analyzed to find the total service requirements of the software system
over the different hardware nodes or machines. The closed PFQN model is then con-
structed using this information along with the specifications given by the user. Mod-
eling machines having limited software resources such as threads is also performed at
this stage using a hierarchical approach.

This closed PFQN model is then fed to SHARPE [11] which is a versatile software
package for analyzing performance, reliability and performability models. The output
from SHARPE is then further analyzed, and the results include the classical perform-
ance metrics such as the throughput and the average response time along with infor-
mation about system bottlenecks and suggested scale-ups for them. Along with these,
it predicts the improvement in system performance if the suggested scale-ups are
done. This is done by reconstructing the model internally, accommodating the scaled-
up components and solving it again, using our approach.

The tool, which we have developed as an implementation of this approach, re-
quires minimal knowledge of queueing models or any other performance modeling
techniques to use it. The specifications which are needed could be easily procured
and hence the tool facilitates modeling new systems as well as helping in scaling
existing systems.

68 Vibhu Saujanya Sharma, Pankaj Jalote, and Kishor S. Trivedi

2 Evaluating Performance of Software Architectures

System performance has become a major concern, as large, complex, mission critical
and real time software systems proliferate in almost all domains. The inherent struc-
tural relationships among the components characterize the architecture that software
system is following and usually could be classified into some well-known architec-
tural styles [7], [8]. Since the performance attributes of a software system, such as
number of jobs serviced per second (throughput), the average response time, etc.
depend both on the time and resources spent in computation as well as in the commu-
nication between various components of the system, the architecture that a particular
system follows has a lot of bearing on its performance. This forms the basis for the
need of evaluating various software architectures for their performance attributes. In
practice there are many questions that a performance assessment approach should
answer. Some of the prominent ones are:

 What effect would varying the number of clients have on the throughput and the
average response time of a particular system, if a particular architecture is fol-
lowed?
 What would be the ideal number of clients the system would be able to handle
before it saturates?
 Which software component should be allocated to which hardware node?
 What would be the bottlenecks in the system and how could they be removed?
 What would be the change in the performance attributes if a system component is
enhanced or scaled up?

In the recent past there have been some efforts towards answering such questions
and concerns regarding software architectures. A methodological approach for
evaluation of software architectures for performance was first proposed by C.U.
Smith in her pioneering work [2] and later with L.G. Williams [10] and is called
Software Performance Engineering (SPE). Two models represent the system in SPE:
the software execution model and the system execution model. The software execu-
tion model is specified using Execution Graphs (EGs), which have nodes representing
the components and arcs representing transitions. The system execution model is
basically a queueing network model, which relies on workload parameters derived
from EGs.

Following the SPE approach, Petriu and Wang have used UML activity diagrams
for the software execution model, and UML collaboration diagrams for the system
execution model [3]. The latter is modeled as a Layered Queueing Network (LQN)
which differs from Queueing Network (QN) models in that servers can become cli-
ents of other servers in the model. An LQN model is represented as an acyclic graph
whose nodes are software entities and hardware devices and whose arcs denote soft-
ware requests. Menasc´e and Gomaa proposed a proprietary language called
CLISSPE (Client/Server Software Performance Evaluation) [5] for the performance
assessment of client server systems. The specifications in CLISSPE are fed to a com-
piler which generates the QN model which is then solved using a performance model
solver. Some authors have also followed a Stochastic Petri Net based approach [4] for
modeling the systems.

Evaluating Performance Attributes of Layered Software Architecture 69

Our approach follows the basic SPE methodology with a focus on layered software
architecture. We represent the software model in terms of a DTMC which is then
transformed into a closed PFQN model. However, the QN model we propose to use
also models software resource constraints such as limited number of threads at a par-
ticular machine. This allows for a model which is closely related to the real system
and its constraints. As the architecture to be analyzed has been fixed to layered, speci-
fying the software system becomes relatively simple, unlike in other approaches that
follow some proprietary languages. This was also one of the aims we set forth while
developing this approach. We also allow analysis of the software model on different
hardware architectures, by letting the user specify the rating factor of the hardware
under consideration, as compared to the one in which the resource demands of the
components were specified for the specific architecture.

The inherent simplicity of specification makes our model feasible to be used in
practice more effortlessly and even by those with relatively little knowledge of per-
formance analysis techniques. Moreover the close modeling of real systems by our
QN model, and the results we provide to the user, including the suggested bottleneck
scale-ups and predicted performance improvements for the same, make our approach
well suited to be used for large layered systems with real world constraints. We pre-
sent the details of our approach in the following sections.

3 System Model and Assumptions

Our approach assumes that the computer system under consideration is an interactive
system, wherein the system gives responses to the inputs given by the users. Further
this interactive system follows the layered software architecture, with each layer in-
teracting only with the adjacent layers. The user interacts with the first layer, which
passes the request, if needed, to the second layer, which may pass it to the next layer,
and so on. The last layer sends its response back, which then traverses through the
layers, till the user gets the output. In general a layered software system could be
visualized as in Figure 1.

Client 1

Layer 1 Layer 2 Layer nl
Client 2

Client nc The Software System

Fig. 1. The layered software architecture.

Note that different software components which constitute different layers, could be
allocated to different (hardware) machines or some of them could be collocated on
the same machine also. A layer acts as a functional unit providing some well defined
services through appropriate interfaces and some computation and some I/O is done
as the control passes through each software layer. The computation and I/O may be

70 Vibhu Saujanya Sharma, Pankaj Jalote, and Kishor S. Trivedi

intermixed and done repeatedly till the layer has completed its task. It then either
returns the result, or passes the request to the next layer either on the same machine or
on a different machine as the case may be. There might also be limitations on how
many concurrent pending requests can exist for computation on a machine (which
frequently is the case when the software server or the operating system of the hard-
ware node, limits the number of threads or available connections.) We assume that a
software component runs on only one machine at a time, i.e., there is no concurrency
within a software component. However, several layers could be allocated to run on a
single machine.

To analyze the performance of this architecture, we need to specify the average
CPU time for a request in each layer and the average I/O time, which we call the Disk
time in our model. Note that even though in a layer, the CPU work and I/O may be
intermixed, for modeling purposes, they can be assumed to occur in an aggregate
fashion, i.e., first all the CPU processing and then all the I/O processing. This combi-
nation does not affect the performance analysis and is based on the known insensitiv-
ity result of the product form solution of closed networks [1]. The allocation or de-
ployment of the layers on different hardware nodes is also very important and is taken
as a part of the specifications. The tool could be used to aid in choosing different
allocations by comparing them.

In addition, we need to model the impact of connectors between the layers that are
allocated on different machines. We capture this by the size of the request, the capac-
ity of the connector, and the probability with which a request is sent by one layer to
another layer. To model the load on the system, we require the range of the number of
clients that the system might be subjected to. In addition, an estimate of the number of
requests generated per unit time by each client is also needed. Overall, the following
properties about the architecture are needed:

 The range of the number of clients [ncmin, ncmax] accessing the system and the
average think time of each client ttc.
 The total number of layers in the software system nl.
 The relationship between the machines and the software components, i.e., which
software layer is located to which machine and the number of machines. Thus cor-
responding to each machine j we have a set L(j) containing indices of the layers
residing on j , 0<j nm and nm is the number of machines.
 The number of CPUs and disks on each of these machines and thread limitations
if any, or nCPU(i), ndisk(i) and tlim(i).
 The uplink and downlink capacities of the connectors connecting machines run-
ning adjacent layers of the system and the size of the packets going on these links
or capup(i), capdn(i), psizup(i) and psizdn(i) where 0<i nm. Note that capup(1)
and capdn(1) are the total uplink and downlink capacities respectively, of the
connector(s) joining all the client to the machines.
 The service time required to service one request by a software layer given that it is
using a standard CPU and a standard Disk for the purpose or CPU(i) and disk(i)
where 0<i nm.
 Forward transition probabilities px(x+1), i.e., the probability that a request being
serviced by layer x would need the service of layer (x + 1) next.

Evaluating Performance Attributes of Layered Software Architecture 71

 The rating factors fcj and fdj of the CPU and Disks respectively of each machine,
which are present in the system, with respect to a standard CPU and Disk as con-
sidered above in 6.

4 Analyzing Performance

For analyzing the performance of a layered software system, we follow these main
steps, which are discussed in detail in the ensuing sections:

 Constructing the DTMC model.
 Determining the queuing network model parameters.
 Modeling thread limitations.
 Queuing model solution and outputs.

4.1 Constructing the DTMC Model

We model the software system following layered architecture using a DTMC [13].
The state of the application at any time is given by the component or layer in execu-
tion at that time. Moreover, transitions between states represent transfer of control
from one layer to the other. Assume that the DTMC to be analyzed has k states. Then
the DTMC is characterized by a k by k transition probability matrix P = [pij]. All
elements of a row in P add up to one and 0 pij 1. We can calculate the expected total
number of visits to a state j starting from state 1, Vj [1] by jijij qpVV where, qj is
the probability of starting in state j. Thus visit counts to a particular state could be
obtained by solving a system of (n-1) linear equations. We can model a layered soft-
ware system with nl layers as shown in the Figure 1 using a DTMC with 2nl+2 states
as shown in Figure 2.

Fig. 2. The DTMC model for a layered software system.

The transition from state S0 to S1 represents a client sending request to the first
layer with probability 1. The completion of a request’s service by the layered system
is denoted by a transition to state S2nl+1, which is an absorbing state. Note that as the
system is layered in nature, only transitions between adjacent layers are possible.

72 Vibhu Saujanya Sharma, Pankaj Jalote, and Kishor S. Trivedi

There is no incoming edge to S0, which is the initial state, and no outgoing edge from
S2nl+1, which is the absorbing state. The states Si and Snl+i (0 < i nl) represent control
flow arriving to layer i in the forward and return paths of the request respectively. In
the forward path, upon receiving service at layer i, the request can proceed further to
the next layer with probability pi(i+1), or may return with the probability (1-pi(i+1)).
Also note that we have:

0 pi(i+1) 1 0 i <nl

4.2 Determining Model Parameters

The layer to layer transition probabilities provided by the user and shown in Figure 2
can also be seen as a (2nl+2) by (2nl+2) transition probability matrix of a DTMC with
(2nl+2) states given by:

1.000.00000
..
..
0.010.00000
0.001.00000
1.000.00000
..
..
0.010.0000
0.001.0000
0.000.00010

2323

1212

pp
pp

P

As mentioned in Section 4.1, we could calculate the visit counts to each of the

states V(i), by solving the set of linear equations given in the previous section. If we
assume that between each pair of layers an imaginary connector is present, then as-
suming the connectors to be bi-directional, the number of visits to this connector in
the forward and the backward direction would be same as each request going forward
will eventually return. For any layer i in the system, the fraction of all the arriving
requests that proceed to the next layer is the same as pi(i+1) in the DTMC as shown in
Figure 2. Hence, the average number of visits to a uplink connector i, joining layer i,
to layer (i+1), is given by V(i)pi(i+1). The backward or return visits to the (downlink)
connector will also be the same. Hence, we could calculate the total visits to these
imaginary connectors joining the layers.

However, note that not all of these imaginary connectors are present in the actual
system. The chosen allocation of software layers on different machines determines
the connectors that are present between layers, which lie on adjacent machines. Only
these are the connectors that physically exist and need to be considered in the queue-
ing model. Hence, we can get the visit count to the uplink and downlink connectors
respectively between machines j-1 and j as Vconup(j) and Vcondn(j). Once the visit
counts for the different layers and the connectors are calculated, the next step is to
find the total service requirements on the actual CPUs and Disks on the machines as
well as for the connectors that join these machines. For any machine j (0<j nm) we
have the total CPU and Disk service requirements given by

Evaluating Performance Attributes of Layered Software Architecture 73

)(
)()()(

jLi
cj icpuiVfjtmcpu

)(
)()()(

jLi
dj idiskiVfjtmcdisk

The above equation simply states that the total CPU or Disk service requirement at
a particular machine is given by the sum of individual CPU or Disk service require-
ments of all the layers present on that machine, multiplied by the rating factor of that
hardware device. For the connector j with uplink and downlink capacities capup(j)
and capdn(j) respectively, we can compute the average delays caused due to each
request as:

)()(jcapuppsizeup(j) jdelayup
)()(jcapdnpsizedn(j) jdelaydn

where, psizeup(j) and psizedn(j) are the uplink and downlink average packet sizes on
the connectors. Each time the connector is visited, the above delays occur depending
upon whether the request is going from a lower indexed machine to a higher indexed
machine or vice versa. So the total average service requirement at connector j would
be given by:

)()(jdelayupVconup(j) jtconup
)()(jdelaydnVcondn(j) jtcondn

The performance model that we generate is a closed product form queueing net-
work wherein queueing stations represent the connectors, CPUs and Disks. This is
shown in Figure 3. The clients are modeled by an Infinite Server (IS) [11] which
allows a new request to be generated after an average of ttc seconds of the completion
of the previous request. The total number of jobs in the closed PFQN is kept same as
the number of clients.

Fig. 3. The closed PFQN model of the system.

The connectors are modeled as FCFS stations [11] with rate as the reciprocal of the
total average service requirements at that connector. The CPU for a machine is mod-
eled by an FCFS station with CPU service rate for that machine. However, if there is
more than one CPU present at a single machine, these are modeled as a multiple-
server (MS) [11], with each server in MS having the rate as the CPU service rate for
that machine. Thread limited systems are discussed in detail in the next section. The
disk is modeled by an FCFS station with service rate same as the reciprocal of the
total average disk service requirement at that machine. If there is more than one disk
present at the machine, then all these disks are modeled as separate FCFS stations
with equal probability of transition from the CPU to each of the disks. These are not

nc IS

Machine 1 Uplink Connector 1

 CPU 1 Disk 1 Disk nm

Downlink Connector 1 Downlink Connector nm

.
Clients
.

.

74 Vibhu Saujanya Sharma, Pankaj Jalote, and Kishor S. Trivedi

modeled as a multi-server (unlike the case of CPUs), as a request would not go to just
any free disk, but is targeted to some specific data, on a particular disk.

4.3 Modeling Thread Limited Systems

In real systems there exist machines that have some software resources such as num-
ber of available threads in limited quantity. So there is an upper limit on the number
of jobs that a particular machine can handle. We can visualize this as in Figure 4.

Machine i

M

Connector i

Fig. 4. Limited threads on a machine.

Here M is the upper limit on the number of jobs in that machine. We use a hierar-
chical combination of models so in the upper level model, the dotted box is repre-
sented a flow equivalent server. The lower level is modeled as a closed form PFQN.
This is done by converting the subset of the model, which is shown inside the dotted
region, to an equivalent closed PFQN. The rate of the flow equivalent server then
equals the throughput E[T(n)] of this inner PFQN, which is directly proportional to
the utilization of the same[1]. The flow equivalent server should continue to serve
jobs only until limit M and till this point its rate keeps on increasing. However, after
this point the rate no longer increases with increase in the number of jobs, and the
jobs have to wait before getting into this inner PFQN or equivalently this thread lim-
ited server. So the rate of the flow equivalent server is given by:

Mn if MTE
Mn if nTE nflrate

)]([
)]([)(

Such hierarchical models are easily specified and solved by SHARPE. Note that
the flow equivalent server is represented as a load dependent server (LDS) in
SHARPE.

4.4 Model Solution and Outputs

The performance model would consist of an upper level PFQN and if flow equivalent
servers are present, some lower level (inner) PFQNs along with output statements.
This has to be fed to SHARPE for getting the throughput of the whole system for the
range of clients specified by the user. Other measures such as the average response
times, saturation number and bottlenecks would be found using the throughput along
with the specifications provided by the user.

In case of thread limited servers present in the system, each of those will have a
separate PFQN representing the flow equivalent server, and the corresponding LDS

Evaluating Performance Attributes of Layered Software Architecture 75

will be present in the top level PFQN. So in general the SHARPE input file will have
the specifications of each of the inner PFQNs, if any, followed by the function that
calculates their service rates, and the specification of the top level PFQN, followed by
the output section. The model is fed to the SHARPE engine, which analyzes it and
predicts the throughput of the whole system. The average throughput at each of the
servers in the model for different number of clients is also calculated. This is required
as unlike the FCFS or MS, the total service requirements per visit at the LDS change
with varying number of clients in the system. This in turn affects the bottleneck
analysis as is explained in the next section.

As part of the outputs, the approach provides for the throughput and the average
response times of the whole system for the range of clients mentioned by the user.
The approach also provides the saturation number of the system, which is the number
of clients beyond which the system starts to saturate, i.e., the servers in the system
start getting busy almost at all times and server utilization (the probability of finding a
server busy) reaches unity. In practice the system should be running with the number
of clients below the saturation number. Along with these it provides the bottleneck
analysis as explained in section 5.

5 Bottleneck Analysis

One important part of our analysis is bottleneck analysis of the whole system. The
bottleneck node of the system is defined as the one at which the total service require-
ment is the largest or the relative utilization (the probability of finding a server busy)
is the highest. Hence in a closed PFQN, bottleneck nodes can be found out even be-
fore solving the queueing network model, by comparing the total service demands on
the various nodes. However, if there is a thread limited server in the network, the
total service requirements at this node is dependent upon the instantaneous number of
jobs on that server (hence the name load dependent servers). Thus in such networks,
we need the throughput values for the lower level closed PFQN for calculating the
total service requirements at that node for varying number of clients from the
SHARPE engine.

Bottleneck nodes are the ones, which are most busy (or have high relative utiliza-
tions), and most jobs will tend to queue up at these servers. They will cease to be the
bottleneck if they are scaled up so that they no longer have the highest total service
requirements (or the highest relative utilization). We provide information about the
first as well as the second bottleneck(s) in the system. In general one can determine
the minimum scaling up factor Scale(k) of the kth bottleneck by the formula:

(k-1)bottleneck
(k)bottleneckScale(k)

 of jobper tsrequiremen service Avg.
 of jobper tsrequiremen service Avg.

One thing to be noted is that the bottleneck(s) of the system might change with the
number of clients in the system. This is so, because the average service demands and
hence the average service times per job of the thread limited servers are load depend-
ent and would change with the number of clients in the system. Hence, we give the
bottlenecks for the whole range of the clients as mentioned by the user.

76 Vibhu Saujanya Sharma, Pankaj Jalote, and Kishor S. Trivedi

Bottleneck information is then used to analyze the effect of scaling the bottleneck
server up, on the average throughput and average response time of the whole system.
This is done by iterating once again through the performance model generation phase
with the bottleneck node’s service rate scaled up by the suggested value, and then
feeding the model to SHARPE and analyzing throughput again. Thus one can get the
percentage change in system performance for the suggested scale up, and decide if
the scale up is worthwhile for the system. Bottleneck analysis gives the user a good
idea of the amount of improvement in system performance if he/she chooses to put in
effort in scaling up / improving the bottleneck of the system.

6 An Example

We have implemented our approach as a web based tool, which automates our ap-
proach. The implementation of the tool was partially done as an undergraduate pro-
ject [14], and was extended later on. The tool completely automates the task of per-
formance analysis of layered software systems. This web tool is based on cgi script-
ing and renders html forms for the user to fill in the specifications of the layered sys-
tem under consideration. The tool then uses the specifications and constructs a
DTMC internally, representing the software system, calculates the service require-
ments and generates a SHARPE input file, which has the system model as a closed
PFQN. This is then fed to SHARPE, which works as our model solver and backend.
The results from SHARPE are further analyzed, for bottlenecks. The scale up for the
primary bottleneck in the system is found and the QN model is reconstructed and
again fed to SHARPE to get the new performance attribute values.

Consider an example of a 4-layered software architecture. Suppose that the current
plan is to have these 4 layers run on 3 machines, with layer 1 running on machine 1,
layer 2 on machine 2, and layers 3 and 4 on machine 3. Further assume that there is a
limit of 25 threads on machine 2. In the baseline hardware configuration that we are
planning for be that each machine has 2 CPUs and machines 1 and 2 have 1 Disk
each, while machine 3 has 4 disks available. The data about the software architecture
and the hardware that is being planned is summarized in Table 1.

Table 1. Example software and hardware specifications.

Number of Layers 4 Number of Machines 3
Layer 1 runs on Mc 1 Layer 2 runs on Mc 2
Layer 3 runs on Mc 3 Layer 3 runs on Mc 3
No. of CPUs on Mc 1 2 Thread Limit on Mc 1 No
No. of CPUs on Mc 2 2 Thread Limit on Mc 2 25
No. of CPUs on Mc 3 2 Thread Limit on Mc 3 No
No. of Disks on Mc 1 1 No. of Disks on Mc 2 1
No. of Disks on Mc 3 4
Total capacity of connector joining
Clients and Mc 1 Uplink/Downlink

56/512
Kbps

Capacity of connector joining Mc 1 and
Mc 2 Uplink/Downlink

1/1
Mbps

Capacity of connector joining Mc 2
and Mc 1 Uplink/Downlink

1/1
Mbps

Capacity of connector joining Mc 2 and
Mc 3 Uplink/Downlink

1/1
Mbps

Evaluating Performance Attributes of Layered Software Architecture 77

Now we have to provide the system execution behavior estimates. We have taken
the parameters resembling those, which might characterize a distributed transaction
processing system following a 4 layered architecture. We take an example of an
ADSL connection between the clients and the system as is evident from the asymme-
try in the uplink and downlink capacities of the link joining clients to machine 1.
Further, assume that the client request does much of its CPU processing in layers 2
and 3 and does most of its I/O operations in layer 4. Also, assume that 60% of all
requests coming to layer 1 need to go to higher layers for service and similarly 90 %
and 100 % of the requests which reach layer 2 and 3 respectively require service from
higher layers. The values of the relevant parameters are as in Table 2.

Table 2. Example system execution behavior estimates.

Data packet sizes: (in bytes)
From Client to Mc 1 250 from Mc 1 back to Clients 2000
From Mc 1 to Mc 2 250 From Mc 2 back to Mc 1 1000
From Mc 2 to Mc 3 250 From Mc 3 back to Mc 2 1000
 Times per visit: (in secs)
CPU time/visit of Layer 1 0.01 CPU time/visit of Layer 2 0.03
CPU time/visit of Layer 3 0.06 CPU time/visit of Layer 4 0.01
Disk time/visit of Layer 1 0.02 Disk time/visit of Layer 2 0.02
Disk time/visit of Layer 3 0.002 Disk time/visit of Layer 4 0.20
Probability of request flow from:
Layer 1 to higher Layers 0.60 Layer 2 to higher Layers 0.90
Layer 3 to higher Layers 1.00

Suppose we specify to the tool that we want to estimate the performance of this

system for 1 to 75 clients, each client having an average think time of 1 sec and the
rating factor for all the devices as unity. The tool does the analysis and gives the out-
put as in Figure 5 and 6.

Fig. 5. Analysis output: The average response time and throughput graphs.

From Figure 5, we can see that the model suggests that the average response time
is quite low initially, but then after around 8 clients the average response times starts
to increase very fast. Similarly if we study the throughput graph, this shows the
throughput constantly increasing with the number of clients initially, but then almost
becoming constant if the number of clients is increased further, the maximum
throughput of the system being about 34 jobs/sec. These two observations are due to
the same phenomenon of the onset of saturation of the system - in this case occurring
around 11 clients in the system. Below 11 clients, there are practically no queues at

78 Vibhu Saujanya Sharma, Pankaj Jalote, and Kishor S. Trivedi

each of the machines, and so the average response time is fairly low, and the through-
put of the system, increases almost linearly as new clients are added. But as the num-
ber of clients increase further, queues start to build up at different service centers, and
jobs have to wait for other jobs to complete service, before they could be taken up.
The servers in these conditions are busy almost all the time and server utilizations
(the probability of finding the server busy) reaches unity. Thus congestion builds up
in the system, and hence the average response time of the system keeps on increasing
thereon as more and more clients are added. Because of the same reason, the through-
put of the system reaches a limiting level, and does not increase after that (as most of
the servers are already busy processing to their limit) and so we get the flat region in
the throughput graph.

The graphs are very useful for a system architect as they show precisely how many
clients would the system be able to handle efficiently. Practically a system should
never be running in a saturated condition as then the system performance degrades
very fast. These graphs could be used to ascertain the kind of the average response
times and throughput the system would deliver for the specified range of clients and
whether that meets the desired performance criteria or not. The system architect could
also get an idea about the performance of the system, in conditions of excessive
loads.

As shown in the bottleneck analysis in Figure 6, the tool predicts the primary and
secondary bottlenecks in the system along with the minimum scale-up needed so that
they no longer are the bottlenecks. As mentioned earlier, as the bottlenecks in the
system may change upon changing the number of clients in the system, hence the tool
provides the bottleneck analysis for the whole range of clients. In Figure 6, the same
is shown for 43 clients. Moreover the tool iterates upon the analysis once more with
the primary bottleneck scaled-up, and then shows the improvements in throughput,
average response time, and saturation number of the system.

Fig. 6. The bottleneck analysis output.

In this example system, we can see the improvements - by scaling the disk of ma-
chine 3, we could get an improvement of more that 22.5% in the throughput of the
system and about a 50% decrease in average response time. Figure 7 illustrates the
comparative improvements using graphs, showing the system throughout and the

Evaluating Performance Attributes of Layered Software Architecture 79

average response time variation with load, before and after the suggested scale-up.
We can see that if the suggested scale-up is done, then the system can sustain more
number of clients, without degradation as compared to the initial configuration.

Fig. 7. The effect of system scaleup as suggested by our tool on average system throughput and
response times.

From the capacity planning point of view, say if an average response time of upto
0.6 seconds is deemed acceptable for the system, one can observe from the average
response time variation graph in Figure 7 that the capacity of the system increases
from 46 to 72, if the suggested scaleup is done. One can also use to the tool to see the
possible effects of any changes in the system hardware or software. We used the tool
to evaluate the above example system but with the number of concurrent threads in
Machine 3 limited to 25. The tool shows that this restriction causes the maximum
throughput of the system to go down to 20 jobs/sec from 34 jobs/sec. In addition, the
tool could be used for comparing the effect of different deployments of the layers on
the available machines, on the overall system performance. One such comparison for
the example system is shown in Table 3 which shows that the first deployment
scheme is significantly better than the others in terms of maximum average through-
put.

Table 3. Effect of different layer deployments on maximum average throughput.

Layer(s) deployed on
Machine 1 Machine 2 Machine 3

Maximum average
throughput (jobs/s)

1st 2nd 3rd ,4th 33.62
1st 2nd ,3rd 4th 19.84

1st ,2nd 3rd 4th 29.81

7 Discussion and Conclusion

In this paper we presented an approach of performance evaluation of systems follow-
ing layered architecture. The approach deals with first constructing a DTMC model of
the software system, using the specifications user has provided. This model is then
solved to get the total visit counts to different layers of the system and calculate total
service requirements of the system on the hardware over which the software system is
deployed. These are then used to construct a closed PFQN model for the system. This

80 Vibhu Saujanya Sharma, Pankaj Jalote, and Kishor S. Trivedi

model also takes care of limited software resources as threads on a particular ma-
chine. The PFQN model is solved using SHARPE as the backend, the outputs of
which are analyzed, and various performance metrics such as throughput and the
average response times, and saturation number are provided. Moreover bottleneck
analysis is done and the minimum scale up for the bottleneck node in the system is
suggested. The approach also allows for a prediction of the improvement in system
performance if the scale up is actually done. There are two major applications of this
approach: First is in architecting and deploying new layered systems and the second
is in tweaking or upgrading or scaling up existing systems.

As COTS based development is becoming very popular these days, it is common-
place today to use components as black boxes for the desired functionality. In such
cases the designer could use our approach and estimate the performance characteris-
tics of the final system he wishes to build using those components. Moreover it would
also allow the architect to know about the possible bottlenecks in the system and how
much scaling up is needed for those components.

The second application as mentioned before is when an existing system has to be
scaled up or some additional software or hardware component has to be added. The
system administrator should have some idea of the change in the system performance
due to the change in system hardware and/or software configuration. Our approach
could be used to ascertain that. The system administrator need not have an in-depth
knowledge of performance evaluation techniques for this and our tool could be em-
ployed for the same by providing some specifications, which are easy to get.

At the software architecture phase, the actual components, which would constitute
the layers, would not be present (unless COTS approach is used) so, the service re-
quirements of different components at different devices have to be estimated from
previous experience with similar software components. If off the shelf components
are being used, the CPU and I/O times taken by particular layers to execute once
could be assessed by using built in tools provided by various operating systems like
iostat or sar. Tests will have to be conducted for each layered component separately
as the above mentioned tools do not provide application level break-up of the meas-
urements. For testing purposes if a single layer is run on a single machine one can get
the total CPU and I/O times for say n executions and then get the average CPU and
I/O times per execution.

Each proposed component in a layer could be examined to find the components
with which it interacts with a non-zero probability and known operational profiles of
similar systems might be used to estimate the associated transition probabilities be-
tween the layers. For existing systems, techniques mentioned in [6] might be used to
ascertain the transition probabilities. Specifications such as the capacity of connec-
tors, the number of CPUs and disks or thread limitations are all system characteristics.
Some measurements will be needed for the packet sizes on the connectors joining
various machines and could be ascertained by using a suitable network analysis util-
ity.

There are still lots of avenues in this approach for future work. Our approach is
limited only to layered systems at present. We believe that this could be extended to
general software architectural patterns also. However, the aim while doing so would
be to keep the specifications needed as simple and practical as possible so that the
approach is easily adoptable in practice. One other major extension could be to mod-

Evaluating Performance Attributes of Layered Software Architecture 81

ify the approach so that it allows for optimizing the use of various system resources to
provide the maximum possible performance. This would be beneficial to system ar-
chitects as well as system administrators and will allow them to minimize investment
and maximize performance of their systems. One of the many aims of this approach is
to provide a thorough performance evaluation of the layered software system under
concern. Moreover the approach is helpful both at the time of architecting new sys-
tems as well as scaling up or improving existing systems. The tool that we have built
implements our approach and is very simple to use. We hope that our approach would
help software engineers and performance experts to architect better layered systems,
as well as allow those who are not specialists in this field to perform performance
evaluation of their systems.

References

1. K. S. Trivedi, “Probability and Statistics with Reliability, Queuing, and Computer Science
Applications”, John Wiley and Sons, 2001.

2. C.U. Smith, “Performance Engineering of Software Systems”, Addison Wesley, 1990
3. Dorina C. Petriu, X. Wang, “From UML descriptions of High-Level Software Architec-

tures to LQN Performance Models”, Proceedings of AGTIVE’99, Springer Verlag LNCS
1779, 1999.

4. P. King, R. Pooley, “Derivation of Petri Net Performance Models from UML Specifica-
tions of Communication Software”, Proceedings of XV UK Performance Engineering
Workshop, 1999.

5. D. A. Menasc´e, H. Gomaa, “A Method for design and Performance Modeling of Cli-
ent/Server Systems”, IEEE Transactions on Software Engineering, Vol. 26, No. 11, pp.
1066–1085, 2000.

6. K. Goˇseva–Popstojanova and K. Trivedi, “Architecture–based approach to reliability
assessment of software systems”, Performance Evaluation, 45:179-204, 2001.

7. L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice”. SEI Series in
Software Engineering, Addison-Wesley, 1998.

8. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, “Pattern-Oriented Soft-
ware Architecture, Volume 1: A System Of Patterns” , John Wiley and Sons, 2000.

9. M. Shaw, D. Garlan, “Software Architecture, Perspectives On An Emerging Discipline”,
Prentice-Hall Inc., 1996.

10. C. U. Smith, L.G. Williams, “Software Performance Engineering: A Case Study Including
Performance Comparison with Design Alternatives”, IEEE Transactions On Software En-
gineering, Vol 19, No7, Pages 720-741, 1993.

11. R.A. Sahner, K.S. Trivedi, and A. Puliafito, “Performance and Reliability Analysis of
Computer Systems: An Example-Based approach Using the SHARPE Software Package”,
Kluwer Academic Publishers, 1996.

12. Dorin Petriu, Murray Woodside, “Software Performance Models from System Scenarios
in Use Case Maps”, Proc. Performance TOOLS 2002, London, 2002.

13. Swapna S. Gokhale, W. Eric Wong. K. S. Trivedi, and J.R. Horgan, “An Analytical Ap-
proach to Architecture-Based Software Reliability Prediction”, IEEE Int. Comp. Perf. and
Dependability Symposium, Durham, NC, USA, Sept. 1998.

14. M. Vikram, P. Kant, “Evaluation of Layered Architecture Software Systems for Perform-
ance Attributes using Closed Product Form Queuing networks”, B.Tech Project Report,
CSE, Indian Institute of Technology Kanpur, India, 2003.

Component-Level Dataflow Analysis

Atanas Rountev

Ohio State University
rountev@cse.ohio-state.edu

Abstract. Interprocedural dataflow analysis has a wide range of uses
in software maintenance, testing, verification, and optimization. Despite
the large body of research on various analyses, the widespread adoption
of these techniques faces serious challenges. In particular, when software
is built with reusable components, the standard approaches for dataflow
analysis cannot be applied. This paper proposes a model of component-
level analysis which generalizes the traditional model of whole-program
analysis. We outline the theoretical foundations of component-level anal-
ysis, discuss some of the key technical challenges for such analysis, and
present initial results from our work on addressing these challenges.

1 Introduction

Interprocedural dataflow analysis is a form of static program analysis that has
been investigated widely in the last two decades. For example, many analyses
have been developed for use in tools for software understanding and maintenance.
Other areas in which dataflow analysis is commonly used are software testing
and software verification, both of which are essential for producing high-quality
systems. Last but not least, dataflow analysis continues to play an important
role in the area of performance optimization, by enabling compiler optimizations
for numerous programming languages and hardware architectures.

Despite the continuing progress in dataflow analysis research, its widespread
use in real-world tools is hindered by several serious challenges. One of the central
problems is the underlying model of analysis assumed in most of the work in this
area. The essence of this model is the assumption of a whole-program analysis
for a homogeneous program. Interprocedural whole-program analysis takes as
input an entire program and produces information about the possible run-time
behavior of that program. A fundamental assumption of this analysis model is
that the source code for the whole program in available for analysis. Furthermore,
such analysis typically treats the entire program as a homogeneous entity, and
does not take into account the program’s modular structure.

Modern software systems have characteristics that present critical challenges
for this traditional model of dataflow analysis. In particular, systems often in-
corporate reusable components. Whole-program analysis is based on the implicit
assumption that it is appropriate and desirable to analyze the source code of the
entire program as a single unit. However, this assumption is clearly violated for
software systems that are built with reusable components:

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 82–89, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Component-Level Dataflow Analysis 83

– Some program components may be available only in binary form, without
source code, which makes whole-program analysis impossible.

– Analysis results may be needed even when a whole program simply does
not exist. For example, when the developer of a component wants to use a
dataflow analysis for understanding, restructuring, or testing of her code,
she often does this without having all other components that will eventually
be combined to construct a complete application.

– From the point of view of analysis running time and memory usage, it is
highly undesirable to reanalyze a component every time this component is
used as part of a new system. For example, a popular library may be used
in thousands of different applications, and whole-program analysis requires
reanalysis of this library from scratch as part of each such application.

– Treating the program as a homogeneous entity means that code changes in
one component typically require complete reanalysis of the entire application.

– The running time of whole-program analysis is often dominated by the anal-
ysis of the underlying large library components. Thus, to achieve practical
running times, analyses often must employ approximations which typically
reduce the precision and usefulness of the analysis solution.

The essence of the problem is the following: whole-program interprocedural
dataflow analysis is often impossible or inefficient for software systems that em-
ploy reusable components. Thus, the real-world usefulness of hundreds of existing
analyses remains questionable. In many case these analyses cannot be used at all.
Even if they are possible, they have to be relatively approximate and imprecise
in order to scale for industrial-sized software containing hundreds of thousands
lines of code in multiple components. As a result of these approximations, the
precision of the computed information usually suffers, which leads to problems
such as spurious dependencies in program understanding tools, false warnings
in verification tools, and infeasible test coverage requirements in testing tools.
Such problems ultimately reduce the productivity of the software developers and
testers that are clients of these tools.

Our work defines an alternative conceptual model of dataflow analysis which
we refer to as component-level analysis (CLA). While a whole-program analysis
takes as input the source code of a complete program, a component-level analysis
processes the source code of a single program component, given some information
about the environment of this component. This conceptual model presents a
starting point for dataflow analyses that can be applied to software systems
built with reusable components.

Given the CLA model, there are two major challenges that static analysis
researchers need to address. First, what is the appropriate theoretical frame-
work for designing CLA? Whole-program analyses can be defined in terms of a
dataflow lattice, a set of dataflow functions, and algorithms that use the lattice
and the functions to compute a dataflow solution [1]. How should this general
framework be extended to handle CLA? Second, given the theoretical founda-
tions for CLA, how should specific whole-program analyses be modified to fit
the CLA model? For example, how should researchers and tool builders define

84 Atanas Rountev

CLA versions of popular analyses such as pointer analysis, side-effect analysis,
data dependence analysis, and constant propagation analysis?

The program analysis research community has been slow to respond to these
challenges. For example, at present there does not exist a general theoretical
framework for designing CLA. There have been several efforts to define CLA
versions of specific kinds of analyses (due to space constraints, we do not discuss
these efforts). However, this existing work has been somewhat sporadic and ad
hoc in nature, and it has not addressed some of the key technical problems in
this domain. The goal of this paper is to describe our initial work on defining
the theoretical foundations of CLA. We consider these preliminary results to be
a first step in a long-term research agenda aimed at dataflow analysis techniques
that can be used for component-based software systems.

2 Component-Level Analysis

The limitations of whole-program dataflow analysis can be addressed by a con-
ceptually different model for interprocedural dataflow analysis: component-level
analysis. The differences between whole-program analysis and component-level
analysis are illustrated in Fig. 1. Whole-program analysis takes as input the
source code for all components in a complete program, and produces informa-
tion about that entire program. Component-level analysis considers a particu-
lar component under analysis Cp that is built on top of existing components
Cj , . . . , Ck. The analysis input is the source code of Cp together with summary
information about the rest of the components. The summary information is
component metadata that encodes properties of Cj , . . . , Ck which are relevant
for the analysis of Cp. This information can be enclosed with the binary code
for the components, allowing analysis of Cp without having access to the source
code of the other components. The analysis outputs a component-level solution
for Cp and summary information for Cp.

solution for

C
1
, C

2
,…, C

n

Whole-

program

analysis

code for C
1

code for C
2

code for C
n

solution for C
p

Component-

level

analysis

code for C
p

summary for C
j

summary for C
k

summary for C
p

.

.

.

.

.

.

.

.

.

.

Fig. 1. Whole-program analysis vs. component-level analysis

The component-level solution for Cp represents properties of the possible be-
havior of Cp when it interacts with the existing components and with other
unknown components. This solution should be computed with conservative as-
sumptions about the behavior of components that have not been built yet, and
about existing components for which summary information and source code are

Component-Level Dataflow Analysis 85

not available. Thus, the availability of summary information for other compo-
nents determines the degree of conservativeness in the solution for Cp.

The summary information for Cp encodes properties that are relevant for
subsequent analysis of components built on top of Cp. This information could
be created either independently of the summaries for Cj , . . . , Ck (in which case
it encodes properties of Cp that are independent of any other components), or it
could be based on these summaries (and therefore describes properties of Cp in
the context of Cj , . . . , Ck). The summary information should be precise in the
sense of allowing subsequent component-level analysis to be as precise as whole-
program analysis would have been. For example, consider a complete program
with two components: a library component Lib and a main component Main .
If a summary for Lib is included together with the library binary, subsequent
component-level analysis of Main should produce a solution which is equivalent
to the solution for Main that would have been computed by a whole-program
analysis which analyzed the source code of Lib and Main together.

Component-level analysis goes beyond the limitations of whole-program anal-
ysis because it allows: (1) analysis of a component without the source code of
related components, by using the summary information for these components; (2)
analysis in the absence of any summary information, by employing conservative
assumptions; (3) reuse of the summary information in order to avoid repeated
reanalysis of a component; and (4) reduced work to handle code changes, since
components that are not affected by the changes do not need to be reanalyzed.

3 Theoretical Foundations

A key challenge for the widespread adoption of the analysis model described
in the previous section is the lack of comprehensive theoretical foundations for
such analysis. This motivates our ongoing work on defining a general theoreti-
cal framework for component-level analysis. This paper outlines initial work on
defining a framework for one simple instantiation of the general CLA model. We
consider analysis of a complete program that is built with two components: a
library component Lib and a main component Main . The problem under con-
sideration is to precompute summary information for Lib and to use it in a
subsequent component-level analysis of Main . Even this simplified version of
the model has important practical implications. For example, there are exten-
sive standard libraries that are associated with languages such as C++, Java,
and C#. A standard library could be considered as component Lib, while a
program written on top of the library is component Main .

Our work makes some additional simplifying assumptions. First, the defi-
nition of a component is simply “a set of related procedures or classes”. The
interactions between components are exclusively through calls to methods and
procedures and through accesses to shared variables. Clearly, our future work
must consider more sophisticated component models; nevertheless, we believe
that the simple model used in this paper is the appropriate starting point for
this investigation. Another assumption is that the analysis takes into account

86 Atanas Rountev

only the source code and the summary information that is constructed from this
source code. If, for example, a formal specification is available for a component
C, it may be possible to utilize this information when analyzing other compo-
nents that interact with C. Traditional whole-program analysis does not take
into account information from formal specifications, but it is clear that future
work on component-level analysis should investigate this possibility.

In the standard formulation [1], a whole-program interprocedural dataflow
analysis constructs a tuple 〈G, L, F, M, η〉 where

– G = (N, E) is an interprocedural control-flow graph in which each node
represents a program statement and each edge represents potential flow of
control. An edge (n1, n2) is intraprocedural when both n1 and n2 belong to
the same procedure/method. Interprocedural edges connect a call node with
the entry and exit nodes of the called procedure/method.

– L is a meet semi-lattice whose elements encode program properties. L is
a partially ordered set with a partial order �. Intuitively, if l1 � l2, the
property encoded by l1 “subsumes” the property encoded by l2. For each
pair l1, l2 ∈ L, there exists a unique element l ∈ L which is the “meet” of l1
and l2: l = l1 � l2. In essence, l represents a property which is the “merge”
of the two properties encoded by l1 and l2.

– F ⊆ {f | f : L → L} is a monotone function space that is closed under
functional composition and functional meet.

– M : E → F is an assignment of functions to graph edges. The dataflow
function fe = M(e) encodes the effects of e’s execution: if property l ∈ L
holds immediately before e, property fe(l) holds immediately after e.

– η ∈ L is the dataflow solution at the start node of the program.

A path in G is a sequence of edges p = (e1, . . . , ek) such that the target of ei is
the same as the source of ei+1. The dataflow function associated with p is the
composition of the functions for the edges: fp = fe1 ◦. . .◦fek

. A valid path in G is
a path on which calls and return are properly matched. That is, whenever a valid
path contains an edge e from the exit node of a method/procedure m to some call
node c, the last unmatched call-to-entry edge that precedes e in the path is an
edge from c to the entry of m. A dataflow analysis algorithm defines an approach
for computing a solution Sn ∈ L at every node n such that Sn � fp(η) for each
path p from the start node of the program to n. This solution is guaranteed to
represent all properties that may hold at n during run-time execution.

3.1 Restricted Component-Level Analysis

Consider again a complete program with two components Lib and Main . Suppose
that this program does not use callbacks that allow the library to call back the
main component. For example, in C and C++, the library does not make indirect
calls through function pointers that point to functions defined in Main . Similarly,
in C++ and Java, this means that the library does not make virtual calls that
could be resolved through virtual dispatch to methods that are defined in Main
and override existing methods from Lib.

Component-Level Dataflow Analysis 87

Under this constraint, the classical theoretical framework for whole-program
analysis can be adapted for component-level analysis. For each library method or
procedure m that may be called by some main component, a summary function
fm can be precomputed in advance. This computation uses only the source code
of Lib and is independent of Main . The set of summary functions constitutes
the summary information for Lib. A subsequent component-level analysis of
Main uses these fm to model the effects of library calls being made by the main
component. The resulting solution of the analysis of Main can be guaranteed
to be as precise (with respect to Main) as the solution what would have been
computed if a whole-program analysis of Main ∪ Lib were performed.

The summary function fm for a library method/procedure m considers all
valid paths that begin at the start node of m, end at the exit node of m, and
contain an equal number of calls and returns. Each such path p represents a run-
time execution from the moment when m is called to the moment m returns to its
caller. Since there are no callbacks from Lib to Main , each such p stays entirely
inside the library component. The summary function for m is fm = fp1�̂ . . . �̂fpk

for all such paths pi; this function captures all possible effects of calls to m. Here
�̂ denotes the generalization of � to functions: (f1�̂f2)(l) = f1(l)� f2(l) for any
l ∈ L. When component-level analysis of some Main is performed, a call to m is
modeled by applying fm to the current lattice element at the call site.

For brevity, we do not discuss the numerous technical details related to this
approach. The key observation is that this form of analysis is a natural gener-
alization of a well-known traditional technique for whole-program analysis (the
“functional approach” from [1]). Some existing work on specific analyses uses
this approach, either explicitly or in spirit. The success of this technique de-
pends primarily on having compact representations of dataflow functions and
on inexpensive compositions and meets of such functions. This issue has been
resolved for a broad range of popular analyses [2,3], but some open questions
remain for certain classes of dataflow problems (e.g., non-distributive problems).

4 Generalized Component-Level Analysis

The approach described in Sect. 3.1 is based on a key assumption: the absence of
callbacks from Lib to Main . However, callbacks are quite common in real-world
software. Function pointers in C are often used for extending and customizing
library functionality. For example, in order to allow a library function f to behave
in a polymorphic manner, one of the formal parameters of f could be a function
pointer g to a callback function defined in the main component. An indirect call
(*g)(..) inside f invokes the callback function. The complete behavior of f is
not known to a static analysis until after the library is combined with Main .
Thus, it is impossible to construct a summary function for f using the approach
described in Sect. 3.1. Existing work indicates that callbacks through function
pointers are used extensively in real-world C libraries [4].

Callbacks occur naturally in object-oriented software. Consider a library
method m(A *a) in C++ or m(A a) in Java, where A is a library class. Sup-

88 Atanas Rountev

pose some Main creates a subclass B of A that overrides some of A’s methods.
If Main calls m with an actual parameter that is a pointer to an instance of B, a
virtual call through a inside m may invoke a method defined in B. In fact, this is
the standard extensibility mechanism for object-oriented libraries. For example,
a study from [5] shows that in several packages from the standard Java libraries,
typically at least 5% of the virial call sites potentially invoke callback methods,
and in some cases the percentage is higher than 30%. In the presence of overrid-
ing methods in the main component, it is impossible to use the approach from
Sect. 3.1 to create summary information about an object-oriented library.

To address this problem, we propose a new approach for component-level
analysis. The preanalysis of Lib constructs detailed information which is sub-
sequently combined with the source code of Main to compute information that
is as precise as the solution that would have been computed for Main by a
whole-program analysis. For brevity, we present the approach through the ex-
ample in Fig. 2 rather than describing the underlying formalism. The first
part of the figure shows a library component with a set of methods/procedures
P = {m1, m2, m3}. The control-flow graph is shown together with the dataflow
functions for graph edges. Assume that each element of P could be invoked
by code in future main components. The second part of the figure shows the
summary information constructed by our approach.

Fig. 2. Summary information in the presence of callbacks.

The generation of the summary information starts by identifying call nodes
inside Lib that could call back some code in some future Main . Various tech-
niques can be used to identify such call sites (e.g., conservative forms of pointer
analysis); examples of such techniques are available in [6,5]. In Fig. 2, node 7
represents a callback site. A method or procedure m ∈ P is incomplete if m con-
tains a callback site or if m invokes (directly or transitively) some other library
method m′ which contains a callback site. In Fig. 2, m1 and m2 are incomplete.
If m is incomplete, it is impossible to represent the complete effects of calls to
m during the preanalysis of the library.

Component-Level Dataflow Analysis 89

The summary information for Lib contains a reduced control-flow graph G′ =
(N ′, E′). The node set N ′ is a subset of the node set in the “standard” control-
flow graph G. Nodes in N ′ correspond to (1) start nodes and exit nodes of all
incomplete m ∈ P , (2) all call nodes that are potential callback sites, and (3)
all call nodes that invoke incomplete m ∈ P . Edges in E′ represent paths in the
standard graph G. Consider two nodes n1, n2 ∈ N ′ such that both belong to
the same m ∈ P . The paths represented by an edge (n1, n2) ∈ E′ correspond
to sequences of execution steps for which the preanalysis of the library has
complete knowledge. For example, in Fig. 2, edge (5, 10) represent the run-time
behavior of a call to m2 during which the callback site 7 is not executed, and
therefore all necessary information for the construction of a summary function is
available. On the other hand, since the execution of 7 invokes unknown code, this
node has to be preserved in the summary information. In essence, the summary
functions capture the (incomplete) knowledge that can be inferred “locally” from
the library source code. When the main component eventually becomes available,
the standard dataflow-analysis techniques can be applied on the control-flow
graph of Main combined with the reduced control-flow graph from the library.

5 Future Work

We are currently working on the detailed formulation of the proposed technique,
and on applying it to specific analyses for Java software (e.g., pointer analysis and
dependence analysis). In this context the standard Java libraries are component
Lib, and the user program is component Main . Since the standard libraries
contain thousands of classes, they present a challenging scalability problem for
whole-program dataflow analyses. Our near-term goal is to demonstrate, both
theoretically and experimentally, a set of techniques that allow practical and
precise dataflow analysis of real-world Java software. A more general long-term
goal is to consider various component models and the appropriate theoretical
foundations for dataflow analyses in the context of these models.

References

1. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications. Prentice Hall, 1981, 189–234

2. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph
reachability. ACM Symposium, Principles of Programming Languages,1995, 49–61

3. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Computer Science 167,1996, 131–
170

4. Milanova, A., Rountev, A., Ryder, B.G.: Precise call graphs for C programs with
function pointers. Journal of Automated Software Engineering 11, 2004, 7–26

5. Kuck, F.C.: Class analysis for extensible Java software. Master’s thesis, Ohio State
University, 2004

6. Rountev, A., Ryder, B.G., Landi, W.: Data-flow analysis of program fragments. In:
ACM SIGSOFT Symposium on the Foundations of Software Engineering. LNCS
1687, 1999, 235–252

Exogenous Connectors for Software Components

Kung-Kiu Lau�, Perla Velasco Elizondo, and Zheng Wang

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

{kung-kiu,pvelasco,zw}@cs.man.ac.uk

Abstract. In existing component models, control originates in components, and
connectors are channels for passing on the control to other components. This
provides a mechanism for message passing, which allows components to invoke
one another’s operations by method calls (or remote procedure calls) either di-
rectly or indirectly via a channel such as a bus. Thus components in these models
mix computation with control, since in performing their computation they also
initiate method calls and manage their returns, via connectors. Consequently, in
terms of control, components are not loosely coupled. In this paper, we propose
exogenous connectors, and demonstrate their use in a small example. In con-
trast to connectors in existing component models, exogenous connectors initiate
calls and manage their returns, and are used to encapsulate control in a compo-
nent model we are working on. In the example, we demonstrate the feasibility
of exogenous connectors, and compare them with connectors in closely related
architecture description languages.

1 Introduction

Components and connectors are the basis of many software component models. Ar-
chitecture Description Languages (ADLs) [22] have always defined software systems
in terms of components (boxes) and connectors (lines) that link components and thus
define relationships between them. More recently, UML 2.0 [19] also uses connectors
to compose components. Even component models that do not use connectors explicitly
often have composition operators that can be interpreted as connectors at different lev-
els of abstraction. Lower-level connectors act as wiring mechanisms, while higher-level
connectors can correspond to sophisticated protocols or control structures. For example,
direct method calls between components may be regarded as code-level connectors, and
glue code or scripts [21] that combine components can be regarded as interface-level
connectors. A large and detailed taxonomy of software connectors can be found in [16].

In existing component models, connectors are meant to encapsulate interaction or
communication while components are meant to encapsulate computation. In these mod-
els, control originates in components, and connectors are channels for coordinating the
control flow (as well as data flow) between components. This provides a mechanism
for message passing, which allows components to invoke one another’s operations by
method calls (or remote procedure calls) either directly or indirectly via a channel such
as a bus. Thus components in these models mix computation with control, since in

� Partially supported by CoLogNet, a European Network of Excellence funded by IST FET.

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 90–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Exogenous Connectors for Software Components 91

performing their computation they also initiate method calls and manage their returns,
via connectors. Consequently, in terms of control, components are not loosely coupled.
In particular, although they encapsulate communication, connectors do not encapsulate
control: they only pass it on.

In this paper, we introduce exogenous connectors. These connectors are different in
that they encapsulate control flow between components totally, i.e. they originate and
coordinate all control. This means that components do not invoke methods or proce-
dures in other components via these connectors; rather, this is done by the connectors.

Our main motivation for using exogenous connectors is to encapsulate control in
a component model we are working on, in order to minimize coupling between com-
ponents. In our model, components encapsulate data and functions, and are therefore
loosely coupled in terms of these. Using exogenous connectors to encapsulate con-
trol completes the encapsulation that we wish to achieve, and thereby maximizes loose
coupling, i.e. in terms of data, functions and control. A corollary of such complete
encapsulation in our component model is that reasoning about components and their
composition should become more tractable and hence practicable. This offers hope that
our component model could have the capability for predictable assembly [23].

2 Exogenous Connectors

In this section, we introduce exogenous connectors as defined in our component model.
By way of contrast, we first consider connectors in current component models, and
briefly assess them for encapsulation and loose coupling.

Connectors in current component models fall into two main categories: (i) con-
nectors that represent composition by direct message passing; and (ii) connectors that
represent composition by indirect message passing. In these models, components are
usually software units (typically classes or objects) with their own methods or func-
tions which can be invoked by other components either directly by method calls or
indirectly via code that links the components together.

A

b();

C

B

a();
B.a();
C.b(); C.b();

D

c();

E

D.c();

Fig. 1. Connecting components by direct message passing.

2.1 Connecting Components by Direct Message Passing

Connecting components by direct message passing is illustrated in Fig. 1. For conve-
nience we borrow the dot notation from object-oriented languages for components and
their methods. For example, in Fig. 1, if component A calls the method a of component

92 Kung-Kiu Lau, Perla Velasco Elizondo, and Zheng Wang

B, then it does so by passing a message directly to B. In a message passing scheme,
there are two distinct roles: the sender and the receiver of a message. The identity of the
receiver is either statically known to the sender or it is dynamically evaluated at execu-
tion time. Sometimes there can be more than one receiver, as for instance, the message
may be multi-cast to several receivers or broadcast to all receivers in the system. From
the sender’s point of view, the identity of the intended receiver is known a priori, but the
receiver does not have to know the sender at all. Thus the send operation is generally
targeted by the sender at a specific set of receivers. Remote Procedure Calls (RPC),
method and event delegation are well-known examples of message passing schemes.
Software component models that adopt message passing schemes as composition oper-
ators are Enterprise JavaBeans [13], CORBA Component Model [20], COM [8], UML
[19] and KobrA [6].

DataBase

...

...

...

SessionBeanA

SessionBeanCSessionBeanB

EntityBean
method1

methodM

methodN

EJB Container

J2EE Server

methodN

method1
ClientAppB

methodN

method1
ClientAppC

method1

methodM

methodN

method1

methodM

methodN

method1

methodM

methodN

methodN

method1
ClientAppA

Fig. 2. Connecting beans by direct method calls in Enterprise JavaBeans.

For example, in Enterprise JavaBeans (EJB), the beans are Java classes in an EJB
container that are connected by direct method calls, as illustrated by the example in
Fig. 2. Even client applications are connected to the beans by method calls via the
EJB container. In general, when components are connected by direct message passing,
communication expressing control is mixed with computation, and sender components
and their receivers are tightly coupled with each other. The worst problem in this regard
is reentrant calls, when a method y called by a method x calls x itself. Also, there is
no explicit code for connectors, since messages are ‘hard-wired’ into the components,
and so these connectors are not separate entities and therefore cannot be reused. In
particular, they cannot be pre-defined and deposited in a repository.

2.2 Connecting Components by Indirect Message Passing

Connecting components by indirect message passing is illustrated in Fig. 3. Here, con-
nectors are separate entities that are defined explicitly. Typically they are glue code

Exogenous Connectors for Software Components 93

or scripts that pass messages between components indirectly. To connect a component
to another component we use a connector that when notified by the former invokes a
method in the latter. For example, in Fig. 3, component A is connected to component
B by connector Con1, so whenever A sends a message to notify Con1, the latter passes
a message to component B to invoke method a in B. In JavaBeans [9], for example,
beans are connected precisely in this way, using adaptor classes as connectors. This
kind of connector is at a slightly higher level of abstraction (and indirection) than direct
method calls, but is nevertheless still rather low-level, since it essentially glues or wires
components together.

Con1.notify();
Con2.notify();

A
a();

B

b();

C

c();
Con3.notify();

D E

Con4.notify();

componentCon1

B.a();
notify();

Con2

notify();
C.b();

notify();
C.b();

Con3
notify();
D.c();

Con4

connector

Fig. 3. Connecting components by indirect message passing.

More abstractly, when connected by indirect message passing, components can be
viewed as computational units with in and out ports, and connectors connect matching
ports to pass control as well as data between components. For example, in Fig. 3, com-
ponent A has two out ports, B has one in port, and the connector Con1 connects one of
A’s out ports to B’s in port. In ADLs, components are connected together by connectors
via ports in precisely this way. For example, in Acme [12], Fig. 3 would be drawn as
Fig. 4 (a), where ports are represented by triangles and connectors by two lines joined
by a black dot.

C
A

DE

B

C

B

D E
A

(a) Acme (b) C2

Fig. 4. Connecting components in ADLs.

In ADLs, a component represents a primary computational element and data store
of a system. The interface of a component is defined as a set of ports through which
its functionalities are exposed. Components are connected by connectors that link their
ports. The connectors mediate the communication and coordination activities among
components. Typical connectors in ADLs are pipes used by components to pass infor-
mation from one to another. Such information may be simple data values or messages
for invoking methods.

94 Kung-Kiu Lau, Perla Velasco Elizondo, and Zheng Wang

In messaged-based ADLs, it is possible to have a still higher level of abstraction of
indirect message passing. This is exemplified by C2 [25], where components are linked
to a bus, and messages can be passed between components by broadcasting1 them on the
bus. For example, in C2, Fig. 3 would be drawn as Fig. 4 (b). The links are not directed,
so it is not possible to say explicitly which component calls which. Instead, messages
are placed on the bus and components linked to the bus must determine which messages
are intended for them. Besides JavaBeans and ADLs, other software component models
that adopt indirect message passing schemes are Koala [26], PIN [15] and PECOS [18].

In general, when components are connected by indirect message passing, commu-
nication (connectors) is separated from computation (components). However, this does
not necessarily mean that control is separated from computation, since the information
passed from and to a component may contain method calls. As a result, components are
tightly coupled by connectors.

Although they are separate entities, connectors are usually not intended to be de-
fined and deposited in a repository. Rather, they are pieces of code generated for specific
sets of components. Therefore, these connectors are not reusable. For example in Jav-
aBeans, only beans can be stored in a repository, but not connectors. The latter have to
be generated (automatically by the builder tool) as adaptor classes for each specific pair
of bean instances. In ADLs, both components and connectors are meant to represent
design and not stored in a repository.

a();
b();

A
A.a();
B.c();

Con1

c();

B

d();

C
E

g();

component

f();
e();
DCon2

A.b();
C.d(); C.d();

D.e();

Con3

E.g();
D.f();

Con4

connector

Fig. 5. Connecting components by exogenous connectors.

2.3 Connecting Components by Exogenous Connectors

Using connection by message passing, both direct and indirect, connected components
invoke each other’s methods, so their connection effects control, and possibly data,
flow as well as computation. Connected components are thus tightly coupled, albeit
to a varying degree depending on the level of indirection in the message passing; and
control and computation are mixed up. In order to minimize coupling, and to maxi-
mize separation of control from computation, we propose exogenous connectors which
encapsulate control and data flow between connected components. The idea is that in
connected components, the connectors, rather than the components themselves, initiate
method calls in the components, and handle any accompanying data flow, so that any

1 Other modes of communication are possible in C2, but broadcasting is the most indirect.

Exogenous Connectors for Software Components 95

control flow between the components is encapsulated by the connectors. This is illus-
trated in Fig. 5. In such a scheme, connected components react to their connector only,
and not directly with each other. Components encapsulate computation, while the con-
nectors encapsulate control. For example, in Fig. 5, the connector Con1 calls method
a in component A and method c in B, but A and B do not directly interact with each
other. Method calls may be accompanied by data flow between A and Con1 or between
B and Con1, but again not between A and B directly.

Connection Scheme Component Models

Direct message
passing
Indirect message
passing
Exogenous
connection

EJB, CCM, COM,
UML, KobrA

PECOS, Koala, PIN

Our proposed model

JavaBeans, ADLs,

Control mixed with
computation

Calls initiated from
outside components

Fig. 6. Comparison of connection schemes.

Fig. 6 is a comparison of exogenous connectors with connectors used in existing
component models. It shows clearly the contrast between exogenous connectors and
non-exogenous ones: the former do not mix control and computation, whereas the latter
do; using the former, method calls are initiated from outside components, whereas using
the latter, they are initiated by components themselves. In the component model we are
working on, we plan to use exogenous connectors for composition.

Although no existing component model uses it, exogenous connection has been de-
fined as exogenous coordination in coordination languages for concurrent computation
[3]. Also, in object-oriented programming, the courier pattern [11] uses the idea of ex-
ogenous connection whereby a courier object links a producer-consumer pair of objects
by calling the produce method in the producer object and then calling the consume
method in the consumer object with the result of the produce method.

3 Creating and Using Exogenous Connectors

In a component model we are working on, we want to use exogenous connectors as
composition operators. In this section, we identify the types of exogenous connectors
that we will need, and show how we create and use them in a preliminary implementa-
tion of our component model. First we outline the relevant aspects of our model.

In our component model, a component is a unit of software with (i) an interface
that specifies the services it provides and the services it requires, and the dependencies
between the two sets of services; and (ii) code that implements the provided services. In
essence it is similar to Szyperski’s definition [24]. However, components do not request
services in other components. Rather, they perform their provided services only when
invoked externally by connectors. Thus components encapsulate computation.

Connectors are composition operators that compose components into systems. They
are in essence similar to connectors in ADLs, except of course that they are exogenous.

96 Kung-Kiu Lau, Perla Velasco Elizondo, and Zheng Wang

They initiate and coordinate method calls in components and handle their results. Thus
they determine control flow and data flow, i.e. they encapsulate communication.

An important feature of our component model is the definition of the life cycle of
components as consisting of two stages: (i) repository, or design, phase, and (ii) deploy-
ment, or execution, phase. In the repository phase, components as well as connectors
have to be constructed, catalogued and stored in a repository in such a way that they
can be retrieved later, as and when needed. Components in the repository are templates
that are stateless. In the deployment phase, components are retrieved from the reposi-
tory, and instantiated with initial data. Therefore components have states and are ready
for execution. Similarly, connectors are retrieved and instantiated, and ready to execute.

In a preliminary implementation of our component model, for simplicity and for
ease of implementation, components and connectors are defined as Java classes in the
repository phase, so that instances can be created and deployed in the deployment phase.
We do not yet address issues related to interfaces or repository management.

B

C

D

E

F

G

A

B

C
A

D

E

F

G E D B A C F G

(a) Acme (b) C2 (c) Exogenous connection

Fig. 7. Example architecture using exogenous connection, and equivalent ADL archi-
tectures.

3.1 Types of Exogenous Connectors

Since, in our component model, objects implementing components are not allowed to
call methods in other components, we need an exogenous method invocation connec-
tor. This is a unary operator that takes a component, invokes one of its methods, and
receives the result of the invocation. To structure the control and data flow in a set of
components or a system, we need other connectors for sequencing exogenous method
calls to different components. So we need n-ary connectors for connecting invocation
connectors, and n-ary connectors for connecting these connectors, and so on. In other
words, we need a hierarchy of connectors of different arities and types. This is illus-
trated by the example architecture in Fig. 7 (c), which represents a system that can be
described in Acme and C2 by the respective architectures in Fig. 7 (a) and (b). In Fig. 7
(c), the lowest level of connectors are unary invocation connectors that connect to sin-
gle components, the second-level connectors are binary and connect pairs of invocation
connectors, and the third-level connectors are of variable arities and types.

In general, connectors at any level other than the first can be of variable arities;
connectors at any level higher than two can be of variable arities and types; and we can
define any number of levels of connectors. Connectors at level n for any n > 1 can be

Exogenous Connectors for Software Components 97

defined in terms of connectors at levels 1 to (n − 1), according to the following type
hierarchy (omitting methods and their parameters):

Basic types Component, Result;
Connector types L1 ≡ Invocation ≡ Component −→ Result;

L2 ≡ L1 × . . . × L1 −→ Result;
L3 ≡ L × . . . × L −→ Result

where L is either L1 or L2;· · ·
Thus level-one and level-two connectors are not polymorphic, but connectors at higher
levels are. More formally, for an arbitrary number n of levels, the connector type hier-
archy can be defined in terms of dependent types and polymorphism as follows:

L1 ≡ Component −→ Result;
L2 ≡ L1 × . . . × L1 −→ Result;

For 2 < i ≤ n, Li ≡ L(j1) × . . . × L(jm) −→ Result, for some m
where jk ∈ {1,, (i − 1)} for 1 ≤ k ≤ m,

and L(i) =

⎧⎪⎨
⎪⎩

L1 , i = 1
...

Ln , i = n.

3.2 Implementing Exogenous Connectors

Having defined the types of the hierarchy of connectors for our component model, we
need to find a way to implement connectors of these types in a generic way, such that:
(i) in the repository phase, connector templates can be defined and stored in a reposi-
tory (along with components); (ii) in the deployment phase, connector instances can be
created (and deployed with component instances).

package connectors;
import java.lang.reflect.*;

public void execute (Method m, Object [] params) {}
public void execute (Method[] ms, Object [] params) {}

}

public class Connector {

Fig. 8. The Connector superclass.

We can do so by implementing the connectors as a hierarchy of Java classes, with
a superclass Connector (Fig. 8). The Connector class has two execute methods for ex-
ecuting either a single given method (with its parameters) or a given set of methods
(with their parameters). The Method class in the execute methods of Connector is pro-
vided by Java reflection. It provides the invoke method for calling method instances (see
later). Using the Connector class, we can define a generic connector at any level of the
hierarchy. Such a connector inherits from Connector, and implements the appropriate
execute method(s). Any desired instances of this connector can then be created.

98 Kung-Kiu Lau, Perla Velasco Elizondo, and Zheng Wang

1

1
Constructor

Result

1 1

1
L1Connector

1 1

1

ExecuteMethod

Name

Component

package connectors;
import java.lang.reflect.*;
public class Invocation extends Connector {
private Object component;
public Object result;

(Object c) { ... }Invocationpublic
public void execute (Method m, Object [] params) {
this.result = m.invoke(component, params);

} }

(a) (b)

Fig. 9. Level-one (invocation) connectors: design and implementation.

A level-one connector is a unary invocation connector. The general design of level-
one connectors is shown in Fig. 9 (a). Each connector L1Connector (with a unique
Name and a Constructor) connects a single component. It executes a method Exe-
cuteMethod that can invoke any method in that component, and yields a single Result.
This design can be implemented in Java using reflection, as the invocation connector
in Fig. 9 (b). The execute method of the invocation connector uses the invoke method
provided by Java reflection to call the chosen method.

Result

1 1

1
Name

1

ExecuteMethod

L2Connector
1

1
Constructor

11

InvocationList

public class Pipe
import java.lang.reflect.*;

extends Connector {

public Object result;
Pipe

package connectors;

public void execute (Method[] ms, Object [] params) {
public (Invocation[] is) { ... }

private Invocation[] invs;

... invs[0].execute(ms[0], params); tmp = invs[0].result;

this.result = invs[invs.length].result; } }
... invs[invs.length].execute(ms[invs.length], tmp);

(a) (b)

Fig. 10. Level-two connectors: design and implementation.

Result

1 1

1
Name

1

ExecuteMethod

LmConnector
1

1
Constructor

11

ConnectorList

Pipempublic class

package connectors;
import java.lang.reflect.*;

extends Connector {
private Connector[] cons;
public Object result;
public Pipem (Connector [] cs) { ... }
public void execute (Method[] ms, Object [] params) {
... cons[0].execute(ms[0], params); tmp = cons[0].result;
... cons[cons.length].execute(ms[cons.length], tmp);
this.result = cons[cons.length].result } }

(a) (b)

Fig. 11. Level-m connectors: design and implementation.

Exogenous Connectors for Software Components 99

Level-two connectors are n-ary connectors that connect invocation connectors (Fig.
10 (a)). There are different kinds of connectors, with different implementations of their
ExecuteMethods. For example, an n-ary pipe connector, used to pass values succes-
sively from the execution of a method of one component to the input of a method of
the next component, can be implemented in the manner outlined in Fig. 10 (b). Another
example of a level-two connector is a n-ary selector connector that selects one con-
nector to execute. The execute method of a selector would first define how to choose
the connector, before calling the execute method of the latter. Thus, for level-two con-
nectors, the implementation of the execute method is connector-specific. However, the
implementation technique is the same for all these connectors, since they are defined in
terms of level-one connectors, which are implemented using Java reflection.

For an arbitrary level m > 2, connectors are n-ary and connect connectors of levels
lower than m. Unlike level-one and level-two connectors, these connectors are polymor-
phic, so choices have to be made depending on the application in question. In general
the design for level m connectors is shown in Fig. 11 (a), where a connector connects
a list ConnectorList of connectors. Fig. 11 (b) shows the outline of the implementation
of a level-m pipe.

4 An Example: The Bank System

Having defined and implemented the hierarchy of exogenous connectors that we need
for our component model, we now demonstrate their use in a simple application, and
use it to compare our approach with closely related work, viz. the Acme and C2 ADLs.

BC1

BC2

ATM

B1

B2

B3

B4

B1

B2

B3

B4

ATM

BC1

BC2

BC1 ATM BC2 B3 B4B1B2

S1 S2

P2 P3

P1

S3

(a) Acme (b) C2 (c) Exogenous connection

Fig. 12. Architectures of the bank example.

The example we have chosen is a simple bank system, whose architecture is de-
scribed in ACME and C2 in Fig. 12 (a) and (b) respectively. The system has just one
ATM that serves two bank consortia (BC1 and BC2), each with two bank branches (B1
and B2, B3 and B4 respectively). The ATM passes customer requests together with cus-
tomer details to the customer’s bank consortium, which in turn passes them on to the
customer’s bank branch. The bank branches provide the usual services of withdrawal,
deposit, balance check, etc.

100 Kung-Kiu Lau, Perla Velasco Elizondo, and Zheng Wang

4.1 Implementation Using Exogenous Connectors

In our component model, using exogenous connectors, we implemented the architec-
ture in Fig. 12 (c) for the bank system. The first step is to implement the components,
and the second step is to construct a structure of connectors, i.e. a control structure, to
sit on top of the components. The connector structure is constructed level by level. At
level one, an invocation connector is connected to every component. This enables all
the methods of a component to be invoked. Then at level two, invocation connectors are
connected by level-two connectors which effect appropriate behavior among the com-
ponents connected to the invocation connectors. At level three, level-two connectors
are connected by level-three connectors, and so on. Execution of the system starts at the
connector at the highest level; this connector is the one to initiate control flow.

In our implementation of the bank example (Fig. 12 (c)), components are Java ob-
jects with public methods (that can be invoked by the invocation connectors). These
objects do not call methods in other components.

At level two, there is a selector connector S1 that is used to select the customer’s
bank branch from banks B1 and B2, prior to invoking that branch’s methods requested
by the customer. Similarly, there is a level-two selector connector S2 for choosing be-
tween B3 and B4, prior to invoking their methods requested by the customer. To pass
values from one bank consortium to one of its banks we need a pipe connector; at level
three, we have two pipe connectors P2 and P3, for BC1 and BC2 respectively. At
level four, S3 is a selector connector that selects the customer’s bank consortium from
consortia BC1 and BC2. Finally, at level five, the pipe connector P1 initiates the bank-
ing system’s operational cycle by passing customer requests and card information to the
ATM, invoking the ATM’s methods, and then passing resulting value to connector S3.

import java.lang.reflect.*;
package system;

import java.io.*;
import connectors.*;
public class BankSystem {
public static void main (String[] args) {
// create instances of components
ATM atm = new ATM("1"); ... Bank bank4 = new Bank("4");
// create level−one connectors

// create level−two connectors
Invocation[] invsBank12 = new Invocation[2];
Selector s1 = new Selector(invsBank12);
// create level−three connectors
Connector[] consBC1 = new Connector[2];
Pipem p2 = new Pipem(consBC1); ... Pipem p3 = new Pipem(consBC2);
// create level−four connectors
Connector[] consAB = new Connector[2];
Selectorm s3 = new Selectorm(consAB);
// create level−five connectors
Connector[] consm = new Connector[2];
Pipem p1 = new Pipem(consm);
// Display menu and initiate operations
switch(Integer.parseInt(args[0]))) {
case 1:
System.out.println("Your balance is:");
p1.execute(ms, params);

... Invocation invB4 = new Invocation((Object) bank4));

invsBank12[1] = invB2;invsBank12[0] = invB1;

consBC[1] = p3;consAB[0] = p2;

consm[1] = s3;consm[0] = invATM;

consBC1[1] = s1;consBC1[0] = invBC1;

break; ... } } }

Invocation invATM = new Invocation((Object) atm));

Fig. 13. Outline of the code for the bank system.

Exogenous Connectors for Software Components 101

Fig. 13 shows the outline of the code for the system. It reflects the hierarchical
manner in which the bank system is built, by constructing the connectors level by level.
We can illustrate the bank system’s behavior by considering the example of a customer
of B3 wishing to withdraw money from his account. First the customer inserts his
card into the teller machine and keys in his PIN code. The P1 pipe connector initiates
the system’s operational cycle by passing the customer information and withdrawal
request to the invocation connector of the ATM component to invoke the appropriate
methods of the ATM for validating customer details and determining the customer’s
bank consortium. If the validation succeeds, P1 passes the bank consortium identity,
BC2 (and the withdrawal request), to the selector S3. S3 selects the pipe P3, which
is connected to BC2. P3 uses the invocation connector for BC2 to invoke a method
for identifying the customer’s bank branch, and passes the result, B3, to the selector S2
connector. S2 selects the invocation connector of B3 to invoke the withdraw method
implemented by B3. The result is then the output of this operational cycle. It can be
output by either the selector S2, or even the component B3.

4.2 Comparison with Acme and C2 Implementations

The implementation of the bank example demonstrates the feasibility of using exoge-
nous connectors (and our component model) to build systems. In order to evaluate our
approach against related work, we implemented the same example using Acme and C2,
and compared these implementations with ours. We chose Acme because it is the most
generic archetypal ADL. We chose C2 because, as a message-based ADL, it uses a
higher level of abstraction of indirect message passing than non-message-based ADLs
such as Acme, as explained in Section 2.2; thus connection in C2 is more indirect than
Acme. These two provide a graded comparison with exogenous connection.

Another reason for choosing Acme and C2 is a practical one, namely that there are
tools for generating implementations from architecture descriptions in these ADLs. The
tools we chose are ArchJava [4,2] and ArchStudio 3 [5] for Acme and C2 respectively.
Both these tools are based on Java, and generate Java code, so they allow easy and direct
comparison with our example.

The main point of comparison is the separation of control and communication from
computation. In our component model, components are supposed to encapsulate com-
putation while exogenous connectors are supposed to encapsulate communication in
general and control in particular. This distinguishes it from existing component models,
in particular ADLs like Acme and C2, as shown in Fig. 6. Our experiment with the bank
example bears this out very well.

At design time, as shown in Fig. 12, Acme and C2 architectures look ‘as exoge-
nous as’ our approach. However, when the architectures are implemented, the resulting
Acme/ArchJava and C2/ArchStudio systems show clearly the mixing of control and
computation, and of computation and communication, whereas our system maintains
their separation. Fig. 14 shows the structure of a BankConsortium (BC) component
in Acme/ArchJava, C2/ArchStudio and our approach, distinguishing between code for
computation, code that mixes computation and control, and code for communication.

In the case of Acme/ArchJava, Fig. 14 (a), components communicate through ports
that must be defined in the component’s class. Required operations are specified in in

102 Kung-Kiu Lau, Perla Velasco Elizondo, and Zheng Wang

port in{
 requires String[] getCardNo (String[] inResult) ...

public class BankConsortium{
...

// from ATM

}
...

port out{

}

}
...

// towards banks

(c) Exogenous connection

public class BankConsortium{

...
}

computation

public class BankConsortium extends AbstractC2DelegateBrick{

class BankConsortiumMP implements MessageProcessor{
public void handle (Message m){...
NamedPropertyMessage m = (NamedPropertyMessage)m;

res = (String[])m.getParameter("data");

result = identifyBank(res);

if(m.getName().equals("cardNumber")){

...

(b) C2/ArchStudio

}

(a) Acme/ArchJava

communicationcomputation/control

}
...result = in.getCardNo(inRes);
...provides String[] identifyBank (String[] inRes)...

public String[] identifyBank (String[] inResult) ... {

...
if (res[1].equals("1"))

num = "Bank1"
else if (res[1].equals("2"))

num = "Bank2"...
m = new NamedPropertyMessage("DoOperation");
m.addParameter("data", result);
m.addParameter("bankNo", num);
sendToAll(m, topIface);
}}}

...

}

public String[] identifyBank (String[] inResult) ... {...

}

Fig. 14. Computation, control and communication in the BankConsortium component.

ports and provided operations are defined in out ports. Thus the provided operations are
defined in the communication part of the component, i.e. mixing communication and
computation. Moreover, by definition, the provided operations are defined in terms of
the required operations, i.e. the former will call the latter, thus mixing computation with
control. In the bank example, in the computation part (in the communication part) of the
BankConsortium component, the provided operation identifyBank computes result by
calling the required getCardNo operation named in an in port, and thus directs control
flow to the (connector to the) ATM component, that provides this operation.

In the case of C2/ArchStudio (Fig. 14 (b)) to receive and send messages, a compo-
nent must implement its own message processor. Message processors are objects that
implement a handle method to deal with messages. In the bank example, the BankCon-
sortium component uses the BankConsortiumMP inner class as its message processor.
A message processor must identify messages intended for the component, and deter-
mine and execute appropriate actions upon receipt of such messages, which may in-
clude sending a message with the results of the actions. Here, communication is mixed
up with computation that contains control. In the bank example, the message processor
BankConsortiumMP computes result by calling the identifyBank method in the midst
of its communication code, and thus directing control flow to this method.

By contrast, in our approach, Fig. 14 (c), the separation of computation from control
and communication is maintained. A component has only code for computation. In
the bank example, the BankConsortium component has only code for the identifyBank
method. Communication, and control in particular, is embodied in connectors.

Another point of comparison is the supported patterns of communication, i.e. the
set of connectors provided. Compared to Acme and C2, we have a potentially larger set
of connectors, since our hierarchy of connector types is polymorphic and can be used to
generate any number of kinds of connectors at any level. In contrast, Acme has just one
level of connectors, viz. pipes, for indirect message passing such as remote procedure
calls via components’ ports; C2 uses a bus for connecting components at every level.

Exogenous Connectors for Software Components 103

5 Evaluation and Discussion

The example in the previous section provides some useful initial feedback on exoge-
nous connectors. In particular, the comparison of the implementation with those in
Acme/ArchJava and C2/ArchStudio shows that exogenous connectors can offer some
advantages. While it would be unwise to draw general conclusions from one small ex-
ample, it is possible to make some general observations and discuss their import. In
this section we evaluate exogenous connectors and discuss their potential usefulness,
advantages and disadvantages, etc. with respect to CBSE.

The bank example demonstrates the feasibility of using exogenous connectors to
encapsulate communication, in particular control flow. Separating computation from
control means that control flow does not originate from components, but from con-
nectors. So in a system, the components are decoupled from the structure of connectors
which provides the control structure. For system maintenance and evolution, this decou-
pling should make it simpler to manage changes in the components and changes in the
connectors separately. Another advantage should be separation of concerns in reason-
ing about system behaviors. The connectors encapsulate the computational paths, while
the components encapsulate computation. In predictable assembly, this separation of
concerns should make it more tractable and easier to reason about system behavior by
reasoning about control and computation separately.

An important implication of this is that it should be possible to verify compo-
nent properties, e.g. functional correctness, statically and store proven components in a
repository. To this end, we plan to develop components with contracts [17], statically
prove their contract compliance, and then place them in the repository. At deployment
time, the developer can assume the components’ contract compliance, and concentrate
on developing the connector structure, and reasoning about its computational paths.
Again, separating control from computation should make it more tractable and hence
practicable to reason about components and their composition. Such an approach would
make a fundamental contribution to CBSE, since it enables bottom-up assembly of com-
ponents, starting with a component repository. The only existing component models
that support this are Koala [26] and KobrA [6], which have repositories for product-
lines. Our approach is different in that the repository components form a flat tier at the
bottom, and the control structure is built to sit on top, as clearly illustrated by Fig. 12
(c). By contrast, top-down design approaches, e.g. ADLs, do not use components from
repositories, and do not allow composites to be constructed and stored in repositories
for reuse in different applications. In fact, even our exogenous connectors can be stored
in a repository, as we saw in the bank example.

Another practical advantage of exogenous connectors is their hierarchical nature.
This provides a hierarchical way for developing systems, resulting in well-structured
code for the final system, which is easy to understand, and therefore maintain. Adding,
changing and replacing connectors is also made easier. It remains to be seen, however,
whether these advantages pertain, or whether our approach is practical, when the ap-
plication is very large, requiring a very sophisticated and involved control structure. It
would be interesting to investigate the design and implementation of more complicated
exogenous connectors than pipes and selectors, and whether their existence would make
our approach practical for such applications.

104 Kung-Kiu Lau, Perla Velasco Elizondo, and Zheng Wang

The obvious potential disadvantage of exogenous connectors is a potential prepon-
derance of connectors and connector levels, and hence inefficiency in communication.
In the bank example, the number of levels of connectors is only five. Considering the
architecture is a three-level architecture in Acme and C2, this is not bad. However, we
have not studied how to predict the number of levels, nor the total number, of connec-
tors. Also, to measure run-time performance sensibly, we need much larger examples.

6 Conclusion

In this paper we have presented exogenous connectors, their definition and implemen-
tation, and an example illustrating their use in building a simple system. The key dis-
tinguishing characteristic of these connectors is that they encapsulate control totally,
i.e. control originates from them. This is in complete contrast to most software connec-
tors, which encapsulate communication but not control. In ADLs, for example, control
originates in components, and connectors pass it on to other components, and so on.

Our work on exogenous connectors is at a preliminary stage, however. We have
considered only control flow, but not data flow, beyond passing results of method calls
back to connectors. Data flow needs careful consideration, especially if components
have private databases, or if some but not all components in a system share databases.
In such systems, the precise ways in which global data and local data interact must be
clearly defined and rigorously enforced.

We have not considered concurrency in the connectors either. In fact we have only
used sequential composition. As a result, we cannot address the general issues of ar-
chitectural reasoning, whereby typically connectors provide parallel or asynchronous
communication between components. For example, one such issue is that of “correct
architectures” in the sense of architectures with guaranteed temporal properties such as
deadlock-freedom [14]; another issue concerns consistency between architecture and
code, e.g. [1]. However, by using only sequential composition, we manage to avoid the
problem of synchronization, which is present in even the simplest forms of message
passing, such as direct method calls, when there are competing calls to the same callee.

The connectors we have presented in this paper belong to the deployment phase of
our component model. We are in the process of investigating connectors for the other
phase, the repository phase. In this phase, we want to store components as well as con-
nectors. Our aim is to also allow the construction of composite components, and to
store them in the repository, so as to make the task of composition in the deployment
phase simpler. Top-down approaches such as software architectures do not use compo-
nents from, or store them, in repositories. In ADLs, although they can be constructed
and used at design time, composite components are not stored in repositories. By con-
trast, we want to do so. We believe that in the repository phase, it would be useful to
have connectors that can be used to compose components into subsystems or even com-
plete systems that can be stored in the repository. Such connectors would have to yield
components from those they connect. The invocation connectors, pipes and selectors in
this paper return results rather than components, and are therefore deployment phase
connectors, and cannot be used to build composites in the repository phase.

Exogenous Connectors for Software Components 105

In this paper, we have implemented components as Java classes. This is of course
only for convenience. In our component model, components are not necessarily just
classes. In particular, they have proper interfaces that may not be implementable using
classes in object-oriented programming languages. For example, our interfaces contain
contracts which specify the behavior of the components, apart from the signature of its
operations. These contracts cannot be defined properly in Java using the assert state-
ment, which is the only provision in Java for Design by Contract.

Apart from the issue of interfaces, Java is a good implementation language, or at
least as good as any object-oriented language. Inheritance allows us to define our poly-
morphic connector hierarchy straightforwardly. However, the problems with inheritance
are well-known, not least of which is any form of static analysis, which is important for
reasoning purposes in the repository phase. In particular, inheritance works against our
wish to statically verify component and connector contracts in the repository phase.

For predictable assembly, we believe the use of contracts in the repository phase is
crucial, as is their static verification, and we have started investigating using ESC Java
[10] for both components and connectors. We are also investigating other languages, in
particular SPARK [7], which offer tool support for contracts and their static verification.
Finally, in the longer term, it would be interesting to examine the taxonomy in [16] to
see how widely the idea of exogenous connectors can be applied to that taxonomy.

Acknowledgements

We wish to thank David Garlan for helpful points of information about code generation
from architecture descriptions.

References

1. J. Aldrich, C. Chambers, and D. Notkin. Architectural reasoning in ArchJava. In Proc. 16th
European Conference on Object-Oriented Programming, pages 334–367. Springer-Verlag,
2002.

2. J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Connecting software architecture to
implimentation. In Proc. 24th International Conference on Software Engineering, pages
187–197. ACM Press, 2002.

3. F. Arbab. The IWIM model for coordination of concurrent activities. In P. Ciancarini and
C. Hankin, editors, Lecture Notes in Computer Science 1061, pages 34–56. Springer-Verlag,
1996.

4. ArchJava web page. http://archjava.fluid.cs.cmu.edu/index.html.
5. ArchStudio 3 web page. http://www.isr.uci.edu/projects/archstudio/index.html.
6. C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig,

B. Paech, J. Wüst, and J. Zettel. Component-based Product Line Engineering with UML.
Addison-Wesley, 2001.

7. J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison-
Wesley, 2003.

8. D. Box. Essential COM. Addison Wesley, 1998.
9. R. Englander. Developing Java Beans. O’Reilly & Associates, 1997.

10. Extended Static Checking for Java Home Page. http://research.compaq.com/SRC/esc/.

106 Kung-Kiu Lau, Perla Velasco Elizondo, and Zheng Wang

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. The courier pattern. Dr. Dobb’s Journal,
Feburary 1996.

12. D. Garlan, R.T. Monroe, and D. Wile. ACME: Architectural description of component-based
systems. In M. Sitaraman G.T. Leavens, editor, Foundations of Component-Based Systems,
pages 47–68. Cambridge University Press, 2000.

13. R.M. Haefel. Enterprise JavaBeans. O’Reilly & Associates, 3rd edition, 2001.
14. P. Inverardi and M. Tivoli. Software architecture for correct components assembly. In Formal

Methods for the Design of Computer, Commmunication and Software Systems, Lecture Notes
in Computer Science 2804, pages 92–111. Springer, 2003.

15. J. Ivers, N. Sinha, and K.C Wallnau. A basis for composition language CL. Technical Report
CMU/SEI-2002-TN-026, CMU SEI, 2002.

16. N.R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software connectors. In
Proc. 22nd International Conference on Software Engineering, pages 178–187. ACM Press,
2000.

17. B. Meyer. Applying design by contract. IEEE Computer, 25(10):40–51, October 1992.
18. O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, P. Müller, C. Zeidler, T. Genssler,

and R. van den Born. A component model for field devices. In Proc. 1st International
IFIP/ACM Working Conference on Component Deployment, Berlin, Germany, 2002.

19. OMG, http://www.omg.org/cgi-bin/doc?ptc/2003-08-02. UML 2.0 Superstructure Specifica-
tion.

20. OMG, http://www.omg.org/technology/documents/formal/components.htm. CORBA Com-
ponent Model, V3.0, 2002.

21. J.G. Schneider and O. Nierstrasz. Components, scripts and glue. In L. Barroca, J. Hall, and
P. Hall, editors, Software Architectures – Advances and Applications, pages 13–25. Springer-
Verlag, 1999.

22. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

23. Software Engineering Institute, Carnegie-Mellon University. Predictable assembly from cer-
tifiable components. http://www.sei.cmu.edu/pacc/.

24. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, second edition, 2002.

25. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., J. E. Robbins, K. A. Nies,
P. Oreizy, and D. L. Dubrow. A component- and message-based architectural style for GUI
software. Software Engineering, 22(6):390–406, 1996.

26. R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala component model
for consumer electronics software. IEEE Computer, pages 78–85, March 2000.

Qinna, a Component-Based QoS Architecture

Jean-Charles Tournier1, Jean-Philippe Babau2, and Vincent Olive1

1 France Télécom R&D Division,
28, Chemin du Vieux Chêne, BP98,

38243 Meylan, France
{jeancharles.tournier,vincent.olive}@francetelecom.com

2 CITI/INSA Lyon
Bâtiment Léonard de Vinci,

69621 Villeurbanne Cedex, France
jean-philippe.babau@insa-lyon.fr

Abstract. Component-Based Software Engineering is quickly becom-
ing a mainstream approach to software development. At the same time,
there is a massive shift from desktop applications to embedded commu-
nicating systems (e.g. PDAs or smartphones): it is especially the case for
multimedia applications such as video players, music players, etc. More-
over, embedded communicating systems have to deal with open aspect:
applications may come or leave the system on the fly. A key point of
these systems is its ability to rigorously manage Quality of Service due
to resource constraints.

In this paper, we present a component-based QoS architecture well-suited
for open systems, called Qinna. Qinna is defined using Fractal compo-
nents and takes into consideration the main QoS concepts (specification,
provision and management). An analysis and an experiment illustrate
answers brought by Qinna to open system issues.

1 Introduction

Nowadays, handheld systems such as PDAs or smart-phones are everywhere in
our life from office to home. These systems have to integrate more and more
complex applications (video players, games, MP3 players, etc.) with a limited
amount of resources (in terms of CPU power, memory, network or battery).
Moreover, such systems have to be able to host or remove applications on the
fly: they are called open systems. This property implies several non functional
constraints that must be solved at run-time (QoS, security, fault tolerance, etc.)

Component-Based Software Engineering (CBSE) appears as a promising so-
lution for the development of such kind of systems. Indeed, one of the claim of
CBSE is to offer an easier way to build complex software by simply assembling
components [4]. Moreover, CBSE may be one of the most efficient way to reduce
time development due to the fact it is intrinsically oriented to reuse existing
parts of a system [22]. As a system results from the assembly of components,
CBSE increases re-usability, flexibility and maintenability of systems [7].

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 107–122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

108 Jean-Charles Tournier, Jean-Philippe Babau, and Vincent Olive

Several component models are available or developing. Industrial models in-
clude the Microsoft’s® component family (COM, DCOM and more recently
.NET [15]), the solution from SUN Microsystem® (JB, EJB [21]) or standard-
ized model such as the proposal from OMG (CORBA Component Model [19]
which is close to the EJB model). These models are designed for traditional
workstation (such as PC) software and are mainly seen as business models. In
the field of embedded systems, component models result mainly from the re-
search domain. For instance, Think [14], COYOTE [17] or OSKit [3] allow to
build an entire operating system as an assembly of components.

The main lack of these component models is that the functional point of view
is well achieved, whereas the QoS one is not. Heterogeneity of the QoS in terms
of specification, management or even hardware support tends to produce heavy
and complex models with a huge cost.

In this paper, we present a component-based QoS architecture, called Qinna,
well-suited for open systems. Qinna is based on the Fractal component model
[10] and respects the main QoS concepts identified in [2]. As Qinna is defined
through components, it brings component benefits to QoS (re-usability, flexibility
and dynamicity) and allows an efficient QoS management in open systems.

The rest of this paper is organized as follows. The first section sets the con-
text of our study: the Fractal component model is first introduced, followed by
a survey of the main QoS concepts. We then enumerate and detail QoS require-
ments of open systems. The second section defines the Qinna architecture, while
the third one validates and evaluates the architecture. We finally review some
related works and conclude the paper.

2 Working Context

This work combines ideas from two clearly identified research areas. The first one
is about CBSE and more precisely about the Fractal component model [10], while
the second one is about QoS architectures. In the following two sub-sections, we
present and define the main concepts of each research area. We finally highlight
requirements of open systems from a QoS point of view.

2.1 Fractal

The Fractal component model is based on five key concepts: component, content,
controller, interface and binding.

A component is formed out of two parts: a controller and a content.
The content of a component is composed of a finite number of other compo-

nents, which are under the control of the controller of the enclosing component.
For example a controller can control the life cycle of the content or its configu-
ration.

A component can interact with its environment through service at identified
access points, called interfaces. Services provide the basic interaction primitives
in the Fractal component model. Interfaces are either client or server interfaces.

Qinna, a Component-Based QoS Architecture 109

A server interface can receive service invocations, whereas a client interface emits
service invocations.

A binding is a connection between two or several components. Fractal com-
prises primitive and composite bindings. A primitive binding is a directed con-
nection between a client interface and a server interface. Primitive bindings are
typically implemented as language level bindings. Composite bindings are real-
ized through a combination of primitive bindings and ordinary components, i.e.
composite bindings are themselves Fractal component.

Usually, a Fractal component type is defined by its required (client) and
provided (server) interfaces, whereas a Fractal component class is defined by its
type and its implementation.

Now, let us see the difference between a functional composition and a QoS
one. For instance, from a functional point of view, a X component provides the
x interface if, and only if, its y required interface is filled. From a QoS point of
view, the QoS level provided on x interface depends on the QoS level seen on
the interface y as well as the implementation of X. Generally, a black box view
can be used for a functional composition, whereas a grey box view is needed for
a QoS composition. Consequently, we can write:

QoS(Itfprovided = F (
−−−−−−−−−−−−→
QoS(Itfrequired), Comp Implem)

A composition of two components is formalized by a contract. A contract
is usually defined in four levels [1]: (a) the syntactic level which is provided
by interface signature; (b) the behavioral level which defines the pre and post
conditions of an interface; (c) the synchronization level which is a description of
the sequence of messages, loops and alternative paths on an interface; and (d)
the QoS level which specifies the QoS level required or provided by a component
on its interface. This work focuses on the fourth level of the contract.

As Fractal is a model, there are several implementations depending on ap-
plication domains. Think [14] is an implementation of the Fractal component
model dedicated to operating systems for embedded platforms. Think allows to
build a customized operating system as a composition of software components. It
offers a homogeneous component view of all layers of the system. Think achieves
speed-ups and decreases memory footprint over other general purpose operat-
ing systems. Moreover, performance measurements show no degradation due to
kernel componentization. Two kinds of components are defined. The first ones
reify the hardware layer of the platform. For example, these components in-
clude exceptions, interruptions, MMU or drivers (screen, keyboard, touch panel,
etc.). They have been ported on several platforms such as Intel StrongARM
(iPaq H3900 and H2200), Intel XScale (iPaq H3600 and H3800) or Portal Player
(Apple iPod). The second kind of components provide classical operating sys-
tem services: scheduler (round-robin, priority, etc.), memory management (flat,
paged), network (ip, ethernet, bluetooth, GPRS), etc.

From a QoS point of view, one of the advantage of Think is that it allows a
fine grain control over resources thanks to components.

110 Jean-Charles Tournier, Jean-Philippe Babau, and Vincent Olive

2.2 QoS Concepts

Systems may manage QoS in different ways. At one end, QoS requirements can
be met statically during design and implementation by proper design and con-
figuration choices (such as scheduling rules, network bandwidth allocation, etc.).
This will give a well-defined behavior, but without any flexibility. At the other
end is the dynamic approach that lets systems negotiate at run-time the re-
strictions of the QoS characteristics they need for their activities. This approach
often involves an adaptive aspect by having monitors and corrective steps to be
taken when the QoS level drops below a certain threshold. This approach is very
flexible as QoS policies can be changed at run-time, but the behavior is not well
defined and performance may be degraded if costly adaptation schemes are used.

To be able to dynamically manage QoS, a QoS architecture should integrate
at least the following abilities [2]:

– QoS specification. QoS specification is concerned with capturing the QoS
level requirements and management policy. QoS specification is declarative
in nature; users specify what is required rather than how this is to be achieved
by underlying QoS mechanisms. A QoS specification is composed of several
aspects [6] [11]:
• Performance which characterizes performance requirements.
• Level of importance which specifies the degree of importance required.
• QoS management policy which allows to specify adaptation to the re-

quired performance.
– QoS provision mechanism is composed of the following aspects:

• QoS mapping performs the function of automatic translation between
representations of QoS at different system levels. Classically, four levels
are considered: user level, application level, operating system level and
resources level. For instance, a GOOD user QoS specification of a Video
component is translated to 25 frames/sec at application level, 1 thread
at operating system level and 60% CPU at resources level.

• Admission testing is responsible for comparing resource requirements
arising from the requested QoS against available resources in the system

• Resource reservation.
– QoS management. To maintain agreed levels of QoS it is often not sufficient

just to commit resources. QoS management is frequently required to ensure
that the contracted QoS is still valid. Fundamentals of QoS management
include:
• QoS observation for allowing each level of the system to track the ongoing

QoS levels achieved by the lower layer.
• QoS maintenance for comparing the monitored quality of service against

the expected performance and then exerts a tuning operation.
• QoS degradation for indicating that the lower layers have failed to main-

tain the QoS level and nothing further can be done by the QoS mainte-
nance mechanism.

Qinna, a Component-Based QoS Architecture 111

2.3 Open System Requirements

In this paper, we define an open system as a system that can integrate new
components at run time. Usually, these components are unforeseen: it means
that the system and the component do not know each other before its arrival.
From a QoS point of view, an open system raises several key issues that must
be taken into consideration:

1. A new component may not know its own QoS requirements. For example, a
Video component does not know how much resource it needs to be able to
execute at 25 frames/sec.

2. A new component may have an estimation of its QoS requirements. This
estimation may have been done by the programmer or determined from
previous experiments. For example, in the case of the Video component, the
programmer estimates that it needs 45% of the CPU and 150 kilobytes of
memory to execute at 25 frames/sec.

3. Adding or leaving of a component must not destabilize the system. It means
that the system must ensure the component will not consume a greater QoS
level than the specified one.

4. As the system evolves dynamically, it must be able to manage its QoS dy-
namically too. For example, the QoS level of the Video component may be
degraded to let enough resources to a more important component.

5. An open system must be generic enough to integrate various QoS man-
agement and QoS specifications. Every component has with its own QoS
management mechanism and its own QoS specification. For example, a com-
ponent which requires a non real-time thread must be satisfied even if the
system is real-time.

6. Finally, an open system must be designed in order to improve re-usability of
QoS management. For example, QoS management mechanisms for the Video
component must be reusable for another platform.

In the following section, Qinna a QoS architecture suited for component-
based open systems is presented. The architecture incorporates the main QoS
concepts identified in section 2.2, in order to dynamically manage QoS, and is
defined using Fractal components.

3 Qinna

3.1 Introduction

In this section we define a component-based QoS architecture for embedded open
systems, called Qinna. The definition of Qinna is based on two hypotheses: (1)
the system has a global knowledge of its available resources. It means that a
request can not be delegated to another unknown system; (2) the system must
be component-based itself in order to provide an homogeneous components’ view
at each layer (application, operating system, resources).

112 Jean-Charles Tournier, Jean-Philippe Babau, and Vincent Olive

The philosophy of Qinna is to manage QoS using contracts (cf. figure 1).
It means to each functional component that needs QoS management (called
QoSComponent) a contract is set up. Contracts are managed (initialization,
adaptation and maintenance) by a dedicated QoSComponentManager that del-
egates admission testing to a QoSComponentBroker. Moreover, contracts obser-
vation is performed by a QoSComponentObserver, while decision of contracts
adaptation and maintenance is performed by the QoSDomain.

Fig. 1. Overview of the Qinna architecture.

More precisely, Qinna is defined through a set of component types, data
types, APIs and its dynamic behavior.

3.2 Component Types

Qinna defines five different component types: QoSComponent, QoSComponent-
Broker, QoSComponentManager, QoSComponentObserver and QoSDomain.
Each service provided by Qinna interfaces are summarized in table 1.

A QoSComponent is a component which provides, at least, one functional
interface and may require others. To provide a given QoS level on its provided
interfaces, a QoSComponent needs a given QoS level on its required interfaces
and must be configured via a local constraint (typed by T LC).

In addition to its functional interfaces, a QoSComponent must provide the
iLocalConstraint and iQoSObserver interfaces. The first interface allows to
manage the local constraint, while the latter notifies the real provided QoS level.

A QoSComponentBroker relies on a global constraint (typed by T GC)
to accept, or not, to set the local constraint of a QoSComponent and give a
reference to it. QoSComponentBroker is responsible for admission testing and
reservation of QoSComponents. To each class of QoSComponent is associated a
QoSComponentBroker.

Qinna, a Component-Based QoS Architecture 113

Interfaces Services

iLocalConstraint int set(T LC lc)

T LC get()

iQoSObserver T QoS get()

iQoSBroker T CID reserve(T LC lc)

int free(T CID cid)

int modify(T CID cid, T LC lc)

iQoSBrokerAdministration int set(T GC gc)

T GC get()

iQoSManager T CT MANAGER reserve(T QoS q)

int free(T CT MANAGER ct)

int modify(T CT MANAGER ct,T QoS q)

iQoSAdapter int degrade(T CT MANAGER ct)

int upgrade(T CT MANAGER ct)

iQoSMaintener int degrade(T CT MANAGER ct)

int upgrade(T CT MANAGER ct)

iQoSManagerAdministration int set(T MT mt)

T MT get()

iQoSObserverLifeCycle int start(T CID, T POL pol)

int pause(T CID)

int stop(T CID)

iQoSDomain T CID reserve(T QoS qu, T IMP imp)

int free(T CID cid)

int modify(T CID cid, T QoS qu, T IMP imp)

iQoSObserverException int exception(T CID cid, T QoS observed q)

iQoSDomainAdministration int set(f Order Relation)

bool f Order Relation(T IMP imp1, T IMP imp2)

T LC: Local constraint type

T GC: Global constraint type

T QoS: QoS level type

T CID: Component identifier type

T CT MANAGER: QoSComponentManager contract type

T MT: Map table type

T POL: Observation policy type

T IMP: Importance type

Table 1. Qinna APIs.

QoSComponentBroker requires the iLocalConstraint interface. It provides
the iQoSBroker interface in order to reserve, or modify, a QoSComponent with
a given local constraint. Moreover, the iQoSBrokerAdministration interface is
provided to be able to manage the global constraint.

A QoSComponentManager is responsible for the management of the QoS
level provided by a QoSComponent. To each QoSComponentBroker is associated
a QoSComponentManager. In order to manage QoS level, QoSComponentMan-
ager performs three tasks:

114 Jean-Charles Tournier, Jean-Philippe Babau, and Vincent Olive

1. it initializes, from a QoS point of view, execution of a QoSComponent.
From a given specification, which specifies the required QoS level, QoSCom-
ponentManager translates this information into specific QoS levels on re-
quired interfaces and a local constraint on its managed QoSComponent.
The translation is performed using a map table (typed by T MT). Sub-
sequently, the QoSComponentManager establishes a contract (typed by
T CT MANAGER) composed of:
(a) an unique contract identifier, typed by T CT MANAGER.
(b) the component identifier of the QoSComponent provided by QoSCom-

ponentBroker, typed by T CID.
(c) expected QoS level provided by the QoSComponent, typed by T QoS.
(d) a list of contract identifiers, it represents the established contracts to fill

out the required interfaces of the QoSComponent.
Moreover, QoSComponentManager integrates T QoS2 translate(T QoS1
q) operator. This operator translates a given QoS specification (T QoS1)
to an understandable one by the map table (T QoS2).

2. it implements adaptation mechanisms
3. it implements maintenance mechanisms

QoSComponentManager requires the iQoSBroker interface and provides the
iQoSManager one. This interface allows to do a reservation, or a modifica-
tion, of a QoSComponent with a desired QoS level. It may also require sev-
eral iQoSManager interfaces in order to get QoSComponents to fill out re-
quired interfaces of its managed QoSComponent. Moreover, QoSComponent-
Manager provides iQoSAdapter and iQoSMaintener interfaces which imple-
ment adaptation and maintenance mechanisms. At last, it provides the interface
iQoSManagerAdministration to set up the map table.

A QoSComponentObserver is responsible for the observation of the QoS
level provided by a class of QoSComponents. It implements the observation
policy.

QoSComponentObserver requires the interfaces iQoSObserverExceptionand
iQoSObserver. It provides the iQoSObserverLifeCycle interface in order to
manage life cycle of observation (start, stop, pause). Observation policy is given
to QoSComponentObserver when QoSComponentObserver is started.

A QoSDomain is the highest level of the architecture: all other Qinna com-
ponents are encapsulated in a QoSDomain component. From a user point of
view, it is the entry point for a QoSComponent request. QoSDomain defines
adaptation and maintenance policies. These policies are based on a contract list
(typed by T CT DOMAIN) which are linked to an importance level (typed by
T IMP) to a contract identifier provided by QoSComponentManager.

QoSDomain requires interfaces iQoSManager, iQoSAdapter, iQoSMaintener
and iQoSObserverLifeCycle. It provides the iQoSDomain interface in order to
reserve, or modify, a QoSComponent with a given QoS and importance level.
It also provides the iQoSObserverException interface in order to be notified
of a QoSComponentManager contract violation. At the end, the QoSDomain

Qinna, a Component-Based QoS Architecture 115

provides the iQoSDomainAdministration interface to set up the order relation
of T IMP type.

To summarize, a class of QoSComponents is bound to one QoSComponent-
Broker which is itself bound to one QoSComponentManager. QoSComponent-
Managers can be bound to each other and are bound to one QoSDomain. Finally,
one QoSComponentObserver is bound to a class of QoSComponent and several
QoSComponentObservers are bound to one QoSDomain.

3.3 Data Types

The Qinna architecture uses several different types. This section defines con-
straints on these types. First, there is a default element to initialize unknown
data: T GC, T LC, T QoS and T IMP have a default element. Moreover,
T CID and T CT ID have a NULL element (no reference).

In order to work with QoS constraints, there are (1) some comparison
operators: compare(T GC cg, T LC lc), compare(T QoS q1, T QoS q2) and
compare (T IMP i1, T IMP i2); and (2) some calculus operators: add(T GC
gc, T LC lc) and sub(T GC gc, T LC lc). Moreover T MT type has a mapping
operator: T QoS map(T QoS q).

3.4 Dynamic Behavior

The main operations of the dynamic behavior of Qinna are contract initial-
ization, contract management and contract configuration. The first operation
occurs when a QoSComponent is executed. The second operation is triggered in
response to an exception or during activation of another QoSComponent. The
third operation is done when a QoSComponent is configured or observed.

To activate a new QoSX component, a request is sent to the QoSDomain
(service reserve of interface iQoSDomain). The request is then transmitted to
the QoSXManager (service reserve of interface iQoSManager). According to the
map table, requested components Y are reserved (thanks to the appropriate
QoSComponentManagers) and QoSX is requested to QoSXBroker (service re-
serve of interface iQoSBroker) in order to configure it (service set of interface
iLocalConstraint). If the desired QoS level can not be achieved, QoSDomain de-
grades the previous existing QoS levels according to importance level until an
acceptable solution is found (service degrade of interface iQoSAdapter).

When a component is stopped (service free of interface iQoSDomain), the
QoSDomain analyses its current contracts in order to upgrade the most impor-
tant ones (service upgrade of interface iQoSAdapter). Likewise, an exception
raised by a QoSComponentObserver (service exception of interface iQoSOb-
serverException) or a QoSComponent modification (service modify of interface
iQoSDomain) is followed by a global contracts analysis in order to determine
optimal QoS levels.

Contract configuration is usually done when a component is activated accord-
ing to the map table. Unknown data are set to default values and then dynami-
cally evaluated using observations (services get, exception and upgrade/degrade

116 Jean-Charles Tournier, Jean-Philippe Babau, and Vincent Olive

of interfaces iQoSObserver, iQoSObserverException and iQoSMaintener respec-
tively).

Finally, every operation executed by Qinna must be atomic in order to keep
the global system coherent.

In the following section, we demonstrate how the Qinna architecture can
manage QoS of open component-based systems.

4 Open Systems

This section details the way Qinna deals with specific issues of open component-
based systems and presents an experiment in order to illustrate and evaluate the
architecture.

4.1 Qinna for Open Systems

In section 2.3 we have identified six QoS issues that must be taken into consid-
eration for open systems.

A new component may not know its QoS requirements on its required inter-
faces, it means that its map table is empty. To take this into account this first
issue, Qinna sets up three mechanisms. Firstly, required QoS levels are set to
default. Secondly, QoSComponentObserver are activated in order to observe the
real provided QoS level. And thirdly, QoSComponentObserver sends exceptions
to QoSDomain which runs the maintenance policy.

A component may have an estimation of its QoS requirements, i.e. its map
table may be unreliable. This case is similar to the previous one, but instead
of setting initial QoS requirement to default, they are set according to the map
table. In comparison with a normal situation (reliable map table), QoSCompo-
nentObserver is activated and maintenance policy is triggered.

Adding or leaving of a component must not destabilize the system. Here,
the answer is given by the implicit philosophy of Qinna. Indeed, Qinna pro-
hibits a QoSComponent to consume a greater QoS level than the specified and
allocated one: each time a functional service is requested a control is done. For
example memory usage (e.g. malloc(...) service) is performed by memory compo-
nents. Once an initial amount of memory, M , is requested, memory component
controls each sub-request (e.g. malloc(m)) in order to enforce

∑
mi < M . In

some cases, a QoSComponent can request all the available resources. Either the
QoSComponent is the most important one of the system and Qinna is right to
allow it, or the QoSComponent is malicious. In such instances security aspects,
such as cryptography or authentication, must be integrated, but this is beyond
the scope of our work.

In order to dynamically manage QoS, Qinna allows to integrate the main
QoS concepts identified by [2]. Each QoS specification aspect is identified as
a parameter of services of iQoSDomain interface. The mapping operation is
done by QoSComponentManagers, whereas admission testing and reservation
is done by QoSComponentBrokers. QoSComponentObserver is responsible for

Qinna, a Component-Based QoS Architecture 117

QoS observation. Finally, QoS maintenance and QoS degradation are conjointly
done by QoSComponentManagers and QoSDomain. Dynamic QoS management
by Qinna is explained in detail in [13].

Qinna is generic enough to take into account heterogeneous aspects of QoS.
It allows to implement various QoS management as real-time [12] or multimedia
[13]. Moreover, to deal with heterogeneous QoS specifications, Qinna specifies
the T QoS translate(T QoS q) operator. This operator translates an initial spec-
ification to an understandable one by the map table. To illustrate, if an initial
specification is a function f and the map table only deals with fixed values, trans-
late returns either max(f) or default if f can not be analyzed. The operator
necessarily accomplishes a semantic interpretation of the specification.

To improve re-usability, Qinna observes two principles. First, Qinna respects
separation of concerns between the functional (QoSComponent) and the non
functional ones (QoSComponentBroker, QoSComponentManager, QoSDomain
and QoSComponentObserver). Second, Qinna decouple QoS policies and mech-
anisms. Indeed, policies are implemented by QoSDomain and QoSComponentO-
bservers whereas mechanisms are implemented by QoSComponentManagers.

4.2 Experiment

The goal of this section is to illustrate how Qinna can be used in a open system.
We then evaluate this specific Qinna implementation. The experiment involves
the construction of a video player with QoS ability on a iPaq platform. For this
experiment, we choose an H3800 iPaq with an intel StrongARM SA1100 proces-
sor at 206 MHz, 60 Mb of DRAM memory and 32 Mb of flash memory. From a
software perspective, we choose the Think component-based framework. Think
has been chosen for its properties: (1) it provides an homogeneous component
view at each layer of the system; (2) it allows a fine grain control of the system;
and (3) it is available for ARM processor.

Case Study The considered case study is composed of a GUI component which
allows to control a Video component by specifying its QoS requirements. The
Video component requires a Memory component and a Thread component. Fi-
nally, the Thread component requires a scheduler. We choose a simple round-
robin scheduler which is able to ponderate thread execution. For example, if
thread A and B have ponderation equals to 3 and 2, the resultant scheduling is:
ABABA|ABABA|AB.... Moreover, the Video component has two QoS levels:
GOOD and BAD, but the corresponding required QoS level are unknown (in
terms of CPU and memory). This case study addresses two typical open sys-
tem issues. Firstly, how can we determine the required QoS levels of the Video
component? Secondly, how can we be sure that the Video component will not
consume more CPU and memory than the ones allocated?

In order to take into account these issues, Qinna is integrated in the ini-
tial system. Each component which provides an interface with QoS management
needs (Video, Thread, Memory, Scheduler) is renamed to QoSVideo, QoSThread,

118 Jean-Charles Tournier, Jean-Philippe Babau, and Vincent Olive

QoSMem and QoSRRSched. A QoSComponentBroker and a QoSComponent-
Manager are associated to every QoSComponent. Further, global constraints of
QoSComponentBrokers are fixed. For QoSMemBroker, global constraint is set
to 100 Kb. It represents the maximum amount of memory that can be allocated.
For QoSThreadBroker, global constraint is set to 2, that allows to allocate only
2 Thread components. For QoSRRSchedBroker, global constraint is fixed to 50:
it is the maximum number of available time slots. Finally, global constraint of
QoSVideoBroker is set in order to allow only one GOOD or BAD Video com-
ponent. Moreover, a QoSVideoObserver is added to QoSVideo because its QoS
requirements are unknown. At last, a QoSDomain component encapsulates the
previous Qinna components in order to bound the QoS management. Figure 2
represents an overview the system integrating Qinna.

Fig. 2. Overview of the system integrating Qinna.

To illustrate the dynamic behavior of Qinna, we consider the scenario where
an user requests a GOOD Video to the QoSDomain. The request is then trans-
mitted to the QoSVideoManager. As the QoSVideoManager has an empty map
table, it requests a QoSThread and a QoSMem components with a QoS level
set to default to their respective QoSComponentManagers. Each QoSCompo-
nentManager returns a QoSComponent thanks to their QoSComponentBrokers.
For instance, QoSMemManager returns a QoSMem with a QoS level fixed to 10
Kb. As a QoSThread requires a scheduler, QoSThreadManager requests a QoS-

Qinna, a Component-Based QoS Architecture 119

RRSched to the QoSRRSchedManager with a QoS level equal to default. The
latter returns a QoSRRSched with a QoS fixed to 1, that is to say the associated
QoSThread will have a ponderation equal to 1. Then, QoSThreadManager binds
a QoSThread and the QoSRRSched and returns it. QoSVideoManager binds a
QoSVideo to the QoSThread and the QoSMem and returns the reference to the
QoSDomain. Finally, the QoSDomain starts the QoSVideoObserver and specifies
the observation policy: for instance, periodic observation at 500 msec.

While the QoSVideo is executed, the QoSVideoObserver notifies the QoSDo-
main of QoS violations. The QoSDomain runs maintenance policy and requests
QoSVideoManager to upgrade the required QoS level of QoSVideo (thanks to
iQoSMaintener interface). If the maintenance policy fails, that is to say no
more QoS level can be allocated, the QoSVideo is degraded to BAD (thanks
to iQoSAdapter interface).

Analysis We first analyze the way Qinna deals with the two specific open
system issues and then evaluate the cost generated by Qinna. With regard to
the two open system issues raised by the case study, Qinna implements:

1. a QoSVideoObserver in order to notify the QoSDomain of the real QoS
level provided by the QoSVideo. In this experiment, to every notification
the QoSDomain triggers the maintenance policy. The latter consists of the
up-gradation of the QoS requirements step by step (for instance, memory
requirements is increased by 10 Kb).

2. the QoSVideo can not consume a greater QoS level than the allocated one.
For instance, after initialization the QoSMem controls that no more than 10
Kb is used by the QoSVideo. Moreover, the QoSThreadBroker has a global
constraint constraint fixed to 2. it limits the effects of a malicious component
that requires thread all the time. Finally, the use of a ponderated scheduler
allows to know the current system load in order to accept, or not, a new
thread.

Evaluations Qinna implies some overheads in terms of memory and time.
The maximum number of Qinna components if given by: (Nb QoSComp ×

4)+1. In this experiment, the initial system size is 108 Kb, while the size is 112
Kb when Qinna is integrated. It represents a overhead about 5%. More precisely,
the size of the whole Qinna components is 5528 bytes.

The overhead due to the QoS control is rather low. For example, the control
made QoSMem is evaluated to 1, 5μsec.

The initial configuration of the QoSVideo is equal to 1,8 msec. It includes
reservations and bindings of QoSThread, QoSMem, QoSRRSched and QoSVideo.
We evaluated the delay needed by the QoSVideo to reach a QoS level equals to
GOOD. This delay is about 2 seconds, but it depends on several parameters as
the increasing QoS step (in this experiment the increasing step is set to 10 kB for
memory and 1 slot for CPU). In this experiment, it needs 4 steps to get enough
resources to provide a GOOD QoS level. It can be optimized thanks to ad-hoc
mechanisms, but it is out of scope of our work.

120 Jean-Charles Tournier, Jean-Philippe Babau, and Vincent Olive

From the QoSDomain point of view, a call to the maintenance mechanisms
takes 1,9 msec. That is to say that it can be costly if the required is fluctuating
(many calls to iQoSMaintener).

Finally, if the map tables are well known, the delay to degrade the QoSVideo
from GOOD to BAD is 2,13 msec.

5 Related Works

Currently there are many works related to QoS for CBSE which can be classified
in to three distinct kind of works. The first one focuses on embedded system.
The second one deals with traditional work stations, while the last one is about
QoS specifications.

SEESCOA [9] is a component-based approach for embedded real-time sys-
tems. In this approach, each binding between two components is formalized by
a contract defined by [1]. As SEESCOA deals with real-time systems, it mainly
focuses on the temporal aspect of QoS: to each interface, a timed MSC is asso-
ciated in order to express their temporal constraints.

PECOS [18] is a component model for the same kind of systems with the same
kind of constraints. Meanwhile, PECOS define some timed Petri networks to
specify the relation between components. Moreover, it uses the CoCo language [5]
in order to get a syntactic view of the whole system with its temporal constraints.

In comparison with our work, SEESCOA and PECOS handle the QoS aspects
statically (before the execution of the system). It leads to a closed and unflexible
system. Moreover, components are only available at design stage and not at run-
time.

Moreover, works such as SATIN [23] or CARISMA [8] are typical from the
mobile systems research area. The main characteristic of these works is their
ability to deals with dynamic context evolution. Either these works define policies
in order to manage context evolution (CARISMA), that could be integrated
to Qinna. Or they provide some mechanisms to handle dynamic composition
without taking care of QoS (SATIN).

[16] is a Java platform able to manage the resources needed by a component.
This platform is made of two layers. A high layer, Jamus, is in charge of admission
testing, contracts management and contracts monitoring. A low layer, Raje, is
responsible for resources management. Several key points distinguish this work
from ours. Firstly, the platform is not component-based that disables component
benefits to QoS management (re-usability, adaptability, administration, etc.).
Secondly, a component is not well defined: it is only seen as an application.
This implies a coarse grain view of components. Thirdly, component view is not
homogeneous: a component can require a QoS level from the platform (in terms
of resources), but can not require a QoS level from another component. Fourthly,
the resource control is difficult to implement because of the JVM.

The QuA project [20] aims to provide services to manage QoS for distributed
applications. In QuA, an application is encapsulated in a QuA-component and

Qinna, a Component-Based QoS Architecture 121

the whole QoS mechanisms and policies are implemented by the global QuA
platform. The latter is then viewed as a single component which leads to a
complex administration and evolution of QoS management. Moreover, for this
kind of systems it seems more significant that each application provides its own
QoS mechanisms in order to be as autonomous as possible.

Finally, works on QoS specifications for components are complementary to
ours. Indeed, Qinna does not define how specification must be achieved. In or-
der to demonstrate this property we are actually working on the integration of
CQML [11] to Qinna.

6 Conclusion

In this paper, we presented the Qinna architecture followed by an experiment for
open systems. Qinna is a component-based QoS architecture suitable for specific
open system issues. The experiment illustrated the way Qinna deals with these
issues and allowed for a quantitative evaluation of the architecture.

In order to fully validate Qinna, we are working on several axis. First, CQML
is integrated to demonstrate that Qinna is not specific to a QoS language. Second,
we are integrating more complex QoS mechanisms and policies than the one
presented here. Finally, we are taking into consideration the network resource
in order to lead to an end to end QoS management for embedded distributed
systems.

References

[1] A. Beugnard and J.M. Jézéquel and N. Plouzeau and D. Watkins. Making Com-
ponents Contract Aware. Computer, 32(7):38–45, 1999.

[2] A. Campbell. A Quality of Service Architecture. PhD Thesis, Lancaster Univer-
sity, 1996.

[3] B. Ford and G. Back and G. Benson and J. Lepreau and A. Lin and O. Shivers.
The Flux OSKit: a substrate for kernel and language research. In Proceedings
of the sixteenth ACM symposium on Operating systems principles, pages 38–51,
Saint Malo (France), 1997. ACM Press.

[4] B. Meyer and C. Mingins. Component-Based Development: from Buzz to Spark.
IEEE Computer, 32(7):35–37, 1999.

[5] B. Schulz and T. Genssler and A. Christoph and M. Winter. Requirements for the
Composition Environment. Pecos Deliverable D3.1. http://www.pecos-project.org,
1999.

[6] C. Aurrecoechea and A. Campbell and L. Hauw. A survey of QoS architectures.
Multimedia Systems, 6(3):138–151, 1998.

[7] C. Szyperski. Component Software Beyond Object-Oriented Programming, 2nd
Edition. Addison-Wesley, ACM Press, 1998.

[8] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. CARISMA: Context-
Aware Reflective mIddleware System for Mobile Applications. IEEE Transactions
of Software Engineering, 29(10):929–945, 2003.

122 Jean-Charles Tournier, Jean-Philippe Babau, and Vincent Olive

[9] D. Urting and S. Van Baelen and Y. Berbers. Embedded Software using Compo-
nents and Contracts. In European Conference on Object-Oriented Programming
(ECOOP) 2001 Specification, Implementation and Validation of Object-oriented
Embedded Systems (SIVOES) workshop, pages 1–4, Budapest (Hungary), June
2001.

[10] E. Bruneton and T. Coupaye and J.B. Stefani. The Fractal Component Model.
Specification v2. http://fractal.objectweb.org, 2003.

[11] J. Aagedal. Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo, 2001.

[12] J.C. Tournier and J.P. Babau and V. Olive. A Qinna Experiment: a Component-
Based QoS Architecture for Real-Time Systems. In Workshop Architectures
for Cooperative Embedded Real-Time Systems (WACERTS) in conjunction with
the 25th Real-Time System Symposium (RTSS’04), Lisbon (Portugal), December
2004.

[13] J.C. Tournier and J.P. Babau and V. Olive. An Evaluation of Qinna: a
Component-Based QoS Architecture for Handheld Systems. In Symposium on
Applied Computing (SAC’05), Sante Fe (New Mexico - USA), March 2005.

[14] J.P. Fassino and J.B. Stefani and J.L. Lawall and G. Muller. Think: A Software
Framework for Component-based Operating System Kernels. In Proceedings of
the General Track: 2002 USENIX Annual Technical Conference, pages 73–86.
USENIX Association, 2002.

[15] Microsoft Corporation. The .NET Framework. http://www.microsoft.com/net.
[16] N. Le Sommer. Contractualisation des ressources pour les composants logiciels:

une approche réflexive. Rapport de thèse. Université de Bretagne Sud, 2003.
[17] N. T. Bhatti and M. A. Hiltunen and R. D. Schlichting and W. Chiu. Coyote:

a system for constructing fine-grain configurable communication services. ACM
Transactions on Computer Systems, 16(4):321–366, 1998.

[18] O. Nierstrasz and G. ArEvalo and S. Ducasse and R. Wuyts and A. P. Black and
P. O. Mller and C. Zeidler and T. Genssler and R. van den Born. A Component
Model for Field Devices. In Proceedings of the IFIP/ACM Working Conference
on Component Deployment, pages 200–209. Springer-Verlag, 2002.

[19] Object Management Group. The Common Object Request Broker: Architecture
and Specification. 2000.

[20] R. Staehli and F. Eliassen. QuA: A QoS-Aware Component Architecture. Re-
search report Simula Lab, 2002.

[21] Sun Microsystems. The EJB 2.1 Specifications. http://java.sun.com/products/ejb.
[22] X. Cai and M. R. Lyu and K.-F. Wong Roy Ko. Component-Based Software Engi-

neering: Technologies, Development Frameworks, and Quality Assurance Schemes.
International Journal of Software Engineering and Knowledge Engineering, 2000.

[23] Stefanos Zachariadis, Cecilia Mascolo, and Wolfgang Emmerich. SATIN: A Com-
ponent Model for Mobile Self-Organisation. In. Proc. of Int. Symposium on Dis-
tributed Objects and Applications (DOA), 2004.

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 123-138, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Architecture Based Deployment of Large-Scale
Component Based Systems: The Tool and Principles

Ling Lan1, Gang Huang1 , Liya Ma1, Meng Wang1, Hong Mei1,
Long Zhang2, Ying Chen2

 1School of Electronics Engineering and Computer Science, Peking University,
Beijing, 100871, China

{lanling, huanggang, maly, wangmeng}@sei.pku.edu.cn,
meih@pku.edu.cn

2IBM China Research Lab,
No.7, St.5, ShangDi, HaiDian District, Beijing, 100085, China

{longzh, yingch}@cn.ibm.com

Abstract. After a component based system is developed, it has to be deployed
into a target environment. As the system becomes much larger and more
complex and the environment becomes open and dynamic, the deployment
comes to be a difficult, tiring, error-prone and time-consuming task. This paper
proposes an architecture based approach to deploying large-scale component
based systems into open and dynamic environments in a systematic and
semi-automatic manner. It does four contributions to facilitate the deployment:
Firstly, a supporting tool is developed to visualize the software architecture of
the system to be deployed to help deployers understand the structure, functions
and desired qualities of the system. Secondly, the tool can automatically
generate the deployment information from the architecture description produced
in the phase of design and this will relieve deployers of inputting hundreds or
thousands of deployment elements manually. Thirdly, the tool can monitor the
up-to-date resource consumptions of the machines and support to partition one
system into several subsystems and deploy the subsystems onto multiple
machines simultaneously. Fourthly, a set of principles are proposed for guiding
the deployment with the tool. The approach, especially the tool and principles
are demonstrated on J2EE (Java 2 Platform Enterprise Edition).

1 Introduction

Component-Based Software Engineering (CBSE) focuses on the development of
software intensive systems from pre-fabricated and reusable components, the
development of components, and system maintenance and improvement by means of
component replacement and customization [4][3]. As CBSE has become a prevalent
approach to building the large-scale software systems, people always pay much
attention to how to develop a component-based system (CBS) in a rapid, high-quality
and cost-effective way but other stages of software lifecycle, especially software
deployment are neglected.

 Corresponding author.

124 Ling Lan et al.

Before a CBS can operate with desired functions and qualities, it should have to be
configured according to the runtime environments and installed correctly. This
activity is called software deployment, which plays a key role in software lifecycle.
Software deployment has been attached with more and more attentions over the past
decade as rapid pervasiveness of the network and distributed systems. Kruchten [21]
proposes the “4+1” view model to include logical view, process view, implementation
view (previously called development view), and deployment view (previously called
physical view). The deployment view describes the mapping(s) of the software to the
distributed nodes. In OMG’s UML (Unified Modeling Language) [20], four kinds of
graphical diagrams are defined for modeling: use case diagram, class diagram,
behavior diagram and implementation diagram. The last diagram includes component
diagram and deployment diagram. The deployment diagrams show the configuration
of runtime processing elements and the software components, processes, and objects
that execute on them. In the specification of Java 2 Enterprise Edition (J2EE) [22], the
development process of J2EE applications1 is divided into three stages: component
creation, assembly and deployment. During the deployment stage, the J2EE
application is installed on the J2EE application servers with careful configuration and
integration with the runtime environments.

Before the pervasiveness of Internet, a CBS usually ran in a closed and static
environment with limited users. There were only a few simple factors to be
considered in deployment. But recently, the exploding Internet makes CBS larger,
more complex and the runtime environments extremely open and dynamic. On the
one hand, in order to deploy the CBS into a distributed environment, the factors
related to the deployment should be taken into account thoroughly and carefully.
Therefore the deployers are required to understand the whole system to be deployed
and sometimes even other systems already deployed in the same environment. For
example, we should consider the amount of components, the profiles of every
component and the dependencies among components, and so on. This will help to
partition one system into several sub-systems and then distribute the sub-systems to
the distributed nodes respectively. However, for the large-scale CBS, to understand
the whole system to be deployed is too difficult without any high-level guidance. On
the other hand, the CBS is always deployed in an open and dynamic environment.
Different runtime environments have different features, such as various nodes,
platforms, bandwidth and topology. These differences lead to a disastrous result that
the deployment of a CBS in one environment cannot be reused in another
environment. Furthermore, status varies even in a single environment, such as loads
and resource consumptions. That is to say, the same system to be deployed in the
same environment maybe need different deployment plans at different time. Without
a comprehensive understanding of the whole system and the environment, the
deployers could only accomplish the deployment according to their experiences. Such
deployment may lead to serious problems: the system probably can’t work correctly;
the performance might descend significantly; and the newly deployed systems may
impact the other systems in the same runtime environment, preventing them from
operating with desired functionalities and qualities. To sum up, to deploy a CBS in
modern networks, much more complex factors have to be taken into consideration and
then the deployment becomes a hard, tiring, error-prone and time-consuming task.

1 In this paper, we take the application and the system synonymous.

Architecture Based Deployment of Large-Scale Component Based Systems 125

This paper presents an architecture based deployment approach to deploying the
large-scale component based systems into open and dynamic environments correctly,
rapidly and cost-effectively. This approach is preliminarily proposed in [9], which
only discusses the motivation and benefits of introducing software architecture into
the deployment. In this paper, we focus on the supporting tool and principles. The tool,
specific to J2EE currently, can visualize the software architecture of the CBS to be
deployed and the up-to-date resource consumption of the target machines. Moreover,
the tool can parse the architecture description produced in the phase of design to
retrieve deployment information which usually contains hundreds or thousands of
description elements and is filled manually. To guide the architecture based
deployment, we propose a set of principles that are illustrated in a detailed case study.

The rest of the paper is organized as follows: the next section illustrates a case and
puts forward the challenges to deployment of J2EE applications; section 3 gives an
overview of our approach; section 4 introduces the visual supporting tool and section
5 demonstrates the detailed steps of deployment of the case with a set of principles;
section 6 provides the discussion and comparisons with some related work; the last
section concludes this paper and identifies the future work.

2 Challenges to Deployment of J2EE Applications

J2EE architecture is designed to support 3-tier web-enabled distributed applications
[22]. The components in J2EE can be classified into four categories: applets and
normal Java applications at the client side, servlets/JSP (JavaServer Pages) and
Enterprise JavaBean (EJB) at the server side [23]. Since the client side components
can be downloaded from the server, the deployment of J2EE applications focuses on
the server side components.

Java Pet Store (JPS) is one of the sample applications for J2EE Blueprints. It
demonstrates how to use the capabilities of the J2EE platform to develop flexible,
scalable, cross-platform e-business applications [25]. Assume we have a task to
deploy JPS to its runtime environment. Table 1 shows the target environment in detail:
two nodes are the independent servers, Server1 and Server2, and the third one is a
cluster, which consists of two servers. The column Operating Environment shows the
operating systems and J2EE application servers installed in the nodes. PKUAS is a
J2EE-compliant, reflective application server which is the platform including J2SE,
common services and one or both of Web Container and EJB Container [10]. The
column Reliability shows the vendor-defined reliability of the nodes. Undoubtedly,
how to accomplish the deployment is a touchy problem. There are also many
challenges involved in deployment:

First, have a look of what the deployers do when deploying a J2EE application
such as JPS. A mass of deployment descriptors, xml-format files for deployment in
J2EE, are needed thus the deployers must write many description elements by hand
even with some J2EE deployment tools. If just to write a simplest deployment
descriptor file of the EJB, about 10 elements are needed, including the EJB name,
EJB classes’ names and EJB type, etc. However, most deployment descriptors in
practice are much more complex than this. They always include tens of or even more
than a hundred elements, which are provided to indicate the relationships of the EJBs,

126 Ling Lan et al.

the configuration of security and transaction, etc. To write so many elements is
troublesome of course. For instance, to deploy a J2EE application which is similar to
JPS in this case, deployers need to write more than a thousand elements. In fact,
almost all of the elements about deployment already exist from the phase of system
design, and these elements can be refined or transformed into the final deployment
descriptors. In this sense, a deployment tool is urgently needed to support the
information transformation from design to deployment.

Table 1. The runtime environment of JPS

Node Operating
Environment

Has
Database?

CPU Memory Reliability

Server
1

PKUAS +Windows
NT

no 2.0G Hz
2

1G 96.7%

Server
2

PKUAS + Linux no 2.4G Hz 1G 94.5%

Cluster PKUAS +Windows
2000 Server

yes 2.0G Hz
2

2G 99.7%

Secondly, deployers have to partition the system into several parts and distribute

these parts to the separate nodes. However, at present no deployment tool is available
to support such operations. If deployers try to accomplish these operations with
existing deployment tools, they have to decompose the system into individual
components, rewrite the deployment descriptions, assemble the components that will
be deployed on the same node to several sub-systems and then deploy every
sub-system to the corresponding node. These operations are fallible, troublesome and
as a matter of fact should be accomplished automatically by some tools.

Thirdly, when partitioning the systems, deployers had better have a high-level
guidance. In this case, if deployers only have the codes or packages of JPS, what they
know is the corresponding components to the system at first sight. Other information
of this system such as dependencies of the components, interoperations between the
components, and the security properties is sealed. But this information is very helpful
for the deployment. It will take the deployers many days to understand the whole
system by reading related documents or even the source codes, which is obviously
challenging and inefficient. So a clear view of the whole system, including the
components, the detailed structure and even the desired qualities, should be provided
to the deployers in an understandable and precise way.

Last but not least, without knowing the up-to-date status of the runtime
environment exactly, the deployers could only deploy the system with experiences.
To deploy JPS in this case, how do the deployers decide which node they will deploy
the appointed components on? Maybe the deployers can deploy some components,
which will consume much memory, to the Cluster because this node provides the
maximum memory 2G. But the value of 2G is just a static one. If there is another
system already deployed on the Cluster and it consumes much memory, then the
actual free memories of the Cluster maybe lower than that of the other two servers. In
this condition deployers should deploy the former components onto the node which
has the maximum free memory at that time. Anyway, the information of the runtime
environment is crucial for the deployment and should be offered in an automated way.

Architecture Based Deployment of Large-Scale Component Based Systems 127

3 Approach Overview

Since its first literal identification and discussion [7], software architecture becomes
an important subfield of software engineering, receiving increasing attention from
both academic and industrial community. It describes the gross structure of a software
system with a collection of components, connectors and constraints [17]. In general,
software architecture acts as a bridge between requirements and implementation and
provides a blueprint for system construction and composition. It helps to understand
large systems, support reuse at both components to be developed and their
relationships and constraints, expose changeability of the system, verify and validate
the target system at a high level and so on [6].

Due to the success of software architecture in the development, some researchers
propose to maintain and evolve software systems with the help of software
architecture [2]. Particularly, we propose a framework to make software architecture
an entity at runtime, called Runtime Software Architecture (RSA) [8]. RSA can
immediately capture changes of the runtime system so as to keep itself up-to-date, and
ensure that changes made on RSA will immediately lead to corresponding changes of
the runtime systems. In other words, the runtime system can be maintained and
evolved online via RSA. This framework has already been implemented in PKUAS
[10].

Recalling the challenges to deployment, it is a natural and feasible approach to
introducing software architectures into the deployment. Both software architectures
equipped with plentiful knowledge produced in the development and software
architectures representing runtime information of operating environments are applied
into the deployment. As a result, software architecture plays a centric role in the
whole software lifecycle. When a deployed system does not work well, the
functionalities or qualities of the software architecture will be damaged or decreased.
Such case can be detected and repaired with the help of architecture based software
maintenance. Then, once a system is deployed, it will keep operating until being
undeployed.

All activities in this approach are done with software architectures, such as
understanding the system to be deployed, evaluating the result of deployment of the
system, monitoring the working status of the systems, and deploying, un-deploying or
redeploying the systems. Fig.1 shows the process of architecture-based deployment. It
is divided into the following phases and the tool facilitates the activities in all of the
phases:
1) Building up the goals of the deployment: before the deployment, deployers need

a clear view about the state which the system should achieve after being
deployed. Deployers analyze the desired functions and qualities of the system
based on the constraints from the software architecture, and then consider all the
factors, whether the ones about technique or non-technique, and finally build up
the goals of the deployment.

128 Ling Lan et al.

Fig. 1. The process of architecture-based deployment

2) Partitioning the system based on the software architecture and the runtime
environment: in order to utilize the resources better and improve the
performance further, the system should be partitioned into several parts and
installed on distributed nodes respectively. On the one hand, as the description
of software system’s gross structure, the software architecture helps deployers to
understand the components in the system and the relationships among them
quickly, to further analyze the constraints of the components and the system. On
the other hand, inspecting the runtime environment can help deployers to
understand the environment and think over the factors of the environment totally
that maybe affect the system. With the guidance of the two elements mentioned
above, the software architecture and runtime environment, deployers can
partition the system into several parts towards the goals of deployment and
distribute the parts to the nodes.

3) Installing the system: before operating, some information should be added to the
system for deployment. The information is called deployment information. It
includes the binding names of the components in runtime, the announcements
and entries of the resources, etc. During the design and implementation phases
of CBS, the software architecture involves plenty of information. This
information in the design and implementation can be transformed to the
deployment information, and then in the phase of deployment, deployers just
need to append a little of information to accomplish the installations.

4) Evaluating the result of the deployment: after the deployment, deployers should
evaluate the result of the deployment based on the runtime information. The
runtime information can be obtained with the help of the RSA. On the one hand,
deployers should make a judgment whether the result meets the goals of
deployment, and on the other hand, deployers should review other formerly
deployed systems to ensure that they will not exert any negative impact on the
newly deployed ones.

5) Redeployment: if the evaluating results can’t meet the desires, then the systems
should be redeployed. This phase consists of the foregoing phases from 2 to 4.

Architecture Based Deployment of Large-Scale Component Based Systems 129

This phase will have to be repeated until all of the systems meet their goals of
deployment.

4 CADTool: The Supporting Tool

CADTool is an assembly and deployment tool, which is based on software
architecture, for J2EE applications deployed on PKUAS. It facilitates developers to
visually pack as well as assemble components. More importantly, based on the
software architecture, CADTool extracts most needed information in the deployment
from the architecture models in the development.

Fig. 2. Software architecture of deployed JPS

Fig. 2 shows the case of deploying JPS with CADTool. The “deploy” panel shows
the software architecture of JPS, and the “Server’s Information” panel shows
real-time information of the runtime environment. CADTool can facilitate the
deployment in the following functions:

 Visualization of architecture models in the development: CADTool reuses the
graphical elements of ABCTool, which supports architecture modeling with
ABC/ADL in a visual way [11]. However, this visualization depends on the
content of the deployable package. If the deployable package contains the

130 Ling Lan et al.

architecture description in ABC/ADL, CADTool can display the syntax and
semantics information produced in the development. If the deployable package
also includes the layout description of the architecture, CADTool can display the
architecture in the same layout as in the development, which helps to understand
the intention of the designers. If the deployable package doesn’t have the two
descriptions, CADTool can automatically construct the architecture from the
individual deployable components. However, the last case is not ideal, because
the architecture lacks enough information derived from the development.

 Visualization of servers and their capabilities: Based on reflective mechanisms
of PKUAS, CADTool can automatically collect and display the servers’
information, such as CPU utilization, memory utilization, throughout. The four
figures in the “Server’s Information” panel show the three nodes in JPS’s
runtime environment, the two on the left show the Server1 and Server2 and the
other two on the right show the two servers which compose the Cluster. The
information of the nodes is useful to determine which components should be
deployed into which nodes. They also help to investigate whether the
deployment works well. For example, the CatalogEJB consumes much CPU
time. If the component is deployed into the Server1, the CPU utilization of the
Server1 may exceed 90% and the Server1 becomes unstable and easy to crash.
Therefore, it is better to un-deploy the CatalogEJB in the Server1 and re-deploy
it into the cluster.

 Drag-and-drop deployment of components: With the two visual elements
mentioned above, a component can be easily deployed into a node singly by
dragging the component and dropping it on the target server or vice versa. In
traditional deployment tools, deployers have to build a connection to a given
node, load the components to be deployed into the node, and repeat the work
again for another node. In Fig. 2, there are four nodes. Two of them are single
servers and the other two form a cluster. The components AsyncSenderJAR,
UniqueidGeneratorEB, ShoppingClientFacadeEJB and CustomerEJB are
deployed into the Server1.

 Automatic calculation of deployment factors: There are many successful case
studies on the quantitative and qualitative evaluations of the given architecture
models. However, some factors may be wrongly predicted in the design phase
and should be re-evaluated in the deployment. Specially, some factors may be
only available after the services running for a period, such as the response time
and throughput. This means the deployment probably can not meet the
requirements related to these factors. So the systems have to be redeployed with
actual factors. Currently, CADTool can automatically calculate the response
time, throughput and reliability of a given use case.

Architecture Based Deployment of Large-Scale Component Based Systems 131

5 Deployment Principles and the Case Study

5.1 Deployment Principles

To help deployers make decisions during deploying, we offer a set of principles to
guide the deployment and at the same time build up a principle classification
framework. The detailed principles will be presented in the next section step by step.

In the principle classification framework, all the principles are endued with
priorities in terms of their effects on the goals of deployment. When the
architecture-based approach is applied to deploy a system, the principles with higher
PRI are considered prior to others. If deployers have to make a tradeoff between two
or more principles, the priority is the warrant for the decision.

Table 2. The principle classfication framework

Priority Goal Serial Numbers of Principle
1 Ensure the system operate corretly 1,2,7
2 Meet the business requirements 6
3 Imporve QoS 3,4,5

Table 2 shows the principle classification framework. There are three types of

priorities:
1) At the phase of deployment, the chief goal is ensuring that the systems can

operate properly. Consequently deployers must consider the necessary
requirements at first. Those requirements refer to whether the operations of
databases are required locally, some components must/mustn’t run on the same
node, some components have the security requirements for the nodes and some
components maybe require the high reliability. In the meantime, the newly
deployed system must never impair the desired functionalities and qualities in
the same runtime environment of other deployed systems. If the newly deployed
one does disturb the old ones, deployers must work out a new deploy plan for
the system or redeploy other systems.

2) Deployers should take the customers’ business requirements into consideration
besides the essential requirements. In order to achieve the maximum profit,
deployers may reduce the QoS of the system if only the goals of deployment are
met.

3) For the systems to be deployed, it is possibly that more than one plan could meet
the system’s essential requirements. Each plan may have its advantages. For
example, a system has two deployment plans, A and B. The system will achieve
more throughputs if deployed as plan A and more reliability if deployed as B.
Under such situation, deployers should make a tradeoff among numerous plans
based on the goals of deployment and select the best one to optimize the QoS of
the system.

132 Ling Lan et al.

5.2 The Case Study

In this section we will accomplish the deployment of JPS by the architecture-based
approach step by step. We will apply a set of principles to guide the deployment with
the help of CADTool.

5.2.1 Building Up the Goals of Deployment
After analyzing the software architecture of JPS in the CADTool, as shown in Fig.2,
and the customers’ requirements, the following goals of deployment are presented:
A) The components OPCAdminFacadeEJB, AdminWAR and SupplierWAR should

be deployed on the nodes which provide security service.
B) The components SignOnSB and PurchaseOrderEJB should be deployed on the

nodes whose reliability is no less than 98% and the reliability of the system
should be no less than 95%;

C) The response time of all of the business methods of ShoppingCartSB should be
less than 0.1 second; The response time of the methods, ProcessPending() and
ProcessPO() of the component OrderFulfillmentFacadeSB should be less than
0.15 seconds; The response time of the business methods of other components in
JPS should be less than 0.2 seconds;

D) The throughput of the system should reach 150 requests per second at least;
E) The cost of operating should be agreed upon and as low as possible.

5.2.2 Partitioning the Systems Based on the Software Architecture and Runtime
Environment

Principle1: partitioning the system with the help of software architecture.
Software architectures describe the components and the relationships among the

components in detail. It provides deployers a clear and pellucid blueprint for system
partitioning. With the guide of the blueprint, deployers can get the information of
every component quickly, find out the dependency between components, the
frequency of the communications of the components, etc. With so much information,
deployers can understand the whole system sufficiently and have abundant clues to
partition the system. For instance, in the software architecture of JPS, the components
ProfileEB, AddressEB, UserEB all only provide the local interfaces but no remote
ones. In J2EE specification, the local interface must be used in the same JVM. As a
result, the components which will communicate with the former ones must be
deployed to the same node. These components are CustomerEB, CreditCardEB,
SignOnSB.

Principle2: considering the limits of resources and services of the nodes before

distributing.
In a distributed environment, the nodes are different from one another and every

node has its’ own resource and service. So deployers must consider the limits of
resources and services. In this case, there is just one node, the Cluster provides the
security service and its reliability reaches 99.7%. According to the goal A and B, the
components OPCAdminFacadeEJB, AdminWAR, SupplierWAR, SignOnSB and
PurchaseOrderEJB must be deployed in the Cluster.

Architecture Based Deployment of Large-Scale Component Based Systems 133

Principle3: considering the status of the network.
In a distributed environment, the bottleneck of a system sometimes is the network.

The transmit delay, bandwidth and topology structure might affect the system’s
performance greatly. So deployers should try their best to avoid these effects. For
example, the components which communicate frequently should be deployed on the
same node; the components which communicate frequently but isn’t allowed to be on
a same node should be deployed on the nodes with high-quality network connection;
the components which should access the resources frequently, such as databases,
should be deployed on the node with the resources. In light of the relationships of the
components, deployers can divide the whole system into three parts: part I is
concentrated on the business processes of browse and purchase; part II is for orders
management; part III is for the suppliers to offer.

Principle4: considering the condition of load in every node and try to keep the

balance of the nodes’ load.
Deployers should distribute the parts, which are partitioned from the system to

the nodes, based on the resource requirement of every part. For example, the
component which will be called frequently should be deployed on the node with low
load. In JPS, the main business processes are concentrated on part I, business
processes of browse and purchase, so this part should be deployed on the node with
low load. From the resource consumption view of CADTool, deployers should find
out that the Cluster meets the requirement first and then deploy the part I to the
Cluster.

Principle5: when deploying the components which are involved in several

composite components, deployers should deploy such components with the composite
ones together.

In the software architecture, there are not only the simple components but also the
composite components that are made up of several simple components. In general,
interactions among the internal components of a composite component are very
frequently. So these components should be deployed on the same node. The different
composite components maybe involve the same simple components and as the result
the same simple components might be deployed onto more than one node at the same
time. In JPS, the composite components (Customer, PurchaseOrder, Supplier,
SupplierPO) all involve with a set of simple components: ContactInfoEB,
CreditCardEJB, AddressEB. The four composite components are deployed on the
Cluster and the Server2. Then the deployers should deploy the three simple
components on the two nodes also. Note that, without the software architecture rebuilt
from the design artifact, it is impossible to make such decision, or the performance
may be decreased significantly when deploying the three components onto only one
node. In that sense, this principle partially proves the advantage of introducing
software architecture into deployment and we hope to find more principles like that.

Principle6: Not only the factors of technique but the ones of non-technique should

be considered in the deployment.
In fact, to deploy the system, deployers need to consider not only the technical

factors but the ones of non-technique, such as the costs. Then deployers might have to
make the tradeoff between the two kinds of factors to satisfy the customer. During the

134 Ling Lan et al.

deployment of JPS, the components AdminWAR and ShoppingClientControllEJB are
deployed on the Cluster. If deployers just consider the performance, the Component
AsyncSenderJAR, which communicates with the former two components frequently,
should be deployed on the Cluster also. But the cost of the Cluster is much higher
than the costs of other two nodes. According to deployment goal E, deployers should
make a tradeoff between principle 3 and 6. As the principle classification framework,
the priority of principle 6 is higher than priority of principle 3. So the component
AsyncSenderJAR should be deployed on the Server1, with lower performance but
much lower cost.

With the principles mentioned above, deployers can work out the deployment plan.

Table 3 shows the deployment plan. The column Principles shows which principles
we consult to partition JPS.

Table 3. The deployment plan

Nodes Components Principles

Cluster

PetStoreWAR, ShoppingClientControllerEJB,
ShoppingClientFacadeEJB, ShoppingCartSB CatalogEB,
SignOnSB, UserEB, CustomerEB, ProfileEB,
AccountEB, CreditCardEJB, ContactInfoEB,
AddressEB, OPCAdminFacadeEJB, AdminWAR,
PurchaseOrderMDB,InvoiceMDB, OrderApprovalMDB,
PurchaseOrderEJB, ContactInfoEB, CreditCardEJB,
AddressEB, LineItemEB, SupplierWAR

1,2,3,4,5

Server1

AsyncSenderJAR, ProcessManagerSB, ManagerEB,
MailInvoiceMDB, MailOrderApprovalMDB,
MailCompletedOrderMDB

1,3,4,6

Server2

SupplierOrderMDB, OrderFulfillmentFacadeEJB,
InventoryEJB, SupplierOrderEJB, CreditCardEJB,
ContactInfoEB, AddressEB,

1,3,4,5

5.2.3 Installing the Systems
Based on the deployment plan, deployers can use the CADTool to add essential
information to every component, then partition the systems into three parts and
distribute every part to the corresponding node. In fact, in terms of the drag-and-drop
deployment of CADTool, after deployers analyzing the system with the principles, the
system has already been partitioned and which nodes the components should be
deployed onto is also specified.

5.2.4 Evaluating the Results of the Deployment and Redeployment when
Necessary

Principle7: the newly deployed system should work well and not affect the
deployed ones too badly. Otherwise deployers have to revise the deployment plan.

From the feedback of the runtime systems, deployers can get the result of
deployment and judge whether the deployed systems meet all of their deployment
goals. If not, a redeployment is needed. In this case, supposed that the deployed JPS

Architecture Based Deployment of Large-Scale Component Based Systems 135

meets the goals, but it consumes vast CPU and memory in the Server1. As a result,
another J2EE application JST (Java Smart Tickets) [26], which is deployed on the
Server1 previously, doesn’t have the desired throughput and response time. At the
same time, the Server2’s load is comparatively light. Considering the software
architecture and runtime environment of JPS and JST, deployers can make the
decision to redeploy the JST to the Server2.

6 Discussion and Related Work

The greatest contribution of this approach is to introduce software architecture into
deployment. Though we utilize ABCTool for architecture modeling with ABC/ADL
in the case study, the approach is general and doesn’t rely on ABCTool and
ABC/ADL. When a new modeling language is introduced to describe the architecture,
we just need to work out a new parser for the CADTool to parse the new language.
The CADTool is built to help deployers to deal with the challenges of the deployment,
which are mentioned in section 2. It visualizes the architecture models in the
development and some essential factors of the runtime environment also, transforms
the information from the development to the deployment, and provides the operations
to partition and distribute the systems visually. In practice, some work such as
building the goals or determining the tradeoffs, must be performed by deployers
themselves. The CADTool only shows the factors to be considered in the deployment
and the principles simply play a guider’s role. The deployment is just semi-automatic
in the approach at present.

We would like to consider some related work about the deployment and correlative
tools. Traditional deployment tools in J2EE support to deploy an application into any
local or remote application servers [24]. Some tools claim to be built for the Model
Driven Architecture (MDA) [19], supporting to generate the source code and
deployment information automatically from the design artifacts. However, to the best
of our knowledge, none of them helps deployers to understand and analyze the
desired functions and qualities of the systems to be deployed, provides the runtime
states of the distributed environment, and allows partitioning and deploying the
system onto more than one node simultaneously.

Rutherford et al. discussed an approach to J2EE deployment [16]. In this approach,
a prototype tool, called BARK (the Bean Automatic Reconfiguration framework), is
designed to facilitate the management and automation of all the activities in the
deployment life cycle for EJBs. SmartFrog (Smart Framework for Object Groups) is a
framework for describing, deploying, igniting and managing distributed applications
[12]. This framework has a deployment infrastructure that interprets system
descriptions, realizes the systems’ subcomponents in the correct order and binds them
together. BARK and SmartFrog concentrate on the aspect that how to perform the
activities in the deployment correctly and efficiently according to the configuration
that deployers provide, while our approach emphasize supporting deployers to work
out a better configuration of the deployment.

Dearle et al. proposed a framework for constraint-based deployment and automatic
management of distributed systems [1]. In this framework, a purely declarative and
descriptive architectural description language, named Deladas, is used to describe a

136 Ling Lan et al.

deployment goal. To satisfy the goal, an automatic deployment and management
engine (ADME) tries to generate a configuration, which describes which components
are deployed in which nodes. After the initial deployment, the ADME will monitor
the deployed system to check whether the deployment satisfies the original goal and
re-deploy the application if necessary. This approach has the similar philosophy to our
approach on the role of software architecture in the deployment. However, this
approach ignores the plentiful knowledge derived from the development and the
runtime states of nodes. Without such knowledge, it is very difficult to generate the
proper configuration in a manual or automatic way.

Rakic et al. propose the DeSi environment to support flexible and tailorable
specification, manipulation, visualization, and (re)estimation of deployment
architectures for large-scale, highly distributed systems [18]. DeSi studies deeply on
how to take the availability into account in the deployment, including defining a
formal foundation and investigating six algorithms to automatically generate the
deployment plan. However, in DeSi, the formal specification of the deployed system
has to be written by hand and some values in the specification are difficult to retrieve
without the support of runtime environments. On the other hand, the formal
specification can be automatically generated in CADTool with the plentiful
knowledge derived from the development and runtime states of nodes. In our opinion,
the work of DeSi can improve the reliability calculation of CADTool, which is under
development. Moreover, DeSi only takes the availability into account while CADTool
tries to facilitate the tradeoff between multiple qualities.

Clarke et al. provide an object confinement discipline for static verification of
components’ integrity when the components are deployed into a J2EE application
server [5]. The confinement rules are simple for developers to understand, require no
annotation to the code of EJB components. In our approach, the deployment
information is transformed from the design artifacts automatically, which in nature
ensures the components’ integrity. However, if the design artifacts are not available,
deployers have to fill the numerous deployment description elements by hand. At that
time the object confinement discipline is helpful to accomplish the verification.

In some sense, the deployment can be considered as a means to allocate resources
for the best-of-the-breed resource utilizations. Resource management is a hot topic in
some emerging new paradigms of distributed computing, especially the grid
computing [14][13] and autonomic computing [15]. They try to automatically allocate
the resources for a given application without human intervention. It is ideal but as
they claim it is very far away from implementation and practice. Moreover, in this
paper, we can conclude that the resource allocation is so challenging for an expert. In
our opinion, only after people know how to allocate resources and conclude a set of
sophisticated principles, the degree of automation can be improved more or less but
the full automation still has a long way to go. In other words, it is feasible, practical
and urgent to study how to facilitate instead of substitute people in deployment
nowadays.

Architecture Based Deployment of Large-Scale Component Based Systems 137

7 Conclusion and Future Work

In this paper an architecture-based approach is proposed for deploying large-scale
component-based systems into open and dynamic runtime environments. With the
help of the software architecture, deployers can understand the whole system
precisely and quickly, build up the goals of the deployment, partition the system,
evaluate the result of the deployment plan and re-deploy when necessary. We
demonstrate this approach in J2EE. A graphical assembly and deployment tool, called
CADTool, is built to assist the deployment. Furthermore, a set of principles are
provided to help deployers make decisions when deploying. A case, which shows
how to deploy a J2EE blueprint application in a distributed environment, is illustrated.

As we discussed previously, there are many open issue to be addressed. Our future
work will focus on the following aspects: carry out more tests or benchmarks and try
to apply the approach for industrial software systems; establish quantitative models to
describe the goals and the result of the deployment; formulize the principles; based on
the models and formulations, devise the algorithms to deploy/redeploy systems more
automatically.

Acknowledgements

This effort is partially sponsored by the National Key Basic Research and
Development Program of China (973) under Grant No. 2002CB31200003; the
National High-Tech Research and Development Plan of China (863) under Grant No.
2004AA112070; the National Natural Science Foundation of China under Grant No.
60125206, 60233010, 60403030, 90412011; and the IBM University Joint Study
Program.

References

1. A. Dearle, G.N.C Kirby, A.J. McCarthy: A Framework for Constraint-Based Deployment
and Autonomic Management of Distributed Applications. International Conference on
Autonomic Computing (ICAC’04), New York, USA (2004)

2. A. van Deursen: Software Architecture Recovery and Modeling: [WCRE 2001 discussion
forum report]. ACM SIGAPP Applied Computing Review, Vol. 10, No. 1 (2002) 4–7

3. Brown, A.W., Wallnau, K.C.: The Current State of CBSE. IEEE Software. Vol. 15, No. 5
(1998) 37–46

4. C. Szyperski: Component Software: Beyond Object-Oriented Programming,
Addison-Wesley (1997)

5. D. Clarke, M. Richmond, J. Nobel: Saving the World from Bad Beans: Deployment-time
Confinement Checking. Object-Oriented Programming, Systems, Languages &
Applications (2003) 374–387

6. D. Garlan: Software Architecture: A Roadmap, The Future of Software Engineering 2000,
Proceedings of 22nd International Conference on Software Engineering, ACM Press,
(2000) 91–101

7. D. Perry, A. Wolf: Foundations for the Study of Software Architecture, ACM SIGSOFT
Software Engineering Notes, Vol. 17, No. 4, (1992) 40–52

138 Ling Lan et al.

8. G. Huang, H. Mei, Q.X. Wang: Towards Software Architecture at Runtime. ACM
SIGSOFT Software Engineering Notes, Vol. 28, No. 2, March (2003)

9. G. Huang, M. Wang, L. Ma, L. Lan, T. Liu, H. Mei: Towards Architecture Model based
Deployment for Dynamic Grid Services. In Proceedings of IEEE International Conference
on E-Commerce Technology for Dynamic E-Business (CEC-EAST) (2004) 14–21

10. H. Mei, G. Huang: PKUAS: An Architecture-based Reflective Component Operating
Platform, invited paper, 10th IEEE International Workshop on Future Trends of
Distributed Computing Systems, Suzhou, China, May (2004) 26–28

11. H. Mei, J.C. Chang, F.Q. Yang: Software Component Composition based on ADL and
Middleware, Science in China(F), Vol. 44, No. 2, (2001) 136–151

12. HP Labs: SmartFrog, http://www.hpl.hp.com/research/smartfrog
13. I. Foster, C. Kesselman, J. M. Nick, S. Tuecke: The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integration. June (2002)
14. I. Foster, C. Kesselman, S. Tuecke: The Anatomy of the Grid: Enabling Scalable Virtual

Organizations. International Journal of High Performance Computing Applications, Vol.
15, No. 3 (2001) 200–222

15. J.O. Kephart, D.M. Chess: The Vision of Autonomic Computing. IEEE Computer,
January (2003) 41–50

16. M. Rutherford, K. Anderson, A. Carzaniga, D. Heimbigner, A. Wolf: Reconfiguration in
the Enterprise JavaBean Component Model. 1st International Working Conference on
Component Deployment, Berlin (2002) 67–81

17. M. Shaw, D. Garlan: Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall (1996)

18. M.M. Rakic, S. Malek, N. Beckman, N. Medvidovic: A Tailorable Environment for
Assessing the Quality of Deployment Architectures in Highly Distributed Settings, 2nd
International Working Conference on Component Deployment, Edinburgh, UK (2004)
1-17

19. OMG: Model Driven Architecture, http://www.omg.org/mda
20. OMG: OMG Unified Modeling Language Specification, Version 1.5, formal,

http://www.omg.org/uml (2001)
21. P. Kruchten: The 4+1 view model of architecture. IEEE Software, Vol. 12, No. 6 (1995)

42–50
22. Sun Microsystems. Java 2 Platform Enterprise Edition Specification, Version 1.3,

Proposed Final Draft 4, http://java.sun.com/j2ee (2001)
23. Sun Microsystems: Enterprise JavaBeans Spec. Version 2.1 (2002)
24. Sun Microsystems: Java 2 Platform Enterprise Edition Management Specification, v1.0

(2002)
25. Sun Microsystems: Java Pet Store Sample Application.

http://java.sun.com/developer/releases/petstore
26. Sun Microsystems: Java Smart Ticket Sample Application.

http://java.sun.com/developer/releases/smarticket

Component-Based Open Middleware Supporting

Aspect-Oriented Software Composition

Bert Lagaisse and Wouter Joosen

Dept. of Computer Science, K.U.Leuven, Belgium,
{Bert.Lagaisse, Wouter.Joosen}@cs.kuleuven.ac.be

Abstract. State-of-the-art middleware for component-based distributed
applications requires openness to support a broad and varying range of
services. It also requires powerful and maintainable composition between
application logic and middleware services. In this paper we describe Dy-
MAC (Dynamic Middleware with Aspect-Components), a component
and aspect-based middleware framework that supports component-based
development of middleware services and offers the power of aspect-ori-
ented composition to connect the application logic to the middleware
services. We discuss the issue of a lack of expressive power in the con-
tracts of components and aspects when combining component-based and
state-of-the-art aspect-oriented development. We describe how the Dy-
MAC framework offers a component model that solves this problem with
aspect integration contracts.

1 Introduction

Software systems nowadays often have a complex distributed architecture. Non-
functional requirements like availability or security therefore involve complex
support based on distributed algorithms. A typical example is a large-scale dis-
tributed application with distributed transactional behavior and a centralized
authentication server. The goal of a middleware layer is to isolate this com-
plex support from the functional application logic. We focus in this paper on
component-based systems that offer support for designing the application logic
of distributed applications. An example of such a component framework is Enter-
prise Java Beans [11]. The middleware layer we envisage for such a component
framework is a set of services that supports the implementation of the non-
functional concerns. Our DyMAC framework offers support for two important
challenges that state-of-the-art commercial middleware layers still are troubled
with.

1. First, the services offered by current middleware layers and platforms are
often a closed, limited set. They are not, or only in a limited way adaptable
or extensible. Such middleware can be seen as a kind of black box [3]. But
the different requirements of software developers towards the middleware
layer are often application specific or beyond the provided services of the
middleware. This requires that the middleware is extensible with applica-
tion specific middleware services. But also the different requirements of the

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 139–154, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

140 Bert Lagaisse and Wouter Joosen

simultaneous end-users of the application require new and potentially con-
current versions of certain middleware services [16]. Also updates of existing
services of the middleware layer occur frequently. All these new require-
ments involve adaptability and extensibility of the middleware layer. It has
to evolve from a black box to an open framework where middleware services
can be adapted and added.

2. The second problem is situated in the composition of the application logic
with the middleware services. The composition logic for services like trans-
actions and security is strongly intermixed with the application logic. The
composition problem with such concerns is often referred to as the crosscut-
ting concern problem [4].

Both component-based as well as aspect-based software engineering tech-
niques can contribute to a solution. The first problem can be addressed by in-
tegrating properties of component-based software development (CBSD)[1]. The
second problem can be tackled by applying concepts from aspect-oriented soft-
ware development (AOSD)[4]. AOSD is a promising technology for the problem
of crosscutting concerns. Middleware and non-functional development concerns
are part of the key application domain of AOSD research [9] [10]. In this pa-
per we discuss the DyMAC middleware framework that offers a solution for the
challenges mentioned above by combining the advantages of CBSD and AOSD.

The paper is organized as follows: in the second section we summarize how
aspect-oriented software design and component-based software design can con-
tribute to a solution for the challenges we mentioned above. In the third section
we discuss the problems that are introduced by combining the two software
development paradigms. The fourth section illustrates these problems with an
example. In the fifth section we describe our DyMAC framework. In the sixth
section we compare our solution with the related work in the research domain.
Finally, we conclude.

2 The Promise of Integrating Advantages from CBSD
and AOSD

In this section we summarize how CBSD and AOSD can contribute to a solution
for the challenges we mentioned above. First we explain how component-based
techniques can offer extensibility and adaptability of the middleware layer. In
the second subsection we explain how aspect-based software composition can
contribute to the problem of crosscutting composition logic.

2.1 Component-Based Open Middleware

Our first goal is to define a modularly adaptable and extensible architecture for
middleware platforms. This includes a definition of the best unit of modularity
for a middleware service. It should be possible to make a middleware service
deployable and reusable as one software unit. Component-based software de-
velopment brings a unit of modularity that can achieve our first goal. In [1] a

Component-Based Open Middleware 141

software component is defined as a unit of composition with contractually spec-
ified interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third parties. A
component-based approach to a middleware platform, where middleware services
are modularized as software components, meets the requirements of extensibil-
ity and adaptability. Middleware services can be developed by third parties as
components and can be deployed into a middleware framework. Composition of
application logic with the middleware services (which are components) can be
realized using the connectors of the provided interface.

However, the connectors of the provided interfaces of components are often
methods. This is a consequence of the object-oriented design on which a lot of
component frameworks are based. The calls to the provided methods of the mid-
dleware service are scattered throughout the application logic, and this causes
the problem of crosscutting composition logic.

2.2 Aspect-Based Middleware

Aspect-oriented software design is about modularizing crosscutting concerns.
Aspects are first class entities that encapsulate a certain behavior (often called
advice) and also the instructions on where, when and how to invoke this be-
havior [4]. Aspect-oriented programming languages offer special programming
constructs to specify well localized places in the structure or execution flow of
an application. These places are called join points and depend on the main de-
composition paradigm of the application. In an object-oriented application, join
points can be method definitions, method calls, access to private class members,
constructor calls . . . The programming constructs that can define a set of those
join points are called pointcut designators. These pointcut designators are the
key for enabling the modularization of crosscutting concerns. They provide a
way to talk about doing something at many places in a program with a single
statement (also called quantification [6]).

An aspect-based approach for the composition of application logic and mid-
dleware services offers a solution for the problem of crosscutting composition. It
is even possible to manipulate internal application logic and application state,
e.g. by accessing and modifying internal class members. From one point of view
this could be interesting, because middleware services sometimes need access
to the internal state of the application logic, e.g. for persistence, state synchro-
nization in load balancing systems or state transferal in fail-over systems. But
from another point of view, access to the whole internal structure of an applica-
tion breaks encapsulation and can cause a lot of unforeseen problems, which are
discussed in the next section.

3 Technical Challenges when CBSD Meets AOSD

A lot of recent research in aspect-oriented software development is situated in
the domain of the integration of AOSD and CBSD (Caesar [14], JasCo [13], JAC
[12], JBoss/AOP [15]). This integration of AOSD and CBSD is twofold.

142 Bert Lagaisse and Wouter Joosen

1. A first facet of the integration is integrating AOSD into CBSD. This includes
offering support for aspect-oriented composition in a component-based sys-
tem.

2. A second facet of the integration is applying the principles of CBSD onto
AOSD software modules. Aspects itself should be handled as components.

In this twofold integration, aspects evolve into a concept of software modules
combining the advantages of components and aspects. We shall call these new
software modules aspect-components. A typical form of aspect-components is
that they encapsulate the advice of an aspect. The interface of an aspect-
component provides connectors that make it possible to superimpose the advice
on join points in the base components, which are often object-oriented. The kind
of advice that the aspect-components can provide is before-advice, after-advice
and around-advice [5]. The actual composition of the base components with the
aspect-components is specified separately in the composition logic that composes
the different components into an application. In this composition logic the base
components and aspect-components are connected using pointcut designators
that define the set of join points where the aspect-component is superimposed.
In the remainder of this section we first discuss the problems that occur when
combining the advantages of components and aspects into this new software
module.

When composing multiple software components, one of the important issues
is managing interference. This means one needs to express and control which
modules may use and affect each other. In an object-oriented or component-based
software design, each artifact can be equipped with a contract that specifies the
provided functionality and the needed (required) functionality that describes the
dependencies of a component on other components. In principle, correct behavior
can be guaranteed if a component has been designed defensively and if it strictly
implements its contract. When aspect-oriented composition is applied, this is no
longer guaranteed. The composition of a component with an aspect can cause a
component to no longer meet its contractual obligations.

We observe that the state-of-the-art notion of a contract is no longer suf-
ficient in an aspect-oriented programming environment. When a component is
composed with an aspect by means of superimposition, there is no expressive
power to specify the following:

1. The component must specify what the component provides towards the as-
pect, i.e. which interference is permitted from certain (types of) aspects.
Aspects are often services that are orthogonal with the components func-
tionality, and therefore, the component’s contract and provided interfaces
are not always suitable for composition with an aspect. Therefore the con-
tract of the component needs to be extended with the required expressive
power about composition with aspects.

2. An aspect must specify what the aspect requires from the components it is
applied to and which behavior it provides. This also includes in which way
it affects those components.

Component-Based Open Middleware 143

These two facets of the lack of expressive power are explained hereafter. The
most important consequences of these shortcomings are also shortly discussed.

The first lack of expressive power : the component contract. The first lack of
expressive power is problematic in combination with certain join point models
of aspect-oriented technologies. The join point model is the set of possible places
in the structure or execution flow of an application that can be localized by the
aspect language to apply certain behavior. In current state-of-the-art aspect-
component technologies, we can distinguish two approaches to join point models:

1. Some aspect technologies allow complete, uncontrolled access to the whole
internal implementation of the (component-based) application logic, overrid-
ing all scope modifiers and breaking encapsulation. This approach neglects
the provided interfaces of the component because of the orthogonality of the
component and the aspect. This can lead to uncontrolled semantic inter-
ference. This uncontrolled semantic interference of an aspect with the base
component can cause undesirable exposure and modification of data and un-
desirable exposure and modification of behavior. A more detailed illustration
of these problems is elaborated in [17].
A second problem with providing the whole implementation structure of the
component as an interface towards aspects is that it also makes an aspect
too strongly tied to the component and therefore reusability of the aspect is
compromised. It is clear that the notion of provided interface towards aspects
must respect a certain form of encapsulation to achieve reusable aspects and
adaptable application components.

2. Other aspect technologies limit the join point model to the interface of a func-
tional component that is provided towards other functional components (e.g.
in JasCo [13] only public methods of a Java Bean are a possible join point for
aspects). From our point of view, where aspect technology is used for com-
position with middleware services, this approach is not powerful enough.
Because, as mentioned above, middleware services sometimes need access to
the internal state of the application. An example of this need is illustrated
in the next section.

The second lack of expressive power: the aspect contract. State-of-the-art aspect
technologies do not offer the possibility to contractually specify an aspect. There
is also no clear notion of what really defines the interface of an aspect. This lack of
expressive power is problematic in order to obtain a notion of aspect-component.
An aspect should be able to include in its specification what it requires from
other components, other aspect-components and the underlying platform. The
specification should also include what functionality the aspect provides and in
which way it affects the components it is composed with.

The scope of this paper is the composition of a component with an aspect-
component and hence we focus on the specification of aspect-components con-
cerning their requirements towards the base components and how they affect
those components. In the example in the next section we illustrate these two
needs of expressive power.

144 Bert Lagaisse and Wouter Joosen

4 Illustration

To explain the problems above we illustrate them with a rather pedagogical
example. Suppose that an entity person is the key abstraction in a software
system. A person is uniquely defined by his social security number and has a
name and a birth date. The software entity person also provides an inspector
isAdult to check if the person is an adult. Because of privacy reasons a person
object should never expose its age or birth date. But it is a necessary property
to know whether a person is an adult. The birth date also needs to be stored in a
database. If the persistence service is delivered as an aspect, then the persistence
aspect needs access to the birth date property, while other software entities
should not be able to access this property. The code of the person and the
persistence example is shortly illustrated below in Java and pseudo-Aspect/J
[5]:

public class Person{
private Date birthDate ;
private St r i ng name , ssn ;

public Person (S t r i ng ssn , S t r i ng name , Date birthDate){
// i n i t i a l i z a t i o n }
private void se tBi r thDate (Date bd){}
private Date getBirthDate { . . . }
public void setName(S t r i ng name){}
public St r i ng getName () { . . . }
public St r i ng getSsn () { . . . }
public boolean i sAdul t (){
// der ived from bir thDate}}

Aspect Pe r sonPe r s i s t ence{
//on construc tor execut ion inse r t into database
a f t e r (Person p) : execut ion (Person .new (. .)) && this (p){

DataBase . i n s e r t (p . ssn , p . name , p . birthDate) ; }
// a f t e r mutator execut ion update database
a f t e r (Person p) : execut ion (∗ s e t ∗ (. .)) && this (p){

DataBase . update (p . ssn , p . name , p . birthDate) ; }}

The contract of the person class certainly specifies that it provides the isAdult
functionality. Towards other modules the birth date property remains hidden.
However, this property has to be exposed towards the persistence aspect, be-
cause that aspect requires person to expose encapsulated state that needs to be
persistent. Therefore the contract of the persistence aspect must specify that it
requires access to the encapsulated (i.e. private) state of a person object. The
aspect also needs to specify how it affects the state: will it inspect and/or modify
the state.

This section described an example that illustrated the lack of expressive
power in the specification of the functional components as well as in the specifi-
cation of the aspect. In the next section we describe how the component model of
DyMAC offers the kind of component types to support aspect-oriented compo-
sition. We also describe how the component model offers the expressive power in
the specification of components and aspect-components to tackle the problems
we discussed.

Component-Based Open Middleware 145

5 DyMAC: Dynamic Middleware with Aspect-
Components

DyMAC is an initial step in our search for a component-based open middleware
framework with support for aspect-oriented composition. In this section we first
describe the structure of DyMAC applications and the different abstractions
into which a DyMAC application can be decomposed. In the second subsection
we explain how we applied the principles of component-based software develop-
ment to those abstractions mentioned in the previous subsection. In this way we
achieve component-based building blocks for applications. We also discuss the
specification of the components that relates to aspect-oriented composition with
other components. Next, we explain how applications can be composed out of
those component-based building blocks and how aspect-oriented composition is
supported.

5.1 Structure and Overview

The top-level architecture of a DyMAC application can be described as a dis-
tributed and layered architecture. As mentioned in the introduction and moti-
vation, the domain of our research is middleware for complex distributed appli-
cations. A DyMAC application consists of different subsystems that are running
on different nodes in a network. A second property of the top level architecture
is its subdivision into two layers: A functional layer on top and a middleware
layer underneath. The functional layer contains the core application (or business)
logic. The middleware layer offers non-functional services. In [2] a layer is defined
as a coherent set of related functionality. In a strictly layered structure, layer n
may only use the services of layer n-1. In practice this structural restriction is
often lessened; Layers are often designed as abstractions that hide implementa-
tion specifics below. This latter approach is also what applies to the middleware
layer in DyMAC. Sometimes application specific information is needed from the
functional layer towards the middleware layer (recall the person persistence as-
pect). This can cause up-calls from the middleware layer to the application logic,
which breaks the restriction of strictly layered structures.

Each layer in the architecture of a DyMAC application further decomposes
into abstractions that are the basic building blocks for the applications. In the
remainder of this subsection we describe these abstractions and their main func-
tion. In the next subsection we elaborate on how these abstractions can be
specified as components to achieve a component-based decomposition.

Functional Layer Decomposition. The functional layer contains two kinds
of components: functional components (abbreviated to funcos) and client com-
ponents (shortly called clients).

A funco abstracts a key concept of the functional domain. It provides a
constructor to instantiate objects that can have a certain state and that provide
certain operations. An object of a functional component can send a message to

146 Bert Lagaisse and Wouter Joosen

Node

Functional Layer

FunctionalComponent C

Middleware layer

Connector Components

Middleware Services

InterfaceC

Extension A

MiddlewareService A1

MiddlewareService A2

Connector A

before

after

Extension B

Connector B

MiddlewareService B1

MiddlewareService B2

before

after

IState

IA1

IA2

Fig. 1. Different component types in the DyMAC framework

another object of any functional component to invoke an operation. That other
object sends a return message with the result of that operation.

Client components are a special kind of funcos. They only provide one oper-
ation: an entry point for starting the execution of an application.

Middleware Layer Decomposition. The middleware layer consists of a col-
lection of middleware extensions that offer non-functional services to the func-
tional layer of the application. The middleware layer has a 2-layer architecture.
On the lowest layer it has a service layer, providing the different middleware ser-
vices, on the highest layer it contains connectors, which are used to connect the
functional components to the middleware services. Thus, a middleware extension
typically consists of a collection of connectors and middleware services.

The service layer is decomposed into middleware service components. These
components are abstractions of the different non-functional services in the service
layer. Alike functional components, middleware services can be instantiated and
can have state and behavior. Possible examples of middleware services are an
encryption service or an authentication service.

The connector layer is decomposed into connector components. A connector
component encapsulates the (otherwise crosscutted) calls to the middleware ser-
vices. The state of the funcos and the runtime arguments of invoked behavior on
funcos are possible arguments of the connector’s invocations to the middleware
services. Therefore a connector component has to be able to inspect and mod-
ify the state of a component in the functional layer, but it also has to be able

Component-Based Open Middleware 147

to inspect and modify the messages that are sent between the components in
the functional layer. The connectors use the middleware service components to
apply the non-functional services to the functional components. The connectors
can intercept any message that is sent and add behavior before and after they
forward the message to its destination. They can also alter the message or even
block it. The technique of interception is a widely used mechanism to achieve
aspect-oriented composition. Further is illustrated how these connectors provide
a mechanism for quantification.

Decomposition into extensions. The middleware layer is decomposed into mid-
dleware extensions. These middleware extensions contain a set of caller-extensions
and callee-extensions. Caller and callee refer to the sender and receiver when a
message is sent between two functional components.

– Caller extensions itself consist of a collection of connectors that can intercept
outgoing messages of funcos and a collection of middleware service compo-
nents needed at the caller-side.

– Callee extensions itself consist of a collection of connectors that can intercept
incoming messages and a collection of middleware service components needed
at the callee side.

5.2 Component Types

Each abstraction in the framework has to be modularized in the form of a compo-
nent, i.e. a unit of composition with contractually specified interfaces and explicit
context dependencies only. Each abstraction should be deployable independently
and can be subject to composition by third parties. We believe only strict com-
pliance with Szyperski’s definition, which contains the basic principles to achieve
a true component-based architecture, can eliminate today’s problems that are
involved with aspect-oriented composition. In the description of the component
model we will focus on the specification of the functional components and mid-
dleware extensions as units of composition with contractually specified interfaces
and explicit context dependencies. Especially we will elaborate on the provided
interface of a functional component towards a middleware extension and the
dependencies of a middleware extension towards a functional component.

Functional Components. A funco abstracts a key concept of the functional
domain. We discuss the interfaces and the contracts of a functional component
and especially focus on the interfaces and contracts towards the middleware
extensions. Because the description of client components is analogue we will not
elaborate on them.

Requirements and provisions towards other functional components. As a com-
ponent a funco has to specify its provided and required interfaces. The provided
interface specifies the operations that it provides towards other components in
the functional layer. This provided interface consists first of a specification how

148 Bert Lagaisse and Wouter Joosen

to instantiate the component, and secondly it contains the provided methods on
instantiations of the component. The required interfaces are the dependencies of
the component. They specify the operations that are required of other functional
components in the system.

Requirements and provisions towards middleware extensions. The aspect inte-
gration contract of the functional component specifies what its requirements and
provisions are towards middleware extensions. This specification contains where
the functional component requires, allows or denies interference of middleware
extensions.

First a functional component specifies which middleware extensions it re-
quires: e.g. a transaction around some of its method-implementations. So this
part of the contract specifies which middleware extensions the component needs
to function properly. These required extensions are typically needed by the im-
plementation of the component. To avoid intermixing non-functional develop-
ment concerns in the implementation of the functional component, these con-
cerns are specified in the requirements part of the aspect integration contract.
In other aspect technologies, the concept obliviousness [6] is often used to argu-
ment that non-functional development concerns should be completely separated
of the functional components. In case of required services to function prop-
erly, keeping the whole functional component oblivious to this need would mean
an essential deficit in the specification of the component. We believe that the
concept of obliviousness of non-functional middleware services only applies to
the implementation of the component, and not the specification of it. Of course,
non-functional services that are not required to function properly should be kept
oblivious of the whole functional component: implementation and specification.

The interface that a functional component provides towards the middleware
layer underneath is a little more complex. It contains the incoming and outgoing
messages that can be inspected and modified, and also the different members
of the state that can be inspected or modified. These two parts of the provided
interface need some explanation:

1. The provided interface towards the functional components mentioned above
defines the collection of incoming messages. The required interfaces define
the collection of outgoing messages.

2. The state of a funco is defined by the properties of the component. These
properties are defined by a get and set operation that access the internal rep-
resentation, which is one or more private class variables. Using properties to
decouple the state of a funco from the actual representation allows changes
to the representation without affecting the provided state members. These
state properties are not directly accessible by the middleware extensions, but
all funcos provide an interface towards the middleware layer underneath to
inspect or manipulate the state of a funco. This interface is a reflective back-
door/callback interface for the connectors in the middleware layer. It defines
operations for inspecting the state and to modify the state. This enables de-
coupling of the middleware extension from a specific functional component

Component-Based Open Middleware 149

and makes it reusable for other applications. Providing this generic interface
to access the state also restricts the access of the (aspectual) middleware ex-
tensions to the internal part of the functional component that the middleware
extensions actually need to access. This is a strongly restricted interface in
comparison with some aspect technologies that provide the whole implemen-
tation structure of the functional component (E.g. The implementation of
the operations). When comparing it to the more restrictive aspect technolo-
gies, that do not provide a way to access the internal state of a component,
this approach certainly offers advantages.

The allowed interference (state inspection and modification and behavior inspec-
tion and modification) can be specified in two ways.

1. For each middleware extensions and for each of the funco’s members (behav-
ior or state) it can specify if inspection or modification is allowed. This first
approach was explained in detail in [17]. It offers the most detailed possibil-
ity to control the interference by middleware extensions but it does limit the
extensibility of the application. It also makes it impossible to keep certain
middleware services oblivious from the functional component. Therefore a
more generic way of specifying interference is also possible.

2. The funco specifies a subset of its behavior and its state that is considered
sensitive. Only middleware extensions that are marked privileged by the
deployer can interfere with this sensitive behavior and state.

An example in DyMAC.NET. Recall the example with the person component.
We shortly list the code of the functional interface and the implementation of
the person component in the .NET implementation of the DyMAC framework.
The functional interface of the component consists of a C# interface specifying
how to instantiate a person, a second C# interface specifying the methods it
provides and a third C# class that implements the specified interfaces. This im-
plementation also specifies the state properties and the internal representation.

This implementation has to provide a constructor with the same arguments as
specified in the specification of the instantiation (IPersonCreate). The DyMAC
framework uses this constructor to instantiate the component when the DyMAC
instantiator is called. The DyMAC instantiator is a static method with a variable
numbers of arguments. In this way it can easily be used to instantiate any
functional component.

public interface IPersonCreate {
IPerson c r e a t e (s t r i ng ssn , s t r i n g name , Date birthDate) ; }

public interface IPerson {
s t r i n g getSsn () ;
void setName(s t r i n g name) ;
s t r i n g getName () ;

public class Person : FunCo , IPerson {
public Person (s t r i n g ssn , s t r i n g name , Date birthDate) { . . . }
private Date BirthDate{
get { . . . }
s e t (Date va lue) { . . . }

}
. . . }

150 Bert Lagaisse and Wouter Joosen

For the specification of components in DyMAC.NET we use XML-files. It
contains the name of the component, the provided interfaces, the required in-
terfaces, the implementation, and the aspect integration contract. The current
form of an aspect integration contract in DyMAC specifies the members of the
component that are provided to normal middleware extensions and the sensi-
tive members that are only provided towards privileged middleware extensions.
The members of a component can be constructors, methods and state members.
Specifying required middleware extensions is still part of our ongoing work.

The following example illustrates the structure of the specification and fo-
cuses on the aspect integration contract. All members of the component that are
related with the birth date are marked sensitive for inspection and modification.

<funco><name>Person</name>
<provided>...</provided>
<implementation>...</implementation>
<required>...<required>
<aspect-integration>
<provided> <!-- towards all aspect-components -->
<method>string getSsn()</method>
<method>void setName(string name)</method>
<method>string getName()</method>
<method>string askName(IPerson p2)</method>
<method>IPerson clone()</method>
<state>string name</state>

<provided>
<sensitive><inspect/><modify/>
<constructor>create(string ssn, string name, Date bd)</constructor>
<method>void setBirthDate(Date bd)</method>
<method>Date getBirthDate()</method>
<state>Date birthDate</state>

</sensitive>
</aspect-integration>

</funco>

The Service Layer Components. Middleware service components are speci-
fied in quite the same way as functional components. They specify their provided
interfaces towards the connectors and other middleware services. They also spec-
ify the interfaces they require from other middleware services they use.

The main difference is they don’t have to specify an aspect integration con-
tract. Aspect-oriented composition is only supported between the functional
layer and the middleware layer. A hierarchic aspect-oriented composition strat-
egy, where messages between service layer components can be intercepted is out
of the scope of this paper, but certainly not out of the scope of our ongoing
work.

When we return to the example, the interfaces and implementation of the
person persistence service are straightforward.

public interface IPe r sonPe r s i s t en c e { . . .
void i n s e r t (s t r i n g ssn , s t r i n g name , Date bd) ; }

public interface IPe r sonPe r s i s t en ceCrea te{
IPe r sonPe r s i s t en c e c r e a t e () ; }

public class Pe r sonPe r s i s t ence { . . .
public void i n s e r t (. . .) {
// inse r t into p e r s i s t e n t s torage (database , XML− f i l e . . .)

}}

Component-Based Open Middleware 151

<service><name>personpersistence</name>
<provided>
<method-interface>IPersonPersistence</method-interface>
<create-interface>IPersonPersistenceCreate</create-interface>

</provided>
<implementation><class>PersonPersistence</class></implementation>

</service>

Connector Components. All connector components have the same provided
interface: a before and after method that contains the calls to the middleware
services before and after a message is sent or received.

The connector has to specify the set of middleware services it uses as re-
quired interfaces. As a second part of what is required for the connector, the
specification contains explicit dependencies towards the functional components.
This part of the connector’s requirements contains the different members of the
functional components that the connector depends on. Next to that, the con-
nector also specifies how it interferes with those members: i.e. inspecting and/or
modifying them. This interference can be specified on a per member basis or for
all members at once (as in the example below).

In its XML-file the connector also specifies if it applies to the caller or callee
side of the message it is superimposed on. Depending on the side that the message
is superimposed on, a reference to the functional object is provided. So the
connector can inspect or modify the state of that object.

In the example we have to define two kinds of connectors: one for the con-
struction call to insert the person into the persistent storage and one for a
mutator call to update the persistent storage. We have illustrated the code of
the mutator connector and its specification file.

public class MutatorConnector : IConnector{
public void be f o r e (MessageCal l mc , FunCo ob j e c t){}
public void a f t e r (MessageCal l mc , ReturnMessage rm , FunCo ob j e c t){

IPe r sonPe r s i s t en c e ipp = DyMAC. c r e a t e S e rv i c e (” s e r v i c e / p e r s i s t en c e ”) ;
s t r i n g ssn = (s t r i n g) ob j e c t . g e tS ta t e (”Ssn”) ;
s t r i n g name = (s t r i n g) ob j e c t . g e tS ta t e (”Name”) ;
Date bd = (Date) ob j e c t . g e tS ta t e (”BirthDate”) ;
ipp . update (ssn , name , bd) ;}}

<connector><name>mutator connector</name><callee/>
<class>MutatorConnector</class>
<required>
<service>...</service>
<funco></inspection></modification>
<state>String Ssn</state>
<state>String Name</state>
<state>Date BirthDate</state>

</funco>
</required>

</connector>

Middleware Extensions as Components. Middleware extensions consist of
a collection of connectors and middleware services. The provided interface of the
middleware extension is first defined by the provided interfaces of the middleware

152 Bert Lagaisse and Wouter Joosen

services it encapsulates and secondly by the connectors that it contains. The pro-
vided interfaces of the middleware services can also be used by the connectors
of other middleware extensions. These interfaces define the part of the provided
interface of the middleware extension that supports object-oriented composi-
tion. The connectors define the part of the provided interface of the middleware
extension that supports aspect-oriented composition. As illustrated below, the
specification of a middleware extension is a simple list of the components it
contains.
<extension><name>person persistence extension</name>
<connector>constructorconnector.xml</connector>
<connector>mutatorconnector.xml</connector>
<service>personpersistence.xml</service>

</extension>

5.3 Application Assembly

The different components of the application are assembled and composed by
means of a declarative specification. First, all components of the application are
enumerated by linking to the file with their specification. Secondly, the concrete
connections are specified between the functional components and the middle-
ware extensions of the application. In this connection, quantification is realized
by using pointcut designators to compose one or more messages of one or more
components with one or more connectors. In case multiple connectors are super-
imposed on a join point, they are invoked with the following precedence rules:
first the before advices from connector 1 to n are executed, and then the after
advices from connector n to 1.

In the example below, all extensions of the application are marked privileged.
But it is also possible to specify it more fine grained on a per extension, per
connection or per connector basis. The connections in the example are defined
in the scope of the persistence extension, therefore the used connectors in a
connection should be defined in the persistence extension. But in DyMAC, it is
also possible to define connections that are out of the scope of one extension and
that superimpose connectors of different extensions.
<application><name>PersonApplication</name>
... <!-- components in the application -->
<superimposition><privileged/>
<extension>persistence extension
<connection>
<component>Person</component>
<constructor>create(string ssn, string name, Date date)</constructor>
<connector>constructor connector</connector>

</connection>
<connection>
<component>Person</component>
<method>* set*(..)</method>
<connector>mutator connector</connector>

</connection>
</extension>

</superimposition>
</application>

In the initial problem statement, we defined middleware extensions as ap-
plication specific. Therefore extensions can only be connected to components

Component-Based Open Middleware 153

within the same application. It is our intention to extend the connections so it is
also possible to define system wide middleware extensions that can be connected
to funcos of other applications in the system.

How the deployment of the application is specified is beyond the scope of
this paper. In this deployment specification, the dependencies of all components
are bound to actual components in the system. The deployment specification
also allocates the different components of an application on the different nodes
in the network.

6 Related Work

Open ORB [3] starts from the same problem: the need for adaptable middleware
due to application specific needs. Their solution takes the form of reflective
middleware. It uses a reflective API to modify the middleware platform and
introspect its implementation.

JBOSS/AOP, JAsCO and JAC offer support for aspect-oriented composition
in a Java component-based system. They introduce the concept of aspects that
can be used to implement middleware services. But they do not support a true
component-based approach to the aspects itself. The base components in the
functional layer are not aware of possible interfering aspects, and cannot specify
in which way they want to control interference of aspects, e.g. by means of an
aspect integration contract as in the DyMAC framework. In these systems any
possible join point of each Java component can be superimposed with any aspect.

The join point model of JBOSS/AOP exposes a lot of the internal imple-
mentation of components. Possible join points are reads and writes to fields of
the class, but also calls of methods and constructors within the implementa-
tion of a method or constructor. This exposes details about the implementation
of the latter method or constructor. JAsCo limits its join point model to the
public methods and events of Java Beans. As mentioned earlier this limits the
possibilities for middleware extensions when they need access to the state of the
component.

In JAC, the pointcuts that specify where to superimpose an aspect are strings
in the code of the aspect, which limits runtime adaptability of the composition
logic. Externalizing and modularizing this composition logic in a declarative
specification offers better support to change the composition logic without re-
compiling the application.

Lasagne is a runtime architecture that enables dynamic customization of
systems. Based on client-specific needs and context properties it can select and
activate the different extensions in the system. These extensions have the form
of wrappers that implement the same interface as the components they are su-
perimposed on. Just like in the DyMAC framework, wrappers can add behavior
before and after the invocation of a method. Lasagne also lacks the expressive
power to specify which kind of extensions a base component allows. The com-
position logic of Lasagne is also specified in the meta data of the applications,
and not hard coded.

154 Bert Lagaisse and Wouter Joosen

7 Conclusion

In this paper we discussed DyMAC (Dynamic Middleware with Aspect-Compo-
nents), a component and aspect-based middleware framework that offers adapt-
ability and extensibility. It supports component-based development of middle-
ware services and offers the power of aspect-oriented composition to connect the
application logic to the middleware services.

DyMAC solves the issue of the lack of expressive power in the contracts
of components and aspects and introduces a kind of aspect-component. It also
solves the too strong or too weak composition model of existing aspect-component
technologies with a more balanced composition model.

References

1. Clemens Szyperski, Component software: beyond object-oriented programming.
Second Edition. ACM Press/Addison-Wesley Publishing Co., New York, NY, 2002.

2. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
Second Edition. Addison-Wesley, 2003.

3. G. S. Blair, et al. The design and implementation of OpenORB version 2. IEEE
Distributed Systems Online Journal, 2(6), 2001

4. Kiczales, G. et al. Aspect-Oriented Programming. In Proc. of ECOOP 1997.
5. Kiczales, G. et al. An Overview of AspectJ. In Proc. of ECOOP 2001.
6. R. Filman et al. Aspect-oriented programming is quantification and obliviousness.

In OOPSLA Workshop on Advanced Separation of Concerns, 2000.
7. Bertrand Meyer. Design by contract: building bug-free O-O software. In Hotline

on Object-Oriented Technology, volume 4, Number 2, December 1992, pages 4-8.
8. Andreas Rausch, Design by Contract + Componentware = Design by Signed Con-

tract. Journal of Object Technology, In Proc. of Tools Usa, 2002.
9. R. Bodkin et al. Applying AOP for Middleware Platform Independence. Practi-

tioner Reports, AOSD 2003.
10. Adrian Colyer et al, Large-scale AOSD for middleware. In Proc. of AOSD 2004.
11. Sun Microsystems, Inc. Enterprise Java-Beans (EJB) Specification v2.0, 2001.
12. R. Pawlak et al. JAC: A Flexible Solution for Aspect-oriented Programming in

Java. In 3rd International Conference on Meta-level Architectures and Separation
of Concerns (Reflection), volume 2192 of Lecture Notes in Computer Science, pages
1-25. Springer-Verlag, 2001.

13. D. Suvée et al. JAsCo: An aspect-oriented approach tailored for component-based
software development. In Proc. of AOSD 2003.

14. Mira Mezini et al, Conquering aspects with Caesar. In proc. of AOSD 2003.
15. JBoss AOP homepage, http://www.jboss.org/developers/projects/jboss/aop.jsp
16. E. Truyen, et al. Dynamic and Selective Combination of Extensions in Component-

Based Applications. In Proc. of ICSE’01.
17. B. Lagaisse et al. Managing Semantic Interference with Aspect Integration Con-

tracts. In workshop SPLAT’04, http://www.daimi.au.dk/ eernst/splat04/

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 155-170, 2005.
 Springer-Verlag Berlin Heidelberg 2005

An Empirical Study on the Specification and Selection of
Components Using Fuzzy Logic

Kendra Cooper, João W. Cangussu, Rong Lin, Ganesan Sankaranarayanan,
Ragouramane Soundararadjane, and Eric Wong

1 The University of Texas at Dallas
Mail Station EC 31, 2601 N. Floyd Rd.

Richardson, Texas, USA
{kcooper, cangussu, rxl029000, sxg013900, rxs011610, ewong}@utdallas.edu

Abstract. The rigorous specification of components is necessary to support
their selection, adaptation, and integration in component-based software engi-
neering techniques. The specification needs to include the functional and non-
functional attributes. The non-functional part of the specification is particularly
challenging, as these attributes are often described subjectively, such as Fast
Performance or Low Memory. Here, we propose the use of infinite value logic,
fuzzy logic, to formally specify components. A significant advantage of fuzzy
logic is that it supports linguistic variables, or hedges (e.g., terms such as slow,
fast, very fast, etc.), which are convenient for describing non-functional attrib-
utes. In this paper, a new systematic approach for the specification of compo-
nents using fuzzy logic is presented. First, an empirical study is conducted to
gather data on five components that provide data compression capabilities; each
uses a different algorithm (Arithmetic Encoding, Huffman, Wavelet, Fractal,
and Burrows-Wheeler Transform). Data on the response time performance,
memory use, compression ratio, and root mean square error are collected by
executing the components on a collection of 75 images with different file for-
mats and sizes. The data are fuzzified and represented as membership func-
tions. The fuzzy component specifications are ranked using a set of test queries.
Fuzzy multi-criteria decision making algorithms are going to be investigated
for the selection of components in the next phase of the work.

1 Introduction

Component-based software engineering (CBSE) techniques are of keen interest to
researchers and practitioners as they hold promise to support the timely, cost effective
development of large-scale, complex systems. Such techniques are crucial to effec-
tively meet the needs of rapidly changing business environments.

Effective CBSE techniques need to address a complex set of problems, as the is-
sues are inter-related and span business, legal, and technical areas [1][2][3][4][5]. The
prediction of short and long term costs and benefits of using components needs to be
supported, as project managers consider the cost of the components, quality of the

156 Kendra Cooper et al.

vendor, lack of control over the support and evolution of the COTS components,
licensing issues, and the associated risks. Technical issues include the specification,
certification, selection, and composition of sets of components, and the impact on the
concurrent, iterative modeling of various software engineering artifacts.

The term component has a wide variety of definitions in the literature [6]. Here, a
software component is an independent, reusable blackbox that, ideally, has a compre-
hensive interface description including:

 A specification of the functional and non-functional capabilities of the com-
ponent. The non-functional description includes quality of service attributes
(response time performance, memory, etc.)

 A programmer interface description, which defines how to use the compo-
nent (e.g., an API definition with method names, parameter lists, return
types, etc.)

The specification of components has been considered using a variety of notations
and approaches. Formal notations offer a means to specify components concisely and
unambiguously. XML [7][8], fuzzy logic [8], first-order logic [9], the RESOLVE
notation [10], as well as architectural description languages and coordination lan-
guages [11] have been proposed for formally representing component specifications.
The well known Unified Modeling Language (UML), a semi-formal notation, has
also been used to specify components [12]. Alternative approaches including inter-
face definitions [13] and templates [14] have also been investigated, which are based
on informal, English descriptions.

A key issue in the specification of components is the problem of how to represent
and reason about the non-functional attributes, such as performance, adaptability,
security, etc. These attributes are often described subjectively, using terms like “ex-
tremely fast,” “very fast,” “quite fast,” and “moderately fast” rather than simply “fast”
and “not fast.” Fuzzy logic, developed as a solution to this kind of problem, provides
an effective way to represent and reason with such vague and ambiguous terms. It
provides a theoretical foundation for approximate reasoning using imprecise proposi-
tions, which is based on fuzzy set theory.

This paper presents an approach that utilizes fuzzy logic in the specification of
software components. Fuzzy logic has been applied to a number of interesting prob-
lems in a wide variety of domains such as medicine, manufacturing, software engi-
neering, etc. [15][16]. Currently, it has received very limited attention from the CBSE
community. The approach described in Section 0 uses fuzzy logic to select compo-
nents but does not present a well defined process to create fuzzy specifications for the
non-functional attributes of the components [8].

The process to define the fuzzy specification of the components is accomplished in
steps. The software components that provide specific functional capabilities are exe-
cuted in order to collect data about their non-functional behavior. Data are collected
for their response time performance, memory use, and quality attributes that are of
particular interest for the component. For example, quality attributes for components
that provide compression capabilities include the root mean square error (RMSE) and
compression ratios. The data are fuzzified (i.e., the data are represented as a collec-
tion of fuzzy membership functions) and the components are ranked using a set of
test queries.

An Empirical Study on the Specification and Selection of Components 157

The approach is illustrated using a study involving a collection of components that
provide data compression capabilities. Each component implements a different algo-
rithm: Arithmetic Encoding, Huffman coding, Burrows-Wheeler Transform (BWT),
Fractal Image Encoding, and Embedded zero-tree wavelet encoder. The image com-
pression components are executed on a single platform with over 75 images (of vari-
ous formats like jpg, pgm, raw, and bmp). Execution time (system time + user time)
and memory usage for compression and decompression components, the compression
ratio, and the RMSE are collected. Once gathered, the data are fuzzified (i.e., repre-
sented as fuzzy membership functions). Each fuzzy specification is composed of the
requirements interface (functional and non-functional capabilities) and the program-
mer interface (e.g., API definition) represented as fuzzy membership functions. In
addition, design and implementation constraints such as programming language, code
form (e.g., source code, executable, byte code), as well as the execution environment
(e.g., machine hardware = sun4u, OS version = 5.9, Processor type = sparc, Hardware
= SUNW, Sun-Fire-280R) are captured in the specification. The fuzzy representations
of the components are ranked using a set of test queries.

This paper is structured as follows. An overview of fuzzy logic is presented in Sec-
tion 2 as background material. The approach to build and rank a collection of fuzzy
components is presented in Section 3. The example study is illustrated in Section 4.
Section 5 presents some related work while conclusions and future work are in
Section 6.

2 Fuzzy Logic

When one admits that nothing is certain one must, I think also add that
some things are more nearly certain than others.

- Bertrand Russell

Numerous approaches are available to represent and reason about uncertainty in-

cluding probabilistic reasoning, neural network theory, and fuzzy logic [17]. Fuzzy
logic was proposed by Zadeh in the 1960's [18] while working on the problem of
natural language processing. Natural language, like many activities in the real world,
is not easily translated into the absolute terms of 0 and 1 provided by classical logic.
Fuzzy logic is well suited for representing and reasoning with vague and ambiguous
conditions, where an exact true or false value cannot always be determined. Instead,
degrees of truth and falsity are needed. Fuzzy logic offers infinite set of values
[0.0..1.0].

Suppose, for example, you ask the following question to a group of people: Is the
component very fast? The variety of responses reflects the individuals' experiences
and knowledge. For example, the component vendor may reply 1 (true); an engineer
in a high performance domain may reply 0.6 (somewhat true); an engineer in an
information system domain may reply 0.8 (quite true), etc. People can achieve this
high level of abstraction when considering such questions; fuzzy logic has been com-
pared to the human decision making process. The ultimate goal of fuzzy logic is to
provide a theoretical foundation for approximate reasoning using imprecise proposi-

158 Kendra Cooper et al.

a theoretical foundation for approximate reasoning using imprecise propositions
based on fuzzy set theory.

Fuzzy Sets. A classical (crisp) set is defined as a collection of elements; each element
either belongs or does not belong to a set. These classical sets can be described by
enumerating the elements of the list, using conditions for membership (e.g., set A
only contains elements less than 5), or by using a characteristic function to define the
member elements, where 1 indicates membership and 0 indicates non-membership.

The definition of set membership is modified for fuzzy sets, in which a characteris-
tic function gives a degree of membership for each element of a given set. Member-
ship functions can be formed using piecewise lines (e.g., triangular or trapezoidal),
Gaussian distribution, Bell, Sigmoid, quadratic and cubic polynomial curves, etc. In
this paper, the generalized bell membership function is used, because it generated the
least error in the fuzzification of the data collected for the components. The general-
ized bell function depends on three parameters a, b, and c as given by Equation (1).
These parameters determine the shape of the curve. The parameter a determines the
width of the curve, b is related to the slope at the point c+a, and c locates the center
of the curve.

F(x; a, b, c) = b

a
cx 2

1

1

(1)

Fuzzy Definitions. Basic definitions for fuzzy logic are presented below, followed by
an example that clarifies the semantic distinction between fuzzy logic and probability
theory.

Definition 1: Let X be some set of objects, with elements noted as x. Thus, X = {x}.

Definition 2: A fuzzy set A in X is characterized by a membership function mA(x)
mA: x -> y, y R | 0.0 y 1.0 In other words, the membership function maps
each element in X onto the real interval [0.0, 1.0]. As mA(x) approaches 1.0, the
degree of membership of x in A increases.

Definition 3: Empty fuzzy set. A is EMPTY x mA(x) = 0.0.

Definition 4: Fuzzy set equality. A = B x mA(x) = mB(x)

Definition 5: Fuzzy subset. A is CONTAINED in B x mA(x) mB(x).

Definition 6: NOT operator (Complement of the fuzzy set). NOT (mA (x)) = 1 -
mA(x).

Definition 7: OR operator (Union of fuzzy sets). C = A OR B, where: mC(x) =
MAX(mA(x), mB(x)).

An Empirical Study on the Specification and Selection of Components 159

Definition 8: AND operator (Intersection of fuzzy sets). C = A AND B where: mC(x)
= MIN(mA(x), mB(x)).

Definition 9: IMPLICATION operator. A B = (NOT A) OR B = MAX{1-A,
MIN{A,B}}

In a fuzzy system, the rules have the form: IF (x1 AND x2 AND ... AND xn) THEN
y.

Fuzzy Logic Vs. Probabilistic Theory. The last two fuzzy set operations, AND and
OR, clearly illustrate the semantic differences from their counterparts in probabilistic
theory. Suppose, for example, x = Fred, P is the fuzzy set of pleasant people, and A is
the fuzzy set of athletic people. Let's use P(x) = 0.90 and A(x) = 0.90 to describe the
probability that Fred is very pleasant and Fred is very athletic and mP(x) = 0.90 and
mA(x) = 0.90 to describe the memberships functions that Fred is very pleasant and
Fred is very athletic. The probabilistic calculation is P(x) * A(x) = 0.81, whereas the
fuzzy result is MIN(mP(x), mA(x)) = 0.90. Therefore, the probabilistic calculation
yields the statement:

If Fred is very pleasant and Fred is very athletic, then Fred is a quite pleasant, ath-
letic person, using 0.81 to describe “quite”.

The fuzzy calculation, however, yields:
If Fred is very pleasant and Fred is very athletic, then Fred is a very pleasant, ath-
letic person, once again using 0.90 to describe "very".

As more factors are included into the equations (the fuzzy set of intelligent people,

tall people, wealthy people, etc.), the result of a series of AND's approaches 0.0 in the
probabilistic calculation, even if all factors are initially high. Our intuition for the
problem better matches the fuzzy set calculation in which, for example, five factors of
the value 0.90 (“very”) ANDed together gives the answer 0.90 (“very”), not anything
lower.

The probabilistic version of A OR B is (A+B - A*B), which approaches 1.0 as ad-
ditional factors are considered. Again, the fuzzy set calculation uses the maximum of
the membership values to limit the resulting membership degree.

It is important to note that the assignment of values to linguistic meanings (such as
0.90 to “very”) and vice versa is subjective. Fuzzy systems do not claim to establish
formal procedure for assignments at this level. What fuzzy logic does propose is to
establish a formal method of operating on these values, once the primitives have been
established.

160 Kendra Cooper et al.

3 Fuzzy Component Specification Process: A Case Study on
Compression Components

A series of steps are defined to create a fuzzy specification that can be used to facili-
tate the analysis and ranking of components according to some specific criteria. Each
step in our approach is described next along with a case study based on image com-
pression algorithms.

Step 1 - Component collection: Before actually starting specifying components
using fuzzy logic, a set of functionally equivalent components must be selected. As-
sume we are interested in a certain set of functionality F={f1,f2,…, fn}. Then, a collec-
tion of components C={c1,c2,…, cm} that implements F is formed. In addition to F the
components may present any other extra functionality.

The problem of compressing images is an interesting one. Some algorithms take
less time but use more memory, while others behave the other way around. Quality
issues, such as the compression ratio or RMSE, also have trade-offs in different algo-
rithms. For example, an algorithm may be acceptable in terms of time and memory,
but have a poor compression ratio. In some cases image restoration is compromised to
achieve a good compression ratio. In short, Image Compression components have
clear trade-offs, in terms of execution time, memory, compression ratio, and RMSE.
Also since there are many well-established algorithms and their implementations are
available over the Internet, image compression components have been chosen for this
study and F={image compression}.

A survey of image compression algorithms has been performed; the components
have been chosen in such a way that there is a clear trade-off in terms of execution
time, compression ratio, and the root mean square error (RMSE) between the original
image and the uncompressed image. Available components have been selected, their
non-functional features analyzed, and the results used to derive a fuzzy specification
of these features. Five image compression algorithms have been chosen for this study:
Arithmetic Encoding (AREC), Huffman coding (HUFF), Burrows-Wheeler Trans-
form (BWT), Fractal Image Encoding (FRAC), and Embedded Zero-Tree Wavelet
Encoder (WAVE). Therefore C={AREC,HUFF,BWT,FRAC,WAVE}. Source code
for these components is available over the Internet. As a first step, the credibility of
the source code for both compression and un-compression has been assured based on
available reviews and references given by various web sites, a thorough code walk
through, and testing the components. In some cases the source code has been modi-
fied so that it could compile in the lab environment using the g++ compiler (with
default settings) on Sun Solaris. It should be clear that the availability of source code
is not required for the fuzzy specification of the components.

Step 2 - Input fuzzification: Based on the functionality set F, the input attributes
A={a1,a2,…, aq} affecting F are determined. Then, a body of distinct test inputs
T={t1,t2,…, tj} is created to exercise all the components in C; data are collected.
Neuro-adaptive learning techniques [170] are then used to create Ki membership
functions for each attribute ai in A. The value of Ki depends on the characteristics of
ai and the desired granularity. For example, if ai represents the size of the input, one

An Empirical Study on the Specification and Selection of Components 161

could select Ki =3 for {small, medium, large}, Ki =5 for {small, medium, large, very
large, extremely large}, or any other representative set of the linguistic characteristics
of ai.

The inputs affecting the functional and non-functional behavior of the distinct
components are identified in this step. In the case of compression algorithms, two
features are of interest. The first is the type of images a compression algorithm can
handle (i.e., the file format). The second refers to how the size of an image affects the
component's non-functional behavior. When searching for a compression component,
one could think of the following query: “Search for a component that has low mem-
ory usage for large images”. What is the size of a large image is the immediate ques-
tion that comes from this query. As expected, the definition of a large (very small,
small, medium, very large, etc.) image is not crisp but rather fuzzy, therefore justify-
ing the fuzzy specification approach proposed here. This results in a single element
set for A={image size}.

In order to fuzzify the input size, images of various sizes and types were
downloaded from the Internet, where the size ranged from 11 KB to 4096 KB. Also,
components depend on the image formats like raw or pgm. Due to the difficulty of
finding images in raw or pgm formats, ReaConverter Pro v3.4 has been used to con-
vert some images to the desired format. In effect, the study was conducted on 75
images of type jpg, raw, and pgm leading to T={t1,t2,…,t74,t75}. With these images
three (K=3) membership functions have been generated (using MatLab Fuzzy Logic
Toolbox) based on the size of the images. The choice of three membership functions
(small, medium, and large) is arbitrary and done here to simplify the results of the
case study. There is no restriction in selecting a different number of functions. Neuro-
adaptive learning techniques [170] have been used to generate the size based mem-
bership function depicted in Figure 1. Also a generalized bell format has been se-
lected for the membership functions due to its concise and powerful representation
features. We are aware that a much larger set of images would be required to fully
capture the fuzzy features of image size. However, the selected set appears to be large
enough to demonstrate the applicability of the proposed approach.

Step 3 - Non-functional attributes selection: A set of non-functional attributes
NF={nf1,nf2,…,nfp} for the components is selected. This set must express important
attributes related to the components. Also, some attributes in NF may not be applica-
ble/identifiable to all the components

 Based on the characteristics of compression algorithms, four attributes are ana-
lyzed here: NF={total execution time, compression ratio, maximum memory usage,
RMSE}, where total execution time is the combination of compression plus decom-
pression time and RMSE is a quality measure. Other features can be easily included
according to users' needs.

162 Kendra Cooper et al.

Figure 1: Fuzzification of input based on image size: three membership functions for
small, medium, and large images.

Step 4 - Component independent fuzzification of non-functional attributes: In
this step all the components in C are executed for all test inputs in T, and measure-
ments of all attributes in NF are collected. As for the input fuzzification (Step 2),
neuro-adaptive learning techniques are used to create Ki membership functions for
each of the nfi attributes in NF. Notice that the measurements for the NF attributes are
collected for the set of components; the membership functions are created based on
all combined results and not on individual components.

Once the features to be analyzed are selected in Step 3, the components are exe-
cuted for all small images, and data for the four features are collected. The same is
done for medium and large images. The selection of images (that is, the creation of
the subsets TS) is done according to the membership functions in Figure 1. Notice
that if any degree of membership is selected for the three functions, then the three sets
of small, medium, and large images would be the same. Therefore, a cutoff for the
membership degree has to be determined to decrease the overlap. In the case of
Figure 1, a cutoff of 0.5 reduces the overlap to zero; due to the fuzzy characteristics
of the problem, some overlap is desired. In general, the smaller the cutoff, the larger
the overlap and consequently, the less distinct the results of the fuzzification. Experi-
ments with distinct cutoffs have been conducted. We limit our description here to a
specified cutoff of 0.2 for the degree of membership.

Using a 0.2 cutoff results in small images with size less than 1.5 MB, medium im-
ages with size ranging from 0.7 MB to 3.6 MB, and large images with size greater
than 2.8 MB. Now, each component is executed for the three sets of images, and the
collected data are used to generate membership functions for each set of images and
features. Again, a generalized bell curve is used to create the membership functions.
However, no learning technique needs to be applied in this case since the image sets
already have the information we need. After the execution of a component for all
small images, the average and standard deviation for a specific feature is computed

An Empirical Study on the Specification and Selection of Components 163

and used to create the membership function. The same procedure is followed for
medium and large size images. Figure 2 shows the results for the Wavelet component.
As expected, the execution time increases as the size of the images increases. In this
case, we note a large overlap between the three curves. Compression ratio follows the
same scheme as execution time (the larger the image, the better the compression ratio)
but with more distinct membership functions, i.e., less overlap. As seen in Figure 2,
the quality of the image measured by the RMSE is better for large images than for
medium or small size images. Again, there is less overlap in this case than the mem-
bership functions for execution time. The memory usage for the Wavelet component
presents very distinct results with almost no overlap between the curves.

Figure 2: Results of the fuzzification of the Wavelet compression component: four
selected non-functional attributes.

The results for the BWT component are presented in Figure 3. As can be observed
there is no plot for the RMSE feature since BWT is a lossless approach. Also, the

164 Kendra Cooper et al.

maximum memory usage is the same for all images and therefore constitutes a crisp
value with no need for fuzzification. The results for total execution time and com-
pression ratio are similar and show a better execution time (compression ratio) for
small images with decreasing performance as the size of the images increase.

The results for the other three components (Huffman, Arithmetic Encoding, and
Fractal) are quite similar and are not presented here.

Figure 3: Results of the fuzzification of the BWT compression component: four
selected non-functional attributes.

Step 5 - Input dependent fuzzification of non-functional attributes: The test in-
puts T are divided into K subsets TS={Ts1,Ts2,…,Tsk}, where K is the number of
membership functions used in the input fuzzification (Step 2). Overlap is expected
among the subsets, and the amount of overlap can be determined by a cutoff value for
the degree of membership. That is, an input ti is added to a subset Tsj only if the
membership degree is greater than the cutoff. In general, the larger the value of the
cutoff, the smaller the overlap. Each component c1 is executed for the inputs in the
subset Ts1. Measurements of all the non-functional attributes in NF are collected, and
one membership function is created based on the values of the measurements. For
example, mean and standard deviation values may be used to create generalized bell
membership functions. The process is repeated for each subset TSi in TS and for each
component cj in C.

An Empirical Study on the Specification and Selection of Components 165

Similar to image size, the non-functional attributes are also fuzzy by nature. That is,
there is no crisp definition of what is a fast compression algorithm or an approach
with moderate use of memory. Therefore, as it has been done for the input, neural-
adaptive techniques are used to generate three membership functions for the four
specified non-functional attributes, as can be seen in Figure 4.

Figure 4: Component independent fuzzification of the four non-functional
attributes selected.

Step 6 - Components ranking: Once the components are specified in fuzzy logic
(Steps 1-5), we can search for components using linguistic rather than numeric vari-
ables/values. Any search with respect to the input attributes A and the non-functional

166 Kendra Cooper et al.

attributes NF can be conducted. Since the focus of this paper is on the fuzzy specifi-
cation, the ranking is restricted to individual non-functional attributes; multi-criteria
techniques are the subject of future work. In order to rank the components, specified
membership functions for a non-functional attribute are combined (using an OR fuzzy
operator) and then merged (using an AND fuzzy operator) with the membership func-
tion associated with the specified input attribute. The resulting new membership func-
tions (one for each component) represent the query results. Sorting the maximum or
the mean value for each function produces the desired rank of components. The use
of maximum or mean values may affect the ranking, but a discussion of which one is
more appropriate is beyond the scope of this paper.

Up to this point we have fuzzy specifications for the input (Figure 1) and for each
of the components and the specified non-functional attributes (Figure 2 and Figure 3),
as well as a component independent specification for the same attributes (Figure 4).
These specifications are now used to conduct queries and select/rank components
according to some features. For example, consider a search is done according to the
following criteria: a fast compression component. The size of the images is not speci-
fied in this case, and therefore the components should be considered for images of all
sizes (small, medium, and large). A fuzzy OR operator is used to merge the three
membership functions for Total Execution Time for each of the components. The
results for the OR operator for the wavelet component are shown in Figure 5 (light
dashed line - referred to hereafter as mf1). A fast component is represented by the low
membership function of Figure 4(c). The same curve is also plotted in Figure 5
(heavy dashed line - referred to hereafter as mf2). The comparison of the wavelet
results and the component independent specification is achieved by applying an AND
fuzzy operator for mf1 and mf2 resulting in the new membership function represented
by the solid line in Figure 5.

Figure 5: Membership function of the Wavelet component: searching for a fast com-
ponent.

An Empirical Study on the Specification and Selection of Components 167

The same process is conducted for each of the components. The ranking of the
components can be achieved by sorting the resulting membership functions by the
largest value or by the mean value. The ranking results when searching for a fast
component are shown in Table 1.

Table 1: Results of ranking the components according to two queries.

Query: fast component Query: high compression ratio for large
images

Rank Largest
Value

Mean
Value Rank Largest

Value
Mean
Value

1 HUFF - 0.82 HUFF – 0.11 1 WAVE – 0.99 BWT – 0.026
2 AREC – 0.56 AREC – 0.08 2 BWT – 0.12 WAVE – 0.023
3 WAVE – 0.38 WAVE – 0.05 3 AREC – 0.05 AREC – 0.014
4 BWT – 0.21 BWT – 0.03 4 HUFF – 0.04 HUFF – 0.012
5 FRAC – 0.18 FRAC – 0.01

Now, consider we are searching for components with high compression ratio for

large images. The process above is repeated, but there is no need to apply the OR
operator to merge the membership functions for each of the components. In this case
mf1 is represented only by the Compression Ratio membership function for large
images. The result for this new query is also shown in Table 1. Fractal is not dis-
played in the table due to lack of sufficient large images to collect meaningful results.

Additional test queries have been executed for memory usage and RMSE to rank
the components. The results from these tests indicate the applicability of our approach
to specify and rank components using fuzzy logic; they have not been included in the
paper due to space constraints.

4 Related Work

A substantial body of work exists on the specification of components. Here, due to
space constraints, we restrict the discussion of related material to the work done on
IP-Based Design [18]. This technique is closer to our approach as it uses fuzzy logic
in the selection of components.

Zhang, Benini, and Micheli [18] have identified the fuzzy characteristics of com-
ponent selection and have proposed a technique based on IP (Intellectual Property)
Design. Assuming an IP repository is available where specifications are represented
using XML, the XML document is parsed into a Document Object Model tree (DOM
tree). This tree is based on a grammar named Document Type Definition (DTD) and
therefore represents the syntax structure of the specification. Further, semantic infor-
mation is added to the tree.

Once the semantic trees for the components are available, the proximity of the
trees to the query specification (also done in XML) is ordered using fuzzy logic. First,
leaf nodes are scored using any specified fuzzy membership function. Then, the
nodes are aggregated using an un-weighted or a weighted function. The second case

168 Kendra Cooper et al.

is applicable when the user wants to emphasize some features of the desired compo-
nents. As pointed out by the authors, the use of a specific fuzzy membership function
does not need to be based on strong mathematical arguments, but mainly on the char-
acteristics of the domain it represents. The ordered results from the query provide the
user a ranked list of components with a higher probability of fulfilling the design
requirements.

An interesting approach is used for the fuzzy representation of non-numeric val-
ues. For example, to represent functionality as a fuzzy object, the number of occur-
rences and the probability of one occurrence of some keyword in the specification is
used:
(1-pn), where p is the probability and n is the number of occurrences.

The IP-Based approach and the approach proposed here are based on the same as-
sumptions that component specification and behavior cannot be completely deter-
mined by a crisp function and fuzzy logic appears to properly address this problem.
Both approaches have as the ultimate goal the selection of components that better
match some specification. However, while the IP-Based approach relies on the exis-
tence of a XML specification, our approach includes steps to systematically select
components, identify the inputs that affect the functional and non-functional behavior
of the components, create input to exercise the components, collect and fuzzify data,
and rank components [18].

5 Conclusions and Future Work

The rigorous specification of software components is necessary so that we can reason
about them in useful ways, such as selecting individual components or collections of
interacting components. Part of the complexity of this problem stems from the chal-
lenges in representing the uncertainty of the non-functional attributes in a meaningful
way. Here, we present a systematic approach for the specification of components
using fuzzy logic. A significant advantage of fuzzy logic is that it supports linguistic
variables, or hedges (e.g., terms such as slow, fast, very fast, etc.), which are very
convenient for describing non-functional attributes. Our process involves conducting
an empirical study to gather data on five components that provide data compression
capabilities; each uses a different algorithm (Arithmetic Encoding, Huffman, Wave-
let, Fractal, and BWT). Data on non-functional attributes, response time performance,
memory use, compression ratio, and root mean square error are collected by execut-
ing the components on a collection of images with different file formats and sizes.
The data are fuzzified and represented as membership functions. The fuzzy compo-
nent specifications are successfully ranked with respect to a set of test queries.

Limitations of the study include the fact that the components only provide one
functional capability (data compression), and one execution environment has been
used to collect data. In addition, the ability to select components based on multiple
attributes is not addressed in this work.

There are a number of interesting directions for our future work. First, the problem
of selecting components based on multiple attributes is going to be investigated using
fuzzy multi-criteria decision making algorithms (FMCDM). In multi-criteria decision

An Empirical Study on the Specification and Selection of Components 169

problems, relevant alternatives are evaluated according to a set of criteria, and the
best alternative can be picked depending on the evaluation results. A study comparing
a collection of FMCDM algorithms, including the Fuzzy Weighted Sum Method,
Fuzzy Weighted Product Method, and Fuzzy Analytic Hierarchy Process, is going to
be conducted. Our proposed study will replicate the work presented by
Triantaphyllou [20] and extend it with additional FMCDM algorithms. In addition, a
study can be conducted to compare alternatives to the fuzzy logic evaluation of the
components. This study would clarify the advantages and disadvantages of our ap-
proach. Second, the component specification can be refined with the addition of at-
tributes, both functional and non-functional; the repository of components will be
extended to include components with different functional capabilities. Component
data will be collected on a more comprehensive collection of platforms (i.e., hard-
ware/operating system); the behavior of the platforms can also be represented as
fuzzy membership functions. Third, the process definition will also be extended to
include entry and exit conditions, while refining the descriptions of the inputs, out-
puts, and purpose of each activity.

References

1. Crnkovic, I., Component-Based Software Engineering — New Challenges in Software
Development: Journal of Computing & Information Technology; Sep2003, Vol. 11 Issue
3, p. 151-162.

2. Haddad, H.M. and Biberoglu, E., Component-based software engineering: issues and
concerns, In Proceedings, International Conference on Software Engineering Research
and Practice SERP'03, Las Vegas, USA, 2003, p. 391-397.

3. Heineman, G. T., Councill, W.T., Component-Based Software Engineering – Putting the
Pieces Together, Addison Wesley, 2001.

4. Szyperski, C., Component Software, Addison-Wesley, 2 edition, 2002.
5. Voas, J., “The Challenges of Using COTS Software in Component-Based Development”,

IEEE Computer, June 1998, Vol. 31 Issue 6, pp. 44-45.
6. Carney, D. and Long, F. What Do You Mean by COTS? Finally a Useful Answer, IEEE

Software, 17(2), 2000, 83-86.
7. Seacord, R., Mundie, D., & Boonsiri, S. "K-BACEE: Knowledge-Based Automated Com-

ponent Ensemble Evaluation," in Proceedings, Workshop on Component-Based Software
Engineering, Warsaw, Poland, 2001, p. 56-62.

8. Zhang, T., Benini, L., and de Micheli, G., “Component Selection and Matching for IP-
Based Design”, in Proceedings, Conference on Design, automation and test in Europe,
Munich, Germany, 2001, p. 40 - 46.

9. Lau K. and Ornaghi M., "A Formal Approach to Software Component Specification", in
Proceedings, Specification and Verification of Component-Based Systems Workshop,
OOPSLA 2001, Tampa Bay, Florida, p. 88-96.

10. Addy, E. and Sitaraman, M., "Formal specification of COTS-based software: a case
study", in Proceedings, 5th Symposium on Software Reusability, 1999, pp. 83-91.

11. Poizat, P., Royer, J-C., and Salaün, G., “Formal Methods for Component Description,
Coordination and Adaptation”, in Proceedings, 1st International Workshop on Coordina-
tion and Adaptation Techniques for Software Entities, June 14, 2004, Oslo, Norway.

12. Cheesman, J. and Daniels, J., UML Components A Simple Process for Specifying Compo-
nent-Based Software, Addison Wesley, 2000.

170 Kendra Cooper et al.

13. Han, J., "A Comprehensive interface definition framework for software components", in
Proceedings, 1998 Asia-Pacific Software Engineering Conference, Taipei, Taiwan, pp.
110-117.

14. Kallio, P. and Niemela, E., "Documented Quality of COTS and OCM Components", in
Proceedings, 4th ICSE Workshop on Component-Based Software Engineering, May 14-15,
2001, Toronto, Canada, available at http://www.sei.cmu.edu/pacc/CBSE4-
Proceedings.html.

15. Carlsson, C. and Fuller, R., Fuzzy Reasoning in Decision Making and Optimization.
Physica-Verlag, 2001.

16. Klir, G. and Yuan, B., Fuzzy sets and fuzzy logic: theory and applications, Prentice Hall
1995.

17. J. Halpern, Reasoning about Uncertainty, The MIT Press, 2003.
18. Zadeh, L.A., Fuzzy sets, in Information and Control, Vol. 8, 1965, pp. 338-353.
19. Jang, J.-S. R., ANFIS: Adaptive-Network-based Fuzzy Inference Systems,

IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp.
665-685, May 1993.

20. E. Triantaphyllou, http://www.directtextbook.com/title/prices/0792366077Multi-Criteria
Decision Making Methods: A comparative Study, Kluwer Academic Publishers, 2000.

Finding a Needle in the Haystack: A Technique for
Ranking Matches Between Components

Naiyana Tansalarak and Kajal Claypool

Department of Computer Science,
University of Massachusetts - Lowell

{ntansala,kajal}@cs.uml.edu
http://www.cs.uml.edu/dsl/index.html

Abstract. Searching and subsequently selecting reusable components from com-
ponent repositories has become a key impediment for not only component-based
development but also for achieving the overall usability of component develop-
ment environments and the ultimate re-usability of the components themselves.
Component matching, a fundamental aspect of the component search problem,
has been a well-studied problem, resulting in many different matching techniques
such as keyword, facet, signature and specification matching techniques. How-
ever, each matching technique individually applied for component search often
yields a small or large number of (sometimes irrelevant) hits. In this paper, we
propose a disciplined combination of the different matching techniques to pro-
vide a ranked set of highly qualified components from component repositories.
Our work is based on a unique Quality of Match (QoM) metric that measures
the overall “goodness” of the match between two given components. In partic-
ular, we provide qualitative and quantitative analysis to evaluate the QoM of
two given components based on component information. Moreover, we present
QoMym, a QoM-based hybrid match algorithm, that combines the strengths of
different matching techniques and provides higher accuracy than existing match-
ing techniques.

1 Introduction

Component-based software engineering has gained popularity over the past few years as
the preferred mode for software construction, spurring the development of both com-
mercial and freeware off-the-shelf components. However, while the wide availability
of components is essential for the success of component-based software engineering,
retrieving the qualified components1 from the large number of available off-the-shelf
components has rapidly become a key challenge for software developers. Today, devel-
opers are faced with a lack of search tools that can effectively aid the procurement of
qualified components from one or more heterogeneous repositories, based on a given
query component or a given set of requirements.

1 The qualified component is a component that is determined to be fit for use in the context of (i)
meeting the core application requirements; and (ii) inter-operating with respect to component
model, syntactic, semantic, design and platform requirements [5, 20] of previously developed
components that are deployed as part of the new system(the system under consideration).

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 171–186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

172 Naiyana Tansalarak and Kajal Claypool

Many techniques ranging from keyword-based to full-fledged specification-based
heuristics have been proposed in the literature [7, 12, 8, 21, 22, 6, 4] to provide effective
retrieval of qualified components during the discovery process. The keyword-based ap-
proach [7] is simple and flexible as users simply specify the query as a set of keywords
representing the component requirements in which they are interested. This approach
while simple is also prone to low accuracy resulting in either too many or too few hits,
or in some cases even completely unrelated hits [15]. The faceted approach [12] classi-
fies components based on predefined taxonomies. While this approach provides a better
description of components than a pure keyword-based approach, users must be familiar
with the classification scheme to effectively retrieve a needed component. Moreover, it
is often hard to manage classification schemes when domain knowledge evolves and as
a result the component falls into two or more categories [15]. Signature matching ap-
proaches [21] decide the match between two given components, the query and library
components, based on the signatures of the methods in the two components. While
signature matching uses intrinsic built-in information about the component, that is its
type information, it often still returns irrelevant hits [22, 4]. For example, consider the
methods strcpy and strcat in the standard C library. These methods have the same
signature but encode different behaviors. The specification matching approach [22, 6],
introduced to overcome the problem of signature matching, uses the method’s pre- and
post-conditions that capture the functionality of the method. While specification match-
ing provides more accurate hits, it is too time-consuming to be practical as its imple-
mentation, often based on theorem proving techniques, is expensive [4]. Another draw-
back of the specification approach is the practical lack of pre- and post-conditions in
component code. An approach using test cases [4] that captures the partial semantics
of the required functionality via method interactions attempts to address these draw-
backs. While this approach tends to improve the performance of the discovery process,
defining precise test cases that represent the required functionality is often too hard to
describe.

While these techniques take steps in the right direction, each approach individually
is limited in the quality of the matches produced, resulting often in too many (some-
times irrelevant) matches or in some cases even no matches. In this paper, we now
propose a novel matching technique – a disciplined application of different matching
algorithms to all aspects of a component thereby exploiting the diversity of semantic
and syntactic information inherent in a component. The goal of our matching technique
is to provide a ranked set of highly qualified matches from component repositories
based on a given query component. Our work is based on a unique Quality of Match
(QoM) metric that measures the “goodness” of a match. We define a match taxonomy
and a weight-based match model that qualitatively and quantitatively classify the match
between a query and a library component. These are based on information ranging from
the type hierarchy to the labels of properties and methods of the two components. The
match taxonomy and the match model together form the basis of the QoM -based hybrid
match algorithm, QoMym. The QoMym algorithm uses the match taxonomy as a guide
for the algorithm execution, and also utilizes the weight-based match model to calculate
the QoM for each element of the two components. We present a set of preliminary ex-
periments that show the benefits of QoMym over using individual matching techniques

Finding a Needle in the Haystack 173

and other combination techniques, and provide an empirical measure of the quality of
QoMym.

Roadmap: The rest of paper is organized as follows. Section 2 describes XCM, our
unifying component description model, that provides a descriptive superset of informa-
tion for components conforming to various component models in the market. XCM is
the abstract component description model for QoMym. Section 3 presents the QoM-
based match taxonomy, while Section 4 defines the weight-based match model, a quan-
titative measure of QoM. Section 5 introduces the QoMym algorithm. Experimental
evaluation of the QoMym algorithm is given in Section 6. We conclude in Section 7.

2 The XML-based Unifying Component Description Model

In the context of component matching, the diversity in component models [10, 13, 14,
11, 2] imposes a restriction that often limits component searching to the features spec-
ified for a single component model. To extend component matching to encompass a
heterogeneous set of components, we now present an XML-based unifying component
description model, XCM, that crosscuts the information of components conforming to
these diverse component models [18].

Component

Feature Design

Property* Method* Event*
Underlying

Component*
Connection-oriented

Composition*
Aggregation-based

Composition*

Micro Match

Sub-macro Match

Macro Match

conn1 ……. agg1 ….uComp1
….

event1
….

met1

…….

Primitive Match

General
Information

label : ……
Package : …….
…...

prop1

label : ………...
type : ………...
access : ………...
style : ………...

….
label : ………...
signature : ………...
status : ………...
pre : ………...
post : ………...

type : ………...
deiivery : ………...
status : ………...

label : ………...
type : ………...

container : ………...
containee : ………...
location : ………...

source : ………...
event : ………...
action : ………...
listener : ………...
method : ………...
…….

Fig. 1. The XCM Hierarchical Component Structure.

Figure 1 represents the XCM hierarchical component structure. Here, a compo-
nent is defined via (i) general information that encapsulates the label, version,
package, language, component model, domain, operating system and publisher of a
component; (ii) feature that encapsulates the component’s set of properties, meth-
ods and events; and (iii) finally design2 that encapsulates the connection-oriented and

2 The design is the description of the layout that describes how a composite component is con-
structed using a set of pre-existing components. A primitive component is a stand-alone com-
ponent that does not rely on any other component for its functionality, while a composite com-
ponent is constructed by either connecting (connection-oriented) or aggregating (aggregation-
based) [1] a set of pre-existing components.

174 Naiyana Tansalarak and Kajal Claypool

aggregation-based compositions of a set of pre-existing components. The hierarchical
component structure in Figure 1 can be represented as an XML document, while the
general structure of the description model – the XCM concepts – can be described as
an XML Schema. Full details of the XCM component ontology can be found in [18].

3 The Qualitative Analysis – Match Taxonomy

In this section, we define a match taxonomy that qualitatively provides the quality
of match (QoM) between two given components. The match taxonomy classifies the
matches at the leaf, internal and root nodes of the XCM hierarchical structure (Figure 1)
as (i) primitive match - match at the leaf level; (ii) micro match - match at the level of
properties (or methods, events, underlying components, and connection-oriented as well
as aggregation-based compositions of underlying components); (iii) sub-macro match
- match at the level of features and design; and finally (iv) macro match - match at the
level of the component. Each level of these matches is tightly coupled and hence heavily
dependent on its lower level.

3.1 Primitive Match

A primitive match is the match between two corresponding leaf elements, that is the
primitive information captured in the XCM structure, such as the label or the type (Fig-
ure 1). Each primitive element is classified as either syntactic or semantic based on the
type of information encapsulated in the element. For example, a label imparts seman-
tic information and hence is classified as a semantic element, while the domain type is
regarded as a syntactic element.

The match between two given primitive elements is categorized as exact (=), re-
laxed (≈) or no match (�=). Dependent on the type of primitive elements, different
matching techniques can be employed to determine the actual match and hence the
classification between the two values of a given primitive element. For example, the
label and the description of a property are best matched via a linguistic algorithm. A
match is said to be exact in this case if the values are identical, relaxed if the values are
synonyms, hypernyms, or come from the same stem, and a no match otherwise. Domain
types, on the other hand, are best compared based on their relationships in the overall
type hierarchy, requiring specialized type hierarchy comparison algorithms. Two do-
main types are said to be an exact match if their values are identical, relaxed if they are
in the same path in the type hierarchy or convertible if there exists a known function to
convert the source type to the target type, and a no match otherwise.

3.2 Micro Match

A micro match is the match between two given properties, methods, events, underly-
ing components, connection-oriented or aggregation-based compositions of underlying
components 3. It is defined as a match of all its primitive elements.

3 For the rest of the section, we describe the matches based on the properties. The match for the
other features and design elements are similar.

Finding a Needle in the Haystack 175

The QoM of a micro match between two given properties is said to be (i) exact (=)
- if all primitive elements of the source property match exactly to those of the target
property; (ii) relaxed (≈) - if either (a) all primitive elements of the source property
have a combination of exact and relaxed matches in the target property, or (b) some (but
not all) primitive elements of the source property have matches in the target property; or
(iii) no match (�=) - otherwise. Consider for example the two properties String day
and int day. The micro match between these properties is relaxed as the labels are
an exact match but the domain types are convertible.

3.3 Sub-macro Match

Moving up the XCM hierarchy, we define a sub-macro match as the match between two
sets of component features or two sets of component design. The match of each set is the
collection of matches of its individual elements. The match of the component feature is
thus defined on the basis of the matches of all properties, methods and events, while the
match of the design is defined based on the matches of all underlying components and
their compositions.

The QoM for a sub-macro match is classified based on (1) the number of micro
matches; and (2) the quality of the micro matches. Based on the number of micro
matches, the QoM of a sub-macro match is classified as either a total or a partial
match. In a total match, all elements (properties, methods and events) of the source
feature match some or all elements of the target feature, while in a partial match some
(but not all) elements of the source feature match those in the target feature. Combining
the two criteria, number of matches and the quality of micro matches, we now define
four classifications for the QoM at the sub-macro level: total exact, total relaxed, partial
exact and partial relaxed.

3.4 Macro Match

A match at the highest level, between two components, is termed a macro match. A
macro match is defined as a match of the primitive elements of the two components,
that is a match of their labels and descriptions, as well as a match of their non-primitive
elements at the sub-macro level, that is their component features and design.

The QoM for a macro match is categorized on the basis of (1) the number and qual-
ity of the primitive element matches for labels, description and invariants; and (2) the
number and quality of the sub-macro matches for the component features and design.
Similar to the sub-macro match, the QoM at the macro level is classified as total exact,
total relaxed, partial exact or partial relaxed.

4 The Quantitative Analysis – Weight-Based Match Model

Based on the qualitative analysis, it is often easy to evaluate when one match is better
than the other. For example, an exact match is always better than a relaxed match.
However, in some cases such a distinction between the QoM for two or more matches
cannot be established as easily. For example, based on qualitative analysis alone we

176 Naiyana Tansalarak and Kajal Claypool

cannot accurately determine whether a total relaxed match is better than a partial exact
match, or one partial exact match is better than another partial exact or even a partial
relaxed match. To address this deficiency, in this section, we now present a weight-
based match model that quantitatively determines and ranks the QoM. We define this
quantitative model at each level of the match taxonomy.

4.1 Primitive Element Match Model

Match between two primitive elements is classified as exact (=), relaxed (≈) or no
match (�=). We term =, ≈ and �= the core match operators and assign a numeric weight
to each of these match operators. The operator = is assigned a weight of 1.0 to indicate
an exact match, ≈ a weight ranging from 0.1 to 0.9 to denote a relaxed match, and
�= a weight of 0.0 to represent a no match. These weights form the basis of the match
model, and represent the match weight of two given primitive elements, denoted as
W(εs, εt) where εs and εt are source and target primitive elements, respectively.

4.2 Micro Match Model

Based on the weight of the primitive matches, we now define the quantitative value for
the micro match of two properties4 as the normalized sum of the match weights of all
its primitive matches. Formally, the QoM of a micro match, denoted as QoM(αs, αt),
is given as:

QoM(αs, αt) =
∑

Vε W(εs, εt) (1)

Here, (i) αs and αt are the source and target property; and (ii) εs ∈ αs and εt ∈ αt

are the source and target primitive elements. Intuitively, it can be observed that not all
primitive elements have an equal significance in determining the QoM between a source
and a target properties. For example, for a property, the domain type typically has more
significance than the property style. We thus specify Vε as the significance value of
the specified primitive element ε. In keeping with this intuition, we assign significance
values as absolute numeric numbers to all primitive elements of a property where the
total significance value of all primitive elements for a property is 1.0.

4.3 Sub-macro Match Model

To provide a quantitative value for the sub-macro QoM, we define two measures, micro
match weight and cardinality ratio. The micro match weight, denoted as RW (βs, βt), is
the normalized sum of QoM of all micro matches of the component feature (or design)
and is given as:

RW (βs, βt) =
n∑

i=1

Vi

∑
QoM(αsi, αti)

|βsi| (2)

4 The quantitative value for the micro match of two methods, events, underlying components or
compositions of underlying components is defined in a similar manner.

Finding a Needle in the Haystack 177

Here (i) βs ∈ Cs and βt ∈ Ct are the source and target component feature; (ii) i
is the element type that is the property, method or event type; (iii) n is the number of
element types defined in the source component feature; (iv) αsi ∈ βs and αti ∈ βt are
the source and target elements for the specified type i; (v) |βsi| is the number of source
elements for the specified type; (vi) V i is the significance value of the specified element
type i. For example, in the component feature, the method denoting the behavior of the
component would typically have more significance than the property.

The cardinality ratio, denoted as RS(βs, βt), is the ratio of the number of micro
matches and the cardinality of the source component feature (or design) and is given as:

RS(βs, βt) =
n∑

i=1

Vi
|(βsi)m|
|βsi| (3)

where |(βsi)m| is the number of micro matches for the specified element type i.
The QoM of a sub-macro match, denoted as QoM(βs, βt), is now defined as the

normalized sum of the micro match weight and its cardinality ratio.

QoM(βs, βt) =
RW (βs, βt) + RS(βs, βt)

2
(4)

4.4 Macro Match Model

The macro QoM, denoted as QoM(Cs, Ct), is defined as the normalized sum of primi-
tive element matches for label and description as well as the QoM of sub-macro matches.
Formally, QoM(Cs, Ct) is given as:

QoM(Cs, Ct) =
∑

VεW(εs, εt) +
∑

VβQoM(βs, βt) (5)

where (i) Cs and Ct present the source and target component; (ii) εs ∈ Cs and
εt ∈ Ct are the source and target primitive element; (iii) Vε and Vβ are the significance
values of the specified primitive elements, and the component feature and design; and
(iv) βs ∈ Cs and βt ∈ Ct represent the source and target component feature (or design).

5 The QoMym Algorithm

The QoMym algorithm is a depth-first match algorithm that is guided by the match
taxonomy presented in Section 3 and is directly based on the match model given in
Section 4. The overall execution of QoMym is depicted in Figure 2 and its pseudo-code
is given in Figures 3 - 6. The QoMym algorithm first evaluates the match values for all
primitive elements, that is all leaf nodes including the label, the description, the type
etc. of the component itself. The primitive element matches are evaluated based on their
type. For example, a linguistic algorithm is employed to determine the level of match
between two labels (or descriptions). Our linguistic algorithm uses a combination of
WordNet [9] and a domain-specific dictionary that includes commonly used abbrevia-
tions. A full description of the linguistic algorithm is beyond the scope of this paper.
For more details please refer to [17]. Similarly, to match two domain types we have

178 Naiyana Tansalarak and Kajal Claypool

developed an algorithm to compare the types along the specified type hierarchy. For
better performance, the type hierarchies were converted using a dewey-based number-
ing scheme [19] that captured the relationship and the hierarchy of the given types. In
particular, each primitive domain type of a component is automatically mapped into its
dewey-based number before a match is determined.

QoMym

macroMatch

submacroMatch

microMatch

primitiveMatch

macroQoM

submacroQoM

microQoM

primitiveQoM

Repository

ßs ßt

Cs Ct

Cs

Ct*
{ C

t1
, C

t2
, C

t3
, … }

Fig. 2. The Overall Execuation of QoMym.

Each source primitive element is compared with every target primitive element, and
all match values above the threshold are saved. This threshold was determined em-
pirically after running a set of controlled experiments (see details in Section 6). Once
all primitive matches are computed, the micro matches are evaluated using the micro-
Match module given in Figure 4. All match values above a certain threshold are saved.
The submacroMatch module given in Figure 5 determines the match value for the fea-
ture and the design. The submacro match values are used to determine a single macro
match value - the match value of the source and target components - using the macro-
Match module given in Figure 6. The QoMym module (Figure 3) finally returns a set
of qualified components that have macro match values above threshold.

The running time for the algorithm lies in θ(|R||Ct||Cs|) where |R| represents the
number of components in the repository, and |Ct| as well as |Cs| the cardinality of a
target and a source component.

Finding a Needle in the Haystack 179

Set QoMym (Component Cs) {

result ← ∅;
for each Component Ct ∈ Repository R {

macroQoM = macroMatch(Cs, Ct);
if macroQoM ≥ macroThreshold

result ← result ∪ < Ct, macroQoM>;
}

return result;
}

Fig. 3. The QoMymAlgorithm.

double microMatch (Micro αs, Micro αt) {

microQoM ← ∅;

// εs ∈ αs and εt ∈ αt

for each corresponding primitive pair (εs, εt) {
primitiveQoM ← primitiveMatch (εs, εt);
sig ← DB.getSignificance (εs.getType());
microQoM ← microQoM + (sig * primitiveQoM);

}

if microQoM ≥ microThreshold
return microQoM;

else
return 0;

}

Fig. 4. The microMatch Algorithm.

6 Preliminary Experimental Results

The goal of the QoMym algorithm is to improve the overall match quality of the
qualified components retrieved in response to a specified query component. We con-
ducted several experiments to evaluate the potential benefits of the QoMym algorithm
over other existing algorithms. In this section, we describe our experimental setup and
methodology together with our results.

6.1 Experimental Setup and Methodology

Figure 7 illustrates the overall architecture of the QoM system. The QoM system to-
gether with QoMym algorithm is implemented in Java (SDK 2.0) and deployed on a
standalone PC Pentium IV 2.8 GHz with 512 Mb RAM running Microsoft Windows
XP. The QoM system takes a query component as input, matches the query compo-
nent against a set of library components using the QoMym algorithm, and returns the

180 Naiyana Tansalarak and Kajal Claypool

double submacroMatch (Component Cs, Component Ct,
String submacroType) {

// get source and target micro elements
source ← Cs.getMicroElements (submacroType) ;
target ← Ct.getMicroElements (submacroType) ;

initialize microQoM[|Cs|][|Ct|];

// calculate QoM for all (αs,αt);
for each micro αs ∈ source {

for each micro αt ∈ target {
if αs.getType() == αt.getType()

microQoM[αs][αt] ← microMatch (αs, αt);
}

// calculate the submacro QoM
RW ← getMicroMatchWeight (microQoM);
RS ← getCardinality (microQoM);
submacroQoM ← (RW + RS) / 2;

return submacroQoM;
}

Fig. 5. The submacroMatch Algorithm.

match results to the user. The repository used for the experiments contained JavaBean
components across four domains: 24 GUI components, 12 data collection components,
8 calendar components, and 16 components for testing. These components were auto-
matically introspected, transformed into XCM documents and subsequently loaded into
the repository.
Measure Of Match Quality. To evaluate our approach, we compared the manually
determined real matches (R) for a given match task5 with the matches P returned by the
match algorithm. We determined the true positives, i.e., the correctly identified matches,
I; the false positives, i.e., the incorrectly identified matches, F = P \ I , and the false
negatives, i.e., the missed matches, M = R \ I . Based on the cardinalities of these sets,
the Precision and Recall6 of the match algorithm were computed.

– Precision = |I|
|P | = |I|

|I|+|F | estimates the reliability of the match predictions.

– Recall = |I|
|R| specifies the share of real matches that is discovered by the algorithm.

– Overall = 1− |F |+|M|
|R| = |I|−|F |

|R| = Recall∗(2− 1
Precision) represents a combined

measure of match quality, taking into account the post-match effort needed for both
removing false matches and adding missed matches.

5 Here a match task denotes the matching of a query component with the components in the
repository to determine the qualified components.

6 Precision and Recall are taken from Information Retrieval literature

Finding a Needle in the Haystack 181

double macroMatch (Component Cs, Component Ct) {

// get the primitive QoM
Wl ← linguisticMatch (Cs.getLabel(), Ct.getLabel());
Wd ← lingusiticMatch (Cs.getDescription(), Ct.getDescription());

// get the submacro QoM
subQoMf ← submacroMatch (Cs, Ct, “feature”);
subQoMd ← submacroMatch (Cs, Ct, “design”);

// get the significant values
Vf ← DB.getSignificance (“feature”);
Vd ← DB.getSignificance (“design”);
Vl ← DB.getSignificance (“label”);
Vd ← DB.getSignificance (“desc”);

// calculate the macro QoM
macroQoM = (Vl * Wl) + (Vd * Wd) +

(Vf * subQoMf) + (Vd * subQoMd);

return macroQoM;
}

Fig. 6. The macroMatch Algorithm.

Introspector &
Transformer

Components
(JavaBeans, EJB, CORBA, COM, .NET and etc)

Dewey Generator

Type Hierarchies

1.4

1.4.2

1.5

1

1.4.1

1.4.4

1.4.3

1.4.6

1.4.5

1.1

1.2

1.3
……
……

….

XCM
document
…………….
…………….
…………….

QOM
Query Component

Linguistic
Dictionary

Matching Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J C
a

l
e n

d
a

r

H
t
m

l C
a
l e

n
d

a
r

J
D

a
te

P
ic

k
e r

D
a
t e

T
i m

e
P

ic
k
e r

J
B

u
t t

o n
S

t a
c

k

Fig. 7. The Overall Architecture of the QoM System.

6.2 Determining Threshold and Significance Values

The accuracy of the QoMym algorithm is dependent on the threshold and significance
values that are an integral part of the weight-based match model defined in Section 4.

182 Naiyana Tansalarak and Kajal Claypool

To determine optimal values for these parameters (threshold and significance), we con-
ducted a set of experiments that randomly compared a set of query components against
a small number of library components for different threshold and significance values.
The overall match values obtained via the QoMym algorithm for the different threshold
and significance values were compared against a manual benchmark that we had setup
prior to running the experiments. We then gradually added more library components
from different domains to determine if the selected threshold and significance values
would hold or would need to be adjusted.

There are four major threshold parameters: label and signature thresholds at the
primitive level, as well as micro and macro thresholds at the micro and macro levels
respectively. Figure 8 - 9 depicts the average precision and recall for different label
and signature thresholds. Here, the results were obtained by comparing the labels and
signatures of a set of query components against those of the components in repository.
High precision and recall values are good indicators of the quality of the match. Thus,
based on these results, we determined the optimal label threshold to be in the range
{0.7 -- 0.9}, and the optimal signature threshold to be in {0.6 -- 0.8}.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Label Thresholds

P
er

ce
n

ta
g

e

Precesion

Recall

Fig. 8. Variance in the precision and recall ob-
tained for different label threshold values. The
label threshold value is represented on the X-
Axis, and the percentage of precision and recall
is depicted on the Y-Axis.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Signature Thresholds

P
er

ce
n

ta
g

e

Precision

Recall

Fig. 9. Variance in the precision and recall ob-
tained for different signature threshold values.
The label threshold value is represented on the
X-Axis, and the percentage of precision and re-
call is depicted on the Y-Axis.

Next, to determine the optimal values for the significance parameters of label and
signature, we fixed the label and signature threshold values, and compared the precision
and recall obtained by varying the significance values and micro thresholds. Figure 10
shows the precision and recall obtained by the algorithm for different significance val-
ues 7 and micro thresholds. We found that for obtaining optimal precision and recall, the
significance of the signature should be in the range {0.1 -- 0.2}, while the micro
thresholds should be in the range {0.6 -- 0.8}.

Finally, to determine the optimal macro thresholds, we fixed the significance value
and the micro threshold, and compared the precision and recall obtained by varying the

7 We show signature significance, but the results can be interpreted for label significance value
(label = 1 - signature).

Finding a Needle in the Haystack 183

macro thresholds as shown in Figure 11. We found the optimal macro threshold to be
in the range {0.8 -- 0.9}.

0

0.1
0.2
0.3

0.4

0.5

0.6

0.7

0.8
0.9

1

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

micro t. >= 0.6 micro t. >= 0.7 micro t. >= 0.8

Signature Significance Values

P
er

ce
n

ta
g

e

Precision

Recall

Fig. 10. Variance in the precision and recall
obtained for different signature significance
values as well as the micro thresholds. Label
and signature thresholds were kept constance
at 0.8 and 0.7 respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Macro Thresholds

P
er

ce
n

ta
g

e

precision

recall

Fig. 11. Variance in the precision and recall
obtained for different macro values. Signature
significance values and micro thresholds were
kept constant at 0.2 and 0.7 respectively.

In the subsequent experiments, we fix the label threshold for the QoMym algorithm
at 0.8, the signature threshold at 0.7, the micro threshold at 0.7, the macro threshold
at 0.8, and the significance values of label and signature at 0.2 and 0.8 respectively.

6.3 QoMym Match Quality

Based on the threshold and significance values determined in Section 6.2, we ran a
set of experiments to evaluate the accuracy of the QoMym algorithm. We did this by
comparing QoMym with our manual benchmark as well as with other state-of-the art
algorithms found in literature, namely a signature, linguistic, and a filtering algorithm
that uses signature matching as a filter prior to applying a linguistic match algorithm.
For these experiments, we selected the Calendar component shown in Figure 12 as
the query component, and compared it to the components in the repository. Figure 13
shows the results in terms of the number of qualified components returned from the
library by the different algorithms for the query component Calendar.

Component Calendar {
void setDay (int) int getDay ();
void setMonth (int); int getMonth ();
void setYear (int); int getYear ();
void setStyle (int); int getStyle ();
void setLocale (java.util.Locale); java.util.Local getLocale ();

}

Fig. 12. The Query Component - Calendar.

184 Naiyana Tansalarak and Kajal Claypool

Here the expected number of hits for the Calendar component were 4. The
QoMym algorithm performed the best returning exactly 4 components, while the sig-
nature-based algorithm performed the worst and returned 43 qualified components. It
was interesting to note that the filtering algorithm also did better than linguistic and
signature algorithms alone returning 6 qualified components. We found there was no
difference in the qualified components returned (in this case) if the order of filtering
was varied (that is linguistic followed by signature and vice versa).

0

5

10

15

20

25

30

35

40

45

H

it
s

Signature Linguistic QoM Filtering Manual

Matching Techniques

Fig. 13. The Number of Qualified Compo-
nents Returned For the Different Matching
Techniques.

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

P
er

ce
n

ta
g

e

syntactic semantic hybrid filtering

Matching Techniques

precison

recall

overall

Fig. 14. The Match Quality of the Different
Matching Techniques.

Figure 14 depicts the precision and recall of the the different algorithms together
with their overall quality. In general, high precision and recall are indicators of high
overall quality of the match algorithms. We found that all algorithms had high recall
(1.0), that is all algorithms were able to find the expected qualified components. The
algorithms however varied in their precision with signature based algorithm having low
precision to the QoMym algorithm having the best precision. The filtering algorithm
shows that the combination of linguistic and signature algorithms can result in higher
precision than if the algorithms were used individually. This is in step with the intuitive
argument that has been made before [22, 6, 4].

While filtering is a good first step toward combining different algorithms, the pre-
liminary experimental results presented here indicate that a disciplined hybrid combi-
nation of the two (and in the future more) algorithms can result in higher overall quality
of the retrieved qualified components. It is mainly due to the fact that the significance
values are employed to weigh the importance of these algorithms. This allows QoMym
to not only discover matches that may have been missed but to also reject matches that
are discovered by the filtering technique as different algorithms work independently.

7 Conclusions

The QoMym algorithm offers many advantages over the previously developed compo-
nent matching approaches. For example, while previous approaches take into account

Finding a Needle in the Haystack 185

the method signature they often discount the importance of labels8 and the semantic
information imparted by the same. In our work we now exploit not only the seman-
tic information in labels, but also the syntactic and semantic information contained in
properties, event, and the design that are intrinsic parts of a component. In fact we find
that with the combined use of the semantic and syntactic information we are able to
achieve higher precision and recall without the performance overhead associated with
approaches like specification matching. Moreover, our preliminary results suggest that
a disciplined combination of different algorithms (linguistic and signature) can provide
better overall quality than a naive filter-based approach.

References

[1] Dietrich Birngruber. CoML: Yet Another, But Simple Component Composition Language.
In Workshop on Composition Language, 2001.

[2] Don Box. Essential COM. Addison-Wesley Publishing Company, 1998.
[3] Kajal T. Claypool, Vaishali Hegde, and Naiyana Tansalarak. QMatch: A Hybrid Match

Algorithm for XML Schemas. In Proceedings of the 2nd International Workshop on XML
Schema and Data Management (to appear), April 2005.

[4] Joseph Goguen, Doan Nguyen, Jose Meseguer, Luqi, Du Zhang, and Valdis Berzins. Soft-
ware Component Search. Journal of Systems Integration, 6(1/2):93–134, March 1996.

[5] Thomas Gschwind, Johann Oberleitner, and Mehdi Jazayeri. Dynamic Component Ex-
tension to Support Cross-Platform Development. Technical Report TUV-1841-2002-19,
Technische Universitt Wien, 2002.

[6] Jun-Jang Jeng and Betty H. C. Cheng. Specification Matching for Software Reuse: A
Foundation*. In Proceedings of the 1995 Symposium on Software reusability. ACM Press,
1995.

[7] Y. Matsumoto. A Software Factory: An Overall Approach to Software Production. In
P. Freeman, editor, Tutorial: Software Reusability. IEEE Computer Society Press, 1987.

[8] A. Mili, R. Mili, and R. Mittermeir. Storing and retrieving software components: a re-
finement based system. In Proceedings of the 16th international conference on Software
engineering, pages 91–100, 1994.

[9] G.A. Miller. Wordnet: A Lexical Database for English Language.
cogsci.princeton.edu/ wn/, 2002.

[10] Hans Muller and Mark Davidson. JavaBeans Specification: Getting Listeners from Jav-
aBeans. http://java.sun.com/products/javabeans, 1996.

[11] Frank Pilhofer. Writing and Using CORBA Components.
http://www.cs.indiana.edu/ srikrish/orals/mico-ccm.pdf, 2002.

[12] R. Prieto-Diaz and P. Freeman. Classifying Software for Reusability. IEEE Software,
4(1):6–16, 1987.

[13] Bill Roth. An Introduction to Enterprise JavaBeans Technology.
http://java.sun.com/products/ejb, 1998.

[14] J. Siegel. CORBA: Fundamentals and Programming for the 21st century. John Wiley, New
York, 1996.

[15] Vijayan Sugumaran and Veda C. Storey. A semantic-based approach to component re-
trieval. ACM SIGMIS Database, 34(3):8–24, 2003.

8 The method label should in general provide semantic information to partially characterize the
methods if component developers implement components by following the software develop-
ment guide.

186 Naiyana Tansalarak and Kajal Claypool

[16] Naiyana Tansalarak and Kajal T. Claypool. QoM: Qualitative and Quantitative Schema
Match Measure. In Proceedings of the 22nd International Conference on Conceptual Mod-
eling (ER 2003), October 2003.

[17] Naiyana Tansalarak and Kajal T. Claypool. QoMym: The QoM-based Hybrid Match Algo-
rithm. Technical Report 2004-009, Department of Computer Science, University of Mas-
sachusetts - Lowell, August 2004. Available at http://www.cs.uml.edu/techrpts/reports.jsp.

[18] Naiyana Tansalarak and Kajal T. Claypool. XCM: A Component Ontology. In Workshop on
Ontologies as Software Engineering Artifacts joint with the 19th Annual ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications, 2004.

[19] Igor Tatarinov and Stratis D. Viglas. Storing and Querying Ordered XML Using a Rela-
tional Database System. In Proceedings of the 2002 ACM SIGMOD international confer-
ence on Management of data, pages 204 – 215. ACM, June 2002.

[20] A. Vallecillo, J. Hernandez, and J. Troya. Component Interoperability. Technical Re-
port ITI-2000-37, Departmento de Lenguajes y Ciencias de la Computacion, University of
Malaga, July 2000. Available at http://www.lcc.uma.es/∼av/Publicaciones/
00/Interoperability.pdf.

[21] Amy Moormann Zaremski and Jeannette M. Wing. Signature Matching: a Tool for Us-
ing Software Libraries. In ACM Transactions on Software Engineering and Methodology
(TOSEM). ACM Press, 1995.

[22] Amy Moormann Zaremski and Jeannette M. Wing. Specification Matching of Software
Components. In ACM Transactions on Software Engineering and Methodology (TOSEM).
ACM Press, 1997.

A Contracting System

for Hierarchical Components

Philippe Collet1, Roger Rousseau1, Thierry Coupaye2, and Nicolas Rivierre2

1 University of Nice - Sophia Antipolis, I3S Laboratory, France,
Philippe.Collet@unice.fr

2 France Telecom R&D Division,
MAPS/AMS Laboratory, Grenoble & Issy les Moulineaux, France

Abstract. This article presents the contracting system ConFract for the
open and hierarchical component model Fractal. Contracts are dynami-
cally built from specifications, currently executable assertions, at assem-
bly times, and are updated according to dynamic reconfigurations. These
contracts are not restricted to the scope of interfaces, taken separately.
On the contrary, new kinds of composition contracts can be built in or-
der to associate several external interfaces of a component, providing an
“usage contract”, or several interfaces inside the component, providing
an “assembly and implementation contract”. All these contracts identify
fine-grained responsibilities and developers can thus easily organize the
handling of contract violations and the resulting reconfigurations.

1 Introduction

Since McIlroy’s appeal in 1968, component-based software engineering (CBSE)
has gone through an important evolution. Components were at first units of com-
pilation, then modules fitting together with an explicit interface (Modula2 , Ada
. . .), then classes associated by use or inheritance links (Eiffel, C++ . . .), and
finally, black boxes, organized in a (re-)configurable architecture and capable of
communicating on a network through several interfaces (CCM , EJB, .NET . . .).
Nowadays one would like to reconcile the advantages of all these notions of soft-
ware components, while having the means to manage the resulting architecture,
separate concerns and choose the right level of abstraction. A “modern” soft-
ware component can be thus considered as a runtime entity which communicates
through (possibly remote) interfaces which can be dynamically bound, as well as
a hierarchy of subcomponents, with possible sharings. This supposes elaborated
component models such as Fractal [1], which makes possible to extend technical
services with its openness capabilities, while separating concerns.

Such models drastically change the processes of traditional software engi-
neering, by mixing static, dynamic, functional and extra-functional properties.
To ensure the reliability of the resulting applications, it is necessary to integrate
verifications into adapted but complex development processes. As a component
is usually defined as “an unit of composition with contractually specified inter-
faces” [2], the notion of contract appears as a natural solution to express and

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 187–202, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

188 Philippe Collet et al.

organize specifications and verifications [3]. But when components are organized
hierarchically, these contracts must not be only associated to interfaces, taken
separately, they also have to take into account this hierarchy by being defined
on components themselves. With the possibility of dynamic reconfigurations,
contracts must also be built and updated dynamically, according to any depen-
dent change in the architecture. Moreover, if contracts are updated, they can be
used to check the consistency of the dynamic reconfigurations. Finally, in order
to handle at best contract violations, the contracting system must determine
fine-grained responsibilities on each element of a contract.

This article presents ConFract, a contracting system for hierarchical compo-
nents that meets these requirements and is targeted to the Fractal component
model[1]. In its integration, ConFract also uses the reflexive capababilities and
the control features of extra-functional concerns provided by the Fractal plat-
form. Section 2 describes the rationale for a contracting system on components
such as the Fractal ones. Examples of specifications with executable assertions
are given in section 3. Section 4 presents the ConFract system by describing
its types of contract and their responsibilities. Contract checking and some ex-
amples of dynamic reconfigurations are also presented. The implementation is
described in the section 5 and section 6 discusses related work. Finally, section 7
concludes this article.

2 Rationale for Contracting Components

2.1 Context

The Fractal component model [1]3 is a general component model with the fol-
lowing main features: composite components (to have a uniform view of ap-
plications at various levels of abstraction), shared components (to model re-
sources and resource sharing while maintaining component encapsulation), re-
flective capabilities (introspection capabilities to monitor a running system and
re-configuration capabilities to deploy and dynamically configure a system) and
openness (in the model, almost everything is optional and can be extended).
The Fractal component model basically enables developers to hierarchically or-
ganize an application, with components being built from other subcomponents.
Components can be connected through server (provided) and client (required)
interfaces. Throughout this paper, we illustrate our approach with the example
of a simplified simulator of a black and white copier (see Figure 1).

From an external point of view, the copier component <cp> provides two
server interfaces, a control panel (pp) and an output tray for copies (ot). The
client interfaces manage everything the environment has to supply to make a
copy: some black ink (bi), an input tray (it), a glass pane with the original
(gs) and AC power (ap). At assembly times, the surrounding root component
<topLevel> connects all these interfaces with interfaces of compatible type,

3 The reader can find a more detailed description of the model in [4] and at
http://fractal.objectweb.org

A Contracting System for Hierarchical Components 189

Fig. 1. Internal architecture of the copier.

but inverse role (client becomes server and conversely), which come from an
<environment> component simulating the user behavior.

Internally, a Fractal component is formed out of two parts: a membrane and
a content. The content of a composite component is composed of other com-
ponents, called subcomponents, which are under the control of the enclosing
component. The Fractal model is thus recursive and allows components to be
nested. The membrane embodies the control behavior associated with a partic-
ular component. In particular, it can i) intercept oncoming and outgoing opera-
tion invocations targeting or originating from the component’s subcomponents,
ii) superpose a control behavior to the behavior of the component’s subcom-
ponents or iii) provide an explicit and causally connected representation of the
component’s subcomponents.

From an internal point of view, the copier <cp> is thus the assembly of four
subcomponents: <dv>, which distributes the internal control flow, <sn>, which
scans the original document, <pt>, which prints the required copies and <fz>,
which dries the ink or cooks the toner. The assembly is under the control of
the copier membrane, which is made of interceptors (not shown on figure) and
controller objects, provided by the Fractal platform. To connect the external
interfaces of a composite component with its subcomponents, the Fractal model
provides the concept of internal interface. Every internal interface is connected
with an external interface, of the same name, but with a inverse role. For exam-
ple, the component <fz> provides the server interface ot, which implements the
server interface ot of the component <cp>, via the internal interface ot of <cp>.
The internal connections bind the interfaces ap of power supply, distribute the
control flow from <dv> through the interfaces sctl, pctl and fctl. The data

190 Philippe Collet et al.

flow is shown by the path of the paper via it, uc, ot, of the digital image via
gs, di, uc, ot and of the ink via bi, uc and ot.

The signatures of the interfaces are defined using the underlying language
of the implementation Julia [1] of Fractal, currently Java 4, as shown on Fig-
ure 2. These signatures can refer to library interfaces or classes, such as Sheet,
SheetImage, InkCartridge or Stack in this example.

external interfaces

i n t e r f a c e Outpu tT ray{
S t a c k /∗ S h e e t ∗ / s h e e t s ()
. . .

i n t e r f a c e P r i n t i n g P a n e l{
vo id copy (i n t n)
double d u r a t i o n ()
boolean i sPowerOn ()
boolean i s Copy ing ()
. . .

i n t e r f a c e Black Ink {
I n k C a r t r i d g e c a r t r i d g e ()
double minLevel ()
. . .

i n t e r f a c e I n p u t T r a y {
S t a c k /∗ S h e e t ∗ / t r a y ()
boolean i s P a p e r J a m ()
i n t c a p a c i t y ()
. . .

i n t e r f a c e G l a s s{
S h e e t o r i g i n a l ()
boolean o r i g i n a l O n G l a s s ()
. . .

internal interfaces

i n t e r f a c e Uns tab leCopy{
S h e e t copy ()
. . .

i n t e r f a c e D i g i t a l I m a g e{
Shee t Image image ()
. . .

i n t e r f a c e S c a n n e r C t l{
vo id scan ()
double d u r a t i o n ()
. . .

i n t e r f a c e P r i n t e r C t l {
vo id p r i n t ()
double d u r a t i o n ()
. . .

i n t e r f a c e F i n a l i z e r C t l {
vo id f i n a l i z e ()
double d u r a t i o n ()
. . .

library interfaces

i n t e r f a c e S h e e t{
Shee t Image image ()
boolean i s S t a b l e ()
. . .

i n t e r f a c e Shee t Image{
boolean

e q u a l s (Shee t Image o)
boolean i s B l a n k ()
. . .

i n t e r f a c e I n k C a r t r i d g e {
double l e v e l () / / ml
. . .

i n t e r f a c e S t a c k /∗ Elem∗ /{
/ / Java 2 P la t for m , v1 . 4 . 2
/ / w i t h o u t g e n e r i c i t y . . .

i n t s i z e ()
O b j e c t peek ()
O b j e c t pop ()
O b j e c t push (O b j e c t o)
O b j e c t e l emen tAt (i n t i)
. . .

Fig. 2. Partial signatures of the copier interfaces.

2.2 Motivations

It is now well accepted that interface signatures, even with comments, are insuf-
ficient to capture and control the salient properties of an application [3]. More
complete specifications are needed on the functional and extra-functional aspects
(architecture, performances, quality of services, etc.).

Some properties can be checked early, using static analyses or proofs. Other
properties, often extra-functional, which refer to runtime values, can only be
dynamically verified. In the case of hierarchical components where the assemblies
are dynamic, we liken the word static to “before the component is started”. For
example, in the case of the copier, one should be able to verify statically that all
the subcomponents are connected to a power supply or to prove the functional
properties of very stable library interfaces (Sheet, Stack, etc.).
4 For space’s sake, the keyword public and ”;” are omitted.

A Contracting System for Hierarchical Components 191

Either static or dynamic, many different properties can be expressed, using
different specification formalisms [5,6,7,8]. For example, interface automata [6]
enables a specification to capture input assumptions about the order in which
the methods of a component are called and output guarantees about the or-
der of called external methods. Checking compatibility and refinement between
interface models is then possible. Behavior protocols [7] express traces on in-
terface method calls with a form of regular expressions and takes into account
hierarchical components. These protocols can be defined on interfaces, frames
(aka component types) and architectures (aka component internal assembly).
Refinement of specifications are verified at design time, while adherence of a
component’s implementation to its specification is checked at run time.

We decide to first focus on the contracting mechanisms, rather than on the
expressiveness of the specification formalism. We use executable assertions, the
formalism first used with contracts [9], to reason about component contracts
using both functional and extra-functional specifications. Nevertheless, to obtain
a high confidence degree, it will be necessary, at long term, to take into account,
in the same platform, different specification formalisms, formal or semi-formal,
for proofs, static or dynamic checking.

To our knowledge, the proposals to explicitly support contracts for compo-
nents all focus on interfaces or connectors, taken separetely. They aim at specify-
ing behavior [8], architectural constraints [10] or quality of services [11]. As such
they lack several important features to be well suited to our definition of com-
ponents: they do not take into account a hierarchical assembly of components;
contracts are not built incrementally and not updated if any dynamic reconfig-
uration occurs; the responsabilities of contracts are not precisely determined to
handle violation in the most efficient way.

Facing all the problems stated above, we define the requirements of the Con-
Fract system to the following.

– Specifications can be either functional or extra-functional. They can be ver-
ified either statically (at assembly time) or dynamically (at runtime). They
state properties that are related to interfaces, but also to the components
themselves, while respecting visibility rules of the Fractal model.

– Specifications, which play the role of provisions, are distinguished from Con-
tracts, which are reified and incrementally built following configuration ac-
tions. Contracts are also updated when dynamic reconfigurations occur, so
that they can be used to check the modified architecture.

– Responsibilities among the contract participants must also be clearly de-
fined to enable the developers to precisely handle contract violations (log,
renegotiation of contracts, dynamic reconfigurations, organized panic, etc.).

Consequently, contracts in the ConFract system will take their usual sense
of “document negotiated between several parties, the responsibilities of which are
clearly established for each provision”.

192 Philippe Collet et al.

3 Examples of Specification

3.1 Informal Descriptions

As in current proposals for contracting components [11,8], it must be possible
to use the connection point between two interfaces, client and server, to define
some specifications. In the case of the method copy, on the control panel of the
copier, one can express the precondition:

“the parameter n must be positive” s1
or the postcondition:

“the copier is no more in the state isCopying.” s2
These properties are certainly useful, but with a rather poor semantics.

To express more relevant properties, it is necessary to compose external or
internal properties by widening the scope, while respecting encapsulation, which
is controlled by the membranes. As for the method copy of the control panel,
one could express, as precondition:

“enough ink is available on interface bi, enough paper on it, an
original is placed on gs and the power is supplied on ap” s3

as functional postcondition:
“the copies in the tray ot are the sheets that were in the inverse
order in the tray it before the copy, all printed with the image of the
original on gs and stabilized”

s4

and as extra-functional postcondition:
“the duration of a copy conforms to the printing speed of the copier,
in number of pages per minute.” s5

Moreover, in the case of a composite component, it is also necessary to com-
pose its internal properties, visible through its internal interfaces5 or through
the external interfaces of its subcomponents. So, for the component <cp>, one
could express, as functional postcondition of <dv>.pp.copy():

“the copies of the tray ot are printed with the image scanned from
<sn>.di on a blank paper sheet <pt>.it and stabilized” s6

or as extra-functional postcondition of <dv>.pp.copy():
“the duration of n copies is the sum of the duration of the scan plus
the duration of n printings and stabilizations.” s7

With such possibilities of expression, one could then reason in a compositional
way [3], for example by verifying that the external behavior of the copier is
properly obtained by the organization and the internal behavior that implement
it.

3.2 Executable Assertions

In the ConFract system, specifications are currently written in the language
CCL-J (Component Constraint Language for Java), which is inspired by OCL

5 In Fractal, internal interfaces are systematically and complementarilly associated to
external interfaces, in order to go through the membrane of composite components,
as on Figure 1.

A Contracting System for Hierarchical Components 193

[12] and enhanced to be adapted to Fractal. Currently, the categories of speci-
fications are classic [13], pre, post, inv, rely and guarantee6. Each category
consists of one or more clauses, identified by a number or a label and bound by
a logical conjunction.

The scope of specifications is adapted using variants of the context con-
struct. It can refer to a method of a Java interface: context method-signature
(Fig. 3); a component type: on COPIER context (Fig. 4); or a particular compo-
nent (instance or template of Fractal components [1]): on <cp> context (Fig. 5).

on Fractal interfaces

c o n t e x t vo id P r i n t i n g P a n e l . copy (i n t n)
pre 0 < n / / c f s pec [1]
r e l y i sPowerOn ()
guarantee i s Copy ing ()
pos t ! i s Copy ing () / / c f s pec [2]

c o n t e x t I n p u t T r a y
inv t r a y () . s i z e () <= c a p a c i t y ()

on Java interfaces

c o n t e x t vo id S t a c k . push (O b j e c t o)
pos t :

peek () = = o
s i z e () = = s i z e () @pre + 1
forEach (i n t i in 1 . . s i z e ()−1

e lemen tAt (i) = e l emen tAt (i) @pre
. . .

Fig. 3. Examples of interface specifications with CCL-J .

CCL-J also enables one to specify classic assertions on interfaces (without
reference to other interfaces) or classes. The left part of Figure 3 then shows the
specifications s1 and s2 in CCL-J ; the right part gives a partial specification of
the class Stack.

on COPIER c o n t e x t vo id pp . copy (i n t n)
pre / / c f spec [3]

b i . c a r t r i d g e () . l e v e l () >= b i . minLevel ()
n <= i t . t r a y () . s i z e () & & ! i t . i s P a p e r J a m ()
gs . o r i g i n a l O n G l a s s ()
ap . i s P l u g g e d I n ()

post / / c f spec [4]
forEach i in 1 . . n : o t . s h e e t s () . e l em en tAt (i) .

e q u a l s (gs . o r i g i n a l () . image ())
b i . c a r t r i d g e . l e v e l () <= b i . c a r t r i d g e . l e v e l () @pre
i t . t r a y () . s i z e () = = i t . t r a y () . s i z e () @pre − n

post / / c f spec [5]
speed : d u r a t i o n () <= n∗60/ a t t r i b u t e s .CPM

/ / CPM = c o p i e s / minu t e
end on

on SCANNER c o n t e x t vo id s c t l . scan ()
pre

gs . o r i g i n a l O n G l a s s ()
post

d i . image () . e q u a l s (gs . o r i g i n a l () . image ()
end on

on SCANNER c o n t e x t vo id s c t l . scan ()
post

l e t (double md = t i m e () − t ime () @pre)
md−0.01 <= s c t l . d u r a t i o n () <= md+0 .01

end on

on COPIER c o n t e x t ∗ pp .∗ (∗)
pre / / c f spec [8]

ap . i s P l u g g e d I n () ;
end on

Fig. 4. Examples of external component specifications with CCL-J .

But as previously stated, it is more relevant to specify compositional prop-
erties, refering to several interfaces or several components. This is the main
6 rely, resp. guarantee, states conditions that a method can rely, resp. must guaran-

tee, during its entire execution.

194 Philippe Collet et al.

contribution of the CCL-J language. Figure 4 shows some examples of specifi-
cations of external compositions with CCL-J . All the properties are located on
component types, as they are valid whatever is the internal assembly. On the
left part, the behavior of a COPIER component type is expressed, (equivalent of
the specifications s3, s4 and s5) with one construct on to define the component
scope, and with references to all interfaces in the logical formulas. On the right
part, the behavior of a SCANNER component type is also defined, but the func-
tional and extra-functional aspects are differentiated, illustrating the flexibility
of the language. CCL-J also provides an operator * to denote any list of argu-
ments or to factorize a property that is common to several specifications. The
example at the lower right part of Figure 4 expresses:

“that the preconditions of all methods of the interface pp require that
the interface ap has a connected power supply.” s8

on <cp > c o n t e x t <dv>.pp . copy (i n t n)
pos t / / c f s pec [6]

(l e t S t a c k /∗ S h e e t ∗ / r = < fz >. o t . s h e e t s () ; / / o u t p u t s h e e t s
i n t o = < fz >. o t . s h e e t s () . s i z e () @pre ; / / s h e e t s nb b e f o r e copy i n o t
i n t p = < pt >. i t . t r a y () . s i z e () @pre ; / / s h e e t s nb b e f o r e copy i n i t

)
forEach (i in 1 . . n :

r . e l emen tAt (o+ i) . image () . e q u a l s (<sn >. d i . image ()) &&
r . e lemen tAt (o+ i) . image () . i s S t a b l e () &&
r . e lemen tAt (o+ i) == < pt >. i t . t r a y () . e l emen tAt (p−i +1)@pre)

end on

on <cp > c o n t e x t <dv>.pp . copy (i n t n)
pos t / / c f s pec [7]

l e t (double t h d = < sn >. s c t l . d u r a t i o n () +
n∗(<pt >. p c t l . d u r a t i o n () + < fz >. f c t l . d u r a t i o n ()))

thd −1 <= d u r a t i o n () <= t h d +1
end on

on <cp>
inv / / c f s pec [9]

l e t (Component [] s ubc= F r a c t a l . g e t C o n t e n t C o n t r o l l e r (t h i s) . getFcSubComponents ())
forEach i in 1 . . s ubc . l e n g t h :

Arrays . a s L i s t (s ubc [i] . g e t F c I n t e r f a c e s ()) . e x i s t s (I n t e r f a c e i r :
C l a s s . forName (i r . g e t F c I t f S i g n a t u r e ()) . conformsTo (ACPower . c l a s s)

&& i r . i s F c C l i e n t I t f ()) ;
end on

Fig. 5. Examples of internal component specifications with CCL-J .

In the same way, Figure 5 shows some examples of internal composition
specifications. All the properties are located on component instances, as they
are dependent from a specific assembly. The top example is the equivalent of
the functional property s6, and of the extra-functional property s7. The bottom
example of the figure illustrates an architectural constraint, using the introspec-
tion capabilities of Fractal:

“that all the subcomponents of <cp> have at least a client interface of
type ACPower.” s9

A Contracting System for Hierarchical Components 195

Fig. 6. The contracts built from the copier’s specifications.

4 The ConFract System

4.1 Types of Contract

The ConFract system distinguishes several types of contracts according to the
specifications given by the designers (see Figure 6).

– interface contracts are established on the connection point between a pair of
client and server interfaces (for example pp between <cp> and its environ-
ment <env> or di between <pt> and <sn>). The retained specifications only
refer to methods and entities in the interface scope.

– external composition contracts are located on the external side of each com-
ponent membrane (for example the one of <cp>, at the top left of the figure).
They consist of specifications which refer only to external interfaces of the
component. They thus express the usage and external behavior rules of the
component.

– internal composition contracts are located on the internal side of a compos-
ite component membrane (for example the one of <cp> at the top right of

196 Philippe Collet et al.

the figure). In the same way, they consist of specifications which refer only
to internal interfaces of the component and to external interfaces of its sub-
components. They express the assembly and internal behavior rules of the
implementation of the composite component.

– library contracts are mostly functional contracts that are defined on reusable
units of the underlying language, classes and interfaces in the case of Java.
They are relevant only for the implementation of components and do not
participate in the assembly negotiations. As they are not the original part
of our work, we will not refer to them in the rest of this paper.

4.2 Responsibilities

During the reification of a contract, the ConFract system determines the re-
sponsibilities associated to each specification, among the list of participating
components in the contract. These responsibilities can be either i) guarantor,
the component that must be notified in case of violation of the provision, and
which has the capacity to react to the problem, or ii) beneficiaries, the compo-
nents which can rely on the provision, or iii) possible contributors, which are
components needed to check the provision. Contrary to most object-oriented
contracting systems, there is no concept of blame or guilty party in our model,
as it is more dynamic and open to negotiations. As a result, on a contract vio-
lation, the focus is more on how to dynamically adapt the application at best,
preserving robustness, rather that on assigning blame about a correctness issue.
In the copier example, if the precondition of the method copy, which states n
<= it.tray().size() is false, a negotiation could either limit n through the
control panel, or change the interface InputTray to have a tray of paper with a
larger capacity. For this provision, the guarantor is <topLevel>, which leads the
negotiation, <cp> the beneficiary and, <env> and <cp> are contributors, through
the interfaces it and pp.

For brevity’s sake we only describe here the responsibilities of pre and post-
conditions on composition contracts. Considering Figure 1, the responsibilities of
the external composition contract of the printer <pt> are given by the following
table:

interface role construct guarantor beneficiaries
server: pctl, uc pre <cp> <pt>
server: pctl, uc post <pt> <cp>, <dv> (pctl), <fz> (uc)
client: ap, di, bi, it pre <pt> <cp> (ap, it, bi), <sn> (di)
client: ap, di, bi, it post <cp> <pt>

For example, on the component <pt>, for the postcondition of a method on
its server interface uc, the guarantor is the component itself— as it implements
the method and provides the interface — and the beneficiaries are <cp>, which
contains <pt>, and <fz>, which is connected to the interface uc. As the external
composition contract represents the usage rules of the component <pt>, it is
logical to attribute the responsibility of this provision to the component <cp>,
which contains <pt>, as it is <cp> that has to handle its internal assembly. As

A Contracting System for Hierarchical Components 197

for the responsibilities associated to the internal composition contract of <cp>,
they are straightforward, as <cp> is at the same time the guarantor and the
beneficiary in all cases, being entirely responsible of its own implementation.

4.3 Progressive Closure of Contracts

When a component is inserted into an assembly, ConFract creates its internal
composition contract if it is composite, and its external composition contract if
it has some specifications bound to several of its interfaces. For every specifica-
tion bound to some composition contracts, a provision template is created and
attached to the composition contract. Every template is waiting for all its con-
tributors to close up. When a new subcomponent is added into a composite, all
the templates that participate in the concerned composition contract have their
responsibilities completed. When all the contributors of a template are known,
it is closed and becomes a provision. When all the provision templates of an
internal composition contract are closed, the contract is closed as well, as all the
responsibilities are identified, and the component can be finally started.

For an interface contract, the life cycle is very simple, as there are only two
participants in the contract. It is thus created during the connection between
the interfaces and is automatically closed.

4.4 Contract Checking

When building the contract, the ConFract system includes in each provision of
a contract, the specification predicate (currently a CCL-J assertion), an inter-
ception context (the times and locations where the provision is supposed to be
satisfied) and the necessary references to the context (component, interfaces,
etc.). The contracts are then evaluated when the appropriate event occurs (see
section 5.2).

At configuration time, the provisions of composition contracts that define
invariant properties on components (cf. spec. s9) are checked. As for precondi-
tions, postconditions and method invariants of all contracts, they are checked at
runtime. When a method is called on a Fractal interface, the provisions of the
different contracts that refer to this method are checked in the following way. Pre-
conditions from the interface contract are first checked. As they are created from
the client and server specifications, they also check hierarchy errors to ensure
behavioral subtyping [14]. Preconditions from the external composition contract
of the component receiving the call, are then checked, ensuring the environment
of the component is as expected. Preconditions from the internal composition
contract are then checked. It should be noted that preconditions from the three
different kinds of contract are simply checked sequentially. No specific rule is
needed to ensure substituability as the interface contract already defined it, and
that the other preconditions are not sharing the same scope and responsibilities.
A similar checking is done with postconditions and method invariants after the
call.

198 Philippe Collet et al.

4.5 Examples of Dynamic Reconfiguration

We now illustrate two cases that can occur when a dynamic reconfiguration takes
place and we show how the contracts follow the reconfiguration, help in checking
their consistency and facilitate precise violation handling.

Let us suppose that one dynamically changes the scanner component <sn>
with a new one, <newsn>. When <sn> is removed from the copier, its inter-
nal composition contract opens and the concerned provisions become provision
templates again (interface contracts on the bindings of <sn> are also removed).
When <newsn> is inserted in the copier, its internal composition contract closes
again. Let us now suppose the <newsn> has no required interfaces ap of type
AcPower. The internal composition contract of the copier will be evaluated be-
fore its starting and the provision s9 will be violated. For this kind of provision,
the responsibility is on the component carrying the contract, that is the copier
<cp>. It is indeed the only component that has the appropriate scope to handle
the violation, for example by changing the scanner component again.

Let us now suppose that <newsn> has the appropriate interface, but that
its scanning process is too slow. As the external composition contract on <cp>
will be also updated in this case, the runtime checking of the postcondition
of the method copy (on the pp interface of the copier, Figure 3) will fail, on
the provision related to the printing speed (cf. spec. s5). Following the table
page 196, the copier is also the responsible component, and is thus notified of
the failure. Obviously, as the assertion on printing speed refers to the speed of
several components, the reconfiguration could be optimized according to different
criteria, but this is a combinatorial optimization problem, which can be handled
by a negotiation7.

5 Implementation

The ConFract system is currently integrated into Fractal using its reference im-
plementation in Java, named Julia [1]. Julia is a software framework dedicated
to components membrane programming. It is a small run-time library together
with bytecode generators that relies on an AOP-like mechanism based on mixins
and interceptors. A component membrane in Julia is basically a set of controllers
and interceptors objects. A mixin mechanism based on lexicographical conven-
tions is used to compose controller classes. Julia comes with a library of mixins
and interceptors classes the programmer can compose and extend.

5.1 The Contract Controller

The various contracts are managed by contract controllers (CTC on Figure 6),
located on the membrane of every component. As subcomponents are under
the control of the enclosing component, every contract controller of a composite
component manages the life cycle and the evaluation of the contracts that refer
to its subcomponents and their bindings:
7 The study of negotiation mechanisms in ConFract is in progress[15].

A Contracting System for Hierarchical Components 199

– the internal composition contract of the composite on which it is placed,
– the external composition contract of each of the subcomponents,
– the interface contract of every connection in its content.

During the creation of a composite component, the initialization of its contract
controller creates its internal composition contract. The other contracts are built
and updated by mixins.

5.2 Mixins and Interceptors

According to the configuration actions made on components, the contract con-
troller reacts as different mixins are placed on the other Fractal controllers
(cf. Figure 6):

– Binding Controller (BC). As this controller manages the creation and de-
struction of the connections between component interfaces, a mixin notifies
the surrounding contract controller of connections (resp. disconnections) to
instantiate (resp. to suppress) the corresponding interface contract.

– Content Controller (CC). This controller manages the insertion of subcom-
ponents inside a composite. A mixin notifies the contract controller of each
insertion, so that it builds the external composition contract of the new sub-
component C. The contract controller also closes the provisions that refers
to C in the internal composition contract. The inverse actions are realized
during the removal of a subcomponent.

– Life-cycle Controller (LC). As the Fractal model is very open, the only mo-
ment when one can be sure that a component is completely configured is just
before it is started, using the start method of the life-cycle controller. As
a result, a mixin is added to perform “static” checks (cf. section 2.2). The
contract controller of the component (resp. of the surrounding component)
verifies that its internal composition contract (resp. external) is closed. Fi-
nally, the contract provisions that are statically verifiable, such as component
invariants, are checked.

As for the evaluation of dynamic contract provisions, Julia interceptors are
used. Every Fractal interface related to a contract receives an interceptor on its
methods entry and/or exit. In the case of CCL-J , when a method is called on
an interface, the contract controller is then notified and it applies the checking
rules described in section 4.4.

6 Related Work

Since the Eiffel language, numerous works focused on executable assertions in
object-oriented languages, notably for Java [5,16]. JML [5] combines executable
assertions with some features of abstract programs. It allows the developer to
build executable models which use abstraction functions on the specified classes.
CCL-J is much simpler than JML in terms of available constructs, but we only

200 Philippe Collet et al.

use CCL-J to validate the contracting mechanisms of ConFract. The composi-
tion contract provided by ConFract can be compared to collaboration contracts
on objects proposed by Helm and Holland [17]. The notion of views in the col-
laboration is similar to the roles of the participants in our contracts. However, in
the ConFract system, the composition contracts are carried by components —
which allows one to distribute them in the hierarchy — and are automatically
generated and updated according to the actions of assembly and connection.

Works on contracting components focus on using adapted formalisms to spec-
ify component interfaces. For example, contracts on .NET assemblies have been
proposed [8], using AsmL as a specification language. Abstract programs are
then interpreted in parallel with the code, but the contracts are only associated
with interfaces. Numerous works rely on the formalism QML (QoS Modeling
Language) [18], for example to contract QoS related properties on components
[19]. QML allows the designer to describe such contracts by specifying the ex-
pected levels of the qualities on interfaces, but does not allow one, unlike CCL-J ,
to combine functional and extra-functional aspects in the same specification (for
example, it is not possible to link a extra-functional constraint to some input
parameter of a method). Several works have also proposed contracts for UML
components. In [10], contracts between service providers and service users are
formulated based on abstractions of action and operation behaviour using the pre
and postcondition technique. A refinement relation is provided among contracts
but they only concerns peer to peer composition in this approach. In the same
way, a graphical notation for contracting UML components is proposed in [11],
focusing on expressing both functional (with OCL [12]) and extra-functional
(with QML [18]) contracts on component ports. Here again, only the connec-
tion of components is considered and checking means are not discussed. More
recently Defour et. al. [20] proposed a variant of the contracts of [11] with QML,
which can be used for constraints solving at design time. The version 2 of the
UML notation supports a form of hierarchical components but contrary to Frac-
tal, it focuses more on component connectors than on a composite structures.
Moreover, version 2 of OCL [21] does not provide any extension to express com-
positional constraints. Consequently, it is likely to become quite cumbersome to
express CCL-J-like composition constraints with OCL.

ADLs have been proposed for modelling software architectures in terms of
components and their overall interconnection structure. Many of these languages
support formal notations to specify components and connectors behaviors. For
example, Wright [22] and Darwin [23] use CSP-based notations, Rapide [24] uses
partially ordered sets of events and supports simulation of reactive architectures.
These formalisms allow to verify correctness of component assemblies, checking
properties such as deadlock freedom. Some ADLs support implementation issues,
typically by generating code to connect component implementation, however
most of the work on applying formal verifications to component interactions
has focused on design time. A notable exception is the SOFA component model
and its behavior protocol formalism [7], based on regular-like expressions, that
permit the designer to verify the adherence of a component’s implementation to
its specification at runtime.

A Contracting System for Hierarchical Components 201

7 Conclusion

Recent component platforms, such as Fractal, combine the advantages of various
approaches for CBSE: dynamic and distributed assemblies from middlewares,
hierarchical architecture from the modular approaches and the possibilities of
factorization and adaptation from object-oriented systems. Still correction and
robustness of both functional and extra-functional properties must be ensured.
In this paper, we have described the ConFract system, which proposes a con-
tractual approach for hierarchical component models. Contracts are dynami-
cally built from specifications, at assembly time, and are updated according
to dynamic reconfigurations. These contracts are not restricted to the scope
of interfaces, taken separately. On the contrary, new kinds of contracts can be
associated to the scope of a whole component. These composition contracts con-
strain either several external interfaces of a component, providing some kind of
“usage contract”, or several interfaces inside the component, providing a sort
of “assembly and implementation contract”. In ConFract, the responsibilities
are identified in a fine-grained way, at the level of each provision of a contract.
As a result, developers can easily organize violation handling and adaptations
with possible negotiations. The current implementation of ConFract follows the
principle of separation of concerns by using Fractal controllers, which manage
extra-functional services at the component level.

Currently, ConFract uses the executable assertions language CCL-J to ex-
press specifications at interface and component levels. This language allows the
developer to express interesting properties at the component level, but it must be
enhanced to improve its expressiveness on extra-functional constraints and pro-
vide efficient evaluation techniques such as the ones we have previously proposed
[25]. Other specification formalisms are going to be integrated, using the meta-
model of the ConFract system. In order to better handle contract violations, the
integration of negotiation mechanisms is also in progress [15]. They will enable
the system to relax constraints by negotiating with beneficiary components, or
to request the guarantor component to make an effort.

Acknowledgements. This work was supported by France Telecom under the col-
laboration contract number 422721832-I3S. The authors thank Alain Ozanne for
its contribution to the implementation.

References

1. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An Open
Component Model and Its Support in Java. In: ICSE 2004 - CBSE7. Volume 3054
of LNCS., Springer Verlag (2004)

2. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. 2nd
edition edn. Addison-Wesley (2002)

3. Bachman, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J.,
Seacord, R., Wallnau, K.: Technical Concepts of Component-Based Software En-
gineering. CMU/SEI-2000-TR-008, Software Engineering Institute (2000) vol. 2.

202 Philippe Collet et al.

4. Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal Component Model. Specifica-
tion v1, v2, The ObjectWeb Consortium (2002,2003) http://fractal.objectweb.org.

5. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In
Kilov, H., Rumpe, B., Simmonds, I., eds.: Behavioral Specifications of Businesses
and Systems, Kluwer (1999) 175–188

6. de Alfaro, L., Henzinger, T.A.: Interface Automata. In: Ninth Annual Symposium
on Foundations of Software Engineering (FSE), ACM Press (2001) 109–120

7. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components. IEEE
Trans. on Soft. Eng. 28 (2002)

8. Barnett, M., Schulte, W.: Runtime Verification of .NET Contracts. Journal of
Systems and Software 65 (2003) 199–208

9. Meyer, B.: Applying “Design by contract”. IEEE Computer 25 (1992) 40–51
10. Pahl, C.: Components, Contracts and Connectors for the Unified Modelling Lan-

guage UML. In Verlag, S., ed.: FME2001 - Formal Methods Europe. Volume 2021
of LNCS. (2001) 259–277

11. Weis, T., Becker, C., Geihs, K., Plouzeau, N.: A UML Meta-model for Contract
Aware Components. In: UML 2001 - The Unified Modeling Language. Volume
2185 of Lecture Notes in Computer Science., Springer Verlag (2001) 442–456

12. Object Management Group, I.: Object Constraint Language Specification. Tech-
nical Report version 1.1, ad/97-08-08, IBM www.software.ibm.com/ad/ocl (1997)

13. D’Souza, D.F., Wills, A.C.: Object, Components and Frameworks with UML: The
Catalysis Approach. Addison-Wesley Publishing Co. (Reading, MA) (1998)

14. Findler, R.B., Felleisen, M.: Contract Soundness for Object-Oriented Languages.
In: Proceedings of OOPSLA’2001. (2001)

15. Chang, H., Collet, P.: Towards Contracts Negotiation in Software Components (in
french). In: LMO’2005 (Object Models and Languages), Lavoisier (2005)

16. Plösch, R.: Evaluation of Assertion Support for the Java Programming Language.
In: Journal of Object Technology, Volume 1,3. (2002) 5–17

17. Helm, R., Holland, I.M., Gangopadhyay, D.: Contracts: Specifying Behavioral
compositions in Object-Oriented Systems. In Meyrowitz, N., ed.: OOPSLA/E-
COOP’90, Ottawa, Canada (1990) 169–180

18. Frølund, S., Koistinen, J.: Quality of Service in Distributed Object Systems De-
sign. In: 4th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS), Santa Fe (New Mexico), USENIX (1998)

19. Loques, O., Sztajnberg, A.: Customizing Component-Based Architectures by Con-
tract. In: Proceedings of Component Deployment 2004, Edinburgh, UK. (2004)

20. Defour, O., Jézéquel, J.M., Plouzeau, N.: Extra-Functional Contract Support in
Components. In Crnkovic, I., Stafford, J., Schmidt, H., Wallnau, K., eds.: ICSE
2004 - CBSE7. Volume 3054 of LNCS., Springer Verlag (2004) 217–232

21. OMG: UML 2 OCL Final Adopted Specification. Technical Report ptc/03-10-14,
Object Management Group (2003)

22. Allen, R.J., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans.
on Soft. Eng. and Methodology 6 (1997)

23. Magee, J., Kramer, J., Giannakopoulou, D.: Behaviour Analysis of Software Ar-
chitectures. In: 1st Working IFIP Conference on Software Architecture (WICSA1),
San Antonio, USA (1999)

24. Luckham, D.C., all: Specification and Analysis of System Architecture using
Rapide. IEEE Trans. on Soft. Eng. 24 (1995) 336–355

25. Collet, P., Rousseau, R.: Efficient Implementation Techniques for Advanced As-
sertion Languages. L’objet 5 (1999) 417–442

Tailored Responsibility Within

Component-Based Systems

Elke Franz and Ute Wappler

Department of Computer Science
Dresden University of Technology, Dresden, Germany

{Elke.Franz|Ute.Wappler}@inf.tu-dresden.de

Abstract. The concept of responsibility aims at making a computing
system trustworthy for its users despite the fact that failures of IT sys-
tems cannot be completely excluded. The presented concept comprises
the following issues: In case of failures, the responsible stakeholder can be
identified and it is ensured that this stakeholder is willing to compensate
arisen loss. This enables users to claim damages. Until now, responsi-
bility in this sense is not considered in practical systems. We especially
investigate possibilities for integration of responsibility into component-
based systems whereas the interests of all involved stakeholders should
be considered. The newly introduced concept of tailored responsibility
enables users to pose flexible demands for responsibility.

1 Introduction

IT systems are increasingly used in all fields of daily life, e.g. for governmental
tasks, banking, for health care or for controlling airplanes. Consequently, the
dependability of IT systems is of increasing importance. Failures of IT systems
cannot only cause annoying loss of time for users, but also big economic damage.
In the worst case, they even endanger health and life of people.

Quality assurance measurements and special design methodologies obviously
reduce fault rates. However, it is not possible to design and implement absolutely
faultless software. Furthermore, one has to consider that even if software would
be functional correct, failures during runtime could still occur: Software is just
passive program code which needs to be executed by an infrastructure in order
to deliver any service. This infrastructure mostly consists of a computer with an
operating system. In case of component-based software, it additionally comprises
a runtime environment for the software components, the container. The needed
infrastructure may contain faults, too. A faulty infrastructure can also cause
failures due to erroneous execution of the possibly correct software components.
To conclude, failures of IT systems cannot be prevented completely.

The concept of responsibility aims at giving users a basis for trusting an IT
system despite these facts.

Responsibility: In case of failures, it is guaranteed that the responsible
stakeholder can be identified and that he is willing to compensate arisen
loss.

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 203–218, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

204 Elke Franz and Ute Wappler

That means, we do not exclude failures in spite of the fact, that their proba-
bility should be quite small due to careful design, implementation and operation
of IT systems. The assignment of responsibility makes it possible to compensate
arisen loss. However, compensation has to be done outside of IT systems and
requires additional legal arrangements which are beyond the scope of this paper.

A general concept for realizing responsibility was already presented in 1991 in
[2]. An implementation is still missing. We focus at mapping this general concept
onto component-based systems. Thereby, we especially aim at considering the
interests of all involved stakeholders. Note, that stakeholders shall only be held
responsible for failures which they have caused.

Since Component-Based Software Engineering (CBSE) is an ongoing research
field it seems to be interesting and important to discuss responsibility in this
context. Software components are used for developing component-based appli-
cations. These components are black boxes which means that only the interface
of the component is known but nothing about the internal realization of the pro-
vided functionality. Components are mostly developed without knowledge about
their future deployment. Component developers only implement business logic.
Other required services such as resource management or persistence are pro-
vided by the used container. Because of this clear role concept component-based
systems are especially suited to support responsibility. Second, services required
for supporting responsibility can be integrated into the used container. Third,
the structure of component based applications allows us to realize fine grained
responsibility demands and offers. This enables us to restrict the effort required
for realizing responsibility.

An IT system providing responsibility is more trustworthy for its users. We
also expect an increased software quality, if developers are held responsible for
failures caused by their products. A developer who has to bear the risk of claims
for indemnification will put more effort in the development of his software. How-
ever, this in return increases the costs. Therefore, users should be enabled to
flexibly demand responsibility for an application according to their actual needs.
Tailored demands should be possible despite the fact, that users mostly do not
know anything about the component-based structure of the used application.

We have introduced a first discussion about responsibility within CBSE in
[4]. Now we newly introduce the concept of tailored responsibility. Moreover, we
discuss possibilities for optimization as well as problems implied by persistent
data. The concept of tailored responsibility supports the flexible demand for
responsibility required above.

In the following, we first introduce the general concept of responsibility and
give an outlook on realization issues (Sec. 2). Afterwards, we discuss responsibil-
ities within component-based systems (Sec. 3). We especially focus on the used
role concept, since it is important for responsibility assignment. Sec. 4 introduces
possible concepts for the realization of responsibility. We discuss implementation
issues of the selected concept in Sec. 5. Finally, Sec. 6 concludes and points out
open issues.

Tailored Responsibility Within Component-Based Systems 205

2 Responsibility

2.1 General Approach

As mentioned above, either faulty software or its faulty execution by the used
infrastructure can cause a failure of an IT system. Basically, we must be able to
decide whether erroneous software or erroneous execution has caused the failure
in order to assign responsibility for the failure.

The authors of [2] consider the executed software and the infrastructure
needed to execute the software as service providing unit. Since we need a pos-
sibility to reconstruct execution ex post, all inputs to and outputs from these
units are logged by the executing machine. In case of a failure, the logged data
is used to localize the error causing unit. Within the localized unit, it has to
be clarified whether the software or the executing infrastructure has caused the
failure. Therefor, the software is executed again within a correct execution en-
vironment using the same input data. If further circumstances, such as internal
states, influence execution, they must be logged, too. Particularly, if random
events determine execution, the exact values of the random variables have to
be logged. Generally, the executing machine must log all events that cannot be
reconstructed.

However, a correct execution environment does not exist in practice. There-
fore, the authors suggest to approximate it by using a number of diverse ex-
ecution environments and to subsequently acquire the result of the repetition
by majority voting. Another possibility is to simulate execution using diverse
simulation environments.

Based on the results of this repeated execution, responsibility is assigned as
follows:

– If the repeated execution did not cause a failure, it is assumed that the failure
at runtime was caused by an erroneous executing system. The stakeholder
who is responsible for the executing infrastructure is made responsible for the
damages.

– If the same failure occurred, it is apparently caused by the software. Conse-
quently, the software provider has to compensate arisen loss.

– If another failure occurred, both software and executing infrastructure appar-
ently are erroneous. Responsibility is assigned to both software and infras-
tructure provider.

To the best of our knowledge, there are currently no realizations of this concept in
practical systems. Of course, providers will not volunteer for responsibility. Legal
restraints or appropriate purchasing patterns are necessary to establish respon-
sibility. In fact, in software license agreements providers usually state that they
are not willing to take any responsibility for damages caused by their product
(disclaimer of warranty). However, we assume that responsibility is a desirable
feature from the user’s point of view since it will increase trustworthiness of IT
systems.

206 Elke Franz and Ute Wappler

2.2 Requirements on a Realization

Integrating this concept into component-based systems requires to extend the
software development process as well as the runtime environment of components
— the container. In the following, we sketch necessary requirements on the in-
tegration and the general process of service delivery considering responsibility.
The different participating roles and their responsibilities are discussed in more
detail in the next section.

We cannot expect that all software providers will take responsibility for their
software components since it is not common nowadays. Therefore, providers must
be enabled to specify whether they are willing to take responsibility and under
which conditions [4]. Users must be enabled to demand responsibility before
they start an application. The container has to be enabled to prove whether the
user’s demands can be fulfilled. If this is not the case, further negotiation steps
must be initiated. If the negotiation phase could be finished successfully, users
get a signed affirmation stating the demanded and granted service including
responsibility requirements. In case of a failure, the user shows this affirmation
to prove the acceptance of his demands by the service provider. The service
provider, on the other hand, also gets a signed contract in order to be able to
prove the requirements of the user.

If responsibility should be provided, the container has to enforce that only
products are used which their providers have assured responsibility for. Fur-
thermore, the container has to check whether conditions of these providers are
fulfilled. During execution, the container has to log all relevant events. If the
user recognizes a failure, he claims damages from the service provider. He shows
the data he has received and the signed affirmation. The service provider uses
the data logged during execution for localizing the error and to assign responsi-
bility. As already mentioned, compensation of arisen loss is out of scope of the
computing system. Figure 1 summarizes this procedure.

The flexibility of the solution is important due to a number of reasons:

– Execution of software components without responsibility assurances must still
be possible. A container that executes only software components with respon-
sibility assurances is too restrictive and, therefore, not of practical relevance.
We assume that component implementations are chosen at instantiation time
when the user requirements are known. A fix selection of component imple-
mentations at development or deploy time is too inflexible, not only w.r.t.
responsibility requirements (Section 3.2).

– Furthermore, there are different users with very different needs. The comput-
ing system should be able to adapt to these different needs.

– Finally, the question of cost crucially influences the decision of the user whether
responsibility should be considered or not. Development of software compo-
nents for which responsibility is assured surely requires more costs. Conse-
quently, these components will be more expensive which influences the user’s
demands. But also cost in terms of required computing power or delivered
performance are important. Particularly, the necessary logging has an impact
on these features.

Tailored Responsibility Within Component-Based Systems 207

3. Acknowledgement

5. Service delivery/use

6. Claim for responsibility

2. Check possibilities
 to fulfill demands

5. Monitor and log
 execution of
 components

4. Instantiate application
 according to demands

7. Localize error,
 assign responsibility

System of service provider System of user

ne
go

ti
at

io
n

di
sp

ut
e

5. Check received data

re
so

lu
ti

on
se

rv
ic

e
de

liv
er

y

1. Demands, including
 responsibility demands

Fig. 1. Service delivery considering responsibility.

To conclude, we need a solution that enables users to demand responsibility
in a fine grained manner in order to realize a balanced trade-off between respon-
sibility on the one side and costs, performance and needed computing power on
the other side.

3 Responsibilities Within Component Based Systems

3.1 Role Concept

Component-Based Software Engineering (CBSE) is a software paradigm of grow-
ing importance. The use of prefabricated software components with well-defined
interfaces and well-defined functionality aims at developing component-based
applications faster and reasonably priced.

Different stakeholders are involved in the development and execution of
component-based applications. Faults in their products can cause failures of
the computing systems. A clear definition of the stakeholders’ tasks — a role
concept — is necessary in order to enable assignment of responsibility. Figure 2
shows a part of the role concepts which is relevant for responsibility and depicts
claims for responsibility between roles.

The service provider provides a component-based application to the users. An
application designer is responsible for developing this application. He specifies
used components provided by component developers. The application designer
selects suitable components and integrates them into the application which is
assembled into an archive. The archive is delivered to the service providers. The
service provider commissions the system provider to install the application onto
the target machine in order to make it available to users.

208 Elke Franz and Ute Wappler

provides

User

Service providerApplication
designer

User

relationship between roles

role

claim for responsibility

Component
developer

Container

uses

System provider

Fig. 2. Role concept and claims for responsibility.

In case of a failure, a user claims damages from the service provider. Of
course, the service provider does not want to compensate losses which were
caused by others. Therefore, he must be able to find the actual responsible
stakeholder:

– The corresponding component developer is responsible if his component im-
plementation was erroneous or if he has not sufficiently specified requirements
on the infrastructure.

– The application designer is responsible if the assembly of components was
erroneous.

– The system provider is responsible if the execution of the component-based
application has caused the failure.

In the first case, we can only recognize a deviation from the specified be-
havior of the component. It is not possible to determine the actual cause of the
error. Despite this fact, the component developer should be responsible for the
erroneous behavior of his component implementation. Since he knows the inter-
nal realization of the component implementation, he is the only one who could
determine dependencies from the environment. Consequently, it is important to
enable component developers to define requirements on the executing environ-
ment. Particularly, they will require specific versions of specific containers which
correspond to their working and testing environment.

In the second case, all software components behaved as specified, but the
whole system has not met its specification and the failure occurs again in the
repeated execution. In this case, the components were used or connected wrongly.
In the third case, the failure could not be reconstructed during the repeated
execution on a different infrastructure.

Concurrent execution surely complicates error diagnostic. As mentioned a-
bove, we have to log all events required for reconstruction.

The last case simplifies the fact that different stakeholders are responsible
for the executing infrastructure and, therefore, could have been responsible for
the failure. We assume that the system provider uses an infrastructure that

Tailored Responsibility Within Component-Based Systems 209

he trusts. In case of a failure, he takes responsibility for erroneous execution. A
more detailed responsibility assignment would require a more detailed logging as
well as a quite complex reconstruction: One would have to inspect every part of
the infrastructure. If cases of erroneous execution increase, the system provider
would try to localize the error and possibly modify his infrastructure.

The stakeholders only take responsibility if their conditions are fulfilled. They
only take responsibility

– if really their products were used (digital signatures ensure execution of au-
thentic, unmodified software),

– if the software was executed according to their specifications (e.g., require-
ments on the input data, on existing services such as databases, or on specific
versions of the container), and

– if the software was executed within an environment they trust (e.g., based on
certificates confirming the existence of expertises by independent third parties
[10]).

A more detailed discussion of these conditions is given in [4].

3.2 Context of Our Work

Our work is based on the component model developed within the project
Comquad (COMponents with QUantitative properties and ADaptivity) at Dres-
den University of Technology. Comquad aimed at a system architecture and
matching design methodology that support the composition of adaptive software
from software components with consideration of agreed non-functional proper-
ties. Non-functional properties, e.g. response times and throughput, describe how
a computing system delivers its service. Considering non-functional properties
and enforcing users demands on them requires extensions of the usual component
model.

The component architecture developed in the project Comquad is based on
the component model by Cheesman and Daniels [1]: Component specifications
describe the functionality of a component by means of interfaces. Component
implementations realize this functionality. Implementations are installed into the
container and instantiated if the application is started.

The model developed in the project Comquad utilizes the fact that different
implementations differ in their non-functional properties. These differences are
caused by the use of different algorithms or resources. In order to enable adap-
tation to different user requirements, diverse component implementations for
one specification can be included in an application archive. The non-functional
properties of these component implementations are explicitly described using
the description language CQML+ which was developed within the project [8].

The application designer defines the application structure as assembly of
component specifications. If a user wants to use an application’s service, he
specifies the desired non-functional properties. The Comquad container selects
suitable component implementations from the archive and instantiates them in

210 Elke Franz and Ute Wappler

order to provide the service in the required quality. If the user’s demands cannot
be met, for example due to the current system load, the container informs the
user who can reduce his requirements or try to get the service at a later point
in time.

We aim at treating responsibility also as non-functional property. This ap-
proach allows us to reuse mechanisms developed within the project Comquad,
since our solution has also to support selection of suitable component implemen-
tations at application start up.

4 Possible Concepts

4.1 Absolute Responsibility

The direct application of the approach introduced in [2] yields the concept of
absolute responsibility. This concept enables a user to demand either responsi-
bility for the whole application, or no responsibility at all. In the former case,
all involved stakeholders have to offer responsibility for their products. Involved
stakeholders are the developers of instantiated components and the application
designer (Fig. 3). Furthermore, the conditions posed by this stakeholders have to
be fulfilled. Only if this is the case they are willing to assure the offered respon-
sibility and to compensate arisen loss in case of failure caused by their products.
The evaluation of conditions can be integrated as service into the used container.
The client depicted in Fig. 3 is a special component which acts in behalf of the
user.

:Client

Container component instance

invokes relation

responsibility demand

Fig. 3. Absolute responsibility.

The concept of absolute responsibility does not fulfill our requirement for
flexibility. First, a user cannot demand responsibility according to his actual
needs. Second, as soon as only one responsibility assurance is missing, it is not
possible to assure responsibility for the whole application. This is very likely in
case of complex applications. In that case, the user has to pass on his demand
for responsibility or to use another adequate application for which his demand
can be fulfilled.

4.2 Partial Responsibility

A first naive approach to improve this situation leads to the concept of partial
responsibility. That concept enables a user to restrict his demands on respon-

Tailored Responsibility Within Component-Based Systems 211

sibility. For example, he can demand that for 90% of the used component im-
plementations responsibility is assured. The probability to fulfill user demands
increases.

But this concept has to be dismissed, because a user cannot assess the risk he
bears. He does not know if the 10% of the component implementations for which
no responsibility is assured provide functionality which is especially important
for him. Thus, a failure of the message board of an application might be less
critical. Whereas, a failure of an important control mechanism of a plane can
have disastrous consequences.

Consequently, users should be enabled to pose fine grained responsibility
demands depending on the used functionality. Only in that case they can assess
the risk they have to bear.

4.3 Tailored Responsibility

Tailored responsibility enables users to demand responsibility for certain func-
tionalities of an application. Users can adapt their responsibility demands to
their actual needs and assess the remaining risk. While instantiating an applica-
tion, responsibility only has to be assured for component implementations which
take part in the realization of a functionality for which the user has demanded
responsibility.

The application shown in Fig. 4 provides two functionalities F1 and F2. The
user demands responsibility for F2. Accordingly, it is required that responsibil-
ity is assured for the two component implementations which participate in the
realization of functionality F2: First, their developers must offer responsibility
for their products and, second, the conditions posed by these developers must
be fulfilled.

Container

F2

:Client

F1F2

component instance

invokes relation

responsibility demand

functionalities

F1
F2F1

F2

F1

Fig. 4. Tailored responsibility.

The concept of tailored responsibility supports the required flexibility. There-
fore, we have chosen it for further development.

5 Realization of Tailored Responsibility

5.1 Level of Detail for Responsibility Demands and Offers

Responsibility demands of users and responsibility offers of developers can be
specified on the level of methods, interfaces or components. These three lev-

212 Elke Franz and Ute Wappler

els are different with respect to flexibility and effort necessary for realization.
Demands and offers on the level of methods map user requirements in a very de-
tailed manner, but require a higher specification effort than the other solutions.
The same conclusions can be drawn for the comparison of interface level and
component level. But the last two possibilities appear more appropriate since
interfaces as well as components have the purpose to encapsulate functionali-
ties which meets our requirement to enable users to demand responsibility w.r.t.
different functionalities.

The complexity of components influences the decision between interface level
and component level. Specification at component level is sufficient for simple
components which contain solely one functionality. However, specification at
interface level is better suited for complex components which provide more than
one functionality encapsulated through different interfaces.

We realize specification at interface level in order to leave open both possi-
bilities. Furthermore, responsibility demands/offers at component level can be
emulated through a demand/offer on all interfaces of a component.

5.2 Mapping Demands to Offers

A user can pose demands for responsibility only w.r.t. his client, because he
does not have any knowledge about the application structure. To instantiate an
appropriate application instance, these responsibility demands of a user must
be mapped onto responsibility offers of involved developers. In the following, we
discuss possible approaches for mapping.

Mapping by application designer. The application designer defines different re-
sponsibility profiles which are provided by the client to the user. At instantiation
time, the user selects one of these profiles.

For each profile, the application designer determines for which of the inter-
faces of the used components responsibility has to be assured. He provides this
information within a descriptor which is added to an application. The container
instantiates an application with the responsibility profile chosen by the user.
Thereby, it uses the information contained in the descriptor to examine if all
required responsibility assurances are fulfilled. Therefor, it also needs the re-
sponsibility offers and conditions which have to be provided by the component
developers. Fig. 5 shows an example for this mapping. The figure depicts for
which interfaces responsibility has to be assured, if the user requires responsi-
bility for one of the client’s interfaces.

This mapping is problematic, since the application designer does not have
any knowledge about the internal realization of a component implementation.
He is not able to definitely assess which interfaces depend on each other and are
involved in the implementation of a special functionality. He can only guess these
dependencies using interface and method names and descriptions of component
implementations. Nevertheless, he is responsible for wrong decisions caused by
this procedure. For example, he could not recognize that an interface partici-
pates in the realization of a functionality. Later on, a user requires responsibility

Tailored Responsibility Within Component-Based Systems 213

:A

:D

:B

:A

interfaces without responsibility assurance

used interface

provided interface

interfaces with responsibility assurance

provided interface

used interface

component instance

invokes relation

:Client

?
:C

Fig. 5. Requirements mapping made by the application designer.

for that functionality and the implementation of the overlooked interface causes
a failure. But due to the erroneous specification delivered by the application de-
signer, the container has not mapped responsibility demands on the error causing
component. Consequently, its developer cannot be held responsible. Since this
situation was caused by the application designer, he would be held responsible.
Obviously, no application designer would like to bear that risk.

Automatic mapping. Such a mapping requires to know intra functional depen-
dencies. These are dependencies within a component implementation in contrast
to inter functional dependencies between the interfaces of different components.
Fig. 6 depicts how intra functional dependencies can be used to map responsi-
bility demands onto offers. Responsibility demands on interfaces of component
implementations are calculated with the help of responsibility demands on client
interfaces and intra functional dependencies. We simply have to follow the de-
pendencies starting from the client component. This is done before instantiating
and executing an application. Since only the component developer knows the
internal realization of his component implementation, only he is able to spec-
ify its intra functional dependencies. The specification is based on the general
procedure described in [4].

Intra functional dependencies are caused by data flows between the interfaces
of a component instance. Data could be input into a component as parameter,
if a method of a component instance is called. Strictly speaking, the method
call itself is a data input. Furthermore, data can be input as return value of a
method which was called by the component instance. There are two kinds of
intra functional dependencies:

– Direct intra functional dependency: Component instances can forward (pos-
sibly processed) input data to other component instances as parameter or
return value.

– Indirect intra functional dependencies: Stateful component instances maintain
a state between method calls. Input data surely influences this state. Later
on, the state influences the output of these component instances.

214 Elke Franz and Ute Wappler

:A

:D

:B

:A

interfaces without responsibility assurance

used interface

provided interface

interfaces with responsibility assurance

provided interface

used interface

intra functional dependency

responsibility demand

invokes relation

component instance

:Client :C

Fig. 6. Using intra functional dependencies for mapping responsibility demands.

The specification of intra functional dependencies requires some effort from
the component developer. Particularly, indirect intra functional dependencies
are difficult to recognize. If a developer is not willing to specify the dependen-
cies, we have to assume that all interfaces of a component implementation affect
each other. This results in overstated responsibility demands. For example, the
mapping shown in Fig. 6 would contain an additional responsibility demand on
component B in that case. Obviously, overstated demands decrease the proba-
bility that users’ demands on responsibility can be fulfilled.

5.3 Optimized Monitoring and Logging

To assign responsibility in case of a failure it is required to monitor and log the
execution of an application (Sec. 2.1). Such an all-embracing monitoring and
logging is quite expensive. However, the concept of tailored responsibility reduces
monitoring and logging effort. The knowledge of intra functional dependencies
allows us to restrict monitoring to component interfaces for which a responsibility
demand exists. The remaining interfaces contained in an application need not
to be monitored, since they have no influence on interfaces with a responsibility
demand. The application execution should be reconstructable without logged
data from interfaces without responsibility demand. For the repeated execution,
different input values for the interfaces not monitored can be used in order to
detect overlooked dependencies.

Problems may occur, if a developer has forgotten to specify some intra func-
tional dependencies for an interface, and responsibility is demanded for that
interface. If a failure is caused by one of these unknown dependent interfaces,
the actual originator of this failure cannot be found. Finally, the component
developer who forgot the dependency is made responsible for the failure. This
decision is acceptable, since he is responsible for the insufficient specification.

Tailored Responsibility Within Component-Based Systems 215

Another reduction of monitoring and logging effort can be achieved if re-
sponsibility realms are merged. For example, one developer delivered three com-
ponent implementations which depend on each other and provide well defined
interfaces to the outer world. If responsibility demands exist for some of the
outer interfaces, it is only necessary to monitor these interfaces and depending
other outer interfaces. But it is not necessary to monitor communication be-
tween components provided by the same developer. For assigning responsibility,
the responsibility realm is repeatedly executed as a whole.

In case of data streams such as in video or audio transmission another re-
duction of monitoring and logging overhead is required, since logging video or
audio streams on the whole would be too complex. Instead of this, we consider
logging of relevant data such as start and end of transmission, transmission rates
or other statistical data.

5.4 Problems with Persistent Data

Until now we assumed that the stage of mapping demands onto assurances and
the following application execution (see fig. 1) form a unity which is secluded.
If a user instantiates the same application for another time he can pose new
responsibility demands which are completely independent from all application
instances he used before.

But if application data is made persistent — e.g., in a data base — consecu-
tively created application instances are not independent from each other. They
are connected through the stored data, and that affects the realization of re-
sponsibility. We have to consider two kinds of dependencies which are discussed
in the following.

Dependency between application instances of one user. The following example
shall illustrate the problem. A user demands no responsibility for a function-
ality which stores data to a data base. The stored data is faulty or is falsified
during saving. At a later point in time, the same user starts another instance
of that application. But this time, he demands responsibility for a functionality
which processes the previously stored data. The application fails and the user
wants compensation for a damage which was caused by the storing component
implementation.

With the help of logged data it is only possible to determine that the failure
was not caused by the current application instance. But for the previous applica-
tion instance no logging was done, because no responsibility demand was made.
This prevents a determination of the actual cause of the failure. But even if it
would be possible to determine the cause, nobody assured responsibility for the
faulty application part. The responsibility which was assured to the user for the
second application instance is not satisfiable. Multiple solutions to this problem
exist.

First solution: As soon as data is made persistent, responsibility is demanded
implicitly. Consequently, responsibility assurances are checked and monitoring
and logging are done. However, this solution increases user demands.

216 Elke Franz and Ute Wappler

Second solution: The data to be stored has to be tested for correctness.
Especially in the context of data base systems, concepts and implementations for
such consistency checks already exist. But the required description of semantical
correctness of data is very difficult and only possible to a very limited degree.

Third solution: The user is restricted in his possible responsibility demands.
He is not allowed to increase his responsibility demands between two dependent
application instances. For succeeding dependent application instances he is only
allowed to use the same responsibility demands as for the previous instance or to
reduce his demands. The concept of responsibility exhibits a monotony behavior
as confidentiality or anonymity do [7]. We suggest this third solution.

Dependency between application instances of different users. An application is
usually used by more than one user. Data of these users is mostly stored at the
same place, e.g., a data base. Therefore, it is possible that not only the data of the
current user is falsified but possibly also the data of other users. A conflict arises if
the current user has not demanded responsibility for the concerned functionality,
but the user whose data was falsified has done so. By means of a digital signature
or a hash value we can detect that the data was modified. However, it is not
possible to identify who is responsible. Furthermore, the responsible stakeholder
has also not assured responsibility. Thus, no responsibility assignment is possible.

The simplest solution would be to determine one responsibility demand for
all users — the union of all user demands. However, this approach implies over-
stated responsibility demands. Furthermore, the achieved flexibility is lost.

Another solution is that the container enforces authentication and autho-
rization before access to persistent data is granted. Therefor, it is necessary to
execute the application with the access rights of the current user. Thus, a user
can only access his own data. If it is detected that a data set was modified and
no error within the application execution can be found, the container which im-
plements authentication and authorization must have been faulty. In this case
the system provider is responsible.

If we assume that integrity assurance measurements for persistent data and
logging work correctly, authentication and authorization before data access are
a suitable solution of the described problem. The enforcement of access autho-
rization by the container is done already in some component models (e.g. Access
Control Lists in the Corba Component Model).

6 Conclusion and Outlook

Despite the fact that it is not possible to exclude failures completely, users need
to trust IT systems, because they influence all aspects of their life. Therefore, the
realization of responsibility in IT systems is an important step for increasing the
trustworthiness of these systems for users. The concept of responsibility assures
that a responsible stakeholder can be found who is willing to compensate arisen
loss.

Realizing responsibility assignments is quite complex and comprises the fol-
lowing tasks:

Tailored Responsibility Within Component-Based Systems 217

– Component developers have to specify their responsibility offers and condi-
tions which have to be fulfilled for turning their offers into assurances. There-
for, the development process has to be extended.

– Component developers have to be identifiable. This can be realized with the
help of digital signatures.

– The evaluation of responsibility demands of the user has to be implemented.
The container needs to be extended. First, it has to map users’ demands
onto responsibility offers which is done via following specified intra functional
dependencies. Second, it has to automatically test the fulfillment of conditions
posed by developers.

– The application execution has to be reconstructable which is achieved by the
implementation of monitoring and logging.

– The responsibility assignment must be possible. Therefor, the evaluation of
logging data and repeated execution of application parts in a reference envi-
ronment are required (Sec. 2.1).

– Apart from the extension of the used IT system, legal arrangements for re-
sponsibility assignments have to be made.

More details for specification issues, the required container extensions and
an implementation of these extensions are discussed in [4]. The required con-
tainer extensions where implemented within the prototypic container which was
developed within Comquad. The reuse of the existing architecture reduced the
needed effort. The evaluation of responsibility demands is done while instanti-
ating the application. Therefore, it does not influence the application execution.

Within this paper, we discussed concepts for realizing fine grained responsi-
bility demands within the context of component-based systems. We have shown
that the concept of tailored responsibility is the most suitable one, since it pro-
vides the users with the biggest flexibility. Intra functional dependencies enable
us not only to map user demands to offers, but make it also possible to re-
duce monitoring and logging. We addressed problems which arise due to such
reductions. Furthermore, we also pointed out possible problems resulting from
dependencies between different application instances due to persistent data and
introduced solutions for these problems.

There are a lot of tasks that still need to be investigated. Currently, we
are testing the performance overhead introduced by logging. Error localization,
repeated execution, and actual responsibility assignment are subject of future
work. Error localization is a problem which is studied in the field of fault toler-
ance. Approaches are already described in [6]. For repeated execution, we con-
sider to execute localized components (or groups of components, if we consider
responsibility realms as discussed in Sec. 5.3). This execution should be done
by a trusted third party using exactly the runtime environment which was re-
quired by the software developers. If personal data are required as input, we
additionally have to consider privacy aspects.

Until now, the discussed approaches facilitate application structure depen-
dent responsibility demands. Future investigations are necessary in order to de-
cide whether a service oriented solution is more suitable. Such an approach would

218 Elke Franz and Ute Wappler

enable a user to demand responsibility only for exactly one activity without other
connected activities. The following example shows the difference: A user uses an
application which enables him to subscribe to a video stream for which he has
to pay. The subscription consists of two activities: payment and stream delivery.
These activities are dependent because data is exchanged between them. Because
of this dependence it is not possible to demand responsibility for the payment
activity only if the approach presented in this paper is used. We expect that a
specification of responsibility demands and offers for services such as defined in
[9, 3, 5] would solve this problem.

Another goal of future research is to analyze whether the presented concepts
are applicable to other component models than the Comquad component model.
We expect that such an application will require much more effort, since our
current solution can reuse existing functionality to a great deal.

References

[1] John Cheesman and John Daniels. UML Components: A Simple Process for Speci-
fying Component-Based Software. Addison-Wesley Longman Publishing Co., Inc.,
2000.

[2] Wolfgang Clesle and Andreas Pfitzmann. Rechnerkonzept mit digital signierten
Schnittstellenprotokollen erlaubt individuelle Verantwortungszuweisung. English
title: Computing Concept with digitally signed Interface Protocols supporting
Individual Responsibility Assignment. Datenschutz-Berater, 14(8/9):8–38, 1991.

[3] Martin Deubler, Johannes Grünbauer, Gerhard Popp, Guido Wimmel, and Chris-
tian Salzmann. Towards a Model-Based and Incremental Development Process
for Service-Based Systems. IASTED International Conference on Software Engi-
neering (IASTED SE 2004), 2004.

[4] Henrik Eichenhardt, Elke Franz, Simone Röttger, and Ute Wappler. Adapting
Component Models to Support Responsibility. 2004. Presented at ISOLA 2004,
1st Int. Symposium on Leveraging Applications of Formal Methods.

[5] Ingolf Krüger. Service Specification with MSCs and Roles. IASTED International
Conference on Software Engineering (IASTED SE 2004), 2004.

[6] P. A. Lee and T. Anderson. Fault tolerance — principles and practice. Springer,
Wien; New York, second, revised edition, 1990.

[7] Andreas Pfitzmann and Gritta Wolf. Properties of Protection Goals and their
Integration into a User Interface. Computer Networks, 32:685–699, 2000.

[8] Simone Röttger and Steffen Zschaler. CQML+: Enhancements to CQML. In
Jean-Michel Bruel, editor, 1st Intl. Workshop on Quality of Service in Component-
Based Software Engineering, pages 43–56, Toulouse, France, June 2003. Cépaduès-
Éditions.

[9] Christian Salzmann and Bernhard Schätz. Service Based Software Specification.
Proceedings of Intl. International Workshop on Test and Analysis of Component
Based Systems (TACOS), 2003.

[10] Jeffrey Voas. Developing a Usage-Based Software Certification Process. IEEE
Computer, pages 32–37, August 2000.

Efficient Upgrading in a Purely Functional

Component Deployment Model

Eelco Dolstra

Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands

eelco@cs.uu.nl

Abstract. Safe and efficient deployment of software components is an
important aspect of CBSE. The Nix deployment system enables side-by-
side deployment of different versions and variants of components, com-
plete installation, safe upgrades, and safe uninstalls through garbage
collection. It accomplishes this through a purely functional deployment
model, meaning that the file system content of a component only depends
on the inputs used to build it, and never changes afterwards. An appar-
ent downside to this model is that upgrading “fundamental” components
used as build inputs by many other components becomes expensive, since
all of these must be rebuilt and redeployed. In this paper we show that
binary patching between sets of components enables efficient deployment
of upgrades in the purely functional model, transparently to users. Se-
quences of patches can be combined automatically to enable upgrading
between arbitrary versions. The approach was empirically validated.

1 Introduction

An important aspect of Component-Based Software Engineering (CBSE) is the
correct and efficient deployment of components after they have been developed
[1]. This is often surprisingly hard. The main issues are dealing with side-by-
side deployment of different versions or variants, isolation between components,
ensuring complete component dependencies, and so on [2].

The Nix deployment system addresses these problems [3, 4]. The central idea
is that each binary component is stored in isolation in the file system under
a path name that contains a cryptographic hash of all inputs used to build
the component, e.g., /nix/store/920e492a10af...-firefox-1.0. These inputs include
(recursively) the component’s build-time dependencies, build scripts, build pa-
rameters, platform, and so on.

The advantage is that we get variability support “for free”: if two compo-
nents are different in any way, they are stored in different locations in the file
system. This isolation prevents undeclared build-time component dependencies.
The hashes enable determination of run-time dependencies through a conser-
vative pointer scanning approach [3]. This enables Nix to support side-by-side
deployment of different versions and variants of components, complete installa-
tion, safe upgrades, and safe uninstalls through garbage collection.

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 219–234, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

220 Eelco Dolstra

However, there is a downside: upgrading becomes a much more resource-
intensive operation. If we change any build-time input to a component, the hash
of the component changes, and so it will need to be rebuilt and redeployed. This
is the right thing to do, since the change to the input might actually matter in an
observable way, i.e., we have obtained a new variant. However, for upgrades to
“fundamental” components that are used directly or indirectly by many others,
the cost of redeployment may be substantial. For instance, in the dependency
graph of a typical Linux system, virtually all components depend on the GNU
C Library (Glibc). An update to Glibc would therefore trigger a rebuild of all
components in the system, similar to how a change to a common header file
will cause massive recompilation in Make [5]. This is not a major issue since
it takes place on the distributor’s systems. Worse, however, is that in order to
re-deploy the Glibc upgrade to end-users, each of them would need to download
all rebuilt dependent components in addition to the new Glibc. This requires
very substantial network resources; e.g., a small bug fix to Glibc might induce
hundreds of megabytes worth of downloads.

In more conventional deployment models, upgrades are delivered as “destruc-
tive updates” that overwrite the older version of the component. This is more
efficient but it short-circuits the dependency graph, inhibits rollbacks, and may
break other installed components.

However, the inefficiency of deploying upgrades in Nix would suggest that the
Nix system is not practical. In this paper we show that it is. By deploying binary
patches, we can efficiently distribute new versions or variants of components to
the end-user systems. For instance, a Glibc update typically causes a download
of just a few hundred kilobytes in patches for around 150 components, a modest
amount even on slow network connections.

Contributions The contributions of this paper are as follows.

– We show that the Nix deployment model can support efficient deployment
of upgrades through the use of automatically generated binary patches that
are transparently used by client machines.

– We introduce the technique of automatic patch chaining to relief the burden
of having to generate patches between arbitrary releases.

– We show that patches between components can easily be produced, even
in the presence of file or directory renames and moves, by producing deltas
between archives of the components.

The techniques discussed in this paper have been implemented, and we dis-
cuss their effectiveness.

Outline The remainder of this paper is structured as follows. Section 2 gives a
brief overview of the Nix system and motivates why we need binary patch deploy-
ment in Nix. Section 3 describes binary patch deployment in Nix, including the
concept of patch chaining. The problem of selecting the right base components
for patches is addressed in Section 4. We describe our experiences in Section 5.
Related work is discussed in Section 6, and we conclude in Section 7.

Efficient Upgrading in a Purely Functional Component Deployment Model 221

Fig. 1. The Nix store

2 Motivation

2.1 The Nix Deployment System

Nix is a system for software deployment [3, 4]. Its job is to build components,
support their deployment to client machines, and manage the components on
those clients. It has several important features:

– It supports component variability, allowing arbitrary side-by-side existence
of multiple versions and variants (preventing the “DLL Hell”). Users or pro-
cesses can have different “views” on the set of installed components.

– It helps ensure complete dependency specifications. Typical Unix package
management systems such as RPM [6] require developers to specify their
component’s dependencies on other components. However, there is no assur-
ance that such a specification is complete. This leads to incomplete deploy-
ment, i.e., references to missing components at run-time.

– It ensures consistency between components; e.g., that they are not removed
from the system if they are required by other installed components.

– Components are built from a flexible component specification language —
Nix expressions — supporting the concise specification of variability in com-
ponents, such as domain features and dependencies.

– It supports binary deployment of components as an essentially transparent
optimisation of source deployment, as explained below.

The central idea in the Nix system is that every component is stored in isola-
tion in the Nix store. The store is a designated part of the file system (typically
/nix/store), each subdirectory of which contains a component. An example of a

222 Eelco Dolstra

{ stdenv, fetchurl, pkgconfig, gtk # function arguments

, perl, zip, libIDL, libXi }:

assert libIDL.glib == gtk.glib; # consistency requirement

stdenv.mkDerivation { # the function result: a build action

name = "firefox-1.0";

builder = ./builder.sh; # the build script

src = fetchurl { # the sources

url = ftp://.../firefox/1.0/source/firefox-1.0-source.tar.bz2;

md5 = "49c16a71f4de014ea471be81e46b1da8";

};

buildInputs = [pkgconfig gtk perl zip libIDL libXi];

}

Fig. 2. Nix expression for Firefox

number of Nix components on a Linux system is shown in Figure 1. The name of
each component directory contains, apart from a symbolic identifier of the com-
ponent such as firefox-1.0, a unique hexadecimal number which is a cryptographic
hash of all inputs involved in building the component.

For instance, for the Firefox component, the inputs include the operating sys-
tem and platform for which we are building (e.g., i686-linux), the C++ compiler,
the GNU C library, the GTK widget library, the X11 windowing system client
libraries, the script that builds the component, the full sources of the component,
and so on.

The arrows in Figure 1 denote file system references between components
(note that it shows only a subset of Firefox’s run-time dependencies; in reality
Firefox has many more). For instance, the Firefox binary contains in its exe-
cutable image the full path of the C and GTK libraries to be used at run-time
(these are specified in the “RPATH” of Unix ELF executables [7]). That is, while
those libraries are dynamically loaded at run-time, their locations are hard-coded
into the components at build-time.

Nix components are built from Nix expressions, which is a simple functional
language, a model well-suited for specifying components. Figure 2 shows the Nix
expression for the Firefox component. This is actually a function1 that accepts a
number of arguments (e.g., gtk) and returns a derivation, which is Nix-speak for
a component build action2. Likewise, there are Nix expressions specifying how
to build the GNU C library (glibc), GTK, etc., when called with the appropriate

1 I.e., it specifies requires interfaces of the component [2].
2 A more complete description of the Nix expression language is given in [4] and in

the Nix manual [8].

Efficient Upgrading in a Purely Functional Component Deployment Model 223

rec {

firefox = (import ../applications/firefox) { # function call

inherit fetchurl stdenv pkgconfig gtk ...; # arguments

};

gtk = (import ../development/libraries/gtk) {
inherit fetchurl stdenv;

};

fetchurl = ...;

stdenv = ...;

}

Fig. 3. Nix expression composing Firefox, GTK, etc.

arguments. Since these are all functions, to instantiate actual components, they
must be called (i.e., composed). This is done in the Nix expression in Figure 3.
When we evaluate the firefox attribute thus defined, Nix will recursively build
all components insofar as they are not already present on the system.

As stated above, for each component Nix computes its path name in the Nix
store by hashing all inputs used to build it. This is a recursive process: if the
hash of any direct or indirect dependency of a component changes, the hash of
the component itself will also change (since the hashes are 128-bit MD5 hashes,
the chances of a hash collision are very slight indeed). For instance, if in the
specification of the GTK component we change the source file from which it is
built from release 2.2.4 to 2.4.13, the hash of Firefox will also change (Figure 4).
Hence, both GTK and Firefox will be rebuilt.

Note that as we do so, any previous versions of GTK and Firefox are left
untouched since they reside in a different location in the file system. This has
important advantages. First, the previous installation of Firefox is unaffected.
For instance, if the new GTK is not quite backwards compatible, it will not break
the installed Firefox. Nix never relies on any notion of component interface com-
patibility, since those in practice cannot be trusted to completely specify the
behaviour of the component. Only the implementation constitutes a full specifi-
cation. Second, different users or processes can easily have different “activated”
components (essentially, by having, for instance, different versions of Firefox in
their PATH environment variables). Third, it enables efficient roll-back to previ-
ous versions if necessary, since the old version is still available until it is removed
by running the Nix garbage collector.

Nix, as described above, implements a source deployment model (as do, e.g.,
FreeBSD [9] and Gentoo Linux [10]). That is, to deploy a component, we deploy
to the clients the Nix expressions that describe how to build from source the
component and its dependencies. While this is convenient for the developer, it
is generally not appropriate for end-users since builds can consume substantial

224 Eelco Dolstra

Before After

Fig. 4. Hash change propagation in the build-time dependency graph of the
Firefox component after a GTK upgrade. Square nodes denote sources, with
cryptographic hashes of the contents. Round nodes denote components, with
store path hashes. Arrows indicate build-time dependencies.

CPU, disk, and network resources. Also, it is inappropriate for closed source
products. However, Nix can almost transparently support binary deployment
thanks to the hashing scheme through its substitute mechanism, which works
as follows. The component developer or distributor builds the Nix expression
and uploads the resulting components to a repository accessible by the clients,
typically a web server. A manifest on the server describes the available pre-built
components, e.g,

{ StorePath: /nix/store/075931820cae...-firefox-1.0
NarURL: http://server/075931820cae...-firefox-1.0.nar.bz2
Size: 11480169 }

Then, when the client attempts to build the Nix expression, Nix will see that
the path /nix/store/075931820cae...-firefox-1.0 that it wants to build is already
present on the server. It will download the component from the URL given in the
manifest and unpack it. On the other hand, if the path that it wants to build is
not present on the server, if will fall back to building it from source, if possible.

2.2 Installing Upgrades

This paper is concerned with the efficient distribution of upgrades to compo-
nents. Examples include the deployment of a security or other fix for Firefox or
Glibc, or an ordinary version upgrade, such as Firefox 0.9 being updated to 1.0.

In conventional deployment models, upgrades are deployed “destructively”.
For instance, in RPM [6], we would just install a new Glibc RPM package that
overwrites the old one. This however prevents side-by-side deployment of variants
(what if some component needs the old Glibc because it is incompatible with

Efficient Upgrading in a Purely Functional Component Deployment Model 225

the new one?), makes roll-backs much harder (essential in server environments),
and is generally bad from a SCM perspective (since it becomes much harder to
identify the current configuration). Also, such destructive upgrades only work
with dynamic linking and other late-binding techniques; if the component has
been statically linked into other components at build time, we must identify all
affected components and upgrade them as well. This was for instance a major
problem when a security bug was discovered in the ubiquitous Zlib compression
library [11].

In Nix, on the other hand, as shown in Figure 4, the change to a compo-
nent affects the hashes of all components that depend on it. That is, Nix has a
purely functional deployment model: the “value” (i.e., file system contents) of a
component only depends on the inputs used to build it, and never changes after-
wards. This has two effects. First, all affected components must be rebuilt. This
is exactly right, since the change to the dependencies may of course affect the
derivates. This is the case even if interfaces haven’t changed, e.g., in the case of
statically linked libraries, smart cross-module inlining, changes to the compiler
affecting the binary interface, and so on.

The second effect is that all affected components must be re-deployed to the
clients, i.e., the clients must download and install each affected component. This
is the scalability issue that this paper addresses. For instance, if we want to
deploy a 100-byte bug fix to Glibc, almost all components in the system must be
downloaded again, since at the very least the RPATHs of dependent binaries will
have changed to point at the new Glibc. Depending on network characteristics,
this can take many hours even on fast connections. Note that this is much worse
than the first effect (having to rebuild the components), since that can be done
centralised and only needs to be done once. The re-deployment, on the other
hand, must be done for each client.

So why don’t we just destructively update components in place, as is done in
other deployment systems, e.g., by overwriting the old Glibc with the new one?
The reason is that this violates the crucial deployment invariant that the hash
of a path uniquely describes the component. (This is similar to allowing assign-
ments in purely functional programming languages such as Haskell [12].) From a
configuration management perspective, the hashes identify the configuration of
the components, and destructive updates remove the ability to identify what we
have on our system. Also, it destroys the component isolation property, i.e., that
an upgrade to one component cannot cause the failure to another component. If
an upgrade is not entirely backwards compatible, this no longer holds.

One might ask whether the relative difficulty (in terms of hardware resources,
not developer or user effort) of deploying upgrades doesn’t show that Nix is
unsuitable for large-scale software deployment. However, Nix’s advantages in
supporting side-by-side variability, correct dependency, atomic rollbacks, and so
on, in the face of a quasi-component model (i.e., the huge base of existing Unix
packages) not designed to support those features, makes it compelling to seek
a solution to the upgrade deployment problem within the Nix framework. The
remainder of this paper shows such a solution.

226 Eelco Dolstra

3 Binary Patch Deployment

The previous section showed the explosion in the number of components to be re-
deployed in case of an update to a fundamental component such as Glibc. In this
section we solve this problem by transparently deploying binary patches between
component releases. For instance, if a bug fix to Glibc induces a switch from
/nix/store/219a...-glibc-2.3.3 to /nix/store/ff9c...-glibc-2.3.3p1, then we compute
the delta (the binary patch) between the contents of those paths and make the
patch available to clients. We also do this for all components depending on it.
Subsequently the clients can apply those patches to the old version to produce
the new version. As we shall see in Section 5, patches for components affected
by a change to a dependency are generally very small.

A binary patch describes a set of edit operations that transforms a base
component stored at path X in the Nix store into a target component stored at
path Y . Thus, if a client needs path Y and it has path X already installed, then
it can speed up the installation of Y by downloading the patch from X to Y ,
copy X to Y in the Nix store, and finally apply the patch to Y .

This fits nicely into Nix’s substitute mechanism used to implement trans-
parent binary deployment. We just extend its download capabilities: rather than
doing a full download, if a patch is available, we download that instead. Manifests
can specify the availability of patches. For instance,

patch {

StorePath: /nix/store/5bfd71c253db...-firefox-1.0

NarURL: http://server/52c036147222...-firefox-1.0-to-1.0.nar-bsdiff

Size: 357

BasePath: /nix/store/075931820cae...-firefox-1.0

}

describes a 357-byte patch from the Firefox component shown in the previous
section (stored at BasePath) to a new one (stored at StorePath) induced by
a Glibc upgrade. If a patch is not available, or if the base component is not
installed, we fall back to a full download of the new component; or even a local
build if no download is available.

3.1 Binary Patch Creation

There are many off-the-shelf algorithms and implementations to compute binary
deltas between two arbitrary files. We used the bsdiff utility [13] because it
produced the smallest patches compared to others (see Section 6).

However, the components in the Nix store are arbitrary directory trees. How
do we produce deltas between directories trees? A “simple” solution would be to
compute deltas between corresponding regular files (i.e., with the same relative
path in the components) and distribute all deltas together. The full contents of
all new files in the target should also be added, as well as a list describing file
deletions, changes to symlink contents, etc. Files not listed would be assumed to
be unchanged.

Efficient Upgrading in a Purely Functional Component Deployment Model 227

This method is both complex and has the severe problem of not following
renames. For instance, the Firefox component stores most of its files in a subdi-
rectory lib/firefox-version. The method described above would fail to patch, e.g.,
lib/firefox-0.9/libmozjs.so into lib/firefox-1.0/libmozjs.so since the path names do
not correspond; rather, the latter file would be stored in full in the patch. Hence,
patching would not be very effective in the presence of renames.

There is however a much simpler and more effective solution: we take the
patch between archive files of the components. For instance, we can produce an
uncompressed Zip or Tar file3 containing the full contents of the directory trees
of the two components, and compute the binary delta between those files. This
automatically takes renames, deletions, file type changes, etc. into account, since
these are just simple changes within the archive files. To apply a patch, a client
must also create an archive of the base component, apply the binary patch to it,
and unpack the resulting archive into the target path.

For instance, for the example above, the base archive will at some point
contain a filename lib/firefox-0.9/libmozjs.so followed by the contents of that file,
while the target archive will contain a filename lib/firefox-1.0/libmozjs.so followed
by its contents, which may or may not be the same as the original file. The
binary delta algorithm will just emit an edit operation that changes the first
file name into the second, followed by the appropriate edit operations for the
file contents. It does not matter whether the position of the file in the archive
has changed: contrary to delta algorithms like the standard diff tool, bsdiff can
handle re-ordering of the data.

3.2 Patch Chaining

It is generally infeasible to produce patches between every pair of releases of
a set of components. The number of patches would be O(n2m), where n is the
number of releases and m is the number of components. As an example, consider
the Nix Packages collection (Nixpkgs). It is a set of existing Unix components
ranging from GCC to Firefox. Pre-releases of Nixpkgs are made on every commit
to its version management repository, which typically is several times a day.
Developers and users can stay up-to-date by subscribing to a channel, which is
just a convenience mechanism for updating Nix expressions on client machines.

Since pre-releases appear so often, we cannot feasibly produce patches
between each pair of pre-releases. So as a general policy we only produce
patches between immediately succeeding pre-releases. For instance, given releases
0.7pre1899, 0.7pre1928 and 0.7pre1931, we produce patches between 0.7pre1899
and 0.7pre1928, and between 0.7pre1928 and 0.7pre1931. This creates a problem,
however: suppose that a user has Firefox from 0.7pre1899 installed, and Firefox

3 In actuality, we produce a “Nar file”, which is Nix’s archive file format. Nar files,
unlike Tar or Zip files, have a canonical form: there is a single, uniquely defined
archive for the contents of a directory. For instance, directory entries are always
stored in the same order. This minimises the chances of a patch failing to apply due
to version differences in the archiving tool.

228 Eelco Dolstra

Fig. 5. Patch set created between Nixpkgs releases. Arrows indicate the existence
of a patch set.

changed in both succeeding releases, then there would be no patch that brings
the user up-to-date.

The solution is to automatically chain patches, i.e., using a series of available
patches X1 → ... → Xn → Y to produce path Y . In the example above, we have
a Firefox component installed that can be used as the base path to a patch in
the 0.7pre1928 release, to produce a component that can in turn serve as a base
path to a patch in the 0.7pre1931 release.

However, such patch sequences can eventually become so large that they
approach, or become larger than, full downloads. In that case we can “short-
circuit” the sequence by adding patches between additional releases. Figure 5
shows an example sequence of patches between releases thus formed. Here, patch
sets are produced by directly succeeding pre-releases, and between any successive
stable releases. An additional “short-circuit” patch set between 0.7pre1785 and
0.7pre1928 was also made.

In the presence of patch sets between arbitrary releases, it is not directly
obvious which sequence of patches or full downloads is optimal. To be fully gen-
eral, the Nix substitute downloader runs a shortest path algorithm on a directed
acyclic graph that, intuitively, represents components already installed, avail-
able patches between components, and available full downloads of components.
Formally, the graph is defined as follows:

– The nodes are the store paths for which pre-built binaries are available on
the server, either as full downloads or as patches, plus any store paths that
serve as bases to patches. There is also a special start node.

– There are three types of edges:
• Patch edges between store paths that represent available patches. The

edge weight is the size of the patch (in bytes).
• Full download edges from start to a store path for which we have a full

download available. The edge weight is the size of full download.
• Free edges from start to a store path representing that a store path is

already available on the system. The edge weight is 0.

We then find the shortest path between start and the path of the requested
component using Dijkstra’s shortest path algorithm. This method can find any
of the following:

– A sequence of patches transforming an already installed component into the
requested component.

– A full download of the requested component.

Efficient Upgrading in a Purely Functional Component Deployment Model 229

– A full download of some component X which is then transformed using a
sequence of patches into the requested component. Generally, this will be
longer than immediately doing a full download of the requested component,
but this allows one to make only patches available for upgrades.

Above, edge weight was defined as the size in bytes of downloads. We could
take other factors into account, such as protocol/network overhead per download,
the CPU resources necessary to apply patches, and so on. For instance, on a
reasonably fast connection, a full download might be preferable over a long
sequence of patches even if the combined byte count of those patches is less than
the full download.

4 Base Selection

To deploy an upgrade, we have to produce patches between “corresponding”
components. This is intuitively simple: for instance, to deploy a Glibc upgrade,
we have to produce patches between the old Glibc and the new one, but also
between the components depending on it, e.g., between the old Firefox and the
new one. However, a complication is that the dependency graphs might not be
isomorphic. For instance, components may have been removed or added, depen-
dencies moved, component names changed (e.g., Phoenix to Firebird to Firefox),
and so on. Also, even disregarding component renames, simply matching by name
is insufficient because there may be multiple component instances with the same
name (e.g., builds for different platforms).

The base selection problem is the problem, when deploying a set of target
components Y, of selecting from a set of base components X a set of patches
(X, Y) ∈ (X × Y) such that the probability of the Xs being present on the
clients is maximised within certain resource constraints.

Clearly, we could produce patches between all Xs and Y s. This policy is
“optimal” in the sense that the client would always be able to select the abso-
lutely shortest sequence of patches. However, it is infeasible in terms of time and
space since producing a patch takes a non-negligible amount of time, and most
such patches will be large since they will be between unrelated components (for
instance, patching Acrobat Reader into Firefox is obviously inefficient).

Therefore, we need to select some subset of (X × Y). The solution currently
implemented is heuristical: we use a number of properties of the components
to guess whether they “match” (i.e., are conceptually the “same” component).
Indeed, the selection problem seems inherently heuristical for two reasons. First,
there can be arbitrary changes between releases. Second, we cannot feasibly
produce all patches to select the “best” according to some objective criterion.

Possible heuristics include the following:

– Same component name. This is clearly one of the simplest and most effective
criteria. However, there is a complication: there can be multiple components
with the same name. For instance, Nixpkgs contains the GNU C Compiler
gcc at several levels in the dependency graph (due to bootstrapping). Also, it

230 Eelco Dolstra

contains two components called firefox — one is the “real thing”, the other
is a shell script wrapper around the first to enable some plugins. Finally,
Nixpkgs contains the same components for multiple platforms.

– The weighted number of uses can be used to disambiguate between compo-
nents at different bootstrapping levels such as GCC mentioned above, or
disambiguate between certain variants of a component. It is defined for a
component at path p as follows:

w(p) =
∑

q∈users(p)

1
rd(q,p)

where users(p) is the set of components from which p is reachable in the
build-time dependency graph, i.e., the components that are directly or indi-
rectly dependent on p; where d(q, p) is the unweighted distance from com-
ponent q to p in the build-time dependency graph; and where r ≥ 1 is an
empirically determined value that causes less weight to be given to “distant”
dependencies than to “nearby” dependencies.
For instance, in the Nixpkgs dependency graph, there is a “bootstrap” GCC
and a “final” GCC, the former being used to compile the latter, and the
latter being used to compile almost all other packages. If we were to take
the unweighted number of uses (r = 1), then the bootstrap GCC would have
a slightly higher number of uses than the final GCC (since any component
using the latter is indirectly dependent on the former), but the difference
is too small for disambiguation — such a difference could also be caused
by the addition or removal of dependent components. However, if we take,
e.g., r = 2, then the weighted number of uses for the final GCC will be
almost twice as large. This is because the bootstrap GCC is at least one step
further away in the dependency graph from the majority of components,
thus halving their contribution to its w(p).
Thus, if the ratio between w(p) and w(q) is greater than some empirically
determined value k, then components p and q are considered unrelated, and
no patch between them is produced. A good value for k would be around 2,
e.g., k = 1.9.

– Size of the component. If the ratio between the sizes of two components dif-
fers more than some value l, then the components are considered unrelated.
A typical value would be l = 3; even if components differing in size by a
factor of 3 are related, then patching is unlikely to be effectual. This trivial
heuristic can disambiguate between the two Firefox components mentioned
above, since the wrapper script component is much smaller than the real
Firefox component.

– Platform. In general, it is pointless to create a patch between components
for different platforms (e.g., Linux and Mac OS X), since it is unlikely that
a client has components for a different platform installed.

Efficient Upgrading in a Purely Functional Component Deployment Model 231

5 Experience

We have implemented the binary patch deployment scheme described above in
the Nix system, and used it to produce patches between 50 subsequent (pre-)
releases of the Nix Packages collection4. Base components were selected on the
basis of matching names, using the size and weighted number of uses heuris-
tics described in the previous section to disambiguate between a number of
components with equal names. The use of patches is automatic and completely
transparent to users; an upgrade action in Nix uses (a sequence of) patches if
available and applicable, and falls back to full downloads otherwise. In this sec-
tion we provide some data to show that the patching scheme succeeds in its
main goal, i.e., reducing network bandwidth consumption in the face of updates
to fundamental components such as Glibc or GCC to an “acceptable” level.

We computed for each pair of subsequent releases how large an upgrade using
full downloads of changed components would be, versus downloading patches to
changed components. Also, the average and median sizes of each patch for the
changed components (or full download, if no patch was possible) were computed.
New top-level components (e.g., applications introduced in the new release) were
disregarded. Table 1 summarises the results for a number of selected releases,
representing various types of upgrades. File sizes are in bytes unless specified
otherwise. Omitted releases were typically upgrades of single leaf components
such as applications. An example is the Firefox upgrade in revision 0.6pre1702.

Release
Comps.
changed

Full
size

Total
patch
size

Savings
Avg.
patch
size

Median
patch
size

Remarks

0.6pre1069 27 31.6M 162K 99.5% 6172 898 X11 client libraries update
0.6pre1489 147 180M 71M 60.5% 495K 81K Glibc 2.3.2 → 2.3.3, GCC

3.3.3 → 3.4.2, many other
changes5

0.6pre1538 147 176.7M 364K 99.8% 2536 509 Standard build environ-
ment changes

0.6pre1542 1 9.3M 67K 99.3% 67K 67K Firefox extensions/profiles
bug fix

0.6pre1672 26 38.0M 562K 98.6% 22155 6475 GTK updates
0.6pre1702 3 11.0M 190K 98.3% 63K 234K Firefox 1.0rc1 → 1.0rc2
0.7pre1820 154 188.6M 598K 99.7% 3981 446 Glibc loadlocale bug fix
0.7pre1931 1 1164K 45K 96.1% 45K 45K Subversion 1.1.1 → 1.1.2
0.7pre1977 153 196.3M 743K 99.6% 4977 440 Glibc UTF-8 locales patch
0.7pre1980 154 197.2M 3748K 98.1% 24924 974 GCC 3.4.2 → 3.4.3

Table 1. Statistics for patch sets between selected Nixpkgs releases and their
immediate predecessors

4 The releases are available at http://catamaran.labs.cs.uu.nl/dist/nix, and the Nix
expressions from which they were generated at
https://svn.cs.uu.nl:12443/viewcvs/trace/nixpkgs/trunk/.

5 First release since 0.6pre1398.

232 Eelco Dolstra

Efficient upgrades or patches to fundamental components are the main goal
of this paper. For instance, release 0.7pre1980 upgraded the GNU C Compiler
used to build all other components, while releases 0.7pre1820 and 0.7pre1977
provided bug fixes to the GNU C Library, also used at build-time and run-
time by all other components. The patches resulting from the Glibc changes in
particular are tiny: the median patch size is around 440 bytes. This is because
such patches generally only need to modify the RPATH in executable and shared
libraries. The average is higher (around 4K) because a handful of applications
and libraries statically link against Glibc components. Still, the total size of the
patches for all components is only 598K and 743K, respectively — a fairly trivial
size even on slow modem connections.

On the other hand, release 0.6pre1489 is not small at all — the patch savings
are only 60.5%. However, this release contained many significant changes. In
particular, there was a major upgrade to GCC, with important changes to the
generated code in all components. In general, compilers should not be switched
lightly. (If individual components need an upgraded version, e.g., to fix a code
generation bug, that is no problem: Nix expressions, being a functional language,
can easily express that different components must be built with different compil-
ers.) Minor compiler upgrades need not be a problem; release 0.7pre1980, which
featured a minor upgrade to GCC, has a 98.1% patch effectiveness.

Patch generation is a relatively slow process. For example, the generation of
the patch set for release 0.7pre1820 took 49 minutes on a 3.2 GHz Pentium 4
machine with 1 GB of RAM running Linux 2.4.26. The bsdiff program also needs
a large amount of memory; its documentation recommends a working set of at
least 8 times the base file. For a large component such as Glibc, which takes
46M of disk space, this works out to 368M of RAM.

A final point not addressed previously is the disk space consumption of up-
grades. A change to a component such as Glibc will still cause every component
to be duplicated on disk, even if they do no longer have to be downloaded in full.
However, after an upgrade, a user can run the Nix garbage collector that safely
and automatically removes unused components. Nonetheless, as an optimisation,
we observe that many files in those components will be exactly the same (e.g.,
header files, scripts, documentation, JAR files). Therefore, we implemented a
tool that “optimises” the Nix store by finding all identical regular files in the
store, and replacing them with hard links [14] to a single copy. On typical Nix
stores (i.e., subject to normal evolution over a period of time) this saved between
15–30% of disk space. While this is useful, it is not an order of complexity change
as is the case with the amount of bandwidth saved using patches.

6 Related Work

Binary patching has a long history, going back to manual patching of binaries
on mainframes in the 1960s, where it was often a more efficient method of fix-
ing bugs than recompiling from source. Binary patching has been available in
commercial patch tools such as .RTPatch, and interactive installer tools such

Efficient Upgrading in a Purely Functional Component Deployment Model 233

as InstallShield. Most Unix binary package managers only support upgrades
through full downloads (SuSE’s “Patch RPMs” include full copies of all changed
files). Microsoft recently introduced binary patching in Windows XP Service
Pack 2 as a method to speed up bug fix deployment [15].

A method for automatically computing and distributing binary patches be-
tween FreeBSD releases is described in [16]. It addresses the additional com-
plication that FreeBSD systems are often built from source, and the resulting
binaries can differ even if the sources are the same, for instance, due to times-
tamps being stored in files. In the Nix patching scheme we guard against this
possibility by providing the MD5 hash of the archive to which the patch applies.
If it does not apply, we fall back to a full download. In general, however, this
situation does not occur because patches are obtained from the same source as
the original binaries.

In Nix, the use of patches is completely hidden from users, who only observe it
as a speed increase. In general, deployment methods often require users to figure
out what files to download to install an upgrade (e.g., hotfixes in Windows). Also,
if sequences of patches are required, these must be applied manually by the user,
unless the distributor has consolidated them into a single patch. The creation
of patches is often a manual and error-prone process, e.g., figuring out what
components to redeploy as a result of a security bug like [11]. In our approach,
this determination is automatic.

The bsdiff program [13] that Nix uses to generate patches is based on the
qsufsort algorithm [17]. In our experience bsdiff outperformed methods such as
ZDelta [18] and VDelta [19, 20], but a comparison of delta algorithms is beyond
the scope of this paper. An overview of some delta algorithms is given in [19].

The problem of keeping derivates consistent with sources and dependency
graph specifications occurs in all build systems, e.g., Make [5]. To ensure cor-
rectness, such systems must rebuild all dependent objects if some source changes.
If a source is fundamental, then a large number of build actions may be neces-
sary. So this problem is not unique in any way to Nix. However, the problems of
build systems affect developers, not end users, while Nix is a deployment system
first and foremost. This is why it is important to ensure that end users are not
affected by the use of a strict update propagation semantics.

7 Conclusion

In a previous ICSE paper [3] we introduced the purely functional deployment
model underlying Nix, where components are stored in isolation in paths in
the file system that contain a hash of all build-time inputs used to construct
the component, and argued that this has substantial advantages for the safe
deployment of software. However, as we noted then, the downside to such a model
is that updates to fundamental components require all components depending
on them to be updated also. In this paper we have shown that using binary
patch deployment, Nix’s functional deployment model can in fact efficiently and
transparently support such operations.

234 Eelco Dolstra

Acknowledgements This research was supported by CIBIT | SERC and the
NWO Jacquard program. The author would like to thank Martin Bravenboer
and Eelco Visser for commenting on drafts of this paper.

References

[1] Carzaniga, A., Fuggetta, A., Hall, R.S., Heimbigner, D., van der Hoek, A., Wolf,
A.L.: A characterization framework for software deployment technologies. Tech-
nical Report CU-CS-857-98, Dept. of Computer Science, University of Colorado
(1998)

[2] Szyperski, C.: Component technology—what, where, and how? In: Proceedings of
the 25th International Conference on Software Engineering (ICSE 2003). (2003)
684–693

[3] Dolstra, E., Visser, E., de Jonge, M.: Imposing a memory management discipline
on software deployment. In: Proceedings of the 26th International Conference on
Software Engineering (ICSE 2004), IEEE Computer Society (2004) 583–592

[4] Dolstra, E., de Jonge, M., Visser, E.: Nix: A safe and policy-free system for
software deployment. In Damon, L., ed.: 18th Large Installation System Admin-
istration Conference (LISA ’04), Atlanta, Georgia, USA, USENIX (2004) 79–92

[5] Feldman, S.I.: Make—a program for maintaining computer programs. Software—
Practice and Experience 9 (1979) 255–65

[6] Foster-Johnson, E.: Red Hat RPM Guide. John Wiley and Sons (2003)
[7] TIS Committee: Tool Interface Specification (TIS) Executable and Linking For-

mat (ELF) Specification, Version 1.2.
http://www.x86.org/ftp/manuals/tools/elf.pdf (1995)

[8] TraCE Project: Nix deployment system.
http://www.cs.uu.nl/groups/ST/Trace/Nix (2005)

[9] FreeBSD Project: FreeBSD Ports Collection. http://www.freebsd.org/ports/
(2005)

[10] Gentoo Project: Gentoo Linux. http://www.gentoo.org/ (2005)
[11] Adler, M., Gailly, J.: Zlib advisory 2002-03-11.

http://www.gzip.org/zlib/advisory-2002-03-11.txt (2002)
[12] Peyton Jones, S., ed.: Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press (2004)
[13] Percival, C.: Binary diff/patch utility. http://www.daemonology.net/bsdiff/

(2003)
[14] Stevens, W.R.: Advanced Programming in the UNIX Environment. Addison-

Wesley (1993)
[15] Microsoft Corporation: Binary delta compression. Whitepaper (2002)
[16] Percival, C.: An automated binary security update system for FreeBSD. In:

Proceedings of BSDCON ’03, USENIX (2003)
[17] Larsson, N.J., Sadakane, K.: Faster suffix sorting. Technical Report LU-CS-TR-

99-214, Lund University (1999)
[18] Trendafilov, D., Memon, N., Suel, T.: zdelta: An efficient delta compression tool.

Technical Report TR-CIS-2002-02, Polytechnic University (2002)
[19] Hunt, J.J., Vo, K.P., Tichy, W.F.: Delta algorithms: An empirical analysis. ACM

Transactions on Software Engineering and Methodology 7 (1998) 192–214
[20] Korn, D., Vo, K.: vdelta: Differencing and compression. In Krishnamurthy, B.,

ed.: Practical Reusable UNIX Software. John Wiley & Sons (1995)

Real-Time Scheduling Techniques for

Implementation Synthesis from
Component-Based Software Models

Zonghua Gu and Zhimin He

Dept. of Computer Science
University of Virginia

Charlottesville, VA 22903, USA
{zg4v, zh5f}@cs.virginia.edu

Abstract. We consider a class of component-based software models
with interaction style of buffered asynchronous message passing between
components with ports, represented by UML-RT. After building a logical
software model, it is necessary to synthesize a multi-threaded implemen-
tation that runs on a given target hardware platform and satisfies timing
constraints. Commercial code generators generate functional code, but
ignore concurrency and timing issues. In this paper, we compare alter-
native multi-threading strategies for implementation synthesis from this
class of software models, and describe real-time scheduling analysis tech-
niques that are useful during design space exploration for implementa-
tion synthesis. We use the elevator control application to illustrate our
analysis techniques.

1 Introduction

We consider a class of component-based software models with interaction style
of buffered asynchronous message passing between components with ports. This
programming style is prevalent in development of event-driven real-time soft-
ware. One representative example is UML-RT, a UML Profile for an archi-
tecture description language based on Real-Time Object-Oriented Modeling
(ROOM) [1], supported by CASE Tools from IBM Rational [2]. Another ex-
ample is the Quantum Framework [3], which advocates this programming style
without the need for expensive CASE tools. It has a number of benefits from a
software engineering perspective, such as modularity, encapsulation, decoupling
of interactions, etc. This programming style is ideally combined with event-
driven middleware like CORBA Event Service [4] as the application’s commu-
nication substrate. One real-world application example is the Avionics Mission
Computing software [5].

After building a logical software model, it is necessary to synthesize a multi-
threaded implementation that runs on a given target hardware platform and
satisfies timing constraints. Commercial code generators, e.g., the code genera-
tor for UML-RT, generate functional code, but ignore concurrency and timing

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 235–250, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

236 Zonghua Gu and Zhimin He

issues. It is up to the designer to choose a multi-threading strategy to ensure
satisfaction of system timing constraints. In this paper, we compare alternative
multi-threading strategies for implementation synthesis from this class of soft-
ware models, and describe real-time scheduling techniques that are useful during
design space exploration for implementation synthesis.

We use UML-RT as a representative example in the following discussions,
but note that the analysis techniques discussed in this paper have much wider
applicability to the general class of component-based software models with in-
teraction style of buffered asynchronous message passing between components
with ports.

This paper is structured as follows: section 2 discusses different implementa-
tion alternatives for UML-RT models. Section 3 discusses real-time scheduling
analysis for the native runtime model of UML-RT. Section 4 uses the elevator
control application to illustrate our analysis technique. Section 5 discusses pros
and cons of different multi-threading strategies; Section 6 discusses related work,
and section 7 draws conclusions.

2 Multi-threading Strategies for UML-RT Models

We provide a brief introduction to the basic concepts of UML-RT. A capsule is an
active object with its own logical thread of control. In the context of this paper,
capsules are synonymous with components. Capsules communicate with each
other through sending and receiving messages asynchronously through ports.
Connectors represent message passing connections between ports. The explicit
representation of port and connectors enable construction of architectural models
from a collection of capsules.

The runtime model of UML-RT follows the Run-To-Completion (RTC) se-
mantics for each capsule, that is, once triggered by a message at its input port,
the capsule must execute the triggered action to completion before processing the
next message. RTC is useful for reducing the number of concurrency bugs when a
capsule can take part in multiple end-to-end scenarios. Messages can be assigned
priorities and queued in priority order instead of FIFO order. Each OS thread
processes incoming messages for the capsules assigned to it in a priority-based,
non-preemptive manner, consistent with the RTC semantics. However, there can
be preemptions between different threads in a multi-threaded system, that is, a
capsule executing in the context of a higher-priority thread can preempt another
capsule executing in a lower-priority thread.

It is important to distinguish between the concepts of design-level concur-
rency and implementation-level concurrency [6]. At the design level, each capsule
conceptually contains its own logical thread of execution, but each logical thread
is not necessarily mapped into an OS thread at the implementation level. Al-
though it is possible for each capsule to have its own OS thread, it may incur
too much context-switching overhead if there are a large number of capsules.
There are a number of possible multi-threading strategies for implementation
synthesis, as discussed below.

Real-Time Scheduling Techniques for Implementation Synthesis 237

Fig. 1. An example application scenario.

Suppose we have a logical UML-RT model as shown in Figure 1, consisting
of three capsules O1, O2, O3 and two end-to-end scenarios t1, t2. Each scenario
consists of multiple subtasks, which are triggered actions executed by the cap-
sules. Scenario t1 is initially triggered by a periodic timeout message with period
10 ms that triggers an action t11 in capsule O1, which in turn sends a message
to capsule O2 and triggers action t12 in O2. Finally, O2 sends a message to O3

and triggers action t13. We can view this scenario as a logical end-to-end thread
t1 consisting of three precedence-constrained subtasks t11, t12 and t13. Similarly,
scenario t2 is an end-to-end thread consisting of two subtasks t21 and t23, trig-
gered by a 100ms periodic timeout message. Given this logical model, how to
implement it on a multi-threaded real-time operating system?

Despite the word Real-Time in its name, the designers of the UML-RT have
not put much emphasis on real-time issues when implementing a logical model
on the target platform. The default runtime model is single-threaded, that is, all
capsules are mapped into the same thread of execution. It is desirable to intro-
duce more parallelism and concurrency into the system to improve predictability,
by adopting a multi-threaded execution architecture. Commercial code genera-
tors for UML-RT, e.g., that from IBM Rational, provide options for creating
multiple threads, each containing one or more capsules. Each thread is assigned
a fixed priority. We call this the native runtime model of UML-RT. Some authors
have proposed alternative runtime models, as discussed below.

1. Capsule-Based Multi-threading, Scenario-Based Priority-Assign-
ment (CMSP) This is proposed by Saksena in [6]. As shown in Figure 2,
one or more capsules are grouped into the same thread. Priorities are asso-
ciated with the end-to-end scenarios, and the thread priorities are adjusted
dynamically to maintain a uniform priority across each application scenario.

2. Scenario-Based Multi-Threading, Scenario-Based Priority-Assign-
ment (SMSP) This is proposed by Saehwa Kim in [7]. As shown in Figure 3,

238 Zonghua Gu and Zhimin He

Fig. 2. Capsule-Based Multi-threading, Scenario-Based Priority-Assignment
(CMSP). Note that we use the words thread and task interchangeably in this
paper.

Fig. 3. Capsule-Based Multi-Threading, Scenario-Based Priority-Assignment
(SMSP).

each application scenario is mapped into a separate thread with uniform
priority.

3. Capsule-Based Multi-threading, Capsule-Based Priority-Assign-
ment (CMCP) As shown in Figure 4, one or more capsules are grouped
into a thread with uniform priority. This is the native runtime model of
UML-RT. The figure only shows one of many possibilities for grouping cap-

Real-Time Scheduling Techniques for Implementation Synthesis 239

Fig. 4. Capsule-Based Multi-threading, Capsule-Based Priority-Assignment
(CMCP).

sules into threads. Two extreme cases are mapping all capsules into a single
thread, or mapping each capsule into its own thread.

4. Scenario-Based Multi-Threading, Capsule-Based Priority-Assign-
ment (SMCP) Even though this combination is conceptually possible, we
do not know of any real applications that adopt it, so we will not consider
it further.

Rate Monotonic Analysis (RMA) [8] is a well-known analysis technique for
determining schedulability of a set of real-time tasks/threads, which must satisfy
the following set of assumptions: each task must

1. be preemptively scheduled.
2. be independent.
3. be periodic.
4. have bounded Worst-Case Execution Time (WCET).
5. have uniform, static priority.

For scenario-based priority assignment, RMA assumptions are satisfied since
each end-to-end scenario can be viewed as a task with uniform, static priority.
But for capsule-based priority assignment, RMA assumptions are not satisfied,
since each end-to-end task consists of multiple subtasks of varying priority. We
describe real-time scheduling analysis techniques for this situation in the next
section.

3 Real-Time Scheduling Techniques for CMCP

Consider a UML-RT model consisting of m capsules O1, O2, . . . , Om, and n
end-to-end scenarios, where each scenario is mapped into an end-to-end virtual

240 Zonghua Gu and Zhimin He

thread, forming the taskset τ1, τ2, . . . , τn. Here we use the word virtual to denote
the fact that each end-to-end thread consists of multiple segments of subtasks
distributed over different OS threads. Each end-to-end thread τi, i = 1, . . . , n
cuts through one or more capsules, and triggers an action within each capsule,
forming a chain of subtasks τi1, . . . , τim(i). We use O(τij) to denote the capsule
that the subtask τij belongs to, and PO(τij) to denote the passive objects that
τij accesses. Each subtask τij is actually an event-triggered action within a cap-
sule O(τij). Each subtask τij is characterized by parameters (Cij , Pij), where Cij

is its worst-case execution time, and Pij is its priority. Each end-to-end thread
τi has an end-to-end deadline Di.

The task model is very similar to the task model of end-to-end threads with
subtasks with varying priority, as described by Harbour, Klein, Lehoczky in [9].
We call the schedulability analysis algorithm introduced in [9] the HKL algo-
rithm. However, the HKL algorithm needs to be adapted to take into account
extra blocking time caused by the Run-To-Completion (RTC) semantics and
shared data objects, in order to be applicable to UML-RT. A capsule may be
involved in multiple sub-tasks within one end-to-end thread, or in multiple end-
to-end threads. Due to RTC semantics, a subtask may suffer a blocking time
equal to the largest execution time of other subtasks sharing the same cap-
sule. Blocking time can also be caused by sharing of passive objects by multiple
end-to-end threads. We do not model method invocations to passive objects as
separate subtasks, since the passive object can be viewed as an extension of the
invoking capsule, and inherits the thread and priority from it. But we do need
to take into account blocking time caused by sharing of passive objects.

We first briefly describe the HKL algorithm. The canonical form of a task τi is
a new task τ ′

i with the same sequence of subtasks as τi, but with strictly increas-
ing priorities. One example transformation is a task-chain consisting of subtasks
with priority sequence (8, 2, 5, 4, 3). The canonical form of this task-chain con-
sists of priority sequence (2, 2, 3, 3, 3). It was proven in [9] that transforming a
task into its canonical form does not affect its schedulability. This result allows
one to check whether the canonical form of τi is schedulable instead of τi itself,
which simplifies the analysis considerably.

Now define Pmin(i) to be the minimum priority of all subtasks of τi. The
next step is to classify all tasks τj , j �= i according to their relative priority levels
with respect to Pmin(i). For example, if the canonical form of τi consists of a
single segment of priority 18, and τj consists of priority sequence (19, 10, 19, 10,
25, 10), or, (H, L, H, L, H, L), where H stands for “higher”, and L stands for
“lower”. There are five types of tasks [10]:

– Type 1, or H+, tasks, with all subtask priorities higher or equal to τi. These
tasks can preempt task τi multiple times.

– Type 2, or (H+L+)+, tasks. The first subtask has higher priority than τi,
but it can only preempt τi once, since it is followed by subtasks of lower
priority. Multiple tasks of this type may preempt τi, but only for the first
segment. The non-first high-priority segments cause a blocking effect.

Real-Time Scheduling Techniques for Implementation Synthesis 241

– Type 3, or ((HL)+H), tasks. They differ from type 2 since they end with a
high priority segment. We omit the discussion of type 3 tasks, since they do
not appear in the example we consider here.

– Type 4, or (L+H+)+L+, tasks. The first subtask has lower priority than
τi. Any one of the following subtask segments can have a blocking effect on
τi, but only one such segment among all tasks of type 4 can have such a
blocking effect.

– Type 5, or L+, tasks. They have no effect on completion time of τi, and can
be ignored.

Suppose we are calculating response time of task ti. To simplify discussions,
let’s assume the canonical form of ti consists of subtasks of uniform priority Pi.
Define H1(i), H2(i), H4(i) to be the indices of all tasks of type 1, 2, 4, respectively.

For each j ∈ H2(i), let B2(i, j) be the execution time of the first H+ segment
of task τj . B2(i, j) denotes the preemption time caused by τj to τi. Then the
total preemption time suffered by τi is:

B2(i) =
∑

j∈H2(i)

B2(i, j)

For each j ∈ H2(i) ∪ H4(i), let B4(i, j) be the blocking time suffered by τi,
caused by all H+ segments of task τj of type 4, and all non-first H+ segments
of task τj of type 2. Then the total blocking time suffered by τi is:

B4(i) = max(B4(i, j)|j ∈ H4(i) ∪ H2(i))

For a Type 2 task, only the first higher priority segment should be counted in
B2(i), while the remaining segments should be counted in B4(i). Since multiple
tasks of Type 2 can use their first segments to preempt ti, therefore B2(i) is a
sum of them; while only one task of Type 2 or 3 can use its non-first segment
to preempt ti, therefore B4(i) is a max of them.

In order to adapt the HKL algorithm to the UML-RT model, we need to take
into account additional blocking time B(i):

B(i) = max(Ckl|∀k, l, j, k! = i, O(τkl) = O(τij)) + max(Cmn|∀m, n, j, m! =
i, Pmn < Pij , PO(τmn) ∩ PO(τij) �= φ)

where the first term denotes blocking time caused by other subtasks sharing
the same capsule with some subtask of thread i due to the RTC semantics, and
the second term denotes blocking time caused by other lower-priority subtasks
accessing shared passive objects.

The equation for calculating the Worst-Case Response Time (WCRT) of task
τi is:

WCRT(i) = WCET(i) + B2(i) + B4(i) + B(i) +
∑

j∈H1(i)

�WCRT(i)
Period(j)

� · WCET(j)

(1)
where WCET(i) is the worst-case execution time of τi, and Period(j) is the
execution period of τj if it is a periodic task, or the minimum inter-arrival time

242 Zonghua Gu and Zhimin He

of execution triggers for τj if it is a sporadic task. The last term is preemption
time caused by Type 1 tasks. τi is schedulable if the calculated WCRT(i) is less
than its deadline. This is a recursive equation that can be solved iteratively.

One limitation of our approach is that it can only handle linear task-chains,
but not more general trees or graphs. It is an open research issue as to how to
extend the HKL algorithm to deal with task-trees or graphs.

4 The Elevator Control Application Example

We use the elevator control system as an application example, taken from [11],
assuming that it is implemented with UML-RT. (Note that the original example
in [11] is not based on UML-RT.) Figure 5 shows the 8 capsules and 1 passive
data object involved in a single-processor implementation. There are three end-
to-end threads consisting of subtasks of varying priorities:

1. Stop Elevator at Floor. The elevator is equipped with arrival sensors that
trigger an interrupt to the capsule arrival sensors interface when the elevator
approaches a floor, which in turn sends a message approaching floor to the
capsule elevator controller. The elevator controller invokes a synchronous
method call on the passive data object elevator status and plan to determine
whether the elevator should stop or not.

2. Select Destination. The user presses a button in the elevator to choose
his/her destination, which triggers an interrupt to the capsule elevator but-
tons interface, which in turn sends a message elevator request to the capsule
elevator manager. The elevator manager receives the message and records
destination in the passive object elevator status and plan.

3. Request Elevator. The user presses the up or down button at a floor,
which triggers an interrupt to the capsule floor buttons interface, which in
turn sends a message service request to the capsule scheduler. The sched-
uler receives message and interrogates the passive object elevator status and
plan to determine if an elevator is on its way to this floor. If not, the sched-
uler selects an elevator and sends a message elevator request to the capsule
elevator manager. The elevator manager receives the message and records
destination in the passive object elevator status and plan.

Consider a building with 10 floors and 3 elevators. All end-to-end threads
are interrupt driven, not periodic. In order to perform schedulability analysis,
we estimate the worst-case arrival rate of the interrupts and use them as approx-
imations for periods assigned to each task. For example, the Request Elevator
scenario is assigned a period of 200 ms by assuming that all 18 floor buttons (up
and down buttons for each floor, except the top and bottom floors) are pressed
within 3.6 seconds, which is likely to be the worst-case arrival rate.

We can use classic RMA to analyze system schedulability if we adopt
scenario-based priority assignment. Instead, we adopt CMCP (Capsule-based
Multi-threading, Capsule-based Priority-assignment), where each capsule is as-
signed a fixed priority, and apply the schedulability analysis technique discussed
in Section 3.

Real-Time Scheduling Techniques for Implementation Synthesis 243

ElevatorStatusPlan

Interface
ArrivalSensors

ElevatorButtons
Interface Manager

Elevator

Elevator
Controller

t22t21

t2:Select Destination

t12t11

t1:Stop Elevator at Floor

Scheduler

DirectionLamps
Monitor

Monitor
FloorLamps

Interface
FloorButtonst33

t3:Request Elevator

t31t32

t41

t51

t4

t5

Fig. 5. The collaboration diagram for the single-processor elevator control sys-
tem. Capsules are drawn with thick borders, and passive objects are drawn with
thin borders.

Task Period WCET Priority WCRT

t1: Stop elevator at floor
t11: Arrival Sensors Interface 50 2 9 -
t12: Elevator Controller 50 5 6 20

t2: Select Destination
t21: Elevator Buttons Interface 100 3 8 -
t22: Elevator Manager 100 6 5 31

t3: Request Elevator
t31: Floor Buttons Interface 200 4 7 -
t32: Scheduler 200 2 4 -
t33: Elevator Manager 200 6 5 33

t4, t5: Other Tasks
t41: Floor Lamps Monitor 500 5 3 33
t51: Direction Lamps Monitor 500 5 2 38

Table 1. The taskset of the single-processor elevator control system. Higher
number denotes higher priority.

Table 1 shows the taskset of the elevator control system running on a single
processor. The priorities are assigned in a rate monotonic fashion, that is, tasks
with shorter periods are assigned a higher priority. In addition, the interrupt han-
dler tasks [8], that is, the Interface subtasks, are assigned higher priorities than
the other tasks in order to avoid losing any interrupts. Other priority assignment
schemes are also possible. We do not address the priority assignment problem
here, but only address scheduling analysis given existing priority assignments to
subtasks.

As an example, let’s consider the end-to-end task t2 Select Destination,
which consists of two subtasks with execution time 3 and 6, priorities 8 and 5,
respectively. Its canonical form is a single task with execution time 9 and priority
5. Other tasks can be classified as follows:

244 Zonghua Gu and Zhimin He

– t1 is a type 1 task, with a single higher-priority segment with WCET 7.
– t3 is a type 2 task, with a higher-priority segment t31 followed by lower-

priority segments t32 and t33.
– t4 and t5 are type 5 tasks, with all segments having priorities lower than 5.

Blocking time B2(2) caused by type 2 tasks is WCET(t31) = 4. There are no
Type 4 tasks. Blocking time due to RTC semantics is WCET(t33) = 6; blocking
time due to shared passive objects is max(WCET(t12), WCET(t32)) = max(5, 2).
We use Equation 1 to get:

WCRT(2) = WCET(2)+B2(2)+B4(2)+B(2)+
∑

j∈H1(2)

�WCRT(2)
Period(j)

� ·WCET(j)

= 9 + 4 + 6 + max(5, 2) + �WCRT(2)
50

� · 7 = 31

We can calculate WCRT for the end-to-end threads based on Equation 1,
as shown in the WCRT column of Table 1. We associate the WCRT of the
end-to-end thread with the last segment of the task in the table. No deadlines
are missed, and the system is schedulable. Note t4 and t5 have relatively small
WCRTs despite the fact that they have the lowest priority, since they do not
suffer from blocking time caused by RTC semantics or shared passive objects.

Overall

Manager
ElevatorElevatorButtons

Interface

Elevator
ControllerInterface

ArrivalSensors
Plan Server

Elevator Status

Scheduler

DirectionLamps
Monitor

Monitor
FloorLamps

Interface
FloorButtons

ElevatorStatusPlan
Local t23, t34

t33

t13

t1:Stop Elevator at Floor

t11 t12

t2:Select Destination

t21 t22

Elevator Subsystem Scheduler Subsystem

t3:Request Elevator

t31t32

t41

t51

t4

t5
Floor Subsystem

ElevatorStatusPlan

Fig. 6. The collaboration diagram for the distributed elevator control system.

The single-processor system may become overloaded when more floors and
elevators are involved. In order to be scalable to a large number of floors and
elevators, the system needs to be redesigned to take advantage of multiple proces-
sors connected via a network, for example, the Controller Area Network (CAN).
Figure 6 shows the system architecture. There is one ElevatorCPU for each ele-
vator, and one FloorCPU for each floor. There is only one SchedulerCPU that is
a central decision point for scheduling elevator requests, consisting of the capsule
scheduler as well as another capsule elevator status and plan server for handling

Real-Time Scheduling Techniques for Implementation Synthesis 245

updates and queries from the capsules from the ElevatorCPU and FloorCPU.
Each scenario spans multiple processors, and we need to take into account delays
caused by scheduling of network packets. For a multi-processor elevator control
system consisting of 12 elevators and 40 floors, we use the holistic schedulability
analysis technique [12] to calculate the end-to-end WCRT of distributed tasks,
with Equation 1 as a subroutine for calculation of local WCRT on a single pro-
cessor. We omit the details of this calculation due to space limitations, but the
analysis results show that all tasks meet their deadlines.

From the above analysis, we conclude that the CMCP approach is adequate
in terms of meeting system timing constraints, and we do not need to customize
the UML-RT runtime to be either CMSP or SMSP. In this case, all three ap-
proaches result in meeting system deadlines, but it may not always be true. In
general, we need to perform design space exploration, including choice of multi-
threading strategies and priority assignment, in order to determine the optimal
implementation approach.

5 Discussions

Depending on application characteristics, it may be appropriate to adopt differ-
ent multi-threading strategies. If there is very little interaction between different
application scenarios, then Scenario-Based Multi-Threading is appropriate. This
is the case for Avionics Mission Computing software [5], for example. However,
if there is intensive interaction among different scenarios, then Capsule-Based
Multi-Threading is more appropriate in order to avoid excessive locking and
unlocking of shared capsules.

CMSP requires the programmer to stick to a programming discipline of dy-
namically adjusting capsule priorities to reflect the priority of the currently
executing end-to-end scenario. This approach hurts the encapsulation of cap-
sules by mixing system-level concerns (scenarios) with component-level concerns
(capsules). It also involves runtime system-call overheads that may or may not
be acceptable to certain resource-constrained embedded systems. Certain small
RTOSes may not even provide APIs to dynamically change thread priorities.
SMSP eliminates the need for dynamic priority adjustments, but creates shared
data and necessitates error-prone concurrency control mechanisms, such as mu-
texes, semaphores and monitors. This breaks a key advantage of UML-RT, which
is to use buffered asynchronous message passing as the main communication
mechanism among capsules instead of shared data in order to minimize the need
for concurrency control. Note that even in the native UML-RT model, there are
passive objects that are used to encapsulate shared data in addition to the cap-
sules. The number of such passive objects should be minimized relative to the
number of capsules.

Compared to CMSP or SMSP, CMCP has a number of advantages from a
software engineering perspective, such as modularity, encapsulation, decoupling
of interactions, mature tool support, etc. It is also the default runtime model
implemented in UML tools, so a lot of legacy applications follow this model,

246 Zonghua Gu and Zhimin He

and are not likely to be changed. However, the task model of CMCP does not
fit the assumptions of classic RMA. Instead of modifying the runtime model of
UML-RT to fit real-time scheduling theory, we believe a better alternative is to
adapt real-time scheduling theory to fit the native runtime model of UML-RT.
Specifically, we have described real-time scheduling techniques based on the HKL
algorithm that are applicable to the CMCP runtime model, which can be used
as a subroutine during the design space exploration process for implementation
synthesis from UML-RT models.

6 Related Work

Besides the work of Saksena [6] and Kim [7] discussed in detail in Section 2,
there has been a lot of work on real-time analysis of component-based embed-
ded software in the CBSE community. Muskens [13] presented a method for
predicting runtime resource consumptions in multi-task component-based sys-
tems by expressing resource consumption characteristics per component, and
combining them to do predictions over compositions of components based on
end-to-end scenarios. Their work is targeted towards the Robocop component
model. Sandstrom [14] introduced Autocomp, a component technology for safety
critical embedded real-time systems, and discussed techniques for component-
to-task mapping and task attribute assignment. Wall [15] proposed a method
for impact analysis of adding new components to an existing product line based
on Prediction-Enabled Component Technology. They considered two properties:
end-to-end temporal property and version consistency property. Eskenazi [16]
proposed a stepwise approach to predicting the performance of component com-
positions. Diaz [17] presented a predictable component model and a set of real-
time analysis techniques based on mapping from the component model to SDL.
Our work is unique in addressing the issue of one component (capsule) partici-
pating in multiple end-to-end scenarios, which makes it desirable to adopt con-
currency control methods such as Run-To-Completion, and the runtime model of
Capsule-Based Multi-threading, Capsule-Based Priority-Assignment (CMCP).

There have been a lot of work in the real-time community on model-based
and component-based design tools, conducted concurrently with and in rela-
tive isolation from the work of the CBSE community. In the past several years,
DARPA has sponsored projects such as Model-Based Integration of Embedded
Software(MoBIES) and Program Composition for Embedded Software (PCES).
Representative tools developed include CoSMIC [18], Virginia Embedded Sys-
tems Toolkit (VEST) [19], Time Weaver [20], Cadena [21], and the ESML-based
Tool-Chain [22][23][24]. CoSMIC [18] uses the Platform-Independent Modeling
Language (PICML) to enable developers to define component interfaces, QoS pa-
rameters and software building rules, and generate descriptor files that facilitate
system deployment. PICML is designed to help bridge the gap between design-
time tools and the actual deployed component implementations. VEST [19]is
an integrated environment for constructing and analyzing component based em-
bedded systems. Aspect-checks are used to check for cross-cutting non-functional

Real-Time Scheduling Techniques for Implementation Synthesis 247

properties, and prescriptive aspects are used to apply cross-cutting advice to de-
sign models. Time Weaver [20] is a software-through-models framework that
decomposes inter-component relationships with an abstraction named coupler.
Cadena [21] is an an integrated development, analysis, and verification environ-
ment for CORBA Component Model (CCM) systems. The ESML-based Tool-
Chain [23] provides an open and integrated development environment based on
precise meta-modeling and the Open Tool Integration Framework (OTIF) [25]
for easy plugin and semantic inter-operability of third party tools. All of the
above work focus on static offline design and analysis. In contract, Sharma [26]
developed component-based dynamic QoS adaptations in distributed real-time
and embedded systems by implementing QoS behavior as components that can
be assembled with other application components. These projects mainly tar-
get the Avionics Mission Computing software [5] from Boeing, which follows the
Scenario-Based Multithreading, Scenario-Based Priority assignment (SMSP) ap-
proach.

In embedded software development, UML models typically serve in an infor-
mal documentation role that the engineer refers to while writing code manually.
This is one of the major motivations for developing domain-specific modeling lan-
guages and tools to replace UML in both the CBSE and real-time communities,
in order to have a more formal, automated and integrated software development
process. However, there has been recent progress on making UML more formal
and suitable for modeling real-time embedded and component-based software.
Some examples include UML-RT, UML 2.0 [27], UML Profile for Scheduabil-
ity, Performance and Time [28] and the UML Profile for CORBA Component
Model [29]. In particular, UML 2.0 has adopted the UML-RT concept of capsules
communicating with message passing through ports. An interesting question to
ask is, can we not give up on UML and develop custom, proprietary modeling
notations, but leverage the body of work from the UML community to develop
tools based on standards? One argument for preferring a custom modeling ap-
proach to UML is that we can achieve better domain-specificity by customizing
the meta-model, which is more powerful and flexible than the UML profiling
mechanism. Another argument is that embedded systems are so diverse that
it is next to impossible to have one standard notation that is suitable for all
application domains. For example, even though UML-RT is intended to be a
general-purpose design tool, it has been mostly used for developing embedded
software in the telecommunications domain, which fits well with the interaction
style of asynchronous message passing. We plan to investigate these interesting
issues in our future work.

7 Conclusions and Future Work

UML-RT is a component-based modeling language. Commercial code generators
for UML-RT generate functional code, but do not take into account timing and
scheduling issues. The native runtime model of UML-RT does not fit the as-
sumptions of classic real-time scheduling theory, i.e., Rate Monotonic Analysis

248 Zonghua Gu and Zhimin He

(RMA). Some authors have proposed alternative runtime models that can be
analyzed with RMA. We take the alternative approach of adapting real-time
scheduling theory to fit the native runtime model of UML-RT, instead of adapt-
ing the runtime model of UML-RT to fit real-time scheduling theory. This should
make our approach more acceptable to industry than previous work in the lit-
erature.

We believe our work helps bridge the gap between a logical UML-RT model
and its final implementation on the target platform, by giving the engineer real-
time scheduling analysis techniques for evaluating different alternatives of gener-
ating a multi-threaded implementation from a logical software model. It focuses
on the nonfunctional/real-time aspect of implementation synthesis, and is com-
plementary to the existing code generators for UML-RT, which focuses on the
functional aspect of implementation synthesis. It is our future work to integrate
our analysis techniques with commercial code generators for UML-RT. Even
though the discussions in this paper are mainly based on UML-RT, our work
has much wider applicability to the general class of component-based software
models with interaction style of buffered asynchronous message passing between
components with ports.

We have considered the problem of schedulability analysis given a system
configuration of capsule-to-thread grouping and thread priority assignment, but
it is still an open issue as to how to arrive at such a configuration. We did
not deal with the design space exploration issues of how to group capsules into
threads or assign priorities to threads. For the CMCP approach, the number
of threads needs to be carefully managed. If there are too many threads, the
context-switching overheads may be excessive; if there are too few threads, the
blocking time may be too much due to insufficient parallelism. Priority assign-
ment is also an important issue that needs to be considered for meeting system
timing constraints. Exhaustive search is not feasible in general because the size
of design space grows exponentially with the number of capsules or priorities.
One possible future work is to apply optimization techniques such as branch-and-
bound, simulated annealing and genetic algorithms for design space exploration,
in order to optimize design objectives such as minimizing the number of threads
or minimizing response time for critical application scenarios.

References

[1] B. Selic, G. Gullekson, and P. T. Ward, Real-Time Object Oriented Modeling.
Addison Wesley, 1994.

[2] (2004) The IBM Rational website. [Online]. Available:
http://www-306.ibm.com/software/rational/

[3] (2004) The Quantum Framework website. [Online]. Available:
http://www.quantum-leaps.com/qf.htm

[4] D. Schmidt, D. Levine, and T. Harrison, “The design and performance of a real-
time CORBA object event service,” in Proc. ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 1997, pp. 434–445.

Real-Time Scheduling Techniques for Implementation Synthesis 249

[5] Z. Gu, S. Kodase, S. Wang, and K. G. Shin, “A model-based approach to system-
level dependency and real-time analysis of embedded software,” in Proc. IEEE
Real-Time Technology and Applications Symposium (RTAS), 2003, pp. 78–85.

[6] M. Saksena and P. Karvelas, “Designing for schedulability: integrating schedula-
bility analysis with object-oriented design,” in Proc. IEEE Euro-Micro Conference
on Real-Time Systems, 2000, pp. 101–108.

[7] J. Masse, S. Kim, and S. Hong, “Tool set implementation for scenario-based mul-
tithreading of uml-rt models and experimental validation,” in Proc. IEEE Real-
Time and Embedded Technology and Applications Symposium, 2003, pp. 70–77.

[8] M. H. Klein, T. Ralya, B. Pollak, and R. Obenza, A Practitioner’s Handbook for
Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems.
Kluwer Academic Publishers, 1993.

[9] M. Harbour, M. H. Klein, and J. Lehoczky, “Timing analysis for fixed-priority
scheduling of hard real-time systems,” IEEE Trans. Software Eng., vol. 20, no. 2,
pp. 13–28, 1994.

[10] S. Tripakis, “Description and schedulability analysis of the software architecture
of an automated vehicle control system,” in Proc. International Workshop on
Embedded Software, 2002, pp. 123–137.

[11] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with
UML. Addison-Wesley, 2000.

[12] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed hard
real-time systems,” Microprocessing and Microprogramming - Euromicro Journal
(Special Issue on Parallel Embedded Real-Time Systems), vol. 40, pp. 117–134,
1994. [Online]. Available: citeseer.nj.nec.com/tindell94holistic.html

[13] J. Muskens and M. Chaudron, “Prediction of run-time resource consumption in
multi-task component-based software systems,” in Proc. International Symposium
on Component-Based Software Engineering, LNCS 3054, 2004, pp. 162–177.

[14] K. Sandstrom, J. Fredriksson, and M. Akerholm, “Introducing a component tech-
nology for safety critical embedded real-time systems,” in Proc. International
Symposium on Component-Based Software Engineering, LNCS 3054, 2004, pp.
194–208.

[15] A. Wall, M. Larsson, and C. Norstrom, “Towards an impact analysis for compo-
nent based real-time product line architectures,” in Proc. Euromicro Conference,
2002, pp. 81–88.

[16] E. Eskenazi, A. Fioukov, and D. Hammer, “Performance prediction for component
compositions,” in Proc. International Symposium on Component-Based Software
Engineering, LNCS 3054, 2004, pp. 280–193.

[17] M. Diaz, D. Garrido, L. M. Llopis, F. Rus, and J. M. Troya, “Integrating real-time
analysis in a component model for embedded systems,” in Proc. EUROMICRO
Conference, 2004, pp. 14–21.

[18] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and D. C.
Schmidt, “A platform-independent component modeling language for distributed
real-time and embedded systems,” in Proc. IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, 2004.

[19] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey, and
B. Ellis, “Vest: an aspect-based composition tool for real-time systems,” in Proc.
IEEE Real-Time and Embedded Technology and Applications Symposium, 2003,
pp. 58–69.

[20] D. de Niz and R. Rajkumar, “Time weaver: A software-throuhg-models frame-
work for embedded real-time systems,” in Proc. ACM Conference on Languages,
Compilers and Tools For Embedded Systems, 2003, pp. 133–143.

250 Zonghua Gu and Zhimin He

[21] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Cadena: An inte-
grated development, analysis, and verification environment for component-based
systems,” in Proc. IEEE International Conference on Software Engineering, 2003.

[22] Z. Gu, S. Wang, S. Kodase, and K. G. Shin, “An end-to-end tool chain for multi-
view modeling and analysis of avionics mission computing software,” in Proc.
IEEE Real-Time Systems Symposium (RTSS), 2003, pp. 78–81.

[23] ——, “Multi-view modeling and analysis of embedded real-time software with
meta-modeling and model-transformation,” in Proc. IEEE International Sympo-
sium on High Assurance Systems Engineering, 2004, pp. 32–41.

[24] Z. Gu and K. G. Shin, “Model-checking of component-based real-time embedded
software based on corba event service,” in Proc. IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC), 2005.

[25] G. Karsai, “Design tool integration: An exercise in semantic interoperability,” in
Proc. IEEE Conference on Engineering of Computer Based Systems, 2000.

[26] P. K. Sharma, J. P. Loyall, G. T. Heineman, R. E. Schantz, R. Shapiro, and
G. Duzan, “Component-based dynamic qos adaptations in distributed real-time
and embedded systems,” in International Symposium on Distributed Objects and
Applications, 2004, pp. 25–29.

[27] (2004) The Object Management Group website. [Online]. Available:
http://www.omg.org

[28] OMG, “Uml profile for schedulability,performance, and time specifica-
tion,” Object Management Group, Tech. Rep., 2003. [Online]. Available:
http://www.omg.org/technology/documents/formal/schedulability.htm

[29] ——, “Uml profile for corba components specification,” Object Management
Group, Tech. Rep., 2004. [Online]. Available:
http://www.omg.org/cgi-bin/doc?ptc/2004-03-04

A Component-Oriented Model for the Design of Safe
Multi-threaded Applications

Reimer Behrends, R.E. Kurt Stirewalt, and Laura K. Dillon

Dept. of Computer Science and Engineering
Michigan State University

Abstract. We previously developed a component-oriented model that combines
ideas from self-organizing architectures and from design by contract to address
the complexity of design in multi-threaded systems. Components in our model are
cohesive collections of objects that publish contracts declaring the conditions un-
der which they access other components. These contracts localize a component’s
contextual synchronization dependencies in its interface. Moreover, the resulting
systems permit strong guarantees of safety.

This paper reports a case study to validate the efficacy of our model on a realistic
design problem: the component-based design of a multi-threaded web server. We
first developed a bare-bones web server based on the Apache architecture and
then subjected this design to three extension tasks. The study corroborates that
our model enables a fine-grain component-based design of multi-threaded appli-
cations of realistic complexity, while guaranteeing freedom from certain synchro-
nization errors.

1 Introduction

An essential property of a good component-based design is that component interfaces
should make explicit all dependencies between components and the contexts in which
they operate [1]. An important class of dependencies for systems in which multiple
threads operate over shared objects relates to synchronization. Without thread synchro-
nization, concurrent access to shared objects can lead to race conditions, and incorrect
synchronization logic can lead to starvation and deadlock. However, synchronization
policies and decisions are difficult to localize into a single software module—it is not
uncommon for a module to implement a synchronization policy that satisfies safety
and liveness requirements in some usage contexts but that fails to satisfy the same re-
quirements in other contexts. Moreover, these contextual dependencies are difficult to
record explicitly in a module’s interface. These problems complicate the development
of a component model with which to produce clean designs of concurrent systems.

We previously developed a solution that combines ideas from self-organizing ar-
chitectures [2] and design by contract [3] to overcome these problems [4, 5]. Our syn-
chronization units model associates with each module a declarative specification of its
contextual synchronization dependencies, effectively localizing these dependencies in
the module’s interface. We designed these specifications as a non-obtrusive extension to
existing object-oriented programming languages and component models, rather than as

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 251–266, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

252 Reimer Behrends, R.E. Kurt Stirewalt, and Laura K. Dillon

part of a stand-alone component model. Systems produced using this extension permits
strong guarantees of safety. This paper presents a case study using this model.

In the synchronization units model, a component is a highly cohesive group of
objects, called a synchronization unit, and components dynamically assemble and re-
assemble into aggregates, called realms, that are associated with threads. For brevity,
we refer to a synchronization unit as just a unit, and we henceforth use the terminol-
ogy “unit” and “component” interchangeably. Each thread operates exclusively within
its own dedicated realm. Inter-component dependencies represent access dependencies
between the objects in a client unit and those of a supplier unit. Client units are bound
to suppliers when the supplier migrates into the realm that hosts the client. Realms are
self organizing; their dynamic assembly and evolution is governed by the negotiation of
synchronization contracts, which a component designer declares as part of the client’s
interface. The self-organizing nature of this approach relieves the programmer from
having to implement complex synchronization logic, and the explicit synchronization
contracts declare all contextual dependencies that pertain to concurrency and synchro-
nization.

To date, we have illustrated the theoretical power of the model on standard concur-
rency problems [4], integrated the model and its declarative contracts into an existing
programming language [5], and shown how to safely integrate system libraries and
third-party code (which may not be thread safe) with code written using contracts [6].
To validate the efficacy and applicability of our synchronization units model to current
software engineering practice, we devised a realistically complex case study, which is
the main focus of this paper. The case study involves a component-based design of a
multi-threaded web server with database and scripting capabilities. The design is mod-
eled after that of the popular Apache server.

Among the questions we expected to answer by the study are whether the synchro-
nization units model is sufficiently expressive to handle designs of complex systems
and how effective it is in localizing synchronization concerns. In an attempt to answer
these questions, we subjected an initial design of a bare-bones web server to three main-
tenance and extension activities. These activities serve to validate that we can add com-
plex new capabilities to the system by adding new units that require synchronization
with existing units without modifying existing units. We describe two of these activities
below. A description of the third can be found in [6] and is omitted here due to space
constraints.

The rest of this paper is structured as follows. We first describe the web-server
application that is the subject of our study (Section 2). We then introduce our model of
synchronization units (Section 3) and outline the basic architecture of our component-
based design of the web server (Section 4). We validate the effectiveness of our model
on complex designs and the degree to which it localizes synchronization concerns by
extending the bare-bones architecture with new features and assessing the ease with
which our model supports the extensions (Sections 5–6). The paper concludes with a
comparison of our approach to existing work (Section 7).

A Component-Oriented Model for the Design of Safe Multi-threaded Applications 253

2 Rationale for Choosing the Application

The subject of this case study is a component-based design of the popular Apache web
server. Apache itself incorporates a modular and extensible architecture in which soft-
ware modules implement capabilities at many levels of granularity from http-request
parsing to PHP scripting. While the Apache architecture was designed for extensibil-
ity, the afore-mentioned modules cannot be classified as software components because
they fail to externalize all of their contextual dependencies. This deficiency is particu-
larly noticeable as it regards issues of concurrency and synchronization. For example,
the authors of the popular PHP scripting engine have warned against its use in the
multi-threaded version of Apache [7], because the engine relies on a large number of
third-party libraries that may not be thread-safe [8]. Other vulnerabilities have emerged
in this multi-threaded version [9, 10]. Our model guarantees freedom from these sorts
of synchronization vulnerabilities. This case study aims to demonstrate that our model
can also accommodate the major design decisions that have made the Apache archi-
tecture so extensible—i.e., that Apache modules can be implemented as components in
our model. Given the central importance of web servers in e-commerce applications,
such a result could greatly increase the confidence in these applications.

Multi-threaded web servers comprise a rich set of interacting modules with un-
structured synchronization dependencies. Many of these dependencies arise from secu-
rity and efficiency concerns, which justify decisions to introduce shared resources. For
example, a URI rewriting module may amortize the cost of translation by caching its
results. Such caches must be protected from unsynchronized access by multiple threads.
Large modules, e.g., internal scripting engines, are often shared because they are pro-
hibitively expensive to replicate for each thread. Other dependencies arise from the use
of non-reentrant third party libraries, such as the POSIX function crypt, which is used
by an authentication module.

Because these modules contain implicit synchronization dependencies, it is difficult
to certify the safety of a given configuration, a problem that is exacerbated by the re-
configuration requirements of modern web servers. Such applications are reconfigured
often, e.g., to fix a bug, close a security hole, accommodate the changing requirements
of evolving web standards, or service the varying needs of users [11, 12]. New modules
may have synchronization needs and resource-access patterns that differ from the needs
and patterns of the modules that they replace. Thus, assuring against concurrency flaws
during maintenance and extension is a major problem, especially in cases where new
modules are developed by third-party vendors. Such a problem begs for a component-
based solution, but the component model must guarantee safety in the face of frequent
reconfiguration. The remainder of this paper attempts to demonstrate how our model,
which provides exactly these guarantees, can support the component-based design of
such a large, extensible, and critical application.

3 Synchronization Contracts

This section overviews the key ideas underlying our model of synchronization units.
Detailed discussions of the model can be found in [4, 5].

254 Reimer Behrends, R.E. Kurt Stirewalt, and Laura K. Dillon

1 synchronization class REQUEST HANDLER inherit PROCESS BASE

2 feature { NONE } -- instance variables

3 auth stage, content stage: BOOLEAN -- condition variables
4 authenticator: AUTHENTICATOR -- unit reference
5 connection: INBOUND SOCKET -- unit reference
6 dispatcher: CONTENT DISPATCHER -- unit reference
7 ...

8 feature { ANY } -- operations (methods)

9 authenticate (request : REQUEST) is
10 do
11 auth stage := true
12 authenticator.validate(request)
13 auth stage := false
14 end
15 ...

16 concurrency -- concurrency clause follows
17 connection
18 auth stage => authenticator
19 content stage => dispatcher

20 end -- class REQUEST HANDLER

Fig. 1. Elided definition of the synchronization class REQUEST HANDLER

In the synchronization units model, threads operate in disjoint realms that comprise
one or more synchronization units. Any attempt by a thread to access a unit while that
unit is not in its realm constitutes a realm violation and causes a run-time exception
to be raised. The designer annotates a synchronization unit that plays a client role in a
collaboration with one or more concurrency constraints, each of which specifies a con-
dition under which the client requires exclusive access to a supplier. During execution,
the run-time system assembles and reassembles realms, schedules threads to execute,
and watches for realm violations using algorithms that 1) ensure that the realms are al-
ways pairwise disjoint, 2) guarantee that a thread executes only when the thread’s realm
consists of a process root unit and all suppliers required by constraints associated with
units in the realm, and 3) avoids starvation and preventable deadlocks. Because realms
are disjoint, two threads are assured to never concurrently access the same memory
location—shared units migrate from one realm to another, but these units are never
accessed simultaneously by different threads.

By way of illustration, we show part of the definition for a synchronization unit
from the case study (Figure 1). It is written in an extension of Eiffel [13] with concur-
rency constraints, which we developed previously [4]. In this extension, the designer
designates that certain classes are synchronization classes to indicate that they produce
synchronization units when instantiated. In our web-server application, incoming web
requests are handled and serviced by instances of a REQUEST HANDLER class. The
keyword synchronization (line 1) signifies that instances of this class define syn-
chronization units.

A Component-Oriented Model for the Design of Safe Multi-threaded Applications 255

The class declares several instance variables, some of which encode conditions un-
der which a request handler requires exclusive access to a supplier (e.g., auth stage
and content stage in line 3) and some of which reference the required supplier
(e.g., authenticator, connection, and dispatcher in lines 4–6). We call the
former condition variables and the latter unit variables. 1 For example, auth stage
records when a request handler needs to validate that a web request may access pro-
tected parts of a website; at such times, it requires the AUTHENTICATOR unit refer-
enced by authenticator to validate that the access is permitted (line 12). A de-
signer introduces condition variables to record the state of a unit’s computation for use
in concurrency constraints, thereby making the state observable by a run-time system
that negotiates and enforces contracts.

Our Eiffel extension provides a concurrency clause for declaring contracts. The
concurrency clause appears after the keyword concurrency (line 16). It contains
three concurrency constraints (lines 17–19). Each concurrency constraint references a
supplier unit, and the last two predicate the unit references on guards, which reference
condition variables. Because it has no guard, the first constraint (line 17) declares an
unconditional dependency—whenever a request handler executes, it requires exclusive
access to the inbound socket referenced by connection. By contrast, the next two
constraints (lines 18 and 19) say that the request handler accesses the unit referenced
by authenticator (respectively dispatcher) only when the condition variable
auth stage (respectively content stage) is true.

The run-time system for the extended language ensures that, when a process exe-
cutes, its realm contains all the synchronization units that, according to the concurrency
constraints, it needs to access. Briefly, the run-time system intercepts assignments to
condition variables and unit variables and automatically reassembles so as to comprise
only the required synchronization units. Should a process be unable to update its realm,
because it requires exclusive access to a unit already in the realm of another process, it
will be blocked until it can obtain the required exclusive access. For example, because
the concurrency constraint in line 18 indicates that a process needs exclusive access
to the unit referenced by authenticator when auth stage is true, a process
blocks if it attempts to execute line 11 (assign auth stage the value true) when
the indicated unit belongs to the realm of some other process. Later, when the indi-
cated unit becomes available, the run-time system migrates the unit into the realm of
the blocked process and unblocks the process. We describe algorithms to efficiently and
fairly perform such realm updates in [5], along with the results of a performance study.

In controlling migration of units and scheduling of threads, the runtime system guar-
antees the invariance of the concurrency constraints in a program, thereby enforcing the
contracts. This functionality is achieved without the programmer needing to write code
that explicitly manipulates realm, unit, or thread representations. Instead, the program-
mer writes code that maintains condition variables to encode and reflect the current
state of the computation and constraints that declaratively specify the suppliers that a

1 In our Eiffel extension, a BOOLEAN variable used in a concurrency constraint is inferred to be
a condition variable, and an attribute whose declared type is a synchronization class is inferred
to reference a synchronization unit. For lack of space, we omit declarations of the synchro-
nization classes AUTHENTICATOR, INBOUND SOCKET, and CONTENT DISPATCHER.

256 Reimer Behrends, R.E. Kurt Stirewalt, and Laura K. Dillon

unit accesses in each of these states. We contend that such code—by virtue of being
local to a single unit—and concurrency constraints—by virtue of being declarative and
expressed at appropriately high levels of abstraction—are less susceptible to synchro-
nization errors than the typical code that a programmer writes to explicitly synchronize
processes that share data. Moreover, errors due to code that does not conform to the
stated contracts are easily detected at run-time by an efficient realm-boundary check.
When one unit attempts to access another, the run-time system checks that the units
belong to the same realm, allowing the access only if the check succeeds and raising a
run-time exception otherwise.

4 Component-Based Design of a Multi-threaded Web Server

Our architecture follows the basic design of the multi-threaded Apache web server,
which manages a pool of threads to concurrently process HTTP requests as they arrive.
Figure 2 depicts our architecture.2 Borrowing ideas from [14, 15, 16], we use UML’s
built-in extension mechanisms to extend the UML class-diagram notation to express the
structure of this architecture. Class names rendered in italics denote abstract classes.
Our extensions involve three new stereotypes—〈〈synchronization〉〉, 〈〈process root〉〉,
and 〈〈external〉〉—that denote synchronization, process-root and external unit classes
respectively. For brevity in this paper, our architectural drawings show only the syn-
chronization classes; we therefore elide the 〈〈synchronization〉〉 stereotype in diagrams.
Condition variables are shown as boolean-valued class attributes and unit variables as
directed associations. We express concurrency constraints in curly braces adjacent to
their associated synchronization class. For example, the LISTENER SOCKET class de-
clares the condition variable startup, the unit variable namesvcs, and the concur-
rency constraint startup => namesvcs.

The application comprises a main thread, called the web dispatcher, and a sepa-
rate request handler thread for each incoming HTTP request. The realm of the web
dispatcher is rooted by a unit of class WEB DISPATCHER and includes a unit of class
LISTENER SOCKET, which it uses to monitor a port for connection requests. At times,
specifically when the listener socket is “starting up,” the realm of the web dispatcher
also contains an external unit of class NAME SERVICES, which is used to lookup IP ad-
dresses. The realm of each request handler is rooted by a unit of class REQUEST HAN-
DLER.

When a connection is requested, the web dispatcher creates an INBOUND SOCKET
unit with which to receive the actual HTTP request and communicate the resulting con-
tent. It then dispatches this unit to a new request handler thread. Each request handler
thread parses the data sent over its assigned connection into a request object, handles the
request, as described below, and then terminates. To minimize the overhead of request-
handler initialization,3 REQUEST HANDLER units are stored in an object pool [17] and

2 Due to space limitations, Figure 2 abstracts away many details of the full case study—e.g. we
omit the database capabilities. The actual web server developed for the case study consists of
57 Eiffel classes, of which 31 are synchronization classes, and a total of 3587 lines of code.

3 For example, each request handler must contain configuration information, such as which ex-
tensions are being used, which URIs need to be authenticated, etc. In our implementation, this

A Component-Oriented Model for the Design of Safe Multi-threaded Applications 257

start_request : BOOLEAN

WEB_DISPATCHER
<<process_root>>

{ listener
 /\
 start_request => pool }

REQUEST_INITIALIZER

REQUEST_HANDLER_POOL
initialize_handler : BOOLEAN

content_stage : BOOLEAN
finishing_stage : BOOLEAN
...

terminating : BOOLEAN

REQUEST_HANDLER
<<process_root>>

dispatcher

finalizer

INBOUND_SOCKET

NAME_SERVICES
<<external>>

LISTENER_SOCKET

startup : BOOLEAN

{ startup =>
 namesvcs }

connection

SESSION_MANAGER

SESSION

SESSION_OPERATION

*

0..1

*

*

CONTENT_HANDLER

CONTENT_DISPATCHER

handler

FINISH_REQUEST

POST_PROCESSOR

processor

{ terminating => pool
 /\
 content_stage => dispatcher
 /\
 finishing_stage => finalizer
 /\
 ...
}

pool

po
ol

handler

**

listener

* {ordered}

in
iti

al
iz

er

nam
esvcs

{ handler } { processor }

Fig. 2. Basic Web Server Architecture

reused to process different HTTP requests. In our design, the web dispatcher actually
dispatches inbound socket units to a unit of class REQUEST HANDLER POOL, which
then selects or creates a new unit of class REQUEST HANDLER, and creates a new
thread rooted by that unit.

Request handling itself is implemented in stages. For brevity, Figure 2 depicts the
components for only three of these stages—request initialization, content generation
and request finalization—although our actual architecture supports others, such as au-
thentication. Request initialization initializes a request object with attributes prior to
parsing the actual request information that is arriving over the inbound socket. The ab-
stract class REQUEST INITIALIZER declares a method called prepare (not shown),
which is parameterized by a reference to a request object. The bare-bones architecture
uses a null request initializer, but many extensions need to initialize request objects with
attributes before request handing begins in earnest.

Content generation generates the data—e.g., the contents of static web pages, the
results of running a script, or an error report—to send back to the requester. This stage
is performed by a CONTENT DISPATCHER unit, which dispatches a request to one
of several content handlers. Example handlers (not shown in diagram) include STAT-

information is retrieved from a central configuration file that is consulted when the system is
initialized.

258 Reimer Behrends, R.E. Kurt Stirewalt, and Laura K. Dillon

IC HANDLER, which is used to serve static web pages, and ERROR HANDLER, which
is used for requests that resulted in an error. Other content handlers can be implemented
as extensions to the abstract class CONTENT HANDLER. The content generation stage
uses the builder pattern [18], with CONTENT DISPATCHER in the role of director and
CONTENT HANDLER in the role of the (abstract) builder.

Finalization is responsible for such things as logging and analysis. During this stage,
the completed request object is passed to an instance of FINISH REQUEST, which is
responsible for the maintenance of log files, gathering of statistics, and general post-
processing of completed requests. The FINISH REQUEST unit also signals the RE-
QUEST HANDLER POOL at the end of each request that a request handler is again
available. Once the REQUEST HANDLER unit is returned to the pool, the request han-
dler thread is terminated. The finalization stage can be extended by adding components
whose interfaces conform to the POST PROCESSOR interface. In the bare-bones web
server, only a simple logging mechanism is provided (not shown in the diagram).

The basic architecture also provides facilities for tracking and managing sessions,
which are sequences of connected user-agent requests. The central SESSION MANA-
GER unit controls access to a repository of SESSION units, each of which is identified
by a unique session key. In this design, SESSION units comprise sets of key–value
pairs that can be queried and set by components in the various stages of request han-
dling. Often, client units do not use SESSION units directly, but instead access them
through a SESSION OPERATION facade, which simplifies access to session informa-
tion by encapsulating the contract-negotiation and business logic required to locate and
manage a session unit by key. SESSION OPERATION components are constructed
with a session key, which may be null. If the key is non-null, the component retrieves
the corresponding SESSION from the SESSION MANAGER; otherwise, it asks the
SESSION MANAGER to create a new session and returns the new session key. Sub-
sequently, the SESSION OPERATION facade forwards the querying and setting of
key–data pairs to the retrieved SESSION. SESSION OPERATION units encapsulate
contract-negotiation logic that would otherwise need to be replicated among all SES-
SION clients, and they ensure minimal contention for the singleton SESSION MANA-
GER unit.

As presented thus far, our basic architecture employs a component-based design in
order to support extension and to simplify static reconfiguration. However, the loose
coupling and fine-grain decomposition of functionality that make the design so ex-
tensible is at odds with attempts to make components thread safe and deadlock free.
We hypothesize that our synchronization units model enables a fine-grain component-
based design (and the concomitant benefits with regard to maintenance and exten-
sion/contraction) while guaranteeing freedom from data races [19] and automatically
avoiding or recovering from most classes of deadlock. To test this hypothesis, we sub-
jected the basic architecture to three different maintenance tasks, each involving a non-
trivial extension comprising one or more component collaborations that interact with
existing collaborations in the basic architecture. We describe two of these activities
below. For each extension, we document the business logic requirements, provide a de-
sign of the extension in our model, and summarize the capabilities demonstrated by the
extension.

A Component-Oriented Model for the Design of Safe Multi-threaded Applications 259

5 Extension: Dynamic Content

Our first maintenance task extends the web server with a scripting facility for gen-
erating dynamic content. Scripts must be able to safely access web-server resources,
especially session data. Moreover, scripts typically access such resources according to
a two-phase locking protocol, whereby all shared resources are acquired before any
are released [20]. Such resources manifest as synchronization units in our basic archi-
tecture. Thus, this maintenance task aims to see if we can implement scripting as a
set of new components that collaborate and safely synchronize with the existing com-
ponents without having to modify any of those existing components. A related issue
concerns the need for scripts to access standard library functions, such as the POSIX
function crypt and DNS functions, many of which are not thread safe. In prior work,
we showed how multi-threaded accesses to standard libraries can be serialized using
wrapper facades that coordinate with external synchronization units [6]. This mainte-
nance task builds upon these prior results.

5.1 Scripting Language and Its Embedding

To explore these issues, we chose to support scripts written in the Lua language [21].
Lua is a small interpreted language with metaprogramming facilities for extending the
language with new features and hooks into a host application, such as a web server. We
chose Lua over languages such as PHP for purely pragmatic reasons: The Lua integra-
tion shares in all of the the essential complexity that would occur in a PHP integration
with far less accidental complexity.

Using its metaprogramming facilities, we extended Lua with new primitives for 1)
accessing standard libraries and resources in our web-server architecture, and 2) declar-
ing resource needs, as dictated by the two-phase locking protocol. Briefly, we represent
each library and each web-server resource as a Lua object, hereafter called a resource
proxy that is visible to user scripts. For example, we provide a Lua object named my-
Session, which represents a SESSION unit in the basic architecture. When a Lua script
is executed in response to some http request, mySession is bound to the SESSION
component associated with the request. Among others, we also provide the Lua ob-
jects myCrypt and myNameservices, which represent CRYPT and NAME SERVICES
units.4

In addition to these resource-proxy objects, we extended the Lua language with
a new statement called acquire, which a script programmer invokes to declare the re-
sources he or she intends to access. The statement takes a variable number of arguments,
all of which must be resource proxies, such as mySession or myCrypt. Semantically,
we interpret an acquire statement as a request to atomically acquire the named re-
sources; a running script blocks on such a statement until all of the named resources
have been acquired. Figure 3(a) depicts a small example. Line (1) states the script pro-
grammer’s intention to access information about the current session and to invoke the
crypt function. The session information is queried on line (2) and the crypt function is

4 Note that these components are external synchronization units that serialize accesses to the
POSIX function crypt and functions in the DNS library (See [6] for details).

260 Reimer Behrends, R.E. Kurt Stirewalt, and Laura K. Dillon

(1) acquire(mySession, myCrypt)
(2) if not mySession.get("auth flag")
(3) then
(4) if myCrypt.crypt(...) == ...
(5) then
(6) ...
(7) end
(8) end
(9) ...

feature acquire_units(
use_crypt,
use_nameservices,
use_session: BOOLEAN) is

do
acquire_crypt,
acquire_nameservices,
acquire_session :=

use_crypt,
use_nameservices,
use_session

end

(a) Example Lua script (b) LUA INTERPRETER support function

Fig. 3.

invoked on line (4). All resources acquired by a script are released automatically when
the script completes. Thus all Lua scripts conform to the two-phase locking protocol.

5.2 Component-Based Solution

Figure 4 depicts our extension. For brevity, this diagram depicts the unit classes and
associations that are new to this extension and only those classes from the basic archi-
tecture upon which these new classes depend. Scripting is supported by a new content
handler called SCRIPT HANDLER, which uses a SCRIPT INTERPRETER compo-
nent to actually execute a user script. SCRIPT INTERPRETER is an interface class.
Concrete components that conform to this interface implement interpreters for specific
scripting languages; the LUA INTERPRETER component is an example. To support
extension, we designed SCRIPT HANDLER to bind to a particular SCRIPT INTER-
PRETER component according to the abstract factory pattern [18]. SCRIPT INTER-
PRETER FACTORY plays the abstract-factory role in this design. This abstract class
provides a create method (not shown) that is parameterized by a REQUEST object.
Concrete factories, such as LUA INTERPRETER FACTORY, may then access request-
specific information when deciding which interpreter to create or retrieve from a repos-
itory.

Class LUA INTERPRETER has two salient characteristics. First, it is a wrapper-
facade [22] that encapsulates the data structures (i.e., C-style structs) that implement
a Lua interpreter, and it provides an object-oriented interface to the ANSI C functions
that operate over these structures. Second, it is a synchronization class that declares
condition variables and parameterized contracts with other components in the architec-
ture. These condition variables are manipulated when the interpreter executes an acquire
statement in a Lua script, thereby setting the condition variables that parameterize the
relevant contract.

Operations in a Lua script that manipulate resource proxies are connected to opera-
tions over synchronization units as follows. LUA INTERPRETER units link to the units

A Component-Oriented Model for the Design of Safe Multi-threaded Applications 261

LUA_INTERPRETER

acquire_crypt
acquire_namesvcs

...
acquire_session

<<external>>

CRYPTNAME_SERVICES
<<external>>SESSION_OPERATION

{ acquire_crypt => crypt

 acquire_session => session

 acquire_namesvcs => namesvcs

 /\

 /\

 ...
}

SCRIPT_INTERPRETER

LUA_INTERPRETER_FACTORY

SCRIPT_INTERPRETER_FACTORY

CONTENT_HANDLERSCRIPT_HANDLER

session

nam
esvcs

0..1 0..1 0..1

crypt

*

*

0..1

*

Fig. 4. Dynamic Scripting Extension

that correspond to the resource proxies. Suppose, for brevity, that there are only the three
proxies mySession, myCrypt, and myNameservices. Then class LUA INTERPRET-
ER associates to a SESSION OPERATION unit, a CRYPT unit and a NAME SERVICES
unit, as depicted in Figure 4. Moreover, for each such association, x, class LUA INTER-
PRETER declares a condition variable acquire x and the contract:

acquire x => x

Thus, LUA INTERPRETER units are able to reflect the resource acquisition needs of
Lua programmers, and changes in these acquisition needs trigger a renegotiation of
contracts with the corresponding units.

LUA INTERPRETER implements acquire by atomically setting the appropriate
condition variables via a function such as that depicted in Figure 3(b). In our extended
version of Eiffel, several variables can be assigned new values atomically, and synchro-
nization contracts are renegotiated only after the entire assignment completes. If these
contracts cannot be negotiated, the thread blocks on this statement, thereby providing
the expected semantics of the Lua acquire statement. Consider, for example, the call
to acquire in line 1 of Figure 3(a). This call produces a call to acquire units
with the value true for the first and third parameters and the value false for the
second. Thus, the assignment in acquire units blocks until the SESSION OPER-
ATION and CRYPT units are migrated into the realm hosting the interpreter.

5.3 Discussion

This task demonstrates that our model supports the safe addition of complex function-
ality to an existing design without having to modify existing components. We added

262 Reimer Behrends, R.E. Kurt Stirewalt, and Laura K. Dillon

scripting capabilities to the bare-bones web server without modifying any previously
existing components. It is unlikely that we could have added the same capability to
the multi-threaded Apache architecture without modifying any existing modules. At
a minimum, we would have to carefully analyze the augmented system for potential
race conditions and deadlocks, which would involve a detailed analysis of the code for
these modules. By contrast, our model guarantees freedom from data races. In ongoing
research, we are also developing techniques for analyzing synchronization dependen-
cies between units, as expressed in their concurrency clauses, to expose unpreventable
deadlocks or show that no unpreventable deadlocks can occur.

In addition, our implementation allows script writers to reap many of the benefits of
the underlying synchronization units model. For example, whereas user scripts may use
resources in patterns that we could not anticipate when designing the scripting compo-
nents, the resulting system is still guaranteed to be free of data races. If a script author
forgets to acquire a resource before attempting to use it, the interpreter raises a run-time
exception rather than permitting the access.

6 Extension: Load Balancing

Our second maintenance task extended the dynamic content handler with a load bal-
ancing mechanism. In this extension, the total number of available script interpreters is
capped and adjusted at run time as a function of the server load and static configuration
parameters. The extension aims to demonstrate two aspects of the web server design
obtained using synchronization contracts: 1) it can accommodate quality-of-service im-
provements without incurring massive re-design, and 2) it admits replacement of one
component with a new one, although the new component and the replaced component
have different contextual synchronization dependencies, without requiring changes to
other components.

6.1 Number of Scripting Interpreters

The load balancing mechanism automatically estimates the number of interpreters
needed according to a heuristic that makes use of a configuration constant M , which is
set by the server administrator, and two computed values, the approximate number R of
requests for dynamic content per second and the approximate average time T to process
a request for dynamic content. The heuristic aims to ensure that, on average, M inter-
preters are available for each thread. Threads are assigned idle interpreters whenever
possible and are randomly assigned a busy interpreter otherwise.

6.2 Component-Based Solution

Figure 5 depicts the new units and collaborations in our extension. The new unit
LOAD BALANCER is a singleton POST PROCESSOR component that processes each
request during the finalization stage of request handling. This new unit computes the ap-
proximations R and T and, at regular intervals, initiates a rebalancing process, during
which it computes a new target number of interpreters and informs the factory (which is

A Component-Oriented Model for the Design of Safe Multi-threaded Applications 263

POST_PROCESSOR

rebalance : BOOLEAN

LOAD_BALANCER

REQUEST_INITIALIZER

TIME_STAMPER

SCRIPT_INTERPRETER_FACTORY

LUA_BALANCED_FACTORY

{ rebalance => factory }

factory

Fig. 5. Load Balancing

used by SCRIPT HANDLER) of this change. This extension replaces the LUA INTER-
PRETER FACTORY unit in Figure 4 with a new unit called LUA BALANCED FACT-
ORY, which contains extra functionality to collaborate with the load-balancing compo-
nents. During rebalancing, LOAD BALANCER notifies the LUA BALANCED FACTORY
unit of changes in the target number of LUA INTERPRETER units in the repository. In
response, LUA BALANCED FACTORY creates new interpreter components or deletes
superfluous components to achieve the target number.

This extension requires a REQUEST INITIALIZER called TIME STAMPER,
which augments a REQUEST object with a time stamp that the LOAD BALANCER con-
sults when finalizing the request object to derive an estimate for T . This new extension
involves one new synchronization contract, which specifies that when rebalancing is in
progress, LOAD BALANCER requires exclusive access to LUA BALANCED FACTORY.

6.3 Discussion

This task demonstrates two useful aspects of our synchronization units model. First,
we showed how a component that participates in one collaboration can be replaced
with another component that participates in an additional collaboration without hav-
ing to modify the synchronization logic in any of the client components in either col-
laboration. In this case, we swapped out the LUA INTERPRETER FACTORY unit for
the new LUA BALANCED FACTORY unit. This exchange was trivial—we did not al-
ter the factory’s client (i.e., SCRIPT HANDLER) or its interface (i.e., the abstract class
SCRIPT INTERPRETER FACTORY). This exchange was so trivial because compo-
nents in our model explicitly represent synchronization dependencies in their interfaces.

Second, and perhaps more interesting, this task demonstrates the improvement of
quality of service of an existing design without having to fundamentally alter the de-
sign or modify many of its existing components. In fact, the only modification was the
component replacement already mentioned. Of course, this is only one example, but it
is interesting that a post-hoc quality-of-service optimization was so easy to incorporate
into a design that was built upon a component model with support for synchronization.
We are currently investigating whether other QoS optimizations are simplified by virtue
of our model’s ability to deal with synchronization concerns.

264 Reimer Behrends, R.E. Kurt Stirewalt, and Laura K. Dillon

7 Conclusions and Future Work

This case study demonstrates our synchronization units model supports the component-
based design of a realistically complex multi-threaded system. Our maintenance tasks
involved the extension of a component-based design with new features that imposed
new synchronization requirements on that existing design. In both cases, the extensions
were accommodated by reusing and replacing—but never modifying or redesigning—
the existing components in the bare-bones architecture. By virtue of the guarantees
inherent to the synchronization units model, the resulting variants are free of data races.
Moreover, by virtue of the algorithms used to implement the dynamic assembly and
re-assembly of realms, the resulting variants automatically avoid and/or recover from
preventable deadlocks. We now discuss the issues that we believe contributed to the
ease with which these maintenance tasks were accomplished.

One key question for concurrency management in component-based approaches is
how to associate synchronization logic with components. Briefly, synchronization logic
can be either associated with the component that is a supplier of services or with the
component that is the client of that supplier. Traditionally, it has been held that encap-
sulating synchronization logic in the supplier leads to the most modular and extensible
architecture [23, 24]. Moreover, many of the existing client-side approaches are vulner-
able to race conditions [25, 26].

Our model goes against the conventional wisdom by intentionally attaching syn-
chronization logic to the component that plays the role of the client in a client–supplier
relationship. Indeed, we believe that this approach enables the development of more
extensible component architectures. There are two reasons for this. First, for any com-
ponent of reasonable size, the component developer may not be able to anticipate all
of the patterns of service invocations by clients. The knowledge of how the services
are being used—in particular, which sequences of service invocations on a component
have to be treated as an atomic operation—resides within the clients that use these ser-
vices. Second, a client may call upon more than one supplier component in the course
of an atomic operation, such as how LUA INTERPRETER uses a number of formerly
unrelated components of our basic server architecture. Naturally, this information is not
easily encapsulated in a single supplier component (though Holmes [24] introduces the
concept of synchronization rings—wrappers around sets of one or more suppliers—to
make this possible). As we have seen in our case study, extensibility seems to benefit
rather than suffer from client-side synchronization. Instead of requiring us to add post-
hoc extensions to existing components, client-side synchronization allowed us to reuse
existing components in formerly unanticipated ways.

The cost of attaching synchronization information to the client component is that
synchronization logic may have to be unnecessarily replicated for each client. Our ap-
proach combats this risk in two ways. First, we made our contract language compact and
declarative; so in most cases there is little or no replication to begin with. Second, we
allow the reuse of synchronization logic through the usual techniques, such as aggrega-
tion and class extension. Consider, for example, our session-management facilities, in
which clients must retrieve SESSION components from a centralized SESSION MAN-
AGER. If k distinct client components were each to interact directly with SESSIONs
and SESSION MANAGERs, then yes, the synchronization logic would need to be repli-

A Component-Oriented Model for the Design of Safe Multi-threaded Applications 265

cated in k different synchronization classes. However, when this occurs, the synchro-
nization logic can be localized and encapsulated within an additional component, such
as SESSION OPERATION. By declaring a contract with these special components,
clients may reuse rather than replicate these complex patterns of synchronization logic.

Our future work will focus on stress-testing the extensibility of component architec-
tures designed with our model. Specifically, we will experiment with more sophisticated
quality-of-service optimizations that are difficult to localize in a single component or
cohesive group of components. For example, the load balancing mechanism presented
in Section 6 introduces a potential bottleneck in the request processing pipeline, because
each request handler must access the interpreter factory twice. Eliminating this bottle-
neck means shifting part of the work towards the beginning or the end of the pipeline
(where contention already exists and is unavoidable). Such an extension requires adding
a set of components at normally unrelated stages of the pipeline.

We are also looking at integrating our contractual approach with existing compo-
nent models, such as the Corba Component Model (CCM) [27] or Enterprise Java Beans
(EJB) [28], with an eye towards automated handling and reasoning of concurrency prop-
erties of large component assemblies. Reasoning about such assemblies manually can
be overwhelming, if not infeasible [29]. However, synchronization contracts already
automate the handling of some synchronization properties, and by virtue of providing
a (partial) specification of the concurrent behavior of components, could be leveraged
to reason automatically about even more difficult non-local properties, such as liveness
issues. To this end, we have conducted some preliminary experiments on finding dead-
locks at compile time by analyzing the synchronization contracts of components, with
the goal of augmenting our runtime deadlock-avoidance and recovery algorithms. Sim-
ilarly, synchronization contracts could be used to assist EJB programming by replacing
the automated concurrency handling through containers with a contractual approach.
Existing research indicates that the use of containers for concurrency control can be a
serious performance bottleneck for using entity beans in EJB applications [30]. Provid-
ing an explicit concurrency control mechanism with strong guarantees for the avoidance
of race conditions and deadlocks such as ours might be able to resolve such bottlenecks.

Acknowledgements. Partial support for this research was provided by the Office of Naval Re-
search grant N00014-01-1-0744 and by NSF grants EIA-0000433 and CCR-9984726.

References

[1] Szyperski, C.: Component software: Beyond object-oriented programming. Addison–
Wesley (2002)

[2] Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proc. of the 4th

ACM SIGSOFT Symposium on the Foundations of Software Engineering. (1996)
[3] Meyer, B.: Object-Oriented Software Construction. Prentice Hall (1997)
[4] Behrends, R., Stirewalt, R.E.K.: The universe model: An approach for improving the mod-

ularity and reliability of concurrent programs. In: Proc. of ACM SIGSOFT Symp. on the
Foundations of Software Engineering (FSE-00). (2000) 20–29

[5] Behrends, R.: Designing and Implementing a Model of Synchronization Contracts in
Object-Oriented Languages. PhD thesis, Michigan State University (2003)

266 Reimer Behrends, R.E. Kurt Stirewalt, and Laura K. Dillon

[6] Behrends, R., Stirewalt, R.E.K., Dillon, L.K.: Avoiding serialization vulnerabilities through
the use of synchronization contracts. In: Proc. of the Workshop on Specification and Au-
tomated Processing of Security Requirements. (2004) Held in conjunction with the IEEE
Intl. Conf. on Automated Software Engineering.

[7] Lerdorf, R.: PHP and Apache2 (2004) http://news.php.net/php.internals/10491.
[8] The Apache Software Foundation: Apache 2.0 thread safety issues (2005)

URL:http://httpd.apache.org/docs-2.0/developer/thread safety.html.
[9] Common Vulnerabilities and Exposures (CVE) Editorial Board : Candidate number 2003-

0189 (2003) URL:http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0189.
[10] Common Vulnerabilities and Exposures (CVE) Editorial Board : Candidate number 2003-

0789 (2003) URL:http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0789.
[11] Ricca, F., Tonella, P.: Analysis and testing of web applications. In: Proceedings of the 23rd

International Conference on Software Engineering, IEEE (2001)
[12] Sabbah, D.: Software engineering and the internet. In: Proceedings of the 23rd International

Conference on Software Engineering, IEEE (2001) Keynote speech.
[13] Meyer, B.: Eiffel: the Language. Prentice Hall (1992)
[14] Abi-Antoun, M., Medvidovic, N.: Enabling the refinement of a software architecture into

a design. In: Proc. of 2nd Intl. Conf. on the Unified Modeling Language (UML). (1999)
[15] Kaveh, N., Emmerich, W.: Deadlock detection in distributed object systems. In: Proc. of

ESEC/FSE 2001. (2001)
[16] Egyed, A., Medvidovic, N.: Consistent architectural refinement and evolution using the

unified modeling language. In: Proc. of the 1st Workshop on Describing Software Archi-
tecture with UML. (2001)

[17] Grand, M.: Patterns in Java, Volume 1, A Catalog of Reusable Design Patterns Illustrated
with UML. John Wiley and Sons (1998)

[18] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison–Wesley, Reading, Massachusetts (1995)

[19] Netzer, R.H.B., Miller, B.P.: What are race conditions?: Some issues and formalizations.
ACM Letters on Programming Languages and Systems 1 (1992) 74–88

[20] Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of consistency and predi-
cate locks in a database system. Communications of the ACM 19 (1976) 624–633

[21] Ierusalimschy, R.: Programming in Lua. Lua.org (2004)
[22] Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architec-

ture Volume 2 – Networked and Concurrent Objects. John Wiley and Sons (2000)
[23] Bloom, T.: Evaluating synchronisation mechanisms. In: Seventh International Symposium

on Operating System Principles. (1979) 24–32
[24] Holmes, D.: Synchronisation Rings - Composable Synchronisation for Object-Oriented

Systems. PhD thesis, Macquarie University, Sydney (1999)
[25] Hoare, C.A.R.: Communicating Sequential Processes. Prentice/Hall International, Engle-

wood Cliffs, New Jersey (1985)
[26] Hansen, P.B.: Java’s insecure parallelism. ACM SIGPLAN Notices 34 (1999)
[27] Object Management Group: Corba component model, v3.0 (2002)

http://www.omg.org/technology/documents/formal/components.htm.
[28] DeMichiel, L., Yalcinalp, L.U., Krishnan, S.: The Enterprise JavaBeans 2.0 specification

(2001) http://java.sun.com/products/ejb/docs.html.
[29] Ranganath, V.P., et al.: Cadena: enabling CCM-based application development in Eclipse.

In: OOPSLA Workshop on Eclipse Technology eXchange. (2003) 20–24
[30] Cecchet, E., Marguerite, J., Zwaenepoel, W.: Performance and scalability of EJB applica-

tions. In: Proc. of ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. (2002) 246–261

TeStor: Deriving Test Sequences from

Model-Based Specifications

Patrizio Pelliccione2, Henry Muccini2, Antonio Bucchiarone1, and
Fabrizio Facchini2

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (ISTI-CNR)
Area della Ricerca CNR di Pisa, 56100 Pisa, Italy

antonio.bucchiarone@isti.cnr.it
2 University of L’Aquila, Computer Science Department

Via Vetoio 1, 67010 L’Aquila, Italy
{pellicci,muccini}@di.univaq.it

Abstract. The dependability analysis of a component-based system
may be driven by the components/system implementation or by the
model-based specification provided prior to or together with the im-
plementation. In particular, model-based specifications of a component-
based system allows to explicitly model the structure and behavior of
components and their integration, while model-based testing allows to
derive test sequences which can be successively refined into test cases
and then run onto the system implementation.
Several techniques have been proposed so far to allow model-based test-
ing. However, very few of them show certain characteristics which are
peculiar for use in industrial contexts. We here describe TeStor, a TEst
Sequence generaTOR algorithm which allows to extract test sequences
from both state machine and scenario diagrams. We detail the algorithm,
we apply it to a system study and we provide a link to its implementa-
tion.

1 Introduction

Roughly speaking, a component-based software system is an assembly of reusable
components, designed to meet the quality attributes identified during the archi-
tecting phase [10]. Components are specified, designed and implemented with
the intention to be reused, and are assembled in various contexts in order to
produce a multitude of software systems.

The dependability of a component-based system strongly depends on both
the quality of the assembled components, and on the quality of the assembly
and its subsumed architecture. While the quality of a single component may
be analyzed in isolation, the quality of the assembly may be verified only after
components integration.

While in the past the verification stage to be properly performed required
the assembly of already developed components, with the advent of the model-
driven development, the models themselves may be analyzed before components

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 267–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

268 Patrizio Pelliccione et al.

are developed or bought. The essence of model-driven development is the (very
old) idea that a system is incrementally obtained by instantiating and refining
a specification of system structure and behavior. The essence of model-driven
analysis, instead, is the idea of using such models as representative of the (ex-
pected) system structure and behavior in order to predict the achievement of
certain qualities, and later on to validate the system implementation.

In this paper, we focus our attention on model-based testing of component-
based systems, at the integration level. We assume a structural and behavioral
specification of the components is available, together with architectural informa-
tion which allows to specify how such components are supposed to interact when
assembled in a component-based system. Goal of our algorithm is to extract test
sequences, which can be used to test the conformance of an implemented assem-
bly with respect to the specification, considered as an oracle.

Many different approaches and tools have been proposed so far to extract
test cases from system models. (Relevant model-based testing approaches are
outlined in Section 2). However, very few of them may be considered applicable
in “industrial contexts”. Following [7], in fact, a model-based testing approach
to be suitable for industrial needs has to comply to some extra requirements and
constraints: first of all, we cannot assume that a formal (complete and consistent)
modelisation of the software system exists. What we may reasonably assume,
instead, is a semi-formal specification in the form of UML diagrams. Moreover,
the approach should be usable (additional formalisms should not be required),
timeliness (even incomplete models should allow to start outlining a test plan),
and tool supported (automated tool support is fundamental for strongly reducing
testing costs). Surprisingly, even if many tools have been proposed so far for
model-based testing [14, 2, 19], very few of them satisfy such requirements.

We here propose our algorithm, called TEst Sequence generaTOR (TeStor),
which allows to extract test sequences from model-based specifications as pro-
duced by practitioners. A behavioral model of each component is provided in the
form of UML state diagrams. Such models explicitly specify which components
interact and how. Sequence diagrams are used as an abstract or even incomplete
(“sketchy”) specification of what the test should include. TeStor takes in in-
put UML state and sequence diagrams and synthesizes more detailed sequence
diagrams (conforming to the abstract scenarios) by recovering missing informa-
tion from state diagrams. The output represents test sequences (which include
a sequence of stimuli to the system under test, and the expected responses to
those stimuli [14]) specified in the form of more informative scenarios. Differ-
ently from other approaches, the test sequence generation process in TeStor
does not compute the parallel composition of the state machine models, it does
not require any additional formalism, and it is completely tool supported.

The following of this paper is organized such that in Section 2 we analyze
some relevant related work. Section 3 is utilized to describe the TeStor algo-
rithm. Section 4 describes how the TeStor has been implemented. Section 5
provides initial evaluations of the proposed algorithm while Section 6 concludes
the paper.

TeStor: Deriving Test Sequences from Model-Based Specifications 269

2 Related Work

In recent years the use of explicit models in software development (most notably
the use of UML for object oriented analysis and design) has expanded greatly.
Several researchers have focused their efforts in finding methods and tools for
guiding the testing activities by means of system model description [2]. In this
section we briefly summarize some of the recent research results which make use
of UML-diagrams for testing purposes.

Many model-based testing approaches are state-machine based. Initial at-
tempts to use UML state diagrams for testing purposes are presented by Offutt
and Abdurazik [21], who translate these diagrams into formal SRC specifica-
tions, Liuying and Zhichang [18], who use a formal semantic of state machines
to derive the test cases, and Kim et al. [17], who focus on class testing. More
recently, Hartmann et al. [15] extended to a component-based paradigm the ap-
proach of [21], and Antoniol et al. [5], considered the derivation of test sequences
from UML statecharts by covering selected paths in a FSM.

Some relevant proposals for scenario-based testing include: the approach of
Graubmann and Rudolph [12], in which the Message Sequence Chart (MSC)
inline expressions and High Level MSC (hMSC) are included into Sequence Di-
agrams for the specification of test cases; the methodology of Harel and Marelly
[13], which is specifically designed for scenario-based specification of reactive
systems; TOTEM (Testing Object-orienTEd systems with the unified Modelling
language) [8], which uses sequence or collaboration diagrams associated to each
use case for deriving test cases, test oracles and test drivers, and SCENTOR [25],
which uses JUnit as a basis for test case derivation. SeDiTeC [11] automatically
generates test stubs for the classes and methods whose behaviour is specified in
the sequence diagrams. The Cow Suite tools and methodology recently discussed
in [6] provide an integrated and practical approach for generating and planning
UML-based test suites for industrial contexts.

There are very few approaches, like our, were both state machines and scenar-
ios are required for test case generation. UMLAUT (Unified Modelling Language
All pUrposes Transformer)[3] is and approach tool supported which translates
UML diagrams into an intermediate formal description understandable by the
Test Generation and Verification (TGV) tool. AGEDIS (Automated Generation
and Execution of Test Suites for DIstributed Component-based Software)[1], gen-
erates and executes test cases for application modelled according to the AML
(AGEDIS Modelling Language), which is a specialised UML profile. SCENT
(SCENario-based validation and Test of software) [24], creates scenarios in a
structured way, formalizing them into statecharts.

Our work shares with all of them the idea of guiding the testing activities by
means of system models. In particular, we share with UMLAUT, TGV, AGEDIS
and SCENT the combined used of state and sequence diagrams. Differently from
other approaches which use UML diagrams to model and test use cases or classes,
we put ourselves in a component-based context, where state diagrams are used
to model how components are supposed to behave in a component-based system.

270 Patrizio Pelliccione et al.

3 The Test Sequence Generator Algorithm

According to [14], a model based test generator accepts as main inputs a model
of the software under test, and a set of test generation directives which guide the
test cases selection (called test purposes in [16]), and outputs a test specification,
which includes a set of stimuli the tester should introduce in the system together
with expected responses.

The model based test sequence generator TeStor gets in input the behav-
ioral model of the components (in terms of components’ state machines) and a
sequence diagram (inSD) representing the test directive, and outputs a set of se-
quence diagrams (outSD) representing the shortest paths which cover the inSD
into the state machines. In other terms, each outSD contains the sequence of mes-
sages expressed by the inSD, enhanced/completed with information gathered by
the components’ state machines. It is important to notice that the TeStor al-
gorithm identifies the different test sequences outSD by individually simulating
the different state machines, and without constructing the global automaton,
i.e.: without parallel composition of the different behaviors. This important op-
timization allows to handle the well known state-explosion problem.

In order to help in explaining how TeStor works, we go through an explana-
tory example. Figure 1.a−d illustrates the state machines related to the Siemens
C.N.X. Optical Session System (OSS) conceptual architecture. Each state ma-
chine denotes a component and the labels on the transitions identify exchanged
messages, with the assumption that a message can be exchanged only by a pair
of components. For each transition an ? or ! operator is defined with the following
meaning: ?l[!l] identifies an input [output] of the l message.

The OSS description and its architecture have been presented in [20], and its
discussion is out of scope for this paper. (The state machines’ labels have been
renamed to improve readability). The sequence diagram used as test directive is
illustrated in Figure 1.e.

inSD

C1

C4C3

C2

a) C1

b) C2

d) C4c) C3 e) inSD

S1

?m1

S0

?m2

?m3

?m2?m1

?m3

S3

?m3

?m4

?m4?m2S2 S4

S6

?m1?m4

S7

S5

?m4

!m6
?m2

!m5

?m1!m6

?m3

!m5

S0S5

S4 S3 S2

S1
!m7

?m8

?m9

!m3
!m1

?m8

?m9

!m10

S0

!m2

!m4

!m9

!m8
S0

?m6

?m5
?m10?m7

C3 C2 C1 C4

m9
m3

m10

m8
m1

m7

Fig. 1. a − d) SA Components Behavior, e) inSD

TeStor, focussing on the first (not visited) message m in the inSD, and
looking inside each state machine, searches a trace which allows to reach m,

TeStor: Deriving Test Sequences from Model-Based Specifications 271

starting from the current state of the state machine. When such trace is found,
TeStor recursively moves to the next (not visited) message m′ in inSD, and
checks a trace which allows to reach m′ starting from the current state. At the
end of this process, TeStor tries to merge together the different traces in a
unique trace (the outSD) which moves from the initial state and covers any
message m in the inSD.

C3 C2 C1 C4

m9
m3

m10
m8

m1

m7

C3 C2 C1 C4

m9

m4
m6

m8

m1

m7

m3

m10

m5

C3 C2 C1 C4

m9
m3

m10
m8

m1

m7

m4

C3 C2 C1 C4

m9

m4
m6

m8

m1

m7

m3
m10

m5
m2

S0

S0

S0

S0

S1
S2 S1

S3

S4

S5 S0

S0

S0

S0

S0

S0

S0

S0

S0

S1

S2

S6

S2 S7

S3
S4

S5

S0

S5

S3

S0

S0

S0

S0

S0

S1

S2

S3

S4

S5

S0

S1

S3

S5

S0

S0

S0

S0

S0

S0

S0

S0

S1

S2

S6

S2

S3
S4

S5

S0

S1

S0

S3

S7

Fig. 2. The four traces generated

Figure 2 shows the four outSD traces generated by applying TeStor to the
case study in Figure 1. To increase readability, we report on the outSDs lifeline
of each component, the state reached by the component, after having exchanged
the message. Following the TeStor algorithm, m9 is initially selected in the
inSD in Figure 1.e. Starting from the initial state of the four state machines,
the components C2 and C3 may exchange m9. C2 changes its state to s1. Then,
m3 is selected in inSD. C1 and C2 may reach m3 from their current states (s0
and s1, respectively). Whenever the last message in inSD has been analyzed, a
different algorithm, Merge, merges together the different traces, by checking if
and when the different components may synchronize.

The TeStor algorithm can be split into two macro-steps:

1. State machines -sm- Linearization: instead of traversing sm for identifying
a trace which allows to reach m in sm, starting from sm current state s, we
initially decompose sm in a set of linear traces. In order to limit the number
of linearized traces, TeStor avoids loops and repetitions such as each trace
is branching free and each pair of traces do not share transitions.

2. Test Sequence Generation: the second macro-step involves the test sequence
generation. This macro-step looks at each linearized state machine in order
to identify the sup-traces of the inSD. A sup-trace is a trace which contains
any message contained in the inSD, in the same order they were in inSD,
and includes any other message necessary to simulate the inSD trace into the
state machines. Sup-traces generated by TeStor are minimal, since loops
are removed. This algorithm is composed by a Validation part, which checks
when and how sup-traces need to be combined to produce the outSD.

In the following of this section we detail the TeStor algorithm. In Section 3.1
and 3.2 we detail the Linearization and Test Sequence Generation algorithms

272 Patrizio Pelliccione et al.

used by TeStor. For the sake of brevity this paper omits algorithm’s details
which can be found in [23].

TeStor makes use of the following methods:
– MessageSet messages(SD sd): is a method that returns the set of messages con-

tained into the sequence diagram sd.
– boolean isEmpty(Set s): is a boolean method that returns true iff the set s is

empty.
– delete(Set s, Element el): this method deletes the element el from the set s.
– add(Set s,Element el): this method adds the element el to the set s.
– updateIs(SD sd) is a method that updates the initial state for each state machine.

For each state machine (sm), the Linearization algorithm is invoked (lines 2-5).
We suppose that each sm is in its own initial state.

TeStor Pseudo-Code
TeStor (){

2 SDSet sdSet ;
foreach sm ∈ SM{

4 L in ea r i z e (sm) ;
}

In lines 6-24 the TeStor algorithm attempts to construct the sup-traces for each
message m, and to concatenate them in order to obtain the wanted outSD. For
each message m in the inSD, the method TestSequenceGeneration is called.
It returns a set of traces, sdSetMsg, containing the message m and addition-
ally any other message required to properly exchange m. Each message causes
the construction of a set of traces. In order to produce a unique sup-trace for
inSD, the sup-traces of any message in inSD need to be concatenated. Note
that the updateIs method invocation precedes the TestSequenceGeneration
method invocation because for each trace we have to set a different initial state.
The errors raised in lines 9 and 17 identify the impossibility to reproduce the
inSD inside the set SM of state machines. When such errors are raised, an in-
consistency between inSD and the state machines is identified. The code in lines
19-22 constructs the set of outSD by appending the obtained traces for the cur-
rent message m to the already stored (partial) outSDs i.e.: the traces built for
messages that precede m in inSD.

6 sdSet = TestSequenceGeneration (m ,Ø ,Ø) ;
i f (isEmpty (sdSet)){

8 /∗ I t i s not p o s s i b l e to obta in the sequence ∗/
return Error ;

10 }
foreach m ∈ messages (sd){

12 foreach sd ∈ sdSet{
updateIs (sd) ;

14 SDSet sdSetMsg = TestSequenceGeneration (m ,Ø ,Ø) ;
i f (isEmpty (sdSetMsg)){

16 /∗ I t i s not p o s s i b l e to obta in the sequence ∗/
return Error ;

18 }
de l e t e (sdSet ,sd) ;

20 foreach sdMsg ∈ sdSetMsg{
add (sdSet ,sd . sdMsg) ;

22 }
}

24 }
}

TeStor: Deriving Test Sequences from Model-Based Specifications 273

3.1 Linearization

Starting from the initial state in the components’ state diagrams, the Lineariza-
tion algorithm follows each transition exiting from that state until the start
state, or a state with output degree outDegree or input degree inDegree greater
than one is reached. Roughly speaking, the linearization process creates a trace
at any time a state with a branch is reached (i.e., a state with outDegree > 1 or
inDegree > 1). The algorithm is iterated, starting from the previously reached
state, until unvisited states still exist.
The number of linear traces generated can be computed as in the following:

#traces = outDegree(startState) +
∑

outDegree(s)

for each state s so that (outDegree(s)>1) ∨ (inDegree(s)>1)

The linearization properties are the following:

1. it partitions states into intermediate states (states that are in the middle
of a trace) and exterior states (states that are the source or the target of a
trace).

– exterior states are i) all the states with (outDegree > 1) ∨ (inDegree >
1), or ii) the start state, or iii) each sink state; intermediates are the
other states.

2. the linearization does not loose information i.e.: it is possible to reconstruct
the original state machines starting from the linearized traces.

Linearization Applied to the Optical Session System: in the following we
show the results of the linearization algorithm applied on the case study in Fig-
ure 1. As an example we explain how the traces for component C2 are obtained.
The start state of C2 is S0 (as shown in Figure 1.b). Since outDegree(S0)=2, S0

is an exterior state. The trace 1 is created thanks to the message m8. The trace
2 follows the path indicated by m9 and ends with the state S3 that is a state
with outDegree equal to two. While trace 3 is generated by the loop message
m9, trace 4 is the path that allows to reach state S0.

C1
1. S0 m1−→ S0 9. S1 m4−→ S3

2. S0 m2−→ S0 10. S3 m3−→ S3

3. S0 m3−→ S1 11. S6 m4−→ S6

4. S1 m2−→ S1 12. S6 m2−→ S4 m5−→ S0

5. S0 m4−→ S2 m6−→ S6 13. S6 m3−→ S7 m5−→ S3

6. S6 m1−→ S6 14. S3 m4−→ S3

7. S1 m3−→ S1 15. S3 m1−→ S5 m6−→ S6

8. S1 m1−→ S0 16. S3 m2−→ S1

C2
1. S0 m8−→ S0

2. S0 m9−→ S1 m3−→ S2 m10−→ S3

3. S3 m9−→ S3

4. S3 m8−→ S4 m1−→ S5 m7−→ S0

C3
1. S0 m9−→ S0

2. S0 m8−→ S0

3. S0 m4−→ S0

4. S0 m2−→ S0

C4
1. S0 m7−→ S0

2. S0 m10−→ S0

3. S0 m5−→ S0

4. S0 m6−→ S0

274 Patrizio Pelliccione et al.

3.2 Test Sequence Generation

The input of the TestSequenceGeneration is a message m and two sets which
identify the already explored state machines and related traces, while the output
is a set of traces representing the different paths that conduct the system to
exchange message m. The second and the third inputs are used for recursive
purposes, propagating the state reached for each state machine and the traces
under construction. In the first invocation the two sets are empty.

Let Cs (Cr) the component which sends (receives) m. The algorithm ini-
tially generates two sets of scenarios from the linearized traces of Cs and Cr,
and eventually merges them (through the merge method) generating the outSD
scenario.

TestSequenceGeneration makes use of the linearized state machines and
can be synthesized as follow:

1. Let is the state of C when m must be exchanged.
The TestSequenceGenerationmethod selects the linearized traces contain-
ing m. For each selected trace t we check if the trace contains the state is. If
it contains it, the trace t is accepted. Otherwise we must check if concatenat-
ing several traces it is possible to reach the state is. The selection of those
traces uses some rules: i) if a trace contains twice the message m, the trace
is rejected. ii) if a trace adds a loop (an already visited state is reached),
then it is rejected.
This procedure is implemented by the Validation method and identifies
sup-traces which may contain new messages that are required by the system
to reach the configuration able to exchange the message m.

2. Any added message to the sup-trace can require the introduction of other
messages. In fact, for each new message contained into the sup-trace, the
TestSequenceGeneration algorithm is invoked with the set of the updated
state machine and the already constructed traces as parameters.

For a complete description of the algorithm please refer to Appendix A. In
the following, the Validation and the Merge algorithms are detailed.

Validation: the input of this algorithm are a trace t, a message m, the current
state cs for trace t, the initial state is for component C (where component C
contains trace t), and a set of traces tr used to avoid infinite loops. The output
of the algorithm is a set of sup-traces ST , of a valid trace.

It performs also validity checks in the sense that returns an empty set if it is
impossible to reach the initial state is.

In the algorithm we make use of the following methods:

– append(Trace tr1,Trace tr2): is a method that assigns tr2.tr1 to tr1.

– Trace subtrace(t,s1,s2): this method returns the sub-trace of t that starts with
s1 and ends with s2;

– tracesSet tracesToValidate(s): this method returns the set of the traces with
target state s that must be verified;

TeStor: Deriving Test Sequences from Model-Based Specifications 275

– boolean contains(t,m): is a boolean method that returns true iff the trace t
contains the transition m.

– State initialState(Trace t): this method returns the initial state of the trace
t.

– State finalState(Trace t): this method returns the final state of the trace t.

The code for function Validation can be divided into three parts: i) the
current state cs coincides with the initial state is, lines 5-9, ii) we reach the start
state of trace t, lines 10-14, iii) we iterate on the other traces identified thanks
to the function tracesToValidate, lines 19-29. In the recursive construction
of the sup-trace, traces containing the considered message m, loop generated
through nested invocations of validation, and traces with loops on one state are
not considered (lines 19-27).

Validation Pseudo-Code
ST Val idat ion (Trace t , Trans i t i on m , State cs , State is , S tateSet sSet){

2 ST I s t = Ø ;
Traces tdv ;

4 /∗ Basic s tep ∗/
i f (cs == is){

6 st = subtrace (t ,is ,cs) ;
add (I s t , st) ;

8 return I s t ;
}

10 i f (i n i t i a l S t a t e (t)==is){
st = subtrace (t ,is ,cs) ;

12 add (I s t , st) ;
return I s t ;

14 }
add (sSet ,cs) ;

16 /∗ I f the s t a r t s t a t e o f the t r a c e i s not equa l s to is ∗/
tdv = tracesToVal idate (cs) ;

18 foreach t′ in tdv{
i f (! conta in s (t′ ,m)&&

20 ! (i n i t i a l S t a t e (t′) ∈ sSet)&&

! (i n i t i a l S t a t e (t′)==f i n a l S t a t e (t′))){
22 ST I s t c = Val idat ion (t′ ,m ,cs ,is ,sSet) ;

foreach st ∈ I s t c {
24 append (st , subtrace (t ,is ,cs)) ;

add (I s t , st) ;
26 }

}
28 }

return I s t ;
30 }

Merge: This method gets in input two sets of sequence diagrams and tries to
merge them in order to obtain a single sequence diagram. Each sequence diagram
contains the set of messages that are contained into the inSD but each one of
them can be enriched with messages required by some components in order to
respect the inSD. Then the Merge method tries to merge each sequence diagram
into the first set with every sequence diagram contained into the second set.

For every message contained into the inSD the following reasoning is iterated:
let m the current message and m′ its predecessor. We are sure that m and m′ (if
m′ exists) are contained into the pair of sequence diagram. We remember that
each one of the sequence is complete, in the sense that no additional messages

276 Patrizio Pelliccione et al.

are required to allow the system to exchange the message m. Then let setS the
set of messages contained into the first set, between the message m and m′, and
setR the set of messages contained into the second set, between the message
m and m′. The algorithm checks if there exists an ordering of messages that
allows the system to exchange all the messages contained into setS and setR in
according to the state machines that dictate the behavior of the system.

Test Sequence Generation Applied to the Optical Session System: in
the following, we show how the TeStor algorithm works by making use of the
case study. We take into consideration only few steps in the scenario in Figure 1.
As showed in Figure 1.e, the first message in inSD is m9. The traces (in Section
3.1) which make use of m9 are those related to components C3 and C2 where the
sender component is C3 (with associated state machine sms) and the receiver
component is C2 (with associated state machine smr).

Analyzing the traces generated for the sender and the receiver, the traces of
interest are itcs = {1} and itcr = {2, 3}. Trace 3 in itcr is not of interest since it
does not allow to reach the start state without loops. So far, the obtained sdSet
contains only one sequence diagram: by exchanging message m9, component C3
reaches state S0 and component C2 reaches state S1.

The second message in the inSD in Figure 1.e is m3. sms = C2 and smr =
C1. itcs = {2} and itcr = {3, 7, 10, 13}. The traces that must be considered are:
trace 2 for component C2 and traces 3 and 13 for component C1. Trace 3 is
selected since allows to reach state S0. Trace 7 is not selected for the following
reasons: the initial state of trace 7 is S1; the traces analyzed to reach state S0
are traces 3, 4, and 16, where traces 3 and 4 are deleted because represent a
loop (trace 3 contains also the message m3) and trace 16 requires to consider
traces 9, 10, 13, and 14 which represent a loop or contain message m3. Trace 13
is selected since it can be combined with trace 5 to reach state S0 obtaining the
path S0 m4−→ S2 m6−→ S6 m3−→ S7.

Traces 3 and 13 then cause the construction of two different sequence di-
agrams. The first scenario simply requires the exchange of message m3 that
conducts component C2 to state S2 and component C1 to state S1. The second
scenario contains, before the message m3, the messages m4 and m6 as required
by the sup-trace obtained concatenating traces 13 and 5.

The states reached are the following: C1is = S1, C2is = S2, C3is = S0, and
C4is = S0 for the sequence diagram 1 and C1is = S7, C2is = S2, C3is = S0,
and C4is = S0 for the sequence diagram 2.

The same reasoning is applied to the remaining messages. Only another mes-
sage, m1, causes the generation of two different sequence diagrams. Thus, the
obtained sequence diagrams are four, as illustrated in Figure 2.

4 Tool Support

The TeStor algorithm has been implemented has a plugin component for
Charmy, a validation framework for architectural analysis. A beta version of
the TeStor plugin implementation is currently available in [4].

TeStor: Deriving Test Sequences from Model-Based Specifications 277

While the Charmy (standard) editing capabilities allows to edit the SA
topology, the components’ behavior and the inSD, the TeStor plugin takes in
input such information and produces the outSD scenarios.

Figure 3 shows a couple of screenshots of Charmy and its TeStor plugin.
In Figure 3.a) the sequence editor pane is shown which allows to draw inSDs and
to show resulting outSDs, while Figure 3.b) graphically depicts the thread editor
which allows to specify the behavior of each component.

a)

b)

Fig. 3. Some screenshots of TeStor and Charmy

More details on Charmy, the TeStor plugin and the Charmy model of
the case study may be found in [4].

5 Some Initial Considerations

As presented in Section 2, there are up to now many model-based testing ap-
proaches which make use of UML as the input notation. However, we may dis-
tinguish TeStor from such approaches from many reasons: i) TeStor does
not require the parallel composition of component state machines. While other
techniques usually require to create a global model representing the assembled
system, TeStor analyzes the components behavior in isolation. The state ma-
chine linearization process allows to synthesize traces which are successively
traversed in order to reproduce the output scenarios. Since only a subset of the
generated traces are traversed by an inSD, this solution allows to strongly reduce
the state explosion problem; ii) TeStor does not require any formal notation.
State machine and scenarios are the only input required by the approach and the

278 Patrizio Pelliccione et al.

tool; iii) TeStor is conceived to meet some important (and often conflicting)
requirements imposed by industry: low testing effort and high testing accuracy.
Effort reduction imposes that models are used as they are, i.e., without requiring
extra information and imposing model completeness. Testing accuracy, on the
other side, requires to generate test cases from models that are as much infor-
mative as possible. The use of both state machine and scenario specifications
allows to perceive this goal; iv) TeStor is completely tool supported.

Here we report some initial considerations about the proposed algorithm, in
terms of completeness, correctness, and complexity. Future work will improve
such informal notes.

Regarding completeness, TeStor does not generate all the possible traces
out of the SA behavioral model. In fact, since the TestSequenceGeneration
algorithm creates loops-free traces, completeness cannot be guaranteed (neither
it whould be). However, the TeStor algorithm guarantees to cover at least once
any occurrence of inSD messages.

Talking about correctness, instead, we may empirically prove that the
TeStor is correct (i.e.: the traces generated from the algorithm are
real traces in the state machine models). The linearization algorithm, for
definition, contains traces which are contained into the state machines.
The TestSequenceGeneration algorithm initially selects such linearized traces
which allow to reach m, and then combine such traces based on how state ma-
chines synchronize. The algorithm merge assures, finally, that the traces pro-
duced are behaviors contained into the system.

Another important point to be evaluated regards the algorithm computa-
tional complexity, in terms of time and space occupied. The linearization algo-
rithm requires to visit each arc of the state machine graph, thus it has a com-
plexity equal to the number of arcs. The TestSequenceGeneration algorithm
complexity depends on the number of traces generated by the linearization al-
gorithm, on the size of the inSD, and on the “granularity” of the inSD (i.e., how
much the inSD scenario is incomplete, with respect to the state machines). In
future work we plan to formally discuss the algorithm computational and time
complexity.

6 Conclusions and Future Work

TeStor is an algorithm, which taking in input state machines and scenarios,
generates test sequences in the form of scenarios. The algorithm poses its basis
on the idea that scenarios are usually incomplete specifications and represent
important and expected system interaction. Such incomplete specifications may
be “completed” by recovering, from state machines, the missing information.
TeStor has been implemented as a plugin component of the Charmy analysis
framework.

In an ongoing work we are integrating the test case selection approach imple-
mented in TeStor in our model-checking-based testing methodology proposed
in [9]. We are starting applying the resulting tool supported methodology to

TeStor: Deriving Test Sequences from Model-Based Specifications 279

the Siemens C.N.X. system described in [20], and evaluating the efficacy of our
approach with respect to Siemens C.N.X. design and analysis processes. More-
over, we are currently analyzing how TeStor generated test sequences can be
converted into executable tests.

Another interesting integration we have in mind is to use the TeStor output
as input for the Use Interaction Test (UIT) method [6]. Largely inspired to the
Category Partition Method [22], UIT systematically constructs and defines a set
of test cases for the Integration Testing phase, by using UML sequence diagrams
as its exclusive reference model. We believe in this way we may combine the
UIT main advantage of effort reduction with a more effective set of derived test
cases.

Other improvements we have in mind are to analyze the possibility to produce
linear traces and generate test sequences all at once, and to provide a richer
formalism to express inSDs. In particular, we may wish to extract all such outSDs
which correctly implement inSDs such as those in Figure 4: inSD1 (i.e., any path
which includes m1 followed by m3, excluding m2 in between the two) and inSD2
(i.e., any path which includes m1 immediatly followed by m2, and eventually
followed by m3).

inSD1

C1 C2 C3

m1

m3

inSD2

C1 C2 C3

m3

neg m2

critical

m1

m2

Fig. 4. inSD1 and inSD2 in the UML 2 formalism

Acknowledgment

The authors acknowledge Siemens C.N.X. who provided the case study and
supports this research, Pierluigi Pierini for his contribution on a previous version
of the paper, and Antonia Bertolino and Eda Marchetti which contributed on a
previous paper with similar goals. We are indebted with the anonymous reviewers
too which suggested relevant changes.

References

[1] AGEDIS Project. http://www.agedis.de/index.shtml.
[2] Model-based Testing Home Page.http://www.geocities.com/model based testing/.

Maintained by Harry Robinson.
[3] UMLAUT Project. http://www.irisa.fr/UMLAUT/.

280 Patrizio Pelliccione et al.

[4] CHARMY Project. Charmy Web Site. http://www.di.univaq.it/charmy, 2004.
[5] G. Antoniol, L. C. Briand, M. Di Penta, and Y. Labiche. A Case Study Using the

Round-Trip Strategy for State-Based Class Testing. In Proc. IEEE ISSRE2002,
2002.

[6] Francesca Basanieri, Antonia Bertolino, and Eda Marchetti. The Cow Suite Ap-
proach to Planning and Deriving Test Suites in UML Project . In Fifth Inter-
national Conference on the Unified Modeling Language - the Language and its
applications(UML 2002), pages 383–397, Dresden, Germany, September 2002.

[7] Antonia Bertolino, Eda Marchetti, and Henry Muccini. Introducing a Reasonably
Complete and Coherent Approach for Model-based Testing. In In Testing and
Analysis of Component-Based Systems Workshop, Tacos 2004. To be pubblished
in Electronic Notes of Theoretical Computer Science, 2004.

[8] L.C. Briand and Y. Labiche. A UML-Based Approach to System Testing. Journal
of Software and System Modelling (SoSyM), 1(1):10–42, 2002.

[9] A. Bucchiarone, H. Muccini, P. Pelliccione, and P. Pierini. Model-Checking plus
Testing: from Software Architecture Analysis to Code Testing. In Proc. Interna-
tional Testing Methodology workshop, Lecture Notes in Computer Science, LNCS,
vol. 3236, pp. 351 - 365 (2004), October 2004.

[10] Ivica Crnkovic and Magnus Larsson, editors. Building Reliable Component-based
Software Systems. Artech House, July 2002.

[11] F. Fraikin and T. Leonhardt. Seditec - testing based on sequence diagrams. In
Proc. IEEE CASE 02, Edingburgh, September 2002.

[12] P. Graubmann and E. Rudolph. HyperMSCs and Sequence Diagrams for use case
modeling and testing. In Proc. UML 2000, volume LNCS Vol.1939, pages 32–46,
2000.

[13] D. Harel and R. Marelly. Specifying and Executing Behavioural Requirements:
The Play In/Play-Out Approach. Journal of Software and System Modelling
(SoSyM), 2003.

[14] Alan Hartman. Model Based Test Generation Tools. Technical report, AGEDIS
project Downloads, 2002.

[15] J. Hartmann, C. Imoberdof, and M. Meisenger. UML-Based Integration Testing.
In ACM Proc. ISSTA 2000, Portland, 2000.

[16] C. Jard and T. Jéron. Tgv: theory, principles and algorithms. In The Sixth World
Conference on Integrated Design & Process Technology (IDPT’02), Pasadena, Cal-
ifornia, USA, June 2002.

[17] G. Kim, H. S. Hong, D. H. Bae, and S.D. Cha. Test Cases Generation from UML
State Diagram. IEEE Proceedings - Software, 146(4):187–192, August 1999.

[18] L. Liuying and Q. Zhichang. Test Selection from UML Statecharts. In Proc. of
31st Int. Conf. on Technology of Object-Oriented Language and System, China,
22-25 September 1999.

[19] Eda Marchetti. Software Testing in the XXI Century: Methods, Tools and New
Approaches to Manage, Control and Evaluate This Critical Phase. PhD thesis,
University of Pisa, September 2003.

[20] Henry Muccini, Patrizio Pelliccione, Antonio Bucchiarone, and Pierluigi Pierini.
Software Architecture-driven System Testing through Model-Checking. Technical
Report TRCS 035/2004, University of L’Aquila, 2004.

[21] J. Offutt and A. Abdurazik. Generating Test from UML Specifications. In Proc.
UML 99, Fort Collins, CO, October 1999.

[22] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying
and generating functional tests. Communications of the ACM, 31(6):676–686,
June 1988.

TeStor: Deriving Test Sequences from Model-Based Specifications 281

[23] Patrizio Pelliccione, Henry Muccini, Antonio Bucchiarone, and Fabrizio Facchini.
Deriving Test Sequences from Model-based Specifications. Technical Report
TRCS 002/2005, University of L’Aquila, 2005.

[24] J. Ryser and M. Glinz. Using Dependency Charts to ImproveScenario-Based
Testing, 2000.

[25] J. Wittevrongel and F. Maurer. Using UML to Partially Automate Generation
of Scenario-Based Test Drivers. In Springer, editor, OOIS 2001, 2001.

Appendix A: Test Sequence Generation

In this appendix we report a more complete description of the algorithm Test
Sequence Generation, in the form of Pseudo-Code. It makes use of the following
methods:
– TracesSet extractTraces(SMId sm, Message m): this method extracts all traces

containing the message m;
– SMId senderSM(Message m): this method returns the ID of the state machine that

sends the message m
– SMId receiverSM(Message m): this method returns the ID of the state machine

that receives the message m
– SDSet merge(SDSet sdSenderSet,SDSet sdReceiverSet): this method makes

the merge of two sets of sequence diagrams. The two sets represent the actions
required by the send and receive state machine to reproduce the behavior in the
input sequence diagram. The algorithm attempts to construct for each element in
the first set and for each element in the second one, a sequence that the system is
able to execute. If it is impossible to obtain a correct behavior, the algorithm does
not introduce any sequence in the output set. If the resulting set is empty, then it
is impossible to obtain a correct behavior starting from the two input sets.

– msgSet messages(Trace t): this method returns the set of messages contained
into the input trace.

– State startState(Trace t, Message m): this method returns the start state for
a message contained into a trace.

– Int size(Set s): this method returns the size of the set s.

The algorithm starts identifying such component which may send/receive m
and selects the linearized traces containing m (lines 2-11). The trace selection is
performed by means of the extractTraces method.

Test Sequence Generation Pseudo-Code
SDSet TestSequenceGeneration (Message m , SMSet smSet ,

2 TraceSet trSet){
sms = senderSM (m) ;

4 smr = receiverSM (m) ;
itcs = trSe t (sms , smSet) ;

6 itcr = trSe t (smr , smSet) ;
i f (isEmpty (itcs)){

8 itcs = extrac tTrace s (sms ,m) ;
}

10 i f (isEmpty (itcr)){
itcr = extrac tTrace s (smr ,m) ;

12 }

The next part of algorithm is composed of two equal parts: one for the sender
component state machine (lines 13-40) and one for the receiver component state

282 Patrizio Pelliccione et al.

machine (lines 41-68). A sender component is one which may send message m.
Symmetrically, a receiver component is one which may receive message m. Each
of them constructs the set of traces representing what the system must do to
allow the exchanging of the message m. Focusing only on the sender part, we
note that the algorithm makes use of the method Validation (line 15). This
method is detailed in the following and intuitively identifies each trace which
allows the system to exchange message m.

For each trace identified and for each new message introduced, a recursive
call to TestSequenceGeneration is performed (line 23).

The TestSequenceGeneration is invoked with the sets smSet and trSet
increased with the current state machine sms and with the current trace t,
respectively. In fact the sense of the recursive invocation is to fill the sequence
under construction with details needed for all the SM, except for the already
considered ones. At each nested invocation, another SM with the related trace is
added.

The rest of the code, lines 13-34, represents the construction of the set of
sequence concatenating the results of the recursive invocations.

SDSet sdSets ;
14 foreach t ∈ itcs{

sms.cs = s t a r t S t a t e (t ,m) ;
16 ist = Val idat ion (t ,m ,sms.cs ,sms.is ,) ;

i f (! (isEmpty (ist))){
18 foreach el ∈ ist{

i f (s i z e (ist)==1){
20 sdSets = ist ;

} else {
22 foreach message m′ ∈ messages (el){

/∗ ordered from the f i r s t to the l a s t ∗/

24 SDSet sdSetMsg = TestSequenceGeneration (m′ ,smSet+sms ,trSet+t) ;
foreach sdMsg ∈ sdSetMsg{

26 SDSet sdSetTmp ;
i f (isEmpty (sdSets)){

28 add (sdSetTmp ,sdMsg) ;
} else {

30 foreach sd ∈ sdSets{
add (sdSetTmp ,sd . sdMsg) ;

32 }
}

34 }
sdSets = sdSetTmp ;

36 }
}

38 }
}

40 }
/∗ . . . ∗/

42 /∗ Code f o r the r e c e i v e r ∗/

The last part of the algorithm is the construction of the output set of sequence
diagrams by merging the set of sequence diagrams required by the sender and
the receiver state machines.

/∗ Merge o f sdSets and sdSetr∗/
44 SDSet sdSet = merge (sdSets ,sdSetr) ;

return sdSet ;
46 }

A CCA-compliant Nuclear Power Plant

Simulator Kernel

Manuel Dı́az, Daniel Garrido, Sergio Romero, Bartolomé Rubio, Enrique Soler,
and José M. Troya

Dpto. Lenguajes y Ciencias de la Computación. Málaga University
29071 Málaga, SPAIN

{mdr, dgarrido, sromero, tolo, esc, troya}@lcc.uma.es

Abstract. This paper presents a parallel, component-oriented nuclear
power plant simulator kernel. It is based on the high-performance com-
puting oriented Common Component Architecture. The approach takes
advantage of both the component paradigm and the parallel execution of
simulation models. This way, the maintenance, evolution and efficiency
of a simulator are improved. The work introduces the main features of
the simulator kernel, describing concepts and the model it is based on.
Data dependencies among components (simulation models conforming a
simulator) are solved in a configuration phase, reducing the execution
time of the simulation phase. Some preliminary results are shown, which
anticipate the feasibility, suitability and efficiency of the proposal.

1 Introduction

The evolution and growing complexity of modern software systems create the
need for new programming paradigms that facilitate the development and main-
tenance of software applications. Component-Based Software Engineering pro-
poses the development of applications by plugging standalone software compo-
nents [9]. Based on component interoperability, this programming style allows
the creation of more flexible and adaptable software, promoting reusability of
components already developed and verified in other projects and increasing, this
way, the reliability of the final product.

Initially applied to the business world, component technologies are coming
to other areas such as scientific computing. Scientific software frequently de-
mands high performance in order to execute complex mathematical models or
simulate physical phenomena in acceptable time. Components standards and im-
plementations, such as OMG CCM [14], Microsoft DCOM [10], Sun Java Beans
and Enterprise Java Beans [7] [11], share serious shortcomings for parallel and
distributed scientific applications, due to the lack of the abstraction needed by
parallel and distributed programming and poor performance. They also have
trouble with the mechanism for encapsulating an existing scientific application
(which might itself be a parallel-distributed application) into a component.

Recently, some efforts are being carried out in order to incorporate com-
ponent technologies into high performance computing area. In this sense, AS-
SIST [19] is focused on high-level programmability and software productivity

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 283–297, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

284 Manuel Dı́az et al.

for complex multidisciplinary applications, including data-intensive and inter-
active software. SBASCO [6] is oriented to the efficient development of parallel
and distributed numerical applications. A large effort is currently devoted by
the Common Component Architecture (CCA) forum [18] to define a standard
component architecture for high-performance computing.

This work is focused on nuclear power plant simulators. A Pressurized Water
Reactor (PWR) plant consist of a vessel, containing the nuclear reactor, steam
generators and hydraulic loops made up of pipes and pumps through which water
and steam flow. The basic working is simple. The reactor produces heat that is
carried by pressurized water to the steam generators. They vaporize the water
in a secondary loop to drive the turbine, which produces electricity. In order
to simulate the operation of a nuclear power plant in a computer system, we
need detailed models of heat transmission, vessel, valves, pipes and pumps, etc.
Many simulation codes use a plant nodalization as input, a model built up by
interconnecting a set of predefined cells whose state variables are solved every
time step.

The use of simulators has special importance in the context of nuclear power
plants. On the one hand, they can predict the plant status when facing to differ-
ent situations that can occur in the daily operation. In this sense, a fast response
is required and performance becomes a major factor. On the other hand, they
can be used as training tools for future operators, allowing for the practice of
normal (temperature monitoring, valve manipulation) and unusual (emergency)
situations.

Currently, we are collaborating with Tecnatom S.A. [17] in order to carry
out the maintenance of different nuclear power plant simulators [4] [5]. Soft-
ware architecture of these simulators is organized as a collection of distributed
applications that can be executed on any node of a network, setting their com-
munications through CORBA [13]. The simulator kernel is the most important
application in the simulator context. It carries out the iterative execution of
different simulation models, which are responsible for the precise simulation of
physical components of the real system. There is a wide range of simulation
models, from computationally intensive complex models like TRAC (thermo
hydraulic model) or NEMO (neutronic model) to simpler ones simulating, for
example, the operating of a valve.

Current simulators are programmed in a classical (non component-oriented)
style, in such a way that simulation models, coded as sequential Fortran sub-
routines, are statically linked together into the simulator kernel. This approach,
apparently feasible at first, presents serious limitations from the Software Engi-
neering viewpoint. For example, it is very usual for a simulation model to read or
update data variables computed by others. In order to resolve data dependencies
among models, all shared data are declared as global variables allowing access
from any subroutine. Besides that, it is difficult to manage different versions of
the same models, and substitution, modification or integration of new models
into the simulator turn into tedious tasks. Reusability of these simulation models

A CCA-compliant Nuclear Power Plant Simulator Kernel 285

in other simulators is also limited due to the used programming techniques and
the coupling among the current models.

An attractive solution for solving all these software maintenance related prob-
lems is componentization. In this new approach, a simulator kernel can be con-
structed by connecting the corresponding simulation models, now encapsuled
into software components, to a central manager component which implements
the runtime system taking care of executing the models in a proper way. Apart
from componentization, an additional aspect can be taken into account in order
to improve the system. In the current simulators, simulation models are imple-
mented using sequential procedures. However, codes from some of these models
can be parallelized by splitting the computation in such a way that they could
be run on multiple processors in order to reduce their execution time. For exam-
ple, in [2] a parallel version of the thermo hydraulic code encapsulated into the
TRAC simulation model is described. Parallelization of this model is especially
important since it represents about 80% of the total simulation time.

In this paper, we present a parallel, component-oriented version of the sim-
ulator kernel of a nuclear power plant simulator. The approach overcomes the
above-described limitations, making the management of simulation models eas-
ier and allowing the integration of parallel and sequential models into the same
simulator. This way, the maintenance, evolution and efficiency of a simulator are
improved. We have chosen CCA, a component model specifically designed for
high performance scientific computing, as component technology for program-
ming the simulator kernel. Due to the size and large number of simulation models
that constitute the global system, the human work force necessary to componen-
tize them is large enough to consider the development of a previous prototype,
including some test simulation models, in order to evaluate the feasibility and
suitability of our proposal. The runtime support is based on Ccaffeine [1], a
CCA-compliant framework oriented to high performance parallel computing en-
vironments.

The rest of the paper is structured as follows. Section 2 introduces the
software architecture of the simulators. The main features of the CCA com-
ponent model are presented in section 3. Section 4 describes the proposed CCA-
compliant simulator kernel and the experimental results obtained by using the
prototype. The paper finishes with some conclusions and future work.

2 Simulator Architecture

The simulation projects of Tecnatom S.A. usually include two simulators that
influence on hardware and software architectures. The first one is called Interac-
tive Graphic Simulator (IGS), which through graphic applications (see figure 1,
right) allows operator training. The second one is called Full Scope Simulator
(FSS), which is an exact replica of the power plant control room taking care
of all details, from physical artifacts such as furniture, control panels, etc. to
software simulating the applications running in the room (see figure 1, left).

286 Manuel Dı́az et al.

Fig. 1. Details of Full Scope Simulator (left) and Interactive Graphic Simulator
(right).

Simulator Kernel SimCorba

DESI SPV

IGS Displayer

PPC

JaviHistorical

Fig. 2. Main software applications conforming the simulator.

The main high level hardware elements of FSS and IGS are: Simulation com-
puters, Instructor console, Physical panels and Student workstations. Simulation
computers are responsible for the simulation process executing the simulation
models and providing data to the rest of software and hardware components.
The Instructor console is used by the instructor of the simulation sessions and it
allows the creation of different scenarios that have to be solved by the students.
The Physical panels are exact replicas of those existing in the control room.
Operators carry out their actions mainly through these panels, with hundreds
of indicators, hardware keyboards, etc. IGS simulators additionally include the
hardware needed for Student workstations that basically allow the practice of
any simulation area in a comfortable way with graphical applications and several
monitors for each student.

The software architecture of the entire simulator is organized as a collection
of distributed applications that interact with each other through the high-level
communication mechanisms provided by CORBA. Some of the most important
applications together with their interactions can be seen in figure 2. The complete
software system can be divided into two well differentiated parts. The first one

A CCA-compliant Nuclear Power Plant Simulator Kernel 287

comprises the simulator kernel and SimCorba. These two applications act as a
simulation server offering a set of simulation services to the rest of tools and
applications, which constitute the second part of the system. The following is a
short description of the applications conforming the simulator:

– Simulator Kernel: application responsible for computing the simulation
of the nuclear power plant by executing the different simulation models. It
is the most important application in the simulator context.

– SimCorba: a simulation server that offers a set of services such as periodic
transfer of variables, actions over the simulator, etc. to the rest of applica-
tions. It manages all communications between client applications and the
simulator kernel.

– Client applications: a wide group of applications that interact with Sim-
Corba for different purposes, such as debugging the simulation process, al-
lowing representation and modification of simulation variables, changing sim-
ulation aspects like cycling time, recording the simulation state in real-time
including all significant variables, etc.

Due to the system size and the heterogeneity of the involved applications, the
development of simulators includes different platforms such as Unix, Linux and
Windows, with different programming languages such as C++, Java and Fortran.

The work presented in this paper is focussed on one concrete application
from the above-described architecture: the simulator kernel. The shortcomings
related to the current simulator kernel design, as mentioned before, encouraged
us to develop a new version of this application based on component-oriented
programming and parallel execution of simulation models. The new simulator
kernel, together with SimCorba, must implement the same set of simulation
services provided by the current version in order to keep the rest of client appli-
cations unchanged.

3 CCA Model

This section describes the main features of the Common Component Architec-
ture (CCA). A more detailed explanation can be found in [18]. CCA provides
a means for scientific software developers to build applications by assembling
software components in a “plug and play” environment for high performance
computing. CCA is a specification developed by the CCA Forum to describe the
rules for constructing CCA components, the model for linking them together
and the collection of services that frameworks should provide.

Components interact with each other through well-defined ports which are
the key elements of the connection model representing communication end point
for components. A CCA port is described by an interface which declares a collec-
tion of methods without revealing implementation details. In this sense, they are
similar to interfaces in Java or abstract virtual classes in C++. Components are
linked together by connecting their ports following a provides-uses interface de-
sign pattern similar to that within the OMG CCM proposal. According to this,

288 Manuel Dı́az et al.

there are two types of ports: provides ports, which represent the services offered
by a component and describe its calling interface, and uses ports, which describe
functionality a component may need and are the stubs that a component uses to
invoke services provided by another component. A uses port of a component can
be attached to a compatible (same type) provides port of another component.
Since this connection is performed, a procedural (not dataflow) relationship is
established and any functionality represented by the uses port is obtained by
invoking the methods in the connected provides port.

The Scientific Interface Definition Language (SIDL) and the Babel tool [3]
have been adopted by CCA in order to make the use of components indepen-
dent of their implementation languages. SIDL is the high level, object oriented,
programming language-neutral IDL used to describe component interfaces. It
provides classical abstractions and data types commonly used in scientific com-
puting, such as dynamic multidimensional arrays and complex numbers. It also
provides other useful features such as enumerated types, symbol versioning, name
space management as well as an object model with partial support for inheri-
tance, polymorphism and method overloading. Using SIDL descriptions, Babel
generates the necessary glue code to translate method calls from one language
to another, making it possible to connect together into the same application
components implemented in different languages.

A framework represents a concrete implementation of the model mechanisms.
Component instances are created and managed within a framework, which must
provide, according to the CCA specification, a minimal set of services that com-
ponents use in order to communicate with each other. Currently, different frame-
works have been developed to support specific computational environments such
as parallel, distributed or multithread. Ccaffeine, the CCA-compliant framework
employed in this work, is focused on local and parallel high performance appli-
cations. Single Program Multiple Data (SPMD) is certainly the most widely
used style of parallel computing, where all processes run the same program,
although each one has its own data. Ccaffeine uses a trivial extension of this
paradigm, referred to as Single Component Multiple Data (SCMD), where iden-
tical frameworks containing the same set of components wired the same way
are instantiated on every process. Inside each process, framework mediates com-
ponent interactions through a highly efficient port mechanism implementation.
Since all components are loaded into the same address space (process), when a
component needs to connect a uses port to the provides port of another compo-
nent for calling a method, the framework returns a direct reference (pointer) to
the actual implementation, which causes a minimal latency overhead for compo-
nent interactions equivalent to a C++ virtual function call. On the other hand,
parallel instances of the same component in different processes (referred to as a
cohort) can communicate with each other through a concrete parallel environ-
ment such as MPI [16], PVM [8], Global Arrays [12] or Shared Memory. CCA
and Ccaffeine make it possible to construct high performance applications by
connecting parallel components which are (possibly) implemented in different

A CCA-compliant Nuclear Power Plant Simulator Kernel 289

programming languages and even making use of distinct parallel communication
libraries.

4 CCA-compliant Simulator Kernel

This section presents the main features of the new parallel, component-oriented
simulator kernel, describing concepts, execution phases and performance evalu-
ation tests for the implemented prototype.

4.1 Concepts and SIDL Definitions

Simulation models contain the necessary code to simulate specific parts of the
system. The execution of a simulation model usually requires reading or updating
data variables which are computed by other models (we also refer to these data
as simulation variables). The previous (classical) version of the simulator kernel
resolved these types of inter-model data dependencies by declaring all shared
data as global variables allowing access from any subroutine. Since we pursue
the encapsulation of simulation models into separated software components, we
must adopt a more appropriate mechanism for managing data dependencies. In
our proposal, each component must report on:

– Simulation variables it needs, for reading or updating, from other models in
order to be executed.

– Simulation variables it provides, which are computed and offered (exported)
to the rest of models.

According to this, the programmer of a concrete simulation model component
only has to declare, by implementing the corresponding methods, the simulation
variables needed from/provided to the rest of models whereas a manager com-
ponent integrated in the kernel is the one responsible for locating the requested
variables (even if they are hosted in different processes) and providing them
to the respective models. Specific inter-process communication schemes needed
to resolve data dependencies efficiently are established in a configuration phase.
This way of managing data dependencies leads to a significant uncoupling among
simulation models in both development and execution time. The programmer is
not concerned about issues such as knowing the rest of models in the simulator or
resolving data dependencies and so, he/she can be focussed on writing scientific
code for the simulation model under development.

Simulation models are now encapsulated into (sequential or parallel) inde-
pendent software components. Since all of them are CCA-compliant components
implementing a concrete interface, we make sure they can be integrated into the
same simulator, even if they are programmed using different languages or com-
munication libraries. Our proposal makes the construction of different simulator
kernels possible. This can be easily achieved by selecting and composing the cor-
responding simulation models from a component repository. All simulator ker-
nels developed in this way share the same architecture that comprises a central

290 Manuel Dı́az et al.

Process 1

TRAC

SETRU

SeqMod

F
R

A
M

E
W

O
R

K

Process 2

TRAC

SETRU

SeqMod

F
R

A
M

E
W

O
R

K

Process 3

TRAC

SETRU

SeqMod

F
R

A
M

E
W

O
R

K

Communications among peer components via CCA Ports

Parallel communications within the cohort via MPI, PVM, ...

Fig. 3. Simulator Kernel implemented as a SCMD-parallel application.

manager component called SETRU and the appropriate collection of simulation
models connected to it. SETRU takes care of controlling the simulation by exe-
cuting the different simulation models in a proper way. In fact, this component
plays a major role since it implements the entire runtime system of the simulator
kernel. Some of the most important functions carried out by SETRU are:

– To retrieve information from the models connected to it, setting up data
structures accessed during the simulation.

– To resolve data dependencies, providing the requested simulation variables
to the corresponding models.

– To execute the different simulation models properly.
– To send values of updated simulation variables to the rest of processes for

maintaining data consistency.
– To create additional threads for handling communications with SimCorba

and executing the simulation commands received from it.

Figure 3 describes the Single Component Multiple Data paradigm used to
implement the simulator kernel as a Ccaffeine application. In this paradigm, all
components together with the framework are instantiated in every participant
process. Different components in the same process communicate among them
through the CCA Port mechanism, which occurs, for example, when SETRU
needs to call methods on models connected to it.

Simulation models can be programmed using both sequential and parallel
programming styles. Instances in different processes of the same parallel com-
ponent, e.g. TRAC in figure 3, communicate with each other by using a parallel
communication library such as MPI or PVM. In this case, all simulation vari-
ables computed by the model are distributed across the different processes. On
the other hand, instances of a component that represents a sequential simula-
tion model, e.g. SeqMod in figure 3, do not communicate among them and the

A CCA-compliant Nuclear Power Plant Simulator Kernel 291

same whole computation is executed on every process, having their simulation
variables replicated on all processes. Other situations can also be considered:
for example, a parallel simulation model having both distributed and replicated
data variables, or a sequential model being executed on one process only (not
replicated). The proposed simulator kernel supports the integration of all these
different types of simulation models together, maintaining data consistency for
both distributed and replicated data.

Simulation codes model the nuclear power plant as a set of interconnected
nodes and cells. We represent simulation variables, which are used to refer to
these nodes and cells, as instances of SIDL classes (figure 4). An instance of
class SimReference has a variable name, a number of node and a range of cells
over which the particular variable is computed, for example, pressure calculated
on node 2, cells from 1 to 5. SimVariable class extends SimReference to add
the specific real value that the variable takes on each cell. Simulation models
use lists of SimReference objects to declare simulation variables needed from
other models. The values of these requested variables are provided by SETRU
by means of SimVariable objects.

All simulation models are encapsulated into CCA components that imple-
ment the ISimModel interface shown in figure 4 and described in next section.
Since some methods of ISimModel are independent of the specific simulation
model, we offer a base class, called BaseModel, that implements them. Taking
advantage of the mechanisms provided by SIDL, classes implementing simula-
tion model components can (optionally) inherit from this base class. In this case,
the programmer only needs to code specific methods for configuring, initializing
and executing the specific simulation model.

4.2 Execution Phases

The simulator kernel execution is divided into two different phases. In the first
one, called the configuration phase, both simulation models and communications
with SimCorba are properly configured. In the second one, called the simulation
phase, the execution of the models is carried out according to the simulation
commands received from SimCorba.

Configuration Phase. The structure of a concrete simulator kernel, including
the simulation models employed, their relative execution order and a set of simu-
lation parameters, is described in a configuration file. SETRU component reads
this file and registers a ISimModel uses port for each simulation model com-
posing the simulator in order to communicate with them. On the other hand,
simulation models only needs to register one ISimModel provides port (to provide
services to SETRU), besides the proper uses ports needed to use functionality
offered by other auxiliary components. Port registration procedure is carried out
by the setService() method, which must be implemented by every component
according to the CCA specification. This method is called by the framework
when the component is instantiated.

292 Manuel Dı́az et al.

package simkernel version 1.0

{

 class SimReference

 {

 void createSimReference(in string name, in int node,

 in int initCell, in int finalCell);

 string getName();

 int getNode();

 ...

 }

 class SimVariable extends SimReference

 {

 void createSimVariable(in string name, in int node,

 in int initCell, in int finalCell);

 double getValue(in int cell);

 void setValue(in int cell, in double value);

 array<double> getAllValues();

 void setAllValues(in array<double> values);

 SimVariable subVar(in int initCell, in int finalCell);

 void assign(in SimVariable variable);

 string toString();

 }

 interface ISimModel extends gov.cca.Port

 {

 string getModelName();

 array<SimReference> getListRefRead();

 array<SimReference> getListRefUpdated();

 array<SimReference> getListRefProvided();

 SimVariable getVar(in SimReference reference);

 void setVar(in SimVariable variable);

 void setup();

 void initialize();

 void execute();

 }

 class Trac extends BaseModel

 implements-all ISimModel, gov.cca.Component

 {}

}

Fig. 4. SIDL definitions for SimVariable class and ISimModel component inter-
face.

Once all components are connected together, SETRU calls setup() and ini-
tialize() methods on each simulation model. The former contains the necessary
code to create and configure the simulation variables provided (computed) by the
model as well as the lists of SimReference objects representing the sets of vari-
ables read, updated and provided. The latter initializes the provided variables
with correct values. Then, SETRU calls getListRefRead(), getListRefUpdated()
and getListRefProvided() methods on the connected models. These methods re-
turn the lists of SimReference objects created by setup().

Since information obtained locally from the connected models is sent to all
participant processes, SETRU component in each process knows the location
(process and model) of simulation variables, which lets it to resolve local and
remote data dependencies:

A CCA-compliant Nuclear Power Plant Simulator Kernel 293

SETRU

Process 1

ParMod

SeqMod

SETRU

Process 2

ParMod

SeqMod

sm6

sm6

sm6 sm6

sm6

1. getVar() 2. setVar()

4. MPI

3. setVar()

Proxy variables

Fig. 5. All instances of SeqMod read the simulation variable sm6 provided by
ParMod in process 1. SETRU uses MPI for updating proxy variables in all
processes.

– Local data dependencies. When a simulation model needs a variable
computed by other model in the same process, SETRU provides it by calling
getVar() on the “provider” model and setVar() on the “requester”. An ex-
ample can be seen in figure 5, where SeqMod in process 1 needs to read the
simulation variable sm6 provided by ParMod in the same process. By calling
getVar() on ParMod, SETRU obtains a SimVariable object representing the
simulation variable, which is passed to SeqMod through setVar() method.
Since SIDL objects are implemented as references (pointers) by the respec-
tive programming languages, SimVariable instances used in both SeqMod
and ParMod models make reference to the same physical data.

– Remote data dependencies. However, if data dependencies involve differ-
ent processes, an additional intermediate (proxy) variable is created in every
process. When the simulation variable is modified due to the execution of
a particular simulation model, its new value is sent to the corresponding
processes by using these proxy variables. Figure 5 shows this type of data
dependencies as well. SeqMod instance in process 2 is the one that reads vari-
able sm6 exported by ParMod in process 1. SETRU creates proxy variables
on both processes. The SimVariable object representing sm6 is obtained by
calling getVar() on ParMod and assigned to the proxy variable in process
1. On the other hand, the proxy created in process 2 is passed to SeqMod
instance in the same process by calling setVar() method. During the simula-
tion, SETRU uses message passing for updating proxy variables in different
processes with the values computed by the provider model ParMod. This
way, simulation models can treat proxies as if they were local simulation
variables, reading or updating its values, while SETRU takes care of hiding
all communication details.

294 Manuel Dı́az et al.

Since the main execution thread carries out the simulation, additional threads
are needed in order to communicate with SimCorba application. At the end of
the configuration phase, SETRU creates these threads and initialize CORBA
communication mechanisms.

Simulation Phase. Each time a simulation model is going to be executed, its
required simulation variables must be updated with the latest computed values.
By using information obtained in the configuration phase, a specific inter-process
communication pattern can be established for each particular model in order to
determine the minimal MPI communications needed to resolve its remote data
dependencies. By using these fixed communication patterns, message passing is
carried out efficiently during the rest of the simulation.

From this point, the simulator kernel is ready to react to different simulation
commands received from SimCorba such as start/stop simulation, start/stop de-
bugging mode, execute n steps, query/modify simulation variable, etc. Once the
proper command has been received, the simulation begins with the execution of
the models in the relative order described in the configuration file. The execution
of a simulation model involves the following three steps that are carried out by
SETRU:

– Step 1: Proxy variables are updated with the values of simulation variables
hosted in other processes and needed by the model. Values of all simulation
variables sent from one process to another are previously packed together in
order to minimize message passing.

– Step 2: The simulation model is executed by calling its execute() method
in every process. This method contains the parallel or sequential code im-
plementing the simulation.

– Step 3: Once the model is executed, updated values corresponding to simu-
lation variables hosted in other processes are sent to them in order to modify
variables in the provider models.

4.3 Performance Evaluation

The use of CCA components together with the Ccaffeine framework, SIDL/Babel
tool for language interoperability and (specially) the defined runtime system,
which allows the integration and communication of generic simulation models,
may affect the efficiency of the system. The purpose of these experiments is to
evaluate the efficiency of the mechanisms the described simulator kernel is based
on. The developed prototype comprises implementations for SETRU component
and some test simulation models programmed in C++ with MPI. We consider
appropriate for our test models to implement simple parallel methods for solv-
ing partial differential equations (PDEs) based on domain decomposition tech-
niques [15]. We can adjust these numeric methods to demand the same CPU
utilization and communications than the real simulation models. The experi-
ments involve comparing the componentized simulator versus a specific direct

A CCA-compliant Nuclear Power Plant Simulator Kernel 295

Table 1. Execution time (in seconds) and overhead percentage (in brackets) for
simulation tests implemented by “classical” C++/MPI program and componen-
tized CCA simulator kernel prototype.

Simulation Test A
(Classical vs. CCA)

Sequential 2 Processors 4 Processors

Classical 72.34 40.24 26.30

CCA 75.20 41.92 26.65
(+3.95%) (+4.17%) (+1.33%)

Simulation Test B
(Classical vs. CCA)

Sequential 2 Processors 4 Processors

Classical 36.62 26.95 20.15

CCA 37.43 28.16 20.82
(+2.21%) (+4.48%) (+3.32%)

implementation made up of a single (non component-oriented) efficiently coded
C++/MPI program. We have programmed two different scenarios. The first one
(simulation test A) comprises computationally intensive parallel models. Data
dependencies among models always occur into the same process (local data de-
pendencies) so message passing is only due to parallel communications within
the cohort. The second one (simulation test B) represents a communication in-
tensive scenario in which we reduce CPU demands and add lots of inter-model
data dependencies involving different processes (remote data dependencies) in
order to make extensive use of SETRU communication mechanisms.

Executions have been carried out in a cluster of Pentium 4, 2.66GHz, 1GB
RAM Linux workstations interconnected with a 1Gb/s Myrinet network. Table
1 summarizes the obtained results, which are very similar for the two implemen-
tations in both simulation tests. This behavior is due to:

– Component interactions through CCA ports are performed efficiently in the
context of Ccaffeine framework.

– Communication schemes, automatically calculated in the configuration
phase, are very similar to those coded in the classical approach in order
to resolve inter-model remote data dependencies.

– Models use getAllValues() method of SimVariable to obtain an array object
containing cell values. SIDL array classes have a method which returns a
direct pointer to stored data. By calling this method for every simulation
variable in the configuration phase, efficient data access is carried out during
the simulation.

296 Manuel Dı́az et al.

– When reasonable amounts of computation take place into the models, which
is usual for the described simulators, the SETRU runtime system overhead
can be accepted.

As a first approach, results reveal the feasibility of our proposal, in the sense
that the minimal penalty overhead imposed by the CCA implementation (less
than 5% in both simulation tests) is compensated for by the advantages of the
component-oriented paradigm together with the developed runtime system.

5 Conclusions and Future Work

A nuclear power plant simulator is a complex, computationally intensive applica-
tion that can take advantage of component-based software engineering, especially
when the used component model allows the execution of parallel components
in an efficient way. This paper has presented a CCA-compliant simulator ker-
nel, where simulation models are implemented as both sequential and parallel
components. The main characteristics of the used model have been introduced.
Simulation models export the variables they own and declare the variables they
need. The kernel is in charge of solving data dependencies among components
in the configuration phase. This way, the programmer is released from manag-
ing inter-model communications and the simulation phase is carried out in a
more efficient way. Some preliminary results have shown the suitability of the
proposal.

A full scope nuclear power plant simulator needs the integration of hundreds
of simulation models. Currently, most of these models are developed by using
a graphical tool, which is going to be modified to generate the CCA-compliant
models in order to be integrated into the described simulator kernel.

References

1. Allan, B.A., Armstrong, R.C., Wolfe, A.P., Ray, J., Bernholdt, D.E., Kohl, J.A.,
The CCA Core Specification in a Distributed Memory SPMD Framework, Con-
currency and Computation: Practice and Experience, 14, 5 (2002), pp. 323–345.

2. Alvarez, J.M., Dı́az, M., Llopis, L., Rus, F., Soler, E., Practical Parallelization
Strategies of a Thermohydraulic Code, in Proceedings of Euroconference in Super-
computation in Non Linear and Disordered Systems, pp. 254–258, Madrid, Spain,
1996.

3. Components@LLNL: Babel, home page http://www.llnl.gov/CASC/components
/babel.html.

4. Dı́az, M., Garrido, D., Applying RT-CORBA in Nuclear Power Plant Simulators,
in 7th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2004), pp. 7–14, IEEE Computer Society, Vienna, Austria,
2004.

5. Dı́az, M., Garrido, D., A Simulation Environment for Nuclear Power Plants, in 8th
IEEE International Workshop on Distributed Simulation and Real-Time Appli-
cations (DS-RT 2004), pp. 98–105, IEEE Computer Society, Budapest, Hungary,
2004.

A CCA-compliant Nuclear Power Plant Simulator Kernel 297

6. Dı́az, M., Rubio, B., Soler, E., Troya, J.M., SBASCO: Skeleton-Based Scientific
Components, in Proceedings of the 12th Euromicro Conference on Parallel, Dis-
tributed and Network-based Processing (PDP 2004), pp. 318–324, IEEE Computer
Society, A Coruña, Spain, 2004.

7. Englander, R., Developing Java Beans. O’Reilly&Associates, 1997.
8. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Mancheck, R., Sunderam, V.S.,

PVM: Parallel Virtual Machine. MIT Press, 1994.
9. Heineman, G.T., Councill, W.T., Component-Based Software Engineering: Putting

the Pieces Together. Addision Wesley, 2001.
10. Horsmann, M., Kirtland, M., DCOM Architecture, Microsoft White Paper, 1997.

Available from http://www.microsoft.com/com/wpaper.
11. Monson-Haefel, R., Enterprise Java Beans 3th edition, O’Reilly&Associates, 2001.
12. Nieplocha, J., Harrison, R.J., Littlefield, R.J., Global Arrays: a Portable Shared

Memory Programming Model for Distributed Memory Computers, in Supercom-
puting’94, pp. 340–349, Los Alamitos, California, USA, 1994.

13. Object Management Group, CORBA home page http://www.corba.org.
14. Object Management Group (OMG), Specification of Corba Component Model

(CCM). http://www.omg.org/technology/documents/formal/components.htm.
15. Smith, B., Bjorstad, P., Gropp, W., Domain Decomposition. Parallel Multilevel

Methods for Elliptic P.D.E.’s. Cambridge University Press, 1996.
16. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J., MPI: The Com-

plete Reference, volume 1–The MPI Core. MIT Press, 1998.
17. Tecnatom S.A. home page http://www.tecnatom.es
18. The Common Component Architecture Forum, home page http://www.cca-

forum.org.
19. Vanneschi, M., The Programming Model of ASSIST, an Environment for Parallel

and Distributed Portable Applications, Parallel Computing, 28, 12 (2002), pp.
1709–1732.

Experience with Component-Based Development

of a Telecommunication Service

Gregory W. Bond, Eric Cheung, Healfdene H. Goguen, Karrie J. Hanson,
Don Henderson, Gerald M. Karam, K. Hal Purdy, Thomas M. Smith, and

Pamela Zave

AT&T Laboratories—Research, Florham Park, NJ 07932, USA
{bond,cheung,hhg,karrie,don,karam,khp,tsmith,pamela}@research.att.com

Abstract. AT&T CallVantageSM service is a consumer broadband
voice-over-Internet-protocol (VoIP) service. Its feature server has a
component-based architecture. This paper is a brief report on our expe-
rience with building and deploying advanced telecommunication features
using component-based technology.

1 Introduction

Distributed Feature Composition (DFC) is a component-based software architec-
ture for the development of telecommunication services [4]. In AT&T Research
we have built an Internet-based implementation of DFC [2]. We have also built
the iStudio platform for constructing Web services with an emphasis on reuse [7],
and integrated the two service platforms as an application server called V+Plus.

AT&T CallVantageSM service is a consumer broadband voice-over-Internet-
protocol (VoIP) service whose advanced features are built and deployed on
V+Plus. The service architecture uses the well-known VoIP protocol SIP [5].
V+Plus functions within the service architecture as a SIP application server.

The AT&T CallVantageSM service was launched in March 2004, and is now
available in most of the United States. It has received a great deal of favorable
press coverage, particularly for its advanced features and voice quality. It has
merited a VoIP Service Provider Award from Internet Telephony magazine, and
PC Magazine’s Editors’ Choice Award.

This paper is a brief overview of our experience with specifying, developing,
deploying, and maintaining the service’s advanced features, beginning in May
2003. It focuses on the use of components in this software.

2 Components in DFC

In telecommunication software, a feature is an increment of functionality added
to the basic communication capability. Features are both the work units for soft-
ware development and the concepts through which a telecommunication service
is explained to its users.

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 298–305, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Component-Based Development of a Telecommunication Service 299

confirm
answer inter−

face

answer
confirm face

inter−

faceface
inter− locate inter−

confirm
answer

me

Fig. 1. The Locate Me feature is implemented with two box types.

The telecommunication world has long acknowledged the difficulty and im-
portance of being able to add, delete, and modify the features of a complex
telecommunication service. This calls for a style of modularity in which the
modules are features. It is also well-understood that features have many inter-
actions, and that managing these interactions is critical to reliability and user
satisfaction. This calls for structured composition of feature modules, so that
their interactions can be predicted and controlled.

The DFC architecture was designed to provide feature modularity and struc-
tured feature composition. It is an adaptation of the idea of pipes and filters [6]
to the application domain of telecommunications.

In DFC, a request for service is satisfied by a dynamically assembled graph
of boxes and internal calls. A box (filter) is a concurrent process implementing
interface or feature functions. An internal call (pipe) is a featureless, point-to-
point connection containing a two-way signaling channel and any number of
media channels.

In the context of this paper, a DFC internal call is like a plain, old-fashioned
telephone call. So the simplest useful graph has two interface boxes, each repre-
senting a telephone or other device, connected by one DFC internal call.

More typically, many features apply to each request for service. When fea-
tures apply, the dynamically assembled graph contains feature boxes implement-
ing these features. Figure 1 shows a fragment of such a graph. Note that a typical
connection path between two interface boxes is a chain containing many feature
boxes and internal calls.

When a feature box is inactive it behaves transparently. For a feature box
between two internal calls, transparent behavior consists simply of connecting
their media channels and relaying signals between them. When a feature box is
active, on the other hand, it has the autonomy and power to affect communica-
tion in any way required. It can place, receive, and tear down internal calls. It
can manipulate media channels. It can also absorb, generate, or alter signals as
well as propagating them transparently.

300 Gregory W. Bond et al.

The formal definition of DFC [11] falls into three parts. The protocol governs
how internal calls, signaling channels, and media channels are established and
used. The data model partitions persistent data, which can be read and written
by boxes. The routing algorithm controls how boxes of various types are assem-
bled dynamically into connection graphs. The routing algorithm is invoked each
time a box places an internal call, and it selects the type of box that will be
instantiated or located to receive the call.

The routing algorithm uses data in two categories. Subscriptions indicate
which addresses (telephone numbers) subscribe to which features. Precedence
governs the order of features boxes along paths within a graph, and is the primary
mechanism for managing feature interactions.

The DFC protocol and routing algorithm are designed so that each feature is
optional and each feature box is context-independent—it does not know or need
to know which other feature boxes are present. This is the fundamental source
of modularity in a pipes-and-filters architecture.

To clarify terminology, a box is a dynamically created and assembled compo-
nent in the architecture. The box’s type corresponds to a program of which the
box is an instantiation.

3 How DFC Boxes Are Used in the Service

3.1 Boxes as Identified Features

Considering all its versions, AT&T CallVantageSM service has 25 features that
have been identified and named, either externally (to users) or internally (as
units of software development).

Of the 25 features, five (Caller Identification, Caller Identification Blocking,
Call Forwarding, Call Waiting, and Three-Way Calling) are basic telecommuni-
cation features implemented in a VoIP switch. Two (International Billing, Inter-
national Call Screening) are implemented in routing components. Three (Phone
Book, Simple Reach Numbers, Voicemail eFeatures) are implemented wholly
in the Web and data facilities of V+Plus. The remaining 15 are implemented,
wholly or in part, by DFC boxes as shown in the table.

Most commonly, there is a one-to-one correspondence between telecommuni-
cation features and DFC box types. Occasionally a box type implements more
than one feature. For example, a voice portal box implements the Personal Call
Manager feature. The same box type also implements the Speed Dial function,
which is identified to users as a feature.

Also, some features must be implemented using boxes of more than one type.
A good example is Locate Me, as shown in Figure 1. An instance of the locate
me box type can place internal calls—in parallel—to several possible telephones
where its subscriber might be located. When one of these attempts succeeds,
locate me aborts the others and connects the answered telephone with the caller.

Component-Based Development of a Telecommunication Service 301

DFC Box Type Features Implemented Other Purpose
answer confirm Locate Me
blind transfer Add Callers
call blocking Call Blocking
call log Call Log
click-to-dial Click-to-Dial, Record and Send
conference manager Personal Conferencing
de-identification adaptor
do not disturb Do Not Disturb
identification adaptor
iStudio interface adaptor
join Personal Conferencing
locate me Locate Me
mid-call move Switch PhonesSM

mid-call offer Switch PhonesSM

phonebook name Phonebook Name
rendezvous Add Callers
remote identification Personal Call Manager
safe forwarding number Safe Forwarding Number
send to voicemail Send to Voicemail
SIP interface adaptor
ten-way calling Add Callers
tone generator adaptor
voice mail Voice Mail
voice portal Speed Dial, Personal Call Manager
voice user interface adaptor
VoiceXML interface adaptor

An answer confirm box performs another function of the Locate Me feature.
If the callee telephone is answered, it prompts for a confirmation that the phone
has been answered by the person requested by the caller; if it does not receive
a confirming response, it does not propagate a success signal upstream to the
locate me box. There is an instance of answer confirm for each parallel attempt,
which is why it must be separated from the locate me box.

The answer confirm function is particularly valuable when one of the tele-
phones is part of a cellular network with its own Voice Mail feature. Without
answer confirm, every time the cellphone is unavailable, the call to it will be
“answered” by cellphone Voice Mail. This “answer” will probably precede all
other answers, aborting the other attempts and subverting the purpose of locate
me.

3.2 Boxes as Reusable Building Blocks

From another perspective, DFC boxes are reusable building blocks for building
telecommunication services. There is reuse at several levels.

302 Gregory W. Bond et al.

At the highest level, we reused whole features from prototype systems we have
built in the past. Some required minor modifications to fit into the environment
of the new service.

At a lower level, the design of a feature is sometimes influenced by the ex-
istence of box types that can be used as generic components to implement it.
This is the primary reason why Add Callers—a complex feature that allows the
spontaneous formation of conferences of up to ten people—is implemented using
three DFC box types.

At a lower level yet, programs are reused to create new box types. We have a
“redirect on failure” box program that is used, with modifications for failure type
and redirection address, to create the voice mail and safe forwarding number
box types. We have an “address translation” box program that is used, with
parameters for regular expression to be matched and string to be substituted,
to create any box type that modifies the addresses (telephone numbers) in the
signals that initiate internal calls.

At the lowest level, our programming language for boxes [3] allows us to
identify and package program fragments for reuse in other box programs. We
have amassed a significant collection of such fragments.

3.3 Boxes as Adaptors

The V+Plus application server operates in an environment with many other
hardware components such as VoIP switches, gateways, routers, telephone adap-
tors, and media servers. Despite the fact that SIP is a standardized protocol, all
VoIP technology is immature, and integration problems are commonplace.

Given the fact that a DFC box is a filter in a pipes-and-filters architecture, it
is not surprising that we find them useful as adaptors. The most important adap-
tors are interface box types. Interface boxes form the periphery of DFC graphs.
A SIP interface box translates between SIP and the DFC protocol, which is bet-
ter suited for component composition than SIP. An iStudio interface box allows
Web services to launch telecommunication activities (see Sections 3.4 and 4). A
VoiceXML interface allows feature boxes to place calls to media servers capable
of running VoiceXML scripts that specify interactive voice-response dialogues.

We put code in interface boxes and other adaptors to solve integration prob-
lems as they arise. Modularity is particularly beneficial in this context, because
the adaptors represent short-term or localized decisions that we would not wish
to embed deeply in feature code.

For example, the identification and de-identification box types bridge a con-
ceptual gap between DFC and the architecture of the service as a whole. In
DFC routing decisions are based strictly on addresses. In the architecture of
the service as a whole, routing decisions can also depend on which hardware
component originates the routing request. Fortunately, well-placed adaptors can
convert from one kind of state to the other.

A tone generator box is another kind of adaptor. For the most part, gen-
eration of “progress” tones such as busytone and ringback is the responsibility
of hardware components independent of V+Plus. However, deficiencies in SIP

Component-Based Development of a Telecommunication Service 303

prevent these components from getting the necessary signals under all circum-
stances. When SIP cannot carry the necessary signals, a tone generator box
(with the help of a media server) generates the tone and inserts it into the voice
channel.

3.4 Boxes as Interfaces to Web Services

Persistent data is the interface between telecommunication and Web services, as
it can be read and written by both. For example, call log boxes record history
that can be accessed by subscribers via the Web. A phonebook name box looks up
the name corresponding to a calling telephone number in the callee’s phonebook,
and substitutes the name for the number in Caller Identification.

Sometimes the interaction between the two aspects of the service is more ac-
tive. The Click-to-Dial feature is activated by a Web service when a subscriber
clicks on a telephone number. The Record and Send feature calls a list of tele-
phone numbers, delivering a prerecorded message to each; it is activated from
the Web and implemented by repeated activations of Click-to-Dial.

4 Component-Based Development of Data Views in the
Service

Both Web browsers and telephones are end-user interfaces for AT&T
CallVantageSM service. Through them, users can enable or disable features,
change feature settings, or access personal content such as voicemail messages.
The iStudio [7] architecture offers a component-based implementation of these
interfaces that is complementary to boxes in the DFC architecture.

Similar to Apache Struts [1] in philosophy, iStudio provides us with a mech-
anism for supporting software objects that compartmentalize the data for fea-
tures such as Call Log, Voice Mail, and Locate Me. Each component manages
the database tables and operations for its own feature.

iStudio accesses the database on behalf of all other software in V+Plus. It
produces HTML for visual Web pages, VoiceXML scripts for interactive voice-
response dialogues, and data values for use by DFC boxes. The generators of
these data views all share the feature-specific software objects mentioned above.

The Click-to-Dial and Record and Send features are activated by Web ser-
vices. A user request for one of these features is delivered from the Web ap-
plication to an iStudio interface box that places a DFC internal call to begin
assembly of a graph of feature boxes.

5 History and Evaluation of Software Development with
V+Plus

We delivered the first 11 features to a test organization two months from the
inception of the project. It was possible to fit requirements specification, design,
and implementation into this extremely short period only because of much reuse.

304 Gregory W. Bond et al.

Reuse of code, as described in Section 3.2, is obviously important. Equally
important is the reuse of domain knowledge based on the DFC architecture.

The DFC architecture constrains how features can interact, and is therefore a
foundation for theories of feature interaction. Such theories predict how features
can interact, justify how they should interact, and provide design constraints
proven to satisfy correctness in these terms.

These theories are still immature (see [9, 8, 10] for examples). A rudimentary
understanding is better than none at all, however, and was extremely helpful to
us in predicting feature interactions and in deciding how to manage them. For
example, all of Locate Me, Do Not Disturb, Voice Mail, Call Blocking, Send to
Voicemail, and Safe Forwarding Number make decisions concerning the disposi-
tion of incoming calls. They must interact so that exactly the right features, in
the right order, are activated in each situation.

A few feature interactions compromise modularity to the extent that one
feature must be programmed with another feature in mind. For example, a voice
mail box generates a special signal so that a call log box knows whether or not
a caller recorded a message. This is necessary because the basic DFC proto-
col does not distinguish these cases. It is always possible, however, to program
cooperating feature boxes so that neither breaks if the other is absent.

The implementation of AT&T CallVantageSM features is not a trivial use of
components. In the first release of the service a connection path between two sub-
scribers could contain 20 DFC boxes, even without any forwarding (forwarding
to other subscribers would increase the number of boxes by seven per forward).

The first release of the service was deployed in a consumer trial which began
October 2003. In preparation for the first generally available release in March
2004, we removed a few features from the trial version and made a major change
in the media handling. Feature removal was easy due to feature modularity in
both DFC and iStudio. The need to change media handling is typical of a rapidly
evolving technology, in which the available resources and capabilities can change
frequently. The software modification was accomplished quickly, in part because
the DFC architecture maintains a separation of concerns between the service
layer (features) and the network layer (resources).

Subsequent software development has entailed new feature development,
maintenance, and performance optimization. As expected, adding new features
to the service is easy. There have been relatively few bugs in feature code.

Most maintenance issues are system-integration problems, arising from the
immaturity of VoIP technology. Unfortunately they have arisen frequently and
will continue to arise for some time to come; at this point almost every new
function added to the service exposes new incompatibilities among the hardware
components of the service architecture.

It is inevitable that the modularity of DFC will exact a performance penalty.
Our measurements indicate that the penalty is small compared to VoIP perfor-
mance issues that are independent of feature modularity.

We are working toward accurate performance assessments. Meaningful com-
parisons between implementation alternatives are difficult to obtain, however,

Component-Based Development of a Telecommunication Service 305

because they require multiple implementations of equivalent feature sets, not to
mention adequate time in a laboratory full of expensive test equipment.

6 Conclusion

V+Plus was originally built as a research prototype. Nevertheless, it continues
to provide the advanced features of a nationwide consumer telecommunication
service built on rapidly evolving technology.

Our experience demonstrates the feasibility and value of a component-based
architecture in the area of telecommunications. The experience is particularly
interesting because the component model is based on pipes and filters rather than
the more common object-oriented programming. Object-oriented programming
is also present—most of our infrastructure code is written in Java—but at a
lower level of abstraction than the components discussed here.

In the community of researchers concerned with feature interactions and
telecommunication software, the DFC component model has been considered
interesting but radical and impractical. Our experience demonstrates that it
is adoptable and completely practical. None of us would dare to work with a
technology as complex and volatile as VoIP without this kind of support for
evolution and adaptation.

References

[1] Apache Struts. http://struts.apache.org.
[2] G. W. Bond, E. Cheung, K. H. Purdy, P. Zave, and J. C. Ramming. An open

architecture for next-generation telecommunication services. ACM Transactions
on Internet Technology, 4(1):83–123, February 2004.

[3] G. W. Bond and H. H. Goguen. ECharts: Balancing design and implementa-
tion. In Proceedings of the Sixth IASTED International Conference on Software
Engineering and Applications, pages 149–155. ACTA Press, 2002.

[4] M. Jackson and P. Zave. Distributed Feature Composition: A virtual architecture
for telecommunications services. IEEE Transactions on Software Engineering,
24(10):831–847, October 1998.

[5] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. IETF Network
Working Group Request for Comments 3261, 2002.

[6] M. Shaw and D. Garlan. Software Architecture. Prentice-Hall, 1996.
[7] A. H. Skarra, K. J. Hanson, G. M. Karam, and J. S. Elliott. The iStudio envi-

ronment: An experience report. In Proceedings of the International Workshop on
XML Technologies and Software Engineering, May 2001.

[8] P. Zave. An experiment in feature engineering. In A. McIver and C. Morgan,
editors, Programming Methodology, pages 353–377. Springer-Verlag, 2003.

[9] P. Zave. Address translation in telecommunication features. ACM Transactions
on Software Engineering and Methodology, 13(1):1–36, January 2004.

[10] P. Zave, H. H. Goguen, and T. M. Smith. Component coordination: A telecom-
munication case study. Computer Networks, 45(5):645–664, August 2004.

[11] P. Zave and M. Jackson. The DFC Manual. AT&T, 2001. Updated as needed.
Available from http://www.research.att.com/projects/dfc.

Reusable Dialog Component Framework for

Rapid Voice Application Development

Rahul P. Akolkar1, Tanveer Faruquie2, Juan Huerta1, Pankaj Kankar2,
Nitendra Rajput2, T.V. Raman3, Raghavendra U. Udupa2, and

Abhishek Verma2

1 IBM T J Watson Research Center, Yorktown Heights NY, 10598, USA
2 IBM India Research Lab, IIT Campus, Hauz Khas, New Delhi, 110016, INDIA

3 IBM Almaden Research Center, San Jose CA, 95120, USA

Abstract. Voice application development requires specialized speech re-
lated skills besides the general programming ability. Encapsulating the
speech specific behavior and complexities in prepackaged, configurable
User Interface (UI) components will ease and expedite the voice applica-
tion development. These components can be used across applications and
are called as Reusable Dialog Components (RDCs). In this paper we pro-
pose a programming model and the framework for developing reusable
dialog components. Our framework facilitates the development of voice
applications via the encapsulation of interaction mechanisms, the en-
capsulation of best-of-breed practices (ie. grammars, prompts, and con-
figuration parameters), a modular design and through pluggable dialog
management strategies. The framework extends the standard J2EE/JSP
based programming model to make it suitable for voice applications.

1 Introduction

Telephony-based voice applications offer a cost-effective way for enterprises to
automate their call centers. Additionally, they provide an alternative user in-
terface to their customers for accessing enterprise services. Through telephony
applications, the enterprises gain by increasing the penetration of their services
beyond the Web/computer literate world. The first generation of IVR (Interac-
tive Voice Response) applications that capture a user’s response through dialing
DTMF digits on a telephone keypad are still used widely in banking and travel
industries. Enhancements in speech recognition technologies over the past decade
has seen the evolution of these IVR applications to conversational systems where
a user can speak to the system and the voice is recognized to perform the desired
user action. Such conversational systems provide a much more natural interface
to the user. 914-945-1800 is an example of an IBM application that uses voice
interactions to increase productivity. This conversational system provides the
phone number of the person whose name is spoken. Over the last couple of
years, conversational systems have matured to handle more complex responses
from the users, those that incorporate Natural Language Understanding tech-
niques coupled with the speech recognizers. The DARPA COMMUNICATOR

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 306–321, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Reusable Dialog Component Framework 307

application [1] is one such real world example of a complex dialog conversational
system.

Due to nature of the communication channel, a voice application results in a
sequence of dialog turns with the user. The system carries out these interactions
and interprets what the user says in the context in which these utterances occur.
The applications developed should have an intuitive interface for the callers and
allow them to quickly and dynamically interact with the system. It should also
intelligently integrate back-end processes into user driven information flow. In
contrast to GUI based applications, which are spatial in nature, voice applica-
tions are temporal in nature, hence they need to handle on-the-spot error-control,
validation and dialog flow control. The application design should be readily ac-
ceptable by developers and be easy to develop and maintain since the end aim is
to provide organizations with business benefits of cost-reduction, efficiency and
superior interface. The application also needs to handle user commands (like ask
for help, ask to start over, or ask to repeat a piece of information) in addition
to providing the requested information.

Speech applications are generally specified in interaction flowcharts called
callflows. A voice application developer is responsible for authoring the code that
carries out the interaction specified in the flowchart. Authoring such applications
involves implementing large call flows of the user interaction. Developers also
need to provide mechanisms such as confirmation, correction and re-prompting
to handle speech recognition errors. The richness of user interaction finally deter-
mines the usability of the voice application. Call flows become complex as they
have to handle all such speech nuances. Designing such applications not only re-
quires programming expertise, but it also requires familiarity with the behavior
of conversational systems. A desirable voice application is one that encapsulates
all speech tecnology artifacts, the dialog management nuances and the standard
client-server issues and presents a robust and intuitive interface.

The evolution of the voice application development platforms had started
with the standardization of the VoiceXML [2], the markup language for voice.
Most voice browsers can now execute the voice applications written in this stan-
dard language. Additional markups such as SALT [3] have also evolved and
matured. Speech applications are beginning to move to the next stage where
complex applications are deployed on a standard Web Server and implemented
through programs that deliver dynamically generated VoiceXML markup in re-
sponse to requests from a VoiceXML browser. As in the case of the visual Web,
the next step in the mainstreaming of speech Web applications is the adoption of
uniform programming models such as the J2EE/JSP framework in the creation
and deployment of such applications.

1.1 Componentization in Voice Application Development

Owing to the additional speech specific skills that are required for developing
robust and user friendly voice applications, the development process becomes ex-
pensive in terms of time and resources. A component based approach to develop
voice application by reusing the pre-existing components becomes an attractive

308 Rahul P. Akolkar et al.

feature. Components can help in encapsulating knowledge about the behavior
of a speech recognition system, of a speech synthesis system and of the differ-
ent mechanisms to validate and correct the recognition errors. Components can
also be used to encapsulate the different dialog management strategies within
the components. By following a component based approach to build voice ap-
plications, the level of abstraction can be raised so that development of voice
applications does not require a burdensome level of speech specific skills.

Existing research in the component based voice application development was
initially focussed on developing static VoiceXML components [4]. Industry prod-
ucts such as Nuance SpeechObjects [5], also provide VoiceXML components that
can be plugged in an application development environment to generate voice
applications. These components however, leverage client side processing of the
components through embedding scripts in the VoiceXML. The mechanism of
using client side processing in the components limits the features of the compo-
nent. Complex validation and disambiguation mechanisms that require back-end
information are not possible in such a framework. Additionally, components that
restrict the scope of component execution on the client are not scalable in terms
of the advancement of processing. For example, using the components mentioned
in [6] it is not possible to extend the work to perform credit card validation on the
client side, since it requires additional information from the back-end databases.
Although these components provide dialog management execution on the server
side, the non existence of server side execution of other features is still a hin-
drance to the power of a component.

Researchers have proposed systems that provide a mechanism to build voice
components that can execute on the server [7]. However these efforts have not
been carried out in a standardized open-source programming model. For a com-
ponent based approach to be reusable across different applications, standard
programming models need to be followed.

Since the aim of building voice applications using components is to ease
the application development skills and time and still build rich interactions, the
components need to be designed such that they can be used in a voice application
development toolkit. Voice application development platforms such as the IBM
Voice Toolkit for Websphere Studio [8], the Avaya Speech Applications Builder
[9], the Genesys Voice Platform [10] and the Nuance NLSA provide a platform
for plugging such dialog components into their programming interface. With a
component based framework, these tools can be made more effective in reducing
the complexity involved in developing applications.

1.2 Our Contribution

In this paper we describe a novel approach to voice application development
based on Reusable Dialog Components. The proposed RDC framework is based
on a J2EE/JSP programming framework. The emphasis in our framework is to
reduce the application development cost by allowing the application developer
to create voice applications based on reusable User Interface components. The

Reusable Dialog Component Framework 309

components provide rich UI techniques of disambiguation, validation and correc-
tion, besides being robust. The framework also provides a mechanism to develop
more components from the existing set, thus handling scalability of the compo-
nent model. The framework allows for executing the components on the server
side, thus providing a richer exposure to back-end data and processing capabili-
ties for the component. By providing a mechanism to develop voice applications
by easily configuring the components and plugging them in an application, the
framework ensures that building a J2EE/JSP application constitutes the basic
level of skill needed for building a voice application. The development tools used
to build voice applications are the same as the ones that are used in building
J2EE/JSP applications.

Section 2 describes an RDC at a high level and presents its features. The
detailed description of the framework is presented in Section 3. This section also
describes the RDC public contract and the RDC execution through a finite state
machine. Section 4 describes two voice applications and illustrates how RDCs
can be used to build real world voice applications. The analysis and benefits of
using RDCs to build a car rental application is also highlighted. Scope for future
work and a conclusion of the paper are presented in Section 5.

2 Overview of RDCs

The RDC components encapsulate well-tried elements of speech UI design. A
component collects information from the user, ensuring that all the required
interactions for guaranteeing the completeness, such as validity and canonical-
ization format of the data are provided. Based on the type of data they collect,
components are classified into atomic and composite. Atomic components (or
atoms) collect simple types, for example, a date, a time, a dollar amount. In
contrast, composite components are responsible for complex data types. Exam-
ples of composite types are addresses, details of a trip, payment method including
credit card number, type and expiration dates etc.

RDC Encapsulations The RDCs encapsualte the following constituents of a
speech UI. Thus an application developer does not have to handle these nuances
while developing a speech application.
1. Grammar Design: Since the components provide the grammars with respect

to the prompts, an application developer is not required to have an under-
standing of the different gramars that are needed to carry out a particular
UI task.

2. Dialog Management Strategies: The RDCs are designed with different dialog
management strategies which a UI task can follow. All these are implemented
within the component.

3. Error Handling: The RDC is self healing in the sense that it encapsulats
the mechanisms to handle a mis-recognized utterance and the mechanism to
rectify these errors.

4. Disambiguation and Validation: The RDC also encapsulates the different
validation checks that are dequired for a particular data type. The RDC

310 Rahul P. Akolkar et al.

itself detects ambiguities, or inconsistencies in the data that it gathered, and
generates the dialog artifacts necessary to allow the component to handle the
disambiguation, clarification or correction states.

Althouth these mechanisms are encapsulated and implemented within a RDC,
they can all be configured and overwritten for a specific application.

Features of RDCs Following are the features of an RDC that make it reusable
and adaptable to applications.
1. Configurability: An RDC can be configured for a particular application by

providing application specific prompts and parameters to the component. For
example, the same date RDC can be configured to work as a expiry date UI
component in one application and as a date-of-journey in other application.

2. Reuse: Since the RDC can be configured for different applications, the reuse
of the same component is extremely useful in building UI components of
a voice applications. The reusability ensures the reduction in application
development time and effort.

3. Dynamic code generation: Since the RDCs are authored as JSP pages, these
generate dynamic VXML at runtime. This provides a richer interface and
flexibility as compared to static VXML code components.

4. Composite RDC generation: The RDCs can be used to further build bigger
UI components if the application identifies their reusability. The aggregation
of components into a composite component extends the use of component
based framework beyond the existing set of components.

These features enable RDCs to provide a more modular and reusable ap-
proach to building voice applications. Furthermore, they hide the difficulty and
complexity of creating high quality voice artifacts, allowing for consistent and
highly reusable components.

3 Framework

The RDC framework enables speech developers create and package dialog com-
ponents which can be used by Web application developers for building speech
applications. The framework also supports composition of components in a very
simple way wherein a programmer can write new components by composing
them from already existing components. The architecture is designed around a
JSP-based programming model (JSP2.0) and RDCs are made available as a JSP
taglib that can be used within JSP pages. Voice applications authored using
RDCs are standard JSP pages that generate VoiceXML 2.0 dialogs.

The design delegates application specific dialog management to authors of
the JSP pages, the user interface dialog management to the prepackaged reusable
components and finer grained dialog management to the VoiceXML browser by
generating the appropriate VoiceXML. By splitting complex voice interaction
across one or more JSP pages, and by having these JSP pages dynamically gen-
erate VoiceXML pages based on prior user interaction, the framework enables

Reusable Dialog Component Framework 311

application authors define dialogs that would become hard to maintain if au-
thored as static VoiceXML pages.

Within the framework, applications are authored using one or more RDCs,
which are the VUI (Voice User Interface) equivalent of a user interface widget.
These encapsulate the finer details of voice interaction, and allow the developer
to focus on the overall interaction logic when speech-enabling a given application.
They collect user input and publish these values using a data model. While there
are two types of RDCs (atomic and composite), both types obey the same public
contract with respect to the calling application.

3.1 Public Contract

RDC
Tag Attributes

Configuration
file Public Data

Model

Fig. 1. RDC as Black Box

RDCs provide a consistent interface to the users who can use them to build
application or to compose a bigger component. While composing bigger compo-
nent, the resulting composed RDC also provides the same public interface. Thus,
dialog components can be recursively composed. Looking at RDC as a black box
(Figure 1), the public contract of an RDC consists of the following:

– Configuration: RDCs expose a set of configurable parameters that are used to
define its functional behavior, validation constraints and interaction prompts.
These parameters make the RDCs reusable and suited to desired scenario.
The configuration consists of following two parts
• Configuration File This is an XML based file that an application de-

veloper uses to provide prompts for various interaction stages with the
user like input, confirmation, validation, etc. One can also provide speech
specific properties like input timeout, barge-in, etc.

• Tag attributes The JSP tag attributes are used to control the functional
behavior of the RDC like whether to confirm or not, whether to echo
the collected input or not, etc. These are also used to provide validation
constraints for input verification. For e.g., date RDC can have validation
constraints like minDate, say February 12 2004, and maxDate, say Feb
17 2005. The validation constraints come in handy for on-the-spot error
checking and validation and rid the application developer of explicit
checks after the value is collected.

– Public Data Model: Each RDC returns the collected and canonicalized user
input to a pre-defined data structure called the Public Data Model. The type
and format of the value of being returned are published by the RDCs so that
application developers can use them accordingly.

312 Rahul P. Akolkar et al.

3.2 Internal Design

The framework defines certain core data structures that are needed for managing
the execution of RDCs. It also defines data structures that each RDC much
inherit to manage transient data and states necessary for its successful execution.
Besides these data structures, each RDC also defines a Finite State Machine
(FSM) that is used for dilaog management, and encapsulates necessary validation
logic to verify the user input. Figure 2 provides a high-level overview of the
framework design through a UML class diagram. The detailed description is
presented later in the section.

BaseModel
getState()

GroupModel
LocalMap()

AtomModel
Value()
Validate()
Canonicalise()

Atom
Control(FSM)

Component
Model
LocalMap()
ConfigMap()

Composite

Group

DialogManager
Interface

MixedInitiative

Application

Init()
Run()

DirectedDialog

start(rdc)
rdc = next()

RuleBased

start(rdc)
rdc = next()

DMImp
init()

0..*

1

1

0..*
1

0..*

1
1
1

11 1

1

1
1

1

1

1

Fig. 2. UML Class diagram of the RDC framework

Data Structures BaseModel is the core data strucuture which forms the basis
of the whole framework. It defines key fields which will be needed for execution of
any RDC. Each RDC maintains a private data model to hold private interaction
state. The private data models of all dialog components directly or indirectly
extend the BaseModel class. Dialog Map is a data structure that holds the private
data models of all RDCs within the JSP page so that they can be accessed across
dialog turns. It is map in which the data models are hashed using RDC id as
the key.

Implementation RDCs are themselves implemented as a JSP page. The im-
plementation factors out common data structures such as the Java Beans used
to model interaction state into a set of reusable Java classes. Atomic RDCs use
a Finite State Machine (FSM) to model the various interaction states attained

Reusable Dialog Component Framework 313

Input Confirmation

Dormant

Canonicalize
and Validate

Done

Disambiguate

Input received Valid input and
confirm is true

Ambiguous input
Input received

Invalid Input

Valid input and
confirm is false

Input confirmed

Input rejected

Container has to
explicitly make
this transition

Fig. 3. FSM of Atomic RDC

by the component (Figure 3 illustrates an example of such FSM); the code that
implements this FSM is itself factored into a reusable helper tag. This helper tag
can be used to advantage in ensuring that all atomic RDCs exhibit a common
sound and feel. Similar to atomic RDCs, the composite RDCs must also define
their own FSM. Internals of an RDC perform the following steps:
– Initialize private data model for interaction state.
– Implement internal interaction logic as defined by FSM.
– Produce VoiceXML for collecting value.
– Perform validation as needed.
– Canonicalize value.
– Signal completion.

An RDC may carry out one or more dialog turns with the user to complete
its execution. For example, a Date component upon receiving a partial date,
might generate VXML code to prompt the user for additional information using
a disambiguating prompt. Thus execution of a single RDC may involve several
round trips between client and server and necessitate RDCs to maintain their
state and data across such client-server round trips.

Before an RDC starts executing, it must create an instance of its private
data model within the Dialog Map. All RDCs in a JSP page are invoked during
the execution of the JSP page. Each RDC looks at their private data model and
depending on its state and other data structures decides if it needs to generate
code or just remain silent. We describe this mechanism sequence in more detail
in the following section.

3.3 Atomic FSM

The FSM of an atomic RDC is shown in Figure 3. The FSM starts in either
Dormant or Input state depending upon whether it is inside a container or hosted

314 Rahul P. Akolkar et al.

directly within the JSP page. In Dormant state the atom does nothing. When the
atom is in Input state, it generates VoiceXML markup for accepting input from
the user. Once the input is received, it is checked for ambiguity, canonicalized
and validated against constraints, general as well as user-specified. If the input
is valid, then the FSM transitions to Confirmation or Done depending upon
whether the confirm attribute of the atomic RDC is true or not. In Confirmation
state, appropriate markup to confirm the user input is generated and the user
response collected. Done state is the final state of the FSM and the collected
input is published through public contract.

3.4 Aggregation

When RDCs are used within a JSP page, the JSP author is responsible for
managing the dialog flow among the various atoms hosted within that JSP page.
Implementing the dialog management mechanisms across RDCs in the JSPs can
constitute quite a substantial task. To handle this repetitive task, the RDC
framework provides a generic container tag called group whose purpose is to
aggregate other components, and to manage the interaction flow among them.
The container tag allows use of many pre-designed strategies to move among
the various dialog that make up a given interaction. Following snippet shows the
structure of the group tag. As shown a group may contain both RDCs as well as
other Groups.

<rdc:group id="pickup" strategy="SimpleDirectedDialog">

<Tag for RDC1>

<Another Group>

.....

<Tag for RDCn>

</rdc:group>

Pluggable Dialog Manager Interface Group provides a pluggable interface
for including different dialog management strategies for managing the dialog
component contained within it. The core of the pluggable dialog manager design
is the DialogManager interface which must be implemented by any dialog man-
agement strategy to be used with the group. DMImp class (as shown in Figure
2) provides a default implementation of the DialogManager interface. Our cur-
rent implementation provides three pre-built dialog management strategies for
managing the dialog flow of a group.

– Directed Dialog: Only one dialog components is executed at a time. The
components are enabled to conduct their dialogs in the document order.
Only when the current component finishes its dialog execution, the strategy
moves to the next component.

– Mixed Initiative: More than one dialog components are activated simulta-
neously to collect multiple pieces of information in a single user interaction
turn. The user can specify inputs for one, all or any other combination of
components which are currently active. Thus user also has control on the

Reusable Dialog Component Framework 315

dialog flow and can direct it. For collecting user inputs for multiple com-
ponents, the strategy needs mixed-initiative grammar besides grammar for
individual components.

– Rule Based: Similar to directed dialog, only one dialog component is active
at a time. However, the components are not executed in the document order
but in the order which is based on the rules specified by the user in an
XML file. Also, depending on the rules and runtime conditions, not all the
components may be executed.

The application author can choose the dialog strategy to be used by speci-
fying an appropriate value for “strategy” attribute. As shown in Figure 2, the
DirectedDialog, MixedInitiative and the RuleBased classes are derived by extending
the DMImp abstract class. The figure also shows that any one of these strategies
can be used within the group.

Data Models GroupModel is the private Data Model of the group which extends
Base Model, as seen in Figure 2. It adds a new member called localMap which
acts as a Dialog Map for the RDCs contained within the group and holds their
private data models. The public data model of the group is a hashMap. The
keys of the hashMap corresponds to the id of the children RDCs and the value
is the public data model of the respective child RDC.

Push localMap on the
RDCStack

Populate the public
data model

Invoke the dialog
manager depending

upon startegy

Ask children to
register themselves

Is
dialog flow

over?

Set state to DONE

Set state to
RUNNING

Yes

No

Pop localMap off
RDCStack

Fig. 4. Execution of group tag

Call Flow of a Container Figure 4 shows the call flow of group. When group is
activated for execution, it pushes its localMap on the RDC stack. This acts as the
dialogMap for the children RDCs contained within the group and sets the context
for their execution. As the group manages the interaction flow among its children,
it needs control on their execution. For this group uses two phase execution
mechanism. It first enters into the registration phase and asks its children for
registration. The children RDCs registers themselves by putting an entry of their
private data model in the localMap of the group and remain silent by entering
into dormant state. group then enters into execution phase and based on the value

316 Rahul P. Akolkar et al.

of strategy attribute, invokes appropriate dialog Manager to control the dialog
flow of the children. The dialog manager selects the RDCs to be executed in a
dialog turn and set their states appropriately. When the dialog flow is complete,
group puts the values collected by children RDCs in the return hashMap, sets
its state to DONE and pop its local Map from the RDC stack.

3.5 Composite RDCs

Composite components are distinct from atomic components in that they pop-
ulate complex data structures. Composite components are typically constructed
from pre-existing components; however the internal structure of a composite is
not visible to the application author. Therefore, in principle one could re-package
large VoiceXML applications as an RDC component provided that re-packaged
component implements the public contract defined by the framework.

As described in previous section, the container tag group can be used to ag-
gregate other dialog components and manage the interaction flow among those
components. Thus, an application author who wishes to collect credit card infor-
mation, and implements that interaction by using pre-defined CreditCardType,
CreditCardNumber and Date components might group these within a group tag
for purposes of dialog management. Later on, if collecting credit card information
is found to be a common user interaction task that is needed within many appli-
cations, this grouping of components may be promoted to a reusable component
by defining a new composite that implements a CreditCardInfo component. No-
tice that the container tag group itself does not create reusable components but
is central to the design of composite components.

Anatomy and Design The anatomy of composite is quite similar to that of an
atomic RDC. Composites also need to define a Public Contract but their return
type is complex data structure. The specific component derives its private data
model by extending the ComponentModel which itself extends the BaseModel.
Like GroupModel, it also adds a member called localMap which acts as dialogMap
during execution of the composite and sets its context.

Composite RDCs are themselves implemented as JSP pages. The composite
component implementation uses container tag group to logically group child com-
ponents and to manage the interaction flow among these children. Composite
RDCs can choose among the various pre-defined dialog management strategies
provided by container tag group; alternatively, a composite RDC might choose
to implement a custom dialog manager, either using JSP control flow tags, or
by factoring out the implementation of the dialog management strategy into
an appropriate Java class. group constitutes the input state of the composite.
Composites may have their own validation, confirmation, disambiguation mech-
anisms and define any other state. They have their own FSM which manages
the composite dialog.

Reusable Dialog Component Framework 317

4 Building Application Using RDCs

Voice applications follow the traditional software lifecycle pattern of design, im-
plementation, testing, deployment followed by iterations of maintenance and en-
hancements and finally gets retired. Traditional IVR applications were built on
specialized hardware using vendor specific API and each application was a spe-
cialized project. Today voice applications use the much established client server
architecture shown in Figure 5. The users use a telephone interface through a
voice gateway or a desktop interface to ask a VoiceXML client to request data
from a VoiceXML server using the HTTP protocol. The client browser interprets
the returned document and may make further request to the same or different
server. As we have mentioned, VoiceXML has its own dialog control; we choose
to control dialog on the server side using VoiceXML for its standardized portable
speech interface. The applications are hosted on a web server such as Tomcat
with speech recognition and synthesis handled at the client side. The intention
is to benefit the voice application developer from the powerful middleware com-
ponents that automatically take care of various artifacts of voice application de-
velopment like speech recognition knowledge, speech synthesis knowledge, voice
dialog design, and database coding while making use of the familiar web appli-
cation server infrastructure and the associated business rule in the enterprise
back-end systems.

Internet

Enterprise System and
Backend Services

Voice
Gateway

VXML
Browser

Speech
Recogniser

Speech
Synthesizer

Web Server

Grammar Audio files

Application Logic
Server

Desktop Client

Fig. 5. Client Server configuration for RDC based voice applications

The applications consists of Java beans, JSPs and servlets provided in a
web archive format (WAR) and developed based on the MVC paradigm. The

318 Rahul P. Akolkar et al.

application control is managed by the struts controller servlet. Access to busi-
ness logic and enterprise databases is handled by the application beans and the
presentation layer is a set of JSP pages. The configuration of controller servlet
and the management of applications beans is the same as traditional web-based
applications however authoring JSPs is different. Each RDC within the JSP is
configured using a set of configuration file to suit the needs for that particular
application. The validation constraints are provided up-front as attributes while
associated prompts for input, confirmation, reprompting and help is provided
in the configuration file. The JSP author is responsible for managing the dia-
log flow among the different RDCs used within the page. Here we present two
applications to demonstrate how RDCs are used to build applications.

Bill Payment Application: This application is an integrated service that
can be used by organizations to accelerate their bill presentation and collection
process. Figure 6 shows the application flow. The transition between one JSP to
another JSP is controlled by the struts layer.

login.jsp payment.jsp

payment-confirm.jsp

goodbye.jsp

Start

Fig. 6. Bill Payment Application Call Flow

As shown in Figure 6, on first visiting the application the user is greeted
and then authenticated with his customer id (login.jsp). If authentication fails
the user is asked to try again, otherwise the balance information is prompted
to the user and the user is asked to specify the amount and the pay-by date
(payment.jsp). After collecting the required information the system validates
the payment information and on successful validation updates the information
in the back-end using application beans and a confirmation number is prompted
back to the user (payment-confirm.jsp). If the payment information cannot be
verified the user is asked to give the information again. After certain number
of unsuccessful attempts the system exists (goodbye.jsp). The following sample
code in Figure 7 from payment.jsp shows how simple it is to configure different
RDC, provide validation constraints and use existing built-in dialog management
strategies.

Reusable Dialog Component Framework 319

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="rdc" uri="http://rdc-1.0"%>

\vspace{-0.1in}

<jsp:useBean id="taskmap" class="java.util.LinkedHashMap"

scope="session" />

<rdc:task map="${taskmap}">

<rdc:group id="pay" strategy="MixedInitiative">

<rdc:select1 id="billAmt" config="config/bill-amount.xml"

optionList="config/amount-options.xml"/>

<rdc:date id="payOn" config="config/pay-on-date.xml"

minDate="today" confirm="true"/>

</rdc:group>

<c:if test="${!(empty pay)}">

<rdc:struts-submit submit="payment.do" context="${pageContext}"

namelist="billAmt payOn"/>

</c:if>

</rdc:task>

Fig. 7. Bill payment application code authored using RDCs

The dialog flow among RDCs is controlled using the JSTL tags. Only when
the billAmt and payOn date values are collected the values are submitted to
the application beans. The pre-built dialog strategy MixedInitiative is used to
control the dialogflow between the select1 and date RDCs. The select1 RDC is
used to prompt the user for the amount using natural language key words like
“full balance”, “minimum balance” or “maximum amount”. The canonicalized
value is submitted to the system. The date RDC cannot accept any date in the
past hence the minimum acceptable date is “today”. The select1 and date RDCs
are configured using the bill-amount.xml and pay-on-date.xml configuration files
respectively.

Mortgage Application: In this application the user is first greeted and then
authenticated using his member number. He is then prompted for the MLS num-
ber he is interested in. The system retrieves the property price and establishes
the down payment amount and the duration and interest rate of the loan and
computes the monthly payments. Then the system proceeds to the banking por-
tion in which the user is again authenticated by a PIN, and the user funds the
new account by means of a transfer transaction. At the end the application pro-
vides a transaction number. Figure 8 shows the code sample from the login page.
It demonstrates the reuse of digits RDC to gather member number as well as the
mls-number. The member number can be of any length greater then 5 whereas
the mls-number is of length between 6 and 12. Here the RDCs are controlled
using the built-in SimpleDirectedDialog strategy.

320 Rahul P. Akolkar et al.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="rdc" uri="http://rdc-1.0"%>

<jsp:useBean id="taskmap" class="java.util.LinkedHashMap"

scope="session" />

<rdc:task map="${taskmap}">

<rdc:group id="login" strategy="SimpleDirectedDialog">

<rdc:digits id="memNum" config="config/member-number.xml"

minLength="5"/>

<rdc:digits id="mlsNum" config="config/mls-number.xml"

minLength="6" maxLength="12"/>

</rdc:group>

<c:if test="${!(empty login)}">

<rdc:struts-submit submit="login.do" context="${pageContext}"

namelist="memNum mlsNum"/>

</c:if>

</rdc:task>

Fig. 8. Mortgage application code authored using RDCs

The above two examples demonstrate the effectiveness in building powerful,
flexible and user friendly voice applications using the RDC library. The examples
substantiate the claim that encapsulating best practices and voice-only channel
artifacts into RDC layer while providing flexibility to configure the component
and constrain the collected values help in providing dynamic and personalized
voice applications which are easily portable.

5 Conclusion and Future Work

In this paper, we have presented a standard-based framework for building reus-
able components for development of voice applications. We have presented the
motivation for developing a component based approach for dynamic VoiceXML
generation. We have defined the public contract, the internal data structure and
the implementation of an RDC cycle. The concepts of atomic and composite
RDC have been provided and the aggregation constructs to develop composite
RDCs have been presented. We have also presented two case studies that describe
the use of RDCs in voice application development for practical solutions. The
application deployment environment has also been presented.

Near term efforts in improving the framework would involve support for more
global navigation commands such as go-back and repeat into the existing compo-
nent based approach. The present work concentrates on developing components
for the UI parts of a voice application. These components can be made even more
powerful by providing a mechanism of integrating the backend logic within the
component framework. This would ensure end-to-end development of a voice

Reusable Dialog Component Framework 321

portal using a component based model. Providing backend integration while
maintaining reusability is an interesting and important problem to be solved in
the voice programming model area. Encapsulation of the voice application best-
practices in the RDCs will further enhance the richness of these components.
The success of such a component based approach will finally be governed by the
adoption of the framework by the applicaton developer community.

Acknowledgements

The authors would like to thank Charles F Wiecha and Roberto Pieraccini (IBM
Watson Research Center, NY) for their valuable suggestions and interactions
during the design of the framework architecture. The authors are also thank-
ful to Sindhu Unnikrishnan (IBM Watson Research Center, NY) for providing
expertise in the implementation and testing during the course of the project.

References

1. Walker, M.A., et.al.: DARPA Communicator: Cross-system results for the 2001
evaluation. International Conference on Spoken Language Processing, vol 1, 269–
272, Denver, USA, 2002

2. http://www.w3.org/TR/voicexml20/
3. http://www.saltforum.org
4. Maes, S.H.: A VoiceXML framework for reusable dialog components. Symposium

on Applications and the Internet, 2002. SAINT 2002,28–30.
5. http://www.nuance.com/prodserv/proddevtools.html
6. Pieraccini, R., Caskey, S., Dayanidhi, K., Carpenter, B., Phillips, M.: ETUDE, a

recursive dialog manager with embedded user interface patterns. IEEE Workshop
on Automatic Speech Recognition and Understanding, 2001. ASRU ’01.c, 244–247

7. Obuchi, Y.,Nyberg, E., Mitamura, T., Duggan, M., Juddy, S., and Hataoka, N.:
Robust Dialog Management Architecture Using VoiceXML for Car Telematics Sys-
tems. Proc. Workshop on DSP in Mobile and Vehicular Systems, 1.5, Nagoya, Japan
2003

8. http://www-306.ibm.com/software/pervasive/voice toolkit/
9. http://www1.avaya.com/enterprise/whitepapers/lb2432.pdf
10. www.genesyslab.com/contact center/products/interactions/voice platform.asp

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 322-336, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Unlocking the Grid

Chris A. Mattmann1,2, Nenad Medvidovic2, Paul M. Ramirez1,2 and
Vladimir Jakobac2

1Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S 171-264
Pasadena, CA 91109, USA

{chris.mattmann,paul.ramirez}@jpl.nasa.gov
2University of Southern California

Los Angeles, CA 90089, USA,
{mattmann,neno,pmramire,jakobac}@usc.edu

Abstract. The grid has emerged as a novel paradigm that supports seamless
cooperation of distributed, heterogeneous computing resources in addressing
highly complex computing and data management tasks. A number of soft-
ware technologies have emerged to enable "grid computing". However, their
exact nature, underlying principles, requirements, and architecture are still
not fully understood and remain under-specified. In this paper, we present
the results of a study whose goal was to try to identify the key underlying re-
quirements and shared architectural traits of grid technologies. We then used
these requirements and architecture in assessing five existing, representative
grid technologies. Our studies show a fair amount of deviation by the indi-
vidual technologies from the widely cited baseline grid architecture. Our
studies also suggest a core set of critical requirements that must be satisfied
by grid technologies, and highlight a key distinction between "computation-
al" and "data" grids in terms of the identified requirements.

1 Introduction

The grid is an emerging paradigm concerned with enabling heterogeneous organiza-
tional entities to share computing resources (both hardware and software), data, security
infrastructure, and the like [4]. Additionally, the grid's goal is to allow such organiza-
tions to operate in a coordinated fashion to solve very complex scientific and informa-
tion management problems [4,14]. Because of this, the grid has become an area of sig-
nificant interest to computing researchers and practitioners, and a number of open
source and standards-based grid infrastructure implementations exist and have com-
mercial backing.1

Recently, in collaboration with NASA's Jet Propulsion Laboratory (JPL) our re-
search group decided to port JPL's OODT grid technology [6] onto our Prism-MW mid-
dleware platform for mobile and resource constrained devices [25]. The goal was to
significantly reduce OODT's footprint and "bring the grid into one's pocket". The ex-

1. For exposition purposes, we will use the phrases "grid infrastructure", "grid technolo-
gy", "grid solution", "grid platform", and "grid system" interchangeably in this paper

Unlocking the Grid 323

ercise was successful, JPL deemed our prototype, GLIDE, quite promising, and we de-
cided to document the experience in a research paper [5], which we submitted to a
workshop on middleware technologies.

When we received the reviews for the paper, one particular comment caught our at-
tention. One reviewer was unimpressed with what we had done in part because, in the
reviewer's words, OODT "is in itself a very simple class framework"; another reviewer
also alluded to this! This was very surprising, given that OODT has been a highly suc-
cessful grid technology, deployed both within NASA and externally with the National
Cancer Institute, and was the runner-up for NASA's Software System of the Year award
in 2003.

The grid literature is very rich in general ("reference") requirements a grid platform
should satisfy [3, 14, 13], and also details its target ("reference") architecture [15, 21].
Based on this, we had gone with the assumption that a grid technology can be relatively
easily distinguished from "something else". However, a review of the OODT documen-
tation revealed that no such distinguishing features were obviously stated. We then
studied the documentation accompanying several other grid solutions and found that the
same holds for them. Thus, the comment we received, from experts in the area, raised
three questions that directly motivated the study on which we will report in this paper:

1. What, in fact, makes a software system a grid technology?
2. What, if any, is the difference between a grid technology, a middleware platform,

a software library, and a class framework?
3. Are existing systems that claim to enable grid computing bona fide grid technol-

ogies?
In order to answer these questions, we decided to recover, study, and compare the ar-
chitectures of a number of existing grid technologies. Specifically, we chose five such
technologies, including Globus, the most widely used grid system, as well as OODT
and GLIDE, the two systems that prompted our study in the first place. In principle, the
only requirement in selecting the candidate grid technologies was that they be open
source. Since OODT was compared to a class framework, we also decided to restrict
our study to object-oriented grids. While we decided to apply a particular software ar-
chitecture recovery technique in our study [23], the technique is representative of a
number of architectural recovery approaches, and we do not believe that it significantly
influenced our results. The recovered architectures were "interpreted" with the help of
the reference requirements and reference architecture for grid systems we gathered
from existing literature.

In this paper, we present the details of this study, and the lessons we learned in the
process. The overall conclusion of our work has been that grid technologies, including
OODT and GLIDE, do in fact adhere to a specific architecture and are thus quite differ-
ent from software libraries and class frameworks. At the same time, our study also re-
vealed that several aspects of the published grid reference requirements and architecture
are overly general and open ended, so much so that it was at times difficult to imagine
what a given grid solution would have to do to deviate from them. Based on this, we
suggest some improvements to the current state of the practice in grid computing infra-
structures.

324 Chris A. Mattmann et al.

The remainder of the paper is organized as follows. Section 2 outlines our back-
ground research which resulted in reference requirements and a reference architecture
for grid systems, and discusses related work in the area of architectural recovery. Sec-
tion 3 describes the approach we have taken in our study, while Section 4 summarizes
the results of applying the approach on five off-the-shelf (OTS) grid technologies. Sec-
tion 5 highlights the lessons we have learned in the process and suggests possible future
work in the area of grids. We then conclude the paper in Section 6.

2 Background and Related Work

In order to effectively study grid technologies, we needed to identify their overarching
requirements and shared architectural traits. The existing grid literature contains four
separate studies that attempt to provide such information [3, 4, 14, 18]. However, in
addition to being dispersed, this information was presented in widely differing ways, at
times ambiguous, influenced or obscured by details of particular grid solutions, and
even contradictory. Our task thus consisted of locating, compiling, rephrasing (if nec-
essary), and consolidating the requirements.

Particularly helpful in this task was the seminal study of grids by Kesselman et al.
[4]. This study provides a rich target set of requirements by exploring a suggested five-
layer grid reference architecture. Each layer in the architecture defines services (i.e.,
software components) that should satisfy particular requirements (including QoS, char-
acteristics, and capabilities) mentioned in the description of the layer. However, many
of these requirements are not explicitly called out and had to be "distilled" from the text.
In addition, some requirements overlap, while others span architectural layers.

A particular class of grid solutions, called data grids, provides services primarily
targeted at managing data and metadata resources. Chervenak et al. [3] identify four
guiding principles for data grids: mechanism neutrality, policy neutrality, compatibility
with grid infrastructure, and uniformity of information infrastructure. However, we
found the natural language presentation of these principles ambiguous, especially when
we initially tried to assess the conformance of grid solutions to them. Moreover, there
is no mapping of the principles to constituent architectural components in grid solu-
tions. We thus had to rephrase and interpret them. Our further research also identified
additional requirements for data grids involving replica management, metadata man-
agement, and interfaces to heterogeneous storage systems [2, 10].

A significant aspect of our work is the recovery of grid platforms' architectures from
their implementations. A number of architecture recovery approaches have been devel-
oped in the past decade (e.g. [7, 9, 11, 12, 29]). They typically analyze dependencies
among a system's implementation modules (e.g., procedures or classes) to cluster them
into higher-level components. A more detailed overview of these approaches can be
found in [23].

Recently, a series of studies has been undertaken by Holt et al. to recover the archi-
tectures of several open-source applications [15, 19]. Similarly to our approach, the ap-
proach taken in these studies has been to come up with an "as-intended" (i.e., reference)
architecture by consulting a system's designers and its documentation, and use it as the

Unlocking the Grid 325

basis for understanding the system's "as-implemented" architecture recovered from the
source code.

Another related architecture recovery approach is Dynamo-1 [20], which focuses
on middleware-based software applications. It combines the use-case modeling aspect
of Focus [23], the approach we have adopted in this work, with the filtering and clus-
tering approach of PBS [26]. Dynamo-1 differs from our approach in that its goal is only
to recover the architectures of the applications hosted on top of the given middleware
infrastructure, while our goal is to analyze and recover the architecture of the grid in-
frastructure itself.

3 Approach

The approach that we used in our case studies is depicted in Figure 1. It involves three
high-level activities. The first activity has two sub tasks (1a and 1b) that were conducted
only once, and independently of the other activities. The remaining activities (and their
subtasks) were conducted iteratively in each grid technology we studied. We detail our
approach below.

3.1 Reference Architecture and Requirements
After studying the available grid literature as outlined in Section 2, we identified the de
facto reference architecture for grid systems [4] (Step 1a in Figure 1). The architecture
consists of five layers, each of which relies on the services of its subordinate layer(s).

Table 1: Reference Requirements for Grids
Requirement Impacted Layer

1 Share resources across dynamic and geographically
dispered organizations

Collective

2 Enable single sign-on Connectivity

3 Delegate and authorize Connectivity

4 Ensure access control Connectivity

5 Ensure application of local and global policies Fabric

6 Control shared resources Collective

7 Coordinate shared resources Collective

8 Ensure "exactly once" level of reliability service Connectivity, Application Resource

9 Use standard, "open" protocols and interfaces Collective, Resource, Connectivity

10 Provide ability to achieve non-trivial QoS Application, Resource, Collective

11 Ensure neutrality of data sharing mechanism All layer’s implementation

12 Ensure neutrality of data sharing policy Collective, Resource, Connectivity, Fabric

13 Ensure compatibility with Grid infrastructure Possibly all layers

14 Provide uniform information infrastructure Application, Resource, Collective

15 Support metadata management Resource

16 Interface with heterogeneous storage systems Fabric

17 Provide the management of data replicas Fabric, Resource, Collective

326 Chris A. Mattmann et al.

The application layer represents the software system built using the grid technology,
and it relies on the functionality for coordinating system resources available via the col-
lective layer. The collective layer coordinates and manages resources exposed at the re-
source layer. The top three layers directly rely on the connectivity layer for secure and
distributed communication. The bottom layer is the fabric layer, providing standard in-
terfaces to heterogeneous system resources, such as file systems and device drivers.

In addition to the reference architecture, we also identified a representative set of
high-level requirements for grids (Step 1b in Figure 1) in the manner outlined in Section
2. Due to space restrictions, these requirements are only briefly summarized in Table 1.
We have also identified the reference architecture layer(s) that are likely impacted by
each requirement.

Both the reference architecture and reference requirements formulate the targets for
our study and are used to inform our architecture recovery efforts which we describe
below.

3.2 Architecture Recovery
Architectural recovery (Step 2 in Figure 1) involves automated examination of the
source code to extract an "as-implemented" architectural model for each grid technolo-
gy. We refer to this model as the recovered architectural model, or RAM. We used the
Focus architectural recovery approach [23] in this step. Focus was selected because it
is specifically geared to object-oriented systems, while it has been shown to produce
comparable results to other recovery approaches. The key steps of Focus are briefly
summarized below. Additional details may be found in [23].

Focus relies on an OTS source code extraction tool (we used Rational Rose in our
study) to generate class diagrams from the given grid technology's code. Once a class
diagram has been extracted from the code, a set of automatable clustering rules are ap-
plied iteratively to group individual classes into higher-level components. These rules
include grouping classes that share aggregation, generalization, and two-way relation-
ships, grouping clusters of classes that are isolated from the rest of the system, identi-
fying "important" classes that have many incoming and outgoing links, and so forth. Fo-
cus identifies two kinds of components: processing and data. It also attempts to identify
the key communication elements in a system.

Determine Grid
Reference

Requirements

RAM

Application

Fabric

Connectivity

Resource

Collective

Determine Grid
Reference

Architecture

1a

1b

2

3a

3b

Cluster Recovered
Components According to

Reference Architecture

Analyze Conformance to
Reference Requirements

Recover the
Architecture

Grid Technology Source Code

Figure 1 Our approach to studying grid technologies.

Unlocking the Grid 327

Once these rules cannot be applied on the system's (clustered) class diagram any
longer, Focus has produced the RAM. It is important to acknowledge that this architec-
tural model may have several limiting properties:

• The RAM may not be complete - Any clustering-based approach may fail to iden-
tify all system components. The RAM may also ignore component interaction
characteristics (i.e., connectors). Further, the RAM may not provide any insight
into the system's legal configurations.

• The RAM may not conform to the system's intended architecture - Over time, the
system's implementation may have (significantly) deviated from the designers'
original intentions. This is referred to as architectural drift or erosion [27].

• There is no obvious relationship between the RAM and the system's requirements
- The only input to Focus (and many other architectural recovery approaches) is
the source code. As such, the recovered architecture does not identify the require-
ments each component is intended to fulfill.

3.3 RAM Reconciliation
At this point, we have the reference requirements and architecture for grid technologies,
as well as the RAM for the particular grid system. Since the RAM may deviate from the
reference architecture, the next step in our approach is to reconcile the RAM and the
reference architecture, i.e., to place the components identified in the RAM into specific
layers of the architecture (Step 3a in Figure 1).

For each RAM component, we try to identify its counterpart in the reference archi-
tecture. To do so, we examine (1) any information about the component's functionality
from the documentation of the grid system under study, (2) the component's relation-
ships with other components, and possibly (3) the description of similar components in
the grid literature.

Once the decision is made to place a component in a given architectural layer, the
relationships among the components are examined more closely to identify two types
of inconsistencies: (1) the grid reference architecture [4] implies that, with one excep-
tion, the layers are opaque, such that components in a given layer can only access serv-
ices of the layer immediately below; and (2) the layered architectural style prohibits
components from making "up-calls". At this point we also note any additional discrep-
ancies, such as our inability to assign a component to any layers, "invalid" or unexpect-
ed dependencies among components, and so on.

Finally, since different grid technologies may have different foci (e.g., computa-
tional vs. data grids, or high-performance computing vs. pervasive grids) and may ap-
proach the problem differently, another relevant piece of information is the degree to
which the reconciled RAM adheres to the reference requirements (Step 3b in Figure 1).
The goal of this activity is to identify the requirement(s) satisfied by each component,
including the components we were unable to fit into the reconciled RAM. We again try
to identify any discrepancies in the placement of components in the architectural layers
based on the location guidelines shown in the right-hand column of Table 1.

328 Chris A. Mattmann et al.

4 Case Studies

We have used the approach detailed above to study five different grid technologies, se-
lected based on the following criteria. First, the technology should be open-source be-
cause we needed the ability to perform architectural recovery from the source code.
Second, the technology should be object-oriented because, as discussed in the Introduc-
tion, one of our objectives was to discover the relationship of grid solutions and class
frameworks. Third, we required at least some level of documentation to aid us in deter-
mining the functionality of the recovered grid components. We do not feel this require-
ment to be particularly limiting since the documentation could be as simple as an
HTML page (as was indeed the case with the JCGrid study discussed below). Fourth,
we wanted to study grid technologies that are used in "legitimate" industrial and/or ac-
ademic projects in order to ensure the relevance of our results. Finally, we wanted the
set of studied systems to include OODT and GLIDE because, as discussed in the Intro-
duction, they were the direct motivators for this study. It should be noted that OODT
does satisfy all of our criteria; however, GLIDE is currently being evaluated and thus
can be argued not to satisfy the fourth criterion at this time.

In this section, we detail our studies of OODT and Globus, and summarize the re-
sults of the remaining three studies. Additional details on all five studies can be found
in [22].

4.1 OODT
OODT [6] is a grid infrastructure developed at JPL in support of scientific, data-inten-
sive grid systems. OODT's implementation consists of approximately 14,000 SLOC.
The initially recovered OODT class diagram, shown in Figure 2, contained 320 classes.
For the most part, it was a densely connected graph, but it also contained approximately
40 classes with no recognized relationships to other classes in the system (shown iso-
lated in the bottom-left portion of Figure 2). UML generalization and interface relation-
ships were most prevalent, with many classes implementing at most one interface.

We applied the iterative clustering rules of Focus on the class diagram to arrive at
the OODT RAM. The RAM comprised 38 processing and data components, along with
the identified relationships (i.e., connectors) between each component pair. With the
help of the component descriptions in OODT's conceptual architecture [6], we were
able to place 24 of the 38 RAM components into the layered grid reference architecture
with relative ease. The remaining components had to be "shoehorned" by examining ad-

Figure 2 Initial class diagram of OODT. Due to its size and complexity, at this
magnification the diagram is shown only for illustration

Unlocking the Grid 329

ditional OODT documentation [21] and, in a few cases, the OODT source code. The fi-
nal result of this process is shown in Figure 3.

Of note is the fact that only one component was placed in the connectivity layer of
the reference architecture. The reason is that OODT leverages third-party middleware
platforms (CORBA and RMI) to support distribution, and those are considered external
to its code base. There are also several deviations from the reference architecture:

1. Several components in the fabric layer (ProductServicePOA, ProductServiceAd-
aptor, and CORBA_Archive_ServicePOA) communicate with the ExecServer
component in the resource layer. The fabric layer components not only cross two
layer boundaries, but also make up-calls to perform this communication.

2. Components in the application layer (ConfiguraitonBean and SearchBean) com-
municate with the Configuration component in the connectivity layer, crossing
three layer boundaries. Similarly, the ProfileClient and ProductClient compo-
nents in the application layer traverse two and four layer boundaries, respectively,
to communicate with their server components.

3. The Utilities component (shown in the upper-right of Figure 3) was identified by
Focus as comprising classes with no recognizable relationships with other class-
es. We were unable to determine its correct placement in the reference architec-
ture.

Our analysis of the architecture shown in Figure 3 suggests that OODT satisfies most
of the reference requirements specific to data grids1. The lone exception is its lack of

1. Recall the discussion in Section 2 and corresponding requirements 11-17 in Table 1.

Collective

Application

Connectivity

Resource

Fabric

Profile

ProfileAttributes ResourceAttributes

ProfileElement

DDMResultParser

QueryEngine

ServerPOA

ServerImpl

DatabaseProfileHandler

Dataset

DatasetDisplayer

PageBean

XMLQuery QueryResultTransaction

QueryHeader

Configuration

ConfigurationBean

SearchBean QueryClient

Expression

Result

HTTPFormRecorder

Utilities

ChunkedProductInputStream

DatabaseProfileManager

CORBA_Archive_ServiceHolder

ProfileServiceAdaptor

ProductClient

ProductServiceAdaptor

QueryServicePOA

ProfileClient

QueryServiceHolder

ProductServicePOA

ExecServerProfileServicePOA

CORBA_Archive_ServicePOA

RMIQueryServiceFactory

Figure 3 Mapping OODT's RAM onto the grid reference architecture

330 Chris A. Mattmann et al.

support for replica management (requirement 17 in Table 1). In addition, OODT fails
to address two other reference requirements: single sign-on (requirement 2) and "exact-
ly once" level of reliability service (requirement 8). It appears that this stems from
OODT's reliance on CORBA and RMI for such basic services.

4.2 Globus
The Globus toolkit [14] has been used successfully across a number of projects [2, 4, 8,
10, 16], and can be considered to be the de facto standard for grid implementations. The
initially recovered class diagram of Globus is shown in Figure 4 for illustration. Globus
consists of 864 classes and approximately 55,000 SLOC; it was the largest and most
complex grid technology that we studied. Similarly to OODT, Globus also has a set of
classes (around 60) that share no recognizable relationship with any other classes (ap-
pearing at the bottom of Figure 4).

After applying Focus on Globus' source code, we arrived at the Globus RAM. The
RAM contained 86 components, 50 of which were identified as data components. Most
processing components contained at least one relationship, typically a UML associa-
tion, with another class.

Relying on the documentation that was included with the Globus core distribution
[28], along with our study of the existing Globus literature [2, 4, 10, 13, 14], we were
able to place 81 of the 86 Globus RAM components into the layered grid reference ar-
chitecture. This high percentage was unsurprising since Globus is the realization, and
served as the direct inspiration, of the reference architecture presented by Kesselman et
al. in [4]. Still, the architecture we recovered did deviate from the proposed reference
architecture as discussed below.

As shown in Figure 5 most of the components found their way into the resource and
connectivity layers, while only two components were assigned to the fabric layer. Sim-
ilarly to OODT, Globus also relies on a third-party distributed communication solution:
Apache's AXIS implementation of the SOAP protocol. The Globus release includes
AXIS; hence the large number of components in the connectivity layer. Globus' major
deviations from the reference architecture are as follows:

1. The Logging component appears to have a home in both the collective and re-
source layers of the reference architecture. Similarly, the Map data component
that we placed in the collective layer actually permeates several of the other lay-
ers, and may in fact belong somewhere else. Given that it is a basic data compo-

Figure 4 Initial class diagram of Globus.

Unlocking the Grid 331

nent (indeed, implemented as a Hashtable), we could not confidently discern its
requisite architectural layer.

2. The JavaClassWriter component in the fabric layer appears to be making an up-
call two layers above to the ServiceEntry component in the resource layer. Simi-
larly, the Java2WSDL component in the resource layer is making a two-layer up-
call to the CLOptionDescripton component in the application layer.

3. There were five components, including a Utilities processing component and an
Exception data component, which we were unable to assign to any layers of the
reference architecture. This was because the given component appeared to belong
to more than one layer, we could not find sufficient documentation for it, and/or
it did not have enough relationships in the RAM to positively classify it to a par-
ticular layer.

Globus addresses the first 10 grid reference requirements identified in Table 1; howev-
er, it does not satisfy all of the remaining requirements, which are specific to data grids.
In particular, we discovered that Globus does not natively support requirements 14-16.
These capabilities are provided by components built on top of the Globus grid infra-
structure, such as the Metadata Catalog Service [10], and the Replica Location Service
[2] components.

4.3 Summary of Remaining Studies
Due to space limitations, we only summarize the remaining three case studies here; their
complete treatment is provided in [22].

GLIDE [5] is the grid technology that directly motivated our work presented in this
paper. It is a lightweight grid infrastructure for data-intensive environments. GLIDE's
goal is to extend the grid paradigm to the emerging decentralized, resource-constrained,
embedded, autonomic and mobile environments.

Collective

Application

Connectivity

Resource

Fabric

GetOpts

GridContext

Utilities

GlobusDescriptorSetter

ServiceAnnotatorSimpleWriter

CL Option

GenerateUndeploy

WSDDService

ServiceNotificationThread

EJBServiceClient

JMSAdapterClient

GroupLogAttribute

AuthMethod

EJBFactoryCallback

WSDL2Java

ServiceActivatorHolder

PersistentGridServiceImpl
BasicHandler

JAXRPCHandler

HomeWrapper

SecureContainerHandler

Parser

NotificationSubscriptionFactoryCallbackImpl

DynamicFactoryCallbackImpl

OGSI LoggingFaultElement

OGSI AuthenticationToken

PrivateKey

GSSCredential

BinarySecurityToken

ServiceRequest

ServiceData

SecurityDescriptor

OGSI AuthenticationFaultOGSIHolder OGSIType

UUID

OGSI FaultType

Exception Data

ServiceDesc

X509 Certificate

FlattenedWSDLDefinition

OGSA ClientOperation

TypeEntry

Semaphore

ServiceDataSet WSDLConstants

JavaClassWriterSymbolTable

ServiceEntry

PerformanceLog

ServiceLifecycleMonitorImpl

CommandLineTool

Element

JavaGridServiceDeployWriter

TypeMappingInfo

SecContext

GSSContext

ListDescriptorHandler TimerTask

ServiceDeployment

ExtendedDateTimeType

HandleType

ServiceDataAttributes

ServiceLocator

NotificationSinkNotifyer

PrivilegedInvokeMethodAction

RPCURIProvider MessageContext

Method

CreateInfo

ServiceDataAnnotation

Map

BinarySecurityTokenFactory

NotificationSinkManager

ServiceContainer ServicePropertiesImpl

JavaGridServiceDeployConstants

WSDL2

Emiter

ToolingCommand

CLArgsParser
Document

CLOptionDescriptor

Java2WSDL

Figure 5 Mapping Globus's RAM onto the grid reference architecture

332 Chris A. Mattmann et al.

Dspace [1] is an open source grid system, jointly developed by MIT Libraries and
Hewlett-Packard. It is a distributed digital repository system that captures, stores, in-
dexes, preserves, and redistributes the research material of a university in digital for-
mats.

Finally, JCGrid is a computational grid platform developed in Java and available
via open source on SourceForge [30]. JCGrid allows one to split CPU-intensive tasks
among multiple workstations. It has been used in several significant applications to
date.

The implementation sizes of the three technologies ranged from 2,100 SLOC dis-
tributed over 61 classes in GLIDE, to 24,000 SLOC and 217 classes in DSpace. All
three technologies violated the reference architecture. Some discrepancies include com-
munication spanning the application and connectivity layers in GLIDE, communication
across all five layer boundaries in JCGrid (the most significant such deviation observed
in the five case studies), and a component (WorkflowManager) spanning both the col-
lective and resource layers in DSpace.

The task of mapping the components to the reference architecture was relatively
straight forward in the cases of GLIDE and JCGrid: GLIDE's components were similar
to OODT's, while JCGrid RAM's 37 components nicely conformed to different archi-
tectural layers. DSpace was much more challenging in this regard: many of its compo-
nents appeared to span several architectural layers and we could not confidently ascer-
tain their appropriate "homes".

In terms of the reference requirements, one observation was that neither GLIDE nor
DSpace supports replica management (requirement 17 from Table 1), even though they
claim to be data grid solutions. Finally, JCGrid's reliance on a GridServer component
to manage policy and access control does not bode well for its ability to support appli-
cation of local and global policies (requirements 3-5).

5 Discussion

Our objective in conducting this study was to clearly identify what distinguishes a bona
fide grid technology from other utility software, such as "ordinary" middleware plat-
forms, software libraries, and frameworks. We believe that we have achieved a quali-
fied success in this endeavor, but that we have also identified several deficiencies in the
current level of understanding of the grid. These deficiencies can, in turn, form a co-
herent research agenda for the grid community.

Grid technologies can be thought of most appropriately as specialized middleware
platforms that share a reasonably well defined reference architecture. In other words,
grid technologies are an example of domain-specific software architectures [17], for the
domain of grid computing.

As such, grid systems have little in common with software libraries, although they
may indeed provide useful services in the form of libraries. Similarly, while the imple-
mentation of each of the five technologies we studied may be looked at as a framework
of object-oriented classes that is specialized and instantiated to solve a particular prob-

Unlocking the Grid 333

lem, we believe that to be the wrong abstraction in this case. The fact that a given tech-
nology is designed and implemented in, say, Java is incidental; a number of successful
grid technologies have in fact been designed and implemented using the procedural par-
adigm and languages (e.g., C). The key property of a grid technology is its satisfaction
of a well defined set of requirements via functional services that are distributed across
five well defined architectural layers.

Of course, as can be gleaned from Section 4, the preceding statement is only par-
tially true. The existing grid technologies vary widely in the selection of requirements
they choose to satisfy, as well as in the functional services they provide in the form of
components. If we consider the five grid technologies we studied in depth, they covered
a very broad range in terms of source code size and implementation class complexity.
For example, GLIDE was implemented in slightly over 2,000 SLOC, while the current
implementation of Globus is at about 55,000 SLOC. Likewise, GLIDE's entire imple-
mentation comprises 61 classes, while Globus has over 14 times as many.

This discrepancy can be partly attributed to the differences in the design choices and
foci of the different grid technologies. For example, Globus subsumes a relatively large
third-party middleware platform (AXIS) and provides numerous utilities to its users; on
the other hand, GLIDE leverages a much smaller middleware platform and provides
only basic grid services. Furthermore, each grid technology we studied differs in the
adopted distributed communication mechanism, and the type and degree of support pro-
vided to application developers, as summarized in the below table.

In addition to the above, at least to some extent the discrepancies found across the
grid technologies are a by-product of the reference requirements each development
group has chosen to satisfy. There are currently no guidelines for which requirements
are mandatory and which are optional. Based on our study, it appears that requirements
numbered 1, 5-7, and 9-10 in Table 1 are mandatory (i.e., every grid technology must
satisfy those), while the rest are optional. Moreover, if we consider more carefully the
intended uses of the grid systems, we can identify a finer distinction, one that pinpoints
the difference between "computational grid" and "data grid" systems. As indicated in
Section 2, this distinction has been widely used in literature (e.g., [3, 4, 10, 18]), but has
not been carefully explained or justified to date. DSpace's, OODT's, and GLIDE's pri-
mary stated objective is, in fact, to support data grids. Then, based on the results of our
studies we hypothesize that requirements numbered 11-12 and 14-17 must be satisfied

Communication Mechanism Application Development
Support

OODT Remote method invocation Object-Oriented
Globus SOAP Publish and Subscribe Web-services based
GLIDE Event-based and

 publish-subscribe
Software architectural style-based

DSpace Client-server over HTTP Object-Oriented
JCGrid Client-server with asynchronous

invocation
Object-Oriented

334 Chris A. Mattmann et al.

in addition to the above set of mandatory grid requirements in order to support data
grids.

If we shift our focus more toward the architectures of the studied grid systems,
again some interesting observations emerge. Even though these systems vary widely in
their size, complexity, and specific focus, for the most part their components map rather
nicely to the five-layer reference architecture. Upon closer inspection, we believe this
to be true for several reasons that must be addressed by the grid community.

First, the requirements for grid systems are very broad, and generally applicable to
a number of middleware solutions. Several of the grid requirements involve basic mid-
dleware QoS requirements such as security, dependability, marshalling of data, and the
use of standard, open interfaces. These requirements give little help in distinguishing a
grid solution from "something else"; alternatively, given such generally applicable re-
quirements, it is difficult not to provide at least some grid capabilities.

Secondly, there is overlap between grid layers. An example is the difference be-
tween the resource and collective layers, where one layer coordinates individual re-
sources and the other layer multiple resources. In practice, it has been difficult to deter-
mine the layer to which a given component belongs. For example, if only a single re-
source of a given kind exists, in which layer should the corresponding component be
placed, or do there still need to be two separate components, one in each layer?

Third, grid technologies regularly violate the reference architecture. Specifically,
nearly all of the grid systems that we studied fail to conform to the restrictions of the
layered architecture style. Violations include component communication spanning mul-
tiple layers, up-calls, and dependencies between layers that were not specified in the ref-
erence architecture. This is at least in part caused by the haphazard way in which the
requirements and architectures of existing grid systems are captured. We believe that
appropriate use of architectural formalisms, such as architecture description languages
[24], would provide the needed descriptive power as well as rigor to support the valida-
tion of each of these systems against the constraints specified in their reference archi-
tecture.

Finally, it is also evident that, due to the broad definition of what constitutes a grid
technology, interoperability between grid solutions poses a key challenge. Even con-
formance to the recently adopted Open Grid Services Architecture (OGSA) [14] does
not guarantee interoperability between grid middleware systems. This is in part evi-
denced by OGSA's lack of backward compatibility with previous Globus systems,
which directly influenced OGSA. Many questions still remain, such as, what data do the
grid services exchange and how is it described? OGSA and the recently announced Web
Service Resource Framework (WS-RF) represent initial steps towards remedying this
problem, but the problem remains wide open.

6 Conclusion

Our study of grid technologies has corroborated some of the claims made in grid liter-
ature, while suggesting refinements to others. In particular, we found the reference grid

Unlocking the Grid 335

architecture [4] a useful baseline for comparing disparate grid solutions, especially
since their recovered architectures (i.e., RAMs) were quite divergent. Furthermore, the
reference requirements we distilled from literature certainly helped to improve our un-
derstanding of the grid. Together, the architecture and requirements suggest a tangible
distinction between grid technologies on the one hand, and commonly used software
notions such as middleware, libraries, and frameworks on the other. Another distinction
rendered more concrete by our study is between computational and data grids.

At the same time, one conclusion of our study is clear: the answer to the question
"what makes a grid system a grid system?" has many possible answers. This is not nec-
essarily a drawback, as it allows developers of a given grid platform to tailor its func-
tionality, and to some extent its architecture, to the needs at hand. At the same time, we
argue that this open-endedness may become an impediment to the on-going standardi-
zation efforts and the claimed goal of grid platform interoperability.

7 Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grant Numbers CCR-9985441 and ITR-0312780. Effort also supported by the Jet Pro-
pulsion Laboratory, managed by the California Institute of Technology.

8 References

[1] DSpace at MIT. DSpace: An Open Source Dynamic Digital Repository. D-Lib Magazine,
9(1), January 2003.

[2] A. Chervenak et al. Giggle: A Framework for Constructing Scalable Replica Location
Services. In Proc. of IEEE Supercomputing Conference, pp. 1-17, 2002.

[3] A. L. Chervenak et al. The Data Grid: Towards an Architecture for the Distributed man-
agement and analysis of Large Scientifc Datasets. Journal of Network and Computer Ap-
plications, pp. 1-12, 2000.

[4] C. Kesselman et al. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.
International Journal of Supercomputing Applications, pages 1-25, 2001.

[5] C. Mattmann et al. GLIDE: A Grid-based, Lightweight Infrastructure for Data-intensive
Environments. Technical Report USC-CSE-2004-509, University of Southern California,
June 2004.

[6] D. Crichton et al. A Science Data System Architecture for Information Retrieval, in Clus-
tering and Information Retrieval, W. Wu, H. Xiong, S. Shekhar (Eds.):pages 261-298.
Kluwer Academic Pubishers, December 2003.

[7] D. R. Harris et al. Extracting Architecture Features from Source Code. Automated Soft-
ware Engineering, vol. 3, no. 1/2, pp.109-138, 1996.

[8] E. Deelman et al. Grid-Based Galaxy Morphology Analysis for the National Virtual Ob-
servatory. In Proc. of IEEE Supercomputing Conference, p. 47, 2003.

[9] G. Murphy et al. Software Refection Models: Bridging the Gap between Design and Im-
plementation. IEEE Transactions on Software Engineering, 27(4):364-380, 2001.

336 Chris A. Mattmann et al.

[10] G. Singh et al. A Metadata Catalog Service for Data-intensive applications. In Proc. of
IEEE Supercomputing Conference, pg. 33, 2003.

[11] G.Y. Guo et al. A Software Architecture Reconstruction Method. In Proc. of First Working
IFIP Conference on Software Architecture, pp. 15-34, 1999.

[12] H. Gall et al. Object-Oriented Re-Architecting. In Proc. of 5th European Software Engi-
neering Conference, pp. 499-519, 1995.

[13] I. Foster et al. Grid services for Distributed Systems Integration. IEEE Computer, pp. 37-
46, June 2002.

[14] I. Foster et al. The Physiology of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration. Work in progress, Globus Research, 2002.

[15] I. T. Bowman et al. Linux as a Case Study: Its Extracted Software Architecture. In Proc.
of International Conference on Software Engineering, pp. 555-563, 1999.

[16] J. Blythe et al. Transparent Grid Computing: A Knowledge-Based Approach. In Proc. of
Innovative Applications of Artificial Intelligence (IAAI), pp. 57-64, 2003.

[17] W. Tracz et al. Software development using domain-specific software architectures. ACM
Software Engineering Notes, pages 27-38, 1995.

[18] I. Foster. What is the Grid?: A three point checklist. GridToday, 1(6), 2002.
[19] A.E. Hassan and R.C. Holt. A Reference Architecture for Web Servers. In Proc. of Work-

ing Conference on Reverse Engineering, pg. 150, 2000.
[20] I. Ivkovic and M.W. Godfrey. Architecture Recovery of Dynamically Linked Applica-

tions: A Case Study. In Proc. of IEEE International Workshop on Program Comprehen-
sion, pp. 178-186, 2002.

[21] S. Kelly. OODT Web Documentation. web site: http://oodt.jpl.nasa.gov, 2004.
[22] C. Mattmann. Recovering the Architectures of Grid-based Software Systems. web site: ht-

tp://www-scf.usc.edu/~mattmann/GridMiddlewares/, 2004.
[23] N. Medvidovic and V. Jakobac. Using Software Evolution to Focus Architectural Recov-

ery. Automated Software Engineering, to appear.
[24] N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for Soft-

ware Architecture Description Languages. IEEE Transactions on Software Engineering,
26(1):70-93, 2000.

[25] M. Mikic-Rakic and N. Medvidovic. Adaptable Architectural Middleware for Program-
ming-in-the-Small-and-Many. In Proc. of ACM/IFIP/USENIX International Middleware
Conference, pp. 162-181, 2003.

[26] Univ. of Waterloo. PBS: Portable Bookshelf. web site: http://swag.uwaterloo.ca/pbs/in-
tro.html, 2004.

[27] D. E. Perry and A. L. Wolf. Foundations for the Study of Software Architecture. ACM
Software Engineering Notes, 17:4, 1992.

[28] T. Sandholm and J. Gawor. Globus Toolkit 3 Core - A Grid Service Container Framework.
Technical report, Argonne National Laboratory, 2003.

[29] K. Sartipi and K. Kontogiannis. Pattern-based Software Architecture Recovery. In Proc.
of 2nd ASERC Workshop on Software Architecture, 7 pages, 2003.

[30] Sourceforget.net: Project Info - Java Grid Computing. web site: http://sourceforge.net/
projects/jcgrid, 2004.

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 337-352, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Experience Report: Design and Implementation of a
Component-Based Protection Architecture for ASP.NET

Web Services

Konstantin Beznosov

Laboratory for Education and Research in Secure Systems Engineering,
 University of British Columbia
beznosov@ece.ubc.ca

Abstract. This report reflects, from a software engineering perspective, on the
experience of designing and implementing protection mechanisms for
ASP.NET Web services. The limitations of Microsoft ASP.NET container se-
curity mechanisms render them inadequate for hosting enterprise-scale applica-
tions that have to be protected according to diverse and/or complex application-
specific security policies. In this paper we report on our experience of design-
ing and implementing a component-based architecture for protecting enterprise-
grade Web service applications hosted by ASP.NET. Due to its flexibility and
extensibility, this architecture enables the integration of ASP.NET into the or-
ganizational security infrastructure with less effort by Web service developers.
The architecture has been implemented in a real-world security solution. This
paper also contributes a best practice on constructing flexible and extensible au-
thentication and authorization logic for Web services by using Resource Access
Decision and Attribute Function (AF) architectural styles. Furthermore, the les-
sons learned from our design and implementation experiences are discussed
throughout the paper.

1 Introduction

ASP.NET container is a popular hosting environment for Web services built and run
atop Microsoft Windows and .NET platforms. However, the ASP.NET security archi-
tecture [11, 13], as provided “out-of-the-box,” is not sufficiently scalable, flexible,
and easily extensible to be adequate for enterprise applications [3]. As we describe in
[8], ASP.NET supports limited authentication and group/user-based authorization,
both bound to Microsoft proprietary technologies (Windows domains and Passport
[12]). If a Web service application needs to be protected via third-party authentication
or authorization services available in the enterprise security infrastructure, the real-
world developers have two options. The first is to develop homegrown container
security extensions, which are hard for average application developers to get right.
The second is to program the security logic into the Web service business logic, mak-
ing the resulting application costly to change and support. In both cases, the devel-
opment of security-specific parts by average application developers is commonly
believed to result in high vulnerability rates due to hard-to-avoid security-related

338 Konstantin Beznosov

bugs. Because our architecture achieves fine-grain flexible decomposition of the
security logic into components, the design allows a higher degree of security logic
reuse whilst supporting application-specific security policies and the separation be-
tween business and security logic. We expect the reuse will lead to fewer errors by
developers.

Due to its flexibility and extensibility, our component-based protection architec-
ture enables the integration of ASP.NET into the organizational security infrastruc-
ture with less effort by Web service developers. The architecture is flexible because it
allows for the configuring of machine-wide authentication and authorization func-
tions, and for their overriding for a sub-tree of the Web services (up to an individual
application) in the directory-based ASP.NET hierarchy. Its extensibility is revealed
through the support of a wide variety of authentication and authorization (A&A)
logic, as long as the logic can be translated into a .NET component and/or accessed
(possibly via a proxy) through a predefined .NET API. Furthermore, one can reuse
those components by combining authorization decisions from them according to pre-
defined or customized rules.

These properties were achieved via
1. separating custom SOAP [21] extension modules, which act as ASP.NET-specific

A&A enforcement logic, from the A&A decision logic;
2. following Resource Access Decision (RAD) architecture style [4, 5, 17], which,

through the decomposition of the authorization engine into components, makes the
customization of access control decision logic easier and avoids the need for a ge-
neric policy evaluation engine;

3. taking advantage of the extensibility, inheritance, and caching features of
ASP.NET web.config configuration mechanism; and

4. separating the logic of retrieving attributes from the authorization and business
logic by following the Attribute Function (AF) approach [2].

Although this paper discusses the design of a protection architecture for Web ser-
vices, we believe that our approach and design decisions could be useful in a broader
context of component-based protection sub-systems for distributed applications.

This paper is organized as follows. The next section reviews ASP.NET Web ser-
vices. Section 3 discusses the requirements for the design. Intertwined with the dis-
cussion of the design decisions and lessons learned, an architecture description fol-
lows in Section 4. To illustrate the architecture capabilities, we present two examples
of policies and corresponding configurations in Section 5. We conclude in Section 6.

2 Overview of ASP.NET Web Services

This section provides background information on ASP.NET Web services technology
for the uninformed reader to aid with understanding the rest of the paper. Those fa-
miliar with the technology can skip to Section 3.

A Web service is an XML-based messaging interface to computing resources that
is accessible via Internet protocols. A Web service front end can be added to an exist-
ing information-processing infrastructure. Alternately, applications can be engineered
to use a consistent Web services model in all tiers, from data stores and back-ends to

Experience Report 339

middle and presentation tiers. A key Web services technology, SOAP [21] is a unidi-
rectional XML-based protocol for passing structured information.

ASP.NET is the most popular platform among Microsoft technologies for engi-
neering Web services. ASP.NET Web Services rely upon ASP.NET, .NET Frame-
work, IIS, and, underneath them all, the Windows OS platform. ASP.NET can be
viewed as a middleware container, similar to J2EE, for hosting components of .NET-
based distributed applications accessible via Microsoft’s Internet Information Server
(IIS). Since ASP.NET runs in .NET’s virtual machine, common language runtime
(CLR)—whereas IIS is a regular Windows executable—ASP.NET_ISAPI dynami-
cally linked library (DLL) acts as a bridge between the two, as shown in Figure 1.
The DLL receives HTTP requests for URLs ending with specific extensions, the one
for ASP.NET Web Services being .asmx.

Fig. 1. Request handling by ASP.NET Web services

While running in unmanaged code, IIS forwards a request to the
ASP.NET_ISAPL.DLL first. The DLL passes the request to ASP.NET, where the
request passes through registered HTTP modules acting as invocation interceptors
and reaches the Web Service Handler Factory. The factory uses the information in the
URL to determine which Web service implementation should handle the request.
ASP.NET dispatches the request to the implementation on demand of the factory. Not
used only for performing security functions, the HTTP modules are also used for
protecting ASP.NET Web services “out-of-the-box.”

Discussed in detail in [8], the ASP.NET Web services preinstalled security mecha-
nisms consist of the security available for the building blocks of these services and
SOAP security. Overall, Microsoft products provide a convenient family of technolo-
gies to support the security of modest-sized applications with little effort. However,
when the security requirements reach the enterprise scale, one needs either significant
amounts of in-house development or additional third-party products and services to

340 Konstantin Beznosov

fill the gap. Fortunately, .NET in general and ASP.NET in particular have architec-
tures that accommodate various security extensions. We designed our protection
architecture as an extension to a typical ASP.NET installation.

3 Requirements

The design of the architecture was driven by its requirements and the underlying
technology, ASP.NET. The functional objectives of the architecture were to allow
flexible authentication and authorization for ASP.NET Web service applications. It
was required to support “out-of-the-box” the following types of data (a.k.a. security
tokens) for client and message authentication:
 user name and password from the HTTP header, a.k.a. HTTP Basic Authentication

(HTTP-BA),
 ASP.NET Session state object with a pre-configured name,
 “stringified” credentials token found in any of the following:
 the custom field of the HTTP header, and/or
 HTTP cookie with a pre-configured name, and/or
 header block of the SOAP message that carries the request to the ASP.NET Web

service, similar to WS-Security [15] (WSS).
One of the lessons learned from the requirements engineering exercise was that the

end users did not care about the compliance with the security standards related to
Web services as long as the design was in the spirit of those standards and therefore
enabled eventual compliance with them in the future. The likely reason was the lack
of plans for mixing heterogeneous (i.e., produced by different development teams)
Web services. That is, no cross-enterprise Web service deployments were envisioned.

Another conclusion drawn from the work concerns the difficulty of determining a
practical set of compliance criteria. Taking into account the flexibility of the informa-
tion architectures for WSS and related specifications, we found it hard to define what
a compliant implementation is expected to do. Furthermore, without prior agreement
between application owners about the WSS profiles, two compliant applications
would not necessarily interoperate in a useful manner.

In regards to authorization, the architecture was required to support a) third-party
enterprise-wide A&A products, such as Policy Director [9], SiteMinder [14], getAc-
cess [7], etc., b) selective availability of some service methods for public (i.e.,
anonymous) access, and c) simple variations of authorization logic.

The architecture was also required to be extensible enough to accommodate new
types of A&A logic, e.g., access restriction based on the IP addresses of the Web
service clients or the access day and time. Since it was impossible to envision all
probable instances of A&A policies, the extension mechanisms had to be sufficiently
generic. We also anticipated the need to compose new authorization policies out of
existing ones (where developers could re-use much of the existing A&A logic).1 Be-
cause this paper focuses on A&A, we do not discuss other requirements such as audit.

1 For example, some publicly accessible methods with the remaining methods controlled by the

enterprise-wide authorization.

Experience Report 341

4 Architecture Overview

To integrate with ASP.NET run-time, the architecture takes advantage of the
ASP.NET generic interception mechanism, SOAPExtension [10], intended for addi-
tional processing of SOAP messages. As shown in Figure 2, our custom version of
SOAPExtension (labeled “interceptor”) performs the initial extraction, formatting,
and other preparation of HTTP requests and, contained in them, SOAP messages,
passing the data to the decision A&A logic and enforcing authorization decisions.

Fig. 2. General organization of the architecture into an interceptor and A&A logic

Since the purpose of the architecture is A&A, SOAP messages are processed on
their way in and only after ASP.NET run-time has successfully parsed all SOAP-
specific XML and HTTP formatting. If the protection of data in transit were a re-
quirement, then the additional processing of the SOAP messages on their way out
would be necessary. Since we did not anticipate it to undergo future changes, the
interceptor has been designed with no extension or modification points. On the other
hand, its design and implementation were optimized for performance since it was the
most frequently used component in the architecture, invoked each time a protected
Web service is accessed. Design for change [19], however, was a major goal for the
decision part of the architecture, labeled as “A&A logic” in Figure 2. This part is
composed of several other elements as described in the following sections.

4.1 Authentication

Authentication is commonly divided into two phases: retrieving authentication data
and validating it. Following the same division, our CredentialsRetriever objects spe-
cialize in retrieving authentication data. Each retriever implementation is responsible
for extracting particular data types (e.g., user name and password encoded as HTTP-
BA, credentials token found in the SOAP message header, etc.) from the appropriate
locations and encapsulating them in Credential objects. In the design of the authenti-
cation-related components, we wanted to isolate anticipated changes due to variations

342 Konstantin Beznosov

in authentication policies (“What data is acceptable for authentication?”) from the rest
of the architecture. For this purpose, retrieved authentication data and retrievers
themselves are represented as implementations of Credential and CredentialsRe-
treiver interfaces. This approach allows for adding new modules of retrieving logic to
the architecture by application developers, owners, or third-party vendors. For in-
stance, the use of new types of authentication data, such as a client’s public key cer-
tificate in requests over HTTPS, could be accommodated by developers by creating a
new implementation of CredentialsRetreiver that retrieves the corresponding attrib-
utes of the HTTPS connection and packages them into a new instance of Credential.
Before retrieved credentials can be used in authorization decisions, they need to be
validated.

There are several reasons why credentials validation is separated from the retrieval
phase and delayed until authorization. First, some credentials could be computation-
ally expensive to validate. For instance, the validation of credentials signed by a pri-
vate key requires public key operations as well as potentially unbound delays due to
the checking certificate revocation lists. Second, only during the authorization step is
it determined which credentials will be used for authorization. For example, if a re-
quest is accompanied by a certificate and a username-password but only the certifi-
cate is used, then there is no need to validate the latter. Third, some useful policies
might call for the evaluation of the same credential with more than one authentication
authority. Yet the fourth reason is due to the frequent co-location of authentication
and authorization services in enterprise security servers. Lumping authentication and
authorization steps in one batch and sending it to a remote server allows for a sub-
stantial reduction of the communication overhead in such cases.

Delaying credentials validation until the authorization phase, however, turns out to
have a disadvantage as well. Those authorization components that implement the
PolicyEvaluator interface have to contain credential-specific validation logic. In
retrospect, a better design could be to encapsulate such validation logic into objects as
parts of the credentials and configure binding between validators with the credentials.

4.2 Authorization

An authorization decision is reached in a three-step process, which is supported by
the structure based on RAD and AF architectural styles. Initial decisions are made by
zero or more predefined or custom authorization modules referred to as Poli-
cyEvaluator (PE). The simplest PE is one that always returns the same decision, e.g.,
“deny,” “permit,” depending on its static configuration. Clearly, it ignores any cre-
dentials or other attributes of the request or target in question, environment, or the
history about the previous requests. Despite its dullness, such a PE turns out to be
very handy for testing, debugging, and deploying Web service applications and the
architecture itself. More interesting PEs, supplied with the architecture implementa-
tion, grant access based on the IP address of the request sender, the name of the Web
service target and its methods, and the decisions provided by an enterprise authoriza-
tion server. The strength of RAD architectural style is in the support of fairly sophis-
ticated authorization policies (see [1] for an example) without the need for complex
authorization engines. This support is achieved by combining run-time decisions from

Experience Report 343

several simple PEs into one at the second step, performed by a DecisionCombinator
(DC).

Another reason for dividing the authorization process into the phases of evaluating
(possibly several) policies and combining evaluation results, i.e., decisions, is to en-
able a high degree of authorization components reuse. Based on prior experience with
protection for enterprise applications, we expected that, on the one hand, authoriza-
tion policies would vary not only from organization to organization but also from
application to application. On the other hand, common elements of authorization
logic (e.g., decisions based on the roles, groups, and other attributes of the users)
recur in most policies, making them perfect candidates for reusable components.

Fig. 3. Resulting configuration with the PE restricting access based on the sender’s IP address

To appreciate the power of DC&PEs approach, consider a composition of “All
Permits Required” DC with a role-based access control (RBAC) [20] PE. They im-
plement authorization based on user roles and their hierarchies. If the application
owners decide to restrict access further to a particular range of IP addresses, they can
do so by adding a PE that authorizes IP addresses, instead of modifying the fairly
complex logic of the RBAC PE. The result is shown in Figure 3. Support for policies
in which PEs might have different priorities is enabled through the use of (unique) PE
names so that custom DC logic can discriminate between them.

The authorization process continues to its third stage. This stage is important for
achieving fail-safe defaults in those cases when a DC experiences a failure due to a
design or implementation error and does not come to a binary decision. During this
stage, the interceptor renders any decision, except “permit,” received from the DC to
“deny” and thus reaches authorization verdict. If access has been denied, the corre-
sponding exception with the configurable explanation message is thrown to the
ASP.NET run time, which translates it into an appropriate SOAP exception message.

Besides credentials—obtained from the SOAP message, the corresponding HTTP
request, or the underlying communication channel—PEs are supplied with other in-
formation related to the request: name and attributes of the Web service, its policy
domain, and the method to be invoked. All this information is constructed into a per-
mission. Thus, the authorization process results in a decision on whether a given
permission should be granted to a given subject (represented by its credentials). If so,
the interceptor passes control to ASP.NET, which activates the corresponding Web
service implementation and passes to it the request contained in the SOAP message. It
is the construction of the permission that furthers the flexibility and extensibility of
the architecture.

344 Konstantin Beznosov

4.3 Permission Construction

To support the flexibility and extensibility of the architecture, we designed permis-
sion construction out of four distinct elements, as shown in Figure 4.

Fig. 4. Elements of the permission generated by the default permission factory

1. TargetName—the name of the target Web service can be represented by either a
URL or the .NET class name of the service implementation. The URL represents
the web server’s interpretation of the URL from the corresponding HTTP request.
The use of URLs for naming Web services is less attractive in ASP.NET because
the same .NET class can be reused to create separate instances of Web services. In
the ASP.NET environment, a single file hosts each target Web service. Different
URLs can be used to invoke the same implementation class. The presence of these
synonyms can pose a challenge to the security administrator’s primary goal—
maintaining proper security policy for Web services. The use of the .NET class
name instead of the URL means that all instances of a Web service application can
share the same authorization policy rules. This reduces the cost of maintenance and
allows the same application logic to be protected no matter how many names under
which it is deployed. When used together with the domain capability, several in-
stances of the same Web service can be treated the same, or distinctly, as appropri-
ate for the application structure.

2. DomainName—the use of a domain classifier is borrowed from CORBA Security
[6, 16] architecture, whose policy domains support different security requirements
for implementations of the same interfaces. In our architecture, optional domains
allow discrimination between those same implementations of a Web service that
have different access control requirements. Another purpose of domains is to allow
for a logical grouping of several Web services, perhaps so that they can share an
authorization server or its policy database. Since the means of determining the do-
main of a Web service is highly specific to the application and its authorization
policies, our architecture provides a simple version of a domain retriever and a
means for replacing it with custom implementations.

3. Target attributes—further differentiation among Web service instances is achieved
through an optional list of one or more name-value pairs holding target attributes.
For example, a Web service representing a bank account manager could have at-

Experience Report 345

tributes that identify the branch to which all the managed accounts belong, pro-
vided the division of the accounts among such managers is based on the branches.
As it was argued in [2], the use of target attributes reduces the need for mixing au-
thorization and other security logic with business logic. These application-specific
attributes and the mechanism for obtaining them at run time are directly based on
the prior work on Attribute Function [2, 18]. The extensible retrieval mechanism is
designed as a replaceable TargetAttributeRetriever interface, with a simple imple-
mentation provided by the architecture implementation.

4. Method—since ASP.NET, at the time of this work, supported only RPC semantics
for interactions with hosted Web service implementations, acceptable SOAP mes-
sages had to specify the method of the .NET implementation class responsible for
processing the request. As with other RPC-based middleware technologies, it was
important to support these authorization decisions based on method name. The
method name is optional in the constructed permission to support types of applica-
tions that do not require authorization policy granularity at the method level.

Table 1 shows examples of permissions:

Table 1. Examples of permissions

Permission Example Explanation
http://foobank.com/bar.asmx Only the URL is used
com.foobank.ws.Sbar/m1 Class and method names
D1/com.foobank.ws.Sbar /m1 Same but in domain “D1”
com.foobank.ws.Sbar/owner=smith Class name and attribute
D1/com.foobank.ws.Sbar/owner=smith/m1 Domain, class, attribute, method

The construction of permissions is done by a default permission factory, which can

be replaced by a custom implementation possibly producing permissions of other
format and content. The configuration, described below, determines which permis-
sion factory, DC&PEs, credential retrievers, and other replaceable parts of the archi-
tecture are used for serving requests for each Web service instance.

4.4 Replaceable Parts

As stated before, the flexibility and extensibility of the architecture is achieved via
designing most of its elements to be replaceable. Any of the black boxes in Figure 5
can be replaced by a version that comes with the implementation or by a version
produced by Web service developers or owners. Custom versions of the grey boxes
are subject to the control by those modules that create them. Other architectures, e.g.,
CORBA Security [6, 16], also make some of their parts replaceable. The novelty of
our approach is the level of replaceable parts’ granularity. In CORBA Security, for
instance, authorization logic (encapsulated in AccessDecision interface) has to be
replaced as a whole, whereas in our architecture, one can selectively replace specific
PEs and/or a DC. Furthermore, each Web service in the same container can be pro-
tected by a different set of replaceable elements, which is not the case with CORBA
Security, COM+, or EJB implementations. Flexible and manageable configuration
turns out to be critical for making fine-grain and yet scalable replaceability workable.

346 Konstantin Beznosov

Fig. 5. Key elements of the architecture

4.5 Configuration

Flexible and scalable configuration is critical in order for our architecture to be exten-
sible and, at the same time, carry low administration or run-time overhead. Since an
ASP.NET container might host many Web services, each with its own security re-
quirements, and deployment and maintenance life cycles, the run-time changes to the
configuration should not result in the restart of the container or its lasting perform-
ance degradation. It turns out that ASP.NET configuration architecture, with settings
defined in web.config files, had most features we were looking for.

The use of simplified XML in web.config files enables a flexible hierarchy of con-
figuration elements, as shown in Figure 6. By leveraging the web.config ability to
delegate the handling of new configuration sections to custom handling logic, we
developed a simple hierarchical language to define and configure various elements of
the A&A decision logic as well as the protection policies that comprise them.

A protection policy can simply be viewed as a collection of specific credential re-
trievers, PEs, DC, as well as of attribute and domain retrievers, and permission fac-
tory. They are defined in other sections of the configuration and the policy only refers
to them by name (and possibly re-configures them), thus enabling reuse.

Since all of these elements are defined independently of the policies and have
unique names, they can be referenced by more than one protection policy. A singleton

Experience Report 347

in the scope of a web.config instance, Governing Policy (GP) specifies which particu-
lar policy is used for controlling access to the Web service in question. Thus, one can
prepare and test a protection policy, and perform a quick switch to the new policy by
just changing the name attribute of a GP, a reference to specific protection policy.
Multiple policies can be prepackaged and used to alter the behavior of the protection
mechanisms in response, for example, to the changes in the threat level.

The hierarchal nature of web.config parsing semantics enables good scalability
without losing a fine level of granularity in the control over sub-sets of (or individual)
Web services. The GP defined in the root web.config determines the protection of all
those Web services, for which no web.config file between the service and the root
directory overrides it. Thus, developers can deploy their Web services, which can be
administered by changes to the root web.config file. This approach, though, does not
address the question of scalable administration for multiple ASP.NET containers,
which is an issue for COM+ and standard EJB containers as well. Similar to product-
specific solutions on the EJB market, one could remedy the problem by synchroniz-
ing web.config files or their specific sections across multiple containers.

Fig. 6. Simplified model of the configuration elements with default cardinality “0..*”

The configuration flexibility is achieved through two design decisions. First, any
web.config file down in the ASP.NET directory hierarchy can override GP, or define
any new element, including new policies, as long as the name of this element has not
been used in an ascendant web.config (i.e., one down in the directory hierarchy).
Unfortunately, the freedom of overriding GP means the loss of control over GPs used
for protecting the Web services located down in the directory hierarchy. However,
this loss can be remedied by the use of OS file system controls, if necessary, by the
Windows administrator restricting the rights of other users to modify web.config files
down the directory hierarchy. Second, to reduce the effort required for creating policy
variations, we also implemented a single inheritance mechanism for protection policy
definitions. Thus, a policy could reuse most of the other policy’s definition and over-
ride just a few elements, such as a DomainRetriever or a specific PE.

The performance overhead from storing all configuration information in
web.config seems to be relatively small because ASP.NET caches read web.config
files and invalidates the cache when the OS detects any changes to the file. Since the
behavior or cache of our protection mechanisms is not affected by the changes to

348 Konstantin Beznosov

descendent web.config files, the goal of isolating Web services that are developed
independently but co-hosted by one instance of an ASP.NET container is half-
reached. The other half, eliminating the possibility of undesirable effects from
changes in the higher levels of the hierarchy, can be achieved by allocating separate
directory sub-trees to independent applications and sharing little or no settings
through the web.config mechanism. Even though this solution is far from perfect, we
believe it is good enough for most environments.

Adding a new component to the protection sub-system requires the simple step of
adding an entry with the information about the corresponding .NET assembly, class
name, and the name of the component into the web.config file. Afterwards, this com-
ponent can be referenced in the corresponding sections of web.config. Removing a
component involves the same steps but in reverse order. The above steps do not even
require stopping the protection sub-system.

5 Examples

To demonstrate the ability of our architecture to be customized through different
compositions of replaceable components, we provide hypothetical examples of im-
plementing two different policies. These examples also illustrate the high degree of
security logic reuse that, we expect, could reduce the error rate in the corresponding
parts of the applications and their supporting infrastructure. Real commercial applica-
tions and policies that have used our implementation cannot be discussed due to the
lack of permissions from the application owners.

5.1 Example 1: University Course Web Service

Consider a simplified application that provides online access to university courses as
Web services. Let us assume that the following is a relevant fragment of the applica-
tion security policy to be enforced:
Policy 1

1. All users should authenticate using user name and password in HTTP header
(HTTP-BA).

2. Anybody can look up course descriptions.
3. Registration clerks can list students registered for the course and

(un)register students.
4. The course instructor can list registered students, manage course assign-

ments and course material.
5. Registered for the course students can get assignments and course material,

and submit assignments.
Given that each course is represented by a separate instance of a web service, the

following is a configuration of our architecture that enables the enforcement of Policy
1. It is illustrated in Figure 7 with custom-built modules in black.
Configuration 1:
 An HTTP-BA CredentialRetriever CR1 extracts the user name and password

from the HTTP request that carried the corresponding SOAP request.

Experience Report 349

Fig. 7. Configuration 1. Custom-built components appear in the black boxes

 A custom TargetAttributeRetriever provides the course number in a form of an

attribute, e.g. CourseId=EECE412.
 The default PermissionFactory is configured to compose permissions with the

qualified class name of the .NET class, as a TargetName, the corresponding
method name, and the attributes provided by the custom retriever. No domain
name is used in this configuration. Here is an example:
“ca.ubc.CourseMngmnt.SimpleCourse/CourseId=EECE412/GetDescription”.

 A pre-built PolicyEvaluator PE1 grants permissions to any request on publicly
accessible methods. In the case of Policy 1, there is one public method, Get-
CourseDescription.

 A custom PolicyEvaluator PE2 is programmed and configured to make authoriza-
tion decisions according to the rules informally described as follows:
1. Permit users in role “registration clerk” to access methods “ListStudents”,

“RegisterStudent” and “UnregisterStudent”.
2. Permit users in role “instructor” whose attribute “CourseTaught” contains

the course listed in Permission.TargetAttributes.CourseId to list registered
students, manage course assignments and material.

3. Permit users in role “student” whose attribute “RegisteredCourses” contains
the course listed in Permission.TargetAttributes.CourseId to list registered
students, manage course assignments and material.

User roles and other attributes are retrieved by the PE during or after it validates
the credential received from HTTP-BA CredentialRetriever. We refrain from
discussing this step since it is very specific to the particular student and employee
databases used by the university and is irrelevant to the discussion.

 A pre-built DecisionCombinator of type Permit Overrides grants access if either
PE grants access.

This example also illustrates one specific issue with any component-based design:
even when each component satisfies its specification, there is no inherent guarantee

350 Konstantin Beznosov

that the assembled system also does. For instance, PE2 (which assumes the presence
of a CourseId attribute in the permission passed to it) depends on the TargetAttrib-
uteRetriever to retrieve such an attribute and on the PermissionFactory to insert the
attribute into the permission. All three have to function together for the protection
sub-system to function as expected. In our solution, we have not addressed this issue,
leaving developers to ensure the consistency of the assembled protection mechanisms
manually. The development of a specific automated solution for consistency verifica-
tion is a potent topic for future research on component-based security subsystems.

5.2 Example 2: Human Resource Web Service for International Organization

Now consider a multinational company that has divisions in Japan, Canada, the USA,
and Russia. Each division has its own department of human resources (HR). The
company rolls out a Web service application in all of its divisions to provide online
access to employee information. Each division has one or more Web services provid-
ing HR information for that division. The company establishes the following security
policy for accessing this application.
Policy 2
1. Only users within the company’s intranet or those who access the service over

SSL and have valid X.509 certificates issued by the company should be able to
access the application.

2. Anybody in the company can look up any employee and get essential informa-
tion about her/him (e.g., contact information, title, and names of the manager and
supervised employees).

3. Employees of HR departments can modify contact information and review sal-
ary information for any employee from the same division.

4. Managers of HR departments can modify any information about the employees
of the same department.

Configuration 2:
 Same CredentialsRetriever CR1 is used as in Example 1.
 Another CredentialRetriever CR2 obtains an SSL client certificate from the

HTTPS connection.
 A pre-built simple DomainRetriever always returns the same statically config-

ured domain name. The domain name designates the division for which HR in-
formation is served by the web service instance, e.g., “Japan”.

 The default PermissionFactory is configured to compose permissions with the
domain name, qualified class name of the .NET class, as a target name, and the
corresponding method name. No target attributes are used in this case.
Here is an example: “Japan/com.mega-foo.EmployeeInfo/GetContactInfo”.

 Same pre-built PolicyEvaluator PE1 as in Example 1 is used. This time, there are
four public methods: FindEmployee, GetEmployeeInformation, GetEmployee-
Manager, GetSupervisedEmployees.

 A pre-built PolicyEvaluator PE3 permits access to any request made from a ma-
chine with an IP address in the range of the company’s intranet addresses.

 A custom-built PolicyEvaluator PE4 permits access to any request made by a
user with a valid X.509 certificate (retrieved by CR2) issued by the company.

Experience Report 351

Fig. 8. Configuration 2. Custom-built components appear in black boxes. Generic ones sup-
plied by vendors appear in gray boxes

 A generic RBAC PolicyEvaluator PE5 permits the invocation of different meth-

ods based on the role of the user:
1. Any user with the role “hr employee” can invoke methods that modify con-

tact information and review salary.
2. Any user with the role “hr manager” can invoke methods permitted to users

with role “hr employee” as well as methods that modify an employee’s sal-
ary, title, and the names of the manager and supervised employees.

 A custom-built PolicyEvaluator PE6 permits access to any authenticated user,
whose attribute “Division” has the same value as the domain in the permission.

 A custom-built DecisionCombinator DC2 grants access according to the follow-
ing formula: (PE3 PE4) (PE1 (PE5 PE6)). That is, a request is permitted
only to intranet users or those with a valid company certificate (PE3 PE4), pro-
vided that either the requested method is public (PE1) or an authorized HR per-
son is accessing a record for the employee from the same division (PE5 PE6).

The high degree of the architecture composability allows for re-using two pre-built
(PE1 & PE3) from configuration 1. Even though configuration 2 has three more PEs
and one more CredentialRetriever than configuration 1, as shown in Figure 8, there
are only three components (DC2, PE4, and PE6) that have to be custom-built. Among
them, PE4 is simple to build with certificate validation tools and libraries, and PE6
requires marginal effort. DC2 can be implemented in one ‘if’ structure. Two other
(PE5 and CR2) are generic and can be supplied by third-party vendors.

6 Conclusions and Acknowledgement

This paper reports an experience of designing a flexible and extensible architecture
for protecting enterprise-grade ASP.NET Web services. The architecture’s flexibility

352 Konstantin Beznosov

and extensibility have been achieved through a component-based design that follows
the architectural styles of RAD [4, 5, 17] and Attribute Function [2]. This architecture
has been implemented in a real-world security solution. We described requirements,
presented the architecture, and explained the design decisions along with the lessons
learned from this work.

The author thanks the anonymous reviewers for their insightful comments that
helped to improve this paper. ICICS editorial assistant Ben D’Andrea was instrumen-
tal in making this paper more readable.

References

1. Barkley, J., Beznosov, K. and Uppal, J., “Supporting Relationships in Access Control Using
Role Based Access Control,” in Proceedings of the Fourth ACM Role-based Access Control
Workshop, (Fairfax, Virginia, USA, 1999), pp. 55-65.

2. Beznosov, K., Object Security Attributes: Enabling Application-specific Access Control in
Middleware. in 4th International Symposium on Distributed Objects & Applications (DOA),
(Irvine, California, USA, 2002), Springer-Verlag, pp. 693-710.

3. Beznosov, K. Overview of .NET Web Services Security, presented at Distributed Object
Computing Security Workshop, Baltimore, MD, USA, 2002.

4. Beznosov, K., Deng, Y., Blakley, B., Burt, C. and Barkley, J., A Resource Access Decision
Service for CORBA-based Distributed Systems. in Proceedings of the Annual Computer
Security Applications Conference (ACSAC), (Phoenix, Arizona, USA, 1999), pp. 310-319.

5. Beznosov, K., Espinal, L. and Deng, Y., “Performance Considerations for CORBA-based
Application Authorization Service,” in Proceedings of the Fourth IASTED International
Conference Software Engineering and Applications, (Las Vegas, Nevada, USA, 2000).

6. Blakley, B. CORBA Security: an Introduction to Safe Computing with Objects. Addison-
Wesley, Reading, MA, 1999.

7. Entrust. getAccess Design and Administration Guide, Encommerce, 1999, 182p.
8. Hartman, B., Flinn, D.J., Beznosov, K. and Kawamoto, S. Mastering Web Services Secu-

rity. John Wiley & Sons, New York, 2003.
9. Karjoth, G., “The Authorization Service of Tivoli Policy Director,” in Proceedings ACSAC,

(New Orleans, Louisiana, 2001), pp.319-328.
10.Microsoft. “Altering the SOAP Message Using SOAP Extensions,” 2002.
11.Microsoft Building Secure ASP.NET Applications: Authentication, Authorization, and

Secure Communication. Microsoft Press, 2002.
12.Microsoft. Microsoft .NET Passport, 2001.
13.Microsoft. “Securing XML Web Services Created Using ASP.NET” in .NET Framework

Developer's Guide, 2001.
14.Netegrity. SiteMinder Concepts Guide, Waltham, MA, 2000, 78p.
15.OASIS. Web Services Security: SOAP Message Security 1.0 (WS-Security 2004), 2004.
16.OMG. CORBAservices: Security Service Specification v1.7, formal/01-03-08, 2001.
17.OMG. Resource Access Decision Facility, formal/2001-04-01, 2001.
18.OMG. Security Domain Membership Management Service, Final Submission, 2001.
19.Parnas, D.L. “Designing Software for Ease of Extension and Contraction,” IEEE Transac-

tions on Software Engineering, SE-5(2):128-137, 1979.
20.Sandhu, R. et al. “Role-Based Access Control Models,” IEEE Computer, 29(2):38-47,1996.
21.W3C. SOAP Version 1.2 Part 1: Messaging Framework, W3C, 2002.

Concept Index

ADL, 90
AADL, 41
ABC/ADL, 129
Acme, 96
C2, 93, 96
Darwin, 200
MetaH, 41
Rapide, 200
Wright, 200

analysis techniques
bottleneck analysis, 75
component-level analysis, 83
dataflow analysis, 82–88
deterministic stochastic petri nets, 39
failure responsibility, 205–217
interface focused FMEA, 36
mean value analysis, 14
performance analysis, 69–74
rate monotonic analysis, 239
real-time scheduling, 239–242
reliability analysis, 35
safety analysis, 34–45
schedulability, 58
synchronization, 251

architectural analysis, 322–335
CHARMY, 276

architectural recovery, 326
architectural style

attribute function, 338
layered, 66, 69, 145
pipe and filter, 52, 299
resource access decision, 338

ArchJava, 100, 101
ArchStudio, 100, 101
Aspect-Oriented Development, 140–153

Babel, 288
benchmarking, 9

Ccaffeine, 285, 288, 290, 295
CCL-J, see contract, Component Con-
straint Language
Common Object Request Broker Archi-
tecture, 284, 286

communication mechanism
callback, 87
interceptor, 189, 199
message passing, 235
negotiation, 198
parallel mesage passing, 289–296
point-to-point, 2
publish and subscribe, 2, 333
remote method invocation, 1, 92, 333

component
behavioral model, 268
composition, 90–105, 188, 309
contract, 103, 143, 188
definition, 38, 85, 95, 141, 147, 156, 173,
187, 251
deployment, 124–137, 219–233
failure behavior, 35
framework, 306–319
interface compatibility, 223
lifecycle, 95
matching, 171–185
metadata, 84
selection, 155–170
simulation, 60–62
specification language, 221

component epochs
compile time, 52, 265
design time, 52, 100, 191, 246
run time, 52, 191

component models
Apache Struts, 303
Autocomp, 51, 246
CCA, see Common Component Archi-
tecture
COM, 92, 108
Common Component Architecture,
283, 287–291, 296
COMQUAD, 209
CORBA Component Model, 92, 108,
187, 247, 265, 283
DCOM, 108, 283
EJB, see Enterprise JavaBeans
Fractal, 108, 109, 187–201
JavaBeans, 94, 180, 283
JBoss, 141

354 Concept Index

Koala, 51, 94, 103
KobrA, 92, 103
PECOS, 94, 120
PIN, 94
Robocop, 246
SaveCCM, 51
SOFA, 200

composition
aspect-oriented, 142, 150
feature, 298
functional, 109
QoS, 109
safety cases, 34
sequential, 103, 104

container, 3, 7, 204, 206, 209, 313
contract

aspect, 143
assertion, 192
Component Constraint Language, 192
composition, 109
definition, 191
hierarchical, 187–202
postcondition, 192
precondition, 192
QoS, 112
static verification, 104
synchronization, 253–256

CORBA, see Common Object Request
Broker Architecture

design pattern
adaptor, 302
builder, 258
courier, 95
factory, 339
interceptor, 341
message facade, 10
model/view/controller, 318
session facade, 10

embedded systems, 49
COYOTE, 108
OSKit, 108
SEESCOA, 120
Think, 109

Enterprise JavaBeans, 1, 3, 4, 6–8, 14, 18–
31, 92, 94, 125, 126, 136, 139, 187, 265,
283

BARK, 135
Container Managed Persistence, 12
message driven bean, 6, 7, 10, 13, 14

examples
aspect-oriented, 144
bank system, 99–102
bill payment application, 318
calendar, 183
component deployment, 132–135
copier, 188–189
course web service, 348–350
elevator control system, 242–245
fire alarm system, 42–44
human resources web service, 350–351
image compression, 160
mortgage application, 319
MPEG4-compliant EJB codec, 28
multi-threaded web server, 256–263
on-line stock-broking, 12–14
performance analysis, 76–79
QoS-aware video player, 117–120
simulator kernel, 283–296
telecommunication, 298–305

extra-functional property
adaptability, 156
availability, 139
configurability, 310
CPU load, 17, 18, 50–63
CQML, 209
extensibility, 338
flexibility, 338
memory consumption, 18, 50–63, 161
memory profile, 17
performance, 156
resource consumption, 17
resource usage, 49–63
security, 139, 156

fault trees, 34–45
framework

DyMac, 139
fuzzy logic, 155–169

grid computing, 136, 322–335
Dspace, 332
Glide, 331
Globus, 330
JCGrid, 332
OGSA, 334
OODT, 328

J2EE, see Java 2 Enterprise Edition
Java 2 Enterprise Edition, 2–5, 10, 14, 19,
124–126, 136, 307, 308

Concept Index 355

CADTool, 129
PKUAS, 125

Java Management Extensions, 10
Java Server Pages, 307
Java2 Enterprise Edition, 339
JMS, see messaging services, Java Messag-
ing Service
JMX, see Java Management Extensions
JPMT, see profiling technology, Java Per-
formance Monitoring Toolkit
JSP, see Java Server Pages
JVMDI, see profiling technology, Java
Virtual Machine Debugger Interface
JVMPI, see profiling technology, Java Vir-
tual Machine Profiler Interface

MDB, see Enterprise JavaBeans, message
driven bean
message oriented middleware, 2, 14
messaging services, 1

CORBA Notification services, 1
Java Messaging Service, 1, 4, 5, 8, 10,
13, 14
MQ, 1
MSMQ, 1

model-based testing, 267–281
modeling

languages, 246
performance, 2, 4, 74
performance monitoring, 127

MOM, see message oriented middleware

non-functional property, see extra-
functional property

performance attributes, see system prop-
erty
performance evaluation, 66–79
prediction

application performance, 1–14
feature interaction, 304
resource consumption, 246
timing, 49

product line, 49, 246
profile

performance, 4
profiling technology

JFluid, 19
bytecode instrumentation, 22
EJBMemProf, 26

event-driven approaches, 23
Form, 20
HProf, 19
Java Performance Monitoring Toolkit,
20–21
Java Virtual Machine Profiler Interface,
18–21
JBoss-Profiler, 19
JProbe, 18
JProfiler 3, 19
OptimizeIt, 10, 18
static analysis, 23
statistical methods, 23

QNM, see queuing network models
QoS resources

CPU, 118
memory, 118

quality of service, 107–121, 131
end-to-end timing requirements, 51
QuA, 120

queuing network models, 3, 5, 6, 13, 14
Layered, 68
Product Form, 67

real time properties
temporal, 246
version consistency, 246

real time systems
Jitter, 57
modeling, 235
scheduling, 235–248

responsibility model, 210–211
RMI, see remote method invocation

Scientific Interface Definition Language,
288, 291
SIDL, see Scientific Interface Definition
Language
SOAP, 330, 341
software architecture

performance engineering, 68
runtime, 127

SPARK, 105
synchronization units, 251–266
system model, 69

discrete time Markov chain, 67, 70
system property

average response time, 67, 68, 75, 77, 78
CPU utilizaition, 130

356 Concept Index

deadlock-freedom, 104
hazard probability, 41
load, 69
performance, 3, 66, 110, 294, 295, 304
reliability, 67
responsiveness, 66
saturation, 78
scalability, 3, 75, 78
throughput, 66, 67, 74, 75, 77, 78, 130

trust, 203–217

indemnification, 204

UML-RT, 235–248

web services, 303, 337–351

.NET, 339
resource framework, 334

Author Index

Åkerholm, Mikael, 49
Akolkar, Rahul P., 306

Babau, Jean-Philippe, 107
Behrends, Reimer, 251
Beznosov, Konstantin, 337
Bond, Gregory W., 298
Bucchiarone, Antonio, 267

Cangussu, João W., 155
Chen, Ying, 123
Cheung, Eric, 298
Claypool, Kajal, 171
Collet, Philippe, 187
Cooper, Kendra, 155
Coupaye, Thierry, 187

Dı́az, Manuel, 283
Dillon, Laura K., 251
Dolstra, Eelco, 219

Facchini, Fabrizio, 267
Faruquie, Tanveer, 306
Franz, Elke, 203
Fredriksson, Johan, 49

Garrido, Daniel, 283
Goguen, Healfdene H., 298
Gorton, Ian, 1
Grunske, Lars, 33
Gu, Zonghua, 235

Hanson, Karrie J., 298
He, Zhimin, 235
Henderson, Don, 298
Huang, Gang, 123
Huerta, Juan, 306

Jakobac, Vladimir, 322
Jalote, Pankaj, 66
Joosen, Wouter, 139

Kaiser, Bernhard, 33
Kankar, Pankaj, 306
Karam, Gerald M., 298

Lagaisse, Bert, 139
Lan, Ling, 123
Lau, Kung-Kiu, 90
Lin, Rong, 155
Liu, Yan, 1

Ma, Liya, 123
Mattmann, Chris A., 322
Medvidovic, Nenad, 322
Mei, Hong, 123
Meyerhöfer, Marcus, 17
Muccini, Henry, 267

Olive, Vincent, 107

Papadopoulos, Yiannis, 33
Pelliccione, Patrizio, 267
Purdy, K. Hal, 298

Rajput, Nitendra, 306
Raman, T.V., 306
Ramirez, Paul M., 322
Rivierre, Nicolas, 187
Romero, Sergio, 283
Rountev, Atanas, 82
Rousseau, Roger, 187
Rubio, Bartolomé, 283

Sandström, Kristian, 49
Sankaranarayanan, Ganesan, 155
Sharma, Vibhu Saujanya, 66
Smith, Thomas M., 298
Soler, Enrique, 283
Soundararadjane, Ragouramane, 155
Stirewalt, R.E. Kurt, 251

Tansalarak, Naiyana, 171
Tournier, Jean-Charles, 107
Trivedi, Kishor S., 66
Troya, José M., 283

Udupa, Raghavendra U., 306

Velasco Elizondo, Perla, 90
Verma, Abhishek, 306
Volz, Bernhard, 17

358 Author Index

Wang, Meng, 123
Wang, Zheng, 90
Wappler, Ute, 203
Wong, Eric, 155

Zave, Pamela, 298
Zhang, Long, 123

	Frontmatter
	Prediction, Analysis and Monitoring of System Architecture
	Performance Prediction of J2EE Applications Using Messaging Protocols
	EJBMemProf -- A Memory Profiling Framework for Enterprise JavaBeans
	Model-Driven Safety Evaluation with State-Event-Based Component Failure Annotations
	Optimizing Resource Usage in Component-Based Real-Time Systems
	Evaluating Performance Attributes of Layered Software Architecture
	Component-Level Dataflow Analysis

	Architecture and Design of Component-Based Systems
	Exogenous Connectors for Software Components
	Qinna, a Component-Based QoS Architecture
	Architecture Based Deployment of Large-Scale Component Based Systems: The Tool and Principles
	Component-Based Open Middleware Supporting Aspect-Oriented Software Composition
	An Empirical Study on the Specification and Selection of Components Using Fuzzy Logic
	Finding a Needle in the Haystack: A Technique for Ranking Matches Between Components

	Extra-Functional System Properties of Components and Component-Based Systems
	A Contracting System for Hierarchical Components
	Tailored Responsibility Within Component-Based Systems
	Efficient Upgrading in a Purely Functional Component Deployment Model
	Real-Time Scheduling Techniques for Implementation Synthesis from Component-Based Software Models
	A Component-Oriented Model for the Design of Safe Multi-threaded Applications
	{\sc TeStor}: Deriving Test Sequences from Model-Based Specifications

	Components at Work
	A CCA-compliant Nuclear Power Plant Simulator Kernel
	Experience with Component-Based Development of a Telecommunication Service
	Reusable Dialog Component Framework for Rapid Voice Application Development
	Unlocking the Grid
	Experience Report: Design and Implementation of a Component-Based Protection Architecture for ASP.NET Web Services

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

