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Series Editors’ Foreword 

The topics of control engineering and signal processing continue to flourish and 
develop. In common with general scientific investigation, new ideas, concepts and 
interpretations emerge quite spontaneously and these are then discussed, used, 
discarded or subsumed into the prevailing subject paradigm. Sometimes these 
innovative concepts coalesce into a new sub-discipline within the broad subject 
tapestry of control and signal processing. This preliminary battle between old and 
new usually takes place at conferences, through the Internet and in the journals of 
the discipline. After a little more maturity has been acquired by the new concepts 
then archival publication as a scientific or engineering monograph may occur. 

A new concept in control and signal processing is known to have arrived when 
sufficient material has evolved for the topic to be taught as a specialised tutorial 
workshop or as a course to undergraduate, graduate or industrial engineers. 
Advanced Textbooks in Control and Signal Processing are designed as a vehicle 
for the systematic presentation of course material for both popular and innovative 
topics in the discipline. It is hoped that prospective authors will welcome the 
opportunity to publish a structured and systematic presentation of some of the 
newer emerging control and signal processing technologies in the textbook series.  

In the 1970s many new control ideas were emerging. The optimal control 
paradigm initiated by the seminal papers of Kalman was growing into maturity  
For example, in 1971 the IEEE Transactions on Automatic Control published the 
famous special issue on LQG optimal control edited by Athans. The groundswell 
of ideas included finite-time optimal control solutions, and the concept of the 
separation principle partitioning solutions into control and estimation; these were 
influential concepts for later theorists. At the same time, the rapidly advancing 
power of digital control was being exploited by industry for the control of ever 
increasing numbers of process systems. Some control schemes of the 1970s were 
driven by the practical and commercial needs of industrial processes to operate 
within process regions bounded by constraints. Dynamic matrix control and model 
algorithmic control were typical software products that used models, cost functions 
and prediction to handle constrained industrial control problems. 

The practical and theoretical experience of the 1970s finally produced 
generalised predictive control, model predictive control and the clear use of a 
receding horizon control principle as key methods for industrial control in the 
1980s and 1990s. Today, model predictive control and the receding horizon 
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principle is the subject of a small but influential set of theoretical and practical 
textbooks. 

Wook Hyun Kwon’s work on the receding horizon principle and model 
predictive control is grounded in the optimal control research of the late 1970s and 
has followed and contributed to the development of the field ever since. In this 
textbook, Professor Kwon and his colleague Soohee Han present their distinctive 
version of this important control methodology. The book can be used for a course 
study or for self study. Each chapter has a detailed problems section. MATLAB®

codes for various worked examples are given in an appendix so that the reader can 
try the various control and filter methods. Starred sections alert the reader and the 
lecturer to material that can be omitted if study time is constrained. 

The opening chapter of the book succinctly reviews the concepts of receding 
horizon control and filters, the output feedback receding control problem and the 
use of prediction. A neat section on the advantages and disadvantages of the 
receding horizon control paradigm gives a useful insight into the reasons for the 
success of these methods. The most difficult task is then to construct a book 
framework for presenting material that has been evolving and developing since 
1970s. The route planned by the authors is direct and effective. First, there is 
optimal control (Chapter 2). This covers the finite-time and infinite time horizon 
varieties for general systems, LQ, H-infinity, LQG and H2 optimal control. The 
chapter interleaves a section on Kalman and H-infinity filters as needed by the 
appropriate optimal control solutions. Chapter 3 introduces the receding horizon 
version of these optimal control formulations. A key feature of Chapter 3 is that 
state feedback is the active control mechanism. However, before moving to the 
challenging topic of output feedback receding horizon control, a chapter on 
receding horizon filtering is presented. The filters described in this Chapter 4 are 
used in the key results on output feedback receding horizon control. An important 
staging point of the textbook is Chapter 5 which presents detailed solutions to the 
important practical problem of output feedback receding horizon control. The 
exhaustive material of this chapter also includes a global optimization approach to 
the solution of the output feedback receding horizon control problem where a 
separation principle between control and estimation is proven. This is a highly 
satisfying outcome to the route taken so far by the authors. The final two chapters 
of the book then tackle the addition of constraints to the receding horizon control 
problem (Chapter 6) and receding horizon control with nonlinear dynamical 
process models (Chapter 7). 

Overall, the textbook gives a well-structured presentation to receding horizon 
control methods using state-space models. The comprehensiveness of the 
presentation enables flexibility in selecting sections and topics to support an 
advanced course. The postgraduate student and the academic researcher will find 
many topics of interest for further research and contemplation in this fine addition 
to the series of advanced course textbooks in control and signal processing. 

M.J. Grimble and M.A. Johnson 
Industrial Control Centre 
Glasgow, Scotland, U.K. 

March 2005 



Preface

This book introduces some essentials of receding horizon control (RHC) that
have been emerged as a successful feedback strategy in many industry fields,
including process industries in particular. RHC is sometimes called receding-
horizon predictive control (RHPC) and is better known as model predictive
control (MPC) for state-space models.

RHC is based on the conventional optimal control that is obtained by
minimization or mini-maximization of some performance criterion either for a
fixed finite horizon or for an infinite horizon. RHC introduces a new concept of
the receding horizon that is different from a fixed finite horizon and an infinite
horizon. The basic concept of RHC is as follows. At the current time, optimal
controls, either open loop or closed loop, are obtained on a fixed finite horizon
from the current time. Among the optimal controls on the fixed finite horizon,
only the first one is implemented as the current control law. The procedure
is then repeated at the next time with a fixed finite horizon from the next
time. Owing to this unique characteristic, there are several advantages for
wide acceptance of RHC, such as closed-loop structure, guaranteed stability,
good tracking performance, input/output (I/O) constraint handling, simple
computation, and easy extension to nonlinear systems.

Historically, generalized predictive control (GPC) and MPC has been in-
vestigated and implemented for industrial applications independently. Origi-
nally, RHC dealt with state-space models, while GPC and MPC dealt with
I/O models. These three controls are equivalent to one another when the prob-
lem formulation is the same. Since the recent problem formulations for the
above three predictive controls are based on state-space models, RHC based
on state-space models in this book will be useful in understanding the global
picture of the predictive controls.

Discrete-time systems are discussed in this book, since they are useful for
modern computer applications and they are easier to convey basic concepts
compared with continuous systems. Most results in this book for discrete-time
systems can be obtained for continuous-time systems. This book starts from
simpler systems of linear systems without constraints and then moves to linear
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systems with constraints and to nonlinear systems for better understanding,
although we can begin with nonlinear systems for generality. Both minimiza-
tion and mini-maximization optimal problems are dealt with for completeness.
Also, both state feedback and output feedback controls are dealt with if possi-
ble. For output controls, a new type of receding horizon finite impulse response
(FIR) filter that utilizes measurement data on the receding filter horizon is
introduced, which may be similar, in concept, to RHC. This filter is used as
a state estimator and also as a part of the output feedback RHC.

In this book, optimal solutions of RHCs, the stability and the performance
of the closed-loop system, and robustness with respect to disturbances are
dealt with. Robustness with respect to parameter uncertainties is not covered
in this book.

This book is organized as follows. After a brief introduction to concepts
and advantages of RHCs in Chapter 1, conventional optimal controls such as
dynamic programming and the minimum principle for nonlinear systems and
LQ, LQG, and H∞ controls for linear systems are introduced in Chapter 2,
since RHCs are based on these conventional optimal controls. In Chapter 3,
state feedback RHCs are investigated in depth. In Chapter 4, state estimators
such as receding horizon FIR filters are introduced as alternative filters to
conventional filters, which have some connections with RHCs. In Chapter 5,
output feedback RHCs will be introduced with a finite memory structure and
an unbiased condition. In Chapter 6, RHCs are given for linear systems with
input and state constraints. In Chapter 7, RHCs for nonlinear systems are
explained. In Chapters 6 and 7, introductory topics are covered in this book.
Some fundamental theories necessary for RHC are given in the appendices.
Sections denoted by an asterisk can be skipped when a course cannot cover
all the materials of the book.

In each chapter, we introduce references that help challenging readers ob-
tain a detailed knowledge of related areas. We tried to include the important
literature, but this may not be complete. If we have missed citing some im-
portant references, we sincerely apologize for that.

The first author appreciates the constant support of Allan and Myrna
Pearson and Thomas Kailath since he was at Brown University as a graduate
student and at Stanford University as a visiting professor respectively. We
would like to express our appreciation to Ki back Kim, Young Sam Lee, and
Young Il Lee who finished their Ph.Ds at our laboratory and provided some
input to this book. Also, Choon Ki Ahn, Zhong Hua Quan, Bo Kyu Kwon,
Jung Hun Park, and some other graduate students were of great help to us in
developing this book.

Seoul, Korea Wook Hyun Kwon
January 2005 Soohee Han
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Introduction

1.1 Control Systems

In this section, we will briefly discuss important topics for control systems,
such as models, control objectives, control structure, and performance critera.

Models

The basic variables of dynamical control systems are input, state, and output
variables that consist of controlled outputs and measured outputs, as in Fig-
ure 1.1. The input variable is the control variable and the measured output is
used for feedback. Usually, output variables are a subset of whole state vari-
ables. In dynamical control systems, there can be several undesirable elements,
such as disturbances, noises, nonlinear elements, time-delay, uncertainties of
dynamics and its parameters, constraints in input and state variables, etc.
All or some parts of undesirable elements exist in each system, depending on
the system characteristics. A model can be represented as a stochastic system
with noises or a deterministic system with disturbances. A model can be a
linear or nonlinear system. Usually, dynamic models are described by state-
space systems, but sometimes with input and output models.

Fig. 1.1. Control systems
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Control Objectives

There can be several objectives for control systems. The control is designed
such that the controlled output tracks the reference signal under the above
undesirable elements. Actually, the closed-loop stability and the tracking per-
formance even under the undesirable elements are known to be important
control objectives.

In order to achieve control objectives easily, the real system is separated
into a nominal system without model uncertainties and an additional un-
certain system representing the above undesirable elements. The control can
be designed first for the nominal system and then for the uncertain system.
In this case, the control objectives can be divided into simpler intermediate
control objectives, such as

• Nominal stability: closed-loop stability for nominal systems.
• Nominal performance: tracking performance for nominal systems.
• Robust stability: closed-loop stability for uncertain systems (robust sta-

bility).
• Robust performance: tracking performance for uncertain systems (robust

tracking performance).

The first three are considered to be the most important.

Control Structure

If all the states are measured we can use state feedback controls such as
in Figure 1.2 (a). However, if only the outputs can be measured, then we have
to use output feedback controls such as in Figure 1.2 (b).

The state feedback controls are easier to design than the output feedback
controls, since state variables contain all the system information. Static feed-
back controls are simpler in structure than dynamic feedback controls, but
may exist in limited cases. They are often used for state feedback controls.
Dynamic feedback controls are easier to design than static feedback controls,
but the dimension of the overall systems increases. They are often used for
output feedback controls. Finite memory feedback controls, or simply finite
memory controls, which are linear combinations of finite measured inputs and
outputs, can be another option, which will be explained extensively in this
book later. The feedback control is required to be linear or allowed to be non-
linear.

Performance Criterion

There are several approaches for control designs to meet control objectives.
Optimal control has been one of the widely used methods. An optimal control
is obtained by minimizing or maximizing a certain performance criterion. It is
also obtained by mini-maximizing or maxi-minimizing a certain performance
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(a) State feedback control

(b) Output feedback control

Fig. 1.2. Feedback controls

criterion. Optimal controls are given on the finite horizon and also on the infi-
nite horizon. For linear systems, popular optimal controls based on minimizing
are the LQ controls for state feedback controls and the LQG controls for out-
put feedback controls. Popular optimal controls based on mini-maximizing are
H∞ controls.

The optimal controls are often given in open-loop controls for nonlinear
systems. However, optimal controls for linear systems often lead to feedback
controls. Therefore, special care should be taken to obtain a closed-loop control
for nonlinear systems.

Even if optimal controls are obtained by satisfying some performance cri-
teria, they need to meet the above-mentioned control objectives: closed-loop
stability, tracking performance, robust stability, and robust tracking perfor-
mance. Closed-loop optimal controls on the infinite horizon tend to meet the
tracking performance and the closed-loop stability under some conditions.
However, it is not so easy to achieve robust stability with respect to model
uncertainties.

Models, control structure, and performance criteria can be summarized
visually in Figure 1.3.

1.2 Concept of Receding Horizon Controls

In conventional optimal controls, either finite horizons or infinite horizons are
dealt with. Often, feedback control systems must run for a sufficiently long
period, as in electrical power generation plants and chemical processes. In
these ongoing processes, finite horizon optimal controls cannot be adopted, but
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Fig. 1.3. Components of control systems

infinite horizon optimal controls must be used. In addition, we can introduce
a new type of control, RHC that is based on optimal control.

The basic concept of RHC is as follows. At the current time, the optimal
control is obtained, either closed-loop type, or open-loop type, on a finite
fixed horizon from the current time k, say [k, k + N ]. Among the optimal
controls on the entire fixed horizon [k, k + N ], only the first one is adopted as
the current control law. The procedure is then repeated at the next time, say
[k+1, k+1+N ]. The term “receding horizon” is introduced, since the horizon
recedes as time proceeds. There is another type of control, i.e. intervalwise
RHC, that will be explained later.

The concept of RHC can be easily explained by using a company’s invest-
ment planning to maximize the profit. The investment planning should be
continued for the years to come as in feedback control systems. There could
be three policies for a company’s investment planning:

(1) One-time long-term planning
Investment planning can be carried over a fairly long period, which is closer

to infinity, as in Figure 1.4. This policy corresponds to the infinite horizon op-
timal control obtained over [k,∞].

(2) Periodic short-term planning
Instead of the one-time long-term planning, we can repeat short-term in-

vestment planning, say investment planning every 5-years, which is given in
Figure 1.5.

(3) Annual short-term planning
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2000 2001 2010

1st 5 years planning

2000 2001 2010

1st 5 years planning

Fig. 1.4. One-time long-term planning
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Fig. 1.5. Periodic short-term planning
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Fig. 1.6. Annual short-term planning



6 1 Introduction

For a new policy, it may be good to have a short-term planning every year
and the first year’s investment is selected for the current year’s investment
policy. This concept is depicted in Figure 1.6.

Now, which investment planning looks the best? Obviously we must deter-
mine the definition of the “best”. The meaning of the “best” is very subjective
and can be different depending on the individual. Among investment plan-
nings, any one can be the best policy, depending on the perception of each
person. The above question, about which investment planning is the best,
was asked of students in a class without explaining many details. An average
seven or eight out of ten persons selected the third policy, i.e. annual short-
term planning, as the best investment planning. This indicates that annual
short-term planning can have significant meanings.

The above examples are somewhat vague in a mathematical sense, but
are adequate to explain the concepts of RHC. An annual short-term planning
is exactly the same as RHC. Therefore, RHC may have significant meanings
that will be clearer in the coming chapters. The periodic short-term investment
planning in Figure 1.5 corresponds to intervalwise RHC. The term “interval-
wise receding horizon” is introduced since the horizon recedes intervalwise
or periodically as time proceeds. Different types of investment planning are
compared with the different types of optimal control in Table 1.1. It is noted
that the short-term investment planning corresponds to finite horizon control,
which works for finite time processes such as missile control systems.

Table 1.1. Investment planning vs control

Process Planning Control
Ongoing process One-time long-term planning Infinite horizon control

Periodic short-term planning Intervalwise RHC
Annual short-term planning Receding horizon control

Finite time process Short-term planning Finite horizon control

There are several advantages to RHCs, as seen in Section 1.5. We take
an example such as the closed-loop structure. Optimal controls for general
systems are usually open-loop controls depending on the initial state. In the
case of infinite horizon optimal controls, all controls are open-loop controls
except the initial time. In the case of intervalwise RHCs, only the first control
on each horizon is a closed-loop control and others are open-loop controls. In
the case of the RHCs, we always have closed-loop controls due to the repeated
computation and the implementation of only the first control.
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1.3 Receding Horizon Filters and Output Feedback
Receding Horizon Controls

RHC is usually represented by a state feedback control if states are available.
However, full states may not be available, since measurement of all states
may be expensive or impossible. From measured inputs and outputs, we can
construct or estimate all states. This is often called a filter for stochastic
systems or a state observer for deterministic systems. Often, it is called a
filter for both systems. The well-known Luenberger observer for deterministic
state-space signal models and the Kalman filter for stochastic state-space
signal models are infinite impulse response (IIR) type filters. This means that
the state observer utilizes all the measured data up to the current time k from
the initial time k0.

Instead, we can utilize the measured data on the recent finite time [k −
Nf , k] and obtain an estimated state by a linear combination of the measured
inputs and outputs over the receding finite horizon with some weighting gains
to be chosen so that the error between the real state and the estimated one
is minimized. Nf is called the filter horizon size and is a design parameter.
We will call this filter as the receding horizon filter. This is an FIR-type
filter. This concept is depicted in Figure 1.7. It is noted that in the signal

Fig. 1.7. Receding horizon filter

processing area the FIR filter has been widely used for unmodelled signals
due to its many good properties, such as guaranteed stability, linear phase
(zero error), robustness to temporary parameter changes and round-off error,
etc. We can also expect such good properties for the receding horizon filters.

An output feedback RHC can be made by blind combination of a state
feedback RHC with a receding horizon filter, just like a combination of an LQ
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regulator and a Kalman filter. However, we can obtain an output feedback
RHC by an optimal approach, not by a blind combination. The output feed-
back RHC is obtained as a linear combination of the measured inputs and
outputs over the receding finite horizon with some weighting gains to be cho-
sen so that the given performance criterion is optimized. This control will be
called a receding horizon finite memory control (FMC). The above approach
is comparable to the well-known LQG problem, where the control is assumed
to be a function of all the measured inputs and outputs from the initial time.
The receding horizon FMC are believed to have properties that are as good
as the receding horizon FIR filters and state feedback RHCs.

1.4 Predictive Controls

An RHC is one type of predictive control. There are two other well-known
predictive controls, generalized predictive control (GPC) and model predictive
control (MPC). Originally, these three control strategies had been investigated
independently.

GPC was developed in the self-tuning and adaptive control area. Some
control strategies that achieve minimum variance were adopted in the self-
tuning control [ÅW73] [CG79]. The general frame work for GPC was suggested
by Clark et al. [CMT87]. GPC is based on the single input and single output
(SISO) models such as auto regressive moving average (ARMA) or controlled
auto regressive integrated moving average (CARIMA) models which have been
widely used for most adaptive controls.

MPC has been developed on a model basis in the process industry area as
an alternative algorithm to the conventional proportional integrate derivative
(PID) control that does not utilize the model. The original version of MPC
was developed for truncated I/O models, such as FIR models or finite step
response (FSR) models. Model algorithmic control (MAC) was developed for
FIR models [RRTP78] and the dynamic matrix control (DMC) was devel-
oped for FSR models [CR80]. These two control strategies coped with I/O
constraints. Since I/O models such as the FIR model or the FSR model are
physically intuitive, they are widely accepted in the process industry. How-
ever, these early control strategies were somewhat heuristic, limited to the
FIR or the FSR models, and not applicable to unstable systems. Thereafter,
lots of extensions have been made for state-space models, as shown in survey
papers listed in Section 1.7.

RHC has been developed in academia as an alternative control to the cele-
brated LQ controls. RHC is based on the state-space framework. The stabiliz-
ing property of RHC has been shown for case of both continuous and discrete
systems using the terminal equality constraint [KP77a] [KP77c]. Thereafter,
it has been extended to tracking controls, output feedback controls, and non-
linear controls [KG88] [MM90]. The state and input constraints were not con-
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sidered in the early developments, but dealt in later works, as seen in the
above-mentioned survey papers.

The term “predictive” appears in GPC since the minimum variance is
given in predicted values on the finite future time. The term “predictive”
appears in MPC since the performance is given in predictive values on the
finite future time that can be computed by using the model. The performance
for RHC is the same as one for MPC. Thus, the term “predictive” can be
incorporated in RHC as receding horizon predictive control (RHPC).

Since I/O models on which GPC and the early MPC are based can be
represented in state-space frameworks, GPC and the early MPC can be ob-
tained from predictive controls based on state-space models. In this book, the
predictive controls based on the state space model will be dealt with in terms
of RHC instead of MPC although MPC based on the state-space model is the
same as RHC.

1.5 Advantages of Receding Horizon Controls

RHC has made a significant impact on industrial control engineering and
is being increasingly applied in process controls. In addition to industrial
applications, RHC has been considered to be a successful control theory in
academia. In order to exploit the reasons for such a preference, we may sum-
marize several advantages of RHC over other existing controls.

• Applicability to a broad class of systems. The optimization problem over
the finite horizon, on which RHC is based, can be applied to a broad
class of systems, including nonlinear systems and time-delayed systems.
Analytical or numerical solutions often exist for such systems.

• Systematic approach to obtain a closed loop control. While optimal con-
trols for linear systems with input and output constraints or nonlinear
systems are usually open-loop controls, RHCs always provide closed-loop
controls due to the repeated computation and the implementation of only
the first control.

• Constraint handling capability. For linear systems with the input and state
constraints that are common in industrial problems, RHC can be easily
and efficiently computed by using mathematical programming, such as
quadratic programming (QP) and semidefinite programming (SDP). Even
for nonlinear systems, RHC can handle input and state constraints numer-
ically in many case due to the optimization over the finite horizon.

• Guaranteed stability. For linear and nonlinear systems with input and state
constraints, RHC guarantees the stability under weak conditions. Optimal
control on the infinite horizon, i.e. the steady-state optimal control, can
also be an alternative. However, it has guaranteed stability only if it is
obtained in a closed form that is difficult to find out.
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• Good tracking performance. RHC presents good tracking performance by
utilizing the future reference signal for a finite horizon that can be known
in many cases. In infinite horizon tracking control, all future reference
signals are needed for the tracking performance. However, they are not
always available in real applications and the computation over the infinite
horizon is almost impossible. In PID control, which has been most widely
used in the industrial applications, only the current reference signal is used
even when the future reference signals are available on a finite horizon.
This PID control might be too short-sighted for the tracking performance
and thus has a lower performance than RHC, which makes the best of all
future reference signals.

• Adaptation to changing parameters. RHC can be an appropriate strategy
for known time-varying systems. RHC needs only finite future system pa-
rameters for the computation of the current control, while infinite horizon
optimal control needs all future system parameters. However, all future
system parameters are not always available in real problems and the com-
putation of the optimal control over the infinite horizon is very difficult
and requires infinite memories for future controls.
Since RHC is computed repeatedly, it can adapt to future system parame-
ters changes that can be known later, not at the current time, whereas the
infinite horizon optimal controls cannot adapt, since they are computed
once in the first instance.

• Good properties for linear systems. It is well-known that steady-state op-
timal controls such as LQ, LQG and H∞ controls have good properties,
such as guaranteed stability under weak conditions and a certain robust-
ness. RHC also possesses these good properties. Additionally, there are
more design parameters, such as final weighting matrices and a horizon
size, that can be tuned for a better performance.

• Easier computation compared with steady-state optimal controls. Since
computation is carried over a finite horizon, the solution can be obtained
in an easy batch form for a linear system. For linear systems with input
and state constraints, RHC is easy to compute by using mathematical
programming, such as QP and SDP, while an optimal control on the in-
finite horizon is hard to compute. For nonlinear systems with input and
state constraints, RHC is relatively easier to compute numerically than
the steady-state optimal control because of the finite horizon.

• Broad industrial applications. Owing to the above advantages, there exist
broad industrial applications for RHC, particularly in industrial processes.
This is because industrial processes have limitations on control inputs and
require states to stay in specified regions, which can be efficiently handled
by RHC. Actually, the most profitable operation is often obtained when
a process works around a constraint. For this reason, how to handle the
constraint is very important. Conventional controls behave conservatively,
i.e. far from the optimal operation, in order to satisfy constraints since the
constraint cannot be dealt with in the design phase. Since the dynamics of
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the system are relative slow, it is possible to make the calculation of the
RHC each time within a sampling time.

There are some disadvantages of RHC.

• Longer computation time compared with conventional nonoptimal con-
trols. The absolute computation time of RHC may be longer compared
with conventional nonoptimal controls, particularly for nonlinear systems,
although the computation time of RHC at each time can be smaller than
the corresponding infinite horizon optimal control. Therefore, RHC may
not be fast enough to be used as a real-time control for certain processes.
However, this problem may be overcome by the high speed of digital pro-
cessors, together with improvements in optimization algorithms.

• Difficulty in the design of robust controls for parameter uncertainties. Sys-
tem properties, such as robust stability and robust performance due to
parameter uncertainties, are usually intractable in optimization problems
on which RHCs are based. The repeated computation for RHC makes it
more difficult to analyze the robustness. However, the robustness with re-
spect to external disturbances can be dealt with somewhat easily, as seen
in minimax RHCs.

1.6 About This Book

In this book, RHCs are extensively presented for linear systems, constrained
linear systems, and nonlinear systems. RHC can be of both a state feedback
type and an output feedback type. They are derived with different criteria,
such as minimization, mini-maximization, and sometimes the mixed of them.
FIR filters are introduced for state observers and utilized for output feedback
receding RHC.

In this book, optimal solutions of RHC, the stability and the performance
of the closed-loop system, and robustness with respect to disturbances are
dealt with. Robustness with respect to parameter uncertainties are not covered
in this book.

In Chapter 2, existing optimal controls for nonlinear systems are reviewed
for minimum and minimax criteria. LQ controls and H∞ controls are also
reviewed with state and output feedback types. Solutions via the linear matrix
inequality (LMI) and SDP are introduced for the further use.

In Chapter 3, state feedback LQ and H∞ RHCs are discussed. In partic-
ular, state feedback LQ RHCs are extensively investigated and used for the
subsequent derivations of other types of control. Monotonicity of the optimal
cost and closed-loop stability are introduced in detail.

In Chapter 4, as state observers, FIR filters are introduced to utilize only
recent finite measurement data. Various FIR filters are introduced for mini-
mum, minimax and mixed criteria. Some filters of IIR type are also introduced
as dual filters to RHC.
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In Chapter 5, output feedback controls, called FMC, are investigated. They
are obtained in an optimal manner, rather than by blindly combining fil-
ters and state feedback controls together. The globally optimal FMC with a
quadratic cost is shown to be separated into the optimal FIR filter in Chapter
4 and RHC in Chapter 3.

In Chapter 6, linear systems with state and input constraints are discussed,
which are common in industrial processes, particularly in chemical processes.
Feasibility and stability are discussed. While the constrained RHC is difficult
to obtain analytically, it is computed easily via SDP.

In Chapter 7, RHC are extended to nonlinear systems. It is explained that
the receding horizon concept can be applied easily to nonlinear systems and
that stability can be dealt with similarly. The control Lyapunov function is
introduced as a cost monotonicity condition for stability. Nonlinear RHCs are
obtained based on a terminal equality constraint, a free terminal cost, and a
terminal invariance set.

Some fundamental theories necessary to investigate the RHC are given in
appendices, such as matrix equality, matrix calculus, systems theory, random
variable, LMI and SDP. A survey on applications of RHCs is also listed in
Appendix E.

MATLAB� programs of a few examples are listed in Appendix F and you
can obtain program files of several examples at http://cisl.snu.ac.kr/rhc or
the Springer website.

Sections denoted with an asterisk contain H2 control problems and topics
related to the general system matrix A. They can be skipped when a course
cannot cover all the materials of the book. Most proofs are provided in order
to make this book more self-contained. However, some proofs are left out in
Chapter 2 and in appendices due to the lack of space and broad scope of this
book.

Notation

This book covers wide topics, including state feedbacks, state estimations and
output feedbacks, minimizations, mini-maximizations, stochastic systems, de-
terministic systems, constrained systems, nonlinear systems, etc. Therefore,
notation may be complex. We will introduce global variables and constants
that represent the same meaning throughout the chapters, However, they may
be used as local variables in very limited cases.

We keep the widely used and familiar notation for matrices related to
states and inputs, and introduce new notation using subindices for matrices
related to the additional external inputs, such as noises and disturbances. For
example, we use xi+1 = Axi+Bui+Bwwi instead of xi+1 = Axi+B2ui+B1wi

and yi = Cxi + Cwwi instead of yi = C1xi + C2wi. These notations can make
it easy to recognize the matrices with their related variables. Additionally,
we easily obtain the existing results without external inputs by just removing
them, i.e. setting to zero, from relatively complex results with external inputs.
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Just setting to Bw = 0 and Cw = 0 yields the results based on the simpler
model xi+1 = Axi + Bui, yi = Cxi. The global variables and constants are
as follows:

• System

xi+1 = Axi + Bui + Bwwi

yi = Cxi + Duui + Dwwi (or Dvvi)
zi = Czxi + Dzuui + Dzwwi

xi : state
ui : input
yi : measured output
zi : controlled output
wi : noise or disturbance
vi : noise

Note that, for stochastic systems, Dv is set to I and the notation
G is often used instead of Bw.

• Time indices
i, j : time sequence index
k : current time index

• Time variables for controls and filters
uk+j|k, uk+j : control ahead of j steps from the current

time k as a reference
xk+j|k, xk+j : state ahead of j steps from the current time

k as a reference
x̂k|l : estimated state at time k based on the observed data

up to time l
Note that uk+j|k and xk+j|k appear in RHC and x̂k|l in filters. We
use the same notation, since there will be no confusion in contexts.

• Dimension
n : dimension of xi

m : dimension of ui

l : dimension of wi

p : dimension of yi

q : dimension of zi

• Feedback gain
H : feedback gain for control
F : feedback gain for filter
Γ : feedback gain for disturbance

• Controllability and observability
Go : observability Grammian
Gc : controllability Grammian
no : observability index
nc : controllability index
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• Weighting matrices
Q : weighting matrix of state
R : weighting matrix of input
Qf : weighting matrix of final state

• Matrix decomposition

Q = Q
1
2 Q

1
2 = CT C

R = R
1
2 R

1
2

• Covariance
Qw : covariance of system noise
Rv : covariance of measurement noises

• Solution to Riccati equation.
Ki, Ki,if

: Solution to Riccati equation in LQ control
Pi, Pi,if

: Solution to Riccati equation in Kalman filter
Mi, Mi,if

: Solution to Riccati equation in H∞ control
Si, Si,if

: Solution to Riccati equation in H∞ filter
• Horizon size for performance

Nc : control horizon size or control horizon
Nf : filter horizon size or filter horizon
Np : prediction horizon size or prediction horizon. This is

often called performance horizon or cost horizon.
Note that Nc and Nf are simply written as N when the meaning
is clear.

• System and performance criteria for nonlinear systems
f : system function
g : cost function of intermediate state
h : cost function of terminal state

• Performance criteria :
We have several notations depending on interested variables.

J
J(xi, i)
J(xi, i, if )
J(xi, i, ui)
J(xi, i, ui+·)
J(xi, i, ui, wi)

where ui+· = {ui+j , j ≥ 0} and the second argument i is usually
removed.

Note that a performance criterion is often called a cost function.
• Ellipsoid

EP,α = {x|xT Px ≤ α}
• Others

G(z) : transfer function
pi : costate in optimization method
I : identity matrix
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1.7 References

There are several survey papers on the existing results of predictive control
[RRTP78, GPM89, RMM94, Kwo94, May95, LC97, May97, CA98, ML99,
MRRS00, KHA04]. There are useful proceedings of conferences or workshops
on MPC [Cla94, KGC97, AZ99, Gri02]. In [Kwo94], a very wide ranging list
of references up to 1994 is provided. [AZ99, Gri02] would be helpful for those
who are interested in nonlinear MPC. In [MRRS00], the stability and the
optimality for constrained and nonlinear predictive controls for state-space
models are well summarized and categorized. Recent predictive controls for
nonlinear systems are surveyed in [KHA04]. In particular, comparisons among
industrial MPCs are well presented in [QB97], [QB00], [QB03] from a practical
point of view.

There are several books on predictive controls [BGW90, Soe92, Mos95,
MSR96, AZ00, KC00, Mac02, Ros03, HKH02, CB04]. The GPC for uncon-
strained linear systems and its monotonicity conditions for guaranteeing sta-
bility are given in [BGW90]. The book [Soe92] provides a comprehensive ex-
position on GPC and its relationship with MPC. The book [Mos95] covers
predictive controls and adaptive predictive controls for unconstrained linear
systems with a common unifying framework. The book [AZ00] covers nonlin-
ear RHC theory, computational aspects of on-line optimization and applica-
tion issues. In the book [Mac02], industrial case studies are illustrated and
several commercial predictive control products are introduced. Implementa-
tion issues for predictive controls are dealt with in the book [CB04].
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Optimal Controls on Finite and Infinite
Horizons: A Review

2.1 Introduction

In this chapter, important results on optimal controls are reviewed.
Optimal controls depend on the performance criterion that should reflect

the designer’s concept of good performance. Two important performance cri-
teria are considered for optimal controls. One is for minimization and the
other for minimaximization.

Both nonlinear and linear optimal controls are reviewed. First, the general
results for nonlinear systems are introduced, particularly with the dynamic
programming and a minimum principle. Then, the optimal controls for linear
systems are obtained as a special case. Actually, linear quadratic and H∞
optimal controls are introduced for both state feedback and output feedback
controls. Tracking controls are also introduced for future use.

Optimal controls are discussed for free and fixed terminal states. The for-
mer may or may not have a terminal cost. In particular, a nonzero terminal
cost for the free terminal state is called a free terminal cost in the subsequent
chapters. In addition, a fixed terminal state is posed as a terminal equality
constraint in the subsequent chapters. The optimal controls for the fixed ter-
minal and nonzero reference case will be derived in this chapter. They are
important for RHC. However, they are not common in the literature.

Linear optimal controls are transformed to SDP using LMIs for easier
computation of the control laws. This numerical method can be useful for
obtaining optimal controls in constrained systems, which will be discussed
later.

Most results given in this chapter lay the foundation for the subsequent
chapters on receding horizon controls.

Proofs are generally given in order to make our presentation in this book
more self-contained, though they appear in the existing literature. H2 filters
and H2 controls are important, but not used for subsequent chapters; thus,
they are summarized without proof.
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The organization of this chapter is as follows. In Section 2.2, optimal con-
trols for general systems such as dynamic programming and the minimum
principle are dealt with for both minimum and minimax criteria. In Section
2.3, linear optimal controls, such as the LQ control based on the minimum
criterion and H∞ control based on the minimax criterion, are introduced. In
Section 2.4, the Kalman filter on the minimum criterion and the H∞ filter
on the minimax criterion are discussed. In Section 2.5, LQG control on the
minimum criterion and the output feedback H∞ control on the minimax cri-
terion are introduced for output feedback optimal controls. In Section 2.6, the
infinite horizon LQ and H∞ control are represented in LMI forms. In Section
2.7, H2 controls are introduced as a general approach for LQ control.

2.2 Optimal Control for General Systems

In this section, we consider optimal controls for general systems. Two ap-
proaches will be taken. The first approach is based on the minimization and
the second approach is based on the minimaximization.

2.2.1 Optimal Control Based on Minimum Criterion

Consider the following discrete-time system:

xi+1 = f(xi, ui, i), xi0 = x0 (2.1)

where xi ∈ �n and ui ∈ �m are the state and the input respectively, and may
be required to belong to the given sets, i.e. xi ∈ X ∈ �n and ui ∈ U ∈ �m.

A performance criterion with the free terminal state is given by

J(xi0 , i0, u) =
if−1∑
i=i0

g(xi, ui, i) + h(xif
, if ) (2.2)

i0 and if are the initial and terminal time. g(·, ·, ·) and h(·, ·) are specified
scalar functions. We assume that if is fixed here for simplicity. Note that
xif

is free for the performance criterion (2.2). However, xif
can be fixed. A

performance criterion with the fixed terminal state is given by

J(xi0 , i0, u) =
if−1∑
i=i0

g(xi, ui, i) (2.3)

subject to

xif
= xr

if
(2.4)

where xr
if

is given.
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Here, the optimal control problem is to find an admissible control ui ∈ U
for i ∈ [i0, if − 1] that minimizes the cost function (2.2) or (2.3) with the
constraint (2.4).

The Principle of Optimality and Dynamic Programming

If S-a-D is the optimal path from S to D with the cost J∗
SD, then a-D is

the optimal path from a to D with J∗
aD, as can be seen in Figure 2.1. This

property is called the principle of optimality. Thus, an optimal policy has the
property that, whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting
from the first decision.

S
D

Fig. 2.1. Optimal path from S to D

Now, assume that there are allowable paths S-a-D, S-b-D, S-c-D, and
S-d-D and optimal paths from a, b, c, and d to D are J∗

aD, J∗
bD, J∗

cD, and J∗
dD

respectively, as can be seen in Figure 2.2. Then, the optimal trajectory that
starts at S is found by comparing

J∗
SaD = JSa + J∗

aD

J∗
SbD = JSb + J∗

bD

J∗
ScD = JSc + J∗

cD

J∗
SdD = JSd + J∗

dD (2.5)

The minimum of these costs must be the one associated with the optimal de-
cision at point S. Dynamic programming is a computational technique which
extends the above decision-making concept to the sequences of decisions which
together define an optimal policy and trajectory.

Assume that the final time if is specified. If we consider the performance
criterion (2.2) subject to the system (2.1), the performance criterion of dy-
namic programming can be represented by

J(xi, i, u) = g(xi, ui, i) + J∗(xi+1, i + 1), i ∈ [i0, if − 1] (2.6)
J∗(xi, i) = min

uτ ,τ∈[i,if−1]
J(xi, i, u)

= min
ui

{g(xi, ui, i) + J∗(f(xi, ui, i), i + 1)} (2.7)
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S D

Fig. 2.2. Paths from S through a, b, c, and d to D

where

J∗(xif
, if ) = h(xif

, if ) (2.8)

For the fixed terminal state, J∗(xif
, if ) = h(xif

, if ) is fixed since xif
and if

are constants.
It is noted that the dynamic programming method gives a closed-loop con-

trol, while the method based on the minimum principle considered next gives
an open-loop control for most nonlinear systems.

Pontryagin’s Minimum Principle

We assume that the admissible controls are constrained by some boundaries,
since in realistic systems control constraints do commonly occur. Physically
realizable controls generally have magnitude limitations. For example, the
thrust of a rocket engine cannot exceed a certain value and motors provide a
limited torque.

By definition, the optimal control u∗ makes the performance criterion J a
local minimum if

J(u) − J(u∗) = �J ≥ 0

for all admissible controls sufficiently close to u∗. If we let u = u∗ + δu, the
increment in J can be expressed as

�J(u∗, δu) = δJ(u∗, δu) + higher order terms

Hence, the necessary conditions for u∗ to be the optimal control are

δJ(u∗, δu) ≥ 0

if u∗ lies on the boundary during any portion of the time interval [i0, if ] and

δJ(u∗, δu) = 0

if u∗ lies within the boundary during the entire time interval [i0, if ].
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We form the following augmented cost functional:

Ja =
if−1∑
i=i0

{
g(xi, ui, i) + pT

i+1[f(xi, ui, i) − xi+1]
}

+ h(xif
, if )

by introducing the Lagrange multipliers pi0 , pi0+1, · · · , pif
. For simplicity of

the notation, we denote g(x∗
i , u

∗
i , i) by g and f(x∗

i , u
∗
i , i) by f respectively.

Then, the increment of Ja is given by

�Ja =
if−1∑
i=i0

{
g(x∗

i + δxi, u
∗
i + δui, i) + [p∗i+1 + δpi+1]T

× [f(x∗
i + δxi, u

∗
i + δui, i) − (x∗

i+1 + δxi+1)
}

+ h(x∗
if

+ δxif
, if )

−
if−1∑
i=i0

{
g(x∗

i , u
∗
i , i) + p∗T

i+1[f(x∗
i , u

∗
i , i) − x∗

i+1]
}

+ h(x∗
if

, if )

=
if−1∑
i=i0

{[
∂g

∂xi

]T

δxi +
[

∂g

∂ui

]T

δui + p∗T
i+1

[
∂f

∂xi

]T

δxi

+ p∗T
i+1

[
∂f

∂ui

]T

δui + δpT
i+1f(x∗

i , u
∗
i , i)

− δpT
i+1x

∗
i+1 − p∗T

i+1δxi+1

}
+
[

∂h

∂xif

]T

δxif

+ higher order terms (2.9)

To eliminate δxi+1, we use the fact

if−1∑
i=i0

p∗T
i+1δxi+1 = p∗T

if
δxif

+
if−1∑
i=i0

pT
i δxi

Since the initial state xi0 is given, it is apparent that δxi0 = 0 and pi0 can be
chosen arbitrarily. Now, we have

�Ja =
if−1∑
i=i0

{[
∂g

∂xi
− p∗i +

∂f

∂xi
p∗i+1

]T

δxi +
[

∂g

∂ui
+

∂f

∂ui
p∗i+1

]T

δui

+δpT
i+1

[
f(x∗

i , u
∗
i , i) − x∗

i+1

]}
+
[

∂h

∂xif

− p∗if

]T

δxif

+ higher order terms

Note that variable δxi for i = i0 + 1, · · · , if are all arbitrary. Define the
function H, called the Hamiltonian
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H(xi, ui, pi+1, i) � g(xi, ui, i) + pT
i+1f(xi, ui, i)

If the state equations are satisfied, and p∗i is selected so that the coefficient of
δxi is identically zero, that is,

x∗
i+1 = f(x∗

i , u
∗
i , i) (2.10)

p∗i =
∂g

∂xi
+

∂f

∂xi
p∗i+1 (2.11)

x∗
i0 = x0 (2.12)

p∗if
=

∂h

∂xif

(2.13)

then we have

�Ja =
if−1∑
i=i0

{[
∂H
∂u

(x∗
i , u

∗
i , p

∗
i , i)
]T

δui

}
+ higher order terms

The first-order approximation to the change in H caused by a change in u
alone is given by[

∂H
∂u

(x∗
i , u

∗
i , p

∗
i , i)
]T

δui ≈ H(x∗
i , u

∗
i + δui, p

∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i)

Therefore,

�J(u∗, δu) =
if−1∑
i=i0

[
H(x∗

i , u
∗
i + δui, p

∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i)

]
+higher order terms (2.14)

If u∗ + δu is in a sufficiently small neighborhood of u∗, then the higher order
terms are small, and the summation (2.14) dominates the expression for �Ja.
Thus, for u∗ to be an optimal control, it is necessary that

if−1∑
i=i0

[
H(x∗

i , u
∗
i + δui, p

∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i)

]
≥ 0 (2.15)

for all admissible δu. We assert that in order for (2.15) to be satisfied for all
admissible δu in the specified neighborhood, it is necessary that

H(x∗
i , u

∗
i + δui, p

∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i) ≥ 0 (2.16)

for all admissible δui and for all i = i0, · · · , if . In order to prove the inequality
(2.15), consider the control

ui = u∗
i , i /∈ [i1, i2]

ui = u∗
i + δui, i ∈ [i1, i2]

(2.17)
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where [i1, i2] is a nonzero time interval, i.e. i1 < i2 and δui is an admissible
control variation that satisfies u∗ + δu ∈ U .

Suppose that inequality (2.16) is not satisfied in the interval [i1, i2] for the
control described in (2.17). So, we have

H(x∗
i , ui, p

∗
i+1, i) < H(x∗

i , u
∗
i , p

∗
i+1, i)

in the interval [i1, i2] and the following inequality is obtained:

if−1∑
i=i0

[
H(x∗

i , ui, p
∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i)

]

=
i2∑

i=i1

[
H(x∗

i , ui, p
∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i)

]
< 0

Since the interval [i1, i2] can be anywhere in the interval [i0, if ], it is clear
that if

H(x∗
i , ui, p

∗
i+1, i) < H(x∗

i , u
∗
i , p

∗
i+1, i)

for any i ∈ [i0, if ], then it is always possible to construct an admissible control,
as in (2.17), which makes �Ja < 0, thus contradicting the optimality of the
control u∗

i . Therefore, a necessary condition for u∗
i to minimize the functional

Ja is
H(x∗

i , u
∗
i , p

∗
i+1, i) ≤ H(x∗

i , ui, p
∗
i+1, i) (2.18)

for all i ∈ [i0, if ] and for all admissible controls. The inequality (2.18) indicates
that an optimal control must minimize the Hamiltonian. Note that we have
established a necessary, but not, in general, sufficient, condition for optimality.
An optimal control must satisfy the inequality (2.18). However, there may be
controls that satisfy the minimum principle that are not optimal.

We now summarize the principle results. In terms of the Hamiltonian, the
necessary conditions for u∗

i to be an optimal control are

x∗
i+1 =

∂H
∂pi+1

(x∗
i , u

∗
i , p

∗
i+1, i) (2.19)

p∗i =
∂H
∂x

(x∗
i , u

∗
i , p

∗
i+1, i) (2.20)

H(x∗
i , u

∗
i , p

∗
i+1, i) ≤ H(x∗

i , ui, p
∗
i+1, i) (2.21)

for all admissible ui and i ∈ [i0, if − 1], and two boundary conditions

xi0 = x0, p∗if
=

∂h

∂xif

(x∗
if

, if )

The above result is called Pontryagin’s minimum principle. The minimum
principle, although derived for controls in the given set U , can also be applied
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to problems in which the admissible controls are not bounded. In this case,
for u∗

i to minimize the Hamiltonian it is necessary (but not sufficient) that

∂H
∂ui

(x∗
i , u

∗
i , p

∗
i+1, i) = 0, i ∈ [i0, if − 1] (2.22)

If (2.22) is satisfied and the matrix

∂2H
∂u2

i

(x∗
i , u

∗
i , p

∗
i+1, i)

is positive definite, then this is sufficient to guarantee that u∗
i makes Ja a local

minimum. If the Hamiltonian can be expressed in the form

H(xi, ui, pi+1, i) = c0(xi, pi+1, i) +
[
c1(xi, pi+1, i)

]T
ui +

1
2
uT

i Rui

where c0(·, ·, ·) and c1(·, ·, ·) are a scalar and an m× 1 vector function respec-
tively, that do not have any term containing ui, then (2.22) and ∂2H/∂u2

i > 0
are necessary and sufficient for H(x∗

i , u
∗
i , p

∗
i+1, i) to be a global minimum.

For a fixed terminal state, δxif
in the last term of (2.9) is equal to zero.

Thus, (2.13) is not necessary, which is replaced with xif
= xr

if
.

2.2.2 Optimal Control Based on Minimax Criterion

Consider the following discrete-time system:

xi+1 = f(xi, ui, wi, i), xi0 = x0 (2.23)

with a performance criterion

J(xi0 , i0, u, w) =
if−1∑
i=i0

[g(xi, ui, wi, i)] + h(xif
, if ) (2.24)

where xi ∈ �n is the state, ui ∈ �m is the input and wi ∈ �l is the dis-
turbance. The input and the disturbance are required to belong to the given
sets, i.e. ui ∈ U and wi ∈ W. Here, the fixed terminal state is not dealt with
because the minimax problem in this case does not make sense.

The minimax criterion we are dealing with is related to a difference game.
We want to minimize the performance criterion, while disturbances try to
maximize one. A pair policies (u,w) ∈ U ×W is said to constitute a saddle-
point solution if, for all (u,w) ∈ U ×W,

J(xi0 , i0, u
∗, w) ≤ J(xi0 , i0, u

∗, w∗) ≤ J(xi0 , i0, u, w∗) (2.25)

We may think that u∗ is the best control, while w∗ is the worst disturbance.
The existence of these u∗ and w∗ is guaranteed by specific conditions.
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The control u∗ makes the performance criterion (2.24) a local minimum if

J(xi0 , i0, u, w) − J(xi0 , i0, u
∗, w) = �J ≥ 0

for all admissible controls. If we let u = u∗ + δu, the increment in J can be
expressed as

�J(u∗, δu, w) = δJ(u∗, δu, w) + higher order terms

Hence, the necessary conditions for u∗ to be the optimal control are

δJ(u∗, δu, w) ≥ 0

if u∗ lies on the boundary during any portion of the time interval [i0, if ] and

δJ(u∗, δu, w) = 0

if u∗ lies within the boundary during the entire time interval [i0, if ].
Meanwhile, the disturbance w∗ makes the performance criterion (2.24) a

local maximum if
J(u,w) − J(u,w∗) = �J ≤ 0

for all admissible disturbances. Taking steps similar to the case of u∗, we
obtain the necessary condition

δJ(u,w∗, δw) ≤ 0

if w∗ lies on the boundary during any portion of the time interval [i0, if ] and

δJ(u,w∗, δw) = 0

if w∗ lies within the boundary during the entire time interval [i0, if ].
We now summarize the principle results. In terms of the Hamiltonian, the

necessary conditions for u∗
i to be an optimal control are

x∗
i+1 =

∂H
∂pi+1

(x∗
i , u

∗
i , w

∗
i , p∗i+1, i)

p∗i =
∂H
∂xi

(x∗
i , u

∗
i , w

∗
i , p∗i+1, i)

H(x∗
i , u

∗
i , wi, p

∗
i+1, i) ≤ H(x∗

i , u
∗
i , w

∗
i , p∗i+1, i) ≤ H(x∗

i , ui, w
∗
i , p∗i+1, i)

for all admissible ui and wi on the i ∈ [i0, if −1], and two boundary conditions

xi0 = x0, p∗if
=

∂h

∂xif

(x∗
if

, if )

Now, a dynamic programming for minimaxization criterion is explained.
Let there exist a function J∗(xi, i), i ∈ [i0, if − 1] such that
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J∗(xi, i) = min
u∈U

max
w∈W

[
g(xi, ui, wi, i) + J∗(f(xi, ui, wi, i), i + 1)

]
= max

w∈W
min
u∈U

[
g(xi, ui, wi, i) + J∗(f(xi, ui, wi, i), i + 1)

]
J∗(xif

, if ) = h(xif
, if ) (2.26)

Then a pair of u and w that is generated by (2.26) provides a saddle point
with the corresponding value given by J∗(xi0 , i0).

2.3 Linear Optimal Control with State Feedback

2.3.1 Linear Quadratic Controls Based on Minimum Criterion

In this section, an LQ control in a tracking form for discrete time-invariant
systems is introduced in a state-feedback form. We consider the following
discrete time-invariant system:

xi+1 = Axi + Bui

zi = Czxi (2.27)

There are two methods which are used to obtain the control of minimizing
the chosen cost function. One is dynamic programming and the other is the
minimum principle of Pontryagin. The minimum principle of Pontryagin and
dynamic programming were briefly introduced in the previous section. In the
method of dynamic programming, an optimal control is obtained by employing
the intuitively appealing concept called the principle of optimality. Here, we
use the minimum principle of Pontryagin in order to obtain an optimal finite
horizon LQ tracking control (LQTC).

We can divide the terminal states into two cases. The first case is a free
terminal state and the second case is a fixed terminal state. In the following,
we will derive two kinds of LQ controls in a tracking form.

1 ) Free Terminal State

The following quadratic performance criterion is considered:

J(zr, u·) =
if−1∑
i=i0

[(zi − zr
i )T Q̄(zi − zr

i ) + uT
i Rui]

+ [zif
− zr

if
]T Q̄f [zif

− zr
if

] (2.28)

Here, xi ∈ �n, ui ∈ �m, zi ∈ �p, zr
i , Q̄ > 0, R > 0, Q̄f > 0 are the state,

the input, the controlled output, the command signal or the reference signal,
the state weighting matrix, the input weighting matrix, and the terminal
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weighting matrix respectively. Here, zr
i0

, zr
i0+1, · · · , zr

if
are command signals

which are assumed to be available over the future horizon [i0, if ].
For tracking problems, with Q̄ > 0 and Q̄f > 0 in (2.28), there is a

tendency that zi → zr
i . In order to derive the optimal tracking control which

minimizes the performance criterion (2.28), it is convenient to express the
performance criterion (2.28) with the state xi instead of zi. It is well known
that for a given p × n (p ≤ n) full rank matrix Cz there always exist some
n × p matrices L such that CzL = Ip×p. Let

xr
i = Lzr

i (2.29)

The performance criterion (2.28) is then rewritten as

J(xr, u) =
if−1∑
i=i0

[(xi − xr
i )

T CT
z Q̄Cz(xi − xr

i ) + uT
i Rui]

+ [xif
− xr

if
]T CT

z Q̄fCz[xif
− xr

if
] (2.30)

The performance criterion (2.30) can be written as

J(xr, u) =
if−1∑
i=i0

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui

]
+ (xif

− xr
if

)T Qf (xif
− xr

if
) (2.31)

where

Q = CT
z Q̄Cz and Qf = CT

z Q̄fCz (2.32)

Q and Qf in (2.31) can be independent design parameters ignoring the relation
(2.32). That is, the matrices Q and Qf can be positive definite, if necessary,
though Q and Qf in (2.32) are semidefinite when Cz is not of full rank. In
this book, Q and Qf in (2.31) are independent design parameters. However,
whenever necessary, we will make some connections to (2.32).

We first form a Hamiltonian:

Hi = [(xi − xr
i )

T Q(xi − xr
i ) + uT

i Rui] + pT
i+1[Axi + Bui] (2.33)

where i ∈ [i0, if − 1]. According to (2.20) and (2.2.1), we have

pi =
∂Hi

∂xi
= 2Q(xi − xr

i ) + AT pi+1 (2.34)

pif
=

∂h(xif
, if )

∂xif

= 2Qf (xif
− xr

if
) (2.35)

where h(xif
, if ) = (xif

− xr
if

)T Qf (xif
− xr

if
).
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A necessary condition for ui to minimize Hi is ∂Hi

∂ui
= 0. Thus, we have

∂Hi

∂ui
= 2Rui + BT pi+1 = 0 (2.36)

Since the matrix ∂2Hi

∂u2
i

= 2R is positive definite and Hi is a quadratic form
in u, the solution of (2.36) is an optimal control to minimize Hi. The optimal
solution u∗

i is

u∗
i = −1

2
R−1BT pi+1 (2.37)

If we assume that

pi = 2Ki,if
xi + 2gi,if

(2.38)

the solution to the optimal control problem can be reduced to finding the
matrices Ki,if

and gi,if
. From (2.35), the boundary conditions are given by

Kif ,if
= Qf (2.39)

gif ,if
= −Qfxr

if
(2.40)

Substituting (2.27) into (2.38) and replacing ui with (2.37), we have

pi+1 = 2Ki+1,if
xi+1 + 2gi+1,if

= 2Ki+1,if
(Axi + Bui) + 2gi+1,if

= 2Ki+1,if
(Axi −

1
2
BR−1BT pi+1) + 2gi+1,if

(2.41)

Solving for pi+1 in (2.41) yields the following equation:

pi+1 = [I + Ki+1,if
BR−1BT ]−1[2Ki+1,if

Axi + 2gi+1,if
] (2.42)

Substituting for pi+1 from (2.37), we can write

u∗
i = −R−1BT [I + Ki+1,if

BR−1BT ]−1[Ki+1,if
Axi + gi+1,if

] (2.43)

What remains to do is to find Ki,if
and gi,if

. If we put the equation (2.42)
into the equation (2.34), we have

pi = 2Q(xi − xr
i ) + AT [I + Ki+1,if

BR−1BT ]−1[2Ki+1,if
Axi + 2gi+1,if

],

= 2[Q + AT (I + Ki+1,if
BR−1BT )−1Ki+1,if

A]xi

+2[−Qxr
i + AT (I + Ki+1,if

BR−1BT )−1gi+1,if
] (2.44)

The assumption (2.38) holds by choosing Ki,if
and gi,if

as
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Ki,if
= AT [I + Ki+1,if

BR−1BT ]−1Ki+1,if
A + Q

= AT Ki+1,if
A − AT Ki+1,if

B(R + BT Ki+1,if
B)−1BT Ki+1,if

A

+ Q (2.45)
gi,if

= AT [I + Ki+1,if
BR−1BT ]−1gi+1,if

− Qxr
i (2.46)

where the second equality comes from

[I + Ki+1,if
BR−1BT ]−1 = I − Ki+1,if

B(R + BT Ki+1,if
B)−1BT (2.47)

using the matrix inversion lemma (A.2) in Appendix A. The optimal control
derived until now is summarized in the following theorem.

Theorem 2.1. In the system (2.27), the LQTC for the free terminal state is
given as (2.43) for the performance criterion (2.31). Ki,if

and gi,if
in (2.43)

are obtained from Riccati Equation (2.45) and (2.46) with boundary condition
(2.39) and (2.40).

Depending on Qf , Ki,if
may be nonsingular (positive definite) or singular

(positive semidefinite). This property will be important for stability and the
inversion of the matrix Ki,if

in coming sections.
For a zero reference signal, gi,if

becomes zero so that we have

u∗
i = −R−1BT [I + Ki+1,if

BR−1BT ]−1Ki+1,if
Axi (2.48)

The performance criterion (2.31) associated with the optimal control (2.43) is
given in the following theorem.

Theorem 2.2. The optimal cost J∗(xi) with the reference value can be given

J∗(xi) = xT
i Ki,if

xi + 2xT
i gi,if

+ wi,if
(2.49)

where

wi,if
= wi+1,if

+ xrT
i Qxr

i − gT
i+1,if

B(BT Ki+1,if
B + R)−1BT gi+1,if

(2.50)

with boundary condition wif ,if
= xrT

if
Qfxr

if
.

Proof. A long and tedious calculation is required to obtain the optimal cost us-
ing the result of Theorem 2.1. Thus, we derive the optimal cost using dynamic
programming, where the optimal control and the optimal cost are obtained
simultaneously.

Let J∗(xi+1) denote the optimal cost associated with the initial state xi+1

and the interval [i + 1, if ]. Suppose that the optimal cost J∗(xi+1) is given as

J∗(xi+1) = xT
i+1Ki+1,if

xi+1 + 2xT
i+1gi+1,if

+ wi+1,if
(2.51)

where wi+1,if
will be determined later. We wish to calculate the optimal cost

J∗(xi) from (2.51).
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By applying the principle of optimality, J∗(xi) can be represented as fol-
lows:

J∗(xi) = min
ui

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui + J∗(xi+1)

]
(2.52)

(2.52) can be evaluated backward by starting with the condition J∗(xif
) =

(xif
− xr

if
)T Qf (xif

− xr
if

).
Substituting (2.27) and (2.51) into (2.52), we have

J∗(xi) = min
ui

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui + xT

i+1Ki+1,if
xi+1

+ 2xT
i+1gi+1,if

+ wi+1,if

]
(2.53)

= min
ui

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui

+ (Axi + Bui)T Ki+1,if
(Axi + Bui) + 2(Axi + Bui)T gi+1,if

+ wi+1,if

]
(2.54)

Note that J∗(xi) has a quadratic equation with respect to ui and xi. For a
given xi, the control ui is chosen to be optimal according to (2.54). Taking
derivatives of (2.54) with respect to ui to obtain

∂J∗(xi)
∂ui

= 2Rui + 2BT Ki+1,if
Bui + 2BT Ki+1,if

Axi + 2BT gi+1,if
= 0

we have the following optimal control ui:

ui = −(R + BT Ki+1,if
B)−1[BT Ki+1,if

Axi + BT gi+1,if
] (2.55)

= −L1,ixi + L2,igi+1,if
(2.56)

where

L1,i
�
= [R + BT Ki+1,if

B]−1BT Ki+1,if
A (2.57)

L2,i
�
= −[R + BT Ki+1,if

B]−1BT (2.58)

It is noted that the optimal control ui in (2.56) is the same as (2.43) derived
from the minimum principle. How to obtain the recursive equations of Ki+1,if

and gi+1,if
is discussed later.

From definitions (2.57) and (2.58), we have the following relations:

AT Ki+1,if
B[R + BT Ki+1,if

B]−1BT Ki+1,if
A = AT Ki+1,if

BL1,i

= LT
1,iB

T Ki+1,if
A

= LT
1,i[R + BT Ki+1,if

B]L1,i

(2.59)
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where the most left side is equivalent to the second term of Riccati Equation
(2.45) and these relations are useful for representing the Riccati equation in
terms of closed-loop system A − BL1,i.

Substituting (2.56) into (2.54) yields

J∗(xi) = xT
i

[
Q + LT

1,iRL1,i + (A − BL1,i)T Ki+1,if
(A − BL1,i)

]
xi

+ 2xT
i

[
−LT

1,iRL2,igi+1,if
+ (A − BL1,i)T Ki+1,if

BL2,igi+1,if

+ (A − BL1,i)T gi+1,if
− Qxr

i

]
+gT

i+1,if
LT

2,iRL2,igi+1,if

+ gT
i+1,if

LT
2,iB

T Ki+1,if
BL2,igi+1,if

+ 2gT
i+1,if

LT
2,iB

T gi+1,if
+ wi+1,if

+ xrT
i Qxr

i (2.60)

where the terms are arranged according to the order of xi. The quadratic
terms with respect to xi in (2.60) can be reduced to xT

i Ki,if
xi from Riccati

Equation given by

Ki,if
= [A − BL1,i]T Ki+1,if

[A − BL1,i] + LT
1,iRL1,i + Q (2.61)

which is the same as (2.45) according to the relation (2.59).
The first-order coefficients with respect to xi in (2.60) can be written as

− LT
1,iRL2,igi+1,if

+ (A − BL1,i)T Ki+1,if
BL2,igi+1,if

+ (A − BL1,i)T gi+1,if
− Qxr

i

= −LT
1,iRL2,igi+1,if

+ AT Ki+1,if
BL2,igi+1,if

− LT
1,iB

T Ki+1,if
BL2,igi+1,if

+ AT gi+1,if
− LT

1,iB
T gi+1,if

− Qxr
i

= −AT [KT
i+1,if

B(R + BT Ki+1,if
B)−1BT − I]gi+1,if

− Qxr
i

= AT [I + KT
i+1,if

BR−1B]−1gi+1,if
− Qxr

i

which can be reduced to gi,if
if it is generated from (2.46).

The terms without xi in (2.60) can be written as

gT
i+1,if

LT
2,iRL2,igi+1,if

+ gT
i+1,if

LT
2,iB

T Ki+1,if
BL2,igi+1,if

+ 2gT
i+1,if

LT
2,iB

T gi+1,if
+ wi+1,if

+ xrT
i Qxr

i

= gT
i+1,if

B[R + BT Ki+1,if
B]−1BT gi+1,if

− 2gT
i+1,if

B[R + BT Ki+1,if
B]−1BT gi+1,if

+ wi+1,if
+ xrT

i Qxr
i

= −gT
i+1,if

B[R + BT Ki+1,if
B]−1BT gi+1,if

+ wi+1,if
+ xrT

i Qxr
i

which can be reduced to wi,if
if it is defined as (2.50). If gi,if

and wi,if
are

chosen as (2.46) and (2.50), then J∗(xi) is in a form such as (2.51), i.e.
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J∗(xi) = xT
i Ki,if

xi + 2xT
i gi,if

+ wi,if
(2.62)

Now, we have only to find the boundary value of gi,if
and wi,if

. J∗(xif
) should

be equal to the performance criterion for the final state. Thus, wif ,if
and gif ,if

should be chosen as wif ,if
= xrT

if
Qfxr

if
and gif ,if

= −Qfxr
if

so that we have

J∗(xif
) = xT

if
Kif ,if

xif
+ 2xT

if
gif ,if

+ wif ,if

= xT
if

Qfxif
− 2xT

if
Qfxr

if
+ xrT

if
Qfxr

if

= (xif
− xr

if
)T Qf (xif

− xr
if

)

This completes the proof.

The result of Theorem 2.2 will be utilized only for zero reference signals
in subsequent sections.

For positive definite Qf and nonsingular matrix A, we can have another
form of the above control (2.43). Let P̂i,if

= K−1
i,if

if the inverse of Ki,if
exists.

Then (2.45) can be represented by

P̂−1
i,if

= AT [I + P̂−1
i+1,if

BR−1BT ]−1P̂−1
i+1,if

A + Q (2.63)

P̂i,if
=
{

AT [P̂i+1,if
+ BR−1BT ]−1A + Q

}−1

(2.64)

Let Pi,if
= P̂i,if

+ BR−1BT . Then

Pi,if
= (AT P−1

i+1,if
A + Q)−1 + BR−1BT

= A−1(P−1
i+1,if

+ A−T QA−1)−1A−T + BR−1BT

= A−1[I + Pi+1,if
A−T QA−1]−1Pi+1,if

A + BR−1BT (2.65)

gi,if
= AT [I + P̂−1

i+1,if
BR−1BT ]−1gi+1,if

− Qxr
i

= AT [P̂i+1,if
+ BR−1BT ]−1P̂i+1,if

gi+1,if
− Qxr

i

= AT P−1
i+1,if

(Pi+1,if
− BR−1BT )gi+1,if

− Qxr
i (2.66)

with the boundary condition

Pif ,if
= Q−1

f + BR−1BT (2.67)

Using the following relation:

−[I + R−1BT P̂−1
i+1,if

B]−1R−1BT P̂−1
i+1,if

Axi

= −R−1BT P̂−1
i+1,if

[I + BR−1BT P̂−1
i+1,if

]−1Axi

= −R−1BT [P̂i+1,if
+ BR−1BT ]−1Axi

= −R−1BT P−1
i+1,if

Axi
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and

−[I + R−1BT P̂−1
i+1,if

B]−1R−1Bgi+1,if

= R−1B[I + P̂−1
i+1,if

BR−1BT ]−1gi+1,if

= R−1BP−1
i+1,if

(Pi+1,if
− BR−1BT )gi+1,if

we can represent the control in another form:

u∗
i = −R−1BT P−1

i+1,if
[Axi + (Pi+1,if

− BR−1BT )gi+1,if
] (2.68)

where Pi+1,if
and gi+1,if

are obtained from (2.65) and (2.66) with boundary
conditions (2.67) and (2.40) respectively.

2 ) Fixed Terminal State

Here, the following performance criterion is considered:

J(xr, u) =
if−1∑
i=i0

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui

]
(2.69)

xif
= xr

if
(2.70)

For easy understanding, we start off from a simple case.

Case 1: zero state weighting

Now, our terminal objective will be to make xif
match exactly the desired

final reference state xr
if

. Since we are demanding that xif
be equal to a known

desired xr
if

, the final state has no effect on the performance criterion (2.31). It
is therefore redundant to include a final state weighting term in a performance
criterion. Accordingly, we may as well set Qf = 0.

Before we go to the general problem, we first consider a simple case for
the following performance criterion:

Ji0 =
1
2

if−1∑
i=i0

uT
i Rui (2.71)

where Q = 0. Observe that the weighting matrix for the state becomes zero.
As mentioned before, we require the control to drive xi0 exactly to

xif
= xr

if
(2.72)

using minimum control energy. The terminal condition can be expressed by

xif
= Aif−i0xi0 +

if−1∑
i=i0

Aif−i−1Bui = xr
if

(2.73)
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We try to find the optimal control among ones satisfying (2.73). It can be seen
that both the performance criterion and the constraint are expressed in terms
of the control, not including the state, which makes the problem tractable.
Introducing a Lagrange multiplier λ, we have

Ji0 =
1
2

if−1∑
i=i0

uT
i Rui + λT (Aif−i0xi0 +

if−1∑
i=i0

Aif−i−1Bui − xr
if

) (2.74)

Take the derivative on both sides of Equation (2.74) with respect to ui to
obtain

Rui + BT (AT )if−i−1λ = 0 (2.75)

Thus,

ui = −R−1BT (AT )if−i−1λ (2.76)

Substituting (2.76) into (2.73) and solving for λ yields

λ = −G−1
i0,if

(xr
if

− Aif−i0xi0) (2.77)

where

Gi0,if
=

if−1∑
i=i0

Aif−i−1BR−1BT (AT )if−i−1. (2.78)

Actually, Gi0,if
is a controllability Gramian of the systems (2.27). In the case

of controllable systems, Gi0,if
is guaranteed to be nonsingular if if − i0 is

more than or equal to the controllability index nc.
The optimal open-loop control is given by

u∗
i = R−1BT (AT )if−i−1G−1

i0,if
(xr

if
− Aif−i0xi0) (2.79)

It is noted that the open-loop control is defined for all i ∈ [i0, if − 1].
Since i0 is arbitrary, we can obtain the closed-loop control by replacing with
i such as,

u∗
i = R−1BT (AT )if−i−1G−1

i,if
(xr

if
− Aif−ixi) (2.80)

It is noted that the closed-loop control can be defined only on i that is less
than or equal if −nc. After the time if −nc, the open-loop control can be used,
if necessary. In Figure 2.3, the regions of the closed- and open-loop control
are shown respectively.

The above solutions can also be obtained with the formal procedure using
the minimum principle, but it is given in a closed form from this procedure.
Thus, the control after if − nc cannot be obtained.
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Fig. 2.3. Region of the closed-loop solution

Case 2: nonzero state weighting

We derive the optimal solution for the fixed terminal state from that for the
free terminal state by setting Qf = ∞I. We assume that A is nonsingular.

Since Kif ,if
= Qf = ∞I, the boundary condition of Pi,if

becomes

Pif ,if
= BR−1BT (2.81)

from (2.67). From (2.65), we know that Equation (2.81) is satisfied with an-
other terminal condition:

Pif+1,if +1 = 0 (2.82)

It is noted that Pi+1,if
can be singular on [if − nc + 2, if ]. Therefore, gi,if

cannot be generated from (2.66) and the control (2.68) does not make sense.
However, the control for the zero reference signal can be represented as

u∗
i = −R−1BT P−1

i+1,if
Axi (2.83)

where gi,if
is not necessary.

For nonzero reference signals we will take an approach called the sweep
method. The state and costate equations are the same as those of the free
terminal case:

ui = −R−1BT pi+1 (2.84)
xi+1 = Axi − BR−1BT pi+1 (2.85)

pi = Q(xi − xr
i ) + AT pi+1 (2.86)
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We try to find an optimal control to ensure xif
= xr

if
. Assume the following

relation:

pi = Kixi + Mipif
+ gi (2.87)

where we need to find Si, Mi, and gi satisfying the boundary conditions

Kif
= 0

Mif
= I

gif
= 0

respectively. Combining (2.85) with (2.87) yields the following optimal trajec-
tory:

xi+1 = (I + BR−1BT Ki+1)−1(Axi − BR−1BT Mi+1pif

− BR−1BT gi+1) (2.88)

Substituting (2.87) into (2.86) provides

Kixi + Mipif
+ gi = Q(xi − xr

i ) + AT [Ki+1xi+1 + Mi+1pif
+ gi+1] (2.89)

Substituting xi+1 in (2.88) into (2.89) yields

[−Ki + AT Ki+1(I + BR−1BT Ki+1)−1A + Q]xi +
[−Mi − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT Mi+1 + AT Mi+1]pif

+

[−gi + AT gi+1 − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT gi+1 − Qxr
i ] = 0

Since this equality holds for all trajectories xi arising from any initial condition
xi0 , each term in brackets must vanish. The matrix inversion lemma, therefore,
yields the Riccati equation

Ki = AT Ki+1(I + BR−1BT Ki+1)−1A + Q (2.90)

and the auxiliary homogeneous difference equation

Mi = AT Mi+1 − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT Mi+1

gi = AT gi+1 − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT gi+1 − Qxr
i

We assume that xr
if

is a linear combination of xi, pif
, and some specific matrix

Ni for all i, i.e.

xr
if

= Uixi + Sipif
+ hi (2.91)

Evaluating for i = if yields

Uif
= I (2.92)

Sif
= 0 (2.93)

hif
= 0 (2.94)
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Clearly, then

Ui = MT
i (2.95)

The left-hand side of (2.91) is a constant, so take the difference to obtain

0 = Ui+1xi+1 + Si+1pif
+ hi+1 − Uixi − Sipif

− hi (2.96)

Substituting xi+1 in (2.88) into (2.96) and rearranging terms, we have

[Ui+1{A − B(BT Ki+1B + R)−1BT Ki+1A} − Ui]xi

+ [Si+1 − Si − Ui+1B(BT Ki+1B + R)−1BT Mi+1]pif

+ hi+1 − hi − Ui+1(I + BR−1BT Ki+1)−1BR−1BT gi+1 = 0 (2.97)

The first term says that

Ui = Ui+1{A − B(BT Ki+1B + R)−1BT Ki+1A} (2.98)

The second and third terms now yield the following recursive equations:

Si = Si+1 − MT
i+1B(BT Ki+1B + R)−1BT Mi+1 (2.99)

hi = hi+1 − MT
i+1(I + BR−1BT Ki+1)−1BR−1BT gi+1 (2.100)

We are now in a position to determine pif
. From (2.91), we have

pif
= S−1

i0
(xr

if
− MT

i0xi0 − hi0) (2.101)

We can now finally compute the optimal control

ui = −R−1BT [Ki+1xi+1 + Mi+1pif
+ gi+1] (2.102)

by substituting (2.87) into (2.84).
ui can be represented in terms of the current state xi:

ui = −R−1BT (I + Ki+1BR−1BT )−1[Ki+1Axi + Mi+1pif
+ gi+1],

= −R−1BT (I + Ki+1BR−1BT )−1[Ki+1Axi + Mi+1S
−1
i0

(xr
if

− MT
i0xi0 − hi0) + gi+1] (2.103)

What we have done so far is summarized in the following theorem.

Theorem 2.3. The LQTC for the fixed terminal state is given in (2.103). Si,
Mi, Pi, gi, hi are as follows:

Ki = AT Ki+1(I + BR−1BT Ki+1)−1A + Q

Mi = AT Mi+1 − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT Mi+1

Si = Si+1 − MT
i+1B(BT Ki+1B + R)−1BT Mi+1

gi = AT gi+1 − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT gi+1 − Qxr
i

hi = hi+1 − MT
i+1(I + BR−1BT Ki+1)−1BR−1BT gi+1
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where

Kif
= 0, Mif

= I, Sif
= 0, gif

= 0, hif
= 0

It is noted that the control (2.103) is a state feedback control with respect
to the current state and an open-loop control with respect to the initial state,
which looks somewhat awkward at first glance. However, if the receding hori-
zon scheme is adopted, then we can obtain the state feedback control that
requires only the current state, not other past states. That will be covered in
the next chapter.

Replacing i0 with i in (2.103) yields the following closed-loop control:

ui = −R−1BT (I + Ki+1BR−1BT )−1[Ki+1Axi + Mi+1S
−1
i

× (xr
if

− MT
i xi − hi) + gi+1] (2.104)

where Si is guaranteed to be nonsingular on i ≤ if − nc.
If Q in (2.103) becomes zero, then (2.103) is reduced to (2.79), which is

left as a problem at the end of this chapter.
For the zero reference signal, gi and hi in Theorem 2.3 become zero due

to xr
i = 0. Thus, we have

ui = −R−1BT (I + Ki+1BR−1BT )−1[Ki+1A − Mi+1S
−1
i MT

i ]xi (2.105)

in the form of the closed-loop control. As seen above, it is a little complex
to obtain the closed-form solution for the fixed terminal state problem with
nonzero reference signals.

Example 2.1

The LQTC (2.103) with the fixed terminal state is a new type of a track-
ing control. It is demonstrated through a numerical example.

Consider the following state space model:

xk+1 =

⎡⎣0.013 0.811 0.123
0.004 0.770 0.096
0.987 0.903 0.551

⎤⎦xk +

⎡⎣0.456
0.018
0.821

⎤⎦uk (2.106)

Q and R in the performance criterion (2.69) are set to 100I and I respectively.
The reference signal and state trajectories can be seen in Figure 2.4 where the
fixed terminal condition is met. A batch form solution for the fixed terminal
state is given in Section 3.5, and its computation turns out to be the same as
that of (2.103).
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Fig. 2.4. State trajectory of Example 2.1
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Infinite Horizon Case

If if goes to ∞ in (2.43), (2.45), and (2.46), an infinite horizon LQTC is
given by

u∗
i = −[I + R−1BT K∞B]−1R−1BT [K∞Axi + gi+1,∞]

= −[R + BT K∞B]−1BT [K∞Axi + g∞] (2.107)

where K∞ is a solution of the following algebraic Riccati Equation (ARE):

K∞ = AT [I + K∞BR−1BT ]−1K∞A + Q (2.108)
= AT K∞A − AT K∞B[R + BK∞BT ]−1BT K∞A + Q (2.109)

and g∞ is given by

g∞ = AT [I + K∞BR−1BT ]−1g∞ − Qx̄r (2.110)

with a fixed reference signal x̄r. The stability and an existence of the solution
to the Riccati equation are summarized as follows:

Theorem 2.4. If (A,B) is controllable and (A,Q
1
2 ) is observable, the solution

to Riccati Equation (2.108) is unique and positive definite, and the stability
of ui (2.107) is guaranteed.

We can see a proof of Theorem 2.4 in much of the literature, e.g. in
[Lew86a]. The conditions on controllability and observability in Theorem 2.4
can be weakened to the reachability and detectability.

Here, we shall present the return difference equality for the infinite horizon
LQ control and introduce some robustness in terms of gain and phase margins.
From the following simple relation:

K∞ − AT K∞A = (z−1I − A)T K∞(zI − A) + (z−1I − A)T K∞A

+ AT K∞(zI − A) (2.111)

K∞−AT K∞A in (2.111) is replaced with −AT K∞B(BT K∞B+R)−1BT K∞A−
Q according to (2.109) to give

(z−1I − A)T K∞(zI − A) + (z−1I − A)T K∞A + AT K∞(zI − A)
+AT K∞B(BT K∞B + R)−1BT K∞A = Q (2.112)

Pre- and post-multiply (2.112) by BT (z−1I − A)−T and (zI − A)−1B
respectively to get

BT K∞B + BT K∞A(zI − A)−1B + BT (z−1I − A)−T AT K∞B

+ BT (z−1I − A)−T AT K∞B(BT K∞B + R)−1BT K∞A(zI − A)−1B

= BT (z−1I − A)−T Q(zI − A)−1B (2.113)
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Adding R to both sides of (2.113) and factorizing it yields the following equa-
tion:

BT (z−1I − A)−T Q(zI − A)−1B + R

= [I + K∞(z−1I − A)−1B]T (BT K∞B + R)[I + K∞(zI − A)−1B] (2.114)

where K∞ = [R + BT K∞B]−1BT K∞A.
From Equation (2.114), we are in a position to check gain and phase mar-

gins for the infinite horizon LQ control. First, let F (z) be I +K∞(zI−A)−1B,
which is called a return difference matrix. It follows from (2.114) that

BT K∞B + R = F−T (z−1)[R + BT (z−1I − A)−T Q(zI − A)−1B]F−1(z)

which implies that

σ̄(BT K∞B + R) ≥ σ̄2(F−1(z))
× σ[R + BT (z−1I − A)−T Q(zI − A)−1B] (2.115)

Note that σ̄(MT SM) ≥ σ(S)σ̄2(M) for S ≥ 0. Recalling the two facts
σ̄[F−1(z)] = σ−1[F (z)] and σ̄(I − z−1A) ≤ 1 + σ̄(A) for |z| = 1, we have

σ[R + BT (z−1I − A)−T Q(zI − A)−1B]

≥ σ(R)σ[I + R− 1
2 BT (z−1I − A)−T Q(zI − A)−1BR− 1

2 ]
≥ σ(R)[1 + σ−1(R)σ2(B)σ(Q)σ̄−2(I − z−1A)α]

≥ σ(R)
σ̄(R)

[σ̄(R) + σ2(B)σ(Q){1 + σ̄(A)}−2α] (2.116)

where α is 1 when p ≤ q and 0 otherwise. Recall that the dimensions of inputs
ui and outputs yi are p and q respectively. Substituting (2.116) into (2.115)
and arranging terms yields

σ2[F (z)] ≥ σ(R)/σ̄(R)
σ̄(R) + σ̄2(B)σ̄(K∞)

[σ̄(R) + σ2(B)σ(Q){1 + σ̄(A)}−2α]

�
= R2

f (2.117)

Let a circle of radius Rf centered at (−1, 0) be C(−1, Rf ). The Nyquist
plot of the open-loop system of the optimal regulator lies outside C(−1, Rf )
for an SISO system, as can be seen in Figure 2.5; the guaranteed gain margins
GM of a control are given by

(1 + Rf )−1 ≤ GM ≤ (1 − Rf )−1 (2.118)

and the phase margins PM of the control are given by

−2 sin−1(
Rf

2
) ≤ PM ≤ 2 sin−1(

Rf

2
) (2.119)

It is noted that margins for discrete systems are smaller than those for
continuous systems, i.e. 0.5 ≤ GM < ∞, and −π/3 ≤ PM ≤ π/3.
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Fig. 2.5. Nyquist plot

2.3.2 H∞ Control Based on Minimax Criterion

In this subsection we derive an H∞ tracking control (HTC) for discrete time-
invariant systems in a state-feedback form. Consider the following discrete
time-invariant system:

xi+1 = Axi + Bwwi + Bui

ẑi =
[

Q
1
2 xi

R
1
2 ui

]
(2.120)

where xi ∈ �n denotes the state, wi ∈ �l the disturbance, ui ∈ �m the control
input, and ẑi ∈ �q+n the controlled variable which needs to be regulated. The
H∞ norm of Tẑw(ejw) can be represented as

‖Tẑw(ejw)‖∞ = sup
wi

σ̄(Tẑw(ejw)) = sup
wi

∑∞
i=i0

[xT
i Qxi + uT

i Rui]∑∞
i=i0

wT
i wi

= sup
‖wi‖2=1

∞∑
i=i0

[xT
i Qxi + uT

i Rui] = γ∗2 (2.121)

where Tẑw(ejw) is a transfer function from wi to ẑi and σ̄(·) is the maximum
singular value. ẑi in (2.120) is chosen to make a quadratic cost function as
(2.121).

The H∞ norm of the systems is equal to the induced L2 norm. The H∞
control is obtained so that the H∞ norm is minimized with respect to ui.

However, it is hard to achieve an optimal H∞ control. Instead of the
above performance criterion, we can introduce a suboptimal control such that
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‖Tẑw(ejw)‖∞ < γ2 for some positive gamma γ2 (> γ∗2). For ‖Tẑw(ejw)‖∞ <
γ2 we will obtain a control so that the following inequality is satisfied:∑∞

i=i0
[xT

i Qxi + uT
i Rui]∑∞

i=i0
wT

i wi
< γ2 (2.122)

for all wi. Observe that the gain from ‖wi‖2
2 to ‖ẑi‖2

2 in (2.122) is always less
than γ, so that the maximum gain, i.e. H∞ norm, is also less than γ2.

From simple algebraic calculations, we have

∞∑
i=i0

[xT
i Qxi + uT

i Rui − γ2wT
i wi] < 0 (2.123)

from (2.122). Since the inequality (2.123) should be satisfied for all wi, the
value of the left side of (2.123) should be always negative, i.e.

sup
wi

{ ∞∑
i=i0

[xT
i Qxi + uT

i Rui − γ2wT
i wi]

}
< 0 (2.124)

In order to check whether the feasible solution to (2.124) exists, we try to find
out a control minimizing the left side of the inequality (2.124) and the corre-
sponding optimal cost. If this optimal cost is positive, then we cannot obtain
the control satisfying the H∞ norm. Unlike an LQ control, the fixed terminal
state is impossible in H∞ controls. We focus only on the free terminal state.

1 ) Free Terminal State

When dealing with the finite horizon case, we usually include a weighting
matrix for the terminal state, such as

max
wi

{if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i wi

]
+xT

if
Qfxif

}
< 0 (2.125)

A feasible solution ui in (2.125) can be obtained from the following difference
game problem:

min
u

max
w

J(u,w) (2.126)

where

J(u,w) =
if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i wi

]
+xT

if
Qfxif

(2.127)

Note that the initial state is assumed to be zero in H∞ norm in (2.121).
However, in the difference game problem (2.126)–(2.127), the nonzero initial
state can be handled.
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Until now, the regulation problem has been considered. If a part of the
state should be steered according to the given reference signal, we can consider

J(u,w) =
if−1∑
i=i0

[ (zi − zr
i )T Q̄(zi − zr

i ) + uiRui − γ2wiRwwi]

+ (zif
− zr

if
)T Q̄f (zif

− zr
if

)

instead of (2.127). Here, zi = Czxi is expected to approach zr
i .

It is well known that for a given p × n(p ≤ n) full rank matrix Cz there
always exist some n × p matrices L such that CzL = Ip×p. For example, we
can take L = CT

z (CzC
T
z )−1. Let xr

i = Lyr
i . J(u,w) is rewritten as

J(u,w) =
if−1∑
i=i0

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui − γ2wT

i Rwwi

]
+(xif

− xr
if

)T Qf (xif
− xr

if
) (2.128)

where Q = CT
z Q̄Cz and Qf = CT

z Q̄fCz or Qf and Q are independent design
parameters.

For the optimal solution, we first form the following Hamiltonian:

Hi = [(xi − xr
i )

T Q(xi − xr
i ) + uT

i Rui − γ2wT
i Rwwi]

+ pT
i+1(Axi + Bwwi + Bui), i = i0, · · · , if − 1

The necessary conditions for ui and wi to be the saddle points are

xi+1 =
∂H

∂pi+1
= Axi + Bwwi + Bui (2.129)

pi =
∂H
∂xi

= 2Q(xi − xr
i ) + AT pi+1 (2.130)

0 =
∂H
∂ui

= 2Rui + BT pi+1 (2.131)

0 =
∂H
∂wi

= −2γ2Rwwi + BT
wpi+1 (2.132)

pif
=

∂h(xif
)

∂xif

= 2Qf (xif
− xr

if
) (2.133)

where

h(xif
) = (xif

− xr
if

)T Qf (xif
− xr

if
) (2.134)

Assume
pi = 2Mi,if

xi + 2gi,if
(2.135)

From (2.129), (2.131), and (2.135), we have
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∂Hi

∂ui
= 2Rui + BT pi+1

= 2Rui + 2BT Mi+1,if
xi+1 + 2BT gi+1,if

= 2Rui + 2BT Mi+1,if
[Axi + Bwwi + Bui] + 2BT gi+1,if

Therefore,
∂2Hi

∂u2
i

= 2R + 2BT Mi+1,if
B

It is apparent that ∂2Hi

∂u2
i

> 0 for i = i0, · · · , if − 1. Similarly, we have

∂Hi

∂wi
= −2γ2Rwwi + 2BT

wMi+1,if
[Axi + Bwwi + Bui] + 2BT

wgi+1,if

Therefore,
∂2Hi

∂w2
i

= −2γ2Rw + 2BT
wMi+1,if

Bw

From these, the difference game problem (2.126) for the performance criterion
(2.128) has a unique solution if and only if

Rw − γ−2BT
wMi+1,if

Bw > 0, i = i0, · · · , if − 1 (2.136)

We proceed to obtain the optimal solution w∗
i and u∗

i . Eliminating ui and
wi in (2.129) using (2.131) and (2.132) yields

xi+1 = Axi +
1
2
(−BR−1BT + γ−2BwR−1

w BT
w)pi+1 (2.137)

From (2.135) and (2.137) we obtain

pi+1 = 2Mi+1,if
xi+1 + 2gi+1,if

= 2Mi+1,if
Axi + Mi+1,if

(−BR−1BT + γ−2BwR−1
w BT

w)pi+1 + 2gi+1,if

Therefore,

pi+1 = 2[I + Mi+1,if
(BR−1BT − γ−2BwR−1

w BT
w)]−1(Mi+1,if

Axi + gi+1,if
)

Let
Λi+1,if

= I + Mi+1,if
(BR−1BT − γ−2BwR−1

w BT
w) (2.138)

Then pi+1 is rewritten as

pi+1 = 2Λ−1
i+1,if

[Mi+1,if
Axi + gi+1,if

] (2.139)

If we substitute (2.139) into (2.130), then we obtain

pi = 2Q(xi − xr
i ) + 2AT Λ−1

i+1,if
[Mi+1,if

Axi + gi+1,if
]

= 2[AT Λ−1
i+1,if

Mi+1,if
A + Q]xi + 2AT Λ−1

i+1,if
gi+1,if

− 2Qxr
i
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Therefore, from (2.133) and the assumption (2.135), we have

Mi,if
= AT Λ−1

i+1,if
Mi+1,if

A + Q (2.140)

Mif ,if
= Qf (2.141)

and

gi,if
= AT Λ−1

i+1,if
gi+1,if

− Qxr
i (2.142)

g if ,if
= −Qfxr

if
(2.143)

for i = i0, · · · , if − 1. From (2.136), we have

I − γ−2R
− 1

2
w BT

wMi+1,if
BwR

− 1
2

w > 0 (2.144)

I − γ−2M
1
2
i+1,if

BwR−1
w BT

wM
1
2
i+1,if

> 0 (2.145)

where the second inequality comes from the fact that I − SST > 0 implies
I − ST S > 0. Λ−1

i+1,if
Mi+1,if

in the right side of (2.140) can be written as

Λ−1
i+1,if

Mi+1,if

=
[
I + Mi+1,if

(BR−1BT − γ−2BwR−1
w BT

w)
]−1

Mi+1,if

= M
1
2
i+1,if

[
I + M

1
2
i+1,if

(BR−1BT − γ−2BwR−1
w BT

w)M
1
2
i+1,if

]−1

M
1
2
i+1,if

≥ 0

where the last inequality holds because of (2.145). Therefore, Mi,if
generated

by (2.140) is always nonnegative definite.
From (2.131) and (2.132), the H∞ controls are given by

u∗
i = −R−1BT Λ−1

i+1,if
[Mi+1,if

Axi + gi+1,if
] (2.146)

w∗
i = γ−2R−1

w BT
wΛ−1

i+1,if
[Mi+1,if

Axi + gi+1,if
] (2.147)

It is noted that u∗
i is represented by

u∗
i = Hixi + vi

where

Hi = −R−1BT Λ−1
i+1,if

Mi+1,if
A

vi = −R−1BT Λ−1
i+1,if

gi+1,if

Here, Hi is the feedback gain matrix and vi can be viewed as a command
signal.

The optimal cost can be represented as
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J∗ = xT
i Mi,if

xi + 2xT
i gi,if

+ hi,if
(2.148)

where Mi,if
and gi,if

are defined as (2.140) and (2.142) respectively. The
derivation for hi,if

is left as an exercise.
The saddle-point value of the difference game with (2.128) for a zero ref-

erence signal is given as

J∗(xi, i, if ) = xT
i Mi,if

xi (2.149)

Since Mi,if
is nonnegative definite, the saddle-point value (2.149) is nonneg-

ative.
To conclude, the solution of the HTC problem can be reduced to finding

Mi,if
and gi,if

for i = i0, · · · , if − 1. The Riccati solution Mi,if
is a symmet-

ric matrix, which can be found by solving (2.140) backward in time using the
boundary condition (2.141). In a similar manner, gi,if

can be found by solving
(2.142) backward in time using the boundary condition (2.143).

For a regulation problem, i.e. xr
i = 0, the control (2.146) and the distur-

bance (2.147) can also be represented as[
u∗

i

w∗
i

]
= −R−1

c,i

[
BT

BT
w

]
Mi+1,if

Axi (2.150)

Mi,if
= AT Mi+1,if

A − AT Mi+1,if

[
B Bw

]
R−1

c,i

[
BT

BT
w

]
Mi+1,if

A

where

Rc,i =
[

BT

BT
w

]
Mi+1,if

[
B Bw

]
+
[

R 0
0 − γ2Rw

]
It is observed that optimal solutions u∗ and w∗ in (2.150) look like an LQ
solution.

For a positive definite Qf and a nonsingular matrix A, we can have another
form of the control (2.146) and the disturbance (2.147). Let

Π = BR−1B − γ−2BwR−1
w BT

w (2.151)

It is noted that Mi,if
is obtained from Ki,if

of the LQ control by replacing
BR−1BT by Π. If Mi,if

is nonsingular at i ≤ if , then there exists the following
quantity:

Pi,if
= M−1

i,if
+ Π

In terms of Pi,if
, (2.146) and (2.147) are represented as

u∗
i = −R−1BT P−1

i+1,if
[Axi + (Pi+1,if

− Π)gi+1,if
] (2.152)

w∗
i = γ−2R−1

w BT
wP−1

i+1,if
[Axi + (Pi+1,if

− Π)gi+1,if
] (2.153)
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where

Pi,if
= A−1Pi+1,if

[I + A−1QA−1Pi+1,if
]−1A−1 + Π (2.154)

and

gi,if
= −AT P−1

i+1,if
(Pi+1,if

− Π)gi+1,if
− Qxr

i (2.155)

with

Pif ,if
= M−1

if ,if
+ Π = Q−1

f + Π > 0, g if ,if
= −Qfxr

if
(2.156)

Here, Qf must be nonsingular.
Note that P−1

i,if
is well defined only if Mi,if

satisfies the condition

Rw − γ−2BT
wMi+1,if

Bw > 0 (2.157)

which is required for the existence of the saddle-point.

The terminal weighting matrix Qf cannot be arbitrarily large, since Mi,if

generated from the large Mif ,if
= Qf is also large and thus the inequality

condition (2.136) may not be satisfied. That is why the terminal equality con-
straint for case of the RH H∞ control does not make sense.

Infinite Horizon Case

From the finite horizon H∞ control of a form (2.150), we now turn to the
infinite horizon H∞ control, which is summarized in the following theorem.

Theorem 2.5. Suppose that (A,B) is stabilizable and (A,Q
1
2 ) is observable.

For the infinite horizon performance criterion

inf
ui

sup
wi

∞∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi

]
(2.158)

the H∞ control and the worst-case disturbance are given by[
u∗

i

w∗
i

]
= −R−1

c,∞

[
BT

BT
w

]
M∞Axi

M∞ = AT M∞A − AT M∞
[
B Bw

]
R−1

c,∞

[
BT

BT
w

]
M∞A (2.159)

where

Rc,∞ =
[

BT

BT
w

]
M∞

[
B Bw

]
+
[

R 0
0 − γ2Rw

]
if and only if the following conditions are satisfied:
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(1) there exists a solution M∞ satisfying (2.159);
(2) the matrix

A −
[
B Bw

]
R−1

c,∞

[
BT

BT
w

]
M∞A (2.160)

is stable;

(3) the numbers of the positive and negative eigenvalues of
[

R 0
0 − γ2Rw

]
are the same as those of Rc,∞;

(4)M∞ ≥ 0.

We can see a proof of Theorem 2.5 in much of the literature including
textbooks listed at the end of this chapter. In particular, its proof is made on
the Krein space in [HSK99].

2.4 Optimal Filters

2.4.1 Kalman Filter on Minimum Criterion

Here, we consider the following stochastic model:

xi+1 = Axi + Bui + Gwi (2.161)
yi = Cxi + vi (2.162)

At the initial time i0, the state xi0 is a Gaussian random variable with a mean
x̄i0 and a covariance Pi0 . The system noise wi ∈ �p and the measurement
noise vi ∈ �q are zero-mean white Gaussian and mutually uncorrelated. The
covariances of wi and vi are denoted by Qw and Rv respectively, which are
assumed to be positive definite matrices. We assume that these noises are
uncorrelated with the initial state xi0 .

In practice, the state may not be available, so it should be estimated from
measured outputs and known inputs. Thus, a state estimator, called a filter,
is needed. This filter can be used for an output feedback control. Now, we will
seek a derivation of a filter which estimates the state xi from measured data
and known inputs so that the error between the real state and the estimated
state is minimized. When the filter is designed, the input signal is assumed to
be known, and thus it is straightforward to handle the input signal.

A filter, called the Kalman filter, is derived for the following performance
criterion:

E[(xi − x̂i|i)T (xi − x̂i|i)|Yi] (2.163)

where x̂i|j is denoted by the estimated value at time i based on the measure-
ment up to j and Yi = [yi0 , · · · , yi]T . Note that x̂i|i is a function of Yi. x̂i+1|i
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and x̂i|i are often called a predictive estimated value and a filtered estimated
value respectively.

From Appendix C.1 we have the optimal filter

x̂i|i = E[xi|Yi] (2.164)

We first obtain a probability density function of xi given Yi and then find out
the mean of it.

By the definition of the conditional probability, we have

p(xi|Yi) =
p(xi, Yi)

p(Yi)
=

p(xi, yi, Yi−1)
p(yi, Yi−1)

(2.165)

The numerator in (2.165) can be represented in terms of the conditional ex-
pectation as follows:

p(xi, yi, Yi−1) = p(yi|xi, Yi−1)p(xi, Yi−1)
= p(yi|xi, Yi−1)p(xi|Yi−1)p(Yi−1)
= p(yi|xi)p(xi|Yi−1)p(Yi−1) (2.166)

where the last equality comes from the fact that Yi−1 is redundant information
if xi is given. Substituting (2.166) into (2.165) yields

p(xi|Yi) =
p(yi|xi)p(xi|Yi−1)p(Yi−1)

p(yi, Yi−1)
=

p(yi|xi)p(xi|Yi−1)p(Yi−1)
p(yi|Yi−1)p(Yi−1)

=
p(yi|xi)p(xi|Yi−1)

p(yi|Yi−1)
(2.167)

For the given Yi, the denominator p(yi|Yi−1) is fixed. Two conditional prob-
ability densities in the numerator of Equation (2.167) can be evaluated from
the statistical information. For the given xi, yi follows the normal distribution,
i.e. yi ∼ N (Cxi, Rv). The conditional probability p(xi|Yi−1) is also normal.
Since E[xi|Yi−1] = x̂i|i−1 and E[(xi − x̂i|i−1)(xi − x̂i|i−1)T |Yi−1] = Pi|i−1,
p(xi|Yi−1) is a normal probability function, i.e. N (x̂i|i−1, Pi|i−1). Therefore,
we have

p(yi|xi) =
1√

(2π)m|Rv|
exp
{
−1

2
[yi − Cxi]T R−1

v [yi − Cxi]
}

p(xi|Yi−1) =
1√

(2π)n|Pi|i−1|
exp
{
−1

2
[xi − x̂i|i−1]T P−1

i|i−1[xi − x̂i|i−1]
}

from which, using (2.167), we find that

p(xi|Yi) = C exp{−1
2
[yi − Cxi]R−1

v [yi − Cxi]} ×

exp{−1
2
[xi − x̂i|i−1]P−1

i|i−1[xi − x̂i|i−1]} (2.168)
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where C is the constant involved in the denominator of (2.167).
We are now in a position to find out the mean of p(xi|Yi). Since the

Gaussian probability density function has a peak value at the average, we will
find xi that sets the derivative of (2.168) to zero. Thus, we can obtain the
following equation:

−2CT R−1
v (yi − Cxi) + 2P−1

i|i−1(xi − x̂i|i−1) = 0 (2.169)

Denoting the solution xi to (2.169) by x̂i|i and arranging terms give

x̂i|i = (I + Pi|i−1C
T R−1

v C)−1x̂i|i−1

+ (I + Pi|i−1C
T R−1

v C)−1Pi|i−1C
T R−1

v yi (2.170)

= [I − Pi|i−1C
T (CPi|i−1C

T + Rv)−1C]x̂i|i−1

+ Pi|i−1C
T (Rv + CPi|i−1C

T )−1yi (2.171)
= x̂i|i−1 + Ki(yi − Cx̂i|i−1) (2.172)

where

Ki
�
= Pi|i−1C

T (Rv + CPi|i−1C
T )−1 (2.173)

x̂i+1|i can be easily found from the fact that

x̂i+1|i = E[xi+1|Yi] = AE[xi|Yi] + GE[wi|Yi] + Bui

= Ax̂i|i + Bui (2.174)
= Ax̂i|i−1 + AKi(yi − Cx̂i|i−1) + Bui (2.175)

Pi+1|i can be obtained recursively from the error dynamic equations.
Subtracting xi from both sides of (2.172) yields the following error equa-

tion:

x̃i|i = [I − KiC]x̃i|i−1 − Kivi (2.176)

where x̃i|i
�
= x̂i|i − xi and x̃i|i−1 = x̂i|i−1 − xi. From (2.175) and (2.161), an

additional error equation is obtained as

x̃i+1|i = Ax̃i|i − Gwi (2.177)

From (2.176) and (2.177), Pi|i and Pi+1|i are represented as

Pi|i = (I − KiC)Pi|i−1(I − KiC)T + KiRvKi = (I − KiC)Pi|i−1

Pi+1|i = APi|iAT + GQwGT

= APi|i−1A
T + GQwGT

− APi|i−1C
T (Rv + CPi|i−1C

T )−1CPi|i−1A
T (2.178)
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The initial values x̂i0|i0−1 and Pi0|i0−1 are given by E[xi0 ] and E[(x̂i0 −
xi0)(x̂i0 − xi0)

T ], which are a priori knowledge.
The Kalman filter can be represented as follows:

x̂i+1|i = Ax̂i|i−1 + APiC
T (CPiC

T + Rv)−1(yi − Cx̂i|i−1) (2.179)

where

Pi+1 = APiA
T − APiC

T (Rv + CPiC
T )−1CPiA

T + GQwGT

= A[I + PiC
T R−1

v C]−1PiA
T + GQwGT (2.180)

with the given initial condition Pi0 . Note that Pi in (2.179) is used instead of
Pi|i−1.

Throughout this book, we use the predicted form x̂i|i−1 instead of filtered
form x̂i|i. For simple notation, x̂i|i−1 will be denoted by x̂i if necessary.

If the index i in (2.180) goes to ∞, then the infinite horizon or steady-state
Kalman filter is given by

x̂i+1|i = Ax̂i|i−1 + AP∞CT (CP∞CT + Rv)−1(yi − Cx̂i|i−1) (2.181)

where

P∞ = AP∞AT − AP∞CT (Rv + CP∞CT )−1CP∞AT + GQwGT

= A[I + P∞CT R−1
v C]−1P∞AT + GQwGT (2.182)

As in LQ control, the following theorem gives the result on the condition
for the existence of P∞ and the stability for the infinite horizon Kalman filter.

Theorem 2.6. If (A,G) is controllable and (A,C) is observable, then there is
a unique positive definite solution P∞ to the ARE (2.182). Additionally, the
steady-state Kalman filter is asymptotically stable.

We can see a proof of Theorem 2.6 in much of the literature including
textbooks listed at the end of this chapter. In Theorem 2.6, the conditions
on controllability and observability can be weakened to the reachability and
detectability.

2.4.2 H∞ Filter on Minimax Criterion

Here, an H∞ filter is introduced. Consider the following systems:

xi+1 = Axi + Bwwi + Bui

yi = Cxi + Dwwi

zi = Czx
(2.183)

where xi ∈ �n denotes states, wi ∈ �l disturbance, ui ∈ �m inputs, yi ∈ �p

measured outputs, and zi ∈ �q estimated values. BwDT
w = 0 and DwDT

w =
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I are assumed for simple calculation. In the estimation problem, the input
control has no effect on the design of the estimator, so that B in (2.183) is set
to zero and added later .

Our objective is to find a linear estimator x̂i = T (yi0 , yi0+1, · · · , yi−1) so
that ei = zi − ẑi satisfies the following performance criterion:

sup
wi �=0

∑if

i=i0
eT

i ei∑if

i=i0
wT

i wi

< γ2 (2.184)

From the system (2.183), we obtain the following state-space realization
that has inputs [wT

i ẑT
i ]T and outputs [eT

i yT
i ] as⎡⎣xi+1

ei

yi

⎤⎦ =

⎡⎣ A Bw 0
Cz 0 −I
C Dw 0

⎤⎦⎡⎣ xi

wi

ẑi

⎤⎦ (2.185)

under which we try to find the filter represented by

ẑi = T (yi0 , yi0+1, · · · , yi−1) (2.186)

The adjoint system of (2.185) can be represented as⎡⎣ x̃i

w̃i

˜̂zi

⎤⎦ =

⎡⎣ A Bw 0
Cz 0 −I
C Dw 0

⎤⎦T ⎡⎣ x̃i+1

ẽi

ỹi

⎤⎦ =

⎡⎣AT CT
z CT

BT
w 0 DT

w

0 −I 0

⎤⎦⎡⎣ x̃i+1

ẽi

ỹi

⎤⎦ (2.187)

where x̃if+1 = 0 and i = if , if − 1, · · · , i0. Observe that the input and the
output are switched. Additionally, time indices are arranged in a backward
way. The estimator that we try to find out is changed as follows:

ỹi = T̃ (˜̂zif
, ˜̂zif−1, · · · , ˜̂zi+1) (2.188)

where T̃ (·) is the adjoint system of T (·). Now we are in a position to apply
the H∞ control theory to the above H∞ filter problem.

The state feedback H∞ control is obtained from the following adjoint
system:

x̃i = AT x̃i+1 + CT ỹi + ẽi (2.189)
w̃i = BT

w x̃i+1 + DT
w ỹi (2.190)

˜̂zi = −ẽi (2.191)
ỹi = T̃ (˜̂zif

, ˜̂zif−1, · · · , ˜̂zi+1) (2.192)

From the above system, the ỹi and w̃i are considered as an input and controlled
output respectively. It is noted that time indices are reversed, i.e. we goes from
the future to the past.

The controller T̃ (·) can be selected to bound the cost:
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max
‖ẽi‖2,[0,if ] �=0

∑if

i=i0
w̃T

i w̃i∑if

i=i0
ẽT

i ẽi

< γ2 (2.193)

According to (2.146) and the correspondence

Q ←− BwBT
w , R ←− I, Rw ←− I, AT ←− A, B ←− CT , Bw ←− Cz

the resulting controller and the worst case ẽi are given:

ỹi = −LT
i,i0 x̃i+1, ẽi = −NT

i,i0 x̃i+1 (2.194)

where

LT
i,i0 = CΓ−1

i,i0
Si,i0A

T , NT
i,i0 = −CzΓ

−1
i,i0

Si,i0A
T (2.195)

Si+1,i0 = ASi,i0Γ
−1
i,i0

AT + BwBT
w (2.196)

Γi,i0 = I + (CT C − γ−2CT
z Cz)Si,i0 (2.197)

with Si0,i0 = 0. In Figure 2.6, controls using Riccati solutions are represented
in forward and backward ways. The state-space model for the controller is
given as

x̃i = AT x̃i+1 − CT LT
i,i0 x̃i+1 + CT

z ẽi (2.198)

ỹi = −LT
i,if

x̃i+1, (2.199)

which can be represented as[
x̃i

ỹi

]
=
[

AT − CT LT
i,i0

CT
z

−LT
i,i0

0

] [
x̃i+1

ẽi

]
=
[

AT − CT LT
i,i0

−CT
z

−LT
i,i0

0

] [
x̃i+1

˜̂zi

]
(2.200)

Forward way

Backward way

Fig. 2.6. Computation directions for H∞ filter
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which is a state-space realization for the control (2.188). The adjoint system
of (2.200) is as follows:[

η̂i+1

ẑi

]
=
[

AT − CT LT
i,i0

− CT
z

−LT
i,i0

0

]T [
η̂i

yi

]
=
[

A − Li,i0C − Li,i0

−Cz 0

] [
η̂i

yi

]
which is a state-space realization for the filter (2.186). Rearranging terms,
replacing −η̂i with x̂i, and adding the input into the estimator equation yields
the H∞ filter

ẑi = Czx̂i, x̂i+1 = Ax̂i + Bui + Li,i0(yi − Cx̂i) (2.201)

The H∞ filter can also be represented as follows:

ẑi = Czx̂i, x̂i+1 = Ax̂i + ASi,i0

[
CT CT

z

]
R−1

f,i

[
y − Cx̂i

0

]
(2.202)

Si+1,i0 = ASi,i0A
T − ASi,i0

[
CT CT

z

]
R−1

f,i

[
C
Cz

]
Si,i0A

T + BwBT
w (2.203)

where

Rf,i =
[

Ip 0
0 − γ2Iq

]
+
[

C
Cz

]
Si,i0

[
CT CT

z

]
It is observed that the H∞ filter of the form (2.202) and (2.203) looks like the
Kalman filter.

From the finite horizon H∞ filter of the form (2.202) and (2.203), we now
turn to the infinite horizon H∞ filter. If the index i goes to ∞, the infinite
horizon H∞ filter is given by

ẑi = Czx̂i, x̂i+1 = Ax̂i + AS∞
[
CT CT

z

]
R−1

f,∞

[
y − Cx̂i

0

]
(2.204)

S∞ = AS∞AT − AS∞
[
CT CT

z

]
R−1

f,∞

[
C
Cz

]
S∞AT + BwBT

w (2.205)

where

Rf,∞ =
[

Ip 0
0 − γ2Iq

]
+
[

C
Cz

]
S∞
[
CT CT

z

]
(2.206)

As in the infinite horizon H∞ control, the following theorem gives the result
on the condition for the existence of S∞ and stability for the infinite horizon
H∞ filter.

Theorem 2.7. Suppose that (A,B) is stabilizable and (A,Q
1
2 ) is observable.

For the following infinite horizon performance criterion:

max
wi �=0

∑∞
i=i0

eT
i ei∑∞

i=i0
wT

i wi
< γ2 (2.207)

the H∞filter (2.204) exists if and only if the following things are satisfied:
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(1) there exists a solution S∞ satisfying (2.205);
(2) the matrix

A − AS∞
[
CT CT

z

]
R−1

f,∞

[
C
Cz

]
(2.208)

is stable;
(3) the numbers of the positive and negative eigenvalues of Rf,∞ in (2.206)

are the same as those of the matrix
[

Ip 0
0 −γ2Iq

]
;

(4)S∞ ≥ 0.

We can see a proof of Theorem 2.7 in a number of references. The H∞
filter in Theorem 2.7 is obtained mostly by using the duality from the H∞
control, e.g. in [Bur98]. The Krein space instead of the Hilbert space is used
to derive H∞ filters in [HSK99].

2.4.3 Kalman Filters on Minimax Criterion

We assume that Qw and Rv are unknown, but are bounded above as follows:

Qw ≤ Qo, Rv ≤ Ro (2.209)

The Kalman filter can be derived for the minimax performance criterion given
by

min
Li

max
Qw≤Qo,Rv≤Ro

E[(xi − x̂i|i−1)(xi − x̂i|i−1)T ]

From the error dynamics

x̃i+1|i = [A − LiC]x̃i|i−1 +
[
G −Li

] [wi

vi

]
where x̃i|i−1 = xi − x̂i|i−1, the following equality between the covariance
matrices at time i + 1 and i is satisfied:

Pi+1 = [A − LiC]Pi[A − LiC]T +
[
G Li

] [Qw 0
0 Rv

] [
GT

LT
i

]
(2.210)

As can be seen in (2.210), Pi is monotonic with respect to Qw and Rv, so that
taking Qw and Rv as Qo and Ro we have

Pi+1 = [A − LiC]Pi[A − LiC]T +
[
G Li

] [Qo 0
0 Ro

] [
GT

LT
i

]
(2.211)

It is well known that the right-hand side of (2.211) is minimized for the solu-
tion to the following Riccati equation:

Pi+1 = −APiC
T (Ro + CPiC

T )−1CPiA
T + APiA

T + GQoG
T

where Li is chosen as

Li = APiC
T (Ro + CPiC

T )−1 (2.212)

It is noted that (2.212) is the same as the Kalman gain with Qo and Ro.
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2.5 Output Feedback Optimal Control

Before moving to an output feedback control, we show that a quadratic per-
formance criterion for deterministic systems with no disturbances can be rep-
resented in a square form.

Lemma 2.8. A quadratic performance criterion can be represented in a per-
fect square expression for any control,

if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

if
Qfxif

=
if−1∑
i=i0

{−Kixi + ui}T [R + BT KiB]{−Kixi + ui} + xT
i0Ki0xi0 (2.213)

where Ki is defined in

Ki
�
= (BT Ki+1B + Rv)−1BT Ki+1A (2.214)

and Ki is the solution to Riccati Equation (2.45).

Proof. Now note the simple identity as

if−1∑
i=i0

[xiKix
T
i − xi+1Ki+1x

T
i+1] = xT

i0Ki0xi0 − xT
if

Kif
xif

Then, the second term of the right-hand side can be represented as

xT
if

Kif
xif

= xT
i0Ki0xi0 −

if−1∑
i=i0

[xiKix
T
i − xi+1Ki+1x

T
i+1]

Observe that the quadratic form for xif
is written in terms of the xi on

[i0 if − 1]. Substituting the above equation into the terminal performance
criterion yields

if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

if
Qfxif

=
if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

i0Ki0xi0 −
if−1∑
i=i0

[xiKix
T
i − xi+1Ki+1x

T
i+1](2.215)

If xi+1 is replaced with Axi + Bui, then we have

if−1∑
i=i0

[
xT

i (Q − Ki + AT KiA)xi + uT
i BT KiAxj

+ xT
i AT Ki+1Bui + uT

i (R + BT KiB)ui

]
+xT

i0Ki0xi0 (2.216)
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If Ki satisfies (2.45), then the square completion is achieved as (2.213), This
completes the proof.

2.5.1 Linear Quadratic Gaussian Control on Minimum Criterion

Now, we introduce an output feedback LQG control. A quadratic performance
criterion is given by

J =
if−1∑
i=i0

E

[
xT

i Qxi + uT
i Rui

∣∣∣∣yi−1, yi−2, · · · , yi0

]

+ E

[
xT

if
Qfxif

∣∣∣∣yif−1, yif−2, · · · , yi0

]
(2.217)

subject to ui = f(yi−1, · · · , yi0). Here, the objective is to find a controller ui

that minimizes (2.217). From now on we will not include the condition part
inside the expectation for simplicity. Before obtaining the LQG control, as
in the deterministic case (2.213), it is shown that the performance criterion
(2.217) can be represented in a square form.
Lemma 2.9. A quadratic performance criterion can be represented in a per-
fect square expression for any control,

E

[if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

if
Qfxif

]

= E

[if−1∑
i=i0

{−Kixi + ui}T [R + BT KiB]{−Kixi + ui}
]

+ tr
[ if−1∑

i=i0

KiGQwGT
]
+ E

[
xT

i0Ki0xi0

]
(2.218)

where Ki is defined in

Ki
�
= (BT Ki+1B + R)−1BT Ki+1A (2.219)

and Ki is the solution to Riccati Equation (2.45).

Proof. The relation (2.215) holds even for stochastic systems (2.161)-(2.162).
Taking an expectation on (2.215), we have

E

[if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

if
Qfxif

]

= E

[if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

i0Ki0xi0

−
if−1∑
i=i0

[xiKix
T
i − xi+1Ki+1x

T
i+1]
]

(2.220)
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Replacing xi+1 with Axi + Bui + Gwi yields

E

[if−1∑
i=i0

[
xT

i (Q − Ki + AT KiA)xi + uT
i BT KiAxj

+ xT
i AT Ki+1Bui + uT

i (R + BT KiB)ui

]]
+E

[
xT

i0Ki0xi0

]

+ tr
[if−1∑

i=i0

KiGQwGT

]
(2.221)

If Ki satisfies (2.140), then the square completion is achieved as (2.218). This
completes the proof.

Using Lemma 2.9, we are now in a position to represent the performance
criterion (2.217) in terms of the estimated state. Only the first term in (2.221)
is dependent on ui. So, we consider only this term. Let x̂i|i−1 be denoted by
x̂i|i−1 = E[xi|yi−1, yi−2, · · · , yi0 ]. According to (C.2) in Appendix C, we can
change the first term in (5.69) to

E

if−1∑
i=i0

(Kixi + ui)T R̂i(Kixi + ui) =
if−1∑
i=i0

(Kix̂i + ui)T R̂i(Kix̂i + ui)

+ tr
if∑

i=i0+1

R̂
1
2
i KiP̃iKT

i R̂
1
2
i (2.222)

where

R̂i
�
= R + BT KiB (2.223)

and P̃i is the variance between x̂i|i−1 and xi. Note that Kix̂i|i−1 + ui =

E[Kixi + ui | yi−1, yi−2, · · · , yi0 ] and tr(R̂iKiP̃iKT
i ) = tr(R̂

1
2
i KiP̃iKT

i R̂
1
2
i ).

We try to find the optimal filter gain Li making the following filter mini-
mizing Pi:

x̂i+1|i = Ax̂i|i−1 + Li(yi − Cx̂i|i−1) + Bui (2.224)

Subtracting (2.161) from (2.224), we have

x̃i+1|i = x̂i+1|i − xi+1 = (A − LiC)x̃i|i−1 + Livi − Gwi (2.225)

which leads to the following equation:

P̃i+1 = (A − LiC)P̃i(A − LiC)T + LiRvL
T
i + GQwGT (2.226)

where P̃i is the covariance of x̃i|i−1. As can be seen in (2.226), P̃i is indepen-
dent of ui, so that P̃i and ui can be determined independently. P̃i+1 in (2.226)
can be written as
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P̃i+1 =
[
Li(CP̃iC

T + Rv) − AP̃i

]
(CP̃iC

T + R)−1

[
Li(CP̃iC

T + Rv) − AP̃i

]T

+ GQwGT + AP̃i(CP̃iC
T + Rv)−1P̃iA

T

≥ GQwGT + AP̃i(CP̃iC
T + Rv)−1P̃iA

T (2.227)

where the equality holds if Li = APiC
T (Rv + CPiC

T )−1.
It can be seen in (2.227) that the covariance Pi generated by the Kalman

filter is optimal in view that the covariance P̃i of any linear estimator is
larger than Pi of the Kalman filter, i.e. Pi ≤ P̃i. This implies that tr(Pi) ≤
tr(P̃i), leading to tr(R̂

1
2
i KiPiK

T
i R̂

1
2
i ) ≤ tr(R̂

1
2
i KiP̃iK

T
i R̂

1
2
i ). Thus, the x̂i|i−1

minimizing (2.222) is given by the Kalman filter as follows:

x̂i+1|i = Ax̂i|i−1 + [APiC
T (Rv + CPiC

T )−1](yi − Cx̂i|i−1) + Bui (2.228)

Pi+1 = GQwGT + APi(CPiC
T + Rv)−1PiA

T (2.229)

with the initial state mean x̂i0 and the initial covariance Pi0 . Thus, the fol-
lowing LQG control minimizes the performance criterion:

u∗
i = −(BT Ki+1B + R)−1BT Ki+1Ax̂i|i−1 (2.230)

Infinite Horizon Linear Quadratic Gaussian Control

We now turn to the infinite horizon LQG control. It is noted that, as the
horizon N gets larger, (2.217) also becomes larger and finally blows up. So,
the performance criterion (2.217) cannot be applied as it is to the infinite
horizon case. In a steady state for the infinite horizon case, we may write

min
ui

J = min
ui

E[xT
i Qxi + uT

i Rui] (2.231)

= min
ui

1
2π

∫ 2π

0

tr(T (ejω)T ∗(ejω)) dω (2.232)

where T (ejω) is the transfer function from wi and vi to ui and xi. The infinite
horizon LQG control is summarized in the following theorem.

Theorem 2.10. Suppose that (A,B) and (A,G) are controllable and (A,Q
1
2 )

and (A,C) are observable. For the infinite horizon performance criterion
(2.232), the infinite horizon LQG control is given by

u∗
i = −(BT K∞B + R)−1BT K∞Ax̂i|i−1 (2.233)

where

K∞ = AT K∞A − AT K∞B[R + BK∞BT ]−1BT K∞A + Q

x̂i+1|i = Ax̂i|i−1 + [AP∞CT (Rv + CP∞CT )−1](yi − Cx̂i|i−1) + Bui

P∞ = GQwGT + AP∞(CP∞CT + Rv)−1P∞AT
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We can see a proof of Theorem 2.10 in many references, e.g. in [Bur98,
Lew86b]. The conditions on controllability and observability in Theorem 2.10
can be weakened to the reachability and detectability.

2.5.2 Output Feedback H∞ Control on Minimax Criterion

Now, we derive the output feedback H∞ control. The result of the previous
H∞ filter will be used to obtain the output feedback H∞ control. First, the
performance criterion is transformed in perfect square forms with respect to
the optimal control and disturbance.

Lemma 2.11. H∞ performance criterion can be represented in a perfect
square expression for arbitrary control.

if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi

]
+xT

if
Qfxif

=
if−1∑
i=i0

[
(ui − u∗

i )
TVi(ui − u∗

i ) − γ2(wi − w∗
i )TWi(wi − w∗

i )
]

+ xT
i0Mi0xi0 (2.234)

where w∗
i and u∗

i are given as

w∗
i = (γ2Rw − BT

wMi+1Bw)−1BT
wMi+1(Axi + Bui) (2.235)

u∗
i = −R−1BT Mi+1[I + (BR−1BT − γ−2BwR−1

w BT
w)Mi+1]−1Axi (2.236)

Vi = R + BT Mi+1(I − γ−2BwR−1
w BT

wMi+1)−1B

Wi = γ2Rw − BT
wMi+1Bw

and Mi shortened for Mi,if
is given in (2.140).

Proof. Recalling the simple identity as

if−1∑
i=i0

[xiMix
T
i − xi+1Mi+1x

T
i+1] = xT

i0Mi0xi0 − xT
if

Mif
xif

we have

xT
if

Mif
xif

= xT
if

Qfxif
= xT

i0Mi0xi0 −
if−1∑
i=i0

[xT
i Mixi − xT

i+1Mi+1xi+1] (2.237)

By substituting (2.237) into the final cost xT
if

Qfxif
, the H∞ performance

criterion of the left-hand side in (2.234) can be changed as
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if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi

]
+ xT

if
Qfxif

=
if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi

]
+ xT

i0Mi0xi0

−
if−1∑
i=i0

[xT
i Mixi − xT

i+1Mi+1xi+1]

=
if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi − xT
i Mixi

+ xT
i+1Mi+1xi+1

]
+xT

i0Mi0xi0 (2.238)

Now, we try to make terms inside the summation represented in a perfect
square form. First, time variables are all changed to i. Next, we complete the
square with respect to wi and ui respectively.

Terms in the summation (2.238) can be arranged as follows:

xT
i+1Mi+1xi+1 − xT

i Mixi + xT
i Qxi + uT

i Rui − γ2wT
i Rwwi

+ xT
i Qxi + uT

i Rui − γ2wT
i Rwwi

= AT
o,iMi+1Ao,i + wT

i BT
wMi+1Ao,i + AT

o,iMi+1Bwwi

− wT
i (γ2Rw − BT

wMi+1Bw)wi + xT
i (−Mi + Q)xi + uT

i Rui (2.239)

where Ao,i = Axi + Bui. Terms including wi in (2.239) can be arranged as

wT
i BT

wMi+1Ao,i + AT
o,iMi+1Bwwi − wT

i (γ2Rw − BT
wMi+1Bw)wi

= −WT
i (γ2Rw − BT

wMi+1Bw)−1Wi

+ AT
o,iMi+1Bw(γ2Rw − BT

wMi+1Bw)−1BT
wMi+1Ao,i (2.240)

where Wi = (γ2Rw − BT
wMi+1Bw)wi − BT

wMi+1Ao,i. After completing the
square with respect to disturbance wi, we try to do that for the control ui.
Substituting (2.240) into (2.239) yields

−WT
i (γ2Rw − BT

wMi+1Bw)−1Wi

+ AT
o,iMi+1Bw(γ2Rw − BT

wMi+1Bw)−1BT
wMi+1Ao,i

+ AT
o,iMi+1Ao,i + xT

i (−Mi + Q)xi + uT
i Rui

= −WT
i (γ2Rw − BT

wMi+1Bw)−1Wi + AT
o,iMi+1(I − γ−2BwR−1

w BT
wMi+1)−1

× Ao,i + xT
i (−Mi + Q)xi + uT

i Rui (2.241)

where the last equality comes from

P (I − RQ−1RT P )−1 = P + PR(Q − RT PR)−1RT P
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for some matrix P , R, and Q.
The second, the third, and the fourth terms in the right-hand side of

(2.241) can be factorized as

(Axi + Bui)T Mi+1Z−1
i (Axi + Bui) + xT

i (−Mi + Q)xi + uT
i Rui

= uT
i [R + BT Mi+1Z−1

i B]ui + uT
i BT Mi+1Z−1

i Axi + xT
i AT Mi+1Z−1

i Bui

+ xT
i [AT Mi+1Z−1

i A − Mi + Q]xi = UT
i

[
R + BT Mi+1Z−1

i B
]−1

Ui (2.242)

where

Ui =
[
R + BT Mi+1Z−1

i B
]
ui + BT Mi+1Z−1

i Axi

Zi = I − γ−2BwR−1
w BT

wMi+1

and the second equality comes from the Riccati equation represented by

Mi = AT Mi+1(I + (BR−1BT − γ−2BwR−1
w BT

w)Mi+1)−1A + Q

= AT Mi+1(Zi + BR−1BT Mi+1)−1A + Q

= AT Mi+1

[
Z−1

i −Z−1
i BR−1BT (Mi+1Z−1

i BR−1BT + I)−1Mi+1Z−1
i

]
A

+ Q

or

AT Mi+1Z−1
i A − Mi + Q

= AT Mi+1Z−1
i BR−1BT (Mi+1Z−1

i BR−1BT + I)−1Mi+1Z−1
i A

= AT Mi+1Z−1
i B(BT Mi+1Z−1

i B + R)−1BT Mi+1Z−1
i A

This completes the proof.

Note that by substituting (5.154) into (5.153), w∗
i can be represented as

w∗
i = γ−2R−1

w BT
wMi+1[I + (BR−1BT − γ−2BwR−1

w BT
w)Mi+1]−1Axi

which is of very similar form to u∗
i .

For the zero initial state, the inequality

if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi

]
+xT

if
Qfxif

< 0 (2.243)

guarantees the bound on the following ∞ norm:

sup
‖wi‖2,[0,if ] �=0

∑if−1
i=i0

(ui − u∗
i )

TVi(ui − u∗
i )∑if−1

i=i0
(wi − w∗

i )TWi(wi − w∗
i )

< γ2 (2.244)

where u∗
i and w∗

i are defined in (5.154) and (5.153) respectively. Here, Rw = I,
DwBT

w = 0, and DwDT
w = I are assumed for simple calculation.
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According to (2.244), we should design ui so that the H∞ norm between
the weighted disturbance deviation

�wi
�
= W

1
2
i wi −W

1
2
i (γ2I − BT

wMi+1Bw)−1BT
wMi+1(Axi + Bui)

and the weighted control deviation

�ui
�
= V

1
2
i ui + V

1
2
i R−1BT Mi+1[I + (BR−1BT − γ−2BwBT

w)Mi+1]−1Axi

is minimized. By using �wi, we obtain the following state-space model:

xi+1 = Aa,ixi + Ba,iui + BwW
− 1

2
i �wi

yi = Cxi + DwW
− 1

2
i �wi (2.245)

where Aa,i = A + Bw(γ2I − BT
wMi+1Bw)−1BT

wMi+1A, and Ba,i = B +
Bw(γ2I − BT

wMi+1Bw)−1BT
wMi+1B. Note that DwBT

w = 0 is assumed as
mentioned before.

The performance criterion (2.244) for the state-space model (2.245) is just
one for the H∞ filter that estimates u∗

i with respect to �wi by using mea-
surements yi. This is a similar structure to (2.183). Note that the variable zi

in (2.183) to be estimated corresponds to u∗
i . Using the result of H∞ filters,

we can think of this as finding out the output feedback H∞ control ui by
obtaining the estimator of u∗

i .
All derivations require long and tedious algebraic calculations. In this

book, we just summarize the final result. The output feedback H∞ control
is given by

ui = −Kof,ix̂i

Kof,i = R−1BT Mi+1[I + (BR−1BT − γ−2BwBT
w)Mi+1]−1A

x̂i+1 = Aa,ix̂i + Lof,i

[
0

yi − Cx̂i

]
+ Bui

where Mi, i.e. Mi,if
, is given in (2.140) and Lof,i is defined as

Lof,i =
(

Aa,iSof,i

[
−KT

of,i CT
]
− γ2Bw

[
S̄i 0

])
R−1

of,i

Sof,i+1 = Aa,iSof,iA
T
a,i − γ2BwW−1

i BT
w − Lof,iRof,iL

T
of,i

Rof,i =
[
−γ2Z−1

i 0
0 I

]
+
[
−Kof,i

C

]
Sof,i

[
−KT

of,i CT
]

[
W−1

i S̄i

S̄T
i Z−1

i

]
=
([

−γ2I 0
0 R

]
+
[

BT
w

BT

]
Mi+1

[
Bw B

])−1

with the initial conditions Mif ,if
= Qf and Si0 = 0.
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Infinite Horizon Output Feedback H∞ Control

Now we introduce the infinite horizon H∞ output feedback control in the
following theorem:

Theorem 2.12. Infinite horizon H∞ output feedback control is composed of

ui = −Kof,∞x̂i

Kof,∞ = R−1BT M∞[I + (BR−1BT − γ−2BwBT
w)M∞]−1A

x̂i+1 = Aa,∞x̂i + Lof,∞

[
yi − Cx̂i

0

]
+ Bui

where

Aa,∞ = A + Bw(γ2I − BT
wM∞Bw)−1BT

wM∞A

Lof,∞ =
(

Aa,∞Sof,∞
[
−KT

of,∞ CT
]
− γ2Bw

[
S̄∞ 0

])
R−1

of,∞

Sof,∞ = Aa,∞Sof,∞AT
a,∞ − γ2BwW−1

∞ BT
w − Lof,∞Rof,∞LT

of,∞

Rof,∞ =
[
−γ2(Z∞)−1 0

0 Ip

]
+
[
−Kof,∞

C

]
Pi

[
−KT

of,∞ CT
]

[
W−1

∞ S̄∞
S̄T
∞ Z−1

∞

]
=
([

−γ2Il 0
0 R

]
+
[

BT
w

BT

]
M∞

[
Bw B

])−1

and achieves the following specification∑∞
i=i0

xT
i Rxi + uT

i Qui∑∞
i=i0

wT
i wi

< γ2

if and only if there exists solutions M∞ ≥ 0 satisfying (2.159) and Sof,∞ ≥ 0
such that

(1)A−
[
B Bw

]([R 0
0 −γ2I

]
+
[

BT

BT
w

]
M∞

[
B Bw

])−1[
BT

BT
w

]
M∞A is stable.

(2)The numbers of the positive and negative eigenvalues of the two following
matrices are the same:[

R 0
0 −γ2Il

]
,

[
R 0
0 −γ2Il

]
+
[

BT

BT
w

]
M∞

[
B Bw

]
(2.246)

(3)Aa,∞ − Lof,∞

[
C

(I + BT M∞B)
1
2 Kof,∞

]
is stable.

(4)The numbers of the positive and negative eigenvalues of
[

Ip 0
0 −γ2Im

]
are

the same as those of the following matrix:[
Ip 0
0 −γ2Im + T

]
+
[

C

X
1
2 Kof,∞

]
Sof,∞

[
CT KT

of,∞X
1
2

]
(2.247)
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where T = X− 1
2 BT M∞Z−1M∞BX− 1

2 , Z = I−BT M∞(I+BBT M∞)−1B,
and X = I + BT M∞B.

We can see a proof of Theorem 2.12 in [HSK99]. It is shown in [Bur98] that
output feedback H∞ control can be obtained from a solution to an estimation
problem.

2.6 Linear Optimal Controls via Linear Matrix
Inequality

In this section, optimal control problems for discrete linear time-invariant
systems are reformulated in terms of linear matrix inequalities (LMIs). Since
LMI problems are convex, it can be solved very efficiently and the global
minimum is always found. We first consider the LQ control and then move to
H∞ control.

2.6.1 Infinite Horizon Linear Quadratic Control via Linear Matrix
Inequality

Let us consider the infinite horizon LQ cost function as follows:

J∞ =
∞∑

i=0

{
xT

i Qxi + uT
i Rui

}
,

where Q > 0, R > 0. It is noted that, unlike the standard LQ control, Q is
positive-definite. The nonsingularity of Q is required to solve an LMI problem.
We aim to find the control ui which minimizes the above cost function. The
main attention is focused on designing a linear optimal state-feedback control,
ui = Hxi. Assume that V (xi) has the form

V (xi) = xT
i Kxi, K > 0

and satisfies the following inequality:

V (xi+1) − V (xi) ≤ −[xT
i Qxi + uT

i Rui] (2.248)

Then, the system controlled by ui is asymptotically stable and J∞ ≤ V (x0).
With ui = Hxi, the inequality (2.248) is equivalently rewritten as

xT
i (A + BH)T K(A + BH)xi − xT

i Kxi ≤ −xT
i [Q + HT RH]xi (2.249)

From (2.249), it is clear that (2.248) is satisfied if there exists H and K such
that

(A + BH)T K(A + BH) − K + Q + HT RH ≤ 0 (2.250)
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Instead of directly minimizing xT
0 Kx0, we take an approach where its upper

bound is minimized. For this purpose, assume that there exists γ2 > 0 such
that

xT
0 Kx0 ≤ γ2 (2.251)

Now the optimal control problem for given x0 can be formulated as follows:

min
γ2,K,H

γ2 subject to (2.250) and (2.251)

However, the above optimization problem does not seem easily solvable be-
cause the matrix inequalities (2.250) and (2.251) are not of LMI forms. In the
following, matrix inequalities (2.250) and (2.251) are converted to LMI con-
ditions. First, let us turn to the condition in (2.250), which can be rewritten
as follows:

−K +
[
(A + BH)T HT I

] ⎡⎣K−1 0 0
0 R−1 0
0 0 Q−1

⎤⎦−1 ⎡⎣ (A + BH)
H
I

⎤⎦ ≤ 0

From the Schur complement, the above inequality is equivalent to⎡⎢⎢⎣
−K (A + BH)T HT I

(A + BH) −K−1 0 0
H 0 −R−1 0
I 0 0 −Q−1

⎤⎥⎥⎦ ≤ 0 (2.252)

Also from the Schur complement, (2.251) is converted to[
γ2 xT

0

x0 K−1

]
≥ 0 (2.253)

Pre- and post-multiply (2.252) by diag{K−1, I, I, I}. It should be noted
that this operation does not change the inequality sign. Introducing new vari-
ables Y � HK−1 and S � K−1, (2.252) is equivalently changed into⎡⎢⎢⎣

−S (AS + BY )T Y T S
(AS + BY ) −S 0 0

Y 0 −R−1 0
S 0 0 −Q−1

⎤⎥⎥⎦ ≤ 0 (2.254)

Furthermore, (2.253) is converted to[
γ2 xT

0

x0 S

]
≥ 0 (2.255)

Now that (2.254) and (2.255) are LMI conditions, the resulting optimization
problem is an infinite horizon control, which is represented as follows:

min
γ2,Y,S

γ2

subject to (2.254) and (2.255)

Provided that the above optimization problem is feasible, then H = Y S−1

and K = S−1.
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2.6.2 Infinite Horizon H∞ Control via Linear Matrix Inequality

Consider the system

xi+1 = Axi + Bui (2.256)
zi = Czxi + Dzuui (2.257)

where A is a stable matrix. For the above system, the well-known bounded
real lemma (BRL) is stated as follows:

Lemma 2.13 (Bounded Real Lemma). Let γ > 0. If there exists X > 0
such that ⎡⎢⎢⎣

−X−1 A B 0
AT −X 0 CT

z

BT 0 −γWu DT

0 C Dzu −γW−1
z

⎤⎥⎥⎦ < 0 (2.258)

then ∑∞
i=i0

zT
i Wzzi∑∞

i=i0
uT

i Wuui
< γ2 (2.259)

where ui and zi are governed by the system (2.256) and (2.257).

Proof. The inequality (2.259) is equivalent to

Jzu =
∞∑

i=0

{
zT

i Wzzi − γ2uT
i Wuui

}
< 0 (2.260)

Let us take V (x) as follows:

V (x) = xT Kx, K > 0

Respectively adding and subtracting
∑∞

i=0 {V (xi+i) − V (xi)} to and from
Jzu in (2.260), does not make any difference to Jzu. Hence, it follows that

Jzu =
∞∑

i=0

{
zT

i Wzzi − γ2uT
i Wuui + V (xi+1) − V (xi)

}
+ V (x0) − V (x∞)

Since x0 is assumed to be zero and V (x∞) ≥ 0, we have

Jzu ≤
∞∑

i=0

{zT
i Wzzi − γ2uT

i Wuui + V (xi+1) − V (xi)}

Furthermore,
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∞∑
i=0

{zT
i Wzzi − γ2uT

i Wuui + V (xi+1) − V (xi)}

=
∞∑

i=0

{
[Czxi + Dzuui]T Wz[Czxi + Dzuui] − γ2uT

i Wuui

+[Axi + Bui]T K[Axi + Bui] − xT
i Kxi

}
=

∞∑
i=0

{[
xi

ui

]T

Λ

[
xi

ui

]}

where

Λ �
[
−K + AT KA + CT

z WzCz AT KB + CT
z WzDzu

BT KA + DT
zuWzCz BT KB + DT

zuWzDzu − γ2Wu

]
(2.261)

Hence, if the 2-by-2 block matrix Λ in (2.261) is negative definite, then Jzu < 0
and equivalently the inequality (2.259) holds.

The 2-by-2 block matrix Λ can be rewritten as follows:

Λ =
[
−K 0
0 −γ2Wu

]
+
[

AT CT
z

BT DT
zu

] [
K 0
0 Wz

] [
A B
Cz Dzu

]
From the Schur complement, the negative definiteness of Λ is guaranteed if
the following matrix equality holds:⎡⎢⎢⎣

−K 0 AT CT
z

0 −γ2Wu BT DT
zu

A B −K−1 0
Cz Dzu 0 −W−1

z

⎤⎥⎥⎦ < 0 (2.262)

Define Π as follows:

Π �

⎡⎢⎢⎣
0 I 0 0
0 0 I 0
I 0 0 0
0 0 0 I

⎤⎥⎥⎦
Pre- and post-multiplying (2.262) by ΠT and Π respectively does not change
the inequality sign. Hence, the condition in (2.262) is equivalently represented
by ⎡⎢⎢⎣

−K−1 A B 0
AT −K 0 CT

z

BT 0 −γ2Wu DT
zu

0 Cz Dzu −W−1
z

⎤⎥⎥⎦ < 0 (2.263)

Pre- and post-multiplying (2.263) by diag{√γI,
√

γ−1I,
√

γ−1I,
√

γI} and in-
troducing a change of variables such that X � 1√

γ K, the condition in (2.263)
is equivalently changed to (2.258). This completes the proof.
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Using the BRL, the LMI-based H∞ control problem can be formulated.
Let us consider the system

xi+1 = Axi + Bwwi + Bui, x0 = 0
zi = Czxi + Dzuui

As in the LMI-based LQ problem, the control is constrained to have a state-
feedback, ui = Hxi. With ui = Hxi, the above system is rewritten as follows:

xi+1 = [A + BH]xi + Bwwi, x0 = 0
zi = [Cz + DzuH]xi

According to the BRL, H which guarantees ‖Gcl(z)‖∞ < γ∞ should satisfy,
for some X > 0,⎡⎢⎢⎣

−X−1 (A + BH) Bw 0
(A + BH)T −X 0 (Cz + DzuH)T

BT
w 0 −γ∞I 0
0 (Cz + DzuH) 0 −γ∞I

⎤⎥⎥⎦ < 0 (2.264)

where Gcl(z) = [Cz + DzuH](zI −A−BH)−1Bw. Pre- and post-multiplying
(2.264) by diag{I,X−1, I, I} and introducing a change of variables such that
S∞ � X−1 and Y � HX−1 lead to⎡⎢⎢⎣

−S∞ (AS∞ + BY ) Bw 0
(AS∞ + BY )T −S∞ 0 (CzS∞ + DzmY )T

BT
w 0 −γ∞I 0
0 (CzS∞ + DzuY ) 0 −γ∞I

⎤⎥⎥⎦ < 0 (2.265)

Provided that the above LMI is feasible for some given γ∞, H∞ state-feedback
control guaranteeing ‖Gcl(z)‖∞ < γ∞ is given by

H = Y S−1
∞

In this case, we can obtain the infinite horizon H∞ control via LMI, which
minimizes γ∞ by solving the following optimization problem:

min
γ∞,Y,S∞

γ∞ subject to (2.265)

2.7 ∗ H2 Controls

Since LQ regulator and LQG control problems are studied extensively in this
book, H2 controls and H2 filters are introduced in limited problems and are
only briefly summarized without proofs in this section.

To manipulate more general problems, it is very useful to have a general
system with the input, the disturbance, the controlled output, and the measure
output given by
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xi+1 = Axi + Bwwi + Bui

yi = Cxi + Dwwi

zi = Czxi + Dzwwi + Dzuui (2.266)

The standard H2 problem is to find a proper, real rational controller u(z) =
K(z)y(z) which stabilizes the closed-loop system internally and minimizes the
H2 norm of the transfer matrix Tzw from wi to zi.

The H2 norm can be represented as

‖Tzw(ejw)‖2
2 =

1
2π

∫ π

−π

tr{T ∗
zw(ejw)Tzw(ejw)}dw =

∞∑
k=i0

tr{H∗
k−i0Hk−i0}

=
m∑

l=1

∞∑
i=−∞

zlT
i zl

i (2.267)

where

Tzw(ejw) =
∞∑

k=0

Hke−jwk

and A∗ is a complex conjugate transpose of A and zl is an output resulting
from applying unit impulses to lth input. From (2.267), we can see that the H2

norm can be obtained from applying unit impulses to each input. We should
require the output to settle to zero before applying an impulse to the next
input. In the case of single input systems, the H2 norm is obtained by the
driving unit impulse once, i.e. ‖Tzw(ejw)‖2 = ‖z‖2.

The H2 norm can be given another interpretation for stochastic systems.
The expected power in the error signal zi is then given by

E{zT
i zi} = tr[E{ziz

T
i }] =

1
2π

∫ π

−π

tr{Tzw(ejw)T ∗
zw(ejw)} dw

=
1
2π

∫ π

−π

tr{T ∗
zw(ejw)Tzw(ejw)} dw

where the second equality comes from Theorem C.4 in Appendix C.
Thus, by minimizing the H2 norm, the output (or error) power of the

generalized system, due to a unit intensity white noise input, is minimized.
It is noted that for the given system transfer function

G(z) �
[

A B
C D

]
= C(zI − A)−1B + D

‖G(z)‖2 is obtained by

‖G(z)‖2
2 = tr(DT D + BT LoB) = tr(DDT + CLcC

T ) (2.268)
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where Lc and Lo are the controllability and observability Gramians

ALcA
T − Lc + BBT = 0 (2.269)

AT LoA − Lo + CT C = 0 (2.270)

The H2 norm has a number of good mathematical and numerical properties,
and its minimization has important engineering implications. However, the H2

norm is not an induced norm and does not satisfy the multiplicative property.
It is assumed that the following things are satisfied for the system (2.266):

(i) (A,B) is stabilizable and (C,A) is detectable,
(ii) Dzu is of full column rank with

[
Dzu D⊥

]
unitary and Dw is full row with[

Dw

D̃⊥

]
unitary,

(iii)
[

A − ejθI B
Cz Dzu

]
has full column rank for all θ ∈ [0 2π],

(iv)
[

A − ejθI Bw

C Dw

]
has full rank for all θ ∈ [0 2π].

Let X2 ≥ 0 and Y2 ≥ 0 be the solutions to the following Riccati equations:

A∗
x(I + X2BBT )−1X2Ax − X2 + CT

z D⊥DT
⊥Cz = 0 (2.271)

Ay(I + Y2C
T C)−1Y2A

T
y − Y2 + BwDT

⊥D⊥BT
w = 0 (2.272)

where

Ax = A − BDT
zuCz, Ay = A − BwCT

wC (2.273)

Note that the stabilizing solutions exist by the assumptions (iii) and (iv). The
solution to the standard H2 problem is given by

x̂i+1 = (Â2 − BL0C)x̂i − (L2 − BL0)yi (2.274)
ui = (F2 − L0C)x̂i + L0yi (2.275)

where

F2 = −(I + BT X2B)−1(BT X2A + DT
zuCz)

L2 = −(AY2C
T + BwCT

w )(I + CY2C
T )−1

L0 = (F2Y2C
T + F2C

T
w )(I + CY2C

T )−1

Â2 = A + BF2 + L2C

The well-known LQR control problems can be seen as a special H2 problem.
The standard LQR control problem is to find an optimal control law u ∈
l2[0 ∞] such that the performance criterion

∑∞
i=0 zT

i zi is minimized in the
following system with the impulse input wi = δi:
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xi+1 = Axi + x0wi + Bui

zi = Czxi + Dzuui

yi = xi (2.276)

where wi is a scalar value, CT
z Dzu = O, CT

z Cz = Q, and DT
zuDzu = R. Note

that Bw in (2.266) corresponds to x0 in (2.276). Here, the H2 performance
criterion becomes an LQ criterion.

The LQG control problem is an important special case of the H2 optimal
control for the following system:

xi+1 = Axi +
[
GQ

1
2
w O

] [
wi

vi

]
+ Bui

yi = Cxi +
[
O R

1
2
v

] [wi

vi

]
zi = Czxi + Dzuui

(2.277)

where CT
z Dzu = O, CT

z Cz = Q, and DT
zuDzu = R. The LQG control is

obtained so that the H2 norm of the transfer function from w and vi to
z is minimized. It is noted that, according to (C.14) in Appendix C, the
performance criterion (2.267) for the system (2.277) can be considered by
observing the steady-state mean square value of the controlled output

E

[
lim

N→∞
1
N

N−1∑
i=0

zT
i zi

]
= E

[
lim

N→∞
1
N

N−1∑
i=0

(
xT

i Qxi + uT
i Rui

)]
when the white Gaussian noises with unit power are applied. It is noted that
wi and vi can be combined into one disturbance source wi as in (2.266).

The H2 filter problem can be solved as a special case of the H2 control
problem. Suppose a state-space model is described by the following:

xi+1 = Axi + Bwwi

yi = Cxi + Dwwi (2.278)

The H2 filter problem is to find an estimate x̂i of xi using the measurement
of yi so that the H2 norm from wi to xi − x̂i is minimized. The filter has to
be causal so that it can be realized.

The H2 filter problem can be regarded as the following control problem:

xi+1 = Axi + Bwwi + 0 × x̂i

zi = xi − x̂i

yi = Cxi + Dwwi

(2.279)

where the following correspondences to (2.266) hold

ui ←− x̂i

B ←− 0
Cz ←− I

Dzu ←− − I
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H2/H∞ Controls Based on Mixed Criteria

Each performance criterion has its own advantages and disadvantages, so that
there are trade-offs between them. In some cases we want to adopt two or more
performance criteria simultaneously in order to satisfy specifications. In this
section, we introduce two kinds of controls based on mixed criteria. It is noted
that an LQ control is a special case of H2 controls. Here, the LQ control is
used for simplicity.

1. Minimize the H2 norm for a fixed guaranteed H∞ norm such that

min
γ2,Y,S

γ2 (2.280)

subject to

[
γ2 xT

0

x0 S

]
≥ 0 (2.281)⎡⎢⎢⎣

−S (AS + BY )T Y T S
(AS + BY ) −S 0 0

Y 0 −R−1 0
S 0 0 −Q−1

⎤⎥⎥⎦ ≤ 0 (2.282)

⎡⎢⎢⎣
−S (AS + BY ) Bw 0

(AS + BY )T −S 0 (CzS + DzuY )T

BT
w 0 −γ∞I 0
0 (CzS + DzuY ) 0 −γ∞I

⎤⎥⎥⎦ < 0 (2.283)

From Y and S, the state feedback gain is obtained, i.e. H = Y S−1.
2. Minimize the H∞ norm for a fixed guaranteed H2 norm such that

min
γ∞,Y,S

γ∞ (2.284)

subject to
(2.281), (2.282), (2.283).

The state feedback gain is obtained from Y and S, i.e. H = Y S−1.

2.8 References

The material presented in this chapter has been established for a long time
and is covered in several excellent books. The subject is so large that it would
be a considerable task to provide comprehensive references.

Therefore, in this chapter, some references will be provided so that it is
enough to understand the contents.
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Dynamic programming and the minimum principle of Section 2.2 are dis-
cussed in many places. For general systems, dynamic programming and the
minimum principle of Pontryagin appeare in [BD62, BK65, Bel57] and in
[PBGM62] respectively. For a short review, [Kir70] is a useful reference for
the minimum criterion in both dynamic programming and the minimum prin-
ciple. For a treatment of the minimax criterion, see [Bur98] for the minimax
principle and [BB91] [BLW91] [KIF93] for dynamic programming. Readers
interested in rigorous mathematics are referred to [Str68].

The literature on LQ controls is vast and old. LQR for tracking problems
as in Theorems 2.1, 2.2, and 2.4 is via dynamic programming [AM89] and via
the minimum principle [BH75] [KS72]. In the case of a fixed terminal with a
reference signal, the closed-loop solution is first introduced in this book as in
Theorem 2.3.

The H∞ control in Section 2.3.2 is closely related to an LQ difference
game. The books by [BH75] and [BO82] are good sources for results on game
theories. [BB91] is a book on game theories that deals explicitly with the
connections between game theories and H∞ control. The treatment of the
finite horizon state feedback H∞ control in this book is based on [LAKG92].

The Kalman filters as in Theorem 2.6 can be derived in many ways for
stochastic systems. The seminal papers on the optimal estimation are [KB60]
and [KB61].

The perfect square expression of the quadratic cost function in Lemmas
2.8 and 2.9 appeared in [Lew86b, Lew86a]. A bibliography of LQG controls is
compiled by [MG71]. A special issue of the IEEE Transactions on Automatic
Control was devoted to LQG controls in 1971 [Ath71]. Most of the contents
about LQG in this book originate from the text of [Lew86b]. The LQG sep-
aration theorem appeared in [Won68]. The perfect square expression of the
H∞ cost function in Theorem 2.11 appeared in [GL95].

Even though finite horizon and infinite horizon LQ controls are obtained
analytically from a Riccati approach, we also obtain them numerically from
an LMI in this book, which can be useful for constrained systems. Detailed
treatments of LMI can be found in [BGFB94, GNLC95]. The LMIs for LQ and
H∞ controls in Sections 2.6.1 and 2.6.2 appear in [GNLC95]. The bounded
real lemma in Section 2.6.2 is investigated in [Yak62], [Kal63], and [Pop64],
and also in a book by [Bur98].

The general H2 problem and its solution are considered well in the fre-
quency domain in [ZDG96]. This work is based on the infinite horizon. In
[BGFB94], H2 and H∞ controls are given in LMI form, which can be used
for the H2/H∞ mixed control. The work by [BH89] deals with the problem
requiring the minimization of an upper bound on the H2 norm under an H∞
norm constraint.
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2.9 Problems

2.1. Consider the system

xi+1 = αxi + ui −
u2

i

M − xi
(2.285)

where 0 < α < 1 and xi0 < M . In particular, we want to maximize

J = βif−i0cxif
+

if−1∑
i=i0

[pxi − ui]βi−i0 (2.286)

where p > 0, 0 < β < 1, and c > 0. Find an optimal control ui so that (2.286)
is maximized.

2.2. Consider a nonlinear system xk+1 = f(xk, uk) with constraints given by
φ(xk) ≥ 0 and the performance criterion (2.2).

(1) Show that above φ(xk) ≥ 0 can be represented by an extra state variable
xn+1,k+1 such as

xn+1,k+1 = xn+1,k + {[φ1(xk)]2ũ(−φ1(xk)) + · · · + [φl(xk)]2ũ(−φl(xk))}

where ũ(·) is a unit function given by ũ(x) = 1 only for x > 0 and 0
otherwise with

xn+1,i0 = 0, xn+1,if
= 0

(2) Using the minimum principle, find the optimal control so that the system

x1,k+1 = 0.4x2,k (2.287)
x2,k+1 = −0.2x2,k + uk (2.288)

is to be controlled to minimize the performance criterion

J =
3∑

k=0

0.5[x2
1,k + x2

2,k + u2
k] (2.289)

The control and states are constrained by

−1 ≤ uk ≤ 1 (2.290)
−2 ≤ x2,k ≤ 2 (2.291)

2.3. Suppose that a man has his initial savings S and lives only on interest
that comes from his savings at a fixed rate. His current savings xk are therefore
governed by the equation

xk+1 = αxk − uk (2.292)
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where α > 1 and uk denotes his expenditure. His immediate enjoyment due
to expenditure is uk

1
2 . As time goes on, the enjoyment is diminished as fast

as βk, where |β| < 1. Thus, he wants to maximize

J =
N∑

k=0

βku
1
2
k (2.293)

where S, α, and β are set to 10, 1.8, and 0.6, respectively. Make simulations
for three kinds of planning based on Table 1.1. For the long-term planning,
use N = 100. For the periodic and short-term plannings, use N = 5 and the
simulation time is 100. Using the minimum principle, find optimal solutions
ui analytically, not numerically.

2.4. Consider the following general nonlinear system:

xi+1 = f(xi) + g(xi)wi, zi = h(xi) + J(xi)wi (2.294)

(1) If there exists a nonnegative function V : �n → � with V (0) = 0 such
that for all w ∈ �p and k = 0, 1, 2 · · ·

V (xk+1) − V (xk) ≤ γ2‖wk‖2 − ‖zk‖2 (2.295)

show that the following inequality is satisfied:

N∑
k=0

||zk||2 ≤ γ2
N∑

k=0

||wk||2

Conversely, show that a nonnegative function V : �n → � with V (0) = 0
exists if the H∞ norm of the system is less than γ2.
(2) Suppose that there exists a positive definite function V (x) satisfying

gT (0)
∂2V

∂2x
(0)g(0) + JT (0)J(0) − γ2 < 0 (2.296)

0 = V (f(x) + g(x)α(x)) − V (x)

+
1
2
(||h(x) + J(x)α(x)|| − γ2||α(x)||) (2.297)

where α(x) is a unique solution of

∂V

∂α(x)
(x)g(x) + α(x)T (JT (x)J(x) − γ2) = −hT (x)J(x) (2.298)

and the systems is observable, i.e.

zk|wk=0 = h(xk) = 0 → lim
k→∞

xk = 0 (2.299)

Show that the system xi+1 = f(xi) is stable.
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2.5. We consider a minimum time performance criterion in which the objective
is to steer a current state into a specific target set in minimum time.

For the system

xi+1 =
[

1 1
0 1

]
xi +

[
0.5
1

]
ui (2.300)

the performance criterion is given as

J =
if−1∑
i=i0

1 = if − i0 (2.301)

where |ui| ≤ 1. Find the control ui to bring the state from the initial point
xi0 = [1 4]T to the origin in the minimum time.

2.6. An optimal investment plan is considered here. Without any external
investment, the manufacturing facilities at the next time k + 1 decrease in
proportion to the manufacturing facilities at the current time k. In order to
increase the manufacturing facilities, we should invest money. Letting xk and
uk be the manufacturing facilities at time k and the investment at the time k
respectively, we can construct the following model:

xk+1 = αxk + γuk (2.302)

where |α| < 1, γ > 0, and x0 are given. Assume that manufacturing facilities
are worth the value proportional to the investment and the product at the
time k is proportional to the manufacturing facilities at time k. Then, the
profit can be represented as

J = βxN +
N−1∑
i=0

(βxi − ui) (2.303)

The investment is assumed to be nonnegative and bounded above, i.e. 0 ≤
ui ≤ ū. Obtain the optimal investment with respect to α, β, γ, and N .

2.7. Let a free body obey the following dynamics:

yi+1 = yi + vi (2.304)
vi+1 = vi + ui (2.305)

with yi the position and vi the velocity. The state is xi = [yi vi]T . Let the
acceleration input ui be constrained in magnitude by

|ui| ≤ 1 (2.306)

Suppose the objective is to determine a control input to bring any given initial
state (yi0 , vi0) to the origin so that
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yif

vif

]
= 0 (2.307)

The control should use minimum fuel, so let

J(i0) =
if∑

i=i0

|ui| (2.308)

(1) Find the minimum-fuel control law to drive any xi0 to the origin in a given
time N = if − i0 if |ui| ≤ 1.
(2) Draw the phase-plane trajectory. N , yi0 , and vi0 are set to 35, 10, and 10
respectively.

2.8. Consider a performance criterion with Q = R = 0 and a positive definite
Qf . The control can be given (2.43)–(2.45) with the inverse replaced by a
pseudo inverse.

(1) Show that the solution to Riccati Equation (3.47) can be represented as

Kif−k = (Q
1
2
f Ak)T

[
I − Q

1
2
f Wk(Q

1
2
f Wk)T [Q

1
2
f Wk(Q

1
2
f Wk)T ]†

]
(Q

1
2
f Ak). (2.309)

where Wk = [B AB A2B · · · Ak−1B] for k = 1, 2, ..., N−1 with W0 = 0
and A† is a pseudo inverse of A.

(2) In the deadbeat control problem, we desire that xif
= 0; this can happen

only if a performance criterion is equal to zero, i.e. if Ki0 = 0. Show that
Ki0 can be zero if the following condition holds for some k:

Im(Ak) ⊂ Im(Wk) (2.310)

where Im(M) is the image of the matrix M .
(3) Show that (2.310) is satisfied if the system is controllable.

2.9. Consider the following performance criterion for the system (2.27):

J(xr, u) =
if−1∑
i=i0

[
xi

ui

]T [
Q M

MT R

] [
xi

ui

]
+ xT

if
Qfxif

where

Q = QT ≥ 0,
[

Q M
MT R

]
≥ 0, R = RT > 0

Show that the optimal control is given as

ui = −Kixi

Ki = (BT Si+1B + R)−1(BT Si+1A + MT )
Si = AT Si+1A − (BT Si+1A + MT )T (BT Si+1B + R)−T (BT Si+1A + MT )

+ Q

where Sif
= Qf .



80 2 Optimal Controls on Finite and Infinite Horizons: A Review

2.10. Show that the general tracking control (2.103) is reduced to the simpler
tracking control (2.79) if Q in (2.103) becomes zero.

2.11. Consider the minimum energy performance criterion given by

J =
if−1∑
i=i0

uT
i Rui (2.311)

for the system (2.27). Find the control ui that minimizes (2.311) and satisfies
the constraints |ui| ≤ ū and xif

= 0.

2.12. Consider an optimal control problem on [i0 if ] for the system (2.27)
with the LQ performance criterion

J(x, u) =
if−1∑
i=i0

(xT
i Qxi + uT

i Rui) (2.312)

(1) Find the optimal control uk subject to Cxif
+ b = 0.

(2) Find the optimal control uk subject to xT
if

Pxif
≤ 1, where P is a sym-

metric positive definite matrix.

2.13. Consider the following performance criterion for the system (2.120):

J(xr, u) =
if−1∑
i=i0

{[
xi

ui

]T [
Q M

MT R

] [
xi

ui

]
− γ2wT

i wi

}
+xT

if
Qfxif

,

where

Q = QT ≥ 0,
[

Q M
MT R

]
≥ 0, R = RT > 0. (2.313)

Derive the H∞ control.

2.14. Derive the last term hi,if
in the optimal cost (2.148) associated with

the H∞ control.

2.15. Consider the stochastic model (2.161) and (2.162) where wi and vi are
zero-mean, white noise sequences with variance given by

E
{[

wi

vi

] [
wT

j vT
j

]}
=
[

Ξ11 Ξ12

Ξ12 Ξ22

]
δi−j

(1) Show that (2.161) and (2.162) are equivalent to the following model:

xi+1 = Āxi + Bui + GΞ12Ξ
−1
22 yi + Gξi

yi = Cxi + vi

where

Ā = A − GΞ12Ξ
−1
22 C, ξi = wi − Ξ12Ξ

−1
22 vi
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(2) Find E{ξiv
T
i }.

(3) Show that the controllability and observability of the pairs {Ā, B} and
{Ā, C} are guaranteed by the controllability and observability of the pairs
{A,B} and {A,C}, respectively.

(4) Find the Kalman filter x̂k+1|k.

2.16. Consider the following system:

xk+1 =

⎡⎣0 1 0
0 0 1
0 0 0

⎤⎦xk +

⎡⎣0
0
1

⎤⎦ ξk

yk =
[
1 0 0

]
xk + θk

where ξk and θk are zero-mean Gaussian white noises with covariance 1 and
µ.

(1) Express the covariance of the state estimation error Pk as a function of µ.
(2) Calculate the gain matrix of the Kalman filter.
(3) Calculate and plot the poles and zeros of the closed-loop system.

2.17. Consider the LQG problem[
x1,i+1

x2,i+1

]
=
[

1 1
0 1

] [
x1,i

x2,i

]
+

√
ρ

[
1 0
1 0

]
w +

[
0
1

]
u (2.314)

y =
[
1 0
] [x1

x2

]
(2.315)

for the following performance criterion:

J =
if−1∑
i=i0

ρ(x1 + x2)2 + u2
i (2.316)

Discuss the stability margin, such as gain and phase margins, for steady-state
control.

2.18. Consider a controllable pair {A,B} and assume A does not have unit-
circle eigenvalues. Consider also arbitrary matrices {Q,S,R} of appropriate
dimensions and define a Popov function

Sy(z) =
[
BT (zI − AT )−1 I

] [ Q S
ST R

] [
(z−1I − A)−1B

I

]
(2.317)

where the central matrix is Hermitian but may be indefinite. The KYP
lemma[KSH00] can be stated as follows.
The following three statements are all equivalent:

(a) Sy(ejw) ≥ 0 for all w ∈ [−π , π].
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(b) There exists a Hermitian matrix P such that[
Q − P + AT PA S + AT PB

ST + BT PA R + BT PB

]
≥ 0 (2.318)

(c) There exist an n × n Hermitian matrix P , a p × p matrix Re ≥ 0, and an
n × p matrix Kp, such that[

Q − P + AT PA S + AT PB
ST + BT PA R + BT PB

]
=
[

Kp

I

]
Re

[
KT

p I
]

(2.319)

Derive the bounded real lemma from the above KYP lemma and compare it
with the LMI result in this section.
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State Feedback Receding Horizon Controls

3.1 Introduction

In this chapter, state feedback receding horizon controls for linear systems
will be given for both quadratic and H∞ performance criteria.

The state feedback receding horizon LQ controls will be extensively inves-
tigated because they are bases for the further developments of other receding
controls. The receding horizon control with the quadratic performance cri-
terion will be derived with detailed procedures. Time-invariant systems are
dealt with with simple notations. The important monotonicity of the opti-
mal cost will be introduced with different conditions, such as a free terminal
state and a fixed terminal state. A nonzero terminal cost for the free terminal
state is often termed a free terminal state thereafter, and a fixed terminal
state as a terminal equality constraint thereafter. Stability of the receding
horizon controls is proved under cost monotonicity conditions. Horizon sizes
for guaranteeing the stability are determined regardless of terminal weight-
ing matrices. Some additional properties of the receding horizon controls are
presented.

Similar results are given for the H∞ controls that are obtained from the
minimax criterion. In particular, monotonicity of the saddle-point value and
stability of the state feedback receding horizon H∞ controls are discussed.

Since cost monotonicity conditions look difficult to obtain, we introduce
easy computation of receding horizon LQ and H∞ controls by the LMI.

In order to explain the concept of a receding horizon, we introduce the pre-
dictive form, say xk+j , and the referenced predictive form, say xk+j|k, in this
chapter. Once the concept is clearly understood by using the reference predic-
tive form, we will use the predictive form instead of the reference predictive
form.

The organization of this chapter is as follows. In Section 3.2, predictive
forms for systems and performance criteria are introduced. In Section 3.3, re-
ceding horizon LQ controls are extensively introduced with cost monotonicity,
stability, and internal properties. A special case of input–output systems is
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investigated for GPC. In Section 3.4, receding horizon H∞ controls are dealt
with with cost monotonicity, stability, and internal properties. In Section 3.5,
receding horizon LQ control and H∞ control are represented via batch and
LMI forms.

3.2 Receding Horizon Controls in Predictive Forms

3.2.1 Predictive Forms

Consider the following state-space model:

xi+1 = Axi + Bui (3.1)
zi = Czxi (3.2)

where xi ∈ �n and ui ∈ �m are the state and the input respectively. zi in
(3.2) is called a controlled output. Note that the time index i is an arbitrary
time point. This time variable will also be used for recursive equations.

With the standard form (3.1) and (3.2) it is not easy to represent the
future time from the current time. In order to represent the future time from
the current time, we can introduce a predictive form

xk+j+1 = Axk+j + Buk+j (3.3)
zk+j = Czxk+j (3.4)

where k and j indicate the current time and the time distance from it re-
spectively. Note that xk+j , zk+j , and uk+j mean future state, future output,
and future input at time k + j respectively. In the previous chapter it was
not necessary to identify the current time. However, in the case of the RHC
the current time and the specific time points on the horizon should be dis-
tinguished. Thus, k is used instead of i for RHC, which offers a clarification
during the derivation procedure. The time on the horizon denoted by k + j
means the time after j from the current time. This notation is depicted in
Figure 3.1. However, the above predictive form also does not distinguish the
current time if they are given as numbers. For example, k = 10 and j = 3
give xk+j = x13. When x13 is given, there is no way to know what the current
time is. Therefore, in order to identify the current time we can introduce a
referenced predictive form

xk+j+1|k = Axk+j|k + Buk+j|k (3.5)
zk+j|k = Czxk+j|k (3.6)

with the initial condition xk|k = xk. In this case, when k = 10 and j = 3,
xk+j|k can be represented as x13|10. We can see that the current time k is 10
and the distance j from the current time is 3. A referenced predictive form
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Fig. 3.1. Times in predictive forms

improves understanding. However, a predictive form will often be used in this
book because the symbol k indicates the current time.

For a minimax problem, the following system is considered:

xi+1 = Axi + Bui + Bwwi (3.7)
zi = Czxi (3.8)

where wi is a disturbance. In order to represent the future time we can intro-
duce a predictive form

xk+j+1 = Axk+j + Buk+j + Bwwk+j (3.9)
zk+j = Czxk+j (3.10)

and a referenced predictive form

xk+j+1|k = Axk+j|k + Buk+j|k + Bwwk+j (3.11)
zk+j|k = Czxk+j|k (3.12)

with the initial condition xk|k = xk.
In order to explain the concept of a receding horizon, we introduce the

predictive form and the referenced predictive form. Once the concept is clearly
understood by using the referenced predictive form, we will use the predictive
form instead of the referenced predictive form for notational simplicity.

3.2.2 Performance Criteria in Predictive Forms

In the minimum performance criterion (2.31) for the free terminal cost, i0 can
be arbitrary and is set to k so that we have
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J(xk, xr
· , u·) =

if−1∑
i=k

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui

]
+ (xif

− xr
if

)T Qf (xif
− xr

if
) (3.13)

where xr
i is given for i = k, k + 1, · · · , if .

The above minimum performance criterion (3.13) can be represented by

J(xk, xr
k+·, uk+·) =

if−k−1∑
j=0

[
(xk+j − xr

k+j)
T Q(xk+j − xr

k+j) + uT
k+jRuk+j

]
+ (xif

− xr
if

)T Qf (xif
− xr

if
) (3.14)

in a predictive form. The performance criterion (3.14) can be rewritten as

J(xk|k, xr, uk+·|k) =
if−k−1∑

j=0

[
(xk+j|k − xr

k+j|k)T Q(xk+j|k − xr
k+j|k)

+uT
k+j|kRuk+j|k

]
+(xif |k − xr

if |k)T Qf (xif |k − xr
if |k) (3.15)

in a referenced predictive form, where xr is used instead of xr
k+·|k for simplicity.

As can be seen in (3.13), (3.14), and (3.15), the performance criterion
depends on the initial state, the reference trajectory, and the input on the
horizon. If minimizations are taken for the performance criteria, then we de-
note them by J∗(xk, xr) in a predictive form and J∗(xk|k, xr) in a referenced
predictive form. We can see that the dependency of the input disappears for
the optimal performance criterion.

The performance criterion for the terminal equality constraint can be given
as in (3.13), (3.14), and (3.15) without terminal costs, i.e. Qf = 0. The ter-
minal equality constraints are represented as xif

= xr
if

in (3.13) and (3.14)
and xif |k = xr

if |k in (3.15).
In the minimax performance criterion (2.128) for the free terminal cost, i0

can be arbitrary and is set to k so that we have

J(xk, xr, u·, w·) =
if−1∑
i=k

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui − γ2wT

i Rwwi

]
+ (xif

− xr
if

)T Qf (xif
− xr

if
) (3.16)

where xr
i is given for i = k, k + 1, · · · , if .

The above minimax performance criterion (3.16) can be represented by

J(xk, xr, uk+·, wk+·) =
if−k−1∑

j=0

[
(xk+j − xr

k+j)
T Q(xk+j − xr

k+j) + uT
k+jRuk+j

− γ2wT
k+jRwwk+j

]
+(xif

− xr
if

)T Qf (xif
− xr

if
) (3.17)
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in a predictive form. The performance criterion (3.17) can be rewritten as

J(xk|k, xr, uk+·|k, wk+·|k) =
if−k−1∑

j=0

[
(xk+j|k − xr

k+j|k)T Q(xk+j|k − xr
k+j|k)

+ uT
k+j|kRuk+j|k − γ2wT

k+j|kRwwk+j|k

]
+ (xif |k − xr

if |k)T Qf (xif |k − xr
if |k) (3.18)

in a referenced predictive form.
Unlike the minimization problem, the performance criterion for the min-

imaxization problem depends on the disturbance. Taking the minimization
and the maximization with respect to the input and the disturbance respec-
tively yields the optimal performance criterion that depends only on the ini-
tial state and the reference trajectory. As in the minimization problem, we
denote the optimal performance criterion by J∗(xk, xr) in a predictive form
and J∗(xk|k, xr) in a referenced predictive form.

3.3 Receding Horizon Control Based on Minimum
Criteria

3.3.1 Receding Horizon Linear Quadratic Control

Consider the following discrete time-invariant system of a referenced predictive
form:

xk+j+1|k = Axk+j|k + Buk+j|k (3.19)
zk+j|k = Czxk+j|k (3.20)

A state feedback RHC for the system (3.19) and (3.20) is introduced in a
tracking form. As mentioned before, the current time and the time distance
from the current time are denoted by k and j for clarification. The time vari-
able j is used for the derivation of the RHC.

Free Terminal Cost

The optimal control for the system (3.19) and (3.20) and the free terminal
cost (3.18) can be rewritten in a referenced predictive form as

u∗
k+j|k = −R−1BT [I + Kk+j+1,if |kBR−1BT ]−1

× [Kk+j+1,if |kAxk+j|k + gk+j+1,if |k] (3.21)

where
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Kk+j,if |k = AT [I + Kk+j+1,if |kBR−1BT ]−1Kk+j+1,if |kA + Q

gk+j,if |k = AT [I + Kk+j+1,if |kBR−1BT ]−1gk+j+1,if |k − Qxr
k+j|k

with Kif ,if |k = Qf and gif ,if |k = −Qfxr
if |k.

The receding horizon concept was introduced in the introduction chapter
and is depicted in Figure 3.2. The optimal control is obtained first on the
horizon [k, k + N ]. Here, k indicates the current time and k + N , is the final
time on the horizon. Therefore, if = k + N , where N is the horizon size. The

Fig. 3.2. Concept of receding horizon

performance criterion can be given in a referenced predictive form as

J(xk|k, xr, uk+·|k) =
N−1∑
j=0

[
(xk+j|k − xr

k+j|k)T Q(xk+j|k − xr
k+j|k)

+uT
k+j|kRuk+j|k

]
+(xk+N |k − xr

k+N |k)T Qf (xk+N |k − xr
k+N |k) (3.22)

The optimal control on the interval [k, k+N ] is given in a referenced predictive
form by

u∗
k+j|k = −R−1BT [I + Kk+j+1,k+N |kBR−1BT ]−1

× [Kk+j+1,k+N |kAxk+j|k + gk+j+1,k+N |k] (3.23)
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where Kk+j+1,k+N |k and gk+j+1,k+N |k are given by

Kk+j,k+N |k = AT [I + Kk+j+1,k+N |kBR−1BT ]−1Kk+j+1,k+N |kA

+ Q (3.24)
gk+j,k+N |k = AT [I + Kk+j+1,k+N |kBR−1BT ]−1gk+j+1,k+N |k

− Qxr
k+j|k (3.25)

with

Kk+N,k+N |k = Qf (3.26)
gk+N,k+N |k = −Qfxr

k+N |k (3.27)

The receding horizon LQ control at time k is given by the first control uk|k
among uk+i|k for i = 0, 1, · · · , k + N − 1 as in Figure 3.2. It can be obtained
from (3.23) with j = 0 as

u∗
k|k = −R−1BT [I + Kk+1,k+N |kBR−1BT ]−1

× [Kk+1,k+N |kAxk + gk+1,k+N |k] (3.28)

where Kk+1,k+N |k and gk+1,k+N |k are computed from (3.24) and (3.25).
The above notation in a referenced predictive form can be simplified to a

predictive form by dropping the reference value.
It simply can be represented by a predictive form

u∗
k+j = −R−1BT [I + Kk+j+1,if

BR−1BT ]−1

× [Kk+j+1,if
Axk+j + gk+j+1,if

] (3.29)

where

Kk+j,if
= AT [I + Kk+j+1,if

BR−1BT ]−1Kk+j+1,if
A + Q (3.30)

gk+j,if
= AT [I + Kk+j+1,if

BR−1BT ]−1gk+j+1,if
− Qxr

k+j (3.31)

with Kif ,if
= Qf and gif ,if

= −Qfxr
if

. Thus, uk|k and Kk+1,k+N |k are re-
placed by uk and Kk+1,k+N so that we have

u∗
k = −R−1BT [I + Kk+1,k+NBR−1BT ]−1[Kk+1,k+NAxk + gk+1,k+N ] (3.32)

where Kk+1,k+N and gk+1,k+N are computed from

Kk+j,k+N = AT [I + Kk+j+1,k+NBR−1BT ]−1Kk+j+1,k+NA + Q (3.33)
gk+j,k+N = AT [I + Kk+j+1,k+NBR−1BT ]−1gk+j+1,k+N − Qxr

k+j (3.34)

with

Kk+N,k+N = Qf (3.35)
gk+N,k+N = −Qfxr

k+N (3.36)
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Note that I +Kk+j,k+NBR−1BT is nonsingular since Kk+j,k+N is guaranteed
to be positive semidefinite and the nonsingularity of I + MN implies that of
I + NM for any matrices M and N .

For the zero reference signal xr
i becomes zero, so that for the free terminal

state, we have

u∗
k = −R−1BT [I + Kk+1,k+NBR−1BT ]−1Kk+1,k+NAxk (3.37)

from (3.32).

Terminal Equality Constraint

So far, the free terminal costs are utilized for the receding horizon track-
ing control (RHTC). The terminal equality constraint can also be considered
for the RHTC. In this case, the performance criterion is written as

J(xk, xr, uk+·|k) =
N−1∑
j=0

[
(xk+j|k − xr

k+j|k)T Q(xk+j|k − xr
k+j|k)

+ uT
k+j|kRuk+j|k

]
(3.38)

where

xk+N |k = xr
k+N |k (3.39)

The condition (3.39) is often called the terminal equality condition. The RHC
for the terminal equality constraint with a nonzero reference signal is obtained
by replacing i and if by k and k + N in (2.103) as follows:

uk = −R−1BT (I + Kk+1,k+NBR−1BT )−1

[
Kk+1,k+NAxk + Mk+1,k+N

× S−1
k+1,k+N (xr

k+N − MT
k,k+Nxk − hk,k+N ) + gk+1,k+N

]
(3.40)

where Kk+·,k+N , Mk+·,k+N , Sk+·,k+N , gk+·,k+N , and hk+·,k+N are as follows:

Kk+j,k+N = AT Kk+j+1,k+N (I + BR−1BT Kk+j+1,k+N )−1A + Q

Mk+j,k+N = (I + BR−1BT Kk+j+1,k+N )−T Mk+j+1,k+N

Sk+j,k+N = Sk+j+1,k+N

− MT
k+j+1,k+NB(BT Kk+j+1,k+NB + R)−1BT Mk+j+1,k+N

gk+j,k+N = AT gk+j+1,k+N

− AT Kk+j+1,k+N (I + BR−1BT Kk+j+1,k+N )−1BR−1BT

× gk+j+1,k+N − Qxr
k+j

hk+j,k+N = hk+j+1,k+N

− MT
k+j+1,k+N (I + BR−1BT Kk+j+1,k+N )−1BR−1BT gk+j+1,k+N
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The boundary conditions are given by

Kk+N,k+N = 0,Mk+N,k+N = I, Sk+N,k+N = 0, gk+N,k+N = 0, hk+N,k+N = 0

For the regulation problem, (3.40) is reduced to

u∗
k = −R−1BT (I + Kk+1,k+NBR−1BT )−1

[
Kk+1,k+NA

− Mk+1,k+NS−1
k+1,k+NMT

k,k+N

]
xk (3.41)

From (2.68), u∗
k in (3.41) is represented in another form

u∗
k = −R−1BT P−1

k+1,k+N+1Axk (3.42)

where Pk+1,k+N+1 is computed from (2.65)

Pk+j,k+N+1 = A−1
[
I + Pk+j+1,k+N+1A

−T QA−1
]−1

Pk+j+1,k+N+1A

+ BR−1BT (3.43)

with

Pk+N+1,k+N+1 = 0 (3.44)

Note that the system matrix A should be nonsingular in Riccati Equation
(3.43). However, this requirement can be relaxed in the form of (3.41) or with
the batch form, which is left as a problem at the end of this chapter.

3.3.2 Simple Notation for Time-invariant Systems

In previous sections the Riccati equations have had two arguments, one of
which represents the terminal time. However, only one argument is used for
time-invariant systems in this section for simplicity. If no confusion arises,
then one argument will be used for Riccati equations throughout this book,
particularly for Riccati equations for time-invariant systems.

Time-invariant homogeneous systems such as xi+1 = f(xi) have a special
property known as shift invariance. If the initial condition is the same, then
the solution depends on the distance from the initial time. Let xi,i0 denote
the solution at i with the initial i0, as can be seen in Figure 3.3. That is

xi,i0 = xi+N,i0+N (3.45)

for any N with xi0,i0 = xi0+N,i0+N .

Free Terminal Cost

Since (3.33) is also a time-invariant system, the following equation is satisfied:

Kk+j,k+N = Kj,N (3.46)
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Time

Fig. 3.3. Property of shift invariance

with KN,N = Kk+N,k+N = Qf .
Since N is fixed, we denote Kj,N by simply Kj and Kj satisfies the fol-

lowing equation:

Kj = AT Kj+1A − AT Ki+1B[R + BT Kj+1B]−1BT Kj+1A + Q

= AT Kj+1[I + BR−1BT Kj+1]−1A + Q (3.47)

with the boundary condition

KN = Qf (3.48)

Thus, the receding horizon control (3.32) can be represented as

u∗
k = −R−1BT [I + K1BR−1BT ]−1[K1Axk + gk+1,k+N ] (3.49)

where K1 is obtained from (3.47) and gk+1,k+N is computed from

gk+j,k+N = AT [I + Kj+1BR−1BT ]−1gk+j+1,k+N − Qxr
k+j (3.50)

with the boundary condition

gk+N,k+N = −Qfxr
k+N (3.51)

It is noted that (3.34) is not a time-invariant system due to a time-varying
signal, xr

k+j . If xr
k+j is a constant signal denoted by x̄r, then

gj = AT [I + Kj+1BR−1BT ]−1gj+1 − Qx̄r (3.52)

with the boundary condition
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gN = −Qf x̄r (3.53)

The control can be written as

uk = −R−1BT [I + K1BR−1BT ]−1(K1Axk + g1) (3.54)

It is noted that from shift invariance with a new boundary condition

KN−1 = Qf (3.55)

K1 in (3.49) and (3.54) becomes K0.
For the zero reference signal xr

i becomes zero, so that for the free terminal
cost we have

u∗
k = −R−1BT [I + K1BR−1BT ]−1K1Axk (3.56)

from (3.32).

Terminal Equality Constraint

The RHC (3.40) for the terminal equality constraint with a nonzero refer-
ence can be represented as

uk = −R−1BT [I + K1BR−1BT ]−1

[
K1Axk

+ M1S
−1
1 (xr

k+N − MT
0 xk − hk,k+N ) + gk+1,k+N

]
(3.57)

where Kj , Mj , Sj , gk+j,k+N , and hk+j,k+N are as follows:

Kj = AT Kj+1(I + BR−1BT Kj+1)−1A + Q

Mj = (I + BR−1BT Kj+1)−T Mj+1

Sj = Sj+1 − MT
j+1B(BT Kj+1B + R)−1BT Mj+1

gk+j,k+N = AT gk+j+1,k+N

− AT Kj+1(I + BR−1BT Kj+1)−1BR−1BT gk+j+1,k+N

− Qxr
k+j

hk+j,k+N = hk+j+1,k+N

− MT
k+j+1,k+N (I + BR−1BT Kj+1)−1BR−1BT gk+j+1,k+N

The boundary conditions are given by

KN = 0, MN = I, SN = 0, gk+N,k+N = 0, hk+N,k+N = 0

For the regulation problem, (3.57) is reduced to

u∗
k = −R−1BT [I + K1BR−1BT ]−1

[
K1A − M1S

−1
1 MT

0

]
xk (3.58)
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From (3.42), u∗
k in (3.58) is represented in another form

u∗
k = −R−1BT P−1

1 Axk (3.59)

where P1 is computed from

Pj = A−1
[
I + Pj+1A

−T QA−1
]−1

Pj+1A + BR−1BT (3.60)

with

PN+1 = 0 (3.61)

Note that it is assumed that the system matrix A is nonsingular.

Forward Computation

The computation of (3.47) is made in a backward way and the following
forward computation can be introduced by the transformation

−→
K j = KN−j+1 (3.62)

Thus, K1 starting from KN = Qf is obtained as

Qf =
−→
K1 = KN ,

−→
K2 = KN−1, · · · ,

−→
KN = K1

The Riccati equation can be written as

−→
K j+1 = AT−→K jA − AT−→K jB[R + BT−→K jB]−1BT−→K jA + Q

(3.63)

= AT−→K j [I + BR−1BT−→K j ]−1A + Q, (3.64)

with the initial condition
−→
K1 = Qf (3.65)

In the same way as the Riccati equation, g1 starting from gN = −Qf x̄r is
obtained as

−→g j+1 = AT [I +
−→
K jBR−1BT ]−1−→g j − Qx̄r (3.66)

where −→g 1 = −Qf x̄r. The relation and dependency among Kj ,
−→
K j , gj , and

−→g j are shown in Figure 3.4 and Figure 3.5.
The control is represented by

uk = −R−1BT [I +
−→
KNBR−1BT ]−1(

−→
KNAxk + −→g N ) (3.67)

For forward computation, the RHC (3.42) and Riccati Equation (3.43) can
be written as
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index

(a)

(b) (c)

(d)

Fig. 3.4. Computation of Ki and K̂i. Initial conditions i = 0 in (a), i = 1 in (b),
i = N − 1 in (c), and i = N in (d)

Fig. 3.5. Relation between Ki and gi

u∗
k = −R−1BT−→P −1

N Axk (3.68)

where
−→
P N is computed by

−→
P j+1 = A−1−→P j [I + A−T QA−1−→P j ]−1A−T + BR−1BT (3.69)

with
−→
P 1 = 0.

3.3.3 Monotonicity of the Optimal Cost

In this section, some conditions are proposed for time-invariant systems which
guarantee the monotonicity of the optimal cost. In the next section, under the
proposed cost monotonicity conditions, the closed-loop stability of the RHC
is shown. Since the closed-loop stability can be treated with the regulation
problem, the gi can be zero in this section.
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It is noted that the cost function J (3.13)–(3.15) depends on several vari-
ables, such as the initial state xi, input ui+·, initial time i, and terminal time
if . Thus, it can be represented as J(xi, ui+·, i, if ) and the optimal cost can
be given as J∗(xi, i, if ).

Define δJ∗(xτ , σ) as δJ∗(xτ , σ) = J∗(xτ , τ, σ + 1) − J∗(xτ , τ, σ). If
δJ∗(xτ , σ) ≤ 0 or δJ∗(xτ , σ) ≥ 0 for any σ > τ , then it is called a cost
monotonicity. We will show first that the cost monotonicity condition can be
easily achieved by the terminal equality condition. Then, the more general
cost monotonicity condition is introduced by using a terminal cost.

For the terminal equality condition, i.e. xif
= 0, we have the following

result.

Theorem 3.1. For the terminal equality constraint, the optimal cost J ∗(xi, i, if )
satisfies the following cost monotonicity relation:

J∗(xτ , τ, σ + 1) ≤ J∗(xτ , τ, σ), τ ≤ σ (3.70)

If the Riccati solution exists for (3.70), then we have

Kτ,σ+1 ≤ Kτ,σ (3.71)

Proof. This can be proved by contradiction. Assume that u1
i and u2

i are opti-
mal controls to minimize J(xτ , τ, σ + 1) and J(xτ , τ, σ) respectively. If (3.70)
does not hold, then

J∗(xτ , τ, σ + 1) > J∗(xτ , τ, σ)

Replace u1
i by u2

i up to σ − 1 and then u1
i = 0 at i = σ. In this case,

x1
σ = 0, u1

σ = 0, and thus x1
σ+1 = 0. Therefore, the cost for this control

is J̄(xτ , τ, σ + 1) = J∗(xτ , τ, σ). Since this control may not be optimal for
J(xτ , τ, σ + 1), we have J̄(xτ , τ, σ + 1) ≥ J∗(xτ , τ, σ + 1), which implies that

J∗(xτ , τ, σ) ≥ J∗(xτ , τ, σ + 1) (3.72)

This is a contradiction to (3.70). This completes the proof.

For the time-invariant systems we have

Kτ ≤ Kτ+1

The above result is for the terminal equality condition. Next, the cost
monotonicity condition using a free terminal cost is introduced.

Theorem 3.2. Assume that Qf in (3.15) satisfies the following inequality:

Qf ≥ Q + HT RH + (A − BH)T Qf (A − BH) (3.73)

for some H ∈ �m×n.
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For the free terminal cost, the optimal cost J∗(xi, i, if ) then satisfies the
following monotonicity relation:

J∗(xτ , τ, σ + 1) ≤ J∗(xτ , τ, σ), τ ≤ σ (3.74)

and thus

Kτ,σ+1 ≤ Kτ,σ (3.75)

Proof. u1
i and u2

i are the optimal controls to minimize J(xτ , τ, σ + 1) and
J(xτ , τ, σ) respectively. If we replace u1

i by u2
i up to σ − 1 and u1

σ = −Hxσ,
then the cost for this control is given by

J̄(xτ , σ + 1)
�
=

σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i ] + x2T
σ Qx2

σ + x2T
σ HT RHx2

σ

+ x2T
σ (A − BH)T Qf (A − BH)x2

σ

≥ J∗(xτ , σ + 1) (3.76)

where the last inequality comes from the fact that this control may not be
optimal. The difference between the adjacent optimal cost is less than or equal
to zero as

J∗(xτ , σ + 1) − J∗(xτ , σ) ≤ J̄(xτ , σ + 1) − J∗(xτ , σ)
= x2T

σ Qx2
σ + x2T

σ HT RHx2
σ

+ x2T
σ (A − BH)T Qf (A − BH)x2

σ − x2T
σ Qfx2

σ

= x2T
σ {Q + HT RH + (A − BH)T Qf (A − BH) − Qf}x2

σ

≤ 0 (3.77)

where

J∗(xτ , σ) =
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i ] + x2T
σ Qfx2

σ (3.78)

From (3.77) we have

�J∗(xτ , σ) = xT
τ [Kτ,σ+1 − Kτ,σ]xτ ≤ 0 (3.79)

for all xτ , and thus Kτ,σ+1 − Kτ,σ ≤ 0. This completes the proof.

It looks difficult to find out Qf and H satisfying (3.73). One approach
is as follows: if H that makes A − BH Hurwitz is given, then Qf can be
systematically obtained. First choose one matrix M > 0 such that M ≥ Q +
HT RH. Then, calculate the solution Qf to the following Lyapunov equation:

(A − BH)T Qf (A − BH) − Qf = −M (3.80)
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It can be easily seen that Qf obtained from (3.80) satisfies (3.73). Qf can be
explicitly expressed as

Qf =
∞∑

i=0

(A − BH)TiM(A − BH)i (3.81)

Another approach to find out Qf and H satisfying (3.73) is introduced in
Section 3.5.1, where LMIs are used.

It is noted that for time-invariant systems the inequality (3.75) implies

Kτ,σ+1 ≤ Kτ+1,σ+1 (3.82)

which leads to

Kτ ≤ Kτ+1 (3.83)

The monotonicity of the optimal cost is presented in Figure 3.6. There are

Fig. 3.6. Cost monotonicity of Theorem 3.1

several cases that satisfy the condition of Theorem 3.2.

Case 1:

Qf ≥ AT Qf [I + BR−1BT Qf ]−1A + Q (3.84)

If H is replaced by a matrix H = [R + BT QfB]−1BT QfA, then we have

Qf ≥ Q + HT RH + (A − BH)T Qf (A − BH)
= Q + AT QfB[R + BT QfB]−1R[R + BT QfB]−1BT QA

+ (A − B[R + BT QfB]−1BT QfA)T Qf (A − B[R + BT QfB]−1BT QfA)
= Q + AT QfA − AT QfB[R + BT QfB]−1BT QfA

= AT Qf [I + BR−1BT Qf ]−1A + Q (3.85)
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which is a special case of (3.73). All Qf values satisfying the inequality (3.85)
are a subset of all Qf values satisfying (3.73).

It can be seen that (3.73) implies (3.85) regardless of H as follows:

Qf − Q − AT Qf [I + BR−1BT Qf ]−1A

≥ −AT Qf [I + BR−1BT Qf ]−1A + HT RH + (A − BH)T Qf (A − BH)

=
[
AT QfB(R + BT QfB)−1 − H

]T (
R + BT QfB

)
×[(R + BT QfB)−1BT QfA − H

]
≥ 0 (3.86)

Therefore, all Qf values satisfying (3.73) also satisfy (3.85), and thus are a
subset of all Qf values satisfying (3.85). Thus, (3.73) is surprisingly equivalent
to (3.85).

Qf that satisfies (3.85) can also be obtained explicitly from the solution
to the following Riccati equation:

Q∗
f = β2AT Q∗

f [I + γBR−1BT Q∗
f ]−1A + αQ (3.87)

with α ≥ 1, β ≥ 1, and 0 ≤ γ ≤ 1. It can be easily seen that Q∗
f satisfies

(3.85), since

Q∗
f = β2AT Q∗

f [I + γBR−1BT Q∗
f ]−1A + αQ

≥ AT Q∗
f [I + BR−1BT Q∗

f ]−1A + Q

Case 2:

Qf = Q + HT RH + (A − BH)T Qf (A − BH) (3.88)

This Qf is a special case of (3.73) and has the following meaning. Note
that ui is unknown for the interval [τ σ− 1] and defined as ui = −Hxi on the
interval [σ, ∞]. If a pair (A,B) is stabilizable and ui = −Hxi is a stabilizing
control, then

J =
∞∑

i=τ

[xT
i Qxi + uT

i Rui]

=
σ−1∑
i=τ

[xT
i Qxi + uT

i Rui]

+ xT
σ

∞∑
i=σ

(AT − HT BT )i−σ[Q + HT RH](A − BH)i−σxσ

=
σ−1∑
i=τ

[xT
i Qxi + uT

i Rui] + xT
σ Qfxσ (3.89)

where Qf satisfies Qf = Q + HT RH + (A − BH)T Qf (A − BH). Therefore,
Qf is related to the steady-state performance with the control ui = −Hxi.
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It is noted that, under (3.73), ui = −Hxi will be proved to be a stabilizing
control in Section 3.3.4.

Case 3:

Qf = AT Qf [I + BR−1BT Qf ]−1A + Q (3.90)

This is actually the steady-state Riccati equation and is a special case of
(3.85), and thus of (3.73). This Qf is related to the steady-state optimal per-
formance with the optimal control.

Case 4:

Qf = Q + AT QfA (3.91)

If the system matrix A is stable and ui is identically equal to zero for
i ≥ σ ≥ τ , then Qf satisfies Qf = Q + AT QfA, which is also a special case of
(3.73).

Proposition 3.3. Qf satisfying (3.73) has the following lower bound:

Qf ≥ K̄ (3.92)

where K̄ is the steady-state solution to the Riccati equation in (3.90) and
assumed to exist uniquely.

Proof. By the cost monotonicity condition, the solution to the recursive Ric-
cati equation starting from Qf satisfying Case 3 can be ordered

Qf = Ki0 ≥ Ki0+1 ≥ Ki0+2 ≥ · · · (3.93)

where

Ki+1 = AT Ki[I + BR−1BT Ki]−1A + Q (3.94)

with Ki0 = Qf .
Since Ki is composed of two positive semidefinite matrices, Ki is also

positive semidefinite, or bounded below, i.e. Ki ≥ 0.
Ki is decreasing and bounded below, so that Ki has a limit value, which

is denoted by K̄. Clearly, it can be easily seen that

Qf ≥ Ki ≥ K̄ (3.95)

for any i ≥ i0.
The only thing we have to do is to guarantee that K̄ satisfies the condition

corresponding to Case 3. Taking the limitation on both sides of (3.94), we have

lim
i→∞

Ki+1 = lim
i→∞

AT Ki[I + BR−1BT Ki]−1A + Q (3.96)

K̄ = AT K̄[I + BR−1BT K̄]−1A + Q (3.97)

The uniqueness of the solution to the Riccati equation implies that K̄ is the
solution that satisfies Case 3. This completes the proof.
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Theorem 3.2 discusses the nonincreasing monotonicity for the optimal cost.
In the following, the nondecreasing monotonicity of the optimal cost can be
obtained.

Theorem 3.4. Assume that Qf in (3.15) satisfies the inequality

Qf ≤ AT Qf [I + BR−1BT Qf ]−1A + Q (3.98)

The optimal cost J∗(xi, i, if ) then satisfies the relation

J∗(xτ , τ, σ + 1) ≥ J∗(xτ , τ, σ), τ ≤ σ (3.99)

and thus

Kτ,σ+1 ≥ Kτ,σ (3.100)

Proof. u1
i and u2

i are the optimal controls to minimize J(xτ , τ, σ + 1) and
J(xτ , τ, σ) respectively. If we replace u2

i by u1
i up to σ−1, then by the optimal

principle we have

J∗(xτ , σ) =
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i ] + x2T
σ Qfx2

σ (3.101)

≤
σ−1∑
i=τ

[x1T
i Qx1

i + u1T
i Ru1

i ] + x1T
σ Qfx1

σ (3.102)

The difference between the adjacent optimal cost can be expressed as

δJ∗(xτ , σ) =
σ∑

i=τ

[x1T
i Qx1

i + u1T
i Ru1

i ] + x1T
σ+1Qfx1

σ+1

−
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i ] − x2T
σ Qfx2

σ (3.103)

Combining (3.102) and (3.103) yields

δJ∗(xτ , σ) ≥ x1T
σ Qx1

σ + u1T
σ Ru1

σ + x1T
σ+1Qfx1

σ+1 − x1T
σ Qfx1

σ

= x1T
σ {Q + AT Qf [I + BR−1BT Qf ]−1A − Qf}x1

σ

≥ 0 (3.104)

where u1
σ = −Hx1

σ, x1
σ+1 = (A−BH)x1

σ and H = −(R+BT QfB)−1BT QfA.
The second equality of (3.104) comes from the following fact:

HT RH + (A − BH)T Qf (A − BH) =
AT Qf [I + BR−1BT Qf ]−1A (3.105)

as can be seen in (3.85). The last inequality of (3.104) comes from (3.98).
From (2.49) and (3.99) we have

δJ∗(xτ , σ) = xT
τ [Kτ,σ+1 − Kτ,σ]xτ ≥ 0 (3.106)

for all xτ . Thus, Kτ,σ+1 − Kτ,σ ≥ 0. This completes the proof.
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It is noted that the relation (3.100) on the Riccati equation can be repre-
sented simply by one argument as

Kτ ≥ Kτ+1 (3.107)

for time-invariant systems.
The monotonicity of the optimal cost in Theorem 3.4 is presented in Figure

3.7.

Fig. 3.7. Cost monotonicity of Theorem 3.2

We have at least one important case that satisfies the condition of Theo-
rem 3.4.

Case 1: Qf = 0

It is noted that the free terminal cost with the zero terminal weighting,
Qf = 0, satisfies (3.98). Thus, Theorem 3.4 includes the monotonicity of the
optimal cost of the free terminal cost with the zero terminal weighting.

The terminal equality condition is more conservative than the free terminal
cost. Actually, it is a strong requirement that the nonzero state must go to zero
within a finite time. Thus, the terminal equality constraint has no solution for
the small horizon size N , whereas the free terminal cost always gives a solution
for any horizon size N . The free terminal cost requires less computation than
the terminal equality constraint. However, the terminal equality constraint
provides a simple approach for guaranteeing stability.

It is noted that the cost monotonicity in Theorems 3.1, 3.2 and 3.4 are
obtained from the optimality. Thus, the cost monotonicity may hold even for
nonlinear systems, which will be explained later.

In the following theorem, it will be shown that when the monotonicity of
the optimal cost or the Riccati equations holds once, it holds for all subsequent
times.
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Theorem 3.5.

(a) If

J∗(xτ ′ , τ
′
, σ + 1) ≤ J∗(xτ ′ , τ

′
, σ) (or ≥ J∗(xτ ′ , τ

′
, σ)) (3.108)

for some τ
′
, then

J∗(xτ ′′ , τ
′′
, σ + 1) ≤ J∗(xτ ′′ , τ

′′
, σ) (or ≥ J∗(xτ ′′ , τ

′′
, σ)) (3.109)

where τ0 ≤ τ
′′ ≤ τ

′
.

(b) If

Kτ ′ ,σ+1 ≤ Kτ ′ ,σ (or ≥ Kτ ′ ,σ) (3.110)

for some τ
′
, then

Kτ ′′ ,σ+1 ≤ Kτ ′′ ,σ (or ≥ Kτ ′′ ,σ) (3.111)

where τ0 ≤ τ
′′ ≤ τ

′
.

Proof. We first prove the part (a). u1
i and u2

i are the optimal controls to
minimize J(xτ ′′ , τ

′′
, σ + 1) and J(xτ ′′ , τ

′′
, σ) respectively. If we replace u1

i by
u2

i up to τ ′ − 1, then by the optimal principle we have

J∗(xτ ′′ , σ + 1) =
τ
′−1∑

i=τ ′′
[x1T

i Qx1
i + u1T

i Ru1
i ] + J∗(x1

τ ′ , τ
′
, σ + 1)

≤
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i ] + J∗(x2

τ ′ , τ
′
, σ + 1) (3.112)

The difference between the adjacent optimal cost can be expressed as

δJ∗(xτ ′′ , σ) =
τ
′−1∑

i=τ ′′
[x1T

i Qx1
i + u1T

i Ru1
i ] + J∗(x1

τ ′ , τ
′
, σ + 1)

−
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i ] − J∗(x2

τ ′ , τ
′
, σ) (3.113)

Combining (3.112) and (3.113) yields

δJ∗(xτ ′′ , σ) ≤
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i ] + J∗(x2

τ ′ , τ
′
, σ + 1)

−
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i ] − J∗(x2

τ ′ , τ
′
, σ)

= J∗(x2
τ ′ , τ

′
, σ + 1) − J∗(x2

τ ′ , τ
′
, σ)

= δJ∗(x2
τ ′ , σ) ≤ 0 (3.114)
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Replacing u2
i by u1

i up to τ
′ − 1 and taking similar steps we have

δJ∗(xτ ′′ , σ) ≥ δJ∗(x1
τ ′ , σ) (3.115)

from which δJ∗(x1
τ ′ , σ) ≥ 0 implies δJ∗(xτ ′′ , σ) ≥ 0.

Now we prove the second part of the theorem. From (2.49), (3.108), and
(3.109), the monotonicities of the Riccati equations hold. From the inequality

J∗(xτ ′′ , τ
′′
, σ + 1) − J∗(xτ ′′ , τ

′′
, σ) = xT

τ ′′ [Kτ ′′ ,σ+1 − Kτ ′′ ,σ]xτ ′′

≤ (≥) 0

Kτ ′′ ,σ+1 ≤ (≥)Kτ ′′ ,σ is satisfied. This completes the proof.

For time-invariant systems the above relations can be simplified. If

Kτ ′ ≤ Kτ ′+1 (or ≥ Kτ ′+1) (3.116)

for some τ ′, then

Kτ ′′ ≤ Kτ ′′+1 (or ≥ Kτ ′′+1) (3.117)

for τ0 < τ
′′

< τ
′
.

Part (a) of Theorem 3.5 may be extended to constrained and nonlinear
systems, whereas part (b) is only for linear systems.

Computation of the solutions of cost monotonicity conditions (3.73),
(3.84), and (3.98) looks difficult to solve, but it can be easily solved by using
LMI, as seen in Section 3.5.1.

3.3.4 Stability of Receding Horizon Linear Quadratic Control

For the existence of a stabilizing feedback control, we assume that the pair
(A, B) is stabilizable. In this section it will be shown that the RHC is a stable
control under cost monotonicity conditions.

Theorem 3.6. Assume that the pairs (A,B) and (A,Q
1
2 ) are stabilizable and

observable respectively, and that the receding horizon control associated with
the quadratic cost J(xi, i, i+N) exists. If J∗(xi, i, i+N +1) ≤ J∗(xi, i, i+N),
then asymptotical stability is guaranteed.

Proof. For time-invariant systems, the system is asymptotically stable if the
zero state is attractive. We show that the zero state is attractive. Since
J∗(xi, i, σ + 1) ≤ J∗(xi, i, σ),

J∗(xi, i, i + N) = xT
i Qxi + u∗T

i Ru∗
i + J∗(x(i + 1;xi, i, u

∗
i ), i + 1, i + N)

≥ xT
i Qxi + u∗T

i Ru∗
i

+ J∗(x(i + 1;xi, i, u
∗
i ), i + 1, i + N + 1) (3.118)
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Note that ui is the receding horizon control since it is the first control on the
interval [i, i + N ]. From (3.118) we have

J∗(xi, i, i + N) ≥ J∗(x(i + 1;xi, i, u
∗
i ), i + 1, i + N + 1) (3.119)

Recall that a nonincreasing sequence bounded below converges to a constant.
Since J∗(xi, i, i + N) is nonincreasing and J∗(xi, i, i + N) ≥ 0, we have

J∗(xi, i, i + N) → c (3.120)

for some nonnegative constant c as i → ∞. Thus, as i → ∞,

u∗T
i Ru∗

i + xT
i Qxi → 0 (3.121)

and
i+l−1∑
j=i

xT
j Qxj + u∗T

j Ru∗
j = xT

i

i+l−1∑
j=i

(AT − LT
f BT )j−i(Q + LT

f RLf )

× (A − BLf )j−ixi = xT
i Go

i,i+lxi −→ 0,

where Lf is the feedback gain of the RHC and Go
i,i+l is an observability

Gramian of (A − BLf , (Q + LT
f RLf )

1
2 ). However, since the pair (A,Q

1
2 ) is

observable, it is guaranteed that Go
i,i+l is nonsingular for l ≥ nc by Theorem

B.5 in Appendix B. This means that xi → 0 as i → ∞, independently of i0.
Therefore, the closed-loop system is asymptotically stable. This completes the
proof.

Note that if the condition Q > 0 is added in the condition of Theorem 3.6,
then the horizon size N could be greater than or equal to 1.

The observability in Theorem 3.6 can be weakened with the detectability
similarly as in [KK00].

It was proved in the previous section that the optimal cost with the termi-
nal equality constraint has a nondecreasing property. Therefore, we have the
following result.

Theorem 3.7. Assume that the pairs (A,B) and (A,Q
1
2 ) are controllable and

observable respectively. The receding horizon control (3.42) obtained from the
terminal equality constraint is asymptotically stable for nc ≤ N < ∞.

Proof. The controllability and nc ≤ N < ∞ are required for the existence of
the optimal control, as seen in Figure 2.3. Then it follows from Theorem 3.1
and Theorem 3.6.

Note that if the condition Q > 0 is added in the condition of Theorem 3.7,
then the horizon size N could be max(nc) ≤ N < ∞.

So far, we have discussed a terminal equality constraint. For the free ter-
minal cost we have a cost monotonicity condition in Theorem 3.2 for the
stability.
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Theorem 3.8. Assume that the pairs (A,B) and (A,Q
1
2 ) are stabilizable and

observable respectively. For Qf ≥ 0 satisfying (3.73) for some H, the system
(3.4) with the receding horizon control (3.56) is asymptotically stable for 1 ≤
N < ∞.

Theorem 3.8 follows from Theorems 3.2 and 3.6. Qf in the four cases in
Section 3.3.3 satisfies (3.73) and thus the condition of Theorem 3.8.

What we have talked about so far can be seen from a different perspective.
The difference Riccati equation (3.47) for j = 0 can be represented as

K1 = AT K1A − AT K1B[R + BT K1B]−1BT K1A + Q̄ (3.122)
Q̄ = Q + K1 − K0 (3.123)

Equation (3.122) no longer looks like a recursion, but rather an algebraic
equation for K1. Therefore, Equation (3.122) is called the fake ARE (FARE).

The closed-loop stability of the RHC obtained from (3.122) and (3.123)
requires the condition Q̄ ≥ 0 and the detectability of the pair (A, Q̄

1
2 ). The

pair (A, Q̄
1
2 ) is detectable if the pair (A,Q

1
2 ) is detectable and K1 − K0 ≥ 0.

The condition K1 − K0 ≥ 0 is satisfied under the terminal inequality (3.73).

The free parameter H obtained in Theorem 3.8 is combined with the
performance criterion to guarantee the stability of the closed-loop system.
However, the free parameter H can be used itself as a stabilizing control gain.

Theorem 3.9. Assume that the pairs (A,B) and (A,Q
1
2 ) are stabilizable and

observable respectively. The system (3.4) with the control ui = −Hxi is asymp-
totically stable where H is obtained from the inequality (3.73).

Proof. Let

V (xi) = xT
i Qfxi (3.124)

where we can show that Qf is positive definite as follows. As just said before,
Qf of (3.73) satisfies the inequality (3.84). If � is defined as

� = Qf − AT Qf [I + BR−1BT Qf ]−1A − Q ≥ 0 (3.125)

we can consider the following Riccati equation:

Qf = AT Qf [I + BR−1BT Qf ]−1A + Q + � (3.126)

The observability of (A,Q
1
2 ) implies the observability of (A, (Q + �)

1
2 ), so

that the unique positive solution Qf comes from (3.126). Therefore, V (xi)
can be considered to be a candidate of Lyapunov functions.

Subtracting V (xi) from V (xi+1) yields
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V (xi+1) − V (xi) = xT
i [(A − BH)T Qf (A − BH) − Qf ]xi

≤ xT
i [−Q − HT RH]xi ≤ 0

In order to use LaSalle’s theorem, we try to find out the set S = {xi|V (xi+l+1)−
V (xi+l) = 0, l = 0, 1, 2, · · · }. Consider the following equation:

xT
i (A − BH)lT [Q + HT RH](A − BH)lxi = 0 (3.127)

for all l ≥ 0. According to the observability of (A,Q
1
2 ), the only solution that

can stay identically in S is the trivial solution xi = 0. Thus, the system driven
by ui = −Hxi is asymptotically stable. This completes the proof.

Note that the control in Theorem 3.8 considers both the performance and
the stability, whereas the one in Theorem 3.9 considers only the stability.

These results of Theorems 3.7 and 3.8 can be extended further. The matrix
Q in Theorems 3.7 and 3.8 must be nonzero. However, it can even be zero in
the extended result.

Let us consider the receding horizon control introduced in (3.59)

ui = −R−1BT P−1
1 Axi (3.128)

where P1 is computed from

Pi = A−1Pi+1[I + A−T QA−1Pi+1]−1A−T + BR−1BT (3.129)

with the boundary condition for the free terminal cost

PN = Q−1
f + BR−1BT (3.130)

and PN = BR−1BT for the terminal equality constraint. However, we will
assume that PN can be arbitrarily chosen from now on and is denoted by Pf ,
PN = Pf .

In the theorem to follow, we will show the stability of the closed-loop
systems with the receding horizon control (3.128) under a certain condition
that includes the well-known condition Pf = 0.

In fact, Riccati Equation (3.129) with the condition Pf ≥ 0 can be obtained
from the following system:

x̂i+1 = A−T x̂i + A−T Q
1
2 ûi (3.131)

with a performance criterion

Ĵ(x̂i0 , i0, if ) =
if−1∑
i=i0

[x̂T
i BR−1BT x̂i + ûT

i ûi] + x̂T
if

Pf x̂if
(3.132)

The optimal performance criterion (3.132) for the system (3.131) is given by
Ĵ∗(x̂i, i, if ) = x̂T

i Pi,if
x̂i.
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The nondecreasing monotonicity of (3.132) is given in the following corol-
lary by using Theorem 3.4.

Assume that Pf in (3.132) satisfies the following inequality:

Pf ≤ A−1Pf [I + A−T QA−1Pf ]−1A−T + BR−1BT (3.133)

From Theorem 3.4 we have

Pτ,σ+1 ≥ Pτ,σ (3.134)

For time-invariant systems we have

Pτ ≥ Pτ+1 (3.135)

It is noted that Inequality (3.134) is the same as (3.71). The well-known
condition for the terminal equality constraint Pf = 0 satisfies (3.133), and
thus (3.134) holds.

Before investigating the stability under the condition (3.133), we need
knowledge of an adjoint system. The two systems x1,i+1 = Ax1,i and x2,i+1 =
A−T x2,i are said to be adjoint to each other. They generate state trajectories
while making the value of xT

i xi fixed. If one system is shown to be unstable
for any initial state the other system is guaranteed to be stable. Note that all
eigenvalues of the matrix A are located outside the unit circle if and only if
the system is unstable for any initial state. Additionally, it is noted that the
eigenvalues of A are inverse to those of A−T .

Now we are in a position to investigate the stability of the closed-loop
systems with the control (3.128) under the condition (3.133) that includes the
well-known condition Pf = 0.

Theorem 3.10. Assume that the pair (A,B) is controllable and A is nonsin-
gular.

(1) If Pi+1 ≤ Pi for some i, then the system (3.4) with the receding horizon
control (3.128) is asymptotically stable for nc + 1 ≤ N < ∞.

(2) If Pf ≥ 0 satisfies (3.133), then the system (3.4) with the receding horizon
control (3.128) is asymptotically stable for nc + 1 ≤ N < ∞.

Proof. Consider the adjoint system of the system (3.4) with the control (3.128)

x̂i+1 = [A − BR−1BT P−1
1 A]−T x̂i (3.136)

and the associated scalar-valued function

V (x̂i) = x̂T
i A−1P1A

−T x̂i (3.137)

Note that the inverse of (3.136) is guaranteed to exist since, from (3.129), we
have
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P1 = A−1P2[I + A−T QA−1P2]−1A−T + BR−1BT

> BR−1BT

for nonsingular, A and P2. Note that P1 > 0 and (P1 − BR−1BT )P−1
1 is

nonsingular so that A − BR−1BT P−1
1 A is nonsingular.

Taking the subtraction of functions at time i and i + 1 yields

V (x̂i) − V (x̂i+1)
= x̂T

i A−1P1A
−T x̂i − x̂T

i+1A
−1P1A

−T x̂i+1

= x̂T
i+1

[
(A − BR−1BT P−1

1 A)A−1P1A
−T (A − BR−1BT P−1

1 A)T

− A−1P1A
−T

]
x̂T

i+1

= −x̂T
i+1

[
P1 − 2BR−1BT + BR−1BT P−1

1 BR−1BT

− A−1P1A
−T

]
x̂T

i+1 (3.138)

We have

P1 = (AT P−1
2 A + Q)−1 + BR−1BT

= A−1(P−1
2 + A−T QA−1)−1A−T + BR−1BT

= A−1

[
P2 − P2A

−T Q
1
2 (Q

1
2 A−1P2A

−T Q
1
2 + I)−1Q

1
2 A−1P2

]
× A−T + BR−1BT

= A−1P2A
−T + BR−1BT − Z (3.139)

where

Z = A−1P2A
−T Q

1
2 (Q

1
2 A−1P2A

−T Q
1
2 + I)−1Q

1
2 A−1P2A

−T

Substituting (3.139) into (3.138) we have

V (x̂i) − V (x̂i+1) = x̂T
i+1[−BR−1BT + BR−1BT P−1

1 BR−1BT ]x̂i+1

+ x̂T
i+1[A

−1(P2 − P1)A−T − Z]x̂i+1

Since P2 < P1 and Z ≥ 0 we have

V (x̂i) − V (x̂i+1) ≤ x̂T
i+1[−BR−1BT + BR−1BT P−1

1 BR−1BT ]x̂i+1

= x̂T
i+1BR− 1

2 [−I + R− 1
2 BT P−1

1 BR− 1
2 ]R− 1

2 BT x̂i+1

= −x̂T
i+1BR− 1

2 SR− 1
2 BT x̂i+1 (3.140)
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where S = I − R− 1
2 BT P−1

1 BR− 1
2 . Note that S is positive definite, since the

following equality holds:

S = I − R− 1
2 BT P−1

1 BR− 1
2 = I − R− 1

2 BT [P̂1 + BR−1BT ]−1BR− 1
2

= [I + R− 1
2 BT P̂−1

1 BR− 1
2 ]−1

where the second equality comes from the relation P1 = P̂1 + BR−1BT . Note
that P̂1 > 0 if N ≥ nc +1. Summing both sides of (3.140) from i to i+nc −1,
we have

i+nc−1∑
k=i

[
V (x̂k+1) − V (x̂k)

]
≥

i+nc−1∑
k=i

x̂T
k+1BR− 1

2 SR− 1
2 BT x̂k+1 (3.141)

V (x̂i+nc
) − V (x̂i) ≥ x̂T

i Θx̂i (3.142)

where

Θ =
i+nc−1∑

k=i

[
Ψ (i−k−1)WΨT (i−k−1)

]
Ψ = A − BR−1BT P−1

1 A

W = BR− 1
2 SR− 1

2 BT

Recalling that λmax(A−1P1A
−1)|x̂i| ≥ V (x̂i) and using (3.142), we obtain

V (x̂i+nc
) ≥ x̂T

i Θx̂i + V (x̂i)
≥ λmin(Θ)|x̂i|2 + V (x̂i)
≥ �V (x̂i) + V (x̂i) (3.143)

where

� = λmin(Θ)
1

λmax(A−1P1A−1)
(3.144)

Note that if(A,B) is controllable, then (A − BH,B) and ((A − BH)−1, B)
are controllable. Thus, Θ is positive definite and its minimum eigenvalue is
positive. � is also positive. Therefore, from (3.143), the lower bound of the
state is given as

‖x̂i0+m×nc
‖2 ≥ 1

λmax(A−1P1A−1)
(� + 1)mV (x̂i0) (3.145)

The inequality (3.145) implies that the closed-loop system (3.136) is exponen-
tially increasing, i.e. the closed-loop system (3.4) with (3.128) is exponentially
decreasing. The second part of this theorem can be easily proved from the first
part. This completes the proof.
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It is noted that the receding horizon control (3.59) is a special case of
controls in Theorem 3.10.

Theorem 3.7 requires the observability condition, whereas Theorem 3.10
does not. Theorem 3.10 holds for arbitrary Q ≥ 0, including the zero matrix.
When Q = 0, P1 can be expressed as the following closed form:

P1 =
i+N∑

j=i+1

Aj−i−1BR−1BT A(j−i−1)T + ANPf (AN )T (3.146)

where A is nonsingular. It is noted that, in the above equation, Pf can even
be zero. This is the simplest RHC

ui = −R−1BT

[ i+N∑
j=i+1

Aj−i−1BR−1BT A(j−i−1)T

]−1

Axi (3.147)

that guarantees the closed-loop stability.
It is noted that Pf satifying (3.133) is equivalent to Qf satisfying (3.84)

in the relation of Pf = Q−1
f + BR−1BT . Replacing Pf with Q−1

f + BR−1BT

in (3.133) yields the following inequality:

Q−1
f + BR−1BT ≤ A−1[Q−1

f + BR−1BT + A−T QA−1]−1A−T + BR−1BT

= [AT (Q−1
f + BR−1BT )−1A + Q]−1 + BR−1BT

Finally, we have

Qf ≥ AT (Q−1
f + BR−1BT )−1A + Q (3.148)

Therefore, if Qf satisfies (3.148), Pf also satisfies (3.133).

Theorem 3.11. Assume that the pair (A,B) is controllable and A is nonsin-
gular.

(1) If Ki+1 ≥ Ki > 0 for some i, then the system (3.4) with receding horizon
control (3.56) is asymptotically stable for 1 ≤ N < ∞.

(2) For Qf > 0 satisfying (3.73) for some H, the system (3.4) with receding
horizon control (3.56) is asymptotically stable for 1 ≤ N < ∞.

Proof. The first part is proved as follows. Ki+1 ≥ Ki > 0 implies 0 < K−1
i+1 ≤

K−1
i , from which we have 0 < Pi+1 ≤ Pi satisfying the inequality (3.135).

Thus, the control (3.128) is equivalent to (3.56). The second part is proved
as follows. Inequalities Ki+1 ≥ Ki > 0 are satisfied for Ki generated from
Qf > 0 satisfying (3.73) for some H. Thus, the second result can be seen from
the first one. This completes the proof.

It is noted that (3.148) is equivalent to (3.73), as mentioned before.
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So far, the cost monotonicity condition has been introduced for stability.
Without this cost monotonicity condition, there still exists a finite horizon
such that the resulting receding horizon control stabilizes the closed-loop sys-
tems.

Before proceeding to the main theorem, we introduce a matrix norm
‖A‖ρ,ε, which satisfies the properties of the norm and ρ(A) ≤ ‖A‖ρ,ε ≤
ρ(A) + ε. Here, ε is a design parameter and ρ(A) is the spectral radius of
A, i.e. ρ(A) = max1≤i≤n |λi|.

Theorem 3.12. Suppose that Q ≥ 0 and R > 0. If the pairs (A,B) and
(A,Q

1
2 ) are controllable and observable respectively, then the receding horizon

control (3.56) for the free terminal cost stabilizes the systems for the following
horizon:

N > 1 +
1

ln ‖AT
c ‖ρ,ε + ln ‖Ac‖ρ,ε

ln
[

1
β‖BR−1BT ‖ρ,ε

{
1

‖Ac‖ρ,ε
− 1 − ε

}]
(3.149)

where β = ‖Qf −K∞‖ρ,ε, Ac = A−BR−1BT [I +K∞BR−1BT ]−1K∞A, and
K∞ is the solution to the steady-state Riccati equation.

Proof. Denote �Ki,N by Ki,N − K∞, where Ki,N is the solution at time
i to the Riccati equation starting from time N , and K∞ is the steady-state
solution to the Riccati equation which is given by (2.108). In order to enhance
the clarification, Ki,N is used instead of Ki. KN,N = Qf and K1,N of i = 1
are involved with the control gain of the RHC with a horizon size N . From
properties of the Riccati equation, we have the following inequality:

�Ki,N ≤ AT
c �Ki+1,NAc (3.150)

Taking the norm ‖ · ‖ρ,ε on both sides of (3.150), we obtain

‖�Ki,N‖ρ,ε ≤ ‖AT
c ‖ρ,ε‖�Ki+1,N‖ρ,ε‖Ac‖ρ,ε (3.151)

where a norm ‖ · ‖ρ,ε is defined just before this theorem. From (3.151), it can
be easily seen that ‖�K1,N‖ρ,ε is bounded below as follows:

‖�K1,N‖ρ,ε ≤ ‖AT
c ‖N−1

ρ,ε ‖�KN,N‖ρ,ε‖Ac‖N−1
ρ,ε = ‖AT

c ‖N−1
ρ,ε β‖Ac‖N−1

ρ,ε (3.152)

The closed-loop system matrix Ac,N from the control gain K1,N is given
by

Ac,N = A − BR−1BT [I + K1,NBR−1BT ]−1K1,NA (3.153)

It is known that the steady-state closed-loop system matrices Ac and Ac,N in
(3.153) are related to each other as follows:

Ac,N =
[
I + BR−1

o,NBT�K1,N

]
Ac (3.154)
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where Ro,N = R+BT K1,NB. Taking the norm ‖·‖ρ,ε on both sides of (3.154)
and using the inequality (3.152), we have

‖Ac,N‖ρ,ε ≤
[
1 + ε + ‖BR−1BT ‖ρ,ε‖�K1,N‖ρ,ε

]
‖Ac‖ρ,ε

≤
[
1 + ε + ‖BR−1BT ‖ρ,ε‖AT

c ‖N−1
ρ,ε β‖Ac‖N−1

ρ,ε

]
‖Ac‖ρ,ε (3.155)

where ε should be chosen so that ε < 1
‖Ac‖ρ,ε

− 1. In order to guarantee
‖Ac,N‖ρ,ε < 1, we have only to make the right-hand side in (3.155) less than
1. Therefore, we have

‖AT
c ‖N−1

ρ,ε ‖Ac‖N−1
ρ,ε ≤ 1

β‖BR−1BT ‖ρ,ε

[
1

‖Ac‖ρ,ε
− 1 − ε

]
(3.156)

It is noted that if the right-hand side of (3.156) is greater than or equal to 1,
then the inequality (3.156) always holds due to the Hurwitz matrix Ac. Taking
the logarithm on both sides of (3.156), we have (3.149). This completes the
proof.

Theorem 3.12 holds irrespective of Qf . The determination of a suitable N
is an issue.

The case of zero terminal weighting leads to generally large horizons and
large terminal weighting to small horizons, as can be seen in the next example.

Example 3.1

We consider a scalar, time-invariant system and the quadratic cost

xi+1 = axi + bui (3.157)

J =
N−1∑
j=0

[qx2
k+j + ru2

k+j ] + fx2
k+N (3.158)

where b �= 0, r > 0 and q > 0. It can be easily seen that (a, b) in (3.157)
is stabilizable and (a,

√
q) is observable. In this case, the Riccati equation is

simply represented as

pk = a2pk+1 −
a2b2p2

k+1

b2pk+1 + r
+ q =

a2rpk+1

b2pk+1 + r
+ q (3.159)

with pN = f . The RHC with a horizon size N is obtained as

uk = −Lxk (3.160)

where
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L =
abp1

b2p1 + r
(3.161)

Now, we investigate the horizon of the RHC for stabilizing the closed-loop
system. The steady-state solution to the ARE and the system matrix of the
closed-loop system can be written as

p∞ =
q

2Π

[
±
√

(1 − Π)2 +
4Π

1 − a2
− (1 − Π)

]
(3.162)

acl = a − bL =
a

1 + b2

r p∞
(3.163)

where

Π =
b2q

(1 − a2)r
(3.164)

We will consider two cases. One is for a stable system and the other for an
unstable system.

(1) Stable system ( |a| < 1 )
Since |a| < 1, 1 − a2 > 0 and Π > 0. In this case, we have the positive
solution as

p∞ =
q

2Π

[√
(1 − Π)2 +

4Π
1 − a2

− (1 − Π)
]

(3.165)

From (3.163), we have |acl| < |a| < 1. So, the asymptotical stability is
guaranteed for the closed-loop system.

(2) Unstable system ( |a| > 1 )
Since |a| > 1, 1 − a2 < 0 and Π < 0. In this case, we have the positive
solution given by

p∞ = − q

2Π

[√
(1 − Π)2 +

4Π
1 − a2

+ (1 − Π)
]

(3.166)

The system matrix acl of the closed-loop system can be represented as

acl =
a

1 − 1−a2

2

[√
(1 − Π)2 + 4Π

1−a2 + 1 − Π
] (3.167)

We have |acl| < 1 from the following relation:

|2 +
√

((a2 − 1)(1 − Π) + 2)2 − 4a2 + (a2 − 1)(1 − Π)|
> |2 +

√
(a2 + 1)2 − 4a2 + (a2 − 1)|

= |2a2| > 2|a|.
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From acl, the lower bound of the horizon size guaranteeing the stability is
obtained as

N > 1 +
1

2 ln |acl| ln
[

r

b2|f − p∞|

{
1

|acl| − 1
}]

(3.168)

where ε = 0 and absolute values of scalar values are used for ‖ · ‖ρ,ε norm.

As can be seen in this example, the gain and phase margins of the RHC
are greater than those of the conventional steady-state LQ control. For the
general result on multi-input–multi-output systems, this is left as an exercise.

3.3.5 Additional Properties of Receding Horizon Linear Quadratic
Control

A Prescribed Degree of Stability

We introduce another performance criterion to make closed-loop eigenvalues
smaller than a specific value. Of course, as closed-loop eigenvalues get smaller,
the closed-loop system becomes more stable, probably with an excessive con-
trol energy cost.

Consider the following performance criterion:

J =
N−1∑
j=0

α2j(uT
k+jRuk+j + xT

k+jQxk+j) + α2NxT
k+NQfxk+N (3.169)

where α > 1 and the pair (A,B) is stabilizable.
The first thing we have to do for dealing with (3.169) is to make transfor-

mations that convert the given problem to a standard LQ problem. Therefore,
we introduce new variables such as

x̂k+j
�
= αjxk+j (3.170)

ûk+j
�
= αjuk+j (3.171)

Observing that

x̂k+j+1 = αj+1xk+j+1 = ααj [Axk+j + Buk+j ] = αAx̂k+j + αBûk+j (3.172)

we may associate the system (3.172) with the following performance criterion:

J =
N−1∑
j=0

(ûT
k+jRûk+j + x̂T

k+jQx̂k+j) + x̂T
k+NQf x̂k+N (3.173)

The receding horizon control for (3.172) and (3.173) can be written as

ûk = −R−1αBT [I + K1αBR−1αBT ]−1K1αAx̂k (3.174)
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where K1 is obtained from

Kj = αAT [I + Kj+1αBR−1αBT ]−1Kj+1αA + Q (3.175)

with KN = Qf . The RHC uk can be written as

uk = −R−1BT [I + K1αBR−1αBT ]−1K1αAxk (3.176)

Using the RHC uk in (3.176), we introduce a method to stabilize systems with
a high degree of closed-loop stability. If α is chosen to satisfy the following
cost monotonicity condition:

Qf ≥ Q + HT RH + α(A − BH)T Qf (A − BH)α (3.177)

then the RHC (3.176) stabilizes the closed-loop system. Note that since α is
assumed to be greater than 1, the cost monotonicity condition holds even by
replacing αA with A.

In order to check the stability of the RHC (3.176), the time index k is
replaced with the arbitrary time point i and the closed-loop systems are con-
structed. The RHC (3.176) satisfying (3.177) makes x̂i approach zero accord-
ing to the following state-space model:

x̂i+1 = α(Ax̂i + Bûi) (3.178)
= α(A + BR−1BT [I + K1αBR−1αBT ]−1K1αA)x̂i (3.179)

where

αρ(A + BR−1BT [I + K1αBR−1αBT ]−1K1αA) ≤ 1 (3.180)

From (3.178) and (3.179), the real state xk and control uk can be written as

xi+1 = Axi + Bui (3.181)
= (A + BR−1BT [I + K1αBR−1αBT ]−1K1αA)xi (3.182)

The spectral radius of the closed-loop eigenvalues for (3.181) and (3.182) is
obtained from (3.180) as follows:

ρ(A + BR−1BT [I + K1αBR−1αBT ]−1K1αA) ≤ 1
α

(3.183)

Then, we can see that it is possible to define a modified receding horizon
control problem which achieves a closed-loop system with a prescribed degree
of stability α. That is, for a prescribed α, the state xi approaches zero at
least as fast as | 1

α |i. The smaller that α is, the more stable is the closed-loop
system. The same goes for the terminal equality constraint.

From now on we investigate the optimality of the RHC. The receding
horizon control is optimal in the sense of the receding horizon concept. But
this may not be optimal in other senses, such as the finite or infinite horizon
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��

Fig. 3.8. Effect of parameter α

optimal control concept. Likewise, standard finite or infinite optimal control
may not be optimal in the sense of the receding horizon control, whereas it
is optimal in the sense of the standard optimal control. Therefore, it will be
interesting to compare between them.

For simplicity we assume that there is no reference signal to track.

Theorem 3.13. The standard quadratic performance criterion for the sys-
tems with the receding horizon control (3.59) under a terminal equality con-
straint has the following performance bounds:

xi0Ki0,if
xi0 ≤

if−1∑
i=i0

[xT
i Qxi + uT

i Rui] ≤ xT
i0P

−1
0 xi0 (3.184)

Proof. We have the following inequality:

xT
i P−1

0 xi − xT
i+1P

−1
0 xi+1 = xT

i P−1
−1 xi − xT

i+1P
−1
0 xi+1 + xT

i [P−1
0 − P−1

−1 ]xi

≥ xT
i P−1

−1 xi − xT
i+1P

−1
0 xi+1 (3.185)

which follows from the fact that P−1
0 ≥ P−1

−1 . By using the optimality, we have

xT
i P−1

−1 xi − xT
i+1P

−1
0 xi+1 = J∗(xi, i, i + N + 1) − J∗(xi+1, i + 1, i + N + 1)

≥ J∗(xi, i, i + N + 1) − J(xi+1, i + 1, i + N + 1)
≥ xT

i Qxi + uiRui (3.186)

where J(xi+1, i + 1, i + N + 1) is a cost function generated from the state
driven by the optimal control that is based on the interval [i, i+N +1]. From
(3.186) we have
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if−1∑
i=i0

[xT
i Qxi + uT

i Rui] ≤ xT
i0P

−1
0 xi0 − xT

if
P−1

0 xif
≤ xT

i0P
−1
0 xi0 (3.187)

The lower bound is obvious. This completes the proof.

The next theorem introduced is for the case of the free terminal cost.

Theorem 3.14. The standard quadratic performance criterion for the sys-
tems with the receding horizon control (3.56) under a cost monotonicity con-
dition (3.73) has the following performance bounds:

xi0Ki0,if
xi0 ≤

if−1∑
i=i0

[xT
i Qxi + uT

i Rui] + xT
if

Qfxif

≤ xT
i0 [K0 + Θ(if−i0)T QfΘif−i0 ]xi0

where

Θ
�
= A − BR−1BT K1[I + BR−1BT K1]−1A

K0 is obtained from (3.47) starting from KN = Qf , and Ki0,if
is obtained by

starting from Kif ,if
= Qf .

Proof. The lower bound is obvious, since Ki0,if
is the cost incurred by the

standard optimal control law. The gain of the receding horizon control is given
by

L
�
= R−1BT K1[I + BR−1BT K1]−1A

= [R + BT K1B]−1BT K1A.

As is well known, the quadratic cost for the feedback control ui = −Lxi is
given by

if−1∑
i=i0

[xT
i Qxi + uT

i Rui] + xT
if

Qfxif
= xT

i0Ni0xi0

where Ni is the solution of the following difference equation:

Ni = [A − BL]T Ni+1[A − BL] + LT RL + Q

Nif
= Qf

From (3.47) and (3.48) we have

Ki = AT Ki+1A − AT Ki+1B[R + BT Ki+1B]−1BT Ki+1A + Q

where KN = Qf . If we note that, for i = 0 in (3.188),
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AT K1B[R + BT K1B]−1BT K1A = AT K1BL = LT BT K1A

= LT [R + BT K1B]L

we can easily have

K0 = [A − BL]T K1[A − BL] + LT RL + Q

Let

Ti
�
= Ni − K0

then Ti satisfies

Ti = [A − BL]T [Ti+1 − T̃i][A − BL] ≤ [A − BL]T Ti+1[A − BL]

with the boundary condition Tif
= Qif

−K0, where T̃i = K1 −K0 ≥ 0 under
a cost monotonicity condition. We can obtain Ti0 by evaluating recursively,
and finally we have

Ti0 ≤ Θ(if−i0)T Tif
Θif−i0

where Θ = A − BL. Thus, we have

Ni0 ≤ K0 + Θ(if−i0)T [Qif
− K0]Θif−i0

from which follows the result. This completes the proof.

Since Θ(if−i0)T → 0, the infinite time cost has the following bounds:

xT
i0Ki0,∞xi0 ≤

∞∑
i=0

xT
i Qxi + uT

i Rui (3.188)

≤ xT
i0K0xi0 (3.189)

The receding horizon control is optimal in its own right. However, the receding
horizon control can be used for a suboptimal control for the standard regula-
tion problem. In this case, Theorem 3.14 provides a degree of suboptimality.

Example 3.2

In this example, it is shown via simulation that the RHC has good track-
ing ability for the nonzero reference signal. For simulation, we consider a
two-dimensional free body system. This free body is moved by two kinds of
forces, i.e. a horizontal force and a vertical force. According to Newton’s laws,
the following dynamics are obtained:

Mẍ + Bẋ = ux

Mẍ + Bẏ = uy
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where M , B, x, y, ux, and uy are the mass of the free body, the friction
coefficient, the horizontal position, the vertical position, the horizontal force,
and the vertical force respectively. Through plugging the real values into the
parameters and taking the discretization procedure, we have

xk+1 =

⎡⎢⎢⎣
1 0.0550 0 0
0 0.9950 0 0
0 0 1 0.0550
0 0 0 0.9995

⎤⎥⎥⎦xk +

⎡⎢⎢⎣
0.0015 0
0.0550 0

0 0.0015
0 0.0550

⎤⎥⎥⎦uk

yk =
[

1 0 0 0
0 0 1 0

]
xk

where the first and second components of xi denote the positions of x and y
respectively, and the two components of ui are for the horizontal and vertical
forces.

The sampling time and the horizon size are taken as 0.055 and 3. The
reference signal is given by

xr
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − i

100 0 ≤ i < 100
0 100 ≤ i < 200

i
100 − 2 200 ≤ i < 300
1 300 ≤ i < 400
1 i ≥ 400

yr
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 0 ≤ i < 100
2 − i

100 100 ≤ i < 200
0 200 ≤ i < 300

i
100 − 3 300 ≤ i < 400
1 i ≥ 400

Q and R for the LQ and receding horizon controls are chosen to be unit ma-
trices. The final weighting matrix for the RHC is set to 105I. In Figure 3.9,
we can see that the RHC has the better performance for the given reference
trajectory. Actually, the trajectory for the LQTC is way off the reference sig-
nal. However, one for the RHC keeps up with the reference well.

Prediction Horizon

In general, the horizon N in the performance criterion (3.22) is divided into
two parts, [k, k+Nc−1] and [k+Nc, k+N ]. The control on [k, k+Nc−1] is
obtained optimally to minimize the performance criterion on [k, k + Nc − 1],
while the control on [k + Nc, k + N ] is usually a given control, say a linear
control ui = Hxi on this horizon. In this case, the horizon or horizon size
Nc is called the control horizon and N is called the prediction horizon, the
performance horizon, or the cost horizon. Here, N can be denoted as Np to
indicate the prediction horizon. In the previous problem we discussed so far,
the control horizon Nc was the same as the prediction horizon Np. In this
case, we will use the term control horizon instead of prediction horizon. We
consider the following performance criterion:
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Fig. 3.9. Comparison RHC and LQTC

J =
Nc−1∑
j=0

(uT
k+jRuk+j + xT

k+jQxk+j) +
Np∑

j=Nc

(uT
k+jRuk+j

+ xT
k+jQxk+j) (3.190)

where the control horizon and the prediction horizon are [k, k + Nc − 1] and
[k, k +Np] respectively. If we apply a linear control ui = Hxi on [k +Nc, k +
Np], we have
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J =
Nc−1∑
j=0

[xT
k+jQxk+j + uT

k+jRuk+j ]

+ xT
k+Nc

⎧⎨⎩
Np∑

j=Nc

((A − HB)T )j−Nc [Q + HT RH](A − BH)j−Nc

⎫⎬⎭xk+Nc

=
Nc−1∑
j=0

[xT
k+jQxk+j + uT

k+jRuk+j ] + xT
k+Nc

Qfxk+Nc
(3.191)

where

Qf =
Np∑

j=Nc

((A − HB)T )j−Nc [Q + HT RH](A − BH)j−Nc (3.192)

This is particularly important when Np = ∞ with linear stable control, since
this approach is sometimes good for constrained and nonlinear systems. But
we may lose good properties inherited from a finite horizon. For linear systems,
the infinite prediction horizon can be reduced to the finite one, which is the
same as the control horizon. The infinite prediction horizon can be changed
as

J =
∞∑

j=0

[xT
k+jQxk+j + uT

k+jRuk+j ]

=
Nc−1∑
j=0

[xT
k+jQxk+j + uT

k+jRuk+j ] + xT
k+Nc

Qfxk+Nc
(3.193)

where Qf satisfies Qf = Q + HT RH + (A − BH)T Qf (A − BH). Therefore,
Qf is related to the terminal weighting matrix.

3.3.6 A Special Case of Input–Output Systems

In addition to the state-space model (3.1) and (3.2), GPC has used the fol-
lowing CARIMA model:

A(q−1)yi = B(q−1)�ui−1 (3.194)

where

A(q−1) = 1 + a1q
−1 + · · · + anq−n, an �= 0 (3.195)

B(q−1) = b1 + b2q
−1 + · · · + bmq−m+1 (3.196)

where q−1 is the unit delay operator, such as q−1yi = yi−1, and �ui =
(1 − q−1)ui = ui − ui−1. It is noted that B(q−1) can be
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b1 + b2q
−1 + · · · + bnq−n+1, m ≤ n (3.197)

where bi = 0 for i > m. It is noted that (3.194) can be represented as

A(q−1)yi = B̃(q−1)�ui (3.198)

where

B̃(q−1) = b1q
−1 + b2q

−2 · · · + bnq−n (3.199)

The above model (3.198) in an input–output form can be transformed to the
state-space model

xi+1 = Āxi + B̄�ui

yi = C̄xi (3.200)

where xi ∈ Rn and

Ā =

⎡⎢⎢⎢⎢⎢⎣
−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−an−1 0 0 · · · 1
−an 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ B̄ =

⎡⎢⎢⎢⎢⎢⎣
b1

b2

...
bn−1

bn

⎤⎥⎥⎥⎥⎥⎦ (3.201)

C̄ =
[
1 0 0 · · · 0

]
It is clear that yi = xi

(1), where xi
(1) indicates the first element of xi.

The common performance criterion for the CARIMA model (3.194) is
given as

Nc∑
j=1

[
q(yk+j − yr

k+j)
2 + r(�uk+j−1)2

]
(3.202)

Here, Nc is the control horizon.
Since yk is given, the optimal control for (3.202) is also optimal for the

following performance index:

Nc−1∑
j=0

[
q(yk+j − yr

k+j)
2 + r(�uk+j)2

]
+ q(yk+Nc

− yr
k+Nc

)2 (3.203)

The performance index (3.202) can be extended to include a free terminal
cost such as

Nc∑
j=1

[
q(yk+j − yr

k+j)
2 + r(�uk+j−1)2

]
+

Np∑
j=Nc+1

qf (yk+j − yr
k+j)

2 (3.204)
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We can consider a similar performance that generates the same optimal
control for (3.204), such as

Nc−1∑
j=0

[
q(yk+j − yr

k+j)
2 + r(�uk+j)2

]
+

Np∑
j=Nc

q
(j)
f (yk+j − yr

k+j)
2 (3.205)

where

q
(j)
f =

{
q, j = Nc

qf , j > Nc

For a given C̄, there exists always an L such that C̄L = I. Let xi
r = Lyi

r.
The performance criterion (3.202) becomes

Nc−1∑
j=0

[
(xk+j − xr

k+j)
T Q(xk+j − xr

k+j) + �uT
k+jR�uk+j

]
+

Np∑
j=Nc

(xk+j − xr
k+j)

T Q
(j)
f (xk+j − xr

k+j) (3.206)

where Q = qC̄T C̄, Q
(j)
f = q

(j)
f C̄T C̄, and R = r. GPC can be obtained using

the state model (3.200) with the performance criterion (3.206), whose solu-
tions are described in detail in this book. It is noted that the performance
criterion (3.206) has two values in the time-varying state and input weight-
ings. The optimal control is given in a state feedback form. From the special
structure of the CARIMA model

xi = ÃYi−n + B̃�Ui−n (3.207)

where

Yi−n =

⎡⎢⎣ yi−n

...
yi−1

⎤⎥⎦ �Ui−n =

⎡⎢⎣�ui−n

...
�ui−1

⎤⎥⎦ (3.208)

Ã =

⎡⎢⎢⎢⎢⎢⎣
−an −an−1 · · · −a2 −a1

0 −an · · · −a3 −a2

...
...

. . .
...

...
0 0 · · · −an −an−1

0 0 · · · 0 −an

⎤⎥⎥⎥⎥⎥⎦ (3.209)

B̃ =

⎡⎢⎢⎢⎢⎢⎣
bn bn−1 · · · b2 b1

0 bn · · · b3 b2

...
...

. . .
...

...
0 0 · · · bn bn−1

0 0 · · · 0 bn

⎤⎥⎥⎥⎥⎥⎦ (3.210)
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the state can be computed with input control and measured output. The
optimal control can be given as an output feedback control.

If �uk+Nc
= ... = �uk+Np−1 = 0 is assumed, for Np = Nc + n − 1, then

the terminal cost can be represented as

Np∑
j=Nc

q
(j)
f (yk+j − yr

k+j)
2

= (Yk+Nc
− Y r

k+Nc
)T Q̄f (Yk+Nc

− Y r
k+Nc

) (3.211)

where

Q̄f =
[
diag(

Np−Nc+1︷ ︸︸ ︷
q qf · · · qf )

]
, Y r

k+Nc
=

⎡⎢⎣ yr
k+Nc

...
yr

k+Nc+n−1

⎤⎥⎦ (3.212)

In this case the terminal cost becomes

(xk+Nc+n − ÃY r
k+Nc

)T (ÃT )−1Q̄f
˜A−1(xk+Nc+n − ÃY r

k+Nc
)

= (xk+Nc
− xr

k+Nc
)T Qf (xk+Nc

− xr
k+Nc

)

where

Qf = qf (ĀT )n(ÃT )−1Q̄f Ã−1Ān (3.213)

xr
k+Nc

= (Ān)−1ÃY r
k+Nc

(3.214)

It is noted that Ā and Ã are all nonsingular.
The performance criterion (3.204) is for the free terminal cost. We can

now introduce a terminal equality constraint, such as

yk+j = yr
k+j , j = Nc, · · · , Np (3.215)

which is equivalent to xk+Nc
= xr

k+Nc
. GPC can be obtained from the results

in state-space forms that have already been discussed.

3.4 Receding Horizon Control Based on Minimax
Criteria

3.4.1 Receding Horizon H∞ Control

In this section, a receding horizon H∞ control in a tracking form for discrete
time-invariant systems is obtained.

Based on the following system in a predictive form:

xk+j+1 = Axk+j + Bwwk+j + Buk+j (3.216)
zk+j = Czxk+j (3.217)
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with the initial state xk, the optimal control and the worst-case disturbance
can be written in a predictive form as

u∗
k+j = −R−1BT Λ−1

k+j+1,if
[Mk+j+1,if

Axk+j + gk+j+1,if
]

w∗
k+j = γ−2R−1

w BT
wΛ−1

k+j+1,if
[Mk+j+1,if

Axk+j + gk+j+1,if
]

Mk+j,if
and gk+j,if

can be obtained from

Mk+j,if
= AT Λ−1

k+j+1,if
Mk+j+1,if

A + Q, i = i0, · · · , if − 1 (3.218)

Mif ,if
= Qf (3.219)

and

gk+j,if
= −AT Λ−1

k+j+1,if
gk+j+1,if

− Qxr
k+j (3.220)

g if ,if
= −Qfxr

if
(3.221)

where
Λk+j+1,if

= I + Mk+j+1,if
(BR−1BT − γ−2BwR−1

w BT
w)

If we replace if with k +N , the optimal control on the interval [k, k +N ]
is given by

u∗
k+j = −R−1BT Λ−1

k+j+1,k+N [Mk+j+1,k+NAxk+j + gk+j+1,k+N ]

w∗
k+j = γ−2R−1

w BT
wΛ−1

k+j+1,k+N [Mk+j+1,k+NAxk+j + gk+j+1,k+N ]

The receding horizon control is given by the first control, j = 0, at each
interval as

u∗
k = −R−1BT Λ−1

k+1,t+N [Mk+1,k+NAxk + gk+1,k+N ]

w∗
k = γ−2R−1

w BT
wΛ−1

k+1,k+N [Mk+1,k+NAxk + gk+1,k+N ]

Replace k with i as an arbitrary time point for discrete-time systems to obtain

u∗
i = −R−1BT Λ−1

i+1,i+N [Mi+1,i+NAxi + gi+1,i+N ]

w∗
i = γ−2R−1

w BT
wΛ−1

i+1,i+N [Mi+1,i+NAxi + gi+1,i+N ].

In case of time-invariant systems, the simplified forms are obtained as

u∗
i = −R−1BT Λ−1

1 [M1Axi + gi+1,i+N ] (3.222)
w∗

i = γ−2R−1
w BT

wΛ−1
1 [M1Axi + gi+1,i+N ] (3.223)

M1 and gi,i+N can be obtained from

Mj = AT Λ−1
j+1Mj+1A + Q, j = 1, · · · , N − 1 (3.224)

MN = Qf (3.225)
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and

gj,i+N = −AT Λ−1
j+1gj+1,i+N − Qxr

j (3.226)
gi+N,i+N = −Qfxr

i+N (3.227)

where
Λj+1 = I + Mj+1(BR−1BT − γ−2BwR−1

w BT
w)

Recall through this chapter that the following condition is assumed to be
satisfied:

Rw − γ−2BT
wMiBw > 0 , i = 1, · · · , N (3.228)

in order to guarantee the existence of the saddle point. Note that from (3.228),
we have M−1

i > γ−2BwR−1
w BT

w , from which the positive definiteness of Λ−1
i Mi

is guaranteed. The positive definiteness of Mi is also guaranteed with the
observability of (A,Q

1
2 ).

From (2.152) and (2.153) we have another form of the receding horizon
H∞ control:

u∗
i = −R−1BT P−1

1 Axi (3.229)
w∗

i = γ−2R−1
w BT

wP−1
1 Axi (3.230)

where Π = BR−1B − γ−2BwR−1
w BT

w ,

Pi = A−1Pi+1[I + A−1QA−1Pi+1]−1A−1 + Π (3.231)

and the boundary condition PN = M−1
N + Π = Q−1

f + Π.

We can use the following forward computation: by using the new variables−→
M j and

−→
Λ j such that

−→
M j = MN−j and

−→
Λ j = ΛN−j , (3.222) and (3.223) can

be written as

u∗
i = −R−1BT−→Λ−1

N−1[
−→
MN−1Axi + gi+1,i+N ] (3.232)

w∗
i = γ−2R−1

w BT
w

−→
Λ−1

N−1[
−→
MN−1Axi + gi+1,i+N ] (3.233)

where
−→
M j = AT−→Λ−1

j

−→
M j−1A + Q, j = 1, · · · , N − 1

−→
M0 = Qf

−→
Λ j = I +

−→
M j(BR−1BT − γ−2BwR−1

w BT
w)
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3.4.2 Monotonicity of the Saddle-point Optimal Cost

In this section, terminal inequality conditions are proposed for linear discrete
time-invariant systems which guarantee the monotonicity of the saddle-point
value. In the next section, under the proposed terminal inequality conditions,
the closed-loop stability of RHC is shown for linear discrete time-invariant
systems.

Theorem 3.15. Assume that Qf in (3.219) satisfies the following inequality:

Qf ≥ Q + HT RH − ΓT RwΓ + AT
clQfAcl for some H ∈ �m×n (3.234)

where

Acl = A − BH + BwΓ

Γ = γ−2R−1
w BT

wΛ−1QfA (3.235)
Λ = I + Qf (BR−1BT − γ−2BwR−1

w BT
w) (3.236)

The saddle-point optimal cost J∗(xi, i, if ) in (3.16) then satisfies the following
relation:

J∗(xτ , τ, σ + 1) ≤ J∗(xτ , τ, σ), τ ≤ σ (3.237)

and thus Mτ,σ+1 ≤ Mτ,σ.

Proof. Subtracting J∗(xτ , τ, σ) from J∗(xτ , τ, σ + 1), we can write

δJ∗(xτ , σ) =
σ∑

i=τ

[x1T
i Qx1

i + u1T
i Ru1

i − γ2w1T
i Rww1

i ] + x1T
σ+1Qfx1

σ+1 (3.238)

−
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i − γ2w2T
i Rww2

i ] − x2T
σ Qfx2

σ (3.239)

where the pair u1
i and w1

i is a saddle-point solution for J(xτ , τ, σ +1) and the
pair u2

i and w2
i is one for J(xτ , τ, σ). If we replace u1

i by u2
i and w2

i by w1
i up

to σ − 1, the following inequalities are obtained by J(u∗, w∗) ≤ J(u,w∗):

σ∑
i=τ

[x1T
i Qx1

i + u1T
i Ru1

i − γ2w1T
i Rww1

i ] + x1T
σ+1Qfx1

σ+1

≤
σ−1∑
i=τ

[x̃T
i Qx̃i + u2T

i Ru2
i − γ2w1T

i Rww1
i ] + x̃T

σ Qx̃σ + u1T
σ Ru1

σ − γ2w1T
σ Rww1

σ

+ x1T
σ+1Qfx1

σ+1

where u1
σ = Hx̃σ, and w1

σ = Γ x̃σ. By J(u∗, w∗) ≥ J(u∗, w), we have
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σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i − γ2w2T
i Rww2

i ] + xT
σ Qfxσ

≥
σ−1∑
i=τ

[x̃T
i Qx̃i + u2T

i Ru2
i − γ2w1T

i Rww1
i ] + x̃T

σ Qf x̃σ

Note that x̃i is a trajectory associated with u2
i and w1

i . We have the following
inequality:

δJ∗(xτ , σ) ≤ x̃T
σ {Q + HT RH − ΓT RwΓ + AT

clQfAcl − Qf}x̃σ ≤ 0 (3.240)

where the last inequality comes from (3.234).
Since δJ∗(xτ , σ) = xT

τ [Mτ,σ+1 − Mτ,σ]xτ ≤ 0 for all xτ , we have that
Mτ,σ+1 − Mτ,σ ≤ 0. For time-invariant systems we have

Mτ+1 ≤ Mτ (3.241)

This completes the proof.

Note that Qf satisfying the inequality (3.234) in (3.15) should be checked
for whether Mi,if

generated from the boundary value Qf satisfies Rw −
γ−2BT

wMi,if
Bw. In order to obtain a feasible solution Qf , Rw and γ can

be adjusted.

Case 1: Γ in the inequality (3.234) includes Qf , which makes it difficult
to handle the inequality. We introduce the inequality without the variable Γ
as follows:

Q + HT RH − ΓT RwΓ + AT
clQfAcl

= Q + HT RH + ΣT (BT
wQfBw − Rw)Σ

− (A − BH)T QfBw(BT
wQfBw − Rw)−1BwQf (A − BH),

≤ Q + HT RH − (A − BH)T (BT
wQfBw − Rw)−1(A − BH) ≤ Qf (3.242)

where Σ = Γ + (BT
wQfBw − R)−1BT

wQf (A − BH).

Case 2:

Qf ≥ AT Qf [I + ΠQf ]−1A + Q (3.243)

where Π = BR−1B − γ−2BwR−1
w Bw.

If H is replaced by an optimal gain H = −R−1BT [I +QfΠ]−1 Qf A, then
by using the matrix inversion lemma in Appendix A, we can have (3.243). It
is left as an exercise at the end of this chapter.
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Case 3:

Qf = Q + HT RH − ΓT RwΓ + AT
clQfAcl (3.244)

which is a special case of (3.234). Qf has the following meaning. If the pair
(A,B) is stabilizable and the system is asymptotically stable with ui = −Hxi

and wi = γ−1BT
γ [I + Mi+1,∞Q̂]−1Mi+1,∞Axi for σ ≥ i ≥ τ , then

min
ui,i∈[τ,σ−1]

∞∑
i=τ

[xT
i Qxi + uT

i Rui − γ2wT
i Rwwi]

= min
ui,i∈[τ,σ−1]

σ−1∑
i=τ

[xT
i Qxi + uT

i Rui − γ2wT
i Rwwi] + xT

σ Qfxσ (3.245)

where Qf can be shown to satisfy (3.244).

Case 4:

Qf = Q − Γ T RwΓ + [A + BwΓ ]T Qf [A + BwΓ ] (3.246)

which is also a special case of (3.234). If the system matrix A is stable with
ui = 0 and wi = γ−1R−1

w BT
w [I + Mi+1,∞Q̂]−1Mi+1,∞Axi for σ ≥ i ≥ τ then,

Qf satisfies (3.246).
In the following, the nondecreasing monotonicity of the saddle-point opti-

mal cost is studied.

Theorem 3.16. Assume that Qf in (3.16) satisfies the following inequality:

Qf ≤ AT Qf [I + ΠQf ]−1A + Q (3.247)

The saddle-point optimal cost J∗(xi, i, if ) then satisfies the following relation:

J∗(xτ , τ, σ + 1) ≥ J∗(xτ , τ, σ), τ ≤ σ (3.248)

and thus Mτ,σ+1 ≥ Mτ,σ.

Proof. In a similar way to the proof of Theorem 3.15, if we replace u2
i by u1

i

and w1
i by w2

i up to σ − 1, then the following inequalities are obtained by
J(u∗, w∗) ≥ J(u∗, w):

J∗(xτ , τ, σ + 1) =
σ∑

i=τ

[x1T
i Qx1

i + u1T
i Ru1

i − γ2w1T
i Rww1

i ] + x1T
σ+1Qfx1

σ+1

≥
σ−1∑
i=τ

[x̃T
i Qx̃i + u1T

i Ru1
i − γ2w2T

i Rww2
i ]

+ x̃T
σ Qx̃σ + u1T

σ Ru1
σ − γ2w2T

σ Rww2
σ + x̃T

σ+1Qf x̃σ+1



3.4 Receding Horizon Control Based on Minimax Criteria 131

where

u1
σ = Hx̃σ

w1
σ = Γ x̃σ

H = −R−1BT [I + QfΠ]−1QfA

Γ = γ−2R−1
w BT

wΛ−1QfA

and x̃i is the trajectory associated with xτ , u1
i and w2

i for i ∈ [τ, σ]. By
J(u∗, w∗) ≤ J(u,w∗), we have

J∗(xτ , τ, σ) =
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i − γ2w2T
i Rww2

i ] + x2T
σ Qfx2

σ

≤
σ−1∑
i=τ

[x̃T
i Qx̃i + u1T

i Ru1
i − γ2w2T

i Rww2
i ] + x̃T

σ Qf x̃σ

The difference δJ∗(xτ , σ) between J∗(xτ , τ, σ + 1) and J∗(xτ , τ, σ) is repre-
sented as

δJ∗(xτ , σ) ≥ x̃T
σ {Q + HT RH − ΓT RwΓ + AT

clQfAcl − Qf}x̃σ ≥ 0 (3.249)

As in the inequality (3.243), (3.249) can be changed to (3.247). The relation
Mσ+1 ≥ Mσ follows from J∗(xi, i, if ) = xT

i Mi,if
xi . This completes the proof.

Case 1: Qf = 0

The well-known free terminal condition, i.e. Qf = 0 satisfies (3.247). Thus,
Theorem 3.16 includes the monotonicity of the saddle-point value of the free
terminal case.

In the following theorem based on the optimality, it will be shown that
when the monotonicity of the saddle-point value or the Riccati equations holds
once, it holds for all subsequent times.

Theorem 3.17. The following inequalities for the saddle-point optimal cost
and the Riccati equation are satisfied:

(1) If

J∗(xτ ′ , τ
′
, σ + 1) ≤ J∗(xτ ′ , τ

′
, σ) (or ≥ J∗(xτ ′ , τ

′
, σ)) (3.250)

for some τ
′
, then

J∗(xτ ′′ , τ
′′
, σ + 1) ≤ J∗(xτ ′′ , τ

′′
, σ) (or ≥ J∗(xτ ′′ , τ

′′
, σ)) (3.251)

where τ0 ≤ τ
′′ ≤ τ

′
.
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(2) If

Mτ ′ ,σ+1 ≤ Mτ ′ ,σ (or ≥ Mτ ′ ,σ) (3.252)

for some τ
′
, then,

Mτ ′′ ,σ+1 ≤ Mτ ′′ ,σ (or ≥ Mτ ′′ ,σ) (3.253)

where τ0 ≤ τ
′′ ≤ τ

′
.

Proof. (a) Case of J∗(xτ ′ , τ
′
, σ + 1) ≤ J∗(xτ ′ , τ

′
, σ):

The pair u1
i and w1

i is a saddle-point optimal solution for J(xτ ′′ , τ
′′
, σ +1)

and the pair u2
i and w2

i for J(xτ ′′ , τ
′′
, σ). If we replace u1

i by u2
i and w2

i by
w1

i up to τ
′
, then

J∗(xτ ′′ , σ + 1) =
τ
′−1∑

i=τ ′′
[x1T

i Qx1
i + u1T

i Ru1
i − γ2w1T

i Rww1
i ] + J∗(x1

τ ′ , τ
′
, σ + 1)

≤
τ
′−1∑

i=τ ′′
[x̃T

i Qx̃i + u2T
i Ru2

i − γ2w1T
i Rww1

i ]

+ J∗(x̃τ ′ , τ
′
, σ + 1) (3.254)

by J(u∗, w∗) ≤ J(u,w∗) and

J∗(xτ ′′ , σ) =
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i − γ2w2T

i Rww2
i ] + J∗(x2

τ ′ , τ
′
, σ)

≥
τ
′−1∑

i=τ ′′
[x̃T

i Qx̃i + u2T
i Ru2

i − γ2w1T
i Rww1

i ]

+ J∗(x̃τ ′ , τ
′
, σ) (3.255)

by J(u∗, w∗) ≥ J(u∗, w). The difference between the adjacent optimal costs
can be expressed as

δJ∗(xτ ′′ , σ) =
τ
′−1∑

i=τ ′′
[x1T

i Qx1
i + u1T

i Ru1
i ] + J∗(x1

τ ′ , τ
′
, σ + 1)

−
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i ] − J∗(x2

τ ′ , τ
′
, σ) (3.256)

Substituting (3.255) and (3.255) into (3.256), we have
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δJ∗(xτ ′′ , σ) ≤ J∗(x̃τ ′ , τ
′
, σ + 1) − J∗(x̃τ ′ , τ

′
, σ)

= δJ∗(x̃τ ′ , σ) ≤ 0 (3.257)

Therefore,

δJ∗(xτ ′′ , σ) ≤ δJ∗(x̃τ ′ , σ) ≤ 0

where x̃τ ′ is the trajectory which consists of xτ ′′ , u2
i , and w1

i for i ∈ [τ
′′
, τ

′ −
1].

(b) Case of J∗(xτ ′ , τ
′
, σ + 1) ≥ J∗(xτ ′ , τ

′
, σ):

In a similar way to the case of (a), if we replace u2
i by u1

i and w1
i by w2

i up to
τ

′
, then

δJ∗(xτ ′′ , σ) ≥ δJ∗(xτ ′ , σ) ≥ 0 (3.258)

The monotonicity of the Riccati equations follows from J∗(xi, i, if ) = xT
i Mi,if

xi.
This completes the proof.

In the following section, stabilizing receding horizon H∞ controls will be
proposed by using the monotonicity of the saddle-point value or the Riccati
equations for linear discrete time-invariant systems.

3.4.3 Stability of Receding Horizon H∞ Control

In case of the conventional H∞ control, the following two kinds of stability
can be checked. H∞ controls based on the infinite horizon are required to have
the following properties:

1. Systems are stabilized in the case that there is no disturbance.
2. Systems are stabilized in the case that the worst-case disturbance enters

the systems.

For the first case, we introduce the following result.

Theorem 3.18. Assume that the pair (A,B) and (A,Q
1
2 ) are stabilizable and

observable respectively, and that the receding horizon H∞ control (3.222) as-
sociated with the quadratic cost J(xi, i, i+N) exists. If the following inequality
holds:

J∗(xi, i, i + N + 1) ≤ J∗(xi, i, i + N) (3.259)

then the asymptotic stability is guaranteed in the case that there is no distur-
bance.

Proof. We show that the zero state is attractive. Since J∗(xi, i, σ + 1) ≤
J∗(xi, i, σ),
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J∗(xi, i, i + N) (3.260)
= xT

i Qxi + u∗T
i Ru∗

i − γ2w∗T
i Rww∗

i

+ J∗(x1(i + 1; (xi, i, u
∗
i )), i + 1, i + N)

≥ xT
i Qxi + u∗T

i Ru∗
i + J∗(x2(i + 1; (xi, i, u

∗
i )), i + 1, i + N)

≥ xT
i Qxi + u∗T

i Ru∗
i + J∗(x2(i + 1; (xi, i, u

∗
i )), i + 1, i + N + 1)(3.261)

where u∗
i is the optimal control at time i and x2

i+1 is a state at time i+1 when
wi = 0 and the optimal control u∗

i . Therefore, J∗(xi, i, i+N) is nonincreasing
and bounded below, i.e. J∗(xi, i, i + N) ≥ 0. J∗(xi, i, i + N) approaches some
nonnegative constant c as i → ∞. Hence, we have

xT
i Qxi + uT

i Rui −→ 0 (3.262)

From the fact that the finite sum of the converging sequences also approaches
zero, the following relation is obtained:

i+l−1∑
j=i

[
xT

j Qxj + uT
j Ruj

]
→ 0, (3.263)

leading to

xT
i

⎛⎝i+l−1∑
j=i

(A − BH)(j−i)T [Q + HT RH](A − BH)j−i

⎞⎠xi → 0 (3.264)

However, since the pair (A,Q
1
2 ) is observable, xi → 0 as i → ∞ indepen-

dently of i0. Therefore, the closed-loop system is asymptotically stable. This
completes the proof.

We suggest a sufficient condition for Theorem 3.18.

Theorem 3.19. Assume that the pair (A,B) is stabilizable and the pair
(A,Q

1
2 ) is observable. For Qf ≥ 0 satisfying (3.234), the system (3.216) with

the receding horizon H∞ control (3.222) is asymptotically stable for some N ,
1 ≤ N < ∞.

In the above theorem, Q must be nonzero. We can introduce another result
as in a receding horizon LQ control so that Q could even be zero.

Suppose that disturbances show up. From (3.229) we have

u∗
i = −R−1BT P−1

1 Axi (3.265)

where

Pi = A−1Pi+1[I + A−1QA−1Pi+1]−1A−1 + Π (3.266)
PN = M−1

N + Π = Q−1
f + Π (3.267)



3.4 Receding Horizon Control Based on Minimax Criteria 135

We will consider a slightly different approach. We assume that Pi,if
in

(2.154) is given from the beginning with a terminal constraint Pif ,if
= Pf

rather than Pif ,if
being obtained from (2.156).

In fact, Riccati Equation (2.154) with the boundary condition Pf can be
obtained from the following problem. Consider the following system:

x̂i+1 = A−T x̂i + A−1Q
1
2 ûi (3.268)

where x̂i ∈ �n, ûi ∈ �m, and a performance criterion

Ĵ(x̂i0 , i0, if ) =
if−1∑
i=i0

[x̂T
i Πx̂i + ûT

i ûi] + x̂T
if

Pf x̂if
(3.269)

The optimal cost for the system (3.268) is given by Ĵ∗(x̂i, i, if ) = x̂T
i Pi,if

x̂i.
The optimal control ûi is

ûi,if
= −R−1BT P−1

i+1,if
Ax̂i (3.270)

From Theorem 3.16, it can be easily seen that Pτ,σ+1 ≥ Pτ,σ if

Pf ≤ A−1Pf [I + A−T QA−1Pf ]−1A−T + Π (3.271)

Now, we are in a position to state the following result on the stabiltiy of
the receding horizon H∞ control.

Theorem 3.20. Assume that the pair (A,B) is controllable and A is nonsin-
gular. If the inequality (3.271) is satisfied, then the system (3.216) with the
control (3.265) is asymptotically stable for 1 ≤ N .

Proof. Consider the adjoint system of the system (3.216) with the control
(3.270)

x̂i+1 = [A − BR−1BT P−1
1 A]−T x̂i (3.272)

and the associated scalar-valued function

V (x̂i) = x̂T
i A−1P1A

−1x̂i (3.273)

Note that P1 −BR−1BT is nonsingular, which guarantees the nonsingularity
of A − BR−1BT P−1

1 A with a nonsingular A.
Subtracting V (x̂i+1) from V (x̂i), we have

V (x̂i) − V (x̂i+1) = x̂T
i A−1P1A

−1x̂i − x̂T
i+1A

−1P1A
−1x̂i+1 (3.274)

Recall the following relation:

P0 = (AT P−1
1 A + Q)−1 + Π = A−1(P−1

1 + A−T QA−1)−1A−T + Π

= A−1

[
P1 − P1A

−T Q
1
2 (Q

1
2 A−1P1A

−T Q
1
2 + I)−1Q

1
2 A−1P1

]
A−T + Π

= A−1P1A
−T + Π − Z (3.275)
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where

Z = A−1P1A
−T Q

1
2 (Q

1
2 A−1P1A

−T Q
1
2 + I)−1Q

1
2 A−1P1A

−T

Replacing x̂i with [A−BR−1BT P−1
1 A]T x̂i+1 in (3.274) and plugging (3.275)

into the second term in (3.274) yields

V (x̂i) − V (x̂i+1) = x̂T
i+1[P1 − 2BR−1BT + BR−1BT P−1

1 BR−1BT ]x̂i+1

− x̂T
i+1[P0 − Π + Z]x̂i+1

= −x̂T
i+1[BR−1BT − BR−1BT P−1

1 BR−1BT ]x̂i+1

− x̂T
i+1[P0 − P1 + γ−2BwR−1

w BT
w + Z]x̂i+1

Since Z is positive semidefinite and P0 − P1 ≥ 0, we have

V (x̂i) − V (x̂i+1) ≤ −x̂T
i+1[BR− 1

2 SR− 1
2 BT + γ−2BwR−1

w Bw]x̂i+1 (3.276)

where S = I − R− 1
2 BT P−1

1 BR− 1
2 .

In order to show the positive definiteness of S, we have only to prove
P1 − BR−1BT > 0 since

I − P
− 1

2
1 BR−1BT P

− 1
2

1 > 0 ⇐⇒ P1 − BR−1BT > 0

Note that I−AAT > 0 implies I−AT A > 0 and vice versa for any rectangular
matrix A. From the condition for the existence of the saddle point, the lower
bound of P is obtained as

Rw − γ−2BT
wMiBw = Rw − γ−2BT

w(Pi − Π)−1Bw > 0

⇐⇒ I − γ−2(Pi − Π)−
1
2 BwR−1

w BT
w(Pi − Π)−

1
2 > 0

⇐⇒ Pi − Π − γ−2BwR−1
w BT

w = Pi − BR−1BT > 0
⇐⇒ Pi > BR−1BT (3.277)

From (3.277), it can be seen that S in (3.276) is positive definite. Note that
the left-hand side in (3.276) is always nonnegative. From (3.276) we have

V (x̂(i + 1; x̂i0 , i0)) − V (x̂i0 , i0) ≥ x̂T
i0Θx̂i0

where

Θ
�
=
[ i∑

k=i0

Ψ (i−i0)T WΨ i−i0

]
Ψ

�
= A − BR−1BT P−1

1 A

W
�
= BR− 1

2 SR− 1
2 BT + γ−2BwR−1

w Bw

If (A,B) is controllable, then the matrix Θ is positive definite. Thus, all
eigenvalues of Θ are positive and the following inequality is obtained:
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V (x̂(i + 1; x̂i0 , i0)) − V (x̂i0) ≥ λmin(Θ)‖x̂i0‖ (3.278)

This implies that the closed-loop system (3.216) is exponentially increasing,
i.e. the closed-loop system (3.216) with (3.270) is exponentially decreasing.
This completes the proof.

In Theorem 3.20, Q can be zero. If Q becomes zero, then P1 can be ex-
pressed as the following closed form:

P1 =
i+N∑

j=i+1

Aj−i−1ΠA(j−i−1)T + ANPfATN (3.279)

where A is nonsingular.
It is noted that Pf satisfying (3.271) is equivalent to Qf satisfying (3.243)

in the relation of Pf = Q−1
f +Π. Replacing Pf with Q−1

f +Π in (3.271) yields
the following inequality:

Q−1
f + Π ≤ A−1[Q−1

f + BR−1BT + A−T QA−1]−1A−T + Π

= [AT (Q−1
f + BR−1BT )−1A + Q]−1 + Π

Finally, we have

Qf ≥ AT (Q−1
f + Π)−1A + Q (3.280)

Therefore, if Qf satisfies (3.280), Pf also satisfies (3.271).

Theorem 3.21. Assume that the pair (A,B) is controllable and A is nonsin-
gular.

(1) If Mi+1 ≥ Mi > 0 for some i, then the system (3.216) with the receding
horizon H∞ control (3.222) is asymptotically stable for 1 ≤ N < ∞.

(2) For Qf > 0 satisfies (3.243) for some H, then the system (3.216) with the
RH H∞ control (3.222) is asymptotically stable for 1 ≤ N < ∞.

Proof. The first part is proved as follows. Mi+1 ≥ Mi > 0 implies 0 < M−1
i+1 ≤

M−1
i , from which we have 0 < Pi+1 ≤ Pi satisfying the inequality (3.271).

Thus, the control (3.265) is equivalent to the control (3.222). The second part
is proved as follows: inequalities Ki+1 ≥ Ki > 0 are satisfied for Ki generated
from Qf > 0 satisfying (3.234) for some H. Thus, the second result can be
seen from the first one. This completes the proof.

It is noted that (3.280) is equivalent to (3.247), as mentioned before.
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3.4.4 Additional Properties

Now, we will show that the stabilizing receding horizon controllers guarantee
the H∞ norm bound of the closed-loop system.

Theorem 3.22. Under the assumptions given in Theorem 3.18, the H∞ norm
bound of the closed-loop system (3.216) with (3.222) is guaranteed.

Proof. Consider the difference of the optimal cost between the time i and
i + 1:

J∗(i + 1, i + N + 1) − J∗(i, i + N)

=
i+N∑

j=i+1

[
xT

j Qxj + uT
j Ruj − γ2wT

j Rwwj

]
+xT

i+N+1Qfxi+N+1

−
i+N−1∑

j=i

[
xT

j Qxj + uT
j Ruj − γ2wT

j Rwwj

]
−xT

i+NQfxi+N (3.281)

Note that the optimal control and the worst-case disturbance on the horizon
are time-invariant with respect to the moving horizon.

Applying the state feedback control ui+N = Hxi+N at time i + N yields
the following inequality:

J∗(i + 1, i + N + 1) − J∗(i, i + N) ≤ −xT
i Qxi − uT

i Rui + γ−2wT
i Rwwi

+
[

wi+N

xi+N

]T

Π

[
wi+N

xi+N

]
(3.282)

where

Π
�
=
[
−γ2Rw + BT

wQfBw BT
wQf (A + BH)

(A + BH)T QfBw (A + BH)T Qf (A + BH) − Qf + Q + HT RH

]
From the cost monotonicity condition, Π is guaranteed to be positive semidef-
inite. The proof is left as an exercise. Taking the summation on both sides of
(3.282) from i = 0 to ∞ and using the positiveness of Π, we have

J∗(0, N) − J∗(∞,∞ + N) =
∞∑

i=0

[J∗(i, i + N) − J∗(i + 1, i + N + 1)]

≥
∞∑

i=0

[xT
i Qxi + uT

i Rui − γ2wT
i Rwwi]

From the assumption x0 = 0, J∗(0, N) = 0. The saddle-point optimal cost
is guaranteed to be nonnegative, i.e. J∗(∞,∞ + N) ≥ 0. Therefore, it is
guaranteed that
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∞∑
i=0

[xT
i Qxi + uT

i Rui − γ2wT
i Rwwi] ≤ 0

which implies that ∑∞
i=0[x

T
i Qxi + uT

i Rui]∑∞
i=0 wT

i Rwwi
≤ γ2

This completes the proof.

In the same way, under the assumptions given in Theorem 3.20, the H∞
norm bound of the closed-loop system (3.216) with (3.222) is guaranteed with
M1 replaced by [P1 − Π]−1. The inverse matrices exist for N ≥ lc + 1 since
Pif−i − Π = [AT P−1

if−i−1A + Q]−1.

Example 3.3

In this example, the H∞ RHC is compared with the LQ RHC through sim-
ulation. The target model and the reference signal are the same as those of
Example 3.1. except that Bw is given by

Bw =
[

0.016 0.01 0.008 0
0.002 0.009 0 0.0005

]T

(3.283)

For simulation, disturbances coming into the system are generated so that
they become worst on the receding horizon. γ2 is taken as 1.5.

As can be seen in Figure 3.10, the trajectory for the H∞ RHC is less
deviated from the reference signal than that for the LQ RHC.

The MATLAB� functions used for simulation are given in Appendix F.

3.5 Receding Horizon Control via Linear Matrix
Inequality Forms

3.5.1 Computation of Cost Monotonicity Condition

Receding Horizon Linear Quadratic Control

It looks difficult to find H and Qf that satisfy the cost monotonicity con-
dition (3.73). However, this can be easily computed using LMI.

Pre- and post-multiplying on both sides of (3.73) by Q−1
f , we obtain

X ≥ XQX + XHT RHX + (AX − BHX)T X−1(AX − BHX) (3.284)

where X = Q−1
f . Using Schur’s complement, the inequality (3.284) is con-

verted into the following:
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Fig. 3.10. Comparison between LQ RHTC and H∞ RHTC

X − XQX − Y T RY − (AX − BY )T X−1(AX − BY ) ≥ 0[
X − XQX − Y T RY (AX − BY )T

AX − BY X

]
≥ 0 (3.285)

where Y = HX. Partitioning the left side of (3.285) into two parts, we have[
X (AX − BY )T

AX − BY X

]
−
[

XQX − Y T RY 0
0 0

]
≥ 0 (3.286)

In order to use Schur’s complement, the second block matrix is decomposed
as[

X (AX − BY )T

AX − BY X

]
−
[

Q
1
2 X 0

R
1
2 Y 0

]T [
I 0
0 I

]−1 [
Q

1
2 X 0

R
1
2 Y 0

]
≥ 0 (3.287)

Finally, we can obtain the LMI form as⎡⎢⎢⎣
X (AX − BY )T (Q

1
2 X)T (R

1
2 Y )T

AX − BY X 0 0
Q

1
2 X 0 I 0

R
1
2 Y 0 0 I

⎤⎥⎥⎦ ≥ 0 (3.288)

Once X and Y are found, Qf and H = Y X−1 can be known.

Example 3.4

For the following systems and the performance criterion:
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xk+1 =
[

0.6831 0.0353
0.0928 0.6124

]
xk +

[
0.6085 0.0158

]
uk (3.289)

J(xk, k, k + N) =
N−1∑
i=0

[
xT

k+ixk+i + 3u2
k+i

]
+xT

k+NQfxk+N (3.290)

The MATLAB� code for finding Qf satisfying the LMI (3.288) is given in
Appendix F. By using this MATLAB� program, we have one possible final
weighting matrix for the cost monotonicity

Qf =
[

0.4205 −0.0136
−0.0136 0.4289

]
(3.291)

Similar to (3.73), the cost monotonicity condition (3.85) can be represented
as an LMI form. First, in order to obtain an LMI form, the inequality (3.85)
is converted into the following:

Qf − AT Qf [I + BR−1BT Qf ]−1A − Q ≥ 0 (3.292)[
Qf − Q AT

A Q−1
f + BR−1BT

]
≥ 0 (3.293)

Pre- and post-multiplying on both sides of (3.293) by some positive definite
matrices, we obtain[

Q−1
f 0
0 I

]T [
Qf − Q AT

A Q−1
f + BR−1BT

] [
Q−1

f 0
0 I

]
≥ 0 (3.294)[

X − XQX XAT

AX X + BR−1BT

]
≥ 0 (3.295)

where Q−1
f = X

Partition the left side of (3.295) into two parts, we have[
X XAT

AX X + BR−1BT

]
−
[

XQX 0
0 0

]
≥ 0 (3.296)

In order to use Schur’s complement, the second block matrix is decomposed
as [

X (AX + BY )T

AX + BY X

]
−
[

Q
1
2 X 0
0 0

]T [
I 0
0 I

]−1 [
Q

1
2 X 0
0 0

]
≥ 0 (3.297)

Finally, we can obtain the LMI form as⎡⎢⎢⎣
X XAT (Q

1
2 X)T 0

AX X + BR−1BT 0 0
Q

1
2 X 0 I 0
0 0 0 I

⎤⎥⎥⎦ ≥ 0 (3.298)
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Once X is obtained, Qf is given by X−1.
The cost monotonicity condition (3.98) in Theorem 3.4 can be easily ob-

tained by changing the direction of the inequality of (3.298):⎡⎢⎢⎣
X XAT (Q

1
2 X)T 0

AX X + BR−1BT 0 0
Q

1
2 X 0 I 0
0 0 0 I

⎤⎥⎥⎦ ≤ 0 (3.299)

In the following section, stabilizing receding horizon controls will be obtained
by LMIs.

Receding Horizon H∞ Control

The cost monotonicity condition (3.234) can be written[
Γ
I

]T [
Rw − BT

wQfBw BT
wQf (A − BH)

(A − BH)T QfBw Φ

] [
Γ
I

]
≥ 0 (3.300)

where

Φ = Qf − Q − HT RH − (A − BH)T Qf (A − BH) (3.301)

From (3.300), it can be seen that we have only to find Qf such that[
Rw − BT

wQfBw BT
wQf (A − BH)

(A − BH)T QfBw Φ

]
≥ 0 (3.302)

where we have[
Rw 0
0 Qf − Q − HT RH

]
−
[

BT
w

(A − BH)T

]
Qf

[
BT

w

(A − BH)T

]T

≥ 0 (3.303)

By using Schur’s complement, we can obtain the following matrix inequality:⎡⎣Rw 0 BT
w

0 Qf − Q − HT RH (A − BH)T

Bw (A − BH) Q−1
f

⎤⎦ ≥ 0 (3.304)

Multiplying both sides of (3.304) by the matrix diag{I,Q−1
f , I} yields⎡⎣Rw 0 BT

w

0 X − XQX − XHT RHX X(A − BH)T

Bw (A − BH)X X

⎤⎦ ≥ 0 (3.305)

where Q−1
f = X. Since the matrix in (3.305) is decomposed as
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w

0 X (AX − BY )T

Bw AX − BY X

⎤⎦−

⎡⎣ 0 0
XQ

1
2 Y R

1
2

0 0

⎤⎦⎡⎣ 0 0
XQ

1
2 Y R

1
2

0 0

⎤⎦T

we have ⎡⎢⎢⎢⎢⎣
Rw 0 BT

w 0 0
0 X (AX − BY )T XQ

1
2 Y R

1
2

Bw AX − BY X 0 0
0 Q

1
2 X 0 I 0

0 R
1
2 Y T 0 0 I

⎤⎥⎥⎥⎥⎦ ≥ 0 (3.306)

where Y = HX.

3.5.2 Receding Horizon Linear Quadratic Control via Batch and
Linear Matrix Inequality Forms

In the previous section, the receding horizon LQ control was obtained ana-
lytically in a closed form, and thus it can be easily computed. Here, how to
achieve the receding horizon LQ control via an LMI is discussed, which will
be utilized later in constrained systems.

Free Terminal Cost

The state equation in (3.3) can be written as

Xk = Fxk + HUk (3.307)

Uk =

⎡⎢⎢⎢⎣
uk

uk+1

...
uk+N−1

⎤⎥⎥⎥⎦ , Xk =

⎡⎢⎢⎢⎣
xk

xk+1

...
xk+N−1

⎤⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎣
I
A
...

AN−1

⎤⎥⎥⎥⎦ (3.308)

H =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
B 0 0 · · · 0

AB B 0 · · · 0
...

...
. . .

...
...

AN−2B AN−3B · · · B 0

⎤⎥⎥⎥⎥⎥⎦ (3.309)

The terminal state is given by

xk+N = ANxk + B̄Uk (3.310)

where
B̄ =

[
AN−1B AN−2B · · · B

]
(3.311)
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Let us define

Q̄N = diag{
N︷ ︸︸ ︷

Q, · · · , Q}, R̄N = diag{
N︷ ︸︸ ︷

R, · · · , R} (3.312)

Then, the cost function (3.22) can be rewritten by

J(xk, Uk) = [Xk − Xr
k ]T Q̄N [Xk − Xr

k ] + UT
k R̄NUk

+ (xk+N − xr
k+N )T Qf (xk+N − xr

k+N )

where

Xr
k =

⎡⎢⎢⎢⎣
xr

k

xr
k+1
...

xr
k+N−1

⎤⎥⎥⎥⎦
From (3.307) and (3.310), the above can be represented by

J(xk, Uk) = [Fxk + HUk − Xr
k ]T Q̄N [Fxk + HUk − Xr

k ] + UT
k R̄NUk

+ [ANxk + B̄Uk − xr
k+N ]T Qf [ANxk + B̄Uk − xr

k+N ]

= UT
k [HT Q̄NH + R̄N ]Uk + 2[Fxk − Xr

k ]T Q̄NHUk

+ [Fxk − Xr
k ]T Q̄N [Fxk − Xr

k ]
+ [ANxk + B̄Uk − xr

k+N ]T Qf [ANxk + B̄Uk − xr
k+N ]

= UT
k WUk + wT Uk + [Fxk − Xr

k ]T Q̄N [Fxk − Xr
k ]

+ [ANxk + B̄Uk − xr
k+N ]T Qf [ANxk + B̄Uk − xr

k+N ] (3.313)

where W = HT Q̄NH + R̄N and w = 2HT Q̄T
N [Fxk − Xr

k ]. The optimal input
can be obtained by taking ∂J(xk,Uk)

∂Uk
. Thus we have

Uk = −[W + B̄T Qf B̄]−1[w + B̄T Qf (ANxk − xr
k+N )]

= −[W + B̄T Qf B̄]−1[HT Q̄N (Fxk − Xr
k)

+ B̄T Qf (ANxk − xr
k+N )] (3.314)

The RHC can be obtained as

uk =
[
1, 0, · · · , 0

]
U∗

k (3.315)

In order to obtain an LMI form, we decompose the cost function (3.313) into
two parts

J(xk, Uk) = J1(xk, Uk) + J2(xk, Uk)

where

J1(xk, Uk) = UT
k WUk + wT Uk + [Fxk − Xr

k ]T Q̄N [Fxk − Xr
k ]

J2(xk, Uk) = (ANxk + B̄Uk − xr
k+N )T Qf (ANxk + B̄Uk − xr

k+N )
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Assume that

UT
k WUk + wT Uk + [Fxk − Xr

k ]T Q̄N [Fxk − Xr
k ] ≤ γ1 (3.316)

(ANxk + B̄Uk − xr
k+N )T Qf (ANxk + B̄Uk − xr

k+N ) ≤ γ2 (3.317)

Note that
J(xk, Uk) ≤ γ1 + γ2 (3.318)

From Schur’s complement, (3.316) and (3.317) are equivalent to[
γ1 − wT Uk − [Fxk − Xr

k ]T Q̄N [Fxk − Xr
k ] UT

k

Uk W−1

]
≥ 0 (3.319)

and [
γ2 [ANxk + B̄Uk − xr

k+N ]T[
ANxk + B̄Uk − xr

k+N

]
Q−1

f

]
≥ 0 (3.320)

respectively. Finally, the optimal solution U ∗
k can be obtained by an LMI

problem as follows:

min
Uk

γ1 + γ2 subject to (3.319) and (3.320)

Therefore, the RHC in a batch form is obtained by

uk =
[
1, 0, · · · , 0

]
U∗

k (3.321)

Terminal Equality Constraint

The optimal control (3.314) can be rewritten by

Uk = −
[[

H
B̄

]T [
Q̄N 0
0 Qf

] [
H
B̄

]
+ R̄N

]−1 [
H
B̄

]T [
Q̄N 0
0 Qf

]
×
[[

F
AN

]
xk −

[
Xr

k

xr
k+N

]]
= −R̄−1

N

[[
H
B̄

]T [
Q̄N 0
0 Qf

] [
H
B̄

]
R̄−1

N + I

]−1 [
H
B̄

]T [
Q̄N 0
0 Qf

]
×
[[

F
AN

]
xk −

[
Xr

k

xr
k+N

]]
(3.322)

We define

H̄ =
[

H
B̄

]
F̄ =

[
F

AN

]
X̄r

k =
[

Xr
k

xr
k+N

]
(3.323)

Then, using the formula (I + AB)−1A = A(I + BA)−1, we have
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Uk = −R̄−1
N H̄T [Q̂N H̄R̄−1

N H̄T + I]−1Q̂N [F̄ − I]
[

xk

X̄r
k

]
= −R̄−1

N H̄T [Q̃N2H̄R̄−1
N H̄T + Q̃−1

N1]
−1Q̃N2[F̄ − I]

[
xk

X̄r
k

]
(3.324)

where

Q̂N =
[

Q̄N 0
0 Qf

]
=
[

I 0
0 Qf

] [
Q̄N 0
0 I

]
= Q̃N1Q̃N2 (3.325)

For terminal equality constraint, we take Qf = ∞I (Q−1
f = 0). So Uk is

given as (3.324) with Q̃−1
N1 replaced by

[
I 0
0 0

]
.

We introduce an LMI-based solution. In a fixed terminal case, (3.317) is
not used. Instead, the condition ANxk + B̄Uk = xr

k+N should be met. Thus,
we need an equality condition together with an LMI. In order to remove
the equality representation, we parameterize Uk in terms of known variables
according to Theorem A.3. We can set Uk as

Uk = −B̄−1(ANxk − xr
k+N ) + MÛk (3.326)

where B̄−1 is the right inverse of B̄ and columns of M are orthogonal to each
other, spanning the null space of B̄.

From (3.316) we have

J(xk, Uk) = UT
k WUk + wT Uk + [Fxk − Xr

k ]T Q̄N [Fxk − Xr
k ]

= (−B̄−1(ANxk − xr
k+N ) + MÛk)T W (−B̄−1(ANxk − xr

k+N )

+ MÛk) + wT (−B̄−1(ANxk − xr
k+N ) + MÛk) + [Fxk − Xr

k ]T Q̄N

× [Fxk − Xr
k ]

= ÛT
k V1Ûk + V2Ûk + V3

where

V1 = MT WM

V2 = −2(ANxk − xr
k+N )T B̄−T WM + wT M

V3 = (ANxk − xr
k+N )T B̄−T WB−1(ANxk − xr

k+N )

+ [Fxk − Xr
k ]T Q̄N [Fxk − Xr

k ] − wT B̄−1(ANxk − xr
k+N )

The optimal input can be obtained by taking ∂J(xk,Ûk)

∂Ûk
. Thus we have

Ûk = −V−1
1 VT

2

The RHC in a batch form can be obtained as in (3.315). The optimal con-
trol for the fixed terminal case can be obtained from the following inequality:

J(xk, Ûk) = ÛT
k V1Ûk + V2Ûk + V3 ≤ γ1
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which can be transformed into the following LMI:

min γ1[
γ1 − V2Ûk − V3 −ÛT

k V
1
2
1

−V
1
2
1 Ûk I

]
≥ 0

where Ûk is obtained. Uk is computed from this according to (3.326). What
remains to do is just to pick up the first one among Uk as in (3.321).

GPC for the CARIMA model (3.194) can be obtained in a batch form
similar to that presented above. From the state-space model (3.200), we have

yk+j = C̄Ājxk +
j−1∑
i=0

C̄Āj−i−1B̄�uk+i (3.327)

The performance index (3.204) can be represented by

J = [Y r
k − V xk − W�Uk]T Q̄ [Y r

k − V xk − W�Uk] + �UT
k R̄�Uk

+
[
Y r

k+Nc
− Vfxk − Wf�Uk

]T
Q̄f

[
Y r

k+Nc
− Vfxk − Wf�Uk

]
(3.328)

where

Y r
k =

⎡⎢⎣ yr
k+1
...

yr
k+Nc

⎤⎥⎦ , V =

⎡⎢⎣ C̄Ā
...

C̄ĀNc

⎤⎥⎦ , �Uk =

⎡⎢⎣ �uk

...
�uk+Nc−1

⎤⎥⎦

Y r
k+Nc

=

⎡⎢⎣ yr
k+Nc+1

...
yr

k+Np

⎤⎥⎦ , Vf =

⎡⎢⎣ C̄ĀNc+1

...
C̄ĀNp

⎤⎥⎦ , W =

⎡⎢⎣ C̄B̄ · · · 0
...

. . .
...

C̄ĀNc−1B̄ · · · C̄B̄

⎤⎥⎦

Wf =

⎡⎢⎣ C̄ĀNcB̄ · · · C̄ĀB̄
...

. . .
...

C̄ĀNp−1B̄ · · · C̄ĀNp−NcB̄

⎤⎥⎦ , R̄ =
[
diag(

Nc︷ ︸︸ ︷
r r · · · r)

]

Q̄f =
[
diag(

Np−Nc︷ ︸︸ ︷
qf qf · · · qf )

]
, Q̄ =

[
diag(

Nc︷ ︸︸ ︷
q q · · · q)

]
.

Using

∂J

∂�Uk
= 0

we can obtain

�Uk =
[
WT Q̄W + WT

f Q̄fWf + R̄
]−1
{

WT Q̄ [Y r
k − V xk]

+WT
f Q̄f

[
Y r

k+Nc
− Vfxk

]}
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Therefore, �uk is given by

�uk =
[
I 0 · · · 0

] [
WT Q̄W + WT

f Q̄fWf + R̄
]−1
{

WT Q̄ [Y r
k − V xk]

+WT
f Q̄f

[
Y r

k+Nc
− Vfxk

]}
(3.329)

3.5.3 Receding Horizon H∞ Control via Batch and Linear Matrix
Inequality Forms

In the previous section, the receding horizon H∞ control was obtained ana-
lytically in a closed form and thus it can be easily computed. Here, how to
achieve the receding horizon H∞ control via LMI is discussed.

The state equation (3.9) can be represented by

Xk = Fxk + HUk + HwWk (3.330)

where Hw is given by

Hw =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
G 0 0 · · · 0

AG G 0 · · · 0
...

...
. . .

...
...

AN−2G AN−3G · · · G 0

⎤⎥⎥⎥⎥⎥⎦ (3.331)

and Uk, F , Xk, and H are defined in (3.308) and (3.309).
The H∞ performance criterion can be written in terms of the augmented

matrix as

J(xk, Uk,Wk) = [Fxk + HUk + HwWk − Xr
k ]T Q̄N [Fxk + HUk + HwWk

− Xr
k ] + [ANxk + B̄Uk + ḠWk − xr

k+N ]T Qf [ANxk + B̄Uk

+ ḠWk − xr
k+N ] + UT

k R̄NUk − γ2WT
k Wk

Representing J(xk, Uk,Wk) in quadratic form with respect to Wk yields the
following equation:

J(xk, Uk,Wk) = WT
k V1Wk + 2WT

k V2 + [Fxk + HUk − Xr
k ]T Q̄N [Fxk + HUk

− Xr
k ] + UT

k R̄NUk + [ANxk + B̄Uk − xr
k+N ]T Qf [ANxk + B̄Uk

− xr
k+N ]

= [V1Wk + V2]TV−1
1 [V1Wk + V2] − VT

2 V−1
1 V2 + UT

k R̄NUk

+ [Fxk + HUk − Xr
k ]T Q̄N [Fxk + HUk − Xr

k ]
+ [ANxk + B̄Uk − xr

k+N ]T Qf [ANxk + B̄Uk − xr
k+N ]

= [V1Wk + V2]TV−1
1 [V1Wk + V2] + UT

k P1Uk + 2UT
k P2

+ P3 (3.332)
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where

V1
�
= −γ2I + ḠT Qf Ḡ + HT

w Q̄NHw (3.333)

V2
�
= HT

w Q̄T
N [Fxk + HUk − Xr

k ] + ḠT QT
f [ANxk + B̄Uk − xr

k+N ] (3.334)

P1
�
= −(HT

w Q̄T
NH + ḠT QT

f B̄)TV−1
1 (HT

w Q̄T
NH + ḠT QT

f B̄)

+ HT Q̄NH + R̄N + B̄T Qf B̄ (3.335)

P2
�
= −(HT

w Q̄T
NH + ḠT QT

f B̄)TV−1
1 (HT

w Q̄T
N (Fxk − Xr

k)

+ ḠT QT
f (ANxk − xr

k+N )) + HT Q̄NFxk + B̄T QfANxk (3.336)

and P3 is a constant that is independent of Uk and Wk.
In order that the solution to the saddle point exists, V1 must be negative.

Thus, we have

−γ2I + ḠT Qf Ḡ + HT
w Q̄NHw < 0

In order to maximize (3.332) with respect to Wk, we have only to maximize

[V1Wk + V2]TV−1
1 [V1Wk + V2] (3.337)

to obtain
Wk = −V−1

1 V2 (3.338)

If we put (3.338) into (3.332), (3.332) can be represented by

J(xk, Uk,Wk) = UT
k P1Uk + 2UT

k P2 + P3 (3.339)

Then the optimal input can be obtained by taking ∂J(xk,Uk,Wk)
∂Uk

. Thus we have

Uk = −P−1
1 P2

Now we can introduce an LMI form for the receding horizon H∞ control.
In order to maximize (3.332) with respect to Wk, we have only to minimize

−[V1Wk + V2]TV−1
1 [V1Wk + V2] (3.340)

Then we try to minimize (3.339). It follows finally that we have the following
LMI:

min
Uk,Wk

r1 + r2 (3.341)[
r1 − PT

2 Uk UT
k

Uk P−1
1

]
≥ 0[

r2 (V1Wk + V2)T

(V1Wk + V2) −V1

]
≥ 0

The stabilizing RH H∞ control can be obtained by solving the semidefinite
program (3.306) and (3.341) where Qf = X−1. What remains to do is just to
pick up the first one among Uk as in (3.321).

An LMI representation in this section would be useful for constrained
systems.
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3.6 References

In order to explain the receding horizon concept, the predictor form and the
reference predictive form are introduced first in Section 3.2.1 of this chapter.

The primitive form of the RH control was given in [Kle70] [Kle74], where
only input energy with fixed terminal constraint is concerned without the
explicit receding horizon concept. The general form of the RHC was first
given with receding horizon concepts in [KP77a], where state weighting is
considered. The RHTC presented in Section 3.3.1 is similar to that in [KB89].

With a terminal equality constraint which corresponds to the infinite ter-
minal weighting matrix, the closed-loop stability of the RHC was first proved
in a primitive form [Kle70] and in a general form [KP77a]. There are also
some other results in [Kle74] [KP78] [AM80] [NS97].

The terminal equality constraint in Theorem 3.1 is a well-known result.
Since the terminal equality constraint is somewhat strong, finite terminal

weighting matrices for the free terminal cost have been investigated in [Yaz84]
[BGP85] [KB89] [PBG88] [BGW90] [DC93] [NP97] [LKC98]. The monotone
property of the Ricatti equation is used for the stability [KP77a]. Later, the
monotone property of the optimal cost was introduced not only for linear, but
also for nonlinear systems. At first, the cost monotonicity condition was used
for the terminal equality constraint [KRC92] [SC94][RM93][KBM96] [LKL99].
The cost monotonicity condition for free terminal cost in Theorem 3.2 is first
given in [LKC98]. The general proof of Theorem 3.2 is a discrete version of
[KK00]. The inequality (3.84) is a special case of (3.73) and is partly studied in
[KB89] [BGW90]. The terminal equality constraint comes historically before
the free terminal cost. The inequality between the terminal weighting matrix
and the steady-state Riccati solution in Proposition 3.3 appeared first in this
book.

The opposite direction of the cost monotonicity in Theorem 3.4 is first
introduced for discrete systems in this book. It is shown in [BGW90] that
once the monotonicity of the Riccati equation holds at a certain point it holds
for all subsequent times as in Theorem 3.5.

The stability of RHCs in Theorems 3.6 and 3.7 is first introduced in
[LKC98] and the general proofs of these theorems in this book are discrete
versions of [KK00].

The stability of the RHC in the case of the terminal equality constraint in
Theorem 3.7 is derived by using Theorems 3.1 and 3.6.

A stabilizing control in Theorem 3.9 is first introduced in [LKC98] without
a proof, and thus a proof is included in this book by using Lyapunov theory.

The observability in Theorems 3.6 and 3.9 can be weakened with de-
tectability, similar to that in [KK00].

The results on Theorems 3.10 and 3.11 appear first in this book and are
extensions of [KP77a]. For time-invariant systems, the controllability in The-
orems 3.10 and 3.11 can be weakened with stabilizability, as shown in [RM93]
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and [KP77a]. The closed-loop stability of the RHC via FARE appears in
[PBG88, BGW90]

The lower bound of the horizon size stabilizing the system in Theorem
3.12 appeared in [JHK04].

The RH LQ control with a prescribed degree of stability appeared in
[KP77b] for continuous-time systems. In Section 3.3.5 of this book, slight
modifications are made to obtain it for discrete-time systems.

The upper and lower bounds of the performance criteria in Theorems
3.13 and 3.14 are discrete versions of the result [KBK83] for continuous-time
systems.

It was shown in [KBK83] that the RH LQ control stabilizes the system for
a sufficiently large horizon size irrespective of the final weighting matrix.

The RH H∞ control presented in Section 3.4.1 is a discrete version of the
work by [KYK01]. The cost monotonicity condition of the RH H∞ control in
Theorems 3.15, 3.16, and 3.17 is a discrete version of the work by [KYK01].
The stability of the RH H∞ control in Theorems 3.18 and 3.19 also appeared in
[KYK01]. The free terminal cost in the above theorems was proposed in [LG94]
[LKL99]. The relation between the free terminal cost and the monotonicity of
the saddle point value was fully discussed in [KYK01].

The RH H∞ control without requiring the observability of (A,Q
1
2 ), as in

Theorems 3.20 and 3.21, is first discussed in this book in parallel with the RH
LQ control.

The guaranteed H∞ norm of the H∞ RHC in Theorem 3.22 is first given
in this book for discrete-time systems by a modification of the result on
continuous-time systems in [KYK01].

In [LKC98], how to obtain the receding horizon control and a final weight-
ing matrix satisfying the cost monotonicity condition was discussed by using
LMIs. Sections 3.5.1 and 3.5.2 are mostly based on [LKC98].

The RHLQC with the equality constraint and the cost monotonicity con-
dition for the H∞ RHC in an LMI form appear first in Sections 3.5.2 and
3.5.3 of this book respectively.

3.7 Problems

3.1. Referring to Problem 2.6, make simulations for three kinds of planning
based on Table 1.1. α, γ, β, ū are set to 0.8, 1.3, 10, and 1 respectively. For
long-term planning, use N = 100. For periodic and short-term planning, use
N = 5 and a simulation time of 100.

3.2. Derive a cost monotonicity condition for the following performance cri-
terion for the system (3.1):

J(xi0 , u·) =
if−1∑
i=i0

[
xi

ui

]T [
Q S
ST R

] [
xi

ui

]
+ xT

if
Qfxif
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3.3. (1) If Qf satisfies a cost monotonicity condition, show that the RHC
with this Qf can be an infinite horizon optimal control (2.107) with some
nonnegative symmetric Q and some positive definite R.

(2) Verify that the RHC with the equality constraint has the property that
it is an infinite horizon optimal control (2.107) associated with some non-
negative symmetric Q and some positive definite R.

3.4. Consider the cost monotonicity condition (3.73).

(1) Show that the condition (3.73) can be represented as

Qf ≥ min
H

{
Q + HT RH + (A − BH)T Qf (A − BH)

}
(3.342)

(2) Choose H so that the right side of (3.342) is minimized.

3.5. Consider a discrete-time system as

xi+1 =
[

0 0
1 0

]
xi +

[
1
0

]
ui (3.343)

(1) Find an RHC for the following performance criterion:

xT
k+1|k

[
1 2
2 6

]
xk+1|k + u2

k|k (3.344)

where the horizon size is 1. Check the stability.
(2) Find an RHC for the following performance criterion:

1∑
j=0

{xT
k+j|k

[
1 2
2 6

]
xk+j|k + u2

k+j|k} + xT
k+2|k

[
1 0
0 0

]
xk+2|k (3.345)

where the horizon size is 2. Check the stability.
(3) In the problem (b), introduce the final weighting matrix as

1∑
j=0

{xT
k+j|k

[
1 2
2 6

]
xk+j|k + u2

k+j|k} + xT
k+2|kQfxk+2|k (3.346)

and find Qf such that the system is stabilized.

3.6. Suppose that Qf is positive definite and the system matrix A is nonsin-
gular.

(1) Prove that the solution to Riccati Equation (3.49) is positive definite.
(2) Let V (xi) = xT

i A−1(K−1
1 + BR−1BT )A−T xi, where K1 is obtained from

the Riccati equation starting from KN = Qf , then show that the system
can be stabilized. (Hint: use Lasalle’s theorem and the fact that if A is
Hurwitz, then so is AT .)
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Remark: in the above problem, the observability of (A,Q
1
2 ) is not required.

3.7. Prove the stability of the RHC (3.49) by using Lyapunov theory.

(1) Show that K1 defined in (3.47) satisfies

K1 ≥ (A − BL1)T K1(A − BL1) + LT
1 RL1 + Q (3.347)

starting from KN = Qf satisfying (3.73) and L1 = [R+BT K1B]−1BT K1A.
(2) Show that xT

i K1xi in (3.347) can be a Lyapunov function. Additionally,
show the stability of the RHC under assumptions that (A,B) and (A,Q

1
2 )

are stabilizable and observable respectively.

3.8. Consider the FARE (3.122). Suppose that (A,B) is stabilizable, Q̄ ≥ 0,
and (A, Q̄

1
2 ) is observable. If Ki0+2 − 2Ki0+1 + Ki0 ≤ 0 for some i0, then the

system with the RHC (3.55) is stable for any N ≥ i0.

3.9. ∗ Denote the control horizon and the prediction horizon as Nc and Np

respectively. This book introduces various RHC design methods in the case
of N = Nc = Np. When we use different control and prediction horizons
(Nc �= Np):

(1) discuss the effect on the computational burden.
(2) discuss the effect on the optimal performance.

3.10. In this chapter, ‖A‖ρ,ε is introduced.

(1) Take an example that does not satisfy the following inequality

ρ(AB) ≤ ρ(A)ρ(B)

where ρ(A) is the spectral radius.
(2) Show that there always exists a matrix norm ‖A‖ρ,ε such that

ρ(A) ≤ ‖A‖ρ,ε ≤ ρ(A) + ε (3.348)

for any ε > 0.
(3) Disprove that ρ(A) ≤ 1 implies ‖A‖2 ≤ 1

3.11. Let Ki be the solution to the difference Riccati equation (2.45) and Li

its corresponding state feedback gain (2.57). K and L are the steady-state
values of Ki and Li.
(1) Show that

Li+1 − L = −R−1
o,i+1B

T�Ki+1Ac (3.349)

Ac,i+1 = A − BLi+1 = (I − BR−1
o,i+1B

T�Kk+1)Ac (3.350)

where

Ro,i+1
�
= R + BT KiB, �Ki

�
= Ki − K, Ac

�
= A − BL

(2) Show that

�Ki = AT
c [�Ki+1 −�Ki+1BR−1

o,i+1B
T�Ki+1]Ac (3.351)
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3.12. Suppose that the pair (A,B) and (A,Q
1
2 ) are controllable and observ-

able respectively.

(1) Show that the closed-loop system can be written as

xi+1 = Gixi + BR−1BT K̂e
i+1,NAxi (3.352)

with

Gi = A − BR−1BT K̂i+1,∞A (3.353)

K̂i+1,i+N = [K−1
i+1,i+N + BR−1BT ]−1 (3.354)

K̂e
i+1,N = K̂i+1,∞ − K̂i+1,i+N (3.355)

where Ki+1,i+N is given in (3.47) and Ki+1,∞ is the steady-state solution
of (3.47).

(2) Prove that, for all x,

lim
N→∞

|BR−1BT K̂e
i+1,NAx|

|x| = 0 (3.356)

(3) Show that there exists a finite horizon size N such that the RHC (3.56)
stabilizes the closed-loop system.
Hint. Use the following fact: suppose that xi+1 = f(xi) is asymptotically
stable and g(xi, i) satisfies the equality limi→∞

g(xi,i)
xi

= 0. Then, xi+1 =
f(xi) + g(xi, i) is also stable.

3.13. A state-space model is given as

xi+1 =
[

2 1
3 4

]
xi +

[
2
3

]
ui (3.357)

where

Q =
[

2 0
0 2

]
, R = 2 (3.358)

(1) According to the formula (3.149), find a lower bound of the horizon size
N that guarantees the stability irrespective of the final weighting matrix
Qf .

(2) Calculate a minimum horizon size stabilizing the closed-loop systems by
direct computation of the Riccati equation and closed-loop poles.

3.14. MAC used the following model:

yk =
n−1∑
i=0

hiuk−i
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(1) Obtain a state-space model.
(2) Obtain an RHC with the following performance:

J =
N−1∑
j=0

{q[yk+j|k − yr
k+j|k]2 + ru2

k+j|k}

3.15. DMC used the following model:

yk =
n−1∑
i=0

gi�uk−i

where �uk = uk − uk−1.

(1) Obtain a state-space model.
(2) Obtain an RHC with the following performance:

J =
N−1∑
j=0

{q[yk+j|k − yr
k+j|k]2 + r[�uk+j|k]2}.

3.16. Consider the CARIMA model (3.194). Find an optimal solution for the
performance criterion (3.204).

3.17. (1) Show that

Qf − Q + HT RH − ΓT RwΓ + (A − BH + BwΓ )T Qf (A − BH + BwΓ )
≥ Qf − Q + HT RH + (A − BH)(Q−1

f − BwR−1
w BT

w)−1(A − BH)(3.359)

holds irrespective of Γ .
(2) Find out Γ such that the equality holds in (3.359).
(3) Show that

Qf − Q + HT RH + (A − BH)(Q−1
f − BwR−1

w BT
w)−1(A − BH) ≥ 0

can be represented in the following LMI form:⎡⎢⎢⎣
X (AX − BY )T (Q

1
2 X)T (R

1
2 Y )T

AX − BY X − BwR−1
w BT

w 0 0
Q

1
2 X 0 I 0

R
1
2 Y 0 0 I

⎤⎥⎥⎦ ≥ 0 (3.360)

where X = Q−1
f and Y = HQ−1

f .

3.18. Consider the cost monotonicity condition (3.234) in the RH H∞ control.

(1) Show that (3.234) is equivalent to the following performance criterion:

max
w

[(xT Qx + uT Ru − r2wT w) − xT Qfx] ≤ 0 (3.361)
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(2) Show that if (3.234) holds, then the following inequality is satisfied:[
−γ2I + BT

wQfBw BT
1 Qf (A + B2H)

(A + B2H)T QfB1 (A + BH)T Qf (A + BH) − Qf + Q + HT H

]
≤ 0

3.19. If H is replaced by an optimal gain H = −R−1BT [I + QfΠ]−1 Qf A,
then show that we can have (3.243) by using the matrix inversion lemma.

3.20. As shown in Figure 3.11, suppose that there exists an input uncertainty
� described by

x̃k+1 = Ãx̃k + B̃ũk

ỹk = C̃x̃k

where the feedback interconnection is given by

ũk = uRHC
k

uk = −ỹk

The input ỹk and output ũk of the uncertainty � satisfy

V(x̃k+1) − V(x̃k) ≤ ỹT
k ũk − ρũT

k ũk

where V(xk) is some nonnegative function (this is called the dissipative prop-
erty) and ρ is a constant. If ρ is greater than 1

4 and the H∞ RHC (3.222) is
adopted, show that the H∞ norm bound of the closed-loop system with this
input uncertainty is still guaranteed.

Hint: use the cost monotonicity condition.

--

Fig. 3.11. Feedback Interconnection of Problem 3.20

3.21. The state equation (3.1) can be transformed into

Xk+j = Fjxk+j + HjUk+j

xk+N = AN−jxk+j + B̄jUk+j

X̄k+j = F̄jxk+j + H̄jUk+j
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where 0 ≤ j ≤ N − 1.

Uk+j =

⎡⎢⎢⎢⎣
uk+j

uk+j+1

...
uk+N−1

⎤⎥⎥⎥⎦ , Xk+j =

⎡⎢⎢⎢⎣
xk+j

xk+j+1

...
xk+N−1

⎤⎥⎥⎥⎦

Fj =

⎡⎢⎢⎢⎣
I
A
...

AN−1−j

⎤⎥⎥⎥⎦ =
[

I
Fj+1A

]

Hj =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
B 0 0 · · · 0

AB B 0 · · · 0
...

...
. . .

...
...

AN−2−jB AN−3−jB · · · B 0

⎤⎥⎥⎥⎥⎥⎦ =
[

0 0
Fj+1B Hj+1

]

B̄j =
[
AN−1−jB AN−2−jB · · · AB B

]
X̄k+j =

[
Xk+j

xk+N

]
, F̄j =

[
Fj

AN−j

]
, H̄j =

[
Hj

B̄j

]
(1) We define

Kj = F̄T
j Q̂jF̄j − F̄T

j Q̂jH̄j(H̄T
j Q̂jH̄j + R̄j)−1H̄T

j Q̂jF̄j

where

Q̂j = diag{
N−j+1︷ ︸︸ ︷

Q, · · · , Q Qf}, R̄j = diag{
N−j+1︷ ︸︸ ︷

R, · · · , R}.
Then, show that the optimal control (3.314) can be rewritten by

Uk+j = −[H̄T
j Q̂jH̄j + R̄j ]−1H̄T

j Q̂jF̄jxk+j (3.362)

=
[

−[R + BT Kj+1B]−1BT Kj+1Axk+j

−[R̄j+1 + H̄T
j+1Q̂j+1H̄j+1]−1H̄T

j+1Q̂j+1F̄j+1xk+j+1

]
=
[

uk+j

Uk+j+1

]
(2) Show that the above-defined Kj satisfies (3.47), i.e. the recursive solution

can be obtained from a batch form of solution.

3.22. Consider the GPC (3.329) for the CARIMA model (3.194).

(a) Using (3.329), obtain the GPC �uk when Qf = ∞I.
(b) Show that the above GPC is asymtotically stable.
3.23. In Section 2.5, the optimal control Uk on the finite horizon was obtained
from the LMI approach. Derive an LMI for the control gain H of Uk = Hxk,
not the control Uk itself.
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Receding Horizon Filters

4.1 Introduction

In the previous chapters we have used state feedback under the assumption
that all the state variables are available. However, this assumption may not
hold in practice, since the state information may not be measurable or it may
cost a lot to measure all state variables. In this case we have to use output
feedback controls that utilize measured inputs and outputs. A state can be
estimated from measured inputs and outputs. Thus, output feedback controls
can be obtained by replacing the real state in state feedback controls by the
estimated state. In this chapter we shall introduce state observers, or filters
that estimate the state from the measured inputs and outputs.

In the control area, filters can be used for the output feedback control, and
in the signal processing area, filters can be used for the separation of real sig-
nals from noisy signals. Therefore, the results in this chapter will be useful not
only for control, but also for signal processing. In Chapter 1, control models,
control objectives, control structures, and control performance criteria were
discussed for control designs. In this chapter, signal models, filter objectives,
filter structures, and filter performance criteria are introduced, as in Figure
4.1, for filter designs.

Signal Models

Models, often called signal models, are mathematical description of physi-
cal systems under consideration. Models are constructed from the measured
data about physical systems. The more a priori information we can incor-
porate into the model, the better model we can obtain. Models fall into the
several classes by the type of underlying mathematical equations, i.e. linear
or nonlinear, state space or I/O, deterministic or stochastic, time-invariant or
varying. Undesirable elements such as disturbances, noises, and uncertainties
of dynamics can be included in the model. In this chapter we focus on linear
time-invariant systems that are represented by state-space models with deter-
ministic disturbances or stochastic noises.
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Filter Objectives

There can be several objectives of filter designs. Actually, the stability and
the performance even under the above undesirable elements are considered
important. Since it is difficult to obtain a filter under general frameworks, the
filter can be designed first for simpler models, i.e. nominal systems and then
for general systems, i.e. uncertain systems. Thus, the goals can be categorized
into some simpler intermediate ones, such as:

• Nominal stability. The estimation error approaches zero for signal models
without uncertainties.

• Nominal performance. The filter satisfies the performance criteria for sig-
nal models without uncertainties.

• Robust stability. The estimation error approaches zero for signal models
with uncertainties.

• Robust performance. The filter satisfies the performance criteria for signal
models with uncertainties.

Filter Structure

Filters are of various forms. Filters can process the given information linearly
or nonlinearly. Linear filters are easily implemented and have less computation
load than nonlinear filters.

Filters can be divided into FIR filters and IIR filters on the basis of the
duration of the impulse response. Recursive IIR filters such as the conventional
Kalman filters are especially popular in control areas, but they may have
some undesirable problems, such as divergences. Nonrecursive FIR filters are
popular in signal processing areas and may have some good properties, such
as the guaranteed stability.

Filters can be independent of the initial state information. There are some
cases in which initial state information is not used: the initial state information
is unknown, as it often is in the real world; the measurement of the initial
state is avoided due to its cost; or the initial state can be ignored because we
can use certain approaches that do not require the initial state information.
Kalman filters are implemented under the assumption that the information of
the initial state is available. Thus, filter coefficients or gains may be dependent
on the initial state, which does not make sense.

Unbiasedness has been considered to be a good property in the literature
for a long time. Conventionally, this is checked after a filter is designed. How-
ever, the unbiased property can be built in to a filter during the design phase.

Performance Criterion

The performance criteria can take many forms. An optimal filter is obtained
by minimizing or mini-maximizing a certain performance criterion. In the
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stochastic case, the performance criterion such as a minimum variance can be
cast as a minimization problem. In the deterministic case, the performance
criteria such as H∞ can be posed mathematically as a mini-maximization
problem. A least squares operation for the minimization performance crite-
rion can be used for both deterministic and stochastic systems.

In this chapter we introduce either IIR or FIR filters which correspond
to receding horizon controls in Chapter 3. In particular, we introduce a dual
IIR filter whose gain is dual to the receding horizon control. Then we will
introduce optimal FIR filters which use the receding horizon concept for the
measured data. FIR filters are implemented each time with the finite recent
measurement information.

For FIR filters, linearity, unbiasedness, FIR structure, and the indepen-
dence of the initial state information are built in during the design phase. In
the signal processing area, the FIR filter has been widely used for unmodelled
signals due to its many good properties, such as guaranteed stability, linear
phase(zero error), robustness to temporary parameter changes and round-off
error, etc. Good properties of FIR filters for the state estimation will be in-
vestigated in this chapter.

The sections with an asterisk are provided for a general system matrix A.
Complex notation is required, so that this section may be skipped for a first
reading.

The organization of this chapter is as follows. In Section 4.2, dual filters
to receding horizon LQ controls are introduced with inherent properties. In
Section 4.3, minimum variance FIR filters are first given for the nonsingular
matrix A for simplicity and then for the general (possibly singular) matrix
A. Both batch and recursive forms are provided. In Section 4.4, dual filters
to receding horizon H∞ controls are introduced with inherent properties. In
Section 4.5, minimax FIR filters, such as L2-E FIR filters and H∞ filters, are
introduced.

4.2 Dual Infinite Impulse Response Filter Based on
Minimum Criterion

Consider a linear discrete-time state-space model:

xi+1 = Axi + Bui + Gwi (4.1)
yi = Cxi + vi (4.2)

where xi ∈ �n is the state, and ui ∈ �l and yi ∈ �q are the input and
measurement respectively. At the initial time i0 of the system, the state xi0

is a random variable with a mean x̄i0 and a covariance Pi0 . The system noise
wi ∈ �p and the measurement noise vi ∈ �q are zero-mean white Gaussian
and mutually uncorrelated. The covariances of wi and vi are denoted by Qw
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Fig. 4.1. Filter components

and Rv respectively, which are assumed to be positive definite matrices. These
noises are uncorrelated with the initial state xi0 . (A,C) of the system (4.1)
and (4.2) is assumed to be observable, so that the stable observer can be
constructed.

Before we introduce a filter for (4.1) and (4.2), we will compare the LQ
control with the Kalman filter and investigate structural differences between
them. The LQ control (2.48) with a zero reference signal and a terminal time
i0 + N is given by

u∗
i = −[R + BT Ki+1B]−1BT Ki+1Axi (4.3)

where Riccati Equation (2.45) is given by

Ki = AT [I + Ki+1BR−1BT ]−1Ki+1A + Q (4.4)

with

Ki0+N = Qf (4.5)

Meanwhile, the receding horizon control (3.56) is given by

u∗
i = −R−1BT [I + K1BR−1BT ]−1K1Axi

= −[R + BT K1B]−1BT K1Axi (4.6)

where K1 is computed from (4.4) with the terminal condition KN = Qf . Ki

in the control gain matrix in (4.3) is time-varying and K1 in the gain matrix
(4.6) is fixed. That is, K1 is said to be frozen at time 1 calculating from time
N in backward time.
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The standard Kalman filter (2.179) can be written as

x̂i+1|i = Ax̂i|i−1 + APiC
T (CPiC

T + Rv)−1(yi − Cx̂i|i−1) (4.7)

where

Pi+1 = APiA
T − APiC

T (Rv + CPiC
T )−1CPiA

T + GQwGT (4.8)
= A[I + PiC

T R−1
v C]−1PiA

T + GQwGT

with the given initial condition Pi0 .
The Kalman filter is said to be dual to the LQC in the sense that two Ric-

cati equations, (4.4) and (4.8), become the same each other if some variables
are changed as

A ←→ AT

B ←→ CT

Q ←→ GQwGT

R ←→ Rv

Ki+1 ←→ Pi

(4.9)

Note that indexes of Ki+1 and Pi are based for backward and forward com-
putations respectively. We can see that the filter gain in (4.7) and the control
gain in (4.3) are similar to each other, in the sense that the transpose of the
control gain (4.3) replaced by (4.9) is the same as the filter gain in (4.7). In
that view, the corresponding closed-loop system matrices of the LQC and the
Kalman filter are also similar. It is noted that properties of the Kalman filter
can be obtained from properties of the LQC, since they are structurally dual.

Likewise, we can introduce the dual filter to the receding horizon LQ con-
trol as follows:

x̂i+1|i = Ax̂i|i−1 + APNCT (Rv + CPNCT )−1(yi − Cx̂i|i−1) + Bui (4.10)

where PN is obtained from (4.8) starting from P1. It turns out that the new
filter (4.10) is just the Kalman filter with a frozen gain from (4.7). This filter
will be called the dual filter to the RHLQC or the Kalman filter with frozen
gains throughout this book. The final weighting matrix Qf and K1 in the
RHLQC correspond to the initial covariance P1 and PN in the dual filter as

Qf ←→ P1 (4.11)
K1 ←→ PN (4.12)

Since some important properties of the receding horizon controls are ob-
tained in Chapter 3, we can utilize those results for the investigation of the
stability and additional properties of the dual filter.

Theorem 4.1. Suppose that (A,C) is observable. The dual filter to the RHLQC
is stabilized under the following condition:

P1 ≥ AP1A
T + GQwGT − AP1C

T (Rv + CP1C
T )−1CP1A

T (4.13)
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In other words, the following matrix is Hurwitz:

A − APNCT (Rv + CPNCT )−1C

Proof. The closed-loop system matrix of the filter is as follows:

A − APNCT (CPNCT + Rv)−1C = A(I − PNCT (CPNCT + Rv)−1C) (4.14)

where the transpose of the right side is

(I − CT (CPNCT + Rv)−1CPN )AT (4.15)

The original matrix (4.14) is stable if and only if its transpose (4.15) is stable.
Compare (4.15) with the closed-loop system matrix of the control

(I − B(BT K1B + R)−1BT K1)A (4.16)

which is obtained with the changes listed in (4.9) and in this case Ki =
PN+1−i. Therefore, the above result follows from Theorem 3.6. This completes
the proof.

The error covariance of the filter is bounded above by a constant matrix as in
the following theorem.

Theorem 4.2. The error covariance matrix of the dual filter to the RHLQC
x̂i|i−1, i.e. P r

i at time i, is bounded as the following inequality

P ∗
i ≤ P r

i ≤ PN+1 + Θi−i0 [P r
i0 − PN+1]Θ(i−i0)T

where P ∗
i is the covariance matrix of the optimal Kalman filter and P r

i =
E[(x̂i|i−1 − xi)(x̂i|i−1 − xi)T ].

Proof. From the state-space model and the dual filter to the RHLQC, error
dynamics are represented as

ei+1 = (A − LC)ei − Gwi + Lvi (4.17)

where L = APNCT (Rv + CPNCT )−1.
From the error dynamics we can obtain the propagating error covariance

P r
i+1 = (A − LC)P r

i (A − LC) + GQwGT + LRvLT (4.18)

If we use the following results:

APNCT (Rv + CPNCT )−1CPNAT = LCPNAT

= APNCT LT = L(Rv + CPNCT )LT

then we can easily have
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PN+1 = (A − LC)PN (A − LC)T + GQwGT + LRvLT (4.19)

Define

Ti
�
= P r

i − PN+1 (4.20)

Subtracting (4.19) from (4.18) yields

Ti+1 = (A − LC)[Ti + PN+1 − PN ](A − LC)T (4.21)
≤ (A − LC)Ti(A − LC)T (4.22)

Therefore, we can obtain Ti by evaluating recursively, and finally we have

Ti ≤ Θi−i0Ti0Θ
(i−i0)T

where Θ = A − LC. Thus, we have

P r
i ≤ PN+1 + Θi−i0 [P r

i0 − PN+1]Θ(i−i0)T

from which follows the result. This completes the proof.

It is noted that, as in the receding horizon control, the steady-state filter
has the following bounds:

P r
∞ ≤ PN+1 (4.23)

since Θi−i0 → 0 as i goes to ∞.

4.3 Optimal Finite Impulse Response Filters Based on
Minimum Criterion

4.3.1 Linear Unbiased Finite Impulse Response Filters

The concept of FIR filters was given in Section 1.3 and is also depicted in
Figure 4.2.

The FIR filter can be represented by

x̂k|k−1 =
k−1∑

i=k−N

Hk−iyi +
k−1∑

i=k−N

Lk−iui (4.24)

for discrete-time systems, where N is a filter horizon. The IIR filter has a
similar form to (4.24), with k − N replaced by the initial time i0. For IIR
and FIR types, the initial state means xi0 and xk−N respectively. The FIR
filter (4.24) does not have an initial state term and the filter gain must be
independent of the initial state information.
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Fig. 4.2. Receding horizon filter

It is noted that a standard Kalman filter (4.7) has an initial state term
and the filter gain depends on the initial state information, such as

x̂k|k−1 = Mk−i0xi0 +
k−1∑
i=i0

Hk−iyi +
k−1∑
i=i0

Lk−iui (4.25)

As can be seen in (4.24), FIR filters make use of finite measurements of inputs
and outputs on the most recent time interval [k − N, k], called the receding
horizon or horizon.

Since filters need to be unbiased as a basic requirement, it is desirable that
the linear FIR filter (4.24) must be unbiased. The unbiased condition for the
FIR filter (4.24) can be

E[x̂k|k−1] = E[xk] (4.26)

for any xk−N and any ui on k − N ≤ i ≤ k − 1.
If there exist no noises on the horizon [k−N, k−1], x̂k|k−1 and xk become

deterministic values and x̂k|k−1 = xk. This is a deadbeat property, as seen in
Figure 4.3. Thus, the constraint (4.26) can be called the deadbeat condition.

Among linear FIR filters with the unbiased condition, optimal filters will
be obtained to minimize the estimation error variance in the next section.
These filters are called minimum variance FIR (MVF) filters.
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Fig. 4.3. Deadbeat property without noise

4.3.2 Minimum Variance Finite Impulse Response Filters with
Nonsingular A

Batch Form

The system (4.1) and (4.2) will be represented in a batch form on the most
recent time interval [k−N, k], called the horizon. We assume that the system
matrix A is nonsingular. The case of a general matrix A will be discussed in
the next section. On the horizon [k−N, k], the finite number of measurements
is expressed in terms of the state xk at the current time k as follows:

Yk−1 = C̄Nxk + B̄NUk−1 + ḠNWk−1 + Vk−1 (4.27)

where

Yk−1
�
= [yT

k−N yT
k−N+1 · · · yT

k−1]
T (4.28)

Uk−1
�
= [uT

k−N uT
k−N+1 · · · uT

k−1]
T (4.29)

Wk−1
�
= [wT

k−N wT
k−N+1 · · · wT

k−1]
T (4.30)

Vk−1
�
= [vT

k−N vT
k−N+1 · · · vT

k−1]
T

and C̄N , B̄N , ḠN are obtained from

C̄i
�
=

⎡⎢⎢⎢⎢⎢⎣
CA−i

CA−i+1

CA−i+2

...
CA−1

⎤⎥⎥⎥⎥⎥⎦ =
[

C̄i−1

C

]
A−1 (4.31)
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B̄i
�
= −

⎡⎢⎢⎢⎢⎢⎣
CA−1B CA−2B · · · CA−iB

0 CA−1B · · · CA−i+1B
0 0 · · · CA−i+2B
...

...
...

...
0 0 · · · CA−1B

⎤⎥⎥⎥⎥⎥⎦
=
[

B̄i−1 −C̄i−1A
−1B

0 −CA−1B

]
(4.32)

Ḡi
�
= −

⎡⎢⎢⎢⎢⎢⎣
CA−1G CA−2G · · · CA−iG

0 CA−1G · · · CA−i+1G
0 0 · · · CA−i+2G
...

...
...

...
0 0 · · · CA−1G

⎤⎥⎥⎥⎥⎥⎦
=
[

Ḡi−1 −C̄i−1A
−1G

0 −CA−1G

]
(4.33)

1 ≤ i ≤ N

The noise term ḠNWk−1 +Vk−1 in (4.27) can be shown to be zero-mean with
covariance ΞN given by

Ξi
�
= Ḡi

[
diag(

i︷ ︸︸ ︷
Qw Qw · · · Qw)

]
ḠT

i +
[
diag(

i︷ ︸︸ ︷
Rv Rv · · · Rv)

]
=

⎡⎣ Ḡi−1

[
diag(

i−1︷ ︸︸ ︷
Qw Qw · · · Qw)

]
ḠT

i−1 +
[
diag(

i−1︷ ︸︸ ︷
Rv Rv · · · Rv)

]
0

0 Rv

⎤⎦
+
[

C̄i−1

C

]
A−1GQwGT A−T

[
C̄i−1

C

]T

=
[

Ξi−1 0
0 Rv

]
+
[

C̄i−1

C

]
A−1GQwGT A−T

[
C̄i−1

C

]T

(4.34)

An FIR filter with a batch form for the current state xk can be expressed as a
linear function of the finite measurements Yk−1 (4.28) and inputs Uk−1 (4.29)
on the horizon [k − N, k] as follows:

x̂k|k−1 = HYk−1 + LUk−1 (4.35)

where

H
�
=
[
HN HN−1 · · · H1

]
L

�
=
[
LN LN−1 · · · L1

]
and matrices H and L will be chosen to minimize a given performance criterion
later.
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Equation (4.35) can be written as

x̂k|k−1 = H(C̄Nxk + B̄NUk−1 + ḠNWk−1 + Vk−1) + LUk−1 (4.36)

Taking the expectation on both sides of (4.36), the following relations are
obtained:

E[x̂k|k−1] = HC̄NE[xk] + (HB̄N + L)Uk−1

To satisfy the unbiased condition, E[x̂k|k−1] = E[xk], irrespective of the input,
the following constraint must be met:

HC̄N = I, HBN = −L (4.37)

Substituting (4.37) into (4.36) yields

x̂k|k−1 = xk + HḠNWk−1 + HVk−1 (4.38)

Thus, the estimation error can be represented as

ek
�
= x̂k|k−1 − xk = HḠNWk−1 + HVk−1 (4.39)

The objective now is to obtain the optimal gain matrix HB , subject to the un-
biasedness constraint or the deadbeat constraint (4.37), in such a way that the
estimation error ek of the estimate x̂k|k−1 has minimum variance as follows:

HB = arg min
H

E[eT
k ek] = arg min

H
E tr[ekeT

k ]

= arg min
H

tr[HḠNQNGT
NHT + HRNHT ] (4.40)

where

QN =
[
diag(

N︷ ︸︸ ︷
Qw Qw · · · Qw)

]
and RN =

[
diag(

N︷ ︸︸ ︷
Rv Rv · · · Rv)

]
(4.41)

Before obtaining the solution to the optimization problem (4.40), we introduce
a useful result on a constraint optimization.

Lemma 4.3. Suppose that the following general trace optimization problem is
given:

min
H

tr
[
(HA − B)C(HA − B)T + HDHT

]
(4.42)

subject to
HE = F (4.43)

where C = CT > 0, D = DT > 0, tr(M) is the sum of the main diagonal of
M , and A, B, C, D, E, and F are constant matrices and have appropriate
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dimensions. The solution to the optimization problem (4.42) and (4.43) is as
follows:

H =
[
F B

] [ (ET Π−1E)−1ET Π−1

CAT Π−1(I − E(ET Π−1E)−1ET Π−1)

]
(4.44)

where Π
�
= ACAT + D. H has an alternative representation as

H =
[
F B

] [W1,1 W1,2

WT
1,2 W2,2

]−1 [
ET

AT

]
D−1 (4.45)

where

W1,1
�
= ET D−1E (4.46)

W1,2
�
= ET D−1A (4.47)

W2,2
�
= AT D−1A + C−1 (4.48)

Proof. For convenience, partition the matrix H in (4.43) as

HT =
[
h1 h2 · · · hn

]
(4.49)

From HE = F , the sth unbiasedness constraint can be written as

ET hs = fs, 1 ≤ s ≤ n (4.50)

where fs is the sth column vector of F . In terms of the partitioned vector hs,
the cost function (4.42) is represented as

n∑
s=1

[
(hT

s A − bT
s )C(hT

s A − bT
s )T + hT

s Dhs

]
(4.51)

where bs is the sth column vector of B. It can be seen that the sth constraint
(4.50) and sth term in the summation (4.51) are dependent only on hs, not
hp, p �= s. Thus, the optimization problem (4.43) is reduced to n independent
optimization problems

min
hs

(hT
s A − bT

s )C(hT
s A − bT

s )T + hT
s Dhs (4.52)

subject to
ET hs = fs (4.53)

for 1 ≤ s ≤ n. Obtaining the solutions to each optimization problem (4.53)
and putting them together, we can finally obtain the solution to (4.42) and
(4.43).

In order to solve the optimization problem, we establish the following cost
function:
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φs
�
= (hT

s A − bT
s )C(hT

s A − bT
s )T + hT

s Dhs + λT
s (ET hs − fs)

= hT
s (ACAT + D)hs − bT

s CAT hs − hT
s ACbs + bT

s Cbs

+ λT
s (ET hs − fs) (4.54)

where λs is the sth vector of a Lagrange multiplier, which is associated with
the sth unbiased constraint. Under the constraint (4.53), hs will be chosen to
optimize (4.52) with respect to hs and λs for s = 1, 2, · · · , n.

In order to minimize φs, two necessary conditions

∂φs

∂hs
= 0 and

∂φs

∂λs
= 0

are necessary, which give

hs = (ACAT + D)−1(ACbs −
1
2
Eλs) = Π−1(ACbs −

1
2
Eλs) (4.55)

where Π = ACAT + D and the inverse of Π is guaranteed since C > 0 and
D > 0. Pre-multiplying (4.55) by ET , we have

ET hi = ET Π−1(ACbs −
1
2
Eλs) = fs (4.56)

where the second equality comes from (4.50). From (4.56), we can obtain

λs = 2(ET Π−1E)−1[ET Π−1ACbs − fs]

from which hs is represented as

hT
s = [fT

s − bT
s CAT Π−1E](ET Π−1E)−1ET Π−1 + bT

s CAT Π−1

by using (4.55). H is reconstructed from hs as follows:

H = BCAT Π−1
[
I − E(ET Π−1E)−1ET Π−1

]
+ F (ET Π−1E)−1ET Π−1

=
[
F B

] [ (ET Π−1E)−1ET Π−1

CAT Π−1(I − E(ET Π−1E)−1ET Π−1)

]
(4.57)

Now, we shall derive a more compact form by using variables (4.46), (4.47),
and (4.48). It is first noted that the nonsingularity of W1,1 is guaranteed to
exist under the assumption that E is of a full rank. The first row block of the
second block matrix in (4.57) can be represented using the defined variables
(4.46)–(4.48) as

(ET Π−1E)−1ET Π−1

=
(

ET
ND−1E − ET D−1A(AT D−1A + C−1)−1AT C−1E

)−1

×
(

ET D−1 − ET D−1A(AT D−1A + C−1)−1AT D−1

)
=
(

W1,1 − W1,2W
−1
2,2 WT

1,2

)−1

(ET D−1 − W1,2W
−1
2,2 AT D−1) (4.58)
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It is observed from (4.46)–(4.48) that

CAT Π−1 = CAT (D−1ACAT + I)−1D−1

= (AT D−1A + C−1)−1AT D−1 = W2,2A
T D−1

and

CAT Π−1E = W2,2A
T D−1E = W−1

2,2 WT
1,2

from which we obtain

CAT Π−1(I − E(ET Π−1E)−1ET Π−1)
= W−1

2,2 AT D−1

− W−1
2,2 WT

1,2(W1,1 − W1,2W
−1
2,2 WT

1,2)
−1(ET D−1 − W1,2W

−1
2,2 AD−1)

= (W2,2 − WT
1,2W

−1
1,1 W1,2)−1WT

1,2W
−1
1,1 ED−1

+ (W2,2 − WT
1,2W

−1
1,1 W1,2)−1AT D−1 (4.59)

where the second equality can be derived from

W−1
2,2 WT

1,2(W1,1 − W1,2W
−1
2,2 WT

1,2)
−1

= W−1
2,2 WT

1,2(I − W−1
1,1 W1,2W

−1
2,2 WT

1,2)
−1W−1

1,1

= W−1
2,2 (I − W T

1,2W
−1
1,1 W1,2W

−1
2,2 WT

1,2)
−1WT

1,2

= (W2,2 − WT
1,2W

−1
1,1 W1,2)−1WT

1,2W
−1
1,1

and

W−1
2,2 − W−1

2,2 WT
1,2(W1,1 − W1,2W

−1
2,2 WT

1,2)
−1W1,2W

−1
2,2

= (W2,2 − WT
1,2W

−1
1,1 W1,2)−1

Substituting (4.58) and (4.59) into (4.57) yields[
(ET Π−1E)−1ET Π−1

CAT Π−1(I − E(ET Π−1E)−1ET Π−1)

]
=
[

(W1,1 − W1,2W
−1
2,2 WT

1,2)
−1 −Z

ZT (W2,2 − WT
1,2W

−1
1,1 W1,2)−1

] [
ET D−1

AT D−1

]
=
[

W1,1 W1,2

WT
1,2 W2,2

]−1 [
ET D−1

AT D−1

]
(4.60)

where Z
�
= (W1,1 −W1,2W

−1
2,2 WT

1,2)
−1W1,2W

−1
2,2 . Therefore, the gain matrix H

in (4.57) can be written as (4.45). This completes the proof.

By using the result of Lemma 4.3, the solution to the optimization problem
(4.40) can be obtained according to the following correspondence:
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A ←− ḠN

B ←− O
C ←− QN

D ←− RN

E ←− C̄N

F ←− I

(4.61)

In the following theorem, the optimal filter gain HB is represented in an
explicit form.

Theorem 4.4. When {A,C} is observable and N ≥ n, the MVF filter
x̂k|k−1 with a batch form on the horizon [k − N, k] is given as follows:

x̂k|k−1 = HB(Yk−1 − B̄NUk−1) (4.62)

with the optimal gain matrix HB determined by

HB = (C̄T
NΞ−1

N C̄N )−1C̄T
NΞ−1

N (4.63)

where Yk−1, Uk−1, C̄N , B̄N , and ΞN are given by (4.28), (4.29), (4.31),
(4.32), and (4.34) respectively.

From Theorem 4.4, it can be known that the MVF filter x̂k|k−1 (4.62)
processes the finite measurements and inputs on the horizon [k−N, k] linearly
and has the properties of unbiasedness and minimum variance by design. Note
that the optimal gain matrix HB (4.63) requires computation only on the
interval [0, N ] once and is time-invariant for all horizons. This means that
the MVF filter is time-invariant. It is a general rule of thumb that, due to the
FIR structure, the MVF filter may also be robust against temporary modelling
uncertainties or round-off errors, as seen in Example 4.1.

It is true that even though the MVF filter x̂k|k−1 (4.62) is designed with
nonzero Q and R, it has the deadbeat property, i.e. x̂k|k−1 = xk, when applied
to the following noise-free observable systems:

xi+1 = Axi + Bui (4.64)
yi = Cxi (4.65)

If there is no noise on the horizon [k − N, k − 1], then x̂k|k−1 and xk become
deterministic. Since x̂k|k−1 is unbiased, x̂k|k−1 must be equal to xk. Since MVF
filter (4.62) is obtained with nonzero Qw and Rv, it may be less sensitive to
noises or disturbances than existing deterministic deadbeat observers that
are obtained from (4.64) and (4.65), as seen in Example 4.2. The deadbeat
property indicates finite convergence time, and thus fast tracking ability for
noise-free systems. Therefore, an MVF filter may have a faster tracking ability
than an IIR filter even with noises.

An MVF filter can be used in many problems, such as fault detection and
diagnosis of various systems, manoeuvre detection and target tracking of fly-
ing objects, and model-based signal processing.
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Recursive Form

In this section, the MVF filter x̂k|k−1 (4.62) with a batch form is represented
in an iterative form for computational advantage in the case of nonsingular
A.

First, the MVF filter x̂k|k−1 (4.62) will be represented in an iterative form.
Define

Ωi
�
= C̄T

i Ξ−1
i C̄i (4.66)

Then it can be represented in the following discrete Riccati Equation using
[Lew86a]:

Ωi+1 = C̄T
i+1Ξ

−1
i+1C̄i+1

= A−T

[
C̄i

C

]T (
∆i +

[
C̄i

C

]
A−1GQwGT A−T

[
C̄i

C

]T )−1[
C̄i

C

]
A−1

= A−T

[
C̄i

C

]T (
∆−1

i − ∆−1
i

[
C̄i

C

]
A−1G ×

{
I + GT A−T

[
C̄i

C

]T

∆−1
i

×
[

C̄i

C

]
A−1G

}
GT A−T

[
C̄i

C

]T

∆−1
i

)−1[
C̄i

C

]
A−1

=
(

I − A−T

[
C̄i

C

]T

∆−1
i

[
C̄i

C

]
A−1G ×

{
I + GT A−T

[
C̄i

C

]T

∆−1
i

×
[

C̄i

C

]
A−1G

}
GT

)
A−T

[
C̄i

C

]T

∆−1
i

[
C̄i

C

]
A−1

=
(

I − A−T (Ωi + CT R−1
v C)A−1G

{
I + GT A−T (Ωi + CT R−1

v C)

× A−1G

}
GT

)
A−T

[
C̄i

C

]T

∆−1
i

[
C̄i

C

]
A−1

=
(

I + A−T (Ωi + CT R−1
v C)A−1GQwGT

)−1

× A−T

[
C̄i

C

]T

∆−1
i

[
C̄i

C

]
A−1 (4.67)

Finally, we have

Ωi+1 = [I + A−T (Ωi + CT R−1
v C)A−1GQwGT ]−1

× A−T (Ωi + CT R−1
v C)A−1 (4.68)

Since Ω1 in the batch form (4.66) can be expressed as

Ω1 = C̄T
1 Ξ−1

1 C̄1 = (CA−1)T (CA−1GQwGT A−T CT + Rv)−1CA−1

= [I + A−T CT R−1
v CA−1GQwGT ]−1A−T CT R−1

v CA−1
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Ω0 = 0 should be satisfied to obtain the above Ω1 in Riccati Equation (4.68).
Let

x̌k−N+i
�
= C̄T

i Ξ−1
i (Yk−N+i−1 − B̄iUk−N+i−1) (4.69)

where

Yk−N+i
�
= [yT

k−N yT
k−N+1 · · · yT

k−N+i]
T

Uk−N+i
�
= [uT

k−N uT
k−N+1 · · · uT

k−N+i]
T

Then, on the interval 0 ≤ i ≤ N − 1, the subsidiary estimate x̌k−N+i+1 at
time k − N + i + 1 is obtained from the definition (4.69) as follows:

x̌k−N+i+1

= C̄T
i+1Ξ

−1
i+1(Yk−N+i − B̄i+1Uk−N+i)

= C̄T
i+1Ξ

−1
i+1

([
Yk−N+i−1 − B̄iUk−N+i−1

yk−N+i

]
+
[

C̄i

C

]
A−1Buk−N+i

)
(4.70)

In (4.70), the matrix C̄T
i+1Ξ

−1
i+1 can be written as

C̄T
i+1Ξ

−1
i+1

= A−T

[
C̄i

C

]T (
∆i +

[
C̄i

C

]
A−1GQwGT A−T

[
C̄i

C

]T )−1

= A−T

[
C̄i

C

]T (
∆−1

i − ∆−1
i

[
C̄i

C

]
A−1G

×
{

Q−1
w + GT A−T

[
C̄i

C

]T

∆−1
i

[
C̄i

C

]
A−1G

}−1

GT A−T

[
C̄i

C

]T

∆−1
i

)
=
(

I − A−T

[
C̄i

C

]T

∆−1
i

[
C̄i

C

]
A−1G

×
{

Q−1
w + GT A−T

[
C̄i

C

]T

∆−1
i

[
C̄i

C

]
A−1G

}−1

GT

)
A−T

[
C̄i

C

]T

∆−1
i

=
(

I − A−T (Ωi + CT R−1
v C)A−1G

×
{

Q−1
w + GT A−T (Ωi + CT R−1

v C)A−1G

}−1

GT

)
A−T

[
C̄i

C

]T

∆−1
i

= [I + A−T (Ωi + CT R−1
v C)A−1GQwGT ]−1A−T

[
C̄i

C

]T

∆−1
i (4.71)

where ∆i is defined as

∆i
�
=
[

Ξi 0
0 Rv

]
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Substituting (4.71) into (4.70) gives

x̌k−N+i+1

= [I + A−T (Ωi + CT R−1
v C)A−1GQwGT ]−1A−T

[
C̄i

C

]T

∆−1
i

×
([

Yk−N+i−1 − B̄iUk−N+i−1

yk−N+i

]
+
[

C̄i

C

]
A−1Buk−N+i

)
= [I + A−T (Ωi + CT R−1

v C)A−1GQwGT ]−1A−T

× [C̄T
i Ξ−1

i (Yk−N+i−1 − B̄iUk−N+i−1) + CT R−1
v yk−N+i

+ (Ωi + CT R−1
v C)A−1Buk−N+i]

and thus the subsidiary estimate x̌k−N+i becomes

x̌k−N+i+1 = [I + A−T (Ωi + CT R−1
v C)A−1GQwGT ]−1A−T [x̌k−N+i

+ CT R−1
v yk−N+i + (Ωi + CT R−1

v C)A−1Buk−N+i] (4.72)

x̌k−N+1 in a batch form (4.70) can be expressed as

x̌k−N+1 = C̄T
1 Ξ−1

1 (yk−N − B̄1Uk−N )
= (CA−1)T (CA−1GQwGT ACT + R)−1(yk−N + CA−1Buk−N )
= [I + A−T CT R−1

v CA−1GQwGT ]−1A−T

× [CT R−1
v yk−N+i + CT R−1

v CA−1Buk−N+i] (4.73)

where x̌k−N = 0 should be satisfied to obtain the same x̌k−N+1 in Riccati
Equation (4.72).

Therefore, from (4.69) and (4.72), the MVF filter x̂k|k−1 with an iterative
form is depicted in Figure 4.4 and given in the following theorem.

Theorem 4.5. Assume that {A,C} is observable and N ≥ n. Then the
MVF filter x̂k|k−1 with an iterative form is given on the horizon [k −N, k] as
follows:

x̂k|k−1 = Ω−1
N x̌k (4.74)

where ΩN and x̌k are obtained from (4.67) and (4.72) respectively.

The recursive filter (4.74) is depicted in Figure 4.4.
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XX

Fig. 4.4. Obtaining the state from recursive equations

4.3.3� Minimum Variance Finite Impulse Response Filters with
General A

Batch Form

If it is assumed that the system matrix is nonsingular, then the derivation
of the FIR filter becomes somewhat easy. Thus, many results are based on
these assumptions. These restrictions may prevent an FIR filter from being
applied to many applications. For example, in the case of high-order systems,
the system matrix may be a sparse matrix so that there is much chance to
have the singularity in the system matrix. Thus it is desirable to derive the
FIR filter for general cases. In this section, the MVF filter is derived based on
the general systems that do not require the inverse of the system matrix.

The system (4.1) and (4.2) will be represented in a batch form on the most
recent time interval [k − N, k], called the horizon. On the horizon [k − N, k],
the finite number of measurements is expressed in terms of the state xk−N at
the initial time k − N on the horizon as follows:

Yk−1 = C̃Nxk−N + B̃NUk−1 + G̃NWk−1 + Vk−1 (4.75)

where

Yk−1
�
= [yT

k−N yT
k−N+1 · · · yT

k−1]
T (4.76)

Uk−1
�
= [uT

k−N uT
k−N+1 · · · uT

k−1]
T (4.77)

Wk−1
�
= [wT

k−N wT
k−N+1 · · · wT

k−1]
T

Vk−1
�
= [vT

k−N vT
k−N+1 · · · vT

k−1]
T

and C̃N , B̃N , and G̃N are obtained from
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C̃i
�
=

⎡⎢⎢⎢⎢⎢⎣
C

CA
CA2

...
CAi−1

⎤⎥⎥⎥⎥⎥⎦ (4.78)

B̃i
�
=

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 0

CB 0 · · · 0 0
CAB CB · · · 0 0

...
...

...
...

...
CAi−2B CAi−3B · · · CB 0

⎤⎥⎥⎥⎥⎥⎦ (4.79)

G̃i
�
=

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 0

CG 0 · · · 0 0
CAG CG · · · 0 0

...
...

...
...

...
CAi−2G CAi−3G · · · CG 0

⎤⎥⎥⎥⎥⎥⎦ (4.80)

The noise term G̃NWk−1 +Vk−1 in (4.75) can be shown to be zero-mean with
covariance ΠN given by

ΠN = G̃NQN G̃T
N + RN (4.81)

where QN and RN are given in (4.41). The current state xk can be represented
using the initial state xk−N on the horizon as

xk = ANxk−N +
[
AN−1G AN−2G · · · G

]
Wk−1

+
[
AN−1B AN−2B · · · B

]
Uk−1 (4.82)

Augmenting (4.75) and (4.82) yields the following linear model:[
Yk−1

0

]
=
[

C̃N 0
AN −I

] [
xk−N

xk

]
+
[

B̃N

AN−1B · · · B

]
Uk−1

+
[

G̃N

AN−1G · · · G

]
Wk−1 +

[
Vk−1

0

]
(4.83)

Using Yk−1 (4.76) and Uk−1 (4.77), the FIR filter is represented as

x̂k|k−1 = HYk−1 + LUk−1 (4.84)

By using Equation (4.83), the FIR filter (4.35) can be rewritten as
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x̂k|k−1 =
[
H −I

] [Yk−1

0

]
+ LUk−1,

=
[
H −I

] [ C̃N 0
AN −I

] [
xk−N

xk

]
+
[
H −I

] [ B̃N

AN−1B · · · B

]
Uk−1

+
[
H −I

] [ G̃N

AN−1G · · · G

]
Wk−1 +

[
H −I

] [Vk−1

0

]
+ LUk−1, (4.85)

and taking the expectation on both sides of (4.85) yields the following equa-
tion:

E[x̂k|k−1] = (HC̃N − AN )E[xk−N ] + E[xk] +
[
H −I

]
×
[

B̃N

AN−1B · · · B

]
Uk−1 + LUk−1

To satisfy the unbiased condition, i.e. E[x̂k|k−1] = E[xk], irrespective of the
initial state and the input, the following constraint is required:

HC̃N = AN (4.86)

L = −
[
H −I

] [ B̃N

AN−1B · · · B

]
(4.87)

Substituting (4.86) and (4.87) into (4.85) yields the somewhat simplified equa-
tion as

x̂k|k−1 = xk + HG̃NWk−1 −
[
AN−1G · · · G

]
Wk−1 + HVk−1

ek
�
= x̂k|k−1 − xk = HG̃NWk−1 −

[
AN−1G · · · G

]
Wk−1 + HVk−1

Note that the error between the real state and the estimated state depends
only on H, not L, so that we have only to find H optimizing the give perfor-
mance criterion.

The objective now is to obtain the optimal gain matrix HB , subject to the
unbiasedness constraints (4.86) and (4.87), in such a way that the estimation
error ek of the estimate x̂k|k−1 has minimum variance as follows:

HB = arg min
H

E[eT
k ek] = arg min

H
E tr[ekeT

k ]

= arg min
H

tr[ΦQNΦT + HRNHT ] (4.88)

where Φ = HG̃N −
[
AN−1G · · · G

]
.

By using the result of Lemma 4.3, the solution to the optimization problem
(4.88) can be obtained according to the following correspondence:
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A ←− G̃N

B ←−
[
AN−1G · · · G

]
C ←− QN

D ←− RN

E ←− C̃N

F ←− AN

W1,1 ←− C̃T
NR−1

N C̃N

W1,2 ←− C̃T
NR−1

N G̃N

W2,2 ←− G̃T
NR−1

N G̃N + Q−1
N

(4.89)

The filter gain L can be obtained from (4.87). In the following theorem, we
summarize what we have done so far.

Theorem 4.6. When {A,C} is observable and N ≥ n, for a general A, the
MVF filter x̂k|k−1 with a batch form on the horizon [k − N, k] is given as

x̂k|k−1 =
[
AN AN−1G AN−2G · · · AG G

] [W1,1 W1,2

WT
1,2 W2,2

]−1

×
[

C̃T
N

G̃T
N

]
R−1

N

(
Yk−1 − B̃NUk−1

)
+
[
AN−1B AN−2B AN−3B · · · AB B

]
Uk−1 (4.90)

As can be seen in (4.90), the inverse of the system matrix A does not appear
in the filter coefficients. The batch form proposed in this section requires
the inversion computation of matrices ΞN and C̃T

NΞ−1
N C̃N . The dimension

of these matrices becomes large as the horizon length N increases. To avoid
the inversion computation of large-dimensional matrices, the iterative form is
proposed in the next section.

Recursive Form

Now we introduce how to obtain a recursive form without using the inverse
of A. An system without inputs is concerned for simple derivation. Before
deriving the recursive form of the MVF filter for general systems, we shall
introduce a batch form of the Kalman filter.

Theorem 4.7. On the horizon [k−N k], the Kalman filter can be represented
in a batch form as

x̂k|k−1 =
[
AN AN−1G AN−2G · · · AG G

] [W1,1 + P−1
k−N W1,2

WT
1,2 W2,2

]−1

×
([

P−1
k−N

0

]
x̂k−N +

[
C̃T

N

G̃T
N

]
R−1

N Yk

)
(4.91)
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where k−N is the initial time and the covariance and the estimated value for
the initial state on the horizon are given as Pk−N and x̂k−N respectively. The
solution to Riccati equation for the Kalman filter is given as

Pk =
[
AN AN−1G AN−2G · · · AG G

] [W1,1 + P−1
k−N W1,2

WT
1,2 W2,2

]−1

×
[
AN AN−1G AN−2G · · · AG G

]T (4.92)

Proof. In time-invariant systems we can always assume, without a loss of
generality, that the initial time is 0. Therefore, for simple notations, 0 and N
will be used instead of k−N and N . In other words, we will focus on obtaining
x̂N |N−1 using the information on x̂0|−1, P0, and YN−1 where

Yi
�
= [yT

0 yT
1 · · · yT

i−1]
T (4.93)

for 0 ≤ i ≤ N − 1.
Define variables Li, Mi, and Ni as

Li
�
=
[
Ai Ai−1G Ai−2G · · · AG G

]
(4.94)

Mi
�
=
[

C̃T
i R−1

i C̃i + P−1
0 C̃T

i R−1
i G̃o

i

G̃oT
i R−1

i C̃i G̃oT
i R−1

i G̃o
i + Q−1

i

]
(4.95)

Ni
�
=
[

Mi−1 0
0 Q−1

w

]
(4.96)

Ti
�
=
[

P−1
0

0

]
x̂k−i +

[
C̃T

i

G̃T
i

]
R−1

i Yi (4.97)

where C̃i and G̃i are defined in (4.78)–(4.80) and G̃o
i is the matrix which is

obtained by removing the last zero column block from G̃i, i.e. G̃i =
[
Ḡo

i 0
]
.

Using the defined variables (4.94)–(4.97), we can represent x̂N of (4.91)
and PN of (4.92) as

x̂N = LNN−1
N TN (4.98)

PN = LNN−1
N LT

N (4.99)

First, we will try to derive the batch form of covariance matrix (4.92). Recall
that Riccati equation of the Kalman filter is

Pi+1 = APiA
T + GQwGT − APiC

T (Rv + CPiC
T )−1CPiA

T (4.100)

which is used to solve for the estimation error covariance matrix.
Given an initial covariance matrix P0, we can calculate P1 from (4.100) as

follows:

P1 = AP0A
T + GQwGT − AP0C

T (Rv + CP0C
T )−1CP0A

T (4.101)
= A(P−1

0 + CT R−1
v C)−1AT + GQwGT (4.102)

=
[
A G

] [P−1
0 + CT R−1

v C 0
0 Q−1

w

]−1 [
A G

]T (4.103)
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(4.103) can be written in terms of Li and Ni as

P1 = L1N
−1
1 LT

1 (4.104)

By an induction method, Pi+1 will be calculated from Pi of the batch form,
i.e. Pi = LiN

−1
i LT

i . Before proceeding, we introduce the following relation:

Ni + LT
i CT R−1

v CLi = Mi (4.105)

which is proved as follows. If Si is defined as

Si
�
=
[
Ai−1G Ai−2G · · · AG G

]
(4.106)

then Li can be represented as

Li =
[
Ai Si

]
(4.107)

from which we have

LT
i CT R−1

v CLi =
[

AiT CT R−1
v CAi AiT CT R−1

v CSi

ST
i CT R−1

v CAi ST
i CT R−1

v CSi

]
(4.108)

The four block elements in Mi can be expressed recursively:

C̃T
i R−1

i C̃i = C̃T
i−1R

−1
i−1C̃i−1 + ATiCT R−1

v CAi (4.109)

C̃T
i R−1

i G̃o
i =

[
C̃T

i−1R
−1
i−1G̃

o
i−1 0

]
+ ATiCT R−1

v CSi (4.110)

G̃oT
i R−1

i G̃o
i =

[
G̃oT

i−1R
−1
i−1G̃

o
i−1 0

0 0

]
+ ST

i CT R−1
v CSi (4.111)

Using (4.108) and (4.109)–(4.111), we have

Ni + LT
i CT R−1

v CLi (4.112)

=

⎡⎣ C̃T
i−1R

−1
i−1C̃i−1

[
C̃T

i−1R
−1
i−1G̃i−1 0

]
[
C̃T

i−1R
−1
i−1G̃i−1 0

]T [ G̃oT
i−1R

−1
i−1G̃

o
i−1 + Q−1

i−1 0
0 Q−1

w

]⎤⎦
+
[

AiT CT R−1
v CAi AiT CT R−1

v CSi

ST
i CT R−1

v CAi ST
i CT R−1

v CSi

]
(4.113)

=
[

C̃T
i R−1

i C̃i C̃T
i R−1

i G̃i

G̃T
i R−1

i C̃i G̃T
i R−1

i G̃i + Q−1
i

]
= Mi (4.114)

Starting from (4.100) and using the relation (4.105), we obtain the Pi+1

of the batch form

Pi+1 = ALi

{
N−1

i − N−1
i LT

i CT (Rv + CLiN
−1
i LT

i CT )−1CLiN
−1
i

}
LT

i A

+ GQwGT ,

= ALi(Ni + LT
i CT R−1

v CLi)−1LT
i A + GQwGT

= ALiM
−1
i LT

i A + GQwGT = Li+1N
−1
i+1L

T
i+1 (4.115)



4.3 Optimal Finite Impulse Response Filters Based on Minimum Criterion 183

Now, using the solution of Riccati equation, i.e. the covariance matrix repre-
sented in the batch form, we obtain a batch form of the Kalman filter. The
dynamic equation for the Kalman filter is written as follows:

x̂i+1|i = Ax̂i|i−1 + APiC
T (Rv + CPiC

T )−1(yi − Cx̂i|i−1)

= (A − APiC
T (Rv + CPiC

T )−1C)x̂i|i−1

+ APiC
T (Rv + CPiC

T )−1yi (4.116)

where Pi is given by (4.92). To obtain a batch form of the Kalman filter, we
shall also use an induction method.

First, by using (4.100), x̂1|0 will be obtained from x̂0|−1 and P0:

x̂1|0 = (A − AP0C
T (Rv + CP0C

T )−1C)x̂0|−1 + AP0C
T (Rv + CP0C

T )−1y0,

= A(I + P0C
T R−1

v C)−1x̂0|−1 + AP0C
T (Rv + CP0C

T )−1y0

= A(P−1
0 + CT R−1

v C)−1P−1
0 x̂0|−1 + AP0C

T (I + R−1
v CP0C

T )−1R−1
v y0,

= A(P−1
0 + CT R−1

v C)−1(x̂0|−1 + CT R−1
v y0)

In terms of Li, Ni, and Ti, x̂1|0 can be written as

x̂1|0 = L1N
−1
1 T1 (4.117)

By an induction method, x̂i+1|i will be calculated from x̂i|i−1 of the batch
form, i.e. x̂i|i−1 = LiN

−1
i Ti.

First, observe that the first and second terms on the right-hand side of the
Kalman filter reduce to{

A − APiC
T (Rv + CPiC

T )−1C

}
x̂i|i−1

= ALi

{
N−1

i − N−1
i LT

i CT (Rv + CLiN
−1
i LT

i CT )−1CLiN
−1
i

}
Ti

= ALi

{
Ni + LT

i CT R−1
v CLi

}−1

Ti = ALiM
−1
i Ti (4.118)

and

APiC
T (Rv + CPiC

T )−1yi

= ALiN
−1
i LT

i CT (Rv + CLiN
−1
i LT

i CT )−1yi

= ALi(I + N−1
i LT

i CT R−1
v CLi)−1N−1

i LT
i CT R−1

v yi

= ALi(Ni + LT
i CT R−1

v CLi)−1LT
i CT R−1

v yi

= ALiM
−1
i LT

i CT R−1
v yi (4.119)

respectively. Substituting (4.118) and (4.119) into the Kalman filter yields
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x̂i+1|i = ALiM
−1
i Ti + ALiM

−1
i LT

i CT R−1
v yi

= ALiM
−1
i (Ti + LT

i CT R−1
v yi)

= ALiM
−1
i

{[
P−1

0

0

]
x̂0|−1 +

[
C̃T

i

G̃T
i

]
R−1

i Yi + LT
i CT R−1

v yi

}
(4.120)

Combining the second and third terms in brackets in (4.120) yields

x̂i+1|i =
[
ALi 0

] [M−1
i 0
0 0

]{[
P−1

0

0

]
x̂0|−1 +

[
C̃T

i+1

[G̃o
i+1|0]T

]
R−1

i+1Yi+1

}
=
[
ALi G

] [M−1
i 0
0 Qw

]{[
P−1

0

0

]
x̂0|−1 +

[
C̃T

i+1

G̃T
i+1

]
R−1

i+1Yi+1

}
= Li+1N

−1
i+1Ti+1

where G and Qw in the first and second matrix blocks on the right-hand side
of the second equality have no effect on the equation. This completes the
proof.

In the following theorem, we will show that the FIR filter can be obtained
from the appropriate initial covariance and mean with the Kalman filter.

Theorem 4.8. The FIR filter (4.35) can be obtained by replacing x̂k−N and
Pk−N in the Kalman filter (4.91) by (C̃T

NΠ−1
N C̃N )−1 and Pk−N C̃T

NΠ−1
N Yk

respectively.

Proof. Using (4.89), we can write Pk−N and P−1
k−N x̂k−N as

Pk−N = (W1,1 − W1,2W
−1
2,2 WT

1,2)
−1 (4.121)

P−1
k−N x̂k−N = −W1,2W

−1
2,2 G̃T R−1

N Yk (4.122)

Replacing x̂k−N with Pk−N C̃T
NΠ−1

N Yk and using (4.122) yields[
P−1

k−N

0

]
x̂k−N +

[
C̃T

N

G̃T
N

]
R−1

N Yk =
[

2C̃T
NR−1

N Yk − W1,2W
−1
2,2 G̃T

NR−1
N Yk

G̃T
NR−1

N Yk

]
=
[

2I −W1,2W
−1
2,2

0 I

] [
C̃T

N

G̃T
N

]
R−1

N Yk

By the following relation:[
W1,1 + P−1

k−N W1,2

WT
1,2 W2,2

]−1 [
2I −W1,2W

−1
2,2

0 I

]
=
{[

1
2I 1

2W1,2W
−1
2,2

0 I

] [
W1,1 + P−1

k−N W1,2

WT
1,2 W2,2

]}−1

=
[

W1,1 W1,2

WT
1,2 W2,2

]−1

(4.123)

it can be shown that (4.91) with the prescribed Pk−N and x̂k−N is equivalent
to (4.90). This completes the proof.
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In the following lemma, x̂k−N and Pk−N in Theorem 4.8 are shown to be
computed recursively.

Lemma 4.9. x̂k−N and Pk−N in Theorem 4.8 can be computed from

x̂k−N = (CT R−1
v C + P̂N )−1(CT R−1

v yk−N + ω̂N ) (4.124)
Pk−N = (CT R−1

v C + P̂N )−1 (4.125)

where P̂N and ŵN can be obtained from the following recursive equations:

P̂i+1 = AT CT R−1
v CA + AT P̂iA

− AT (CT R−1
v C + P̂i)G

{
Q−1

w + GT AT (CT R−1
v C + P̂i)AG

}−1

× GT (CT R−1
v C + P̂i)A (4.126)

and

ω̂i+1 = AT CT Rvyk−i + Aω̂i

− AT (CT R−1
v C + P̂i)G

{
Q−1

w + GT AT (CT R−1
v C + P̂i)AG

}−1

× GT (CT R−1
v yk−i + ω̂i) (4.127)

with P̂1 = 0, ŵ1 = 0, and 1 ≤ i ≤ N − 1.

Proof. Define Ĉi, N̂i, Π̂i, P̂i, and ω̂i as

Ĉi
�
=

⎡⎢⎢⎢⎢⎢⎣
CA
...

CAi−3

CAi−2

CAi−1

⎤⎥⎥⎥⎥⎥⎦ =
[

C

Ĉi−1

]
A (4.128)

N̂i
�
=

⎡⎢⎢⎢⎣
CG 0 · · · 0

CAG CG · · · 0
...

...
...

...
CAi−2G CAi−3G · · · CG

⎤⎥⎥⎥⎦ (4.129)

Π̂i
�
= N̂iQi−1N̂

T
i + Ri−1 (4.130)

P̂i
�
= ĈT

i Π̂−1
i Ĉi (4.131)

ŵi
�
= ĈT

i Π̂−1
i Yk−i+1,k−1 (4.132)

Yk−i+1,k−1
�
= [yT

k−i+1 yT
k−i+2 · · · yT

k−1]
T (4.133)

Using (4.128)–(4.131), Pk−N and x̂k−N can be represented as
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Pk−N = (C̃T
NΠ−1

N C̃N )−1 = (CT R−1
v C + P̂N )−1 (4.134)

x̂k−N = Pk−N (CT R−1
v yk−N + ĈT

N Π̂−1
N Yk−N+1,k−1) (4.135)

In order to obtain x̂k−N and Pk−N , we have only to know ĈT
N Π̂−1

N Yk−N+1,k−1

and P̂N , which are calculated recursively.
First, a useful equality is introduced for obtaining the recursive form:

Π̂−1
i+1 = (N̂i+1QiN̂

T
i+1 + Ri)−1

=
([

Rv 0
0 Π̂i

]
+
[

C

Ĉi

]
GQwGT

[
C

Ĉi

]T )−1

= ∆−1
i − ∆−1

i

[
C

Ĉi

]
G

{
Q−1

w + GT AT

[
C

Ĉi

]T

∆−1
i

[
C

Ĉi

]
AG

}−1

GT

[
C

Ĉi

]
∆−1

i (4.136)

where

∆i =
[

Rv 0
0 Π̂i

]
(4.137)

Pre- and post-multiplying on both sides of (4.136) by[
C

Ĉi

]
A (4.138)

we have

P̂i+1 = AT CT R−1
v CA + AT P̂iA

− AT (CT R−1
v C + P̂i)G

{
Q−1

w + GT AT (CT R−1
v C + P̂i)AG

}−1

× GT (CT R−1
v C + P̂i)A (4.139)

Pre-multiplying on both sides of (4.136) by (4.138), we obtain another recur-
sive equation:

ω̂i+1 = AT CT Rvyk−i + Aω̂i

− AT (CT R−1
v C + P̂i)G

{
Q−1

w + GT AT (CT R−1
v C + P̂i)AG

}−1

× GT (CT R−1
v yk−i + ω̂i) (4.140)

After obtaining P̂N from (4.139), we can calculate Pk−N from (4.134). x̂k−N

in (4.135) can be obtained from Pk−N and ω̂N that comes from (4.140). This
completes the proof.
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In the following theorem, we summarize what we have done so far.

Theorem 4.10. For general A, the MVF filter is given on the horizon [k −
N, k] as follows:

x̂k|k−1 = βk (4.141)

where βi is obtained from the following recursive equations:

βk−N+i+1 = Aβk−N+i + APiC
T (Rv + CPiC

T )−1(yk−N+i − Cβk−N+i)
= (A − APiC

T (Rv + CPiC
T )−1C)βk−N+i

+ APiC
T (Rv + CPiC

T )−1yk−N+i (4.142)
Pi+1 = APiA

T + GQwGT − APiC
T (Rv + CPiC

T )−1CPiA
T (4.143)

Here, P0 = (CT R−1
v C + P̂N )−1 and βk−N = P0(CT R−1

v yk−N + ω̂N ). P̂N and
ω̂N are obtained from (4.139) and (4.140) respectively.

Note that (4.142) and (4.143) are in a form of the Kalman filter with a
special initial condition. The recursive filter in Theorem 4.10 is depicted in
Figure 4.5.

XX

Fig. 4.5. Backward and forward estimations for general matrix A
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4.3.4 Numerical Examples for Minimum Variance Finite Impulse
Response Filters

Example 4.1: Robustness of Minimum Variance Finite Impulse Re-
sponse Filters

To demonstrate the validity of the MVF filter, numerical examples on the
discretized model of an F-404 engine [EWMR94] are presented via simulation
studies. The corresponding dynamic model is written as

xk+1 =

⎡⎣0.9305 + δk 0 0.1107
0.0077 0.9802 + δk −0.0173
0.0142 0 0.8953 + 0.1δk

⎤⎦xk +

⎡⎣1
1
1

⎤⎦wk

yk =
[

1 + 0.1δk 0 0
0 1 + 0.1δk 0

]
xk + vk (4.144)

where δk is an uncertain model parameter. The system noise covariance Qw is
0.02 and the measurement noise covariance Rv is 0.02. The horizon length is
taken as N = 10. We perform simulation studies for the system (4.144) with
a temporary modelling uncertainty.

As mentioned previously, the MVF filter is believed to be robust against
temporary modelling uncertainties since it utilizes only finite measurements
on the most recent horizon. To illustrate this fact and the fast convergence,
the MVF filter and the Kalman filter are designed with δk = 0 and compared
when a system actually has a temporary modelling uncertainty. The uncertain
model parameter δk is considered as

δk =
{

0.1, 50 ≤ k ≤ 100
0, otherwise (4.145)

Figure 4.6 compares the robustness of two filters given temporary mod-
elling uncertainty (4.145) for the second state related to turbine temperature.
This figure shows that the estimation error of the MVF filter is remarkably
smaller than that of the Kalman filter on the interval where modelling un-
certainty exists. In addition, it is shown that the convergence of estimation
error is much faster than that of the Kalman filter after temporary modelling
uncertainty disappears. Therefore, it can be seen that the suggested MVF
filter is more robust than the Kalman filter when applied to systems with a
model parameter uncertainty.

Example 4.2: Comparison with Deadbeat Infinite Impulse Response
Filters

It is known that the MVF filter has the deadbeat property without exter-
nal disturbances. Via numerical simulation, we compare the MVF filter with
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Fig. 4.6. Estimation errors of MVF filter and Kalman filter

the conventional deadbeat IIR filter, which is known to be sensitive to external
disturbance.

From the following simple model:

xi+1 = Axi (4.146)
yi = Cxi (4.147)

the deadbeat filter of the partial state zi = Nxi will be obtained as

ŵi+1 = Aoŵi + Lyi (4.148)
ẑi = Mŵi (4.149)

where ẑi estimates zi exactly in a finite time irrespective of the initial state
error. First, it is assumed that there exist matrices W and Ao such that

WA = AoW + LC , N = MW, Ad
o = 0 (4.150)

for some positive integer d. Letting ei = ŵi − Wxi, we have

ei+1 = ŵi+1 − Wxi+1 = Aoŵi + Lyi − WAxi

= Aoŵi + LCxi − WAxi = Aoŵi − AoWxi = Aoei (4.151)

and the estimation error zi−ẑi is represented as Nxi−Mŵi = MWxi−Mŵi =
−Mei. According to (4.150) and (4.151), ei should be zero in a finite time
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so that ẑi becomes equal to zi. How to find out W and Ao is introduced in
[Kuc91]. An MVF filter is obtained from the following system with noise:

xi+1 = Axi + Gwi (4.152)
yi = Cxi + vi (4.153)

This MVF filter is a deadbeat filter for the noise-free system (4.146) and
(4.147). If A, C, and N are given by

A =

⎡⎢⎢⎣
0 1 0 1
0 0 1 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎦ , C =
[

1 0 0 0
0 1 0 0

]
, and N =

[
0 0 1 0
0 0 0 1

]
(4.154)

then the deadbeat filter (4.148) and (4.149) and W satisfying (4.150) are
obtained as

W =

⎡⎣−1 0 0 1
0 0 0 1
0 0 1 0

⎤⎦ (4.155)

ŵi+1 =

⎡⎣0 0 0
1 0 0
0 0 0

⎤⎦ ŵi +

⎡⎣0 −1
1 0
0 0

⎤⎦ yi (4.156)

ẑi =
[

0 0 1
0 1 0

]
ŵi (4.157)

It can be easily seen that A2
o = 0, i.e. d = 2. We compare the deadbeat filter

(4.156) and (4.157) and the MVF filter obtained from (4.152) and (4.153).
For simulation, the system noise covariance Q is 0.2 and the measurement
noise covariance R is 0.4. The horizon length is taken as N = 15. As seen in
Figure 4.7, the deadbeat filter is sensitive to noises. However, the MVF filter
is robust against noises.

4.4 Dual Infinite Impulse Response Filters Based on
Minimax Criterion

In this section, the following linear discrete-time state-space signal model is
considered:

xi+1 = Axi + Bwwi + Bui (4.158)
yi = Cxi + Dwwi (4.159)
zi = Czxi (4.160)

where xi ∈ �n is the state, and ui ∈ �l, yi ∈ �q, and wi ∈ �p are the
input, measurement, and disturbance respectively.
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Fig. 4.7. Comparison between deadbeat filter and MVF filter

Before we introduce a filter for (4.158) and (4.159), we will compare the
H∞ control with the H∞ filter and investigate the structural differences be-
tween them.

The H∞ control (2.146) with a zero reference signal and terminal time if ,
is given by

u∗
i = −R−1BT Λ−1

i+1,if
Mi+1,if

Axi (4.161)

where Riccati equation is given by

Mi,if
= AT [I + Mi+1,if

(BR−1BT − γ−2BwR−1
w BT

w)]−1Mi+1,if
A + Q

= AT Mi+1,if
A − AT Mi+1,if

[(BR−1BT − γ−2BwR−1
w BT

w)Mi+1,if

+ I]−1(BR−1BT − γ−2BwR−1
w BT

w)Mi+1,if
A + Q (4.162)

Use the following relation:

BR−1BT − γ−2BwR−1
w BT

w =
[
B Bw

] [
R 0
0 Rw − γ2

]−1 [
BT

BT
w

]
we have



192 4 Receding Horizon Filters

Mi,if
= AT Mi+1,if

A − AT Mi+1,if

[
B Bw

]
×
{[

BT

BT
w

]
Mi+1,if

[
B Bw

]
+
[

R 0
0 Rw − γ2

]−1}−1[
BT

BT
w

]
Mi+1,if

A

+ Q (4.163)

with

Mif ,if
= Qf (4.164)

Meanwhile, the receding horizon H∞ control is given by

u∗
i = −R−1BT Λ−1

1,NM1,NAxi (4.165)

where M1,N is computed from (4.163) with the terminal condition (4.164) by
replacing if with N . The gain matrices in (4.161) are time-varying, but the
gain M1 in the receding horizon control (4.165) is fixed. That is, M1 is frozen
at the time 1.

The standard H∞ filter can be written from (2.201) as

x̂i+1|i = Ax̂i|i−1 + Bui + Li(yi − Cx̂i|i−1) (4.166)
ẑi = Czx̂i|i−1 (4.167)

where

Li = ASiΓ
−1
i CT (4.168)

and the matrices Si and Γi are given by

Si+1 = ASiΓ
−1
i AT + BwBT

w (4.169)
Γi = I + (CT C − γ−2CT

z Cz)Si (4.170)

where S0 = 0. The recursive equation (4.169) with respect to Si can be written
as

Si+1 = ASiA
T − ASi

[
CT CT

z

]
(4.171)

×
{[

C
Cz

]
Si

[
CT CT

z

]
+
[

I 0
0 −γ2I

]−1}−1[
C
Cz

]
SiA

T + BwBT
w (4.172)

The H∞ filter is said to be dual to the H∞ control in the sense that two Ric-
catti equations become the same as each other if some variables are changed,
such as

A ←→ AT

B ←→ CT

Bw ←→ CT
z

Q ←→ BwBT
w

R ←→ I
Mi ←→ Si

(4.173)
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Note that indexes of Mi+1 and Qi are based on backward and forward compu-
tations respectively. We can see that the filter gain in (4.168) and the control
gain in (4.161) are similar to each other in the sense that the transpose of the
control gain replaced by (4.173) is the same as the filter gain in (4.168). In
that view, the corresponding closed-loop system matrices of the H∞ control
and the H∞ filter are also similar. It is noted that the properties of the H∞
filter can be obtained from that of the dual to the H∞ control, since they are
structurally dual.

Likewise, we can introduce the dual filter to the receding horizon H∞
control as follows:

x̂i+1|i = Ax̂i|i−1 +
[
ASN [I + (CT C − γ−2CT

z Cz)SN ]−1CT

]
× (yi − Cx̂i|i−1) (4.174)

where SN is obtained from (4.169). It turns out that the new filter (4.174) is
just the H∞ filter with a frozen gain from (4.166). This filter will be called the
dual filter to the RH H∞ control or the H∞ filter with frozen gains throughout
this book.

By using the duality (4.173), the inequality (3.234) in Theorem 3.15 is
changed to

K ≥ BwBT
w + LLT

− ΓfΓT
f + (A − LC + ΓfCz)K(A − LC + ΓfCz)T (4.175)

where matrices L and K correspond to H and Qf in (3.234) and Γf =
γ−2AK(I + (CT C − γ−2CT

z Cz)K)−1CT
z .

The stability of the dual filter to the RH H∞ control can be obtained.

Theorem 4.11. The dual filter to the RH H∞ control is stabilized if there
exist K and L satisfying (4.175). In other words, the following matrix is Hur-
witz:

A − ASN [I + {CT C − γ−2CT
z Cz}SN ]−1CT C

where SN is the solution calculated from (4.169) with S0 = K.

Proof. The closed-loop system matrix of the filter is as follows:

A − ASN [I + (CT C − γ−2CT
z Cz)SN ]−1CT C

= A[I − SN [I + (CT C − γ−2CT
z Cz)SN ]−1CT C] (4.176)

where the transpose of the right side is

[I − CT C{I + SN (CT C − γ−2CT
z Cz)}−1SN ]AT (4.177)

The matrix (4.176) is stable if and only if its transpose (4.177) is stable.
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Compare (4.177) with the closed-loop system matrix of the control

[I − BBT {I + MN (BBT − γ−2BwBT
w)}−1MN ]A (4.178)

which is obtained with the changes listed in (4.173) and in this case Si =
MN+1−i and K0 = MN . Therefore, the above result follows from Theorem
3.15. This completes the proof.

The error covariance of the dual filter to the receding horizon H∞ control is
bounded above by a constant matrix as in the following theorem.

Theorem 4.12. If there exist K and L satisfying (4.175), then the dual IIR
filter x̂i has the following bound:∑∞

i=i0
eT

i ei∑∞
i=i0

wT
i wi

≤ γ2 (4.179)

Proof. The error dynamics can be represented as

ei+1 = (A − LNC)ei + (Bw − LNDw)wi (4.180)

where LN is defined in (4.168). Let the function Vi be defined by

Vi = eT
i Kei (4.181)

where K is positive definite. ei0 is assumed to be zero. Then we have

J =
∞∑

i=i0

[
eT

i ei − γ2wT
i wi

]
≤

∞∑
i=i0

[
eT

i ei − γ2wT
i wi

]
+V∞ − Vi0

≤
∞∑

i=i0

[
eT

i ei − γ2wT
i wi + eT

i+1Kei+1 − eT
i Kei

]

=
[

ei

wi

]T

Θ

[
ei

wi

]
≤ 0 (4.182)

where

Θ =

[
(A − LNC)T K(A − LNC) − K + I (A − LNC)T K(Bw − LNDw)

(Bw − LNDw)T K(A − LNC) (Bw − LNDw)T K(Bw − LNDw) − γ2I

]
and the negative semidefiniteness of Θ is proved in a similar way to the cost
monotonicity of the RH H∞ control in Theorem 3.22. This completes the
proof.



4.5 Finite Impulse Response Filters Based on Minimax Criterion 195

4.5 Finite Impulse Response Filters Based on Minimax
Criterion

4.5.1 Linear Unbiased Finite Impulse Response Filters

In this section, the FIR filter without a priori initial state information repre-
sented by

x̂k|k−1 =
k−1∑

i=k−N

Hk−iyi +
k−1∑

i=k−N

Lk−iui (4.183)

is introduced for deterministic systems (4.158) and (4.159).
The system (4.158) and (4.159) will be represented in a standard batch

form on the most recent time interval [k − N, k], called the horizon. On the
horizon [k−N, k], the finite number of measurements is expressed in terms of
the state xk at the current time k as follows:

Yk−1 = C̄Nxk + B̄NUk−1 + ḠNWk−1 + D̄NWk−1 (4.184)

where Yk−1, Uk−1, Wk−1, C̄N , B̄N , and ḠN are given by (4.28), (4.29), (4.30),
(4.31), (4.32), and (4.33) respectively and D̄N is defined by

D̄i
�
=
[
diag(

i︷ ︸︸ ︷
D D · · · D)

]
=
[
diag(D̄i−1,D)

]
(4.185)

1 ≤ i ≤ N (4.186)

An FIR filter with a batch form for the current state xk can be expressed
as a linear function of the finite measurements Yk−1 (4.28) and inputs Uk−1

(4.29) on the horizon [k − N, k] as follows:

x̂k|k−1
�
= HYk−1 + LUk−1 (4.187)

where H and L are gain matrices of a linear filter. It is noted that the filter
defined in (4.187) is an FIR structure without the requirement of any a priori
information about the horizon initial state xk−N .

Substituting (4.184) into (4.187) yields

x̂k|k−1 = HYk−1 + LUk−1

= H(C̄Nxk + B̄NUk−1 + ḠNWk−1 + D̄NWk−1) + LUk−1 (4.188)

Among multiple H and L, we want to choose one that satisfies the following
relation:

x̂k|k−1 = xk for any xk−N and any Uk−1 (4.189)

for a zero disturbance wi = 0. For stochastic systems, the unbiasedness con-
straint E[x̂k|k−1] = E[xk] is an accepted requirement for the filter. If noises
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become zero on the horizon [k−N, k−1], then x̂k|k−1 and xk become determin-
istic values, i.e. x̂k|k−1 = xk. For the corresponding property, if disturbances
become zero on the horizon [k − N, k − 1], then we have

xk+1 = Axk + Buk (4.190)
yk = Cxk (4.191)

where we require x̂k|k−1 = xk. This is called a deadbeat condition and the
model (4.190) and (4.191) is called a nominal model. It is noted that, con-
ventionally, noises are assumed to have zero mean and thus noises fluctuate
around zero. Likewise, the disturbance is assumed to fluctuate around zero.
The relation (4.189) is called an unbiased condition in the deterministic sense,
as seen in Figure 4.8.

Fig. 4.8. Deadbeat property without disturbance

In the case of wi = 0 we have

x̂k|k−1 = H(C̄Nxk − B̄NUk−1) + LUk−1 (4.192)

Therefore, the following constraints are required for the unbiased condition:

HC̄N = I and L = −HB̄N (4.193)

which will be called the unbiased constraint. The FIR filter with the unbiased
constraints for the current state xk can be expressed as

x̂k|k−1 = H(Yk−1 − B̄NUk−1) (4.194)

and substituting (4.193) into (4.188) yields

ek
�
= xk − x̂k|k−1 = H(ḠN + D̄N )Wk−1 (4.195)



4.5 Finite Impulse Response Filters Based on Minimax Criterion 197

4.5.2 L2-E Finite Impulse Response Filters

The objective now is to obtain the optimal gain matrices H and L in such
a way that the worst-case gain between the estimation error of the estimate
x̂k|k−1 and disturbance has a minimum value as follows:

min
H,L

max
wi

[xk − x̂k|k−1]T [xk − x̂k|k−1]∑N
i=1 wT

k−iwk−i

(4.196)

The numerator of the performance criterion (4.196) considers only the current
estimation error. The FIR filter obtain from Equation (4.196) will be called
an L2 − E FIR (LEF) filter. The H and L coming from the performance
criterion (4.196) are dependent on system parameters such as A, B, C, and
G, not dependent on any specific real disturbances.

By using (4.195), (4.196) can be written as

min
H,L

max
Wk−1

WT
k−1(ḠN + D̄N )T HT H(ḠN + D̄N )Wk−1

WT
k−1Wk−1

= min
H,L

λmax

[
(ḠN + D̄N )T HT H(ḠN + D̄N )

]
= min

H,L
λmax

[
H(ḠN + D̄N )(ḠN + D̄N )T HT

]
(4.197)

for H and L satisfying (4.193).
Before obtaining the solution to the optimization problem (4.197), we in-

troduce a useful result in the following lemma.

Lemma 4.13. Suppose that the following general maximum eigenvalue opti-
mization problem is given:

min
H

λmax

[
(HA − B)C(HA − B)T

]
(4.198)

subject to
HE = F (4.199)

where C = CT > 0, D = DT > 0, and A, B, C, D, E, and F are constant
matrices and have appropriate dimensions. The solution to the optimization
problem (4.198) and (4.199) is given by

H =
[
BCAT + (F − BCAT Π−1E)(ET Π−1E)−1ET

]
Π−1 (4.200)

where Π = ACAT .

Proof. If there exists an HB such that

(HBA − B)C(HBA − B)T ≤ (HA − B)C(HA − B)T (4.201)
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where HE = HBE = F and H is arbitrary, we have

αT [(HBA − B)C(HBA − B)T ]α = λmax[(HBA − B)C(HBA − B)T ]αT α

≤ αT (HA − B)C(HA − B)T α

= λmax[(HA − B)C(HA − B)T ]αT α (4.202)

for the vector α that is an eigenvector of (HBA − B)C(HBA − B)T corre-
sponding to λmax(HBA−B)C(HBA−B)T . Since α is nonzero, the following
inequality is obtained from (4.202):

λmax[(HBA − B)C(HBA − B)T ] ≤ λmax[(HA − B)C(HA − B)T ] (4.203)

which means that HB is the solution to the optimization problem (4.198) and
(4.199).

Thus, we try to find out HB such that the inequality (4.201) is satisfied.
In order to make the problem tractable, we change the inequality (4.201) to
a scalar one as

vT (HBA − B)C(HBA − B)T v ≤ vT (HA − B)C(HA − B)T v (4.204)

for arbitrary vector v. It can be seen from the inequality (4.204) that the
minimum value of vT

[
(HA−B)C(HA−B)T

]
v is the left side of the inequality

(4.204).
Now, all that we have to do is to find the minimum value of right side of

the inequality (4.204) with respect to H and show that it is the same as the
left side of (4.204). The right side of (4.204) can be written as

(wT A − vT B)C(wT A − vT B)T (4.205)

where HT v = w. From HE = F in (4.199), w should satisfy

ET w = FT v (4.206)

Now, the following cost function to be optimized is introduced:

φ = (wT A − vT B)C(wT A − vT B)T + λT (ET w − FT v) (4.207)

where λ is the vector of a Lagrange multiplier. In order to minimize φ, two
necessary conditions

∂φ

∂w
= 0,

∂φ

∂λ
= 0 (4.208)

are required, which give

w = (ACAT )−1(ACBT v + Eλ) (4.209)

Substituting (4.209) into (4.206) yields
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λ = (ET Π−1E)−1[−ET Π−1ACBT v + FT v] (4.210)

where Π = ACAT . Thus, w is obtained as

w = Π−1{ACBT + E(ET Π−1E)−1(−ET Π−1ACBT + FT )}v (4.211)

Since HT v = w, H can be written as (4.200). This completes the proof.

By using the result of Lemma 4.3, the solution to the optimization problem
(4.197) can be obtained according to the following correspondences:

A ←− ḠN + D̄N

B ←− O
C ←− I
E ←− C̄N

F ←− I
Π ←− (ḠN + D̄N )(ḠN + D̄N )T

(4.212)

The filter gain L can be obtained from (4.193). In the following theorem, we
summarize what we have done so far.

The following theorem provides the solution to the optimal criterion
(4.196) with the unbiased condition (4.193).

Theorem 4.14. Assume that {A,C} of the given system is observable. The
LEF filter is as follows:

x̂k|k−1 = (C̄T
NΞ−1

N C̄N )−1C̄T
NΞ−1

N (Yk−1 − B̄NUk−1) (4.213)

where

Ξi
�
= ḠiḠ

T
i + D̄iD̄

T
i

=
[

Ḡi−1Ḡ
T
i−1 + D̄i−1D̄

T
i−1 0

0 I

]
+
[

C̄i−1

C

]
A−1GGT A−T

[
C̄i−1

C

]T

=
[

Ξi−1 0
0 I

]
+
[

C̄i−1

C

]
A−1GGT A−T

[
C̄i−1

C

]T

(4.214)

Note that the optimum gain matrix HB (4.196) requires computation only
on the interval [0, N ] once and is time-invariant for all horizons. It is noted
that the estimation (4.213) holds for k ≥ k0 + N .

The LEF filter x̂k|k−1 has the unbiased property when applied to the
nominal systems without disturbances (4.190) and (4.191), whereas the LEF
filter x̂k|k−1 is obtained from systems (4.158) and (4.159) with an additive
system and measurement disturbances wk. The deadbeat property of the LEF
filter is given in the following corollary.
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Corollary 4.15. Assume that {A,C} is observable and N ≥ n. Then, the
LEF filter x̂k|k−1 given by (4.213) provides the exact state when there are no
disturbances on the horizon [k − N, k].

Proof. When there are no disturbances on the horizon [k − N, k], Yk−1 −
B̄NUk−1 is determined by the current state xk as Yk−1 − B̄NUk−1 = C̄Nxk.
Therefore, the following is true:

x̂k|k−1 = HB(Yk−1 − B̄NUk−1)

= (C̄T
NΞ−1

N C̄N )−1C̄T
NΞ−1

N C̄Nxk

= xk

This completes the proof.

Note that the above deadbeat property indicates finite convergence time
and fast tracking ability of the LEF filter. Thus, it can be expected that the
approach would be appropriate for fast estimation and detection of signals
with unknown times of occurrence, which arise in many problems, such as
fault detection and diagnosis of various systems, manoeuvre detection, target
tracking of flying objects, etc.

In this section, the LEF filter x̂k|k−1 in batch form is represented in an
iterative form, for computational advantage, and then shown to be similar
in form to the MVF filter with unknown horizon initial state presented in
[HKK01][KKH02].

Theorem 4.16. Assume that {A,C} is observable and N ≥ n. Then, the
LEF filter x̂k|k−1 is given on the horizon [k − N, k] as follows:

x̂k|k−1 = Ω−1
N x̌k (4.215)

where k ≥ k0 + N and ΩN and x̌k are obtained from following recursive
equations:

Ωi+1 = [I + A−T (Ωi + CT C)A−1GGT ]−1A−T (Ωi + CT C)A−1 (4.216)

x̌k−N+i+1 = [I + A−T (Ωi + CT C)A−1GGT ]−1A−T

[x̌k−N+i + CT yk−N+i + (Ωi + CT C)A−1Buk−N+i] (4.217)

with x̌k−N = 0 and Ω0 = 0.

Proof. If Qw and Rv are replaced with unit matrices in the MVF filter, then
the proof is the same as that of Theorem 4.5.



4.5 Finite Impulse Response Filters Based on Minimax Criterion 201

It is surprising to observe that the LEF filter x̂k|k−1 (4.215) with an iterative
form is the same as the MVF filter with unknown horizon initial state in
[KKP99], where the covariances of the system noise and the measurement
noise are taken as unit matrices.

To summarize, the LEF filter is linear with the most recent finite measure-
ments and inputs, does not require a priori information about the horizon
initial state, and has the unbiased property. Thus, it is surprising, in that a
closed-form solution exists even with the unbiased condition. The LEF filter
can be represented in both a standard batch form and an iterative form that
has computational advantages. The LEF filter with the FIR structure for de-
terministic systems is similar in form to the existing RHUFF for stochastic
systems with the unit covariance matrices of both the system noise and the
measurement noise. Furthermore, owing to the FIR structure, the LEF filter is
believed to be robust against temporary modelling uncertainties or numerical
errors, whereas other minimax filters and H∞ filters with an IIR structure
may show poor robustness in these cases.

The LEF filter will be very useful for many signal processing problems
where signals are represented by state-space models. In addition, the proposed
LEF filter is useful for control problems and can substitute the commonly used
H∞ filters where initial state information is unknown, or can be ignored.

For the following structure and performance criterion:

x̂k|k−1 =
k−1∑
i=k0

Hk−iyi +
k−1∑
i=k0

Lk−iui (4.218)

min
H,L

max
wi

[xk − x̂k|k−1]T [xk − x̂k|k−1]∑k−1
i=k0

wT
i wi

(4.219)

the L2-E IIR filter still holds in the form of an IIR structure.

x̂k|k−1 = (C̄T
k−k0

Ξ−1
k−k0

C̄k−k0)
−1C̄T

k−k0
Ξ−1

k−k0
(Y[k0,k−1]

− B̄k−k0U[k0,k−1]) (4.220)

Note that the estimation (4.220) holds for k ≥ k0 + n, and Y[k0,k−1] and
U[k0,k−1] are defined as follows:

Y[k0,k−1]
�
= [yT

k0
yT

k0+1 · · · yT
k−1]

T

U[k0,k−1]
�
= [uT

k0
uT

k0+1 · · · uT
k−1]

T

However, in this case, the computational time increases as time elapses. A
recursive form of the batch form (4.220) is introduced as follows:

x̂k|k−1 = Ω−1
k x̌k (4.221)

and also is given in the following form as
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x̂k+1|k = Ax̂k|k−1 + Buk + APkCT (I + CPkCT )−1(yk − Cx̂k|k−1) (4.222)

Pk+1 = A(I + PkCT C)−1PkAT + GGT (4.223)

Note that (4.221), (4.222), and (4.223) hold for k ≥ k0 + n.
The starting state and Pk of (4.222) and (4.223) can be obtained from

(4.221) and Ωk. It is surprising to see that the LEF filter with the IIR type
for deterministic systems is similar in form to the Kalman filter for stochastic
systems with unit system and measurement noise covariances.

4.5.3 H∞ Finite Impulse Response Filter

For the design of an FIR filter, we can consider an H∞ performance criterion
as

inf
H,L

sup
wi �=0

∑k
i=k−N{xi − x̂i|i−1}T {xi − x̂i|i−1}∑k

i=k−N wT
i wi

(4.224)

If disturbances are all zero on [k−N , k] and are not zero outside this interval,
then the numerator in (4.224) is not zero while the denominator in (4.224) is
zero. It means that the cost function (4.224) approaches ∞. Thus, the finite
horizon H∞ performance criterion (4.224) does not work in the FIR structure.

Thus, the following infinite horizon H∞ performance criterion is employed
to design an H∞ FIR filter:

inf
H,L

sup
wi �=0

∑∞
i=k0

{xi − x̂i|i−1}T {xi − x̂i|i−1}∑∞
i=k0

wT
i wi

(4.225)

Both the filter horizon and the performance horizon in (4.224) are both [k −
N, k] whereas in (4.225) they are [k − N, k] and [k0 , ∞] respectively.

Similarly to LEF filters, we assume that the filter is of the FIR form
(4.187). Additionally, the unbiased condition (4.189) is adopted.

The starting point in this section is to derive the transfer function Tew(z).
Exogenous input wk satisfies the following state model on Wk−1:

Wk = AwWk−1 + Bwwk (4.226)

where

Aw =

⎡⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0

0 0 I
. . . 0

...
...

. . . . . .
...

0 0 · · · 0 I
0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ RpN×pN , Bw =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
...
I

⎤⎥⎥⎥⎥⎥⎦ ∈ RpN×p (4.227)

Thus, we have W (z) = (zI − Aw)−1Bww(z).
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It follows from (4.184) that

Yk−1 − B̄NUk−1 = C̄Nxk + (ḠN + D̄N )Wk−1 (4.228)

Pre-multiplying (4.228) by H and using the unbiasedness constraint HC̄N = I
gives

ek = x̂k|k−1 − xk = H(ḠN + D̄N )Wk−1 (4.229)

From (4.226) and (4.229) we can obtain Tew(z) as follows:

Tew(z) = H(ḠN + D̄N )(zI − Aw)−1Bw (4.230)

Using Lemma 2.13, we have the following theorem for the optimal H∞
FIR filter:

Theorem 4.17. Assume that the following LMI problem is feasible:

min
F,X

γ∞ subject to⎡⎢⎢⎣
−X XAw XBw 0

Aw
T X −X 0 S0

Bw
T X 0 −γ∞I 0
0 ST

0 0 −γ∞I

⎤⎥⎥⎦ < 0

where

S0 = (ḠN + D̄N )T MFT + (ḠN + D̄N )T HT
0 (4.231)

H0 = (C̄T
N C̄N )−1C̄T

N (4.232)

and columns of M consist of the basis of the null space of C̄T
N . Then, the

optimal gain matrix of the H∞ FIR filter (4.187) is given by

H = FMT + H0

Proof. According to the bounded real lemma, the condition ‖Tew(z)‖∞ < γ∞
is equivalent to⎡⎢⎢⎣

−X XAw XBu 0
Au

T X −X 0 (ḠN + D̄N )T HT

Bu
T X 0 −γ∞I 0
0 H(ḠN + D̄N ) 0 −γ∞I

⎤⎥⎥⎦ < 0 (4.233)

The equality constraint HC̄N = I can be eliminated by computing the null
space of C̄T

N . If we use following correspondences in Lemma A.3:

A → C̄T
N

X → HT

Y → I

A⊥ → C̄N (C̄T
NCN )−1

X = A⊥Y + MV → HT = C̄N (C̄T
NCN )−1 + MF
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then it can be seen that all solutions to the equality constraint HC̄N = I are
parameterized by

H = FMT + H0 (4.234)

where F is a matrix containing the independent variables. Replacing H by
FMT + H0, the LMI condition in (4.233) is changed into the one in the
Theorem 4.17. This completes the proof.

4.5.4∗ H2/H∞ Finite Impulse Response Filters

The H2 filter is to estimate the state using the measurements of yi so that
the H2 norm from wi to the estimation error is minimized.

Here, we consider the H2 FIR filter. Using the result (2.268) in Section
2.7, we have the following theorem for an H2 FIR filter:

Theorem 4.18. Assume that the following LMI problem is feasible:

min
F,W

tr(W )

subject to[
W ST

0

S0 I

]
> 0

where S0 and H0 are given in (4.231) and (4.232), and columns of M consist
of the basis of the null space of C̄T

N .
Then the optimal gain matrix of the H2 FIR filter (4.187) is given by

H = FMT + H0, L = −HB̄N

Proof. The H2 norm of the transfer function Tew(z) in (4.230) is obtained by

‖Tew(z)‖2
2 = tr

(
H(ḠN + D̄N )P (ḠN + D̄N )T HT

)
where

P =
∞∑

i=0

Ai
uBuBT

u (AT
u )i

Since Ai
u = 0 for i ≥ N, we obtain

P =
∞∑

i=0

Ai
uBuBT

u (AT
u )i =

N−1∑
i=0

Ai
uBuBT

u (AT
u )i = I

Thus we have

‖Tew(z)‖2
2 = tr

{
H(ḠN + D̄N )(ḠN + D̄N )T HT

}
(4.235)

Introduce a matrix variable W such that
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W > H(ḠN + D̄N )(ḠN + D̄N )T HT (4.236)

Then tr(W ) > ‖TH(z)‖2
2. By the Schur complement, (4.236) is equivalently

changed into [
W H(ḠN + D̄N )

(ḠN + D̄N )T HT I

]
> 0 (4.237)

Hence, by minimizing tr(W ) subject to HC̄N = I and the above LMI, we
can obtain the optimal gain matrix H for the H2 FIR filter. The equality
constraint HC̄N = I can be eliminated in exactly the same way as in the H∞
FIR filter. This completes the proof.

From the viewpoint that the square of the H2 norm is the error variance due
to white noise with unit intensity, we can easily show that ‖Tew(z)‖2

2 in (4.235)
is the error variance as follows:

‖Tew(z)‖2
2 = E{eT

k ek} = tr
(
E{ekeT

k }
)

= tr
(
H(ḠN + D̄N )E{Wk−1W

T
k−1}(ḠN + D̄N )HT

)
= tr

(
H(ḠN + D̄N )(ḠN + D̄N )HT

)
Using the LMI representation for the H2 FIR filter, we can obtain the

mixed H2/H∞ FIR filters. Let us define γ∗
2 to be the ‖Tew(z)‖2

2 due to the
optimal H2 FIR filter. Under the constraint that the estimation error is guar-
anteed to be bounded above by αγ∗

2 for α > 1, we try to find out the optimal
H∞ filter. We have the following theorem for the mixed H2/H∞ FIR filter:

Theorem 4.19. Assume that the following LMI problem is feasible:

min
W,X,F

γ∞

subject to
tr(W ) < αγ∗

2 , where α > 1[
W ST

0

S0 I

]
> 0 (4.238)⎡⎢⎢⎣

−X XAu XBu 0
Au

T X −X 0 S0

Bu
T X 0 −γ∞I 0
0 ST

0 0 −γ∞I

⎤⎥⎥⎦ < 0 (4.239)

where S0 and H0 are given in (4.231) and (4.232) and MT is the basis of the
null space of C̄T

N . Then, the gain matrix of the mixed H2/H∞ FIR filter of
the form (4.187) is given by

H = FM + H0

Proof. So clear, hence omitted.
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The above mixed H2/H∞ FIR filtering problem allows us to design the
optimal FIR filter with respect to the H∞ norm while assuring a prescribed
performance level in the H2 sense. By adjusting α > 0, we can trade off the
H∞ performance against the H2 performance.

The H2 FIR filter can be obtained analytically from [KKH02]

HB = (C̄T
NΞ−1

N C̄N )−1C̄T
NΞ−1

N

Thus we have

γ∗
2 = tr(HBΞNHT

B)

where ΞN are obtained from (4.214).
It is noted that γ∞ in Theorem 4.19 is minimized for a guaranteed H2

norm. On the contrary, γ2 can be minimized for a guaranteed H∞ norm as
follows:

min
W,X,F

γ2

subject to
tr(W ) < γ2

(4.238) (4.240)⎡⎢⎢⎣
−X XAu XBu 0

Au
T X −X 0 S0

Bu
T X 0 −αγ∞I 0
0 ST

0 0 −αγ∞I

⎤⎥⎥⎦ < 0 (4.241)

for α > 1.

Example 4.3

To illustrate the validity of the H∞ and mixed H2/H∞ FIR filters, numerical
examples are given for a linear discrete time-invariant state-space model from
[KKP99]

xk+1 =
[

0.9950 0.0998
−0.0998 0.9950 + δk

]
xk +

[
0.1
0.1

]
uk +

[
1 0
1 0

]
wk (4.242)

yk = [1 0]xk + [0 1]wk

where δk is a model uncertain parameter. In this example, H2 and H2 FIR
filters are Kalman and MVF filters respectively. We have designed a mixed
H2/H∞ filter with N = 10, α = 1.3, and δk = 0. Table 4.1 compares the H2

and H∞ norms of the conventional IIR filters and the FIR filters. It is shown
that performances of the mixed H2/H∞ FIR filter lie between those of the
H2 FIR filter and the H∞ FIR filter. In the case that there is no disturbance
and the real system is exactly matched to the model, the performances of IIR
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filters seem better than those of FIR filters. However, it is not guaranteed to
be true in real applications. As mentioned previously, it is general that the
FIR filter is robust against temporary modelling uncertainties, since it utilizes
only finite measurements on the most recent horizon. To illustrate this fact
and the fast convergence, we applied the mixed FIR H2/H∞ filter to a system
which actually has temporary uncertainty. The uncertain model parameter δk

is considered as

δk =
{

1, 50 ≤ k ≤ 100
0, otherwise

Figure 4.9(a) compares the estimation errors of the mixed H2/H∞ FIR filter
with those of the H2 and the H∞ filter of IIR type in the case that the
exogenous input wk is given by

wk = 0.1

[
e−

k
30

e−
k
30

]

and Figure 4.9(b) compares the estimation errors in the case that the exoge-
nous input wk is given by

wk =
[

w1,k

w2,k

]
, where w1,k ∼ (0, 1), w2,k ∼ (0, 1)

In both cases, it is clearly shown that the mixed H2/H∞ FIR filter is more
robust against the uncertainty and faster in convergence. Therefore, it is ex-
pected that the FIR filter can be usefully used in real applications.

Table 4.1. H2 and H∞ norm at N = 10 with α = 1.3

H∞ norm H2 norm
H∞ filter 2.0009 2.0223
MV filter 2.9043 1.8226

H∞ FIR filter 4.2891 3.7295
MVF filter 5.4287 2.7624

Mixed H2/H∞ FIR filter 4.4827 3.1497

4.6 References

The dual filter to the receding horizon LQC appeared and its stability was first
discussed in [KP77c]. The terminology “Kalman filter with the frozen gain”
was used in [BLW91]. The guaranteed performance using the duality and the
monotonicity condition for the filter in Theorem 4.1 appeared in [JHK04],
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Fig. 4.9. Mixed H2/H∞ FIR filter for system (4.242)
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where the upper bound of the estimation error in Theorem 4.2 is derived
in parallel with Theorem 3.13. The special cases for the trace minimization
problem in Lemma 4.3 appeared in many references. General results are proved
in this book for further uses.

There are several known results on FIR filters for limited models. For
special discrete stochastic systems, linear FIR filters were introduced in
[Jaz68][Sch73][Bux74] [Bie75][BK85]. For deterministic discrete-time systems
with zero noises, a least-squares filter with an FIR structure was given in
[LL99]. Some filters without using the initial state information were intro-
duced by a modification from the Kalman filter [DX94], [KKP99]. These filters
handle the infinite covariance of the initial state without any consideration of
optimality, which requires some conditions such as nonsingularity of the sys-
tem matrix A. In this chapter, FIR filters are introduced for general models
having no limited conditions, such as zero system noises and the nonsingular-
ity of the system matrix A.

The MVF filter with nonsingular A in Theorem 4.4 and its recursive form
within each horizon in Theorem 4.5 appeared in [KKH02]. The MVF filter with
general A in Theorem 4.6, the batch form of the Kalman filter in Theorem 4.7,
and a recursive form within each horizon in Theorem 4.10 are first introduced
in [JHK04]. The recursive computation for the initial value of the Kalman
filter in Theorems 4.8 and 4.9 appeared in [HKK99] and their proofs in this
chapter are somewhat different from the originals.

The dual filter to the receding horizon H∞ control and its stability in
Theorem 4.11 and the H∞ norm preserving property in Theorem 4.12 are
first introduced in [JHK04]. The special cases for the eigenvalue minimization
problem in Lemma 4.13 appeared in many references. General results are
proved in this book for further uses. The deadbeat filter appears in [Kuc91].

The LEF filter for deterministic systems in Theorem 4.14 and its recursive
form in Theorem 4.16 appeared in [HKK02]. The H∞ FIR filter in Theorem
4.17 is first introduced in this book.

4.7 Problems

4.1. Suppose that, in dual IIR filters (4.10), the difference ei0 between the real
state xi0 and the estimated one x̂i0 at the initial time satisfies the following
inequality:

ei0e
T
i0 ≤ PN+1 + (A − LC)−(i−i0)(Pd − PN+1)(A − LC)−(i−i0)T (4.243)

for all i = i0, i0 + 1, · · · and a fixed matrix Pd > PN+1, where L =
APNCT (Rv + CPNCT )−1. Show that (xi − x̂i|i−1)(xi − x̂i|i−1)T < Pd in
the case that disturbances do not show up.
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4.2. Consider the dual IIR filter (4.10).

(1) If Pi is the value of the optimal error variance when

Ji0,i
�
= E[(xi − x̂i|i−1)T (xi − x̂i|i−1)|y1, y2, · · · , yi−1] (4.244)

is minimized, show that the inequality J∗
i0,i+1 − J∗

i0,i ≤ 0 holds under the
following condition:

(A − LiC)Pi(A − LiC)T + GQwGT + LiRvL
T
i − Pi ≤ 0 (4.245)

where Li = APiC
T (Rv + CPiC

T )−1 and J∗
i0,i = min(4.244).

(2) Show that A − LiC should be Hurwitz in the inequality (4.245).
(3) Show the following matrix inequality:[

I + C(ejwI − A)−1Li

]
(Rv + CPiC

T )
[
I + LT

i (e−jwI − AT )−1CT

]
≥ Rv

4.3. Consider the following model:

xk+1 =
[

0.9950 0.0998
−0.0998 0.9950 + δk

]
xk +

[
0.1
0.1

]
uk +

[
1 0
1 0

]
wk (4.246)

yk = [1 0]xk + vk (4.247)

where uncertain model parameter δk is defined in (4.146), Qw = 0.1I, and
Rv = 0.1. The initial state is taken as xT

0 = [2 2].

(1) Derive the steady-state Kalman filter and find its poles.
(2) The control input is taken as a constant value by 1. Via simulation, com-

pare the transient response of the Kalman filter with that of the MVF filter
with horizon size 5. Repeat the simulations while changing the horizon size
and discuss how the transient response of FIR filters is changed.

4.4. Assume that wk and vk are not uncorrelated in the system (4.1) and (4.2)
and their covariances are given by

E

[
wk

vk

] [
wT

k vT
k

]
=
[

Qw Swv

ST
wv Rv

]
(4.248)

Find out the MVF filter for the above case.

4.5. Let P1,i and P2,i be the solutions of two DREs

Pi+1 = APiA
T − APiC

T [CPiC
T + R]−1CPiA

T + Q (4.249)

with the same A,C and R matrices but different Q matrices Q1, Q2 and with
initial conditions P1(0) = P1 ≥ 0 and P2(0) = P2 ≥ 0 respectively. Show that
the difference between the two solutions P̃i = P2,i−P1,i satisfies the following
equation:
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P̃i+1 = AcP̃iA
T
c − Λi(R + CP2,iC

T )Λi + Q̃ (4.250)

where

Ac
�
= A − AP1,iC

T (R + CP1,iC
T )−1C

Λi
�
= AcP̃iC

T (R + CP2,iC
T )−1

Q̃
�
= Q1 − Q2

4.6. Consider an MVF filter and an augmented linear model (4.27) without
control efforts

Yk−1 = C̄Nxk + ḠNWk−1 + Vk−1 (4.251)

(1) Show that the minimum variance unbiased FIR filter x̂k|k−1 = HYk−1 for
the criterion

E[‖HYk−1 − xk‖2]

is determined so that each singular value σi

(
H(ḠNQN ḠT

N + RN )
1
2

)
is

minimized. (σ1(·) ≥ σ2(·) ≥ · · · )
(2) In order to handle the high risk more efficiently, we may employ the fol-

lowing criterion:

2γ2 log E exp(
1

2γ2
‖HYk−1 − xk‖2) (4.252)

Show that, in order to minimize the performance criterion (4.252), we have
only to solve the following LMI:

min
H

γ2 log det
[

I γ−1MT

γ−1M I

]−1

subject to
[

I γ−1MT

γ−1M I

]
> 0

HC̄N = I

where M is defined by

M
�
= H

[
ḠN I

] [Qw 0
0 Rv

]
(4.253)

(3) Show the following inequality:

E[‖HYk−1 − xk‖2] ≤ 2γ2 log E exp(
1

2γ2
‖HYk−1 − xk‖2) (4.254)
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Note that it can be seen from the inequality (4.254) that the optimal solution
to (4.252) is not an optimal one to a quadratic error variance.

4.7. Show that an unbiased condition (4.86) for general A is reduced to one
(4.37), i.e. HC̄N = I, under the assumption that A is nonsingular.

4.8. Consider an MVF smoother in the following form:

x̂k−h|k =
k−1∑

i=k−N

Hk−iyi +
k−1∑

i=k−N

Lk−iui (4.255)

As in an FIR filter, the FIR smoother is required to be unbiased and minimize
the error variance E[(x̂k−h|k − xk−h)T (x̂k−h|k − xk−h)]. In this problem, we
assume that the system matrix A is invertible.

(1) Show that the following linear equation is obtained from (4.1) and (4.2):

Yk−1 = ĈNxk−h + B̂NUk−1 + ĜNWk−1 + Vk−1

where

ĈN
�
=
[

C̄N−h

C̃h

]
, ĜN

�
=
[

ḠN−h 0
0 G̃h

]
, B̂N

�
=
[

B̄N−h 0
0 B̃h

]
(2) Obtain the optimal FIR smoother with the above notation.
(3) Assume h = N . Show that the above FIR smoother can be calculated from

the following recursive equation:

x̂k−N |k = (CT R−1
v C + P̂N )−1(CT R−1

v yk−N + ω̂N ) (4.256)

where P̂i and ŵi are obtained from

P̂i+1 = AT CT R−1
v CA + AT P̂iA

− AT (CT R−1
v C + P̂i)G

{
Q−1

w + GT AT (CT R−1
v C + P̂i)AG

}−1

× GT AT (CT R−1
v C + P̂i)A (4.257)

ω̂i+1 = AT CT R−1
v yk−N+i + Aω̂i

− AT (CT R−1
v C + P̂i)G

{
Q−1

w + GT AT (CT R−1
v C + P̂i)AG

}−1

× GT AT (CT R−1
v yk−N+i + ω̂i) (4.258)

with P̂0 = 0 and ŵ0 = 0.
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4.9. In MVF filters, we assume that the horizon size is greater than or equal
to the system order. This assumption can be relaxed if the pseudo inverse is
used as x̂k|k−1 = Ω+

N x̌k, where ΩN and x̌k are obtained from (4.68) and (4.72)
respectively. Show that x̂k|k−1 = Ω+

N x̌k is the minimum norm solution to the
following performance criterion:

min
xk

‖Yk−1 − B̄NUk−1 − C̄Nxk‖2
Ξ−1

N

(4.259)

where Yk−1, Uk−1, B̄N , C̄N and Ξk are defined as in (4.27) and (4.34).

4.10. Consider an autoregressive (AR) model signal given by

xi+1 =
l∑

m=0

amxi−m + vi+1 (4.260)

where vi is an uncorrelated process noise with zero mean and variance σ and
am is a finite sequence with ap−1 �= 0.

(1) Represent the AR process (4.260) as a state-space model with Xi =
[xi−l+1 ... x1]T .

(2) The above signal (4.260) is transmitted through l different channels
h1, ..., hl and measured with some noises such as

Yi = HXi + Wi

where

Yi =

⎡⎢⎣ y1,i

...
yl,i

⎤⎥⎦ , H =

⎡⎢⎣h1

...
hl

⎤⎥⎦ , Wi =

⎡⎢⎣w1,i

...
wl,i

⎤⎥⎦
as seen in Figure 4.10. Find out the MVF filter x̂k|k−1 = FYk−1 for the
noises Wi with zero means and E[WiW

T
i ] = Q.

4.11. In Section 4.3, two MVF filters (4.90) and (4.62) and (4.63) are derived
for a general matrix A and a nonsingular matrix A respectively. Show that
(4.62) and (4.63) can be obtained from (4.90) under the assumption of a
nonsingular matrix A.

4.12. Consider the following signal:

zi =
ao,i√

2
+

bo,i(−1)i

√
2

+
N−1∑
k=1

[
ak,i cos

(
2πki

T

)
+ bk,i sin

(
2πki

T

)]
+ vi (4.261)

where N is the number of harmonic components presented in zi, vi is the white
Gaussian measurement noise with mean 0 and variance σ2, and {ak, bk; k =
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kx

lh
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1h

| 1ˆk kx −

1,kw
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2,ky
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Fig. 4.10. Multi-channel optimal FIR filter

0, 1, 2, · · · , N−1} are the Fourier coefficients of the kth harmonic components.
Then, the state model for the signal zi can be represented as

xi+1 = Axi (4.262)
zi = Cxi + vi (4.263)

where

A =

⎡⎢⎢⎢⎢⎢⎣
1 0
0 −1

Θ1

. . .
ΘN−1

⎤⎥⎥⎥⎥⎥⎦
Θk =

[
cos kθ sin kθ
− sin kθ cos kθ

]
C =

[
1√
2

1√
2

1 0 1 · · · 1 0
]

where θ = 2π
T . Here, the state xi is given by

xi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃1,i

x̃2,i

x̃3,i

x̃4,i

...
x̃2N−1,i

x̃2N,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

(−1)ib0

a1 cos θ + b1 sin θ
−a1 sin θ + b1 cos θ

...
aN−1 cos[(N − 1)θ] + bN−1 sin[(N − 1)θ]
−aN−1 sin[(N − 1)θ] + bN−1 cos[(N − 1)θ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1) Obtain the MVF filter.
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(2) If the measured signal zi is given by

zi = cos

(
πi

6

)
+ vi (4.264)

where vi is zero mean with covariance 0.001, using the result of (1), obtain
the Fourier coefficient {ak, bk; k = 0, 1, 2, · · · , N − 1} with the following
variables:

M = 6 (filter length)
N = 12 (the number of harmonics)
T = 24

Note:

ak(i) = x2k+1(i) cos(kθi) − x2k+2(i) sin(kθi)
bk(i) = x2k+1(i) sin(kθi) + x2k+2(i) cos(kθi), (k = 1, 2, ..., N − 1)

(3) Plot the frequency response of the above MVF filter.

4.13. Consider the following optimal FIR smoother:

x̂k−h|k =
k−1∑

i=k−N

Hk−iyi +
k−1∑

i=k−N

Lk−iui (4.265)

(1) Determine Hi and Li of the FIR smoother for the following performance
criterion:

min
H,L

max
wi

[xk−h − x̂k−h|k]T [xk−h − x̂k−h|k]∑N
i=1 wT

k−iwk−i

(4.266)

(2) Determine Hi and Li of the FIR smoother for the following performance
criterion:

inf
H,L

sup
wi �=0

∑∞
i=k0

{xi−h − x̂i−h|i}T {xi−h − x̂i−h|i}∑∞
i=k0

wT
i wi

(4.267)

Use the notation of Problem 4.8.

4.14. Show that an LEF filter has a guaranteed H∞ norm as follows:

sup
wk∈ �2

‖x̂k|k − xk‖2

‖wk‖2
<
√

Nλmax{(ḠN + D̄N )T HT H(ḠN + D̄N )} (4.268)

where ‖ · ‖ is a two norm on [0,∞], and ḠN and D̄N are defined in (4.185)
and (4.33) respectively.
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4.15. Derive an L2-E FIR filter again without a requirement of the nonsin-
gularity of A.

4.16. Consider the linear discrete time-invariant state-space model as

xk+1 =
[

0.9950 0.0998
−0.0998 0.9950

]
xk +

[
1
1

]
uk +

[
0.1
0.1

]
wk

yk =
[
1 1
]
xk + vk (4.269)

where the initial state is taken as xo
T = [0 0] and the system noise covariance

Q is 0.01 and the measurement noise covariance R is 0.01.

(1) Compute the error covariance of the FIR filter and Kalman filter on round-
off digits of fourth, third and second with horizon size 5.

(2) From your simulation result in (1), explain why the error covariance of an
FIR filter is smaller than the error covariance of a Kalman filter.



5

Output Feedback Receding Horizon Controls

5.1 Introduction

In this chapter, it is assumed that the output can be measured and the input
is known. Controls that use only the measured output and the known control
are called output feedback controls, which are an important class of controls.
There are different approaches for output feedback controls.

The first approach is a state-observer-based output feedback control. It can
be called a blind combination approach, where output feedback controls can be
obtained by merely combining state feedback controls with state estimators.
There exist many well-known state feedback controls, such as LQC in Chapter
2 or LQ RHC in Chapter 3, and many state estimators, such as Luenburger
observers for deterministic systems and Kalman filters for stochastic systems
in Chapter 2 or FIR filters in Chapter 4. This approach is easy to implement.
However, it has no built-in optimality. It is noted that the stability of overall
output feedback systems is determined by those of the controller and the
observer.

The second approach is a predictor-based output feedback control. It can
be called a predictor-based optimization approach. One can obtain predictors
for the future states from measured outputs and known inputs and these
predictors are considered in the performance criterion. The optimal control
for linear systems turns out to be a function of the current estimated state.
GPC can be approached this way and provided as output feedback controls,
as seen in exercises.

The third approach is a global optimization approach. Usually, the opti-
mal control may not provide the output feedback structure. Thus, we intro-
duce controls with a built-in output feedback structure as a requirement. The
performance criterion is optimized subject to controls with a finite memory
feedback structure. Fortunately, the optimal control for linear systems is given
in the form of an output feedback control.
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The performance criterion can be defined on the infinite horizon or the
receding horizon. In all the above approaches, the infinite horizon and the
receding horizon can be utilized.

In addition to static and dynamic controls, output feedback controls can
be given as a linear combination of finite measurements of inputs and outputs,
which is called the finite memory control (FMC). An unbiased condition is
introduced in various filters in Chapter 4. Even this unbiased condition can be
extended to output feedback controls, particularly for FMCs. In this chapter,
we focus on output feedback controls with a finite memory structure and an
unbiased condition.

The organization of this chapter is as follows. In Section 5.2, a blind combi-
nation approach is covered. The predictor-based approach is given in Section
5.3. A special case of I/O systems is introduced for GPC. They are transformed
to the state-space model. The direct approaches appeared in the exercises. The
global optimization approach over receding horizons with the quadratic cost
for linear stochastic systems results in LQFMC, which is given in Section 5.5.
The global optimization approach over receding horizons with the minimax
cost for linear deterministic systems results in the L2-E and H∞ FMCs, which
are given in Section 5.6.

In this chapter, the finite horizons for the filter and the control are denoted
by Nf and Nc in order to distinguish them.

5.2 State-observer-based Output Feedback Controls

Fig. 5.1. State-observer-based output feedback controls

In the blind combination approach, output feedback receding horizon con-
trols can be obtained by merely combining the state feedback receding horizon
controls with some filters or observers.

Stochastic Systems

Consider the following system:
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xi+1 = Axi + Bui + Gwi (5.1)
yi = Cxi + vi (5.2)

where xi ∈ �n, ui ∈ �l and yi ∈ �q are the state, the input, and the mea-
surement respectively. At the initial time k0, the state xk0 is a random vari-
able with a mean x̄k0 and a covariance Pk0 . The system noise wi ∈ �p and
the measurement noise vi ∈ �q are zero mean white Gaussian and mutually
uncorrelated. The covariances of wi and vi are denoted by Qw and Rv respec-
tively, which are assumed to be positive definite matrices. These noises are
uncorrelated with the initial state xk0 .

The Kalmam filters are the most popular filters or observers for linear
stochastic systems in Chapter 2. We can also use Kalman filters with frozen
gains or MVF filters in Chapter 4. For a typical example, combining a receding
horizon LQ control in Chapter 3 with an MVF filter in Chapter 4 can be taken.
Thus, we have

uk = −R−1BT [I + K1BR−1BT ]−1K1Ax̂k|k−1 (5.3)

where x̂k|k−1 is obtained from

x̂k|k−1 = (C̄T
Nf

Ξ−1
Nf

C̄Nf
)−1C̄T

Nf
Ξ−1

Nf
(Yk−1 − B̄Nf

Uk−1) (5.4)

Here, Yk−1, Uk−1, C̄Nf
, B̄Nf

and ΞNf
are defined in (4.76), (4.77), (4.31),

(4.32) and (4.214) respectively and K1 is obtained from

Kj = AT Kj+1A − AT Ki+1B[R + BT Kj+1B]−1BT Kj+1A + Q

= AT Kj+1[I + BR−1BT Kj+1]−1A + Q

KNc
= Qf

Note that it is assumed in (5.4) that A is invertible.
This method is easy to implement. However, it has no optimality. The sta-

bility of the observer-based output feedback control for the stochastic system
can be investigated such as in Section 5.5.4.

Deterministic Systems

Consider the following systems:

xi+1 = Axi + Bui + Bwwi (5.5)
yi = Cxi + Cwwi (5.6)

where xi ∈ �n, ui ∈ �l, and yi ∈ �q are the state, the input, and the
measurement respectively. Note that CwBT

w = 0.
The most popular filters or observers are H∞ filters for the linear deter-

ministic systems in Chapter 2. We can also use H∞ filters with frozen gains or
the H∞ FIR filters in Chapter 4. For a typical example, combining a receding
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horizon H∞ control in Chapter 3 with an H∞ FIR filter in Chapter 4 can be
taken. Thus, we have

uk = −R−1BT Λ−1
k+1,k+Nc

Mk+1,k+Nc
Ax̂k|k−1 (5.7)

where

Mj = AT Λ−1
j+1Mj+1A + Q, j = 1, · · · , Nc − 1

MNc
= Qf

Λj+1 = I + Mj+1(BR−1BT − γ−2BwR−1
w BT

w)

x̂k|k−1 in (5.7) is calculated as

x̂k|k−1 = [FM + (C̄T
Nf

C̄Nf
)−1C̄T

Nf
](Yk−1 − C̄T

Nf
Uk−1)

where the columns of M is the basis of the null space of C̄T
N and F is obtained

from the following LMI:

min
F,X>0

γ∞

subject to⎡⎢⎢⎣
−X XAu XBu 0

Au
T X −X 0 S0

Bu
T X 0 −γ∞I 0
0 ST

0 0 −γ∞I

⎤⎥⎥⎦ < 0

Here, Au and Bu are defined in (4.227) and S0 = (ḠNf
+ D̄Nf

)T MT FT +
(ḠNf

+ D̄Nf
)T ((C̄T

Nf
C̄Nf

)−1C̄T
Nf

)T .
The stability of the observer-based output feedback control for the deter-

ministic system can be investigated such as in Section 5.6.4.

5.3 Predictor-based Output Feedback Controls

For the predictor-based optimization approach, first a predictor is obtained
and then the optimization is carried out with a performance criterion based
on the predictor, as shown in Figure 5.2.

Stochastic Systems

In the system (5.1) and (5.2), the predictor estimates the future state us-
ing the measurements and known inputs, and can be represented as

x̌k+i|k = x(k + i|y0, y1, · · · , yk, u0, u1 , · · · , uk, uk+1, · · · , uk+i−1) (5.8)

If stochastic noises are considered in plant models, then the predictor can
be expressed using the expectation
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Fig. 5.2. Predictor-based output feedback control

x̌k+i|k = E

[
x(k + i|y0, y1, · · · , yk, u0, u1, · · · , uk, uk+1, · · · , uk+i−1)

]
(5.9)

For the linear stochastic system (5.1) and (5.2), assume that x̌k|k is a filter of
xk. Then the predictor x̌k+i|k can be obtained:

x̌k+i+1|k = Ax̌k+i|k + Buk+i|k (5.10)

where x̌k|k = x̂k and x̂k is a certain given filter.
Thus, a performance criterion is as follows:

Nc−1∑
j=0

[
x̌T

k+j|kQx̌k+j|k + uT
k+j|kRuk+j|k

]
+ x̌T

k+Nc|kFx̌k+Nc|k (5.11)

Then, the solution to the problem (5.10) and (5.11) can be given by

uk = −R−1BT [I + K1BR−1BT ]−1K1Ax̂k (5.12)

where Ki is given by

Ki = AT Ki+1A − AT Ki+1B[R + BT Ki+1B]−1BT Ki+1A + Q

= AT Ki+1[I + BR−1BT Ki+1]−1A + Q (5.13)

with the boundary condition

KNc
= F (5.14)

Deterministic Systems

The predictor x̌k+i|k can be represented as

x̌k+i+1|k = Ax̌k+i|k + Buk+i|k + Bwwk+i|k (5.15)

where x̌k|k = x̂k. The performance criterion is given by
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J(x̂k, uk+·|k, wk+·|k) =
Nc−1∑
j=0

[
x̌T

k+j|kQx̌k+j|k + uT
k+j|kRuk+j|k

− γ2wT
k+j|kRwwk+j|k

]
+x̌T

k+Nc|kQf x̌k+Nc|k (5.16)

Then, the solution to the problem (5.15) and (5.16) can be given by

uk = −R−1BT Λ−1
k+1,k+Nc

Mk+1,k+Nc
Ax̂k

where

Mj = AT Λ−1
j+1Mj+1A + Q

MNc
= Qf

Λj+1 = I + Mj+1(BR−1BT − γ−2BwR−1
w BT

w)

for j = 1, · · · , Nc − 1.
For stochastic and deterministic systems, stabilities of the predictor-based

output feedback controls are determined according to what kinds of filters are
used.

5.4 A Special Case of Input–Output Systems of General
Predictive Control

In addition to the stochastic state-space system (5.1) and (5.2), GPC has used
the following CARIMA model:

A(q−1)yi = B(q−1)�ui−1 + C(q−1)wi (5.17)

where A(q−1) and B(q−1) are given in (3.195) and (3.196) and C(q−1) is given
as follows:

C(q−1) = 1 + c1q
−1 + · · · + cnq−n (5.18)

It is noted that the C(q−1) can often be

1 + c1q
−1 + · · · + cpq

−p, p ≤ n (5.19)

The CARIMA model (5.17) can be rewritten as

A(q−1)yi = B̃(q−1)�ui + C(q−1)wi (5.20)

where

B̃(q−1) = b1q
−1 + b2q

−2 · · · + bnq−n+1

From (5.20) we can obtain
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A(q−1)(yi − wi) = B̃(q−1)�ui + [C(q−1) − A(q−1)]wi (5.21)

where

C(q−1) − A(q−1) = (c1 − a1)q−1 + · · · + (cn − an)q−n (5.22)

Therefore, (5.21) has a similar structure to (3.200), such as

xi+1 = Āxi + B̄�ui + D̄wwi

yi = C̄xi + wi (5.23)

where Ā,B̄,C̄, and D̄w are given by

Ā =

⎡⎢⎢⎢⎢⎢⎣
−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−an−1 0 0 · · · 1
−an 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ , B̄ =

⎡⎢⎢⎢⎢⎢⎣
b1

b2

...
bn−1

bn

⎤⎥⎥⎥⎥⎥⎦ (5.24)

C̄ =
[
1 0 0 · · · 0

]
, D̄w =

⎡⎢⎣ c1 − a1

...
cn − an

⎤⎥⎦
Stochastic Systems

In (5.23), wi is a zero mean white noise with a covariance qw. It is noted
that the system noise and measurement noise are correlated as seen in (5.23).
The performance criterion for (5.17) can be given as

E

⎧⎨⎩
Nc∑
j=1

[
q(yk+j − yr

k+j)
2 + r(�uk+j−1)2|[ks,k]

]⎫⎬⎭
+E

⎧⎨⎩
Np∑

j=Nc+1

qf (yk+j − yr
k+j)

2|[ks,k]

⎫⎬⎭ (5.25)

where �uk+Nc
= ... = �uk+Np−1 = 0. Expectation is taken under the con-

dition that the measurement data of yi and �ui on [ks, k] are given. The
performance index (5.25) can be changed to

Nc∑
j=1

[
q(y̌k+j|k − yr

k+j)
2 + r(�uk+j−1)2

]
+

Np∑
j=Nc+1

qf (y̌k+j|k − yr
k+j)

2 (5.26)
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We can have predictors

x̌k+j+1|k = Āx̌k+j|k + B̄�uk+j|k j ≥ 1 (5.27)
y̌k+j|k = C̄x̌k+j|k (5.28)

But, if j = 0, the system noise and measurement noise are correlated. So,
by using the result of Problem 2.15, we can change the correlated state-space
model (5.23) into the uncorrelated state-space model:

xi+1 = Ãxi + B̄�ui + D̄wyi

yi = C̄xi + wi (5.29)

where Ã = Ā − D̄wC̄. Therefore, if j = 0, then we can have a predictor

x̌k+1|k = Ãx̌k|k + B̄�uk + D̄wyk (5.30)

Using (5.27), (5.28), and (5.30), we can obtain

y̌k+j|k = C̄Āj−1Ãx̌k|k +
j−1∑
i=0

C̄Āj−i−1B̄�uk+i + C̄Āj−1D̄wyk (5.31)

where x̌k|k = x̂k|k could be a starting point.
GPC can be obtained from the predictor (5.31) and the performance cri-

terion (5.26). The GPC can be given similar to (3.329) as follows:

�Uk =
[
W

T
Q̄W + W

T

f Q̄fW f + R̄
]−1
{

W
T
Q̄
[
Y r

k − V x̂k|k − Nyk

]
+ W

T

f Q̄f

[
Y r

k+Nc
− V f x̂k|k − Nfyk

]}
(5.32)

where

Y r
k =

⎡⎢⎣ yr
k+1
...

yr
k+Nc

⎤⎥⎦ , V =

⎡⎢⎢⎢⎣
C̄Ã

C̄ĀÃ
...

C̄ĀNc−1Ã

⎤⎥⎥⎥⎦ , �Uk =

⎡⎢⎣ �uk

...
�uk+Nc−1

⎤⎥⎦

Y r
k+Nc

=

⎡⎢⎣ yr
k+Nc+1

...
yr

k+Np

⎤⎥⎦ , V f =

⎡⎢⎣ C̄ĀNcÃ
...

C̄ĀNp−1Ã

⎤⎥⎦

W =

⎡⎢⎣ C̄B̄ · · · 0
...

. . .
...

C̄ĀNc−1B̄ · · · C̄B̄

⎤⎥⎦ , W f =

⎡⎢⎣ C̄ĀNcB̄ · · · C̄ĀB̄
...

. . .
...

C̄ĀNp−1B̄ · · · C̄ĀNp−NcB̄

⎤⎥⎦
Q̄ =

[
diag(

Nc︷ ︸︸ ︷
q q · · · q)

]
, Q̄f =

[
diag(

Np−Nc︷ ︸︸ ︷
qf qf · · · qf )

]
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R̄ =
[
diag(

Nc︷ ︸︸ ︷
r r · · · r)

]
, N =

⎡⎢⎢⎢⎣
C̄D̄w

C̄ĀD̄w

...
C̄ĀNc−1D̄w

⎤⎥⎥⎥⎦ , Nf =

⎡⎢⎣ C̄ĀNcD̄w

...
C̄ĀNp−1D̄w

⎤⎥⎦
Therefore, the GPC �uk is given by

�uk =
[
I 0 · · · 0

] [
W

T
Q̄W + W

T

f Q̄fW f + R̄
]−1
{

W
T
Q̄

×
[
Y r

k − V x̂k|k − Nyk

]
+ W

T

f Q̄f

[
Y r

k+Nc
− V f x̂k|k − Nfyk

]}
(5.33)

A starting point x̂k|k can be obtained from an FIR filter:

x̂k|k =
k∑

i=k−N

Hk−iyi +
k−1∑

i=k−N

Lk−iui (5.34)

where Hk−i and Lk−i can be obtained similarly as in Chapter 4.

Deterministic Systems

We assume wi in (5.17) is a deterministic disturbance. We can have predictors

x̌k+j+1|k = Āx̌k+j|k + B̄�uk+j|k + D̄wwk+j|k, j ≥ 1 (5.35)
y̌k+j|k = C̄x̌k+j|k + wk+j|k (5.36)

where a filter x̌k+1|k could be a starting point. From now on, �uk+j|k and
wk+j|k will be used as �uk+j and wk+j respectively. We consider the following
performance criterion:

Nc∑
j=1

[
q(y̌k+j − yr

k+j)
2 + r(�uk+j−1)2 − γ(wk+j−1)2

]
+

Np∑
j=Nc+1

qf (y̌k+j − yr
k+j)

2 (5.37)

where �uk+Nc
= ... = �uk+Np

= 0 and wk+Nc
= ... = wk+Np

= 0. From the
state-space model (5.23), we have

y̌k+j = C̄Āj x̌k|k +
j−1∑
i=0

C̄Āj−i−1B̄�uk+i +
j−1∑
i=0

C̄Āj−i−1D̄wk+i

+wk+j (5.38)

where x̌k|k = x̂k|k could be a starting point. The performance index (5.37)
can be represented by
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J(xk,�Uk,Wk) =
[
Y r

k − V x̂k|k − W�Uk − HWk

]T
Q̄[Y r

k − V x̂k|k − W�Uk

− HWk]�UT
k R̄�Uk − WT

k Γ̄Wk + [Y r
k+Nc

− Vf x̂k|k − Wf�Uk

− HfWk]T Q̄f

[
Y r

k+Nc
− Vf x̂k|k − Wf�Uk − HfWk

]
(5.39)

where

Y r
k =

⎡⎢⎣ yr
k+1
...

yr
k+Nc

⎤⎥⎦ , V =

⎡⎢⎣ C̄Ā
...

C̄ĀNc

⎤⎥⎦ , �Uk =

⎡⎢⎣ �uk

...
�uk+Nc−1

⎤⎥⎦

Y r
k+Nc

=

⎡⎢⎣ yr
k+Nc+1

...
yr

k+Np

⎤⎥⎦ , Vf =

⎡⎢⎣ C̄ĀNc+1

...
C̄ĀNp

⎤⎥⎦ , Wk =

⎡⎢⎣ wk

...
wk+Nc−1

⎤⎥⎦

W =

⎡⎢⎣ C̄B̄ · · · 0
...

. . .
...

C̄ĀNc−1B̄ · · · C̄B̄

⎤⎥⎦ , Wf =

⎡⎢⎣ C̄ĀNcB̄ · · · C̄ĀB̄
...

. . .
...

C̄ĀNp−1B̄ · · · C̄ĀNp−NcB̄

⎤⎥⎦
R̄ =

[
diag(

Nc︷ ︸︸ ︷
r r · · · r)

]
, Γ̄ =

[
diag(

Nc︷ ︸︸ ︷
γ γ · · · γ)

]
Q̄f =

[
diag(

Np−Nc︷ ︸︸ ︷
qf qf · · · qf )

]
, Q̄ =

[
diag(

Nc︷ ︸︸ ︷
q q · · · q)

]

H =

⎡⎢⎢⎢⎢⎢⎣
C̄D̄w I 0 · · · 0

C̄ĀD̄w C̄D̄w I · · · 0
...

. . . . . . . . .
...

C̄ĀNc−2D̄w · · · · · · · · · I
C̄ĀNc−1D̄w · · · · · · · · · C̄D̄w

⎤⎥⎥⎥⎥⎥⎦
Hf =

⎡⎢⎣ C̄ĀNcD̄w · · · C̄ĀB̄
...

. . .
...

C̄ĀNp−1B̄ · · · C̄ĀNp−NcB̄

⎤⎥⎦
If we compare (3.332) and (5.39), the condition that the solution to the saddle
point exists is

HT Q̄H − Γ̄ + HT
f Q̄fHf < 0 (5.40)

the maximizing disturbance W ∗
k is given by

W ∗
k = V−1

1 V2 (5.41)

where

V1 = HT Q̄H − Γ̄ + HT
f Q̄fHf

V2 = HT Q̄
[
Y r

k − V x̂k|k − W�Uk

]
+ HT

f Q̄f

[
Y r

k+Nc
− Vf x̂k|k − Wf�Uk

]
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and the optimal control vector �U∗
k is given by

�U∗
k = −P−1

1 P2 (5.42)

where

P1 = −(HT Q̄W + HT
f Q̄fWf )TV−1

1 (HT Q̄W + HT
f Q̄fWf ) + WT Q̄W

+ R̄N + WT
f Q̄fWf

P2 = (HT Q̄W + HT
f Q̄fWf )TV−1

1 [HT Q̄(Y r
k − V x̂k|k)

+ HT
f Q̄f (Y r

k+Nc
− Vf x̂k|k)] − WT Q̄(Y r

k − V x̂k|k) − WT
f Q̄f (Y r

k+Nc
− Vf x̂k|k)

Therefore, the GPC �uk is given by

�uk = −
[
I 0 · · · 0

]
P−1

1 P2 (5.43)

A starting point x̂k|k can be also obtained similarly as in an FIR filter (5.34).

5.5 Finite Memory Control Based on Minimum
Criterion

5.5.1 Finite Memory Control and Unbiased Condition

Finite Memory Control

Output feedback controls with a finite memory structure can be represented
using measurements and inputs during a filter horizon [k − Nf , k] as

uk =
k−1∑

i=k−Nf

Hk−iyi +
k−1∑

i=k−Nf

Lk−iui (5.44)

where Hk−j and Lk−j are gain matrices with respect to yi and ui respectively.
The control (5.44) can be represented in a simpler matrix form:

uk = HYk−1 + LUk−1 (5.45)

where H, L, Yk−1, and Uk−1 are defined as

H
�
= [HNf

HNf−1 · · · H1] (5.46)

L
�
= [LNf

LNf−1 · · · L1] (5.47)

Yk−1
�
= [yT

k−Nf
yT

k−Nf+1 · · · yT
k−1]

T (5.48)

Uk−1
�
= [uT

k−Nf
uT

k−Nf+1 · · · uT
k−1]

T (5.49)

Controls of the type (5.44) are visualized in Figure 5.3 and will be obtained
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Fig. 5.3. Block diagram of FMC

from a performance criterion on the finite horizon. To this end, we introduce
intermediate controls on the finite horizon [k, k + Nc]. Intermediate output
feedback controls with the finite memory structure can be represented using
measurements and inputs during a filter horizon [k − Nf + j, k + j] as

uk+j =
k+j−1∑

i=k+j−Nf

H
(j)
k+j−iyi +

k+j−1∑
i=k+j−Nf

L
(j)
k+j−iui (5.50)

where the gains H
(j)
· and L

(j)
· may be dependent on j, and xk+j is the trajec-

tory generated from uk+j . Note that even though the control (5.50) uses the
finite measured outputs and inputs on the recent time interval as FIR filters,
this is not of the FIR form, since controls appear on both sides of (5.50).
So this kind of the control will be called an output feedback finite memory
control, or simply an FMC rather than an FIR control.

The FMC can be expressed as a linear function of the finite inputs Yk−1

and inputs Uk−1 on the horizon [k − Nf k] as follows:

uk+j = H(j)Yk+j−1 + L(j)Uk+j−1 (5.51)

where H(j), L(j), Yk+j−1, Uk+j−1 are defined as
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H(j) �
= [H(j)

Nf
H

(j)
Nf−1 · · · H

(j)
1 ] (5.52)

L(j) �
= [L(j)

Nf
L

(j)
Nf−1 · · · L

(j)
1 ] (5.53)

Yk+j−1
�
= [yT

k+j−Nf
yT

k+j−Nf+1 · · · yT
k+j−1]

T (5.54)

Uk+j−1
�
= [uT

k+j−Nf
uT

k+j−Nf+1 · · · uT
k+j−1]

T (5.55)

It is a general rule of thumb that the FIR systems are robust against tem-
porary modelling uncertainties or round-off errors. Therefore, the FMC may
have such properties due to the finite memory structure.

Unbiased Condition

We start off from the case that the system matrix A is nonsingular and then
proceed to the case of the general matrix A in the next section.

As in FIR filters in Chapter 4, we are interested in the measured output
yk and the input uk on the finite recent horizon, from which the system (5.1)
and (5.2) is represented as

Yk+j−1 = C̄Nf
xk+j + B̄Nf

Uk+j−1 + ḠNf
Wk+j−1 + Vk+j−1 (5.56)

where Wk+j and Vk+j are given by

Wk+j
�
= [wT

k+j−Nf
wT

k+j−Nf+1 · · · wT
k+j−1]

T (5.57)

Vk+j
�
= [vT

k+j−Nf
vT

k+j−Nf+1 · · · vT
k+j−1]

T (5.58)

and C̄Nf
, B̄Nf

, and ḠNf
are obtained from (4.31), (4.32), and (4.33) respec-

tively.
Combining (5.51) and (5.56) yields

uk+j = H(C̄Nf
xk+j + B̄Nf

Uk+j−1 + ḠNf
Wk+j−1 + Vk+j−1)

+ LUk+j−1 (5.59)

If we assume that the full information of the state is available, then the
desirable control is represented in the form of a state feedback control

u∗
k+j = −Kj+1xk+j (5.60)

where 0 ≤ j ≤ Nf − 1 and Kj+1 can be chosen to be optimized for a certain
performance criterion. It is desirable that the intermediate FMC (5.59) can
track the state feedback control (5.60) on the average. Since any output feed-
back control cannot be better in view of performance than the optimal state
feedback control, it is desirable that the control (5.59) should be unbiased from
the optimal state feedback control (5.60). Thus, we require a constraint that
the control (5.59) must be unbiased from the desired state feedback control
(5.60) as
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E[uk+j ] = E[u∗
k+j ] (5.61)

for all states and all controls up to k + j − 1. This is called the unbiased
condition. If there exist no noises on the horizon [k + j −Nf , k + j − 1], then
x̂k|k−1 and xk become deterministic values and x̂k|k−1 = xk. This is a deadbeat
property, as shown in Figure 5.4.

Optimal output 
feedback control            

Centering to optimal state feedback control

Noise

Horizon size

Optimal state 
feedback control

Fig. 5.4. Deadbeat property

Taking the expectation on both sides of (5.59) and (5.60), the following
relations are obtained:

E[uk+j ] = H(j)C̄Nf
E[xk+j ] + (H(j)B̄Nf

+ L(j))Uk+j−1 (5.62)
E[u∗

k+j ] = −Kj+1E[xk+j ] (5.63)

To be unbiased from the desirable state feedback control uk+j = −Kj+1xk+j

irrespective of the input and the state, the following constraints must be met

H(j)C̄Nf
= −Kj+1 (5.64)

H(j)BNf
= −L(j) (5.65)

for all j. It is noted that, once H (j) is found out independently from (5.65),
L(j) is obtained from (5.65) automatically.

5.5.2 Linear Quadratic Finite Memory Control

Consider the following performance criterion:

E

[Nc−1∑
j=0

[
xT

k+jQxk+j + uT
k+jRuk+j

]
+ xT

k+Nc
Fxk+Nc

]
(5.66)
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If we assume that the full information of the state is available, then it is well
known that the optimal state feedback control can be written

u∗
k+j = −R−1BT [I + Kj+1BR−1BT ]−1Kj+1Axj

= −[R + BT Kj+1B]−1BT Kj+1Axj (5.67)

where Ki satisfies (5.13).
For the performance criterion (5.66), Kj+1 in (5.64) will be taken as

Kj+1 = [R + BT Kj+1B]−1BT Kj+1A (5.68)

FMC Time

Predictive control
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Filter horizon

Control horizon

Time

Time

Predictive control
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Filter horizon

Control horizon

Time

Time

Predictive control

Measurement
Filter horizon

Control horizon

Time

Time

FMC Time

Predictive control

Measurement
Filter horizon

Control horizon

Time

Time

Predictive control

Measurement
Filter horizon

Control horizon

Time

Time

Predictive control

Measurement
Filter horizon

Control horizon

Time

Time

Fig. 5.5. Finite memory controls

In this section, the output feedback control with a finite memory structure
and an unbiased condition will be obtained from the usual receding horizon
LQG criterion (5.66) subject to the control (5.50) for the stochastic systems
(5.1) and (5.2). These output feedback controls with finite memory structure
for the cost criterion (5.66) can be called LQFMCs, which are depicted in
Figure 5.5. The time indices related with (5.50) and (5.66) can be seen in
Figure 5.6.

From Lemma 2.9, a quadratic performance criterion can be represented in
a perfect square expression for any control:
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Fig. 5.6. Time variables for LQFMC

E

[Nc−1∑
j=0

[
xT

k+jQxk+j + uT
k+jRuk+j

]
+ xT

k+Nc
Fxk+Nc

]

= E

[Nc−1∑
j=0

{−Kj+1xk+j + uk+j}T R̂j{−Kj+1xk+j + uk+j}
]

+ tr
[Nc−1∑

j=0

Kj+1GQwGT
]
+ E

[
xT

k K0xk

]
(5.69)

where R̂j
�
= [R + BT Kj+1B], Kj+1 is defined in (5.68), and Kj+1 is the

solution to Riccati Equation (5.13).
It is noted that the result of Lemma 2.9 holds for any inputs. By using

Lemma 2.9, the performance criterion can be changed to the following form:

HB = arg min
H(0),··· ,H(Nc−1)

E

[Nc−1∑
j=0

[
xT

k+jQxk+j + uT
k+jRuk+j

]
+ xT

k+Nc
Fxk+Nc

]

= arg min
H(0),··· ,H(Nc−1)

E

[Nc−1∑
j=0

{
Kj+1xk+j + uk+j

}T
R̂j

{
Kj+1xk+j + uk+j

}]

+ tr
[Nc−1∑

j=0

Kj+1GQwGT
]
+ E

[
xT

k K0xk

]
(5.70)

It can be seen that the last two terms in (5.70) do not depend on a control
gain H(j). We have only to minimize the first term in (5.70) in order to obtain
the solution.

Since, under the unbiasedness constraint, the following equation is ob-
tained:
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uk+j + Kj+1xk+j = H(j)ḠNf
Wk+j−1 + H(j)Vk+j−1 (5.71)

the first term in (5.70) is obtained as

E

[{
Kj+1xk+j + uk+j

}T
R̂j

{
Kj+1xk+j + uk+j

}]
= E

[{
H(j)ḠNf

Wk+j−1 + H(j)Vk+j−1

}T
R̂j

{
H(j)ḠNf

Wk+j−1 + H(j)Vk+j−1

}]
= tr

[
R̂

1
2
j H(j)ḠNf

QNf
ḠT

Nf
H(j)T R̂

1
2
j + R̂

1
2
j H(j)RNf

H(j)T R̂
1
2
j

]
(5.72)

The objective now is to obtain the optimal gain matrix H
(j)
B , subject to the

unbiasedness constraint (5.65), in such a way that the cost function (5.72) has
a minimum variance as follows:

H
(j)
B = arg min

H(j)
tr
[
R̂

1
2
j H(j)ḠNf

QNf
ḠT

Nf
H(j)T R̂

1
2
j

+ R̂
1
2
j H(j)RNf

H(j)T R̂
1
2
j

]
(5.73)

subject to
H(j)C̄Nf

= −Kj+1 (5.74)

where

QNf
=
[
diag(

Nf︷ ︸︸ ︷
Qw Qw · · · Qw)

]
and RNf

=
[
diag(

Nf︷ ︸︸ ︷
Rv Rv · · · Rv)

]
(5.75)

By using the result of Lemma 4.3, the solution to the optimization problem
(5.73) and (5.74) can be obtained according to the following correspondences:

A ←− ḠNf

B ←− O
C ←− QNf

D ←− RNf

E ←− C̄Nf

F ←− −R̂
1
2
j Kj+1

H ←− R̂
1
2
j H(j)

(5.76)

L(j) is determined from (5.65). It follows finally that

uk+j = −H(j)Yk+j−1 + L(j)Uk+j−1

= −Kj+1(C̄T
Nf

Ξ−1
Nf

C̄Nf
)−1C̄T

Nf
Ξ−1

Nf
(Yk+j−1 − B̄Nf

Uk+j−1) (5.77)

If j is fixed to zero in (5.77), then we obtain the optimal solution for LQFMC
in the following theorem.
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Theorem 5.1. When {A,C} is observable and Nf ≥ no, the LQFMC uk

is given as follows:

uk = −K1(C̄T
Nf

Ξ−1
Nf

C̄Nf
)−1C̄T

Nf
Ξ−1

Nf
(Yk−1 − B̄Nf

Uk−1) (5.78)

in the case that A is nonsingular. Yk−1, Uk−1, C̄Nf
, B̄Nf

, ΞNf
, and K1 are

given by (5.54), (5.55), (4.31), (4.32), (4.214), and (5.68) respectively.

The dimension of ΞNf
in (5.78) may be large. So a numerical error during

inverting the matrix can happen. To avoid the handling of the large matrix,
the optimal gain matrix for a nonsingular A can be obtained from the following
recursive equations:

HB = −[R + BT K1B]−1BT K1AΩ−1
Nf

ΨNf
(5.79)

where ΩNf
is defined as C̄T

Nf
Ξ−1

Nf
C̄Nf

as in Chapter 4 and is written recursively
as

Ωi+1 = [I + A−T (Ωi + CT R−1
v C)A−1GQwGT ]−1A−T (Ωi + CT R−1

v C)A−1

with Ω0 = 0. We define

Ψi+1
�
= C̄T

i+1Ξ̄
−1
i+1 = [I + A−T (Ωi + CT R−1

v C)A−1GQwGT ]−1A−T

×
[

C̄i

C

]T [
Ξ̄i 0
0 Rv

]−1

(5.80)

with Ψ0 = 0 and then recursive equations for Ψi can be easily derived from
the structure of the matrix ΞNf

in (5.78) as follows:

Ψi+1 = [I + A−T (Ωi + CT R−1
v C)A−1GQwGT ]−1A−T

[
Ψi CT R−1

v

]
(5.81)

which is left as an exercise. From Theorem 5.1, it can be known that the
LQFMC uk (5.78) processes the finite measurements and inputs on the horizon
[k − Nf , k] linearly and has the properties of unbiasedness from the optimal
state feedback control by design. Note that the optimal gain matrix HB (5.79)
requires a computation only on the interval [0, Nf ] once and is time-invariant
for all horizons. This means that the LQFMC is time-invariant. The LQFMC
may be robust against temporary modelling uncertainties or round-off errors
due to the finite memory structure.

So far, we have derived the LQFMC in a closed form. Besides the analytical
form, the LQFMC can be represented in LMI form to get a numerical solution.

First, from the unbiased condition HC̄Nf
= −K1, the control gain H of

the LQFMC can be parameterized as

H = FMT + H0 (5.82)

where H0 = −K1(C̄T
Nf

C̄Nf
)−1C̄T

Nf
and the columns of M consist of the basis

of the null space of C̄T
Nf

. Let us introduce a matrix variable W such that
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W > R̂
1
2 HḠNf

QNf
ḠT

Nf
HR̂

1
2 + R̂

1
2 HRNf

HT R̂
1
2 (5.83)

where R̂ is given by

R̂ = R + BT K1B

Thus, from (5.83) we have

min
W,F

γ (5.84)

subject to

tr(W ) < γ

[
W R̂

1
2 (FMT + H0)

(FMT + H0)T R̂
1
2 (ḠNf

QNf
ḠT

Nf
+ RNf

)−1

]
> 0 (5.85)

From the optimal H we obtain L = −HB̄Nf
.

5.5.3∗ Linear Quadratic Finite Memory Control with General A

Now we turn to the case where the system matrix A is general.
The system (5.1) and (5.2) will be represented in a batch form on the time

interval [k+j−Nf , k+j] called the horizon. On the horizon [k+j−Nf , k+j],
measurements are expressed in terms of the state xk+j at the time k + j and
inputs on [k + j − Nf , k + j] as follows:

Yk+j−1 = C̃Nf
xk+j−Nf

+ B̃Nf
Uk+j−1 + G̃Nf

Wk+j−1 + Vk+j−1 (5.86)

where

Yk+j−1
�
= [yT

k+j−Nf
yT

k+j−Nf+1 · · · yT
k+j−1]

T (5.87)

Uk+j−1
�
= [uT

k+j−Nf
uT

k+j−Nf+1 · · · uT
k+j−1]

T (5.88)

Wk+j−1
�
= [wT

k+j−Nf
wT

k+j−Nf+1 · · · wT
k+j−1]

T (5.89)

Vk+j−1
�
= [vT

k+j−Nf
vT

k+j−Nf+1 · · · vT
k+j−1]

T

and C̃Nf
, B̃Nf

, and G̃Nf
are obtained from (4.78), (4.79), and (4.80) respec-

tively. The noise term G̃Nf
Wj−1 + Vj−1 in (4.75) can be shown to be zero

mean with a covariance ΠN given by

ΠNf
= G̃Nf

QNf
G̃T

Nf
+ RNf

(5.90)

where QNf
and RNf

are given in (5.75).
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The state xk+j can be represented using the initial state xk+j−N on the
horizon as

xk+j = ANf xk+j−Nf
+
[
ANf−1G ANf−2G · · · G

]
Wk+j−1

+
[
ANf−1B ANf−2B · · · B

]
Uk+j−1 (5.91)

Augmenting (5.86) and (5.91) yields the following linear model:[
Yk+j−1

0

]
=
[

C̃Nf
0

ANf −I

] [
xk+j−Nf

xk+j

]
+
[

B̃Nf

ANf−1B · · · B

]
Uk+j−1

+
[

G̃Nf

ANf−1G · · · G

]
Wk+j−1 +

[
Vk+j−1

0

]
(5.92)

By using Equation (5.92), the FMC (5.51) can be rewritten as

uk+j =
[
H(j) −Mj+1

] [Yk+j−1

0

]
+ L(j)Uk+j−1

=
[
H(j) −Mj+1

] [ C̃Nf
0

ANf −I

] [
xk+j−Nf

xk+j

]
+
[
H(j) −Mj+1

] [ B̃Nf

ANf−1B · · · B

]
Uk+j−1

+
[
H(j) −Mj+1

] [ G̃Nf

ANf−1G · · · G

]
Wk+j−1

+
[
H(j) −Mj+1

] [Vk+j−1

0

]
+ L(j)Uk+j−1 (5.93)

where Mj+1 is chosen later. Taking the expectation on both sides of (5.93)
yields the following equation:

E[uk+j ] = (H(j)C̃Nf
−Mj+1A

Nf )E[xk+j−Nf
] + Mj+1E[xk+j ]

+
[
H(j) −Mj+1

] [ B̃Nf

ANf−1B · · · B

]
Uk+j−1 + L(j)Uk+j−1

To satisfy the unbiased condition, i.e. E[uk+j ] = E[u∗
k+j ], irrespective of states

and the input on the horizon [k + j − Nf , k + j], Mj+1 should be equal to
−Kj+1 and the following constraints are required:

H(j)C̃Nf
= −Kj+1A

Nf , (5.94)

L
(j)
i = −

[
H(j) Kj+1

] [ B̃Nf

ANf−1B · · · B

]
(5.95)

This will be called the unbiasedness constraint. It is noted that a variable j
ranges from 0 to Nc − 1. Under the unbiasedness constraint, we have
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uk+j + Kj+1xk+j = H(j)G̃Nf
Wk+j−1 −Kj+1

[
ANf−1G · · · G

]
Wk+j−1

+ H(j)Vk+j−1 (5.96)

The objective now is to obtain the optimal gain matrix H
(j)
B , subject to the

unbiasedness constraint (5.94) and (5.95), in such a way that the cost function
(5.66) is minimized.

We can see that the last two terms in (5.69) do not depend on a control
gain H(j). We have only to minimize the first term in (5.69) in order to obtain
the solution.

The following relation for the first term in (5.69) is obtained:

E

[{
Kj+1xk+j + uk+j

}T
R̂j

{
Kj+1xk+j + uk+j

}]
= E

[{
H(j)G̃Nf

Wk+j−1 −Kj+1

[
ANf−1G · · · G

]
Wk+j−1 + H(j)Vk+j−1

}T
R̂j

×
{
H(j)G̃Nf

Wk+j−1 −Kj+1

[
ANf−1G · · · G

]
Wk+j−1 + H(j)Vk+j−1

}]
= tr

[
R̂

1
2
j

(
H(j)G̃Nf

−Kj+1

[
ANf−1G · · · G

])
× QNf

(
H(j)G̃Nf

−Kj+1

[
ANf−1G · · · G

])T

R̂
1
2
j

+ R̂
1
2
j H(j)RNf

H(j)T R̂
1
2
j

]
(5.97)

Then, from (5.69) and (5.94), the optimization problem to solve is summarized
as

H
(j)
B = arg min

H(j)
tr
[
R̂

1
2
j

(
H(j)G̃Nf

−Kj+1

[
ANf−1G · · · G

])
× QNf

(
H(j)G̃Nf

−Kj+1

[
ANf−1G · · · G

])T

R̂
1
2
j

+ R̂
1
2
j H(j)RNf

H(j)T R̂
1
2
j

]
(5.98)

subject to
H(j)C̃Nf

= −Kj+1A
Nf (5.99)

By using the result of Lemma 4.3, the solution H
(j)
B to the optimization prob-

lem (5.98) and (5.99) can be obtained according to the following correspon-
dences:
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A ←− G̃Nf

B ←− R̂
1
2
j Kj+1

[
ANf−1G · · · G

]
C ←− QNf

D ←− RNf

E ←− C̃Nf

F ←− −R̂
1
2
j Kj+1

H ←− R̂
1
2
j H(j)

W1,1 ←− C̃T
Nf

R−1
Nf

C̃Nf

W1,2 ←− C̃T
Nf

R−1
Nf

G̃Nf

W2,2 ←− G̃T
Nf

R−1
Nf

G̃Nf
+ Q−1

Nf

(5.100)

Then, L(j) is determined from (5.95).
If j is replaced by 0, the LQFMC is obtained at the current time k. There-

fore, the LQFMC uk with the optimal gain matrices H and L is summarized
in the following theorem.

Theorem 5.2. When {A,C} is observable and Nf ≥ no, the LQFMC uk

is given as follows:

uk = −K1

[
ANf ANf−1G ANf−2G · · · AG G

] [W1,1 W1,2

WT
1,2 W2,2

]−1

×
[

C̃T
Nf

G̃T
Nf

]
R−1

Nf

(
Yk−1 − B̃Nf

Uk−1

)
− K1

[
ANf−1B ANf−2B ANf−3B · · · AB B

]
Uk−1 (5.101)

W11, W12, and W22 are defined in (5.100). Yk−1, Uk−1, C̃Nf
, B̃Nf

and K1

are given by (5.48), (5.49), (4.78), (4.79) and (5.68) respectively.

By using the recursive form of the MVF filter in Theorem 4.10, the
LQFMC (5.7) in Theorem 5.1 can be obtained as

uk = −K1βk (5.102)

where

βk−Nf+i+1 = Aβk−Nf+i + APiC
T (Rv + CPiC

T )−1(yk−Nf+i − Cβk−Nf+i)

= (A − APiC
T (Rv + CPiC

T )−1C)βk−Nf +i

+ APiC
T (Rv + CPiC

T )−1yk−Nf+i (5.103)

Pi+1 = APiA
T + GQwGT − APiC

T (Rv + CPiC
T )−1CPiA

T (5.104)

Here, P0 = (CT R−1
v C + P̂Nf

)−1 and βk−Nf
= P0(CT R−1

v yk−N + ω̂Nf
). P̂Nf

and ω̂Nf
are obtained from the following recursive equations:



5.5 Finite Memory Control Based on Minimum Criterion 239

P̂i+1 = AT CT R−1
v CA + AT P̂iA

− AT (CT R−1
v C + P̂i)AG

{
Q−1

w + GT AT (CT R−1
v C + P̂i)AG

}−1

GT AT (CT R−1
v C + P̂i)A (5.105)

and

ω̂i+1 = AT CT Rvyk−i + Aω̂i

− AT (CT R−1
v C + P̂i)AG

{
Q−1

w + GT AT (CT R−1
v C + P̂i)AG

}−1

GT AT (CT R−1
v yk−i + ω̂i) (5.106)

5.5.4 Properties of Linear Quadratic Finite Memory Control

Closed-Loop System

When the LQFMC is adopted, the system order for the internal state in-
creases. Now we investigate poles of closed-loop systems

Substituting (5.45) into the model (5.5) yields the following equation:

xk+1 = Axk + Buk + Gwk = Axk + B(HYk−1 + LUk−1) + Gwk (5.107)

It is noted that (5.107) is a dynamic equation with respect to xk and will be
combined with the dynamics of Yk−1 and Uk−1 into the overall closed-loop
system.

Uk and Yk are represented in a form of dynamic equations as follows:

Uk = ĀuUk−1 + B̄uuk = ĀuUk−1 + B̄u(HYk−1 + LUk−1) (5.108)
Yk = ĀyYk−1 + B̄yyk = ĀyYk−1 + B̄y(Cxk + vk) (5.109)

where

Āu =

⎡⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0

0 0 I
. . . 0

...
...

. . . . . .
...

0 0 · · · 0 I
0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ RpNf×pNf , B̄u =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
...
I

⎤⎥⎥⎥⎥⎥⎦ ∈ RpNf×p (5.110)

and Āy and B̄y are of the same form as Āu and B̄u respectively except for
dimension. From (5.107), (5.108), and (5.109), it can be easily seen that xk+1,
Uk, and Wk are augmented into one state and then the following augmented
state-space can be obtained:



240 5 Output Feedback Receding Horizon Controls⎡⎣xk+1

Uk

Yk

⎤⎦ =

⎡⎣ A BL BH
0 Āu + B̄uL B̄uH

B̄yC O Āy

⎤⎦⎡⎣ xk

Uk−1

Yk−1

⎤⎦+

⎡⎣G 0
0 0
0 B̄y

⎤⎦[wk

vk

]

�
= Aa

⎡⎣ xk

Uk−1

Yk−1

⎤⎦+ Ba

[
wk

vk

]
(5.111)

Now, instead of the matrix Aa in (5.111), we consider the following matrix:

Ab
�
=

⎡⎢⎢⎣
A BL BH BK1

0 Āu + B̄uL B̄uH B̄uK1

B̄yC 0 Āy B̄yC
0 0 0 A

⎤⎥⎥⎦
of which eigenvalues consist of ones of the matrix Aa in (5.111) and a matrix A.
Suppose that H is related to L according to (5.94) and (5.95). Premultiplying
and postmultiplying Ab by some transformation matrix, we have⎡⎢⎢⎣

I 0 0 0
0 I 0 0
0 −M1 I 0
I −M2 0 I

⎤⎥⎥⎦
⎡⎢⎢⎣

A BL BH BK1

0 Āu + B̄uL B̄uH B̄uK1

B̄yC 0 Āy B̄yC
0 0 0 A

⎤⎥⎥⎦
⎡⎢⎢⎣

I 0 0 0
0 I 0 0
0 M1 I 0
−I M2 0 I

⎤⎥⎥⎦ =

⎡⎢⎢⎣
A − BK1 O BH BK1

−B̄uK1 Āu B̄uH B̄uK1

0 − M1Āu + ĀyM1 + B̄yCM2 Āy B̄yC
0 −M2Āu + AM2 0 A

⎤⎥⎥⎦ (5.112)

where M1 = B̃N and M2 = [ANf−1B ANf−2B · · · · · ·B]. Partitioning the
matrix in (5.112), we define the following matrices:

A11 =
[

A − BK1 O
−B̄uK1 Āu

]
A12 =

[
BH BK1

B̄uH B̄uK1

]
A21 =

[
0 − M1Āu + ĀyM1 + B̄yCM2

0 −M2Āu + AM2

]
A22 =

[
Āy B̄yC
0 A

]
In order to obtain eigenvalues of the matrix Ab, we should calculate

det
([

λI − A11 − A12

−A21 λI − A22

])
(5.113)

Using the inverse of the block matrix in Appendix A, we have

det(λI − A11) det((λI − A11) − A12(λI − A22)−1A21) (5.114)

Fortunately, it is observed that A12(λI − A22)−1A21 = 0, which is proved as
follows:



5.5 Finite Memory Control Based on Minimum Criterion 241

[
H K1

] [λI − Āy − B̄yC
0 λI − A

]−1 [
C̃Nf

ANf

]
=
[
H K1

] [ (λI − Āy)−1 (λI − Āy)−1B̄yC(λI − A)−1

0 (λI − A)−1

] [
C̃Nf

ANf

]
= H(λI − Āy)−1C̃Nf

+ H(λI − Āy)−1B̄yC(λI − A)−1ANf

+ K1(λI − A)−1ANf = 0

where the last equality comes from the fact HC̃Nf
+ K1A

Nf = 0. Finally, we
see that the eigenvalues of the matrix Ab consist of ones of Aa and A. What
we have done so far is summarized in the following theorem.

Theorem 5.3. Suppose that H and L are related to each other according to
(5.94) and (5.95). The overall system with the finite memory control (5.45) is
represented as (5.111), whose eigenvalues consist of eigenvalues of A − BK1

and zeros.

The separation principle and the stability for the proposed LQFMC will
be investigated from now on. It is very interesing to see that the globally
optimal LQFMC (5.78) can be separated as a receding control and an FIR
filter.

Theorem 5.4. Assume that A is nonsingular. The LQFMC (5.78) can be
represented as a receding horizon LQ control with the state replaced by an
MVF filter as

uk = −[R + BT K1B]−1BT K1Ax̂k (5.115)
x̂k = (C̄T

Nf
Ξ−1

Nf
C̄Nf

)−1C̄T
Nf

Ξ−1
Nf

[Yk−1 − B̄Nf
Uk−1] (5.116)

where x̂k is an actual state estimator.

Proof. This is obvious from (5.78). This completes the proof.

Note that the result in Theorem 5.4 holds for a general system matrix A.
In Chapter 4, it is shown that x̂k in (5.116) is an optimal minimum variance

state estimator with an FIR structure. It is known that the FIR filter (5.116)
is an unbiased filter that has the deadbeat property for systems with zero
noise. From this property, we can show the following theorem.

Theorem 5.5. If the final weighting matrix F in the cost function satisfies
the following inequality:

F ≥ Q + DT RD + (A − BD)T F (A − BD) for some D (5.117)

the closed-loop system driven by the proposed LQFMC is asymptotically stable.
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Proof. According to Theorem 5.3, poles of the closed-loop system consist of
eigenvalues of A − B[R + BT K1B]−1BT K1A and zeros.

From Theorem 3.8 in Chapter 3, A−B[R+BT K1B]−1BT K1A is Hurwitz
for the terminal weighting matrix F satisfying the inequality (5.117). This
completes the proof.

If the power of noises is finite, the following bound is guaranteed for
stochastic systems (5.1) and (5.2):

E[xkxT
k ] < ∞ (5.118)

for all k ≥ k0 under the condition (5.117).

Example 5.1

To demonstrate the validity of the proposed LQFMC, a numerical example
on the model of an F-404 engine is presented via simulation. The dynamic
model is written as

xk+1 =

⎡⎣0.9305 + δk 0 0.1107
0.0077 0.9802 + δk −0.0173
0.0142 0 0.8953 + 0.1δk

⎤⎦xk (5.119)

+

⎡⎣0.4182 5.203
0.3901 −0.1245
0.5186 0.0236

⎤⎦uk +

⎡⎣1
1
1

⎤⎦wk (5.120)

yk =
[

1 0 0
0 1 0

]
xk + vk (5.121)

where δk is an uncertain model parameter. The system noise covariance Qw

is 0.012 and the measurement noise covariance Rv is 0.012.
It will be shown by simulation that the proposed LQFMC is robust against

temporary modelling uncertainties since it utilizes only finite outputs and
inputs on the most recent horizon. To check the robustness, the proposed
LQFMC and the LQG control are compared when a system has a temporary
modelling uncertainty given by δk = 0.05 on the interval 15 ≤ k ≤ 25. The
filter horizon length Nf and the control horizon length Nc of the LQFMC
are both taken as 10. Figure 5.7 compares the robustness of two controls
given temporary modelling uncertainties. As can be seen the robustness of
the LQFMC is significant in Figure 5.7(a) for the first state.

Figure 5.7 shows that the deviation from zero of the LQFMC is signifi-
cantly smaller than that of the LQG control on the interval where modeling
uncertainty exists. In addition, it is shown that the recovery to the steady state
is much faster than that of the LQG control after the temporary modelling
uncertainty disappears. Therefore, it can be seen that the proposed LQFMC
is more robust than the LQG control when applied to systems with a model
parameter uncertainty.
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Fig. 5.7. State trajectory of LQG and LQFMC
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5.6 Finite Memory Control Based on Minimax Criterion

As in the FMC based on the minimum performance criterion, a receding hori-
zon control is obtained so that the finite memory structure and the unbiased
condition are required and the L2-E performance criterion for a linear deter-
ministic system is minimized.

5.6.1 Finite Memory Control and Unbiased Condition

As in the FMC in the minimum performance criterion, we start from output
feedback controls with the finite memory structure represented using measure-
ments and inputs during a filter horizon [k−Nf , k] as in (5.50). As mentioned
before, the FMC can be expressed as a linear function of the finite inputs
Yk−1 and inputs Uk−1 on the horizon [k − Nf k] as in (5.51). In this section,
we assume that the system matrix A is nonsingular. In a similar way to the
FMC based on the minimum criterion, the case of a general A can be treated.
As in FIR filters for deterministic systems in Chapter 4, we are interested in
the measured output yk and input uk on the finite recent horizon, from which
the system (5.5) and (5.6) is represented as

Yk+j−1 = C̄Nf
xk+j + B̄Nf

Uk+j−1 + ḠNf
Wk+j−1 + D̄Nf

Wk+j−1 (5.122)

and Yk+j−1, Uk+j−1, Wk+j−1, C̄Nf
, B̄Nf

, ḠNf
and D̄Nf

are obtained from
(5.87), (5.88), (5.89), (4.31), (4.32), (4.33) and (4.185) respectively. Combining
(5.122) and (5.51) yields the following equation:

uk+j = H(j)(C̄Nf
xk+j + B̄Nf

Uk+j−1 + ḠNf
Wk+j−1 + D̄Nf

Wk+j−1)

+ L(j)Uk+j−1 (5.123)

If we assume that the full information of the state is available, then the
desirable control is represented in the form of a state feedback control

u∗
k+j = −Kj+1xk+j (5.124)

where 0 ≤ j ≤ Nf − 1 and Kj+1 can be chosen to be optimized for a certain
performance criterion.

It is desirable that the intermediate output feedback FMC (5.123) can
track the state feedback control (5.124). Thus, we require a constraint that
the control (5.123) must be unbiased from the desired state feedback control
(5.124) as

uk+j = u∗
k+j (5.125)

for all states. This is an unbiased condition. Therefore, the relation should be
satisfied

H(j)C̄Nf
= −Kj+1, H(j)B̄Nf

= −L(j) (5.126)

in order to achieve (5.125).
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5.6.2 L2-E Finite Memory Controls

For linear deterministic systems (5.5) and (5.6), the predictor (5.10) is given
by

x̌k+j+1|k = Ax̌k+j|k + Bǔk+j|k (5.127)

where it is assumed that disturbances behave around the origin and thus have
no net effects. Hereafter, for simplicity, xk+j and uk+j will be used instead of
x̌k+j|k and ǔk+j|k respectively.

The performance criterion is given as

min
ui

max
wi

J − J∗∑−1
j=−Nf

wT
k+jwk+j

(5.128)

where

J

∣∣∣∣
u=FMC

=
Nc−1∑
j=0

[
xT

k+jQxk+j + uT
k+jRuk+j

]
+ xT

k+Nc
Fxk+Nc

(5.129)

J

∣∣∣∣∗
u=SFC

= min
Nc−1∑
j=0

[
xT

k+jQxk+j + uT
k+jRuk+j

]
+ xT

k+Nc
Fxk+Nc

(5.130)

Note that SFC in (5.130) stands for state feedback controls. It is also noted
that J (5.129) is the cost when the FMC as an output feedback control is
applied under disturbances on [k−Nf , k−1], and J∗ (5.130) is the optimal cost
when the state feedback control is used with no disturbances on [k−Nf , k−1].
As can be seen in (5.128), it is observed that the maximization is taken for
disturbances in the past time.

The system (5.5) and (5.6) will be represented in a batch form on the time
interval [k + j −Nf , k + j] called the horizon. Disturbances are assumed to be
zero at a future time, i.e. wk = wk+1 = · · · = 0. We introduce a simple linear
operation that reflects this assumption. On the horizon [k + j − Nf , k + j],
measurements are expressed in terms of the state xk+j at the time k + j and
inputs as follows:

Yk+j−1 = C̄Nf
xk+j + B̄Nf

Uk+j−1 + (ḠNf
+ D̄Nf

)TNf−1−jWk+j−1

where

TNf−1−j =
[

INf−j 0
0 0j .

]
(5.131)

and TNf−1−jWk+j−1 is made up as follows:

TNf−1−jWk+j−1 = [

Nf−j︷ ︸︸ ︷
wT

k+j−Nf
wT

k+j−Nf+1 · · · wT
k−1

j︷ ︸︸ ︷
wT

k = 0 · · · wT
k+j−1 = 0]T
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Matrices H(j) and L(j) in the FMC (5.51) will be chosen to minimize the
performance criterion (5.128).

Under the unbiased condition (5.65), we have

uk+j + Kj+1xk+j = Hj(ḠNf
+ D̄Nf

)TNf−1−jWk+j−1 (5.132)

The objective now is to obtain the optimal gain matrix H
(j)
B , subject to

the unbiasedness constraints (5.94) and (5.95), in such a way that the cost
function (5.128) is optimized.

HB = arg min
H1,··· ,Hn

max
wi

∑Nc−1
j=0

[
xT

k+jQxk+j + uT
k+jRuk+j

]
+ xT

k+Nc
Fxk+Nc∑−1

j=−Nf
wT

k+jwk+j

= arg min
H1,··· ,Hn

max
wi

∑Nc−1
j=0

{
Kj+1xk+j + uk+j

}T
R̂j

{
Kj+1xk+j + uk+j

}∑−1
j=−Nf

wT
k+jwk+j

From (5.132), we have the following relation:{
Kj+1xk+j + uk+j

}T
R̂j

{
Kj+1xk+j + uk+j

}
=
{
H(j)(ḠNf

+ D̄Nf
)TNf−1−jWk+j−1

}T

× R̂j

{
H(j)(ḠNf

+ D̄Nf
)TNf−1−jWk+j−1

}
≤ λmax

[
R̂

1
2
j H(j)(ḠNf

+ D̄Nf
)TNf−1−jTNf−1−j(ḠNf

+ D̄Nf
)T H(j)T R̂

1
2
j

]
× WT

k+j−1Wk+j−1 (5.133)

which comes from the following fact:

(Ax)T (Ax) ≤ λmax(AT A)xT x = λmax(AAT )xT x (5.134)

where the equality holds if x is the eigenvector corresponding to λmax(AT A).
It is noted that there always exists a Wk+j−1 such that the equality holds in
(5.133).

Then, from (5.133) and the constraints (5.126), the optimization problem
to solve is summarized as

H
(j)
B = arg min

H(j)
λmax

[
R̂

1
2
j H(j)(ḠNf

+ D̄Nf
)TNf−1−jT

T
Nf−1−j

× (ḠNf
+ D̄Nf

)T H(j)T R̂
1
2
j

]
(5.135)

subject to
H(j)C̄Nf

= −Kj+1 (5.136)

By using the result of Lemma 4.13, the solution to the optimization problem
(5.135) and (5.136) can be obtained according to the following correspon-
dences:
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A ←− ḠNf
+ D̄Nf

B ←− O
C ←− TNf−1−jT

T
Nf−1−j

E ←− C̄Nf

F ←− −R̂
1
2
j Kj+1

H ←− R̂
1
2
j H(j)

Π ←− (ḠNf
+ D̄Nf

)TNf−1−jT
T
Nf−1−j(ḠNf

+ D̄Nf
)T

(5.137)

The filter gain L(j) can be obtained from (5.126). If j is replaced by 0, the
optimal solution for the nonsingular A is obtained at the current time, which
is summarized in the following theorem.

Theorem 5.6. When {A,C} is observable and Nf ≥ no, the L2-E FMC
uk is given as follows:

uk = −K1(C̄T
Nf

Ξ−1
Nf

C̄Nf
)−1C̄T

Nf
Ξ−1

Nf
(Yk−1 − B̄Nf

Uk−1) (5.138)

in case that A is nonsingular. Yk−1, Uk−1, C̄Nf
, B̄Nf

, ΞNf
, and K1 are given

by (5.48), (5.49), (4.31), (4.32), (4.214), and (5.68) respectively.

The Case of General A

On the horizon [k + j − Nf , k + j], measurements are expressed in terms
of the state xk+j at the time k + j and inputs as follows:

Yk+j−1 = C̃Nf
xk+j−Nf

+ B̃Nf
Uk+j−1 + G̃Nf

TNf−1−jWk+j−1

+ D̄Nf
TNf−1−jWk+j−1 (5.139)

where TNf−1−j is defined in (5.131).
The state xk+j can be represented using the initial state xk+j−N on the

horizon as in (5.91) for deterministic systems. Augmenting (5.139) and (5.91)
yields the following linear model:[

Yk+j−1

0

]
=
[

C̃Nf
0

ANf −I

] [
xk+j−Nf

xk+j

]
+
[

B̃Nf

ANf−1B · · · B

]
Uk+j−1

+
[

G̃Nf
+ D̄Nf

ANf−1G · · · G

]
TNf−1−jWk+j−1 (5.140)

For the minimax performance criterion, the FMC is of the form (5.50) as in
the minimum performance criterion. By using Equation (5.140), the control
(5.50) can be rewritten as
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uk+j =
[
H(j) −Mj+1

] [Yk+j−1

0

]
+ L(j)Uk+j−1

=
[
H(j) −Mj+1

] [ C̃Nf
0

ANf −I

] [
xk+j−Nf

xk+j

]
+
[
H(j) −Mj+1

] [ B̃Nf

ANf−1B · · · B

]
Uk+j−1

+
[
H(j) −Mj+1

] [ G̃Nf
+ D̄N

ANf−1G · · · G

]
TNf−1−jWk+j−1

+ L(j)Uk+j−1 (5.141)

where Mj+1 is chosen later. If it is assumed that disturbances do not show
up in (5.141), then we have the following equation:

uk+j = (H(j)C̃Nf
−Mj+1A

Nf )xk+j−Nf
+ Mj+1xk+j

+
[
H(j) −Mj+1

] [ B̃Nf

ANf−1B · · · B

]
Uk+j−1 + L(j)Uk+j−1

To satisfy the unbiased condition, i.e. uk+j = u∗
k+j , where u∗

k+j =
−Kj+1xk+j , irrespective of the initial state and the input on the horizon
[k + j − Nf , k + j], Mj+1 should be equal to −Kj+1 and the following con-
straint is required:

H(j)C̃Nf
= −Kj+1A

Nf (5.142)

L
(j)
i = −

[
H(j) Kj+1

] [ B̃Nf

ANf−1B · · · B

]
(5.143)

These will be called the unbiasedness constraint. It is noted that a variable j
ranges from 0 to Nc − 1.

The system (5.5) and (5.6) will be represented in a batch form on the time
interval [k+j−Nf , k+j] called the horizon. On the horizon [k+j−Nf , k+j],
measurements are expressed in terms of the state xk+j at the time k + j and
inputs as follows:

Yk+j−1 = C̃Nf
xk+j−Nf

+ B̃Nf
Uk+j−1

+ (G̃Nf
+ D̄Nf

)TNf−1−jWk+j−1 (5.144)

where TNf−1−j is defined in (5.131).
The state xk+j can be represented using the initial state xk+j−N on the

horizon as

xk+j = ANf xk+j−Nf
+
[
ANf−1G ANf−2G · · · G

]
TNf−1−jWk+j−1

+
[
ANf−1B ANf−2B · · · B

]
Uk+j−1 (5.145)

Augmenting (5.144) and (5.145) yields the following linear model:
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Yk+j−1

0

]
=
[

C̃Nf
0

ANf −I

] [
xk+j−Nf

xk+j

]
+
[

B̃Nf

ANf−1B · · · B

]
Uk+j−1

+
[

(G̃Nf
+ D̄Nf

)TNf−1−j

ANf−1G · · · · · · G

]
Wk+j−1 (5.146)

Matrices H(j) and L(j) in the FMC (5.51) will be chosen to minimize the
performance criterion (5.128) without the assumption of nonsingularity of the
system matrix A.

It can be observed that (5.146) is different from (5.140) only in that there
is a term TNf−1−j attached to (G̃Nf

+ D̄Nf
).

As in the LQFMC, we have

uk+j = u∗
k+j + H(j)G̃Nf

Wk+j−1 − Kj+1

[
ANf−1G · · · G

]
Wk+j−1

+ H(j)Vk+j−1

uk+j − u∗
k+j = H(j)G̃Nf

Wk+j−1 − Kj+1

[
ANf−1G · · · G

]
Wk+j−1

+ H(j)Vk+j−1

Since

uk+j + Kj+1xk+j = H(j)(G̃Nf
+ D̄Nf

)TNf−1−jWk+j−1

− Kj+1

[
ANf−1G · · · G

]
Wk+j−1 (5.147)

the following relation for the first term in (5.133) is obtained:{
Kj+1xk+j + uk+j

}T
R̂j

{
Kj+1xk+j + uk+j

}
=
{
H(j)(G̃Nf

+ D̄Nf
)TNf−1−jWk+j−1 −Kj+1

[
ANf−1G · · · G

]
×TNf−1−jWk+j−1

}T
R̂j

{
H(j)(G̃Nf

+ D̄Nf
)TNf−1−jWk+j−1

−Kj+1

[
ANf−1G · · · G

]
TNf−1−jWk+j−1

}
≤ tr

[
R̂

1
2
j

(
H(j)(G̃Nf

+ D̄Nf
) −Kj+1

[
ANf−1G · · · G

])
TNf−1−j

× QNf
TNf−1−j

(
H(j)(G̃Nf

+ D̄Nf
) −Kj+1

[
ANf−1G · · · G

])T

R̂
1
2
j

]

where R̂j
�
= R + BT Kj+1B.

Then, from (5.133) and (5.126), the optimization problem that we have to
solve is summarized as
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H
(j)
B = arg min

H(j)
λmax

[
R̂

1
2
j

(
H(j)(G̃Nf

+ D̃Nf
) −Kj+1

[
ANf−1G · · · G

])
× TNf−1−jQNf

TNf−1−j

(
H(j)(G̃Nf

+ D̄Nf
)

−Kj+1

[
ANf−1G · · · G

])T

R̂
1
2
j

]
subject to

H(j)C̃Nf
= −Kj+1A

Nf (5.148)

By using the result of Lemma 4.3, the solution to the optimization problem
(4.197) can be obtained according to the following correspondences:

A ←− G̃Nf
+ D̄Nf

B ←− R̂
1
2
j Kj+1

[
ANf−1G · · · G

]
C ←− TNf−1−jQNf

TT
Nf−1−j

E ←− C̄Nf

F ←− I

H ←− R̂
1
2
j H(j)

W1,1 ←− C̃T
Nf

C̃Nf

W1,2 ←− C̃T
Nf

G̃Nf

W2,2 ←− G̃T
Nf

G̃Nf
+ I

(5.149)

If j is replaced by 0, i.e. the current time, then the optimal solution for the
general A is obtained, which is summarized in the following theorem.

Theorem 5.7. When {A,C} is observable and Nf ≥ no, the L2-E FMC
uk is given as follows:

uk = −K1

[[
ANf ANf−1G ANf−2G · · · AG G

] [W1,1 W1,2

WT
1,2 W2,2

]−1

×
[

C̃T
Nf

G̃T
Nf

]
R−1

Nf

(
Yk−1 − B̃Nf

Uk−1

)
− K1

[
ANf−1B ANf−2B ANf−3B · · · AB B

]
Uk−1 (5.150)

where W11, W12, and W22 are defined in (5.100) and Yk−1, Uk−1, C̃Nf
, B̃Nf

,
ΞNf

, and K1 are given by (5.48), (5.49), (4.78), (4.79), (4.214), and (5.68)
respectively.

The recursive form of the L2-E FMC is the same as the LQFMC.

5.6.3 H∞ Finite Memory Controls

In this section we introduce the H∞ FMC for the following performance cri-
terion:
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inf
ui

sup
wi

∑∞
i=i0

xT
i Qxi + uT

i Rui∑∞
i=i0

wT
i Rwwi

(5.151)

It is noted that the filter horizon and the performance horizon are [k −N, k]
and [k0, ∞] respectively.

Before deriving the FMC based on the minimax performance criterion, we
introduce a useful result that is employed during obtaining the FMC for the
system (5.5) and (5.6). As in the performance criterion for the LQC, the H∞
performance criterion can be represented in a perfect square expression for
arbitrary control from Lemma 2.11:

∞∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi

]

=
∞∑

i=i0

[
(ui − u∗

i )
TV(ui − u∗

i ) − γ2(wi − w∗
i )TW(wi − w∗

i )
]

(5.152)

where w∗
i and u∗

i are given as

w∗
i = γ−2R−1

w BT M [I + (BR−1BT − γ−2BwR−1
w BT

w)M ]−1Axi (5.153)
u∗

i = −R−1BT M [I + (BR−1BT − γ2BwR−1
w BT

w)M ]−1Axi (5.154)
V = γ2Rw − BT

wMBw (5.155)
W = I + R−1BT M(I − γ−2BwR−1

w BT
wM)−1B (5.156)

and M is given in (2.140) of Chapter 2.
From (5.152), the performance criterion (5.151) can be changed to

inf
ui

sup
wi

∑∞
i=i0

(ui − u∗
i )V(ui − u∗

i )
T∑∞

i=i0
(wi − w∗

i )W(wi − w∗
i )T

(5.157)

where w∗
i and u∗

i are defined in (5.153) and (5.154).
From w∗

k and the state-space system (5.5) and (5.6), the following new
state-space equations are obtained:

xi+1 = Axi + Bui + Bwwi

= Axi + Bui + Bw(wi − w∗
i ) + Bww∗

i

=
[
I + γ−2BwR−1

w BT
wM [I − γ−2BwR−1

w BT
wM ]−1

]
(Axi + Bui)

+ Bw(wi − w∗
i )

= [I − γ−2BwR−1
w BT

wM ]−1(Axi + Bui) + Bw(wi − w∗
i )

= Aaxi + Baui + Bw�wi (5.158)
yi = Cxi + Cwwi

= Cxi + Cwwi − γ−2CwBT
wM [I − γ−2BwR−1

w BT
wM ]−1(Axi + Bui)

= Cxi + Cw�wi (5.159)
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where

Aa
�
= [I − γ−2BwR−1

w BT
wM ]−1A (5.160)

Ba
�
= [I − γ−2BwR−1

w BT
wM ]−1B (5.161)

�wi
�
= wi − w∗

i (5.162)

The control problem based on (5.151) is reduced to the H∞ problem (5.157)
from �wi to �ui. Disturbances �wi are deviated from the worst-case.

The system (5.5) and (5.6) will be represented in a batch form on the
time interval [k − Nf , k] called the horizon. On the horizon [k − Nf , k],
measurements are expressed in terms of the state xk at the time k and inputs
on [k − Nf , k] as follows.

The new state-space equations (5.158)-(5.159) can be represented in a
batch form on the time interval [k − Nf , k] as

Yk−1 = C̄∗
Nf

xk + B̄∗
Nf

Uk−1 + (Ḡ∗
Nf

+ C̄∗
d,Nf

)�Wk−1 (5.163)

where C̄∗
Nf

, B̄∗
Nf

, Ḡ∗
Nf

, C̄∗
d,Nf

, and �Wk−1 are given by

C̄∗
Nf

�
=

⎡⎢⎢⎢⎢⎢⎢⎣
CA

−Nf
a

CA
−Nf +1
a

CA
−Nf +2
a

...
CA−1

a

⎤⎥⎥⎥⎥⎥⎥⎦ , B̄Nf

�
= −

⎡⎢⎢⎢⎢⎢⎢⎣
CA−1

a Ba CA−2
a Ba · · · CA

−Nf
a Ba

0 CA−1
a Ba · · · CA

−Nf +1
a Ba

0 0 · · · CA
−Nf +2
a Ba

...
...

...
...

0 0 · · · CA−1
a Ba

⎤⎥⎥⎥⎥⎥⎥⎦

ḠNf

�
= −

⎡⎢⎢⎢⎢⎢⎢⎣
CA−1

a Bw CA−2
a Bw · · · CA

−Nf
a Bw

0 CA−1
a Bw · · · CA

−Nf +1
a Bw

0 0 · · · CA
−Nf +2
a Bw

...
...

...
...

0 0 · · · CA−1
a Bw

⎤⎥⎥⎥⎥⎥⎥⎦

�Wk−1
�
=

⎡⎢⎢⎢⎢⎢⎣
wk−Nf

− w∗
k−Nf

wk−Nf+1 − w∗
k−Nf+1

wk−Nf+2 − w∗
k−Nf+2

...
wk−1 − w∗

k−1

⎤⎥⎥⎥⎥⎥⎦ , C̄d,Nf

�
=
[
diag(

Nf︷ ︸︸ ︷
Cz Cz · · · Cz)

]

uk in (5.45) is represented as

uk = HYk−1 + LUk−1 = HC̄∗
Nf

xk + HB̄∗
Nf

Uk−1 + LUk−1

+ H(Ḡ∗
Nf

+ C̄∗
d,Nf

)Wk−1 (5.164)
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With zero disturbance on [k−Nf , k−1], we require the unbiased condition that
uk (5.164) be equal to the optimal state feedback control (2.146) in Chapter
2. Therefore, we have

HC̄∗
Nf

= −R−1BT M [I + (BR−1BT − γ−2BwR−1
w BT

w)M ]−1A (5.165)

HB̄∗
Nf

= −L (5.166)

Using the result of (A.3) in Appendix A, H satisfying (5.165) can be repre-
sented as

H = FMT + H0 (5.167)
H0 = −R−1BT M [I + (BR−1BT − γ−2BwR−1

w BT
w)M ]−1

× A(C̄∗T
Nf

C̄∗
Nf

)−1C̄∗T
Nf

(5.168)

for an arbitrary matrix F and a matrix M whose columns span the bases of
the null space of C̄∗T

Nf
.

Using the constraints (5.165) and (5.166) and considering disturbances
gives

ek
�
= uk − u∗

k = H(Ḡ∗
Nf

+ C̄∗
d,Nf

)�Wk−1 (5.169)

The dynamics of �Wk are given in (4.226).
From the dynamics of �Wk and (5.169), we can obtain a transfer function

Tew(z) from disturbances wk to estimation error ek as follows:

Tew(z) = H(Ḡ∗
Nf

+ C̄∗
d,Nf

)(zI − Āw)−1B̄w (5.170)

In order to handle the weighted H∞ performance criterion (5.157), we
consider the following transfer function:

Tew(z) = V− 1
2 H(Ḡ∗

Nf
+ C̄∗

d,Nf
)(zI − Āw)−1B̄wW

1
2 (5.171)

Using the result in Lemma 2.13, we can obtain the LMI for satisfying the
H∞ performance .

Theorem 5.8. Assume that the following LMI is satisfied for X > 0 and F :

min
X>0,F

γ∞

subject to⎡⎢⎢⎢⎣
−X XĀw XB̄wW

1
2 0

Āw
T
X −X 0 ΞT

W 1
2 B̄w

T
X 0 −γ∞I 0

0 Ξ 0 −γ∞I

⎤⎥⎥⎥⎦ < 0

where Ξ
�
= V− 1

2 H(Ḡ∗
Nf

+ C̄∗
d,Nf

).
Then, the gain matrices of the H∞ FMC are given by

H = FMT + H0, L = −HB̄∗
Nf
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5.6.4∗ H2/H∞ Finite Memory Controls

We introduce the H2 FMC in an LMI form. Since the optimal state feedback
H2 control is an infinite horizon LQ control, the H2 FMC should be unbiased
from the control ui = −K∞xi, where

K∞ = R−1BT [I + K∞BR−1BT ]−1K∞A

and K∞ is given in (2.109).

Theorem 5.9. Assume that the following LMI problem is feasible:

min
F,W

tr(W )

subject to[
W (FMT + H0)(ḠNf

+ D̄Nf
)

(ḠNf
+ D̄Nf

)T (FMT + H0)T I

]
> 0 (5.172)

where H0 = −K∞(C̄T
Nf

C̄Nf
)−1C̄T

Nf
and columns of M are the basis of the null

space of C̄T
Nf

. Then, the optimal gain matrices of the H2 FMC are given by

H = FMT + H0, L = −HB̄Nf

Proof. In (5.132), j is set to zero and we have

uk + K1xk = H(ḠNf
+ D̄Nf

)Wk−1 (5.173)

Recalling that Wk = ĀwWk−1 + B̄wwk, we can obtain the H2 norm of the
transfer function Tew(z) given by

‖Tew(z)‖2
2 = tr

(
H(ḠNf

+ D̄Nf
)P (ḠNf

+ D̄Nf
)T HT

)
where

P =
∞∑

i=0

Āi
wB̄wB̄T

w(ĀT
w)i

Since Ai
u = 0 for i ≥ Nf , we obtain

P =
∞∑

i=0

Āi
wB̄wB̄T

w(ĀT
w)i =

Nf−1∑
i=0

Āi
wB̄wB̄T

w(ĀT
w)i = I

Thus we have

‖Tew(z)‖2
2 = tr

(
H(ḠNf

+ D̄Nf
)(ḠNf

+ D̄Nf
)T HT

)
Introduce a matrix variable W such that
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W > H(ḠNf
+ D̄Nf

)(ḠNf
+ D̄Nf

)T HT (5.174)

Then, tr(W ) > ‖Tew(z)‖2
2. By the Schur complement, (5.174) is equivalently

changed into (5.172). Hence, by minimizing tr(W ) subject to HC̄Nf
= −K∞

and the above LMI, we can obtain the optimal gain matrix H for the H2

FMC. This completes the proof.

Each performance criterion has its own advantages and disadvantages, so that
there are trade-offs between them. In some cases we want to adopt two or
more performance criteria simultaneously in order to satisfy specifications. In
this section, we introduce two kinds of controls based on mixed criteria. The
optimal H2 and H∞ norms are denoted by γ∗

2 and γ∗
∞.

1. Minimize the H∞ norm for a fixed guaranteed H2 norm

In this case, the FMC should be unbiased from ui = −Kaxi, where Ka

is obtained from the optimization problem (2.284). Assume that the fol-
lowing LMI problem is feasible:

min
W,X,F

γ∞ (5.175)

subject to

tr(W ) < αγ∗
2

[
W (FMT + H0)(ḠNf

+ D̄Nf
)

(ḠNf
+ DNf

)T (FMT + H0)T I

]
> 0(5.176)

⎡⎢⎢⎣
−X XĀw XB̄wW− 1

2 0
ĀT

wX −X 0 ΞT

W− 1
2 B̄T

wX 0 −γ∞I 0
0 Ξ 0 −γ∞I

⎤⎥⎥⎦ < 0

where α > 1, H0 = −Ka(C̄∗T
Nf

C̄∗
Nf

)−1C̄∗T
Nf

, Ξ = V 1
2 (FMT + H0)(Ḡ∗

Nf
+

C̄∗
d,Nf

), and columns of M consist of the basis of the null space of C̄∗T
Nf

.
Then, the gain matrices of the H2/H∞ FMC are given by

H = FMT + H0, L = −HB̄∗
Nf

2. Minimize the H2 norm for a fixed guaranteed H∞ norm

In this case, the FMC should be unbiased from ui = −Kbxi, where Kb

is obtained from the optimization problem (2.280). H0 in the above prob-
lem should be changed to H0 = −Kb(C̄∗T

Nf
C̄∗

Nf
)−1C̄∗T

Nf
.
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Instead of minimizing γ∞ for a guaranteed H2 norm, γ2 is minimized for
a guaranteed H∞ norm as follows:

min
W,X,F

γ2

subject to

tr(W ) < γ2

(5.176),⎡⎢⎢⎣
−X XĀw XB̄wW− 1

2 0
ĀT

wX −X 0 ΞT

W− 1
2 B̄T

wX 0 −αγ∗
∞I 0

0 Ξ 0 −αγ∗
∞I

⎤⎥⎥⎦ < 0

where α > 1.

5.7 References

The predictor-based output feedback control has been known for many years.
A linear finite memory structure and an unbiased condition were first intro-
duced in [KH04].

The batch forms of the LQFMC for nonsingular A and general A in Theo-
rems 5.1 and 5.2, and the separation principle in Theorem 5.4 are the discrete-
time versions for the continuous-time results in [KH04]. The closed-loop sys-
tem with the FMC in Theorem 5.3 appeared in [HK04]. The stability of the
LQFMC in Theorem 5.5 appeared in [LKC98].

The L2-E FMC in Theorems 5.6 and 5.7 appeared in [AHK04]. The H∞
FMC with the unbiased condition in Theorem 5.8 appeared in [AHK04]. The
H2 FMC in Theorem 5.9 and the mixed H2/H∞ FMC in Section 5.6.4 also
appeared in [AHK04].

5.8 Problems

5.1. Consider the CARIMA model (5.20) with C(q−1) = 1. Assume that there
exist Ej(q−1) and Fj(q−1) satisfying the following Diophantine equation:

1 = Ej(q−1)A(q−1) + q−jFj(q−1) (5.177)

where

Ej(q−1) = dj
0 + dj

1q
−1 + ... + dj

j−1q
−j+1

Fj(q−1) = f j
0 + f j

1q−1 + ... + f j
n−1q

−n+1
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Also assume that there exist Gj(q−1) and Hj(q−1) satisfying the following
equation:

Ej(q−1)B̃(q−1) = Gj(q−1) + q−jHj(q−1) (5.178)

where

Gj(q−1) = gj
0 + gj

1q
−1 + ... + gj

j−1q
−j+1

Hj(q−1) = hj
0 + hj

1q
−1 + ... + hj

nq−n

(1) By using (5.177) and (5.178), show that the following output predictor
form can be obtained:

yk+j = Gj(q−1)�uk+j−1 + Hj(q−1)�uk−1 + Fj(q−1)yk

+Ej(q−1)wk+j (5.179)

It is noted that the input is divided into the past input and the future
input.

(2) Show that ŷk+j|k can be written as

ŷk+j|k = Gj(q−1)�uk+j−1 + Hj(q−1)�uk−1 + Fj(q−1)yk (5.180)

(3) (5.180) can be written as

Yk+1 = G�Uk−1 + F
′
(q−1)yk + H

′
(q−1)�uk−1 (5.181)

where Yk and �Uk are given in (??). Find the matrices G, F
′
(q−1), and

H
′
(q−1).

(4) By using (5.181), represent the performance criterion (5.26) with gf = 0
and Nc − 1 replaced by Nc. And find the optimal control.

5.2. Consider the CARIMA model (5.20). Assume that there exist Ej(q−1)
and Fj(q−1) satisfying the following Diophantine equation:

C(q−1) = Ej(q−1)A(q−1) + q−jFj(q−1) (5.182)

where Ej(q−1) and Fj(q−1) are given in (5.178) and (5.178) respectively. Also
assume that there exist Mj(q−1) and Nj(q−1) satisfying the following second
Diophantine equation:

1 = Cj(q−1)Mj(q−1) + q−jNj(q−1) (5.183)

(1) Show that

ŷk+j = Mj(q−1)Ej(q−1)B̃(q−1)�uk+j−1 + Mj(q−1)Fj(q−1)yk

+ Nj(q−1)yk (5.184)

where Mj(q−1)Ej(q−1)B̃(q−1)�uk+j−1 can be divided into G(q−1)
×�uk+j−1 + Gp(q−1)�uk−1 for some G(q−1) and Gp(q−1).
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(2) By using (5.184), represent the performance criterion (5.26) with gf = 0
and Nc − 1 replaced by Nc. And find the optimal control.

5.3. Consider the CARIMA model (5.20) with C(q−1) = 1 where wi is a
disturbance.

(1) Represent (5.179) in a vector form.
(2) Find the minimax GPC that optimizes the following cost function

min
u

max
w

[Ny∑
i=1

{
[yk+i − yr

k+i]
T q1[yk+i − yr

k+i] + λ�uT
k+i−1�uk+i−1

}
−γ2wT

k+i−1wk+i−1

]
(3) Obtain an asymptotic stability condition using a cost monotonicity con-

dition.

5.4. Consider the LQFMC (5.78) and LQG (2.230).

(1) Calculate E[xkxT
k ] for the LQFMC and the finite-time LQG.

(2) Calculate E[ukuT
k ] for the LQFMC and the finite-time LQG.

5.5. Design an FMC in an LMI form that satisfies the specification E[xkxT
k ] ≤

γ2.

5.6. If the system matrix A is nonsingular, show that the conditions (5.94)
and (5.95) can be reduced to (5.64) and (5.65) by using matrix manipulations.

5.7. If the system matrix A is nonsingular, show by a similarity transformation
that the closed-loop poles for the LQFMC consist of eigenvalues of of A −
BHC̄Nf

and zeros. Check whether this property can be preserved in the case
that the unbiased condition is not met. If so, what are the conditions on the
FMC gains?

Hint: use the following similarity transformation T :

T =

⎡⎣ I O O
O I O

C̄Nf
−B̄Nf

I

⎤⎦ (5.185)

5.8. Consider a problem for finding closed poles of the LQFMC for a general
matrix A.

(1) Suppose that P is given by

P =
[

A KM
C M

]
(5.186)

where all matrices are of appropriate sizes and KC = 0. Show that
det(P ) = det(A) det(M).
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(2) By using the above result, show that the closed-loop poles for the LQFMC
consist of eigenvalues of A − BHC̄Nf

and zeros.

5.9. Consider the following system:

xi+1 = Axi + Bui + Gwi

yi = Cxi + vi

where wi and vi are deterministic disturbances. Derive the L2-E FMC for the
following weighted L2-E performance criterion:

min
u

max
w

J − J∗

∑0
j=−Nf+1

[
wk+j

vk+j

]T [
Qw Swv

ST
wv Rv

]−1 [
wk+j

vk+j

] (5.187)

where J and J∗ are defined in (5.129) and (5.130).

5.10. In the stochastic state-space model (5.1) and (5.2), parameters are given
as

A =

⎡⎣0.1014 0.4056 0.0036
0.0362 0.6077 0.2135
0.8954 0.9927 0.0399

⎤⎦ , G =

⎡⎣0.1669
0.2603
0.0211

⎤⎦ (5.188)

C =
[
0.1342 0.0125 0.1295

]
, B =

[
0.8 0 0

]T (5.189)

Weighting matrices for a performance criterion are set to Q = I3, R = 1, and
Qf = 5I3.

(1) Consider the steady state LQG controls for Qw = 1, 10, 50 with a fixed
Rv = 1. Find poles of a closed-loop system. Check the maximum absolute
value of the filter poles for each case.

(2) Design the LQFMC for Qw = 1, Rv = 1, N = 6.
(3) Supposed that an LQG and an FMC are designed with Qw = 50 and

Qw = 1 respectively. Compare the cost function (5.66) of the infinite
horizon LQG with that of the FMC over the infinite horizon.

Note: LQG/LTR may degrade much performance in order to achieve a
robustness, whereas the FMC guarantees, at least, best performance in a
latest horizon.

5.11. Assume that wk and vk are not uncorrelated in the stochastic system
(5.1) and (5.2) and their covariances are given by

E

[
wk

vk

] [
wT

k vT
k

]
=
[

Qw Swv

ST
wv Rv

]
Find the LQFMC for the above case.
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5.12. Find an optimal FMC for the following performance criterion

min
u

max
w

∑Nc

j=0(uk+j − u∗
k+j)

T (uk+j − u∗
k+j)∑Nc

j=−Nf+1 wT
k+jwk+j

(5.190)

where u∗ is an optimal state feedback control.

5.13. Derive the H∞ FMC for the general A if possible.

5.14. Consider the system model (4.246)-(4.247). The system noise covariance
is 0.02 and the measurement noise covariance is 0.02.
1) For δk = 0, obtain an LQ FMC with the horizon length N = 10.
2) For δk = 0, obtain an LQG controller.
3) For δk = 0, perform simulations for the LQ FMC and LQG controller. And
then compare them.
4) Perform simulations on the time interval [0, 250] under the temporary un-
certainty

δk =
{

0.1, 50 ≤ k ≤ 100
0, otherwise (5.191)

5.15. Derive the FMC to minimize the following cost function:

2γ2 log E exp
[

1
2γ2

N−1∑
i=0

[xT
k+iQxk+i + uT

k+iRuk+i] + xT
k+NQfxk+N

]
(5.192)

for a state-space model (5.1) and (5.2) and a fixed γ. Unbiasedness conditions
(5.94) and (5.95) are required.
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Constrained Receding Horizon Controls

6.1 Introduction

In many control systems, input variables cannot be arbitrarily large and may
have some limitations, such as magnitude limits, since input devices are valves,
motors and pumps, etc. Also, state values must be bounded in many cases. For
example, in process plants, the temperature or the pressure as state variables
must be within certain limits because of safety. As pointed before, many useful
controls can be obtained from optimal controls on the infinite horizon. These
controls for the infinite horizon are difficult to obtain, particularly for input
and state constraints. However, optimal controls for the finite horizon are
relatively easy to obtain for linear systems with input and state constraints
by using SDP. Since receding horizon control is based on the finite horizon,
receding horizon controls can handle input and state constraints. Although
constrained systems are difficult to stabilize by using conventional controls,
RHC provides a systematic way to stabilize the closed-loop system.

Similar to linear systems, the cost monotonicity holds for constrained sys-
tems under certain conditions, together with feasibility conditions. Stability
can be guaranteed under a cost monotonicity condition. The cost monotonic-
ity condition for the constrained RHC can be obtained by three approaches,
i.e. the terminal equality constraint, the free terminal cost, and the terminal
invariant set with or without a terminal cost.

It takes a relatively long time to calculate the constrained RHC. Thus, it
is necessary to introduce fast algorithms that require less computation time.
The feasibility is also an important issue for guaranteeing the existence of the
optimal control satisfying constraints. Output feedback RHCs for constrained
systems are necessary if the state is not available.

The organization of this chapter is as follows. In Section 6.2, input and
output constraints, together with reachable and maximal output admissible
sets, are discussed for the feasibility. In Section 6.3, constrained receding hori-
zon LQ controls are represented in LMI forms. In Section 6.4, the RHC with
a terminal equality and a terminal cost is introduced for constrained systems.
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In particular, a cost monotonicity condition is presented in order to guarantee
the stability. In Section 6.5, constrained RHCs with a terminal invariant set
are introduced for constrained systems. Soft constrains are dealt with in Sec-
tion 6.6. In Section 6.7, constrained output feedback receding horizon controls
are introduced.

6.2 Reachable and Maximal Output Admissible Sets

In this section we will consider the following linear discrete time-invariant
system:

xi+1 = Axi + Bui (6.1)

with input and state constraints:{
−ulim ≤ ui ≤ ulim, i = 0, 1, · · · ,∞
−glim ≤ Gxi ≤ glim, i = 0, 1, · · · ,∞ (6.2)

where ulim ∈ �m, G ∈ �ng×n, and g ∈ �ng . It is noted that the inequality
in (6.2) holds component by component. Since Gxi can be considered as an
output, −glim ≤ Gxi ≤ glim in (6.2) is often called an output constraint. The
system (6.1) with constraints (6.2) is said to be feasible if there exist sequences
for an input and a state that satisfy (6.1) and (6.2). Constraints (6.2) can be
written as

Euk ≤ e, Ḡxk ≤ g, k = 0, 1, 2, · · · (6.3)

where

E =
[

I
−I

]
, e =

[
ulim

−ulim

]
, Ḡ =

[
G
−G

]
, g =

[
glim

−glim

]
(6.4)

U and X are defined as

U = {u| − ulim ≤ u ≤ ulim}
X = {x| − glim ≤ Gx ≤ glim}

In order to observe how the input constraint has an effect on the system, it
will be interesting to investigate all possible states that can be reached from
the initial state by all available controls. For simplicity, the initial state is
considered to be the origin. The reachable set is defined as

RN
�
=
{

x(N ;x0, u)
∣∣∣∣x0 = 0, ui ∈ U , 0 ≤ i ≤ N − 1

}
(6.5)

In order to see whether the state constraint is violated or not, it will be
interesting to investigate all possible initial states, from which all states belong
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to X . For simplicity, the input is considered to be zero. The maximal output
admissible set O∞ is the largest output admissible set, namely the set of all
initial states x0, which makes the resultant state trajectory xi satisfy xi ∈ X
for all i > 0.

O∞
�
= {x0 | x(i;x0) ∈ X , ∀i = 0, 1, 2., · · · } (6.6)

Reachable Sets

Consider the linear system

xk+1 = Axk + Buk (6.7)

where A ∈ �n, B ∈ �m, n ≥ m, and B is of full rank.
Let RN denote the set of reachable states with unit total input energy

RN
�
=
{

xN

∣∣∣∣x0 = 0,
N−1∑
i=0

uT
i ui ≤ 1

}
(6.8)

Constraints on total input energy often appear in optimization problems.
Suppose that there exists a Lyapunov function Vk = xT

k Pxk such that

Vk+1 − Vk ≤ uT
k uk (6.9)

for every xk and uk. Then, summing up from k = 0 to k = N − 1 yields

VN − V0 ≤
N−1∑
k=0

uT
k uk (6.10)

Noting that V0 = xT
0 Px0 = 0 since x0 = 0, we get

VN ≤
N−1∑
k=0

uT
k uk ≤ 1 (6.11)

for every input uk satisfying the constraint in (6.8). Thus, the set {xN |xT
NPxN

≤ 1} contains the reachable set RN . It follows from (6.9) that we have

Vk+1 − Vk = (Axk + Buk)T P (Axk + Buk) − xT
k Pxk ≤ uT

k uk (6.12)

leading to [
xk

uk

]T [
AT PA − P AT PB

BT PA BT PB − I

] [
xk

uk

]
≤ 0 (6.13)

From the above equation, P can be obtained by[
AT PA − P AT PB

BT PA BT PB − I

]
≤ 0 (6.14)
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It follows that

RN ⊂
{

xN

∣∣∣∣xT
NPxN ≤ 1

}
(6.15)

Next, we consider another reachable set with unit input energy ui. Thus, we
are interested in the following set:

RN
�
=
{

xN

∣∣∣∣x0 = 0, uT
i ui ≤ 1

}
(6.16)

Starting from the origin, x1 = Bu0 belongs to the set {x1 : xT
1 x1 ≤

λmax(BT B)} since xT
1 x1 = uT

0 BT Bu0 ≤ λmax(BT B)uT
0 u0 ≤ λmax(BT B).

According to Appendix D, we have

xT
1 (BT B)−1x1 ≤ 1 ⇐⇒ xT

1 x1 ≤ λmax(BT B) (6.17)

It is noted that BT B is nonsingular. Assume that xi belongs to the ellipsoid
xT

i P−1
i xi ≤ 1. We want to find Pi+1 such that xT

i+1P
−1
i+1xi+1 ≤ 1. First it is

shown that xi+1x
T
i+1 is bounded above as

xi+1x
T
i+1 = (Axi + Bui)(Axi + Bui)T (6.18)

= Axix
T
i AT + Buiu

T
i BT + Axiu

T
i BT + Buix

T
i AT (6.19)

≤ 2[Axix
T
i AT + Buiu

T
i BT ] (6.20)

≤ 2[APiA
T + BBT ] (6.21)

where the first inequality comes from PP T + QQT ≥ PQT + QPT , and
xix

T
i ≤ Pi and uiu

T
i ≤ I are used for the second inequality. Thus, we can

choose Pi+1 = 2[APiA
T + BBT ], and thus xT

i+1P
−1
i+1xi+1 ≤ 1. It follows that

RN ⊂
{

xN

∣∣∣∣xT
NP−1

N xN ≤ 1
}

(6.22)

It is noted that P1 is set to BT B.

Maximal Output Admissible Sets

We are concerned with characterizing the initial states of the unforced lin-
ear system

xi+1 = Axi (6.23)

with the state constraint

X = {x|Φx ≤ ψ} (6.24)

where Φ ∈ �q×n and ψ ∈ �q×1 are a matrix and a vector with appropriate
dimensions. We assume that the region is convex and has the origin inside.
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A set O is output admissible if x0 ∈ O implies that xi ∈ X for all k >
0. The maximal output admissible set O∞ is the largest output admissible
set, namely the set of all initial states x0, which makes the resultant state
trajectory xi remain inside forever, i.e. xi ∈ X for all i > 0. This set is
visualized in Figure 6.1. A set X is invariant if x0 ∈ X implies that xi ∈ X
for all i > 0. It is noted that the maximal output admissible set is always
invariant.

Fig. 6.1. Graphical representation of the maximal output admissible set

The maximal output admissible set is defined as

O∞(A,Φ, ψ) = {x|ΦAkx ≤ ψ, ∀k = 0, 1, 2., · · · } (6.25)

Define the set Oi as

Oi(A,Φ, ψ) = {x|ΦAkx ≤ ψ, ∀k = 0, 1, 2., · · · , i} (6.26)

Obviously, the set Oi(A,Φ, ψ) satisfies the condition

O∞ ⊂ Oi2 ⊂ Oi1 (6.27)

for all i1 and i2 such that i1 ≤ i2. Now, it may happen that the sequence of
sets Oi (i = 1, 2, · · · ) stops getting smaller as i increases. That is, there may
be the smallest value of i∗ such that Oi = Oi∗ for all i ≥ i∗. We call i∗ the
output admissibility index. In that case, it is clear that O∞ = Oi∗ .

We say O∞ is finitely determined if, for some i, O∞ = Oi. O∞ is finitely
determined if and only if Oi = Oi+1 for some i.

If (A,Φ) is observable, then it is known that O∞ is convex and bounded.
Additionally, O∞ contains an origin in its interior if A is stable. It is also
known that if A is a stable matrix, (A,Φ) is observable, X is bounded, and X
contains zero, then O∞ is finitely determined.

If O∞ is finitely determined, then the algorithm will terminate for some
value i = i∗ and

O∞ = {x|ΦAix ≤ ψ, 0 ≤ i ≤ i∗} (6.28)
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The following algorithm describes how to obtain O∞. Basically, this algo-
rithm is based on linear programming, so it can be solved efficiently.

Algorithm for obtaining maximal output admissible set

1. Take j = 0.
2. For i = 1 to q, solve the following linear programming problem:

Ji = max
z

ΦiAj+1z subject to ΦAkz ≤ ψ,∀k = 0, 1, · · · , j

where Φi denotes the ith row of the matrix Φ.
3. If Ji > ψi for i = 1 to q, take j = j + 1 and repeat the previous

step.
4. If Ji ≤ ψi for i = 1 to q, then O∞ = Oj .

Example 6.1

The unforced linear system and state constraints are given as

xi+1 =
[

0.9746 0.1958
−0.1953 0.5839

]
xi

Φ =

⎡⎢⎢⎢⎢⎢⎢⎣
−0.8831 −0.8811
0.8831 0.8811
1.0000 0
−1.0000 0

0 1.0000
0 −1.0000

⎤⎥⎥⎥⎥⎥⎥⎦ ψ =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5000
0.5000
1.5000
1.5000
0.3000
0.3000

⎤⎥⎥⎥⎥⎥⎥⎦
Figure 6.2 shows the region corresponding to the O∞ for the above system.

Maximal Output Admissible Set for Constrained Infinite Horizon
Linear Quadratic Regulator

The cost function to be minimized is given by

J∞ =
∞∑

k=0

[
xT

k Qxk + uT
k Ruk

]
(6.29)

subject to (6.3).
It is well known that the steady-state LQR for an unconstrained system

is given by

uk = Kxk (6.30)

for some K. The input constraint is equivalently changed into the state con-
straint as follows:
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Fig. 6.2. Maximal output admissible sets

Euk ≤ e ⇐⇒ EKxk ≤ e (6.31)

Then the total constraint is given by

Φx ≤ ψ (6.32)

where

Φ =
[

EK
G

]
ψ =

[
e
g

]
(6.33)

The closed-loop system is represented by

xk+1 = Aclxk (6.34)
yk = Cxk (6.35)

where Acl = A + BK. Because the control uk = Kxk is optimal in the case
that the system is unconstrained, it may not be optimal for the actual system,
which has input and state constraints. However, if the initial state x0 is in a
certain region, then the input and the state constraints will never be active
and thus the control uk = Kxk for an unconstrained optimal problem is
optimal for a constrained optimal problem. We will obtain such a region for
x0. We can conclude that if x0 belongs to O∞(Acl, Φ, ψ), then (6.30) becomes
optimal for the performance criterion (6.29) with constraints (6.32).

If x0 does not belong to O∞(Acl, Φ, ψ), then we will use another control
scheme. An optimal control is used for the finite horizon from the initial time
in order to make the final state xN on the horizon enter O∞(Acl, Φ, ψ), and
the steady-state optimal control uk = Kxk is used for the remaining infinite
horizon.
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Note that the J∞ can be decomposed as

J∞ =
N−1∑
k=0

[
xT

k Qxk + uT
k Ruk

]
+

∞∑
k=N

[
xT

k Qxk + uT
k Ruk

]
(6.36)

If xN ∈ O∞(Acl, Φ, φ), then the cost function on [N, ∞] can be represented
as

∞∑
k=N

[
xT

k Qxk + uT
k Ruk

]
= xT

NPxN (6.37)

where P is obtained from the following steady-state Riccati equation:

P = AT PA − AT PB[R + BT PB]−1BT PA + Q (6.38)

Therefore, in a certain the case, the cost J∞ can be rewritten as

JN =
N−1∑
k=0

[
xT

k Qxk + uT
k Ruk

]
+xT

NPxN (6.39)

Observe that the original infinite horizon cost J∞ can be equivalently replaced
by a finite horizon cost JN .

Consider the following optimization problem with constraints:

min
ui

JN (6.40)

subject to

Euk ≤ e,Gxk ≤ g, k = 0, 1, · · · , N − 1 (6.41)

Assume that the problem is feasible. Let us denote the optimal control and
the resultant state by u∗

k and x∗
k respectively. We will use the control strategy{

uk = u∗
k, k = 0, 1, · · · , N − 1

uk = Kxk, k = N,N + 1, · · ·
(6.42)

It is clear that uk and xk, k = 0, 1, · · · , N − 1, satisfy the given input
and the state constraints. However, it is not guaranteed that uk and xk

for k = N,N + 1, · · · satisfy the given constraints. We can conclude that
if xN ∈ O∞(Acl, Φ, φ), uk and xk for k = N,N + 1, · · · satisfy the given con-
straints.
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6.3 Constrained Receding Horizon Control with
Terminal Equality Constraint

Input and State Constraints

The system (6.1) and the constraints (6.2) can be represented in the pre-
dictive form

xk+j+1 = Axk+j + Buk+j (6.43)

with input and state constraints:{
−ulim ≤ uk+j ≤ ulim, j = 0, 1, · · · , N − 1
−glim ≤ Gxk+j ≤ glim, j = 0, 1, · · · , N

}
(6.44)

States on [k, k + N ] can be represented as

Xk = Fxk + HUk (6.45)

where Xk, F , H and Uk are given by

Uk =

⎡⎢⎢⎢⎣
uk

uk+1

...
uk+N−1

⎤⎥⎥⎥⎦ , Xk =

⎡⎢⎢⎢⎣
xk

xk+1

...
xk+N−1

⎤⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎣
I
A
...

AN−1

⎤⎥⎥⎥⎦ (6.46)

H =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
B 0 0 · · · 0

AB B 0 · · · 0
...

...
. . .

...
...

AN−2B AN−3B · · · B 0

⎤⎥⎥⎥⎥⎥⎦ (6.47)

Each state on the horizon [k, k + N ] is given by

xk+j = Ajxk + B̄jUk (6.48)

where

B̄j
�
=
[
Aj−1B Aj−2B · · · B O · · · O

]
(6.49)

Constraints (6.44) can be written as⎡⎢⎢⎢⎣
−ulim

−ulim

...
−ulim

⎤⎥⎥⎥⎦ ≤ Uk ≤

⎡⎢⎢⎢⎣
ulim

ulim

...
ulim

⎤⎥⎥⎥⎦ (6.50)

⎡⎢⎢⎢⎣
−glim

−glim

...
−glim

⎤⎥⎥⎥⎦ ≤ ḠN (Fxk + HUk) ≤

⎡⎢⎢⎢⎣
glim

glim

...
glim

⎤⎥⎥⎥⎦ (6.51)
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where
ḠN = diag{G, · · · , G︸ ︷︷ ︸

N

}

Input and state constraints in (6.50) and (6.51) can be converted to LMI form
as follows:

em×j+lUk − ul
lim ≤ 0,

−em×j+lUk − ul
lim ≤ 0, l = 1, 2, · · · ,m, j = 0, 1, · · · , N − 1 (6.52)

eT
ng×j+qḠN (Fxk + HUk) − gq

lim ≤ 0
−eT

ng×j+qḠN (Fxk + HUk) − gq
lim ≤ 0 j = 0, 1, · · · , N, q = 1, 2, · · · , ng (6.53)

where es is a vector such that es = [0, · · · , 0, 1, 0, · · · , 0]T with the nonzero
element in the sth position, and xa implies the ath component of the vector
x. The inequality (6.53) can be also written as

eq(G(Ajxk + B̄jUk)) − gq
lim ≤ 0

−eq(G(Ajxk + B̄jUk)) − gq
lim ≤ 0 (6.54)

Solution in Linear Matrix Inequality Form

Here, we consider the following performance criterion and the terminal equal-
ity constraint:

J(xk, k) =
N−1∑
j=0

(xT
k+jQxk+j + uT

k+jRuk+j) (6.55)

xk+N = 0 (6.56)

where Q ≥ 0 and R > 0. If there is a feasible solution for the system (6.43)
and the performance criterion (6.55) with constraints (6.56) at the initial time
k0, then the next solution is guaranteed to exist, since at least one feasible
solution u[k+1,k+N ] = [u[k+1,k+N−1] 0] exists.

For (6.56), it is required to satisfy

ANxk + B̄Uk = 0 (6.57)

where B̄ = B̄N is given by[
AN−1B AN−2B · · · B

]
(6.58)

and Uk is defined in (6.47). We parameterize Uk in (6.57) in terms of known
variables. If we use the following correspondences in Lemma A.3:

A → B̄

X → Uk

Y → − ANxk
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then it can be seen that all solutions Uk to (6.57) are parameterized by

Uk = −B̄−1ANxk + MÛk (6.59)

where Ûk is a matrix containing the independent variables, B̄−1 is the right
inverse of B̄, and columns of M are orthogonal to each other, spanning the
null space of B̄. It is noted that B̄−1 = B̄T (B̄B̄T )−1. The control (6.59)
can be combined with the receding horizon control with the terminal equality
constraint in Section 3.5.2.

The optimization problem for the fixed terminal case is reduced to the
following SDP:

min γ1 (6.60)[
γ1 − V3 − V2Ûk −ÛT

k V
1
2
1

−V
1
2
1 Ûk I

]
≥ 0

subject to
(6.52) and (6.53)

where

V1 = MT WM

V2 = −2(ANxk − xr
k+N )T B̄−T WM + wT M

V3 = (ANxk − xr
k+N )T B̄−T WB−1(ANxk − xr

k+N )

+ [Fxk − Xr
k ]T Q̄N [Fxk − Xr

k ] − wT B̄−1(ANxk − xr
k+N )

W = HT Q̄NH + R̄N

w = 2xT
k FT Q̄NH

and Q̄N and R̄N are defined in (3.312).
It is noted that Ûk is obtained from the SDP problem (6.60) and Uk is

computed from Ûk according to (6.59).

Theorem 6.1. The optimization problem based on (6.43), (6.44), (6.55), and
(6.56) can be formulated into an SDP (6.60).

What remains to do is just to pick the first one up among U ∗
k as

u∗
k =

[
1, 0, · · · , 0

]
U∗

k (6.61)

Cost Monotonicity

We already learned in Chapter 3 that the equality condition xk+N = 0 pro-
vides the cost monotonicity condition, which also holds in constrained systems
according to the following theorem.
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Theorem 6.2. Assume that the system is feasible on [k, σ] with the terminal
equality constraint. Then the optimal cost J∗(xτ , τ, σ) for the terminal equality
constraint satisfies the following monotonicity relation:

J∗(xτ , τ, σ + 1) ≤ J∗(xτ , τ, σ), τ ≤ σ (6.62)

Proof. The proof procedure is the same as Theorem 3.1, except that there
exist the inputs and the corresponding states that satisfy the constraints.
This completes the proof.

Stability

We have the following result on the stability of the constrained RHCs.

Theorem 6.3. Assume that the system is feasible at the initial time and some
horizon N∗ with the terminal equality constraint and Q is positive definite.
The receding horizon LQ control with the terminal equality constraint stabilizes
the closed-loop system (6.1) for all horizons N ≥ N ∗.

Proof. The proof procedure is the same as Theorem 3.7, except that there exist
inputs and corresponding states that satisfy the constraints. This completes
the proof.

6.4 Constrained Receding Horizon Control with
Terminal Set Constraint

In a fixed terminal case, the condition xk+N = 0 is too strong to have a
solution satisfying all constraints. Thus, we relax this condition and require
that the terminal state has only to enter some ellipsoid instead of going into
the origin exactly, which is depicted in Figure 6.3.

Using the property of the invariant ellipsoid, we introduce a receding hori-
zon dual-mode control that satisfies the constraints on the input and the state.
Outside the ellipsoid, the receding horizon control is employed. Once the state
enters the ellipsoid, the control is switched to a linear state feedback control,
which makes the state stay in the ellipsoid forever and stabilizes the system.
This is called a receding horizon dual-mode control.

Terminal Invariant Set for ui = Hxi

Now, we will try to find a stable linear feedback control that meets all in-
put and state constraints within the terminal ellipsoid (6.78) and make the
state stay inside forever.

We define an ellipsoid EQf ,α centered at the origin:
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Generalization

Constraints

Fig. 6.3. Terminal ellipsoid constraint and terminal equality constraint

EQf ,α = {x ∈ Rn|xT Qfx < α} (6.63)

We will choose a stable linear feedback control ui = Hxi so that it meets all
given input and state constraints

−ulim ≤ ui ≤ ulim (6.64)
−glim ≤ Gxi ≤ glim (6.65)

within the ellipsoid (6.78) and make the state stay inside forever.
The condition

(A − BH)T Qf (A − BH) − Qf < 0 (6.66)

leads to

‖xi+1‖2
Qf

− ‖xi‖2
Qf

= xT
i [(A − BH)T Qf (A − BH) − Qf ]xi < 0 (6.67)

The matrix inequality (6.66) is converted to the LMI as[
Qf A − BH

(A − BH)T Q−1
f

]
< 0[

X AX − BY
XAT − Y T BT X

]
< 0 (6.68)

where X = Q−1
f and Y = HX.

Therefore, the state trajectory xi, i > 0, with the state feedback control
ui = Hxi remains in the ellipsoid EQf ,α and approaches zero asymptotically.

Now we will investigate if the input constraint (6.64) is satisfied in the
region EQf ,α. First, we consider the jth element of ui at time step i which
satisfies the constraint

|uj
i | ≤ uj

lim, j ≥ 0, j = 1, · · · ,m (6.69)
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where uj
lim is the jth element of ulim.

Recall that (xT x) ≥ (lT x)2 for any vectors x and l with lT l = 1. Then,

max
i≥0

|uj
i |2 = max

i≥0,xi∈EQf

|(Y X−1xi)j |2

≤ max
z∈EQf ,α

|(Y X−1z)j |2 = max
z∈EQf ,α

|(Y X− 1
2 X− 1

2 z)j |2

= max
wT w≤α

|(Y X− 1
2 w)j |2 = α|EjY X− 1

2 |22 = αEjY X−1Y T ET
j (6.70)

where Ej is the jth unit row vector with the nonzero element in the jth
position

Ej
�
=
[
0 · · · 0 1 0 · · · 0

]
Note that Ej plays a role in selecting the jth row of a matrix by pre-
multiplication.

From (6.69) and (6.70), we have αEjY X−1Y T ET
j ≤ uj

lim, which can be
converted to the following LMI:[

(uj
lim)2 EjY

(EjY )T 1
αX

]
> 0 (6.71)

for j = 1, 2, · · · ,m.
The state constraint (6.65) can be checked with a similar procedure.

max
i≥0

|(Gxi)j |2 ≤ max
z∈EQf

|(GX
1
2 X− 1

2 z)j |2 = max
|w|22=α

|(GX
1
2 w)j |2

= α|EjGX
1
2 |22 = αEjGXGT ET

j (6.72)

From (6.72), the LMI for the state constraint is obtained:

[
(gj

lim)2 EjGX
XT (EjG)T α−1X

]
> 0 (6.73)

For constrained systems, we should make the ellipsoid shrink so that the
state feedback control ui = Hxi asymptotically stabilizes the system while
satisfying the input and the state constraints. Based on this fact, we introduce
the following lemma.

Lemma 6.4. Suppose that there exist X > 0 and Y satisfying the LMIs
(6.68), (6.71), and (6.73). For the state feedback controller ui = Y X−1xi =
Hxi, the resultant state trajectory xi always remains in the region EQf ,α sat-
isfying the constraints on the input and the state.

According to Lemma 6.4, the input and state constraints are expressed
by each component. This may be rewritten in another form to consider the
constraints in terms of one LMI.
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If we introduce another variable Z that satisfies

αEjY X−1Y T ET
j = α(Y X−1Y T )j,j ≤ Zj,j ≤ uj

lim

where Zj,j is (j, j) elements of the matrices Z, αY X−1Y T ≤ Z implies that
the input constraint −ulim ≤ ui ≤ ulim is guaranteed in the region EX .
Therefore, we obtain the following LMI:[

Z Y
Y T 1

αX

]
≥ 0, with Zj,j ≤ (uj

lim)2 (6.74)

If we introduce a variable V that satisfies

α(GXGT )j,j ≤ Vj,j ≤ gj
lim

then αGXGT ≤ V implies that the state constraint −glim ≤ Gxi ≤ glim is
guaranteed in the region EQf ,α. Therefore, we obtain the following LMI:

αGXGT ≤ V, with Vj,j ≤ (gj
lim)2 (6.75)

In order for a dual-mode control to stabilize the system, the state must enter
the ellipsoid within the given finite time

Constrained Receding Horizon Dual-mode Control with Fixed In-
variant Set

The following performance is considered:

J1(xk, k)
�
=

Nk−1∑
j=0

(xT
k+jQxk+j + uT

k+jRuk+j) (6.76)

with the input and state constraints{
−ulim ≤ uk+j ≤ ulim, j = 0, 1, · · · , Nk − 1
−glim ≤ Gxk+j ≤ glim, j = 0, 1, · · · , Nk

(6.77)

and the terminal set constraint

xT
k+NPxk+N ≤ α (6.78)

which is represented as

EP,α = {x ∈ Rn|xT Px ≤ α} (6.79)

The terminal set (6.78) can be written as

(ANkxk + B̄Uk)T P (ANkxk + B̄Uk) < α
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which is converted into the following LMI:[
α (ANkxk + B̄Uk)T

(ANkxk + B̄Uk) P−1

]
> 0 (6.80)

According to (3.319) and (3.320) in Section 3.5.2, the problem minimizing
(6.76) is reduced to the following LMI form:[

γ1 − wT Uk − xT
k FT

k Q̄NFkxk UT
k

Uk W−1

]
≥ 0 (6.81)

We try to find the minimum γ1 subject to (6.81), (6.52), (6.53), and (6.80) to
obtain an optimal control which steers the state into the ellipsoid (6.79).

Dual-mode control can be obtained as follows: at time k = 0, if x0 ∈
E , switch to a local linear control, i.e. employ a linear feedback law uk =
Kxk thereafter such that xk ∈ E . Otherwise, compute a control horizon pair
(u0+·, N0) for the problem J(x0, 0, u0+·, N0). Apply the control u0 to the real
system.

Assume that the control pair (uk−1+·, Nk−1) is found. At the time k, if xk ∈
E , switch to a local linear control, i.e. employ the linear feedback control law
Kxk thereafter such that xk ∈ E . Otherwise, we compute another admissible
control horizon pair (uk+·, Nk), which is better than the preceding control
horizon pair in the sense that

J(xk, k, uk+·, Nk) ≤ J(xk, k, u′
k+·, Nk−1 − 1) (6.82)

where u′
k+· is equal to uk−1+· in the interval [k, k − 1 + Nk−1] and is an

admissible control for J(xk, k, uk+·, Nk). Finally, we apply the control uk to
the real system.

The control uk always exists, since there is at least one feasible solution if
Nk is set to Nk−1 − 1. It is noted that Nk is time-varying, whereas N is fixed
in previous sections.

Theorem 6.5. Suppose that the system (6.1) is stabilizable. Then, for Nk >
1, there exists a control horizon pair (uk, Nk) such that the following equation
is satisfied:

J(xk, k, uk, Nk) ≤ J(xk, k, u′
k, Nk−1 − 1) (6.83)

and there exists constant 0 < η < ∞ satisfying

J(xk+1, k + 1, uk+1, Nk+1) ≤ J(xk, k, uk, Nk) − η (6.84)

for all k such that both xk and xk+1 are in EP,α.

Proof. The first statement is already explained in (6.82). Since the trajectory
by (uk, Nk) is the same as one by (uk+1, Nk − 1) on [k + 1, k + Nk], we have
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J(xk, k, uk, Nk) − J(xk+1, k + 1, u′
k+1, Nk − 1) (6.85)

= xT
k Qxk + uT

k Ruk (6.86)
≥ inf{xT

k Qxk | xk ∈ EP,α} (6.87)

= inf{xT Qx

xT Px
xT Px | x ∈ EP,α} (6.88)

≥ λmin(Q)
λmax(P )

α (6.89)

for all k such that both xk and xk+1 lie in EP,α. Thus, η can be taken as

η =
λmin(Q)
λmax(P )

α (6.90)

This completes the proof.

Theorem 6.6. The dual-mode receding horizon controller is asymptotically
stabilizing with a region of attraction X. For all x0 ∈ X, there exists a finite
time N∗ such that xN∗ ∈ EP,α.

Proof. Suppose that there is no such k for which xk ∈ EP,α. From Theorem
6.5, it follows that there exists a 0 < η < ∞ such that

J(xk+1, k + 1, uk+1+·, Nk+1) ≤ J(xk, k, uk+·, Nk) − η (6.91)

for all k, which immediately implies that

J(xk, k, uk+·, Nk) < 0 (6.92)

for some k > 0. However, this contradicts the fact that

J(xk, k, uk+·, Nk) ≥ 0 (6.93)

for all k. Therefore, there exists a finite k such that xk ∈ EP,α. xk enters EP,α

within a finite time and then approaches zero by a local linear stabilizing state
feedback control. This completes the proof.

The horizon N is varying with time in the above cases. However, we can
use the fixed horizon N with a stability property. We introduce a dual-mode
control with a stability property, which will be explained later.

6.5 Constrained Receding Horizon Control with Free
Terminal Cost

Solution in Linear Matrix Inequality Form

The performance criterion can be written into two parts as follows:



278 6 Constrained Receding Horizon Controls

J(xk, k) = J1(xk, k) + J2(xk+N , k) (6.94)

where

J1(xk, k)
�
=

N−1∑
j=0

(xT
k+jQxk+j + uT

k+jRuk+j) (6.95)

J2(xk+N , k)
�
= xT

k+NQfxk+N (6.96)

and Q ≥ 0, R > 0, and Qf > 0. The constrained RHC is obtained by com-
puting the above optimization problem at time k and repeating it at the next
time.

According to (3.319) and (3.320) in Section 3.5.2, the problem minimizing
(6.94) with constraints (6.2) can be reduced to the following problem:

U∗
k = arg min γ1 + γ2 (6.97)

subject to
(6.81)[

γ2 [ANxk + B̄Uk]T[
ANxk + B̄Uk

]
Q−1

f

]
≥ 0 (6.98)

(6.52) and (6.53)

where
Q̄N = diag{Q, · · · , Q︸ ︷︷ ︸

N

} R̄N = diag{R, · · · , R︸ ︷︷ ︸
N

} (6.99)

Now we can summarize what we have shown so far as follows:

Theorem 6.7. The optimization problem based on (6.43), (6.44), and (6.94)
can be formulated into an SDP as follows:

min
γ1,γ2,Uk

γ1 + γ2 (6.100)

subject to (6.81), (6.98), (6.52), and (6.53).

If Uk is found from Theorem 6.7, then the optimal control at the current
time k is given by (6.61).

For the free terminal cost, we have a similar result to the terminal equality
constraint.

Cost Monotonicity

Theorem 6.8. Assume that the system is feasible. If Qf in (6.96) satisfies
the inequality

Qf ≥ Q + HT RH + (A − BH)T Qf (A − BH) (6.101)
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for some H ∈ �m×n, then the optimal cost J∗(xτ , τ, σ) then satisfies the
following monotonicity relation:

J∗(xτ , τ, σ + 1) ≤ J∗(xτ , τ, σ) (6.102)

Proof. The proof procedure is the same as Theorem 3.2, except that there
exist the inputs and the corresponding states that satisfy the constraints.
This completes the proof.

It is noted that feasibility is assumed in Theorem 3.1. We introduce LMI
forms to handle feasibility and the constraints.

We show that this inequality condition (6.101) can be converted into an
LMI form.

From Chapter 3 we have the LMI form of the cost monotonicity condition⎡⎢⎢⎣
X (AX − BY )T (Q

1
2 X)T (R

1
2 Y )T

AX − BY X 0 0
Q

1
2 X 0 I 0

R
1
2 Y 0 0 I

⎤⎥⎥⎦ ≥ 0 (6.103)

where X = Q−1
f and Y = HX.

Then, we have to solve the following problem:

min
γ1,γ2,X,Y,Uk

γ1 + γ2

subject to
(6.81), (6.98), (6.52), (6.53), and (6.103).

It is noted that even though the the above optimization problem has a solu-
tion at current time k , we cannot guarantee that the optimization problem
also has a solution at the next time k + 1, as seen in Figure 6.4.

Fig. 6.4. How to choose H at the terminal time
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Stability

We have the following results on the stability of the constrained RHCs.

Theorem 6.9. Assume that the system is feasible for all k and some N ∗, and
Q is positive definite. The receding horizon LQ control with the free terminal
cost under a cost monotonicity condition (6.102) stabilizes the closed-loop
system (6.1) for N ≥ N∗.

Proof. The proof procedure is the same as Theorem 3.8, except that there
exist the inputs and the corresponding states that satisfy the constraints.
Since Q > 0, xT

i Qxi → 0 implies xi → 0. This completes the proof.

A feedback control uσ = Hxσ was obtained from Theorem 6.8. We can
utilize the state feedback control every time.

Let σ = k; we must have

(A + BH)xk ∈ X , Hxk ∈ U (6.104)

and

−glim ≤ G(A − BH)xk ≤ glim (6.105)
−ulim ≤ Hxk ≤ ulim (6.106)

It is noted that H used in uk = Hxk is obtained at the terminal time k.

Theorem 6.10. If the system is feasible and Qf is positive definite, then the
state feedback control ui = Hxi obtained from (6.103), (6.105) and (6.106)
stabilizes the closed-loop system while satisfying the constraints.

Proof. Let V (xi) = xT
i Qfxi. Since Qf > 0, V (xi) can be a Lyapunov function.

V (xi+1) − V (xi) = xT
i (A − BH)T Qf (A − BH)xi − xiQfxi

= xi(−Qf − HT RH)xi

≤ −xT
i Qfxi

Thus, xi → 0. This completes the proof.

It is noted that controls in Theorems 6.3, 6.9, and 6.10 are assumed to exist
at each time. In order to guarantee the feasibility on the infinite horizon, we
introduce an ellipsoid invariant set in the next section.

When certain constraints are imposed on the given system, it is an impor-
tant issue whether the optimization problem formulated has a solution for all
times k.
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Terminal Invariant Ellipsoid

From the optimization problem (6.97), we require additional constraint

γ2 ≤ α (6.107)

in order to improve the feasibility.
Here, we introduce an algorithm to solve the optimization problem (6.97).

Now, we will use γ∗
2 instead of α, which brings out the advantage that it is not

necessary to make the final state driven to the specific ellipsoid. We can obtain
the ellipsoid while optimizing the given performance criterion. The optimal
cost xT Qfx for the final state is equal to γ∗

2 , so that we choose Qf and γ∗
2

to make the ellipsoid xT Qfx ≤ γ∗
2 invariant. For these Qf and γ∗

2 , the final
state is on the boundary of the ellipsoid xT Qfx ≤ γ∗

2 . Thus, we have only to
replace X with γ2Q

−1
f and find it so that the ellipsoid is invariant. The LMIs

(6.71) and (6.73) should be changed to[
(uj

lim)2 EjY
(EjY )T 1

γ2
X

]
> 0 (6.108)

and [
(gj

lim)2 EjGX
XT (EjG)T γ2X

]
> 0 (6.109)

Lemma 6.11. Suppose that there exist X > 0 and Y satisfying (6.103),
(6.71), and (6.73). Then, the state feedback controller ui = Y X−1xi = Hxi

exponentially stabilizes the closed-loop system for all x0 ∈ EQf ,α while satisfy-
ing the constraint (6.2). And the resultant state trajectory xi always remains
in the region EQf ,α.

The following theorem summarizes the stabilizing receding horizon control.

Theorem 6.12. Consider the optimization problem at time k as follows:

min
Λ

γ1 + γ2 (6.110)

subject to (6.52), (6.53), (6.81),[
γ2I (ANxk + B̄Uk)T

ANxk + B̄Uk X̂

]
≥ 0 (6.111)

⎡⎢⎢⎣
X̂ (AX̂ − BŶ )T (Q

1
2 X̂)T (R

1
2 Ŷ )T

AX̂ − BŶ X̂ 0 0
Q

1
2 X̂ 0 γ2I 0

R
1
2 Ŷ 0 0 γ2I

⎤⎥⎥⎦ ≥ 0 (6.112)
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(uj

lim)2 Ej Ŷ

Ej Ŷ
T X̂

]
> 0 (6.113)

[
(gj

lim)2 EjGX̂

X̂EjG
T X̂

]
> 0 (6.114)

where j = 1, 2, · · · ,m, Λ = {γ1, γ2, X̂, Ŷ , Ut}. Then, we can obtain Qf = γ2X̂

and H = Ŷ X̂−1. If this optimization problem has a solution at the initial
time, then we can obtain a stabilizing receding horizon control for all the time
that satisfies the constraints on the input and the state.

Proof. In order to combine two variables γ2 and X, we introduce X̂ = γ2X.
From (6.98), we have[

γ2I (ANxk + B̄Uk)T

ANxk + B̄Uk X

]
≥ 0 (6.115)

Representing X in terms of X̂ and scaling elements in the matrix on the left
side of (6.111) yields

T

[
γ2I (ANxk + B̄Uk)T

ANxk + B̄Uk γ−1
2 X̂

]
TT (6.116)

=
[

I (ANxk + B̄Uk)T

ANxk + B̄Uk X̂

]
≥ 0 (6.117)

where

T =
[√

γ2
−1 0

0
√

γ2

]
(6.118)

Thus, we obtain the LMI (6.111). By using X̂ instead of X, the left side of
the LMI (6.103) for the cost monotonicity condition can be changed into⎡⎢⎢⎣

γ−1
2 X̂ γ−1

2 (AX̂ − BŶ )T (Q
1
2 γ−1

2 X̂)T (R
1
2 γ−1

2 Ŷ )T

γ−1
2 (AX̂ − BŶ ) γ−1

2 X̂ 0 0
Q

1
2 γ−1

2 X̂ 0 I 0
R

1
2 γ−1

2 Ŷ 0 0 I

⎤⎥⎥⎦ (6.119)

Multiplying (6.119) by T2 given as

T2 = diag{√γ2,
√

γ2,
√

γ2,
√

γ2}

yields (6.112). The input and the state constraints (6.108) and (6.109) in an
ellipsoid can be represented in a form of the LMIs as[

I 0
0 γ2I

] [
(uj

lim)2 EjY
EjY

T 1
γ2

X

] [
I 0
0 γ2I

]
=
[

(uj
lim)2 Ej Ŷ

Ej Ŷ
T X̂

]
> 0 (6.120)
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and [
I 0
0 γ2I

] [
(gj

lim)2 EjGX
XEjG

T γ−1
2 X

] [
I 0
0 γ2I

]
=
[

(gj
lim)2 EjGX̂

X̂EjG
T X̂

]
> 0 (6.121)

This completes the proof.

The trajectory of the receding horizon control of Theorem 6.12 is depicted
in Figure 6.5.

Fig. 6.5. State trajectory due to the proposed RHC in Theorem 6.12

Example 6.2

To illustrate the validity of the RHC, numerical examples are given for a
linear discrete time-invariant system

xi+1 =
[

1 0.2212
0 0.7788

]
xi +

[
0.0288
0.2212

]
ui (6.122)

where the initial state is set to [1 0.3]T , and ui and xi should be constrained
in the following region:

−0.5 ≤ ui ≤ 0.5 (6.123)[
−1.5
−0.3

]
≤ Gxi =

[
1 0 1.5
0 1 1

]
xi ≤

[
1.5
0.3

]
(6.124)

Here, the performance criterion is taken as
4∑

j=0

[ xT
k+jxk+j + u2

k+j ] + xT
k+5Qfxk+5 (6.125)

where Qf is determined each time. State trajectories are shown in Figure 6.6.
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Fig. 6.6. State trajectory of Example 6.2

6.6 Constrained Receding Horizon Control with Mixed
Constraints

Generally, input constraints are imposed by physical limitations of actua-
tors, valves, pumps, etc., whereas state constraints cannot be satisfied all the
time, and hence some violations are allowable. In particular, even if state con-
straints are satisfied in nominal operations, unexpected disturbances may put
the states aside from the region where state constraints are satisfied. In this
case, it may happen that some violations of state constraints are unavoidable,
while input constraints can be still satisfied. We introduce so-called mixed con-
straints, which consist of a hard input constraint and a soft state constraint,
and apply these constraints to the RHC.

The mixed constraints are given by

−ulim ≤ ui ≤ ulim (6.126)
−g − εi ≤ Gxi ≤ g + εi (6.127)

where i = 0, 1, · · · ,∞ and εi ≥ 0 denotes tolerance for violation of state
constraints.

In order to deal with the mixed constraints (6.126), we modify the perfor-
mance criterion and the corresponding optimization problem as

Minimize
uk,··· ,uk+N−1,εk,··· ,εk+N−1

Jm(xk, k) (6.128)

where

Jm(xk, k) = J(xk, k) +
N−1∑
j=0

εT
k+jSεk+j (6.129)
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subject to

−ulim ≤ uk+j ≤ ulim, j = 0, 1, · · · , N − 1 (6.130)
−g − εk+j ≤ Gxk+j ≤ g + εk+j , j = 0, 1, · · · , N − 1 (6.131)

where J(xk, k) is given in (6.94) and S > 0 is a weighting matrix for violation
on state constraints. The constraints (6.126) and (6.130) are hard constraints,
whereas the constraints (6.127) and (6.131) are soft constraints. They together
are called mixed constraints if both exist. Note that the additional cost is
included so as to penalize a measure of the state constraints violation. We
require that uk+j = Hxk+j is applied for j ≥ N and the state trajectory
satisfies

−ulim ≤ Hxk+j ≤ ulim (6.132)
−g ≤ Gxk+j ≤ g (6.133)

for j = N, · · · ,∞.
It is shown that the cost monotonicity condition for a hard constraint still

holds under a specific condition for (6.126).
u1

i and ε1i are optimal for J(xτ , τ, σ + 1), and u2
i and ε2i are optimal for

J(xτ , τ, σ). If we replace u1
i and ε1i by u2

i and ε2i up to σ − 1, and we use
u1

σ = −Hxσ at time σ, then by the optimal principle we have

J∗(xτ , σ + 1) =
σ∑

i=τ

[x1T
i Qx1

i + u1T
i Ru1

i + ε1T
i Sε1i ] + x1T

σ+1Qfx1
σ+1

≤
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i + ε2T
i Sε2i ] + x2T

σ Qx2
σ + x2T

σ HT RHx2
σ

+ x2T
σ (A − BH)Qf (A − BH)x2

σ (6.134)

where xσ+1 = (A − BH)xσ.
If xσ satisfies the condition (6.133), then the optimal value of εσ must be

zero. How to make xσ satisfy (6.133) will be discussed later. It follows from
(6.134) that

δJ∗(xτ , σ) = J∗(xτ , σ + 1) − J∗(xτ , σ) (6.135)

=
σ∑

i=τ

[x1T
i Qx1

i + u1T
i Ru1

i + ε1T
i Sε1i ] + x1T

σ+1Qfx1
σ+1

−
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i + ε1T
i Sε1i ] − x2T

σ Qfx2
σ

≤ x2T
σ Qx2

σ + x2T
σ HT RHx2

σ + x2T
σ (A − BH)Qf (A − BH)x2

σ

− x2T
σ Qfx2

σ

= x2T
σ {Q + HT RH + (A − BH)T Qf (A − BH) − Qf}x2

σ ≤ 0 (6.136)
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Finally, we have the cost monotonicity condition:

Q + HT RH + (A − BH)T Qf (A − BH) − Qf ≤ 0 (6.137)

In order to consider the cost function of a state constraint violation, we in-
troduce the variable γ3 as

ET
k SNEk < γ3 (6.138)[

γ3 ET
k

Ek S−1
N

]
> 0 (6.139)

where Ek = [εk, · · · , εk+N−1]T and SN = diag{S, · · · , S︸ ︷︷ ︸
N

}.

Finally, we have the following LMI problem:

Minγ1,γ2,γ3,Uk,εγ1 + γ2 + γ3 (6.140)

subject to (6.81), (6.98), (6.111), (6.139), (6.112), (6.113), (6.114).
If there is a solution to the optimization problem (6.140), then it satisfies

all the conditions (6.126), (6.132), (6.133), and (6.137).

6.7 Constrained Output Feedback Receding Horizon
Control

Constrained Output Feedback Receding Horizon Control with a
Disturbance Invariant Set

We will show that an output feedback RHC guarantees the closed-loop sta-
bility for a constrained system under some conditions. Since the system with
constraints is nonlinear, we cannot apply the separation principle to prove the
stability of the system.

We consider the following system with input, systems disturbance, and
measurement disturbance constraints:

xk+1 = Axk + Buk + Gwk (6.141)
yk = Cxk + vk (6.142)

where

−ulim ≤ uk ≤ ulim

−vlim ≤ vk ≤ vlim

−wlim ≤ wk ≤ wlim

(6.143)

The state is not accessible and an observer of the plant

x̂k+1 = Ax̂k + Buk + L(yk − Cx̂k) (6.144)
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is used to provide estimated states instead. The dynamics of the state esti-
mation error ek = xk − x̂k can be derived as

ek+1 = (A − LC)ek + Gwk − Lvk (6.145)

It is assumed that the bounds on the initial estimation error are given as

|e0| ≤ ē0 (6.146)

By combining (6.144) and (6.145), it is possible to build the following aug-
mented system:

xa
k+1 =

[
A LC
0 A − LC

]
xa

k +
[

B
0

]
uk +

[
0 L
G −L

]
da

k (6.147)

where

xa
k =

[
x̂T

k eT
k

]T
, da

k =
[
wT

k vT
k

]T (6.148)

It is assumed that the control uk is represented as

uk = Fx̂k + νk (6.149)

where νk is an additional control which will be explained later. F in (6.149)
and L in (6.145) are chosen so that A − BF and A − LC respectively are
Hurwitz and meet a certain performance. Then, (6.147) can be rewritten as

xa
k+1 =

[
ΦF LC
0 ΦL

]
xa

k +
[

B
0

]
ck +

[
0 L
G −L

]
da

k

= Φxa
k +
[

B
0

]
ck + Ξda

k (6.150)

where ΦF = A + BF , ΦL = A − LC, and

Φ =
[

ΦF LC
0 ΦL

]
, Ξ =

[
0 L
G −L

]
(6.151)

Now, we set νk to zero and introduce a disturbance invariant set where all
trajectories satisfy the constraint once the initial state comes inside.

For the matrix A ∈ �m×n, |A| is defined as a matrix each of whose elements
is |Aij |. The following disturbance invariance set is considered:

EW,α = {xa
k ∈ �2n| |Wxa

k| ≤ α, 0 < α ∈ �2n} (6.152)

with a weighting symmetric matrix W that is a block diagonal matrix such
as

W =
[

W1 0
0 W2

]
(6.153)
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It is noted that EW,α in (6.152) is of a polyhedral form, not an ellipsoid.
From the inequality

|Wxa
k+1| = |W (Φxa

k + Ξ

[
wk

vk

]
)| = |W (ΦW−1Wxa

k + Ξ

[
wk

vk

]
)|

≤ |WΦW−1| |Wxa
k| + |WΞ| |

[
wk

vk

]
|

≤ |WΦW−1|α + |WΞ|
[

wlim

vlim

]
the invariance condition of the set EW,α is given as

|WΦW−1|α + |WΞ|
[

vlim

wlim

]
≤ α (6.154)

After some obvious manipulation, the equation can be divided as follows:

|W1ΦF W−1
1 |α1 + |W1LCW−1

2 |α2 + |W1L|wlim ≤ α1 (6.155)
|W2ΦLW−1

2 |α2 + |W2G|vlim + |W2L|wlim ≤ α2 (6.156)

where α = [αT
1 αT

2 ]T . It is easy to see that the state feedback control uk = Fx̂k

satisfies the input constraints for any xa
k+N ∈ EW,α provided that

|FW−1
1 |α1 ≤ ulim (6.157)

which comes from the following fact:

|Fx̂k| = |FW−1
1 W1x̂k| ≤ |FW−1

1 ||W1x̂k| ≤ |FW−1
1 |α1 (6.158)

Theorem 6.13. If (6.155), (6.156), and (6.157) are satisfied, then uk = Fx̂k

stabilizes the system (6.141) and (6.142) for any initial estimation x̂0 and
initial estimation error e0 such xa

0 ∈ EW,α.

It is noted that νk is set to zero inside the invariant set. Now, we force the
state into the disturbance invariant set by using nonzero νk and a receding
horizon scheme.

A control algorithm of the constrained output feedback RHC for linear
constrained systems is as follows:

1. At time instant k, determine N additional controls
[νk, νk+1, · · · , νk+N−1] for (6.150) to satisfy the input con-
straints in (6.143) and xa

k+N ∈ EW,α, and minimize the following
performance criterion:

J([νk, νk+1, · · · , νk+N−1] =
N−1∑
i=0

νT
k+iνk+i (6.159)

2. Apply uk = Fx̂k + νk to the plant (6.141) and (6.142).
3. Repeat this procedure at the next time instant k + 1.
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It is noted that the above approach provides the stabilizing output feedback
control and tends not to much deviate from the trajectory generated from the
control (6.149) with the observer (6.145).

The disturbance invariant set can be designed once or repeatedly each
time. In the first case, as in dual-mode controls, the control is switched to the
linear output feedback control when the state enters the disturbance invariant
set. In the second case, the disturbance invariance set is designed repeatedly
for a better performance, which will be given as a problem in Section 6.9.

Constrained Linear Quadratic Finite Memory Control

It is shown that LQFMC can easily handle input constraints just by adding
LMIs. Assume that the system matrix A is nonsingular and the following LMI
problem is feasible:

min
F,W

tr(W )

subject to[
W R̂

1
2 (FMT + H0)

(FMT + H0)T R̂
1
2 (ḠNf

QNf
ḠT

Nf
+ RNf

)−1

]
> 0 (6.160)

−ulim ≤ HYk−1 − HB̄Nf
Uk−1 ≤ ulim (6.161)

where H0 = −K1(C̄T
Nf

C̄Nf
)−1C̄Nf

and the columns of MT consist of the basis
of the null space of C̄T

Nf
. Then the gain matrices of the constrained LQFMC

is given by
H = FMT + H0, L = −HB̄Nf

It is noted that inequalities (6.161) are of an LMI form, which decreases the
feasibility.

6.8 References

Reachable sets and maximal output admissible sets in Section 6.2 are mostly
based on [BGFB94] and [GT91] respectively. In particular, constrained LQ
controls in Section 6.2 using a maximal admissible set appeared in [KG88]
[SR98].

The cost monotonicity for the fixed terminal case (xk+N = 0) in The-
orem 6.2 and the stability of the RHC in Theorem 6.3 hold for nonlinear
and constrained systems, which can be easily proved from well-known results
without the help of any references. The stability in the case of a zero termi-
nal constraint in Theorem 6.3 appeared in [MM93] for constrained nonlinear
systems.
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The invariant ellipsoid for the linear state feedback control in Lemma 6.4
and the feasibility of a solution in Theorem 6.5 appeared in [LKC98]. The
finite arriving time to the invariant set in Theorem 6.6 is a discrete-time
version of [MM93].

The constrained receding horizon control in Theorem 6.7 appeared in
[LKC98]. A cost monotonicity condition for constrained systems in Theorem
6.8 and its stability in Theorem 6.9 appeared in [LKC98]. The stability of a
linear feedback control for linear unconstrained systems in Theorem 6.10 ap-
peared in [LKC98] without a proof. The property of an invariant ellipsoid in
Theorem 6.11 and an LMI representation for the constrained RHC in Theo-
rems 6.12 appeared in [LKC98]. The RHC with a mixed constraint in Section
6.6 is based on [ZM95].

The constrained output feedback RHC in Theorem 6.13 appeared in
[LK01]. The disturbance invariant set in Section 6.7 is introduced in [KG98]
[Bla91], and how to find it for the dynamic equation (6.147) is dealt with in
[LK99].

6.9 Problems

6.1. Consider the system (6.1) with
∑N−1

i=0 uT
i ui ≤ 1.

(1) Show that (xN − ANx0)T (WWT )−1(xN − ANx0) ≤ 1, where W =
[AN−1B · · ·B].

(2) If A and B are given by

A =
[

0.9746 0.1958
−0.1953 0.5839

]
, B =

[
0.8831
−0.8811

]
(6.162)

compute P satisfying the LMI (6.14).
(3) The ellipsoid (6.15) made by P contains the reachable set. Check whether

WWT ≤ P−1 for the system (6.162).

6.2. Show that the maximal output admissible set is positively invariant.

6.3. Suppose that a system and an off-origin ellipsoid are given by

xk+1 = −1
2
xk + uk

(xk − 0.5)2 ≤ α

Find α such that the ellipsoid is invariant with a linear stable feedback control.
Additionally, compute the corresponding state feedback controller inside the
ellipsoid.

6.4. Consider polytopic uncertain systems [BGFB94] described by

xk+1 = Ãxk + B̃uk, − ūi ≤ uk ≤ ūi (6.163)
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where x ∈ Rn, u ∈ Rm, and

(Ã, B̃) =
np∑
i=1

ηi(Ai, Bi), ηi ≥ 0,
np∑
i=1

ηi = 1

If we use a state feedback controller u = Fx and a state transformation
x = V z, we get

zk+1 = Φ̃zk, Φ̃ = V −1(Ã + B̃F )V (6.164)

(1) Denote that |z| = {|zi|} and α is a positive column vector. Derive a nec-
essary and sufficient condition to make the set

{x ∈ Rn| |z| ≤ α} (6.165)

be invariant with respect to the closed-loop dynamics of (6.164).
(2) Derive a condition to make F robustly stabilizing.

6.5. Considering the following system with constraints on the state and input:

xi+1 =
[

1 1
0 1

]
xi +

[
0
1

]
ui (6.166)

where [
−1
−1

]
≤ xi ≤

[
1
1

]
, − 1 ≤ ui ≤ 1 (6.167)

Find the invariant set xT Px ≤ 1 and compute the corresponding state feed-
back control which makes the state stay inside the terminal ellipsoid forever.

6.6. Consider the systems (2.287) and (2.288) in the second problem of Prob-
lem 2.2. Obtain an RHC to minimize the performance criterion

J =
3∑

j=0

0.5[x2
1,k+j + x2

2,k+j + u2
k+j ] (6.168)

subject to x1,k+4 = x2,k+4 = 0. The control and states are constrained by
(2.290) and (2.291).

6.7. Consider an RHC design problem with the minimum energy performance
criterion given by

J =
k+N−1∑

i=k

uT
i Rui (6.169)

subject to the system xk+1 = Axk +Buk and the equality constraint xk+N =
0. Find the RHC uk satisfying the constraint |uk| ≤ ūk.
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6.8. Consider a system represented as follows:

xi+1 =
[

0.8676 −0.3764
−0.0252 0.8029

]
xi +

[
−0.3764
−0.8029

]
ui (6.170)

where the initial state x0 is set to [1.2 0.3]T , and ui and xi should be con-
strained in the following region:

−1 ≤ ui ≤ 1 (6.171)[
−1.5
−0.3

]
≤ Gxi =

[
1 0
0 1

]
xi ≤

[
1.5
0.3

]
(6.172)

Here, the following performance criterion is considered:

J(xk, k)
�
=

4∑
j=0

{xT
k+jxk+j + u2

k+j} (6.173)

(1) Find P such that

EP,1 = {x ∈ �n|xT Px ≤ 1} (6.174)

is an invariant set with respect to some linear state feedback control.
(2) Compute the constrained receding horizon dual-mode control for the ter-

minal set constraint (6.174).

6.9. Consider an RHC design problem with the following performance index:

J =
4∑

i=0

(x2
1,k+i + x2

2,k+i + u2
k+i) + xT

k+5Qfxk+5

with initial state x0 = [1.5 0.3]T subject to the systems and the constraints

x1,k+1 = −x1,k − 0.5x2,k

x2,k+1 = −1.2x2,k − x1,k + uk

−2 ≤ x1,k ≤ 2
−2 ≤ x2,k ≤ 2
−2 ≤ uk ≤ 2

(1) Find the condition on Qf satisfying the cost monotonicity.
(2) Represent the condition in an LMI form such that the ellipsoid {xk|xT

k Qfxk

≤ 1} is a positive invariance set with a linear state feedback controller
uk = Hxk.

(3) Obtain an RHC in an LMI form.
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6.10. Under the conditions of Problem 2.6, consider an RHC design problem
for the system (2.302) with the following performance criterion:

J = βxk+N +
N−1∑
j=0

(xk+j − uk+j) (6.175)

(1) Derive the condition on β satisfying the cost monotonicity.
(2) Check the stability of the closed-loop system controlled by the RHC.

6.11. (1) Find a condition on Qf satisfying the cost monotonicity for the
following system and performance criterion:

xk+1 =
1
2
xk + uk

J =
N−1∑
i=0

(x2
k+i + u2

k+i) + xT
k+NQfxk+N

Design an RHC in an LMI form under the following constraints:

−1 ≤ xk ≤ 1
−1 ≤ uk ≤ 1

(2) Find a condition on Qf satisfying the cost monotonicity for the following
system and performance criterion:

x1,k+1 = x1,k +
1
2
x2,k

x2,k+1 = −ax1,k − bx2,k + cuk

J =
N−1∑
i=0

(x2
1,k+i + x2

2,k+i + u2
k+i) + xT

k+NQfxk+N

Obtain an RHC in an LMI form under the following constraints:

−1 ≤ x1,k ≤ 1
−1.5 ≤ x2,k ≤ 1.5
−2 ≤ uk ≤ 2

6.12. Consider an RHC design problem for the system

xk+1 = Axk + Buk

with the following performance criterion:

J(xk, uk) =
k+N−1∑

i=k

[
xi

ui

]T [
Q S
ST R

] [
xi

ui

]
+ xT

k+NQfxk+N
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(1) Derive a condition on Qf satisfying the cost monotonicity.
(2) Design the RHC in an LMI form under the following constraints:

−x̄ ≤ xk ≤ x̄

−ū ≤ uk ≤ ū

where x̄ and ū are given vectors.

6.13. Consider the following system:

xk+1 =
[

0.9347 0.5194
0.3835 0.8310

]
xk +

[
−1.4462
−0.7012

]
uk +

[
1
0

]
wk

yk =
[
0.5 0.5

]
xk + vk

Assume that input and disturbances are constrained to

−1 ≤ uk ≤ 1
−0.05 ≤ wk ≤ 0.05
−0.1 ≤ vk ≤ 0.1

and the bound on the initial estimation error is [0.2 0.2]T .

(1) When the state feedback law F and filter gain L are chosen to be LQ and
Kalman filter gains, obtain F and L.

(2) Find W and α to determine the disturbance invariance set.

(3) Design a constrained output feedback RHC and perform the simulation.

6.14. Consider the following system:

xk+1 = Axk + Buk + Gwk

and the following min-max problem:

J∗(xk0 , k0, k1) = min
uk

max
wk

J(xk0 , k0, k1)

where

J(xk0 , k0, k1) =
k1∑

k=k0

[xT
k Qxk + uT

k Ruk − γ2wT
k wk] + xT

k1
Qfxk1

(1) Derive a condition on Qf to satisfy J∗(xk0 , k0, k1+1)−J∗(xk0 , k0, k1) ≤ 0.

(2) Let V (xk0 , N) = J∗(xk0 , k0, k1), where N = k1−k0. Show that V (xk0 , N) ≥
0 for all xk0 .
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(3) Show that V (0, N) = 0 under the condition of 1).

(4) Assume that wk ∈ W , xk ∈ X, and uk ∈ U , where

W = {wk ∈ Rn| wT
k Dwk ≤ 1 }

X = {xk ∈ Rn| x− ≤ xk ≤ x+ }
U = {uk ∈ Rm| u− ≤ uk ≤ u+ }

Consider the following ellipsoid set:

E = {xk ∈ Rn|xT
k Qfxk ≤ 1}

Derive a condition on Qf to satisfy xT
k+1Qfxk+1 ≤ xT

k Qfxk for all wk ∈ W
and all xk ∈ ∂E, the boundary of E.

(5) Show that the constrained RHC under conditions obtained in (1) and (4)
guarantee the H∞ performance.

(6) Show that, in the case of wk = 0, the RHC scheme of (5) guarantees
asymptotic stability.



7

Nonlinear Receding Horizon Controls

7.1 Introduction

In real plants, control systems are often represented by nonlinear dynamic sys-
tems. Inputs and some states may be unconstrained or constrained depending
on the system characteristics. Generally, the finite-time optimal controls can
be obtained more easily than infinite-time optimal controls. Since the reced-
ing horizon controls are obtained repeatedly over the finite horizon, they may
be easier to obtain than the infinite-time optimal controls. The optimization
problems over the finite horizon, on which the RHC is based, can be applied
to a broad class of systems, including nonlinear systems and time-delayed
systems. Thus, the RHC has the same broad applications even for nonlinear
systems.

Often, the optimal controls are given as open-loop controls. Since the re-
ceding horizon control uses the first control on a horizon, it is automatically
a closed-loop control, i.e. a function of the the current state. The cost mono-
tonicity conditions for nonlinear systems can be easily obtained as in linear
systems. The terminal cost function becomes a control Lyapunov function
(CLF) under the cost monotonicity condition. In this chapter, cost mono-
tonicity conditions for the nonlinear RHC will be investigated according to a
terminal equality constraint, a free terminal cost and a terminal invariant set
with or without a free terminal cost. And it is also shown that the stability
can be guaranteed from this cost monotonicity condition. The receding hori-
zon control provides a systematic way to design a stabilizing control. Receding
horizon controls for nonlinear systems are possible not only for minimization
criteria, but also for minimaximization criteria.

The organization of this chapter is as follows. In Section 7.2, the RHC
with a terminal equality constraint is introduced for nonlinear systems. In
particular, a cost monotonicity condition is presented in order to guarantee the
closed-loop stability. In Section 7.3, the nonlinear RHC with a fixed terminal
set is introduced. In Section 7.4, the nonlinear RHC with a free terminal cost
is introduced for unconstrained and constrained systems. We shall also show
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that the nonlinear RHC can be obtained under a quadratic cost function. In
Section, 7.5, the nonlinear RHC with an infinite cost horizon is introduced. In
Section 7.6, the minimax RHC is presented for the H∞ performance criterion.

7.2 Nonlinear Receding Horizon Control with Terminal
Equality Constraint

We consider the following discrete time-invariant nonlinear system:

xi+1 = f(xi, ui) (7.1)

where the input and the state belong to

ui ∈ U ⊂ �m (7.2)
xi ∈ X ⊂ �n (7.3)

f(·, ·) ∈ C2 is a nonlinear function describing the system dynamics, and
f(0, 0) = 0. If U = �m and X = �n, the system (7.1) is called an “un-
constrained system”. In the case of U � �m or X � �n, the system (7.1) with
constraints (7.2) and (7.3) is called a “constrained system”. For constrained
systems, U is often taken as a compact set including the origin.

We try to minimize the performance criterion such as

J(xk, k, k + N) =
N−1∑
j=0

g(xk+j , uk+j) (7.4)

subject to the terminal equality constraint

xk+N = 0 (7.5)

where g(xk, uk) denotes an intermediate cost. We assume that

c1(‖(xk, uk)‖) ≤ g(xk, uk) ≤ c2(‖(xk, uk)‖) (7.6)

where c1, c2 : R+ → R+ are all strictly increasing functions with c1(0) =
c2(0) = 0. Note that g(0, 0) = 0. xk+j and uk+j are the predicted state and
control at the current time k. xk+j and uk+j satisfy xk+j+1 = f(xk+j , uk+j)
with constraints

uk+j ∈ U , j = 0, 1, · · · , N − 1 (7.7)
xk+j ∈ X , j = 0, 1, · · · , N (7.8)

The optimal control which minimizes the performance criterion (7.4) is as-
sumed to exist for every initial state xk ∈ X ⊂ �n, which is defined as
follows:
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U∗
k = [u∗T

k , u∗T
k+1, · · · , u∗T

k+N−1]
T (7.9)

Then, the receding horizon control law is represented by

u∗
k =

[
1 0 · · · 0

]
U∗

k (7.10)

All controls uk+j on the horizon are obtained as the open-loop controls de-
pending on xk. Since the receding horizon control uses the first control on the
horizon, it is automatically a closed-loop control because it is a function of
the current state.

If there is a feasible solution for the system (7.1) with constraints (7.5),
(7.7) and (7.8) at the initial time 0 and some horizon N ∗, then the next solu-
tions are guaranteed to exist, since at least one feasible solution u[k+1,k+N ] =
[u[k+1,k+N−1] 0] exists. We have the following general result on feasibility.

Lemma 7.1. If there is a feasible solution on [k0, k0 +N∗], then there exists
a feasible solution on [k, k + N ] for all k ≥ k0 and all N ≥ N∗.

Theorem 7.2. If it is assumed that there is a feasible solution on [k, σ] for
the system (7.1) with constraints (7.5), (7.7), and (7.8), then the optimal
performance criterion J∗(xk, k, σ) does not increase monotonically as σ in-
creases.

J∗(xk, k, σ + 1) ≤ J∗(xk, k, σ) (7.11)

Proof. This can be proved by contradiction. Assume that u1
i and u2

i are opti-
mal controls to minimize J(xτ , τ, σ + 1) and J(xτ , τ, σ) respectively. If (7.11)
does not hold, then

J∗(xτ , τ, σ + 1) > J∗(xτ , τ, σ)

Replace u1
i by u2

i up to σ − 1 and then u1
i = 0 at i = σ. In this case, x1

σ = 0,
u1

σ = 0, and thus x1
σ+1 = 0 due to f(0, 0) = 0. Therefore, the cost for this

control is J̄(xτ , τ, σ +1) = J∗(xτ , τ, σ). Since this control may not be optimal
for J(xτ , τ, σ + 1), we have J̄(xτ , τ, σ + 1) ≥ J∗(xτ , τ, σ + 1), which implies
that

J∗(xτ , τ, σ) ≥ J∗(xτ , τ, σ + 1) (7.12)

This is a contradiction. It is noted that if J∗(xk, k, σ) exists, then J∗(xk, k, σ+
1) exists according to Lemma 7.1. This completes the proof.

Theorem 7.3. If it is assumed that there is a feasible solution for the system
(7.1) with constraints (7.5), (7.7), and (7.8) at the initial time and some
horizon N∗, then the receding horizon control (7.10) is asymptotically stable
for all horizons N ≥ N∗.
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Proof. The optimal performance criteria for the current time and the next
time are related as

J∗(xk, k, k + N) = g(x1
k, u1

k) + J∗(xk+1, k + 1, k + N)
≥ g(x1

k, u1
k) + J∗(xk+1, k + 1, k + N + 1) (7.13)

from which we have

J∗(xk, k, k + N) − J∗(xk+1, k + 1, k + N + 1) ≥ l(x1
k, u1

k) (7.14)

Since the optimal cost J∗(xk, k, k + N) does not increase monotonically as
time increases and is lower bounded, J∗(xk, k, k + N) approaches a constant
value, the limit value. g(xk, uk) is always positive, except for xk = 0 and
uk = 0. Since the left-hand side in (7.14) approaches zero, g(xk, uk) should
also approach zero. Therefore, the closed-loop system is asymptotically stable.
This completes the proof.

7.3 Nonlinear Receding Horizon Control with Terminal
Set Constraints

Consider a receding horizon control of the time-invariant nonlinear systems
described by (7.1). An RHC at the current state xk is obtained by solving the
following finite-horizon optimal control problem J(xk, k, uk+·, Nk) defined by

J(xk, k, uk+·, Nk) =
Nk∑
j=0

g(xk+j , uk+j) (7.15)

subject to the control constraint

uk+j ∈ U , xk+j ∈ X (7.16)

where j = 0, 1, 2, · · · , and U ⊂ �m and X ⊂ �n are compact subsets contain-
ing the origin in its interior. It is noted that the horizon size Nk at time k
depends on the current time k, whereas the horizon size was fixed in previous
sections. In this section, we include the control uk as an argument of the cost
function for a better understanding.

Since a solution to the finite horizon optimal control problem J(xk, k, uk+·,
Nk) with a terminal equality constraint xk+Nk

= 0 rarely exists due to con-
straints, we can relax this constraint to a fixed terminal set of the form

xk+Nk
∈ E (7.17)

where E is a terminal set that is some neighborhood of the origin. The con-
straint (7.17) is a terminal set constraint. If the terminal equality constraint
is relaxed in this way, then the receding horizon control is more feasible, but
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must consider its stabilizing properties inside E . To handle the terminal set
constraint, we introduce a dual-mode receding horizon control scheme which
uses a locally stabilizing linear control law inside E and a receding horizon con-
troller outside E . We assume that a locally stabilizing linear feedback control
exists in E , which will be obtained later.

The dual-mode receding horizon controller is given below. Suppose that
one has an admissible control horizon pair (uk+·, Nk) for J(xk, k, uk+·, Nk),
so that uk+· for 0 ≤ j ≤ Nk − 1 steers the state xk to E in time Nk. The con-
trol u′

k+1+·, which is defined to be the control uk+· restricted to the interval
[k+1 k+Nk], steers the system from xk+1 to E in a time N ′

k+1 = Nk−1. This
is an admissible control pair (uk+1+·, Nk+1) for J(xk+1, k +1, uk+1+·, Nk+1).

Fig. 7.1. Dual-mode receding horizon control

Procedures to obtain a dual mode receding horizon control

At time k = 0, if x0 ∈ E , switch to a local linear control, employ the lin-
ear feedback law uk = Kxk thereafter such that xk ∈ E . Otherwise, compute
a control horizon pair (u0+·, N0) for the problem J(x0, 0, u0+·, N0). Apply the
control u0 to the real system.

Assume that the control pair (uk−1+·, Nk−1) is found. At the time k, if
xk ∈ E , switch to a local linear control, employ the linear feedback control law
Kxk thereafter such that xk ∈ E . Otherwise, we compute another admissible
control horizon pair (uk+·, Nk), which is better than the preceding control
horizon pair in the sense that

J(xk, k, uk+·, Nk) ≤ J(xk, k, u′
k+·, Nk−1 − 1) (7.18)
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where u′
k+· is equal to the restriction of uk−1+· to the interval [k, k − 1 +

Nk−1] and is an admissible control for J(xk, k, uk+·, Nk). Finally, we apply
the control uk to the real system.

(7.18) is necessary for a good performance. This is similar to the basic
concept of the existing receding horizon controllers which require the repeated
solution of an optimal control problem.

Let X ∈ �n denote the set of initial states which can be steered to E by a
control in U . The above procedure is depicted in Figure 7.1.

The following procedure shows how to construct W. If the linearized sys-
tem of (7.1) near the origin is stabilizable, then it can be shown that W is
always constructed. From the nonlinear system (7.1), we have the following
linear system:

xi+1 = Axi + Bui (7.19)

where

A =
∂f

∂x

∣∣∣∣
x=0,u=0

B =
∂f

∂u

∣∣∣∣
x=0,u=0

(7.20)

By the assumption of the stabilizability, we can choose H such that A −BH
is Hurwitz. f(xi,−Hxi) can be represented as

f(xi,−Hxi) = (A − BH)xi + φ(xi) = AHxi + φ(xi) (7.21)

Clearly, φ(xi) satisfies φ(0) = 0 and φ(xi)
xi

→ 0 as xi approaches zero.
Thus, for any 0 < κ < 1− ρ2(AH), AH√

1−κ
is Hurwitz and thus there exists

a P̂ > 0 such that (
AH√
1 − κ

)T

P̂

(
AH√
1 − κ

)
− P̂ = −M (7.22)

for some positive definite matrix M . Letting P = P̂
1−κ , it follows that

AT
HPAH − (1 − κ)P = −M (7.23)

Additionally, there exists α1 such that

2xT
i Pφ + φT Pφ ≤ κxT

i Pxi (7.24)

for all xi ∈ EP,α1 , where EP,α1 = {x|xT Px ≤ α1, α1 > 0} since φ(xi)
xi

→ 0.
It is noted that input or state constraints must be satisfied in EP,α1 . As-

sume that there exists a region EP,α2 = {x|xT Px ≤ α2, α2 > 0} such that
−Hx ∈ U and x ∈ X for all x ∈ EP,α2 . The terminal region EP,α should be
inside EP,α1 ∩ EP,α2 . This can be achieved numerically by adjusting α1 such
that α1 ≤ α2.
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Now, we show that EP,α is an invariant set as follows:

xT
i+1Pxi+1 − xT

i Pxi = f(xi,−Hxi)T Pf(xi,−Hxi) − xT
i Pxi

= (AHxi + φ)T P (AHxi + φ) − xT
i Pxi

= xT
i AT

HPAHxi + 2xT
i Pφ + φT Pφ − xT

i Pxi

≤ xT
i AT

HPAHxi − (1 − κ)xT
i Pxi

= −xT
i Mxi (7.25)

where φ(xi) is shortened to φ for simplicity. Finally, we have

xT
i+1Pxi+1 − xT

i Pxi ≤ −xiMxi < 0 (7.26)

for nonzero xi. Thus, we can say that if xi enters the set EP,α = {xi|xT
i Pxi <

α}, then the state stays there forever with ui = −Hxi.
Letting β = max

xT
i Pxi≤α

‖φ(xi)‖/‖xi‖, we have

|2xT Pφ + φT Pφ| ≤ 2‖x‖‖P‖‖φ‖ + ‖φ‖‖P‖‖φ‖

=
(

2
‖φ‖
‖x‖ +

‖φ‖2

‖x‖2

)
‖P‖‖x‖2 (7.27)

≤
(

2
‖φ‖
‖x‖ +

‖φ‖2

‖x‖2

)
‖P‖

λmin(P )
xT Px

≤
(
2β + β2

) ‖P‖
λmin(P )

xT Px (7.28)

where κ can be taken as

(2β + β2)
‖P‖

λmin(P )

What we have done so far is summarized in the following theorem.

Theorem 7.4. Suppose that the system (7.1) is stabilizable near the origin.
The invariant set that satisfies −Hx ∈ U and x ∈ X for all x ∈ EP,α is given
by

EP,α = {xi|xT
i Pxi ≤ α, α > 0} (7.29)

where P is obtained from (7.23) and α is chosen so that (7.24) is satisfied.

We are now in a position to prove the stability. Instead of (7.15), the
following quadratic cost function is considered:

J(xk, k, uk+·, Nk) =
Nk∑
j=0

[
xT

k+jQxk+j + uT
k+jRuk+j

]
(7.30)
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Theorem 7.5. Suppose that the linearized systems with respect to (7.1) is
stabilizable. Then, for Nk > 1, there exists a control horizon pair (uk, Nk)
such that the following equation is satisfied:

J(xk, k, uk, Nk) ≤ J(xk, k, u′
k, Nk−1 − 1) (7.31)

and there exists constant 0 < η < ∞ satisfying

J(xk+1, k + 1, uk+1, Nk+1) ≤ J(xk, k, uk, Nk) − η (7.32)

for all k such that both xk and xk+1 are in EP,α.

Proof. The first statement is already explained in (7.18). Since the trajectory
by (uk, Nk) is the same as one by (uk+1, Nk − 1) on [k + 1, k + Nk], we have

J(xk, k, uk, Nk) − J(xk+1, k + 1, uk+1, Nk+1) (7.33)
≥ J(xk, k, uk, Nk) − J(xk+1, k + 1, u′

k+1, Nk − 1) (7.34)

= xT
k Qxk + uT

k Ruk (7.35)

≥ λmin(Q)
λmax(P )

α = η (7.36)

for all k such that both xk and xk+1 lie in EP,α, as seen in Theorem 6.5. This
completes the proof.

Theorem 7.6. The dual-mode receding horizon controller is asymptotically
stabilizing with a region of attraction X. For all x0 ∈ X, there exists a finite
time N∗ such that xN∗ ∈ EP,α.

Proof. The proof of this theorem is the same as Theorem 6.6

In this section, suboptimal controls satisfying (7.18) were considered. How-
ever, we can even use optimal controls for the following performance criterion:

min
ui

N−1∑
j=0

g(xk+j , uk+j) (7.37)

instead of (7.18). This requires heavier computation compared with subopti-
mal controls, but provides better performance.

7.4 Nonlinear Receding Horizon Control with Free
Terminal Cost

We consider the discrete time-invariant nonlinear systems (7.1) and minimize
a cost function such as
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J(xk, k, k + N) =
N−1∑
j=0

g(xk+j , uk+j) + h(xk+N ) (7.38)

where h(·) is a terminal weighting function. We assume that

c3(‖x‖) ≤ h(x) ≤ c4(‖x‖)

where c3, c4 : R+ → R+ are all strictly increasing functions with c3(0) =
c4(0) = 0. Note that h(0) = 0.

Theorem 7.7. Assume that there is a feasible solution for the system (7.1)
with constraints (7.7) and (7.8). If the following inequality is satisfied:

g(xσ,K(xσ)) + h(f(xσ,K(xσ))) − h(xσ) ≤ 0 (7.39)

where xσ ∈ X , f(xσ,K(xσ)) ∈ X , and K(xσ) ∈ U , then the optimal perfor-
mance criterion J∗(xk, k, σ) does not increase monotonically as σ increases,

J∗(xk, k, σ + 1) ≤ J∗(xk, k, σ) (7.40)

Proof. In the same way as Theorem 3.2, we can prove the nonincreasing
monotonicity of the optimal cost. u1

i and u2
i are optimal controls to mini-

mize J(xk, k, σ + 1) and J(xk, k, σ) respectively. If we replace u1
i by u2

i up to
σ − 1 and u1

σ = K(xσ), then the cost for this control is given by

J̄(xk, σ + 1)
�
=

σ−1∑
j=k

g(x2
j , u

2
j ) + g(x2

σ,K(x2
σ)) + h(x2

σ+1)

≥ J∗(xk, σ + 1) (7.41)

where the last inequality comes from the fact that this control may not be
optimal. The difference between the adjacent optimal costs is less than or
equal to zero as

J∗(xk, σ + 1) − J∗(xk, σ) ≤ J̄(xk, σ + 1) − J∗(xk, σ)
= g(x2

σK(x2
σ)) + h(x2

σ+1) − h(x2
σ) ≤ 0 (7.42)

where J∗(xk, σ) is given by

J∗(xk, σ) =
σ−1∑
j=k

g(x2
j , u

2
j ) + h(x2

σ) (7.43)

This completes the proof.
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It is noted that it is difficult to check the nonlinear matrix inequality (7.39)
because of the terminal state, xσ. Therefore, we can give a sufficient condition
such as

g(x,K(x)) + h(f(x,K(x))) − h(x) ≤ 0 (7.44)

for any x ∈ X such that f(x,K(x) ∈ X and K(x) ∈ U .
In the following theorem, using Theorem 7.7, we consider the closed-loop

stability of the proposed RHC for nonlinear discrete-time systems.

Theorem 7.8. Assume that there is a feasible solution for the system (7.1)
with constraints (7.7) and (7.8) for all k and some horizon N ∗. If the terminal
cost function h(x) satisfies the inequality condition (7.44) for some K(x), then
the system (7.1) driven by the receding horizon control obtained from (7.38)
is asymptotically stable for N ≥ N∗.

Proof. All the proof procedures are the same as Theorem 3.6. This completes
the proof.

The cost monotonicity condition (7.39) satisfies a condition for the CLF,
which is a proper and positive definite function h(xk) such that

inf
uk

[
h(xk+1) − h(xk) + g(xk, uk)

]
≤ 0 (7.45)

for all xk �= 0 and uk = K(xk). It is well known that if h(xk) satisfies (7.45),
then the asymptotic stability is achieved.

As in the CLF, uk = K(xk) from the cost monotonicity condition stabilizes
the closed-loop systems as follows.

Theorem 7.9. Assume that there is a feasible solution for the system (7.1)
with constraints (7.7) and (7.8). If the terminal cost function h(xk) satisfies
the inequality condition (7.44) for some K(xk), then the system (7.1) driven
by the control uk = K(xk) is asymptotically stable.

Proof. A positive definite function h(xt) can be a Lyapunov function since
h(xk) decreases at least by −g(xk,K(xk)) as follows:

h(f(xk,K(xk))) − h(xk) = h(xk+1) − h(xk) ≤ −g(xk,K(xk)) < 0 (7.46)

Since h(xk) decreases monotonically as time increases and is lower bounded,
h(xk) approaches a constant value, the limit value. g(xk,K(xk)) is always
positive, except for xk = 0 and uk = 0. Since the left-hand side in (7.46)
approaches zero, g(xk, uk) should also approach zero. Therefore, the closed-
loop system is asymptotically stable.

Thus, the asymptotic stability for the system (7.1) is guaranteed. This
completes the proof.
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It is noted that the receding horizon control obtained from the cost mono-
tonicity condition integrated with K(xk) is asymptotically stabilizing if a feed-
back control law uk = K(xk) is also asymptotically stabilizing.

We now introduce a terminal invariant ellipsoid Wα which is defined as

Eh,α = {xk ∈ X | h(xk) ≤ α K(xk) ∈ U , f(xk,K(xk)) ∈ X , α > 0} (7.47)

Once xk enters the terminal region Eh,α, the state trajectory due to uk =
K(xk) would remain in Eh,α because h(xK

k+N+1) ≤ h(xk+N )−g(xk+N ,K(xk+N ))
≤ α. Hence, the input and state constraints in (7.63) are all satisfied. We call
Eh,α an invariant terminal region. If there exists a control that steers the initial
state to Eh,α, then there exist feasible controls for all times since the feasible
control at the time k can be one of the candidates of the feasible controls at
the next time k + 1. What we have done so far is summarized as follows.

Lemma 7.10. If there exists a control that steers the initial state to Eh,α,
then there exist feasible controls for all times.

The optimization problem (7.38) can be transformed into

Minimize
γ1,γ2,K,h,Uk

γ1 + γ2

subject to⎧⎪⎪⎨⎪⎪⎩
xk+j|k ∈ X , j = 0, 1, · · · , N − 1
uk+j|k ∈ U , j = 0, 1, · · · , N − 1∑N−1

j=0 g(xk+j , uk+j) ≤ γ1,
h(xk+N |k) ≤ γ2

(7.48)

where h(·) satisfies the inequality (7.44). Additionally, another constraint

γ2 ≤ α (7.49)

is required for introducing an invariant ellipsoid Eh,α such as (7.47). It is
noted that the problem (7.48) and (7.49) is slightly different from the original
problem (7.38).

In the following theorem, we consider the closed-loop stability of the pro-
posed RHC derived from (7.48) and (7.49) for nonlinear systems. According
to Lemma 7.10, Theorem 7.8 is changed to the following.

Theorem 7.11. If there exists a control that steers the initial state to Eh,α,
then the system (7.1) with the receding horizon control obtained from (7.48)-
and (7.49) is asymptotically stable.

In the case of constrained linear systems, the final weighting matrix Qf

can be obtained each time for good performance. However, in the case of
nonlinear systems it is not easy to find a final weighting function h(·) each
time. Thus, we find h(·) once and then may use it thereafter. The condition
γ2 ≤ α is required so that Eh,γ2 has an invariance property, Eh,γ2 ⊂ Eh,α.
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If, at the first step, we can find a terminal region Eh,α and a control se-
quence that steers the current state into Eh,α, then feasible solutions exist
thereafter. However, in order to obtain good performance such as fast conver-
gence to zero, we will try to find the Eh,α each time. As Eh,α shrinks more and
more, the control makes the current state closer to the origin.

Figure 6.5 shows the state trajectory due to the RHC which stems from the
optimization (7.48) conceptually. In the proposed RHC, the state at the end
of the horizon falls on the boundary of the terminal region Eh,min(α,γ2). This
is because h, K, and Eh,min(α,γ2) are also free parameters for optimization.
However, computing h, K, and Eh,min(α,γ2) at each time is not easy, especially
for nonlinear systems, due to the computational burden or the lack of a suit-
able numerical algorithm. However, this can be done at least for constrained
linear systems, using SDP as shown in Section 6.4.

Now, we consider the following quadratic cost function:

N−1∑
j=0

[
xT

k+jQxk+j + uT
k+jRuk+j

]
+xk+NQfxk+N (7.50)

for the nonlinear systems (7.1). In a quadratic cost function, the cost mono-
tonicity condition (7.39) is changed to

fT (xk,−K(xk))Qff(xk,−K(xk)) − xT
k Qfxk

≤ −xT
k Qxk − uT

k Ruk (7.51)

In the previous section it was shown that the terminal cost function h(x) is
chosen to be a CLF. However, to find K(x) and h(x) satisfying (7.39) is not
so easy, as mentioned before.

Here, the cost function is given in a quadratic form as (7.50) and K(x) is
a local linear state-feedback −Hx as shown in Section 6.5.

To obtain a local linear state-feedback control, we consider the Jacobian
linearization (7.19) of the system (7.1) at the origin where A and B are given
by (7.20). From A and B in (7.20), H is chosen such that 0 < ρ(A−BH) < 1,
where ρ(·) is the spectral radius of a matrix.

Since h(x) = xT Qfx, the terminal region is represented by EQf ,α =
{x|xT Qfx ≤ α}. How to determine α is given later in this section.

For any 0 < κ < 1 − ρ2(AH), it is noted that there exist matrices H and
Qf such that

ĀT
HQ̄f ĀH − Q̄f = −[Q + HT RH] (7.52)

where ĀH = A−BH√
1−κ

, AH = A − BH, and Qf = Q̄f√
1−κ

. Since ||φ||/||x|| → 0,
there exists α1 such that

2xT
k Qfφ + φT Qfφ ≤ κxT

k Qfxk (7.53)

for all xk ∈ EQf ,α1 , where EQf ,α1 = {xk|xT
k Qfxk ≤ α1, α1 > 0}.
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It is noted that input or state constraints must be satisfied in EQf ,α1 .
Assume that there exists a region EQf ,α2 = {xk|xT

k Qfxk ≤ α2, α2 > 0}
such that −Hxk ∈ U and xk ∈ X for all xk ∈ EQf ,α2 . The terminal region
EQf ,α should be inside (EQf ,α1 ∩EQf ,α2). This can be achieved numerically by
adjusting α1 such that α1 ≤ α2.

Now we show that Qf in (7.52) satisfies the inequality (7.51) as follows:

f(xk,−Hxk)T Qff(xk,−Hxk) − xT
k Qfxk

= (AHxk + φ)T Qf (AHxk + φ) − xT
k Qfxk

= xT
k AT

HQfAHxk + 2xT
k Qfφ + φT Qfφ − xT

k Qfxk

≤ xT
k AT

HQfAHxk − (1 − κ)xT
k Qfxk

= −xT
k (Q + HT RH)xk (7.54)

where φ(xk) is shortened to φ for simplicity.
The cost monotonicity condition and the closed-loop stability of the non-

linear RHC is summarized in the following theorems.

Lemma 7.12. If Qf and EQf ,α are found out from (7.52) and (7.53), then
the cost monotonicity condition (7.51) holds. In that case, the state starting
inside EQf ,α remains in EQf ,α continuously with uk = −Hxk while satisfying
the input and the state constraints.

Theorem 7.13. If Qf and EQf ,α are found out from (7.52) and (7.53), the
receding horizon control based on the cost function (7.50) asymptotically sta-
bilizes the system (7.1) if it is feasible at the initial time.

Given Qf , the terminal region EQf ,α can be determined. The larger that α
is, the smaller the control horizon N needed to stabilize the systems. Further-
more, a smaller horizon leads to a lesser computational burden. Therefore, a
larger α is preferable.

In the following, we give a numerical algorithm to decide a larger α. The
state constraint X and the input constraint U are assumed as{

−ulim ≤ ui ≤ ulim

−glim ≤ Gxi ≤ glim
(7.55)

for i = 0, 1, · · · ,∞. It is guaranteed that the input and state constraints are
satisfied in the ellipsoid if the minimum values of the following optimization
problems are all positive:⎧⎪⎪⎨⎪⎪⎩

min (ulim − Hxi)(i), i = 1, · · · ,m
min (ulim + Hxi)(i), i = 1, · · · ,m
min (glim − Gxi)(i), i = 1, · · · , n

min (glim + Gxi)(i), i = 1, · · · , n

(7.56)

subject to xi ∈ EQf ,α, where vi is an ith component of a vector v and EQf ,α =
{xi|xT

i Qfxi ≤ α, α > 0}.
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The inequality (7.53) is satisfied if the minimum value of the following
optimization problem is positive:{

min κxT
i Qfxi − 2xT

i Qfφi − φT
i Qfφi

subject to xi ∈ EQf ,α

(7.57)

α is chosen so that the minimum values of optimization problems (7.56) and
(7.57) are all positive simultaneously. If there is a negative minimum value,
then we should decrease α and solve the optimization problem again. If the
minimum values are all positive, then we increase α and solve the optimization
problem to get a larger α.

Control Lyapunov Function-based Nonlinear Receding Horizon Con-
tol:

A CLF can be combined with the receding horizon control. These control
schemes retain the global stability due to a Lyapunov function and the im-
provement of the performance due to a receding horizon performance. The
CLF can be used with a one-step RHC. In this case, a control uk is obtained
by solving the following optimization problem:

min uT
k uk (7.58)

subject to

h(xk+1) − h(xk) ≤ −σ(xk) (7.59)

where σ(xk) is a positive definite function. This scheme minimizes the control
energy while requiring that h be a Lyapunov function for the closed-loop
system and decrease by at least σ(xk) at every point, guarantee the stability.
The CLF-based one-step RHC is extended to a general RHC based on the
CLF such as

min
N−1∑
j=0

[l(xk+j) + uT
k+juk+j ] (7.60)

subject to

h(xk+1) − h(xk) ≤ −σ(xk) (7.61)

Stability is guaranteed for any horizon N and the one-step RHC is recovered
if the horizon size N becomes 1. It is noted that the inequality (7.61) may be
imposed over the horizon [k, k + N ] as

h(xk+1+j) − h(xk+j) ≤ −σ(xk+j) (7.62)
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for 0 ≤ j ≤ N − 1. A terminal ellipsoid can be introduced in the optimization
problem (7.48) for better feasibility.

The optimization problem (7.60) and (7.61) may require heavier compu-
tation since the constraint (7.61) should be considered each time. However,
the optimization problem (7.48) does not require any constraint once h(·) is
chosen according to the inequality (7.44).

In the next section we will consider the closed-loop stability of the RHC
for constrained nonlinear systems with an infinite cost horizon.

7.5 Nonlinear Receding Horizon Control with Infinite
Cost Horizon

In this section a stabilizing RHC for nonlinear discrete-time systems with
input and state constraints is proposed. The proposed RHC is based on a
finite terminal cost function and an invariant terminal region denoted by Ωα.

Consider the nonlinear discrete time-invariant system (7.1) with input and
state constraints:

uk ∈ U , k = 0, 1, · · · ,∞
xk ∈ X , k = 0, 1, · · · ,∞ (7.63)

We assume that U and X are convex and compact sets including the origin.
So far, the control horizon has been the same as the cost horizon. However,

we can introduce an infinite cost horizon along with a finite control horizon
such as the following problem:

Minimize
uk,...,uk+N−1

∞∑
j=0

g(xk+j , uk+j) (7.64)

subject to⎧⎨⎩
uk+j ∈ U , j = 0, 1, · · · , N − 1

uk+j = K(xk+j) ∈ U , j = N,N + 1, · · · ,∞
xk+j ∈ X , j = 0, 1, · · · ,∞

(7.65)

for some K(x). It is noted that the control is optimized over [k, k + N − 1].
The controls after k + N − 1 are given as stabilizing state feedback controls.
These kinds of controls have some advantages, as shown below.

Lemma 7.14. If the optimization problem (7.65) is feasible at the initial time
k, then it is feasible for all times.

Proof. Suppose that a control law uk+j = u∗
k+j exists in the optimization

problem (7.65) at time k. Then, at the next time k +1, consider the following
control sequence:
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uk+1|k+1 = uk+1|k
uk+1+j|k+1 = u∗

k+1+j|k, j = 1, 2, · · · ,∞

}
(7.66)

Then, the above control sequence gives a feasible solution for the optimiza-
tion problem (7.65) at time k + 1. Hence, by induction, if the optimization
problem (7.65) is feasible at the initial time k = 0, then we observe that the
optimization problem is always feasible for all times k. This completes the
proof.

The cost function (7.64) over the infinite cost horizon is divided into two
parts as follows:

∞∑
j=0

g(xk+j , uk+j) =
N−1∑
j=0

g(xk+j , uk+j) +
∞∑

j=N

g(xk+j , uk+j) (7.67)

=
N−1∑
j=0

g(xk+j , uk+j) + h(xk+N ) (7.68)

where

h(xk+N ) =
∞∑

j=N

g(xk+j ,K(xk+j)) (7.69)

It is noted that xi for i ≥ k +N is the trajectory starting from xk+N with the
stabilizing control ui = K(xi). As seen in Figure 7.2, the cost function for the
final state represents one incurred when the stabilizing controller is applied
for the rest of the time after the end of the horizon. From (7.69) we have

Fig. 7.2. Cost function with infinite cost horizon
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h(xk+N+1) − h(xk+N ) =
∞∑

j=N+1

g(xk+j ,K(xk+j)) −
∞∑

j=N

g(xk+j ,K(xk+j))

= −g(xk+N ,K(xk+N )) (7.70)

It follows finally that

h(xk+N+1) − h(xk+N ) + g(xk+N ,K(xk+N )) = 0 (7.71)

This is a special case of (7.44). Then, the RHC automatically stabilizes the
system due to (7.71) only if input and state constraints are all satisfied. Results
in previous sections can be applied to the nonlinear RHC for the infinite cost
horizon owing to (7.68) and (7.71).

Calculation of h(xσ) in (7.69) requires the summation of the closed-loop
system with the stabilizing controller ui = K(xi) over a possibly long period.
For linear systems, this is easily obtained from the algebraic Lyapunov equa-
tion, but for nonlinear systems no easily computable method exists, which
may further increase the burden of online computation of (7.69).

7.6 Nonlinear Receding Horizon Minimax Control with
Free Terminal Cost

We consider the nonlinear system

xi+1 = f(xi, ui, wi) (7.72)

In this section, the input and the state constraints are not assumed. The finite
horizon optimal differential game at time k consists of the minimization with
respect to ui, and the maximization with respect to wi of the cost function

J(xk, uk, wk, N) =
N−1∑
j=0

[
l(xk+j , uk+j) − γ2q(wk+j)

]
+h(xk+N ) (7.73)

For any state xk ∈ �n, if a feedback saddle-point solution exists, then we
denote the solution as u∗(k + j, xk) and w∗(k + j, xk). In the following, the
optimal value will be denoted by J∗(xk, k, k+N). In the receding horizon con-
trol, at each time k, the resulting feedback control at the state xk is obtained
by optimizing (7.73) and setting

uk = u∗(k, xk) (7.74)

Theorem 7.15. If the following inequality is satisfied for some K(xk) and all
xk �= 0:

l(xk,K(xk)) − γ2q(w∗(xk)) + h(f(xk,K(xk), w∗
k)) − h(xk) < 0 (7.75)
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then the optimal cost decreases monotonically as follows:

J∗(xk, k, k + N + 1) − J∗(xk, k, k + N) ≤ 0 (7.76)

for all positive integer N .

Proof. Subtracting J∗(xk, k, k + N) from J∗(xk, k, k + N + 1) yields

J∗(xk, k, k + N + 1) − J∗(xk, k, k + N)

=
N∑

j=0

[
l(x1

k+j , u
1
k+j) − γ2q(w1

k+j)
]
+h(x1

k+N+1)

−
N−1∑
j=0

[
l(x2

k+j , u
2
k+j) − γ2q(w2

k+j)
]
−h(x2

k+N ) (7.77)

where the pair u1
k+j and w1

k+j is a saddle-point solution for J(xk, k, k+N +1)
and the pair u2

k+j and w2
k+j for J(xk, k, k+N). If we replace u1

k+j by u2
k+j and

w2
k+j by w1

k+j on [k k + N − 1], then the following inequalities are obtained
by J(u∗, w∗) ≤ J(u,w∗):

N∑
j=0

[
l(x1

k+j , u
1
k+j) − γ2q(w1

k+j)
]
+h(x1

k+N+1)

≤
N−1∑
j=0

[
l(x̃k+j , u

2
k+j) − γ2q(w1

k+j)
]
+l(x̃k+N , u2

k+N )

− γ2q(w1
k+N ) + h(x̃k+N+1) (7.78)

where x̃i is a trajectory associated with u2
i and w1

i , u1
σ = K(x̃σ), and x̃k+N+1 =

f(x̃k+N ,K(x̃k+N )). By J(u∗, w∗) ≥ J(u∗, w), we have

N−1∑
j=0

[
l(x2

k+j , u
2
k+j) − γ2q(w2

k+j)
]
+h(x2

k+N+1)

≥
N−1∑
j=0

[
l(x̃k+j , u

2
k+j) − γ2q(w1

k+j)
]
+h(x̃k+N+1) (7.79)

By using the two inequalities (7.78) and (7.79), it follows from (7.77) that

J∗(xk, k, k + N + 1) − J∗(xk, k, k + N)
≤ l(x̃k+N ,K(x̃k+N )) − γ2q(w1

k+N (x̃k+N )) ≤ 0

where the last inequality comes from (7.75). This completes the proof.



7.6 Nonlinear Receding Horizon Minimax Control with Free Terminal Cost 315

Under the cost monotonicity condition, we can show that the closed-loop
system without disturbances is asymptotically stabilized by RH H∞ control.

Theorem 7.16. If the cost monotonicity condition (7.75) is satisfied, then
the system (7.72) with the RH H∞ control (7.74) is asymptotically stabilized
in the case that there is no disturbance.

Proof. First, we show that the optimal cost decreases monotonically as follows:

J∗(xk, k, k + N) = l(xk, uk) − γ2q(wk) + J∗(x(k + 1; (xk, k, u∗
k)), k + 1, k + N)

≥ l(xk, uk) + J∗(x3(k + 1; (xk, k, u∗
k)), k + 1, k + N)

≥ l(xk, uk) + J∗(x3(k + 1; (xk, k, u∗
k)), k + 1, k + N + 1)(7.80)

where uk is the receding horizon control at time k, x3
k+1 is a state at time

k + 1 when wk = 0, and the last inequality comes from the cost monotonicity
condition (7.76). It can be easily seen that J∗(xk, k, k + N) is bounded below
as

J∗(xk, k, k + N) =
N−1∑
j=0

[
l(xk+j , uk+j) − γ2q(wk+j)

]
+h(xk+N )

≥
N−1∑
j=0

l(x3
k+j , u

3
k+j) + h(x3

k+N ) ≥ 0

where x3
k+j and u3

k+j are the state and the input in the case that the dis-
turbances on [k , k + N ] are all zero. Therefore, J(xk, k, k + N) is bounded
below, J∗(xk, k, k + N) ≥ 0. J∗(xk, k, k + N) approaches a constant number.
It follows from (7.80) that

l(xk, uk) −→ 0 as k −→ 0 (7.81)

which implies that xk goes to zero. This completes the proof.

Under the cost monotonicity condition, we can show that the H∞ perfor-
mance bound is met.

Theorem 7.17. If the cost monotonicity condition (7.75) is satisfied, then
the nonlinear minimax RH control (7.74) for the system (7.72) satisfies∑∞

k=0 l(xk, uk)∑∞
k=0 q(wk)

≤ γ2 (7.82)

Proof. Subtracting J∗(xk, k, k + N) from J∗(xk+1, k + 1, k + N + 1) yields

J∗(xk, k, k + N) = l(xk, uk) − γ2q(wk) + J∗(xk+1, k + 1, k + N)
≥ l(xk, uk) − γ2q(wk) + J∗(xk+1, k + 1, k + N + 1) (7.83)
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where the last inequality comes from the cost monotonicity condition. Thus,
we have

0 ≤ J∗(x∞,∞,∞ + N) − J∗(x0, 0, N)

≤
∞∑

k=0

[
−l(xk, uk) + γ2q(wk)

]
which implies the inequality (7.82). It is noted that x0 is assumed to be zero.
This completes the proof.

7.7 References

The cost monotonicity condition for the terminal equality constraint in The-
orem 7.2 is obtained directly from the optimal principle. The nonlinear RHC
with the terminal equality constraint in Theorem 7.3 appeared in [KG88]. The
invariant set for a nonlinear system in Theorem 7.4 appeared in [LHK04]. The
dual-mode RHC in Theorem 7.5 and its stability in Theorem 7.6 appeared in
[MM93]

The cost monotonicity for nonlinear systems in Theorem 7.7 and the sta-
bility of the nonlinear RHC under the cost monotonicity condition in Theorem
7.8 appeared in [NMS96a, MS97] for unconstrained systems and in [NMS96b]
for constrained systems.

The nonlinear state feedback control in Theorem 7.9 appeared in [PND00].
The stability of the constrained RHC in Theorem 7.11 appeared in [LKC98].

The invariant set for a linearized system in Theorem 7.12 and the stability
and the feasibility for the constrained nonlinear RHC in Theorem 7.13 are
discrete versions of [LHK04].

The cost monotonicity of the saddle point in Theorem 7.15, the stability
of the nonlinear H∞ RHC in Theorem 7.16 and the preserved H∞ norm of
the nonlinear H∞ RHC in Theorem 7.17 appeared in [Gyu02].

7.8 Problems

7.1. Find a final weighting functional h(·) satisfying the cost monotonicity
condition (7.39) for the following nonlinear systems and the performance cri-
terions:

(1)

xk+1 =
1
2
xk +

1
4

tanh(xk) + uk

J =
N−1∑
i=0

(x2
k+i + u2

k+i) + h(xk+N )
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(2)

x1,k+1 = x1,k +
1
2
x2,k

x2,k+1 = −a sin(x1,k) − bx2,k + cuk

J(xk, k, k + N − 1) =
N−1∑
i=0

(x2
1,k+i + x2

2,k+i + u2
k+i) + h(xk+N )

7.2. Consider a nonlinear RHC with a terminal equality constraint, xk+N = 0,
for the following nonlinear system and the quadratic performance criterion:

xi+1 = f(xi, ui) = f1(xi) + f2(xi)ui (7.84)

and

J(xk, k, k + N − 1) =
N−1∑
i=0

(xT
k+iQxT

k+i + uT
k+iRuT

k+i) (7.85)

where R > 0 and Q > 0.

(1) Let fc(x) = f(x, k(x)) where k(x) is an RHC and fg(x) = f(x, φ(k(x)))
where φ(x) is a function φ : �p → �p satisfying

φ(x)T Rφ(x) > (1 + α)(φ(x) − x)T R(φ(x) − x), ∀x �= 0 (7.86)

and α is a real number such that

fT
2 (x)

∂2J∗(βfc(x) + (1 − β)fg(x), k + 1, k + N − 1)
∂x2

f2(x) ≤ αR(7.87)

for all x and 0 ≤ β ≤ 1. Show that J∗(f(xk, φ(k(xk))), k + 1, k + N −
1) < J∗(xk, k, k + N − 1). Show that the closed-loop system with φ(·) is
asymptotically stable.

(2) Assume that the function ψ : �n → �p satisfies xT Qx > 1
2 (1 +

α)ψT (x)Rψ(x) for x �= 0. Show that J∗(f(xk, k(xk) + ψ(xk)), k + 1, k +
N −1) < J∗(xk, k, k +N −1). Show that the closed-loop system with ψ(·)
is asymptotically stable.

7.3. Consider the following nonlinear system:

x1,k+1 = x1,k − 0.5x2,k (7.88)
x2,k+1 = −1.2x2,k + x1,k + x2

1,kx2,k + uk (7.89)

(1) Find a linearized model xk+1 = Axk + Buk around the origin and choose
a feedback gain H such that A − BH is Hurwitz.

(2) For some κ satisfying 0 < κ < 1 − ρ2(A − BH), find P such that (A −
BH)T P (A − BH) − (1 − κ)P = −I.
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(3) Find α such that (7.24) is satisfied in the positive invariant ellipsoid
{x|xT Px ≤ α}.

7.4. Suppose that a system and an off-origin ellipsoid are given by

xk+1 = −1
2
xk +

1
4
x2

k + uk

(xk − 0.5)2 ≤ α

Find α such that the ellipsoid is invariant with a linear stable feedback control.
Additionally, compute the corresponding state feedback controller inside the
ellipsoid.

7.5. (1) For the φi defined in (7.21), show that there exists a Ψ such that

|φi| ≤ Ψ |xi| (7.90)

where |v| of a vector v is {|vi|}.
(2) For a given vector x̄, show that the set {x ∈ �n||xi| ≤ x̄} is invariant if

(|A − BK| + Ψ)x̄ < x̄.
(3) For a given vector ū, consider the following input constraint:

|u| ≤ ū (7.91)

where |u| = {|ui|}. Find the condition to guarantee the feasibility when
there is an input constraint.

7.6. Consider an RHC design problem with a free terminal cost. We assume
that a local stabilizing control law K, an associated Lyapunov function F , and
a level set XF are known. More specifically, we assume that there exist K, F ,
α > 0 such that

XF = {x ∈ X |F (x) ≤ α} (7.92)
g(xσ,K(xσ)) + F (f(xσ,K(xσ))) − F (xσ) ≤ 0 (7.93)

Define

X0 = {xk ∈ X |xk+N ∈ XF }

The terminal cost is selected as

h(xk) :=
{

F (xk), xk ∈ XF

α, xk �∈ XF

(1) For each x0 ∈ X0, show that the closed-loop system by the control law
from the above RHC scheme is asymptotically stable.

(2) Show that X0 is invariant and a domain of attraction for the origin.
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(3) If the assumption

F (xk) =
∞∑

j=0

g(xk+j , uk+j), ∀xk ∈ X

is satisfied for all x0 ∈ XN , show that the RHC generates a control se-
quence that solves the optimal control problem with the infinite horizon
performance index.

7.7. Consider a real system xk+1 = fr(xk, uk) and its model xk+1 = f(xk, uk).
Assume that fr and f are twice continuously differentiable, ||fr(xk, uk) −
f(xk, uk)|| ≤ β||(xk, uk)|| is satisfied, and f is Lipschitz continuous. Consider
the following linearized system of f with a local linear control law Kx:

xk+1 = Axk

where A = ∂f
∂xk

(0, 0) + ∂f
∂uk

(0, 0)K. We define P to satisfy

1
2
xT

k Pxk =
1
2

∞∑
k=0

[xT
k Qxk + xT

k KT RKxk]

For a given βL > 0, show that the set Wα = {xk ∈ Rn|xT
k Pxk ≤ α} is

invariant if there exist an α > 0 and a K such that

xT
k P [f(xk,Kxk) − Axk] − 1

2
xT

k Qxk +
λmin(P−1/2QP−1/2)

2
xT

k Pxk

+βL[1 + ||K||P ]xT
k Pxk ≤ 0

where || · ||P is a weighted norm.

7.8. Consider the following nonlinear system:

xk+1 = f(xk, uk)

with the performance index (7.38). The state and input vectors are subject
to the constraints xk ∈ X and uk ∈ U , where X and U are closed subsets of
Rn and Rm respectively.

Assume

lim
‖(xk,uk)‖ → 0

sup
k≥0

‖f̃(xk, uk)‖
‖(xk, uk)‖ = 0

where f̃(xk, uk) = f(xk, uk) − [Akxk + Bkuk] and

A =
∂f(xk, uk)

∂xk

∣∣∣∣
xk=uk=0

, B =
∂f(xk, uk)

∂uk

∣∣∣∣
xk=uk=0
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(1) When a stable linear state feedback control law uk = Kxk for linearized
system is applied, the closed-loop system is given by

xk+1 = fc(xk) (7.94)

where fc(xk) = f(xk,Kxk). Let f̃c(x) = fc(xk) − [Ak + BkK]xk. Show
that

lim
‖xk‖ → 0

sup
k≥0

‖f̃c(xk)‖
‖xk‖

= 0

(2) In (7.38), assume that terminal cost is selected as

h(xk) =
{∑∞

j=k g(xc
j,k,Kxc

j,k), xk ∈ X(K)
∞, otherwise

where xc
j,k is the solution of (7.94) at time j ≥ k when xk is given at time

k and X(K) is a stability region for the closed-loop system (7.94). Show
that the optimal performance index satisfies the following relations:

J∗(xk, k, k + N + 1) ≤ J∗(xk, k, k + N) (7.95)
J∗(xk+1, k + 1, k + 1 + N) ≤ J∗(xk, k, k + N) (7.96)

(3) Show that the closed loop system controlled by the RHC is asymptotically
stable.

7.9. Consider a class of nonlinear systems:

xk+1 = f(xk, uk, wk) = a(xk) + b(xk)uk + g(xk)wk (7.97)

zk =
[

h(xk)
uk

]
(7.98)

We design an RHC based on the following min-max difference game:

V (xk, N) = min
u

max
w

J(xk, N) (7.99)

where

J(xk, N) =
N−1∑
j=0

(||zk+j ||2 − γ2||wk+j ||2) + Vf (xk+N ) (7.100)

(1) Derive a condition on Vf such that

V (xk, N + 1) − V (xk, N) ≤ 0 (7.101)

(2) Under the condition of (1), if h(xk) ∈ K∞, then show that the closed-loop
system is input-to-state stable with respect to wk, where K∞ is a set of
strictly increasing functions with zero initial condition which approach ∞.
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(3) Consider the following nonlinear discrete-time switched systems:

xk+1 = fp(xk, uk, wk), fp ∈ F (7.102)

where F = {fp|p ∈ P} indexed by the parameter p takes on values in
the set of parameters P which is either a finite set or a compact sub-
set of some finite-dimensional, normed linear space. For each piece-wise
switching signal as σ(·) : [0,∞) → P, we can define the switched non-
linear systems xk+1 = fσ(xk, uk, wk). Also, we define the set of switching
times as T = {k0, k1, k2, ...} and assume Vf ∈ K∞. Using the result of (2)
for each p, derive the condition to make the closed-loop switched systems
controlled by the RHC satisfy

lim
i→∞

||xki
|| = 0 (7.103)

(4) Using the results of (2) and (3) for each p, derive the condition to make
the closed-loop switched systems controlled by the RHC satisfy

lim
i→∞

||xi|| = 0 (7.104)

7.10. Consider the RHC design problem mentioned in Problem 7.9.

(1) Define J∗
∞(x0) as the optimal cost of the infinite horizon difference game

with the following performance index:

J∞(x0) =
∞∑

i=0

(||zi||2 − γ2||wi||2)

Show that

lim
k→∞

V (xk, N) = J∗
∞(x0)

(2) Derive a condition to make the RHC guarantee a global stability result.

7.11. Consider the following nonlinear system and the performance criterion:

xk+1 =
1
2
xk +

1
4

tanh(xk) + wk (7.105)

J =
N−1∑
i=0

(x2
k+i + u2

k+i − w2
k+i) + h(xk+N ) (7.106)

Find a state feedback control K(xk) satisfying (7.75).

7.12. If h(xk) satisfies the following inequality:

h(xk) > min
uk

max
wk

[
l(xk)T l(xk) + uT

k uk − wT
k wk

+ h(f(xk,K(xk), wk))
]

(7.107)

then show that h(xk) also satisfies the inequality (7.75).



322 7 Nonlinear Receding Horizon Controls

7.13. Consider the input uncertainty in the nonlinear H∞ control (7.74), as
shown in Figure 7.3. Assume that input uncertainty ∆ is given by

x̃k+1 = ã(x̃k) + b̃(x̃k)ũk (7.108)

ỹk = φ̃(x̃k) (7.109)

The input ũk and output ỹk of the uncertainty ∆ satisfies

V(x̃k+1) − V(x̃k) ≤ ũT
k ỹk − ρũT

k ũk

where V(xk) is some nonnegative function (this is called the dissipative prop-
erty) and ρ ∈ R. Consider the following feedback interconnection with the
input uncertainty ∆:

ũk = uRHC
k

uk = −ỹk

Find the condition on ρ so that the closed-loop system has an H∞ norm bound
γ for all dynamic input uncertainty ∆.

--

Fig. 7.3. Feedback interconnection of Problem 7.13



A

Matrix Equality and Matrix Calculus

A.1 Useful Inversion Formulae

The following relation is very useful even though it looks simple.

Theorem A.1. If (I + GK) is nonsingular, then the following relation is
satisfied:

(I + GK)−1G = G(I + KG)−1 (A.1)

Proof.

(I + GK)−1G = G(I + KG)−1

←→ G(I + KG) = (I + GK)G
←→ G + GKG = G + GKG

This completes the proof.

Theorem A.2. If it is assumed that A, C, and (A + BCD) are nonsingular,
then we have the formula as

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1 (A.2)

Proof. Multiplying the right side of (A.2) by A + BCD, we have

(A + BCD)[A−1 − A−1B(DA−1B + C−1)−1DA−1]
= I + BCDA−1 − B(DA−1B + C−1)−1DA−1

− BCDA−1B(DA−1B + C−1)−1DA−1

= I + BCDA−1 − B(I + CDA−1B)(DA−1B + C−1)−1DA−1

= I + BCDA−1 − BC(C−1 + DA−1B)(DA−1B + C−1)−1DA−1 = I

Postmultiplying the right side of (A.2) by A+BCD, we have the same result.
This completes the proof.
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It is noted that Theorem A.2 is often called the matrix inversion lemma.

• The following matrix equality is obtained as

(I + GK)−1 = I − G(KG + I)−1K (A.3)
= I − GK(GK + I)−1 (A.4)

by replacing A, B, C, and D by I, G, I, and K respectively in Theorem
A.2. It is noted that the equality (A.4) comes from (A.1). Additionally, if
C in (A.2) is not invertible, then we can write

(A + BCD)−1 = A−1 − A−1B(CDA−1B + I)CDA−1 (A.5)

• The inverse of some matrices such as (I + KG) and (C−1 + DA−1B)
is required on the right side of (A.1) and (A.2). It can be seen that the
nonsingularity of I +GK implies that of I +KG in Theorem A.1. It is also
shown in Theorem A.2 that the nonsingularity of (A+BCD) implies that
of (C−1 + DA−1B) under the assumption that A and C are nonsingular.
The nonsingularity of these matrices is checked as follows:[

I 0
−DA−1 I

] [
A −B
D C−1

] [
I A−1B
0 I

]
=
[

A 0
0 C−1 + DA−1B

]
(A.6)[

I BC
0 I

] [
A −B
D C−1

] [
I 0

−CD I

]
=
[

A + BCD 0
0 C−1

]
(A.7)

Using the product rule for determinants, the matrices decomposition in
(A.6) and (A.7) give

det
[

A −B
D C−1

]
= detAdet(C−1 + DA−1B) (A.8)

= detC−1 det(A + BCD) (A.9)

which tells us

det(C−1 + DA−1B) �= 0 ⇐⇒ det(A + BCD) �= 0 (A.10)

under the assumption that A and C are invertible. By replacing A, B, C,
and D by I, G, I, and K respectively, it is also shown that the nonsingu-
larity of I + GK implies that of I + KG in Theorem A.1.

In the following theorem, it is shown that matrices satisfying the equality
constraint can be parameterized.

Theorem A.3. Suppose that A ∈ �m×n is of full rank and n ≥ m. Solutions
X to the problem AX = Y can be parameterized as X = A⊥Y + MV for
arbitrary matrices V , where A⊥ is the right inverse of A and M spans the
null space of A and its columns are orthogonal to each other. The number of
rows of V is equal to the dimension of the null space of A.
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A.2 Matrix Calculus

The differentiation involving vectors and matrices arises in dealing with con-
trol and estimation problems. Here, we introduce useful formulae and rela-
tions.

• The derivative of the row vector x ∈ �n with respect to the scalar α is
defined as

∂x

∂α
=
[
∂x1

∂α

∂x2

∂α
· · · ∂xn

∂α

]
. (A.11)

• The derivative of a scalar y with respect to the vector x ∈ �n is defined
as

∂y

∂x
=

⎡⎢⎢⎢⎢⎣
∂y
∂x1
∂y
∂x2
...

∂y
∂xn

⎤⎥⎥⎥⎥⎦
(A.12)

• For x ∈ �n and y ∈ �m vector, the derivative of y with respect to x is
defined as

∂y

∂x
=

⎡⎢⎢⎢⎢⎣
∂y1
∂x1

∂y2
∂x1

· · · ∂ym

∂x1
∂y1
∂x2

∂y2
∂x2

· · · ∂ym

∂x2
...

...
. . . · · ·

∂y1
∂xn

∂y2
∂xn

· · · ∂ym

∂xn

⎤⎥⎥⎥⎥⎦
(A.13)

• Some useful formulae involving matrix and vector derivatives are:

∂yT x

∂x
=

∂xT y

∂x
= y

∂Ax

∂x
=

∂xT AT

∂x
= AT

∂yT Ax

∂x
=

∂xT AT y

∂x
= AT y

∂yT f(x)
∂x

=
∂fT (x)y

∂x
= fT

x y

∂yT (x)f(x)
∂x

=
∂fT (x)y(x)

∂x
= fT

x y + yT
x f

∂xT Ax

∂x
= Ax + AT x

∂(x − y)T A(x − y)
∂x

= A(x − y) + AT (x − y) (A.14)
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If A is symmetrical, then simplified relations are obtained:

∂xT Ax

∂x
= 2Ax

∂2xT Ax

∂x2
= 2A

∂(x − y)T A(x − y)
∂x

= 2A(x − y)

∂2(x − y)T A(x − y)
∂x2

= 2A (A.15)

• The Hessian of a scalar function α with respect to a vector x is defined as

∂2α

∂x2
=
[

∂2α

∂xi∂xj

]
(A.16)

• The Taylor series expansion of a scalar function α(x) about x0 is

α(x) = α(x0) + (
∂α

∂x
)T (α − α0) +

1
2
(α − α0)T (

∂2s

∂x2
)T (α − α0)

+ terms of higher order (A.17)
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System Theory

B.1 Controllability and Observability

In this appendix we provide a brief overview of some concepts in system
theory that are used in this book. We start by introducing the notions of
controllability and observability. Consider the n-dimensional linear state-space
model

xk+1 = Axk + Buk (B.1)

Definition B.1. The state-space model (B.1) is said to be controllable at time
t if there exists a finite N > 0 such that for any xk and any x∗ there exists
an input u[k,k+N ] that will transfer the state xk to the state x∗ at time k +N .

By definition, the controllability requires that the input uk be capable
of moving any state in the state-space to any other state in a finite time.
Whether the system is controllable is easily checked according to the following
well-known theorem.

Theorem B.2. The system (B.1) is controllable if and only if there exists
a finite N such that the following specific matrix, called the controllability
Grammian, is nonsingular:

Wc =
N−1∑
i=0

AiBBT AiT (B.2)

The smallest number N is called the controllability index, denoted by nc in
this book.

Now, in order to introduce the notion of observability, consider the n-
dimensional state-space model:

xk+1 = Axk + Buk

yk = Cxk (B.3)
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Definition B.3. The system (B.3) is said to be observable at k if there exists
a finite N such that the knowledge of the input u[k,k+N ] and the output y[k,k+N ]

over the time interval [k, k + N ] uniquely determines the state xk.

We have the following well known theorem.

Theorem B.4. The system (B.3) is observable at time k if and only if there
exists a finite N such that the following matrix observability Grammian is
nonsingular:

Wo =
N−1∑
i=0

AiT CT CAi (B.4)

The smallest number N is called the observability index, denoted by no in
this book.

Note that observability is dependent only on A and C. The following the-
orem shows the invariance of the observability.

Theorem B.5. The observability of (A,C) implies that of (A−BH,L) where
CT C + HT RH = LT L.

Proof: From the observability condition,

rank(
[

λI − A
C

]
) = n

for any real λ, is satisfied. Since the addition of a row vector does not change
the rank for full rank matrices, the rank of the following matrix is preserved:

rank(

⎡⎣λI − A
C

R
1
2 H

⎤⎦) = n.

If the third-row block is added to the first-row block with a pre-multiplication
by BR− 1

2 , the above matrix is changed as

rank(

⎡⎣λI − A + BH
C

R
1
2 H

⎤⎦) = n.

From the fact that rank(V ) = n with V ∈ �n×m and n ≥ m implies
rank(V T V )=n,

rank(

⎡⎣λI − A + BH
C

R
1
2 H

⎤⎦T ⎡⎣λI − A + BH
C

R
1
2 H

⎤⎦) = n,

rank(
[

λI − A + BH
L

]T [
λI − A + BH

L

]
) = n,

rank(
[

λI − A + BH
L

]
) = n.
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Therefore, (A − BH, L) is observable. This completes the proof.

The method of adjoint equations has been used in the study of terminal
control problems. In addition, the duality between control and estimation can
be precisely defined in terms of the adjoint system.

Suppose G : S1 → S2 is a linear system and S1 and S2 are Hilbert spaces.
The adjoint system is a linear system G∗ : S2 → S1 that has the property

< Gw, y >S2=< w,G∗y >S1 (B.5)

for all w ∈ S1 and all y ∈ S2. To determine the adjoint of G in the Hilbert
space l2[0 k], consider inputs w ∈ l2[0 k] and represent the linear system
z = Gw by

zk =
k∑

i=0

Gk−iwi (B.6)

For any y ∈ l2[0 k],

< Gw, y >=
k∑

j=0

j∑
i=0

ykGj−iwi =
k∑

j=0

j∑
i=0

(GT
j−iyk)T wi =< w, η > (B.7)

where

ηj =
j∑

i=0

GT
j−iyk (B.8)

The l2[0 k] adjoint of G is therefore the system G∗ defined by

(G∗y)j =
j∑

i=0

GT
j−iyk (B.9)

In the case of a state-space system,

Gj−k = CAj−kB (B.10)

and it is easily shown that ηj =
∑j

i=0 GT
j−iyk satisfies

pi+1 = AT pi + CT yi (B.11)
ηi = BT pi (B.12)

which is therefore a state-space realization of the adjoint system G∗.
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B.2 Stability Theory

Here, we give some definitions on stability, attractivity, asymptotic stability,
uniformly asymptotic stability, and exponential stability.

Consider the following nonlinear discrete time-varying system:

xi+1 = f(xi) (B.13)

where xi ∈ �n and f(·) : �n → �n for all i ≥ i0. The solution evaluated
at the ith time with the initial time i0 and the initial state x0 is denoted by
x(i; i0, x0).

A point xe ∈ �n is called an equilibrium of the system (B.13), if

f(xe) = xe, ∀i ≥ i0

Definition B.6. (Stability) The equilibrium xe of the system (B.13) is stable
if, for each ε > 0 and each i0 ≤ 0, there exists a δ = δ(ε, i0) such that

||x0|| < δ(ε, i0) → ||s(i, i0, i0)|| < ε, ∀i ≥ i0

Definition B.7. (Attractivity) The equilibrium xe is attractive if, for each
k0 ≥ 0, there exists an η(k0) such that

||x0|| < η(i0) → ||s(i, i0, i0)|| → 0 as i → ∞

Definition B.8. (Asymptotic stability) The equilibrium xe is asymptotically
stable if it is stable and attractive.

Definition B.9. (Exponential stability) The equilibrium xe is exponentially
stable if there exist constants η, a > 0 and p < 1 such that

||x0|| < η, i0 ≥ 0 → ||s(i0 + i, i0, i0)|| ≤ a||x0||pi, ∀i ≥ 0

Theorem B.10. (Lyapunov theorem) Suppose that V1, V2: �+ → �+ are
continuous nondecreasing functions such that V1(s) and V2(s) are positive for
s > 0 and V1(0) = V2(0) = 0. If there exists a continuous function V : �n →
�+ satisfying

V1(‖x‖) ≤ V (x) ≤ V2(‖x‖) (B.14)

then the system is asymptotically stable.

Theorem B.11. (LaSalle’s theorem) Let Ω ⊂ D be a compact set that is
positively invariant with respect to the system xk+1 = f(xk). Let V : D → R
be a function such that Vk+1 − Vk ≤ 0 in Ω. Let E be the set of all points in
Ω where Vk+1 − Vk = 0. Let M be the largest invariant set in E. Then every
solution starting in Ω approaches M as t → ∞.
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B.3 Lyapunov and Riccati Matrix Equations

Lyapunov and Riccati equations arise in many contexts in linear systems the-
ory. The characteristics of the two equations are summarized in this appendix.

Lyapunov Matrix Equation

We consider the following linear matrix equation, called a Lyapunov equa-
tion:

K − AT KA = Q (B.15)

where Q is symmetric. If K exists and is unique, then K should be symmetric.

Theorem B.12. The Lyapunov equation (B.15) has the following properties:

(1)A unique solution K exists if and only if λi(A)λj(A) �= 1 for all i and j.
(2) If A is a stable matrix, then a unique solution K exists and can be expressed

as

K =
∞∑

i=0

AiT QAi (B.16)

(3) If A is a stable matrix and Q is positive (semi) definite, then the unique
solution K is positive (semi) definite.

(4) If A is a stable matrix, Q = CT C is positive semidefinite, and the pair
{A,C} is observable, then the unique solution K is positive definite.

(5) Suppose that Q = CT C is positive semidefinite and the pair {A,C} is
observable. A is a stable matrix if and only if the unique solution K is
positive definite.

Proof. We prove only the fifth statement.
(⇐=)
Consider V (xi) = xT

i Kxi. Then we have

V (xi+1) − V (xi)
�
= xT

i+1Kxi+1 − xT
i Kxi (B.17)

= xT
i (AT KA − K)xi = −xT

i Qxi ≤ 0 (B.18)

along any trajectory of xi+1 = Axi.
We show that if Q is positive semidefinite and {A,C} is observable, then

xT
i Qxi cannot be identically zero along any nontrivial trajectory of xi+1 =

Axi, which is proved as follows. Since

xT
i Qxi = xT

0 AiT CT CAix0 = ‖CAix0‖2 (B.19)

and {A,C} is observable, all rows of CAi are linearly independent and thus
CAix0 = 0 for all i = 0, 1, 2, · · · if and only if x0 = 0. By Lasalle’s theorem,
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xi+1 = Axi is stabilized.

(=⇒)

If the zero state of xi+1 = Axi is asymptotically stable, then all the eigen-
values of A are inside the open unit disc. Consequently, for any Q, there exists
a unique matrix K satisfying the Lyapunov equation. K can be expressed as

K =
∞∑

i=0

AiT QAi (B.20)

Consider

xT
0 Kx0 =

∞∑
i=0

x0A
iT CT CAix0 =

∞∑
i=0

‖CAix0‖2 (B.21)

Since {A,C} are observable, we have CAix0 �= 0 for all i unless x0 = 0. Hence,
we conclude that xT

0 Kx0 for all x0 and K is positive definite. This completes
the proof.

Riccati Matrix Equations

Now we shall be concerned with the ARE

K = AT KA − AT KB[R + BT KB]−1BT KA + Q (B.22)

where Q = CT C.

Theorem B.13. Suppose (A,C) is observable. Then (A,B) is stabilizable if
and only if

(1)There is a unique positive definite solution to the ARE.
(2)The closed-loop system Acl := A − BL∞ is asymptotically stable.

Proof.
(=⇒)

If (A,C) is observable, then(
(A − BL),

[
C

R
1
2 L

])
is also observable for any L by Theorem B.5 in Appendix B.2. Now, stabiliz-
ability implies the existence of a feedback control ui = −Lxi, so that

xi+1 = (A − BL)xi
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is asymptotically stable. The cost of such a control on [i,∞] is

Ji =
1
2
xT

i Sxi

where S is the limiting solution of

Si = (A − BL)T Si+1(A − BL) + LT RL + Q (B.23)

The optimal closed-loop system has an associated cost on [i,∞] of

J∗
i =

1
2

∞∑
i=i0

[xT
i Qxi + uT

i Rui] =
1
2
xT

i Kxi ≤
1
2
xT

i S∗xi (B.24)

where S∗ is the limiting solution to Riccati Equation (B.23). Therefore, Cxi →
0, and since |R| �= 0, ui → 0. Then it follows that⎡⎢⎢⎢⎣

Cxi

Cxi+1

...
Cxi+n−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
C

CA
...

CAn−1

⎤⎥⎥⎥⎦xi −→ 0

and so observability of (A,C) requires xi → 0. Hence, the optimal closed-loop
system is asymptotically stable.

Write (B.22) as

K = (A − BL∞)T K(A − BL∞) +
[

C

R
1
2 L∞

]T [
C

R
1
2 L∞

]
(B.25)

where L∞ = −R−1BT (I + KBR−1BT )−1KA is the optimal feedback. Then,
(B.25) is a Lyapunov equation with(

(A − BK∞),
[

C

R
1
2 K∞

])
observable and (A − BK∞) stable. Therefore, there is a unique positive defi-
nite solution S∗ to (B.22).

(⇐=)

If xi+1 = (A − BK∞)xi is asymptotically stable, then (A,B) is certainly
stabilizable. This completes the proof.

Theorem B.14. Consider Riccati Equation (B.22) with {A,B} stabilizable
and {A,C} observable. Let U ∈ �n and V ∈ �n be any matrices that form a
basis for the stable generalized eigenspace of the pair of matrices
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I BR−1BT

0 AT

] [
U
V

]
Λ =

[
A 0
−Q I

] [
U
V

]
(B.26)

where Λ is an n×n matrix with all its eigenvalues inside the unit circle. Then

(i) V is invertible.
(ii)UV −1 is the unique stabilizing solution to (B.22).
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Random Variables

C.1 Random Variables

The conditional probability density function (p.d.f.) can be written by using
the joint and marginal pdfs as follows:

pxy(x|y) =
px,y(x, y)

py(y)
(C.1)

where x ∈ �n and y ∈ �m.
We introduce two important properties in random variables. Two random

variables x and y are said to be independent if px,y(x, y) = px(x)py(y), i.e.
px,y(x|y) = px(x) from (C.1). Two random variable x and y are said to be
uncorrelated if E[xy] = E[x]E[y]. Note that independent random variables
x and y are always uncorrelated, but the converse is not necessarily true. In
other words, it is possible for X and Y to be uncorrelated but not independent.

Suppose that a random variable x has a mean mx and covariance Px. Then
we can write, for a symmetric constant matrix Px ≥ 0,

E[xT Mx] = E[(x − mx + mx)T M(x − mx + mx)]
= E[(x − mx)T M(x − mx)]
+ mT

x ME[x − mx] + E[(x − mx)T ]Mmx + mT
x Mmx

= mT
x Mmx + tr(E[M(x − mx)(x − mx)T ])

= mT
x Mmx + tr(MPx) (C.2)

Note that E[mx − x] = 0.

Theorem C.1. Given measurement z, the means square estimation minimiz-
ing E[(x − x̂(z))T (x − x̂(z))|z] is given by

x̂(z) = E[x|z] (C.3)
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Proof. Expanding and rearranging E[(x − x̂(z))T (x − x̂(z))], we have

E[(x − x̂(z))T (x − x̂(z))|z] = E[xT x − xT x̂(z) − x̂T (z)x + x̂T (z)x̂(z)|z]
= E[xT x|z] − E[x|z]T x̂(z) − x̂T (z)E[x|z]
+ x̂T (z)x̂(z)

= E[xT x|z] +
[
x̂(z) − E[x|z]

]T [
x̂(z) − E[x|z]

]
− E[x|z]T E[x|z] (C.4)

Note that (C.4) is a function of z. It can be easily seen that the minimum is
achieved at x̂(z) = E[x|z] in (C.4). This completes the proof.

C.2 Gaussian Random Variable

In this appendix we collect several facts and formulas for a multivariable
Gaussian density function that is used for deriving the Kalman filter and the
LQG control.

The random variables z1, z2, · · · , and zn are said to be jointly Gaussian if
their joint pdf is given by

pz(z) =
exp{− 1

2 (z − mz)T P−1
z (z − mz)}

(2π)
n
2 |det(Pz)|

1
2

(C.5)

where z = [z1 z2 · · · zn], mz = E[z], Pz = E[(z − mz)(z − mz)T ].
It is assumed that {zi} consists of x1, x2, · · · , xn, y1, y2, · · · , and ym.

Thus, (C.5) can be given by

px,y(x, y) =
exp{− 1

2 (z − mz)T P−1
z (z − mz)}

(2π)
n+m

2 |det(Pz)|
1
2

(C.6)

where

z =
[

x
y

]
, mz =

[
mx

my

]
, Pz =

[
Px Pxy

Pyx Py

]
In terms of Px, Py, Pxy and Pyx, P−1

z can be represented as

P−1
z =

[
P11 P12

PT
12 P22

]
where

P11 = (Px − PxyP−1
y Pyx)−1 = P−1

x + P−1
x PxyP22PyxP−1

x

P12 = −P11PxyP−1
y = −P−1

x PxyP22

P22 = (Py − PyxP−1
x Pxy)−1 = P−1

y + P−1
y PyxP11PxyP−1

y
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As can be seen in (C.6), the pdf of jointly Gaussian random variables is com-
pletely determined by the mean and the covariance. Marginal pdfs generated
from (C.6) are also Gaussian. If any n-dimensional jointly Gaussian random
variables are transformed linearly, they are also Gaussian.

An estimation problem is often based on the conditional expectation. The
following theorem is very useful for obtaining a conditional expectation of a
joint Gaussian pdf.

Theorem C.2. The conditional probability of x given y of a joint Gaussian
pdf is written as

px|y(x|y) =
1√

(2π)n|Px|y|
exp[−1

2
(x − mx|y)T P−1

x|y(x − mx|y)] (C.7)

where

mx|y = E[x|y] = mx + PxyP−1
y (y − my) (C.8)

Px|y = Px − PxyP−1
y Pyx (C.9)

Proof. Using the fact of pxy(x|y) = px,y(x,y)
py(y) = pz(z)

py(y) , we have

px|y(x|y) =
1√

(2π)n |Pz|
|Py|

exp
[
−1

2
(z − mz)T

[
P11 P12

PT
12 P22 − P−1

y

]
(z − mz)

]

From facts P12 = −P−1
x PxyP22 and P22 = P−1

y + P−1
y PyxP11PxyP−1

y , the
terms inside the exponential function can be factorized as

(z − mz)T

[
P11 P12

PT
12 P22 − P−1

y

]
(z − mz)

= (x − mx)T P11(x − mx) + 2(x − mx)T P12(y − my)
+ (y − my)T (P22 − P−1

y )(y − my)

=
[
(x − mx) − PxyP−1

y (y − my)
]T

P11

[
(x − mx) − PxyP−1

y (y − my)
]

where it can be seen that

mx|y = E[x|y] = mx + PxyP−1
y (y − my)

Px|y = P−1
11 = Px − PxyP−1

y Pyx

What remains to be proved is |Pz|y| = |Pz|/|Py|. We try to prove |Pz| =
|Pz|y||Py| as follows:

det(Pz) = det(
[

Px Pxy

Pyx Py

]
) = det(

[
I PxyP−1

y

0 I

] [
Px Pxy

Pyx Py

]
)

= det(
[

Px − PxyP−1
y Pyx 0

Pyx Py

]
) = det(Px − PxyP−1

y Pyx) det(Py)

= det(Px|y) det(Py)

This completes the proof.
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Note that uncorrelatedness implies independence in the case of Gaussian
random variables.

Theorem C.3. Let x, y, and z be joint Gaussian random variables. If y and
z are independent, then E(x|y, z) = E(x|y) + E(x|z)−mx holds. For general
random variables y and z, the relation

E(x|y, z) = E(x|y, z̃) = E(x|y) + E(x|z̃) − mx

holds, where z̃ = z − E(z|y).

Proof. In the case that y and z are independent, augmenting y and z into one
vector ξ =

[
yT zT

]T yields

E(x|y, z) = E(x|ξ) = mx + PxξP
−1
ξ (ξ − mξ)

Pxξ = E(xξT ) =
[
Pxy Pxz

]
Pξ =

[
Py 0
0 Pz

]
from which we have

E(x|ξ) = mx + PxyP−1
y (y − my) + PxzP

−1
z (z − mz)

= E(x|y) + E(x|z) − mx

Now we consider the case that y and z are general, i.e. the independence of
two random variables is not required. From Theorem C.2, z̃ can be written as

z̃ = z − E{z|y} = z − mz − PzyP−1
y (y − my) (C.10)

which means that x, y and z̃ are jointly Gaussian. The mean of z̃, i.e. mz̃, is

mz̃ = E{z − E{z|y}} = E{z} − E{E{z|y}} = 0 (C.11)

It can be seen that y and z̃ are uncorrelated as follows:

E{(y − my)(z̃ − mz̃)T } = E{(y − my)z̃T } = E{yz̃T }
= E{yzT } − E{yE{zT |y}},
= E{yzT } − E{yzT } = 0

It follows then that E(x|y, z̃) is written as

E(x|y, z̃) = mx + PxyP−1
y (y − my) + Pxz̃P

−1
z̃ z̃ (C.12)

= E(x|y) + E(x|z̃) − mx

where

Pxz̃ = Pxz − PxyP−1
y Pyz

Pz̃ = Pz − PzyP−1
y Pyz

Through a trivial and tedious calculation for C.12, we obtain

E(x|y, z̃) = E(x|y, z)

This completes the proof.
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C.3 Random Process

Lemma C.4. Suppose that ui ∈ �m is the wide sense stationary (WSS) input
signal with power spectral density U(ejw) and yi ∈ �p is the output signal
coming through the system H(ejw). The power of the output signal can be
represented as

E[yT
i yi] = tr(E[yiy

T
i ]) =

1
2π

∫ 2π

0

tr(H(ejω)U(ejω)H∗(ejω)) dω (C.13)

It is noted that

E

[
lim

N→∞
1
N

i0+N∑
i=i0

yT
i yi

]
= E[yT

i yi] (C.14)
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Linear Matrix Inequalities and Semidefinite
Programming

D.1 Linear Matrix Inequalities

Now, we give a brief introduction to LMIs. The basic results of this appendix
are from [BLEGB94].

We call F (x) an LMI if it has the following form:

F (x) = F0 +
m∑

i=1

xiFi > 0 (D.1)

where the variable x = [x1 · · · xm]T ∈ Rm and the symmetric matrices
Fi = FT

i ∈ Rn×n, 0, · · · ,m are given. The inequality in (D.1) means that
F (x) is positive definite. It is noted that F (x) depends affinely on x.

The LMI (D.1) is convex on x, i.e. the set {x|F (x) > 0} is convex. Even
though the LMI (D.1) may seem to have a specialized form, it can represent
several nonlinear matrix inequalities, such as quadratic inequalities, including
Riccati inequalities, matrix norm inequalities, and constraints that arise in
control theory.

Multiple LMIs F 1(x) > 0, · · · , F p(x) > 0 can be expressed as the following
single LMI:

diag(F 1(x), · · · , F p(x)) > 0

Therefore, it is usual to make no distinction between a set of LMIs and a
single LMI, i.e. “the LMIs F 1(x) > 0, · · · , F p(x) > 0” also means “the LMI
diag(F 1(x), · · · , F p(x)) > 0”.

Nonlinear matrix inequalities can be represented as LMIs, which is possible
using the Schur complement. Consider the following LMI:[

Q(x) S(x)
S(x)T R(x)

]
> 0 (D.2)

where Q(x) and R(x) are symmetric. Note that Q(x), R(x), and S(x) depend
affinely on x. This LMI is equivalent to the following matrix inequalities:
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R(x) > 0, Q(x) − S(x)R(x)−1ST (x) > 0 (D.3)

or equivalently:

Q(x) > 0, R(x) − ST (x)Q(x)−1S(x) > 0 (D.4)

The above equivalences can be easily proved by using the following matrix
decomposition:[

Q S
ST R

]
=
[

I 0
ST Q−1 I

] [
Q 0
0 R − ST Q−1S

] [
I Q−1S
0 I

]
=
[

I SR−1

0 I

] [
Q − SR−1ST 0

0 R

] [
I 0

R−1ST I

]
(D.5)

In other words, the set of nonlinear inequalities (D.3) or (D.4) can be repre-
sented as the LMI (D.2). If R(x) and Q(x) are set to unit matrices, we have
the useful formula

I − SST > 0 ⇐⇒ I − ST S > 0 (D.6)

If R(x) and S(x) are set to a unit matrix and a vector x, we have

xxT < Q ⇐⇒ xT Q−1x < I (D.7)

where Q is assumed to be nonsingular.
The matrix norm constraint ||Z(x)||2 < 1, where Z(x) ∈ Rp×q and de-

pends affinely on x, is represented as the LMI[
I Z(x)

Z(x)T I

]
> 0 (D.8)

from the fact that λmax(Z(x)T Z(x)) < 1 implies yT Z(x)T Z(x)y − yT y < 0
for all y, i.e. Z(x)T Z(x) < I.

The constraint c(x)T P (x)−1c(x) < 1, P (x) > 0, where c(x) ∈ Rn and
P (x) = P (x)T ∈ Rn×n depend affinely on x, is expressed as the LMI[

P (x) c(x)
c(x)T 1

]
> 0 (D.9)

More generally, the constraint

tr(S(x)T P (x)−1S(x)) < 1, P (x) > 0 (D.10)

where P (x) = P (x)T ∈ Rn×n depend affinely on x, is handled by introducing
a new matrix variable X = XT ∈ Rp×p, and the LMI (in x and X)

tr(X) < 1,
[

X S(x)T

S(x) P (x)

]
> 0 (D.11)
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Even though the variable x is given by a vector in the LMI (D.1), ma-
trix variables can be used. Consider the following continuous version of the
Lyapunov inequality

AT P + PA < 0 (D.12)

where A ∈ Rn×n is given and P = P ′ is the variable which should be found.
In this case, instead of representing the LMI explicitly in the form F (x) > 0,
we will refer to (D.12) as the LMI where the matrix P is the variable. Of
course, the Lyapunov inequality (D.12) can be expressed as the form (D.1) by
letting P1, · · · , Pm be a basis for symmetric n×n matrices and taking F0 = 0
and Fi = −AT Pi − PiA.

As another example, consider the algebraic Riccati inequality

AT P + PA + PBR−1BT P + Q < 0, R > 0 (D.13)

where A, B, Q = QT , R = RT are given matrices of appropriate size, and
P = PT is the variable. Inequality (D.13) can be expressed as the LMI[

AT P + PA + Q PB
BT P −R

]
< 0 (D.14)

We are often interested in whether a solution exists or not in an LMI.

• Feasibility problems
Given LMI F (x) > 0, find a feasible solution xfeas such that F (xfeas) > 0
or prove that a solution does not exist.

D.2 Semidefinite Programming

Now, we give a brief introduction to SDP which can effectively solve many
other optimization problems involving LMIs. The basic results are from
[BLEGB94, VB96].

SDP is an optimization problem of minimizing a linear function of a vari-
able x ∈ Rm subject to a matrix inequality:

minimize cT x
subject to F (x) > 0 (D.15)

where

F (x) = F0 +
m∑

i=1

xiFi

This SDP is a convex optimization problem, since its objective and constraint
are convex: if F (x) > 0 and F (y) > 0, then, for all λ, 0 ≤ λ ≤ 1,
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F (λx + (1 − λy)) ≤ λF (x) + (1 − λy)F (y)

Even though the SDP (D.15) may seem to be quite specialized, it can rep-
resent many important optimization problems, such as a linear programming
(LP),

minimize cT x
subject to Gx < h

Gx < h ⇐⇒ diag(h1 h2 · · · hn) −
n∑

i=1

xi diag(g1,i g2,i · · · gn,i) ≥ 0

a matrix norm minimization,

‖A‖2
2 < t2 ⇐⇒ λmax(AT A) < tI ⇐⇒ AT A < tI

⇐⇒ min t subject to
[

tI A
AT I

]
> 0

a maximum eigenvalue minimization,

minimize λ
subject to λI − A(x) > 0 (D.16)

where A is symmetric, and a quadratic programming (QP)

minimize 1
2xT Px + qT x + r

subject to Gx < h
⇐⇒

minimize t

subject to
[

t − r − qT x xT

x 2P−1

]
> 0

Gx < h

Note that the quadratic programming problem involves minimization of a
quadratic function subject to linear constraints.

In particular, it can represent a quadratic constrained QP (QCQP), which
is needed to solve the optimization problems. Now we will show how QCQP
can be cast as a special case of SDP. The convex quadratic constraint (Ax +
b)T (Ax + b) − cT x − d < 0 can be expressed as[

I Ax + b
(Ax + b)T cT x + d

]
< 0

The left-hand side depends affinely on the vector x, and it can be also ex-
pressed as

F (x) = F0 +
m∑

i=1

xiFi

with
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F0 =
[

I b
bT d

]
, Fi =

[
0 ai

aT
i ci

]
, i = 1, · · · ,m

where A = [a1 · · · am]. Therefore, a general quadratically constrained
quadratic programming

minimize f0(x)
subject to fi(x) < 0, i = 1, · · · , L

where each fi is a convex quadratic function fi(x) = (Aix + b)T (Aix + b) −
cT
i x − di can be written as

minimize t

subject to
[

I A0x + b0

(A0x + b0)T cT
0 x + d0 + t

]
> 0

[
I Aix + bi

(Aix + bi)T cT
i x + di

]
> 0, i = 1, · · · , L

which is an SDP with variables x ∈ Rm and t ∈ R. The relationship among
LP, QP, QCQP, and SDP is given as

LP ⊂ QP ⊂ QCQP ⊂ SDP (D.17)
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Survey on Applications

There are many papers that deal with applications of receding horizon con-
trols. The terminology “MPC” is more popular in applications, so that we use
it instead of “RHC”.

Most survey papers [RRTP78, GPM89, RMM94, Kwo94, May95, LC97,
May97, CA98, ML99, MRRS00, KHA04] and books [BGW90, Soe92, Mos95,
MSR96, AZ00, KC00, Mac02, Ros03, HKH02, CB04] also report real applica-
tions of the RHC. There are a few survey papers on applications of industrial
MPC technologies, particularly for process controls [OOH95] [QB97] [QB00]
[QB03].

We can consider two different kinds of applications. One is a software
product for general uses and the other is a specific process where RHCs are
applied.

There are many commercial software products, such as Aspen Technol-
ogy’s DMCPlus (Dynamic Matrix Control) and SMCA (Setpoint Multivari-
able Contr. Arch.), Adersa’s IDCOM (identification and command), HIECON
(Hierarchical Constraint Control), and PFC (Predictive Functional Control),
Honeywell’s Profit Control, RMPCT (Robust MPC Technology), and PCT
(Predictive Control Technology), Pavilion Technology’s Process Perfector,
SCAP Europa’s APCS (Adaptive Predictive Control System), IPCOS’s INCA
(IPCOS Novel Control Architecture), Simulation Sciences’ Connoisseur, and
ABB’s 3dMPC. This list may not be complete. For additional information,
refer to [Mac02] [QB97][QB03].

Applied processes include refining, petrochemicals, chemicals, pulp and
paper, air and gas, utility, mining/metallurgy, food processing, polymer, fur-
nace, aerospace/defence, automotive, ammonia synthesis, and so on. It is not
so easy to list all applied processes. The surveys on the applied processes
can be done by vendors [QB03] and manufacturers [OOH95]. In particular,
applications of MPC are widely used in refining and petrochemical processes
[QB03].

In the beginning, linear RHCs were applied. Recent years have shown rapid
progress in the development and application of industrial nonlinear MPC.
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When the operating points change frequently and span a sufficiently wide
range of nonlinear process dynamics, the nonlinear MPC is very efficient com-
pared with linear MPC. While applications of linear MPC are concentrated
in refining, those of nonlinear MPC cover a much broader range of chem-
icals, such as pH control, polymer manufacturing, and ammonia synthesis.
However, it has been observed that the size of nonlinear MPC applications is
typically much smaller than that of linear MPC [MJ98]. This is due to the
computational complexity of nonlinear MPC.
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MATLAB� Programs

Example 3.2: Receding Horizon Linear Quadratic
Tracking Control

M = 1; bb = 0.01; Ac = [0 1 0 0;0 -bb/M 0 0;0 0 0 1;0 0 0 -bb/M];
Bc = [0 0 ;1/M 0 ; 0 0;0 1/M]; Cc = [1 0 0 0 ;0 0 1 0]; Dc = [0
0;0 0]; Ts = 0.055; [A B C D] = c2dm(Ac,Bc,Cc,Dc,Ts,’zoh’);

% design parameter in cost function
% - state weighting matrix: Q
% - control weighting matrix: R
% - initial state: x0
Q = eye(2); R = eye(2); x0 = [1;0;1;0];

% arbitrary future references available over [i,i+N]
y1r_1 = 1:-0.01:0.01; y1r_2 = zeros(1,100); y1r_3 = 0:0.01:0.99;
y1r_4 = ones(1,100); y2r_1 = ones(1,100); y2r_2 = 1:-0.01:0.01;
y2r_3 = zeros(1,100); y2r_4 = 0:0.01:0.99; y1r = [y1r_1 y1r_2
y1r_3 y1r_4 ones(1,100)]; y2r = [y2r_1 y2r_2 y2r_3 y2r_4
ones(1,100)]; yr = [y1r;y2r];

% simulation step
is = 440;

% Discrete-time LQTC for Unconstrained Systems
[x,y,u] = dlqtc(x0,A,B,C,Q,R,yr,is);

Subroutine: drhtc.m

function [x,y,u ] = drhtc(x0,A,B,C,Q,R,Qf,N,yr,is);

%DRHTC Discrete-time RHTC for Unconstrained Systems



350 F MATLAB� Programs

% convert reference vector to row vector

[s1,s2] = size(yr); if (s2 == 1)

yr = yr’;

end

% check future reference length for simulation

if (length(yr) < (is + N))

disp(’The future reference is of too small length’);

return

end

% Riccati solution K(N-1) for RHTC

[K_N_1 K_history_vec] = drde2(A,B,C,Q,R,Qf,N);

% initialization of history variables

xi = x0; % state of plant x(i)

ui_history = []; % history of rhc u(i)

xi_history = x0; % history of state of plant x(i)

yi_history = C*x0; % history of output of plant y(i)

for i=1:is

% time-varying feed feedward gain g for RHTC

[g_1 g_history] = dvde(A,B,C,Q,R,Qf,N,K_history_vec,yr,i);

% receding horizon tracking controller u(i)

ui = -inv(R+B’*K_N_1*B)*B’*(K_N_1*A*xi+g_1);

% plant is controlled by rhtc u(i) at time [i,i+1]

xi = A*xi + B*ui;

yi = C*xi;

% history u(i), x(i), y(i)

ui_history = [ui_history ui];

xi_history = [xi_history xi];

yi_history = [yi_history yi];

end

x = xi_history; % state trajectory x

y = yi_history; % output trajectory y

u = ui_history; % RHTC history vector u

return

Subroutine: drde2.m

function [K_N_1,K_history_vec] = drde2(A,B,C,Q,R,Qf,N);

%DRDE2 Discrete-time Riccati Difference Equation Solver



F MATLAB� Programs 351

% This RDE appears in LQ Tracking Problem

% system dimension

n = size(A,1);

% boundary condition

K_0 = C’*Qf*C; K_0_vec = mtx2vec(K_0); K_history_vec = K_0_vec;

K_i = K_0;

% solve Riccati Differential Equation 2

for i=1:N-1

K_i = A’*K_i*inv(eye(n)+B*inv(R)*B’*K_i)*A + C’*Q*C;

K_i_vec = mtx2vec(K_i);

K_history_vec = [K_history_vec K_i_vec];

end

% constant feedback gain K(N-1) for RHTC

[s1,s2] = size(K_history_vec); K_N_1 =

vec2mtx(K_history_vec(:,s2));

return

Subroutine: dvde.m

function [g_1,g_history ] =

dvde(A,B,C,R,Q,Qf,N,K_history_vec,yr,i );

%DVDE Discrete-time Vector Differential Equation Solver

% system dimension

n = size(A,1);

% boundary condition

g_N = -C’*Qf*yr(:,i+N); g_history = g_N; g_j = g_N;

% solve Vector Difference Equation

for j=(N-1):-1:1

K_j = vec2mtx(K_history_vec(:,(N-1)-j+1));

g_j = A’*inv(eye(n)+K_j*B*inv(R)*B’)*g_j - C’*Q*yr(:,i+j);

g_history = [g_history g_j];

end

% time-varying feed-forward gain g(1) for RHTC

[m,n] = size(g_history); g_1 = g_history(:,n);

return;
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Example 3.3: Receding Horizon H∞ Tracking Control

clear;

% state-space model of original system and its discretization

M = 1; bb = 0.01; Ac = [0 1 0 0;0 -bb/M 0 0;0 0 0 1;0 0 0 -bb/M];

Bc = [0 0 ;1/M 0 ; 0 0;0 1/M]; Cc = [1 0 0 0 ;0 0 1 0]; Dc = [0

0;0 0]; Ts = 0.055;

[A B C D] = c2dm(Ac,Bc,Cc,Dc,Ts,’zoh’); Bw = [ 0 0 ; 0 0.03 ;

0.02 0 ; 0 0.05]

% design parameter in cost function

% - state weighting matrix: Q

% - control weighting matrix: R

% - disturbance weighting matrix: Rw

% - terminal weighting matrix: Qf

% - prediction horizon: N

system_order = size ( A , 1) ; input_order = size ( B , 2 ) ;

dist_order = size ( Bw , 2 ) ;

Q = eye(system_order) ; R = eye(input_order) ; Rw = 1.2

*eye(dist_order) ; N = 5 ; gamma_2 = 5.0 ;

% arbitrary future references available over [i,i+N]

y1r_1 = 1:-0.01:0.01; y1r_2 = zeros(1,100); y1r_3 = 0:0.01:0.99;

y1r_4 = ones(1,100); y2r_1 = ones(1,100); y2r_2 = 1:-0.01:0.01;

y2r_3 = zeros(1,100); y2r_4 = 0:0.01:0.99; y1r = [y1r_1 y1r_2

y1r_3 y1r_4 ones(1,100)]; y2r = [y2r_1 y2r_2 y2r_3 y2r_4

ones(1,100)]; yr = [y1r;y2r];

% simulation step

is = 440;

% Discrete-time RHTC for Unconstrained Systems

% initial state

x0 = [ 1 ; 0 ; 1 ; 0 ]; Qf = 100*eye(2); Q = eye(2) ;

gamma_2=1.5; Bw = [ 0.016 0.002 ; 0.01 0.009 ; 0.008 0 ; 0

0.0005] ;

[x_hinf,y_hinf,u_hinf , w] = drhtc_hinf ( x0 , A , B , Bw , C , Q

, R , Rw , Qf , gamma_2 , N , yr , is);

[x,y,u] = drhtc(x0,A,B,C,Q,R,Qf,N,yr,is, Bw,w);
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for k = 0: is

y_rhtc_ws ( k+1 ,: ) = [ k*0.01 y(:,k+1)’ ];

end

for k = 0: is

r_rhtc_ws ( k+1 ,: ) = [k*0.01 yr(:,k+1)’];

end

for k = 0: is

y_rhtc_ws_hinf ( k+1 ,: ) = [k*0.01 y_hinf(:,k+1)’];

end

plot( r_rhtc_ws(:,2) , r_rhtc_ws(:,3) , y_rhtc_ws(:,2) ,

y_rhtc_ws(:,3) ,’-.’ , y_rhtc_ws_hinf(:,2) , y_rhtc_ws_hinf(:,3)

);

legend(’ Reference’,’H infinity RHTC’ , ’LQ RHTC’) ;

Subroutine: drhtc−hinf.m

function [ x , y , u , w] = drhtc_hinf ( x0 , A , B , Bw , C , Q

, R , Rw , Qf , gamma_2, N , yr , is);

% convert reference vector to row vector

[s1,s2] = size(yr); if (s2 == 1)

yr = yr’;

end

% check future reference length for simulation

if (length(yr) < (is + N))

disp(’The future reference is of too small length’);

return

end

% Riccati solution K(N-1) for RHTC

[K_N_1 K_history_vec] = drde2_hinf( A , B , Bw , C , Q , R , Rw ,

Qf , gamma_2 , N);

% initialization of history variables

xi = x0; % state of plant x(i)

ui_history = []; % history of rhc u(i)

xi_history = x0; % history of state of plant x(i)

yi_history = C*x0; % history of output of plant y(i)

wi_history = [];

system_order = size(A,1);
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for i=1:is

% time-varying feed feedward gain g for RHTC

[g_1 g_history] = dvde_hinf( A , B , Bw , C , Q , R , Rw , Qf ,...

gamma_2, N , K_history_vec , yr , i);

% receding horizon tracking controller u(i)

Lambda = eye(system_order) + K_N_1 * ( B*inv(R)*B’ ...

- 1 / gamma_2 * Bw*inv(Rw)*Bw’) ;

ui = -inv(R) * B’ * inv( Lambda )*( K_N_1 * A * xi + g_1 ) ;

wi = 1/gamma_2* inv(Rw) * Bw’ * inv ( Lambda ) ...

* ( K_N_1 * A * xi + g_1 ) ;

% plant is controlled by rhtc u(i) at time [i,i+1]

xi = A*xi + B*ui + Bw*wi;

yi = C*xi;

ui_history = [ui_history ui];

xi_history = [xi_history xi];

yi_history = [yi_history yi];

wi_history = [wi_history wi];

end

x = xi_history; % state trajectory x

y = yi_history; % output trajectory y

u = ui_history; % RHTC history vector u

w = wi_history; % RHTC history vector u

return

Subroutine: drde2−hinf.m

function [K_N_1,K_history_vec] = drde2_hinf (A , B , Bw , C , Q

, R , Rw , Qf , gamma_2 , N );

% system dimension

n = size(A,1);

% boundary condition

K_0 = C’*Qf*C;

K_0_vec = mtx2vec(K_0); K_history_vec = K_0_vec; K_i = K_0;

% solve Riccati Differential Equation
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for i=1:N-1

if min ( real ( eig ( Rw - 1 / gamma_2 *Bw’ * K_i * Bw) ) ) < 0

error (’error’);

end

Lambda = eye(n) + K_i * ( B*inv(R)*B’ - 1 / gamma_2 ...

* Bw * Rw^(-1) * Bw’ ) ;

K_i = A’ * inv(Lambda) * K_i *A + C’*Q*C;

K_i_vec = mtx2vec(K_i);

K_history_vec = [K_history_vec K_i_vec];

end

% constant feedback gain K(N-1) for RHTC

[s1,s2] = size(K_history_vec); K_N_1 =

vec2mtx(K_history_vec(:,s2)); return

Subroutine: dvde−hinf.m

function [g_1,g_history ] = dvde_hinf( A , B , Bw , C , Q , R ,

Rw , Qf , gamma_2, N , K_history_vec , yr , i);

n = size(A,1);

g_N = -C’*Qf*yr(:,i+N); g_history = g_N; g_j = g_N;

for j = (N-1): -1: 1

K_j = vec2mtx(K_history_vec(:,(N-1)-j+1));

Lambda = eye(n) + K_j * ( B*inv(R)*B’ ...

- 1/gamma_2 * Bw * inv(Rw) * Bw’ ) ;

%g_j = A’*inv(eye(n)+K_j*B*inv(R)*B’)*g_j - C’*Q*yr(:,i+j);

if ( Rw -

g_j = A’*inv(Lambda)*g_j - C’*Q*yr(:,i+j);

g_history = [g_history g_j];

end

% time-varying feed-forward gain g(1) for RHTC

[m,n] = size(g_history); g_1 = g_history(:,n); return;

Example 3.4: Cost Monotonicity Condition for Receding
Horizon Control

A = [ 0.6831 0.0353 ; 0.0928 0.6124 ] ; B = [0.6085;0.0158];

Q =eye(2); R =3;
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SystemDim = size(A,1); InputDim = size(B,2);

% Getting started LMISYS description

setlmis([]);

% Defining LMI variables

Y=lmivar(2,[InputDim SystemDim]); X=lmivar(1,[SystemDim 1]);

% Defining LMI

lmiterm([-2 1 1 X],1,1); % LMI (1,1): X

lmiterm([-2 2 1 Y],B,1); % LMI (2,1): B*Y

lmiterm([-2 2 1 X],A,1); % LMI (2,1): A*X

lmiterm([-2 2 2 X],1,1); % LMI (2,2): X

lmiterm([-2 3 1 X],sqrt(Q),1); % LMI (3,1): Q^(1/2)*X

lmiterm([-2 3 3 0],1); % LMI (3,3): 1

lmiterm([-2 4 1 Y],sqrt(R),1); % LMI (4,1): R^(1/2)*Y

lmiterm([-2 4 4 0],1); % LMI (4,4): 1

LMISYS = getlmis; [tmin,xfeas]=feasp(LMISYS);

X=dec2mat(LMISYS,xfeas,X);

Example 4.1: Robustness of Minimum Variance Finite
Impulse Response filters

% Systems and paramteres %

A = [ 0.9305 0 0.1107; 0.0077 0.9802 -0.0173; 0.0142 0 0.8953];

B = [0.0217 0.2510; 0.0192 -0.0051; 0.0247 0.0030];

C = [ 1 0 0;0 1 0 ]; G = [1 1 1]’; Q = 0.02^2; R = 0.04^2*eye(2);

D_1 = 0; D_2 = 0;

N_sample = 250 ; N_order = size(A,1); N_horizon = 10;

% Making big matrices for FIR filters

[B_bar, C_bar, G_bar, Xi] = MakeBigMatrices (A,B,C,G,Q,R,10);

H = inv(C_bar’*inv(Xi) * C_bar) * C_bar’*inv(Xi);

% Parameter initialize

intial_state= [0 0 0 ]’; x = intial_state;

IIR_x_hat = [0 0 0]’; FIR_x_hat = IIR_x_hat;

P = 0.0*eye(N_order); real_state = zeros(N_order , N_sample);

estimated_state = zeros(N_order, N_sample); real_state(:,1)=x;

estimated_state(:,1) = IIR_x_hat;

FIR_estimated_state = zeros(N_order, N_sample);

measurements = zeros(2*N_sample);
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delta_A = 0.1*[1 0 0;0 1 0;0 0 0.1 ];

delta_C = 0.1*[0.1 0 0;0 0.1 0 ];

% main procedure

for i = 1: N_sample-1

if( i > 50 & i < 101 )

x = (A+delta_A)*x + G*randn(1)*0.02;

y = (C+delta_C)*x + randn(2,1)*0.04;

else

x = A*x + G*randn(1)*0.02;

y = C*x + randn(2,1)*0.04;

end

real_state(:,i+1)=x;

% IIR_filter: one step predicted estimate

IIR_x_hat = A * IIR_x_hat + A * P *C’ * inv( R + C * P * C’)

*( y - C*IIR_x_hat);

P = A * inv( eye(N_order) + P * C’ * inv(R) * C) * P * A’

+ G * Q * G’;

estimated_state(:,i+1)=IIR_x_hat;

measurements(2*i-1:2*i) = y;

% FIR filter

if i>10

FIR_x_hat = H * (measurements(2*i-19:2*i))’;

end

FIR_estimated_state(:,i+1) = FIR_x_hat;

end

% Plot

plot( 1:N_sample , real_state(2,:)-estimated_state(2,:),

1:N_sample , real_state(2,:)-FIR_estimated_state(2,:))

Subroutine: MakeBigMatrices.m

function [B_bar , C_bar , G_bar , Xi] =

MakeBigMatrices(A,B,C,G,Q,R,horizon);

% Error check

A_inv = inv(A); IsInput = 1;

% initialization
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if B == 0

IsInput = 0;

B_bar=0

else

B_bar = C * A_inv * B;

end

C_bar = C * A_inv; G_bar = -C * A_inv * G;

Q_stack = Q ; R_stack = R ; A_inv_i = A_inv;

% parameter setting

N_input = size(B,2); N_output = size(C,1);

N_system_noise = size(G,2); N_order = size(A,1);

% main procedure

for i = 2: horizon

A_inv_i = A_inv_i * A_inv ;

if IsInput == 1

B_bar = [B_bar -C_bar*A_inv*B; zeros(N_output, N_input*(i-1))

-C*A_inv*B ];

end

G_bar = [G_bar -C_bar*A_inv*G; zeros(N_output, N_system_noise*(i-1))

-C*A_inv*G ] ;

C_bar = [C * A_inv_i ;C_bar];

Q_stack = daug(Q_stack,Q); R_stack = daug(R_stack,R);

end

Xi = G_bar * Q_stack *G_bar’ + R_stack ;

Example 5.1: Linear Quadratic Finite Memory Control

% Systems and paramteres

A = [ 0.9305 0 0.1107; 0.0077 0.9802 -0.0173 ; 0.0142 0

0.8953 ]; B = [0.0217 0.2510 ;

0.0192 -0.0051 ;

0.0247 0.0030 ] ;

G = [1 1 1]’; C = [ 1 0 0;0 1 0 ]; Q = 0.02^2; R = 0.04^2*eye(2);

N=zeros(size(A,1),size(B,2));

D_1 = 0; D_2 = 0;

[K,S,E] = dlqr(A,B,eye(3),eye(2),N)

horizon_size =10;
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% Making big matrices

[ B_bar , C_bar , G_bar , Xi] = MakeBigMatrices

(A,B,C,G,Q,R,horizon_size) ; H=inv(C_bar’*inv(Xi) * C_bar) *

C_bar’*inv(Xi);

N_sample = 800 ;

N_order = size(A,1); N_horizon = 10;

intial_state= [-1 1 1]’ ; x= intial_state ;

x_1=x; x_2=x;

IIR_x_hat = [0 0 0]’ ; FIR_x_hat = IIR_x_hat ;

P = 0.5*eye(N_order) ; real_state = zeros(N_order , N_sample);

IIR_state = zeros(N_order, N_sample); real_state(:,1)=x;

IIR_state(:,1)=IIR_x_hat; measurements = zeros ( 2*N_sample);

FIR_state = zeros(N_order, N_sample);

% Temporary uncertainty

delta_A = 0.05*[1 0 0;0 1 0;0 0 0.1 ]; delta_C = 0.05*[0.1 0 0;0

0.1 0 ];

% Start time and stop time of temporary uncertainty

dist_start = 300; dist_stop = 501;

for i = 1: N_sample-1

% FIR

sys_noise=randn(1)*0.01;

mea_noise=randn(2,1)*0.01;

if( i > dist_start & i < dist_stop )

x_1 = (A+delta_A)*x_1 - B*K*FIR_x_hat + G*sys_noise;

y_1 = (C+delta_C)*x_1 + mea_noise;

else

x_1 = A*x_1 - B*K*FIR_x_hat +G*sys_noise;

y_1 = C*x_1 + mea_noise;

end

FIR_state(:,i+1) = x_1;

measurements(2*i-1:2*i) = y_1;

if i>10

FIR_x_hat = H * (measurements(2*i-(2*horizon_size-1):2*i))’;

else

FIR_x_hat = zeros(N_order,1);

end

% IIR

if( i > dist_start & i < dist_stop )

x_2 = (A+delta_A)*x_2 - B*K*IIR_x_hat + G*sys_noise;

y_2 = (C+delta_C)*x_2 + mea_noise;

else
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x_2 = A*x_2 - B*K*IIR_x_hat +G*sys_noise;

y_2 = C*x_2 + mea_noise;

end

IIR_state(:,i+1) = x_2;

IIR_x_hat = A * IIR_x_hat + A* P *C’ *

inv( R + C * P * C’)*( y_2 - C*IIR_x_hat);

P = A * inv( eye(N_order) + P * C’ * inv(R) * C) * P * A’ + G * Q * G’;

end

% plot

time = 1:N_sample; time = time*0.05;

plot( time ,-IIR_state(1,1:N_sample),’r’,time,-FIR_state(1,1:N_sample),’b’ );

title(’First state trajectory’); xlabel(’Time’); figure;

plot( time ,-IIR_state(2,1:N_sample),’r’ ,time ,-FIR_state(2,1:N_sample),’b’);

title(’Second state trajectory’); xlabel(’Time’); figure;

plot( time ,-IIR_state(3,1:N_sample),’r’ ,time,-FIR_state(3,1:N_sample),’b’ );

title(’Third state trajectory’); xlabel(’Time’);

Subroutine: MakeBigMatrices.m

function [B_bar , C_bar , G_bar , Xi ] =

MakeBigMatrices(A,B,C,G,Q,R,horizon);

A_inv = inv(A);

IsInput = 1;

% initialization

if B == 0

IsInput = 0;

B_bar=0

else

B_bar = C * A_inv * B;

end

C_bar = C * A_inv;

G_bar = -C * A_inv * G;

Q_stack = Q ;

R_stack = R ;

A_inv_i = A_inv

% parameter setting

N_input = size(B,2);

N_output = size(C,1);

N_system_noise = size(G,2);

N_order = size(A,1);

% main procedure

for i = 2: horizon

i

A_inv_i = A_inv_i * A_inv ;

if IsInput == 1

B_bar = [ B_bar -C_bar*A_inv*B ;

zeros(N_output , N_input*(i-1)) -C*A_inv*B ];
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end

G_bar = [ G_bar -C_bar*A_inv*G ; zeros(N_output ,

N_system_noise*(i-1)) -C*A_inv*G ] ;

C_bar = [ C * A_inv_i ;C_bar];

Q_stack = daug(Q_stack,Q);

R_stack = daug(R_stack,R);

end

Xi = G_bar * Q_stack *G_bar’ + R_stack ;

Example 6.2: Constrained Receding Horizon Control

% Demonstration of RHC using LMI

clear all;

%% System State Equation

A= [1 0.2212;

0 0.7788];

B = [0.0288;0.2212]; G =[1 0; 0 1; 1.5 1];

%% Initial State

x0 = [1;0.3];

[n,n]=size(A); [n,m]=size(B);

% Let’s get predictor

N = input(’horizon N =’ ); length = input(’total simu time?=’);

% Input Constraint

u_lim=0.5; ubar_lim = []; for i=1:N,

ubar_lim=[ubar_lim;u_lim];

end

% State Constraint

x_lim = [1.5;0.3]; G =[1 0;

0 1];

g_lim = [1.5; 0.3]; gbar_lim = []; for i=1:N,

gbar_lim=[gbar_lim;g_lim];

end

[ng_r, ng_c] = size(G);

% Weighting Matrix

Q = 1*eye(size(A)); R = 1;
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A_hat=[]; B_hat=[]; for i=1:N-1,

A_hat = daug(A_hat, A);

B_hat = daug(B_hat, B);

end A_hat = [zeros(n,n*N);

A_hat zeros(n*(N-1),n)];

B_hat = [zeros(n,m*N);

B_hat zeros(n*(N-1),m)];

W_hat = inv(eye(n*N)-A_hat)*B_hat; V0_hat =

inv(eye(n*N)-A_hat)*[x0;zeros(n*(N-1),1)];

B_bar=[]; for i=1:N,

B_bar = [B_bar A^(N-i)*B];

end

% Let’s get stacked weighting matrix

[m,n]=size(Q); [p,q] = size(R); Q_hat = []; R_hat = []; for i=1:N,

Q_hat = daug(Q_hat, Q);

R_hat = daug(R_hat, R);

end

% Let’s get constraint matrix

G_bar = []; for i=1:N

G_bar = daug(G_bar, G);

end

W=W_hat’*Q_hat*W_hat + R_hat; W=(W+W’)/2;

% Simulation starts !

t= []; State = []; U = []; summed_cost=0; Summed_cost=[];

Cost_at_k=[]; x = x0;

R1=[]; R2=[]; for i=0:(length-1),

i

V0_hat = inv(eye(n*N)-A_hat)*[x;zeros(n*(N-1),1)];

V = 2*W_hat’*Q_hat*V0_hat;

V0 = V0_hat’*Q_hat*V0_hat;

%% Solve LMI

[X,Y,r1,r2,opt_u] =

rhc_lmi(x,N,A,B,Q,R,W_hat,V0_hat,Q_hat,B_bar,...

W,V,V0,G,G_bar,ubar_lim,gbar_lim,u_lim,g_lim);

P = r2*inv(X);

if (i==0),

boundary0=[];

for th=0:0.01:2*pi,

z = sqrt(r2)*inv(P^0.5)*[cos(th);sin(th)];

boundary0=[boundary0 z];

end
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elseif(i==1),

boundary1=[];

for th=0:0.01:2*pi,

z = sqrt(r2)*inv(P^0.5)*[cos(th);sin(th)];

boundary1=[boundary1 z];

end

elseif(i==2),

boundary2=[];

for th=0:0.01:2*pi,

z = sqrt(r2)*inv(P^0.5)*[cos(th);sin(th)];

boundary2=[boundary2 z];

end

elseif(i==3),

boundary3=[];

for th=0:0.01:2*pi,

z = sqrt(r2)*inv(P^0.5)*[cos(th);sin(th)];

boundary3=[boundary3 z];

end

elseif(i==4),

boundary4=[];

for th=0:0.01:2*pi,

z = sqrt(r2)*inv(P^0.5)*[cos(th);sin(th)];

boundary4=[boundary4 z];

end

end

K = Y*inv(X);

u = opt_u(1);

State = [State x];

U = [U u]; %% Control Input

cost_at_k = r1+r2;

real_cost = x’*Q*x + u’*R*u;

R1=[R1 r1];

R2=[R2 r2];

summed_cost = summed_cost + real_cost;

Cost_at_k = [Cost_at_k cost_at_k];

Summed_cost = [Summed_cost summed_cost];

% State Update

x = A*x + B*u;

t= [t i+1];

home;

end

Cost_at_k=[Cost_at_k Cost_at_k(length)]; Summed_cost=[Summed_cost

Summed_cost(length)]; U=[U u]; State=[State x]; t=[ 0 t];R2=[R2

R2(length)];R1=[R1 R1(length)];
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% Let’s take a look at the simulation results

figure; plot(t,State(1,:),’r:’,t,State(2,:),’b’);

legend(’x1’,’x2’,0); xlabel(’time(sec)’);grid; title(’states’);

if (i>5), figure;

plot(State(1,:),State(2,:),’o’,boundary0(1,:),boundary0(2,:),’b’,

boundary1(1,:),boundary1(2,:),’r’,...

boundary2(1,:),boundary2(2,:),’k’,boundary3(1,:),boundary3(2,:),...

’r’,boundary4(1,:),boundary4(2,:),’r’); axis([-1.7 1.7 -0.35

0.35]);

end

figure; stairs(t,U); xlabel(’time(sec)’);grid; title(’control

input’);

figure; stairs(t,Cost_at_k,’r’); xlabel(’time(sec)’);grid;

title(’Expected cost at time k’);

figure; stairs(t,Summed_cost,’b’);grid; xlabel(’time(sec)’);

title(’Summed cost’);

figure; plot(t,R1,’r’,t,R2,’b’);

Subroutine: dvde−rhclmi.m

% Function: rhc_lmi.m

%

function [X_opt,Y_opt,r1_opt,r2_opt,u_opt] =

rhc_lmi(x,N,A,B,Q,R,W_hat,V0_hat,Q_hat,B_bar,W,V,V0,G,G_bar,...

ubar_lim,gbar_lim,u_lim,g_lim)

% LMI Variable = X, Y, r1, r2, U

[n,n]=size(A); [n,nu]=size(B); [nG_r, nG_c]= size(G); [nglim_r,

nglim_c]= size(g_lim);

if (~isempty(G_bar)),

GW = G_bar*W_hat;

gg1 = gbar_lim + G_bar*V0_hat;

gg2 = gbar_lim-G_bar*V0_hat;

end [nGW_r,nGW_c] = size(GW);

setlmis([]);

% LMI Variable

r1 = lmivar(1,[1 0]); r2 = lmivar(1,[1 0]); X = lmivar(1,[n 1]); Y

= lmivar(2,[nu n]); Z = lmivar(1,[nu 1]); U = lmivar(2,[N*nu 1]);

VV = lmivar(1,[nglim_r 1]);
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lmiterm([-1 1 1 r1], 1, 1); lmiterm([-1 1 1 U], 0.5*V’,1,’s’);

lmiterm([-1 1 1 0], -V0); %% (1,1) = r1-V’*U -V0

lmiterm([-1 2 1 U], W^0.5, 1); %% (2,1) = W^0.5*U

lmiterm([-1 2 2 0], 1); %% (2,2) = I

lmiterm([-2 1 1 0],1); %% (1,1) = 1

lmiterm([-2 2 1 0],A^N*x); %% (2,1) = A^N*x

lmiterm([-2 2 1 U], B_bar,1); %% (2,1) = A^N*x + B_bar*U

lmiterm([-2 2 2 X],1,1); %% (2,2) = X

lmiterm([-3 1 1 X], 1, 1); %% (1,1) = X

lmiterm([-3 2 2 X], 1, 1); %% (2,2) = X

lmiterm([-3 3 3 r2], 1,1); %% (3,3) = r2*I

lmiterm([-3 4 4 r2], 1, 1); %% (4,4) = r2*I

lmiterm([-3 2 1 X], A, 1);

lmiterm([-3 2 1 Y], B, 1); %% (2,1) = A*X + B*Y

lmiterm([-3 3 1 X], real(Q^0.5), 1); %% (3,1) = Q^0.5*X

lmiterm([-3 4 1 Y], R^0.5, 1); %% (4,1) = R^0.5*X

% Constraint on u during the horizon from 0 to N-1

Ucon_LMI_1 = newlmi; for i=1:N*nu,

tmp = zeros(nu*N,1);

tmp(i,1) = 1;

%% U(i) >= -ubar_lim(i)

lmiterm([-(Ucon_LMI_1+i-1) 1 1 U], 0.5*tmp’,1,’s’);

lmiterm([-(Ucon_LMI_1+i-1) 1 1 0], ubar_lim(i));

%% U(i) <= ubar_lim(i)

lmiterm([(Ucon_LMI_1+N*nu+i-1) 1 1 U], 0.5*tmp’, 1,’s’);

lmiterm([(Ucon_LMI_1+N*nu+i-1) 1 1 0], -ubar_lim(i));

end

% Constraint on u after the horizon N

Ucon_LMI_2 = newlmi;

lmiterm([-Ucon_LMI_2 1 1 Z], 1,1); %% (1,1) = Z

lmiterm([-Ucon_LMI_2 1 2 Y], 1,1); %% (1,2) = Y

lmiterm([-Ucon_LMI_2 2 2 X], 1,1); %% (2,2) = X

Ucon_LMI_3 = newlmi; for i=1:nu,

tmp = zeros(nu,1);

tmp(i,1) = 1;

lmiterm([(Ucon_LMI_3+i-1) 1 1 Z], tmp’, tmp);

%% (1,1) Z(i,i) <= u_lim(i)^2

lmiterm([(Ucon_LMI_3+i-1) 1 1 0], -u_lim(i)^2);

end

% Constraint on x during the horizon from 0 to N-1
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if (~isempty(G_bar)),

Xcon_LMI1 = newlmi;

for i=1:nGW_r,

%% (1,1) GW*U + gg1 > = 0

lmiterm([-(Xcon_LMI1+i-1) 1 1 U], 0.5*GW(i,:),1,’s’);

lmiterm([-(Xcon_LMI1+i-1) 1 1 0], gg1(i));

%% (1,1) -GW*U + gg2 >= 0

lmiterm([-(Xcon_LMI1+nGW_r+i-1) 1 1 U], -0.5*GW(i,:),1,’s’)

lmiterm([-(Xcon_LMI1+nGW_r+i-1) 1 1 0], gg2(i));

end

end

% Constraint on x after the horizon N

if (~isempty(G)),

X_con_LMI2 = newlmi;

lmiterm([X_con_LMI2 1 1 X], G, G’);

lmiterm([X_con_LMI2 1 1 VV], -1, 1); %% (1,1) G*X*G’ <= VV

for i=1:nglim_r,

tmp = zeros(nglim_r,1);

tmp(i,1) = 1;

lmiterm([(X_con_LMI2+i) 1 1 VV], tmp’,tmp);

%% (1,1) VV(i,i) <= g_lim(i)^2

lmiterm([(X_con_LMI2+i) 1 1 0], -g_lim(i)^2);

end

end

rhclmi = getlmis;

% Now we’re ready to solve LMI

n_lmi = decnbr(rhclmi); c = zeros(n_lmi,1); for j=1:n_lmi,

[r1j, r2j]= defcx(rhclmi,j,r1,r2);

c(j) = r1j + r2j;

end

[copt, Uopt]= mincx(rhclmi, c’, [1e-6 300 0 0 0]);

u_opt = dec2mat(rhclmi, Uopt, U); r1_opt = dec2mat(rhclmi, Uopt,

r1); r2_opt = dec2mat(rhclmi, Uopt, r2); X_opt = dec2mat(rhclmi,

Uopt, X); Y_opt = dec2mat(rhclmi, Uopt, Y);
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minimax criterion
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Finite time process, 6
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H2 control, 70
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LaSalle’s theorem, 107, 330
Linear matix inequality (LMI)

H2 FIR filter, 204
H2 FMC, 254
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cost monotonicity
RH H∞ control, 143
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RHLQC
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Linear programming (LP), 344
Linear quadratic finite memory control
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perfect square expression, 231
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solution, 233
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return difference matrix, 41
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LQG control, 60

infinite horizon, 60
perfect square expression, 58

Lyapunov equation, 97, 331
positive definite, 331
unique solution, 331

Lyapunov inequality, 343
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Matrix calculus, 325
Matrix equality, 323
Matrix inversion lemma, 129
Matrix norm minimization, 344
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265
algorithm, 266
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Maximum eigenvalue minimization, 344
Maximum singular value, 42
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Model predictive control, 8
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unbiased condition, 179
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optimal gain, 173
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Nominal performance, 2, 160
Nominal stability, 2, 160
Nominal system, 2
Nonlinear receding horizon control, 298

control Lyapunov function, 310
general RHC, 310
one-step RHC, 310

dual-mode control, 300
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free terminal cost, 304
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feasible solution, 305
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Output feedback H∞ control, 64
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perfect square expression, 61
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Output predictor, 257

Performance bound
RH H∞ control, 138
RHLQC
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Random process, 339
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function, 335
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Receding horizon H∞ control
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Riccati equation, 126
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Receding horizon control, 3
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output feedback, 7

Receding horizon LQ control
free terminal cost
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terminal equality constraint
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Reference signal, 26
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asymptotically stable, 332
fake algebraic, 106
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steady state, 100, 112
unique, 332

Riccati inequality, 343
RMPCT, 347
Robust performance, 2, 160
Robust stability, 2, 160

Saddle point, 44
solution, 24
optimal cost, 128

Schur complement, 67, 341
Semidefinite programming, 343
Signal models, 159
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constrained RHLQC
dual-mode control, 277
free terminal cost, 280
output feedback, 288
terminal equality constraint, 272

dual filter
to RH H∞ control, 193
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linear quadratic finite memory control
(LQFMC), 241

nonlinear receding horizon control
dual-mode control, 303
free terminal cost, 306
infinite cost horizon, 313
quadratic cost, 309
terminal equality constraint, 299

nonlinear RH minimax control
free terminal cost, 315

receding horizon H∞ Control, 134,
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receding horizon LQ control
free terminal cost, 105, 108
terminal equality constraint, 105

Stability guaranteed horizon, 112
Stable, 330
State feedback H∞ control, 53
State weighting matrix, 26

Taylor series, 326
Terminal weighting matrix, 27

Unbiased condition, 166
finite memory controls (FMC)

minimax criterion, 244
minimum criterion, 230

FIR filters
minimax criterion, 196
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