


Lecture Notes in Computer Science 3486
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Tor Helleseth Dilip Sarwate
Hong-Yeop Song Kyeongcheol Yang (Eds.)

Sequences and
Their Applications –
SETA 2004

Third International Conference
Seoul, Korea, October 24-28, 2004
Revised Selected Papers

13



Volume Editors

Tor Helleseth
University of Bergen
Department of Informatics
Selmer Center, Thormohlensgate 55, 5020 Bergen, Norway
E-mail: tor.helleseth@ii.uib.no

Dilip Sarwate
University of Ilinois at Urbana-Champaign
Department of Electrical and Computer Engineering
1406 West Green Street, Urbana, IL 61801, USA
E-mail: sarwate@uiuc.edu

Hong-Yeop Song
Yonsei University
School of Electronics and Electrical Engineering
Seoul 120-749, Korea
E-mail: hy.song@coding.yonsei.ac.kr

Kyeongcheol Yang
Pohang University of Science and Technology
Department of Electronics and Electrical Engineering
Pohang, Kyungbuk 790-784, Korea
E-mail: kcyang@postech.ac.kr

Library of Congress Control Number: 2005925881

CR Subject Classification (1998): E.4, F.2, I.1, E.3, F.1, G.1

ISSN 0302-9743
ISBN-10 3-540-26084-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26084-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11423461 06/3142 5 4 3 2 1 0



Preface

This volume contains the refereed proceedings of the 3rd International Confer-
ence on Sequences and Their Applications (SETA 2004), held in Seoul, Korea
during October 24–28, 2004. The previous two conferences, SETA 1998 and
SETA 2001, were held in Singapore and Bergen, Norway, respectively. These
conferences are motivated by the many widespread applications of sequences
in modern communication systems. These applications include pseudorandom
sequences in spread spectrum systems, code-division multiple-access, stream
ciphers in cryptography and several connections to coding theory.

The Technical Program Committee of SETA 2004 received 59 submitted pa-
pers, many more than the submissions to previous SETA conferences. The Com-
mittee therefore had the difficult task of selecting the 33 papers to be presented
at the Conference in addition to four invited papers. The authors of papers pre-
sented at the conference were invited to submit full papers that were refereed
before appearing in this proceedings.

These proceedings have been edited by the Co-chairs of the Technical Pro-
gram Committee for SETA 2004: Tor Helleseth of the University of Bergen,
Norway, and Dilip Sarwate of the University of Illinois at Urbana-Champaign,
USA, and Technical Program Committee members Hong-Yeop Song of Yonsei
University, Korea, and Kyeongcheol Yang of Pohang University of Science and
Technology, Korea. The editors wish to thank the other members of the Tech-
nical Program Committee: Serdar Boztas (Royal Melbourne Institute of Tech-
nology, Australia), Claude Carlet (INRIA and University of Paris 8, France),
Zongduo Dai (University of Science and Technology of China, Beijing, China),
Cunsheng Ding (Hong Kong University of Science and Technology, Hong Kong,
China), Hans Dobbertin (Ruhr University Bochum, Germany), Pingzhi Fan
(Southwest Jiaotong University, China), Solomon W. Golomb (University of
Southern California, USA), Guang Gong (University of Waterloo, Canada), Tom
Høholdt (Technical University of Denmark, Denmark), Andrew Klapper (Uni-
versity of Kentucky, USA), P. Vijay Kumar (University of Southern California,
USA), Vladimir Levenshtein (Keldysh Institute of Applied Mathematics, Rus-
sia), Oscar Moreno (University of Puerto Rico, Puerto Rico), Harald Niederreiter
(National University of Singapore, Singapore), Matthew Parker (University of
Bergen, Norway), Kenneth G. Paterson (Royal Holloway, University of London,
UK), Aleksander Pott (Otto von Guericke University Magdeburg, Germany),
Hans Schotten (Qualcomm CDMA Technologies, Nürnberg, Germany), Patrick
Sole (CNRS-I3S, ESSI, Sophia Antipolis, France), Naoki Suehiro (University of
Tsukuba, Japan) for providing clear, insightful, and prompt reviews of the sub-
mitted papers.

In addition to the contributed papers, there were four invited papers. These
papers provide an overview of new developments in some important areas related
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to sequences. The invited papers by Jedwab and by Parker both include an
updated overview and some recent results on the constructions of some exciting
new families of sequences with a merit factor more than 6.3. Klapper gives an
overview of the fascinating topic of feedback with carry shift registers, while
Dobbertin and Leander present new and recent results on bent functions.

We wish to thank Jong-Seon No and Habong Chung for their support as
General Co-chairs of SETA 2004; Dong-Joon Shin, Wonjin Sung and Jun Heo
for their support as members of the Organizing Committee of SETA 2004. Last
but not least, we thank all the authors of the papers presented at SETA 2004
for their help in making this conference a resounding success. Finally, we also
thank the Korea Research Foundation (KTF) for its financial support.

March, 2005 Tor Helleseth
Dilip Sarwate

Hong-Yeop Song
Keongcheol Yang



Organization

SETA 2004
October 24–28, 2004, Seoul, Korea

General Co-chairs
Jong-Seon No, Seoul National University, Korea

Habong Chung, Hongik University, Korea

Program Co-chairs
Tor Helleseth, University of Bergen, Norway

Dilip Sarwate, University of Illinois at Urbana-Champaign, USA

Secretary and Treasury
Dong-Joon Shin, Hanyang University, Korea

Local Arrangements
Wonjin Sung, Sogang University, Korea

Registration
Jun Heo, Konkuk University, Korea

Publication Co-editors
Hong-Yeop Song, Yonsei University, Korea

Kyeongcheol Yang, POSTECH, Korea



VIII Organization

Technical Program Committee for SETA 2004

Program Co-chairs

Tor Helleseth ......................................................... University of Bergen, Norway
Dilip Sarwate ......................... University of Illinois at Urbana-Champaign, USA

Program Committee

Serdar Boztas ........................................................... RMIT University, Australia
Claude Carlet ........................................ INRIA and University of Paris 8, France
Zongduo Dai ........ University of Science and Technology of China, Beijing, China
Cunsheng Ding ... Hong Kong University of Science and Technology, Hong Kong,

China
Hans Dobbertin .......................................... Ruhr University Bochum, Germany
Pingzhi Fan ............................................ Southwest Jiaotong University, China
Solomon W. Golomb ............................ University of Southern California, USA
Guang Gong ....................................................... University of Waterloo, Canada
Tom Høholdt ................................... Technical University of Denmark, Denmark
Andrew Klapper ................................................... University of Kentucky, USA
P. Vijay Kumar .................................... University of Southern California, USA
Vladimir Levenshtein .......... Keldysh Institute of Applied Mathematics, Russia
Oscar Moreno ....................................... University of Puerto Rico, Puerto Rico
Harald Niederreiter ........................ National University of Singapore, Singapore
Matthew G. Parker ................................................ University of Bergen, Norway
Kenneth G. Paterson ........................ Royal Holloway, University of London, UK
Alexander Pott .................. Otto von Guericke University Magdeburg, Germany
Hans Schotten ................ Qualcomm CDMA Technologies, Nürnberg, Germany
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San Ling, Ferruh Özbudak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Quadriphase Sequences Obtained from Binary Quadratic Form
Sequences

Xiaohu Tang, Parampalli Udaya, Pingzhi Fan . . . . . . . . . . . . . . . . . . . . 243

New Families of p-Ary Sequences from Quadratic Form with Low
Correlation and Large Linear Span

Xiaohu Tang, Parampalli Udaya, Pingzhi Fan . . . . . . . . . . . . . . . . . . . . 255

Sequences over Zm

On the Distribution of Some New Explicit Nonlinear Congruential
Pseudorandom Numbers

Harald Niederreiter, Arne Winterhof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Distribution of r-Patterns in the Most Significant Bit of a Maximum
Length Sequence over Z2l
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A Survey of Some Recent Results
on Bent Functions

Hans Dobbertin and Gregor Leander

Department of Mathematics,
Ruhr-University Bochum,

D-44780 Bochum, Germany
{hans.dobbertin, gregor.leander}@ruhr-uni-bochum.de

Abstract. We report about recent results and methods in the study of
bent functions. Here we focus on normality and trace expansions of bent
functions.

1 Introduction

In this paper we present an overview about recent developments in the study
of bent functions. We summarize and cite new results and techniques from the
preprints [4, 10, 11, 15] and the paper [10].

Bent functions are maximally nonlinear Boolean functions with an even num-
ber of variables and were introduced by Rothaus [27] in 1976. Because of their
own sake as interesting combinatorial objects, but also because of their relations
to coding theory and applications in cryptography, they have attracted a lot of
research, specially in the last ten years.

Despite their simple and natural definition, bent functions have turned out to
admit a very complicated structure in general. On the other hand many special
explicit constructions are known, primary ones giving bent functions from scratch
and secondary ones building a new bent function from one or several given bent
functions.

Normality of Bent Functions

Basic criteria of Boolean functions on Fn
2 , which are relevant to cryptography, are

for instance its algebraic degree and nonlinearity. Another condition in this line
of research is normality (resp. weak normality), i. e. the existence of a subspace
of Fn

2 with dimension n
2 such that the restriction of the given function is constant

(resp. affine).
The notion of normality was introduced by the first author [16] in the study

of bent functions and highly nonlinear balanced Boolean functions. While for
increasing dimension n a counting argument can be used to prove that nearly
all Boolean functions are non-normal, the situation for bent functions is more
difficult. Most of the well studied families of bent functions are obviously normal
and furthermore, unlike for arbitrary Boolean functions, normality has strong

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 1–29, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 H. Dobbertin and G. Leander

consequences for the behavior of bent functions. One of the consequences is,
that if a bent function f is constant on an n

2 -dimensional affine subspace, then
f is balanced on each proper coset. In other words, a normal bent function can
be understood as a collection of balanced functions. The question whether non-
normal bent functions exist at all, is therefore important. The interpretation of
a normal bent function as a collection of balanced functions was used in [16] to
give a framework for constructions of normal bent functions.

Monomial and Binomial Bent Functions

Acomplete classificationof bent functions is elusive and lookshopeless today. In the
second part of this paper we focus on traces of power functions, so called monomial
Boolean functions. The study of trace expansions is well known in related areas,
but has not yet been comprehensively studied for bent functions. This approach
turns out to be very fruitful for several reasons. The only known non-normal bent
functions are monomial bent functions, demonstrating that the study of monomial
functions leads to new classes of bent functions. Furthermore one result of our con-
siderations is, that for each of the well studied families of bent function, there is a
monomial bent function belonging to these classes. Moreover, carefully studying
the proofs for the monomial bent functions all these families can quite easily be re-
discovered. In this sense most of the variety of (at least known) bent functions can
already be discovered by the investigation of monomial functions.

In Section 5 we take the next step and extend our focus to linear combinations
of two power functions. In particular we focus on Niho power functions, i.e. power
functions where the restriction to the subfield of index 2 is linear. Using classical
results for the Walsh-Spectrum of these functions and techniques recently devel-
oped by the first author, we present several new primary constructions of bent
functions. These results are based on new techniques to study certain properties
of rational functions. More precisely we present a general procedure to prove
that certain rational functions induce one-to-one mappings.

These techniques and the Multivariate-Method developed by the first author
(see [17]) follow the same line of reasoning. Both approaches are strongly based
on properties of mappings, that can be defined in a global way, meaning that
these properties are valid for an infinite chain of finite fields. In both situations
this results in generic discussion of specific rational functions. These generic
discussions are often relatively easy to describe for the conceptual point of view,
while the actual inherent computations require the help of computer algebra. One
key step is often to find the factorization of (parameterized) polynomials, which
usually is not feasible by hand calculations. Nevertheless, once the factorization
has been found, verifying the result is much easier and can here in most cases
be done by hand.

2 Preliminaries

Throughout let n = 2k be an even number. We recall some definitions and basic
properties.
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Walsh-Transform and Bent Functions
Given a Boolean function f : Fn

2 → F2, the function

a ∈ Fn
2 �→ fW(a) =

∑
x∈Fn

2

(−1)f(x)+〈a,x〉

is called the Walsh transform of f . Moreover, the values fW(a), a ∈ Fn
2 are called

the Walsh coefficients of f . The set

{fW(a), a ∈ Fn
2}

is called the Walsh-spectrum of f . Note that the Walsh-spectrum is not changed
if we replace f by f ◦H where H is a bijective affine or linear mapping, moreover
adding an affine mapping does not change the absolute values of the Walsh-
spectrum. Thus in most of our discussions we do not distinguish between these
affine or linear equivalent functions.

By looking at the ±1 valued function F = (−1)f the Walsh-transform of f
corresponds (up to scaling) to the additive Fourier transform of F .

F̂ = 2−k
∑

x∈Fn
2

F (x)(−1)〈y,x〉.

Due to the fact, that this transform is effected by the Hadamard matrix(
(−1)〈y,x〉

)
x,y∈Fn

2

it is also sometimes called Hadamard transform. There are a few properties of
the Hadamard transform, that we like to recall here.

For the operator F → F̂ we have the involution law

ˆ̂
F = F

and with
(F ∗G)(x) =

∑
u∈Fn

2

F (u + x)G(x)

the convolution law
F̂ ∗G = 2kF̂ Ĝ.

If we regard RF
n
2 as a inner-product space where,

〈F,G〉 =
∑

x∈Fn
2

F (x)G(x)

the map F → F̂ is an orthogonal operator on RF
n
2 , i.e.∑

x∈Fn
2

F (x)G(x) =
∑
y∈Fn

2

F̂ (y)Ĝ(y).
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A measure of the linearity of a Boolean function f with respect to the Walsh
transform is defined by

Lin(f) = max
a∈Fn

2

∣∣fW(a)
∣∣ .

Obviously we have the upper bound

2n � Lin f,

and it is attained if and only if f is affine.
For n even, f is called bent if Lin(f) = 2n/2, which is the minimal value that

can occur and we then have fW(a) = ±2n/2 for all a ∈ Fn
2 , since∑

a∈Fn
2

fW(a)2 = 22n (Parseval’s equation).

Note that Parseval’s equation is a direct consequence of the above mentioned fact
that the operator F → F̂ is orthogonal. Another measurement for the linearity
of a Boolean function f is the autocorrelation function. It is defined by

ACf (a) =
∑

x∈Fn
2

(−1)f(x+a)+f(x).

Bent functions can also be characterized in terms of their Autocorrelation
function, which again follows directly from the orthogonality of the Fourier trans-
form.

Proposition 1. A Boolean function f on Fn
2 is bent if and only if ACf (a) = 0

for all non-zero a ∈ Fn
2 .

Bent functions always occur in pairs. In fact, given a bent function f : Fn
2 → Fn

2 ,
we define the dual f∗ of f by the equation

(−1)f∗(a) 2n/2 = fW(a),

i.e. we consider the signs of the Walsh-coefficients of f . Due to the involution law
the Fourier transform is self-inverse. Thus the dual of a bent function is again a
bent function, and we have the rule f∗∗ = f .

Every Boolean function can be uniquely described by its Algebraic Normal
Form (ANF)

f(x) =
∑

u∈Fn
2

λu

n∏
i=1

xui
i , λu ∈ F2.

The degree of a Boolean function is the maximal value of wt(u) such that λu 	= 0.
It was already proven by Rothaus, that the degree of a bent function is at most
k. Furthermore the dual of a bent function of degree 2 (resp. k) has also degree
2 (resp. k) (see [27]).
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Boolean Functions on F2n

We will often identify the vector space Fn
2 with the Galois field L = F2n . As the

notion of a Walsh transform refers to a scalar product, it is convenient to choose
the isomorphism such that the canonical scalar product 〈·, ·〉 in Fn

2 coincides with
the canonical scalar product in L, which is the trace of the product:

〈x, y〉 =
n∑

i=1

xiyi = trL(xy), x, y ∈ L.

Thus the Walsh transform of f : L→ F2 is defined as

fW(c) =
∑
x∈L

(−1)f(x)χL(cx), c ∈ L,

where
χL(x) := (−1)trL(x)

is the canonical additive character on L.
We often make use of the following known properties of the trace function:

For all x ∈ L

– trL(x) = trL(x2),
– trL(x) = 0 if and only if x = y2 + y for some y ∈ L.

Throughout let K = F2k be the subfield of L with [L : K] = 2. When dealing
with Boolean functions on L, in particular monomial functions, we will use the
following notation. The conjugate of x ∈ L over K will be denoted by x, i.e.

x = x2k

.

We denote the relative trace from L onto K by

trL/K(x) = x + x

Note that according to the transitivity law for the trace function we have

trL = trK ◦ trL/K .

The relative norm with respect to L/K is defined as

normL/K(x) = xx

and maps L onto K.
The unit circle of L is the set

S = {u ∈ L : uu = 1}

of all elements having relative norm 1. In other words S is the group of (2k+1)-st
roots of unity, and therefore the order of S is 2k +1, since L∗ is cyclic and 2k +1
divides 2n − 1.
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Note that S ∩K = {1} and each non-zero element of L has a unique polar
coordinate representation, i.e.

x = λu

with λ ∈ K∗ and u ∈ S. According to the analogy to C/R we write λ = ‖x‖ for
the length and u = �(x) for the angle of x. We have

normx =
√
xx, (1)

�(x) =
√
x/x.. (2)

Where the symbol
√
X stands for the inverse of the Frobenius mapping ϕ(X) =

X2, which makes sense, as we deal with finite fields of characteristic 2. Concretely
here

√
z = z2k−1

for z ∈ K = F2k .

Normality of Boolean Functions
Normality is a property of the restriction of Boolean functions to subspaces
or affine translations of subspaces. For simplicity we call a t-dimensional affine
subspace a flat of dimension t.

Definition 1. A function f : Fn
2 → F is called normal if there exists a flat of

dimension m, such that f is constant on this flat.

As bentness is invariant under addition of affine functions, it is natural to con-
sider a generalization of Definition 1.

Definition 2. A function f : Fn
2 → F is called weakly-normal if there exists a

flat of dimension m, such that the restriction of f to this flat is affine.

Unlike for arbitrary Boolean functions, for bent functions being normal has
strong consequences. The following well known lemmas state some of the most
important properties of normal bent functions.

Lemma 1. Assume that f : Fn
2 → F2 is a normal bent function, which is ac-

cordingly constant on an affine subspace V ⊆ Fn
2 with dimV = k. Then f is

balanced on each proper coset of V .

Normality of a bent function is also reflected in the dual bent function, as stated
in the next lemma

Lemma 2. Let f : Fn
2 → F2 be a bent function and V ⊂ Fn

2 any n/2-dimensional
subspace. Then f is constant on a+V for a ∈ Fn

2 if and only if f∗+φa is constant
on V ⊥. Where

φa(x) = 〈a, x〉
��

Another important observation is, that a bent function f on Fn
2 cannot be con-

stant on an affine subspace of dimension greater than k. This is a direct conse-
quence of the following lemma.

Lemma 3. Let f : Fn
2 → F be a Boolean function, U ⊆ Fn

2 a subspace and
g = f | U , then Lin(g) ≤ Lin(f)
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3 Non-normal Bent Functions

In [11, 4, 5] it was shown that most of the known constructions of bent functions
lead to normal bent functions only. Moreover, using a computer algorithm, it has
been verified that the class of bent functions constructed via Kasami exponents
contains non-normal bent functions:

Definition 3. Let d = 22r−2r +1 be a Kasami exponent with gcd(r, n) = 1 and
α ∈ F2n . Then we call fα,r : F2n → F2 with fα,r(x) = tr(αxd) a DD-function.

It was proven by Dillon and Dobbertin in [14], that, under certain conditions,
these functions are bent (see Theorem 6).

For n divisible by 4 it is easy to see that the DD-functions are always normal.

Lemma 4. Let n = 2k with k even. Then DD-functions

f : F2n → F2

x �→ tr(αxd)

are normal.

Proof. First note that gcd(d, 2n − 1) = 3, i.e.,

U = {xd | x ∈ F∗
2n} = {x3 | x ∈ F∗

2n}

and there exist λ1, λ2 /∈ U such that

F∗
2n = U ∪ λ1U ∪ λ2U.

In the case where 4|n, we will show that λ1, λ2 can be chosen in F2k . It is sufficient
to show that there exists x ∈ F2k such that x /∈ U . Let g be a generator of F∗

2k .
g is in U if and only if g

2n−1
3 = 1. But

g
2n−1

3 = g
(2k−1)(2k+1)

3

= g(2k+1) 2k−1
3 	= 1

as 2k + 1 is not divisible by 3 if k is even. So we can choose λ1 = g and λ2 = g2.
Note that if α′ = αcd for some c ∈ F∗

2n then fα,r(cx) = fα′,r(x) for all x ∈ F2n .
Thus, we can assume that α is in {1, g, g2} ⊂ F2k . So for x ∈ F2k we get

fα,k(x) = tr(αxd)
= trF2k / F2(trF2n / F2k

(αxd))

= trF2k / F2(αx
d trF2n / F2k

(1))
= 0 .

This proves the lemma. ��



8 H. Dobbertin and G. Leander

So we can only hope to get non-normal DD-functions for k odd. Furthermore,
as all quadratic bent functions are normal, only the case r 	= 1 is interesting.
As it is known that all bent functions on F6

2 are normal, the first possibility for
DD-function to be non-normal is n = 10.

We found out that for n = 10 all the DD-functions are normal but by addition
of a linear function they can be modified into non-normal functions.

Fact 1. Let α ∈ F4 \F2 ⊂ F210 . Then there exists β ∈ F210 such that the
function f : F210 → F2 with

f(x) = tr(αx57 + βx)

is non-normal.

Verification. This can be verified using the algorithm described in [11]. ��

Furthermore, we found that for n = 14 and r = 3 the corresponding DD-
functions are non weakly-normal.

Fact 2. Let α ∈ F4 \F2 ⊂ F214 . The function f : F214 → F2 with

f(x) = tr(αx57)

is non weakly-normal.

Verification. By using the algorithm described in [11]. ��

These results are verified with a computer algorithm, proving these results
theoretically is still an open problem. We state the following conjecture.

Conjecture 1. All non quadratic DD-functions on F22k with k odd and k ≥ 7 are
non weakly-normal.

One interesting corollary is that (at least some of) the DD bent functions
do not belong to the Maiorana McFarland (M), the Partial Spread (PS) nor
the class of bent functions constructed by the first author (see [16]) (N ) class
of bent functions. Note that in general it is very difficult to prove that a given
function does not belong to these classes.

Corollary 1. The DD bent function f : F214 → F2 defined by

f(x) = tr(αx57)

with α ∈ F4 \F2 ⊂ F214 and its dual do not belong to

M∪PS ∪N .

3.1 Secondary Constructions of Non-normal Bent Functions

As a theoretical approach to prove non-normality of any function is not available
today, and as the algorithms to check non-normality are strictly limited to very
small values of n, we need other approaches to create non-normal functions for
arbitrary dimensions.

The easiest example of such a secondary construction of non-normal function
is the following lemma (see [19]).
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Lemma 5. Let f : Fn
2 → F2 be a Boolean function. The following properties are

equivalent:

1. f is (weakly) normal
2. The function

g : Fn
2 × F2 × F2 → F2

(x, y, z) �→ f(x) + yz

is (weakly) normal

Thus, given a non-normal function f with n variables Lemma 5 can be used
to construct a non-normal function with n + 2 variables.

According to this procedure applied recursively, if f is a Boolean function on
Fn

2 and if f ′ is a quadratic bent function on Fn′
2 , then f is (weakly) normal if

and only if g(x, y) = f(x) + f ′(y) is (weakly) normal. An important observation
from our point of view is that, if the function f in the above lemma is bent, then
g is also bent.

S. Gangopadhyay, S. Maitra [21] and C. Carlet conjectured that, much more
general, the direct sum of a non-normal bent function with any normal one is
non-normal (the same statement for weak normality can easily be reduced to
the latter.)

In order to proof this statement we introduce the notion of a normal exten-
sion, which in some sense is a generalization of the direct sum of a normal and
a non-normal bent functions (see [10]).

Definition 4. Suppose U ⊆ V , let β : U → F2 and f : V → F2 be bent
functions. Then we say that f is a normal extension of β, in symbols

β � f

if there is a direct decomposition V = U ⊕W1 ⊕W2 such that

(i) β(u) = f(u + w1) for all u ∈ U, w1 ∈W1,
(ii) dimW1 = dimW2.

Note that condition (i) can also be written as

f | U⊕W1 = β ⊕ 0,

here 0 denoting the 0-function on W1. Thus the restriction of f on U ⊕W1 is a
“blown-up” bent function.

We will discuss normal extensions in the context of duality, and writing β � f
(i.e., f is a normal extension of β) we shall, according to Definition 4, assume
that β : U → F2 and f : V = U ×W ×W → F2 are bent functions such that
r = dimW , m = dimU and

f(x, y, 0) = β(x)

for all x ∈ U , y ∈W .



10 H. Dobbertin and G. Leander

Lemma 6. Under the hypothesis above, we have fW(a, 0, c) = 2r βW(a), that
is, f∗(a, 0, c) = β∗(a), for all a ∈ U and c ∈W .

Proof. We compute for all a ∈ U :∑
c∈W

(−1)f∗(a,0,c) = 2−r−m/2
∑
c∈W

∑
x∈U

∑
y,z∈W

(−1)f(x,y,z)+〈a,x〉+〈c,z〉

= 2−r−m/2
∑
x∈U

∑
y,z∈W

(−1)f(x,y,z)+〈a,x〉

(∑
c∈W

(−1)〈c,z〉

)
= 2−m/2

∑
x∈U

∑
y∈W

(−1)f(x,y,0)+〈a,x〉

=
(
2−m/2 × 2r

)
βW(a)

= 2r (−1)β∗(a).

The left hand sum can take on its extremal values ±2r only if f∗(a, 0, c) = β∗(a),
for every c ∈W .

In view of Lemma 6 it is easy to see that f is a normal extension of β if and
only if the dual of f is a normal extension of the dual of β, i.e.

Proposition 2. β � f if and only if β∗ � f∗.

Proof. It is enough to prove that β � f implies β∗ � f∗. Thus assume that
β � f . For all a ∈ U , c ∈ W , we have f∗(a, 0, c) = β∗(a), according to Lemma
6, and therefore β∗ � f∗, where the subsets W1 = {0} ×W × {0} and W2 =
{0} × {0} ×W of V interchange their roles (cf. Definition 4).

This observation is the key to proof the following theorem.

Theorem 1. (see Theorem 14 in [10])
Let β be a bent function on U and f a bent function on V = U×W×W . Assume
that β � f . Let

β′ : U → F2

be any bent function. Modify f by setting for all x ∈ U , y ∈W

f ′(x, y, 0) = β′(x),

while f ′(x, y, z) = f(x, y, z) for all x ∈ U , y, z ∈ W , z 	= 0. Then f ′ keeps to be
bent and we have β′ � f ′.

Thus, we have seen that the relation β � f for bent functions, in view of the
Theorem 1, describes a property of the restriction of f to V \(U ×W × {0}) (see
Definition 4), which has nothing to do with a particular β. Under this aspect,
only the size, i.e. the number of variables, of β is of importance.

The main result for the secondary construction of non-normal bent functions
is the following Theorem.
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Theorem 2. (see Theorem 15 in [10])
Suppose that β � f for bent functions β and f . If f is normal, then also β is
normal.

In the next section we use this result to derive various different constructions
of non-normal bent functions.

3.2 Examples of Normal Extensions

In this section we will describe explicit constructions of normal extensions of
bent functions. Accordingly, let β : U → F2 and f : V = U ×W ×W → F2

be Boolean functions; let r = dimW and m = dimU . By Definition 4, β � f
means that

f(x, y, 0) = β(x)

for all x ∈ U , y ∈W . The easiest example of a normal extension if the case where
f is a direct sum of a normal bent function g and an arbitrary bent function β.
In this case Theorem 2 can be restated as

normal⊕ non-normal = non-normal.

Nevertheless, the notion of a normal extension is more general then the trivial
construction, as we will demonstrate with the following constructions.

Proposition 3. Assume that r = 1, i.e., W = F2. Given bent functions β and
g on U , we have β � f for f defined on U ×W ×W by setting for all x ∈ U :

f(x, 0, 0) = β(x),
f(x, 1, 0) = β(x),
f(x, 0, 1) = g(x),
f(x, 1, 1) = g(x) + 1.

Moreover, f is a bent function.
Conversely in case r = 1, β � f occurs for bent functions if and only if, up

to equivalence, f is of this form.

In the preceding proposition we get a direct sum if and only if g = β or g = β+1.
Proposition 3 is a special case of the following general setting, see [6].

Theorem 3. Let h : Fn
2 × Fm

2 → F2 be a Boolean function such that, for every
z ∈ Fm

2 , the function on Fn
2 :

hz : x→ h(x, z)

is bent. Then h is bent if and only if the function

ϕa : z → h∗
z(a)

is bent for every a ∈ Fn
2 . And the dual of h is h∗(a, b) = ϕ∗

a(b).
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If for every z ∈ Fm
2 , their exists a βz � hz with the same decomposition Fn

2 =
U ×W1×W2, then β � h, with the decomposition Fn+m

2 = (U ×Fm
2 )×W1×W2

where
β : U × Fm

2 → F2

is defined by
β(u, z) = βz(u).

However this Proposition is not constructive. We shall give two special con-
structive cases of normal extensions of bent functions. The first one is the fol-
lowing proposition, which can be easily verified (see also [9]):

Proposition 4. Let f1, f2 : U → F2 and g1, g2 : U ′ → F2 be bent functions,
then

h : U × U ′ → F2

with
h(x, z) = f1(x) + g1(z) + (f1(x) + f2(x)) (g1(z) + g2(z))

is bent, and the dual of h is given by

h∗(a, b) = f∗
1 (a) + g∗1(b) + (f∗

1 (a) + f∗
2 (a))(g∗1(b) + g∗2(b)),

a ∈ U , b ∈ U ′.

Indeed, for every z ∈ U ′, the function hz : x �→ h(x, z) is bent (since it equals
f1 or f1 + 1 for some values of z, and f2 or f2 + 1 for the other values) and
the function z �→ h∗

z(a) is bent too, for every a ∈ U , since it equals f∗
1 (a) +

g1(z) + (f∗
1 (a) + f∗

2 (a))(g1(z) + g2(z)). This implies Proposition 4, according to
Theorem 3.

If we assume that g1, g2 in Proposition 4 are normal with the same normality
subspace, i.e., U ′ = W ×W with g1(y, 0) = g2(y, 0) = 0 for all y ∈ W , then we
get

h(x, y, 0) = f1(x),

which means that f1 � h.
We state another generalization of Proposition 3, in the framework of Theo-

rem 3, based on the Maiorana-McFarland bent functions. The MM-construction
always gives a bent function on V with dimV even. First represent V = W ×W ,
where W is endowed with a scalar product. Ingredients for this construction are
any permutation π : W →W and any Boolean function τ : W → F2. Define for
all x, y ∈W

M(x, y) = 〈x, π(y)〉+ τ(y).

It is well-known and very easy to see that M is a bent function on V and that
its dual is M∗(a, b) = 〈b, π−1(a)〉+ τ(π−1(a)).

Now let
(fw)w∈W , fw : U → F2

be an arbitrary collection of bent functions on U . For the sake of conformity
with our previous notation, set β = f0 and assume π(0) = 0, τ(0) = 0.
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Then, using M , we get the following normal extension h on W ×W × U of
β by setting

h(x, y, z) = fy(z) + M(x, y).

Such an h will be called an extension of MM-Type of β.
According to Theorem 3, we have:

Proposition 5. If β is a bent function and h is a normal extension of MM-type
of β, then h is also bent.

Indeed, we have h∗
z(a, b) = fπ−1(a)(z) + 〈b, π−1(a)〉 + τ(π−1(a)). Note that the

dual of h is of the same type as h:

h∗(a, b, c) = f∗
π−1(a)(c) + 〈b, π−1(a)〉+ τ(π−1(a)).

4 Monomial Bent Functions

In this section we recall what is known about monomial bent functions. More
precisely we are interested in Boolean functions of the form

f : L→ F2

f(x) = tr(αxd)

An exponent d (always understood modulo 2n − 1) is called a bent exponent, if
there exists an α such that the Boolean function tr(αxd) is bent. Considering all
known cases of monomial bent function it turns out that most of the (known)
constructions for bent functions can already be discovered when focusing on
monomial functions.

Preliminaries
As tr(xd) = tr(x2d) for all x, we can always replace d by any exponent in the
cyclotomic coset of d.

There are some necessary conditions for d to be a bent exponent. Let wt(d)
denote the binary weight of d. As bent functions have degree at most k and as
the degree of tr(αxd) is either 0 or wt(d) (see [8]), it follows that the binary
weight of a bent exponent is at most k.

Furthermore a bent exponent d cannot be coprime to 2n − 1. Otherwise, if d
is coprime to 2n − 1 we get∑

x∈L

χL(αxd) =
∑
x∈L

χL(αx) = 0

for every non-zero α ∈ L in contradiction to the bentness property.
Note that a function f(x) = tr(αxd) cannot be bent for every non-zero α. If f

would be bent for every α ∈ L∗, this would allow the construction of a vectorial
bent function from L to L which is not possible [26].
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Denote gcd(d, 2n − 1) by s. Moreover let

W = {γ ∈ L | γd = 1} = {γ ∈ L | γs = 1}.

Clearly, f is constant on all cosets λW . Consequently we get

fW(0) = 1 + s
∑

λ∈L∗/W

χL(αxd) ≡ 1 mod s.

Assume that fW(0) = 2k then s divides 2k−1. On the other hand if fW(0) = −2k

then s divides 2k + 1. As gcd(2k − 1, 2k + 1) = 1 we see, that d is coprime either
to 2k − 1 or to 2k + 1. Summarizing we get

Lemma 7. Let d be a bent exponent. Then gcd(d, 2n − 1) 	= 1. Furthermore let
f(x) = tr(αxd) be a bent function. Then

1. gcd(d, 2k − 1) = 1 if and only if fW(0) = −2k

2. gcd(d, 2k + 1) = 1 if and only if fW(0) = 2k

��

Let α, β ∈ L∗. If β = αλd for some non-zero element λ ∈ L, the functions
x → tr(αxd) and x → tr(βxd) are linear equivalent. It follows that for our
considerations we can always replace α by any element in the same coset of U ,
where

U = {xd | x ∈ L∗} = {xgcd(d,2n−1) | x ∈ L∗}.

Note that for any γ ∈ L with γd = 1 the Walsh-coefficients of f(a) and f(γa)
are equal. Thus we can always replace a by any element in the same coset of W .

4.1 The Gold Case

This case belongs to the class of quadratic bent functions, the easiest and best
understood class of bent functions. It is well known, that the dual of a quadratic
bent function is again a quadratic bent function. Furthermore all quadratic bent
functions are linear or affine equivalent, which can easily be proven, using the
theory of quadratic forms. It follows that the dual of any quadratic bent function
is equivalent to the function itself. Nevertheless finding the explicit linear or affine
mapping is not always trivial. However in the case of the Gold Exponent the
linear transformation can easily be computed.

Theorem 4. Let α ∈ F2n , r ∈ N and d = 2r + 1. The function

f : L→ F2

with
f(x) = tr(αxd),

is bent if and only if
α /∈ {xd | x ∈ F2n}
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If α is not a d-th power, the linear mapping

H(γ) = α2r

γ22r

+ αγ

is bijective and the dual of f is

fW(a) = (−1)f(H−1(a))fW(0).

Remark 1. Note, that not for every r the coefficient α can be chosen, such that
the corresponding monomial function is bent. In the case where gcd(d, 2n−1) = 1
every α ∈ F2n is a d-th power. In other words a Gold Exponent d is a bent
exponent if and only if x→ xd is not a bijection.

4.2 The Dillon Case

Let d = 2k − 1. We consider the monomial function

f : L→ F2

with
f(x) = tr(αxd).

This exponent was first considered by Dillon [12] as an example of bent functions
belonging to the PS-class. Dillon proved that this function is bent if and only if
α is a zero of the Kloosterman Sum.

Obviously this function is constant on λK∗ for all λ ∈ L, where K is the
subfield of index 2 in L. So this leads to a bent function if and only if it belongs
to the Partial Spread class.

fW(a) = 2kχL(αa−d) + K(α)

and as 2kd = −d mod 2n − 1 and α2k

= α we get the following theorem.

Theorem 5. Let a ∈ L. Then

fW(a) = 2kχL(αad) + K(α)

As a corollary we get

Corollary 2. The exponent d = 2k − 1 is a bent exponent. f(x) = tr(αxd) is
bent if and only if K(α) = 0. In this case the dual of f is identical to the function
itself.

In [22] it was shown, that such an α exists for every k, i.e. bent functions of
this type exist for every n. Furthermore as

S(α) =
∑
u∈S

χL(αu) =
∑
u∈S

χL(αus)

for every integer s coprime to 2k + 1 we get

Corollary 3. For every integer s coprime to 2k + 1 the function

f ′(x) = tr(αxsd)

is bent whenever K(α) = 0.
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4.3 The Dillon-Dobbertin Case

Regarding the question of normality of bent functions, the Kasami exponent
d = 22r− 2r +1 is the most interesting case of a bent exponent (see also Section
3). The following theorem was conjectured by Hollmann and Xiang in 1999 ([20],
Conjecture 4.4)and was proven by Dillon and Dobbertin in [14].

Theorem 6. Let n be an even integer with gcd(3, n) = 1. Furthermore let d =
22r − 2r + 1 with gcd(r, n) = 1 and α ∈ F2n . The function

f : Fn
2 → Fn

2

with
f(x) = tr(αxd)

is bent if and only if α /∈ {x3|x ∈ F2n}.

Remark 2. We anticipate that the restriction gcd(3, n) = 1 is not necessary.

Despite the strong similarities of this theorem and the Gold Exponent, the proof
of Theorem 6 is distinct more complex and requires very sophisticated tech-
niques. Unfortunately it does not give any insight to the structure of the dual
function, as it is proven that fW(a)2 = 2n for all a ∈ L.

As a first step to investigate the dual function we used an algorithm [24], to
check if the dual is linear equivalent to the function itself. Remarkably, using
our algorithm described, it turns out that this is true for n = 8 but not for
n = 10, 12 or 14. A theoretical approach for computing the dual is an interesting
open challenge.

4.4 A New Bent Exponent for n = 4r

Based on computer experiments, Anne Canteaut ([3]) conjectured that for r odd
and n = 4r the exponent d = (2r + 1)2 is a bent exponent. This was proven
in [23] and the proof of this theorem actually shows, that the corresponding
Boolean function belongs to the well known class of Maiorana-McFarland bent
functions.

Let n = 4r be an even integer where r is odd. L = F2n and E = F2r . As r is
odd the polynomial

β4 + β + 1 (3)

is irreducible over E as it is irreducible over F2. We conclude that E[β] = L.
Note that β is a primitive element in F16. In particular every element x ∈ L can
be represented as

x = x3β
3 + x2β

2 + x1β + x0

with xi in E. The key step in the proof of the following theorem is to express
the function on L as a function in the variables xi.
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Theorem 7. With the notation from above let d = (2r + 1)2 = 22r + 2r+1 + 1
and α = β5. The function

f : L→ F2

f(x) = trL(αxd)

is bent. In particular d is a bent exponent.

5 Niho-Type Bent Functions

In the this chapter we study traces of a linear combination of Niho power func-
tions. Recall that power function on F2n is called a Niho power function if its
restriction to F2k is linear. The considered functions are therefore weakly normal.
In this way, under certain conditions, we get as our main results (Theorems 8, 9
and 10) three primary constructions of bent functions as linear combinations of
two Niho power functions. Theorem 9 actually belongs to a more general class
of bent functions, discussed in [24]. One advantage of focusing on Niho power
functions is, that the classical theorem of Niho [25] serves as a starting point for
proving our results. Furthermore we make use of new methods to handle Walsh
transforms of Niho power functions from [18].

We introduce a new general method to prove that certain rational functions
are one-to-one. This technique follows the sprit of the multivariate method in-
troduced by the first author (see [17]), in the sense that the rational functions
considered here introduce one-to-one mappings on an infinite chain of finite
fields. This is also reflected in the techniques developed here which, like with
the multivariate method, mainly manipulate generic properties of the discussed
mappings. Another similarity is, that some of these manipulations can only be
treated with the help of computer algebra packages.

The preceding theorems were conjectured based on computer experiments
worked out by Canteaut, Carlet and Gaborit for k � 6. Every found example of
that exhaustive search is now covered by one of our theorems.

Niho power functions. Recall that we say d (always understood modulo 2n − 1)
is a Niho exponent and xd is a Niho power function, if the restriction of xd to
F2k is linear or in other words

d ≡ 2i (mod 2k − 1)

for some i < n. Without loss of generality we can assume that d is in the
normalized form with i = 0, and then we have a unique representation

d = (2k − 1)s + 1

with 2 � s � 2k, because here s and s′ give the same power function d on F2n

iff s ≡ s′ (mod 2k + 1).
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Let L = F2n and n = 2k. We consider Boolean functions

f(x) = trL(α1x
d1 + α2x

d2)

on L, for α1, α2 ∈ L, where the di = (2k− 1)si +1, i = 1, 2, are Niho exponents.
We anticipate that if f is bent, then necessarily w.l.o.g.

d1 = (2k − 1)
1
2

+ 1.

This conjecture is suggested by computer experiments. In the sequel we require
this choice of d1. Observe that d1 is cyclotomic equivalent to 2d1 = 2k + 1.

This special choice of d1 implies that replacing α1 by α′
1 does not change f

if (and only if) α1 + α′
1 ∈ K.

For α2 = 0, we get bent functions iff α1 	∈ K, which corresponds to the
Gold Case (see 4.1). It seems that there are no more bent functions of the form
f(x) = trL(αxd) with Niho exponent d.

For the following theorems we require that

α1 + α1 = normα2

However, this general form can easily be reduced to the case α2 = 1, as we shall
see.

Theorem 8. (see Theorem 1 in [15])
Define

d2 = (2k − 1) 3 + 1.

If k ≡ 2 (mod 4) assume that α2 = β5 for some β ∈ L∗. Otherwise, i.e. if k 	≡ 2
(mod 4), α2 ∈ L∗ is arbitrary. Then f is a bent function with degree k.

From ω(d2) = ω(2k + (2k−1 − 1)) = 1 + (k − 1) = k we conclude that f , as a
multi-variate binary function, has in fact degree k, the maximal degree a bent
functions can attain.

Theorem 9. (see Theorem 2 in [15])
Suppose that k is odd. Define

d2 = (2k − 1) 1
4 + 1.

Then f is a bent function of degree 3.

Observe that d2 is cyclotomic equivalent to and can be replaced by

4d2 = 2k + 3.

From ω(4d2) = 3 we conclude that f has degree 3.
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Theorem 10. (see Theorem 3 in [15])
Suppose that k is even. Define

d2 = (2k − 1)
1
6

+ 1.

Then f is a bent function of degree k.

Note that
2d2 = (1 + 4 + 16 + · · ·+ 2k−2) + 2

and therefore ω(d2) = k/2 + 1 and consequently f has actually degree k.
Niho’s theorem [25] is presented below.

Theorem 11. Assume that

d = (2k − 1)s + 1

is a Niho exponent and
f(x) = tr(xd).

Then fW(c) = (N(c)− 1)2k, where N(c) is the number of u ∈ S such that

u2s−1 + u2s−1 + cu + cu = 0, (4)

for each c ∈ L = F2n .
Thus the Walsh spectrum of f is at most 2s-valued, and the occurring values

are among
−2k, 0, 2k, 2 · 2k, ..., (2s− 2) 2k.

The same argument shows that more generally if

f(x) = trL

(
m∑

i=1

αix
di

)

for Niho exponents di = (2k − 1)si + 1 (i = 1, ...,m), then N(c) is the number
of solutions u in S of

cu + cu +
m∑

i=1

αiu
1−2si +

m∑
i=1

αi u
1−2si = 0,

or equivalently by replacing u by u

cu + cu +
m∑

i=1

αiu
2si−1 +

m∑
i=1

αi u
2si−1 = 0.

This means for the f in Theorems 8, 9 and 10, where s1 = 1
2 that the equation

cu + cu + α1 + α1 + α2u
2s2−1 + α2 u2s2−1 = 0 (5)
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has to be considered. We assume that α2 = 1 and thus α1 + α1 = 1. (The
assertion of our theorems can easily be reduced to that case, see section 5.1.)
Therefore in order to confirm that f is bent, setting s = s2 we have to show that
the number of roots u in S of

Gc(u) = u2s−1 + u2s−1 + cu + cu + 1 = 0 (6)

is either 0 or 2.
Parseval’s equation obviously implies that it suffices to prove that (6) never

has exactly one solutions. Thus in the case where c ∈ K, i.e. c = c we can argue
as follows: Gc(1) = 1, so in this case u = 1 is never a solution. Furthermore

Gc(u) = u2s−1 + u2s−1 + c(u + u) + 1 = Gc(u),

thus whenever u is a solution of (6) the conjugate u is also a solution and exactly
one solution is never possible.

Nevertheless for the proof of theorems 8 and 10 we explicitly show that we
have either 0 or 2 solutions to demonstrate the power of our general technique.

In [18] the value distribution of the Walsh spectrum of tr(xd2) for d2 =
(2k − 1) 3 + 1 of Theorem 8 has been determined for odd k, which requires to
analyze the number of solutions of the closely related equation for s = 3:

u5 + u5 + cu + cu = 0.

This problem was settled with the development of new approach using Dickson
polynomials [18], which will be explained below. It is also the basic tool for
proving the results of the present paper.

Given c ∈ L\K the idea of [18] is to consider c, c and the associated equations
Gc(u) = 0 and Gc(u) = 0 simultaneously:

Gc(u)Gc(u) = 0. (7)

Then we can change from the parameters u ∈ S and c ∈ L to new parameters β,
resp. γ, T and N in the small field K. The advantage of this procedure is that
we end up with an equation where we have to count the solutions with a special
“trace condition” instead of counting solutions with a “norm condition”, which
turns out to be much easier.

The twins c, c ∈ L \ K are replaced by the coefficients of their (common)
minimal polynomial

mc,c = X2 + TX + N

over K, that is

T = trL/K(c) = trL/K(c) = c + c,

N = normL/K(c) = normL/K(c) = c c.

Necessary and sufficient conditions for T,N ∈ K to represent c, c ∈ L\K in this
way are T 	= 0 and

trK(N/T 2) = 1. (8)
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Fact. We have trK(x) = 0 for x ∈ K if and only if there exists some y ∈ K with
x = y2 + y.

Thus (8) means that X2 + TX + N is irreducible over K. Fortunately (8) can
be ignored in this context, as it is included in (9) (see below).

Similarly β stands for u, u ∈ S \ {1} in the sense that

mu,u(X) = X2 +
1
β
X + 1.

or equivalently

β =
1

u + u
.

A necessary and sufficient condition for β to play this role is

trK(β) = 1.

Sometimes it is convenient to make also use of the parameter γ:

γ = 1/β.

Changing to the new parameters, Gc(u)Gc(u) can be transformed as follows,
where Di(X) denotes the i-th Dickson polynomial over F2:

Gc(u)Gc(u) =
(
u2s−1 + u2s−1 + cu + cu + 1

) (
u2s−1 + u2s−1 + cu + cu + 1

)
=
(
u2s−1 + u2s−1 + 1

)2
+
(
u2s−1 + u2s−1 + 1

)
(c + c) (u + u)

+ (cu + cu) (cu + cu)

= (D2s−1(γ) + 1)2 + (D2s−1(γ) + 1) γT + T 2 + γ2N.

Dickson polynomials satisfy the functional equation

Di(X + X−1) = Xi + X−i,

the iteration rule
Di(Dj(X)) = Dij(X)

and can be obtained by the recursion

Di+2(X) = XDi+1(X) + Di(X)

with D0(X) = 0 and D(X) = X.
Summarizing we have seen that Gc(u)Gc(u) = 0 with u ∈ S is equivalent to

the following equation in K:

(
(D2s−1(1/β) + 1)β

T

)2

+
(D2s−1(1/β) + 1)β

T
+ β2 =

N

T 2
. (9)

We recall the following simple, but very important observation:
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Given T and N we have to count the number of solutions β with trace 1 of
(9). Now the trick is that we can look at this solution counting problem also in
another way. Given any non-zero T and β with trace 1, we can interpret (9) as
definition of N . This makes sense, because it then follows, as already mentioned
above, that trK(N/T 2) = trK(β) = 1 and therefore T , N represent c, c via
mc,c(X) = X2 +TX+N. We then have to look at the number of solutions of (9)
different from the given β (for more details see [18])). The special cases T = 0
and T = 1 have to be considered separately.

5.1 Proof of Theorem 8

In order to demonstrate how, in prinicipal, Theorems 8,9 and 10 can be deduced
we briefly sketch the proof of the first Theorem. We will demonstrate, that the
statements of these Theorems are related to the one-to-one property of certain
rational functions. For the proof that these rational functions are indeed one-to-
one we develop a new technique, as described in Section 5.2.

The general case α1 + α1 = normα2 for Theorem 8 follows from α2 = 1 and
α1 + α1 = 1.

Using Niho’s theorem (Theorem 11) in order to confirm Theorem 8 we have
to prove that, for all c ∈ L = F2n , n = 2k, the number of u ∈ S such that

Gc(u) = u5 + u5 + cu + cu + 1 = 0

is either 0 or 2 (see (6)). Recall that

S = {u ∈ L : uu = 1},

K = F2k , and x ∈ K iff x ∈ L and x = x = x2k

. We shall apply the approach
described in Section 4. Recall that

β = 1/(u + u), tr(β) = 1,
T = c + c,

N = c c.

Case 1: T = 0, i.e. c ∈ K. Then Gc(u) = 0 iff

u5 + u5 + c(u + u) = 1

i.e. iff
c = D5(1/β)β + β = 1/β4 + 1/β2 + 1 + β,

where D5(X) = X5 +X3 +X denotes the 5-th Dickson polynomial. Thus given
c we have no or precisely two solutions u ∈ S of Gc(u) = 0 if and only if

β �→ Φ(β) = 1/β4 + 1/β2 + β

is one-to-one for β ∈ T1, the set of elements in K with trace 1, which is true
by Lemma 8. (For further details concerning this approach see [18] in Section 4,
Case 1 especially.)
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Case 2a: T = 1. Note that this case occurs if and only if u = 1 is a solution of
Gc(u) = 0. Then on the other hand Gc(u)Gc(u) = 0 with u 	= 1 iff

cc = Ψ(β) = 1/β8 + 1/β2 + β, (10)

where β = 1/(u+u) ∈ K and therefore trK(β) = 1, see (9). Arguing as before in
Case 1 we have to show that Ψ is one-to-one on T1, which is true by Lemma 8.
The two solutions of Gc(u) = 0 and Gc(u) = 0 are u = 1 and u = u0, respectively
u = 1 and u = u0, where β0 = 1/(u0 + u0) is the unique solution of (10) with
trace 1.

Case 2b: T 	∈ F2. By (9) we have

N = T 2β2 + Φ1(β)T + Φ1(β)2,

with
Φ1(β) := (D5(1/β) + 1)β = Φ(β) + 1.

We have to show that for each T /∈ F2

β �→ T 2β2 + Φ1(β)T + Φ1(β)2

maps two-to-one for β ∈ T1. (For details concerning this approach we refer again
to [18], Section 4, Case 2 in particular.) In other words, since u = 1 is impossible
(see Case 2a above), given T 	∈ F2 and β with trK(β) = 1 we have to show that
there is a unique non-zero Δ with trK(Δ) = 0 and

T 2β2 + Φ1(β)T + Φ1(β)2 = T 2(β + Δ)2 + Φ1(β + Δ)T + Φ1(β + Δ)2, (11)

that is

Δ2 = (Φ1(β + Δ) + Φ1(β)) /T + (Φ1(β + Δ) + Φ1(β))2 /T 2.

Setting Δ = x2 + x, this means that

x2 +
(
Φ1(β + x2 + x) + Φ1(β)

)
/T + ε = 0,

or equivalently

T =
Φ1(β + x2 + x) + Φ1(β)

x2 + ε
(12)

for an unique set {x, x + 1} and ε ∈ F2. The pairs (x, ε) and (x + 1, ε + 1) give
the same T . Hence w.l.o.g. we can choose ε = 0. Then the right hand rational
function of equation (12) coincides with Ra(x) for a = β2, since Φ1(β) = Φ(β)+1,
see (13). Thus the existence of an unique non-zero Δ = x2 + x for given T and
β is guaranteed in view of Lemma 9. This completes the proof that the Boolean
function f in Theorem 8 is bent.
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5.2 One-to-One Rational Functions

After these preparations, the verification of our main results comes down to the
following two lemmas (to be honest, they have been found for that reason).

Remark 3. The technique used here to prove the below Lemmas 8 and 9 is due
to Dobbertin and Leander. It is in some sense similar to the multi-variate method
(see [17], where the multi-variate method is described in its general form), in-
sofar as a “generic” point of view is taken. As for the multi-variate method,
also here algebraic computations are applied, which often need Computer Alge-
bra support. Decomposition of multi-variate polynomials (with variables which
are considered to be independent) and formal elimination of variables, i.e. for
instance computation of resultants, as basic steps.

We briefly describe the method and roughly explain why it works. Suppose
that an irreducible multi-variate polynomial F (a, x1, ..., xm) is given, and that
we have to show that F (a, x1, ..., xm) = 0 implies that a has trace 0, i.e. we can
represent a = b2 + b in each of the considered fields. If this fact has “generic”
reasons then we can represent these “local” b in a “global” way as a fixed rational
function of a, x1, ..., xm:

b = R(a, x1, ..., xm) =
C(a, x1, ..., xm)
D(a, x1, ..., xm)

.

Assume that R in fact exists. Then X = b is a zero of the rational function

(X + R(X2 + X,x1, ..., xm))(X + 1 + R(X2 + X,x1, ..., xm)).

In the generic case we can expect that this rational function is essentially, up to
avoiding denominators, the polynomial

F (X2 + X,x1, ..., xm),

which therefore factorizes in the form

Q(X,x1, ..., xm)Q(X + 1, x1, ..., xm).

Thus we consider b as unknown, substitute a = b2 + b in F and decompose F in
order to compute Q. We can assume that a occurs in Q with some odd exponent.
Using then b2 = b + a we reduce Q and get the polynomial C(a, x1, ..., xm) +
D(a, x1, ..., xm)b, which gives R = C/D. Common zeros of C and D need an
extra discussion.

Given a concrete field K of characteristic 2, we find b ∈ E with a = b2 + b in
some extension field E of K. Thus if F (a, x1, ..., xm) = 0 for a, x1, ..., xm ∈ K,
then our generic result implies that b = R(a, x1, ..., xm) and therefore b ∈ K, i.e.
trK(a) = 0.

This simple machinery, which works of course for any non-zero characteristic,
will turn out to be very powerful and effective.

Define
Tε = {x ∈ K : trK(x) = ε}, ε ∈ F2 .
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Lemma 8. Let K be any finite field of characteristic 2. Then the rational func-
tions

Φ(x) =
1
x4

+
1
x2

+ x

and
Ψ(x) =

1
x8

+
1
x2

+ x,

respectively, induce a permutation of T1.

Proof. The proof is essentially the same for both rational functions. We consider
first Φ(x) = 1/x4 + 1/x2 + x. Note that

tr(Φ(x)) = tr(1/x4) + tr(1/x2) + tr(x)
= tr(1/x) + tr(1/x) + tr(x)
= tr(x).

Thus Φ maps Tε into itself. It remains to confirm that for Δ 	= 0

Φ(x + Δ) = Φ(x)

implies tr(x) = 0. We have Φ(x) = U(x)/V (x) with polynomials U(x) = x5 +
x2 + 1 and V (x) = x4. Substituting x2 = y2 + y the idea is to represent y as a
rational function of x and Δ as described above1. We see that the polynomial

(Φ(x + Δ) + Φ(x))V (x + Δ)V (x) = U(x + Δ)V (x) + U(x)V (x + Δ)

factorizes in the form
ΔQ(Δ, y)Q(Δ, y + 1)

with
Q(Δ, y) = y4 + y3 + Δ2y2 + Δy + Δ2.

On the other hand we can write Q uniquely as

Q(Δ, y) = C(Δ,x2) + D(Δ,x2)y

with polynomials C and D. In fact to compute C and D, reduce Q modulo
y2 = y + x2. Here we have

C(Δ,x) = x2 + Δ2(x + 1),
D(Δ,x) = x + Δ2 + Δ.

Summarizing we conclude for Δ 	= 0 that Φ(x + Δ) = Φ(x) implies Q(Δ, y) = 0
w.l.o.g., thus x2 = y2+y for y = C(Δ,x2)/D(Δ,x2). Hence y ∈ K and tr(x) = 0.
It remains to confirm that C(Δ,x) and D(Δ,x) have no common zeros x in T1,
which is trivial in our case, since already D(Δ,x) = 0 implies tr(x) = 0.

1 We take x2 = y2 +y instead of x = y2 +y, since here U(x+Δ)V (x)+U(x)V (x+Δ)
is a polynomial in x2.
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The other rational function Ψ(x) = 1/x8+1/x2+x can ge handled in precisely
the same way. Here U(x) = x9 + x6 + 1 and V (x) = x8. This leads to

Q(Δ, y) = y8 + Δy5 + (Δ4 + Δ2 + 1)y4

+ (Δ3 + Δ2 + Δ)y3 + Δ3y2 + Δ3y + Δ4

C(Δ,x) = x4 + (Δ4 + Δ2)x2 + Δ4x + Δ4,

D(Δ,x) = Δ(x2 + (Δ2 + Δ)x + Δ3 + Δ2).

C(Δ,x) and D(Δ,x) have a common zero Δ if and only if the resultant res(C,D,Δ)
of C and D with respect to Δ is zero. In this case we have

res(C,D,Δ) = x14,

which is non-zero. In general it suffices here to get a contradiction by showing
that the zeros of resultant have trace 0. ��

Lemma 9. Let K be any finite field of characteristic 2 and suppose that a ∈ K
has absolute trace 1. Then the rational functions

Ra(x) =
(x + 1)(ax4 + x3 + ax2 + x + a2)(ax4 + x3 + (a + 1)x2 + a2)

x(x4 + x2 + a)2a2

induce a permutation of K \ F2.

Proof. We first consider Ra. Let Ua(x) and Va(x) denote the nominator and
denominator polynomial of Ra(x), respectively. Va(x) is non-zero for non-zero
x, since tr(a) = 1. We note that Ra(x) can be written as

Ra(x) =
Φ(
√
a + x2 + x) + Φ(

√
a)

x2
(13)

with Φ (see Lemma 8) defined as

Φ(x) =
1
x4

+
1
x2

+ x.

Thus Ra(x) is non-zero for x 	∈ F2, since Φ is one-to-one on T1 by Lemma 8 and
a, a + x2 + x ∈ T1.

To confirm that Ra is one-to-one, we argue as before. Suppose on the contrary
that Ra(x) = Ra(y) for x, y 	∈ F2, x 	= y. We have to present a = b2 + b in K to
get a contradiction to trK(a) = 1. Substituting a = b2 + b, the polynomial

(Ra(x) + Ra(y))Va(x)Va(y) = Ua(x)Va(y) + Ua(y)Va(x)

factorizes in the form

a2 (x + y)Q(b, x, y)Q(b + 1, x, y)
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with

Q(b, x, y) = b6 + (x + y)4b4 + xy(x + y)b3

+ (xy(x + y)3 + (x + 1)4(y + 1)4 + x2y2)b2

+ x2y2(x + y)(xy + x + y)b
+ x2(x + 1)2y2(y + 1)2.

Reducing Q modulo b2 = b + a we get

Q(b, x, y) = C(a, x, y) + D(a, x, y)b

with

C(a, x, y) = a3 + (x + y + 1)4a2

+ xy(xy + x + y)
(
xy(x + y) + (x + 1)2(y + 1)2

)
a

+ x2(x + 1)2y2(y + 1)2,
D(a, x, y) = a2 + xy(x + y)a + xy(x + 1)2(y + 1)2(xy + x + y).

Summarizing we conclude for x 	= y that Ra(x) = Ra(y) implies Q(b, x, y) = 0
w.l.o.g., thus a = b2 + b for b = C(a, x, y)/D(a, x, y). It remains to confirm that
D(a, x, y) has no zeros a in T1. On the contrary, suppose D(a, x, y) = 0. Then
C(a, x, y) = 0 and res(C,D, a) = 0. Here we have

res(C,D, a) = x2(x + 1)6y2(y + 1)6(x + y)2(x + y + 1)6.

Consequently x + y + 1 = 0, because x, y 	∈ F2 and x 	= y. On the other hand,
from C = D = 0 we get a as a rational function in x and y, in our case

a =
xy(x + 1)2(y + 1)2

x2 + xy + y2 + 1
.

A substitution of y = x + 1 yields a = x4 + x2, which implies that tr(a) = 0, a
contradiction.

It remains to show that Ra does not attain the value 1. Conversely assuming
Ra(x) = 1, i.e. Ua(x) = Va(x) we have to conclude that a has trace 0. To this
end we apply the same technique as before and substitute a = b2 + b. Then the
polynomial Ua(x) + Va(x) factorizes

Ua(x) + Va(x) = Q(b, x)Q(b + 1, x)

with
Q(b, x) = b4 + (x4 + x + 1)b2 + (x3 + x2)b + x3 + x.

For C and D satisfying Q = C + Db we compute

C(a, x) = a2 + (x4 + x)a + x3 + x,

D(a, x) = x(x + 1)3.

Now C = 0 contradicts our assumption x 	∈ F2. ��



28 H. Dobbertin and G. Leander

Acknowledgement

We like to thank our colleagues Anne Canteaut, Claude Carlet, Magnus Daum
and Patrick Felke for many interesting discussions.

References

1. A. Braeken, C. Wolf, B. Preneel, A Randomised Algorithm for Checking the Nor-
mality of Cryptographic Boolean Functions , 3rd International Conference on The-
oretical Computer Science 2004, J. Levy, E. W. Mayr, and J. C. Mitchell (eds.),
Kluwer, pp. 51-66, 2004.

2. A. Braeken, M. Daum, G. Leander, C. Wolf An Algorithm for Checking Total
Non-Normality, Preprint 2004.

3. A. Canteaut, private communication, June 2004.
4. A. Canteaut, M. Daum, H. Dobbertin, G. Leander, Normal and Non-Normal Bent

Functions, Proceedings of the Workshop on Coding and Cryptography (WCC
2003), Versailles, France, March 2003, pp. 91-100.

5. A. Canteaut, M. Daum, H. Dobbertin, G. Leander, Finding Non-Normal Bent
Functions, special issue on Coding and Cryptography, Discrete Applied Mathe-
matics, to appear.

6. C. Carlet, A construction of bent functions. Finite Fields and Applications, London
Mathematical Society, Lecture Series 233, Cambridge University Press, pp. 47-58,
1996.

7. C. Carlet, On cryptographic complexity of boolean functions, Finite Fields with
Applications to Coding Theory, Cryptography and Related Areas (Proceedings of
Fq6), pages 53–69, Springer-Verlag, 2002.

8. C.Carlet Codes de Reed-Muller, codes de Kerdock et de Preparata. PhD thesis,
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Abstract. A classical problem of digital sequence design, first studied
in the 1950s but still not well understood, is to determine those binary se-
quences whose aperiodic autocorrelations are collectively small according
to some suitable measure. The merit factor is an important such measure,
and the problem of determining the best value of the merit factor of long
binary sequences has resisted decades of attack by mathematicians and
communications engineers. In equivalent guise, the determination of the
best asymptotic merit factor is an unsolved problem in complex analysis
proposed by Littlewood in the 1960s that until recently was studied along
largely independent lines. The same problem is also studied in theoretical
physics and theoretical chemistry as a notoriously difficult combinatorial
optimisation problem. The best known value for the asymptotic merit
factor has remained unchanged since 1988. However recent experimen-
tal and theoretical results strongly suggest a possible improvement. This
survey describes the development of our understanding of the merit fac-
tor problem by bringing together results from several disciplines, and
places the recent results within their historical and scientific framework.

1 Introduction

A binary sequence. A of length n is an n-tuple (a0, a1, . . . , an−1) where each ai

takes the value −1 or 1. The aperiodic autocorrelation of the binary sequence A
at shift u is given by

CA(u) :=
n−u−1∑

i=0

aiai+u for u = 0, 1, . . . , n− 1. (1)

Since the 1950s, digital communications engineers have sought binary sequences
whose aperiodic autocorrelations are collectively small according to some suitable
measure of “goodness” (see Section 2.1). This survey deals with an important
such measure, defined by Golay [30] in 1972: the merit factor of a binary sequence
A of length n is given by

F (A) :=
n2

2
∑n−1

u=1[CA(u)]2
, (2)

and the best binary sequences are those with the largest merit factor.
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Let An be the set of all binary sequences of length n. We define Fn to be the
optimal value of the merit factor for sequences of length n:

Fn := max
A∈An

F (A).

The principal problem in the study of the merit factor is to determine the asymp-
totic behaviour of Fn:

The Merit Factor Problem. Determine the value of lim supn−→∞ Fn.

Golay’s publications reveal a fascination with the Merit Factor Problem spanning
a period of nearly twenty years [30], [31], [32], [33], [34], [35]; the closing words
of [35], published after Golay’s death, refer to the study of the merit factor as
“. . . this challenging and charming problem”.

Prior to Golay’s definition of merit factor in 1972, Littlewood [54] and other
analysts studied questions concerning the norms of polynomials with ±1 coeffi-
cients on the unit circle of the complex plane. As we describe in Section 2.2, the
Merit Factor Problem is precisely equivalent to a natural such question involving
the L4 norm. This survey traces the historical development of the two (mostly
independent) streams of investigation: the merit factor of binary sequences, and
the L4 norm of complex-valued polynomials with ±1 coefficients on the unit
circle.

A benchmark result on the asymptotic behaviour of the merit factor was
given by Newman and Byrnes [62] in 1990:

Proposition 1. The mean value of 1/F , taken over all sequences of length n,

is
n− 1
n

.

Proposition 1 shows that the asymptotic mean value of 1/F over all sequences
of length n is 1. We cannot follow [38] in concluding that the asymptotic mean
value of F itself over all sequences of length n is 1 [68], but we expect that “good”
sequences will have an asymptotic value of F greater than 1. Indeed, the best
known asymptotic results to date are given by explicitly constructed families
of sequences whose merit factor tends to 6 (see Theorems 10, 15 and 16). The
current state of knowledge regarding the Merit Factor Problem can therefore be
summarised as:

6 ≤ lim sup
n−→∞

Fn ≤ ∞. (3)

Both of the extreme values in (3) have been conjectured to be the true value of
the lim sup:

Conjecture 2 (Høholdt and Jensen, 1988 [39]). lim supn−→∞ Fn = 6.

Conjecture 3 (Littlewood, 1966 [53–§6]). lim supn−→∞ Fn = ∞.
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Littlewood [53] also proposed stronger versions of Conjecture 3:

(i) limn−→∞Fn =∞
(ii) 1/Fn = O(1/

√
n) for infinitely many n

(iii) 1/Fn = O(1/
√
n) for all n.

My impression is that most researchers are reluctant to take seriously even the
weakest of Littlewood’s proposals, Conjecture 3, perhaps because the identity of
their originator does not seem to be widely known.

Considerable computational evidence has been amassed regarding the value
of Fn for specific values of n, in order to shed light on the Merit Factor Problem.
Where computationally feasible, the actual value of Fn has been calculated; for
larger values of n we have lower bounds on Fn via the identification of good,
though not necessarily optimal, sequences (see Section 3). Indeed, Conjectures 2
and 3 are both based at least partially on numerical data. Conjecture 2 was
made in light of Theorem 10 and its proof in [39], together with an examination
of large values of F found in [4] for sequences of odd length between 100 and 200.
Conjecture 3 and the stronger versions (i), (ii) and (iii) listed above were based
primarily on calculation of Fn for 7 ≤ n ≤ 19; Littlewood [53] asserted that “the
evidence seems definitely in favour of [these conjectures]”, and reiterated in 1968
[54] that “the numerical evidence for [these conjectures] is very strong”. In terms
of the computational power readily available nowadays, the range of Littlewood’s
calculations from the 1960s appears woefully inadequate! By 1996 Mertens [58]
had calculated the value of Fn for n ≤ 48 and reached the “tentative conclu-
sion” that limn−→∞Fn > 9. Currently the value of Fn has been calculated [59]
for n ≤ 60, and large values of F are known [45] for 61 ≤ n ≤ 271 (see Figure 1).

Some authors seem to have conjectured that lim supn−→∞ Fn is given by the
largest merit factor value known to be consistently achievable for long sequences
at the time of writing. For example, Newman and Byrnes [62] incorrectly conjec-
tured in 1990 that limn−→∞Fn = 5, “. . . based on extensive numerical evidence
employing the Bose-Einstein statistics methodology of statistical mechanics”.
Likewise, as noted above, Høholdt and Jensen [39] based Conjecture 2 in part on
the best known merit factors reported in 1985 in [4] for sequences of odd length
between 100 and 200, which they described as “either strictly smaller than or
suspiciously close to 6”; however the current data underlying Figure 1 shows
that the best merit factor is actually greater than 8 for all of these odd sequence
lengths. In contrast, Golay [33] proposed in 1982 that lim supn−→∞ Fn � 12.32
(see Section 4.7) and yet in 1983 wrote that [34] “. . . the eventuality must be
considered that no systematic synthesis will ever be found which will yield higher
merit factors [than 6]”!

Recent work of Borwein, Choi and Jedwab [13] provides numerical evidence,
from sequences up to millions of elements in length, that lim supn−→∞ Fn > 6.34
(see Section 5). This conclusion, which would increase the best known asymptotic
merit factor for the first time since 1988, is implied by Conjecture 20 on the
behaviour of a specified infinite family of sequences.

The remainder of this survey is organised as follows. Section 2 gives a de-
tailed practical motivation for the Merit Factor Problem from digital sequence
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design, together with a theoretical motivation from complex analysis. Section 3
describes various experimental computational approaches that have been used
to gather numerical data, including exhaustive search and stochastic algorithms.
Section 4 explains the main theoretical approaches that have been used to anal-
yse the Merit Factor Problem. Section 5 outlines the method and results of [13],
which suggest a new lower bound for lim supn−→∞ Fn. Section 6 is a selection of
challenges for future study.

This survey is concerned only with binary sequences, although the definition
of merit factor has been extended to real-valued sequences (see for example [1])
as well as to binary arrays of dimension larger than 1 (see for example [8]). I
have found the earlier surveys of Jensen and Høholdt [41] and Høholdt [38] to
be helpful in preparing this paper, particularly when writing Section 4.

Fig. 1. The optimal merit factor (for 2 ≤ n ≤ 60) and the best known merit factor (for

61 ≤ n ≤ 271) for binary sequences of length n

2 Practical and Theoretical Motivation

This section shows how the Merit Factor Problem arises independently in digital
sequence design and complex analysis.

2.1 Digital Sequence Design

Since the 1950s, digital communications engineers have sought to identify those
binary sequences whose aperiodic autocorrelations are collectively as small as

50 100 150 200 250
n

2

4

6

8

10

12

14

F



34 J. Jedwab

possible, for application in synchronisation, pulse compression and especially
radar [74]. This classical problem of digital sequence design remains largely un-
solved. In 1953 Barker [2] proposed that an ideal binary sequence of length n is
one for which

C(u) = −1 or 0 for 0 < u < n,

but could find examples only for lengths n = 3, 7 and 11. Subsequent authors
relaxed Barker’s condition to:

|C(u)| = 1 or 0 for 0 < u < n, (4)

and binary sequences satisfying (4) became known as Barker sequences. By a
parity argument, no binary sequence can have a smaller value of |C(u)| than a
Barker sequence for any u. However the only non-trivial lengths for which Barker
sequences are known to exist are 2, 3, 4, 5, 7, 11 and 13, and it has long been
conjectured that no other sequence lengths n are possible:

Conjecture 4. There is no Barker sequence of length n > 13.

I do not know who first proposed Conjecture 4 but it is implied by Ryser’s
Conjecture [67] of 1963 on cyclic difference sets (see [48] for recent progress
on this conjecture), and Turyn [74] declared in 1968: “There is overwhelming
evidence that there are no Barker sequences [with n > 13]”. A weaker version of
Conjecture 4, alluded to in [74], states that there are only finitely many lengths n
for which a Barker sequence of length n exists. In order to continue the historical
account we introduce some further definitions.

The periodic autocorrelation of a binary sequence A = (a0, a1, . . . , an−1) at
shift u is given by

RA(u) :=
n−1∑
i=0

aia(i+u) mod n for u = 0, 1, . . . , n− 1, (5)

so that
RA(u) = CA(u) + CA(n− u) for 0 < u < n. (6)

A (v, k, λ) cyclic difference set is a k-element subset D of the cyclic group Zv for
which the multiset of differences {d1 − d2 : d1, d2 ∈ D, d1 	= d2} contains each
non-zero element of Zv exactly λ times (see [6] for background on difference sets,
including generalisation to non-cyclic groups). The following is well-known (see
for example [3]):

Proposition 5. A (v, k, λ) cyclic difference set D is equivalent to a binary se-
quence A = (a0, a1, . . . , av−1) having k elements −1 and constant periodic auto-
correlation RA(u) = v − 4(k − λ) for 0 < u < v, via the relationship

i ∈ D if and only if ai = −1, for 0 ≤ i < v.
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Turyn and Storer [72] showed in 1961 that Conjecture 4 is true for odd n,
and that if a Barker sequence A of even length n > 2 exists then it satisfies
RA(u) = 0 for 0 < u < n. Therefore, by Proposition 5, if there is a Barker
sequence of length v > 13 then there is a cyclic difference set in Zv satisfying
v = 4(k − λ). Difference sets satisfying this condition are known as Hadamard
difference sets, and [73] must satisfy

(v, k, λ) = (4N2, 2N2 −N,N2 −N) for integer N. (7)

(See [20] for a survey of difference sets with parameters (7); note that the
difference set parameters (v, k, λ) given in (17) are unfortunately also called
Hadamard.)

In his celebrated 1965 paper [73], Turyn showed that if there is a cyclic
difference set with parameters (7) in Z4N2 having N 	= 1, then N ≥ 55. The
paper [73] established the systematic use of algebraic number theory in the
study of difference sets, which is now a standard and much-used technique. (See
[6] for an overview of this technique, and some precursors to [73]; see [49] for
dramatic improvements to the smallest open case for a Barker sequence and for
a cyclic difference set with parameters (7).) R. Turyn has confirmed [personal
communication, May 2003] that the chain of reasoning presented here, beginning
with the search for binary sequences with small aperiodic autocorrelations, was
the principal motivation behind [73]. I find it noteworthy that there has been a
striking expansion of knowledge regarding difference sets since the publication
of [73] and yet we still have not reached a comparably deep understanding of
the original motivating problem.

Once it became apparent that the ideal behaviour given by a Barker sequence
is unlikely to be achieved beyond length 13, attention turned [69], [74] to two
measures of how closely the aperiodic autocorrelations of a binary sequence A
of length n can collectively approach the ideal behaviour. These two measures
are:

n−1∑
u=1

[CA(u)]2 (8)

and
M(A) := max

0<u<n
|CA(u)|. (9)

The first measure (8) is simply n2/(2F (A)), which was actually used by commu-
nications engineers as a measure of the “goodness” of a binary sequence several
years before Golay [30] defined the merit factor in 1972 (see Section 3.2 for
mention of Lunelli’s work [55] of 1965 in this context).

The second measure (9) has been less well studied. By analogy with Fn, define

Mn := min
A∈An

M(A)

to be the optimal value of M(A) for sequences of length n. By exhaustive search,
Turyn [74] showed that Mn ≤ 2 for n ≤ 21 in 1968 and Lindner [51] determined
Mn for n ≤ 40 in 1975 using specialised hardware. In 1990 Cohen, Fox and
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Baden [18] found Mn for n ≤ 48 by fixing sequence elements one pair at a time,
working from the endpoints towards the centre and retaining only sequences with
a prescribed maximum value of |C(u)|. Further calculations along similar lines
by Coxson, Hirschel and Cohen [19] in 2001 found Mn for n ≤ 69. From [18] and
[19] we have Mn ≤ 3 for all n ≤ 48 and Mn ≤ 4 for all n ≤ 69; the value of Mn

broadly increases with n, but not monotonically. In 1968 Moon and Moser [61]
used elementary counting arguments to establish an (apparently weak) upper
bound on Mn:

Theorem 6. For any fixed ε > 0, Mn ≤ (2 + ε)(n log n)1/2.

I can see three possible explanations for the relative popularity of the mea-
sure (8) over (9). The first is that we have a more developed theoretical frame-
work for studying the merit factor (see Section 4). The second is that the merit
factor is a natural measure of the energy efficiency of a binary sequence used
for physical transmission of information (see (13) and the comments following
it). The third was offered by Turyn [74–p. 199] in 1968: “Intuitively one would
expect [determination of lim supn−→∞ Fn] to be easier [than determination of
lim infn−→∞ Mn]”!

2.2 Complex Analysis

We now describe an equivalent formulation of the Merit Factor Problem from
complex analysis. Let PA(z) :=

∑n−1
i=0 aiz

i be the complex-valued polynomial
whose coefficients are the elements of the binary sequence A = (a0, a1, . . . , an−1)
of length n. The L4 norm of the polynomial PA(z) on the unit circle of the
complex plane is defined to be

||PA(z)||4 :=
(∫ 1

0

|PA(exp(2πθ
√
−1))|4dθ

)1/4

, (10)

and it is straightforward to show [53] that

||PA(z)||44 = n2 + 2
n−1∑
u=1

[CA(u)]2. (11)

Therefore the merit factor of the sequence A is related to the L4 norm of the
corresponding polynomial of degree n− 1 by

||PA(z)||44 = n2

(
1 +

1
F (A)

)
, (12)

and a large merit factor corresponds to a small L4 norm. (See [17] for a survey
of extremal problems involving the L4 norm and other norms of complex-valued
polynomials with ±1 coefficients.)

Statements such as Proposition 1 and Conjecture 3 were originally made in
terms of the L4 norm of ±1 polynomials, but have been expressed here in terms
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of the merit factor using (12). (Results that are recast in terms of the merit
factor in this way often appear initially to be different from their original L4

formulation because complex analysis usually considers polynomials of degree
n, whereas (11) and (12) involve a polynomial of degree n− 1.) However the
results from the sequence design literature have not always been known to the
complex analysis community, and vice-versa. For example, Littlewood [53] stated
the correspondence (11) in 1966 without naming the aperiodic autocorrelation
coefficients, and highlighted the lengths n = 7, 11 and 13 as supporting binary
sequences satisfying (4) without mentioning Barker sequences (see Section 2.1).
If Littlewood had been aware of the nonexistence results for Barker sequences
already found by Turyn and Storer [72] in 1961 and by Turyn [73] in 1965, I
do not believe he would have proposed Conjecture 3 in 1966 [53], repeated it
in 1968 [54–Problem 19], and on both occasions cited as strong evidence the
calculated value of Fn for 7 ≤ n ≤ 19. Likewise, in 1988 Høholdt and Jensen [39]
restated the correspondence (11) and explicitly linked the merit factor of binary
sequences to complex-valued polynomials with ±1 coefficients on the unit circle
(to my knowledge, for the first time). But they then declared: “Unfortunately,
there have been no results on [integrals of the type (10)], which can give new
information on the behavior of the merit factor”, whereas Littlewood [54] had
given Theorem 11 in 1968.

Since
∫ 1

0
|PA(exp(2πθ

√
−1))|2dθ =

∑n−1
i=0 a2

i = n, we deduce from (2), (10)
and (11) that ∫ 1

0

{∣∣PA(exp(2πθ
√
−1))

∣∣2 − n
}2

dθ =
n2

F (A)
. (13)

The left-hand side of (13) measures, in terms of power, how much the amplitude
spectrum of the continuous-time signal corresponding to the sequence A deviates
from its mean value n [4]. Therefore a larger merit factor corresponds to a more
uniform distribution of the signal energy over the frequency range, which is of
particular importance in spread-spectrum radio communications.

We have seen in Proposition 5 that a cyclic difference set is equivalent to
a binary sequence A having constant periodic autocorrelation at all non-zero
shifts. In terms of the corresponding polynomial PA(z), it is equivalent to the
value |PA(z)| being constant at all complex nth roots of unity except 1.

Conjecture 3 is related to another old conjecture from complex analysis in-
volving the supremum norm of ±1 polynomials on the unit circle:

Conjecture 7 (Erdös, 1957 [24–Problem 22]). There exists a constant c >
0 such that, for all n and for all binary sequences A = (a0, a1, . . . an−1) of
length n,

sup
|z|=1

|PA(z)| ≥ (1 + c)
√
n

where PA(z) :=
∑n−1

i=0 aiz
i.

(Conjecture 7 was posed in [24] as a question as to whether a suitable c > 0
exists for complex-valued sequences satisfying |ai| = 1 for all i, and restated
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[25] in 1962 as a conjecture. Kahane [43] showed that the conjecture is false for
complex-valued sequences, but the restriction of the question to binary sequences
remains open.) Since sup|z|=1 |PA(z)| ≥ ||PA(z)||4, we deduce from (12) that if
Conjecture 3 is false then Conjecture 7 is true.

Furthermore, by (2) and (4), a Barker sequence of even length n must have
merit factor n, so if Conjecture 3 is false then the weaker version of Conjecture 4
(that there are only finitely many Barker sequences) is also true. So determining
whether lim supn−→∞ Fn is unbounded would be of great significance: if so then
a 1966 conjecture due to Littlewood is established; and if not then both a 1957
conjecture due to Erdös and a forty-year-old conjecture on the finiteness of the
number of Barker sequences are true!

3 Computational Approaches

An experimental approach to mathematics has long provided “. . . a compelling
way to generate understanding and insight; to generate and confirm or con-
front conjectures; and generally to make mathematics more tangible, lively and
fun. . . ” [9]. The view of mathematics as an experimental science has become
more prominent as computers of steadily increasing power have become widely
accessible to perform the role of “laboratory”. In this spirit, considerable compu-
tational evidence has been collected regarding the value of Fn for specific values
of n, in order to better understand the Merit Factor Problem.

The value of Fn has been calculated for n ≤ 60 using exhaustive computation
(see Section 3.2). A lower bound on Fn has been found for 61 ≤ n ≤ 271 using
stochastic search algorithms to identify good, though not necessarily optimal,
sequences (see Section 3.3). The available evidence for n ≤ 271 is summarised
in Figure 1. The two largest known values of Fn are F13 � 14.1 and F11 = 12.1,
both of which arise from Barker sequences (see Section 2.1); no other values of
Fn ≥ 10 are known. The known lower bounds for Fn suffer a reduction for values
of n beyond about 200. However one would expect a reduction of this sort owing
to the increased computational burden for larger n and the large number of
local optima in the search landscape (see Section 3.3). Indeed, previous versions
of Figure 1, representing less extensive computational effort, have exhibited a
similar phenomenon but at smaller values of n.

3.1 Skew-Symmetric Sequences

A common strategy for extending the reach of merit factor computations (both
exhaustive and stochastic) is to impose restrictions on the structure of the se-
quence. The most popular of these historically has been the restriction to a
skew-symmetric binary sequence, defined by Golay [30] in 1972 as a binary se-
quence (a0, a1, . . . , a2m) of odd length 2m + 1 for which

am+i = (−1)iam−i for i = 1, 2, . . . ,m. (14)

(Condition (14) had also been noted by Littlewood [53], [54] in relation to a
question involving the supremum norm of ±1 polynomials on the unit circle).



A Survey of the Merit Factor Problem for Binary Sequences 39

Skew-symmetric sequences are known to attain the optimal merit factor value
Fn for the following odd values of n < 60: 3, 5, 7, 9, 11, 13, 15, 17, 21, 27, 29, 39,
41, 43, 45, 47, 49, 51, 53, 55, 57 and 59. Indeed, Golay [32] used the observation
that all odd length Barker sequences are skew-symmetric to propose the skew-
symmetric property as a sieve in searching for sequences with large merit factor.
The computational advantage of this sieve is that it roughly doubles the sequence
length that can be searched with given computational resources. Furthermore,
as noted by Golay [30], half the aperiodic autocorrelations of a skew-symmetric
sequence are 0:

Proposition 8. A skew-symmetric binary sequence A of odd length has CA(u) =
0 for all odd u.

Golay [32] proposed that the asymptotic optimal merit factor of the set of
skew-symmetric sequences is equal to lim supn−→∞ Fn, so that nothing is lost by
restricting attention to this set. Although Golay’s argument was heuristic and
relied on the unproven “Postulate of Mathematical Ergodicity” (see Section 4.7),
we know [10–p. 33] that the asymptotic value of the mean merit factor does
not change when we restrict to skew-symmetric sequences (by comparison with
Proposition 1):

Proposition 9. The mean value of 1/F , taken over all skew-symmetric se-

quences of odd length n, is
(n− 1)(n− 2)

n2
.

The optimal merit factor over all skew-symmetric sequences of odd length
n was calculated by Golay [32] for n ≤ 59 in 1977. It was then calculated
independently by Golay and Harris [35] for n ≤ 69 in 1990 and by de Groot,
Würtz and Hoffmann [22] for n ≤ 71 in 1992. It would be feasible, using the
methods of Section 3.2, to extend these results to lengths up to around 119
(involving 60 arbitrary sequence elements), although it is not clear to me that
this would represent a useful investment of computational resources.

In 1990 Golay and Harris [35] found good skew-symmetric sequences for odd
lengths n in the range 71 ≤ n ≤ 117 by regarding a skew-symmetric sequence
as the interleaving of two constrained sequences: one symmetric and the other
anti-symmetric. They formed candidate sets S1 of symmetric sequences and S2 of
anti-symmetric sequences, each of whose members had large merit factor relative
to other sequences of the same type, and then found the largest merit factor over
all interleavings of a sequence from S1 with a sequence from S2.

3.2 Exhaustive Computation

The value of Fn has been calculated:

(i) for “small n” in 1965 by Lunelli [55], as referenced in [74] (and expressed
in terms of minimising (8))

(ii) for 7 ≤ n ≤ 19 by Swinnerton-Dyer, as presented by Littlewood [54] in
1966 (and expressed in terms of minimising (11))
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(iii) for n ≤ 32 by Turyn, as presented by Golay [33] in 1982
(iv) for n ≤ 48 in 1996 by Mertens [58]
(v) for n ≤ 60 (the current record) by Mertens and Bauke [59].

The merit factor of a binary sequence of length n can be calculated from (1)
and (2) in O(n2) operations. The computations for a given sequence can be re-
used to calculate the merit factor of other sequences of the same length by chang-
ing one sequence element at a time and updating the aperiodic autocorrelations
in O(n) operations for each such change. The determination of Fn by calculating
the merit factor in this way for all 2n sequences of length n, for example by using
a Gray code, requires O(n2n) operations. However the algorithm of [58] and [59]
reduces the exponential term of the complexity of determining Fn from 2n to
roughly 1.85n by means of a branch-and-bound algorithm. The principle is to fix
the sequence elements one pair at a time, working from the endpoints towards the
centre and pruning the search tree by bounding

∑
u>0[C(u)]2. (See Section 2.1

for a a similar idea applied to the calculation of Mn in [18] and [19], reducing the
exponential term of the complexity of that calculation from 2n to roughly 1.4n.)

3.3 Stochastic Search Algorithms

For a given sequence length n, the search for a good lower bound for Fn can be
viewed as a combinatorial optimisation problem over the space of 2n binary se-
quences. This problem, often referred to as the “low autocorrelated binary string
problem”, has been studied in theoretical physics in connection with quantum
models of magnetism as well as in theoretical chemistry. Early results [4], [5],
[22] from the application of simulated annealing and evolutionary algorithms to
the optimisation problem were rather disappointing, finding merit factor values
no larger than about 6 for sequence lengths of around 200 and often failing to
find previously known large merit factor values. Bernasconi [5] predicted from
computational experiments that “. . . stochastic search procedures will not yield
merit factors higher than about F = 5 for long sequences” (referring to lengths
greater than about 200), and the problem was declared [22] to be “. . . amongst
the most difficult optimization problems”.

Several authors [5], [58], [60] suggested that the combinatorial landscape
of the search space exhibits “golf-hole” behaviour, in the sense that the se-
quences attaining Fn are extremely isolated within the landscape (see [65] for
an overview of combinatorial landscapes). This suggestion appears to have origi-
nated with an unfavourable comparison between empirically obtained merit fac-
tor values and the value of approximately 12.32. . . conjectured by Golay [33] for
lim supn−→∞ Fn, even though Golay’s value depends on an unproven hypothesis
(see Section 4.7). But, while the landscape has an exceptionally large number
of local optima [23], after detailed analysis Ferreira, Fontanari and Stadler [27]
found no evidence of “golf-hole” behaviour and suggested that the difference
in difficulty between this and other problems of combinatorial optimisation is
quantitative rather than qualitative.

As recognised in [22], the performance of stochastic search algorithms can
vary significantly according to the care with which the algorithm parameters
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are tuned. In 1998 Militzer, Zamparelli and Beule [60] used an evolutionary al-
gorithm to obtain more encouraging numerical results for sequence lengths up
to about 200 — although they still considered that the search for a binary se-
quence attaining the optimal value Fn “. . . resembles the search for a needle
in the haystack”! The best currently known stochastic search results, on which
Figure 1 is based, are due to Borwein, Ferguson and Knauer [14] (with possi-
ble updates listed at [45]). These results rely on a combination of algorithmic
improvements and extended use of considerable computational resources.

The basic method underlying many of the stochastic search algorithms is to
move through the search space of sequences by changing only one, or sometimes
two, sequence elements at a time. This method was suggested by Golay [31] as
early as 1975, in relation to skew-symmetric sequences. The merit factor of any
close neighbour sequence can be calculated in O(n) operations from knowledge
of the aperiodic autocorrelations of the current sequence. The search algorithm
specifies when it is acceptable to move to a neighbour sequence, for example
when it has merit factor no smaller than the current sequence, or when it has
the largest merit factor amongst all close neighbours not previously visited.
The search algorithm must also specify how to choose a new sequence when no
acceptable neighbour sequence can be found. The method of [14] augments this
search strategy to allow the addition or removal of one outer sequence element
at a time.

Many authors [4], [22], [32], [35] [60] have applied stochastic search algorithms
only to skew-symmetric sequences in order to obtain results for lengths that
would otherwise be out of computational reach (see Section 3.1). The results of
[14] for all lengths n ≥ 103 (both odd and even) are based on searches for which
the initial sequence is skew-symmetric.

Despite recent improvements, no stochastic search algorithm has yet been
found that reliably produces binary sequences with merit factor greater than 6
in reasonable time for large n. Therefore such algorithms cannot yet shed light
on whether the known range for lim supn−→∞ Fn given in (3) can be narrowed.

4 Theoretical Approaches

In this section we consider theoretical approaches to the Merit Factor Problem,
based mostly on infinite families of binary sequences with specified structure.

4.1 Legendre Sequences

We begin with the strongest proven asymptotic result. The Legendre sequence
X = (x0, x1, . . . , xn−1) of prime length n is defined by:

xi :=
(
i

n

)
for 0 ≤ i < n,

where
(

i
n

)
is the Legendre symbol (which takes the value 1 if i is a quadratic

residue modulo n and the value −1 if not; we choose the convention that
(

i
n

)
:= 1
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if i = 0). Given a sequence A = (a0, a1, . . . , an−1) of length n and a real number r,
we write Ar for the sequence (b0, b1, . . . , bn−1) obtained by rotating (equivalently,
cyclically shifting) the sequence A by a multiple r of its length:

bi := a(i+�rn) mod n for 0 ≤ i < n. (15)

In 1981 Turyn calculated the merit factor of the rotation Xr of the Legendre
sequence X for sequence lengths up to 10,000, as reported in [34]. Based on
Turyn’s work Golay [34] gave a derivation of the asymptotic value of this merit
factor, which accorded with Turyn’s calculations but relied on heuristic argu-
ments as well as the “Postulate of Mathematical Ergodicity” (see Section 4.7).
In 1988 Høholdt and Jensen [39] proved that the expression derived by Golay is
in fact correct:

Theorem 10. Let X be a Legendre sequence of prime length n. Then

1
lim

n−→∞
F (Xr)

=

{
1
6 + 8(r − 1

4 )2 for 0 ≤ r ≤ 1
2

1
6 + 8(r − 3

4 )2 for 1
2 ≤ r ≤ 1.

(16)

Therefore the asymptotic merit factor of the optimal rotation of a Legendre
sequence is 6 and occurs for r = 1/4 and r = 3/4. Borwein and Choi [12]
subsequently determined the exact, rather than the asymptotic, value of F (Xr)
for all r. In the optimal cases r = 1/4 and r = 3/4, this exact value involves the
class number of the imaginary quadratic field Q(

√
−n).

The analytical method used by Høholdt and Jensen [39], and its refinement
in [12], applies only to odd-length sequences and depends crucially on the rela-
tionship of the sequence to a cyclic difference set, in this case belonging to the
parameter class

(v, k, λ) = (n, (n− 1)/2, (n− 3)/4) for integer n ≡ 3 (mod 4). (17)

(Many constructions for difference sets with parameters (17) are known; see [75]
for a survey and [37] for an important recent result. The parameter class (17) is
referred to as Hadamard, but unfortunately so is another parameter class (7).)

It is well known (see for example [6]) that, for n ≡ 3 (mod 4), a Legendre
sequence X of length n is equivalent to a cyclic difference set in Zn with parame-
ters from the class (17), known as a quadratic residue or Paley difference set. By
Proposition 5 this is equivalent to X having constant periodic autocorrelation
at all non-zero shifts, and this property is retained under all rotations of the
sequence:

RXr
(u) = −1 for 0 ≤ r ≤ 1 and 0 < u < n. (18)

Therefore, from (6), every rotation of a Legendre sequence of length n ≡ 3
(mod 4) has the property that its aperiodic autocorrelations sum in pairs to −1.
Of course this does not imply that the individual aperiodic autocorrelations will
themselves have small magnitude but one might hope that, for some rotation,
the full set of aperiodic autocorrelations will have a small sum of squares. In-
deed, R. Turyn has indicated [personal communication, May 2003] that this was
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exactly his rationale for investigating these sequences. (Similar reasoning was
used by Boehmer [7] in seeking binary sequences A with a small value of M(A),
as defined in (9), from sequences having small periodic autocorrelation at all
non-zero shifts.) For n ≡ 1 (mod 4), all rotations of a Legendre sequence are
equivalent to a partial difference set in Zn [56–Theorem 2.1] and can be dealt
with in a similar manner to the case n ≡ 3 (mod 4), for example [13] by slight
modification to the sequence.

An asymptotic merit factor of 6, as given by the family of Legendre sequences
in Theorem 10, is the largest so far proven. We shall see in Section 5 that there
is strong evidence, although not a proof, that an asymptotic merit factor greater
than 6.34 can be achieved via a related family of sequences. I find it remarkable
that both of these constructions, as well as others described in this section, rely
directly on special periodic autocorrelation properties of the sequences. In my
opinion this is a reflection of the current paucity of powerful tools for analysing
aperiodic autocorrelations independently of their periodic properties. Indeed,
while periodic behaviour lends itself readily to mathematical investigation via
techniques from algebra and analysis based on an underlying cyclic group or finite
field, it remains the case [26–p. 269] that “. . . the aperiodic correlation properties
of sequences are notoriously difficult to analyse”; see [64] for further discussion of
this point. Given the appropriate mathematical tools, I believe we might uncover
asymptotic merit factors significantly greater than those suggested by the results
of Section 5.

The method introduced by Høholdt and Jensen [39] to calculate the asymp-
totic merit factor of rotated Legendre sequences was subsequently applied to
further families of odd-length binary sequences corresponding to cyclic differ-
ence sets with parameters in the class (17) (see Sections 4.4 and 4.6).

4.2 Rudin-Shapiro Sequences

We next consider the earliest asymptotic merit factor result of which I am aware.
Given sequences A = (a0, a1, . . . , an−1) of length n and A′ = (a′0, a

′
1, . . . , a

′
n′−1)

of length n′ we write A;A′ for the sequence (b0, b1, . . . , bn+n′−1) given by ap-
pending A′ to A:

bi :=
{
ai for 0 ≤ i < n
a′i−n for n ≤ i < n + n′.

(19)

The Rudin-Shapiro sequence pair X(m), Y (m) of length 2m is defined recursively
[66], [71] by:

X(m) := X(m−1);Y (m−1), (20)
Y (m) := X(m−1);−Y (m−1). (21)

where X(0) = Y (0) := [1]. In 1968 Littlewood [54–p. 28] proved (in the language
of complex-valued polynomials — see Section 2.2):

Theorem 11. The merit factor of both sequences X(m), Y (m) of a Rudin-

Shapiro pair of length 2m is
3

(1− (−1/2)m)
.
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Therefore the asymptotic merit factor of both sequences of a Rudin-Shapiro
pair is 3. To my knowledge, Theorem 11 is the first explicit construction of an
infinite family of binary sequences, each with known merit factor, whose asymp-
totic merit factor is non-zero. It is not surprising that such constructions exist,
because by Proposition 1 the expected asymptotic value of 1/F for a randomly-
chosen binary sequence is 1. Nonetheless such a construction did not appear in
the digital sequence design literature until Theorem 11 was rediscovered in gen-
eralised form as Theorem 12 in 1985. (In fact Littlewood [52–p. 334] performed
the “straightforward calculations” leading to Theorem 11 as early as 1961, but
the stated values in [52] are incorrect.)

Rudin-Shapiro sequence pairs are a special case of binary Golay complemen-
tary sequence pairs. (H. Shapiro suggests [70] that, in terms of historical prece-
dence, a more suitable name than “Rudin-Shapiro” would be “Golay-Shapiro”;
the confusion seems to have arisen from several mistaken citations of [71] as hav-
ing been published in 1957, only two years prior to [66], rather than 1951.) Golay
complementary pairs were introduced by Golay [28], [29] in 1949 in connection
with a problem in infrared multislit spectroscopy and have seen repeated prac-
tical application since then, most recently in multicarrier wireless transmission
(see [21] for details and recent results).

4.3 Generalisations of the Rudin-Shapiro Sequences

We now describe two generalisations of the Rudin-Shapiro sequences. Unfortu-
nately neither improves on the asymptotic merit factor of 3 achieved in Theo-
rem 4.2.

A first generalisation involves binary sequences X(m) = (x0, x1, . . . , x2m−1)
of length 2m that are defined recursively via:

x2i+j := (−1)j+f(i)x2i−j−1 for 0 ≤ j < 2i and 0 ≤ i < m, (22)

where x0 := 1 and f is any function from N to {0, 1}. If we take

f(i) =
{

0 if i = 0 or i is odd
1 if i > 0 is even

then the resulting sequence X(m) satisfies (20), and if we take the same function
f but switch the value of f(m − 1) then the resulting sequence Y (m) satisfies
(21); so the sequences of a Rudin-Shapiro pair are special cases of (22).

In 1985 Høholdt, Jensen and Justesen [40] established:

Theorem 12. The merit factor of the sequence X(m) defined in (22) is

3
(1− (−1/2)m)

for any function f .

Therefore the asymptotic merit factor of this family of sequences is 3.
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Using polynomial notation, we can further generalise the Rudin-Shapiro se-
quences by regarding (22) as the special caseX(0) = 1 of the recursive construction

PX(m)(z) := PX(m−1)(z)± z2m−1
P ∗

X(m−1)(−z), (23)

where P ∗(z) is defined to be zn−1P (1/z) for a polynomial P (z) of degree n− 1.
In 2000 Borwein and Mossinghoff [15] considered choices for the initial polyno-
mial other than X(0) = 1, having unrestricted degree, but concluded that the
asymptotic merit factor achievable from (23) in this way is never more than 3.

The asymptotic merit factor results of Sections 4.2 and 4.3 are unusual in
that they do not rely on special periodic autocorrelation properties. Instead, the
merit factor is calculated directly from the defining recurrence relations.

4.4 Maximal Length Shift Register Sequences

A maximal length shift register sequence (often abbreviated to an ML-sequence
or m-sequence) X = (x0, x1, . . . , x2m−2) of length 2m − 1 is defined by:

xi := (−1)tr(βαi) for 0 ≤ i < 2m − 1,

where α is a primitive element of the field F2m , β is a fixed element of the
same field, and tr() is the trace function from F2m to F2. The name given to
these sequences arises from an alternative definition involving a linear recurrence
relation of period 2m−1 that can be physically implemented using a shift register
with m stages [36]. A maximal length shift register sequence is equivalent to a
type of cyclic difference set with parameters from the class (17), known as a
Singer difference set.

Sarwate [68] showed in 1984 that:

Theorem 13. The mean value of 1/F , taken over all n rotations of a maximal

length shift register sequence of length n = 2m − 1, is
(n− 1)(n + 4)

3n2
.

([40] points out that Theorem 13 could be derived from much earlier results due
to Lindholm [50].) Theorem 13 implies that for any length n = 2m − 1 there
is some rotation of a maximal length shift register sequence of length n with
merit factor of at least 3n2/((n−1)(n+4)), which asymptotically equals 3. This
suggests the possibility of achieving an asymptotic merit factor greater than 3
by choosing a suitable rotation of a maximal length shift register sequence, but
in 1989 Jensen and Høholdt [41] used the method introduced in [39] to show
that this is not possible:

Theorem 14. The asymptotic merit factor of any rotation of a maximal length
shift register sequence is 3.

4.5 Jacobi Sequences

A Jacobi sequence X = (x0, x1, . . . , xn−1) of length n = p1p2 . . . pr, where p1 <
p2 < . . . < pr and each pj is prime, is defined by:
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xi :=
(

i

p1

)(
i

p2

)
. . .

(
i

pr

)
for 0 ≤ i < n.

We can regard Jacobi sequences as the “product” of r Legendre sequences; for
r > 1 such sequences do not correspond to difference sets.

In 2001 Borwein and Choi [11] proved:

Theorem 15. Let X be a Jacobi sequence of length n = p1p2 . . . pr, where p1 <
p2 < . . . pr and each pj is prime. Then, provided that nε/p1 −→ 0 for any fixed
ε > 0 as n −→∞, 1/limn−→∞F (Xr) is given by (16).

Therefore, provided that (roughly speaking) p1 does not grow significantly more
slowly than n, the asymptotic merit factor of the optimal rotation of a Jacobi se-
quence is 6. The case r = 2 of Theorem 15, subject to a more restrictive condition
on the growth of p1, was given earlier by Jensen, Jensen and Høholdt [42].

4.6 Modified Jacobi Sequences

We next consider a modification of the Jacobi sequences of Section 4.5 for the
case r = 2, as introduced by Jensen, Jensen and Høholdt [42]. A modified Jacobi
sequence X = (x0, x1, . . . , xn−1) of length n = pq, where p and q are distinct
primes, is defined by:

xi :=

⎧⎪⎪⎨⎪⎪⎩
1 for i ≡ 0 (mod q)
−1 for i > 0 and i ≡ 0 (mod p)(
i

p

)(
i

q

)
for all other i for which 0 ≤ i < n.

In the case q = p+2, a modified Jacobi sequence is called a Twin Prime sequence
and corresponds to a type of cyclic difference set with parameters from the class
(17), known as a Twin Prime difference set.

In 1991 Jensen, Jensen and Høholdt [42] used the method introduced in [39]
to prove:

Theorem 16. Let X be a modified Jacobi sequence of length pq, where p and q
are distinct primes. Then, provided that ((p+ q)5 log4(n))/n3 −→ 0 as n −→∞,
1/limn−→∞F (Xr) is given by (16).

Therefore, provided that p grows roughly as fast as q, the asymptotic merit
factor of the optimal rotation of a modified Jacobi sequence (and in particular
a Twin Prime sequence) is 6.

4.7 Golay’s “Postulate of Mathematical Ergodicity”

The aperiodic autocorrelations C(1), C(2), . . . , C(n−1) of a sequence that is cho-
sen at random from the 2n binary sequences of length n are clearly dependent
random variables. However in 1977 Golay [32] proposed, with an appeal to intu-
ition and by analogy with statistical mechanics, a “Postulate of Mathematical
Ergodicity” that states roughly:
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The correct value of lim supn−→∞ Fn can be found by treating C(1), C(2), . . . ,
C(n− 1) as independent random variables for large n.

(The statement of the Postulate in [32] and its restatement in [33] are not entirely
precise; indeed, Massey disclosed [57] that he was asked to mediate a dispute
between Golay and the referees over the level of rigour of [33].)

Assuming the Postulate, Golay argued in [32] that limn−→∞Fn = 2e2 �
14.78. In 1982 Golay [33] identified a “convenient, but faulty, approximation” in
[32] and, by refining its heuristic arguments, concluded instead that the Postulate
implies:

Conjecture 17 (Golay, 1982 [33]). limn−→∞Fn = 12.32 . . .

Golay [33] also argued that:

(i) restriction to skew-symmetric sequences (see Section 3.1) does not change
the asymptotic optimal merit factor

(ii) it is “most likely” that Fn ≤ 12.32 . . . for all n 	= 13.

Bernasconi [5] gave a more transparent derivation of the value 12.32. . . as
an estimate for the asymptotic optimal merit factor, based on “an uncontrolled
approximation for the partition function”. Although the underlying assumption
in [5] and [33] is clearly identified as unproven, its derived consequences are
sometimes quoted as fact (for example, conclusion (ii) above and Conjecture 17
are treated in [4] and [16] respectively as proven results). Massey [57] wrote that
he “would not want to bet on the contrary [to Conjecture 17]”.

Golay [34] used the Postulate to predict correctly the asymptotic merit factor
of a rotated Legendre sequence (see Section 4.1). Further evidence in support
of the Postulate was given by Ferreira, Fontanari and Stadler [27], who found
unexpectedly good agreement between experimentally determined parameters of
the combinatorial search landscape (see Section 3.3) and those predicted by the
Postulate. Nonetheless I am sceptical about its use: I do not find the arguments
proposed in its favour in [33] to be convincing, and it seems not to be falsifiable
except by direct disproof of Conjecture 17 or conclusion (i) above.

5 Periodic Appending

This section contains an overview of recent results of Borwein, Choi and Jed-
wab [13] that strongly suggest that lim supn−→∞ Fn > 6. These results were
motivated by the discoveries of A. Kirilusha and G. Narayanaswamy in 1999,
working as summer students under the supervision of J. Davis at the University
of Richmond.

We shall make use of the definition of rotation and appending of sequences
as given in (15) and (19). Given a sequence A = (a0, a1, . . . , an−1) of length
n and a real number t satisfying 0 ≤ t ≤ 1, we write At for the sequence
(b0, b1, . . . , b�tn−1) obtained by truncating A to a fraction t of its length:

bi := ai for 0 ≤ i < �tn�.
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Let X be a Legendre sequence of prime length n. We know from Theorem 10
that limn−→∞F (X 1

4
) = 6. Kirilusha and Narayanaswamy [44] investigated how

the merit factor of X 1
4

changes as sequence elements are successively appended.
They observed:

Proposition 18. Let {An} and {Bn} be sets of binary sequences, where each
An has length n and each Bn has length o(

√
n). Then

1
F (An;Bn)

=
1

F (An)
+ o(1).

It follows that up to o(
√
n) arbitrary sequence elements ±1 can be appended to

X 1
4

without changing the asymptotic merit factor of 6. Kirilusha and Narayana-
swamy [44] then asked which choice of specific sequence elements yields the best
merit factor when appended to X 1

4
. To considerable surprise, they found that

when the appended sequence elements are identical to some truncation of X 1
4
,

the merit factor appears to increase to a value consistently greater than 6.2!
This phenomenon was studied in detail in [13]. A key realisation was that

the number of appended elements should take the form �tn� for some fixed t,
rather than the form �nα� for fixed α < 1 as suggested in [44]. Figure 2 shows
the variation of F (Xr; (Xr)t) with r for the optimal value of t, for a large fixed
length n = 259499. Extensive numerical evidence was presented in [13] to suggest
that:

(i) for large n, the merit factor of the appended sequence X 1
4
; (X 1

4
)t is greater

than 6.2 when t � 0.03
(ii) for large n, the merit factor of the appended sequence Xr; (Xr)t is greater

than 6.34 for r � 0.22 and r � 0.72, when t � 0.06.

I do not have a complete explanation for these apparent properties but they
appear to rely on Xr having small periodic autocorrelation at all non-zero shifts,
as given by (18). It seems that this causes the aperiodic autocorrelations of the
appended sequence Xr; (Xr)t to be collectively small (for some values of r 	= 0
and for an appropriate value of t). In fact the process of successively appending
initial elements of the sequence to itself would give a progressively larger merit
factor if not for the single shift u = n. At this shift, the initial �tn� elements
of Xr are mapped onto copies of themselves and the resulting contribution of
(�tn�)2 to

∑
[C(u)]2 cannot be allowed to grow too large.

This intuition was formalised in [13], leading to an asymptotic relationship
between the merit factor of the appended sequence Xr; (Xr)t and the merit
factor of two truncated sequences (Xr)t and (Xr+t)1−t:

Theorem 19 ([13–Theorem 6.4 and equation (20)]). Let X be a Legendre
sequence of prime length n and let r, t satisfy 0 ≤ r ≤ 1 and 0 < t ≤ 1. Then,
for large n,

1
F (Xr; (Xr)t)

∼

⎧⎨⎩2
(

t
1+t

)2 (
1

F ((Xr)t) + 1
)

+
(

1−t
1+t

)2 (
1

F ((Xr+t)1−t)

)
for t < 1

1
2

(
1

F (Xr) + 1
)
. for t = 1.

(24)
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Fig. 2. The merit factor of the r-rotated Legendre sequence of length 259499 before

(×) and after (·) appending of the optimal number of its own initial elements, for

varying r

(The single shift u = n is responsible for a contribution of 2
(

t
1+t

)2

to the right-
hand side of (24) for t ≤ 1; if this contribution were zero for t = 1 we would
have F (Xr;Xr) = 2F (Xr).) Given Theorem 19, it is sufficient to determine an
asymptotic form for the function t2/F ((Xr)t) for any (r, t) satisfying 0 ≤ r ≤ 1
and 0 < t ≤ 1; this asymptotic form is already known for t = 1 from Theorem 10.
Numerical evidence from sequences up to millions of elements in length leads to:

Conjecture 20 ([13–Conjecture 7.5]). Let X be a Legendre sequence of prime
length n. Then

g(r, t) :=

⎧⎨⎩ lim
n−→∞

(
t2

F ((Xr)t)

)
for 0 < t ≤ 1

0 for t = 0
(25)

is well-defined for any r, t ∈ [0, 1] and is given by

g(r, t) = t2(1− 4
3 t) + h(r, t),

where
h(r + 1

2 , t) := h(r, t) for 0 ≤ r ≤ 1
2 and 0 ≤ t ≤ 1

and h(r, t) is defined for 0 ≤ r ≤ 1/2 and 0 ≤ t ≤ 1 in Figure 3.
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Fig. 3. The function h(r, t) for the range 0 ≤ r ≤ 1/2 and 0 ≤ t ≤ 1, in regions R1,

R2, R3 and R4

By Proposition 7.6 of [13], the definition of h(r, t) given in Figure 3 is needed
for only one of the regions R2 and R3, because if the definition holds in either
one then it holds in the other.

Support for Conjecture 20 is given by calculations [13] showing that for

(r, t) ∈ G := {0, 1/64, 2/64, . . . , 1} × {1/64, 2/64, . . . , 1},

the maximum discrepancy between the conjectured and actual value of t2

F ((Xr)t)
is

max
(r,t)∈G

∣∣∣∣ t2

F ((Xr)t)
− g(r, t)

∣∣∣∣ =
⎧⎨⎩

0.00484 for n = 22783
0.00122 for n = 259499
0.00025 for n = 4433701.

(26)

Subject to Conjecture 20, Theorem 19 implies that the maximum value of
limn−→∞F (Xr; (Xr)t) over r, t ∈ [0, 1] is approximately 6.3421, occurring at
r � 0.2211 and 0.7211 and t � 0.0578, and the maximum value of the limit
limn−→∞F (X 1

4
; (X 1

4
)t) over t ∈ [0, 1] is approximately 6.2018, occurring at

t � 0.0338 [13]. These values are in excellent agreement with calculated data.
Furthermore, experimental results [13] suggest that, provided p and q grow

roughly as fast as each other, appending the initial elements of a modified Ja-
cobi sequence of length n = pq (see Section 4.6) to itself produces the same
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asymptotic behaviour as for Legendre sequences. Likewise, M. Parker [personal
communication, June 2003] has found numerical evidence that the same is true
for a family of sequences described in [63], provided that the sign of sequence
elements is reversed under rotation and under appending.

Independently of [13], Kristiansen [46] presented sequences of length up to
20,000 having merit factor greater than 6.3, also inspired by Kirilusha and
Narayanaswamy [44]. Each of the sequences in [46] is obtained by searching over
a set of sequences derived from a Legendre sequence. [46] gives an approximate
value for the total number of sequence elements resulting from the search but
does not contain a theoretical explanation of the merit factor properties of the
sequences. In response to a preprint of [13], Kristiansen and Parker [47] recog-
nised that the sequences in [46] could more easily be viewed as an appending of
a rotated Legendre sequence.

6 Challenges

I conclude with a personal selection of challenges concerning the Merit Factor
Problem, arranged in order of increasing significance.

1. Find a binary sequence X of length n > 13 for which F (X) ≥ 10.
Such a sequence would give the largest known merit factor, with the exception
of Barker sequences of length 11 and 13 (see Section 3).

2. Find a binary sequence X for which F (X) > 14.1.
Regarding such a possibility, Massey [57] wrote in 1990: “Golay always re-
garded the length 13 Barker Sequences, whose merit factor is 14.08. . . as a
singularity of nature whose goodness would never again be attained”. Attrac-
tive though such a result would be, I have not placed it any higher on the list
of challenges because I believe the study of the merit factor is fundamentally
concerned with asymptotic behaviour, not the identification of a particular
sequence with an unusually large value of F .

3. Prove that Conjecture 2 is false.
This might be achieved, for example, by determining the asymptotic value of
t2/F ((Xr)t) for a Legendre sequence X for appropriate r and t (see Conjec-
ture 20). A disproof of Conjecture 2 would give a proven new lower bound on
lim supn−→∞ Fn for the first time since 1988.

4. Find a binary sequence family X for which limn−→∞F (X) > 6.3421 . . .
The apparent lower bound of 6.3421. . . implied by Conjecture 20 arises by
reference to periodic properties of Legendre sequences. I believe that better
bounds might be found from a direct analysis of aperiodic behaviour (see
Section 4.1).

5. Find a binary sequence family X for which limn−→∞F (X) is an in-
teger greater than 6.
Although I do not have a satisfying explanation, I find it remarkable that the
Legendre, Rudin-Shapiro, generalised Rudin-Shapiro (22), maximal length
shift register, Jacobi, and modified Jacobi sequences all have an asymptotic
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merit factor that takes an integer value (see Section 4). One might expect
that some other infinite families of sequences behave similarly.

6. Determine whether lim supn−→∞ Fn is finite and, if so, determine its
value.
This is a restatement of the Merit Factor Problem. If lim supn−→∞ Fn is
infinite then Conjecture 3 from 1966 is true, whereas if it is finite then Con-
jecture 7 from 1957 is true and furthermore there are only finitely many
Barker sequences (see Section 2.2). If lim supn−→∞ Fn takes any value other
than 12.32. . . then Golay’s “Postulate of Mathematical Ergodicity” is false
(see Section 4.7).
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Abstract. Feedback with carry shift registers (FCSRs) are arithmetic
analogs of linear feedback shift registers (LFSRs). In this paper we survey
some of the basic properties of FCSRs. For comparison, we first review
some basic facts about LFSRs. We then define FCSRs and discuss their
relation to the N -adic numbers. This leads to the analysis of periodicity
of FCSR sequences, their exponential representation, and a description of
maximal period FCSR sequences. We also discuss an arithmetic analog of
cross-correlations, the FCSR register synthesis problem, and how FCSRs
can be efficiently implemented in parallel architecture.

1 Introduction

Fast generators of sequences with good statistical properties play a role in many
application areas such as keystream generation for stream ciphers, spreading
sequences for CDMA communications systems, sequences for radar ranging, error
correcting codes, and pseudorandom number generation for quasi-Monte Carlo
integration. In many cases appropriate sequences can be generated by linear
feedback shift registers (LFSRs) or by generators constructed from LFSRs.

In 1994 a new class of sequence generators, feedback with carry shift registers
(FCSRs), was invented. FCSRs share many desirable properties with LFSRs.
This paper surveys the basic properties of FCSRs. For comparison, we first re-
view basic facts about LFSRs. We then define FCSRs and discuss their relation
to the N -adic numbers. We show that each FCSR sequence has an associated N -
adic number. This number is in fact a rational number, and its rational represen-
tation gives information about the sequence and the FCSR. This representation
leads to an analysis of the periodicity of FCSR sequences, their exponential repre-
sentation, and a description of maximal period FCSR sequences. We also discuss
an arithmetic analog of cross-correlations and see that maximal period FCSR
sequences have remarkable arithmetic correlation properties. Next we consider
the register synthesis problem — for a given sequence prefix, find the smallest
generator in a given class that outputs the sequence. For LFSRs the register
synthesis problem is solved by the Berlekamp-Massey algorithm. For FCSRs we
see that the register synthesis problem can be solved similarly. Finally, we show
how FCSRs can be efficiently implemented in parallel architecture.
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Throughout the paper, we indicate general references for individual sections
in the section headers.

2 Linear Feedback Shift Registers [14–Chapter 8]

Linear feedback shift registers (LFSRs) are simple mechanisms that can be used
to efficiently generate large period sequences over finite fields. They can be
thought of either as finite state devices with output or, more mathematically, as
linear recurrences over fields. They can be pictured as finite state device as in
Figure 1. In this figure qi and aj are elements of a finite field F .

The LFSR changes states by shifting its contents right one position, putting
q1ak−1 + · · · + qka0 in the leftmost cell, and outputting a0. Equivalently, the
LFSR generates an infinite sequence A = a0, a1, · · · , ak−1, ak, ak+1, · · · from the
initial values a0, · · · , ak−1 by the linear recurrence

ak = q1ak−1 + · · ·+ qka0.

LFSRs are analyzed using various associated algebraic structures. The gener-
ating function α(A, x) =

∑∞
i=0 aix

i is a power series associated with the output
sequence. The connection polynomial is a polynomial q(x) =

∑k
i=1 qix

i−1 associ-
ated with the coefficients of the linear recurrence. The Fundamental Theorem of
Linear Feedback Shift Registers relates the generating function and connection
polynomial.

Theorem 1. If α(A, x) is the generating function of the output from a LFSR
with a particular initial state, and q(x) is the connection polynomial of the LFSR,
then

α(A, x) =
u(x)
q(x)

,

for some polynomial u(x) ∈ F [x].

The third algebraic structure that is useful in analyzing LFSRs relates them
to the multiplicative structure of an extension field. We describe here only a
simple case. More general cases involve sums of terms such as the one in the
following theorem.

ak−1 ak−2 · · · a0

��
��
q1 ��

��
q2 ��

��
qk· · ·

� �

Fig. 1. A Linear Feedback Shift Register
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Theorem 2. Let q ∈ F [x] be irreducible, let E = F [x]/(q), and let α be a root
of q in E. Then E is a field and

ai = TrE
F (cαi).

It is immediate from the definition that the output A from a LFSR is even-
tually periodic since the LFSR has finitely many possible states.

Theorem 3. A is (purely) periodic if and only if deg(u) < deg(q). In general
the eventual period divides the least N such that q(x)|xN − 1, the multiplicative
order of x mod q(x). It is at most |F |k − 1, and divides |(F [x]/(q))∗|.

This leads to a definition of the maximal period LFSR sequences, arguably
the most important such sequences.

Definition 1. A is an m-sequence if its period equals |F |k−1. This is equivalent
to saying q(x) is a primitive polynomial.

M-sequences are important in part because they have excellent distributional
properties. Let A = a0, a1, · · · be periodic with period L. Then an occurrence of
B = b0, b1, · · · , br−1 in A is an index i, 0 ≤ i ≤ L− 1 so that

ai = b0, ai+1 = b1, · · · , ai+r−1 = br−1.

Theorem 4. If A is an m-sequence with period |F |k − 1 and 1 ≤ r ≤ k, and b
is the number of occurrences of B in A, then

b =
{
|F |k−r if B 	= (0, 0, · · · , 0);
|F |k−r − 1 if B = (0, 0, · · · , 0).

Proof: An occurrence of B corresponds to a state (∗, ∗, · · · , ∗, br−1, · · · , b0). ��
The LFSR Synthesis Problem is the following:

Instance: A prefix a0, a1, · · · , ar of A
Find: The shortest LFSR with output A.

Suppose that α(A, x) = u(x)/q(x) with u(x) and q(x) relatively prime. Let
λ = λ(u, q) = max{deg(u)+1,deg(q)}. Then the LFSR synthesis problem can be
solved by the Berlekamp-Massey algorithm [17], which computes u(x) and q(x)
given 2λ consecutive symbols of A. To understand what comes later in this paper,
it is helpful to have some idea of how the Berlekamp-Massey algorithm works. It
processes one symbol at a time. At the ith stage, polynomials ui and qi are known
so that ui/qi approximates u/q up to degree i. If it fails to approximate u/q up
to degree i + 1 (we say a discrepancy occurs), the approximation is updated by
adding a multiple of an earlier (and carefully chosen) approximation:

ui+1 = ui + dxi−kuk and qi+1 = qi + dxi−kqk where d ∈ F.
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A critical fact that makes the proof of correctness work is that λ(ui+1, qi+1) can
be described in terms of of λ(ui, qi). This is possible because the degree of a sum
of polynomials is at most the maximum of their degrees.

M-sequences have also been studied for their cross-correlation properties. For
period L binary sequences the cross-correlations are defined as follows.

ΘA,B(t) =
L−1∑
i=0

(−1)ai−bi+t

= |{i : ai = bi+t}| − |{i : ai 	= bi+t}|
= #0s− #1s in one period of α(A, x)− α(Bt, x), (1)

where Bt = bt, bt+1, · · · is the shift of B by t places. When A = B, the cross-
correlation is called the autocorrelation of A. In some applications, it is desirable
to have sequences whose autocorrelations with t 	= 0 are all as close to zero as
possible. In other applications, it is desirable to have large families of sequences
whose pairwise cross-correlations are as low as possible.

For m-sequences with period L = |F |k − 1 it is known that ΘA,A(t) = −1
if t 	= L. However, for two distinct m-sequence of the same period, ΘA,B(t) is
known only in special cases. Moreover, it follows from Parseval’s identity that
maxt(ΘA,B(t)) ≥ |F |k/2 − 1 if A is an m-sequence and B is any sequence. This
puts a fundamental limit on what we can hope to achieve.

3 FCSR/MWC Sequences [10]

Feedback with carry shift registers are similar to LFSRs, but with the addition
of an “extra memory” that retains a carry from one stage to the next. It is not
immediately clear, but it is a finite state device (see Section 7). A diagram of an
FCSR is given in Figure 2.

The FCSR changes states by computing the linear combination

σ = q1ak−1 + · · ·+ qka0 + m,

M ak−1 ak−2 · · · a1 a0

��
��
q1 ��

��
q2 ��

��
qk ��

��
qk· · ·

∑�

� � �

�
�
�
�

mod Ndiv N

Fig. 2. A Feedback with Carry Shift Register
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M a3 a2 a1 a0 M a3 a2 a1 a0

0 1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 1 0 0 0
2 0 1 1 1 0 0 1 0 0
2 1 0 1 1 0 1 0 1 0
2 0 1 0 1 0 1 1 0 1
2 0 0 1 0 1 0 1 1 0
1 1 0 0 1 1 1 0 1 1
1 0 1 0 0 1 1 1 0 1
1 0 0 1 0 1 1 1 1 0
1 0 0 0 1 1 1 1 1 1

Fig. 3. The states of an FCSR with connection number q = 27

then setting ak = σ mod N and m′ = �σ/N�. The main part of the new state
is (ak, · · · , a1) while the new value of the extra memory is m′. It appears to be
possible that the extra memory grows unboundedly during some infinite execu-
tion of the FCSR. We shall see in Section 7 that this is not the case, and will
give explicit bounds on the size of the extra memory in terms of the qi.

FCSRs were invented by Goresky and Klapper [10], and independently by
Marsaglia and Zaman [16] and Couture and L’Ecuyer [4]. The view point of
FCSRs is due to Goresky and Klapper and was motivated by the cryptanalysis
of the summation combiner [18, 21]. Marsaglia, Zaman, Couture, and L’Ecuyer,
on the other hand, took the point of view of recurrences with carry and were
motivated by the desire for good random number generators for such applications
as quasi-Monte Carlo simulation. Marsaglia and Zaman treated only a special
case, so-called Add with Carry recurrences, and Couture and L’Cuyer generalized
these recurrences to Multiply with Carry (MWC) recurrences. MWC recurrences
are equivalent to FCSRs. With ai, qi ∈ {0, 1, · · · , N − 1} for i = 0, · · · , k− 1 and
mk−1 ∈ Z, a MWC recurrence defines two sequences ai ∈ {0, 1, · · · , N − 1},
mi ∈ Z for i = k, k + 1, · · · by the equation

an + Nmn = q1an−1 + · · ·+ qkan−k + mn−1

for i = k, k+1, · · ·. This uniquely defines an and mn. The sequence generated is
A = a0, a1, · · · , ak−1, ak, ak+1, · · ·. The first algebraic structure associated with
an FCSR is the connection number q = qkN

k + qk−1N
k−1 + · · ·+ q1N − 1. This

is the arithmetic analog of the connection polynomial of a LFSR.
Let’s consider an example. If q = 27 = 24 + 23 + 22 − 1, then q is the

connection number of a length 4 FCSR with N = 2 and “taps” on cells 0, 1, 2. A
series of states is given in Figure 3. The output can be read down the right hand
columns. Note that the eventual period in this case is 18. This will be explained
in Section 4.

The second algebraic mechanism for analyzing FCSR sequences is the ring of
N -adic numbers. We next present an explanation of this ring. This is a complex
subject that has been studied by mathematicians since at least the early 1900s.
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Intuitively, we want a ring that is an arithmetic or “with carry” analog of the
ring of power series over Z/(N). Let

ZN = {
∞∑

i=0

aiN
i, ai ∈ {0, 1, · · · , N − 1}}.

We can define a ring structure on ZN by defining addition and multiplication of
N -adic numbers as follows.

Suppose we are given N -adic numbers α =
∑∞

i=0 aiN
i and β =

∑∞
i=0 biN

i.

1. Addition: The sum α+β =
∑∞

i=0 ciN
i is the N -adic number determined by

the infinite system of equations

a0 + b0 = c0 + Nd0

a1 + b1 + d0 = c1 + Nd1

·
·
·

2. Multiplication: The product αβ =
∑∞

i=0 ciN
i is the N -adic number deter-

mined by the infinite system of equations

a0b0 = c0 + Nd0

a1b0 + a0b1 + d0 = c1 + Nd1

·
·
·

Theorem 5. ZN is a ring.

It may help the reader get a feel for the N -adic numbers to notice that

−1 = (N − 1) + (N − 1)N + (N − 1)N2 + · · · . (2)

That is, if we add 1 to the N -adic number on the right hand side of equation
(2), the carries propagate infinitely and we get 0.

Next notice that the ordinary integers are a subset of the N -adic numbers.
Indeed, the positive integers are just the N -adic numbers with finitely many
nonzero terms. The negative integers are obtained by multiplying the positive
integers by −1.

Moreover, many N -adic numbers are invertible. Let α =
∑∞

i=0 aiN
i. To in-

vert α, we want an N -adic number γ =
∑∞

i=0 ciN
i so that 1 = αγ. This is

accomplished if the infinite system of equations

1 = a0c0 + Nd0

0 = a1c0 + a0c1 + Nd1

·
·
·
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has a solution. It can be seen that this is the case if and only if gcd(a0, N) = 1.
Consequently, we have

{u
q

: gcd(N, q) = 1, u, q ∈ Z} ⊆ ZN .

Now suppose that A = a0, a1, · · · is the output from an FCSR with connection
number q =

∑k
i=1 qiN

i − 1. Then α(A,N) =
∑∞

i=0 aiN
i is the N -adic number

associated with A.

Theorem 6. For some u ∈ Z we have

α(A,N) =
u

q
∈ ZN .

Proof: For j ≥ k we have

aj + NMj+1 = q1aj−1 + · · · qj−ka0 + Mj ,

so
aj = q1aj−1 + · · · qj−ka0 + Mj −NMj+1.

We can multiply the jth equation by N j and sum from k to infinity. Thus

∞∑
j=k

ajN
j =

k∑
r=1

qr

∞∑
j=k

aj−rN
j + NkMk

=
k∑

r=1

qrN
r

∞∑
j=k

aj−rN
j−r + NkMk.

This implies that

α(A,N)−
k−1∑
j=0

ajN
j =

k∑
r=1

qrN
r(α(A,N)−

k−r−1∑
j=0

aj−rN
j−r) + NkMk.

Now we can solve for α(A,N). We see that

α(A,N) =

∑k
r=0 qrN

r
∑k−r−1

j=0 aj−rN
j−r −NkMk

q
.

��
We can characterize the periodic sequences in terms of this representation.

Theorem 7. A is periodic if and only if −q ≤ u ≤ 0.

Proof: If t is the eventual period of A, then u/q = v/(1−N t) for some integer
v. A is purely periodic if and only if

u

q
= v0 + v1N + · · ·+ vt−1N

t−1 + v0N
t + v1N

t+1 + · · ·+ vt−1N
2t−1 + · · ·

=
v

1−N t
,



A Survey of Feedback with Carry Shift Registers 63

so v = v0 + v1N + · · · + vt−1N
t−1. Thus A is purely periodic if and only if

0 ≤ v ≤ N t − 1, which is equivalent to −q ≤ u ≤ 0. ��
There is an analog of the trace representation of LFSR sequences, Theorem

2. We call this the exponential representation.

Theorem 8. If A is a periodic sequence generated by a FCSR with connection
number q, and A is not all (N − 1)s, then ai = (cN−i mod q) mod N .

This unusual combination of operations means the following. First find γ =
N−1 in Z/(q). Next find cγi in Z/(q). Now lift this to an integer in the set
{0, 1, · · · , q − 1} whose reduction modulo q is cγi. Reduce this element modulo
modulo N to an element of S.

Proof: Let u/q and v/q be the N -adic numbers corresponding to the outputs
from consecutive states of the FCSR. Then

u

q
= ai +

v

q
N

so
u = qai + Nv.

If we reduce this equation modulo q then we see that v = N−1u. If we reduce
this equation modulo N then we see that ai = q−1u ≡ −u. Thus the series
of numerators of the rational representations of the successive tails of A are
obtained by successive multiplication by N−1 modulo q. The successive outputs
are obtained by reducing these numerators modulo N . ��

4 �-Sequences [10]

As with LFSRs, we are most interested in the FCSR sequences of largest period.
We take q as a measure of the size of the FCSR (or perhaps more properly
�log(q + 1)�).

Theorem 9. The eventual period of an FCSR sequence A with connection num-
ber q is a divisor of ordq(N), the multiplicative order of N modulo q.

The largest possible value of ordq(N) is φ(q). In the extreme case, q is prime
and φ(q) = q − 1.

Definition 2. A is an �-sequence if it is generated by a FCSR with connection
number q and the period of A is φ(q).

This is equivalent to saying that N is primitive modulo q, and implies that q
is a power of a prime. For example, the FCSR with connection number q = 27,
whose states are given in Figure 3, outputs an �-sequence if we start it in a
periodic state. Indeed, we saw that the period is 18 = φ(27).

It is important to know how likely it is to find �-sequences. Unfortunately, it
is not even known whether there are infinitely many �-sequences.
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Conjecture 1. (Artin, Heilbronn [8]) The number of primes q with n bits for
which N is a primitive root is asymptotically cn/ ln(n), where c is a constant.

In fact, as was pointed out to the author by Sol Golomb, this conjecture is
known to be true for all but at most two primes q, although it is not known to be
true for all but any particular two primes. A similar statement holds for prime
powers q and all but at most three prime powers. However, it is also known that
if N is primitive modulo a prime q and modulo q2, then it is primitive modulo
qr for every r. This provides us with infinite families of �-sequences.

One of the reasons we are interested in �-sequences is that they have excellent
distribution properties. This is what makes them useful for pseudo-Monte Carlo
simulation.

Theorem 10. Suppose q is prime and let A be an �-sequence generated by an
FCSR with connection number q. Let 1 ≤ r ≤ k. The number of occurrences of
any block B = b0, · · · , br−1 in A is Nk−r or Nk−r − 1.

Proof: Let β =
∑r−1

i=0 biN
i ∈ Z and let q = Nk + e for some integer e. The

number of occurrences of B in a period of A equals the number of shifts of A
that start with B. This in turn equals the number of integers u with −u/q ≡
β mod Nr and 0 < u < q. Since q is invertible mod N , this equals the number
of integers u with u ≡ −qβ mod Nr and 0 < u < q. If v = qβ mod N with
0 ≤ v < N then the set of u ≡ −qβ mod Nr such that 0 < u < q is{

v, v + Nr, · · · , v + Nk−rNr, if v < e

v, v + Nr, · · · , v + (Nk−r − 1)Nr, if v ≥ e.

��
A slightly weaker statement holds when q is a power of a prime.

5 Arithmetic Correlations [6, 11]

It appears that the ordinary correlation properties of �-sequences are not very
good. We would not expect them to be since the linearity that is intrinsic to
cross-correlations is absent from FCSRs. However, we can look for an arithmetic
analog of cross-correlations. We treat only the binary case, N = 2, here. We look
to our third interpretation of cross-correlations, equation (1), for inspiration. For
binary sequences with period L we define the arithmetic cross-correlations [11] as

ΔA,B(t) = # 0s− # 1s in one period of α(A, 2)− α(Bt, 2).

Some care must be taken in how we interpret this definition. By α(A, 2)−α(Bt, 2)
we mean compute the difference as 2-adic numbers. Even if the original 2-adic
numbers have periodic coefficient sequences, the difference may not be purely
periodic. The difference will, however, be eventually periodic (in fact it can be
shown that the difference is periodic at least from the Lth term on). In the
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definition of arithmetic cross-correlations we mean that the numbers of zeros
and ones should be counted only in a legitimate period of the periodic part.

For �-sequences we have L = q−1. In this case we have identically zero shifted
arithmetic autocorrelations: ΘA,A(t) = 0 if t 	= L. Essentially this fact has been
used previously in arithmetic coding. Moreover, suppose that A is an � sequence
with connection number q. By a decimation of A we mean a sequence formed
by taking every dth symbol of A for some positive integer d. A decimation is
proper if d is relatively prime to the period of A, so that the decimation has the
same period as A. Suppose that B and C are two proper decimations of A and
that B and C are cyclically distinct. Then it can be shown that ΘA,B(t) = 0.
This remarkable fact is in stark contrast to the situation with ordinary cross-
correlations. We do not, however, know any applications, and pose this as a
major open problem.

It is also interesting to ask how many cyclically distinct sequences we obtain
by decimating an �-sequence.

Conjecture 2. If q > 13 is prime, then all proper decimations of an �-sequence
with connection number q are cyclically distinct.

It would follow from this conjecture that we have a family of φ(q−1) cyclically
distinct sequences with identically zero arithmetic cross-correlations. Note that
the conjecture is equivalent to saying that A is cyclically distinct from all its
proper decimations. In some cases we know that the conjecture is true or nearly
true [6].

1. Exhaustive search has shown that the conjecture is true for 13 < q <
2, 000, 000.

2. The d = (q − 2)-fold decimation is cyclically distinct from A. (Proof of this
fact uses an analysis of the bit patterns that can occur in �-sequences.)

3. If q ≡ 1 mod 4, then the d = ((q+1)/2)-fold decimation is cyclically distinct
from A. (Proof of this fact uses elementary number theory.)

4. Goresky, Klapper, Murty, Shparlinski showed that for any ε > 0 there is a
constant c > 0, so that there are ≤ cq2/3+ε decimations of A that are cyclic
permutations of A. (Proof of this fact uses exponential sums.)

5. Conjecture 2 is true if q = 2p+1 = 8r+3 with q, p, r prime and 2 a primitive
root mod q. (This is a consequence of the previous result.)

We also observe that Conjecture 2 is equivalent to the following number
theoretic conjecture.

Conjecture 3. Suppose q > 13 is prime. Suppose that c and d are integers with
gcd(c, q) = 1 and gcd(d, q−1) = 1, such that for 0 ≤ x < q, x is even if and only
if cxd mod q is even. Then c = d = 1.

6 Register Synthesis [13]

The problem solved by the Berlekamp-Massey algorithm, that of finding a small-
est LFSR that outputs a given sequence, is one instance of a general class of
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problems. We consider a fixed class of sequence generators G. We assume that
there is some notion of the size of a generator in G, typically approximately the
log (with base equal to the alphabet size) of the number of states of the gener-
ator. Then the register synthesis problem for G is

Instance: A prefix a0, a1, · · · , ar−1 of A

Problem: Find the smallest G ∈ G that outputs A

A solution will only successfully output a generator of A if sufficiently many
symbols of A are available. Thus the effectiveness of such an algorithm depends
on the number, K, of symbols that are needed for success and the time com-
plexity of algorithm. K is typically expressed as a function of λ.

If there is an efficient solution to this problem, then there is an associated
security measure, the G-complexity of A, defined to be the size of the smallest
G ∈ G that outputs A. The G-complexity of A is denoted by λG(A) (or simply
λ(A) if G is clear from the context). If there is an efficient algorithm solving the
register synthesis problem for G, then every keystream must have large λG(A).

The register synthesis problem has been solved in several cases.

LFSRs: The Berlekamp-Massey algorithm solves the LFSR synthesis problem
for sequences over a field with K = 2λ(A) and time complexity in O(K2) [17].
Reeds and Sloane extended the Berlekamp-Massey algorithm to sequences
over Z/(N) [20].

Quadratic FSRs: A quadratic feedback shift register (QFSR) is similar to a
LFSR but the new symbol is computed as a polynomial of the previous
state of degree at most two. Chan and Games described an algorithm that
solves the register synthesis problem for QFSRs with K ∈ O(λ(A)2) and
time complexity in O(λ(A)6 log(λ(A))) ⊆ O(K3 log(K)) [3].

FCSRs: Goresky and Klapper [10] gave a solution to the FCSR-synthesis prob-
lem when N is prime with K = 2(λ(A) + log(λ(A))) and time complexity in
O(K2 log(K)). It is based on the lattice-theoretic analysis of N -adic numbers
due to Mahler [15] and De Weger [22].
Xu and Klapper [13] gave a solution to the FCSR-synthesis problem when
N is arbitrary with K = 6λ(A) + 16 and time complexity in O(K2 +
KN3/2 log(N)). The details of this algorithm are given below.
Arnault, Berger, and Necer showed that the Euclidean algorithm could also
be used to solve the FCSR-synthesis problem for arbitrary N [2].

The Berlekamp-Massey algorithm proceeds by computing successively better
rational approximations to a given power series. It refines the approximations
when the current approximation incorrectly predicts the next symbol (i.e., when
a discrepancy occurs) by adding a multiple of a previous approximation to the
current one, as described in Section 2. It is natural to try to adapt this algorithm
to the FCSR synthesis problem by simply replacing power series by N -adic num-
bers and polynomials by integers. Unfortunately, the resulting algorithm fails to
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find an FCSR that outputs A when a relatively small number of symbols of A are
available. The problem is that when we produce a new rational approximation
by combining with an earlier approximation, the size of the resulting rational
approximation may grow too much, due to the carry from addition of integers.

Xu and Klapper found a way to overcome this difficulty [13]. The idea is to
produce a new rational approximation that is correct for not just one, but three
additional symbols. To make this work we need two mathematical objects. The
first is an index function φ : Z→ R≥0 ∪ {−∞}, defined by

φ(x) =
{
�logN |x|� if x 	= 0
−∞ if x = 0.

The second is an interpolation set P = [−
⌊
N2/2

⌋
,
⌊
N2/2

⌋
] ∩ Z. Central to the

operation and correctness of the algorithm is the following lemma.

Lemma 1. For all x, y ∈ Z the following hold.

1. φ(xy) ≤ φ(x) + φ(y) + 1.
2. φ(x± y) ≤ max{φ(x), φ(y)}+ 1.
3. φ(Nx) = φ(x) + 1, k ∈ N.
4. ∃s, t ∈ P : N3|(sx + ty).
5. ∀s, t, φ(sx + ty) ≤ max(φ(x), φ(y)) + 2.

The goal of the algorithm is to find, for every i, a pair of integers qi, ui so that
qi is odd and α ≡ ui/qi mod N i. That is, N i|(ui − qiα). When a discrepancy
occurs, we let

(ui+1, qi+1) = s(ui, qi) + tN i−m(um, qm),

with s, t chosen from P so that

N i+3|(ui+1 − qi+1α).

The full algorithm is given in Figure 4, where we let Φ(x, y) = max(φ(x), φ(y)).
It follows that all secure keystreams must have large N -adic complexity. This

observation leads to an attack on Rueppel and Massey’s summation combiner
[18]. This is a stream cipher constructed from (in the simplest case) two maximal
period binary LFSR sequences A and B of period 2r−1 and 2s−1, respectively.
The sequences are added term by term modulo N , but the carry is saved and
added in at the next stage. It has been shown that the result has linear complex-
ity ∼ 2r+s [21]. Unfortunately, the addition with carry just amounts to addition
of N -adic numbers, so the N -adic complexity is at most one plus the sum of the
N -adic complexities of A and B. These have N -adic complexities bounded by
their periods, so the output of the summation combiner has N -adic complexity
at most 2r + 2s − 1. In specific cases it may in fact be much smaller than this.
FCSRs were invented specifically to cryptanalyze the summation combiner.

Meier and Staffelbach [19] and others have also found correlation attacks on
the summation combiner.
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Rational Approximation {
input A = {ai ∈ S, 0 ≤ i ≤ k}
α ←− 1 + N

∑k

i=0
aiN

i

(u0, q0) ←− (0, 1)
(u1, q1) ←− (1 + a0N + a1N

2, 1 + N4)
m ←− 0
for (i = m + 1 to k − 1)

if ((ui − qiα) �≡ 0 mod N i+1) {
if ( ∃s �= 0 ∈ P with (N i+3 | s(ui − qiα)))

(ui+1, qi+1) ←− s(ui, qi)
else {

Find s, t ∈ P , not both zero, with
N i+3 | s(ui − qiα) + tN i−m(um − qmα)

(ui+1, qi+1) ←− s(ui, qi) + tN i−m(um, qm)
}
if (Φ(ui+1, qi+1) > Φ(ui, qi)∧

Φ(ui, qi) ≤ i − m + Φ(um, qm) ∧ t �= 0)
m ←− i

}
output u, q with 1 + N(u/q) = uk/qk

}

Fig. 4. Xu and Klapper’s Algorithm for FCSR Synthesis

7 Implementation [5, 10]

In this section we discuss some of the details of the implementation of FCSRs. We
begin by showing that an FCSR is a finite state device [10]. Let w =

∑k
i=1 |qi|.

Theorem 11. If an FCSR is in a periodic state (meaning that the output se-
quence from this state is purely periodic) then the memory is in the range
0 ≤ m < w. If the initial memory mk−1 is greater than or equal to w, then it
will monotonically decrease within �logN (mk−1 − w)�+ k steps until it is in the
range 0 ≤ m < w . If the initial memory is less than 0, then it will monotonically
increase so that within �logN (|mk−1|)�+ k steps it is in the range 0 ≤ m < w.

It follows that an FCSR with connection number q =
∑k

i=1 qiN
i − 1 and

periodic output requires at most k + logN (w) ≤ k + logN (k) + 1 N -ary cells.
Next we describe an alternate architecture for FCSRs that allows fast parallel

implementation. There is a so-called Galois architecture for LFSRs, depicted in
Figure 5.

To change states, a constant multiple of the rightmost cell is added to the
ith cell and the results are put in the (i − 1)st cell. That is, the new value of
ai−1 is ai + qia0 mod N . It can be seen that a periodic sequence is generated by
this device if and only if it is generated by a LFSR with connection polynomial∑k

i=1 qix
i − 1. The advantage is that all the state changes of the individual
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Fig. 6. Galois mode implementation of FCSRs

cells can be performed in parallel so the time required for a state change is
independent of k.

Similarly, there is a Galois architecture for FCSRs, depicted in Figure 6 [5].
We need an additional carry cell between each pair of ordinary cells. To change
states, we compute σi = ai + qia0 + ci. The new value of ai−1 is σi mod N ,
and the new value of ci is �σi/N�. It can be seen that a periodic sequence is
generated by this device if and only if it is generated by a FCSR with connection
number

∑k
i=1 qiN

i− 1. Again, the advantage is that all the state changes of the
individual cells can be performed in parallel, so the time required for a state
change is independent of k.

8 Summary

We have described the structure and basic properties of feedback with carry
shift registers and the sequences they output. We have seen that many of these
properties can be analyzed with the help of the N -adic numbers. This includes
the period of the sequences and the distribution of sub-blocks in the sequences.
It also leads to an arithmetic version of the cross-correlation, and we have seen
that we can produce families of sequences with vanishing pairwise arithmetic
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cross-correlations. We have also seen that there is an efficient solution to the
FCSR synthesis problem. Its quality is within a small constant factor of the
quality of the Berlekamp-Massey algorithm.

We have mentioned a couple of open problems related to FCSRs, and there are
many more. Of a very general nature is the search for more applications of these
lovely devices. It may be possible, for example, to find specific classes of FCSRs
that have even better statistical properties for quasi-Monte Carlo integration. It
should also be possible to use FCSRs as building blocks in the design of stream
ciphers. Arnault, Berger, and Necer have designed such a stream cipher that is
based on a combination of LFSRs and FCSRs [1].

In other papers we have described a number of generalizations of both LFSRs
and FCSRs. The most general form is the algebraic feedback shift registers [12].
The essential idea is that whenever you have a ring like the power series over a
field or the N -adic numbers, you can construct algebraic feedback shift registers.
Various specific cases have been studied in greater detail [7, 9, 13], but there are
still many instances that are only poorly understood.
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Abstract. Merit factor of a binary sequence is reviewed, and construc-
tions are described that appear to satisfy an asymptotic merit factor of
6.3421 . . . Multivariate merit factor is characterised and recursive Boolean
constructions are presented which satisfy a non-vanishing asymptote in
multivariate merit factor. Clifford merit factor is characterised as a gen-
eralisation of multivariate merit factor and as a type of quantum merit
factor. Recursive Boolean constructions are presented which, however,
only satisfy an asymptotic Clifford merit factor of zero. It is demon-
strated that Boolean functions obtained via quantum error correcting
codes tend to maximise Clifford merit factor. Results are presented as
to the distribution of the above merit factors over the set of binary se-
quences and Boolean functions.

1 Introduction

This paper reviews spectral properties of binary sequences and Boolean func-
tions. It deals with aperiodic and continuous spectral properties of the sequence
or function, as quantified by merit factor and aperiodic sum-of-squares, from
which merit factor is derived. The sum-of-squares can be computed in two ways,
firstly by the sum-of-squares of the autocorrelation coefficients and, secondly, by
the sum of the fourth powers of the magnitudes of the spectral values. Merit
factor quantifies the continuous mean-square deviation from the average power
spectrum of the sequence or Boolean function. Therefore it quantifies the degree
of uniformity of spectral energy distribution for the sequence or Boolean function.
It is an attractive metric because it computes a continuous (infinite) property
of the sequence or function by using a relatively small amount of discrete fi-
nite computation. We demonstrate constructions for binary sequences and for
Boolean functions such that the associated merit factors asymptote to constant
values for large sizes. These asymptotes result from convenient number-theoretic
relationships for the sum-of-squares of the associated aperiodic autocorrelation
coefficients.

The univariate merit factor (MF) of a (1,−1) binary sequence has been
relatively well-studied [1, 2, 3, 4, 5, 6, 7, 8, 9] resulting in a few well-known con-
structions based on quadratic residues which have tried to maximise asymptotic
merit factor F [10, 6, 8, 7]. Until recently there was a longstanding conjecture
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[10, 6] that the maximum F achievable by an infinite binary construction is
6.0. In Section 2 we report on a recent construction by Kristiansen and Parker
[11, 12], independently obtained by Borwein, Choi, and Jedwab [13], that satis-
fies F > 6.3. This result is discussed in detail elsewhere in this proceedings [14].
We also report on a variant of this construction which appears to achieve the
same asymptote.

In comparison to the univariate case, merit factor for the multivariate case
remains largely unstudied, apart from some activity with respect to aperiodic
binary (two-dimensional) arrays (e.g. see [15]), and with respect to the peri-
odic sum-of-squares metric for a Boolean function [16]. In Section 3 we con-
sider the extreme multivariate case where each dimension is of size 2 and the
alphabet is (1,−1) binary. These multivariate ’arrays’ are conveniently speci-
fied by Boolean functions. We are, therefore, interested here in merit factors
of sequences described by Boolean functions [11, 17]. We demonstrate that, as
with the one-dimensional case, the multivariate merit factor (MMF) for infi-
nite constructions often asymptotes to a constant value, at least for recursive
quadratic constructions. These constructions exhibit linear recursive formulae
for both univariate and multivariate sum-of-squares and, in these cases, asymp-
totic merit factors are easily computed. This research was initially inspired by a
previous result by Høholdt, Jensen, and Justesen [5] who proved the recursion
γn = 2γn−1+8γn−2 for the univariate sum-of-squares of the Golay-Rudin-Shapiro
sequence of length 2n [18, 19, 20].

In Section 4 we discuss our aim to characterise and evaluate quantum merit
factor (QMF) of a Boolean function where, in this context, the Boolean function
of n binary variables is actually interpreted as a pure quantum multipartite state
of n quantum bits (qubits) [21, 22]. QMF quantifies the degree of uniformity
of energy distribution for the state with respect to the set of transform spectra
resulting from the infinite set of transforms comprising all n-fold tensor products
of 2×2 unitary matrices. High QMF indicates a high degree of uncertainty as to
the joint value obtained by observing the n qubits in any local measurement basis
and is a measure of entanglement of the n qubits [23, 24, 25]. Using brute-force
algorithms on classical computers, it is not possible to compute QMF beyond
about n = 4 qubits to any reasonable accuracy. It is therefore desirable to find
faster algorithms to evaluate QMF , and to recursively construct ’graphical’
quantum states (quantum graphs) [26, 21, 27, 28, 29, 30] such that their QMF is
computed precisely via simple recursive relationships for their quantum sum-of-
squares. This paper achieves both these goals. The second goal is motivated, in
part, by the recent proposal for measurement-driven quantum computation based
on the idea of pre-entangling an array of qubits, where quantum computation is
then undertaken by a series of well-chosen quantum measurements [26, 31, 23, 24].
The form of inter-qubit pre-entanglement chosen for the array can be modelled,
precisely, by a quadratic Boolean function of n variables, as shown by Parker
and Rijmen at SETA01 [21]. Moreover, stabilizer quantum error-correcting codes
(QECCs) are exactly described using quadratic Boolean functions [27, 28, 29,
30]. So the metric of QMF can be used to evaluate entanglement of a graph-
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based multipartite quantum state (QECC), where large QMF indicates high
entanglement 1 .

In Section 5 we back off somewhat from the problem of QMF to consider the
evaluation of something we call Clifford merit factor (CMF). Instead of comput-
ing merit factor with respect to the infinite set of transforms formed from tensor
products of all 2× 2 unitary transforms we, instead, compute merit factor with
respect to the finite set of transforms formed from tensor products of members
of the Local Clifford Group [33, 34, 35, 30]. CMF is a natural generalisation of
MMF as it is computed via a collection of fixed-multivariate aperiodic autocor-
relations over the set of all possible fixings [36], and gives a good indication of the
quantum energy distribution for the associated quantum state. We further show
that CMF is a measure of quantum entanglement of the associated multipartite
state as it remains invariant with respect to local unitary transform of the state.
We also, quite unexpectedly 2, arrive at the conclusion that CMF is precisely
equal to QMF . We also find that, for recursively constructed graphs, CMF can,
once again, be exactly computed via sum-of-squares recursions. CMF is typi-
cally maximised over quadratic Boolean functions which describe zero-dimension
QECCs with maximum distance [33, 35, 36, 37, 38, 22, 39]. Graphs constructed
from adjacency matrices of a bordered-quadratic residue form tend to maximise
CMF [30]. This nicely mirrors the univariate situation where quadratic residue
constructions are central to the optimisation of MF .

We conclude by listing some interesting open problems that this research
suggests.

1.1 Key to Notation

We introduce some of the notation and fundamental spectral concepts that we
use. All of the metrics discussed can be viewed as arising from the output spectra
with respect to unitary transforms over complex space (i.e. the result of a set of
matrix-vector products).

Consider matrix-vector products, Ts, in complex space, where T is a 2n× 2n

unitary matrix, and s is a 2n×1 vector, where both matrix and vector have entries
from C. ’Unitary’ means that TT † = I, where ’†’ means conjugate-transpose and
I is the identity matrix. Transform T is constructed using the following unitary
primitives:

U(θ, φ) =
(

cos θ sin θeiφ

sin θ − cos θeiφ

)
, 0 ≤ θ <

π

2
, 0 ≤ φ < π, (1)

where i2 = −1.

1 QMF satisfies the requirement for an entanglement metric that it is invariant with
respect to local unitary transform of the associated state [32, 21].

2 It was not the author’s original intention to establish the equivalence of CMF and
QMF but it appears that they are equivalent.
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Define I,H,N ∈ {U}, where

I =
(

1 0
0 1

)
,H = 1√

2

(
1 1
1 −1

)
, and N = 1√

2

(
1 i
1 −i

)
.

Define the tensor product (or Kronecker product) as:

A⊗B =

⎛⎜⎝a00B a01B · · ·
a10B a11B · · ·

...
...

. . .

⎞⎟⎠ .

We introduce the notion of a set of identically-dimensioned unitary matrices,
{A0, A1, . . . , Ak−1}, such that an associated set, {A0, A1, . . . , Ak−1}n, comprises
all n-fold tensor products of members of {A0, A1, . . . , Ak−1}, giving a total of kn

unitary matrices, each of size 2n × 2n.
Example: {H}n = H ⊗H ⊗ . . .⊗H defines a set of one 2n × 2n unitary matrix,
which implements the Walsh-Hadamard transform.
Example: {I,H}n = {I ⊗ . . .⊗ I ⊗ I, I ⊗ . . .⊗ I ⊗H, I ⊗ . . .⊗H ⊗ I,
I⊗ . . .⊗H⊗H, . . . H⊗ . . .⊗H⊗H} defines a set of 2n distinct unitary
matrices of size 2n × 2n which implement the so-called {I,H}n-transform.

Let D be the set of all diagonal and antidiagonal 2×2 unitary matrices. Thus

D = {
(

a 0
0 b

)
,

(
0 c
d 0

)
, } (2)

∀a, b, c, d such that |a| = |b| = |c| = |d| = 1.
We use ’�’ to indicate that two 2n × 2n matrices A and B are D-equivalent,

where,

A � B ⇒ A = ΔB for some Δ ∈ Dn. (3)

Then Dn{U}n comprises all 2n × 2n local unitary transforms.
We further define {V } = {U}θ=π/4, i.e. V is the subset of U where all ma-

trix entries have the same magnitude. We also define the infinite transform sets
{W} � {V }N and {X} � {W}N . We can partition {V } into matrix pairs, Fα

and F ′
α, where,

{V } = {Fα, F
′
α | ∀α ∈ C, |α| = 1, 0 ≤ ∠α <

π

2
}, (4)

where Fα = 1√
2

(
1 α
1 −α

)
, and F ′

α = 1√
2

(
1 iα
1 −iα

)
. The rows of Fα relate to the

residue system, mod (x−α)(x+α) = (x2−α2), as left-multiplication of a vector,
s, by Fα can be interpreted as evaluating the residues of s(x) = s0 + s1x mod
(x − α) and mod (x + α). Similarly, the rows of F ′

α relate to a residue system,
mod (x − iα)(x + iα) = (x2 + α2). The combined rows of Fα and F ′

α therefore
relate to a residue system, mod (x4 − α4).
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1.2 Useful Example

Here is an example of the spectral computations underlying MF , MMF , and
CMF . Let p(x) : Zn

2 → Z2 be the Boolean function p(x) = x0x1, where
n = 2. From p we create a 4 × 1 bipolar vector, s = (s00, s01, s10, s11)T , where
sab = (−1)p(x0=a,x1=b). Thus s = (−1)p(x) = (1, 1, 1,−1)T . One computes the
merit factor by first computing the sum-of-squares metric. This, in turn, can be
computed directly by computing the sum-of-squares of the out-of-phase autocor-
relation coefficient magnitudes, but here we, equivalently, sum the fourth powers
of spectral magnitudes, whilst retaining the nomenclature ’sum-of-squares’ for
the resultant sum-of-squares metric.

To compute MF for p we proceed as follows, where N = 2n = 4:

– S = 1
2

⎛⎜⎜⎝
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞⎟⎟⎠ s = (1, i, 1,−i)T .

– S′ = 1
2

⎛⎜⎜⎝
1 ω i ω3

1 ω3 −i ω
1 ω5 i ω7

1 ω7 −i ω5

⎞⎟⎟⎠ s = 1√
2
(1 + ω,−1 + ω7,−1 + ω, 1 + ω7)T ,

where ω =
√

i.
– The univariate sum-of-squares, γ, is

γ = 1
2
(N

2
(
∑

k |Sk|4 +
∑

k |S′
k|4) − N2) = 1

2
( 4
2
(4 + 6) − 16) = 2.

– MF = N2

2γ
= 4.0.

To compute MMF for p we proceed as follows, where n = 2:

– S00 = (H ⊗ H)s = (1, 1, 1,−1)T .
– S01 = (H ⊗ N)s = (1, 1, i,−i)T .
– S10 = (N ⊗ H)s = (1, i, 1,−i)T .
– S11 = (N ⊗ N)s = (1 + i, 0, 0, 1 − i)T .
– The multivariate sum-of-squares, σ, is

σ = 1
2
((
∑

r∈{0,1}n

∑
k∈{0,1}n |Sr

k|4) − 4n) = 1
2
(4 + 4 + 4 + 8 − 16) = 2.

– MMF = 4n

2σ
= 4.0.

To compute CMF for p we proceed as follows, where n = 2:

– S00 = (I ⊗ I)s = (1, 1, 1,−1)T .
– S01 = (I ⊗ H)s = (

√
2, 0, 0,

√
2)T .

– S02 = (I ⊗ N)s = (ω, ω7, ω7, ω)T .
– S10 = (H ⊗ I)s = (

√
2, 0, 0,

√
2)T .

– S11 = (H ⊗ H)s = (1, 1, 1,−1)T .
– S12 = (H ⊗ N)s = (1, 1, i,−i)T .
– S20 = (N ⊗ I)s = (ω, ω7, ω7, ω)T .
– S21 = (N ⊗ H)s = (1, i, 1,−i)T .
– S22 = (N ⊗ N)s = (1 + i, 0, 0, 1 − i)T .
– The fixed-multivariate sum-of-squares, E , is

E = 1
2
((
∑

r∈{0,1,2}n

∑
k∈{0,1}n |Sr

k|4)−6n) = 1
2
(4+8+4+8+4+4+4+4+8−36) = 6.

– CMF = 6n

2E = 3.0.
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1.3 The Rough Guide to Transform Spectra

We also provide a “map” (Fig. 1) that indicates the types of spectra we will be
dealing with and how they relate to each other. For simplicity, the map only deals
with input sequences, s, of length 2n. The map represents sets of spectral outputs,
S, by their associated transforms, T , from which S is computed where S = Ts,
and the different forms of T are indicated on the map. All three metrics, MF ,
MMF , and CMF , describe a property of an infinite spectral set - indicated on
the map by an infinite set of transforms - but, as just shown in the example, each
of the three metrics can be computed using only a finite set of spectral points.
For sequences of length N = 2n, the spectral outputs with respect to (w.r.t.) the
univariate continuous Fourier transform occur as a strict subset of the spectral
set {S} = {V }ns [40]. For example the univariate spectral points generated by
rows of the matrix:

1

2

⎛⎜⎜⎝
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞⎟⎟⎠
can be found as a subset of the rows of the matrices H ⊗ H and N ⊗ H. The
matrix multisets {V I}, {WN}, and {XH}, are defined in definitions 9 and 16.

{I,H,N}n

{V }I

{W }
N

{U}
n

1D
periodic

continuous
1D

{N}{I}

{H}

{I,N}

{I,H}

{W}

{X}

MMF

MF

complementary
sets

aperiodic arrays

Legendre sequences
m−sequences

bent functions

DNA sequencing
linear codes
binary matroids

Isotropic systems
QECCs

quantum

n

nn

n

{V}
n

n

n n {H,N}
n

n

n

fixed−aperiodic
arraysn

{X }H

QMF = CMF

Fig. 1. Map of spectral outputs described by their associated transforms
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2 Univariate Merit Factor

The univariate aperiodic autocorrelation of s is given by,

uk =
N−1∑
j=0

sjs
∗
j+k, −N < k < N, (5)

where sj = 0, N ≥ j < 0.
Alternatively, by representing s as a polynomial s(z) = s0 + s1z + . . . +

sN−1z
N−1, we can express u as u(z) = u1−Nz1−N+u2−Nz2−N+. . .+uN−2z

N−2+
uN−1z

N−1, where
u(z) = s(z)s(z−1)∗. (6)

Using the polynomial form for s, define the univariate continuous fourier trans-
form of s by,

Sk(L, c) =
1√
N

s(e
πi(2tk+c)

L ), 0 ≤ k < N, (7)

where L = tN , t ∈ {1, 2, . . . ,∞}, with c ∈ {{1, 2, . . . , 2t − 1}| gcd(c, 2t) =
1}+ {0, t} mod 2t if t odd, and c ∈ {{1, 2, . . . , 2t− 1}| gcd(c, 2t) = 1} if t even.
Each (L, c) pair defines a different N ×N unitary transform, T (L, c), such that
S(L, c) = T (L, c)s, where Tkj(L, c) = 1√

N
e

πij(2tk+c)
L and the infinite set of spec-

tral points, {Sk(L, c)}, for valid triples (k, L, c) approximates the continuous
univariate Fourier transform spectra infinitely closely. Therefore (7) evaluates
s(z) at all points on the unit circle. We symbolically represent this evaluation as

.

Definition 1. The sum-of-squares, γ, of the sequence, s, is given by,

γ =
1
2
((

N−1∑
k=1−N

|uk|2)−N2) =
N−1∑
k=1

|uk|2. (8)

Definition 2. The merit factor, MF , of the sequence, s, is given by,

MF =
N2

2γ
. (9)

Definition 3. Let sA be a length N sequence generated by construction A. Then
the asymptotic merit factor of sA is given by,

F = lim
N→∞

MF(sA).
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2.1 Transform ⇔ Autocorrelation Duality

The Wiener-Kinchine theorem states that (5) and (7) are related by

N−1∑
k=1−N

|uk|2 =
N

2
(
N−1∑
k=0

|Sk(L, c)|4 + |Sk(L, c′)|4), (10)

where c′ = c + t mod 2t, c = 0 if t = 1, c ∈ {{1, 2, . . . , 2t − 1}| gcd(c, 2t) = 1}
if t odd, and c ∈ {{1, 2, . . . , t − 1}| gcd(c, 2t) = 1} if t even. The reason for
the choice of pairings (c, c′) becomes clear when we consider an embedding of
the non-modular polynomial multiplication (6) in a polynomial modulus (i.e.
we realise an aperiodic autocorrelation using a constaperiodic autocorrelation).
Specifically, let

u′(z) = s(z)s(z−1)∗ mod (z2N − ε), (11)

where ε is a complex root of one of order t, t ∈ {1, 2, . . . ,∞}. Then,

u′
k = uk, 0 ≤ k < N,

u′
k = ε−1uk−2N , N < k < 2N,

u′
k = u′

N = 0 otherwise.

In particular,
2N−1∑
k=0

|u′
k|v =

N−1∑
k=1−N

|uk|v, ∀v. (12)

So, from (8), we can use (11) instead of (6) to compute γ. (10) follows directly
from (11) and (12) because we can factorise (11) into two residue computations
mod (zN−η) and mod (zN +η), where η is a complex root of one of order 2t such
that η2 = ε. Then s(z)s(z−1)∗ mod (zN − η) and s(z)s(z−1)∗ mod (zN + η) can
be computed by evaluating s(z)s(z−1)∗ at the N residues z ∈ {eπi(2tk+c)

L |0 ≤ k <

N}, and at the N residues z ∈ {eπi(2tk+c′)
L |0 ≤ k < N}, respectively. In particular

u′(e
πi(2tk+d)

L ) = |Sk(L, d)|2, d ∈ {c, c′}. One then obtains (10) by Parseval (or
the Chinese Remainder Theorem). The main point here is that we obtain (10)
and exactly the same value of γ for any choice of complex root, ε, of order 2t. By
considering all such ε, |Sk(L, d)| ranges over the continuous fourier magnitude
spectrum and, therefore, as γ is independent of ε, γ evaluates a property of
the continuous fourier spectra, namely the mean-square deviation from the flat
continuous fourier power spectrum. Specifically,

γ =
1
4π

∫ 2π

0

(|s(eiω)|2 −N)2dω.

In this paper we choose to compute γ by selecting ε = 1, leading to L = N and
(c, c′) = (0, 1), and allowing us to abbreviate Sk(L, d) to Sk and S′

k for d = c
and d = c′, respectively, as done in Section 1.2.



80 M.G. Parker

2.2 Expected Values and Constructions

The maximum merit factor known is for the length N = 13 sequence,
0101001100000, for which MF = 14.083, although there is no proof that this
is the true maximum over all N . F exists for many infinite sequence construc-
tions. Experimental results suggest that, for a random binary sequence, F = 1.0,
as indicated by the following graphs of random samplings for (from left to right)
N = 16, 64, 512, and 1024, with merit factor and # sequences on x and y-axes,
respectively, with x-axes ranging linearly from 0 to 4, and where the highest peak
is centred aroundMF = 1.0 ever more tightly as N increases (we leave the graph
axes unmarked as we simply wish to indicate the general trend as N increases):

1 1 1 1

Although binary sequences with merit factors around 8.0 or 9.0 have been found
up to lengths N = 250, the maximum known asymptotic merit factor was, un-
til recently, F = 6.0. This asymptote is satisfied by the Legendre construction
[10, 6, 41], the Jacobi and modified Jacobi construction [8, 42], and is conjectured
to be satisfied by a negaperiodic construction of Parker [43]. In his recent mas-
ter’s thesis [11], Kristiansen describes a construction based on an extended Leg-
endre sequence which satisfies, experimentally, F > 6.3. Independently, Borwein,
Choi and Jedwab [13] proposed a construction which satisfies, experimentally,
F = 6.3421 . . .. These two constructions generate essentially the same sequence,
although only [13] discovered the periodic form of the extension and provided
theoretical arguments as to the precise values of the asymptote and construction
parameters. Detailed descriptions of the constructions can be found in [12] and
[13], and elsewhere in this publication [14]. Both Kristiansen and Parker, and
Borwein, Choi and Jedwab were influenced by prior work of two master’s stu-
dents of Jim Davis, Kirilusha and Narayanaswamy [44], who first developed the
essential form of the construction by realising that extending a 1

4 -rotated Legen-
dre sequence by up to O(

√
N) elements does not change F from 6.0. Moreover

they noticed that if the extension was periodic they could even increase F above
6.0, although they did not uncover an asymptote. A summary of some of the
constructions with large F is now given.

Legendre Construction [10]

– Select a prime integer, m.
– Construct the {1,−1} sequence, l = (l0, l1, . . . , lm−1)T , of length m, such

that lj = 1 if ∃k such that k2 = j mod m, (in which case j is called a
quadratic residue, mod m). Otherwise lj = −1. By convention, l0 = 1.

– Construct s as the periodic rotation of l by 1
4 of its length:

sj = lj+�m
4  mod m.

l is the Legendre sequence and satisfies F(l) = 1.5.
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Theorem 1. For s a 1
4 -rotated Legendre sequence:

F(s) = 6.0.

Construction – Borwein, Choi and Jedwab [13]

– Construct a Legendre sequence, l, using a prime, m.
– Construct lr to be a periodic rotation of l by 0.2211m (or by 0.7211m):

lrj = lj+�rm mod m, r ∈ {0.2211, 0.7211}.
– Construct the length 1.0578m “BCJ-sequence”, s, as the periodic extension

of lr by 0.0578m:

sj = lrj , 0 ≤ j < m, sj+m = lrj , 0 ≤ j ≤ �0.0578m�.

Conjecture 1. For s a “BCJ-sequence”:

F(s) = 6.3421 . . ..

Construction – Kristiansen [11, 12]

– Construct a Legendre sequence, l, using a prime, m.
– Assign k = 0 and lk = l.
– Step A: Construct l+ and l− as the periodic and negaperiodic rotations of

lk by one element:

l+j = lk
j+1 mod m

, l−j = (−1)�
j+1
m lk

j+1 mod m
, 0 ≤ j < m.

– If MF(l+) ≥MF(l−) then assign lk+1 = l+ else assign lk+1 = l−.
– Assign k = k + 1.
– If k < 0.31m then loop back to step A.
– Construct the sequence, T , such that,

T = l|l1m−1|l2m−1| . . . |lkm−1,

where ’a|b’ means concatenate b onto the end of a.
– Construct the “K-sequence”, sr, of length �1.059m�, such that,

sr
j = Tj+rm, 0 ≤ j < �1.059m�,

where r < 0.242m.

Conjecture 2. For sr a “K-sequence”, ∃r such that

F(sr) > 6.3 . . ..

The intuition behind the construction of Kristiansen and Parker is that a
sequence with high merit factor should contain subsequences with moderately
high merit factor. After becoming aware of the preprint [13], Kristiansen and
Parker realised that, in all but four small-length cases, MF(l+) appears to be
always greater thanMF(l−) for each k-iteration. It follows that, to within some
inaccuracies in periodic extension and rotation length, the optimal “K-sequence”
is the “BCJ-sequence”.
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Construction – Parker

Empirical evidence indicates that the asymptote of F(s) = 6.3421 . . . also holds
true for a periodic rotation and extension of the (modified)-Jacobi construction.
We here summarise yet another construction that appears to satisfy the same
asymptote, namely the negaperiodic rotation and extension of the negaperiodic
construction of [43].

– Construct a Legendre sequence, l, using a prime, m.
– Construct N such that

N = (l|l)" (1, 1,−1,−1, 1, 1,−1,−1, . . .)T ,

where ’a|b’ is the concatenation of vectors, and (w) = (u) " (v) implies
wi = uivi.

– Construct N r as the negaperiodic rotation of l by 0.4705(2m) (or by
0.9705(2m)):

N r
j = (−1)

h
2mNh mod 2m,

where h = j + �r(2m)�, 0 ≤ j < 2m, and r ∈ {0.4705, 0.9705}.
– Construct the length 1.0578(2m) “P-sequence”, s, as the negaperiodic exten-

sion of N r by 0.0578(2m):

sj = N r
j , 0 ≤ j < 2m, sj+2m = −N r

j , 0 ≤ j ≤ �0.0578(2m)�.

Conjecture 3.
F(N ) = 6.0.

Conjecture 4. For s a “P-sequence”:

F(s) = 6.34 . . ..

An alternative periodic version of the same construction is as follows.

– Construct a Legendre sequence, l, using a prime, m.
– Construct L such that

L = (l|l)
– Construct Lr as the periodic rotation of l by 0.4705(2m) (or by 0.9705(2m)):

Lr
j = Lj+�r(2m) mod 2m,

where 0 ≤ j < 2m and r ∈ {0.4705, 0.9705}.
– Construct the length 1.0578(2m) sequence, s′, as the periodic extension of
Lr by 0.0578(2m):

s′j = Lr
j , 0 ≤ j < 2m, s′j+2m = Lr

j , 0 ≤ j ≤ �0.0578(2m)�.

– Construct the length 1.0578(2m) “P-sequence”, s, such that

s = s′ " (1, 1,−1,−1, 1, 1,−1,−1, . . .)T .
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The Golay-Rudin-Shapiro Construction

Both the m-sequence and Golay-Rudin-Shapiro sequence [18, 19, 20] satisfy F =
3.0. The latter construction can be described using Boolean functions as shown
by Davis and Jedwab [45]. Define p(x) : Zn

2 → Z2 as

p(x) = (
n−2∑
i=0

xπ(i)xπ(i+1)) + (
n−1∑
i=0

cixi) + d, (13)

where π : Zn → Zn is a permutation of the integers, mod n, ci, d ∈ Z2.

– Construct the length 2n sequence, sπ, such that,

sπ
j = (−1)p(xi=ji), (14)

where j =
∑n−1

i=0 2ji and ji ∈ {0, 1}, ∀i.

Theorem 2. [1, 5] When π is the identity permutation, then s = sπ is the
Golay-Rudin-Shapiro sequence and

F(s) = 3.0.

Proof. Let γn be the sum-of-squares for s constructed from p over n binary
variables. It can be shown that [5],

γn = 2γn−1 + 8γn−2.

In closed form, γn = 4n

6 −
(−2)n

6 . The asymptote follows from (9) as n→∞. ��

Remark: It is currently unclear whether F(sπ) = 3.0 over the complete set
of permutations, π, or whether asymptotes above and below 3.0 can be ob-
tained by suitable choice of permutation [11]. For instance, for n = 8, 2.27 ≤
MF(sπ) ≤ 4.49.

Table 1. Conjectures on F for certain graphical constructions

graph p(x) F(s) γn - recursion

circle (
∑n−2

i=0 xixi+1) + xn−1x0 1 4γn−1 + 12γn−2 − 64γn−3 + 256γn−5

complete
∑

i<j,1≤j<n xixj 0 γn = 10γn−1 − 36γn−2 + 88γn−3

−96γn−4 − 512γn−5 + 1024γn−6

star x0(x1 + x2 + . . . + xn−1) 0 γn = 16γn−1 − 68γn−2 − 48γn−3

+768γn−4 − 1024γn−5

Other Graphical Constructions

Quadratic Boolean functions, p(x), have a natural interpretation as graphs where,
for p(x) =

∑
i<j aijxixj , the adjacency matrix, Γ , of the associated graph satis-

fies Γij = Γji = aij for i < j and Γii = 0. Thus one can view the Golay-Rudin-
Shapiro sequence as the path graph with a particular ordering of the vertices.
Table 1 summarises conjectures, first presented in [17], as to the value of MF
for a few other simple recursive graph constructions.
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3 Multivariate Merit Factor

The multivariate merit factor MMF was first investigated by Gulliver and
Parker in [17], as a modification of the metric first introduced by Kristiansen in
[11]. Define the multivariate sequence, s, with each dimension of s of length 2,
such that,

s = (s0...00, s0...01, s0...10, . . . , s1...11)T

sj ∈ {1,−1}, j ∈ {0, 1}n

sj = 0, otherwise.

The multivariate sequence, s, is always, in this paper, constructed via its asso-
ciated Boolean function, p, such that,

s = (−1)p(x),

where sj = (−1)p(x=j), and x, j ∈ Zn
2 .

The multivariate aperiodic autocorrelation of s is given by,

uk =
∑

j∈{0,1}n

sjs
∗
j+k, k ∈ {−1, 0, 1}n. (15)

Alternatively, by representing s as a multivariate polynomial,

s(z0, z1, . . . , zn−1) = s0...00 + s0...01z0 + s0...10z1 + . . . + s1...11zn−1 . . . z1z0,

we can compute u where,

u(z0, z1, . . . , zn−1) = s(z0, z1, . . . , zn−1)s(z−1
0 , z−1

1 , . . . , z−1
n−1)

∗. (16)

Define the multivariate continuous fourier transform of s by,

Sk(L, c) = 2−
n
2 s(zj = e

πi(2tjkj+cj)
Lj | 0 ≤ j < n), k ∈ {0, 1}n, (17)

where L = 2t, tj ∈ {1, 2, . . . ,∞}, with cj ∈ {{1, 2, . . . , 2tj − 1}| gcd(cj , 2tj) =
1} + {0, tj} mod 2tj if tj odd, and cj ∈ {{1, 2, . . . , 2tj − 1}| gcd(cj , 2tj) = 1} if
tj even. Each (L, c) pair defines a different 2n × 2n unitary transform, T (L, c),
such that S(L, c) = T (L, c)s, where

T (L, c) = 2−
n
2

n−1⊗
j=0

⎛⎝1 e
πicj
Lj

1 −e
πicj
Lj

⎞⎠ ,

and the infinite set of spectral points, {Sk(L, c)}, for valid vector triples (k,L, c)
approximates the continuous multivariate Fourier transform spectra infinitely
closely. From section 1.1 it is apparent that

{T (L, c)} = {V }.

(17) evaluates s(z0, z1, . . . , zn−1) at all points on the multi-unit circle. We sym-

bolically represent this evaluation as . . . .



Univariate and Multivariate Merit Factors 85

Definition 4. The multivariate sum-of-squares, σ, of the sequence, s, is given
by,

σ =
1
2
((

∑
k∈{−1,0,1}n

|uk|2)− 4n) =
1
2

∑
k∈{−1,0,1}n,k�=0

|uk|2. (18)

Definition 5. The multivariate merit factor, MMF , of the sequence, s, is
given by,

MMF =
4n

2σ
. (19)

Definition 6. Let sA be a length 2n multivariate sequence generated by con-
struction A. Then the asymptotic multivariate merit factor of sA is given by,

FM = lim
n→∞

MMF(sA).

MMF Symmetries

Lemma 1. Let s = (−1)p(x), where p is a Boolean function of n variables. Let
s′ = (−1)p′(x), where

p′(x) = p(x̃π(0), x̃π(1), . . . , x̃π(n−1)) + (
n−1∑
i=0

cixi) + d,

where x̃ ∈ {x, x+ 1}, π : Zn → Zn is a permutation of the integers, mod n, and
ci, d ∈ Z2. Then,

MMF(s′) = MMF(s).

3.1 Transform ⇔ Autocorrelation Duality

Let r ∈ {0, 1}n and define d(r) = (d(r)0, d(r)1, . . . , d(r)n−1) such that

d(r)j = cj + rjtj , mod 2tj ,

where cj ∈ {{1, 2, . . . , 2tj−1}| gcd(cj , 2tj) = 1} if tj odd, and cj ∈ {{1, 2, . . . , tj−
1}| gcd(cj , 2tj) = 1} if tj even, 0 ≤ j < n. A multivariate version of the Wiener-
Kinchine theorem states that (15) and (17) are related by∑

k∈{−1,0,1}n

|uk|2 =
∑

k,r∈{0,1}n

|Sk(L,d(r))|4. (20)

We realise the aperiodic autocorrelation by embedding the non-modular poly-
nomial multiplication (16) in a polynomial modulus: Let

u′(z0, z1, . . . , zn−1) = s(z0, z1, . . . , zn−1)s(z−1
0 , z−1

1 , . . . , z−1
n−1)

∗ mod
n−1∏
j=0

(z4
j − εj)

(21)
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where εj is a complex root of one of order tj , tj ∈ {1, 2, . . . ,∞}, 0 ≤ j < n.
Then, with k ∈ {−1, 0, 1}n and k′ ∈ {0, 1, 3}n,

u′
k′ = (

n−1∏
j=0

ε
−�

k′
j
2 

j )uk, k′j = kj mod 4.

In particular, ∑
k′∈{0,1,3}n

|u′
k′ |v =

∑
k∈{−1,0,1}n

|uk|v, ∀v. (22)

So, from (18), we can use u′ instead of u to compute σ. (20) follows directly from
(21) and (22) because we can factorise (21) into two residue computations per
dimension, mod (z2

j − ηj) and mod (z2
j + ηj), where ηj is a complex root of one

of order 2tj such that η2
j = εj . The two residue computations per dimension are

realised by left-multiplication by matrices, Fαj
and F ′

αj
(see (4)), where ηj = α2

j .
Then, for each r ∈ {0, 1}n, we compute
s(z0, z1, . . . , zn−1)s(z−1

0 , z−1
1 , . . . , z−1

n−1)
∗ mod

∏n−1
j=0 (z2

j − (−1)rjηj) by evaluat-

ing s(z)s(z−1)∗ at the 2n residues, zj ∈ {e
πi(2tjkj+d(r)j)

Lj |k ∈ {0, 1}n}. In par-

ticular u′(zj = e
πi(2tjkj+d(r)j)

Lj | 0 ≤ j < n) = |Sk(L,d(r))|2. One then ob-
tains (20) by Parseval (or the Chinese Remainder Theorem). We obtain (20)
and exactly the same value of σ for any choice of vector of complex roots,
ε̄ = (ε0, ε1, . . . , εn−1), where εj has order tj . The infinite set of transforms
{V }n is obtained by considering all such ε̄, so that |Sk(L,d(r))| ranges over
the continuous multivariate fourier spectrum. Therefore, σ evaluates the mean-
square deviation from the flat continuous multivariate fourier power spectrum.
Specifically,

σ =
1
4π

∫ 2π

0

∫ 2π

0

. . .

∫ 2π

0

(|s(eiω0 , eiω1 , . . . , eiωn−1)|2 − 2n)2dω̄,

where ω̄ = (ω0, ω1, . . . , ωn−1).
In this paper we choose to compute σ by selecting η̄ = (1, 1, . . . , 1), leading

to Lj = 2 and (cj , c
′
j) = (0, 1), ∀j. Therefore T (L, c) = {H,N}n for H and N

as defined in Section 1.1, and Sk(L,d(r)) can be abbreviated to Sr
k, as done in

Section 1.2. {Sr
k} is a set of 4n spectral points.

3.2 Expected Values and Constructions

Maximising theMMF of a Boolean function indicates a minimum mean-square
deviation from the flat continuous multivariate fourier power spectrum. Unlike
the univariate case, the Boolean multivariate problem does not appear to have
been investigated before [17]. Initial investigations suggest that the maximum
MMF may be for the n = 2 variable sequence 0001, for which MMF =
4. Table 2 shows the equivalence classes for Boolean functions of n = 2 to 5
variables, where the set of inequivalent functions is obtained from [46].
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Table 2. Complete set of multivariate merit factors for n = 2 to n = 5

n # inequivalent functions # equivalence classes with list of MMFs

2 2 2 classes
4.000, 0.8

3 5 3 classes
2.667, 1.143, 0.421

4 39 18 classes
3.200, 1.778, 1.600, 1.455, 1.333, 1.231, 1.143, 1.067, 1.000,
0.941, 0.842, 0.800, 0.727, 0.696, 0.640, 0.552, 0.400, 0.246

5 22442 80 classes
2.909 − 0.152

Experimental results suggest that, for a random Boolean function of n vari-
ables, FM = 1.0, as indicated here by the random samplings for (from left to
right) n = 4, 6, 9 and 10, where MMF and #sequences are x and y-axes, re-
spectively, with x-axes ranging linearly from MMF = 0 to 4, and where the
highest peak approaches FM = 1.0 as n increases.

1 1 1 1

In comparison, a sampling of just quadratic Boolean functions for n = 4, 6, 9 and
10 indicates a wider range of MMFs for a given n than for the full space of
Boolean functions although, once again, the highest peak appears to approach
FM = 1.0 as n gets large. Once again, the x-axis ranges linearly fromMMF = 0
to 4 and the y-axis indicates #sequences.

1 1 1 1

Conjecture 5. A random Boolean function satisfies,

FM = 1.0.

Definition 7. Define Q to be the complete set of homogeneous quadratic Boolean
functions over n variables, i.e. q ∈ Q iff q =

∑
j<k cjkxjxk, cjk ∈ Z2.

Definition 8. Let S be an arbitrary subset of n-variable Boolean functions. De-
fine SQ = {s + q | ∀s ∈ S, q ∈ Q}.
Theorem 3. The average value of 1

MMF with respect to any set SQ is,

average SQ(
1

MMF ) =
2n − 1

2n
.
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Proof. Using arguments similar to [9], observe, from (16) and (18), that,

2σ + 4n =
∑

j+k=l+m

sjskslsm, (23)

where j,k, l,m ∈ {0, 1}n and the ’+’ for the subscript of the summation is
not mod 2. Now p(x) = 0 if p(x) is a homogeneous quadratic and wt(x) ≤ 1,
where wt(y) means the number of non-zero components of y. We partition the
summation (23) as follows:

– wt(j),wt(k),wt(l),wt(m) ≤ 1:
• j = k = l = m → this case contributes 2n to the summation.
• j = l, k = m, or j = m, k = l. → there are 2n(2n−1)

2 pairs in 4 configu-
rations each, contributing a total of 42n(2n−1)

2 to the summation.
– Otherwise there are one or more of j,k, l and m with weight > 1. W.l.o.g.

assume that j has weight 2 or greater. In particular, assume that j is 1 in
positions ja and jb. We are summing over |S| copies of each of the homoge-
neous quadratics. Exactly half of these quadratics will contain the monomial
xaxb. Therefore the contribution to the summation in this case is zero.

Therefore (23) evaluates to 2n + 42n(2n−1)
2 and Theorem 3 follows. ��

Corollary 1. The set of n-variable Boolean functions of degree d or less sat-
isfies, average ( 1

MMF ) = 2n−1
2n for any d, 2 ≤ d ≤ n, and, consequently,

average ( 1
MMF ) → 1.0 as n→∞.

Remark: Theorem 3 is similar to a theorem by Newman and Byrnes [9] for
the univariate case which states that, for a random binary sequence of length N ,
average ( 1

MF ) = N−1
N

.

Table 3 is taken from [17] and summarises constructions, described by Boolean
functions, p(x), where s = (−1)p(x). The constructions represent a larger class of
MMF-invariant sequences, as generated by Lemma 1, and the recursions have
all been proven. σn is the value of σ for the construction over n variables.
Remark: From Theorems 2 and Table 3 the values for univariate and multi-
variate sum-of-squares for the path are the same if π is the identity permutation.

Table 3. FM for certain graphical constructions [17]

graph p(x) FM(s) σn - recursion σn - closed form

path
∑n−2

i=0 xixi+1 3 2σn−1 + 8σn−2
4n

6
− (−2)n

6

circle (
∑n−2

i=0 xixi+1) + xn−1x0 1 2σn−1 + 8σn−2
4n

2
− (−2)n

2

complete
∑

i<j,1≤j<n xixj 0 10σn−1 − 20σn−2
6n

4
− 4n

2
+ 2n

2
− (−2)n

4

−40σn−3 + 96σn−4

star x0(x1 + x2 + . . . + xn−1) 0 12σn−1 − 44σn−2 2n − 4n

2
+ 6n

6

+48σn−3
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Conjecture 6. The maximum MMF is always obtained by the path graph.

It is expected that a much larger class of Boolean functions which generalises
the path graph, as described in [40], will generate a large set of multivariate
sequences with maximal or near-maximal MMF . This set can also be seen
as arising from the union of certain Golay complementary sets of length 2n

[18, 47] and satisfies a tight upper-bound on the peak-to-average power ratio of
the spectra with respect to {V }n - for this reason the sequences should have
high MMF .

4 Towards a Quantum Merit Factor

Section 3 has established thatMMF quantifies a spectral property with respect
to the infinite set of 2n × 2n local unitary transforms, {V }n. In contrast, one
quantifies the spectral properties of a pure quantum state of n qubits with respect
to the infinite set of all possible 2n × 2n local unitary transforms, Dn{U}n, (see
(1) and (2)), where {V } ⊂ {U} [48, 21, 32, 25]. This leads to the idea of a quantum
merit factor (QMF), derived from a quantum sum-of-squares metric.

Lemma 2. Let T and T ′ be two 2n × 2n matrices such that T ′ � T (see (3)).
Let S = Ts and S′ = T ′s. Then,∑

k

|S′
k|v =

∑
k

|Sk|v, v ≥ 0.

We wish to compute QMF by summing the fourth powers of spectral magni-
tudes with respect to Dn{U}n but it follows from Lemma 2 that we need only
sum over the spectra with respect to {U}n to compute QMF . Symbolically, for
n = 1, we view this as summarising the fourth powers over the complete sphere
(otherwise known as the Bloch Sphere [48]):

H

H

/2N N

Fig. 2. The Bloch Sphere with points on the sphere described by U(θ, φ) (see (1))
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where H and N are indicated on the ’equator’ of each sphere. For n > 1 this
becomes a summation over the joint n-sphere:

H

H

/2N N

H

H

/2N N

. . . . . .

H

H

/2N N

MMF only quantifies merit factor with respect to the equators of the n-
sphere. In section 5 we characterise and investigate the Clifford merit factor
(CMF), which we show quantifies merit factor with respect to three pole/equator
pairs. We then generalise to show that CMF quantifies merit factor with respect
to the complete n-sphere, and is therefore equal to QMF .

5 Clifford Merit Factor

Definition 9. For Fα, F
′
α as defined in (4), let {V I} be an infinite multi-set of

transforms, where 1
3 of all elements in {V I} are the 2×2 identity, I, and where,

{V I} = {{I, Fα, F
′
α} | ∀α ∈ C, |α| = 1}.

Note that |{V I}| = 3
2 |{V }|. Just as it is sufficient to compute merit factor with

respect to {V }n by summing fourth powers of spectral magnitudes with respect
to {H,N}n so, for the merit factor with respect to {V I}n, it is sufficient to
sum up fourth powers of spectral magnitudes with respect to {I,H,N}n. We
represent this transform set visually as,

{V}

N N

I

I H

H

{V}

N N

I

I H

H . . . . . .

{V}

N N

I

I H

H

which evaluates a merit factor with respect to any tensor combination of discrete
’poles’, I, and continuous ’equators’, {H,N}.

For the multivariate sequence, s, as defined in Section 3, we evaluate the set
of 3n spectra, {S}, with respect to {I,H,N}n, where

S = {Sr} = {S00...0, S00...1, S00...2 . . . , S22...2} = {I,H,N}ns,

and
Sr = {Sr

k} = (Sr
00...0, S

r
00...1 . . . S

r
11...1)

T ,

where r ∈ {0, 1, 2}n, k ∈ {0, 1}n, and ri = 0, 1 or 2 implies I,H or N , respec-
tively, in tensor position i. {Sr

k} is a set of 6n spectral points.
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Definition 10. The Clifford sum-of-squares, E, of the sequence, s, is given by,

E =
1
2
((

∑
k ∈ {0, 1}n

r ∈ {0, 1, 2}n

|Sr
k|4)− 6n). (24)

Definition 11. The Clifford merit factor, CMF , of the sequence, s, is given by,

CMF =
6n

2E . (25)

Definition 12. Let sA be a length 2n multivariate sequence generated by con-
struction A. Then the asymptotic Clifford merit factor of sA is given by,

FC = lim
n→∞

CMF(sA).

Let b, e ∈ Zn
2 . Let wt(b) be the binary weight of vector b. Let p(xb,e) :

Zn−wt(e)
2 → Z2, be the restriction of p to n − wt(e) variables, where xi = bi if

ei = 1, where b � e, and ’�’ means that bi ≤ ei, ∀i.
Define se,b = (−1)p(xb,e), where sj,e,b = (−1)p(xb,e=j), j ∈ Zn−wt(e)

2 , sj,e,b =
0 otherwise. The fixed-aperiodic autocorrelation [36] of s is given by,

uk,b,e =
∑

j∈{0,1}n−wt(e)

sj,b,es
∗
j+k,b,e, k ∈ {−1, 0, 1}n−wt(e). (26)

An alternative to Definition 10 for E is given by Definition 13.

Definition 13. The Clifford sum-of-squares, E, of the sequence, s, is given by,

E = 1
2 ((
∑

e∈{0,1}n

∑
b∈{0,1}n,b�e

∑
k∈{−1,0,1}n−wt(e) |uk,b,e|2)− 6n)

= 1
2

∑
e∈{0,1}n

∑
b∈{0,1}n,b�e

∑
k ∈ {−1, 0, 1}n−wt(e)

k �= {0}n−wt(e)

|uk,b,e|2. (27)

We refer to these metrics as“Clifford”becausethe unitarymatrix set,{I,H,N},
generates the Local Clifford Group [34, 24, 49]. This means that {I,H,N} stabi-
lize the Pauli matrices, I,

(
0 1
1 0

)
,
(

1 0
0 −1

)
, and i

(
0 −1
1 0

)
.

CMF Symmetries
If |Sr

k| = |Sr
j |, ∀j,k ∈ Zn

2 , then we call Sr a flat spectra. In such a case we express
Sr as

Sr = ω4pr(x)+a(x),

where ω is a complex root of one of order 8 and pr(x) : Zn
2 → Z2 is a Boolean

function. Let sr = (−1)pr(x).

Definition 14. Define the IHN-orbit, sorb, of s, by

sorb = {sr | ∀r such that Sr is flat and deg(a(x)) ≤ 1}.
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Let s′ and p′(x) be as defined in Lemma 1. Then,

Lemma 3. For sr ∈ sorb,

CMF(s′r) = CMF(s).

The IHN-orbit is largest in size for p(x) quadratic where the symmetry re-
duces to a graphical symmetry called local complementation [50, 51, 37], also
referred to as vertex-neighbour-complementation [30].

5.1 Transform ⇔ Autocorrelation Duality

From (24) and (27),∑
e∈{0,1}n

∑
b∈{0,1}n,b�e

∑
k∈{−1,0,1}n− wt (e)

|uk,b,e|2 =
∑

k ∈ {0, 1}n

r ∈ {0, 1, 2}n

|Sr
k|4. (28)

Proof. The autocorrelation of (26) is the union of a set of multivariate aperiodic
autocorrelations where, for fixed e and b, each such autocorrelation is of the
form of (15) and is computed over n− wt(e) variables, after having fixed wt(e)
variables, xi, to bi, if ei = 1. This fixing is mirrored in the spectral domain by
assigning ri = 0 iff ei = 1. In other words, matrix I occurs in the ith tensor
position of the transform T ∈ {I,H,N}n iff ei = 1, where the first and second
rows of I reflect xi = bi = 0 and xi = bi = 1, respectively. (28) follows by
summing instances of (20) for each choice of e and b. ��

5.2 Clifford Merit Factor Is Quantum Merit Factor

Definition 15. The normalised quantum sum-of-squares with respect to the
transform set, {A}n, is given by,

E{A}n =
3n

2

(
||S||4{A}n

|{A}|n − 2n

)
, (29)

where ||S||4{A}n is the sum of the fourth powers of the spectral magnitudes with
respect to the transform set {A}n.

We recover definition 10 from (29) by assigning {A} = {I,H,N}. For {A} =

{V I} we obtain E{V I}n = 2n−1

(
||S||4{V I}n

|{V }|n − 1
)

, by substituting |{V I}| = 3|{V }|
2 .

Lemma 4.
E{I,H,N}nZ = E{V I}nZ , ∀Z ∈ Dn{U}n.
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Recalling section 1.1, (3), (4), and definition 9,

Definition 16. Define {WN} � {V I}N , and {XH} � {WN}N .

{V I}, {WN}, and {XH} describe the following pole/equator pairs, respectively:

{V}

N N

I

I H

H
I

I

H

H

N N

{W}

H

H

N N

I

I

{X}

Proposition 1. E{A}n = E for {A} = {{V I}, {WN}, {XH}}, and
{A} = {{V }, {W}, {X}}, which we visualise as:

{V}

N N

I

I H

H

{X}

{W}

{V}

N N

I

I H

H

{X}

{W}

. . .

{V}

N N

I

I H

H

{X}

{W}

Proof. We know that E{V I} = E . As {WN} � {V I}N it follows, from Lemma
4, that E{W N} = E{I,H,N}N = E{N,I,H} = E . Likewise, as {XH} � {V I}N2 it
follows, from Lemma 4, that E{XH} = E{I,H,N}N2 = E{H,N,I} = E . The sim-
plification to {{V }, {W}, {X}} occurs because we can remove surplus element
triples, {I,H,N}, from {{V I}, {WN}, {XH}} without changing the normalised
spectral sum. The argument extends to any tensor combination of the three
pole/equator pairs when n > 1. ��

Let Fα̃ = Fα0 ⊗ Fα1 ⊗ . . . ⊗ Fαn−1 , where Fα was defined in (4). We now
generalise {A} in proposition 1 by assigning {A} = {V I}n{In, Fα̃, Fα̃Fβ̃}:
Theorem 4.

E{V I}n{In,Fα̃,Fα̃Fβ̃} = E , ∀Fα̃, Fβ̃ ∈ {V }
n.

Proof. We see that {I,H,N}Fα � {Fα, I, F
′
α}, and we already know that

E{Fα,I,F ′
α} = E . Therefore, from Lemma 4, E{V I}Fα

= E . Using Lemma 4 repeat-
edly, E{V I}FαFβ

= E{I,H,N}FαFβ
= E{Fα,I,F ′

α}Fβ
= E{V I}Fβ

= E . The argument
extends to any tensor combination when n > 1. ��
Lemma 5.

{U} � {V }{V }.

Proof. FαFβ = (1+α)
2

(
1 (1−α)

(1+α)β
(1−α)
(1+α) β

)
= μ

(
1 0
0 −i

)
(1+α)

2μ

(
1 (1−α)

(1+α)β

i (1−α)
(1+α) iβ

)
,

∀Fα, Fβ ∈ {V }, where μ =
√
α. The lemma follows by assigning β = eiφ, cos θ =

(1+α)
2μ , and sin θ = i (1−α)

2μ . ��
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Theorem 5.

CMF(Ts) = CMF(s), ∀T ∈ Dn{U}n.

Proof. Follows directly from Definition 11, and lemmas 2, 4 and 5. ��
Theorem 5 implies that CMF is an entanglement metric as it is invariant with
respect to local unitary transform of the state, s [25].

Theorem 6. CMF is QMF .

Proof. From figure 2, and lemma 5, we see that α and β specify θ and φ, respec-
tively. Over all α, β ∈ C, and d ∈ D, we have, from theorem 5 that, for n = 1,
ED{U} = EI,H,N = E is invariant, where each spectral point is counted the same
number of times. The argument extends to tensor products when n > 1. ��

5.3 Expected Values and Constructions

Maximising Clifford merit factor (CMF) of a Boolean function indicates a min-
imum mean-square deviation from the joint flat continuous multivariate fourier
power spectrum of the sequences associated to the Boolean function and all its
subspace fixings. Table 4 shows equivalence classes for Boolean functions of n = 2
to 5 variables, where sets of inequivalent functions are obtained from [46].

Table 4. complete set of Clifford merit factors for n = 2 to n = 5

n # inequivalent functions # equivalence classes with list of CMFs

2 2 2 classes
3.0, 1.286

3 4 4 classes
2.077, 1.421, 1.286, 0.730

4 34 18 classes
1.723, 1.588, 1.473, 1.446, 1.373, 1.286, 1.266, 1.209, 1.141,
1.125, 1.080, 1.025, 0.976, 0.920, 0.786, 0.730, 0.675, 0.463

5 22050 193 classes
1.723 − 0.311

Experimental results suggest that, for a random Boolean function of n vari-
ables, FC = 1.0, as indicated here by the random samplings for (from left to
right) n = 4, 6, 9 and 10, where CMF and #sequences are x and y-axes, respec-
tively, with x-axes ranging from CMF = 0 to 4, and where the highest peak
approaches FC = 1.0 as n increases.

1 1 1 1
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In comparison, a sampling of just the quadratic Boolean functions for n = 4, 6, 9
and 10 indicates a wider range of CMFs for a given n than for the full space of
Boolean functions although, once again, the highest peak appears to approach
FC = 1.0 as n gets large. Once again, the x-axes range linearly from CMF = 0
to 4, and the y-axes indicate #sequences.

1 1 1 1

Conjecture 7. A random Boolean function satisfies,

FC = 1.0.

Theorem 7. The average value of 1
CMF with respect to any set SQ (see defini-

tion 8) is,

average SQ(
1

CMF ) =
3n − 2n

3n
.

Proof. It follows directly from Theorem 3, by summing up the multivariate sum-
of-squares over every fixed-subspace of SQ. Each member of each coset of Q is
represented the same number of times over each subspace. ��

Corollary 2. The set of n-variable Boolean functions of degree d or less satis-
fies,

average (
1

CMF ) =
3n − 2n

3n

for any d, 2 ≤ d ≤ n, and, consequently, average ( 1
CMF ) → 1.0 as n→∞.

Table 5 summarises constructions described by Boolean functions, p(x), where
s = (−1)p(x). The associated recursions originate from [52]. The constructions
represent a larger class of CMF-invariant sequences, as generated by Lemma 3,
and the recursions have all been proven using the results of [39]. The star and
complete graph are in the same IHN-orbit. None of the constructions in Table 5
satisfy a non-vanishing value for FC . We appear to obtain maximum values of
CMF for s constructed from quadratic Boolean functions which describe opti-
mal QECCs [33, 30, 53, 46, 36, 39, 37]. Table 6 shows maximal values of CMF for
n = 2 to 5, and highest found values of CMF for n = 6 to 9, and all represent
QECCs with optimal distance. The associated QECC is obtained from an addi-
tive [n, 2n,distance] code over GF(4) where the associated generator matrix, G,
satisfies G = ωI + Γ , where Γ is the adjacency matrix of the graph associated
with the quadratic Boolean function, p(x), I is the n × n identity matrix, and
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Table 5. FC for certain graphical constructions

graph FC(s) En - recursion En - closed form

path 0 10En−1 − 8En−2 − 96En−3
6n

2
+ ( 5−3

√
5

20
)(2 − 2

√
5)n

+( 5+3
√

5
20

)(2 + 2
√

5)n

circle 0 14En−1 − 48En−2 − 64En−3 + 38En−4
4n

2
+ (2−2

√
5)n

2
+ (2+2

√
5)n

2
− 6n

2

complete 0 18En−1 − 104En−2 − 192En−3
8n

4
− 6n

2
+ 4n

2

≡ star

Table 6. Boolean functions with maximal CMF for n = 2 to 5 and large (possibly

maximal) CMF for n = 6 to 9 with their associated QECC distances

n p(x) CMF(s) QECC distance

2 01 3.0 2
3 01, 02 2.08 2
4 01, 12, 23 1.72 2
5 01, 02, 13, 24, 34 1.72 3
6 01, 02, 03, 04, 05, 12, 23, 34, 45, 51 1.72 4
7 03, 06, 14, 16, 25, 26, 34, 35, 45 1.43 3
8 02, 03, 04, 12, 13, 15, 26, 37, 46, 47, 56, 57, 67 1.40 4

05, 06, 07, 13, 15, 17, 24, 25, 27, 36, 37, 46, 47, 67 1.40 4
9 02, 04, 08, 13, 15, 18, 26, 28, 37, 38, 47, 48, 56, 58, 67, 68, 78 1.30 4

04, 07, 08, 13, 14, 18, 24, 25, 28, 36, 37, 56, 57, 58, 67, 68 1.30 4
06, 07, 08, 14, 16, 18, 25, 26, 28, 34, 35, 37, 38, 47, 48, 57, 58, 68 1.30 4
04, 07, 08, 14, 16, 18, 25, 26, 28, 34, 35, 37, 57, 58, 67, 68 1.30 4
01, 07, 08, 14, 18, 23, 25, 28, 36, 37, 45, 46, 57, 58, 67, 68 1.30 4

ω2 + ω + 1 = 0 over GF(4). The results are only exhaustive for n = 2 to 5. In
the table, expressions of the form ab, cd, . . . are short for xaxb + xcxd + . . ..

A few cubics and quartics have recently been found which equal the CMF
values in Table 6 [54], but none have been found yet with greater CMF .

Many high-distance QECCs are of (bordered) quadratic-residue [30]. Let l
be a Legendre sequence of prime length m, where m = 4k + 1, as described in
Section 2. Construct p(x) over n = m variables such that,

p(x) =
n−1∑
j=0

lj

n−j−1∑
i=0

xixi+j .

For the bordered version, construct p(x) over n = m + 1 variables such that,

p(x) =
n−1∑
j=1

x0xi +
n−1∑
j=1

lj

n−j−1∑
i=1

xixi+j .

Then, for both non-bordered and bordered versions, s = (−1)p(x) has a relatively
high and sometimes optimal CMF . The examples in Table 6 for n = 5 and 6
are equivalent, by Lemma 3, to (bordered)-quadratic residue constructions.
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There is a connection with recent results in graph theory. Aigner and van
der Holst have defined an interlace polynomial, Q(z), which summarises various
spectral properties of a graph [55], this being a generalisation of an interlace poly-
nomial, q(z), defined by Arratia, Bollobas, and Sorkin [56], where both polyno-
mials are variants of Tutte and Tutte-Martin polynomials as defined by Bouchet
[57]. Moreover a further interlace polynomial, QHN (z) has recently been defined
in [58], and it is shown there that, for sequences constructed from quadratic
Boolean functions, σn = 2n−1(QHN,n(4)− 2n) and En = 2n−1(Qn(4)− 3n).

In contrast to CMF , most entanglement measures are computationally infea-
sible beyond about 4 qubits. So CMF is a useful measure in a quantum context
as it is (currently) computationally viable up to about n = 12 qubits. Moreover,
for graph states and, in particular, recursively constructed graph states, CMF
gives us an entanglement measure of a pure multipartite system for large n.

6 Conclusion

The univariate, multivariate, and Clifford merit factors (MF , MMF , and
CMF , resp.) have been reviewed. Constructions which achieve the best-known
asymptotic merit factor, F , have been described. MMF has been characterised
for the extreme case where each dimension is of length 2. The associated multi-
variate sequences therefore have a natural description via Boolean functions. The
average value for 1

MMF was established. We presented ’graphical’ constructions
for which recursions in multivariate sum-of-squares exist leading, in some cases,
to non-vanishing asymptotic multivariate merit factor FM. We conjectured that
maximal FM is satisfied by the path graph. We characterised CMF as a gener-
alisation of MMF and proved it is invariant to local unitary transform and is,
moreover, a quantum merit factor, QMF . The average value for 1

CMF was es-
tablished. We presented ’graphical’ constructions for which recursions in Clifford
sum-of-squares exist, although all associated asymptotic Clifford merit factors,
FC , are zero. We demonstrated that sequences constructed from quantum error
correcting codes appear to maximise CMF .

We finish with a list of open problems suggested by this paper:

– Establish whether MF = 14.083 is maximal over all binary sequences.
– Prove F = 6.3421 . . . for the relevant constructions of Section 2.
– Establish the range of F for the univariate sequence constructed via the path

graph under all possible index permutations.
– Prove the recursions in univariate sum-of-squares for the recursive graphical

constructions of Section 2.
– Prove that F = FM = FC = 1.0 for a random univariate or multivariate

sequence of length N , 2n, or 2n, respectively.
– Establish whether the maximum MMF and CMF over all multivariate

binary sequences are 4.00 and 3.00, respectively for the sequence constructed
from p(x) = x0x1.
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– Prove that the maximalMMF over n variables and, therefore, the maximal
FM is always obtained by the path graph.

– Find an infinite multivariate sequence construction such that FC > 0.
– Prove whether, for n variables, CMF is always optimised by quadratic

Boolean functions, or give a counter-example.
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Abstract. Let S1, S2, . . . , St be t N -periodic sequences over Fq. The
joint linear complexity L(S1, S2, . . . , St) is the least order of a linear re-
currence relation that S1, S2, . . . , St satisfy simultaneously. Since the Fq-
linear spaces Ft

q and Fqt are isomorphic, a multisequence can also be
identified with a single sequence S having its terms in the extension
field Fqt . The linear complexity L(S) of S, i.e. the length of the shortest
recurrence relation with coefficients in Fqt that S satisfies, may be signif-
icantly smaller than L(S1, S2, . . . , St). We investigate relations between
L(S) and L(S1, S2, . . . , St), in particular we establish lower bounds on
L(S) expressed in terms of L(S1, S2, . . . , St).

Keywords: Multisequences; Linear complexity; Generalized discrete
Fourier transform; Stream ciphers.

1 Introduction

Let S = s0, s1, . . . be a sequence with terms in the finite field Fq (or shortly over
Fq). If for a positive integer N the terms of S satisfy si+N = si for all i ≥ 0,
then we say that S is N -periodic. The linear complexity L(S) of the N -periodic
sequence S is the smallest nonnegative integer c for which there exist coefficients
d1, d2, . . . , dc ∈ Fq such that

sj + d1sj−1 + · · ·+ dcsj−c = 0 for all j ≥ c. (1)

Trivially, the linear complexity of an N -periodic sequence can be at most N .
The concept of the linear complexity is very useful in the study of the security

of stream ciphers (cf. [10], [11]). Recent developments point towards an interest
in word-based stream ciphers. The theory of such stream ciphers requires the
study of parallel streams of finitely many sequences, i.e. of multisequences. For
previous work on the synthesis of multisequences we refer to [2–Appendix A],
[9], [12], [13], [14] and [15].
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Consider t periodic sequences S1, S2, . . . , St over Fq. Without loss of gen-
erality we assume that they have common period N . The joint linear com-
plexity L(S1, S2, . . . , St) is the least order of a linear recurrence relation that
S1, S2, . . . , St satisfy simultaneously.

Since the Fq-linear spaces Ft
q and Fqt are isomorphic, a multisequence can

also be identified with a single sequence S having its terms in the extension field
Fqt . If s(r)

i ∈ Fq denotes the ith term of the rth sequence Sr and {β1, β2, . . . , βt}
is a basis of Fqt over Fq, then the ith term of S is given by σi =

∑t
r=1 βrs

(r)
i .

In some cases the linear complexity of S is significantly smaller than the joint
linear complexity of the t corresponding sequences over Fq, which is clearly not
desirable for vectorized stream ciphers.

Example. The binary 7-periodic sequences S1 = 1, 0, 1, 0, 1, 0, 1, . . ., S2 = 0, 1, 0,
0, 0, 0, 0, . . ., S3 = 0, 1, 1, 1, 0, 0, 0, . . . have the maximal possible joint linear com-
plexity 7. The corresponding sequence S = 1, α2 + α, α2 + 1, α2, 1, 0, 1, . . . over
F2/(x3 + x+ 1) � F8 with basis 1, α, α2 over F2, where α is a root of x3 + x+ 1,
satisfies the recurrence relation sj + (α2 + α)sj−1 + (α2 + α+ 1)sj−3 = 0 for all
j ≥ 3. In fact, the linear complexity of S is 3.

The joint linear complexity of t N -periodic sequences over Fq can also be in-
terpreted as the Fq-linear complexity of the corresponding N -periodic sequence
S over Fqt , which is the least order of a linear recurrence relation in Fq that S sat-
isfies (cf. [1–pp. 27], [2–pp. 83–85]). Thus all results can also be seen as results on
the relationship between the usual linear complexity and the Fq-linear complex-
ity of a sequence S over Fqt . Having the applications in vectorized stream ciphers
in mind we will formulate most results in terms of the joint linear complexity of t
parallel sequences. Following the notation in [1], where the Fq-linear complexity
of a sequence S over Fqt has been called the generalized linear complexity of S
we will call the linear complexity L(S) of the sequence S over Fqt associated
with the multisequence S1, S2, . . . , St the generalized joint linear complexity of
the multisequence. Strictly speaking we should call it the generalized joint lin-
ear complexity with respect to the given basis {β1, β2, . . . , βt}, since we obtain
a different sequence S̄ over Fqt if we choose a different basis {β̄1, β̄2, . . . , β̄t}
and the linear complexities of the sequences S and S̄ may be different. But this
distinction does not play a role for the results of this article.

After collecting some preliminary results in Section 2 we will establish a
sharp lower bound on the generalized joint linear complexity of t N -periodic
sequences S1, S2, . . . , St over Fq expressed in terms of the joint linear complexity
of S1, S2, . . . , St. This lower bound estimates the possible decrease of the linear
complexity if the calculations are shifted to a proper extension field. We also
get conditions under which the decrease of the linear complexity will always be
small or always zero. We will provide an exact formula for number of t-tuples of
N -periodic sequences S1, S2, . . . , St over Fq with joint linear complexity N and
minimal possible generalized joint linear complexity, and an exact formula for
the expected value of the generalized joint linear complexity of a multisequence
over Fq with joint linear complexity N . As a tool we choose interesting relations
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between linear complexity and certain discrete Fourier transforms. The results
are a further contribution to the theory of linear complexity and they are also
of some practical interest for the security of vectorized stream ciphers.

2 Preliminaries

The coefficients of the linear recurrence relation (1) for the sequence S give
rise to the minimal feedback polynomial f(x) = 1 + d1x + · · · + dcx

c ∈ Fq[x].
Thus, the linear complexity L(S) is equal to the degree of f(x). For an N -
periodic sequence S = s0, s1, . . . the minimal feedback polynomial f(x) is, up to
a nonzero multiplicative constant, given by

f(x) =
xN − 1

gcd(xN − 1, SN (x))
, (2)

where SN (x) := s0 + s1x + · · ·+ sN−1x
N−1. We remark that if S is a sequence

over Fqt then we can take the greatest common divisor over Fq[x] in order to
obtain a feedback polynomial and thus a recurrence relation with coefficients
in Fq. The degree of f(x) is then the Fq-linear complexity of S. For further
background on linear recurrence sequences we refer to [5–Chapter 8].

If N = pvn with gcd(n, p) = 1, where p is the characteristic of Fq (we will
use the notation p = charFq), and α is a primitive nth root of unity in some
extension field of Fq, then it follows from (2) that the degree of f(x) is given by
N−

∑n−1
i=0 νi, where νi is the minimum of pv and the multiplicity of αi as a root of

SN (x). This correspondence is summarized in the Günther-Blahut Theorem (cf.
[6]). To present the Günther-Blahut Theorem, we need the following definition.

Definition 1. The Günther weight of a matrix of t-tuples is the number of its
t-tuples that are nonzero or that lie below a nonzero t-tuple.

For t = 1, the Günther weight has been defined in [6]. If the matrix consists of
one row, then the Günther weight is identical with the Hamming weight.

Theorem 1 (Günther–Blahut Theorem). Let S be an N -periodic sequence
with terms in the finite field Fq of characteristic p, N = pvn, gcd(n, p) = 1.
Then the linear complexity of S is the Günther weight of the pv × n matrix⎛⎜⎜⎜⎝

SN (1) SN (α) . . . SN (αn−1)
(SN )[1](1) (SN )[1](α) . . . (SN )[1](αn−1)

...
(SN )[p

v−1](1) (SN )[p
v−1](α) . . . (SN )[p

v−1](αn−1)

⎞⎟⎟⎟⎠ , (3)

where SN (x) is the polynomial corresponding to the sequence S, (SN )[k](x) =∑N−1
i=k

(
i
k

)
six

i−k is the kth Hasse derivative (cf. [3]) of SN (x), and α is any
primitive nth root of unity in some extension field of Fq.
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Remark 1. If gcd(N, p) = 1 then the matrix (3) reduces to the N -tuple
(SN (1), SN (α), . . . , SN (αN−1)) known as the discrete Fourier transform of the
N -tuple representing the period of the sequence S. In this case Theorem 1 is
known as Blahuts Theorem (see [4–Sect. 6.8], [11]).

In [9] Theorem 1 has been generalized to multisequences.

Proposition 1 ([9], Proposition 3). The joint linear complexity L(S1, S2, . . . ,
St) of the t N -periodic sequences S1, S2, . . . , St with terms in the finite field Fq

of characteristic p, where N = pvn and gcd(n, p) = 1, is the Günther weight of
the pv × n matrix⎛⎜⎜⎜⎝

SN (1) SN (α) . . . SN (αn−1)
(SN )[1](1) (SN )[1](α) . . . (SN )[1](αn−1)

...
(SN )[p

v−1](1) (SN )[p
v−1](α) . . . (SN )[p

v−1](αn−1)

⎞⎟⎟⎟⎠ (4)

of t-tuples (SN )[k](αj) := ((SN
1 )[k](αj), . . . , (SN

t )[k](αj)) of Hasse derivatives,
where α is any primitive nth root of unity in some extension field of Fq and
SN

r (x) is the polynomial corresponding to the sequence Sr, 1 ≤ r ≤ t.

In all further considerations the matrices (3) and (4) will be called the generalized
discrete Fourier transform (GDFT) for the sequence S and the multisequence
S1, S2, . . . , St, respectively. Let S1, S2, . . . , St be t N -periodic sequences with
terms in Fq and let {β1, β2, . . . , βt} be a basis of Fqt over Fq. Then the GDFT
for the multisequence with terms in Fq can easily be transformed into a GDFT for
the sequence S with terms in Fqt that can be identified with the multisequence.

Lemma 1. Let S1, S2, . . . , St be t N -periodic sequences with terms in the finite
field Fq of characteristic p, and let {β1, β2, . . . , βt} be a basis of Fqt over Fq.
Then the matrix⎛⎜⎜⎜⎝

SN (1)βT SN (α)βT . . . SN (αn−1)βT

(SN )[1](1)βT (SN )[1](α)βT . . . (SN )[1](αn−1)βT

...
(SN )[p

v−1](1)βT (SN )[p
v−1](α)βT . . . (SN )[p

v−1](αn−1)βT

⎞⎟⎟⎟⎠ (5)

where β := (β1, β2, . . . , βt), is a generalized discrete Fourier transform for the
N -periodic sequence S with terms in Fqt that can be identified with S1, S2, . . . , St.

Proof. For 0 ≤ j ≤ n− 1, 0 ≤ k ≤ pv − 1 we have

(SN )[k](αj) =
N−1∑
i=k

(
i

k

)
σi(αj)i−k =

N−1∑
i=k

(
i

k

) t∑
r=1

βrs
(r)
i (αj)i−k

=
t∑

r=1

βr

N−1∑
i=k

(
i

k

)
s
(r)
i (αj)i−k =

t∑
r=1

βr(SN
r )[k](αj). �
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Let C1, C2, . . . , Ch be the cyclotomic cosets modulo n relative to powers of q
and let l1, l2, . . . , lh be their cardinalities. If d ≡ jqb mod n, b ≥ 0, is an element
of the cyclotomic coset of j, then we have

(SN
r )[k](αd) = ((SN

r )[k](αj))qb

, 1 ≤ r ≤ t, 0 ≤ k ≤ pn − 1.

Consequently the matrices (4), (5) are of a specific form, which we call the
GDFT form. We collect some properties of the GDFT (see [7, 8, 9]).

1. If we have h different cyclotomic cosets modulo n, then the GDFT is uniquely
determined by h columns, one column for each cyclotomic coset.

2. If lr is the cardinality of the cyclotomic coset Cr of jr, then the entries in
the column of αjr in the matrix (4) are elements of Ft

qlr .
3. We have a bijective correspondence between the set of matrices in GDFT

form and the set of (t) N -periodic sequences over Fq.
4. The Günther weight g(M) of a matrix M in GDFT form can be written in

the form

g(M) =
h∑

r=1

ρrlr, 0 ≤ ρr ≤ pv.

We will need some properties of cyclotomic cosets.

Lemma 2. Let jr be an element of the cyclotomic coset Cr modulo n relative
to powers of q, let lr be the cardinality of Cr, and let mr = gcd(t, lr).

(i) Then Cr splits into mr cyclotomic cosets modulo n relative to powers of qt,
each of cardinality lr/mr.

(ii) The lr/mr elements jrq
cmr , 0 ≤ c ≤ lr/mr − 1, form the cyclotomic coset

of jr modulo n relative to powers of qt.
(iii) For each integer u the set {jrqu, jrq

u+1, . . . , jrq
u+mr−1} is a set of repre-

sentatives of the mr cyclotomic cosets modulo n relative to powers of qt in
which Cr splits.

Proof. (i) The cardinality of the cyclotomic coset of jr modulo n relative to
powers of qt is the smallest integer b1 for which we have jr(qt)b1 ≡ jr mod n.
Since jrq

b ≡ jr mod n if and only if b is a multiple of lr we get b1 = lcm(t, lr)/t
or equivalently b1 = lr/ gcd(t, lr).

(ii) Since mr = gcd(t, lr) we have cmr = et − flr for suitable integers e, f .
Thus jrqcmr ≡ jr(qt)e mod n, i.e. jrqcmr is in the cyclotomic coset of jr modulo
n relative to powers of qt. Moreover we have jrq

c1mr 	≡ jrq
c2mr mod n if 0 ≤

c1 < c2 ≤ lr/mr − 1.
(iii) Suppose that for 0 ≤ i1 < i2 ≤ mr − 1 the elements jrq

u+i1 and jrq
u+i2

are in the same cyclotomic coset modulo n relative to powers of qt. Then we have
u+i2+et = u+i1+flr for suitable integers e, f , or equivalently et−flr = i1−i2
which is a contradiction to mr = gcd(t, lr). �

Finally we remark that for several classes of integers n the cardinalities of the
cyclotomic cosets modulo n relative to powers of q are known. We refer to [7, 8]
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where for several classes of integers n the cardinalities of the cyclotomic cosets
modulo n relative to powers of q have been used to obtain closed formulas for
the expected linear complexity of random N -periodic sequences over Fq, where
N = npv, p = charFq.

3 Main Results

The first result is an immediate consequence of Lemma 2, the considerations at
the beginning of Section 2 and the fact that for N = pvn we have xN − 1 =
(xn − 1)pv

and the canonical factorization of xn − 1 in Fq[x] is given by

xn − 1 =
h∏

i=1

fi(x), where fi(x) :=
∏

j∈Ci

(x− αj),

α is a primitive nth root of unity in an extension field of Fq and Ci, 1 ≤ i ≤ h,
are the cyclotomic cosets modulo n relative to powers of q. We state this result
in view of the concept of the Fq-linear complexity.

Corollary 1. Let N = pvn, gcd(n, p) = 1, p = charFq, let l be the order of
q modulo n and let t0 and t1 be two divisors of t ≥ 1. Then the Fqt0 -linear
complexity and the Fqt1 -linear complexity of any N -periodic sequence S over Fqt

are the same if and only if gcd(l, t0) = gcd(l, t1). In particular m = gcd(l, t)
is the smallest integer for which the Fqm-linear complexity of any N -periodic
sequence S over Fqt is the same as its linear complexity.

From the multisequence point of view one can see from Corollary 1 that the joint
linear complexity and the generalized joint linear complexity will always be the
same if and only if gcd(l, t) = 1 (see also [9–Proposition 2]).

Let S1, S2, . . . , St be t N -periodic sequences with terms in Fq and let
{β1, β2, . . . , βt} be a basis of Fqt over Fq. By the above discussion the joint linear
complexity of S1, S2, . . . , St is given by the Günther weight of the corresponding
GDFT (4), and the generalized joint linear complexity of S1, S2, . . . , St is given
by the Günther weight of the GDFT (5) for S, where S is the N -periodic se-
quence over Fqt associated with S1, S2, . . . , St. Hence in order to obtain relations
between the joint linear complexity and the generalized joint linear complexity
we may compare the Günther weights of the matrices (4) and (5). Certainly
both matrices are in GDFT form. The important amendment is that for the
joint linear complexity the cyclotomic cosets modulo n are considered relative to
powers of q, while for the generalized joint linear complexity we have to consider
the cyclotomic cosets modulo n relative to powers of qt. The following theo-
rem establishes a lower bound for the generalized joint linear complexity for a
multisequence with given joint linear complexity.

Theorem 2. Let N = npv, gcd(n, p) = 1, p = charFq, let S1, . . . , St be t N -
periodic sequences over Fq and let

L(S1, S2, . . . , St) =
h∑

r=1

ρrlr, 0 ≤ ρr ≤ pv,
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be their joint linear complexity written as the sum of cardinalities of cyclotomic
cosets modulo n relative to powers of q. Then the generalized joint linear com-
plexity L(S) of S1, S2, . . . , St is lower bounded by

L(S) ≥
h∑

r=1

ρr
lr
mr

, where mr = gcd(lr, t), 1 ≤ r ≤ h. (6)

Moreover, this lower bound will always be attained by certain multisequences.

Proof. We show the first part with a quite simple argument.
Evidently the Günther weight of the GDFT of the form (5) can be written

as L(S) =
∑h

r=1 ρrωr
lr
mr

, with 0 ≤ ωr ≤ mr, if
∑h

r=1 ρrlr is the Günther weight
of the GDFT of the form (4).

We will show that ωr ≥ 1, i.e. that (SN )[k](αjrqi

)βT cannot be the zero tuple
for all elements jrqi in the cyclotomic coset Cr of jr modulo n relative to powers
of q, provided that (SN )[k](αjr ) is not the zero tuple. Because of the one to one
correspondence between t-tuples of N -periodic sequences with terms in Fq and
GDFTs of the form (4) there exist sequences S̄1, S̄2, . . . , S̄t (with joint linear
complexity (pv − k)lr) for which the entries in their GDFT are all zero, except
(SN )[k](αjrqi

), 0 ≤ i ≤ lr − 1. If (SN )[k](αjrqi

)βT is zero for all i, 0 ≤ i ≤ lr − 1,
then the associated sequence S with terms in Fqt has linear complexity 0, i.e. S
is the zero sequence which is a contradiction.

We will show the second part as an easy consequence of subsequent further
considerations. We will need these considerations thereafter in order to obtain
some enumeration results. �

The representation of a given linear complexity as a linear combination of the
cardinalities of the cyclotomic cosets may not be unique. Since the lower bound
(6) depends on the exact representation, in certain cases we may have different
lower bounds (6) for the same absolute value for the joint linear complexity.
For certain period lengths N or linear complexities L(S) this representation is
unique. We give two examples.

1. N = qvn, n prime, pv < l, L(S) arbitrary,
2. L(S) = N , N arbitrary.

For arbitrary linear complexities and period lengths N = pvn we can use the
fact that l divides ϕ(n), where ϕ is Euler‘s totient function, and lr divides l for
1 ≤ r ≤ h to establish a general lower bound on the generalized joint linear
complexity.

Corollary 2. Suppose that N = pvn, gcd(n, p) = 1, p = charFq, and l is the
multiplicative order of q modulo n. Let S1, S2, . . . , St be t N -periodic sequences
over Fq with joint linear complexity L(S1, S2, . . . , St). Then the generalized joint
linear complexity L(S) of S1, S2, . . . , St satisfies

L(S1, S2, . . . , St) ≥ L(S) ≥ L(S1, S2, . . . , St)
gcd(l, t)

≥ L(S1, S2, . . . , St)
gcd(ϕ(n), t)

,

where ϕ is Euler‘s totient function.
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We now explicitely describe the contribution of a cyclotomic Cr coset modulo
n relative to powers of q to the generalized joint linear complexity of a multise-
quence S1, S2, . . . , St over Fq.

Let jr be a representative of Cr, let lr be the cardinality of Cr, and suppose
that gcd(lr, t) = mr. Then by Lemma 2(iii) the set {jrqt, jrq

t−1, . . . , jrq
t−mr+1}

is a set of representatives of the mr cyclotomic cosets modulo n in which Cr

splits relative to powers of qt. For 0 ≤ u ≤ mr − 1 the element in the (k + 1)st
row 0 ≤ k ≤ pv − 1, and the column corresponding to αjrqt−u

in the matrix (5)
is given by

(SN )[k](αjrqt−u

)βT = (SN
1 )[k](αjrqt−u

)β1 + . . . + (SN
t )[k](αjrqt−u

)βt

= ((SN
1 )[k](αjr ))qt−u

(βqu

1 )qt−u

+ . . . + ((SN
t )[k](αjr ))qt−u

(βqu

t )qt−u

=
(
(SN

1 )[k](αjr )βqu

1 + . . . + (SN
t )[k](αjr )βqu

t

)qt−u

=: (a[k]
u )qt−u ∈ Fqtlr/mr .

Note that (SN )[k](αjrqt−u

)βT = 0 if and only if a[k]
u = 0. Consider the vector⎛⎜⎜⎜⎜⎝

a
[k]
0

a
[k]
1
...

a
[k]
mr−1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
β1 β2 . . . βt

βq
1 βq

2 . . . βq
t

...
...

...
βqmr−1

1 βqmr−1

2 . . . βqmr−1

t

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

(SN
1 )[k](αjr )

(SN
2 )[k](αjr )

...
(SN

t )[k](αjr )

⎞⎟⎟⎟⎠ , (7)

and define the pv ×mr matrix Ar over Fqtlr/mr by

Ar :=

⎛⎜⎜⎜⎜⎝
a
[0]
0 a

[0]
1 . . . a

[0]
mr−1

a
[1]
0 a

[1]
1 . . . a

[1]
mr−1

...
...

...
a
[pv−1]
0 a

[pv−1]
1 . . . a

[pv−1]
mr−1

⎞⎟⎟⎟⎟⎠ . (8)

Observe that the (u+ 1)st column of Ar has exactly the same nonzero positions
as the column in the GDFT (5) corresponding to αjrqt−u

, 0 ≤ u ≤ mr−1. Since
the cardinality of the cyclotomic coset of jrq

t−u modulo n relative to powers
of qt is lr/mr, each column of Ar represents lr/mr columns in (5). Thus the
contribution of the cyclotomic coset Cr modulo n relative to powers of q to the
generalized joint linear complexity of S1, S2, . . . , St is the Günther weight of Ar

multiplied by lr/mr.
From the first part of the proof we already know that (a[k]

0 , a
[k]
1 , . . . , a

[k]
mr−1)

T

in (7) is the zero vector if and only if (SN )[k](αjr ) is the zero vector in Ft
qlr .

Consequently the linear transformation (7) defines a bijection from the set of
t-tuples over Fqlr into the set of mr-tuples over Fqtlr/mr .

We remark that the number of rows of Ar that are nonzero or that lie below
a nonzero row multiplied by lr yields the contribution of Cr to the joint linear
complexity. Thus with the choice of Ar we can control the contribution of Cr to
the joint linear complexity and to the generalized joint linear complexity.
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We now complete the proof of Theorem 2 and show that the lower bound
(6) is attained. For each cyclotomic coset Cr we choose Ar such that the first
pv−ρr rows are zero rows, the (pv−ρr +1)st row is not the zero row, and Ar has
Günther weight ρr. For instance we can choose a

[pv−ρr]
0 	= 0, and 0 for all other

entries of Ar. The corresponding multisequence has the required properties. �

The majority of t-tuples of N -periodic sequences with terms in a finite field
Fq with characteristic p, N = npv, gcd(n, p) = 1, have (maximal possible) joint
linear complexity N . By Proposition 1 the exact number coincides with the
number N t

N (N) of matrices of the form (4) and Günther weight N . Taking into
account the specific structure of the GDFT, with combinatorial arguments we
get

N t
N (N) =

h∏
r=1

(qlrt − 1)(qlrt)pv−1,

where h is the number of the cyclotomic cosets modulo n and lr is the cardinality
of the cyclotomic coset Cr, 1 ≤ r ≤ h. Hence it is reasonable to investigate
the behavior of multisequences with joint linear complexity N . In the following
corollary we establish an exact formula for the number of t-tuples of N -periodic
sequences over Fq with joint linear complexity N and minimal generalized joint
linear complexity.

Corollary 3. Let N = npv, gcd(n, p) = 1, C1, C2, . . . , Ch be the cyclotomic
cosets modulo n relative to powers of q, let l1, l2, . . . , lh be their cardinalities,
and let mr = gcd(lr, t) for 1 ≤ r ≤ h. Then there exist exactly

h∏
r=1

mr(qlcm(lr,t) − 1)(qlcm(lr,t))pv−1

t-tuples of N -periodic sequences with terms in the finite field Fq of character-
istic p, joint linear complexity N and minimal possible generalized joint linear
complexity

L(S) =
h∑

r=1

pvlr/mr. (9)

Proof. For each cyclotomic coset Cr we have to choose a pv × mr matrix Ar

over Fqlrt/mr with first row different from the zero row and with Günther weight
pv. In other words for 1 ≤ r ≤ h the matrix Ar must have exactly one column
different from the zero column and furthermore the first entry of this nonzero
column must not be 0. With simple combinatorial arguments we obtain the re-
quired formula. �

Corollary 3 indicates that there is a non-negligible number of t-tuples of N -
periodic sequences with the maximal joint linear complexity N and compara-
tively small generalized joint linear complexity. For instance, if N is a prime
different from p, and l is the multiplicative order of q modulo N , then we have
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(N − 1)/l cyclotomic cosets of cardinality l and one cyclotomic coset C1 = {0}
of cardinality 1. In this case (9) reduces to 1 + (N − 1)/ gcd(l, t).

In the articles [7, 8, 9] it has been shown that the expected value of the linear
complexity of an N -periodic sequence as well as of the joint linear complexity
of t N -periodic sequences is close to N . Thus, a significant difference between
the joint linear complexity and the generalized joint linear complexity of t N -
periodic sequences with terms in Fq does not seem to be likely. Using similar
techniques as in [8, 9] we are able to derive an exact formula for the expected
value of the generalized joint linear complexity of t N -periodic sequences with
terms in Fq and joint linear complexity N .

Theorem 3. Let N = npv with p = char Fq, and gcd(n, p) = 1. Let l1, l2, . . . , lh
be the cardinalities of the cyclotomic cosets modulo n relative to powers of q.
Then the expected value E of the generalized joint linear complexity of random t
N -periodic sequences with terms in Fq and joint linear complexity N is given by

E = N −
h∑

r=1

lrq
lrt

qlrt − 1
(1− qlcm(lr,t)−lrt)(1− q−lcm(lr,t)pv

)
qlcm(lr,t) − 1

.

Proof. The expected contribution of a cyclotomic coset Cr with representative
jr to the Günther weight of the GDFT (5) is given by lr/ gcd(lr, t) multiplied
by the expected Günther weight of the matrix Ar (8). Since we consider t N -
periodic sequences over Fq with joint linear complexity N , and hence SN (αjr )
cannot be the zero tuple, we have to presuppose that the first row of Ar is not
the zero row.

We first calculate the sum W (d, s, c) of the Günther weights of all d × s
matrices with terms in Fqc . Let M denote the set of d × s matrices M with
columns k1, . . . ,ks in Fd

qc . For a nonzero column kb we let u(kb) denote the
least positive integer u such that the uth coordinate of kb is nonzero. Then for
the Günther weight g(M) of M we have

g(M) =
s∑

b=1
kb �=0

(d− u(kb) + 1).

Hence

W (d, s, c) =
∑

M∈M

s∑
b=1
kb �=0

(d− u(kb) + 1) = d

s∑
b=1

∑
M∈M
kb �=0

1−
s∑

b=1

∑
M∈M
kb �=0

(u(kb)− 1)

=: T1 − T2.

For the first term T1 we get

T1 = d

s∑
b=1

(qcd − 1)(qcd)s−1 = ds(qcds − qcd(s−1)).
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For the second term T2 we have

T2 =
s∑

b=1

d∑
u=1

(u− 1)
∑

M∈M
u(kb)=u

1 =
s∑

b=1

d∑
u=1

(u− 1)(qc − 1)qc(d−u)qcd(s−1)

= s

(
qcds(1− q−c)

d−1∑
u=0

u(q−c)u

)
.

With the identity
d−1∑
u=0

uzu =
z − dzd + (d− 1)zd+1

(z − 1)2

for any real number z 	= 1, we obtain

T2 = sqcds(1− q−c)
q−c − d(q−c)d + (d− 1)(q−c)d+1

(q−c − 1)2

= s
qcds

qc − 1
(1− dq−c(d−1) + (d− 1)q−cd) = s

qcds

qc − 1
(1− q−cd)− dsqcd(s−1).

Combining the formulas for T1 and T2 we get

W (d, s, c) = dsqcds − s
qcds

qc − 1
(1− q−cd) = sqcds

(
d− 1− q−cd

qc − 1

)
. (10)

We need the sum of the Günther weights of all pv ×mr matrices with terms in
Fqlrt/mr with the additional property that the first row is not the zero row. This
is exactly given by W (pv,mr, c)−W (pv− 1,mr, c) := W with c = lrt/mr. With
(10) we have

W = mrq
cmr(pv−1)

(
qcmrpv − qcmr(1− q−cpv

)
qc − 1

− pv + 1 +
1− q−c(pv−1)

qc − 1

)
= mrq

cmr(pv−1)

(
pv(qcmr − 1) +

(qc − qcmr)(1− q−cpv

)
qc − 1

)
.

To obtain the expected contribution E(Cr) of the cyclotomic coset Cr to the
Günther weight of (5), W has to be multiplied by lr/mr and divided by (qlrt −
1)qlrt(pv−1), the number of pv×mr matrices over Fqlrt/mr for which the first row
is not the zero row. Writing lrt/mr for c, this yields

E(Cr) = lrp
v +

lr
qlrt − 1

(qlrt/mr − qlrt)(1− q−lrt/mrpv

)
qlrt/mr − 1

= lrp
v +

lrq
lrt

qlrt − 1
(1− q−lrt/mr(mr−1))(1− q−lrt/mrpv

)
qlrt/mr − 1

.

With E =
∑h

r=1 E(Cr) and
∑h

r=1 lr = n we get the assertion. �
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Remark 2. If v = 0, i.e. gcd(N, q) = 1, then the formula in Theorem 3 reduces
to

E = N −
h∑

r=1

lr(qlrt−lcm(lr,t) − 1)
qlrt − 1

.
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Abstract. In this work, based on the technique of multi-continued frac-
tions [6, 7, 8], we study the normalized expected value e(2, n) of the linear
complexity of binary sequences of dimension 2. As a result, e(2, n) is de-
termined, and moreover, it is found that e(2, n) → 2

3
as n goes into

infinity.

1 Introduction

In stream ciphers, the linear complexity of sequences of elements in the binary
field is a fundamental concept for measuring the randomness and unpredictabil-
ity of key streams. A lot of research have been done on the linear complexity and
related complexity measures for sequences; see [1] for a recent survey. However,
these works have mainly concentrated on single sequences. Recent developments
in stream ciphers show strong interests in word-based (or vectorized) stream
ciphers. The study of such stream ciphers requires the study of the (joint) linear
complexity of multi-sequences.

Let F be the binary field, m and n be two positive integers. By a multi-
sequence r of dimension m and length n, we mean an m-tuple of sequences:

r =

⎛⎜⎜⎜⎜⎜⎜⎝

r1
...
rj

...
rm

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

r1,1 r1,2 · · · r1,n

...
...

...
rj,1 rj,2 · · · rj,n

...
...

...
rm,1 rm,2 · · · rm,n

⎞⎟⎟⎟⎟⎟⎟⎠ , rj,i ∈ F, (1)

where each component rj is a sequence over F . The linear complexity (or joint
linear complexity in some paper) of a multi-sequence r, denoted by Lr, is defined
as the shortest length of the linear feedback shift register capable of generating all
its component sequences simultaneously. Assume that multi-sequences of dimen-
sion m are distributed evenly, then the expected value of the linear complexity

� This work is partly supported by NSFC (Grant No. 60173016), and the National 973
Project (Grant No. 1999035804).

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 113–128, 2005.
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of multi-sequences of dimension m and length n, denoted by E(m,n), can be
expressed as:

E(m,n) =
∑

r

Lr

2mn
=

1
2mn

n∑
d=1

d · |Rn,d(m)|, (2)

where r runs over all possible multi-sequences of dimension m and length n, 2mn

is the total number of such sequences, Rn,d(m) is the set of all multi-sequences
r of dimension m, length n and linear complexity d, and |Rn,d(m)| means the
size of Rn,d(m). We call E(m,n)

n the normalized expected value of the linear
complexity of those sequences, denoted by e(m,n).

As for single sequences, the normalized expected value of the linear complex-
ity of sequences of length n is obtained in [2] as shown below:

e(1, n) =
1
2

+
4 + εn
18n

+ O(2−n/n), (3)

where εn ≡ n (mod 2).
Later the normalized expected value of the linear complexity of periodically

repeated random sequences of period n, denoted by e(1, n), is provided in [3]:

e(1, n) = 1−
∑
d|n1

φ(d)(1− 2−2r·nd)
n(2nd − 1)

, (4)

where n = 2r ·n1, gcd (2, n1) = 1, φ(d) is the Euler’s function and nd is the order
of 2 modulo d.

Recently, the normalized expected value of the linear complexity of periodic
multi-sequences of dimension m and period n, denoted by e(m,n), is obtain in
[4]. It can be restated as follows:

e(m,n) = 1−
∑
d|n1

φ(d)(1− 2−m2r·nd)
n(2mnd − 1)

, (5)

where the notations made in (4) are kept in (5), which is the generalization
of (4).

As mentioned above, e(1, n) was known, but e(m,n) with m > 1 was un-
determined. However, both H. Niederreiter and C.S. Ding had the following
conjecture:

Conjecture [5] on e(m,n). The normalized expected value e(m,n) goes to m
m+1

when n goes to infinity.
Based on the technique of multi-continued fractions [6, 7, 8], the above con-

jecture is solved for the case m = 2 in this work. The approach in solving this
case should work for the general case.

Main Theorem. Let n ≥ 1. Then

e(2, n) =
2
3

+
46 + 3εn

147n
− (

3
14

+
ωn

882n
) · 2−n − (

1
7

+
38

441n
) · 2−2n, (6)
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where 0 ≤ εn ≤ 2, εn = n (mod 3), ωn = 200 if n ≡ 0 (mod 2) and ωn = 151 if
n ≡ 1 (mod 2). As a consequence,

lim
n→∞

e(2, n) =
2
3
.

2 Preliminaries: Rn,d(m) and Cn,d(m)

The problem of evaluating e(m,n) is essentially the problem of evaluating the
size of Rn,d(m). It is shown in [8] that there exists a 1-1 correspondence between
elements in Rn,d(m) and elements in a set Cn,d(m). Hence it is obtained

|Rn,d(m)| = |Cn,d(m)| , (7)

where Cn,d(m) is a set of certain multi-continued fractions and defined in [8].
Below, according to our requirement, we are going to restate the set Cn,d(m).
We start with HT -pairs.

2.1 HT -Pairs

In this subsection, we fix a positive integer m. Let both h and t be μ-tuples of
integers, where μ is a positive integer. We call the pair (h, t) a pre-HT -pair of
dimension m and length μ if it satisfies the following two conditions:

Condition H: 1 ≤ hk ≤ m, 1 ≤ k ≤ μ;
Condition T: tk ≥ 1, 1 ≤ k ≤ μ.

Associated to the pre-HT -pair (h, t) of length μ, we define the following param-
eters:

vk,j =
∑

1≤i≤k, hi=j

ti, v0,j = 0, vk = vk,hk
,

dk =
∑

1≤i≤k

ti,

nk = dk + vk−1,hk

for 1 ≤ k ≤ μ and 1 ≤ j ≤ m. We call dμ the d-value, denoted by d(h, t), and
nμ the n-value, denoted by n(h, t).

Definition 1. Let (h, t) be a pre-HT -pair of length μ. Then it is called an HT -
pair if it satisfies the following additional condition:

Condition HT: (hk, vk−1,hk
) < (hk+1, vk+1), 1 ≤ k < μ,

where the order is defined as below: for any (h, v) and (h′, v′), define (h, v) <
(h′, v′) if and only if v < v′ or v = v′ but h < h′.
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2.2 The Set Cn,d(m)

Given any expansion C of the following form

C =
[

h1, h2, · · · , hk, · · · , hμ

0, a1, a2, · · · , ak, · · · , aμ

]
, (8)

where μ is a positive integer, 1 ≤ hk ≤ m and ak = (ak,1, ak,2, · · · , ak,m) is an
m-tuple of polynomials over F such that deg(ak,hk

) ≥ 1 for 1 ≤ k ≤ μ, where
deg(ak,hk

) denotes the degree of the polynomial ak,hk
, we can get a pre-HT-pair

(h, t), where

h = (h1, h2, · · · , hk, · · · , hμ),
t = (t1, t2, · · · , tk, · · · , tμ), tk = deg (ak,hk

),

which is called the pre-HT-pair of C, denoted by HT (C).

Definition 2. The expansion C of the form (8) is called a multi-strict continued
fraction of dimension m if it satisfies the following two conditions:

C-1: HT (C) is an HT -pair of dimension m;
C-2: Denote by [0, p] the set made of integers x such that 0 ≤ x ≤ p. Then C

matches its HT -pair in the sense that each component ak,j of the polynomial
tuple ak has the form:

ak,j = ztkδj +
∑

x ∈Bk,j∩[0,vk,j ]

ak,j,xz
vk,j−x, ak,j,x ∈ F, 1 ≤ j ≤ m,

where δj = 0 if j 	= hk and δhk
= 1, and Bk,j (= Bk,j(C)) is the solution set

of the equation Ek,j (= Ek,j(C)) on integer x:

Ek,j :
{

(hk, vk−1,hk
) < (j, x) < (hk+1, vk+1), 1 ≤ k < μ

(hμ, vμ−1,hμ
) < (j, x), k = μ

. (9)

We call

Aμ,j = Aμ,j(C) = {x ∈ Bμ,j ∩ [0, vμ,j ] | aμ,j,x = 1 } , 1 ≤ j ≤ m,

the supporting sets of C. Denote by C(m) the set of all possible multi-strict
continued fractions of dimension m. Then the set Cn,d(m) can be defined as:

Cn,d(m) =
{
C ∈ C(m)

∣∣∣∣ n(HT (C)) ≤ n, d(HT (C)) = d,
Aμ,j(C) ⊆ [0, n− d], 1 ≤ j ≤ m

}
.

3 Partition of the Set Cn,d(2)

From now we only consider the case m = 2, and simply write Cn,d = Cn,d(2) and
C = C(2). For any HT -pair (h, t) of length μ, denote
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v = min { vμ,1, vμ,2 },
which is called the v-value of (h, t) and denoted by v(h, t).

By means of the v-value of HT -pairs of elements in the set Cn,d, we can make
a partition of the set Cn,d. Denote

Cn,d,v = {C ∈ Cn,d | v(HT (C)) = v } .

It is clear that

Cn,d =
⋃

0≤v≤d/2

Cn,d,v and |Cn,d| =
∑

0≤v≤d/2

|Cn,d,v|. (10)

Likewise, we can also make a partition of the set of HT -pairs itself. Let HT
be the set of all possible HT -pairs of dimension 2. Denote

HTn,d,v = { (h, t) ∈ HT | n(h, t) ≤ n, d(h, t) = d, v(h, t) = v } .

Clearly, the set Cn,d,v is also defined equivalently as

Cn,d,v = {C ∈ C | HT (C) ∈ HTn,d,v, Aμ,j ⊆ [0, n− d], 1 ≤ j ≤ 2 } .

Fixing d and v, by definitions, it is easy to see that both HTn,d,v and Cn,d,v are
the monotonically increased sets on n for the relation ” ⊆ ”, i.e., for ∀n ≥ 1,

HTn,d,v ⊆ HTn+1,d,v,
Cn,d,v ⊆ Cn+1,d,v.

Lemma 1. Denote v = d− v. Let n ≥ d + v. Then

1. HTn,d,v = HTd+v−1,d,v.
2. Cn,d,v = Cd+v,d,v. As a consequence, |Cn,d,v| = |Cd+v,d,v|.

Proof. 1. We only need to prove that HTn,d,v ⊆ HTd+v−1,d,v. For any (h, t) ∈
HTn,d,v of length μ, note that v = d − v = max { vμ,1, vμ,2 }, by n(h, t) =
dμ + vμ−1,hμ

= d+ vμ − tμ ≤ d+ v− 1, we have (h, t) ∈ HT2d−v−1,d,v. Thus
HTn,d,v ⊆ HTd+v−1,d,v.

2. Let C ∈ Cn,d,v. First, by Item 1, we have HT (C) ∈ HTn,d,v = HTd+v,d,v.
Second, by definition, Aμ,j(C) ⊆ [0, vμ,j ] ⊆ [0, v] = [0, (d + v) − d]. Thus
C ∈ Cd+v,d,v. It follows that Cn,d,v ⊆ Cd+v,d,v. �

From the above lemma, it is enough to consider the size of Cn,d,v for n ≤ d + v.
As for the set Cn,d,v, elements in it can be classified further according to their
HT -pairs. For any given HT -pair (h, t) ∈ HTn,d,v, denote

Cn(h, t) = {C ∈ Cn,d,v | HT (C) = (h, t) } .

Then we have

Cn,d,v =
⋃

(h,t)∈HTn,d,v

Cn(h, t) and |Cn,d,v| =
∑

(h,t)∈HTn,d,v

|Cn(h, t)|. (11)

The following lemma formulates the size of Cn(h, t), which will be in use later.
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Lemma 2. Let (h, t) ∈ HTn,d,v. Denote

Xk,j =
{
Bk,j ∩ [0, vk,j ], 1 ≤ k < μ, j = 1, 2
Bμ,j ∩ [0, vμ,j ] ∩ [0, n− d], k = μ, j = 1, 2

and ek,j = |Xk,j |. Then

|Cn(h, t)| = 2e, e =
∑

1≤k≤μ

∑
1≤j≤m

ek,j .

Proof. Let C ∈ C. Keep the notations made for C. Denote

Ak,j(C) = {x | ak,j,x = 1 } , 1 ≤ k ≤ μ, j = 1, 2.

It is easy to see C is determined uniquely by HT (C) and the set {Ak,j(C)|1 ≤
k ≤ μ, j = 1, 2}. By definition, C ∈ Cn(h, t) if and only if Ak,j(C) ⊆ Xk,j .
Therefore, to make C ∈ Cn(h, t), the coefficient ak,j,x has two possible choices 0
and 1 for each x ∈ Xk,j , hence ak,j has totally 2ek,j possible choices. So

|Cn(h, t)| = 2e, e =
∑

1≤k≤μ

∑
1≤j≤m

ek,j .

�

Hence the problem of evaluating e(2, n) is reduced further to the problem of
evaluating |Cn,d,v| or |Cn(h, t)| for 1 ≤ d ≤ n ≤ d + v and 0 ≤ v ≤ d/2.

4 Structure of the Set HTn,d,v

In this section we study the structure of HTn,d,v, as the set HTn,d,v is critical
to determine the set Cn,d,v, based on (11). Set l = d − 2v and t = n − d − v,
and we will rewrite the triple (n, d, v) in the following form, based on the three
parameters v, l and t, as below:

(n, d, v) = (3v + l + t, 2v + l, v),

where 0 ≤ v ≤ d/2, 0 ≤ l ≤ d and −v ≤ t ≤ l− 1, (note: By Item 1 of Lemma 1,
it is sound that we suppose that t ≤ l−1 when we study the set HT3v+l+t,2v+l,v).
Given a (h, t) ∈ HT3v+l+t,2v+l,v, denote

h = min { j | vμ,j = v, 1 ≤ j ≤ 2 },
c = nμ − dμ − v,

b = l(μ, h),
b = l(μ, h),

where h ∈ { 1, 2 }, h 	= h, and l(μ, h) is equal to the maximal index k no more
than μ such that hk = h if such k exists, and l(μ, h) = 0 otherwise. Clearly, we
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have the following facts: 1) vb = v; 2) vb = v + l; 3) If b < μ, then vμ = v + l; 4)
If b < μ, then vμ = v.

Throughout the rest of this paper, when given an HT -pair (h, t), for simpli-
fication, if without special declaration, we always keep all notations defined as
above for (h, t), such as hk, tk, μ, vk,j , dk, nk, v, l, h, h, c, b, b and so on.

Lemma 3. Let (h, t) ∈ HT , d(h, t) = 2v + l and v(h, t) = v. Then

1.

c =
{
l − tμ, if b = μ

−tμ, if b < μ
.

As a consequence, c ≤ l − 1.
2. If b < μ, let i = μ− b. Then

l + i− 1
{
≤ tb, if h = 1
< tb, if h = 2

.

3. (h, t) ∈ HT3v+l+t,2v+l,v if and only if c ≤ t.

Proof. 1. Note that

vμ =
{
v + l, b = μ

v, b < μ
,

we can obtain

c = nμ − dμ − v = vμ−1,hμ
− v = (vμ − v)− tμ =

{
l − tμ, b = μ

−tμ, b < μ
.

2. Note that

(h, v + l − tb) = (hb, vb−1,hb
) < (hb+1, vb+1) = (h, vμ−i+1) ≤ (h, v − i + 1).

If h = 2, then v + l − tb < v − i + 1. Thus l + i − 1 < tb. If h = 1, then
v + l − tb ≤ v − i + 1. Thus l + i− 1 ≤ tb.

3. Since c = nμ − dμ − v and t = n− dμ − v, thus c ≤ t⇔ nμ ≤ n. �

By the above lemma we can obtain the following conclusion.

Corollary 1. Let t ≤ l − 1. Denote by HTn,d,v(tb ≥ 2) the subset of the set
HTn,d,v made of all HT -pairs (h, t) in HTn,d,v with tb ≥ 2. Similarly, we have
the sets HTn,d,v(tb = 1), HTn,d,v(tb = 1, b < μ), and so on. Then for (h, t) ∈
HT3v+l+t,2v+l,v, we have

1. When l ≥ 2, if b < μ or t ≤ l − 2, then tb ≥ 2. As a consequence, if l ≥ 2
and tb = 1, then t = l − 1 and b = μ. In other words, we have

HT3v+l+t,2v+l,v = HT3v+l+t,2v+l,v(tb ≥ 2), t ≤ l − 2,
HT3v+2l−1,2v+l,v(tb = 1) = HT3v+2l−1,2v+l,v(tb = 1, b = μ).
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2. When l = 1, if tb = 1, t < 0 or t = 0 and b < μ, then b = μ− 1 and h = 1.
In other words, we have

HT3v+t+1,2v+1,v(tb = 1) = HT3v+t+1,2v+1,v(tb = 1, b = μ− 1, h = 1), t < 0,
HT3v+1,2v+1,v(tb = 1, b < μ) = HT3v+1,2v+1,v(tb = 1, b = μ− 1, h = 1).

3. When l = 0, we have tμ = −c ≥ −t. In other words, we have HT3v+t,2v,v =
∪̇−t≤i≤vHT3v+t,2v,v(tμ = i). In particular, we have

HT3v+t,2v,v = HT3v+t,2v,v(tμ = −t)∪̇HT3v+t,2v,v(tμ ≥ 1− t), −v < t < 0,
HT3v+t,2v,v(tμ ≥ 1− t) = HT3v+t−1,2v,v, −v < t < 0,
HT2v,2v,v = HT2v,2v,v(tμ = v),

where ∪̇ means the disjoint union of sets.

Proof. 1. If b < μ, by Item 2 of Lemma 3, tb ≥ l + (μ− b)− 1 ≥ 2. If t ≤ l − 2
and b = μ, by Items 1 and 3 of Lemma 3, tb = tμ = l − c ≥ l − t ≥ 2.

2. If t < 0, then c ≤ t < 0 = l − tb. By Item 1 of Lemma 3, we have b < μ.
Further by Item 2 of Lemma 3, we have 1 ≤ μ− b = l+(μ− b)− 1 ≤ tb = 1.
It implies that b = μ− 1 and h = 1.

3. It follows directly from Item 1 of Lemma 3. �

5 Reduction of the HT3v+l+t,2v+l,v

In this section we make reductions for the sets HT3v+l+t,2v+l,v, based on some
constructed mappings, which are defined as follows.

Mappings. Let t ≤ l − 1. For any (h, t) ∈ HT3v+t+l,2v+l,v, we define the map-
pings ξ, η, �, χ, ξ, η, ζ and ϑ as below:

1. When l ≥ 0, define ξ and η:

ϕ(h, t) =
{

(h, (· · · , tb + 1, · · · )), ϕ = ξ

((h, h), (t, 1)), ϕ = η
;

2. When l ≥ 1, define �:
�(h, t) = ((h, h), (t, l));

3. When l ≥ 1, define ζ:

ζ(h, t) =
{

(h, (· · · , tb − 1, · · · )), tb > 1
((h1, · · · , hb−1, hb+1, · · · , hμ), (t1, · · · , tb−1, tb+1, · · · , tμ)), tb = 1 ;

4. When l = 0, define ξ, η and χ:

ϕ(h, t) =

⎧⎨⎩
(h, (· · · , tb + 1, · · · )), ϕ = ξ
((h, 1), (t, 1)), ϕ = η
((h1, · · · , hμ−1, 1, hμ), (t1, · · · , tμ−1, 1, tμ)), ϕ = χ

;
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5. When l = 0, let (h, t) ∈ HT3v+t,2v,v(tμ = −t). Define:

ϑ(h, t) = (h′, t′),

where h′ = (h1, · · · , hμ−1) and t′ = (t1, · · · , tμ−1).

Lemma 4. Let t ≤ l − 1. Denote

S = HT3v+l+t,2v+l,v

S′ = HT3v+l+t−1,2v+l−1,v.

Then

1. If l ≥ 2, then ξ is an injective from S′ onto S(tb ≥ 2), and ζ is its inverse.
2. If l ≥ 2 and t = l − 1, then η is an injective from S′ onto S(tb = 1, b = μ),

and ζ is its inverse.
3. If l = 1, then

(a) ξ is an injective from S′ onto S(tb ≥ 2, h = 2), and ζ is its inverse.
(b) ξ is an injective from S′ onto S(tb ≥ 2, h = 1), and ζ is its inverse.
(c) χ is an injective from S′(hμ = 2) onto S(tb = 1, b = μ − 1, h = 1), and

ζ is its inverse.
4. If l = 1 and t = 0, then

(a) η is an injective from S′ onto S(tb = 1, b = μ, h = 2), and ζ is its
inverse.

(b) η is an injective from S′ onto S(tb = 1, b = μ, h = 1), and ζ is its
inverse.

5. If l = 0, denote v′ = v+ t and S′′ = HT3v′−2t,2v′−t,v′ . Then � is an injective
from S′′ onto HT3v+t,2v,v(tμ = −t), and ϑ is its inverse.

Proof. Here we will exemplify Item 1 to prove that the conclusion is correct, and
since the proofs of others are very similar to the proof of Item 1, we will omit
them. Below, we will prove Item 1 by three steps. For any given (h, t) ∈ S′, let
ξ(h, t) = (h′, t′).

First, we argue that (h′, t′) ∈ S(tb≥2). By the definition of ξ, (h′, t′) satisfies
both Condition H and Condition T. Thus (h′, t′) is a pre-HT -pair. For simplifi-
cation, we make convention that all parameters with apostrophe are associated
with (h′, t′) and all without apostrophe are associated with (h, t). Compare some
parameters associated with (h, t) and (h′, t′), and we obtain

μ′ = μ, h′
k = hk,

t′k =
{
tk, k 	= b

tb + 1, k = b
,

v′k,j =
{
vk,j , 1 ≤ k < b or j = h

vk,j + 1, b ≤ k ≤ μ, j = h
, v′k−1,hk

= vk−1,hk
,

v′k =
{
vk, k 	= b

vb + 1, k = b
,

n′
μ = nμ + 1, d′μ = dμ + 1,
v′ = v, l′ = l − 1, t′ = t, c′ = c.
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One can check that for 1 ≤ k < μ

(h′
k, v

′
k−1,h′

k
) = (hk, vk−1,hk

) < (hk+1, vk+1) ≤ (h′
k+1, v

′
k+1)

and
c′ = n′

μ − d′μ − v′ = nμ − dμ − v = c ≤ t = t′.

The former inequalities show that (h′, t′) satisfies Condition HT, too. Thus it is
an HT -pair. The latter shows further that (h′, t′) ∈ S. Note that t′

b
= tb +1 ≥ 2,

thus the argument follows.
Second, for any (h, t) ∈ S(tb≥2), let ζ(h, t) = (h′, t′). Similarly to the first

step, one can check (h′, t′) ∈ S′ as well.
Finally, by the definitions of ξ and ζ, it is easy to check that

ξ · ζ|S(tb≥2) = Id and ζ · ξ|S′ = Id,

where Id denotes the identity mapping. Thus ξ is an injective from the set S′

onto the set S(tb ≥ 2), and ζ is its inverse. �

6 The Size of C3v+l+t,2v+l,v

By Item 2 of Lemma 1, it gives the following immediate result:

|C3v+l+t,2v+l,v| = |C3v+2l,2v+l,v| , (12)

where t ≥ l. Thus below we shall only consider the case t ≤ l.

Lemma 5. Let (h, t) ∈ HT3v+l+t−1,2v+l,v, where t ≤ l. Then

|C3v+l+t(h, t)| =
{

2 |C3v+l+t−1(h, t)| , l ≥ t ≥ 1
4 |C3v+l+t−1(h, t)| , l = 0 or t ≤ 0 .

As a consequence, we have

|C3v+2l,2v+l,v| =
{

2 |C3v+2l−1,2v+l,v| , l ≥ 1
4 |C3v−1,2v,v| , l = 0 (13)

and
|C3v+t,2v,v(tμ ≥ 1− t)| = 4 |C3v+t−1,2v,v| , −v < t < 0. (14)

where C3v+t,2v,v(tμ ≥ 1 − t) is a subset of C3v+t,2v,v made of all possible C in
C3v+t,2v,v such that tμ ≥ 1− t, and tμ is the parameter associated with HT (C).

Proof. Let Ek,j , Bk,j , Xk,j , ek,j , etc., and E′
k,j , B′

k,j , X ′
k,j , e′k,j , etc., be pa-

rameters associated with C3v+l+t−1(h, t) and C3v+l+t(h, t) respectively for any k
and j. One can check that E′

k,j = Ek,j for 1 ≤ k ≤ μ. Thus B′
k,j = Bk,j for

1 ≤ k ≤ μ. By definition we have X ′
k,j = Xk,j and e′k,j = ek,j for 1 ≤ k < μ. Now



Expected Value of the Linear Complexity 123

we consider X ′
μ,j and Xμ,j . Let n = 3v+l+t−1, d = 2v+l, n′ = 3v+l+t = n+1

and d′ = 2v + l = d. Denote

M0 = { (l, t) | l = 0 or t ≤ 0 } ,
M1 = { (l, t) | l ≥ t ≥ 1 } .

It is clear that { (l, t) | l ≥ 0, t ≤ l } = M0∪̇M1. Note that

min { v′μ,j , n
′ − d′ } =

{
v, if (l, t) ∈M1 and j = h
v + t, otherwise

,

and

min { vμ,j , n− d } =
{
v, if (l, t) ∈M1 and j = h
v + t− 1, otherwise

.

It follows that

X ′
μ,j\Xμ,j =

{
∅, if (l, t) ∈M1 and j = h
{ v + t } , otherwise

,

hence,

e′μ,j − eμ,j =
{

0, if (l, t) ∈M1 and j = h
1, otherwise

.

Then

e′ − e =
∑

1≤k≤μ

∑
1≤j≤2

(e′k,j − ek,j) =
∑

j=h,h

(e′μ,j − eμ,j) =
{

1, (l, t) ∈M1

2, (l, t) ∈M0
,

which leads to the desired result. �
Lemma 6. 1. Let t ≤ l − 1 and (h, t) ∈ HT3v+l+t−1,2v+l−1,v. Then

|C3v+l+t(ϕ(h, t))| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|C3v+l+t−1(h, t)| , l ≥ 1, ϕ = ξ
|C3v+2l−2(h, t))| , l ≥ 1, t = l − 1, ϕ = η
|C3v+t,2v,v(h, t)| , l = 1, hμ = 2, ϕ = ξ or χ
2 |C3v+t,2v,v(h, t)| , l = 1, hμ = 1, ϕ = ξ
2 |C3v,2v,v(h, t)| , l = 1, t = 0, ϕ = η

.

2. Let (h, t) ∈ HT3v+t,2v+t,v+t, where −v ≤ t < 0. Then

|C3v+t(�(h, t))| = |C3v+t(h, t)| .

Proof. Here we still exemplify the case that l ≥ 1 and ϕ = ξ. Since the proofs
of others are similar to the proof of this case, we omit them.

For any (h, t) ∈ HT3v+l+t−1,2v+l−1,v, let ξ(h, t) = (h′, t′). It is known that
(h′, t′) ∈ HT3v+l+t,2v+l,v. Keep all previous notations for both (h, t) and (h′, t′).
We claim that X ′

k,j = Xk,j for all (k, j). In fact, based on the relations of the
parameters associated to (h′, t′) and (h, t) (see comparison in the proof of Lemma
4), wee see

B′
k,j

{
⊇ Bk,j , k + 1 = b
= Bk,j , otherwise

.

Now we prove X ′
k,j = Xk,j in the following three cases separately.
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1. For the case k = b− 1. We claim that x > vb−1,j if x ∈ B′
k,j\Bk,j . Hence

X ′
b−1,j

=B′
b−1,j

∩[0, v′
b−1,j

]=B′
b−1,j

∩[0, vb−1,j ] = Bb−1,j∩[0, vb−1,j ]=Xb−1,j .

In fact, for any x ∈ B′
k,j\Bk,j , we have

(h, v + l − 1) = (hb, vb) ≤ (j, x) < (hb, v
′
b
) = (h, v + l).

If j = h, then x ≥ vb = vb−1,h + tb > vb−1,h. If j = h, when l ≥ 2, we have
x ≥ v + l − 1 > v ≥ vb−1,h. When l = 1, we have h = 1 and h = 2. Then
x > vb = (v + 1)− 1 = v ≥ vb−1,h.

2. For the case b ≤ k ≤ μ and j = h, we have B′
k,h

= Bk,h, v′
k,h

= v + l, vk,h =

v + l − 1. So Xk,h ⊆ X ′
k,h

. If x ∈ Bk,h, then (h, x) < (hk+1, vk+1) ≤ (h, v),
that is, x ≤ v. Therefore,

X ′
k,h

= B′
k,h
∩ [0, v′

k,h
] = Bk,h ∩ [0, v + l]

= Bk,h ∩ [0, v] ∩ [0, v + l] = Bk,h ∩ [0, v]

⊆ Bk,h ∩ [0, vk,h] = Xk,h ⊆ X ′
k,h

.

Hence X ′
k,h

= Xk,h.
3. For the other cases, we have B′

k,j = Bk,j , v′k,j = vk,j and n′− d′ = n− d. So
X ′

k,j = Xk,j .

Combine the above cases, and we can get the desired result. �

By Lemmas 4 and 6, we have the following result.

Corollary 2. Denote by Cn,d,v(tb ≥ 2) the subset of Cn,d,v made of all possible
elements C in Cn,d,v with tb ≥ 2, where tb is the parameter of HT (C). Similarly,
we have the notations Cn,d,v(tb ≥ 2, h), Cn,d,v(tb = 1, b = μ, h = 2), etc.. Then

1. If l ≥ 2 and t ≤ l − 1, we have∣∣C3v+t+l,2v+l,v(tb ≥ 2)
∣∣ = |C3v+t+l−1,2v+l−1,v| ,∣∣C3v+2l−1,2v+l,v(tb = 1, b = μ)
∣∣ = |C3v+2l−2,2v+l−1,v| .

2. If t ≤ 0, we have∣∣C3v+t+1,2v+1,v(tb ≥ 2, h = 2)
∣∣ = |C3v+t,2v,v| ,∣∣C3v+t+1,2v+1,v(tb ≥ 2, h = 1, b = μ)
∣∣ = 2 |C3v+t,2v,v(hμ = 1)| ,∣∣C3v+t+1,2v+1,v(tb ≥ 2, h = 1, b < μ)
∣∣ = |C3v+t,2v,v(hμ = 2)| ,∣∣C3v+t+1,2v+1,v(tb = 1, b = μ− 1, h = 1)
∣∣ = |C3v+t,2v,v(hμ = 2)| ,∣∣C3v+1,2v+1,v(tb = 1, b = μ, h = 2)
∣∣ = |C3v,2v,v| ,∣∣C3v+1,2v+1,v(tb = 1, b = μ, h = 1)
∣∣ = 2 |C3v,2v,v| .
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3. If t < 0, we have |C3v+t,2v+t,v+t| = |C3v+t,2v,v(tμ = −t)|.

By Corollaries 1 and 2, we obtain

Corollary 3. 1. If l ≥ 2, then

|C3v+l+t,2v+l,v| =
{
|C3v+l+t−1,2v+l−1,v| , t < l − 1
2 |C3v+2l−2,2v+l−1,v| , t = l − 1 .

2.

|C3v+t+1,2v+1,v| =
{

3 |C3v+t,2v,v| , t < 0
6 |C3v,2v,v| , t = 0 .

3. Let v′ = v + t. Then

|C3v+t,2v,v| =
{
|C2v,v,0| , t = −v
4 |C3v+t−1,2v,v|+ |C3v′−2t,2v′−t,v′ | , −v < t < 0 .

By Corollaries 1, 3 and Lemma 5, we obtain

Corollary 4. 1. Let l ≥ 1. Then

|C3v+l+t,2v+l,v| =
{

22t |C3v+1,2v+1,v| = 3 · 22t+3 |C3v−1,2v,v| , 0 ≤ t ≤ l − 1
3 |C3v+t,2v,v| , t < 0 .

2. Let −v < t < 0 and v′ = v + t. Then

|C3v+t,2v,v| = 4 |C3v+t−1,2v,v|+ 3 · 2−2t+2 |C3v′−1,2v′,v′ | .

As a consequence of the above Lemmas and Corollaries, we obtain

Lemma 7. 1. Let l ≥ 1. Then

|Cl+t,l,0| =
{

3 · 22t, 0 ≤ t < l
3 · 22l−1, t ≥ l

. (15)

2. Let v ≥ 1 and l ≥ 0. Then

|C3v+l+t,2v+l,v| =

⎧⎨⎩
λl · 26v+4t−1, t < 0
λl · 26v+2t−2, 0 ≤ t < l
λl · 26v+2l−3, l ≤ t

(16)

where λl = 3 if l = 0; otherwise, λl = 9.

Proof. 1. Note that, when l = 1 and t = 0, that is, n = d = 1, we have the
following 3 2-sequences (

0
1

)
,

(
1
1

)
,

(
1
0

)
,

the linear complexity of which is equal to 1. Thus, |C1,1,0| = 3. By Lemma 5
and Corollary 4, it gives the immediate result.
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2. We first prove that for any v ≥ 1 and −v ≤ t < 0,

|C3v+t,2v,v| = 3 · 26v+4t−1.

To do this we will employ the induction theorem for the pair (t, v) according
to the natural order defined as before. First, when v = 1, it implies that
t = −v = −1. Thus |C2,2,1| = |C2,1,0| = 6 = 3 · 26·1−4·1−1. So the conclusion
is correct for (−t, v) = (−1, 1). Assume that the conclusion is also correct
for all pairs (t′, v′) such that v′ ≥ 1, −v′ ≤ t′ < 0 and (t′, v′) < (t, v). Then
when t = −v, by Corollary 3, we have

|C2v,2v,v| = |C2v,v,0| = 3 · 22v−1 = 3 · 26v−4v−1.

When −v < t < 0, by Corollary 4, we have

|C3v+t,2v,v| = 4 |C3v+t−1,2v,v|+ 3 · 2−2t+2 |C3v′′−1,2v′′,v′′ |
= 4 · 3 · 26v−4(−t+1)−1 + 3 · 2−2t+2 · 3 · 26(v+t)−4−1

= 3 · 26v+4t−1,

where v′′ = v + t. It shows that the conclusion is correct for (t, v) as well.
By the induction theorem, the conclusion follows.
Now let’s return to the prove of Item 2. When l = 0, if t < 0, then

|C3v+t,2v,v| = 3 · 26v+4t−1;

if t ≥ 0, by Corollary 4, then

|C3v+t,2v,v| = 4 |C3v−1,2v,v| = 3 · 26v−3.

When l ≥ 1, similarly, by Corollary 4, if t < 0, then

|C3v+t+l,2v+l,v| = 3 |C3v+t,2v,v| = 9 · 26v+4t−1;

if 0 ≤ t < l, then

|C3v+t+l,2v+l,v| = 3 · 22t+3 |C3v−1,2v,v| = 9 · 26v+2t−2;

if t ≥ l, then

|C3v+t+l,2v+l,v| = 2 |C3v+2l−1,2v+l,v| = 9 · 26v+2l−3.

Combine the above all cases, and we can get the desired conclusion. �
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7 The Proof of Main Theorem

Now we come back to the proof of Main Theorem.

Proof. Review Equation (2), and by Lemma 7 we have

e(2, n) =
1

n · 22n

n∑
d=1

� d
2 ∑

v=0

d |Cn,d,v|

=
1

n · 22n
(
∑
S1

+
∑
S2

+
∑
S3

+
∑
S4

+
∑
S5

+
∑
S6

)(2v + l) |Cn,2v+l,v|

where
S1 = {(v, l)|v = 0},
S2 = {(v, l)|v ≥ 1, l = 0, t < 0},
S3 = {(v, l)|v ≥ 1, l = 0, t ≥ 0},
S4 = {(v, l)|v ≥ 1, l ≥ 1, t < 0},
S5 = {(v, l)|v ≥ 1, l ≥ 1, 0 ≤ t < l},
S6 = {(v, l)|v ≥ 1, l ≥ 1, t ≥ l}

and

∑
S1

l |Cn,l,0| =
�n

2 ∑
l=1

3 · 22l−1l +
l=n∑

l=�n
2 +1

3 · 22(n−l)l,

∑
S2

(2v + l) |Cn,2v+l,v| =
�n

2 ∑
v=�n

3 +1

6v · 24n−6v−1

∑
S3

(2v + l) |Cn,2v+l,v| =
�n

3 ∑
v=1

6v · 26v−3,

∑
S4

(2v + l) |Cn,2v+l,v| =
n−2∑
l=1

�n−l
2 ∑

v=�n−l
3 +1

9(2v + l)24n−6v−4l−1,

∑
S5

(2v + l) |Cn,2v+l,v| =
�n−1

3 ∑
v=1

n−3v∑
l=�n−3v

2 +1

9(2v + l)22n−2l−2,

∑
S6

(2v + l) |Cn,2v+l,v| =
�n−2

3 ∑
v=1

�n−3v
2 ∑

l=1

9(2v + l)26v+2l−3.

By straightforward calculation, we can obtain

e(2, n) =
2
3

+
46 + 3εn

147n
− (

3
14

+
ωn

882n
) · 2−n − (

1
7

+
38

441n
) · 2−2n,

where 0 ≤ εn ≤ 2, εn = n (mod 3), ωn = 200 if n ≡ 0 (mod 2) and ωn = 151 if
n ≡ 1 (mod 2) �
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Abstract. Asymptotic behavior of the normalized linear complexity
Ls(n)

n
of a multi-sequence s is studied in terms of its multidimensional

continued fraction expansion, where Ls(n) is the linear complexity of the
length n prefix of s and defined to be the length of the shortest multi-
tuple linear feedback shift register which generates the length n prefix

of s. A formula for lim supn→∞
Ls(n)

n
together with a lower bound, and

a formula for lim infn→∞
Ls(n)

n
together with an upper bound are given.

A necessary and sufficient condition for the existence of limn→∞
Ls(n)

n
is

also given.

1 Introduction

For a sequence s = {st}t≥0 over a finite field F , the linear complexity of the
length n prefix sn = (s0, s1, · · · , sn−1) of s is denoted by Ls(n) and defined to
be the length of the shortest linear feedback shift register which generates sn.
Recently the asymptotic behavior of the normalized linear complexity, Ls(n)

n ,
of an ultimately non-periodic infinite binary sequence s has been studied [1]
by using continued fractions [5], [6], [7], [8]. We consider only the asymptotic
behavior of the normalized linear complexity Ls(n)

n of a non-periodic sequence s,
since limn→∞

Ls(n)
n = 0 for a periodic sequence s. However its normalized linear

complexity Ls(n)
n remains between 0 and 1. Therefore there exists a possibility

for the normalized linear complexity to be more useful for discussing randomness
of sequences than the linear complexity.

This paper discusses the asymptotic behavior of the normalized linear com-
plexity of an ultimately non-periodic infinite m-tuple multi-sequence (or vector-
valued sequence)

s = {st}t≥0 = ({s1,t}t≥0, · · · , {sm,t}t≥0)T , (1)

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 129–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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where {si,t}t≥0 is an infinite sequence over F , each st is an m-tuple over F , and
the superscript T denotes the transpose.

It is natural to generalize the results on a single sequence case to a multi-
dimensional sequence case, since the single sequence case has been satisfactorily
solved by using continued fractions [1] and multidimensional continued fraction
expansion has been proposed recently [2], [3]. The generalization to the multi-
dimensional sequence case makes it possible for us to understand the relation
between the single sequence case and multi-dimensional sequence case.

2 Continued Fraction and Linear Complexity

In the case of a single sequence (i.e., m = 1) s = {st}t≥0, the Laurent series

s(z) =
∑
t≥0

stz
−(t+1)

is expanded into a simple continued fraction [5], [6], [7]:

C(s) =
1

a1(z) +
1

a2(z) +
1

...... +
1

ak(z) +
1

......
= [ 0, a1(z), a2(z), · · · , ak(z), · · ·] ,

where ai(z) is a polynomial in z over F with degree ti = deg(ai(z)) ≥ 1. Asso-
ciated with C(s), we denote

dk =
∑

1≤i≤k

ti, d0 = 0, (2)

nk = dk + dk−1, n0 = 0. (3)

The linear complexity of the length n prefix of s can be read out [5], [6], [7], [8]
from these parameters, as shown below:

Ls(n) = dk for nk ≤ n < nk+1, ∀k ≥ 0. (4)

It has been shown [1] that for an ultimately non-periodic binary sequence s,
we have

lim sup
n→∞

Ls(n)
n

+ lim inf
n→∞

Ls(n)
n

= 1. (5)

If {Ls(n)/n}n≥1 is convergent, then we have [4], [6]

lim
n→∞

Ls(n)
n

=
1
2
. (6)
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If m > 1 and s is as in equation (1), then the m-tuple Laurent series

s(z) =
∑
t≥0

stz
−(t+1)

is expanded into a multidimensional continued fraction (m-CF)

C(s) =
[

h1, h2, · · · , hk, · · ·
0, a1, a2, · · · ak, · · ·

]
, 1 ≤ k <∞,

by applying the m-CF algorithm (m-CFA) [2] to s(z). Here hk is an integer
between 1 and m, and ak = (ak,1(z), · · · , ak,m(z))T is an m-tuple of polynomials
over F with deg(ak,hk

(z)) ≥ 1.
The outline of the m-CFA [2], [3] for computing C(s) is as follows. Let F (z−1)

be a functional field of z over F , i.e., the quotient field of the ring of polynomials
in z over F . For an element α ∈ F (z−1) expanded as a formal Laurent series
α =

∑
t≥b atz

−t, the discrete valuation of α is denoted by v(α) and defined to
be

v(α) =
{
∞ if α = 0,
b if ab 	= 0. (7)

Every element α ∈ F ((z−1)) can be written as a sum of two parts as α =
�α� + {α}, where its polynomial part �α� is defined by �α� =

∑0
t=b≤0 atz

−t if
b = v(α) ≤ 0 and �α� = 0 if b = v(α) > 0, and its remaining part {α} is defined
by {α} = α−�α�. In this paper we assume that at least one component sequence
of (1) is ultimately non-periodic.

Computation of C(s) is performed as follows [2], which is actually the gen-
eralization of the classic continued fraction algorithm from the one-dimensional
case to the multi-dimensional case.

We start from the initial values

c0,1 = · · · = c0,m = 0; a0 = 0; β
0

= (β0,1, · · · , β0,m)T ,

where β0,j =
∑

t≥0 sj,tz
−(t+1) for 1 ≤ j ≤ m.

We repeat the following computation successively for k ≥ 1.

1. ck = min{ck−1,j + v(βk−1,j) | 1 ≤ j ≤ m}
2. hk = min{j | ck−1,j + v(βk−1,j) = ck, 1 ≤ j ≤ m}.
3. ck,j = ck−1,j if j 	= hk and ck,hk

= ck.
4. Compute ρ

k
= (ρk,1, · · · , ρk,m)T by ρk,hk

= 1
βk−1,hk

and ρk,j = βk−1,j

βk−1,hk

if
j 	= hk.

5. ak = (ak,1, · · · , ak,m)T = �ρ
k
� = (�ρk,1�, · · · , �ρk,m�)T ; and

β
k

= (βk,1, · · · , βk,m)T = {ρ
k
} = ρ

k
− ak = ({ρk,1}, · · · , {ρk,m})T ,

where ak = �ρ
k
� and β

k
= {ρ

k
} are called the polynomial part and the

remaining part of ρ
k
, respectively.
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Conversely, given a multidimensional continued fraction C, we can obtain a
unique multi-sequence s such that C is the multidimensional continued fraction
expansion of s. Define the matrix Bk of order m + 1 iteratively as below:

B0 = Im+1, Bk = Bk−1Ehk
A(ak), k ≥ 1,

where Im+1 is the identity matrix of order m + 1, E(hk) is a matrix of order
m+1 which can be obtained by exchanging the hk-th column and the (m+1)-th
column of Im+1, and

A(ak) =
(
Im ak

0 1

)
.

Denote by (p
k
(z), qk(z))T the last column vector of the matrix Bk(z), where

p
k
(z) = (pk,1(z), pk,2(z), · · · , pk,m(z))T is an m-tuple of polynomials over F and

qk(z) is a polynomial over F . Define

p
k
(z)

qk(z)
=
(
pk,1(z)
qk(z)

,
pk,2(z)
qk(z)

, · · · , pk,m(z)
qk(z)

)T

,

which is called the k-th approximant of C. It is shown [2, 3] that as k goes into

infinity,
p

k
(z)

qk(z) converges to a multi-sequence s = (s1, s2, · · · , sm)T in the sense
that for any integer n, there exists an integer k0 such that

v

(
sj −

pk,j(z)
qk(z)

)
> n, 1 ≤ j ≤ m, ∀k ≥ k0.

Associated with C(s), we denote

tk = deg(ak,hk
(z))(≥ 1), (8)

dk =
∑

1≤i≤k

ti, d0 = 0, (9)

vk,j =
∑

1≤i≤k,hi=j

ti, (10)

vk = vk,hk
, (11)

nk = vk + dk−1. (12)

From the definition we have

dk =
∑

1≤j≤m

vk,j (13)

dk ≤ nk < 2dk, (14)
lim

k→∞
nk = ∞. (15)

It is known [2] that
nk ≤ nk+1 ∀k ≥ 1.
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The linear complexity of the length n prefix sn of an m-tuple sequence s is
denoted by Ls(n) and defined to be the length of the shortest m-tuple linear
feedback shift register which generates sn. As in the one-dimensional case, Ls(n)
can be read out immediately from parameters shown above [3]:

Ls(n) = 0 for n < n1,
Ls(n) = dk for nk ≤ n < nk+1, ∀k ≥ 0. (16)

3 Main Results

Associated with C(s), we define parameters l(k, j), r(k, j), J and m′ as follows.
The integer l(k, j) is the maximum i such that 1 ≤ i ≤ k and hi = j if such i
exists, and l(k, j) = 0 otherwise. The integer r(k, j) is the minimum i such that
i > k and hi = j if such i exists, and r(k, j) = 0 otherwise. J is the set of integers
between 1 and m that appear in the index sequence {hk}1≤k<∞ infinitely many
times. In other words, J = {j | 1 ≤ j ≤ m, r(k, j) 	= 0,∀k}. We let m′ = |J |.

Lemma 1.

1. vl(k,j) is bounded for j /∈ J and k ≥ 1.

2. l(k, j) ≤ k < r(k, j).

3. limk→∞ l(k, j) = ∞ ∀j ∈ J .

4. hi 	= j if l(k, j) < i < r(k, j),
hi = j if i = l(k, j) or i = r(k, j).

5. vr(k,j) = vl(k,j) + tr(k,j).

6. nr(k,j) = vr(k,j) + dr(k,j)−1 = vl(k,j) + dr(k,j) = nl(k,j) + σl(k,j),r(k,j),
where σa,b =

∑
a≤i≤b ti for 1 ≤ a < b.

7. nr(k,hk) = nk + σk, where σk = σk,r(k,hk).

The main results of this paper are the following three theorems and proved
in the next section.

Theorem 1. (Formula for superior limit and inferior limit)

lim sup
n→∞

Ls(n)
n

= lim sup
k→∞

dk

nk
=

1
1 + lim infk→∞

vk−tk

dk

,

lim inf
n→∞

Ls(n)
n

= lim inf
k→∞

dk−1

nk
=

1
1 + lim supk→∞

vk

dk−1

.
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If {Ls(n)

n }n≥1 is convergent, then { dk

nk
}k≥1 and {dk−1

nk
}k≥1 are convergent,

and

lim
n→∞

Ls(n)
n

= lim
k→∞

dk

nk
= lim

k→∞

dk−1

nk
,

and
lim

k→∞

tk
dk−1

= lim
k→∞

tk
dk

= 0.

Theorem 2. (Bounds for superior limit and inferior limit)
Let β = lim supk→∞

tk

dk−1
. Then

lim sup
n→∞

Ls(n)
n

≥ m′(1 + β)
m′(1 + β) + 1

≥ m′

m′ + 1
,

lim inf
n→∞

Ls(n)
n

≤ m′

m′ + 1 + β
≤ m′

m′ + 1
.

As a consequence, if {Ls(n)/n}n≥1 is convergent, then

lim
n→∞

Ls(n)
n

=
m′

m′ + 1
.

Theorem 3. (Necessary and sufficient condition for convergence)
The sequence {Ls(n)/n}n≥1 is convergent if and only if

lim
k→∞

σk

dk
= 0,

where σk =
∑

k≤i≤r(k,hk) ti.

From Theorems 2 and 3 we get

Corollary 1. (Sufficient condition for convergence)
Assume limk→∞

tk

dk−1
= 0. Then

lim
n→∞

Ls(n)
n

=
m

m + 1

if there exists a positive integer B such that k − l(k, h) < B for ∀k and ∀ 1 ≤
h ≤ m.

Proof of Corollary 1. From Theorems 2 and 3 it is enough to prove m′ = m
and limk→∞

σk

dk
= 0.

We have m′ = m, i.e., every h(1 ≤ h ≤ m) appears in the index sequence
{hk}1≤k<∞ infinitely many times, since the condition about l(k, h) means that
for every h(1 ≤ h ≤ m) and any k > B there exists at least one i(k < i ≤ k+B)
such that hi = h.



Asymptotic Behavior of Normalized Linear Complexity 135

We claim limk→∞
tk+i

dk
= 0 for ∀i ≥ 0. This can be proved by induction on

i ≥ 0. It is true for i = 0, since

tk
dk

=
tk

dk−1 + tk
=

tk

dk−1

1 + tk

dk−1

.

Assume limk→∞
tk+i

dk
= 0, then

lim
k→∞

tk+i+1

dk
= lim

k→∞

tk+i+1

dk+1 − tk+1
= lim

k→∞

tk+i+1
dk+1

1− tk+1
dk+1

= 0.

Finally we can prove limk→∞
σk

dk
= 0 by proving r(k, hk) ≤ k + B, since σk

dk
=∑

k≤i≤r(k,hk)
tk+i

dk
. From the assumption we have r(k, hk)−1−l(r(k, hk)−1, hk) <

B. From this we have r(k, hk) ≤ k + B, since l(r(k, hk)− 1, hk) = k. ��

4 Proof of Theorems 1, 2 and 3

Proof of Theorem 1. Let

nk ≤ n < nk+1. (17)

From equation (16), i.e.,
Ls(n)
n

=
dk

n

we have
Ls(nk+1 − 1)
nk+1 − 1

=
dk

nk+1 − 1
≤

Ls(n)
n

≤ dk

nk
=

Ls(nk)
nk

. (18)

We have

lim sup
n→∞

Ls(n)
n

= lim sup
k→∞

dk

nk
, (19)

since from equations (17) and (18) we have

lim sup
n→∞

Ls(n)
n

≤ lim sup
k→∞

dk

nk
= lim sup

k→∞

Ls(nk)
nk

≤ lim sup
n→∞

Ls(n)
n

.

Note that nk = dk−1 + vk = dk + (vk − tk) from equations (11) and (9). Thus
we have

nk

dk
= 1 +

vk − tk
dk

,

which leads to
lim sup

k→∞

dk

nk
=

1
1 + lim infk→∞

vk−tk

dk

.

Next we have

lim inf
n→∞

Ls(n)
n

= lim inf
k→∞

dk

nk+1 − 1
, (20)
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since from equations (17) and (18) we have

lim inf
n→∞

Ls(n)
n

≤ lim inf
k→∞

Ls(nk+1 − 1)
nk+1 − 1

= lim inf
k→∞

dk

nk+1 − 1
≤ lim inf

n→∞

Ls(n)
n

.

We have
lim inf
k→∞

dk

nk+1 − 1
= lim inf

k→∞

dk

nk+1
, (21)

since
0 ≤ dk

nk+1 − 1
− dk

nk+1
=

dk

nk+1(nk+1 − 1)
≤ 1

nk+1

and limk→∞
1

nk+1
= 0.

Note that nk+1 = dk + vk+1 from equation (12), so we have
nk+1

dk
= 1 +

vk+1

dk
,

which leads to

lim inf
n→∞

Ls(n)
n

= lim inf
k→∞

dk

nk+1
=

1
1 + lim supk→sup

vk+1
dk

(22)

from equations (20) and (21).
Let us consider the case where {Ls(n)

n }n≥1 is convergent. First we can prove
the convergence of { dk

nk
}k≥1 by showing lim supk→∞

dk

nk
= lim infk→∞

dk

nk
, since

we have

lim sup
k→∞

dk

nk
= lim sup

n→∞

Ls(n)
n

= lim inf
n→∞

Ls(n)
n

= lim inf
k→∞

dk

nk+1

≤ lim inf
k→∞

dk

nk
≤ lim sup

k→∞

dk

nk

from equations (19) and (22). In a similar way we can prove the convergence of
{ dk

nk+1
}k≥1.

If all of {Ls(n)

n }n≥1, { dk

nk
}k≥1 and { dk

nk+1
}k≥1 are convergent, then from (19)

and (22) we have

lim
n→∞

Ls(n)
n

= lim
k→∞

dk

nk
= lim

k→∞

dk−1

nk
.

We have limk→∞
tk

dk
= 0, since using the relation nk ≤ 2dk we have

0 ≤ lim
k→∞

tk
dk
≤ 2 lim

k→∞

tk
nk

= 2 lim
k→∞

dk − dk−1

nk
= 0.

The relation limk→∞
tk

dk−1
= 0 follows from

tk
dk−1

=
tk

dk − tk
=

tk

dk

1− tk

dk

.

��
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Proof of Theorem 2. Denote

xk =
vk − tk

dk
, yk =

vk

dk−1

and
l = lim inf

k→∞
xk, u = lim sup

k→∞
yk

From Theorem 1 it is enough to prove

l ≤ 1
m′(1 + β)

, u ≥ 1 + β

m′ . (23)

From equations (9), (13) and Lemma 1 we have

xr(k,j) =
vr(k,j) − tr(k,j)

dr(k,j)
=

vl(k,j)

dr(k,j)
≤

vl(k,j)

dk+1
,

and
yl(k,j) =

vl(k,j)

dl(k,j)−1
≥

vl(k,j)

dk−1
.

Hence ∑
j∈J

xr(k,j) ≤
∑

1≤j≤m vl(k,j)

dk+1
=

∑
1≤j≤m vk,j

dk+1
=

dk

dk+1
=

1
1 + tk+1

dk

,

and ∑
j∈J

yl(k,j) ≥
∑

1≤j≤m vl(k,j)

dk−1
=

∑
1≤j≤m vk,j

dk−1
=

dk

dk−1
= 1 +

tk
dk−1

.

Note that
lim

k→∞
r(k, j) = lim

k→∞
l(k, j) =∞, ∀j ∈ J.

We have
l = lim inf

k→∞
xk ≤ lim inf

k→∞
xr(k,j), ∀j ∈ J,

and
u = lim sup

k→∞
yk ≥ lim sup

k→∞
yl(k,j), ∀j ∈ J.

We can prove equation (23), since we have

m′l ≤
∑
j∈J

lim inf
k→∞

xr(k,j) ≤ lim inf
k→∞

∑
j∈J

xr(k,j) ≤ lim inf
k→∞

1
1 + tk+1

dk

=
1

1 + lim supk→∞
tk+1
dk

=
1

1 + β
,
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and

m′u ≥
∑
j∈J

lim sup
k→∞

yl(k,j) ≥ lim sup
k→∞

∑
j∈J

yl(k,j) ≥ 1 + lim sup
k→∞

tk
dk−1

= 1 + β.

��

We need the following lemma to prove Theorem 3.

Lemma 2.

m′nk+1 −
∑
j∈J

σk+1,r(k,j) ≤ (m′ + 1)dk −
∑
j /∈J

vl(k,j) ≤ m′nk +
∑
j∈J

σl(k,j),k.

Proof of Lemma 2. Define Nk and Dk by

Nk =
∑
j∈J

nl(k,j) and Dk = (m′ + 1)nk+1 −
∑
j /∈J

vl(k,j).

We have
m′nk+1 −

∑
j∈J

σl(k,j),k −
∑
j∈J

σk+1,r(k,j) ≤ Nk ≤ m′nk, (24)

since from Lemma 1 we have

Nk =
∑
j∈J

(nr(k,j) − σl(k,j),r(k,j)) ≥ m′nk+1 −
∑
j∈J

σl(k,j),r(k,j)

and Nk ≤
∑

j∈J nk = m′nk.
We have

Dk = Nk +
∑
j∈J

σl(k,j),k, (25)

since from equation (13) and Lemma 1 we have

Nk +
∑
j /∈J

vl(k,j) =
∑
j∈J

(vl(k,j) + dl(k,j)−1) +
∑
j /∈J

vl(k,j)

=
∑

1≤j≤m

vl(k,j) +
∑
j∈J

dl(k,j)−1

= dk +
∑
j∈J

(dl(k,j)−1 + σl(k,j),k)−
∑
j∈J

σl(k,j),k

= dk +
∑
j∈J

dk −
∑
j∈J

σl(k,j),k

= (m′ + 1)dk −
∑
j∈J

σl(k,j),k.

We can prove Lemma 2 from equations (24) and (25). ��
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Proof of Theorem 3.
”If part”: From Lemma 2 we get

dk

nk
≤ m′

m′ + 1
+

∑
j /∈J vl(k,j)

(m′ + 1)nk
+

∑
j∈J σl(k,j),k

(m′ + 1)nk
. (26)

We have
lim

k→∞

σl(k,j)

dl(k,j)
= 0, for j ∈ J,

since {σl(k,j)

dl(k,j)
}k≥1 is a subsequence of {σk

dk
}k≥1.

Note that σl(k,j),k ≤ σl(k,j),r(k,j) = σl(k,j) and dl(k,j) ≤ dk ≤ dk + vk−1,hk
= nk,

so we have
σl(k,j),k

(m′ + 1)nk
≤

σl(k,j)

dl(k,j)

m′ + 1
,

and from this we have

lim
k→∞

∑
j∈J σl(k,j),k

(m′ + 1)nk
= 0. (27)

Note that
∑

j /∈J vl(k,j) is bounded, so we have

lim
k→∞

∑
j /∈J vl(k,j)

(m′ + 1)nk
= 0. (28)

From equations (26), (27)and (28) we have

lim sup
k→∞

dk

nk
≤ m′

m′ + 1
. (29)

From Lemma 2 we also get

m′

m′ + 1
≤ dk

nk+1
+

∑
j∈J σk+1,r(k,j)

(m′ + 1)nk+1
−
∑

j /∈J vl(k,j)

(m′ + 1)nk+1
.

We have
m′

m′ + 1
≤ lim inf

k→∞

dk

nk+1
, (30)

since similarly we have

lim
k→∞

∑
j∈J σk+1,r(k,j)

(m′ + 1)nk+1
= 0 and lim

k→∞

∑
j /∈J vl(k,j)

(m′ + 1)nk+1
= 0.

From equations (29), (30) and Theorem 1 we have

m′

m′ + 1
≤ lim inf

k→∞

dk

nk+1
= lim inf

k→∞

Ls(n)
n

≤ lim sup
k→∞

Ls(n)
n

= lim sup
k→∞

dk

nk
≤ m′

m′ + 1
,
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which leads to

lim inf
k→∞

Ls(n)
n

= lim sup
k→∞

Ls(n)
n

.

”Only if” part: Denote

Δk =
Ls(nr(k,hk))
nr(k,hk)

−
Ls(nk)
nk

.

By the assumption of convergence of
Ls(n)

n we have

lim
k→∞

Δk = 0.

From Theorems 1 and 2 we have

lim
k→∞

dk−1

nk
= lim

n→∞

Ls(n)
n

=
m′

m′ + 1
and lim

k→∞

tk
nk

= 0.

Note that

Δk =
dr(k,hk)

nr(k,hk)
− dk

nk
=

dk−1 + σk

nk + σk
− dk−1 + tk

nk

= − tk
nk

+
σk(nk − dk−1)
nk(nk + σk)

= − tk
nk

+
σk

nk
(1− dk−1

nk
)

1 + σk

nk

.

From this we get

lim
k→∞

σk

nk

1 + σk

nk

= lim
k→∞

Δk + tk

nk

1− dk−1
nk

= 0. (31)

Let α = lim supk→∞
σk

nk
≥ 0. We have

lim
k→∞

σk

nk

1 + σk

nk

=
α

1 + α
,

which together with equation (31) leads to α = 0. From equation (15) we can
prove limk→∞

σk

dk
= 0 if we show limk→∞

σk

nk
= 0, which can be shown by

0 ≤ lim inf
k→∞

σk

nk
≤ lim sup

k→∞

σk

nk
= α = 0.

��

5 Conclusion

In this paper the multidimensional continued fraction algorithm [2], [3] is success-
fully applied to partially extend the results on the normalized linear complexity
for a single sequence case [1] to a multi-sequence case.



Asymptotic Behavior of Normalized Linear Complexity 141

Recently m-tuple multi-sequences with limn→∞
Ls(n)

n = m
m+1 , called multi-

sequences with almost perfect linear complexity profile, have been studied [9].
From Theorem 2 the generalization of equation (6) to the m-tuple multi-sequence
case shows that limn→∞

Ls(n)

n takes m different values from { 1
2 ,

2
3 , · · · ,

m
m+1}.

Corollary 1 shows the existence of m-tuple sequences whose normalized linear
complexity converges to the value m

m+1 . The following m-tuple sequence s in
equation (1) can be shown that its normalized linear complexity converges to
the value 1

2 . All the sequences s2, · · ·, sm except s1 are periodic with period

N2, · · ·, Nm, respectively and limn→∞
Ls1 (n)

n = 1
2 . There exist a pair of polyno-

mials {p1,n(z), q1,n(z)} such that they are coprime and deg q1,n(z) is minimal
satisfying

v

(
p1,n(z)
q1,n(z)

−
∑
t≥0

stz
−t−1

)
≥ n + 1.

There also exist m− 1 polynomial pairs {p2(z), q2(z)}, · · ·, {pm(z), qm(z)} such
that pi(z) and qi(z) are coprime and deg qi(z) = Ni (2 ≤ i ≤ m) satisfying

pi(z)
qi(z)

=
∑
t≥0

si,tz
−(t+1).

We have limn→∞
Ls(n)

n = 1
2 , since for n ≥ max{2N2, · · · , 2Nm} we have

deg q1,n(z) ≤ Ls(n) ≤ deg [q1,n(z)q2(z) · · · qm(z)].
Whether some generalization of (5) to the multi-sequence case exists or not

is an open problem.
By the relation of multidimensional continued fractions and multi-sequences

and the definition of J or m′, it is easy to construct many multidimensional
continued fractions such that they can take every value among 1

2 ,
2
3 , · · · ,

m
m+1 , or

equivalently, for every 2 ≤ k ≤ m, there exist many multi-sequences s such that
{Ls(n)

n }n≥1 is convergent and lim
n→+∞

Ls(n)

n = k
k+1 . For example, we consider the

multidimensional continued fraction C satisfying the following conditions:

1. 1 ≤ hi ≤ k and hi ≡ i (modk) for ∀ i ≥ 1;
2. ak = (ak,1, ak,2, · · · , ak,m), where ak,j = 0 if j 	= hk and ak,hk

= z.

Assume that the above multidimensional continued fraction C converges to a
multi-sequence s. Then we have that the normalized linear complexity of s is
convergent and converges to k

k+1 .
A fast algorithm for computing the asymptotic value of normalized linear

complexity numerically is desirable if we want to apply the results of this paper
to practical sequences.
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(Extended Abstract)
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Abstract. We show how to model complexities (linear, 2–adic, tree,
etc.), compression schemes (Lempel–Ziv, etc.), and predictors (Markov
chains, etc.) in a uniform way as isometries.

This isometric setting allows to sort out nonrandom sequences as they
violate the bounds of the “Law of the Iterated Logarithm”.

We also consider the computational complexity of calculating the iso-
metric models, as well as how to deal with finite sequences.

1 Introduction

Let A = {0, 1, . . . , |A| − 1} ⊂ N0 be an alphabet. Given a finite prefix s of an
infinite word a, A∗ % s� a ∈ Aω, we may predict what symbol comes next in a.
If we are right (more often than wrong) we may compress the sequence since its
complexity is low.

In Sections 3–6 we model several complexity measures (see [13]) as isometries.
In Sections 7–9 we state bounds for the number of nonzeroes and lengths of zero
runs as Lévy classes which permits us to recognize nonrandom sequences. The
final sections cover finite sequences and computational complexity.

2 Rankings and Isometries

We model prediction, online (no preview) compression, and (prefix) complexity
by a ranking C:A∗ → SA

∼= S|A| (symmetric group), where for each string w ∈
A∗ the permutation C(w) on the alphabet A orders the symbols in decreasing
probability of occurence after w.

Let C : A∗ → R be a complexity measure. Then C induces a ranking C:A∗ →
SA as follows: Given w ∈ A∗, we compute C(w0), C(w1), . . . , C(w(|A| − 1)) and
sort these |A| numbers as C(wa0) ≤ C(wa1) ≤ . . . ≤ C(wa|A|−1) (if a value
occurs twice, the further ordering can be e.g. according to the alphabet A).

� Supported by Project FONDECYT 2001, No. 1010533 of CONICYT, Chile.
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T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 143–153, 2005.
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We thus obtain the permutation C(w) ∈ SA of A as C(w) : ai �→ i. Hence,
C(w)−1(0) = a0 is the symbol predicted after w by C, a0 has highest probability
to occur, wa0 has lowest complexity.

Definition 1. We define a “degree” on Aω as |a| = −k, when ai = 0 for 1 ≤ i <
k and ak 	= 0, and |0ω| = −∞. We define the “difference” a− b componentwise,
then |a− b| = −k if and only if ai = bi, i < k, and ak 	= bk.

An isometry is a function C:Aω → Aω that preserves distance that is for
a, b ∈ Aω with ai = bi, 1 ≤ i < k and ak 	= bk, also C(a)i = C(b)i, 1 ≤ i < k and
C(a)k 	= C(b)k, or shorter |C(a)−C(b)| = |a− b|.

Every ranking C induces an isometry C:Aω → Aω on the set of infinite
sequences:

C(a1a2 . . .) = (C(a1 . . . an−1)(an))∞n=1

=
(
C(ε)(a1), C(a1)(a2), C(a1a2)(a3), . . . . . . , C(a1 . . . an−1)(an), . . .

)
We have C(a)n = 0, if and only if an has been predicted by C after (a1 . . . an−1)
as having highest probability.

We will not be interested in the complexities as such but only in the behaviour
of the induced isometries. As C is an isometry, the result C(a) of a randomly
drawn (i.i.d.) sequence a ∈ Aω will behave like a Bernoulli process. This allows,
regardless of the development of the actual complexity, to apply the sharp bounds
known for Bernoulli experiments to all complexity models.

In particular, we have a uniform treatment of the borderline between random
and nonrandom behaviour (which is just the most interesting case: determinis-
tically produced – hence nonrandom – sequences that should look like random
ones).

In general the bordercase decisions for arbitrary complexities are difficult,
but the Law of the Iterated Logarithm will give an easy-to-use criterion.

3 Linear and Jump Complexity [15, 22, 23]

For A ≡ Fq, a ∈ Fω
q , let G(a) =

∑∞
i=1 aix

−i = 1
A1(x)+ 1

A2(x)+ 1
A3(x)+...

be the

generating function and its continued fraction expansion with nonconstant poly-
nomials Ai(x) ∈ Fq[x]\Fq. The sequence (Ai) is finite iff G(a) is rational, that is
a is ultimately periodic. Let π: Fq[x]\Fq %

∑d
i=0 rix

i �→ 0d−1rdrd−1 . . . r0 ∈ F2d
q

and πD: Fq[x]\Fq %
∑d

i=0 rix
i �→ 0d−1rd ∈ Fd

q be the encoding of a nonconstant
polynomial and its degree part, resp., by symbols from Fq.

Let K(0ω) := 0ω, and otherwise map a to the concatenation of the encodings

Fω
q % a �→ G(a) ≡

{
(Ai)n

i=1 �→ (π(Ai))n
i=1|0ω

(Ai)∞i=1 �→ (π(Ai))∞i=1

}
=: K(a) ∈ Fω

q

(where the upper concatenation refers to the rational case, the lower one to
irrational G(a)), also let KD(a) be the concatenation of the πD(Ai).
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Proposition 1.

(i) K is an isometry on Fω
q .

(ii) KD is equidistributed in the sense of |{a ∈ A2n | KD(a)i,i=1...n = b}| = 2n

for all b ∈ An.

Another isometry is a �→ KBMA(a), where KBMA(a) is just the discrepancy
sequence of the original Berlekamp–Massey–Algorithm (and on the other hand,
K can be obtained as the discrepancy sequence of a modified BMA) [4] [15].

The usual “LFSR” linear complexity profile (l.c.p.) of a sequence a ∈ Fω
q then

is given by L(a, n) =
∑k

i=1 deg(Ai), where Ak is the last partial denominator
whose leading coefficient is encoded in K(a)i,i=1...n. (L(a, n)) is monotonously
increasing and jumps, L(a, i) > L(a, i− 1), where K(a)i encodes a leading coef-
ficient.

The usual definition in linear feedback shift register (LFSR) theory is equiv-
alent:

Theorem 1. [22]
L(a, n) denotes the length of a shortest LFSR that produces a1 . . . an.

For later use we define the linear complexity deviation
m(a, n) = 2L(a, n)− n ∈ Z.

m oscillates around zero and shows the deviation from a perfect l.c.p.
The jump complexity is the number of jumps in the l.c.p.,

JK(a, n) := | {i | i ≤ n, L(a, i− 1) < L(a, i)} | = |{i | i ≤ n

2
, KD(a)i 	= 0}|+ δ

for some δ ∈ {0, 1}.
Proposition 2. The largest jump in the l.c.p. (= maxi≤k deg(Ai)) up to n is
1 + max

i≤n/2
{l | KD(a)i−l = . . . = KD(a)i−1 = 0,KD(a)i 	= 0, }.

4 2–Adic Complexity [9, 10]

For A ≡ F2, let a ∈ Fω
2 , z =

∑∞
i=1 ai2i−1 ∈ Z2 be a dyadic integer. For n ∈ N,

let L(z, n) = {(p, q) ∈ Z2 | p ≡ q · z mod 2n} be the lattice of approximations
of z up to an. Let (cn, dn) ∈ L(z, n)\{(0, 0)} be a minimal approximation in the
sense of max{|cn|, |dn|} ≤ max{|p|, |q|} for all (p, q) ∈ L(z, n)\{(0, 0)}. Setting
the initial value (c0, d0) := (0, 1), we define a function A: Fω

2 → Fω
2 by

A(a)i =

{
0, if (ci, di) = (ci−1, di−1)
1, if (ci, di) 	= (ci−1, di−1)

Theorem 2. [22] A is an isometry on Fω
2 .

We further define the 2–adic jump complexity JA as counting the number of
changes in the 2–adic complexity profil: JA(a)(n) :=

∑n
i=1 A(a)i, which should

behave like JA(n) ≈ n
2 . In analogy to m, we also define the 2–adic jump com-

plexity deviation mA(n) := 2 · JA(n)− n ∈ Z.

Remark. Whereas the original 2–adic complexity φ(a, n) = log2 max(|cn|, |dn|)
is not usually integral, JA and mA get us again in the world of coin tossing.
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5 Tree Complexity [14]

Tree complexity (a similar concept is automaticity [21]) determines the number
of distinct subtrees arranging s ∈ A∗ in a “heap”. Let s = a1 . . . an ∈ A∗ and put
ai = # for i > n. The subtree patterns of a = s#ω are P ′′(s) = {(ak, a2k, a2k+1,
. . . , a2ik, . . . , a2ik+2i−1, . . .) | 1 ≤ k ≤ n} ⊂ (A ∪ {#})ω.

Heap: a1

a2 a3

a4 a5 a6 a7

a8 a9 a10 a11 a12 a13 a14 a15

. . .
Let P ′(s) = {v ∈ A∗ | v#ω ∈ P ′′(s)}, and P (s) = {v ∈ P ′(s) | 	∃v′ 	= v ∈

P ′(s): v � v′} (prefix free). Then T (s) := |P (s)| is the tree complexity of s.

Two examples: Let |A| = 10 and s1 = 123456789, then P ′(s1) = {123456789,
24589, 367, 489, 5, 6, 7, 8, 9} = P (s1) and thus T (s1) = 9.

For |A| = 2 and s2 = 101000110, P ′(s2) = {101000110, 00010, 101, 010, 0, 1}
and P (s2) = {101000110, 00010, 010}, whence T (s2) = 3.

We define a ranking T and an isometry T on Aω as follows: For all s ∈ A∗

and α ∈ A, compute the set P (sα). Define T (s) ∈ SA by T (s)(α) < T (s)(β) if
and only if T (sα) < T (sβ), or T (sα) = T (sβ) and α < β. T is defined in terms
of T as in section 2 for arbitrary C.

Let αs be the predicted symbol that is T(s)(αs) = 0. Then T (sαs) = T (s).

6 Prediction and Compression

When working over the binary alphabet A = {0, 1}, we can turn a predictor
function P :A∗ → A, w �→ P (w) where P (w) is the symbol predicted after w,
into a ranking P :A∗ → SA, P (w)(P (w)) = 0, the symbol predicted after w
receives rank 0, and P (w)(1− P (w)) = 1, the other symbol then has rank 1.

Since P singles out only one symbol, for |A| > 2 it would have no unique
induced ranking. From P we get an isometry P as before,

P(a1, a2, a3, . . .) =(
P (ε)(a1), P (a1)(a2), P (a1a2)(a3), . . . , P (a1 . . . an−1)(an), . . .

)
.

A compression scheme (e.g. Lempel–Ziv LZ) can be modelled as a function
L:A∗ → R, w �→ L(w) = |LZ(w)|, the length of the compressed output.

This function also induces a ranking: For every prefix w, we sort A accord-
ing to increasing complexity, L(wa0) ≤ L(wa1) ≤ L(wa2) ≤ . . ., and then set
L(w)(ai) = i. We then obtain the isometry L as usual.

7 Lévy Classes

We have seen how to model compression, prediction, and complexity as rankings
and then as isometries. In the sequel we will recall the Law of the Iterated
Logarithm and its consequences for isometries.



A Unified View on Sequence Complexity Measures as Isometries 147

In order to describe the “typical” behaviour of a function f(a, n), for a ∈
Aω, n ∈ N, we introduce Lévy classes (Upper and Lower Class, resp.) of real
sequences:

(i) UUC(f) = {x ∈ RN | ∀μ a,∃n0 ∈ N,∀n > n0 : f(a, n) < xn}
(ii) ULC(f) = {x ∈ RN | ∀μ a,∀n0 ∈ N,∃n > n0 : f(a, n) ≥ xn}

(iii) LUC(f) = {x ∈ RN | ∀μ a,∀n0 ∈ N,∃n > n0 : f(a, n) ≤ xn}
(iv) LLC(f) = {x ∈ RN | ∀μ a,∃n0 ∈ N,∀n > n0 : f(a, n) > xn}

Thus for all choices x(1) ∈ LLC(f), x(2) ∈ LUC(f), x(3) ∈ ULC(f), x(4) ∈
UUC(f) and for almost all sequences a ∈ A∞, we have x

(1)
n < f(a)(n) < x

(4)
n

asymptotically, but μ–almost all sequences will make f oscillate so much as to
repeatedly leave the interval (x(2), x(3)) of unavoidable oscillation.

8 Lévy Classes for Occurrence Counts

In this and the following section we give known results as compiled by Révész.
Most theorems are given only for the practically most important case |A| = 2.

We partition A into the two classes A0 (successes) and A1 = A\A0 (failures),
e.g. A0 = {0} for correct prediction, and set pi = |Ai|/|A|.

We then count the successes up to n as

S(a, n) = |{i ≤ n | ai ∈ A0}|.

The Law of the Iterated Logarithm now is stated as:

Theorem 3. Law of the Iterated Logarithm ([7], Section VIII.5.)

(i) limn→∞ (S(a, n)− n · p0) /
√
n · p0 · p1 · 2 · log logn = +1 μ− a.e.

(ii) limn→∞ (S(a, n)− n · p0) /
√
n · p0 · p1 · 2 · log logn = −1 μ− a.e.

Slightly sharper bounds for the case |A| = 2, Ai = {i} use the difference
between successes and failures

D(a, n) = |{i ≤ n | ai ∈ A0}| − |{i ≤ n | ai ∈ A1}|.

Theorem 4. Law of the Iterated Logarithm for tossing a fair coin ([5],[8],[11],
[19–5.2])

f(t) ∈ UUC(D(a, t)/
√
t) ⇐⇒

∑∞
n=1

f(n)
n · e− f(n)2

2 <∞
f(t) ∈ ULC(D(a, t)/

√
t) ⇐⇒

∑∞
n=1

f(n)
n · e− f(n)2

2 =∞
f(t) ∈ LUC(D(a, t)/

√
t) ⇐⇒ −f(t) ∈ ULC(D(a, t)/

√
t)

f(t) ∈ LLC(D(a, t)/
√
t) ⇐⇒ −f(t) ∈ UUC(D(a, t)/

√
t)

Some example functions bounding D(a, t)/
√
t show that we can not avoid

oscillations on the order of the “iterated logarithm” log log(t) times
√
t.
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Example 1. For all ε > 0 we have:

(2 · log log(t) + (3 + ε) · log log log t)1/2 ∈ UUC(D(a, t)/
√
t)

(2 · log log(t) + log log log t)1/2 ∈ ULC(D(a, t)/
√
t)

−(2 · log log(t) + log log log t)1/2 ∈ LUC(D(a, t)/
√
t)

−(2 · log log(t) + (3 + ε) · log log log t)1/2 ∈ LLC(D(a, t)/
√
t)

As a modified version of Theorem 3 we obtain in the setting of isometries:

Theorem 5. The Law of the Iterated Logarithm for Isometries
For an isometry C on Aω, for any partition A = A0 ∪A1 of A, let b = C(a)

and D(b, n) as before. Then

(i) limn→∞
(ii) limn→∞

}
D(b, n)|A| − n · (|A0| − |A1|)√

8|A0||A1| · n · log logn
=
{

+1
−1 μ− a.e.

Remark 1. The preceeding theorem sorts out two classes of sequences: Those
too bad (rational ones under K give an excess of zeroes, perfect l.c.p.’s typically
give an excess of ones), but also those too good to be true: e.g., if all partial
denominators had degree 2, K(a) would be of the form K(a) = (01 ∗ ∗)∞, which
for random ∗ leads to equidistribution, but the fluctuations depend only on half
of the symbols and thus

limn→∞ D(b, n)|A|−n ·(|A0|−|A1|) /
√

8|A0||A1| · n/2 · log log n/2 = 1 μ−a.e.

and hence

limn→∞ D(b, n)|A|−n · (|A0|− |A1|) /
√

8|A0||A1| · n · log log n =
1√
2
μ− a.e.,

similarly for lim. So these sequences can be identified as nonrandom, as their
fluctuations are too small. A more trivial example for “too good” a behaviour is
the sequence (01)ω with lim . . . = lim . . . = 0.

For the jump complexity JK, only half of the symbols of K are considered in
KD and thus

Corollary 1.

(i) limn→∞ (JK(a, n)− n
2 ·

q−1
q ) /

√
q−1
q2 n · log log n

2 = +1 μ− a.e.

(ii) limn→∞ (JK(a, n)− n
2 ·

q−1
q ) /

√
q−1
q2 n · log log n

2 = −1 μ− a.e.

We also have

Corollary 2. Law of the Iterated Logarithm for the 2–adic Jump Complexity
Deviation

(i) limn→∞ mA(n) / (
√

2n · log log n) = +1 μ− a.e.
(ii) limn→∞ mA(n) / (

√
2n · log log n) = −1 μ− a.e.
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9 Maximum Run Lengths for |A| = 2

Let the length of the largest sequence of zeroes in a1, . . . , an be Z(a, n). This
maximum run length behaves roughly like logn, more precisely:

Theorem 6. Lévy classes for Z(a, n) for |A| = 2 [6, 20]

∞∑
n=1

2−f(n)

{
<∞
=∞ ⇐⇒ f(n) ∈

{
UUC(Z(a, n)), e.g. f(n) = log2(n)(1 + ε)
ULC(Z(a, n)), e.g. f(n) = log2(n)

f(n) = �log2(n)− log2 log2 log2(n)+log2 log2(e)−1+ε� ∈ LUC(Z(a, n)),∀ε > 0

f(n) = �log2(n)− log2 log2 log2(n)+log2 log2(e)−2−ε� ∈ LLC(Z(a, n)),∀ε > 0

Corollary 3. [22]
(i) The sequences with d–perfect linear complexity profile comprise a set of mea-
sure μ = 0.
(ii) μ–almost all sequences have a good linear complexity profile

The largest jump in the l.c.p. up to n has height 1+Z(b, n/2) by Proposition 2.

Corollary 4. For μ–almost all a ∈ Aω and all n, the largest jump 1+Z(b, n/2)
must be of the order (log2 n)(1 + o(1)).

Theorem 7. (i) For the lengths Z2(n), Z3(n), . . of the second, third, . . . largest
run of zeroes, Deheuvels [3] has found the following functions (where log(j)

2 :=
log

2
(log(j−1)

2 ) with log2(x) = 0 for x < 1, log2(x) = log2(x) for x ≥ 1).
For all k ∈ N, r ≥ 2, ε > 0 we have:

f(n) = log2(n) +
1
k
· (log(2)

2 (n) + . . . + log(r−1)
2 (n) + (1 + ε) log(r)

2 (n))

∈ UUC(Zk(n))

f(n) = log2(n) +
1
k
· (log(2)

2 (n) + . . . + log(r−1)
2 (n) + log(r)

2 (n)) ∈ ULC(Zk(n))

f(n) = �log2(n)− log2 log2 log2(n) + log2 log2(e) + ε� ∈ LUC(Zk(n))
f(n) = �log2(n)− log2 log2 log2(n) + log2 log2(e)− 2− ε� ∈ LLC(Zk(n))

(ii) Hence for the second, etc., largest degree dk(t) in the continued fraction
expansion, we obtain:

f(t) = 1 + log2(
t

2
) +

1
k
· (log(2)

2 (
t

2
) + . . . + log(r−1)

2 (
t

2
) + (1 + ε) log(r)

2 (
t

2
))

∈ UUC(dk(t))

f(t)=1 + log2(
t

2
)+

1
k
· (log(2)

2 (
t

2
) + . . . + log(r−1)

2 (
t

2
) + log(r)

2 (
t

2
))∈ULC(dk(t))

f(t) = 1 + �log2(
t

2
)− log2 log2 log2(

t

2
) + log2 log2(e) + ε� ∈ LUC(dk(t))

f(t) = 1 + �log2(
t

2
)− log2 log2 log2(

t

2
) + log2 log2(e)− 2− ε� ∈ LLC(dk(t))
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10 The Finite Case

The Law of the Iterated Logarithm in rigor does not make any statement at all
about finite sequences as we only deal with asymptotic behaviour.

“Finite Non/Random Sequences” live in the twilight zone described by La-
place’s “Sixth Principle”, and the often–cited John v. Neumann “Anyone who
considers arithmetic methods of producing random digits is, of course, in a state
of sin”.

What we can do anyway in view of the Law of the Iterated Logarithm is to
declare as nonrandom every finite sequence (and its corresponding cylinder set
of continuations, hence we will throw away a set of strictly positive measure μ
instead of μ-almost nothing) that does not fulfill the inequality

|S(a, n)− n · p0| ≤
√

2 · n · log log n + Δ

for some n ≥ 3 (for n ≤ 2,
√

log log is undefined), where Δ ∈ R+ is some
parameter chosen by us.

In the case of A = {0, 1}, for different Δ and sequence lengths n, we then
throw away the following fractions μ of all sequences:

Δ 0.748809 0.74881 1 2 3 4 5
n μ

32 0.25131 0.00508 0.00281 0.00031 0.000035 0.000004 0.0000003
64 0.25206 0.00626 0.00373 0.00064 0.000139 0.000032 0.000007

128 0.25271 0.00720 0.00450 0.00102 0.000315 0.000108 0.000038
256 0.25319 0.00785 0.00510 0.00139 0.000534 0.000233 0.000108
512 0.25355 0.00834 0.00556 0.00171 0.000756 0.000385 0.000210

1024 0.25382 0.00871 0.00590 0.00199 0.000966 0.000546 0.000332

We should obviously choose a Δ above 0.74881 = 3/2−
√

2 · 3 · log log 3.

11 Structured Sequences

The most structured sequences according to a ranking C, or an isometry C, are
those with finite support C(a) ∈ ϕ0 := {b ∈ Aω | ∃n0,∀i > n0: bi = 0} that is
which are completely recognized by the model underlying C after n0 symbols.

We have the following description of C−1(ϕ0) for some C:
K,
A,
L – rationals,
K◦K – quadratic algebraics (Lagrange [12], those a with rational b = K(a)),
T – algebraics of any order (Christol et al. [2]), and
χ (Turing–Kolmogorov–Chaitin) – every sequence with finite description.
Rational, algebraic refers to the induced generating function over some F(x).
Hence (apart from the noncomputable χ) T is the most “efficient” measure

in terms of the size of C−1(ϕ0).
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Also, the combination T ◦K may be very effective: K rapidly identifies ra-
tionals and then T furthermore sorts out all a with algebraic K(a).

12 Computational Complexity

The computational (e.g. bit) complexity ‖ • ‖ of calculating an isometry C up
to n input symbols, ‖C‖(n), is upperbounded by

‖C‖(n) = O(|A| · ‖C‖(n)).

It is sufficient to compute the values C(a1 . . . anα) for all prefixes sn = a1 . . . an

and every element α ∈ A, and then to sort the C–complexities in constant time
in order to obtain the ranking C at sn.

Hence, investing a constant factor |A| allows us for any compression, com-
plexity etc. to apply the precise laws for Bernoulli trials to the resulting isometry.

For instance ‖K‖(n) is O(n2), see [1, 15, 16].

13 Shifted Sequences

We may want to evaluate the isometry C for all shifted sequences C(a1, . . . , an),
C(a2, . . . , an), . . . up to C(an) (for instance, to consider different starting points
for the linear complexity profile, see [18]).

In this case we can use the Shift Commutator

[C−1, σ] = C ◦ σ−1 ◦C−1 ◦ σ,

again an isometry [1]. Let some w = C(v) be given, e.g. ε = C(ε), then C(av) =
[C−1, σ](aw) for a ∈ Fq, since

aw
σ−→ w

C−1

−→ v
σ−1

a−→ av
C−→ C(av) = [C−1, σ](aw)

Iterating this procedure, we obtain the following upper bound for the com-
bined bit complexity:

n∑
i=1

‖C(ai . . . an)‖(n− i + 1) ≤ n · ‖[C−1, σ]‖(n)

In the case of C = K, the shift commutator [K−1, σ] can be computed by a
transducer with finite state space and an up-down-counter in amortized linear
time ‖[K−1, σ]‖(n) ≤ 7.5n (for a detailed description see [15] for the case F2 and
[16] for general finite fields).

Hence we can compute K for all shifts simultaneously in amortized quadratic
time (the same as one run of the Berlekamp–Massey–Algorithm) by repeated
application of [K−1, σ] via the above formula.

We thereby obtain with no additional cost all continued fractions of all shifted
sequences (a1, . . . , an), (a2, . . . , an) . . . (an−1, an) as well.
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14 Conclusion

We can use many different ways to assess the randomness of a sequence a ∈ Aω

like various complexity measures, compression schemes, and predictors. When
interfacing them by isometrization, we then have a uniform decision procedure
to accept / reject the resulting sequence by the Law of the Iterated Logarithm.

Much less is known about the actual e.g. 2–adic or tree complexities φ and T
and its admissible fluctuations for large n→∞. The additional time complexity
for isometrization is bounded by a factor |A|.

A sequence a ∈ Aω must pass at least the tests by the K,K ◦ K,A,L,T,
and T ◦K isometries, staying within the bounds of the respective Laws of the
Iterated Logarithm, to be considered random or pseudo–random.

For finite sequences a ∈ An, some n ∈ N, in particular, we uniformly sort out
the same fraction (measure) of “nonrandom” ones, for every complexity measure.
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Abstract. Let p be an odd prime and m be a positive integer. In this
paper, we prove that the one-error linear complexity over Fp of Sidelnikov
sequences of length pm − 1 is ( p+1

2
)m − 1, which is much less than its

(zero-error) linear complexity.

1 Introduction

Let p be an odd prime and m be a positive integer. Let Fpm be the finite field
with pm elements, and α be a primitive element of Fpm . The Sidelnikov sequence
S = {s(t) : t = 0, 1, 2, ..., pm − 2} of period pm − 1 is defined as [1]

s(t) =

{
1 if αt + 1 ∈ N
0 otherwise

(1)

where N = {α2t+1 : t = 0, 1, ..., pm−1
2 − 1} is the set of quadratic nonresidues

over Fpm . In [1], it was shown that S has the optimal autocorrelation and balance
property. Sidelnikov sequences were rediscovered by Lempel et al [2], and Sarwate
pointed out that the sequences described by Lempel et al were in fact the same
as the ones by Sidelnikov [3]. Sidelnikov sequences are a special case of the
construction by No et al [4].
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Helleseth and Yang [5] originated the study of the linear complexity of Sidel-
nikov sequences over F2. They found also a representation of the sequences using
the indicator function I(·) and the quadratic character χ(·) as

s(t) =
1
2
(
1− I(αt + 1)− χ(αt + 1)

)
, (2)

where I(x) = 1 if x = 0 and I(x) = 0 otherwise, and χ(x) denotes the quadratic
character of x ∈ Fpm defined by

χ(x) =

⎧⎨⎩
+1, if x is a quadratic residue

0, if x = 0
−1, if x is a quadratic nonresidue.

Kyureghyan and Pott [6] have extended the calculation of the linear complexity
of the sequences over F2 following the results in [5]. However, the determina-
tion of the linear complexity of S over F2 turns out to be difficult since the
characteristic of the field, which is 2, divides the length of the sequence [6].

Observing that it is more natural to consider the linear complexity over Fp

since the sequences are constructed over Fp, Helleseth et al [7] derived the linear
complexity over Fp (not over F2) of the sequence S of length pm − 1 as well as
its trace representation for p = 3, 5, and 7, and finally, Helleseth et al [8] finished
the calculation of the linear complexity over Fp of the sequence of length pm− 1
for all odd prime p.

According to the results in both [7] and [8], the linear complexity over Fp

is roughly the same as the period, and the sequences can be thought of having
an “excellent” linear complexity. We noted that the linear complexity of the
sequences obtained by deleting the term I(αt + 1) in (2) is much smaller than
the one of the original sequence. For example, the sequence of length 33−1 = 26

1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0

has linear complexity 23 over F3. But the sequence obtained by deleting the
term I(αt + 1) in (2) is

1 1 1 1 0 1 1 0 1 1 0 0 0 2 0 1 0 0 1 1 1 0 0 0 1 0

which has linear complexity 7 over F3. We conjectured that this phenomenon
may persist in all cases of Sidelnikov sequences, and this paper is the result of
this investigation. In this paper we show that the value (p+1

2 )m−1, first appeared
in [7] in the middle of the calculations, is indeed the one-error linear complexity
over Fp of the sequence of period pm − 1 for all odd prime p and all positive
integers m ≥ 1.

We give some notation and basic techniques for the calculation of the linear
complexity of the sequences over Fp in Section 2. In Section 3, we prove that
the “upper bound” on the one-error linear complexity of Sidelnikov sequences
over Fp of period pm − 1 is (p+1

2 )m − 1, by constructing explicitly a one-error
sequence. Note that this is already surprising enough since the true value of the
one-error linear complexity is at most this number. In Section 4, we prove that
the equality holds in the upper bound.
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2 Preliminaries

Let p be an odd prime and m ≥ 1. Denote the linear complexity over Fp of
Sidelnikov sequence S defined in (1) or (2) by L(S). Let Z = {z(t) : t =
0, 1, 2, ..., pm−2} be a sequence of length pm−1 over Fp. Then the k-error linear
complexity [9][10] of Sidelnikov sequence of length pm − 1 over Fp is defined as

Lk(S) = min
0≤WH(Z)≤k

L(S + Z) (3)

where WH(Z) denotes the Hamming weight of Z, i.e., the number of components
of Z that are non-zero. Assume k = 1 in (3) and

z(τ,λ)(t) =
λ

2
I(αt−τ + 1), 0 ≤ τ < pm − 1, λ ∈ Fp.

Then, any sequence over Fp of length pm − 1 with Hamming weight ≤ 1 can
be represented by the sequence Z(τ,λ) = {z(τ,λ)(t)|t = 0, 1, ..., pm − 2} for some
0 ≤ τ < pm − 1 and λ ∈ Fp.

Let S
(τ,λ)
Z = {s(τ,λ)

z (t) : t = 0, 1, 2, ..., pm − 2} be defined as

s(τ,λ)
z (t) � s(t) + z(τ,λ)(t)

=
1
2
(
1− I(αt + 1)− χ(αt + 1)

)
+

λ

2
I(αt−τ + 1).

(4)

Then the one-error linear complexity of S can be represented as

L1(S) = min
λ ∈ Fp

0 ≤ τ ≤ pm − 2

L(S(τ,λ)
Z ). (5)

To compute the linear complexity in general, we use the Fourier transform in
the finite field Fpm defined for a p-ary sequence Y = {y(t)} of period n = pm−1
by

Ai =
1
n

n−1∑
t=0

y(t)α−it

where α is a primitive element of Fpm and Ai ∈ Fpm [11][12]. The inverse Fourier
transform is similarly represented as

y(t) =
n−1∑
t=0

Aiα
it. (6)

Then the linear complexity of Y is defined as [11][12]

L(Y ) = |{ i | Ai 	= 0, 0 ≤ i ≤ n− 1 }| .
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3 Main Results

The Fourier transform of the Sidelnikov sequences is given in [7].

Lemma 1. [7] Let the p-adic expansion of an integer i, where 0 ≤ i ≤ pm − 2,
be given by

i =
m−1∑
a=0

iap
a

where 0 ≤ ia ≤ p− 1. Then the Fourier coefficient A−i ∈ Fpm of the Sidelnikov
sequence defined in (2) of period pm − 1 is given by

A−i =
(−1)i

p− 2

(
−1 + (−1)−

pm−1
2

m−1∏
a=0

(
ia

p−1
2

))
. (7)

Then it is straightforward, that the Fourier coefficients of the one-error al-
lowed Sidelnikov sequences are given as follows.

Lemma 2. The Fourier coefficient A−i(τ, λ) of the one-error allowed Sidelnikov
sequence S

(τ,λ)
Z defined in (4) is given by

A−i(τ, λ) =
(−1)i

p− 2

(
− 1 + λατi + (−1)−

pm−1
2

m−1∏
a=0

(
ia

p−1
2

))
∈ Fpm (8)

where ia is defined in Lemma 1.

Consider the case ατ = 1 (or τ = 0) and λ = 1. In this case we have

s(0,1)
z (t) =

1
2
(1− χ(αt + 1)),

and

L
(
S

(0,1)
Z

)
= |{ i : A−i(0, 1) 	= 0, 0 ≤ i < pm − 1 }|

= |Inz| =
(
p + 1

2

)m

− 1
(9)

where

Inz �
{

i :
m−1∏
a=0

(
ia

p−1
2

)
	= 0, 0 ≤ i < pm − 1

}
. (10)

Note that Inz contains all the i’s in the range i = 0, 1, 2, ..., pm − 2 that satisfy
p−1
2 ≤ ia ≤ p− 1 for all a.
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Table 1. Comparison of L0 and L1 when p = 3

m L0 L1 n = 3m − 1 L0/n (%) L1/n (%)

2 7 3 8 87.5 37.5

3 23 7 26 88.5 26.9

4 73 15 80 91.3 18.8

5 227 31 242 93.8 12.8

6 697 63 728 95.7 8.7

7 2123 127 2186 97.1 5.8

8 6433 255 6560 98.1 3.9

Table 2. Comparison of L0 and L1 when p = 5

m L0 L1 n = 5m − 1 L0/n (%) L1/n (%)

2 21 8 24 87.5 33.3

3 117 26 124 94.4 21.0

4 608 80 624 97.4 12.8

5 3083 244 3124 98.7 7.8

6 15501 728 15624 99.2 4.7

7 77717 2186 78124 99.5 2.8

8 389248 6560 390624 99.6 1.7

Alternatively, without specifically calculating A−i(0, 1) for all i, we have

s(0,1)
z (t) =

1
2
(
1− χ(αt + 1)

)
=

1
2

(
1− (αt + 1)

pm−1
2

)
=

1
2

(
1− (αt + 1)

∑m−1
k=0 ( p−1

2 )pk
)

=
1
2

(
1−

m−1∏
k=0

(αt + 1)(
p−1
2 )pk

)

=
1
2

(
1−

m−1∏
k=0

(a0 + a1α
t + · · ·+ a p−1

2
α

p−1
2 t)pk

)
.

(11)

where ai =
( p−1

2
i

)
. Since the characteristic is p and ai 	≡ 0 (mod p) we obtain the

same linear complexity as (9) by just counting all the sum-terms when (11) is
represented as (6). This construction provides an upper bound on the one-error
linear complexity of the Sidelnikov sequences.

Theorem 1. Let S be the Sidelnikov sequence of period pm − 1 for some odd
prime p and a positive integer m. Then for the one-error linear complexity L1(S)
of S it holds

L1(S) ≤
(
p + 1

2

)m

− 1.
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Even though the above bound was not explicitly mentioned in [7], we would
like to add that it was first calculated there in the middle of the calculations.
It is very surprising to have such an upper bound for L1(S). In fact there is an
equality in Theorem 1, which may not be very unexpected.

Theorem 2 (main). Let p be an odd prime and m ≥ 1. Let S be the Sidelnikov
sequence of period pm − 1. Then the one-error linear complexity of S is

L1(S) =
(
p + 1

2

)m

− 1.

Tables I and II show some numerical data for p = 3, 5 and 1 < m ≤ 8.
Observe that for p = 5 and m = 8, the one-error linear complexity becomes less
than 2% of the period.

4 Proof of Main Theorem

Note first that it is enough to show that, for all τ and λ,

L(S(τ,λ)
Z ) ≥

(
p + 1

2

)m

− 1,

where S
(τ,λ)
Z is given in (4). For this, we will denote ατ by β, and take care of

all possible cases of β and λ as follows:

1. CASE β 	∈ Fp and λ 	= 0.
2. CASE β ∈ Fp.

(a) case λ = 0.
(b) case λ 	= 0. This case is further divided into the following:

i. subcase β = 1.
ii. subcase β 	= 1. This subcase is treated by several different methods

according to the values of m as follows:
A. for m ≥ 3.
B. for m = 2, or all even values of m ≥ 2.
C. for m = 1.

4.1 CASE β �∈ Fp and λ �= 0

Note that if βi 	∈ Fp, then we have A−i(τ, λ) 	= 0. Therefore,

L(S(τ,λ)
Z ) ≥

∣∣{ i : βi 	∈ Fp, 0 ≤ i < pm − 1
}∣∣ � N.

If we let d be the least positive integer such that βd ∈ Fp, then d ≥ 2, and hence,

N = (pm − 1)
(

1− 1
d

)
≥ pm − 1

2
≥
(
p + 1

2

)m

− 1.



160 Y.-C. Eun, H.-Y. Song, and G.M. Kyureghyan

4.2 CASE β ∈ Fp

We will use
L(S(τ,λ)

Z ) = n− |C| = pm − 1− |C| , (12)

where
C � { i : A−i(τ, λ) = 0, 0 ≤ i < pm − 1 }

and where A−i(τ, λ) is given in Lemma 2. Observe that

C =

{
i :

m−1∏
a=0

(
ia

p−1
2

)
= (−1)

pm−1
2 (1− λβi), 0 ≤ i < pm − 1

}
. (13)

Recall that, from earlier notation,

Inz =

{
i :

m−1∏
a=0

(
ia

p−1
2

)
	= 0, 0 ≤ i < pm − 1

}
and |Inz| =

(
p + 1

2

)m

− 1.

We will also consider its complement as follows:

Icnz � {0, 1, ..., pm − 2}\Inz and hence |Icnz| = pm −
(
p + 1

2

)m

.

Then, it is not difficult to show that

|Inz| ≤ |Icnz|.

Therefore, it is sufficient to prove that either |C| ≤ |Inz| or |C| ≤ |Icnz|, since for
both cases we have |C| ≤ |Icnz|, and therefore,

L(S(τ,λ)
Z ) = pm − 1− |C| ≥ pm − 1− |Icnz| = |Inz| =

(
p + 1

2

)m

− 1.

4.2.(a) case λ = 0.
For λ = 0, we have

C =

{
i :

m−1∏
a=0

(
ia

p−1
2

)
= ±1, 0 ≤ i < pm − 1

}
,

which implies |C| ≤ |Inz|. We will assume that λ 	= 0 in the remaining of the
proof.

4.2.(b) case λ �= 0.

subcase β = 1.
If λ = 1, then 1− λβi = 1− λ = 0, and hence, |C| = |Icnz|. If λ ∈ Fp \ {0, 1},

then 1− λβi = 1− λ 	= 0, and hence, |C| ≤ |Inz|.
subcase β 	= 1.

Note that in this case we have an initial estimation of the size of C from (13)
as follows:

|C| ≤
∣∣{ i : βi = λ−1

}
∩ Icnz

∣∣ +
∣∣{ i : βi 	= λ−1

}
∩ Inz

∣∣ . (14)
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Let e > 1 be the order of β over Fp, and hence, note that e|(p− 1). If there does
not exist an integer u satisfying λ−1 = βu and 0 ≤ u < e, then

|C| ≤
∣∣{ i : βi 	= λ−1

}
∩ Inz

∣∣ ≤ |Inz| .

If such u exists, then (14) becomes,

|C| ≤
∣∣∣∣∣
{
i :

m−1∑
a=0

ia ≡ u(mod e)

}
∩ Icnz

∣∣∣∣∣+
∣∣∣∣∣
{
i :

m−1∑
a=0

ia 	≡ u(mod e)

}
∩ Inz

∣∣∣∣∣ ,
(15)

since

i =
m−1∑
a=0

iap
a ≡

m−1∑
a=0

ia (mod e).

We need the following observation:

Lemma 3. Let A be a set of k consecutive integers and e be a divisor of k, then

∣∣∣∣∣∣
⎧⎨⎩(x0, . . . , xm−1) ∈ Am :

m−1∑
j=0

xj ≡ u (mod e)

⎫⎬⎭
∣∣∣∣∣∣ = km−1 k

e
,

for any 0 ≤ u ≤ e − 1. If e is not a divisor of k, then the above cardinality is
≥ km−1�k

e � and ≤ km−1�k
e �.

Proof. If we take any m− 1 elements x0, x1, ..., xm−2 from A, there are still k/e
choices for xm−1. �

Now, we try to estimate both terms on the RHS of the inequality (15) as
follows. The first term is bounded as follows:

∣∣∣∣∣
{
i :

m−1∑
a=0

ia ≡ u (mod e) and there is ia with 0 ≤ ia <
p− 1

2

}∣∣∣∣∣
=

∣∣∣∣∣
{
i :

m−1∑
a=0

ia ≡ u (mod e), 0 ≤ ia ≤ p− 1

}∣∣∣∣∣
−
∣∣∣∣∣
{
i :

m−1∑
a=0

ia ≡ u (mod e),
p− 1

2
≤ ia ≤ p− 1

}∣∣∣∣∣
≤ pm−1

⌈p
e

⌉
−
(p + 1

2

)m−1⌊p + 1
2e

⌋
,
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where the last inequality follows from Lemma 3. The second term on the RHS
of the inequality (15) is bounded as follows:∣∣∣∣∣

{
i :

m−1∑
a=0

ia 	≡ u (mod e) with
p− 1

2
≤ ia ≤ p− 1 for all ia

}∣∣∣∣∣
= |Inz| −

∣∣∣∣∣
{
i :

m−1∑
a=0

ia ≡ u (mod e) with
p− 1

2
≤ ia ≤ p− 1 for all ia

}∣∣∣∣∣
≤
(p + 1

2

)m

−
(p + 1

2

)m−1⌊p + 1
2e

⌋
.

Therefore, the inequality (15) becomes

|C| ≤ pm−1
⌈p
e

⌉
+
(p + 1

2

)m

− 2
(p + 1

2

)m−1⌊p + 1
2e

⌋
(16)

≤ pm−1
(p− 1

e
+ 1
)

+
(p + 1

2

)m

−
(p + 1

2

)m−1(p− 1
e

− 1
)
. (17)

Observe, that for p = 3 (and thus e = 2) (16) directly implies that

|C| ≤ 3m − 2m = |Icnz|, for all m ≥ 3.

Now, it is not difficult to show, if p ≥ 5 and m ≥ 3, then (17) does not exceed

pm −
(

p+1
2

)m

. For this, we need to show that

(p + 1
2

)m−1(
2
p + 1

2
− p− 1

e
+ 1
)
≤ pm−1

(
p− p− 1

e
− 1
)

which is the same as (p + 1
2p

)m−1

≤
p− p−1

e − 1
p− p−1

e + 2
.

Note that, for m ≥ 3 and p ≥ 5, we have(p + 1
2p

)m−1

≤
(p + 1

2p

)2

≤
(3

5

)2

=
9
25

,

and therefore it is enough to prove

p− p−1
e − 1

p− p−1
e + 2

≥ 6
25

.

The last inequality holds, since

e ≥ 2 >
p− 1
p− 2

>
19p− 19
19p− 37

for p ≥ 5.
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The case m = 2 can be covered by direct calculations, using (15). Or, we
may consider the following, which, in fact, works for all p ≥ 3 and even values
of m ≥ 2. Let

H �
{

i : 0 ≤ ia ≤
p− 1

2
, 0 ≤ i < pm − 1, i 	= pm − 1

2

}
. (18)

Then∣∣∣∣∣
{
i :

m−1∑
a=0

ia 	≡ u (mod e)

}
∩ Inz

∣∣∣∣∣ =
∣∣∣∣∣
{
i :

m−1∑
a=0

ia 	≡ u (mod e)

}
∩H

∣∣∣∣∣ (19)

since

Inz =
{

i :
p− 1

2
≤ ia ≤ p− 1, 0 ≤ i < pm − 1

}
and

m−1∑
a=0

ia =
m−1∑
a=0

(
ia −

p− 1
2

)
+ m

p− 1
2

≡
m−1∑
a=0

(
ia −

p− 1
2

)
(mod e).

Since H ⊂ Icnz, the second term of (15) is upper bounded by∣∣∣∣∣
{

i :
m−1∑
a=0

ia 	≡ u (mod e)

}
∩ Icnz

∣∣∣∣∣ .
Therefore,

|C| ≤ |Icnz|.

The proof will be complete if we show the following, for the case m = 1.

Lemma 4. Let p be an odd prime and λ 	= 0, β ∈ Fp, and β 	= 1. Then,

|C| =
∣∣∣∣{i : 0 ≤ i ≤ p− 2,

(
i

p−1
2

)
≡ (−1)

p−1
2 (1− λβi) (mod p)

}∣∣∣∣ ≤ p− 1
2

.

Proof. Let e > 1 be the order of β. If there is no u with 1− λβu = 0, then
obviously, by setting (−1)

p−1
2 (1− λβi) = d(i) (mod p),

|C| =
∣∣∣∣{i :

p− 1
2

≤ i ≤ p− 2,
(

i
p−1
2

)
= d(i) 	≡ 0 (mod p)

}∣∣∣∣ ≤ p− 1
2

.

Suppose, there is 0 ≤ u < e with 1 − λβu = 0, implying 1 − λβw = 0 for any
w ≡ u (mod e), 0 ≤ w ≤ p− 2. Then

|C| =
∣∣∣{i : 0 ≤ i < p−1

2 ,
(

i
p−1
2

)
≡ d(i) ≡ 0 (mod p)

}∣∣∣
+
∣∣∣{i : p−1

2 ≤ i ≤ p− 2,
(

i
p−1
2

)
≡ d(i) 	≡ 0 (mod p)

}∣∣∣ . (20)
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Since it is obvious
(

i
p−1
2

)
	= d(i) for i = p−1

2 , this case can be excluded from the
second term of (20). Then the second term is equal to∣∣∣∣{i :

p− 1
2

< i ≤ p− 2
}∣∣∣∣− ∣∣∣∣{i :

p− 1
2

< i ≤ p− 2, i ≡ u (mod e)
}∣∣∣∣

=
p− 1

2
− 1−

⌊p− 1
2e

− 1
e

⌋
.

This yields

|C| ≤
⌈p− 1

2e

⌉
+

p− 1
2

− 1−
⌊p− 1

2e
− 1

e

⌋
. (21)

If 2e|p− 1, RHS of (21) is obviously equal to p−1
2 . If not, it is enough to prove⌊p− 1

2e
− 1

e

⌋
=
⌊p− 1

2e

⌋
.

Let p− 1 ≡ k (mod 2e). Since k is even and ≥ 2, we get⌊p− 1
2e

⌋
=

p− 1
2e

− k

2e
≤ p− 1

2e
− 1

e
.

Together with ⌊p− 1
2e

− 1
e

⌋
≤
⌊p− 1

2e

⌋
,

we can complete the proof.
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Abstract. The Lauder-Paterson algorithm gives the profile of the k-
error linear complexity for a binary sequence with period 2n. In this
paper a generalization of the Lauder-Paterson algorithm into a sequence
over GF (pm) with period pn, where p is a prime and m, n are positive
integers, is proposed. We discuss memory and computation complexi-
ties of proposed algorithm. Moreover numerical examples of profiles for
balanced binary and ternary exponent periodic sequences, and proposed
algorithm for a sequence over GF (3) with period 9(= 32) are given.

Keywords: exponent periodic sequence, Games-Chan algorithm, k-error
linear complexity, Lauder-Paterson algorithm, pseudo-random sequence,
Stamp-Martin algorithm.

1 Introduction

In 1993 M.Stamp and C.Martin proposed the k-error linear complexity (k-LC)
for periodic sequences as one of measurements for randomness [10]. The k-LC is
a generalization of the linear complexity (LC) in order to guard from instability
properties of the LC [11, 12, 1]. At the same time a fast algorithm (Stamp-Martin
algorithm) of the k-LC for a binary sequence with period 2n is shown [10]. Al-
though the sphere complexity, as similar as the k-LC, was proposed earlier than
the k-LC [2], we use the k-LC in sense of a natural extension of the LC. We
generalized the Stamp-Martin algorithm into two algorithms for a sequence over
GF (pm) with period pn, where p is a prime and m,n are positive integers [4, 5].
One of them should be called the generalized Stamp-Martin algorithm because
this algorithm becomes the Stamp-Martin algorithm in case of binary sequences
[5]. Another one has the same function and does not use concepts named “shift”
and “offset” [4]. The procedure of “shift” changes the cost matrix to fit the input
sequence at that step by the cyclic shift for each columns of the cost matrix.
After this, all elements of the value at the first row are same value and the
minimum through all elements of that shifted cost matrix. Therefore we can set

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 166–178, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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all-zero at the first row by subtracting that value from all elements of the cost
matrix, called the procedure of “offset”. For binary sequences, “shift” and “off-
set” are very effective because these work for changing the cost matrix into the
cost vector, and decreasing input value k. However in non-binary case, there is
not so much benefits only dropping one row of the cost matrix. In calculations
of the k-LC for non-binary exponent periodic sequences, the algorithm with-
out “shift” and “offset” is simpler than the generalized Stamp-Martin algorithm
with “shift” and “offset”. It is important for applications that a pseudorandom
sequence has good profile of the k-LC, which is the decrease points of the k-
LC against increase of k [2, 8, 6]. Unfortunately, the Stamp-Martin algorithm
and two generalized Stamp-Martin algorithms answer the k-LC against only one
fixed k and one fixed binary sequence with period 2n or one fixed sequence over
GF (pm) with period pn, respectively. Recently A.Lauder and K.Paterson pro-
posed a fast algorithm (Lauder-Paterson algorithm) computing the profile of the
k-LC, i.e., the k-LC for all k ≥ 0, for a fixed binary sequence with period 2n [9].

In this paper the LC and its fast algorithm such as the generalized Games-Chan
algorithm, and the k-LC and the generalized k-LC algorithm are recalled in Section
2 and Section 3, respectively. For preliminaries of a generalization of the Lauder-
Paterson algorithm, we describe the profiles of the k-LC and the Lauder-
Paterson algorithm in Section 4. The main theorem and proposed generalized
Lauder-Paterson algorithm for a sequence over GF (pm) with period pn are given
in Section 5.Because of complications in the algorithmwith “shift” and “offset”,we
propose the generalizedLauder-Patersonalgorithmwithout “shift” and“offset” al-
though the original Lauder-Paterson algorithmuses “shift” and“offset”. In Section
6 some numerical examples for profiles for balanced binary and ternary exponent
periodic sequences, and proposed algorithm for a sequence overGF (3) with period
9(= 32) are given. Finally conclusion and future works are shown in Section 7.

2 Linear Complexity and Generalized Games-Chan
Algorithm

WedefinethelinearcomplexityofasequenceandrecallthegeneralizedGames-Chan
algorithm [3, 2] computing the LC for a sequence overGF (pm) with period pn.

We consider an infinite sequence S = (s0, s1, · · ·) over a finite field K through
this paper.

Definition 1. The linear complexity (LC) of S is defined as

L(S) = min{deg f(x)|f(x) ∈ G(S)},
where the set G(S) consists of the generator polynomial,

f(x) = fLx
L + fL−1x

L−1 + · · ·+ f1x + 1 ∈ K[x],

of S such that
sL+i + f1sL+i−1 + · · ·+ fL−1si+1 + fLsi = 0 (1)

for all integer i ≥ 0. �
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Definition 2. If there exists an integer N such that si = sN+i for all i ≥ 0
then N is defined the period of S. �

In this paper we call the period of S only the minimum of N satisfying above
condition the period of S.

We denote one period (or subsequence) with length N of an infinite sequence
S by S(N), i.e., S(N) = (s0, s1, · · · , sN−1), and an infinite sequence repeating
a finite sequence F by F∞. Hence we can rewrite an infinite sequence S with
period N by S = (S(N))∞.

The LC can be also defined for a finite sequence with length N by satisfying
(1) for 0 ≤ i ≤ N − L instead of all i ≥ 0. However we only consider the LC of
infinite sequences in this paper then let F be a finite sequence, we simply denote
L(F ) and Lk(F ) instead of L(F∞) and Lk(F∞), respectively. (Lk(F ) will be
defined in next section.)

Definition 3. Let K = GF (pm) with a prime p and a positive integer m. If a
sequence S over K has the period N = pn with a positive integer n then S is
called an exponent periodic sequence. �

For exponent periodic sequences the generalized Games-Chan algorithm is
known as one of fast algorithms computing the LC.

Definition 4. For an exponent periodic sequence S over K = GF (pm) with
period N = pn = pM , we define one period of S by

S(N) = (s(0)(M), s(1)(M), · · · , s(p− 1)(M)),

i.e., s(j)(M) = (sjM , sjM+1, · · · , s(j+1)M−1) for 0 ≤ j < p and a vector b(M,u)

with length M over K is defined by

b(M,u) =Fu(s(0)(M), s(1)(M), · · ·, s(p− 1)(M)) (2)

for 0 ≤ u < p, where

Fu(s) =
p−u−1∑

j=0

(
p− j − 1

u

)
sj (3)

of s = (s0, s1, · · · , sp−1) ∈ Kp is applied componentwise and
(
p− j − 1

u

)
means

the binomial coefficients of p− j − 1 and u. �

We recall the generalized Games-Chan algorithm shown in Fig.1. It is obvious
that the generalized Games-Chan algorithm is induced by Definition 4. The
final L of the generalized Games-Chan algorithm indicates the LC of an infinite
sequence S with its one period S(N).
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input: S(N) = (s0, s1, · · · , sN−1), N = pn

M = pn−1, L = 0, s(N) = S(N),
for j = n − 1 down to 0

b(M,u) for 0 ≤ u ≤ p − 2 from s(pM) by (2)

if b(M,0) �= 0 then case 1

if b(M,u) = 0 for 0 ≤ u ≤ w − 2, b(M,w−1) �= 0 then case w

if b(M,u) = 0 for 0 ≤ u ≤ p − 2 then case p

if case w then s(M) = b(M,w−1) from (2) and L = L + (p − w)M
if M �= 1 then M = M/p

if s
(1)
0 �= 0 then L = L + 1

Fig. 1. Generalized Games-Chan algorithm

3 k-Error Linear Complexity and Generalized k-LC
Algorithm

In this section the k-LC and the generalized k-LC algorithm (see Fig.2) is also
recalled in order to derive a generalization of the Lauder-Paterson algorithm.

Definition 5. The k-error linear complexity (k-LC) of a periodic sequence S
over K with period N is defined as

Lk(S) = min{LC(S + E)|W (E(N)) ≤ k},

where a periodic sequence E over K has period N or the divisor of N , W (E(N))
is the Hamming weight of E(N) = (e0, e1, · · · , eN−1) and a sequence S + E =
(s0 + e0, s1 + e1, · · ·) over K. �

We have Lk−1(S) ≥ Lk(S) for 1 ≤ k ≤ W = W (S(N)), L0(S) = L(S) and
Lk(S) = 0 for W ≤ k ≤ N from Definition 5 obviously.

If a sequence S is an exponent periodic sequence then we can apply the
generalized k-LC algorithm to S.

Definition 6. Let a sequence S be an exponent periodic sequence over K =
GF (pm) with period N = pn and a q × N matrix Σ = [σ(h, i)] for 1 ≤ h ≤ q,
0 ≤ i < N over the integers, where q = pm, and Σ is called a cost matrix of
S. Moreover let α be a primitive element over K. We need that h-th row of
Σ (1 ≤ h ≤ q) corresponds to an element αh in K, then we set α1 = 0 and
αh = αh−2 for 2 ≤ h ≤ q. �

When the initial cost matrix Σ = [σ(h, i)] is defined as

σ(h, i) =
{

0 if h = 1,
1 if h 	= 1 (4)

for 1 ≤ h ≤ q, 0 ≤ i < N , an element σ(h, i) of the cost matrix Σ indicates
the number of changing element at the original sequence with length N for
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substituting s
(M)
i into s

(M)
i + αh at that depth with length M and keeping the

final LC by a previous depth.
From the generalized Games-Chan algorithm we need to set ranges of the LC.

At the step M , meaning its input sequence with length pM , the value T (M,u),
defined in next definition, means the minimum changing number of the LC range
increasing LC value from (p−w−1)M up to (p−w)M , and the set D(M,u)

i consists
of all error pattern collecting error values at position i,M + i, . . . , (p− 1)M + i
at its input sequence with length pM satisfying above condition.

Definition 7. Let a sequence S be an exponent periodic sequence over K =
GF (pm) with period N = pn and a q×N matrix Σ(N), and let M = N/p = pn−1.
For 0 ≤ u < p− 1

T (M,u) =
M−1∑
i=0

B
(M,u)
i (5)

is calculated from S and Σ(N) = [σ(h, i)(N)] by

B
(M,u)
i =min

⎧⎨⎩
p−1∑
j=0

σ(hj , jM + i)
∣∣∣e ∈ D

(M,u)
i

⎫⎬⎭
for 0 ≤ i < M , where e = (αh0 , αh1 , · · · , αhp−1) ∈ Kp and

D
(M,u)
i = {e|Fj(e) + b

(M,j)
i = 0 (0 ≤ j ≤ u)}

from (2) and (3). �

Next calculations of the cost matrix Σ
(M)
w for next step by case w, its input

sequence with length M , in the generalized k-LC algorithm are defined as follows:

Definition 8. Let a sequence S be an exponent periodic sequence over K =
GF (pm) with period N = pn and a q×N matrix Σ(N), and let M = N/p = pn−1.
Then Σ

(M)
w = [σ(h, i)(M)

w ] is calculated from S and Σ(N) by

σ(h, i)(M)
w =min

⎧⎨⎩
p−1∑
j=0

σ(hj , jM + i)(N)
∣∣∣e ∈ D̂(h, i)(M)

w

⎫⎬⎭ , (6)

where e = (αh0 , αh1 , · · · , αhp−1) ∈ Kp and

D̂(h, i)(M)
1 = {e ∈ Kp|F0(e)− αh = 0},

D̂(h, i)(M)
w =

{
e ∈ Kp

∣∣∣∣Fj(e) + b
(M,j)
i = 0 (0 ≤ j < w − 1),

Fw−1(e)− αh = 0

}
for 2 ≤ w ≤ p. �
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These calculations propagate information about the number of change at the
original input sequence with length N from step M to step M/p.

After above preparations, we show the generalized k-LC algorithm of the k-LC
without shift and offset in Fig.2. The final valueL of this algorithm is the k-LC with
a fixed k of its input exponent periodic sequenceS. This algorithm and the Lauder-
Paterson algorithm, shown in next section, are used for proposed generalization of
the lauder-Paterson algorithm.

input: k, SN = (s0, s1, · · · , sN−1), N = pn

M = pn−1, L = 0, s(N) = SN ,

Σ(N) = [σ(h, i)(N)], σ(h, i)(N) =

{
0, if h = 1,
1, if h �= 1

for j = n − 1 down to 0

T (M,u) for u = 0, · · · , p − 2 from (5)

if k < T (M,0) then case 1

if T (M,w−2) ≤ k < T (M,w−1) then case w

if T (M,p−2) ≤ k then case p

if case w then s(M) = b(M,w−1) from (2) and L = L + (p − w)M

Set Σ(M) = Σ
(M)
w from Σ(pM) by (6)

if M �= 1 then M = M/p

if σ(h, 0) > k such that αh − s
(0)
1 = 0 then L = L + 1

Fig. 2. Generalized k-LC algorithm

4 Profile of k-LC and Lauder-Paterson Algorithm

In this section we recall the profile of the k-LC and the Lauder-Paterson algorithm.
The Lauder-Paterson algorithm, which gives the profile of the k-LC for a binary
exponent sequence with period 2n, is shown in Fig.3.

Definition 9. Let a triple Ŝ = (S, σ,N) with a binary sequence S with length N ,
a vector σ over the integers1 with length N and N = 2n be a cost binary sequence.
We define B(Ŝ) = (B(S), B(σ), N/2) with length N/2 by

B(S)i = si + si+(N/2), B(σ)i = min{σi, σi+(N/2)}

for 0 ≤ i < N/2. And L(Ŝ) = (L(S), L(σ), N/2) with length N/2 is defined by

L(S)i =
{
si if si =si+(N/2) or σi>σi+(N/2),
si+(N/2) otherwise,

L(σ)i =
{
σi + σi+(N/2) if si = si+(N/2),
|σi − σi+(N/2)| otherwise

(7)

for 0 ≤ i < N/2, where |a| is the absolute value of a. �

1 The vector σ is originally defined over real numbers [9]. However σ is enough to over
integers in this paper.
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input: LP(Ŝ, t, r, c)

if � > 1 then

T =
∑

B(S)i=1
B(σ)i for i = 0 to �/2 − 1

if T > 0 then LP(B(Ŝ), t, min{r, t + T − 1}, c + (�/2))

if t + T ≤ r then LP(L(Ŝ), t + T , r, c)
else /* � = 1 */

if s0 = 0 then output (t, c)
if s0 = 1 and σ0 > 0 then output (t, c + 1)
if s0 = 1 and t+σ0≤r then output (t+σ0, c)

Fig. 3. Lauder-Paterson algorithm

The Lauder-Paterson algorithm is a recurrent algorithm (see Fig.3) and its final
output from the initial input LP(Ŝ = (S(N), σ = (1, 1, · · · , 1), N), 0, N, 0) is equal
to the extended decrease set EDS(S), defined by

EDS(S) = {(0, L(S))} ∪
{
(k, Lk(S))

∣∣Lk(S) < Lk−1(S), 1 ≤ k ≤W
(
SN
)}

for an exponent periodic sequence S with period N = 2n. From the definition of
the k-LC, EDS(S) shows complete profile of the k-LC for a cost binary sequence
Ŝ with period 2n.

5 Generalization of Lauder-Paterson Algorithm

In this section we propose a generalized Lauder-Paterson algorithm (see Fig.4)
which is not used the concepts of shift and offset as same as the generalized k-LC
algorithm proposed in [4], although the Lauder-Paterson algorithm is using them
as same as the Stamp-Martin algorithm [10] and its second generalization [5].

We can construct proposed algorithm as same as the Lauder-Paterson algo-
rithm which is a recurrent algorithm. we need to consider p branches in each depth
and some conditions are decided by their cost matrix in similar to the generalized
Games-Chanalgorithm.Moreover fromthegeneralizedk-LCalgorithmandDefini-
tion 5 (the definition of thek-LC), for instance, if r = T (M,0) orT (M,w−1) = T (M,w)

orT (M,p−2) = t in case of p = 3 then there is no decrease point in the corresponding
range decided the k-LC. Next main theorem is derived from above discussion.

Theorem 1. Let (S(N), Σ,N, 0, 0, N + 1) be an input of the generalized Lauder-
Patersonalgorithmshown inFig.4,whereΣ = [σ(h, i)] is defined from(4).Thefinal
output of the algorithm indicates the extended decrease set EDS(S) of an exponent
periodic sequence S with period N .

(Sketch of Proof): At first calculations of borders T (N,u) by Definition 7 is cor-
rect from the correctness of the generalized k-LC algorithm. Moreover it is obvi-
ous that p branches are needed at the generalized Lauder-Paterson algorithm from
definition of the k-LC, the Lauder-Paterson algorithm and the generalized k-LC
algorithm. Because the lower border and the upper border to keep that condition
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input: GLP(S, Σ, N , c, r, t)

M = N/p, S(N) = S, Σ(N) = Σ

T (M,u) for u = 0 to p − 2 by (5)
if N > 1 then

if r < T (M,0) = t′ then GLP(b(M,0), Σ
(M)
1 , M , c + (p − 1)M , r, t′)

for w = 1 to p − 2

if r′ = T (M,w−1) < T (M,w) = t′ then GLP(b(M,w),Σ
(M)
w+1,M,c + (p−w−1)M,r′,t′)

if r′ = T (M,p−2) < t then GLP(b(M,p−1), Σ
(M)
p , M , c, r′, t)

else /* N = 1 */

αh = −s
(1)
0

m = min{σ(�, 0)|1 ≤ � ≤ q, � �= h}
if m < σ(h, 0) then output(m, c + 1)
if σ(h, 0) < t then output(σ(h, 0), c)

Fig. 4. Generalized Lauder-Paterson algorithm

as similar as the Lauder-Paterson algorithm, it is induced the correctness of pro-
posed algorithm from the generalized k-LC algorithm and the Lauder-Paterson
algorithm. �

Next we analyze memory and computation complexities about the generalized
Lauder-Paterson algorithm.

Firstly we consider memory complexity in the single step of the algorithm. Four
values M, c, r, t, each elements of Σ(M) and p − 1 times T (M,u) are integers less
than or equal to N , and the number of them is pmM + p + 3. The elements of
sequence S(M) has M elements over GF (pm). If we can use p-state memory, we
need n(pmM + p + 3) + Mm memories from N = pn in the worst case of the
single step. Because the algorithm runs from M = pn−1 to 1 (n steps), we need
n2(p + 3) + pn(npm + m) memories in the worst case of the whole algorithm.

Secondly we consider computation complexity in the single step of the algo-
rithm. Mpmp+1 times addition operations are needed for one T (M,u) calculation.
Since u runs p − 1 times, we need (p − 1)Mpmp+1 additions over GF (pm) from
Definition 7. Moreover we need pmMpmp+1 = Mpm(p+1)+1 additions for Σ

(M)
w

andMp2 times additions for bM,w. Consequently aboutMpm(p+1)+2 additions are
needed in the single step of the algorithm. If we decide one extended decrease point,
the algorithm runs from M = pn−1 to M = 1 (n steps). Hence we need about
pnpm(p+1)+2 = pn+m(p+1)+2 additions for one extended decrease point. Since the
number of the extended decrease set is N in the worst case, the computation com-
plexity of the algorithm is about Npn+m(p+1)+2 = p2n+m(p+1)+2 additions.

6 Numerical Examples

In this section we consider balanced exponent periodic sequences [7] defined as
follows.

Definition 10. If an exponent periodic sequence S over K = GF (pm) has period
pn with n ≥ m and same distributions for all elements in K, i.e., the number of an
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element within one period is pn−m for all elements inK, then a sequence S is called
a balanced exponent periodic sequence (BEPS). �

Especially, if a binary exponent periodic sequence S is balanced sequence we call
S a balanced binary exponent periodic sequence (BBEPS).

6.1 Binary Exponent Periodic Sequences with Period 16

In this section a numerical example of BEPS with period 16 using the LPA [9] is
given in order to study about distributions on the profile of the k-LC. We show
all profiles of them in Table.1, where # is the number of BBEPS with that profile
except the periodic isomorphism, and selected lines in Fig.5. In except the periodic
isomorphism [7], the number of all BBEPS is 800 and the number of BBEPS with
condition of Seq.5 at Table.5 is 16.

Table 1. k-LC of BBEPS (N = 16)

k 0 2 4 6 # k 0 2 4 6 #

Seq.1 15 10 5 2 128 14 3 3 3 8
15 10 3 2 64 Seq.3 13 13 3 3 64
15 9 9 2 128 13 13 2 2 32
15 6 3 2 32 Seq.4 12 9 9 5 32
15 5 5 2 32 12 7 2 2 8
15 3 3 2 8 12 6 3 3 4

Seq.2 15 2 2 2 8 12 5 5 5 8
14 11 5 3 64 11 11 5 5 16
14 11 2 2 32 11 11 2 2 8
14 9 9 3 64 10 10 5 5 8
14 7 2 2 16 10 10 3 3 4
14 5 5 3 16 Seq.5 9 9 9 9 16

Total 800

6.2 Exponent Periodic Sequences over GF (3) with Period 9

In order to study about distributions on the profile of the k-LC, we show numerical
examples to apply the generalized Lauder-Paterson (LP) algorithm to a balanced
exponent periodic sequence (BEPS) S over GF (3) with period 9(= 32). Note that

[0 3 3]t shows a matrix

⎡⎣0
3
3

⎤⎦ in next example 1.

Example 1: [Example of Generalized LP Algorithm]

S(9) = (220211010), Σ(9) =

⎡⎣000000000
111111111
111111111

⎤⎦
[Depth 1]:

b(3,0) = (111), b(3,1) = (021), b(3,2) = (220),
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Fig. 5. Profile of k-LC for BBEPS (N = 16)

c = 0, r = 0, T (3,0) = 3, T (3,1) = 3, t = 10

Case 1 : GLP(b(3,0) = (111),

⎡⎣000
111
111

⎤⎦ , 3, 6, 0, 3),

Case 3 : GLP(b(3,2) = (220),

⎡⎣121
232
313

⎤⎦ , 3, 0, 3, 10)

[Depth 2]: of Case 1 at Depth 1

b(1,0) = (0), b(1,1) = (0), b(1,2) = (1),

c = 6, r = 0, T (1,0) = 0, T (1,1) = 0, t = 3

Case 3 : GLP(b(1,2) = (1), [0 3 3]t, 1, 6, 0, 3)

[Depth 2]: of Case 3 at depth 1

b(1,0) = (1), b(1,1) = (0), b(1,2) = (2),

c = 0, r = 3, T (1,0) = 3, T (1,1) = 6, t = 10

Case 2 : GLP(b(1,1) = (0), [6 6 3]t, 1, 1, 3, 6),

Case 3 : GLP(b(1,2) = (2), [6 6 6]t, 1, 0, 6, 10)
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[Depth 3]: of Case 3 at Dep.2 and Case 1 at Dep.1

c = 6, m = 0, σ(3, 0) = 3, t = 3, output(0, 7)

[Depth 3]: of Case 2 at Dep.2 and Case 3 at Dep.1

c = 1, m = 3, σ(1, 0) = 6, t = 6, output(3, 2)

[Depth 3]: of Case 3 at Dep.2 and Case 3 at Dep.1

c = 0, m = 6, σ(2, 0) = 6, t = 10, output(6, 0)

EDS(S(9)) = {(0, 7), (3, 2), (6, 0)} �

Table 2. k-LC of BEPS over GF (3) (N = 9)

k 0 1 2 3 4 5 6 #

Seq.1 8 8 4 4 2 2 0 972
Seq.2 8 8 2 2 2 2 0 162
Seq.3 7 7 7 2 2 2 0 342
Seq.4 6 6 4 4 4 4 0 162
Seq.5 4 4 4 4 4 4 0 54

Total 1674

Fig. 6. Profile of k-LC for BEPS over GF (3) (N = 9)

Example 2: [Profiles of the k-LC for BEPS over GF (3) with Period 9]
A numerical example of BEPS overGF (3) withN = 9 using the LPA [9]. We show
all profiles of them in Table.2, where # is the number with that profile of BEPS’s
except the periodic isomorphism [13, 7], and all lines in Fig.6. �
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7 Conclusion

In this paper we proposed the generalized Lauder-Paterson algorithm computing
the profile of the k-LC for an exponent periodic sequence over a finite field. In order
to derive proposed algorithm we recalled the generalized Games-Chan algorithm
of the LC and the generalized k-LC algorithm for an exponent periodic sequence.
The analysis of memory and computation complexities of the generalized Lauder-
Paterson algorithm is given.Numerical examples of proposed algorithm for aBEPS
over GF (3) with period 9(= 32) is given to confirm the algorithm and all profiles
and the number of them for BEPS over GF (3) with period 9.

This proposed algorithm should be called a generalized k-LC spectrum [9] algo-
rithm because this algorithm does not use the concepts of shift and offset. We may
be able to rewrite proposed algorithm into an algorithm using the concepts of shift
and offset.

Future works are fast algorithms of the LC and the k-LC for sequences with
arbitrary period for fast algorithms for the k-LC. Moreover a generalization of the
Lauder-Patersonalgorithmusing the concepts of shift andoffset, remainingprofiles
of the k-LC for BEPS’s and investigations of the k-LC and their profiles for non-
binary sequences and non-exponent periodic sequences are also future works.
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Abstract. The linear Games-Chan algorithm for computing the linear
complexity c(s) of a binary sequence s of period � = 2n requires the
knowledge of the full sequence, while the quadratic Berlekamp-Massey
algorithm only requires knowledge of 2c(s) terms. We show that we can
modify the Games-Chan algorithm so that it computes the complexity in
linear time knowing only 2c(s) terms. The algorithms of Stamp-Martin
and Lauder-Paterson can also be modified, without loss of efficiency,
to compute analogues of the k-error linear complexity and of the error
linear complexity spectrum for finite binary sequences viewed as initial
segments of infinite sequences with period a power of two. Lauder and
Paterson apply their algorithm to decoding binary repeated-root cyclic
codes of length � = 2n in O(�(log2 �)2) time. We improve on their result,
developing a decoding algorithm with O(�) bit complexity.

1 Introduction and Notation

We denote by S the set of all (infinite) linearly recurrent sequences over F2.
Let s ∈ S, s = s0, s1, s2 . . .. We will say that a polynomial f ∈ F2[x], f =
xm + am−1x

m−1 + · · ·+ a1x + a0 is an annihilator polynomial for s if s satisfies
the linear recurrence given by the coefficients of f i.e. si+m + am−1si+m−1 +
· · · + a1si+1 + a0si = 0 for i = 0, 1, 2, . . .. The monic annihilator polynomial
of minimal degree is unique and is called the characteristic polynomial of s.
We will denote it by σ(s). The characteristic polynomial generates the ideal
of all annihilator polynomials. The linear complexity of s is the degree of the
characteristic polynomial and will be denoted by c(s).

Denote by PN the set of sequences in S having (not necessarily minimal)
period N . If s ∈ PN then σ(s)|xN − 1. We will denote by T the set of binary
sequences with period any power of two, i.e. T = ∪∞

i=0P2i . For any s ∈ T , the
linear complexity of s equals c if and only if σ(s) = (x − 1)c, i.e.knowing the
linear complexity is tantamount to knowing the characteristic polynomial.

The linear complexity of a finite sequence z = (z0, z1, . . . , zt−1) ∈ Ft
2 viewed

as an initial segment of an infinite sequence in a set A ⊆ S, denoted c(z,A), is

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 179–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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defined as the minimum linear complexity of all sequences in A which have z as
an initial segment i.e. c(z,A) = min{c(s)|s ∈ A, si = zi for i = 0, . . . , t− 1}.

The Berlekamp-Massey algorithm, [1, 8], computes the linear complexity of
finite sequences, i.e. it computes c(z,S) for any finite sequence z ∈ Ft

2. The
complexity of the algorithm is quadratic in the length t of the finite sequence. It
is well known that if s ∈ A and t ≥ 2c(s) then c((s0, . . . , st−1), A) = c(s). So one
can think of the Berlekamp-Massey algorithm as computing the linear complexity
c(s) of an infinite sequence s knowing only the first 2c(s) terms of the sequence.
For infinite sequences with period a power of two, Games-Chan, [4], developed
a linear algorithm which computes the linear complexity of the sequence. The
whole sequence needs to be known.

The k-error linear complexity of a periodic sequence was defined in [11] and is
closely related to previously defined notions of sphere complexity [3] and weight
complexity [2]. The k-error linear complexity of a sequence s ∈ PN , as a sequence
of period N , denoted by ck,N (s), is defined as the minimum complexity that s
can have after modifying k bits of a period i.e.

ck,N (s) = min{c(s + e)|e ∈ PN ,wt((e0, e1, . . . , eN−1)) ≤ k}.

The definition can be extended to a costed sequence with the cost given by
a vector cost ∈ RN as

ck,N (s, cost) = min{c(s + e)|e ∈ PN ,
∑

0≤i<N,ei �=0

cost[i] ≤ k}.

The Stamp-Martin algorithm, [11], computes the k-error linear complexity for
any binary (costed) sequence with period a power of two, i.e. for any s ∈ P2n it
computes ck,2n(s) or ck,2n(s, cost) respectively. As in the Games-Chan algorithm,
the whole sequence needs to be known and the time (bit operations) and space
complexity of the algorithm is linear in the period � = 2n of the sequence.

The error linear complexity spectrum of a sequence s ∈ PN is defined as the
set of pairs {(k, ck,N (s))|0 ≤ k ≤ wt((s0, . . . , sN−1)}. It can be computed for The
Lauder-Paterson algorithm, [7], computes the error linear complexity spectrum
of any binary sequence with period � = 2n. The bit complexity of the algorithm
is O(�(log �)2).

The k-error linear complexity of a finite sequence z = (z0, z1, . . . , zt−1) ∈ Ft
2

viewed as an initial segment of a sequence in A ⊆ S, denoted ck(z,A), will be
defined as

ck(z,A) = min{c(z + e,A)|e ∈ Ft
2,wt(e) ≤ k}.

Note that while for an infinite sequence s, c(s) can be computed given a finite
segment of at least 2c(s) terms, we cannot expect to be able to compute ck,N (s)
given less than the whole sequence, as we cannot know how many of the errors
in an error pattern that minimises linear complexity will fall outside our known
portion of the sequence.
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2 Computing the Linear Complexity and k-Error Linear
Complexity for Finite Sequences

In this section our goal is to develop an algorithm which computes the linear
complexity and the k-error linear complexity of a finite sequence viewed as an
initial segment of a binary sequence with period a power of two (we do not need
to know which power though). The following two theorems allow us to do so.
The proofs are elementary; full details will appear in [10].

Theorem 1. Let t > 0 and z = (z0, . . . , zt−1) ∈ Ft
2. Define u = �log2 t� and

define the infinite sequence s′ of period 2u as follows: s′i = zi for i = 0, 1, . . . , t−1
and s′i = zi−2u−1 for i = t, t + 1, . . . , 2u − 1. Then

(i) If c(z, T ) ≤ t
2 then c(z, T ) = c(s′).

(ii) If c(z, T ) > t
2 then c(s′) > t

2 .

Theorem 2. Let t > 0 and z = (z0, . . . , zt−1) ∈ Ft
2. Define u = �log2 t� and

define the infinite costed sequence s′ of period 2u as follows: s′i = zi and cost[i] =
1 for i = 0, 1, . . . , t − 1 and s′i have arbitrary values and cost[i] = 0 for i =
t, t + 1, . . . , 2u − 1. Then ck(z, T ) = ck,2u(s′, cost) for all k = 0, 1, . . . ,wt(z). In
particular, c(z, T ) = c0,2u(s′, cost).

Hence by setting up (in linear time) an infinite costed sequence s′ of period
2�log2 t� as in Theorem 2 and then applying the Stamp-Martin algorithm to
compute ck,2�log2 t�(s′, cost) we obtain in fact ck(z, T ) and in particular, for k = 0
we obtain c(z, T ). The resulting algorithm obviously runs in O(t) time and is
thus a more efficient alternative to the Berlekamp-Massey algorithm for the
particular class of binary sequences with period a power of two.

However, the cryptographic applications of this results are limited. Namely,
assume it is known that sequences with period a power of two are used. An
opponent intercepts a finite segment of t terms of a sequence and wants to
recover the whole sequence (to break a stream cipher for example). They could
simply assume (x − 1)t is an annihilating polynomial and, as long as t ≥ c(s)
(rather than t ≥ 2c(s)) they would recover the correct sequence.

The Games-Chan and Stamp-Martin algorithms have been extended to se-
quences over Fpm with period � = pn, where p is a prime, [6, 3]. Theorem 1 does
not hold for p > 2 but Theorem 2 does. Hence we can use it to compute the
complexity and k-error linear complexity of finite sequences over Fpm , viewed as
initial segments of infinite sequences with period � = pn.

3 Decoding Repeated-Root Cyclic Codes

Repeated-root binary codes with length a power of two have been introduced
in [9]. It is shown, loc. cit., that these codes are subcodes of Reed-Muller codes,
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and it is proposed that they be decoded by majority logic, just like the Reed-
Muller codes. An alternative decoding algorithm with bit complexity
O(�(log �)2), where � = 2n is the length of the code, is proposed in [7]. In this
section we develop a linear, O(�), decoding algorithm for these codes.

A binary repeated-root cyclic code of length 2n can be described as being the
set of all binary sequences of period 2n having complexity at most c, for a given
parameter c. Decoding a received r amounts to finding e of minimal weight such
that c(r + e) ≤ c.

An explicit algorithm for computing an error pattern of minimal weight which
brings the linear complexity of the sequence below a given value c is given below.
It is similar to the Stamp-Martin algorithm. We also need to compute the error
pattern (rather than just the number of errors). We used a technique similar to
the so-called L-pullup and B-pullup of [7], in a more compact and efficient form.
Alternatively the method of [5] could be similarly adapted.

Algorithm 3. (Computing a minimum weight sequence e such that c(s+e) ≤ c)

Input: n, c positive integers and s = (s0, s1, . . . , s2n−1) a sequence of period
2n given by its first 2n terms

Output: e a sequence of period 2n given by its first 2n terms and an integer
k = wt(e) such that e is of minimal weight such that c(s + e) ≤ c.

begin
a← s; �← 2n; c′ ← 0; k′ ← 0,
for i = 0 to �− 1 do cost[i] ← 1 endfor
for j = 0 to n− 1 do

flag[j] ← 0
for i = 0 to 2n−j − 1 do error[j][i] ← 0 endfor

endfor
for j = 0 to n− 1 do

�← �/2 % now � = 2n−j−1

L = a0a1 . . . a�−1; R = a�a�+1 . . . a2�−1;
b← L + R; T ←

∑�−1
i=0 bi min(cost[i], cost[i + �])

if T = 0 or c′ + � ≥ c then
k′ ← k′ + T ; flag[j] ← 1
for i = 0 to �− 1 do

if bi = 1 then
if cost[i] ≤ cost[i + �]
then ai ← Ri; cost[i] ← cost[i + �]− cost[i]; error[j][i] ← 1
else ai ← Li; cost[i] ← cost[i]− cost[i + �]; error[j][i + �] ← 1
endif

else ai ← Li; cost[i] ← cost[i] + cost[i + �]
endif

endfor
else

c′ ← c′ + �
for i = 0 to �− 1 do

ai ← bi;



Linear Complexity and k-Error Linear Complexity 183

if cost[i] ≤ cost[i + �] then error[j][i] ← 1
else cost[i] ← cost[i + �]; error[j][i + �] ← 1
endif

endfor
endif

endfor
if a0 = 1 and c′ + 1 > c then k′ ← k′ + cost[0]; e← 1
else e← 0
endif
k ← k′

for j = n− 1 downto 0 do
e← duplicate(e)
if flag[j] = 1 then e← e XOR error[j]
else e← e AND error[j]
endif

endfor
return(e, k)
end

The function duplicate simply duplicates a binary string, i.e. concatenates it
with a copy of itself. The XOR and AND operators are bitwise operators between
binary strings of equal lengths.

The correctness of the algorithm can be proved in a similar manner as the
correctness of the Stamp-Martin algorithm and of the L-pullup and B-pullup
constructions (see [11, 7]). We also proved that the time and space bit complex-
ities of Algorithm 3 and of the Stamp-Martin algorithm are linear in the period
� = 2n of the sequence. Full details of the proofs will appear in [10].

We expect that the algorithms of [6, 3] for p > 2 could be modified along the
lines of Algorithm 3 to decode repeated-root codes over Fpm with length pn.

Acknowledgements. We would like to thank the anonymous referees for point-
ing out an error in the interpretation of one of the theorems and for suggesting
directions for further research.
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Abstract. In this paper, we point out a significant difference between
the linear complexity and the 2-adic complexity of periodic binary se-
quences. The concept of the symmetric 2-adic complexity of periodic
binary sequences is presented based on this observation. We determine
the expected value of the 2-adic complexity and derive a lower bound on
the expected value of the symmetric 2-adic complexity of periodic binary
sequences. Because the 2-adic complexity of periodic binary sequences is
unstable, we present the concepts of the k-error 2-adic complexity and
the k-error symmetric 2-adic complexity, and lower bounds on them are
also derived.

1 Introduction

Klapper and Goresky introduced a new feedback architecture for shift register
generation of pseudorandom binary sequences called feedback with carry shift
register (FCSR) [7]. See also their other work on this FCSRs [2, 3, 4, 8]. An FCSR
is determined by r coefficients q1, q2, ..., qr, where qi ∈ {0, 1}, i = 1, 2, ..., r, and
an initial memory integer mr−1. If the contents of the register at any given
time are (an−1, an−2, ..., an−r+1, an−r) and the memory integer is mn−1, then
the operation of the shift register is defined as follows:

1. Form the integer sum σn =
∑r

k=1 qkan−k + mn−1.
2. Shift the contents one step to the right, outputting the rightmost bit an−r.
3. Place an = σn (mod 2) into the leftmost cell of the shift register.
4. Replace the memory integer mn−1 with mn = (σ − an)/2.

The integer q = −1 + q12 + q222 + ... + qr2r is called the connection integer of
the FCSR.
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Sequences generated by FCSR share many important properties with se-
quences genetated by LFSR (see [8]). Klapper and Goresky discussed some basic
properties of FCSR sequences [2, 3, 4, 7, 8], such as their periods, rational expres-
sions, exponential representations, rational approximation algorithms and their
randomness. Considering FCSR’s particular structure, Klapper and Goresky also
introduced the concept of the 2-adic complexity, which is the arithmetic analog
of the linear complexity. The 2-adic complexity is very useful in the study of
the security of pseudorandom sequences for cryptographic applications. For ex-
ample, by means of the rational approximation algorithm (an analogue of the
Berlekamp-Massey algorithm, see [8]), the summation cipher proposed by Ruep-
pel [14] can be easily attacked. Meidl presented an FCSR analog of (extended)
Games-Chan algorithm [11], which efficiently yields an upper bound for the 2-
adic complexity of a periodic binary sequence with period pn.

Any infinite binary sequence S = s0, s1, s2, ... can be identified with the
element α =

∑∞
i=0 si2i in the ring Z2 of 2-adic numbers. For a comprehensive

survey of p-adic numbers please refer to [9]. The sequence S is eventually periodic
if and only if the 2-adic number α is rational, i.e., there exist integers p, q such
that α = −p/q ∈ Z2. In particular, if S is strictly periodic with minimal period
T , then

α =
∞∑

i=0

si2i = −
∑T−1

i=0 si2i

2T − 1
.

Let us write α = −p/q as a fraction reduced to lowest terms with q positive
and 0 ≤ p ≤ q. Then T = ordq(2), where ordq(2) is the minimal integer t
such that 2t ≡ 1 (mod q). According to [8], q is the connection integer of the
smallest FCSR, i.e., the FCSR with minimal number r of coefficients qi, which
can generate the binary sequence S. Notice that we have r = �log2 (q + 1)�.

The following two definitions were given by Klapper and Goresky in [8].

Definition 1. If S = s0, s1, s2, ... is a periodic binary sequence, and −p/q is the
fraction in lowest terms whose 2-adic expansion agrees with the sequence S, then
the 2-adic complexity Φ(S) of S is the real number log2(max(p, q)).

Remark 1. If S is the all-0 sequence, we put Φ(S) = 0.

Remark 2. If S is strictly periodic with minimal period T ≥ 2, then Φ(S) =
log2q.

Definition 2. An l-sequence is a periodic sequence which is obtained from an
FCSR with connection integer q for which 2 is a primitive root.

Remark 3. In this case, q must be of the form q = re with r an odd prime and
e ≥ 1. When e ≥ 3, 2 is primitive modulo re if and only if 2 is primitive modulo
r2 [5].

l-sequences are the arithmetic analogs of m-sequences. Many of their prop-
erties are analogous to those of m-sequences. They are very important in the
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study of FCSR sequences. Some lower bounds on the linear complexity of l-
sequences were given in [15]. Qi and Xu studied the partial period distribution
of l-sequences by means of exponential sum [13].

The linear complexity L(S) of a periodic binary sequence S is the least order
of a linear recurrence relation satisfied by S. By the Berlekamp-Massey algorithm
only a knowledge of 2L(S) bits is needed to reproduce the binary sequence S
[10]. Similarly, by the rational approximation algorithm, only a knowledge of
�2Φ(S)�+2 bits is needed (see [8], Theorem 10.2). Therefore any binary sequence
with low 2-adic complexity is insecure for cryptographic applications.

Meidl and Niederreiter determined the expected value of the linear complexity
of T -periodic sequences explicitly by the generalized discrete Fourier transform
[12] and confirmed Rueppel’s conjecture [14]. Motivated by their work, we study
the expected value of the 2-adic complexity and the symmetric 2-adic complexity
of periodic binary sequences.

Like the linear complexity, the 2-adic complexity of periodic sequence is un-
stable: a small perturbation within one period may cause an extreme increase
or decrease. To measure the instability, we propose the concept of k-error 2-adic
complexity and k-error symmetric 2-adic complexity in this paper. There has
been a lot of work on the k-error linear complexity. However there has been lit-
tle study carried out on the k-error 2-adic complexity and the k-error symmetric
2-adic complexity.

In the following sections we only consider strictly periodic sequences, and we
just call them periodic sequences for simplicity. The organization of this paper
is as follows. In Section 2 we point out a significant difference between linear
complexity and 2-adic complexity and give some examples to specify this. Based
on this observation, the concept of the symmetric 2-adic complexity of periodic
binary sequences is presented. In Section 3, we study the expected value of
the 2-adic complexity and the symmetric 2-adic complexity of periodic binary
sequences. In Section 4, we study the k-error 2-adic complexity and the k-error
symmetric 2-adic complexity of periodic binary sequences. Finally, Section 5
concludes this paper.

2 The 2-Adic Complexity of Periodic Binary Sequences

Let S = s0, s1, s2, ... be a periodic binary sequence with period T . Since S is
completely determined by its first T terms, we can describe S by the notation
S = (s0, s1, ..., sT−1)∞. We define ST (x) to be the polynomial ST (x) = s0 +
s1x + ... + sT−1x

T−1. The minimal polynomial f(x) of S is given by

f(x) =
xT − 1

gcd(xT − 1, ST (x))
=

xT + 1
gcd(xT + 1, ST (x))

.

Let Ŝ be the inverse sequence of S, i.e., Ŝ = (sT−1, sT−2, ..., s1, s0)∞, then
the minimal polynomial f̂(x) of Ŝ is given by

f̂(x) =
xT − 1

gcd(xT − 1, ŜT (x))
=

xT + 1

gcd(xT + 1, ŜT (x))
,
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where

ŜT (x) = sT−1 + sT−2x + ... + s1x
T−2 + s0x

T−1 = xT−1ST (
1
x

).

Let g(x) = gcd(xT + 1, ST (x)), ĝ(x) = gcd(xT + 1, ŜT (x)). Then one can check
that

ĝ(x) = xdeg(g(x))g(
1
x

).

Hence deg(f(x)) = deg(f̂(x)) and L(S) = L(Ŝ). However when we consider the
case of the 2-adic complexity, this is not valid. I.e., Φ(S) may be different from
Φ(Ŝ). For example, S = (101110010001)∞ is an l-sequence with minimal period
T = 12 and its rational expression is

−20 + 22 + 23 + 24 + 27 + 211

212 − 1
= − 7

13
.

On the other hand, the rational expression of Ŝ is

−20 + 24 + 27 + 28 + 29 + 211

212 − 1
= −47

65
.

Therefore Φ(S) 	= Φ(Ŝ). Moreover, because 2 is not primitive modulo 65, Ŝ is
not an l-sequence.

The difference between the linear complexity and the 2-adic complexity re-
sults from the difference between polynomials and integers. Suppose the poly-
nomial h(x) over F2 is an irreducible polynomial. Then

ĥ(x) = xdeg(h(x))h(
1
x

)

is also an irreducible polynomial. However, if h(2) is a prime number, ĥ(2) may
not be a prime number. (Here, h(x) and ĥ(x) are thought of as polynomials
over the ring Z of integers.) For example, h(x) = 1 + x + x4 is irreducible, and
ĥ(x) = 1 + x3 + x4 is also irreducible. On the other hand, h(2) = 19 is prime,
but ĥ(2) = 25 is composite.

If we can reproduce the sequence Ŝ by the rational approximation algorithm,
we can also get the sequence S. According to [8], only a knowledge of �2Φ(Ŝ)�+2
bits is needed to find the minimal FCSR which can generate the sequence Ŝ.
Therefore min(�2Φ(S)�+ 2, �2Φ(Ŝ)�+ 2) bits are sufficient for reproducing the
sequence S. Thus the following concept of symmetric 2-adic complexity is a
better measure for assessing the strength of a periodic sequence against the
rational approximation attack.

Definition 3. Let S be a periodic binary sequence with minimal period T ≥
2 and rational expression −p/q, where 0 < p < q and gcd(p,q)=1. Let Ŝ be
its inverse sequence with rational expression −p′

/q
′
, where 0 < p

′
< q

′
and

gcd(p
′
,q

′
)=1. Then the symmetric 2-adic complexity Φ(S) of S is the real number

min(log2q, log2q
′
).
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Because l-sequences are a significant kind of FCSR sequences, we will discuss
their symmetric 2-adic complexity below.

Proposition 1. Let S be an l-sequence generated by a FCSR with prime con-
nection integer q. Then Φ(S) = log2 q.

Proof. The minimal period of S is T = q − 1. Suppose the rational expression
of Ŝ is −p′

/q
′
, where 0 < p

′
< q

′
and gcd(p

′
,q

′
)=1. Then T = ordq′ (2). So

q − 1 = ordq′ (2) ≤ q
′ − 1. Thus q ≤ q

′
and Φ(S) = log2 q. This completes the

proof.

3 The Expected Value of the 2-Adic Complexity of
Periodic Binary Sequences

In this section, the underlying stochastic model is that each binary sequence
with period T has the same probability 2−T .

Let S = s0, s1, s2, ... be a periodic binary sequence with period T ≥ 2. Sup-
pose that 2T − 1 = pe1

1 pe2
2 ...peh

h , where pi are prime numbers with p1 < p2 <
... < ph, ei ≥ 1, i = 1, 2, ..., h. If S is not the all-0 sequence or the all-1 sequence,
then we have

α = − ST (2)
2T − 1

= − a

p
fi1
i1

p
fi2
i2

...p
fit
it

, (1)

where 1 ≤ t ≤ h, 1 ≤ i1 < i2 < ... < it ≤ h, 1 ≤ fij
≤ eij

, 1 ≤ a <
∏t

j=1 p
fij

ij
,

and gcd(a,
∏t

j=1 p
fij

ij
) = 1. In (1), there are

∏t
j=1 φ(p

fij

ij
) integers a such that

1 ≤ a <
∏t

j=1 p
fij

ij
and gcd(a,

∏t
j=1 p

fij

ij
) = 1, where φ is the Euler function.

Thus, there are
∏t

j=1 φ(p
fij

ij
) binary sequences S with period T such that the

2-adic complexity of S is Φ(S) =
∑t

j=1 fij
log2 pij

. Moreover, for any h integers
f1, f2, ..., fh with 0 ≤ fi ≤ ei, i = 1, 2, ..., h, and at least one of them nonzero,
one can easily check that there are

∏h
i=1 φ(pfi) binary sequences S with period

T such that Φ(S) =
∑h

i=1 fi log2 pi.
Let ET denote the expected value of the 2-adic complexity of periodic binary

sequences with period T . The identity below is useful when computing ET .

Lemma 1. For any real number x 	= 0, 1,
e∑

n=1

nxn−1 =
1− (e + 1)xe + exe+1

(x− 1)2
.

Theorem 1. Suppose that T ≥ 2 and 2T − 1 = pe1
1 pe2

2 ...peh

h , where pi are prime
numbers with p1 < p2 < ... < ph, ei ≥ 1, i = 1, 2, ..., h. Then the expected value
ET of the 2-adic complexity of binary sequences with period T is given by

ET = (1− 1
2T

) log2(2
T − 1)− (1− 1

2T
)

h∑
i=1

(1− p−ei
i ) log2 pi

pi − 1
.
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Proof. If S is the all-0 sequence or the all-1 sequence, Φ(S) = 0. So we only need
to consider the other cases of S. From the discussion above, we have

ET =
1
2T

e1∑
f1=0

e2∑
f2=0

...

eh∑
fh=0

φ(pf1
1 )φ(pf2

2 )...φ(pfh

h )(f1 log2 p1 + ... + fh log2 ph)

=
1
2T

h∑
i=1

ei∑
fi=0

φ(pfi

i )fi log2 pi

h∏
j=1,j �=i

ej∑
fj=0

φ(pfj

j )

=
1
2T

h∑
i=1

ei∑
fi=0

φ(pfi

i )fi log2 pi

h∏
j=1,j �=i

p
ej

j

=
1
2T

h∑
i=1

(pi − 1)
ei∑

fi=1

fip
fi−1
i log2 pi

h∏
j=1,j �=i

p
ej

j . (2)

By Lemma 1 and (2),

ET =
2T − 1

2T

h∑
i=1

eip
ei+1
i − (ei + 1)pei

i + 1
(pi − 1)pei

i

log2 pi

= (1− 1
2T

)
h∑

i=1

[ei log2 pi −
(1− p−ei

i ) log2 pi

pi − 1
]

= (1− 1
2T

) log2(2
T − 1)− (1− 1

2T
)

h∑
i=1

(1− p−ei
i ) log2 pi

pi − 1
.

This completes the proof.

Now we study the expected value ET of the symmetric 2-adic complexity of
periodic binary sequences with period T . Although we are unable to find the
exact value of ET , we can derive a nontrivial lower bound on ET .

There are φ(2T − 1) binary sequences S with period T such that gcd(ST (2),
2T − 1) = 1. Among them, there are at least φ(2T − 1)− [2T − 1− φ(2T − 1)] =
2φ(2T − 1)− (2T − 1) sequences S such that gcd(ŜT (2), 2T − 1) = 1. Hence we
get the following lemma.

Lemma 2. There are at least 2φ(2T − 1) − (2T − 1) binary sequences S with
period T such that the symmetric 2-adic complexity of S is Φ(S) = log2(2T −1).

Theorem 2. The expected value ET of the symmetric 2-adic complexity of bi-
nary sequences with period T satisfies

ET ≥ [
φ(2T − 1)

2T−1
− 1 +

1
2T

] log2(2
T − 1).
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Proof. By Lemma 2,

ET =
1
2T

∑
S

Φ(S)

≥ 2φ(2T − 1)− (2T − 1)
2T

log2(2
T − 1)

= [
φ(2T − 1)

2T−1
− 1 +

1
2T

] log2(2
T − 1).

The corollary below is a consequence of Theorem 2.

Corollary 1. Suppose that T ≥ 2 and 2T −1 = pe1
1 pe2

2 ...peh

h , where pi are prime
numbers with p1 < p2 < ... < ph, ei ≥ 1, i = 1, 2, ..., h. We have

ET > [
2T − 1
2T−1

(1− 1
p1

)h − 1 +
1
2T

] log2(2
T − 1).

Proof. By Theorem 2,

ET ≥ [
φ(2T − 1)

2T−1
− 1 +

1
2T

] log2(2
T − 1)

= [
2T − 1
2T−1

(1− 1
p1

)(1− 1
p2

)...(1− 1
ph

)− 1 +
1
2T

] log2(2
T − 1)

> [
2T − 1
2T−1

(1− 1
p1

)h − 1 +
1
2T

] log2(2
T − 1).

Remark 4. If T is large enough, we have

[
2T − 1
2T−1

(1− 1
p1

)h − 1 +
1
2T

] log2(2
T − 1) ≈ [2(1− 1

p1
)h − 1] log2(2

T − 1).

Moreover, if p1 is also large enough,

[2(1− 1
p1

)h − 1] log2(2
T − 1) ≈ [2(1− h

p1
)− 1] log2(2

T − 1)

= (1− 2h
p1

) log2(2
T − 1).

If 2h/p1 ) 1, then (1 − 2h/p1) log2(2T − 1) is close to log2(2T − 1). Hence the
lower bound is nontrivial.

Remark 5. The bound in Theorem 2 may be very weak. For example, if 3, 5 and 7
all divide 2T − 1, then the bound is negative, hence vacuous.

We give one example below.
Let T = 37. Then 2T − 1 = 223× 616318177.
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By Theorem 1,

E37 > (1− 1
237

) log2(2
37 − 1)− (1− 1

237
)(

log2 223
222

+
log2 616318177

616318176
)

≈ log2(2
37 − 1)− (

log2 223
222

+
log2 616318177

616318176
)

≈ 36.9649.

By Corollary 1,

E37 > [
237 − 1

236
(1− 1

223
)2 − 1 +

1
237

] log2(2
37 − 1)

≈ [2(1− 1
223

)2 − 1] log2(2
37 − 1)

≈ (1− 2
223

) log2(2
37 − 1)

=
221
223

log2(2
37 − 1)

≈ 36.6682.

4 The k-Error 2-Adic Complexity of Periodic Binary
Sequences

It is well known that the linear complexity of a periodic sequence is unstable
under small perturbations [1]. This is also true for the case of the 2-adic com-
plexity. For example, let S = (1, 0, 0, ..., 0)∞ or (0, 1, 1, ..., 1)∞ with period T .
Then Φ(S) = log2(2T − 1). However, after changing 1 bit within every period,
Φ(S) become 0. Hence it is interesting to investigate the properties of the k-
error 2-adic complexity and the k-error symmetric 2-adic complexity of periodic
binary sequences. In the following, we will give the formal definitions of these
concepts.

Definition 4. Let S = (s0, s1, s2, ..., sT−1)∞ be a periodic binary sequence with
period T and k be an integer with 0 ≤ k ≤ T . Then the k-error 2-adic com-
plexity ΦT,k(S) (or the k-error symmetric 2-adic complexity ΦT,k(S)) of S is
minP Φ(P ) (or minP Φ(P )), where the minimum is extended over all periodic bi-
nary sequences P = (t0, t1, t2, ..., tT−1)∞ with period T for which the Hamming
distance of the vectors (s0, s1, s2, ..., sT−1) and (t0, t1, t2, ..., tT−1) is at most k.

We have the simple proposition below.

Proposition 2. Let S = (s0, s1, s2, ..., sT−1)∞ be a periodic binary sequence
with period T ≥ 2 and let 2T − 1 be a prime number. Let WH(S) denotes the
Hamming weight of the vector (s0, s1, s2, ..., sT−1). Then we have

ΦT,k(S) =
{

log2(2T − 1), if 0 ≤ k < min(WH(S), T −WH(S));
0, if min(WH(S), T −WH(S)) ≤ k ≤ T .
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and

ΦT,k(S) =
{

log2(2T − 1), if 0 ≤ k < min(WH(S), T −WH(S));
0, if min(WH(S), T −WH(S)) ≤ k ≤ T .

Lemma 3. Let p, q be two positive integers, where 0 < p < q. Let h be a nonzero
integer and (ph)mod q/q = p

′
/q

′
, where the notation (ph)mod q means the reduced

residue of ph modulo q, and 0 < p
′
< q

′
. Then

q
′

gcd(p′ , q′)
≤ q

gcd(p, q)
. (3)

The equality holds in (5) if and only if

gcd(h,
q

gcd(p, q)
) = 1.

Proof. Put d = gcd(p, q). Then p = dp1, q = dq1, and gcd(p1, q1) = 1. We have

(ph)mod q

q
=

(dp1h)mod (dq1)

dq1
=

(p1h)mod (q1)

q1
.

Thus
q
′

gcd(p′ , q′)
≤ q1 =

q

gcd(p, q)
.

The equality holds if and only if

gcd(h,
q

gcd(p, q)
) = gcd(h, q1) = 1.

This completes the proof.

The following two theorems are the main results of this section.

Theorem 3. Let S = (s0, s1, s2, ..., sT−1)∞ be a periodic binary sequence with
period T ≥ 2. Suppose that the rational expression of S is −p/q, where 0 < p < q,
and gcd(p, q) = 1. Then the k-error 2-adic complexity ΦT,k(S) of S satisfies

log2(2
T − 1) ≥ ΦT,k(S) > log2(2

T − 1)− (k − 1)T
k

− 1− Φ(S). (4)

Proof. Suppose that P = (t0, t1, t2, ..., tT−1)∞ is obtained from S by changing k
bits within every period, 1 ≤ k ≤ T , and the k positions where bits are changed
are j1, j2, ..., jk, 0 ≤ j1 < j2 < ... < jk ≤ T − 1. I.e., ti = si, i 	= j1, j2, ..., jk,
ti = si + 1 otherwise.

The corresponding 2-adic number associated with S is −ST (2)/(2T − 1),
where ST (x) = s0 + s1x + ... + sT−1x

T−1. The corresponding 2-adic number
associated with P is

−ST (2) +
∑k

i=1(−1)sji 2ji

2T − 1
.
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Because −ST (2)/(2T − 1) = −p/q, we have ST (2) = p(2T − 1)/q. Hence

−ST (2) +
∑k

i=1(−1)sji 2ji

2T − 1
= −

p(2T −1)
q +

∑k
i=1(−1)sji 2ji

2T − 1
.

Suppose that

−p1

q1
= −

p(2T −1)
q +

∑k
i=1(−1)sji 2ji

2T − 1
,

where 0 < p1 < q1, and gcd(p1, q1) = 1. By Lemma 3, we have

q1 ≥
2T − 1

gcd(2T − 1, q|
∑k

i=1(−1)sji 2ji |)
≥ 2T − 1

q|
∑k

i=1(−1)sji 2ji |
.

It is reasonable to put j1 = 0 and T −jk = max (T −jk, jk−jk−1, ..., j3−j2, j2−
j1). So T − jk ≥ T/k. It follows that jk ≤ (k − 1)T/k and

log2 |
k∑

i=1

(−1)sji 2ji | < (k − 1)T
k

+ 1.

Hence we get

log2 q1 > log2(2
T − 1)− (k − 1)T

k
− 1− log2 q.

This completes the proof.

Theorem 4. Let S = (s0, s1, s2, ..., sT−1)∞ be a periodic binary sequence with
period T ≥ 2. Ŝ is the inverse sequence of S. Then the k-error symmetric 2-adic
complexity ΦT,k(S) of S satisfies

log2(2
T − 1) ≥ ΦT,k(S) > log2(2

T − 1)− (k − 1)T
k

− 1−max(Φ(S), Φ(Ŝ)).

In particular, if S = Ŝ, then

log2(2
T − 1) ≥ ΦT,k(S) > log2(2

T − 1)− (k − 1)T
k

− 1− Φ(S).

Proof. By (6), we have

ΦT,k(S) > log2(2
T − 1)− (k − 1)T

k
− 1− Φ(S),

and

ΦT,k(Ŝ) > log2(2
T − 1)− (k − 1)T

k
− 1− Φ(Ŝ).

Hence

ΦT,k(S) = min(ΦT,k(S), ΦT,k(Ŝ))

> log2(2
T − 1)− (k − 1)T

k
− 1−max(Φ(S), Φ(Ŝ)).
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If S = Ŝ, then max(Φ(S), Φ(Ŝ)) = Φ(S). Hence

ΦT,k(S) > log2(2
T − 1)− (k − 1)T

k
− 1− Φ(S).

This completes the proof.

Remark 6. If k ≥ min(WH(S), T−WH(S)), then ΦT,k(S) = 0, and ΦT,k(S) = 0.

As was shown by Jiang, Dai, and Imamura [6], although the bounds given in the
above two theorems are not always tight because we do not use the information
about the change values, they can tell us how low the 2-adic complexity and the
symmetric 2-adic complexity become as k increases.
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Abstract. Ternary (−1, 0, +1) almost-perfect and odd-perfect autocor-
relation sequences are applied in many communication, radar and sonar
systems, where signals with good periodic autocorrelation are required.
New families of almost-perfect ternary (APT) sequences of length
N = (pn − 1)/r, where r is an integer, and odd-perfect ternary (OPT)
sequences of length N/2, derived from the decomposition of m-sequences
of length pn − 1 over GF (p), n = km, with p being an odd prime, into
an array with T = (pn − 1)/(pm − 1) rows and pm − 1 columns, are pre-
sented. In particular, new APT sequences of length 4(pn − 1)/(pm − 1),
(pm+1) = 2 mod 4, and OPT sequences of length 2(pn−1)/(pm−1) with
peak factor close to 1 when p becomes large, are constructed. New per-
fect 4-phase and 8-phase sequences with some zeroes can be derived from
these OPT sequences. The obtained APT sequences of length 4(pm +1),
p > 3 and m – any even positive integer, possess length uniqueness in
comparison with known almost-perfect binary sequences.

1 Introduction

Binary (−1,+1) and ternary (−1, 0,+1) – sequences with low autocorrelations
are widely used in spread spectrum communication, radar and sonar systems [1].
In many applications it is important to have sequences with perfect,or almost-
perfect periodic, or perfect odd-periodic autocorrelation functions [1–3]. A se-
quence is called a perfect [1], if all its out-of-phase autocorrelation coefficients
are 0, almost-perfect if all its out-of-phase autocorrelation coefficients except
one are 0 [4], and odd-perfect if all its out-of-phase odd-periodic autocorrelation
coefficients are 0 [5].

A large family of almost-perfect binary (APB) sequences of length 2(pm +1),
with p an odd prime, m = 1, 2, 3, . . . has been obtained and studied by Ipatov [6,
Theorem 3.12], Pott and Bradley [4] and Wolfmann [7]. APT sequences of
length 2(qk − 1)/(q − 1), q = pm with (2k, q − 1) = 2 have been found by

� The partial results of the paper were presented at 6th International Conference on
Digital Signal Processing and its Applications, Moscow, Russia, March 31–April 2
2004.

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 197–207, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Langevin [8]. Later Schotten and Lüke have constructed APT sequences of length
2(qk − 1)/(q − 1) for all k > 1 [9]. OPT sequences of length (qk − 1)/(q − 1)
with (qk−1−1)/(q−1) zero elements and in particular OPT sequences of length
q + 1 with one zero element (odd-perfect almost-binary correlation sequence)
have been constructed in [9,5].

In the present work, we use some properties of shift sequences of m-sequences
over GF (p) of length pn − 1, where p is an odd prime [10,11] to construct
new APT and OPT sequence sets, and in particular APT sequences of length
4(pm +1), (pm +1) = 2 mod 4, and OPT sequence of length 2(pm +1) with two
zero elements. Also, we show that there are many new APT and OPT sequences
with lengths different from those of known APB and OPT sequences.

This paper is organized as follows: Section 2 describes different constructions
of APT sequences based on m-sequences over GF (p) of length pn − 1. Section 3
shows how by using APT sequences of length N, OPT sequences of length N/2
can be produced and also how by using these OPT sequences, perfect polyphase
sequences of length N/2 can be produced. In Section 4, we demonstrate a length
uniqueness for large number of the new APT sequences, i.e. that their lengths
do not coincide with lengths of any known APB sequence and give examples of
such sequences. In Section 5, some configuration properties of APT sequences
are considered. All APT sequence constructions from Sections 2–3 are illustrated
by appropriate examples.

2 Construction of APT Sequences

Notations:

- Trn
m(x) =

n/m−1∑
i=0

xpim

, the trace function of an element x ∈GF (pn) to GF (pm);

- �y� , the maximum (v|v ≤ y, v – an integer);
- indβz, the index (logarithm) function z to base β ;

- θ(l) =
N−1∑
i=0

aia
∗
i+l, the periodic autocorrelation function (ACF) of a sequence

a = {ai} with period N;

- θ̂(l) =
N−l−1∑

i=0

aia
∗
i+l +

N−1∑
i=N−l

aiā
∗
i+l−N , the odd-periodic ACF of a sequence

a = {ai};

- Nmax(a2
i )

/
N-1∑
i=0

ai
2 the peak factor of a sequence a with period N.

By analogy with balanced m-sequences [1], a ternary sequence with elements

in {−1, 0, 1} will be called balanced if
N−1∑
i=0

ai = 0.

Theorem 1. Let n = mk, m ≥ 1, k > 1 positive integers and p odd prime,
(pm + 1) = 2 mod 4. Let α be a primitive element of GF(pn), β be a primitive
element of GF(pm) and let T = (pn − 1)/(pm − 1). Then a sequence given by

wi = ψ(Trn
m(αi)) , i = 0, 1, . . . , 4T − 1 (1)
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and

ψ(z) =

{
(−1)�((indβz) mod 4)/2, if z 	= 0
0, if z = 0

(2)

is a balanced APT sequence of length N = 4(pn − 1)/(pm − 1) with
4(pn−m − 1)/(pm − 1) zero elements and autocorrelation peak 4pn−m.

Proof. Let b be an m-sequence over GF(p) of length pn − 1 with elements
bi = Trn

1 (αi), 0 ≤ i < pn − 1. Fold b into a decomposition array B by columns
[10] with T = (pn − 1)/(pm − 1) rows and pm − 1 columns. Its rows are either
null rows or cyclic shifts of an m-sequence of length pm − 1 over GF(p). For the
case GF (pn) a shift sequence is defined by

e = {ei} =

{
∞, if Trn

m(ai) = 0
indβ(Trn

m(ai)), if Trn
m(ai) 	= 0

, (3)

where 0≤ i < pn − 1 [11]. The first T of its elements give all these cyclic shifts
relative to a reference short m-sequence of length pm−1 or point (element∞) to
the null rows. According to m-sequence properties, the number of non-zero rows
is pn−m. From (3) we have ek+jT = (ek +j) mod pm−1 for k = 0, 1, 2, . . . , T −1,
j = 0, 1, . . . , T − 3. It can be proved that for any i ∈ Z(pn − 1), each element
of Z(pm − 1) appears as a differences (ei+k − ek) mod (pm − 1) , k ∈ Z(T )
exactly pn−2m times [11]. Let us form a binary short sequence c of length pm−1
with elements cj = (−1)�((e0+j) mod 4)/2, j ∈ Z(pm− 1) and replace all non-zero
rows of the array B by this binary short sequence with the same shift sequence
e . As a result, we get a new array W which consists of repeated columns of
period 4. Then, according to the shift sequence property, a ternary sequence of
length pn − 1 associated with the array W has zero ACF for all shifts i 	= jT ,
j ∈ Z(pm − 1). Since the short sequence c has zero ACF for odd shifts, the
autocorrelation of the ternary sequence for shifts i = (2t + 1)T is also zero. Let
w be a ternary sequence associated with the first four columns of the array W.
Then ACF of the sequence w is zero for all shifts 0 ≤ i < 4T except i = 0 and
i = 2T in which θ(0) = −θ(2T ) = 4pn−m. Balance property of the sequence w
follows from its construction. ��

Corollary 1. For n = 2m, APT sequences (1) have length 4(pm + 1), autocor-
relation peak 4pm and 4 zero elements.

Corollary 2. Taking wT/2 = w5T/2 = ±1 or w3T/2 = w7T/2 = ±1, we get an
APT sequence with two zero elements and θ(0) = 4pm+2 and θ(2T ) = −4pm+2.

From Theorem 1, we have that the number of nonzero elements of APT
sequence (1) is 4pn−m. Then the peak factor of the sequences (1) is equal to
(pn − 1)/(pn − pn−m), i.e. close to 1 as p becomes large.

Example 1. Let p = 17, n = 2, m = 1 and x2 + x + 3 be a primitive polyno-
mial over GF (17). Then the shift sequence of an m-sequence of length 288 over
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GF (17) associated with this polynomial is 1, 11, 0, 13, 14, 4, 6, 9, 2, ∞, 11, 3,
1, 0, 11, 11, 15, 11. After substituting the short sequence 1, 1, -1, -1 of length 4
by Theorem 1 we get a balanced APT sequence of length 72: -1 1 1 -1 -1 1 -1 -1
-1 0 1 1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1 -1 1 0 1 1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 1 1 1 0
-1 -1 1 -1 -1 -1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 0 -1 -1 1 1 -1 -1 -1 -1 with peak 68.

By the Corollary 1 we suppose in (1) w9 = w45 = 1. Then a sequence
-1 1 1 -1 -1 1 -1 -1 -1 1 1 1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1 -1 1 0 1 1 -1 -1 1
1 1 1 1 -1 -1 1 1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 0 -1 -1 1 1 -1
-1 -1 -1 is also an APT sequence but with two zero elements and θ(0) = 70 and
θ(36) = −66.

Example 2. Let p = 73, n = 2, m = 1 and x2 +x+11 be a primitive polynomial
over GF (73). The shift sequence for two-dimensional array 74 × 72 of an m-
sequence of length 732 − 1 = 5328 over GF (73) based on the polynomial is: 65,
21, 6, 25, 20, 28, 61, 68, 70, 19, 61, 6, 9, 1, 47, 59, 10, 61, 62, 34, 38, 19, 9, 43,
3, 61, 49, 67, 9, 14, 39, 63, 29, 55, 26, 36, 1, ∞, 38, 2, 65, 23, 70, 33, 10, 58, 54,
41, 24, 37, 52, 21, 60, 71, 19, 16, 45, 45, 67, 45, 34, 61, 70, 68, 52, 11, 63, 62, 56,
24, 17, 23, 5, 21. According to Theorem 1 we get a balanced APT sequence of
length 296: -1 -1 -1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 -1 1 1 -1 -1 1
-1 -1 1 1 -1 1 -1 1 -1 0 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 -1 -1 -1
-1 1 1 1 1 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 1 1 -1 1 1 1 1 -1 1
1 -1 -1 1 -1 1 1 1 -1 1 1 -1 -1 0 1 1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1
-1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 1 1 1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 1 1 1 1
-1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 1 -1 1 0 1 1 1 -1 1 1 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1
1 -1 1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 1 1 1 1 -1 1 1 1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 -1
-1 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 1 1 0 -1 -1 1 -1 -1 1 -1 -1 -1 1 1 1 1 1 1 -1
-1 1 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 1 1 1 -1 1 1 with four zero elements 1 with peak
values θ(0) = 292 and θ(148) = −292.

Supposing w111 = w259 = ±1 by Corollary 1 we have the following APT
sequences: -1 -1 -1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 -1 1 1 -1 -1 1 -1
-1 1 1 -1 1 -1 1 -1 0 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1
1 1 1 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 1 1 -1 1 1 1 1 -1 1 1 -1
-1 1 -1 1 1 1 -1 1 1 -1 -1 1 1 1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 -1
1 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 1 1 1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 1 1 1 1 -1 1 -1 -1
1 1 -1 1 1 -1 -1 1 -1 1 -1 1 0 1 1 1 -1 1 1 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 1 1 1 1
-1 -1 -1 -1 1 -1 -1 1 -1 1 1 1 1 -1 1 1 1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1 -1
-1 1 1 -1 1 -1 -1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 -1 1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 1 -1 1
-1 1 -1 1 1 -1 -1 -1 1 1 1 -1 1 1 and -1 -1 -1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1
-1 -1 1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 0 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1
1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1
1 1 1 -1 1 1 1 1 -1 1 1 -1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 -1 1 1 -1 1 1 1 -1 -1 -1 -1
-1 -1 1 1 -1 -1 -1 1 -1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 1 1 1 -1 -1 1 -1 1 -1 1 1 1
1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 1 -1 1 0 1 1 1 -1 1 1 1 1 1 1 -1 1 -1
1 -1 -1 -1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 1 1 1 1 -1 1 1 1 1 1 -1 -1 1 -1 1
1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 1 1
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1 1 1 1 -1 -1 1 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 1 1 1 -1 1 1 with two zeroes and
θ(0) = 294 and θ(148) = −290.

Example 3. Let p = 13, n = 3, m = 1 and x3 +x2 +2 be a primitive polynomial
over GF (13). The shift sequence of the m-sequence of length 2196 over GF (13)
in this case is 0, ∞, ∞, 1, 7, 1, 11, 4,0, ∞, 5, 2, 8, 4, 7, 11, 0, 9, 11, 3, 3, 8,
5, 8, 6,∞, 9, 5, 11, 2, 9, 11, 6, 1, 4, 6, 3, 7, ∞, 4, 11, 5, ∞, 0, 1, 7, 8, 9, 0,
5, 4, 9, 2, 4, 5, 1, 8, 4, 0, 5, ∞, 1, 0, 6, 3, 11, 8, 5, 5, 0, 1, 0, 10, 5, 2, 7, 10,
9, 0, 3, 3, 11, 10, 11, 9, 1, 4, 5, 10, 10, 7, 2, 7, 5, 1, 1, 0, 4, 0, 10, 10, 0, 3, 0,
10, 11, 3, 0, ∞, 4, 9, 3, 7, 9, 9, 0, 8, 0, 10, 1, ∞, 11, 1, 7, 6, 3, 2, 1, 3, ∞, 2,
6, 0, 2, 1, ∞, 3, 6, 0, 7, ∞, 1, 1, 7, 7, 7, 5, 7, 5, 3, 2, 9, 9, 10, ∞, 10, 8, 2, 7,
11, 6, 10, 2, 1, 9, 10, 5, 4, 4, 8, 1, 8, 6, 3, 4, 6, 2, 4, 6, 11, 0, 0, ∞. Then by
Theorem 1 we have the following APT sequence of length 732 with 56 zero
elements and peak 676 : 1 0 0 1 -1 1 -1 1 1 0 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 1 -1 0
1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 0 1 -1 1 0 1 1 -1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 0 1 1 -1
-1 -1 1 1 1 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1
-1 1 -1 1 -1 -1 -1 1 0 1 1 -1 -1 1 1 1 1 1 -1 1 0 -1 1 -1 -1 -1 -1 1 -1 0 -1 -1 1 -1 1 0
-1 -1 1 -1 0 1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 0 -1 1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 1 1 1
1 -1 -1 1 -1 -1 1 -1 -1 1 1 0 1 0 0 -1 1 -1 1 1 1 0 -1 -1 1 1 1 1 1 -1 1 1 1 1 -1 1 -1
0 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 0 1 1 -1 0 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 1 1 1 -1 0
-1 1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1
-1 1 1 1 -1 -1 1 1 1 -1 1 1 1 0 1 -1 1 1 -1 -1 1 1 1 -1 -1 0 1 -1 1 -1 1 -1 -1 1 0 -1
-1 1 -1 -1 0 1 -1 1 1 0 -1 -1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 0 -1 1 -1 1 1 -1 -1 -1 -1 -1
-1 -1 1 1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1 1 0 -1 0 0 -1 1 -1 1 -1 -1 0 -1 1 -1 -1 1 1 -1 -1
1 1 1 -1 -1 -1 1 0 -1 -1 1 1 -1 1 1 -1 -1 1 1 1 0 -1 1 -1 0 -1 -1 1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 0 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 1 1 1 -1 -1 1 1 1 1 1 -1 -1 -1
-1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 1 1 1 -1 0 -1 -1 1 1 -1 -1 -1 -1 -1 1 -1 0 1
-1 1 1 1 1 -1 1 0 1 1 -1 1 -1 0 1 1 -1 1 0 -1 -1 1 1 1 -1 1 -1 1 1 -1 -1 1 0 1 -1 1 1 1
1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 1 -1 -1 0 -1 0 0 1 -1 1 -1 -1 -1 0 1 1
-1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 1 0 1 1 -1 1 1 -1 1 1 -1 1 -1 -1 0 -1 -1 1 0 -1 1 -1
-1 1 -1 1 -1 1 1 -1 1 1 -1 -1 -1 1 0 1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1
-1 1 -1 1 1 -1 1 1 1 -1 1 -1 1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 0 -1 1 -1 -1 1 1 -1
-1 -1 1 1 0 -1 1 -1 1 -1 1 1 -1 0 1 1 -1 1 1 0 -1 1 -1 -1 0 1 1 -1 -1 -1 1 -1 1 -1 1 1
1 1 0 1 -1 1 -1 -1 1 1 1 1 1 1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 0.

In Section 5 it is demonstrated that all the sequences from the Examples 1-3 are
”unique”.

In [8] some APT sequences of length (pmk−1)/(pm−1) with (2k, pm−1) = 2
have been constructed by using the multiplicative characters over GF (pm).
Schotten and Lüke [9] derived larger set of APT sequences of length
2(pmk − 1)/(pm − 1) which include Langevin APT sequences [8]. In a more
explicit form, their result can be expressed by the following theorem.

Theorem 2. Let n = mk, m ≥ 1, k > 1 positive integers and p odd prime. Let
α be a primitive element of GF (pn), β be a primitive element of GF (pm) and
let T = (pn − 1)/(pm − 1). Then a sequence given by
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w̄i = ϕ(Trn
m(αi)) , i = 0, 1, . . . , 2T − 1 (4)

and

ϕ(z) =

{
(−1)(indβz) mod 2, if z 	= 0
0, if z = 0

(5)

is a balanced APT sequence of length N = 2(pn − 1)/(pm − 1) with
2(pn−m − 1)/(pm − 1) zero elements and autocorrelation peak 2pn−m .

Proof. The proof is similar to Theorem 1, the only difference being that here,
we use the sequence: (−1)j , j = 0, 1, . . . , pm − 2 as the short sequence. ��

Corollary 3. For a case n = 2m APT sequences (4) have length 2(pm + 1),
autocorrelation peak 2pm and 2 zero elements.

Corollary 4. Let n = 2m. Then a sequence given by

ẃi = ϕ(Trn
m(αi)) , i = 0, 1, . . . , 2pm + 1 (6)

and

ϕ(z) =

{
(−1)(indβz) mod 2, if z 	= 0
±1, if z = 0

(7)

is an APB sequence of length N = 2(pm + 1).

First this result was obtained in [12]. Besides, it was shown there that APB
sequences (6) and APB sequences [4,6,7] are the same.

Generalization of Theorem 1 and Theorem 2 is given by the following theorem.

Theorem 3. Let p > 2 be a prime and let b be an m-sequence of length pn − 1
over GF (p), where n = mk, m ≥ 1, k > 1 folded into Baumert decomposition
array with T = (pn−1)/(pm−1) rows and pm−1 columns. Let z = {zi} be a ba-
lanced almost-perfect binary or ternary sequence of length h = (pm−1)/r,where r
is an integer,with autocorrelation peak P and let z+ be a sequence of length pm−1,
consisting of consecutive periods of the sequence z. Let y = {yi}, 0 ≤ i < pn − 1
be a ternary sequence obtained by substitution of non-zero rows with the sequence
z+ with the same shift sequence. Then sequence w = {wi} of length (pn − 1)/r
with elements wi = yi , 0 ≤ i < (pn − 1)/r is a balanced almost-perfect ternary
sequence with autocorrelation peak P ∗ p(k−1)m.

Example 4. For the case of Example 1 with p = 17, n = 2, m = 2, k = 1 and
the polynomial x2 + x + 3 take r = 1. Then by Theorem 3 length of a sequence
w is 288. Let a short balanced APT sequence of length 16 be 0 1 -1 -1 -1 1 -1 -1
0 -1 1 1 1 -1 1 1. As a result, we get a balanced APT sequence of length 288: 1
1 0 -1 1 -1 -1 -1 -1 0 1 -1 1 0 1 1 1 1 -1 1 1 1 1 1 -1 1 -1 0 1 -1 -1 1 1 1 0 1 -1 -1
-1 1 0 -1 0 1 -1 0 -1 1 -1 -1 -1 -1 1 -1 -1 1 -1 0 1 -1 -1 1 1 0 1 -1 -1 -1 1 1 -1 1 1 1
-1 1 -1 0 1 -1 -1 0 1 -1 1 -1 1 1 -1 1 -1 0 1 -1 -1 -1 1 1 -1 0 0 0 -1 1 0 0 -1 0 -1 1
-1 -1 -1 1 1 1 0 0 1 -1 -1 -1 1 1 1 1 0 -1 -1 -1 1 1 -1 0 -1 0 -1 1 0 -1 -1 -1 -1 -1 -1
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-1 0 1 -1 1 1 1 1 0 -1 1 -1 0 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 0 -1 1 1 -1 -1 -1 0 -1
1 1 1 -1 0 1 0 -1 1 0 1 -1 1 1 1 1 -1 1 1 -1 1 0 -1 1 1 -1 -1 0 -1 1 1 1 -1 -1 1 -1 -1
-1 1 -1 1 0 -1 1 1 0 -1 1 -1 1 -1 -1 1 -1 1 0 -1 1 1 1 -1 -1 1 0 0 0 1 -1 0 0 1 0 1 -1
1 1 1 -1 -1 -1 0 0 -1 1 1 1 -1 -1 -1 -1 0 1 1 1 -1 -1 1 0 1 0 1 -1 0 1 1 1 1 1 with 50
zeroes and peak 238.

Example 5. Now consider the case of Example 2 with p = 73, n = 2, m = 1,
k = 2 and the polynomial x2 + x + 11. Then, for r = 9 take a short balanced
APT sequence of length 8: 0 1 -1 -1 0 -1 1 1. Applying Theorem 3 we get a
balanced APT sequence of length 592: 1 -1 1 1 0 0 -1 0 1 -1 -1 1 1 1 1 -1 -1 -1 1
-1 1 -1 1 -1 -1 -1 1 -1 1 1 1 1 -1 1 -1 0 1 0 1 -1 1 1 1 1 -1 -1 1 1 0 -1 0 -1 0 1 -1 0
-1 -1 -1 -1 -1 -1 1 0 0 -1 1 1 0 0 1 1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 0 1 1 -1 -1 0 0 -1 1
1 -1 1 0 -1 0 0 1 -1 0 -1 1 0 0 1 0 -1 -1 -1 0 1 -1 -1 0 1 -1 -1 -1 1 -1 1 1 -1 1 -1 0
0 1 1 1 0 1 -1 1 1 -1 -1 0 0 1 1 1 -1 0 1 1 -1 1 0 -1 1 1 1 1 0 -1 1 0 -1 -1 1 -1 0 1
0 0 0 -1 -1 -1 -1 1 -1 -1 -1 0 1 1 1 1 0 1 -1 0 0 0 -1 1 0 -1 0 0 0 -1 -1 1 1 1 1 1 -1
-1 1 1 -1 1 0 1 0 1 1 -1 1 0 -1 -1 -1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 -1 1 -1 0 1 -1
1 1 0 1 1 0 0 1 0 1 -1 -1 0 -1 -1 1 0 0 1 -1 0 -1 1 0 -1 -1 1 0 -1 0 1 0 1 -1 1 -1 0 0
1 0 -1 0 1 1 1 1 -1 1 -1 -1 0 -1 0 0 -1 1 -1 -1 0 0 1 0 -1 1 1 -1 -1 -1 -1 1 1 1 -1 1
-1 1 -1 1 1 1 -1 1 -1 -1 -1 -1 1 -1 1 0 -1 0 -1 1 -1 -1 -1 -1 1 1 -1 -1 0 1 0 1 0 -1 1 0
1 1 1 1 1 1 -1 0 0 1 -1 -1 0 0 -1 -1 1 1 1 -1 -1 1 1 1 -1 1 -1 0 -1 -1 1 1 0 0 1 -1 -1
1 -1 0 1 0 0 -1 1 0 1 -1 0 0 -1 0 1 1 1 0 -1 1 1 0 -1 1 1 1 -1 1 -1 -1 1 -1 1 0 0 -1 -1
-1 0 -1 1 -1 -1 1 1 0 0 -1 -1 -1 1 0 -1 -1 1 -1 0 1 -1 -1 -1 -1 0 1 -1 0 1 1 -1 1 0 -1 0
0 0 1 1 1 1 -1 1 1 1 0 -1 -1 -1 -1 0 -1 1 0 0 0 1 -1 0 1 0 0 0 1 1 -1 -1 -1 -1 -1 1 1
-1 -1 1 -1 0 -1 0 -1 -1 1 -1 0 1 1 1 -1 -1 -1 0 0 -1 0 -1 -1 0 -1 -1 -1 0 -1 0 0 1 -1 1
0 -1 1 -1 -1 0 -1 -1 0 0 -1 0 -1 1 1 0 1 1 -1 0 0 -1 1 0 1 -1 0 1 1 -1 0 1 0 -1 0 -1 1
-1 1 0 0 -1 0 1 0 -1 -1 -1 -1 1 -1 1 1 0 1 0 0 with 154 zeroes and the peak 438.

3 Construction of OPT Sequences

From Theorem 1–3, it follows that all the constructed APT sequences have an
inverse-repeat property, i.e. wi = −wi+N/2, 0≤ i < N/2. Using this fact and the
decomposition properties of m-sequences we can prove the following theorem.

Theorem 4. Let w = {wi} , i=0,1,. . . ,N − 1 be an APT sequence, constructed
by Theorem 1 or 2 or 3 . Then a ternary sequence

ŵ = {wi}, i = 0, 1, . . . , N/2− 1 (8)

is an OPT sequence of length N/2.

It is obvious that Theorem 4 includes both, the well-known OPT sequences of
length (qk− 1)/(q− 1) [5,9] and new OPT sequences of length (qk− 1)/r, where
r < (q − 1). A new family of OPT sequences is given below.

Corollary 5. Let n = 2m and w = {wi}, i = 0, 1, .., 4pm + 3 be an APT
sequence (1). Then a sequence

ŵ = {wi}, i = 0, 1, . . . , 2pm + 1 (9)

is an OPT sequence of length 2(pm + 1) with two zero elements.
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Example 6. From Example 1 by Theorem 4 we get the following OPT sequence of
length 36: -111-1-11-1-1-1011-111111-11-1-11-11-11011-1-11111. Computer cal-
culations verify this.

As was shown in [13], if the even-odd transformation (EOT) is applied to an
odd-perfect sequence, then, as a result, a perfect polyphase sequence will be
produced. EOT with an integer parameter t for any sequence s= {sj} of length
N is given by [13]

sj〈t〉 = sj expiπj(2t+1)/N , j = 0, 1, . . . , N − 1, i =
√
−1 (10)

Consider some applications of EOT to OPT sequences of length
N = 2(pn − 1)/(pm − 1) derived from APT sequences (1). Let N/2 = 2t + 1,
i.e. N/2 = 1mod2. It is obvious that k = n/m must be odd. Hence, we obtain
new perfect 4-phase sequences with 2(pn−m − 1)/(pm − 1) zeroes. In the case
when N/4 = 2t + 1, (it is possible that k/2 is odd) we can produce new perfect
8-phase sequences. The case k/2 = 1, n = 2m is of special interest. In this case,
we have perfect 8-phase sequences with only two zeroes.

Example 7. Take the OPT sequence of length 36 with n = 2m from the previous
example. From (10) we have the following perfect 8-phase sequence
ŵ〈4〉 = {ŵj expi2πj/8}, {ŵj} =-1 1 1 -1 -1 1 -1 -1 -1 0 1 1 -1 1 1 1 1 1 -1 1
-1 -1 1 -1 1 -1 1 0 1 1 -1 -1 1 1 1 1, j = 0, 1, . . . , 35. It is more convenient
to present this sequence in a form ŵ〈4〉 = {expi2πuj/8}, where u = {uj} is a
sequence of length 36 with elements from Z(8): 4 1 2 7 0 5 2 3 4 - 2 3 0 5 6 7 0
1 6 3 0 1 6 3 0 5 2 - 4 5 2 3 0 1 2 3 and ŵj〈4〉 = 0 for uj =-.

Example 8. Consider the APT sequence of length 732 (Example 3). From it we
have an OPT sequence of length 366: 1 0 0 1 -1 1 -1 1 1 0 1 -1 1 1 -1 -1 1 1 -1
-1 -1 1 1 1 -1 0 1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 0 1 -1 1 0 1 1 -1 1 1 1 1 1 1 -1 1
1 1 1 1 1 1 0 1 1 -1 -1 -1 1 1 1 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 1 -1
-1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 1 0 1 1 -1 -1 1 1 1 1 1 -1 1 0 -1 1 -1
-1 -1 -1 1 -1 0 -1 -1 1 -1 1 0 -1 -1 1 -1 0 1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 0 -1 1
-1 -1 -1 -1 -1 -1 1 1 -1 1 1 1 1 1 1 -1 -1 1 -1 -1 1 -1 -1 1 1 0 1 0 0 -1 1 -1 1 1
1 0 -1 -1 1 1 1 1 1 -1 1 1 1 1 -1 1 -1 0 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 0 1 1 -1 0
1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 1 1 1 -1 0 -1 1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 1 -1
-1 1 1 1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 1 1 1 0 1 -1 1
1 -1 -1 1 1 1 -1 -1 0 1 -1 1 -1 1 -1 -1 1 0 -1 -1 1 -1 -1 0 1 -1 1 1 0 -1 -1 1 1 1
-1 1 -1 1 -1 -1 -1 -1 0 -1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1 1 0.
Taking 2t + 1 = 183, in this case we obtain a perfect 4-phase sequence
ŵ〈91〉 = {expi2πuj/4}, where u = {uj} is a sequence of length 366 with ele-
ments from Z(4): 0 - - 3 2 1 0 3 0 - 2 1 0 1 0 1 0 1 0 1 2 1 2 3 2 - 2 3 2 3 2 1 2 1
2 1 2 3 - 3 2 1 - 3 0 3 2 3 0 1 2 3 2 1 2 3 0 1 2 3 - 1 2 1 2 3 2 3 0 1 2 3 2 1 0 1 2
1 2 1 2 3 0 1 0 1 2 3 2 3 0 1 2 1 2 3 0 1 2 1 2 1 0 3 2 3 0 3 - 1 2 1 2 1 2 3 0 1 0 3
- 3 2 1 2 3 0 3 2 - 0 1 0 3 2 - 2 3 2 1 - 1 2 1 2 3 2 1 0 3 0 3 0 3 - 1 0 3 0 1 2 3 0 3
0 3 2 3 0 1 2 3 2 3 2 1 2 1 0 1 0 1 - 3 - - 0 3 2 1 2 3 - 3 0 3 0 1 2 3 2 1 2 3 0 3 2
1 - 3 0 3 2 3 2 1 2 1 0 3 0 - 2 3 2 - 2 1 0 1 0 3 2 1 0 1 0 3 0 3 0 1 0 - 2 1 0 3 0 1
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0 1 0 3 2 1 2 3 2 1 2 1 2 3 0 3 2 1 2 1 0 1 2 1 0 3 2 3 0 3 0 1 0 1 0 1 2 1 0 1 2 - 0
3 2 3 2 3 2 3 0 3 0 - 0 3 2 1 0 3 0 3 - 3 0 3 2 3 - 3 2 1 2 - 2 3 2 3 0 3 2 1 0 3 0 1
2 - 0 3 2 1 2 1 2 3 0 1 2 3 2 3 0 3 2 1 0 1 0 1 0 3 2 3 0 -.

4 Length Uniqueness

It is interesting to compare lengths of the new APT sequences with ones of the
known APB sequences of length 2(pm +1) [4,6,7]. It was found that for all APT
sequences (1) of length N < 100 there is only one of length N = 72 for which
APB sequences do not exit. However, there are a lot of APT sequence lengths
that don’t coincide with lengths of APB sequences. To prove this, take m = 0
mod 2. It is easy to see that in this case the sequences (1) exist for all primes
p ≥ 3.

Theorem 5. Let p >3 be a prime. Then the lengths of APT sequences (1) with
m=0 mod 2 and APB sequences [4,6,7] don’t coincide.

Proof. Let us suppose that there are such primes p1 > 3, p2 > 3 and positive
integers w, u for which 4(p2w

1 + 1) = 2(pu
2 + 1). Then 2p2w

1 + 1 = pu
2 . But this is

impossible, as 2p2w
1 + 1 is divisible by 3 for p1 > 3. ��

Note that in the case p2 = 3 and u ≤ 69, equation 2p2w
1 +1 = 3u is true only for

u = 5, p1 = 11 and w = 1.
Now we will show that APT sequences (1) with parameters m = 1, k = 2,

p = 10t + 7 = 1 mod 4 and length N = 4(p + 1) = 40t + 32 are also unique. To
demonstrate it we will prove that N/2−1 is not a power of a prime number. Since
N/2− 1 = 20t + 15 is divisible by 5, suppose that 20t + 15 = 5w for an integer
w > 3. Then, the last two digits of N/2− 1 must be 25. But it is impossible, as

Table 1. Unique APT sequences of length N = 4(pm + 1) < 2000

p m N p m N p m N

17 1 72 181 1 728 349 1 1400

5 2 104 193 1 776 353 1 1416

37 1 152 197 1 792 19 2 1448

7 2 200 229 1 920 373 1 1496

61 1 248 241 1 968 389 1 1560

73 1 296 257 1 1032 397 1 1592

97 1 392 269 1 1080 401 1 1608

101 1 408 277 1 1112 409 1 1640

109 1 440 17 2 1160 421 1 1688

137 1 552 313 1 1256 433 1 1736

149 1 600 317 1 1272 449 1 1800

157 1 632 337 1 1352 457 1 1832

13 2 680 7 3 1376 461 1 1848
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Table 2. Some unique APT sequences of length N = 4(pmk − 1)/(pm − 1) with odd k

p m k N Z p m k N Z

13 1 3 732 56 61 1 3 15132 248

5 1 5 3124 624 73 1 3 21612 296

37 1 3 5628 152 81 1 3 26572 328

41 1 3 6892 164 3 2 5 29524 3280

7 2 3 9804 200 89 1 3 32044 360

53 1 3 11452 216 101 1 3 41212 408

(N/2 − 1) − 5 = 20t + 10 is not divisible by 20, that leads to a contradiction.
Hence, APT sequences (1) with parameters m = 1, k = 2, p = 10t + 7 = 1 mod
4 are unique.

All unique APT sequences of length N = 4(pm + 1) < 2000 are presented in
Table 1. Some other unique APT sequences of length N = 4(pn − 1)/(pm − 1)
with odd k are given in Table 2 (Z is the number of zeroes).

Further, as OPT sequences of length pm + 1 [5] can be derived from APT
sequences of length 2(pm + 1) [9] then the OPT sequences (9) with m=0 mod 2
are also unique like the above APT sequences (1).

5 Some Configuration Properties of APT Sequences

APT sequences (1) are invariant to the following transformations:

– shifts : {wi+k}, 0 ≤ k < N ;
– inverse: {w̄i};
– reverse: wN−1, wN−2, . . . , w1, w0;
– ”even” inverse: w̄0, w1, w̄2, . . . , w̄N−2, wN−1;
– ”odd” inverse: w0, w̄1, w2, . . . , wN−2, w̄N−1.

Indeed, the first three cases directly follow from properties of the periodic cor-
relation function. In the two last cases note that by Theorem 3 ”even” or ”odd”
inverse of APT sequences are equivalent to a transformation of the shift sequence
e

′
= {e′

j}, where e
′
j = ej mod h, h = (pm − 1)/r , 0 ≤ j < T into a sequence

e1 = {e1
j} = e

′
0 + h/2, e

′
1, e

′
2 + h/2, . . . , e

′
T−2 + h/2, e

′
T−1 and a shift sequence

e2 = {e2
j} = e

′
0, e

′
1+h/2, e

′
2, e

′
3+h/2, . . . , e

′
T−2, e

′
T−1+h/2 respectively. It is easy

to see that sequences e1 and e2 possess the shift sequence property, i.e. for any
i ∈ Z(pn − 1) each element of Z(h) appears in differences e1

i+k − e1
k mod h and

e2
i+k − e2

k mod h, k ∈ Z(T ) exactly rpn−2m times. Therefore, applying ”even”
and ”odd” inverse transformations we also get APT sequences.

6 Conclusions

The constructions described in this paper allow to get both known APT se-
quences [8,9], OPT sequences [5,9] and new ones. New families of APT sequences
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of length 4(pn− 1)/(pm− 1), (pm + 1) = 2 mod 4, and OPT sequences of length
2(pn − 1)/(pm − 1) have the peak factor close to 1, when p becomes large. For
the case n = 2m new APT sequences of length 4(pm + 1) and OPT sequences
of length 2(pm + 1) with two zeros are obtained. Subsets of these APT and
OPT sequences for all even m are unique in the sense that there are no APB
sequences [4,6,7] or OPT sequences [5] having the same length. Using Mow even-
odd transformation we can produce new perfect polyphase sequences with some
zeroes from the OPT sequences. The constructed sequences can be used in wire-
less broadband mobile communication systems, for synchronization and channel
estimation as well as in radar and sonar systems for ranging.
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Abstract. Binary sequences with good autocorrelation properties are
widely used in cryptography. If the autocorrelation properties are opti-
mum, then the sequences are called perfect. In the last few years, new
constructions for perfect sequences have been found. In this paper we
investigate the cross-correlation properties between perfect sequences.
We give a lower bound for the maximum cross-correlation coefficient be-
tween arbitrary perfect sequences. We conjecture that this bound is not
best possible. Furthermore, we determine perfect sequences with prov-
able good correlation properties.

1 Introduction

Sequences a = (ai)i≥0 are called periodic with period n if ai = ai+n for all
i and binary if ai ∈ {0, 1} for all i. The autocorrelation (AC) of a binary
sequence a with period n is defined by

ct(a) :=
n−1∑
i=0

(−1)ai+ai+t . (1)

We define the shift a[t] = (a[t]
i )i≥0 of the sequence a by a

[t]
i := ai+t. The autocor-

relation function of a sequence a is a measure for how much the given sequence
differs from its shifts a[t], 1 ≤ t ≤ n− 1. Since the sequences are n-periodic, we
may compute the indices modulo n.

In this paper we call a sequence with n odd and ct(a) = −1 for 1 ≤ t ≤ n− 1
perfect, see [12] for more background on perfect sequences. It is well known
and easy to see, that ct(a) ≡ n mod 4, since we consider only sequences with
n ≡ 3 mod 4. A sequence a is called balanced if the number of ones and zeros
in each period is n

2 if n is even or n±1
2 if n is odd. For each perfect sequence a

we have
∑n−1

i=0 (−1)ai = ±1, because

( n−1∑
i=0

(−1)ai

)2

=
n−1∑
i=0

n−1∑
t=0

(−1)ai+ai+t =
n−1∑
t=0

(ct(a)) = (−1)(n− 1) + n = 1,

since c0(a) = n. Therefore perfect sequences are always balanced. Balanced (or
almost balanced) sequences with autocorrelation −1 (or low autocorrelation) are

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 208–219, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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widely used in communications and cryptography. We call two sequences a and
b shift distinct, if a is not equal to b[t] for all t = 0, ..., n− 1.

We define the d-decimation a(d) = (a(d)
i )i≥0 of an n-periodic sequence a by

a
(d)
i := aid and the binary complement ā = (āi)i≥0 by āi := ai + 1 mod 2.

Note, if a is perfect, then all shifts a[t], all decimations a(d) with gcd(d, n) = 1
and all their binary complements are perfect, again. We call two sequences a
and b equivalent, if a can transformed into b by cyclic shift, decimation and/or
taking the binary complement. We are interested in constructions, which produce
inequivalent perfect sequences. The most known examples for perfect sequences
have period n = 2m−1 and are constructed using finite fields of characteristic 2.

The finite field with 2m elements is denoted by F2m and its multiplicative
group by F ∗

2m . Let α be a primitive element of F2m , then any binary sequence
of period n = 2m − 1 describes a function f : F ∗

2m → F2 such that f(αi) = ai.
Conversely any function f : F2m → F2 describes a binary sequence, where the
value f(0) is irrelvant.

In the following we fix a primitive element α and identify sequences with the
corresponding functions. If the sequence is balanced, resp. perfect, then we call
the corresponding function balanced, resp. perfect. We choose f(0) ∈ {0, 1} such
that

∑
x∈F2m

(−1)f(x) = 0, which is always possible if f is balanced.
The autocorrelation of a Boolean function f is defined by

cy(f) :=
∑

x∈F2m

(−1)f(x)+f(yx). (2)

For y = αt we have cαt(f) = ct(a) + 1. Thus, a function f is perfect iff∑
x∈F2m

(−1)f(x)+f(ax) =
{

0 if a 	= 1
2m if a = 1. (3)

The trace function is the linear mapping tr : F2m → F2 defined by tr(x) =∑m−1
i=0 x2i

. It is well known that the mappings trβ , β ∈ F2m , defined by trβ(x) =
tr(βx) are linear, again, and all 2m linear mappings F2m → F2 can be represented
like this. The sequences a = (ai)i≥0 with ai = trβ(αi) and β ∈ F ∗

2m are called
m-sequences. They are perfect, see [11].

Other classes of perfect sequences are known. We refer the reader to the chap-
ter on difference sets in [4] since perfect sequences correspond to a certain classes of
cyclic difference sets, see also [12]. Using finite fields there are four more construc-
tions known. Let us briefly recall these known series of perfect sequences: One im-
portant class are theGordon-Mills-Welch-sequences (GMW-sequences) [10]. Mas

etti [13] construct perfect sequences by taking the characteristic functions f of a
D⊂ F ∗

2m (i.e. f(x)=1 iff x ∈ D),whereD is defined byD={ϕ(x)|x∈ F2m}for a
certain mappingϕ. Maschietti used the functionϕ(x) = x+xd. If gcd(2m−1, d) =
1 andϕ is a 2-1-mapping, then the construction gives a perfect sequence.No,Chung
and Yun [14] conjectured, that ϕ(x) = xd +(x+1)d, where d = 22k− 2k +1 is the
so called Kasami exponent, yields a perfect sequence if m ≡ 3k ± 1. The conjec-
ture is proved in [6] and [7]. Dillon and Dobbertin showed in [7], that the function

set
chi

-
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ϕ(x) = xd + (x + 1)d + 1 with d = 22k − 2k + 1 also yields a perfect sequence, if
gcd(k,m) = 1. We call these sequences the Dillon-Dobbertin (DD) sequences.

We look at the cross-correlation between arbitrary perfect sequences. Simi-
larly to the autocorrelation, we define the cross-correlation (CC) between two
functions f, g : F2m → F2 by

cy(f, g) :=
∑

x∈F2m

(−1)f(x)+g(yx) (4)

for all y ∈ F2m . It is also possible to express the cross-correlation similar to
(1). The set of all CC-coefficient Sp(f, g) := {cy(f, g)|y ∈ F ∗

2m} is called the
CC-spectrum of f and g. Trivially, we have c0(f, g) = (−1)f(0)+g(0)c0(f).

It would be interesting to know the CC of all perfect sequences, but this
seems to be illusive. So far, the following is known: The CC of m-sequences
with their decimations was first 1968 been examined and today they are the
most examined and best-known perfect sequences, see [11] for instance. The
CC between an m-sequence and a GMW-sequence has been investigate in [16]
and [17]. Antweiler [3] shows, that the calculation of the CC between GMW
sequences can be reduced to the calculation of the CC between m-sequences and
their decimations. The calculation of the CC between No-Chung-Yun sequences
(Dillon-Dobbertin sequences) and certain m-sequences is contained in [7].

In chapter 2 we study the CC of arbitrary perfect sequences. We tried to
generalize or to disprove known results form-sequences to the whole class of perfect
sequences. In chapter 3 we consider the CC of a special family of perfect sequences.

2 Cross-Correlation of Perfect Sequences

In the following we restrict ourselves to the description of sequences via func-
tions F2m → F2 . We need the following Lemma, which is a straightforward
generalization of the Parseval formula.

Lemma 1. Let f, h, g : F2m → F2 be functions and g be perfect, then∑
x∈F2m

(−1)f(x)(−1)h(x) =
1

2m

∑
y∈F2m

cy(f, g) cy(h, g). (5)

We call (5) the generalized Parseval formula.

Proof. For f, g, h, k : F2m → F2 and z ∈ F ∗
2m we have [2]∑

x∈F2m

cx(f, g)cyx(h, k) =
∑

x∈F2m

cx(f, h)cyx(g, k).

For the case g = k we get
∑

x∈F2m
cx(f, g)cyx(h, g) =

∑
x∈F2m

cx(f, h)cyx(g). If
g is perfect, then c1(g) = 2m and cz(g) = 0 for all z 	= 1. Hence

2mcy−1(f, h) =
∑

x∈F2m

cx(f, g)cyx(h, g),

and for y = 1 we get (5).
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In the next proposition we list some basic (known) properties of the CC-
function between perfect functions.

Proposition 1. Let f, g : F2m → F2 be functions, gcd(d, 2m − 1) = 1 and
y ∈ F ∗

2m .

1. We have cy(f, g(d)) = cyd(f (1/d), g).
2. If f and g are balanced, then cy(f, g) ≡ 0 mod 4.
3. If g is perfect, then for all i ∈ {0, ...,m − 1} exists yi ∈ F ∗

2m such that
cy(f, g(2id)) = cyi

(f, g(d)).
4. If f and g are perfect, then for all i ∈ {0, ...,m − 1} exists yi ∈ F ∗

2m such
that cy2i (f, g) = cyi

(f, g).
5. If g is perfect, then

∑
y∈F2m

cy(f, g) = 2m(−1)f(0)+g(0).

6. If g is perfect, then
∑

y∈F2m

(cy(f, g))2 = 22m.

7. If f and g are perfect, then
∑

y∈F2m

cy(f, g)cay(f, g) =
{

0 if a ∈ F2m\{1}
22m if a = 1 .

We say, s ∈ {2, ..., n−1} is a multiplier of an n-periodic sequences a, if there
exists t with asi = ai+t for all i ≥ 0. The properties (3) and (4) holds, since 2 is
always a multiplier of a perfect sequence of period 2m−1, see [4]. The properties
(4), (5) and (6) can be easily proved by the generalized Parseval formula.

Let dy(f, g) := |{x ∈ F2m |f(x) 	= g(yx)}|. This measures the distance be-
tween f(x) and the translate g(yx) of g(x). In this paper we are interested in
perfect Boolean functions f and g, whose number dy(f, g) and dy(f, ḡ), where
ḡ is the complement of g (i.e. ḡ(x) = g(x) + 1) is as large as possible for all
y ∈ F ∗

2m . It is easy to see that dy(f, g) = 2m − dy(f, ḡ) holds for y ∈ F ∗
2m .

For two Boolean functions f, g : F2m → F2 , we have cy(f, g) = 2m−2dy(f, g)
and cy(f, ḡ) = 2m − 2dy(f, ḡ) = −(2m − 2dy(f, g)) for y ∈ F ∗

2m . Hence we try to
find functions f and g such that

M(f, g) := max
y∈F ∗

2m

∣∣∣ ∑
x∈F2m

(−1)f(x)+g(yx)
∣∣∣

is as small as possible. The maximal CC-coefficient (in absolut value) is a measure
for how much g may be used to approximate f . We are interested in lower bounds
for the maximum CC-coefficient between two perfect functions.

The next Theorem gives a lower bound for the maximal CC-coefficient (in
absolut value) of two Boolean functions, if one of the functions is perfect.

Theorem 1. Let f, g : F2m → F2 be functions and g be perfect, then

max
y∈F2m

|cy(f, g)| ≥ 2m/2 (6)

and

M(f, g) ≥
√

22m − |c0(f)|2
2m − 1

. (7)



212 D. Hertel

Proof. We have
∑

y∈F2m
(cy(f, g))2 = 22m by property (6) of Proposition 1. In

the sum on the left side we have 2m non-negative terms, which explains (6).
We also have

∑
y∈F ∗

2m
(cy(f, g))2 = 22m− |c0(f)|2. In the sum on the left side

we have 2m − 1 non-negative terms, which explains (7).

Corollary 1. Let f, g : F2m → F2 be functions and g be perfect. If |c0(f)| <
2m/2 then

M(f, g) > 2m/2. (8)

In particular, if f is balanced or perfect we have M(f, g) > 2m/2.

If g is linear, then Theorem 1 as well as Lemma 1 are not new. More precisely,
let F : F2m → C be a function, the Walsh transform W(F ) of F is the
mapping F2m → C defined by W(F )(y) =

∑
x∈F2m

F (x)(−1)tr(yx), see [11] for
more information. If F (x) = (−1)f(x), we simply write W(f) instead of W(F ).
The linearity is the maximum Walsh coefficient (in absolute value) of f . If g is
the trace function, then

W(f)(y) = cy(f, g).

Thus, the CC of a function f with the trace function is related to the linearity
of the function f and (5) is the usual Parseval formula. The maximum Walsh
coefficient of a function f : F2m → F2 is maxy∈F2m |W(f)(y)| ≥ 2

m
2 , where

equality occurs iff f is bent, see [11]. Since bent-functions are not balanced,
we have maxy∈F ∗

2m
|W(f)(y)| > 2

m
2 for balanced functions f , compare with

Corollary 1.
If the sequences corresponding to f and g are both m-sequences, then it is

well-known that M(f, g) ≥ 2
m+1

2 , and if equality occurs (of course, only for
m odd), then cy(f, g) ∈ {0,±2

m+1
2 } for all y ∈ F2m , see [5]. This property is

not true for arbitrary perfect functions. Antweiler shows in [3], that there exists
GWM-functions f and g with M(f, g) = 2(m+1)/2 and their CC-spectrum is not
3-valued.

The bound (8) seems to be bad if f and g are both perfect. We have no
examples of perfect functions f and g with M(f, g) < 2(m+1)/2, hence we would
like to ask the following question:

Question 1. Let f and g be two perfect functions. Is it true, that

M(f, g) ≥ 2
m+1

2 ? (9)

It is known, that the CC-spectrum of two perfect functions f and g, where
the corresponding sequences a and b (and ā and b) are shift distinct, contains at
least three different values. Helleseth proved this for the corresponding functions
of m-sequences in [1], but the proof is also true for arbitrary perfect functions.
For the proof we only need the properties (5) and (6) of Proposition 1.

It is interesting to look for 3-valued CC-spectra where M(f, g) is small. In
view of Question 1, we consider functions with M(f, g) = 2(m+1)/2.

The following proposition is well-known if g is linear.
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Proposition 2. Let f, g : F2m → F2 be functions, let g be perfect and f be
balanced. If the CC-spectrum between f and g takes only the three values ±c and
0, then c = 2

m+k
2 with k ∈ N0 and the multiplicities are:

cross-correlation value multiplicity
0 2m − 2m−k − 1

+2
m+k

2 2m−1−k + 2
m−k

2 −1(−1)f(0)+g(0)

−2
m+k

2 2m−1−k − 2
m−k

2 −1(−1)f(0)+g(0).

Proof. Note, since f is balanced, we have c0(f, g) = 0. Let x denotes the num-
ber of CC-coefficient ±c. By the generalized Parseval formula we get 22m =∑

z∈F2m
(cz(f, g))2 = c2x. This shows, that c2 has to divide 22m and therefore c

is a power of 2.
By Theorem 1 we have c ≥ 2m/2. We define z1 := |{z ∈ F ∗

2m |cz(f, g) =
0}|, z2 := |{z ∈ F ∗

2m |cz(f, g) = 2
m+k

2 }| and z3 := |{z ∈ F ∗
2m |cz(f, g) = −2

m+k
2 }|.

Obviously we have

z1 + z2 + z3 = 2m − 1. (10)

On the one hand we get
∑

z∈F2m
cz(f, g) = (−1)f(0)+g(0)2m by property (5) of

Proposition 1, since g is perfect. On the other hand we have
∑

z∈F2m
cz(f, g) =

(z2−z3) · 2
m+k

2 . Consequently we get

z2 − z3 = (−1)f(0)+g(0)2
m−k

2 . (11)

By property (6) of Proposition 1 we get
∑

z∈F2m
(cz(f, g))2 = 22m and, on the

other hand
∑

z∈F2m
(cz(f, g))2 = (z2 + z3) · 2m+k. Therefore we have

z2 + z3 = 2m−k. (12)

The equations (10), (11) and (12) show the multiplicities.

If we have such a 3-valued CC-spectrum between two perfect Boolean func-
tions, then the sequence b = (bi)i≥0 defined by

bi :=
cαi(f, g)
2(m+k)/2

(13)

is a perfect ternary sequence, see [18]. Thus, it is also interesting to look for
3-valued CC-spectra between arbitrary perfect functions in order to get new
perfect ternary sequences.

3 Good Cross-Correlation Spectra

In this chapter we look at the Dillon-Dobbertin (DD) functions f and g with
M(f, g) = 2(m+1)/2. With Question 1 in chapter 2 it is possible, that this case
is optimum. So, in the following we restrict ourselves to the case m odd.
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We recall the definition of the DD-functions, see Chapter 1. Let d := 22k −
2k + 1 and gcd(k,m) = 1, the DD-function bk is defined by

bk(x) :=
{

0 if x ∈ Bk

1 if x 	∈ Bk

where Bk := {xd + (x+ 1)d + 1|x ∈ F2m}. These functions are perfect [7]. Note,
that b1 is the trace function. It is shown in [7], that B

(5)
2 = {ϕ(x)|x ∈ F2m}

where ϕ(x) = x + x6 is a Maschietti function.
Let gcd(s, 2m − 1) = 1. For m ≤ 17 odd we list all the functions bk and b

(s)
l

with M(bk, b
(s)
l ) = 2

m+1
2 , which were found by computer:

m k l s

5 1 2 1
5 1 2 5
5 1 2 7
7 1 2 1
7 1 2 5
7 1 2 43
7 1 3 1
7 1 3 9
7 1 3 15
7 1 3 27
7 1 3 43
7 2 3 1
7 2 3 27
7 3 3 19

 2

 1

 3

 2

 1

 2

 1

 2

◦1

m k l s

9 1 2 5
9 1 4 17

11 1 2 5
11 1 3 1
11 1 3 9
11 1 4 1
11 1 4 17
11 1 5 33
11 2 3 1
11 2 5 1
11 4 5 1
13 1 2 5
13 1 3 1
13 1 3 9

 1

 1

 1

 2

 1

 2

 1

 1

 2

 2

 2

 1

 2

 1

m k l s

13 1 4 1
13 1 4 17
13 1 5 33
13 1 6 65
13 2 5 1
13 2 6 1
13 3 4 1
13 5 6 1
15 1 2 5
15 1 4 17
15 1 7 129
17 1 2 5
17 1 3 1
17 1 3 9

 2

 1

 1

 1

 2

 2

 2

 2

 1

 1

 1

 1

 2

 1

m k l s

17 1 4 17
17 1 5 33
17 1 6 1
17 1 6 65
17 1 7 129
17 1 8 257
17 2 5 1
17 2 6 1
17 3 8 1
17 4 5 1
17 4 7 1
17 7 8 1

 1

 1

 2

 1

 1

 1

 2

 2

 2

 2

 2

 2

We do not consider the case k = l = 1, because it is the CC between m-
sequences and these sequences are already analysed, see [11] for instance. It is
interesting, that in all cases listed in the table, except the case ◦1, we have
a 3-valued CC-spectrum with the values ±2

m+1
2 and 0 and the multiplicities

from Proposition 2. In the case ◦1 we have the CC-spectrum Sp(b3, b
(19)
3 ) =

{−16(21),−8(28), 0(21), 8(28), 16(29)}, where the numbers in the brackets are
the multiplicities.

Each value in the table represents a whole class of values, which also have
the same CC-spectrum: We only list the values k and l such that1≤k≤l≤ m−1

2 ,
because b

(s)
k =b

(s)
m−k and for each s with gcd(s, 2m− 1) = 1 we have cy(bk, b

(s)
l ) =

cy′(bl, b
(1/s)
k ) with y′ = y−1/s. For s we only consider the smallest value in the

set {2is|i = 0, ...,m− 1}, since property (3) of Proposition 1 holds.
We can explain the values in the table indicated by a star. We do not only

show, that the maximal CC-coefficient is 2(m+1)/2. We prove, that the CC-
spectrum contains only the three values ±2(m+1)/2 and 0. The proof contains a
method related to the concept of Hadamard-equivalence introduced in [6] and
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[7]. Therefore we define the function m(d) : F2m → F2 by m(d)(x) = tr(xd) for all
x ∈ F2m . We show, that for some special k, l and s the CC of the DD-functions
bk and b

(s)
l is equivalent to the Walsh transform of m(d), where d = 2k +1 or

d=22k−2k +1 with gcd(k,m) = 1. The Walsh spectrum of such functions m(d)

has only the three values ±2
m+1

2 and 0, see [11] for instance. Note, the function
m(d) is the corresponding function of the d-decimation of an m-sequence.

The following highly nontrival result is the major step in [7] to prove that bk

is a perfect function.

Result 1. (Dillon and Dobbertin [7]) Let m be odd and gcd(k,m) = 1, then

W(b(2
k+1)

k )(y) = W(m(3))(y(2k+1)/3) for all y ∈ F2m .

Result 1 explains all entries in the table indicated by  1, since cy(b1, b
(s)
k ) =

W(b(s)k )(y−1). In particular, we have

cy(b1, b
(2k+1)
k ) ∈ {±2(m+1)/2, 0}.

Theorem 2. Let m be odd and gcd(k,m) = gcd(l,m) = 1, then

cy(bk, bl) = W(m((2k+1)/(2l+1)))(y−1/(2k+1)) for all y ∈ F2m .

A function ϕ : F2m → F2m is called maximal nonlinear, if the condition
maxa,b∈F2m ,b �=0 |

∑
x∈F2m

(−1)tr(ax+bϕ(x))| = 2(m+1)/2 holds.

Corollary 2. Let m be odd and gcd(k,m) = gcd(l,m) = 1, we have that the
maximal CC-coeffient of bk and bl is 2(m+1)/2 if and only if the function x �→
x(2k+1)/(2l+1) is maximal nonlinear.

The following corollary explains all entries in the table indicated by  2.

Corollary 3. Let m ≡ ±1 mod 3 and gcd(l,m) = 1, then

cy(b3l, bl) ∈ {±2(m+1)/2, 0} for all y ∈ F2m .

Before we present the proof of Theorem 2 we write each CC-coefficient be-
tween two DD-functions in terms of CC-coefficients between m-sequences and
their decimations. We have

ca(bk, b
(s)
l ) =

∑
x∈F2m

(−1)bk(x)+b
(s)
l (ax) =

∑
x∈F2m

(−1)bk(x)+bl((ax)s).
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We apply the generalized Parseval formula with g = m(1/(2k+1)) in the first
step and g = m(s/(2l+1)) in the second step and get

22mca(bk, b
(s)
l )

(5)
= 2m

∑
x∈F2m

( ∑
y∈F2m

(−1)bk(y)+tr(xy1/(2k+1))
)

·
( ∑

z∈F2m

(−1)bl(a
szs)+tr(xz1/(2k+1))

)
(5)
=

∑
x,z∈F2m

( ∑
y∈F2m

(−1)bk(y)+tr(xy1/(2k+1))
)

·
( ∑

w∈F2m

(−1)bl(a
sws)+tr(zws/(2l+1))

)
·
( ∑

v∈F2m

(−1)tr(xv1/(2k+1)+zvs/(2l+1))
)

=
∑

x,z∈F2m

( ∑
y∈F2m

(−1)bk(y)+tr(xy1/(2k+1))
)

·
( ∑

w∈F2m

(−1)bl(w)+tr(za−s/(2l+1)w1/(2l+1))
)

·
( ∑

v∈F2m

(−1)tr(vt+xz−1/tv)
)
,

where t := s(2k + 1)/(2l + 1). We use the Result 1 twice and get

22mca(bk, b
(s)
l ) =

∑
x,z∈F2m

( ∑
y∈F2m

(−1)tr(y3+x(2k+1)/3y)
)

·
( ∑

w∈F2m

(−1)tr(w3+z(2l+1)/3a−s/3w)
)

·
( ∑

v∈F2m

(−1)tr(vt+xz−1/tv)
)

=
∑

x,z∈F2m

W(m(3))(x(2k+1)/3) · W(m(3))(z(2l+1)/3a−s/3)

· W(m(t))(xz−1/t) (14)

This shows, that the calculation of the CC between two DD-functions is reduced
to the calculation of the CC between m-sequences and their decimations. Now
we prove Theorem 2.
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Proof. We define ch := W(m((2k+1)/(2l+1)))(h) and transform

22mca(bk, bl)

=
∑

x,z∈F2m

( ∑
y∈F2m

(−1)tr(y3+x(2k+1)/3y)
)( ∑

w∈F2m

(−1)tr(w3+z(2l+1)/3a−1/3w)
)

·
( ∑

v∈F2m

(−1)tr(v(2k+1)/(2l+1)+xz−(2l+1)/(2k+1)v)

︸ ︷︷ ︸
=ch with x=hz(2l+1)/(2k+1)

)

=
∑

h,z∈F2m

( ∑
y∈F2m

(−1)tr(y3+h(2k+1)/3z(2l+1)/3y)
)

·
( ∑

w∈F2m

(−1)tr(w3+z(2l+1)/3a−1/3w)
)
ch

=
∑

h,w∈F2m

( ∑
y∈F2m

(−1)tr(y3+w3)
)( ∑

z∈F2m

(−1)tr(z(h(2k+1)/3y+a−1/3w))

︸ ︷︷ ︸
=

⎧⎨⎩ 2m if w = a1/3yh(2k+1)/3

0 otherwise

)
ch

=
∑

h∈F2m

( ∑
y∈F2m

(−1)tr(y3+ay3h(2k+1))
)
ch2m

=
∑

h∈F2m

( ∑
y∈F2m

(−1)tr(y(1+ah(2k+1)))

︸ ︷︷ ︸
=

⎧⎨⎩ 2m if h = a−1/(2k+1)

0 otherwise

)
ch2m

= 22mc
a−1/(2k+1) .

We obtain ca(bk, bl) =W(m((2k+1)/(2l+1)))(a−1/(2k+1)).

We can also explain  3. It is known, that b2 is a quadratic residue sequence
of period 31, and b2 = b

(7)
2 since 7 is a quadratic residue modulo 31. Thus, for

m = 5 we have Sp(b1, b
(7)
2 ) = Sp(b1, b2), which is 3-valued with ±2(m+1)/2 and

0 by Result 1.

4 Open Problems

We list some intersting questions about the CC between DD-functions, which
follow from the table above and from (3).

Question 2. Do we have more examples of DD-functions bk,b
(s)
l withM(bk, b

(s)
l )=

2(m+1)/2 and the CC-spectrum is not 3-valued, except the case ◦1 in the table.

The corresponding ternary sequences of the CC of the DD-functions, which
are indicated by a star in the table, are not new. These ternary sequences are
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equivalent to the ternary sequences obtained from the CC between m-sequences
and their decimations. For m = 7 there are two more inequivalent ternary se-
quences (the open cases), which are not equivalent to a ternary sequence corre-
sponding to the CC between an m-sequence and one of its decimations.

Question 3. Let m > 5. Do we have examples of DD-function bk with s is a
multiplier of bk and s 	∈ {1, 2, ..., 2m−1}.

Question 4. Let bk and b
(s)
l be two DD-functions, then the CC-coefficients be-

tween bk and b
(s)
l take only the three values ±2(m+1)/2 and 0 only if x �→

xs(2k+1)/(2l+1) is a maximal nonlinear function.

It is easy to see, that in Question 4 the converse is not true: Let m = 11, k =
2, l = 3 and s = 9, then is xs(2k+1)/(2l+1) = x5 maximal nonlinear, but the
CC-spectrum Sp(b2, b

(9)
3 ) contains more then three values.

In the case s = 1 the answer to Question 4 is yes and we even have ”if and
only if”, see Corollary 2.
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Abstract. New binary and ternary sequences with low correlation and
simple implementation are presented. The sequences are unfolded from
arrays, whose columns are cyclic shifts of a short sequence or constant
columns and whose shift sequence (sequence of column shifts) has the
distinct difference property. It is known that a binary m-sequence/GMW
sequence of length 22m − 1 can be folded row-by-row into an array of
2m − 1 rows of length 2m + 1. We use this to construct new arrays
which have at most one column matching for any two dimensional cyclic
shift and therefore have low off-peak autocorrelation. The columns of the
array can be multiplied by binary orthogonal sequences of commensurate
length to produce a set of arrays with low cross-correlation. These arrays
are unfolded to produce sequence sets with identical low correlation.

Outline

Sequences with low correlation and large linear complexity are widely used in
spread spectrum communication systems [1,2]. Here, we present new binary se-
quences, with low even periodic cross-correlation, low off-peak autocorrelation
and simple implementation. This paper generalizes a construction of sequence
sets introduced by Gong [7], called interleaved sequences. Such sequence sets are
obtained by writing an m/GMW sequence of length pkm− 1 row-by-row into an
array, where the columns are cyclic shifts of a single m/GMW sequence of length
pm− 1 or constants. Games [4] introduced the shift sequence to describe the se-
quence of cyclic shifts of the columns. The shift sequence has some remarkable
properties, which are crucial to our construction. Where the number of m/GMW
columns is commensurate with the length of a pseudonoise sequence, or an in-
teger multiple of periods of a pseudonoise sequence, these columns can be mul-
tiplied by cyclic shifts of that sequence. The resultant arrays can be unfolded to
produce sequences with identical correlation. The off-peak autocorrelation and
cross-correlation of such arrays and sequences is low, because the number of
phase-matched columns is constrained by a property of the shift sequence. Our
paper is organized in two parts. In Sections 1-4, we find suitable multiplication
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sequences, commensurate with m/GMW arrays, as described above. We restrict
our results to binary and ternary sequences. In Sections 5-10 we synthesize
shift sequences with desirable properties and construct arrays with commensu-
rate pseudonoise column sequences and multiplication sequences. We then unfold
the arrays into long sequences with good auto and cross-correlation. We find an
abundance of such long sequences and restrict ourselves to purely binary cases.

1 Sequence Construction

Here, we present new binary and ternary sequences of length 2n − 1, with low
even periodic cross-correlation, low off-peak autocorrelation and simple imple-
mentation. We fold a long m or GMW sequence of length 2n−1, with even n, into
an array and multiply the columns of the array by commensurate pseudonoise
sequences. When the parent sequence is an m-sequence, the implementation is
simple, but linear complexity is low. GMW parent sequences require more com-
plex implementation, but the linear complexity of the resulting sequence is much
larger.

1.1 Binary Sequence

Let n be even, T = 2n/2 + 1, and let q = T/3 be a prime of type 4t + 3. Let
a= {ai}, i = 0, 1, 2, . . . , 2n − 2, ai ∈ {−1, 1} be a binary m-sequence (or GMW
sequence) of length N = 2n−1. Let b= {bi}, i = 0, 1, 2, . . . , q−1, bi ∈ {−1, 1}, be
an infinite periodic binary Hall or Legendre sequence with period q [3]. Let bj be
the sequence b shifted by j units. We form the sequence cj = bja, with entries
cji = bj+iai, i = 0, 1, 2, . . . , 2n − 2. We denote the set {cj : j = 0, 1, 2, . . . , q − 1}
simply by {cj} and we adjoin a to this set, and denote the final set by {cj ,a}.
The number of different sequences in the set is M = q + 1 = (2n/2 + 1)/3 + 1.

Example 1. Let n = 6 and a = 1 1 1 1 1-1-1-1-1 1 1-1 1 1-1 1-1 1-1 1 1-1-1
1-1 1 1 1 1-1 1 1 1-1 1-1-1 1-1-1-1-1-1-1 1-1 1-1-1-1 1 1 1-1-1 1 1-1-1-1 1-1-1
and b = 11-1. Sequence a is an m-sequence of length 63 and b is a Legendre
sequence of length 3. Then c0 =b0a= 1 1-1 1 1 1-1-1 1 1 1 1 1 1 1 1-1-1-1
1-1-1-1-1-1 1-1 1 1 1 1 1-1-1 1 1-1 1 1-1-1 1-1-1-1-1 1 1-1-1-1 1 1 1-1 1-1-1-1
1 1-1 1 ; c1 =b1a= 1-1 1 1-1-1-1 1-1 1-1-1 1-1-1 1 1 1-1-1 1-1 1 1-1-1 1 1-1-1
1-1 1-1-1-1-1-1-1-1 1-1-1 1 1-1-1-1-1 1 1 1-1-1-1-1 1-1 1-1 1 1-1 ; c2 =b2a= -1
1 1-1 1-1 1-1-1-1 1-1-1 1-1-1-1 1 1 1 1 1-1 1 1 1 1-1 1-1-1 1 1 1 1-1 1 1-1 1-1-1
1-1 1 1 1-1 1-1 1-1 1-1 1 1 1 1-1-1-1-1-1.

1.2 Ternary Sequence Construction

Let n be even, T = 2n/2 + 1 be a prime. New ternary sequences result from
the multiplication of a long binary m/GMW sequence a={ai} with ai∈{-1,1}
and length 2n − 1, with 2n/2 − 1 repeats of a short ternary Legendre sequence
d = {d i} with di∈{0,-1,1} and length t = 2n/2 + 1. We apply all shifts of
this short sequence and form the ternary sequence tj =d ja, with entries tji =
dj+iai, i = 0, 1, 2, . . . , 2n − 2, j = 0, 1, 2, . . . , 2n/2. Thus, we obtain a new set
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{tj ,a} consisting of 2n/2 + 1 ternary sequences and the reference long sequence,
i.e.M = 2n/2 +2 distinct sequences. When 2n/2 +1 is prime, it is called a Fermat
prime [2]. Currently five Fermat primes are known for n = 2, 4, 8, 16, 32.

Example 2. Let n = 4. a= -1 1 1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 is an m-sequence
of length 15. d= 0 1-1 -1 1 is a ternary Legendre sequence of length 5. Then

t0 =d0a= 01− 1− 1− 1011110111− 1
t1 =d1a= −1− 1− 1101− 11− 10− 1− 11− 10
t2 =d2a= 1− 110− 1− 1− 1− 1011− 1− 10− 1
t0 =d0a= 11011− 110− 1− 1110− 11
t4 =d4a= −101− 1110− 11− 1− 10− 111

2 Correlation Properties

2.1 Binary Sequence

Now fold the binary sequence cj of Subsection 1.1, row-by-row into a two-
dimensional array C j of size (2n/2 + 1)(2n/2 − 1) in accordance with Games’
representation [4]. When the sequence cj is shifted by any u (= kT + l) places,
each new column is a cyclic shift of a column of C j [4]. We use Games’ repre-
sentation also to form an array A from a sequence a, of the same size as C j .
From [4] the array A contains one column with entries being 1, and the remain-
ing 2n/2columns are cyclic shifts of a short m-sequence of length 2n/2 − 1. As
shown in [4], for any cyclic shift of sequence a , the shifted array agrees with the
unshifted array A in exactly one column.

The autocorrelation function (AC) of sequence cj =bja is:

ACj(u) =
T−1∑
i=0

T−3∑
s=0

bj+ibj+l+iai+sTai+l+(s+k)T , (1)

where u = kT+l , 0 ≤ k <T-2, 0 ≤ l <T.
Similarly, the cross-correlation function (CC) of sequences cj1 =bj1a and

cj2 =bj2a can be expressed by

CCj1j2(u) =
T−1∑
i=0

T−3∑
s=0

bj1+ibj2+l+iai+sTai+l+(s+k)T . (2)

Theorem 1. Autocorrelation of the new binary sequences has 4 levels, with the
following values:

−2n/2 + 3; −1; 2n/2 + 3; 2n − 1.

Proof. Consider two cases: (1) l=0 mod T and (2) l 	=0 mod T .
Case 1. If k = 0 then AC(0) = 2n − 1. If k 	= 0, only the single column of all
ones or all minus ones is matched and contributes T − 2 to the AC. All other
columns are mismatched and hence AC(u) = T − 2 − (T − 1) = −1 for all
non-zero u = kT .
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Case 2. In this case, only one m-sequence column can be matched in phase,
but we have same or opposite polarity, depending on the sign of bj+ibj+i+l. The
total number of matched and mismatched pairs bj+i and bj+i+l is respectively
(T − 3)/2 and (T + 3)/2, since b is a Hall or Legendre sequence over {-1, +1}.
Denote by i’ the column of C j matching column (i’ + l) of the shifted C j .

Let bj+i′bj+i′+l = 1. The contribution to the autocorrelation number by the
matching pair of columns is 2n/2 − 1. The term bj+ibj+i+l is 1 for (T − 3)/2− 1
columns other than column i′, and is −1 for (T + 3)/2 columns. Thus

AC(u) = (2n/2 − 1)− ((T − 3)/2− 1) + (T + 3)/2 = 2n/2 + 3.

Let bj+i′bj+i′+l = −1. Now the matching pair of columns contributes −(2n/2−1).
The term bj+ibj+i+l is −1 for (T+3)/2−1 values of i 	= i’, and is +1 for (T−3)/2
values of i. Thus

AC(u) = −(2n/2 − 1) + ((T + 3)/2− 1)− (T − 3)/2 = −2n/2 + 3.

��

A calculation of CC similar to that above for autocorrelation yields the fol-
lowing four values of CC: −3(2n/2 -1); -2n/2 +3; -1; 2n/2+3. The analysis shows
that the CC peak of two sequences from the same set appears at zero shift: this
property can be used in Quasi-Synchronous CDMA systems, where zero phase
shifts between sequences can be avoided.

2.2 Ternary Sequence Correlation

The autocorrelation (AC) of sequence tj =d ja is:

ACj(u) =
T−1∑
i=0

T−3∑
s=0

dj+idj+l+iai+sTai+l+(s+k)T , (3)

where u = kT+l , 0 ≤ k <T-2, 0 ≤ l <T.
Similarly, the cross-correlation (CC) of sequences tj1 =d j1a and tj2 =d j2a

can be expressed by

CCj1j2(u) =
T−1∑
i=0

T−3∑
s=0

dj1+idj2+l+iai+sTai+l+(s+k)T . (4)

Theorem 2. Autocorrelation of the new ternary sequences has 4 or 5 levels,
with the following values:

1. The acf of a sequence having only one constant column with all null elements
is 4-level, with values: −2n/2;−(2n/2 − 1); 2n/2 + 1; 2n − 2n/2

2. The acf of the other 2n/2 sequences having two constant columns (the first
column with all null elements and the second column with all non-null ele-
ments) is 5-level, with values: −(2n/2 − 1); 0; 1; 2n/2 + 1; 2n − 2n/2.
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Proof. Fold the sequence tj row-by-row into a two-dimensional array T j of size
(2n/2 + 1)(2n/2 − 1) in accordance with Games’ representation [4]. When the
sequence tj is shifted by any u (= kT + l) places, each new column is a cyclic
shift of a column of T j [4].

We use Games’ representation [4] also to form an array A, say, from the
m-sequence a , of the same size as T j , again by placing the consecutive entries
of a along row 0, then along row 1, . . . , and finally along row T − 3 = 2n/2− 2.

From Games [4], the array A contains one column with entries being 1,
and the remaining 2n/2columns are cyclic shifts of a short m-sequence of length
2n/2 − 1. Games [4] showed that, for any cyclic shift of sequence a , the shifted
array agrees with the unshifted array A only in exactly one column.

Consider the sequence tj in “square” array form. The columns of the array are
short m-sequences or constants. The autocorrelation of the new sequence is the
same as that of the array, and can be obtained by summing the autocorrelations
of the columns.

The sequences tj can be divided into two classes:

Case 1. The null of the multiplying Legendre sequence falls upon the con-
stant column of the m-array. The resultant new sequence has only one constant
column, consisting of all zeroes.

Case 2. The null of the multiplying Legendre sequence does not fall on the
constant column of the m-array. The array versions of these sequences have
two constant columns: one being all zeroes, and the other being all +1 or −1,
depending on the value of the Legendre sequence for that column.

The long sequence tj is shifted snake-like through the array. Shifts which are
integer multiples of the row width appear to shift the long sequence vertically.
For zero shift, the autocorrelation is just the number of non-zero entries in the
array i.e. 2n − 1− (2n/2 − 1) = 2n − 2n/2.

In Case 1. for zero vertical shift, and any non-zero horizontal shift, the total
number of non-null overlying column pairs is T − 1. None of these are phase-
matched. Therefore each column correlation contributes -1. Hence AC(u)=-(T-
1)= -2n/2. For nonzero vertical shifts and any horizontal shifts we have two cases:

1. phase-matched columns with coefficient pair bj+i′bj+i′+l = −1. Then among
the remaining columns, we have (T − 5)/2 matched coefficient pairs and
(T − 5)/2 mismatched coefficient pairs and AC(u) = −(2n/2 − 1). (Two
columns contribute null correlations.)

2. phase-matched columns with coefficient pair bj+i′bj+i′+l = 1. Then we have
(T −3)/2 mismatched coefficient pairs and (T −5)/2−1 matched coefficient
pairs and thus:

AC(u) = T − 2 + (T − 3)/2− ((T − 5)/2− 1) = T = 2n/2 + 1.

In Case 2. we get the following off-peak autocorrelation values: −(2n/2− 1);
0; 1; 2n/2 + 1; 2n − 2n/2. ��

Then, a similar argument shows that the cross-correlation of a sequence hav-
ing only one constant column (with all null elements) and all other sequences is
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4-level with values: −(2n/2−1); 0; 1; 2n/2 +1. The cross-correlation of sequences
having two constant columns is 5-level, with values: −2n/2; −(2n/2; −1; 0; 1;
2n/2 + 1.

Analysis shows that cross-correlation of the reference long m-sequence and
any of the new sequences has 3 values: −2n/2; 0; 2n/2. As a result, the sequence
set {tj} has 4-level auto and 5-level cross-correlation, with an upper bound of
2n/2 + 1.

3 Linear Complexity

The linear complexity of a sequence is the length of the shortest linear feedback
shift register that generates this sequence. First, consider the construction based
on a long m-sequence. From q = (2n/2 + 1)/3 being prime, and n/2 being odd,
it follows that q = 8r + 3. As shown in [5,6] the linear complexity of Legendre
and Hall sequences of length q = 8r + 3 is q and they have the same feedback
polynomial g(x) = xq − 1. The feedback polynomial f(x) of any m-sequence
is a primitive polynomial of degree n and all its roots are primitive elements
of GF(2n). Hence gcd(f(x),g(x))=1. However, from [7], the feedback polynomial
of sequence cj =a+bj is f(x)g(x). Consequently, the linear complexity of the
sequence cj is L(cj) = L(a)+L(b), where L(a) and L(b) are the respective
linear complexities of sequences a and b respectively.

For the construction based on a long GMW sequence, any GMW sequence
can be expressed as a sum of decimated m-sequences of the same length. So, as
in the previous case, the roots of the feedback polynomial of GMW sequence are
primitive elements of GF(2n). Thus, in this case,L(cj) = L(a)+L(b) as well.

Example 3. Let n = 14. Consider the two following cases.

1. Let a be an m-sequence of length 214 − 1 and let b be a Legendre/Hall
sequence of length 43 with L(a) = 14 and L(b) = 43. Then L(cj) = 14+43 =
57.

2. Let a be a GMW sequence of length 16383 with L(a)= 1232.
Then L(cj) = 1232 + 43 = 1275.

4 Number of Distinct Sequence Sets

The number of sequences within a set {tj ,a} is M = T+1 = 2n/2 + 2. The
total number of long sequences is: W = (|GMWn| + 1)ϕ(2n−1)

n . Here, |GMWn|
is the number of different classes of GMW sequences [8], based on the number
of distinct column substitutions in the array decomposition of the parent m-
sequence of length 2n−1 [8]; ϕ(2n−1)/n is the number of distinct m-sequences
of length 2n − 1, resulting in distinct arrays and ϕ is the Euler totient function.
Let U be the number of distinct short sequences of length l = (2n+1)/3. U takes
on the values 1 (for n = 3), 2 and 8. The total number of distinct new sequence
sets is PS = W × U . So for n = 14, with ϕ(214 − 1)/14 = 756, U = 8 (two
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Table 1. Table 1 Parameters of Binary Sequences

n M U ΘA ΘC

6 4 1 11 21

10 12 2 35 93

14 44 8 131 381

22 684 2 2051 8141

26 2732 8 8195 24573

34 43692 2 131075 393213

38 174764 2 524291 1572861

46 2796204 2 8388611 25165821

Table 2. Parameters of Ternary Sequences

n M |GMW | PS ΘA ΘC

4 6 0 4 5 5

8 18 1 64 17 17

16 258 63 262144 257 257

32 65538 135167 18141941858304 65537 65537

Legendre and six Hall sequences) and |GMWn| = 79 [8], we have PS = 483840.
The number of distinct short ternary Legendre sequences of length 2n/2 + 1 is
2. Hence, the total number of distinct ternary sequence sets is PS = 2W . So
for n = 8, ϕ(2n − 1)/n = 16 and |GMWn| = 1 [8], so we have PS = 64. The
parameters of new ternary sequence sets for all currently available n are shown
in Table 2. PS values were calculated using results in [8,9,10]. ΘA and ΘC are
maximum off-peak autocorrelation and maximum cross-correlations respectively.

5 Our Sequences in Array Format

Our construction relies on the existence of arrays with a special property. Such
arrays are composed of columns which are cyclic shifts of a shorter sequence,
or a constant column. Therefore, they are described by the column sequence
and the sequence of cyclic column shifts, henceforth called the shift sequence. A
constant column is represented in the shift sequence by a blank. For an array of
T columns of length v, the shift sequence for columns j = 0, ..., T − 1 is denoted
as fj , which is evaluated modulo v. Desirable correlation values ensue when the
shift sequence has the distinct difference property. Consider differences in the
shift sequence for separation k, i.e. fj+k − fj . If these differences are all distinct
modulo v, then the array overlaid on a shift of itself (for k 	= 0 mod T ) has zero
or one column matching in its cyclic shift. For k = 0 mod T the constant column
matches (when it exists) or no columns match. For pseudonoise columns, the off-
peak autocorrelation of the arrays is −T or v + 1− T . We exploit this property
to construct new arrays, with good auto and cross-correlation. This is done by



New Sets of Binary and Ternary Sequences with Low Correlation 227

multiplying the columns of the array by any set of orthogonal or near orthogonal
sequences, such as the shifts of a binary or ternary pseudonoise sequence of length
T . This does not alter the number of shift matched columns, merely influences
their polarity and hence the polarity of the off-peak autocorrelation and cross-
correlation. The resulting arrays can be unfolded to yield sequence sets.

6 Sequence Folding/Unfolding

6.1 Row-by-Row Folding

The row by row folding/unfolding requires array shifts to be constrained to shifts
of this type, i.e. snake-line shifts modulo vT . Array dimensions are not restricted.

Example 4. Consider p = 7, n = 2. An m-sequence of length 48 can be written
as an 6 × 8 array, where the columns are m-sequences of length 6. The shift
sequence is: fj = 2, 3, 2, 0,∞, 4, 1, 3. γ is a primitive element of GF (7).

γ5 γ4 γ5 γ3 0 γ6 γ1 γ4

γ1 γ5 γ1 γ2 0 γ4 γ3 γ5

γ3 γ1 γ3 γ6 0 γ5 γ2 γ1

γ2 γ3 γ2 γ4 0 γ1 γ6 γ3

γ6 γ2 γ6 γ5 0 γ3 γ4 γ2

γ4 γ6 γ4 γ1 0 γ2 γ5 γ6

6× 8 Row-by-Row Array

6.2 Diagonal Folding

For a T × v array A = (aij with gcd(T, v) = 1, there is a diagonal containing
each entry exactly once, defined as the sequence a0,0, a1,1a2,2..., ai,i, ..., aT−1,v−1,
where the first index i of ai,i is calculated modulo T , the second modulo v. More
general diagonals are of the form a0,0, ak,la2k,2l..., where gcd(k, T = gcd(l, v) = 1
[14] Diagonal folding/unfolding allows the array to be shifted in a standard,
two-dimensional manner (modulo v and modulo T respectively). This kind of
folding/unfolding is restricted to arrays with co-prime dimensions gcd(v, T ) = 1,
where single pass diagonals through the matrix exist. The number of sequences
equals the number of diagonals. An array with gcd(v, T ) > 1 can be unfolded
row by row, but then, the number of shift matched columns may be doubled
[11], so this method is not used.

Example 5. Consider a long binary m-sequence of length 63 i.e. (26−1), written
row-by-row as an array of 7 rows (v = 23 − 1 = 7) each of length 9 (i.e. T =
26−1
23−1 = 9). This array is shown below:
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0 1 1 1 1 1 1 0 1
0 1 1 1 0 0 0 1 1
0 0 1 1 1 0 1 1 0
0 0 0 0 1 1 1 1 0
0 1 0 0 1 0 1 0 1
0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 0 1 1

Binary 7× 9 Row-by-Row Array

The shift sequence is: fj = ∞, 4, 5, 5, 0, 3, 0, 6, 4. Unlike in [12], here, we do not
use the extended shift sequence, but just the non-repeating part. The reference
shift for the column sequence is (arbitrarily) chosen as : 1,0,1,1,1,0,0. This is
just the matrix representation of the sequences introduced in Subsection 1.1 in
Example 1. Since gcd(9, 7) = 1, it is also possible to write the long sequence
down a (1:1) diagonal. This is shown below.

0 0 0 1 0 0 1 0 0
0 0 1 0 1 1 0 1 0
0 1 0 0 1 1 0 0 1
0 0 1 1 1 1 1 1 0
0 1 1 0 0 0 0 1 1
0 1 1 1 0 0 1 1 1
0 1 0 1 1 1 1 0 1

Binary 7× 9 “Diagonal” Array

The (symmetric) shift sequence is: fj = ∞, 2, 1, 3, 6, 6, 3, 1, 2. The relationship
between the two shift sequences is analyzed in [12]. One long m-sequence can
generate two different arrays. Arrays unfolded by an incompatible method result
in long sequence correlation deterioration. This should be avoided. The columns
of the above array can be multiplied by 3 periods of binary m-sequence of length
3: 0,1,1. There are 3 cyclic shifts of that sequence, so there are 3 such multiplied
arrays, as shown below. Here, we map (0,1) to (+1,-1).

bj 0 1 1 0 1 1 0 1 1 bj 1 1 0 1 1 0 1 1 0 bj 1 0 1 1 0 1 1 0 1

0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1
0 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1
0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0
0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1
0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0
0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0
0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0

3 Arrays (7× 9) with their Multiplication Sequences bj

The 4 arrays can be unfolded (diagonally) to produce 4 sequences of length
63, with good auto and cross-correlation.
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7 Shift Sequences with DDP

Shift sequences with distinct difference property (DDP) are known to arise from
the following arrays:

7.1 An m/GMW-Sequence of Length p2m − 1

This is embedded row-by-row into an array of pm + 1 columns each of length
pm − 1. The leading column is constant (all 1’s) whilst the remainder are all
shifts of a short pseudonoise sequence. The case where p = 2 is analyzed in
Part I of this paper. For p > 2, the columns in the parent array are non-binary.
However, sometimes their length is commensurate with binary sequences, so a
column substitution can be performed, with no effect on the correlation values.
This occurs for p = 5, where the columns are of length 4 and therefore can be
substituted by the only perfect binary sequence in existence. The columns of the
m-array can be lengthened, as described later.

Example 6. An m-sequence of length 24 can be written as a 4 × 6 array (p =
5, n = 2), where the shift sequence is : 121 − 02. This is shown in the parent
array, shown below (left). The columns can be substituted by cyclic shifts of the
perfect binary sequence 0, 1, 1, 1 as shown in the array on the right. The columns
of this (right) array can be multiplied by two repeats of the binary m-sequence
0, 1, 1. There are 2 other shifts of such a multiplication sequence, so that this
method yields 4 binary arrays with good auto and cross-correlation. The arrays
can be unfolded row-by row (consistent with array folding!) to produce 4 binary
sequences of length 24, with good auto and cross-correlation. γ is a primitive
element of GF (5).

γ1 γ3 γ1 1 γ2 γ3 1 1 1 0 0 1
γ2 γ1 γ2 1 γ4 γ1 0 1 0 0 1 1
γ4 γ2 γ4 1 γ3 γ2 1 0 1 0 1 0
γ3 γ4 γ3 1 γ1 γ4 1 1 1 0 1 1

(4× 6) Parent Array (left) Binary Column Substitution Array (right)

7.2 A Quadratic Shift Array of p (an Odd Prime) Columns of
Length p

Here fj = aj2 where a is any non-zero integer in Zp. The number of matching
columns between an array and a two-dimensional matrix shift of itself (k, l) is
determined by the solutions of:

fj+k − fj ≡ l or (j + k)2 − j2 ≡ l. (5)

Hence 2kj + k2 − l ≡ 0. (6)

This equation has a single solution for all k 	= 0. For k = l = 0 all columns
match, whilst for k = 0, l 	= 0, no columns match. Hence the shift sequence
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has DDP. If the columns are pseudonoise, with peak correlation p and off-peak
of −1, the autocorrelation values are p2 for full match, −p for purely vertical
shifts and p−(p−1) = +1 for all other shifts. Such arrays are studied in detail in
[13]. This array can be unfolded row by row, but this results in the undesirable
potential doubling of the number of shift matched columns. Later, we show, how
to modify these arrays, by lengthening their columns, without sacrificing DDP.

Example 7. Consider p = 7, a = 1 and an m-sequence column of length 7. The
shift sequence is fj = 0, 1, 4, 2, 2, 4, 1 and the matrix looks as below:

1 0 1 0 0 1 0
0 1 1 0 0 1 1
1 0 0 1 1 0 0
1 1 0 0 0 0 1
1 1 1 1 1 1 1
0 1 0 1 1 0 1
0 0 1 1 1 1 0

(7× 7) Quadratic Shift Array

7.3 An Exponential Shift Array of p − 1 Columns

Consider columns of length p, with p an odd prime: fj = gj , where g is a primitive
root of Zp. Since gcd(p − 1, p) = 1, such arrays possess a single pass diagonal
and can therefore be unfolded into sequences without penalty. Actually, this is
the optimum array for our construction, since it involves the shortest columns
commensurate with DDP, with the array being suitable for direct unfolding.
Additionally, there are many suitable binary pseudonoise columns available for
column substitution. It is unnecessary to lengthen the columns in this case.

Example 8. Consider p = 7 and a primitive root g = 3. An exponential shift
sequence is fj = 3, 2, 6, 4, 5, 1. Using the same column sequence as above, the
matrix looks as shown below.

1 0 0 1 1 0
0 0 1 1 1 1
0 1 1 0 1 0
1 0 1 0 0 1
0 1 0 1 0 1
1 1 0 0 1 1
1 1 1 1 0 0

(6× 7) Exponential Shift Array

There are also two types of logarithmic shift sequence with DDP (index function
and Zech logarithm). Both result in a column of zeros, so they can only be used
to construct ternary arrays.
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8 Matrix Modifications Which Preserve DDP

The three types of arrays with DDP can be augmented by modifications of the
above, which preserve DDP. We have examined the following modifications:

8.1 Column Deletion (Matrix Puncture)

A shift sequence with DDP has an upper bound on the number of shift matched
columns of 1. For a single column deletion, each pair of shift matched columns
corresponds to a solution for j of:

fj+k − fj ≡ l,where f is evaluated mod v, whilst j is evaluated mod T (7)

Puncturing the matrix reduces the number of columns from T to T−1. Therefore,
there are two possibilities for matching columns:

fj+k − fj ≡ l, j + k < T (no wraparound) (8)

fj+k+T−1 − fj ≡ l, j + k > T (with wraparound) (9)

Therefore, an upper bound on the number of shift matched columns rises to 2.
Any further deletions cause further deterioration.

8.2 Column Insertion

Column insertions double the upper bound due to the change of T , as in punc-
turing, and may include additional matches due to the inserted columns.

8.3 Column Shortening

Consider a matrix whose columns are shortened from v to u > v/2. There are
four possible cases of columns matching, when the equation is reduced from
modulo v to modulo u.

fj+k − fj ≡ l − u for v > l > u, fj+k − fj ≡ l for u > l > 0. (10)

fj+k−fj ≡ l+u for 0 > l > −u, fj+k−fj ≡ l+2u for−v > l > −u. (11)

Therefore, an upper bound on the number of shift matched columns rises to 4.
Shortening to less than v/2 makes matters even worse.

8.4 Column Lengthening

Lengthening columns from v to s results in:

fj+k − fj ≡ l for l > 0 or fj+k − fj ≡ l + s for 0 > l. (12)

Clearly, if s > 2v, the smallest value of l+ s is greater than v, whilst the largest
value of l is less than v and thus the two sets of solutions are disjoint and
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hence DDP is preserved. Unfortunately, doubling the column length doubles its
contribution to the correlation and therefore, this result is no better than column
deletion. However, it is possible for DDP to be preserved for some specific values
of v < s < 2v. Clearly, it is desirable to have s as close to v as possible. In
addition, if the shift sequence is derived from the quadratic or exponential parent
matrix, it is required that gcd(s, T ) = 1, so that a single pass diagonal exists and
enables the unfolding of the new matrix into sequences. A method of obtaining
low values of s begins with the examination of differences between entries in
the shift sequence. The shift sequence has its desirable property when evaluated
modulo v. Its entries can be positive or negative numbers modulo v. Now consider
what happens if the columns were lengthened to infinity. DDP would remain
unaffected. Evaluate the greatest difference between the entries and call it Δmax.
Clearly, the largest negative difference is −Δmax. Therefore, if the shift sequence
is re-expressed modulo s = 2Δmax, DDP must be preserved. The objective of
the construction is to minimize Δmax. The authors have attempted using a
systematic approach, such as a greedy algorithm to compute the smallest Δmax

for different starting values of v and T for the parent array, and found this
approach unreliable. However, for small arrays, the results are easy to deduce
by inspection, and this is what we did to obtain the arrays, whose properties are
listed in Tables 3 and 4.

Example 9. Consider lengthening the columns of the 7× 7 quadratic shift array.
The shift sequence mod 7 is fj = 0, 1, 4, 2, 2, 4, 1. Δmax = 4, so this shift sequence
has DDP for all lengths greater than s = 2Δmax + 1 = 9. There exists a binary
Legendre sequence of length 11, (1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0), so it can be used to
construct the array below (left). Another 7 arrays are produced by multiplying
the columns by cyclic shifts of the m-sequence of length 7 : 1, 0, 1, 1, 1, 0, 0. A
typical array with multiplied columns is shown on the right (with multiplication
sequence above).

bj 1 0 1 1 1 0 0
1 0 0 1 1 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0 1 1 1 1 0 1
0 1 1 1 1 1 1 1 1 0 0 0 1 1
1 0 0 1 1 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 1 0 1 0 1 1 1 1
1 1 1 1 1 1 1 0 1 0 0 0 1 1
0 1 0 1 1 0 1 1 1 1 0 0 0 1
0 0 1 1 1 1 0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 1 0 0 1 1 1 0
1 0 1 0 0 1 0 0 0 0 1 1 1 0
0 1 0 0 0 0 1 1 1 1 1 1 0 1

7× 7 Arrays Lengthened to 11× 7: multiplication sequence bj (left)

There are 8 such arrays. They can be unfolded diagonally into into 8 sequences of
length 77, with auto and cross correlation values of: +77 (full match for autocor-
relation), +13 (one column match, with multiplication sequence agreement), +1
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(0 column match for non-zero horizontal shifts), −7 (0 column match for purely
vertical shifts), −11, (one column match, multiplication sequence disagreement).

9 Array Construction

Tables 3 and 4 describe the smallest arrays constructed by the above methods. a
denotes column sequence, bj denotes multiplication sequence. These sequences
are labeled: m - m-sequence, L - Legendre, H - Hall, PB - Perfect Binary. The
types of shift sequences are: e - exponential, m - m-array, l - lengthened quadratic.
For symmetric shift sequences only half is shown.

Table 3. Shift Sequences with DDP and Array Details

T v a bj Shift Sequence

3 4 PB m 0,1,1 (l)

4 7 m PB 0,1,3,2 (ad hoc)

6 4 PB 2m(3) 1,2,1,∞,0,2 (m)

6 7 m 2 m(3) 3,2,6,4,5,1 (e)

9 7 m 3 m(3) ∞,1,2,0,4,4,0,2,1 (m)(d)

7 11 L m 0,1,4,2,2,4,1 (l)

11 15 m L 0,1,4,13,5,3,3,5,13,4,1 (l)

12 15 m 3PB 0,5,3,2,3,0,∞
,6,0,0,2,5 (m)

19 31 m/L L 0,1,4,9,28,6,29,11,7,5

,5,7,11,29,6,28,9,4,1 (l)

22 23 L 2L(11) Exponential

23 35 L T P 0,1,4,9,16,2,13,3,18,

12,8,6,6,8,12,18

,3,13,2,16,9,4,1 (l)

33 31 m 3L(11) m-array ( TBC)

46 47 L 2 L(23) Exponential

58 59 L 2L(29) Exponential

70 71 L 2TP(35) Exponential

118 119 L 2L (59) Exponential

127 127 m/L m/L Cubic Unfold by rows

129 127 m 3L/H(43) m-array

10 Large Array

The 127×127 array in Tables 3 and 4 is a special case, where the commensurate
folding/unfolding rule is violated. 127 is a prime, so it supports m-sequences,
binary Legendre sequences, Hall sequences and Baumert-Fredricksen sequences
as column and multiplication sequences. Additionally, polynomial shift sequences
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42 4 +10,+2,-6 +10,+2,-6,-14

63 4 +11, -1,-5 +11,-1,-5,-21

77 8 +13,+1,-7,-11 +13,+1,-7,-11

99 4 +15,+3 ,-9 +15,-9,-33

165 12 +17,+1,-11,-15 +17,+1,-11,-15

180 5 +16,+4,0,-12,-16 +16,0,-12,-16

589 20 +33,+1,-19,-31 +33,+1,-19,-31

506 12 +26,+2,-22 +26,+2,-22,-46

805 24 +37,+1,-23,-35 +37,+1,-23,-35

1023 12 +35,-1,-29 +35,-1,-29,-93

2162 24 +50,+2,-46 +50,+2,-46,-94

3244 30 +62,+2,-58 +62,+2,-58,-108

4970 36 +74,+2,-70 +74,+2,-70,-142

14042 60 +122,+2,-118 +122,+2,-118,-238

16129 2064384 <3.1% <3.1%

16383 44 +131,+1,-125 +131,+1,-125,-381

can be used to construct these arrays. Consider a matrix A generated by a
polynomial shift sequence fj (Sections 2-5), say

fj ≡ amjm + am−1j
m−1 + ... + a1j + a0. (13)

The array has column j matching column j + k in a (k, l) shift B of itself if:

am(j + k)m + am−1(j + k)m−1 + ... + l ≡ am(j)m + am−1(j)m−1 + ... (14)

Collecting terms and rearranging [15]: amk(j)m−1 + ... ≡ 0. There are at most
m−1 values of j which can satisfy the above equation, so this is an upper bound
on the number of shift matched columns. If the matrix is read out row-by-row,
this bound is doubled [11]. For a cubic shift sequence, this is equivalent to 4
columns matching in shift, as a worst case. These columns can contribute at most
4× 127 to the correlation, whose peak autocorrelation is 127× 127. The remain-
ing columns contribute only −1 or +1 depending on the multiplication sequence.
Therefore all off-peak autocorrelation and non-zero shift cross-correlation values
are constrained to below roughly 0.031 (normalized). For zero shift in cross-
correlation, all columns are shift matched, but the multiplication sequences are
not, so the cross-correlation is equivalent to 1 column: −127. Therefore, all off-
peak correlations are bounded above by about 0.031 (normalized). The total

Table 4. Correlation Properties of Unfolded Sequence Sets

Length N Auto Cross

12 4 +4,0,-4 +4,0,-4

28 5 +8,0,-4,-8 +8,0,-4,-8

24 4 +4,0,-4 +4,0,-4,-8
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number of matrices can be computed to be N = (1272 − 1) × 128 = 2064384.
There are 1272 − 1 shift distinct matrices, 127 shifts of the multiplication se-
quence and one non-multiplied entry. This sequence set is large! The off-peak
autocorrelation/cross-correlation and the number of sequences in the set can be
traded off, by choosing appropriate degree polynomials.

11 Conclusions

The “interleaved” binary sequence sets (Gong [7]) can be generalized to a variety
of constructions, based on the existence of shift sequences with DDP, of length T ,
expressed modulo v, where binary pseudonoise sequences of length T and v exist.
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Abstract. In this paper, a recent bound on some Weil-type exponential
sums over Galois rings is used in the construction of codes and sequences.
The bound on these type of exponential sums provides a lower bound
for the minimum distance of a family of codes over Fp, mostly nonlinear,

of length pm+1 and size p2 · pm
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, where 1 ≤ D ≤ pm/2. Several

families of pairwise cyclically distinct p-ary sequences of period p(pm−1)
of low correlation are also constructed. They compare favorably with
certain known p-ary sequences of period pm − 1. Even in the case p = 2,
one of these families is slightly larger than the family Q(D) of [H-K,
Section 8.8], while they share the same period and the same bound for
the maximum non-trivial correlation.

1 Introduction

Bounds on exponential sums over finite fields, such as the Weil-Carlitz-Uchiyama
bound, have been found to be useful in applications such as coding theory and
sequence designs. The analog of the Weil-Carlitz-Uchiyama bound for Galois
rings was presented by [K-H-C]. An improved bound for a related Weil-type
exponential sum over Galois rings of characteristic 4, which is also sometimes
called the trace of exponential sums, was obtained in [H-K-M-S] and was used in
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Recently, an analog of the bound of [H-K-M-S] was obtained for Galois rings
of characteristic p2, for all primes p [L-O]. In this paper, we explore some appli-
cations of this bound to the construction of codes and sequences.

We fix the following conventions throughout the paper: p is a prime num-
ber; m ≥ 2 is an integer; Fp and Fpm are finite fields of cardinality p and pm;
GR(p2,m) is a Galois ring of characteristic p2 with cardinality p2m; Zp2 is the
ring of integers modulo p2; Trm : GR(p2,m) → Zp2 is the trace map from
GR(p2,m) onto Zp2 ; Γm is the Teichmüller set in GR(p2,m); β is a primitive
(pm−1)-th root of unity in GR(p2,m); ρ : GR(p2,m) → GR(p2,m)/pGR(p2,m)
∼= Fpm is reduction modulo p map in GR(p2,m). We extend ρ to the polyno-
mial ring mapping ρ : GR(p2,m)[x] → Fpm [x] by its action on the coefficients.
Let Frob be the Frobenius operator on GR(p2,m) (cf. [K-H-C], [L-O]). Frob is
extended to GR(p2,m)[x] naturally. A polynomial f(x) ∈ GR(p2,m)[x] is called
non-degenerate if it cannot be written in the form f(x) = Frob(g(x)) − g(x) +
u mod p2, where g(x) ∈ GR(p2,m)[x] and u ∈ GR(p2,m).

2 Zp2-Linear Codes

Definition 1. For a finite Zp2-module S ⊆ GR(p2,m)[x], let

S0 = {a(x) ∈ Γm[x] : there exists b(x) ∈ Γm[x] such that a(x) + pb(x) ∈ S},

and

S1 = {b(x) ∈ Γm[x] : there exists a(x) ∈ Γm[x] such that a(x) + pb(x) ∈ S}.

For a prime number p, the weight function wp on N is defined as the sum of
digits of the representation of u ∈ N in base p. For every f(x) = a(x) + pb(x) ∈
GR(p2,m)[x], where a(x), b(x) ∈ Γm[x] are uniquely determined, we recall that
the weighted degree Df of f(x) is

Df = max{pdeg(a(x)),deg(b(x))}.

For a positive integer D, let I(D) be the set of positive integers

I(D) = {i : i 	≡ 0 mod p and 0 ≤ i ≤ D}

and let S(D) ⊆ GR(p2,m)[x] be the finite Zp2-module

S(D) = {f(x) ∈ GR(p2, m)[x] : f(x) =
∑

i∈I(D)

fix
i and Df ≤ D}.

Let f(x) = a(x) + pb(x) be a non-degenerate polynomial with a(x), b(x) ∈
Γm[x]. We recall some definitions which depend on f(x). Let If , Jf ⊆ N be
subsets defined as

a(x) =
∑
i∈If

aix
i and b(x) =

∑
j∈Jf

bjx
j , where ai, bj ∈ Γm \ {0}.
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We define nonnegative integers Wf , lf,m and hf,m as

Wf = max
{
p max{wp(i) | i ∈ If}, max{wp(j) | j ∈ Jf}

}
,

lf,m =
⌈
m

Wf

⌉
− 1 and hf,m =

⌊
m

Wf

⌋
.

The following result is proved in [L-O].

Theorem 1. For a non-degenerate polynomial f(x) ∈ GR(p2,m)[x], we have

∣∣∣ ∑
a∈Zp2\pZp2

∑
x∈Γm

e
2πi

Trm(af(x))
p2

∣∣∣≤ plf,m+1

⌊
phf,m p2−p

2 (Df − 1)
⌊
2p

m
2 −hf,m

⌋
plf,m+1

⌋
.

Definition 2. For 1 ≤ D ≤ pm/2, let

WD = max
{
Wf : f(x) ∈ S(D) \ {0}

}
, lD,m =

⌈
m

WD

⌉
− 1

and

hD,m =
⌊

m

WD

⌋
.

For n ≥ 1, the Gray map (cf. [C], [G-S], [L-B], [L-S]) Φ over Zn
p2 is defined as

follows: For u ∈ Zp2 let u = r0(u) + pr1(u) with r0(u), r1(u) ∈ {0, 1, . . . , p− 1}.
We denote the addition modulo p as ⊕. For (u0, u1, . . . , un−1) ∈ Zn

p2 , we have
Φ(u0, u1, . . . , un−1) = (a0, a1, . . . , apn−1) ∈ Fpn

p such that for 0 ≤ j ≤ p− 1 and
0 ≤ t ≤ n− 1, ajn+t = r1(ut)⊕ jr0(ut).

Definition 3. For 1 ≤ D ≤ pm/2, let C(D) be the Zp2-linear code of length pm

defined as C(D) =
{(

Trm(f(0)) + u,Trm(f(β)) + u, . . . ,Trm(f(βpm−1)) + u
)

:

f(x) ∈ S(D) and u ∈ Zp2

}
.

Theorem 2. For 1 ≤ D ≤ pm/2, Φ(C(D)) is a p-ary code of length pm+1 of
minimum distance

dmin ≥ pm+1 − pm − plD,m

⌊
phD,m p2−p

2 (D − 1)
⌊
2p

m
2 −hD,m

⌋
plD,m+1

⌋
(1)

and of size
∣∣Φ(C(D))

∣∣ = p2 · pm
(

D−� D
p2 

)
.
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Next we consider the nonlinearity of Φ(C(D)). Let T denote the set of ordered
pairs (a, b) ∈ F2

p such that a + b ≥ p (we identify Fp with {0, 1, . . . , p− 1}). Let
χ denote the characteristic function of T , i.e.,

χ(a, b) =
{

1 if (a, b) ∈ T ,
0 otherwise.

For a = (a1, . . . , an) ∈ Fn
p and b = (b1, . . . , bn) ∈ Fn

p , we define

χ(a,b) = (χ(a1, b1), . . . , χ(an, bn)) ∈ Fn
p .

Recall that for α = (α1, . . . , αn) ∈ Zn
p2 , we denote r0(α)=(ρ(α1), . . . , ρ(αn))∈

Fn
p . The following lemma is found in [L-B, Theorem 4.6].

Lemma 1. If C is a Zp2-linear code of length n, then Φ(C) is a linear code over
Fp if and only if, for all α,β ∈ C, we have pχ(r0(α), r0(β)) ∈ C.

Using Lemma 1, we determine whether Φ(C(D)) is linear or nonlinear in
some cases.

Theorem 3. For 1 ≤ D ≤ p − 1, the code Φ(C(D)) is linear. If p ≥ 3 and
p ≤ D ≤ pm/2/2, then Φ(C(D)) is nonlinear.

Proof. First we prove that Φ(C(D)) is linear for D ≤ p − 1. For α,β ∈ C(D),
there exist f1(x), f2(x) ∈ S(D) and u1, u2 ∈ Zp2 such that

α =
(
Trm(f1(0)) + u1,Trm(f1(β)) + u1, . . . ,Trm(f1(βpm−1)) + u1

)
, and

β =
(
Trm(f2(0)) + u2,Trm(f2(β)) + u2, . . . ,Trm(f2(βpm−1)) + u2

)
.

As D ≤ p− 1, we have f1(x), f2(x) ∈ pS(D)1. Hence

r0(α) = (ρ(u1), . . . , ρ(u1)), r0(β) = (ρ(u2), . . . , ρ(u2)) and

pχ(r0(α), r0(β)) =
{

(p, . . . , p) if ρ(u1) + ρ(u2) ≥ p,
(0, . . . , 0) if ρ(u1) + ρ(u2) < p.

Since (p, . . . , p), (0, . . . , 0) ∈ Zpm

p2 are elements of C(D), the proof for the case
D ≤ p− 1 is completed.

Next we consider the case p ≥ 3 and p ≤ D ≤ pm/2/2 + 1. The polynomial
f(x) = x belongs to S(D) and hence

α = (Trm(0),Trm(β), . . . ,Trm(βpm−1)) ∈ C(D).

Clearly,

r0(α) = (trm(0), trm(ω), . . . , trm(ωpm−1)).

For each a ∈ Fp, χ(a, a) = 1 if and only if a ≥ p+1
2 . By the properties of the

trace map trm, it follows that every element a ∈ Fp appears in exactly pm−1
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coordinates of r0(α). Hence χ(r0(α), r0(α)) has 1 at exactly pm−1(p − 1)/2
coordinates, and the remaining positions are 0. By (1), the minimum distance
dmin of Φ(C(D)) satisfies

dmin ≥ pm+1 − pm − (p− 1)(D − 1)pm/2.

The distance between Φ(pχ(r0(α), r0(α))) and the zero codeword is pm(p−1)/2.
For D < pm/2/2 + 1, it is easy to see that

pm+1 − pm − (D − 1)pm/2 > pm(p− 1)/2.

Therefore pχ(r0(α), r0(α)) 	∈ C(D), which completes the proof.

3 p- ry Sequences with Low Correlation

For a p-ary sequence {s(i)}∞i=0 and τ ≥ 0, the cyclic shift of {s(i)}∞i=0 by τ is
the p-ary sequence {s(i+ τ)}∞i=0. Two p-ary sequences {s1(i)}∞i=0 and {s2(i)}∞i=0

are cyclically distinct if for each τ ≥ 1 neither is {s1(i)}∞i=0 the cyclic shift of
{s2(i)}∞i=0 by τ nor is {s2(i)}∞i=0 the cyclic shift of {s1(i)}∞i=0 by τ .

For n = pm − 1, the generalized Nechaev-Gray map (cf. [N], [L-B], [L-S])
Ψ over Zn

p2 is defined as follows: For u ∈ Zp2 let u = r0(u) + pr1(u) with
r0(u), r1(u) ∈ {0, 1, . . . , p − 1}. Recall that ⊕ denotes the addition modulo p.
For (u0, u1, . . . , un−1) ∈ Zn

p2 , we have Ψ(u0, u1, . . . , un−1) = (a0, a1, . . . , apn−1) ∈
Fpn

p such that for 0 ≤ j ≤ p − 1 and 0 ≤ t ≤ n − 1, ajn+t = r1((1 − p)tut) ⊕
jr0((1− p)tut). It is shown in [L-B, Corollary 3.6] that, if C is a cyclic code over
Zp2 , then Ψ(C) is a cyclic p-ary code.

Let P1
m,D be the subset of S(D)× Zp2 defined as

P1
m,D =

{
(f(x), u) ∈ S(D)× Zp2 : ρ(f(x)) 	= 0,

and {Trm(f(βi))}∞i=0 has period pm − 1
}
.

We introduce an equivalence relation on P1
m,D: We say that (f(x), u), (g(x), v) ∈

P1
m,D are related if there exist 0 ≤ j, k ≤ p − 1 and 0 ≤ t ≤ (pm − 1) − 1 such

that

g(x) = (1 + p)j(1− p)tf(βtx) and v = (1 + p)j(1− p)tu + kp.

Let P̂1
m,D be a full set of representatives of the equivalence relation. We also

assume, without loss of generality, that the elements of P̂1
m,D are of the form

(f(x), u) with u ∈ {0, 1, . . . , p − 1} ⊆ Zp2 . Let F1
m,D be the family of p-ary

sequences given as

F1
m,D =

{
{Ψ(Trm(f(βi)) + u)}∞i=0 : (f(x), u) ∈ P̂1

m,D

}
.

Let P2
m,D be the subset of pS(D)1 × (Zp2 \ pZp2) defined as

P2
m,D =

{
(pf(x), u) ∈ pS(D)1 × (Zp2 \ pZp2) : {Trm(pf(βi))}∞i=0 has period pm − 1

}
.

a
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We say (pf(x), u), (pg(x), v) ∈ P2
m,D are cyclically related if there exist 0 ≤ j ≤

p − 1 and 0 ≤ t ≤ (pm − 1) − 1 such that pg(x) = (1 + p)j(1 − p)tpf(βtx) and
v = (1 + p)j(1 − p)tu. Cyclically related elements of P2

m,D form an equivalence

relation. Let P2

m,D denote the set of equivalence classes in P2
m,D. In fact, we can

choose a full set of representatives P̃2
m,D of the equivalence classes in P2

m,D such
that

P̃2
m,D =

{
(pf(x), u) ∈ P2

m,D : u ∈ {1, . . . , p− 1} ⊆ (Zp2 \ pZp2)
}
.

Let F2
m,D be the family of p-ary sequences given as

F2
m,D =

{
{Ψ(Trm(pf(βi)) + u)}∞i=0 : (pf(x), u) ∈ P̃2

m,D

}
.

Let Fm,D be the family of p-ary sequences defined as

Fm,D = F1
m,D ∪ F2

m,D.

Theorem 4. The families F1
m,D, F2

m,D and Fm,D have the following properties:

i) The period of each sequence in Fm,D (resp. F1
m,D and F2

m,D) is p(pm − 1).
ii) The sequences in Fm,D (resp. F1

m,D and F2
m,D) are pairwise cyclically dis-

tinct.
iii) |F1

m,D| = 1
pm−1

∑
l|(pm−1) μ(l)

{
p

m(�D
l −� D

p2l
) − pm(�D

l −� D
pl )
}
,

|F2
m,D| =

p−1
pm−1

∑
l|(pm−1) μ(l)pm(�D

l −� D
pl ), and

|Fm,D| = |F1
m,D|+ |F2

m,D|, where μ(·) is the Möbius function.
iv) For the maximal non-trivial correlation θmax of Fm,D(resp. F1

m,D and F2
m,D),

we have

θmax ≤
1

p− 1
plD,m+1

⌊
phD,m p2−p

2 (D − 1)
⌊
2p

m
2 −hD,m

⌋
plD,m+1

⌋
+ p.

Remark 1. For p = 2, from F1
m,D we retrieve the family of binary sequences

Q(D) of [H-K, Section 8.8]. Let F1,0
m,D be the subfamily of F1

m,D defined as

F1,0
m,D =

{
{Ψ(Trm(f(βi)))}∞i=0 : (f(x), 0) ∈ P̂1

m,D

}
.

Note that F1
m,D is larger than F1,0

m,D with the same upper bound on the maximal
non-trivial correlation. For p = 2, from F1,0

m,D we obtain the family of binary
sequences of [S-K-H].
Remark 2. Fm,D is larger than F1

m,D while the sequences in them have the same
period and the same upper bound for their maximal non-trivial correlation in
Theorem 4.

For more details of the results above we refer the reader to [L-O2].
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Abstract. The development of the theory of Z4 maximal length se-
quences in the last decade led to the discovery of several families of opti-
mal quadriphase sequences. In theory, the construction uses the proper-
ties of Galois rings. In this paper, we propose a method for constructing
quadriphase sequences using binary sequences based on quadratic forms.
The study uses only the properties of Galois fields instead of Galois rings.
We demonstrate the theory by constructing a new family of Z4 sequences
with low correlation property.

1 Introduction

In the early 1990s, the theory of Z4 maximal length sequences was established,
leading to the discovery of optimal quadriphase sequences meeting the Welch
bound [5, 8, 2]. This family (Family A in [2]) comprises of 2n + 1 Z4 maximal
length sequences 1 of length 2n − 1 and its maximum out of phase auto- and
cross-correlations (Cmax) is lower bounded by a quantity approximately equal to
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1 The nomenclature ‘maximal length’ is appropriate in case of sequences over a field,
because the length of any field m-sequence is the largest length possible for any
sequence generated by a n-length feedback shift register. As Z4 is a ring, Z4 sequences
generated by a n-length linear feedback shift register, can never attain period of
4n − 1. In this case the possible periods are only 2n − 1 and 2(2n − 1). Further, any
Z4 LFSR sequence of period 2(2n − 1) is essentially an interleaved version of two
appropriate linear Z4 sequences of period 2n − 1. Thus we refer ‘maximal length
sequences’ only to the Z4 sequences which attain the maximal length corresponding
to the residue field Z2.
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√
N + 1. For the same period and the same size, this value is smaller by a factor

of
√

2, to Cmax of any binary optimal family. Like their binary counterparts, the
m-sequences over Z4 have trace representation as trace of successive powers of
unit elements of Galois rings. A complete treatment of all such families of trace
sequences over Z4 is given in [8] which includes the familiar families A and B
given in [1, 5]. Further, this research led to the discovery of many optimal biphase
sequences from Z4 sequences, like binary Gold-like sequences and Udaya-Siddiqi
sequences [2, 7]. In 1994, Hammons et. al. developed the connection and built
the fundamental theory for Z4 Linear codes [3].

So far, the connection between the Z4 sequences and the binary sequences is
just one-way. Usually, we use Gray mapping or the most significant bit mapping
to transform the Z4 sequences into binary sequences, and then investigate the
properties of the binary sequences based on those of the Z4 sequences. In this pa-
per, we reverse the above idea: construct Z4 sequences based on binary quadratic
forms and then study the Z4 sequences by virtue of their representation using
quadratic forms.

The paper is organized as follows. In Section 2, we provide basic background
to present Z4 m-sequences and give their finite field representations. In Section 3,
we define our new family of quaternary sequences and present our main results.
In Section 4, we give the proof of correlation function of the new sequences
making use of quadratic form techniques.

2 Quaternary m-Sequences and Connection to Binary
Quadratic Forms

The properties of Galois rings play an important role in defining and determina-
tion properties of quaternary m-sequences [5, 2, 6, 7, 8]. In this section, we give
definitions of quaternary m-sequences and their representation over finite fields.

Let Z4[x] be the ring of all polynomials over Z4. A monic polynomial f(x) ∈
Z4[x] is said to be a primitive basic irreducible if its projection μ(f(x))

μ(f(x))
�≡ f(x)(mod 2)

is primitive and irreducible over Z2[x].
Specifically, let f(x) =

∑n
i=0 fix

i be a primitive basic irreducible polynomial
of degree n over Z4, and Z4[x]/f(x) denote the ring of residue classes of polyno-
mials over Z4 modulo f(x). It can be shown, this quotient ring is a commutative
ring with identity called Galois ring, denoted as GR(4, n). As a multiplicative
group, the units GR∗(4, n) have the following structure

GR∗(4, n) = GA ⊗GC ,

where GC is a cyclic group of order 2n − 1 and GA is an Abelian group of
order 2n.

Let β ∈ GR∗(4, n) be a generator of the cyclic group GC , i.e.,

GC = {1, β, β2, . . . , β2n−2}.
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Then α = μ(β) is a primitive root of GF (2n) with primitive polynomial μ(f(x))
over Z2. For convenience let β∞ = α∞ = 0.

GA itself is a direct product of n cyclic groups, each of order 2; its elements
are given by {1, 1 + 2βi; i = 0, 1, . . . , 2n − 2}.

A trace function maps elements of GR(4, n) to Z4, defined as

Trn
1 (x) =

n−1∑
i=0

σi(x),

where σi(·), 0 ≤ I < n are automorphisms of GR(4, n) given by

σi :
n−1∑
j=0

ajβ
j −→

n−1∑
j=0

ajβ
j2i

(mod f(x)), aj ∈ Z4.

Definition 1. [8, 2] Z4 m-sequences: Let

γi =

⎧⎨⎩
1 + 2βi, 0 ≤ i ≤ 2n − 2
1, i = 2n − 1
2, i = 2n

,

the Z4 maximal length sequence family (A) is defined as

ai(t) = Trn
1 (γiβ

t), t = 0, 1, . . . , 2n − 2, i = 0, . . . , 2n. (1)

Henceforth, we use ⊕ to denote the addition operation in Z4 and + to denote
either the addition operation in Z2 or the ordinary addition operation in R.

The following theorem states the connection between the Z4 maximal length
sequences and the binary sequences.

Theorem 1. The sequences ai, 0 ≤ i ≤ 2n, given in (1) have the following
representation:

ai(t) =

⎧⎨⎩
trn

1 (αt)⊕ 2(trn
1 (αi+t) + p(αt)), 0 ≤ i ≤ 2n − 2

trn
1 (αt)⊕ 2p(αt), i = 2n − 1

2trn
1 (αt), i = 2n

(2)

where

p(x) =

{∑n−1
2

l=1 trn
1 (x2l+1), if n is odd∑n

2 −1

l=1 trn
1 (x2l+1) + tr

n
2
1 (x2

n
2 +1), if n is even

,

and trn
1 (·) is the trace function over Z2 given by

trn
1 (x) =

n−1∑
i=0

x2i

.



246 X. Tang, P. Udaya, and P. Fan

3 Statement of Results

Theorem 1 gives connection between quaternary m-sequences and binary
quadratic forms. Note that the terms trn

1 (αi+t) + p(αt) and p(αt) in (2) are
Gold-like sequences(the sequences with same correlation properties as Gold se-
quences but with large linear span). In this paper we replace them by the binary
GKW-like sequences introduced by Kim and No [4], which is a generalization
of Gold-like sequences. We can use the technique adopted here to study the Z4

maximal length sequences defined in (1).

Definition 2. Generalized Z4 m-sequences: Let e = gcd(n, k) and n
e = m,

the new family of Z4 sequences is defined as

bi(t) =

⎧⎨⎩
trn

1 (αt)⊕ 2 (trn
1 (αi+t) + q(αt)), 0 ≤ i ≤ 2n − 2

trn
1 (αt)⊕ 2 q(αt), i = 2n − 1

2 trn
1 (αt), i = 2n

(3)

where

q(x) =

{∑m−1
2

l=1 trn
1 (x2kl+1), if m is odd∑m

2 −1

l=1 trn
1 (x2kl+1) + tr

n
2
1 (x2

n
2 +1), if m is even

.

Remark 1. When e = 1, the quadratic form q(x) turns to be p(x) in Theorem
1 and the corresponding Z4 sequences are m-sequences (Family A).

In fact, p(x) and q(x) are quadratic forms as all the exponents of x have
only two ones in their binary representation. Quadratic form techniques have
been employed both in [1] and [4] to compute the correlation functions of Gold-
like and GKW-like sequences, respectively. Here we apply the quadratic form
techniques to the Z4 sequences family defined in (3).

Given two quaternary sequences a = {a0, a1, . . . , aN−1} and b = {b0, b1, . . . ,
. . . bN−1} of period N , we define the periodic cross-correlation between a and b
as

Ra,b(τ) =
N−1∑
i=0

ωai−bi+τ , 0 ≤ τ < N, (4)

where ω =
√
−1, the fourth root of unity.

Now let S be a set of M sequences of period N . In sequence design, it is
desirable that M and N are large and non trivial correlations |Ra,b(τ)| : a, b ∈
S, 0 < τ < N or (τ = 0, a 	= b) are as small as possible.

In the next section, we prove the following result on non trivial correlations
of the new family.

Theorem 2. Let n, e,m, k be as defined in Definition 2 and let Ra,b(τ) denote
the nontrivial correlation function of any two sequences a and b in (3) where
0 ≤ τ < 2n − 1. Then the modulus value |Ra,b(τ) + 1| takes the values from
the set
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Table 1. Correlation Values of the family in Example 1

Index Corelation

1 [63]
2 [−1ω + 0]
3 [−1ω + −8]
4 [7ω + 0]
5 [7ω + 8]
6 [−1ω + 8]
7 [7ω + −8]
8 [−9ω + 0]
9 [−9ω + 8]
10 [−9ω + −8

– when m is odd:
• {0, 2n

2 } for e = 1
• {0, 2n+e−1

2 , 2
n+e−2

2 } for e > 1.
– when m is even:

• {0, 2n
2 } for e = 1

• {0, 2n
2 , 2

n+1
2 , 2

n+2e−2
2 }, for e > 1.

Remark 2. When m is odd, θmax, the maximum non-trivial correlation values
for the above quaternary family is smaller by a factor of

√
2 than for the θmax of

binary GKW sequence [4]. Similarly, when m is even, θmax, for the quaternary
family is better than the GKW family by a factor of 2.

Example 1. Let n = 6,m = 3, e = 2, k = 2. The sequences ai, 0 ≤ i ≤ 64, of
the new family are given as:

Table 2. Correlation Values of the family in Example 2

Index Corelation

1 [255]
2 [−17ω + −16]
3 [−1ω + 0]
4 [−1ω + 32]
5 [−17ω + 16]
6 [15ω + 16]
7 [15ω + −16]
8 [15ω + 0]
9 [−1ω + −32]
10 [−17ω + 0]
11 [−1ω + −16]
12 [−1ω + 16]
13 [−33ω + 0]
14 [31ω + 0]
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ai(t) =

⎧⎨⎩
tr6

1(α
t)⊕ 2(tr6

1(α
i+t) + tr6

1(α
5t)), 0 ≤ i ≤ 62

tr6
1(α

t)⊕ 2 6
1(α

5t), i = 63
2tr6

1(α
t), i = 64.

(5)

The correlation values of the family are given in Table 1.

Example 2. Let n = 8,m = 4, e = 2, k = 2. The sequences ai, 0 ≤ i ≤ 64, of
the new family are given as:

ai(t) =

⎧⎨⎩
tr8

1(α
t)⊕ 2(tr8

1(α
i+t) + tr8

1(α
5t) + tr4

1(α
17t)), 0 ≤ i ≤ 255

tr8
1(α

t)⊕ 2 (tr8
1(α

5t) + tr4
1(α

17t)), i = 255
2tr8

1(α
t), i = 256.

(6)

The correlation values of the family are given in Table 2.

4 Proof of Theorem 2

The last sequence in the family is isomorphic to binary m-sequence and hence
its non trivial autocorrelation value is −1. We divide the other computations
into two cases:

4.1 Case 1: Correlation Function of c = bi and d = bj,
0 ≤ i, j ≤ 2n − 1

Let us consider sequences c and d over Z4:

c = trn
1 (x)⊕ 2(trn

1 (η1x) + q(x)),
d = trn

1 (x)⊕ 2(trn
1 (η2x) + q(x)),

η1, η2 ∈ GF(2n).

Then their correlation function at the shift τ is

Rc,d(τ) =
∑

x∈GF(2n)

j trn
1 (x)⊕2(trn

1 (η1x)+q(x))⊕3tr(yx)⊕2(trn
1 (η2yx)+q(yx)) − 1,

where y = ατ and j =
√
−1.

When y = 1, i.e., τ = 0, the correlation function simplifies to:

Rc,d(τ) =
∑

x∈GF(2n)

(−1)trn
1 ((η1+η2)x) − 1;

=
{

2n − 1, c = d,
−1, else. .

When y 	= 1, immediately we can write



Quadriphase Sequences Obtained from Binary Quadratic Form Sequences 249

|Rc,d(τ) + 1|2

=
∑

x,z∈GF(2n)

j trn
1 (x)⊕3trn

1 (z)⊕3trn
1 (yx)⊕trn

1 (yz)

·(−1)trn
1 (η1x)+trn

1 (η2yx)+trn
1 (η1z)+trn

1 (η2yz)+q(x)+q(yx)+q(z)+q(yz)

=
∑

z,w∈GF(2n)

j trn
1 (w)⊕2trn

1 (z)trn
1 (w)⊕3trn

1 (yw)⊕2trn
1 (yz)trn

1 (yw)

·(−1)trn
1 (η1w)+trn

1 (η2yw)+q(x)+q(yx)+q(z)+q(yz) w = x + z

=
∑

z,w∈GF(2n)

j trn
1 (w)⊕trn

1 (yw) · (−1)trn
1 (z)trn

1 (w)+trn
1 (yw)+trn

1 (yz)trn
1 (yw)

·(−1)trn
1 (η1w)+trn

1 (η2yw)+q(z+w)+q(y(z+w))+q(z)+q(yz).

It should be noted that trn
1 (w) ≡ trn

1 (x)⊕ trn
1 (z)⊕2trn

1 (x)trn
1 (z) = 3trn

1 (x)⊕
trn

1 (z)⊕ 2trn
1 (x)tr(w) (mod 4) if w = x + z over GF(2n).

By the quadratic form technique [4], the symplectic form associated with q(x)
is

q(z + w) + q(y(z + w)) + q(z) + q(yz) + q(w) + q(yw)
= trn

1 [z(trn
e (w) + ytrn

e (yw) + w + y2w)].

Define

f(z, w) = trn
1 (z)trn

1 (w) + trn
1 (yz)trn

1 (yw) + q(z + w) + q(y(z + w)) + q(z) +
+q(yz) + q(w) + q(yw)

= trn
1 [z(trn

1 (w) + ytrn
1 (yw) + trn

e (w) + ytrn
e (yw) + w + y2w)],

and

W = {w|trn
1 (w) + ytrn

1 (yw) + trn
e (w) + ytrn

e (yw) + w + y2w = 0},

then we get the following equation.

|Rc,d(τ) + 1|2

=
∑

w∈GF (2n)

j trn
1 (w)⊕trn

1 (yw)⊕2(trn
1 (yw)+trn

1 (η1w)+trn
1 (η2yw)+q(w)+q(yw)) · FZW,

= 2n
∑

w∈W

j trn
1 (w)⊕trn

1 (yw)⊕2(trn
1 (yw)+trn

1 (η1w)+trn
1 (η2yw)+q(w)+q(yw)), (7)

where FZW =
∑

z∈GF(2n)(−1)f(z,w). Further define

g(w) = trn
1 (w)⊕ trn

1 (yw)⊕ 2(trn
1 (yw) + trn

1 (η1w) + trn
1 (η2yw) + q(w) + q(yw)).

Then (7) can be rewritten as

|Rc,d(τ) + 1|2 = 2n
∑

w∈W

jg(w). (8)

For any w1, w2 ∈W , consider g(w1)⊕g(w2). By using the definition of f(z, w)
and W we have the following:
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g(w1)⊕ g(w2)
= trn

1 (w1)⊕ trn
1 (yw1)⊕ 2(trn

1 (yw1) + trn
1 (η1w1) + trn

1 (η2yw1)
+q(w1) + q(yw1))
⊕trn

1 (w2)⊕ trn
1 (yw2)⊕ 2(trn

1 (yw2) + trn
1 (η1w2) +

trn
1 (η2yw2) + q(w) + q(yw2))

= trn
1 (w1 + w2)⊕ trn

1 (y(w1 + w2))⊕ 2(trn
1 (y(w1 + w2)) +

+trn
1 (η1(w1 + w2)) + trn

1 (η2y(w1 + w2)))
⊕2(trn

1 (w1)trn
1 (w2) + trn

1 (yw1)trn
1 (yw2) + q(w1) + q(yw1) + q(w2) + q(yw2))

= g(w1 + w2).

This implies, in other words, that the function g(w) is a linear function on W .
Suppose that the cardinality of W is |W |, and ki = |{w|g(w) = i, w ∈ W}|,

i = 0, 1, 2, 3. Obviously k0 ≥ 1 due to g(0) = 0, and ki ≥ k0 if ki 	= 0 from the
linearity of g(w). Furthermore, it follows from (8) that k1 = k3. Therefore the
possibilities for ki s are as follows:

– k1 = k3 = 0:
• k2 = 0, then we have k0 = |W |.
• k2 = 1, then we have k0 = k2 = |W |

2 .
• k2 ≥ 2, then for any two elements w1 and w2 such that g(w1) = g(w2) =

2, we may deduce that g(w1 + w2) = 0. Consequently k0 ≥ k2. That is
k0 = k2 = |W |

2 .
– k1 = k3 ≥ 1: Suppose that w ∈W satisfies g(w) = 1. Then g(0) = g(w+w) =

2g(w) = 2 contradicts with the fact g(0) = 0, which implies this case never
happens.

So easily we can conclude that |Rc,d(τ) + 1|2 is either 2n|W | or 0.
The remainder task is only to determine the number of the roots of the

equation over GF(2n):

trn
1 (w) + ytrn

1 (yw) + trn
e (w) + ytrn

e (yw) + w + y2w = 0. (9)

Let trn
e (yw) = a and trn

e (w) = b, then (9) can be rewritten as

tre
1(b) + ytre

1(a) + b + ay + w + y2w = 0.

Since y 	= 1, the expression of w is

w =
(a + tre

1(a))y + b + tre
1(b)

1 + y2
. (10)

The solution of the equation depends on if m is odd or even.

m Odd: Plugging (10) into trn
e (yw) = a and trn

e (w) = b, we have

(a + tre
1(a) + b + tre

1(b))X
2 + (b + tre

1(b))X = tre
1(a), (11)

(a + tre
1(a) + b + tre

1(b))X
2 + (a + tre

1(a))X = b, (12)

where X = trn
e ( 1

1+y ). There are three different cases.
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1) If X = 0, then tre
1(a) = 0 and b = 0. The number of solutions is 2e−1 ;

2) If X = 1, then a = 0 and tre
1(b) = 0. The number of solutions is 2e−1 ;

3) If X = c ∈ GF (2e)/{0, 1}, then

a + tre
1(a) + b + tre

1(b) =
b + tre

1(a)
c

. (13)

Replacing a + tre
1(a) + b + tre

1(b) in (11) and (12) with the right-hand side of
(13), we have

c(tre
1(a) + tre

1(b)) = tre
1(a), (14)

c(a + b) = b. (15)

From (14), it is clear that tre
1(a) + tre

1(b) = 0 and tre
1(a) = 0 due to the

assumption of c ∈ GF(2e)/{0, 1}. It follows that tre
1(a) = tre

1(b) = 0. On the
other hand, we obtain from (15)

a =
c + 1
c

b. (16)

Using the trace function on both side of (16), we require

tre
1(
b

c
) = 0.

Substituting (16) into (10), we get

w =
c+1

c by + b

1 + y2
.

There are only 2e−2 solutions of w since tre
1(b) = 0 and tre

1(
b
c ) = 0.

Thus, collecting all the cases, we conclude that the correlation value |Rc,d(τ)+ 1|
is

– either 0 or 2
n
2 when e = 1,

– either 0 or 2
n+e−1

2 or 2
n+e−2

2 when e > 1.

Therefore the maximum non-trivial correlation is 2
n+e−1

2 , which is smaller by a
factor of

√
2 than the binary GKW-like sequences.

m Even: Plugging (10) into trn
e (yw) = a and trn

e (w) = b, we have

(a + tre
1(a) + b + tre

1(b))X
2 + (b + tre

1(b))X = a, (17)
(a + tre

1(a) + b + tre
1(b))X

2 + (a + tre
1(a))X = b, (18)

where X = trn
e ( 1

1+y ). Again we have three different cases.
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1) If X = 0, then b = 0 and a = 0, and then w = 0. The number of solutions is 1 ;

2) If X = 1, then tre
1(a) = 0 and tre

1(b) = 0, and then w = ay+b
1+y2 . The number

of solutions is 22e−2 ;

3) If X = c ∈ GF(2e)/{0, 1}, then

a + tre
1(a) + b + tre

1(b) =
b + a

c
. (19)

Replacing a+ tre
1(a) + b+ tre

1(b) in (17) and (18) with the right-hand side of
(19), we have

a =
c

c + 1
tre

1(b), (20)

b =
c

c + 1
tre

1(a). (21)

It is easy to check that the number of solutions to w is one or two depending on
whether tre

1(
c

c+1 ) = 1 or not.
Thus, combining all the cases, we conclude that the correlation value |Rc,d(τ)+ 1|
is

– either 0 or 2
n
2 when e = 1,

– either 0 or 2
n
2 or 2

n+1
2 or 2

n+2e−2
2 when e > 1.

Then the maximum non-trivial correlation is 2
n+2e−2

2 , which is smaller by a factor
of 2 than the binary GKW-like sequences.

4.2 Case 2: Correlation Function of c = b2n and d = bi,
0 ≤ i ≤ 2n − 1

We will only need to consider this case, since the results equally apply to the
case when c = bi and d = b2n , 0 ≤ i ≤ 2n − 1. Let us consider the last sequence
d and another sequence c over Z4:

c = trn
1 (x)⊕ 2(trn

1 (η1x) + q(x)), d = 2trn
1 (x), η1 ∈ GF(2n).

Then their correlation function at the shift τ is

Rc,d(τ) =
∑

x∈GF(2n)

j trn
1 (x)⊕2(trn

1 (η1x)+q(x))⊕2trn
1 (yx) − 1,

where y = ατ and j =
√
−1.

Immediately, we have

|Rc,d(τ) + 1|2

=
∑

x,z∈GF(2n)

j trn
1 (x)⊕3trn

1 (z) · (−1)trn
1 (η1x)+trn

1 (yx)+trn
1 (η1z)+trn

1 (yz)+q(x)+q(z)
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=
∑

z,w∈GF(2n)

j trn
1 (w)⊕2trn

1 (z)trn
1 (w) · (−1)trn

1 (η1w)+trn
1 (yw)+q(x)+q(z) w = x + z

=
∑

z,w∈GF(2n)

j trn
1 (w) · (−1)trn

1 (z)trn
1 (w)+trn

1 (η1w)+trn
1 (yw)+q(z+w)+q(z).

Also from [4], the symplectic form associated with q(x) is

q(z + w) + q(z) + q(w)
= trn

1 [z(trn
e (w) + w)].

Define f(z, w) = trn
1 [z(trn

1 (w) + trn
e (w) + w)], then

|Rc,d(τ) + 1|2

=
∑

w∈GF(2n)

j trn
1 (w)⊕2(trn

1 (η1w)+trn
1 (yw)+q(w)) ·

∑
z∈GF(2n)

(−1)f(z,w).

Similar to the last section, |Rc,d(τ) + 1|2 takes on 2n|W | or 0 where W =
{w|trn

1 (w) + trn
e (w) + w = 0}.

The remainder is to determine the number of the roots to the equation

trn
1 (w) + trn

e (w) + w = 0. (22)

Obviously w ∈ GF(2e).
If m is odd, then trn

1 (w) = tre
1(w) and trn

e (w) = w. So

trn
1 (w) + trn

e (w) + w = tre
1(w) = 0, (23)

it follows that the number of roots is 2e−1.
If m is even, then trn

1 (w) = trn
e (w) = 0. Hence

trn
1 (w) + trn

e (w) + w = w = 0, (24)

and it follows that the number of roots is 1.
Therefore the number of roots is either 2e−1 or 1 depending on whether m

is odd or even. Then the non-trivial correlation value |Rc,d(τ) + 1| takes on 0 or
2

n+e−1
2 when m is odd; 0 or 2

n
2 when m is even.
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Abstract. The quadratic form technique has many applications in se-
quence design including determining certain exponential sums. A key
idea in this technique is to transform the problem of computing expo-
nential sums into determining the weights of certain quadratic forms.
We use this idea to define two new families of non-binary sequences and
determine their correlation properties. The new families of sequences
possess low correlation and large linear complexity properties.

1 Introduction

We assume that p is an odd prime, and n = em. Let q = pe, For simplicity, denote
GF(pe) as GF(q) and GF(pn) as GF(qm). Let Trn

e (x) (and respectively Tre
1(x))

be the trace mapping from GF(qm) into the subfield GF(q) (and respectively
from GF(q) into GF(p)) given by

Trn
e (x) =

m−1∑
i=0

xpei

, T re
1(x) =

e−1∑
i=0

xpi

.

Given two sequences a = {a0, a1, . . . , aN−1} and b = {b0, b1, . . . , bN−1} of
period N , we define the periodic cross-correlation between a and b as

Ra,b(τ) =
N−1∑
i=0

ωai−bi+τ , 0 ≤ τ < N, (1)

where ω is the pth root of unity given by ω = ej2π/p, j =
√
−1.
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Now let S be a set of M sequences of period N . For practical applications, it
is desirable that M and N are large and non trivial correlations |Ra,b(τ)| : a, b ∈
S, 0 < τ < N or (τ = 0, a 	= b) are as small as possible.

For many families of sequences defined over Galois fields, the computation of
correlations in (1) is related to determining the following exponential sum

S(F ) =
∑

x∈GF(pn)

ωF (x),

where ω is the pth root of unity given by ω = ej2π/p, j =
√
−1 and F (x) is a

function over GF(pn) with values in GF(p).
It is an extremely hard problem to determine the exponential sum for an

arbitrary function F (x). However there are several bounds like the Weil bound,
Deligne bound, etc, [6] which give a reasonable estimate for the sum. In many
instances, these bounds turn out to be trivial (i.e. the bound exceeds the number
of terms). The problem of determining the exponential sum is tractable if F (x)
is of some special form. For example, if F (x) is derived from a quadratic form,
we may even get the exact value of the exponential sum.

This idea used for sequence design seems to have been first adopted by Tra-
chtenberg [8], and later by Helleseth [1]. Recently, the quadratic form technique
has been employed to construct many p-ary sequence families with good corre-
lation properties [4, 5, 7].

In this paper, we take

F (x) = Tre
1(p(x) + Trn

e (yx)) (2)

where p(x) is a quadratic form over GF(q), and obtain two families of sequences
with low correlation and large linear span.

The paper is organized as follows. In Section II, we give a general background
on quadratic forms and give a key theorem to compute the exponential sum
defined using quadratic forms and trace functions. In Section III, we define two
new families of sequences and state our main results. We provide proofs to our
results in Sections IV and V.

2 Quadratic Forms and Exponential Sums

In this section, we give necessary background on quadratic forms.

Definition 1. Let x =
∑m

i=1 xiαi where xi ∈ GF(q) and αi, i = 1, 2, . . . ,m,
is a basis for GF(qm) over GF(q). Then the function p(x) is a quadratic form
over GF(q) if it can be expressed as

p(x) = p(
m∑

i=1

xiαi) =
m∑

i=1

m∑
j=1

bi,jxixj ,

where bi,j ∈ GF(q), that is p(x) is a homogeneous polynomial of degree 2 in ring
GF(q)[x1, x2, . . . , xm].
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The quadratic form in odd characteristic has been well analyzed in the lit-
erature [6, 3]. Here we follow the treatment in [3]. It should be noted that the
rank of the quadratic form is the minimum number of variables required to
represent the function under the nonsingular coordinate transformations. Then,
any quadratic form of rank r can be transferred to one of the following three
canonical forms [3].

Lemma 1. For any quadratic form p(x) in GF(qm), if the rank of p(x) is r,
then p(x) is equivalent to one of

Type I: Br(x);
Type II: Br−1(x) + μx2

r

Type III: Br−2(x) + xr−1 − λx2
r,

where Br(x) = x1x2 +x3x4 + · · ·+xr−1xr, μ ∈ {1, λ} and λ is a fixed nonsquare
in GF(q). For any element ζ ∈ GF(q), the number of solutions to the equation
p(x) = ζ is

Type I: qm−1 + υ(ζ)qm−r/2−1;
Type II: qm−1 + η(ζμ)qm−(r+1)/2;
Type III: qm−1 − υ(ζ)qm−r/2−1;

where υ(x) and η(x) are functions in GF(q) respectively given by

υ(x) =
{
−1, if x 	= 0,
q − 1, if x = 0, and η(x) =

⎧⎨⎩
0, if x = 0,
1, if x is a square,
−1, otherwise.

Lemma 1 is useful to determine the distribution of the range of the quadratic
form when the rank of the form is known. We use this Lemma to prove the
following theorem on exponential sums.

Theorem 1. Let p(x) be a quadratic form over GF (q) of rank r and define the
exponential sum

R =
∑

x∈GF(pn)

ωTre
1(p(x)+Trn

e (yx)). (3)

Then, |R| can take either 0 or pn−(re/2), where |x| means modulus value of x.

Proof. Because of Lemma 1 and the fact that Tr is a linear function, there
exists a nonsingular transformation such that f(x) = p(x) + Trn

e (ax) can be
transformed into one of the following two representatives:

Qr(x) +
m∑

i=r+1

aixi or Qr(x) + c,

where Qr(x) be one of the canonical forms: Type I, II or III given in Lemma 1,
and c is a constant.
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Consider when f(x) is of the first type. Given an element ζ ∈ GF(q), if we
choose any values for x1, x2, . . . , xr, we can always find a unique xr+1, xr+2, . . . ,
xm, that gives a solution to the equation Qr(x)+

∑m
i=r+1 aixi = ζ. This equation

always has pn−e solutions. Then,

|R| = |pn−e
∑

ζ∈GF(q)

ωTre
1(ζ)| = 0.

Now consider when f(x) is of the second type. Here we need to divide the
computation into two cases according to the parity of r. Also let GF(q)∗ denote
the multiplicative group of GF(q).

1) r even: Then Qr(x) has to be of Type I or III. Here we only consider Type
I since the case with Type III is similar.

From Lemma 1,

|Ra| =
∣∣∣∣ ∑

x∈GF(pn)

ωTre
1(Qr(x))

∣∣∣∣
=
∣∣∣∣pn−e + (pe − 1)pn−re/2−e + (pn−e − pn−re/2−e)

∑
ζ∈GF(q)∗

ωTre
1(ζ)

∣∣∣∣
=
∣∣∣∣(pn−e − pn−re/2−e)

∑
ζ∈GF(q)

ωTre
1(ζ) + pn−re/2

∣∣∣∣
= pn−re/2.

2) r odd: Then Qr(x) has to be of Type II. Also from Lemma 1,

|Ra| =
∣∣∣∣ ∑

x∈GF(q)

ωTre
1(Qr(x))

∣∣∣∣
=
∣∣∣∣pn−e

∑
ζ∈GF(q)

ωTre
1(ζ) + pn−(r+1)e/2

∑
ζ∈GF(q)∗

η(ζμ)ωTre
1(ζ)

∣∣∣∣
= pn−(r+1)e/2

∣∣∣∣ ∑
ζ∈GF(q)∗

η(ζ)ωTre
1(ζ)

∣∣∣∣
Since η(ζ) is a nontrivial multiplicative character and ωTre

1(ζ) is a nontrivial
additive character, using (Theorem 5.11, [6]), we get

|Ra| = pn−re/2.

The above theorem assures that quadratic form p(x) with large rank r helps
us to define sequences with low correlations. Hence the main task is to find
quadratic forms with large rank. The rank is related to the dimension of the
vector subspace W in GF(qm), i.e.,

W = {w ∈ GF(qm) : p(x + w) = p(x) for all x ∈ GF(qm)}. (4)

More precisely, r = m− dim(W).
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3 Statement of Results

In this section we define two new families of sequences using quadratic forms.
From now on throughout this paper, n,m, e and k are integers such that n = me
and gcd(n, k) = e.

Definition 2. When m is odd, a family of nonbinary sequences of period pn−1
with family size pn + 1 is defined as

A = {ai(t) | 0 ≤ i ≤ pn, 0 ≤ t < pn − 1} (5)

ai(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Trn
1 (αt+i + λδα2t + λ

(m−1)/2∑
l=1

αt(pkl+1)), 0 ≤ i < (pn − 1)/2,

T rn
1 (αt+i−(pn−1)/2 + δα2t +

(m−1)/2∑
l=1

αt(pkl+1)),

(pn − 1)/2 ≤ i < pn − 1,

T rn
1 (δα2t +

(m−1)/2∑
l=1

αt(pkl+1)), i = pn − 1,

T rn
1 (αt), i = pn,

where δ 	= (1/2) ∈ GF(pn).

Definition 3. When m is even, a family of nonbinary sequences of period pn−1
with family size (pn + 3)/2 is defined as

B = {bi(t) | 0 ≤ i ≤ (pn − 1)/2, 0 ≤ t < pn − 1} (6)

bi(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Trn
1 (αt+i + δα2t +

m/2−1∑
l=1

αt(pkl+1)) + Tr
n/2
1 (αt(pn/2+1)),

0 ≤ i < (pn − 1)/2,

T rn
1 (δα2t +

m/2−1∑
l=1

αt(pkl+1)) + Tr
n/2
1 (αt(pn/2+1)), i = (pn − 1)/2,

T rn
1 (αt), i = (pn + 1)/2,

where δ 	= (1/2) ∈ GF(pn).

In the following sections, we will show that the correlation function of the
sequences in new families can be transformed to an exponential sum similar to
(3).

1) For the sequences in family A, the quadratic form in the sum is of the form:

p(x) = Trn
e (δx2 +

(m−1)/2∑
l=1

xpkl+1 − γδ(yx)2 − γ

(m−1)/2∑
l=1

(yx)pkl+1),

where γ ∈ {0, 1, λ, 1/λ}, and
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Table 1. p-ary sequences from quadratic forms

Maximum
Family n size Maximal Linear Comments

Correlation Span

n = me, m odd
TH

gcd(n, k) = e
pn + 1 1 + p(n+e)/2 2n [8, 1]

n = me, m odd Optimal
KM

gcd(n, k) = e
pn + 1 1 + pn/2 2n

[4]

n = me, m odd Optimal
JKNH

gcd(n, k) = e
pn + 1 1 + pn/2 n(m + 3)/2

[5]

n = me, m odd
TH-Like

gcd(n, k) = e
pn + 1 1 + p(n+e)/2 n(m + 1)/2 [7]

n = me, m oddA
gcd(n, k) = e

pn + 1 1 + p(n+2e)/2 n(m + 3)/2 new family

n = me, m evenB
gcd(n, k) = e

(pn + 3)/2 1 + p(n+2e)/2 n(m + 3)/2 new family

2) For sequences in family B, the quadratic form in the sum is of the form:

p(x) = Trn
e (δx2 +

m/2−1∑
l=1

xpkl+1 − γδ(yx)2 − γ

(m−1)/2∑
l=1

(yx)pkl+1)

+Trn/2
e (xpn/2+1 − γ(yx)pn/2+1),

where γ ∈ {0, 1}.
In the next two sections we will determine the rank of the above two quadratic
forms which take values m or m− 1 or m− 2. Then using Theorem 1, we prove
the following two main results of the paper.

Theorem 2. Let Ri,j(τ) denote the nontrivial correlation function of sequences
ai and aj in (5), 0 ≤ τ < pn − 1. Then the modulus value |Ri,j(τ) + 1| takes the
values from the set {0, pn/2, p(n+e)/2, p(n+2e)/2}.

Theorem 3. Let Ri,j(τ) denote the nontrivial correlation function of sequences
bi and bj in (6), 0 ≤ τ < pn − 1. Then the modulus value |Ri,j(τ) + 1| takes the
values from the set {0, pn/2, p(n+e)/2, p(n+2e)/2}.

It has been proven in [2] that, if a sequence can be expressed as a polyno-
mial, then its linear span is just the number of the distinct powers of x of the
polynomial. Then straightforwardly the linear spans for the sequence families A
and B are given in the following two theorems.

Theorem 4. Let LS(ai) be linear span of the sequences ai ∈ A. Then the linear
span of the sequences ai is

LS(ai) =

⎧⎨⎩
n(m + 3)/2, if 0 ≤ i < pn − 1,
n(m + 1)/2, if i = pn − 1,
n, if i = pn.

.
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Theorem 5. Let LS(bi) be linear span of the sequences bi ∈ B. Then the linear
span of the sequences bi is

LS(bi) =

⎧⎨⎩
n(m + 3)/2, if 0 ≤ i < (pn − 1)/2,
n(m + 1)/2, if i = (pn − 1)/2,
n, if i = (pn + 1)/2.

.

As a comparison, the known p-ary sequences families from quadratic form
will be illustrated in Table 1.

4 Proof of Theorem 2

Our main task is to determine the rank of the quadratic form related to Family
A. Define

ci =

⎧⎪⎪⎨⎪⎪⎩
αi, if 0 ≤ i < (pn − 1)/2
αi−(pn−1)/2, if (pn − 1)/2 ≤ i < pn − 1
0, if i = pn − 1
1, if i = pn

.

For a given shift parameter τ , 0 ≤ τ < pn − 1, let y = ατ . Then the correlation
function between ai(t) and aj(t) is
Ri,j(τ) =∑
x∈GF(pn)

ωTrn
1 (γi(δx2+

∑(m−1)/2

l=1
xpkl+1)−γj(δ(yx)2+

∑(m−1)/2

l=1
(yx)pkl+1)+(ci−cjy)x) − 1,

where γi ∈ {1, λ}, 0 ≤ i ≤ pn − 1 and γpn = 0.
When i = j = pn, it is clear that

Ri,j(τ) =
{
pn − 1, τ = 0
−1, otherwise

as the sequence ai(t) is an m-sequence over GF(p).
For other cases, without loss of generality assume that γi 	= 0. Then the

correlation function is written as

Ri,j(τ) =
∑

x∈GF(pn)

ω
Trn

1 (γi(δx2+

(m−1)/2∑
l=1

xpkl+1−γ(δ(yx)2+

(m−1)/2∑
l=1

(yx)pkl+1)))

· ωTrn
1 (ci−cjy)x) − 1, (7)

where γ = γj

γi
∈ {0, 1, λ, 1/λ}. From Theorem 1, the correlation function is

determined by the rank of the quadratic form
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q(x) = γiTr
n
e (δx2 +

(m−1)/2∑
l=1

xpkl+1 − γδ(yx)2 − γ

(m−1)/2∑
l=1

(yx)pkl+1),

or equivalently the rank of the quadratic form

p(x) = Trn
e (δx2 +

(m−1)/2∑
l=1

xpkl+1 − γδ(yx)2 − γ

(m−1)/2∑
l=1

(yx)pkl+1).

In view of (4), it is sufficient to determine the dimension of the space (W)
satisfied by w in

Trn
e (δ(w + x)2 +

(m−1)/2∑
l=1

(w + x)pkl+1 − γδ(yw + yx)2 − γ

(m−1)/2∑
l=1

(yw + yx)pkl+1)

= Trn
e (δx2 +

(m−1)/2∑
l=1

xpkl+1 − γδ(yx)2 − γ

(m−1)/2∑
l=1

(yx)pkl+1) for all x ∈ GF(pn).

This is equivalent to solving:

Trn
e (x(2δw +

(m−1)/2∑
l=1

(wpkl

+ wp−kl

)− 2γδy2w − γy

(m−1)/2∑
l=1

((yw)pkl

+

(yw)p−kl

)) + δw2 +
(m−1)/2∑

l=1

wpkl+1 − γδ(yw)2 − γ

(m−1)/2∑
l=1

(yw)pkl+1)

= Trn
e (x(Trn

e (w)− γyTrn
e (yw) + (2δ − 1)w − γ(2δ − 1)y2w) (8)

+ δw2 +
(m−1)/2∑

l=1

wpkl+1 − γδ(yw)2 − γ

(m−1)/2∑
l=1

(yw)pkl+1)

= 0

If (8) holds for all x ∈ GF(pn), Then we need to have

Trn
e (w)− γyTrn

e (yw) + (2δ − 1)w − γ(2δ − 1)y2w = 0, (9)

and

Trn
e (δw2 +

(m−1)/2∑
l=1

wpkl+1 − γδ(yw)2 − γ

(m−1)/2∑
l=1

(yw)pkl+1) = 0. (10)

In fact from (10),

2Trn
e (δw2 +

(m−1)/2∑
l=1

wpkl+1 − γδ(yw)2 − γ

(m−1)/2∑
l=1

(yw)pkl+1)

= Trn
e (w(Trn

e (w)− γyTrn
e (yw) + (2δ − 1)w − γ(2δ − 1)y2w))

= 0,
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which means (10) holds only if (9) is true. Then we only need to consider(9),
which could be classified into two cases:

1) (2δ − 1)− γ(2δ − 1)y2 = 0.
By hypothesis δ 	= (1/2) , clearly γy2 = 1. And it is impossible that λy2 = 1

and λ−1y2 = 1 for all y ∈ GF (pn), since λ is a nonsquare. So we have γ = 1 and
y = 1. Accordingly, the correlation function (7) is given by

Ri,j(0) =
∑

x∈GF(pn)

ωTrn
1 ((ci−cj)x) − 1.

Since γ = γj

γi
= 1, this indicates that 0 ≤ i, j < (pn− 1)/2 or (pn− 1)/2 ≤ i, j <

pn − 1. Then it follows that ci 	= cj unless i = j from the definition of ci. Thus,

Ri,j(0) =
{
pn − 1, i = j,
−1, otherwise.

2) (2δ − 1)− γ(2δ − 1)y2 	= 0.
Let Trn

e (w) = a and Trn
e (yw) = b, then from (9),

w =
bγy − a

c− cγy2
,

where c = 2δ − 1.
To satisfy Trn

e (w) = a and Trn
e (yw) = b, we obtain

Trn
e (w) = Trn

e (
bγy − a

c− cγy2
) = a,

and

Trn
e (yw) = Trn

e (
bγy2 − ay

c− cγy2
) = b.

That is

b · Trn
e (

γy

c− cγy2
)− a · [Trn

e (
1

c− cγy2
) + 1] = 0, (11)

and

b · [Trn
e (

γy2

c− cγy2
)− 1]− a · Trn

e (
y

c− cγy2
) = 0. (12)

If

* =

∣∣∣∣∣ Trn
e ( γy

c−cγy2 ) Trn
e ( 1

c−cγy2 ) + 1

Trn
e ( γy2

c−cγy2 )− 1 Trn
e ( y

c−cγy2 )

∣∣∣∣∣ 	= 0,

then the only solution to (11) and (12) is zero. This implies W is a zero space,
i.e., the dimension of W is zero. Otherwise, if * = 0, there are q solutions to
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(11) and (12), i.e., the dimension of W is 1, unless the following three equations
hold simultaneously,

Trn
e (

γy

c− cγy2
) = 0, (13)

Trn
e (

1
c− cγy2

) + 1 = 0, (14)

Trn
e (

γy2

c− cγy2
)− 1 = 0. (15)

Apparently y 	∈ GF(q) otherwise (13) contradicts with (15). Then

b1γy − a1 	= b2γy − a2 for all (a1, b1) 	= (a2, b2) ∈ GF(q)2.

There are q2 solution to (11) and (12), that is the dimension of W is 2.
Thus the rank of quadratic form p(x) is m or m− 1 or m− 2. Now applying

Theorem 1, we prove the result.

5 Proof of Theorem 3

As in the last section, the correlation function can be related to an exponential
sum involving a quadratic form. In this case, it is sufficient to determine the
rank of the following quadratic form

p(x) = Trn
e (δx2 +

m/2−1∑
l=1

xpkl+1 − γδ(yx)2 − γ

m/2−1∑
l=1

(yx)pkl+1)

+Trn/2
e (xpn/2+1 − γ(yx)pn/2+1).

where γ ∈ {0, 1}.
That is we need to investigate the number of the elements in the vector

subspace W. This means that we need to determine the dimension of the vector
subspace satisfied by w in the following:

Trn
e (δ(w + x)2+

m/2−1∑
l=1

(w + x)pkl+1−γδ(yw + yx)2 − γ

m/2−1∑
l=1

(yw + yx)pkl+1)

+Trn/2
e ((w + x)pn/2+1 − γ(yw + yx)pn/2+1)

= Trn
e (δx2 +

m/2−1∑
l=1

xpkl+1 − γδ(yx)2 − γ

m/2−1∑
l=1

(yx)pkl+1)

+Trn/2
e (xpn/2+1 − γ(yx)pn/2+1) for all x ∈ GF(pn).
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This is equivalent to solving:

Trn
e (w)− γyTrn

e (yw) + (2δ − 1)w − γ(2δ − 1)y2w = 0, (16)

and

Trn
e (δw2 +

m/2−1∑
l=1

wpkl+1 − γδ(yw)2 − γ

m/2−1∑
l=1

(yw)pkl+1)

+ Trn/2
e (wpn/2+1 − γ(yw)pn/2+1) (17)

= 0.

Essentially from (17),

2Trn
e (δw2 +

m/2−1∑
l=1

wpkl+1 − γδ(yw)2 − γ

m/2−1∑
l=1

(yw)pkl+1)

+ Trn/2
e (wpn/2+1 − γ(yw)pn/2+1)

= Trn
e (w(Trn

e (w)− γyTrn
e (yw) + (2δ − 1)w − γ(2δ − 1)y2w))

= 0,

which means (17) holds provided that (16) is true. Then we only need to consider
(16), which is as same as (9). Hence the rank of quadratic form p(x) is m or
m− 1 or m− 2. Now applying Theorem 1, we prove the result.
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Abstract. Nonlinear methods are attractive alternatives to the linear
congruential method for pseudorandom number generation. We intro-
duce a new particularly attractive explicit nonlinear congruential method
and present nontrivial results on the distribution of pseudorandom num-
bers generated by this method over the full period and in parts of the
period. The proofs are based on new bounds on certain exponential sums
over finite fields.

Keywords: Pseudorandom numbers, Nonlinear method, Discrepancy.

1 Introduction

Let Fp = {0, 1, . . . , p − 1} be the finite field of prime order p ≥ 3. Further let
η ∈ F∗

p be an element of multiplicative order T ≥ 2. For a given polynomial
f(X) ∈ Fp[X] of positive degree D we generate a sequence γ0, γ1, . . . of elements
of Fp by

γn = f(ηn) for n = 0, 1, . . . . (1)

This sequence is purely periodic with least period t for some t|T . We may restrict
ourselves to the case where t = T and D < T . If D < T , then we have t = T
if and only if, for all proper divisors d of T , the polynomial f(X) is not of the
form f(X) = g(XT/d) with a polynomial g(X) ∈ Fp[X]. For example, this is
guaranteed if T is a prime or if f(X) is a permutation polynomial of Fp (or
more generally, f(X) is injective on the group generated by η).

We study exponential sums over Fp which in the simplest case are of the form

N−1∑
n=0

χ(γn) for 1 ≤ N ≤ T,

where χ is a nontrivial additive character of Fp. Upper bounds for these expo-
nential sums are then applied to the analysis of a new nonlinear method for

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 266–274, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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pseudorandom number generation. This new method is defined as follows. We
derive explicit nonlinear congruential pseudorandom numbers of period T in the
interval [0, 1) by putting

yn = γn/p, n = 0, 1, . . . .

After some auxiliary results in Section 2 we prove some new bounds for
complete and incomplete exponential sums over finite fields in Section 3 which
allow us to give nontrivial results on the distribution of sequences of explicit
nonlinear congruential pseudorandom numbers of period T . The application to
explicit nonlinear congruential pseudorandom numbers is presented in Section 4.

Similar results on a different family of explicit nonlinear congruential pseu-
dorandom numbers of period p were obtained in [13].

2 Auxiliary Results

We recall Weil’s bound on additive character sums (see [8–Theorem 5.38], [19–
Chapter II, Theorem 2E]).

Lemma 1. Let χ be a nontrivial additive character of Fp and g be a nonconstant
polynomial over Fp. Then we have∣∣∣∣∣∣

∑
ξ∈Fp

χ(g(ξ))

∣∣∣∣∣∣ ≤ (deg(g)− 1)p1/2.

For the following analog on hybrid character sums see [19–Chapter II, The-
orem 2G].

Lemma 2. Let χ be a nontrivial additive character and ψ a nontrivial mul-
tiplicative character of Fp and g a nonconstant polynomial over Fp. Then we
have ∣∣∣∣∣∣

∑
ξ∈Fp

χ(g(ξ))ψ(ξ)

∣∣∣∣∣∣ ≤ deg(g)p1/2.

Lemma 3. Let γ0, γ1, . . . be a sequence of the form (1). If μ0, μ1, . . . , μs−1 ∈ Fp

and
s−1∑
i=0

μiγn+i = c, 0 ≤ n ≤ T − 1,

for some c ∈ Fp, then either

μ0 = μ1 = . . . = μs−1 = 0

or
s ≥ w(f),

where w(f) denotes the weight of f(X), i. e., the number of nonzero coefficients
of f(X).
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Proof. We assume that not all μi are zero and denote by j the largest index with
μj 	= 0 (so 0 ≤ j ≤ s− 1). Then we have

j∑
i=0

μiγn+i = c, 0 ≤ n ≤ T − 1, (2)

and
j+1∑
i=1

μi−1γn+i = c, 0 ≤ n ≤ T − 1. (3)

Subtracting (3) from (2) yields

μ0γn +
j∑

i=1

(μi − μi−1)γn+i − μjγn+j+1 = 0, 0 ≤ n ≤ T − 1.

Hence, j + 1 is at least as large as the linear complexity L of the sequence
γ0, γ1, . . ., i.e., the order of the shortest linear recurrence relation over Fp

γn+L =
L−1∑
i=0

σiγn+i, 0 ≤ n ≤ T − 1,

satisfied by the sequence. Lemma 3 follows from the well-known result

L = w(f) (4)

of Blahut [1]. We refer to [7–Section 6.8] for a proof. �

Put eT (z) = exp(2πiz/T ).

Lemma 4. For any integer 1 ≤ N ≤ T we have

T−1∑
u=1

∣∣∣∣∣
N−1∑
n=0

eT (un)

∣∣∣∣∣ ≤ T

(
4
π2

log T + 0.8
)
.

Proof. We have

T−1∑
u=1

∣∣∣∣∣
N−1∑
n=0

eT (un)

∣∣∣∣∣ =
T−1∑
u=1

∣∣∣∣ sin(πNu/T )
sin(πu/T )

∣∣∣∣
≤ 4

π2
T log T + 0.38T + 0.608 + 0.116

gcd(N,T )2

T

by [2–Theorem 1]. �
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3 Bounds for Exponential Sums

Let γ0, γ1, . . . be the sequence of elements of Fp generated by (1). For a nontrivial
additive character χ of Fp, for μ0, μ1, . . . , μs−1 ∈ Fp, and for an integer N with
1 ≤ N ≤ T we consider the exponential sums

SN =
N−1∑
n=0

χ

(
s−1∑
i=0

μiγn+i

)
.

Theorem 1. Let 1 ≤ s < w(f) and suppose that μ0, μ1, . . . , μs−1 ∈ Fp are not
all 0. Then we have

|ST | ≤
(
D − T

p− 1

)
p1/2 +

T

p− 1
.

Proof. We have

|ST | =
∣∣∣∣∣
T−1∑
n=0

χ

(
s−1∑
i=0

μif(ηn+i)

)∣∣∣∣∣
=

T

p− 1

∣∣∣∣∣∣
∑
ξ∈F∗

p

χ

(
s−1∑
i=0

μif(ηiξ(p−1)/T )

)∣∣∣∣∣∣ .
Since at least one μi is nonzero and s < w(f), Lemma 3 implies that

s−1∑
i=0

μif(ηiX(p−1)/T )

is not constant and the result follows by Lemma 1. �

Theorem 2. Let 1 ≤ s < w(f) and suppose that μ0, μ1, . . . , μs−1 ∈ Fp are not
all 0. Then we have

|SN | < Dp1/2

(
4
π2

log T + 1.8
)

for 1 ≤ N < T.

Proof. With σn =
∑s−1

i=0 μiγn+i we have

SN =
T−1∑
n=0

χ(σn)
N−1∑
t=0

1
T

T−1∑
u=0

eT (u(n− t))

=
1
T

T−1∑
u=0

(
N−1∑
t=0

eT (−ut)
)(

T−1∑
n=0

χ(σn)eT (un)

)

=
N

T

T−1∑
n=0

χ(σn) +
1
T

T−1∑
u=1

(
N−1∑
t=0

eT (−ut)
)(

T−1∑
n=0

χ(σn)eT (un)

)
,
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and so

|SN | ≤
N

T
|ST |+

1
T

T−1∑
u=1

∣∣∣∣∣
N−1∑
t=0

eT (ut)

∣∣∣∣∣
∣∣∣∣∣
T−1∑
n=0

χ(σn)eT (un)

∣∣∣∣∣ .
For 1 ≤ u ≤ T − 1 we define the nontrivial multiplicative character ψu of Fp by

ψu(ϑn) = eT (un), 0 ≤ n ≤ p− 2,

with a primitive element ϑ of Fp. Then we have∣∣∣∣∣
T−1∑
n=0

χ(σn)eT (un)

∣∣∣∣∣ = T

p− 1

∣∣∣∣∣∣
∑
ξ∈F∗

p

χ

(
s−1∑
i=0

μif(ηiξ(p−1)/T )

)
ψu(ξ)

∣∣∣∣∣∣
≤ Dp1/2

by Lemma 2. Lemma 4 yields

T−1∑
u=1

∣∣∣∣∣
N−1∑
t=0

eT (ut)

∣∣∣∣∣
∣∣∣∣∣
T−1∑
n=0

χ(σn)eT (un)

∣∣∣∣∣ ≤ Dp1/2
T−1∑
u=1

∣∣∣∣∣
N−1∑
t=0

eT (ut)

∣∣∣∣∣
≤ Dp1/2T

(
4
π2

log T + 0.8
)
.

Hence we obtain by Theorem 1,

|SN | ≤
N

T

((
D − T

p− 1

)
p1/2 +

T

p− 1

)
+Dp1/2

(
4
π2

log T + 0.8
)
.

Simple calculations yield the theorem. �

4 Discrepancy Bound

We use the bounds for exponential sums obtained in Theorems 1 and 2 to de-
rive results on the distribution of sequences of explicit nonlinear congruential
pseudorandom numbers of period T over the full period and in parts of the
period.

Let γ0/p, γ1/p, . . . be a sequence of explicit nonlinear congruential pseudo-
random numbers of least period T ≥ 2 obtained from (1) with a polynomial
f(X) of degree D ≥ 1. For any integer 1 ≤ N ≤ T we define the s-dimensional
(extreme) discrepancy

Ds(N) = sup
J

∣∣∣∣AN (J)
N

− V (J)
∣∣∣∣ ,

where the supremum is extended over all subintervals J of [0, 1)s, AN (J) is the
number of points
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(γn/p, . . . , γn+s−1/p) ∈ [0, 1)s, 0 ≤ n ≤ N − 1,

falling into J , and V (J) denotes the s-dimensional volume of J .
In the following we establish an upper bound for Ds(N).

Theorem 3. For any fixed integer 1 ≤ s < w(f), the s-dimensional discrepancy
Ds(N) satisfies

Ds(N) < 1−
(

1− 1
p

)s

+
Dp1/2

N

(
4
π2

log T + 1.8
)(

4
π2

log p + 1.72
)s

for 1 ≤ N < T and

Ds(T ) ≤ 1−
(

1− 1
p

)s

+
((

D − T

p− 1

)
p1/2

T
+

1
p− 1

)(
4
π2

log p + 1.72
)s

.

Proof. By a general discrepancy bound in [14–Corollary 3.11] we obtain

Ds(N) ≤ 1−
(

1− 1
p

)s

+
B

N

(
4
π2

log p + 1.72
)s

,

where B is the maximum over all (μ0, . . . , μs−1) ∈ Fs
p \ (0, . . . , 0) of the expo-

nential sums SN . The result follows from Theorems 1 and 2. �

5 Final Remarks

For 1 ≤ D ≤ T − 1 with gcd(D, p− 1) = 1 and a, b ∈ F∗
p, the polynomial

f(X) = a(X + b)D = a

D∑
i=0

(
D

i

)
bD−iXi (5)

of weight D + 1 is a permutation polynomial of Fp, and so the sequence (1) has
least period T . It has linear complexity D + 1 by (4). Therefore and by [17–
Section 2] it passes the D-dimensional lattice test introduced by Marsaglia (see
[9]). In contrast to sequences defined with a general polynomial of large weight,
it can be rather efficiently generated.

Theorem 3 is nontrivial only if D is at most of the order of magnitude
Tp−1/2(log p)−s. However, for polynomials of the form (5) with D close to p− 2
(in case T = p− 1), or more generally for rational functions of the form

f(X) = a(X + b)−d

(with the convention 0−1 = 0) with small d, we can obtain similar results using
the following analogs of Lemmas 1 and 2 for rational functions which can be
found in [12, 18].
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Lemma 5. Let χ be a nontrivial additive character of Fp and let f/g be a ra-
tional function over Fp. Let v be the number of distinct roots of the polynomial
g in the algebraic closure Fp of Fp. Suppose that f/g is not constant. Then∣∣∣∣∣∣∣

∑
ξ∈Fp

g(ξ)�=0

χ

(
f(ξ)
g(ξ)

)∣∣∣∣∣∣∣ ≤ (max(deg(f),deg(g)) + v∗ − 2)p1/2 + δ,

where v∗ = v and δ = 1 if deg(f) ≤ deg(g), and v∗ = v+1 and δ = 0 otherwise.

Lemma 6. Let χ be a nontrivial additive character and ψ a nontrivial multi-
plicative character of Fp and let f/g be a rational function over Fp. Let v be the
number of distinct roots of the polynomial g in the algebraic closure Fp of Fp.
Then ∣∣∣∣∣∣∣∣

∑
ξ∈F∗p

g(ξ)�=0

χ

(
f(ξ)
g(ξ)

)
ψ(ξ)

∣∣∣∣∣∣∣∣ ≤ (max(deg(f),deg(g)) + v∗ − 1)p1/2,

where v∗ = v if deg(f) ≤ deg(g), and v∗ = v + 1 otherwise.

The particularly interesting case d = 1 is investigated in [20]. In this case we
have the following main character sum bound.

Theorem 4. If μ1, μ2, . . . , μs are not all 0, then we have

|SN | < s
(
2p1/2 + 1

)( 4
π2

log T + 1.8
)

for 1 ≤ N < T.

These inversive generators have also desirable structural properties (see [3,
4, 10]).

Mordell [11] established the bound∣∣∣∣∣∣
∑
ξ∈Fp

ep(f(ξ))

∣∣∣∣∣∣ ≤ (k1k2 · · · kw gcd(p− 1, k1, k2, . . . , kw))1/2wp1−1/2w

for polynomials of the type

f(X) = c1X
k1 + · · ·+ cwX

kw , 1 ≤ k1 < . . . < kw < p− 1, p 	 |c1 · · · cw.

This bound is nontrivial for a restricted set of polynomials of large degree and can
be used to obtain nontrivial discrepancy bounds for these particular polynomials.

For the p-periodic sequences γ0, γ1, . . . defined by

γn = f(n) for n = 0, 1, . . .
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we have discrepancy bounds of the same order of magnitude as in Theorem 3
for all dimensions s with 2 ≤ s ≤ deg(f) (see [13]). For the analogous results on
the inversive sequence

γn = (an + b)−1 for n = 0, 1, . . .

see [5]. Appropriate bounds for corresponding sequences over arbitrary finite
fields were obtained in [16].

Recursively defined generators

γn+1 = f(γn) for n = 0, 1, . . .

with some initial value u0 were investigated in [15]. However, the results are
much weaker than for the explicitly defined sequences. For the particular case
of inversive sequences

γn+1 = aγ−1
n + b for n = 0, 1, . . .

much better results were proven in [6]. The character sum bounds are of the
order of magnitude O(N1/2p1/4) (vs. O(p1/2 log p) in Theorem 4 or in [5]). The
method of [6, 15] can also be applied to explicit generators yielding character
sum bounds of the order of magnitude O(N1/2p1/4).
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Abstract. The number of subwords of length r and of given value within
a period of a sequence in the title is shown to be close to equidistribution.
Important tools in the proof are a higher order correlation and Galois
ring character sum estimates.

Keywords: Galois Rings, Maximum Length Sequences, Most Significant
Bit, Higher Order Correlation.

1 Introduction

The analogues of M-sequences over Z2l were introduced by Dai in 1992 [1], under
the name ML-sequence over rings. In [4] the distribution properties of the most
significant bit of these ML-sequences were investigated. The frequency of zeroes
(resp. ones) in a period of such a binary sequence was shown to be close to 1/2,
up to a bound of order square root of the period. These bounds were improved
(by roughly removing the factor of order 2l from the bounding constant) in [10].
In [2] the frequency of subwords of length r in a period was shown to be close to
1/2r. The present contribution 1 improves on the latter bound. Essential tools
are the higher order correlation and the character sums estimates of [7].

2 Preliminaries

Let R = GR(2l,m) denote the Galois ring of characteristic 2l with 2lm ele-
ments. Let ξ be an element in GR(2l,m) that generates the Teichmüller set T

1 The paper has been written under the partial financial support of the Russian fund
for fundamental research (under project No. 03 - 01 - 00098).

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 275–281, 2005.
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of GR(2l,m). Specifically, let T = {0, 1, ξ, ξ2, . . . , ξ2m−2} and T ∗ = {1, ξ, ξ2, . . . ,
ξ2m−2}. The 2-adic expansion of x ∈ GR(2l,m) is given by

x = x0 + 2x1 + · · ·+ 2l−1xl−1,

where x0, x1, . . . , xl−1 ∈ T . The Frobenius operator F is defined for such an x
as

F (x0 + 2x1 + · · ·+ 2l−1xl−1) = x2
0 + 2x2

1 + · · ·+ 2l−1x2
l−1,

and the trace Tr, from GR(2l,m) down to Z2l , as

Tr(x) :=
m−1∑
j=0

F j(x).

We also define another trace tr from F2m down to F2 as

tr(x) :=
m−1∑
j=0

x2j

.

Throughout this note, we let n = 2m and R∗ = R\2R. Let γ = ξ(1+2λ) ∈ R,
where ξ ∈ T and λ ∈ R∗. Assume 1 + 2λ is of order 2l−1. Since ξ is of order
2m − 1 then γ is an element of order N = 2l−1(2m − 1). Following [4–Lemma
2], we define the sequence:

Sl,m := {(Tr(αγt))N−1
t=0 | α ∈ R∗}. (1)

Let MSB : Zn
2l → Zn

2 be the most-significant-bit map, i.e.,

MSB(x0 + 2x1 + . . . + 2l−1xl−1) := xl−1.

3 The r-th Moments

Let l be a positive integer (without loss of generality we assume that l ≥ 4) and
ω = e2πi/2l

be a primitive 2l-th root of 1 in C. Let ψk be the additive character
of Z2l such that

ψk(x) = ωkx.

Let μ : Z2l → {±1} be the mapping μ(t) = (−1)c, where c is the most significant
bit of t ∈ Z2l ,i.e. it maps 0, 1, ..., 2l−1 − 1 to +1 and 2l−1, 2l−1 + 1, ..., 2l − 1 to
−1. Our goal is to express this map as a linear combination of characters. Recall
the Fourier transformation formula on Z2l :

μ =
2l−1∑
j=0

μjψj , where μj =
1
2l

2l−1∑
x=0

μ(x)ψj(−x). (2)

For all β ∈ R = GR(2l,m), we denote by Ψβ the character

Ψβ : R→ C∗
, x �→ ωTr(βx).
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Note that for the defined above ψk and Ψβ , we have:

ψk(Tr(βx)) = Ψβk(x). (3)

The following lemma follows from [7].

Lemma 1. For all λ ∈ R, λ 	= 0, we have:∣∣∣∑
x∈T

Ψλ(x)
∣∣∣ ≤ (2l−1 − 1)

√
2m.

Proof. We restate [7–Theorem 1] for the special Galois Ring of concern here.
Let f(X) denote a polynomial in R[X] and let

f(X) = F0(X) + 2F1(X) + . . . + 2l−1Fl−1(X)

denote its 2-adic expansion. Let di be the degree in X of Fi. Let ψ be an arbitrary
additive character of R, and set Df to be the weighted degree of f , defined as

Df = max(d02l−1, d12l−2, . . . , dl−1).

With the above notation, we have (under mild technical conditions) the bound∣∣∣∑
x∈T

ψ(f(x))
∣∣∣ ≤ (Df − 1)2m/2.

See [7] for details. The result follows upon considering a linear f so that d0 =
d1 = . . . = dl−1 = 1, and Df being equal to 2l−1. ��

We now have the following results on the r-th moment function of the binary
sequence (ct)t∈N, which is the image of Sl,m defined by (1) under the MSB map.

First, we need the following technical lemma:

Lemma 2. Let γ = ξ(1 + 2λ) ∈ R, where ξ ∈ T ∗, λ ∈ R∗ = R\2R, and
1 + 2λ ∈ R is an element of order 2l−1. Set N = 2l−1(2m − 1). Then, for any
0 	= β ∈ R, we have:

N−1∑
j=0

Ψβ(γj) =
2l−1−1∑

j=0

(∑
x∈T ∗

Ψβ(1+2λ)j (x)

)
.

Proof. Since (2l−1, 2m − 1) = 1, as j ranges over {0, 1, . . . , N − 1}, the set of
ordered pairs

{(j (mod 2l−1), j (mod 2m − 1))}
runs over all pairs (j1, j2), where j1 ∈ {0, 1, . . . , 2l−1−1} and j2 ∈ {0, 1, . . . , 2m−
2}. Thus the set

{γj ; j = 0, 1, . . . , N − 1} = {ξj(1 + 2λ)j ; j = 0, 1, . . . , N − 1}.
is equal to the cartesian product of sets:

{(1 + 2λ)j1 ; j1 = 0, 1, . . . , 2l−1 − 1} × {ξj2 ; j2 = 0, 1, . . . , 2m − 2} (4)
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From (4) we obtain:

N−1∑
j=0

Ψβ(γj) =
2l−1−1∑
j1=0

2m−2∑
j2=0

Ψβ((1 + 2λ)j1ξj2),

whereas observing that

Ψβ((1 + 2λ)j1ξj2) = Ψβ′(ξj2),

where β′ = β(1 + 2λ)j1 , yields:

2l−1−1∑
j1=0

2m−2∑
j2=0

Ψβ(1+2λ)j1 (ξj2).

The Lemma follows. ��
We now proceed to bound the r-th moments, by bounding first the correlation

of order r.

Theorem 3. With notation as above, and for all pair-wise distinct phase shifts
τ1, τ2,... τr ∈ [1, 2m − 2 ] (r is a positive integer), let

Θ(τ1, ..., τr) =
N−1∑
t=0

(−1)ct+τ1+ct+τ2+...+ct+τr ,

where ct = MSB(Tr(αγt)). We then have (for l ≥ 4) the bound :

|Θ(τ1, ..., τr)| ≤
(

2l
π

ln(2) + 1
)r

2l−1[(2l−1 − 1)
√

2m + 1] ≈ Cl

√
2m.

Here Cl is a constant in l of order lr22l.

Proof. Again let γ = ξ(1 + 2λ) ∈ R, where ξ ∈ T is a generator of the
Teichmüller set and λ ∈ R∗. As we have ct = MSB(Tr(αγt)), and by (2), we
obtain that (−1)ct is equal to:

μ(Tr(αγt)) =
2l−1∑
j=0

μjψj(Tr(αγt)) =
2l−1∑
j=0

μjΨαj(γt).

Changing the order of summation, we obtain that:

Θ(τ1, ..., τr) =
2l−1∑
j1=0

...

2l−1∑
jr=0

μj1 ...μjr

N−1∑
t=0

Ψβ(γt).

Here β = α(j1γτ1 + ... + jrγ
τr ) and j1γ

τ1 + ... + jrγ
τr 	= 0. Applying Corollary

7.4 of [9] (for l ≥ 4), we have:

2l−1∑
j1=0

...
2l−1∑
jr=0

|μj1 ...μjr
| =

⎛⎝2l−1∑
j=0

|μj |

⎞⎠r

≤
(

2l
π

ln(2) + 1
)r

. (5)
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Applying Lemma 2, we have:

N−1∑
j=0

Ψβ(γj) =
2l−1−1∑

j=0

(∑
x∈T

Ψβ(1+2λ)j (x)

)
,

where 0 	= β(1 + 2λ)j ∈ R so that each sum over x can be estimated using
Lemma 1. Thus, we have:

∣∣∣N−1∑
j=0

Ψβ(γj)
∣∣∣ ≤ 2l−1[(2l−1 − 1)

√
2m + 1]. (6)

Combining (5) with (6) the Lemma follows. ��

4 Distribution of r-Patterns

In this note our main goal is to study the distribution of elements in the binary
sequence (ct)t∈N, which is the image of Sl,m defined by (1) under the MSB map.

For a positive integer r, fix τ1, . . . , τr ∈ [1, . . . , 2m−2] and let v = (v1, ..., vr)
∈ Zr

2. Then define N(v) to be the number of integers t ∈ [0, N − 1] such that

ct+τi
= vi, 1 ≤ i ≤ r.

If u = (u1, ..., ur) ∈ Zr
2 and v = (v1, ..., vr) ∈ Zr

2, let

〈u · v〉 =
r∑

i=1

uivi.

The main result is the following estimate:

Theorem 4. With notation as above, the bound :∣∣∣N(v)
N

− 1
2r

∣∣∣ ≤ (2l
π

ln(2) + 1
)r

2(l−1)
√

2−m,

where N = 2l−1(2m − 1).

Proof. For any t ∈ [0, N − 1], let ct = (ct+τ1 , ..., ct+τr
) ∈ Zr

2. Let u =
(u1, . . . , ur) ∈ Zr

2. Then

〈u · ct〉 =
r∑

i=1

uict+τi

and by definition of N(v) we have

S(u) =
N−1∑
t=0

(−1)〈u·ct〉 =
∑

v∈Zr
2

(−1)〈u·v〉N(v).
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Thus we have
N(v) =

1
2r

∑
u∈Zr

2

(−1)〈u·v〉S(u).

Note that S(0) = N , and we obtain

N(v) =
1
2r

⎛⎝N +
∑

0 �=u∈Zr
2

(−1)〈u·v〉S(u)

⎞⎠ .

It implies ∣∣∣N(v)
N

− 1
2r

∣∣∣ = 1
N

∣∣∣ ∑
0 �=u∈Zr

2

(−1)〈u·v〉S(u)
∣∣∣

<
2r

N
× max

0 �=u∈Zr
2

{|S(u)|}.

For any non-zero vector u = (u1, . . . , ur) ∈ Zr
2, we have

〈u · ct〉 =
r∑

i=1

uict+τi
=
∑
i∈I

ct+τi
,

where I = {i ∈ [1, r] : ui = 1}. Let I be {i1, . . . , is} then

S(u) = Θ(τi1 , . . . , τis
),

where s ≤ r, thus we can apply Theorem 3 to obtain the bound

max
0 �=u∈Zr

2

{|S(u)|} ≤
(

2l
π

ln(2) + 1
)r

2l−1[(2l−1 − 1)
√

2m + 1].

Substituting this estimate into (7) and using that N = 2l−1(2m−1) the Theorem
follows. ��
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Abstract. We study algebraic feedback shift registers (AFSRs) based
on quotients of polynomial rings in several variables over a finite field.
These registers are natural generalizations of linear feedback shift regis-
ters. We describe conditions under which such AFSRs produce sequences
with various ideal randomness properties. We also show that there is an
efficient algorithm which, given a prefix of a sequence, synthesizes a min-
imal such AFSR that outputs the sequence.

1 Introduction

Linear feedback shift registers (LFSRs) are useful for many applications, in-
cluding cryptography, coding theory, CDMA, radar ranging, and pseudo-Monte
Carlo simulation. There is a large body of literature on these simple devices for
generating pseudorandom sequences. Naturally, many variations and generaliza-
tions of LFSRs have been studied. Algebraic feedback shift registers (AFSRs)
are a very general class of sequence generators that include LFSRs as a special
case [8]. Each class of AFSRs is based on a choice of an algebraic ring R and
a parameter r ∈ R. In the case of LFSRs R is F [x], the ring of polynomials in
one variable x over a finite field F , and r = x. In previous work we have studied
AFSRs over the integers [7] and certain finite extensions of the integers [3, 5, 9].
More recently [4] we have studied AFSRs over F [x] when r 	= x. In this paper
we generalize this last work further and study AFSRs over polynomial rings of
transcendence degree one over finite fields. We call this the function field case
since, in the language of algebraic geometry, the field of fractions of such a ring
is the function field of an algebraic curve. We describe the basic properties (such
as periodicity) of the resulting sequences.

Two aspects of LFSRs that make them especially interesting are the statis-
tical randomness of maximum period LFSR sequences (m-sequences) and the
existence of the Berlekamp-Massey algorithm. This algorithm efficiently solves
the register synthesis problem: given a prefix of a sequence, find a smallest LFSR
that outputs the sequence. This algorithm plays a role in both cryptanalysis and
error correction. It has been generalized to the setting of codes defined over alge-
braic curves, or algebraic geometry codes, where it is used to solve the so called

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 282–297, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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“key equation” [12, 13, 14], and it has been generalized to the setting of FCSRs
and some more general AFSRs [9]. There is, however, no known generalization of
the Berlekamp-Massey algorithm that works for all classes of AFSRs, although
there is a general approach that works if there is a reasonable analog of degree
[9]. We show here that there is such an analog in the function field case, result-
ing in a solution to the register synthesis problem for AFSRs based on function
fields. We characterize the maximal period sequences for a given length of AFSR
and show that they have certain good statistical properties — uniform distri-
bution of small subsequences, the run property, and ideal autocorrelations. We
also compare them to Blackburn’s classification of sequences [1] with the shift
and add (SAA) property and show that all sequences with the SAA property
and uniform distributions are maximal period sequences over function fields.

A class of AFSRs depends on a choice of ring R, r ∈ R, and S ⊆ R, a complete
set of representatives modulo r. An AFSR is determined by q0, q1, · · · , qk ∈ R,
q0 invertible modulo r. States are tuples (a0, a1, · · · , ak−1;m) with ai ∈ S and
m ∈ R. The element m is called the extra memory. The AFSR changes states as
follows. There are unique ak ∈ S and m′ ∈ R so that

q0ak + rm′ = m +
k∑

i=1

qiak−i. (1)

Then the new state is (a1, a2, · · · , ak;m′). An LFSR is an AFSR with R = F [x]
for some field F , r = x, S = F , all qi ∈ S, and q0 = 1. AFSRs are analyzed
in terms of coefficient sequences of r-adic numbers

∑∞
i=0 air

i, ai ∈ S. The set
of r-adic numbers is denoted by Rr. Rr is a ring, and such an r-adic number
is invertible in Rr if and only if a0 is invertible modulo r. The r-adic number
α(A, r) =

∑∞
i=0 air

i associated with the output sequence A = a0, a1, · · · is in
fact a rational element u/q where u ∈ R and q =

∑k
i=1 qir

i − q0. In some
cases maximal period AFSR sequences, or �-sequences, share many desirable
properties with m-sequences [8]. We have shown, for example, that when R is
Z or Z[

√
N ] for some integer N , then �-sequences have excellent randomness

properties, similar to those of m-sequences [4, 5, 7].
One can also consider rings R with nonzero characteristic. Previously we

showed that if R = F [x] and R/(r) is not a prime field, �-sequences are dis-
tinct from m-sequences but have similar statistical properties: the distributions
of subsequences in these �-sequences are as uniform as possible, their distribu-
tions of lengths of runs matches the expectation and they have the shift and add
property [4]. Thus, with an appropriate definition, they have ideal autocorrela-
tions. In this paper we describe conditions under which the same randomness
properties hold in the higher genus case.

It has been shown by Blackburn that every sequence of period phk − 1 over
an extension Fph of Fp with the shift and add property is the Fp-linear image
of successive powers of a primitive element in Fphk [1]. Moreover, the sequences
that also have uniform distributions can be identified within this classification.
The advantage of the approach described here is that it leads to more efficient
implementations of generators of the sequences than Blackburn’s description.
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2 Setting and Hypotheses

In this section we describe the general setting for the sequences we are studying
and various conditions that may need to hold to obtain sequences with good
properties.

Let p ∈ Z be prime, h > 0 ∈ Z, and I and r be an ideal and an element in
Fph [x1, · · · , xn]. Assume that R = Fph [x1, · · · , xn]/I has transcendence degree 1
over Fph and that K = R/(r) is finite. Then R/(r) is a vector space over Fph so
its cardinality is a power of ph, say phe. If n = 1, r = x1, and I = (0), then the
AFSRs we obtain are exactly the LFSRs.

One goal is to obtain conditions under which the output from an AFSR based
on these ingredients is statistically random. In order to construct AFSRs with
good statistical properties we need a “well structured” complete set of represen-
tatives S for R modulo r.

Hypothesis H1: S is closed under addition and contains Fph .

It is straightforward to see that such sets S exist in abundance (the Fph -
span of a lift of a basis containing 1 from R/(r) to R with 1 lifted to 1). Any
S that satisfies H1 is closed under multiplication by Fp, but possibly not un-
der multiplication by any larger field. In general we can represent any element
of R as an r-adic element with coefficients in S, but in order that we get good
randomness properties we need to be able to represent the elements of R finitely.

Hypothesis H2: If v ∈ R then for some � ∈ Z and v0, · · · , v� ∈ S,

v =
�∑

i=0

vir
i. (2)

Since r is not a zero divisor, the representation in equation (2) is unique if
v� 	= 0. Indeed, suppose that

m∑
i=0

uir
i =

�∑
i=0

vir
i

for some ui, vi ∈ S with um 	= 0 	= v� and (u0, u1, · · ·) 	= (v0, v1, · · ·) and let � be
the minimal integer so that such a pair of representations exists. Reading this
equation modulo r we see that u0 = v0, so by subtraction we may assume that
u0 = v0 = 0. But the fact that r is not a zero divisor then implies that

m−1∑
i=0

ui+1r
i =

�−1∑
i=0

vi+1r
i

and (u1, u2, · · ·) 	= (v1, v2, · · ·). This contradicts the minimality of �.
We say that the � in Hypothesis H2 is the r-degree of v, � = degr(v).

Lemma 1. If Hypotheses H1 and H2 hold, then for all u, v ∈ R, degr(u+ v) ≤
max(degr(u),degr(v)). Let a = max{deg(st : s, t ∈ S}. Then for all u, v ∈ R,

degr(uv) ≤ degr(u) + degr(v) + a.
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To prove randomness properties we need an additional hypothesis. Let Vq

denote the set of elements u of R such that v/q has a periodic r-adic expansion.

Hypothesis H3: The elements of Vq are distinct modulo rk.

3 Periodicity

Let A = a0, a1, · · · be the output from an AFSR based on R, r, S with connection
element

q =
k∑

i=1

qir
i − q0, qi ∈ S,

with q0 invertible modulo r. It follows that
∞∑

i=0

air
i =

u

q

for some u ∈ R. We call this a rational representation of A. Any left shift of A
can be generated by the same AFSR (with a different initial state), so also has
a rational representation with denominator q. Our first task is to analyze the
period of A. We need one fact from the general theory of AFSRs (which was
misstated in the original paper and is correctly stated here).

Theorem 1. ([8]) Let A be periodic. Let U denote the set of elements v ∈ R
such that v/q is a rational representation of a shift of A. Suppose no two elements
of U are congruent modulo q and let V be a complete set of representatives
modulo q containing U . Then

ai = q−1
0 (wr−i (mod q)) (mod r), (3)

for some w ∈ R/(q).

By equation (3) we mean first find the multiplicative inverse δ of the image
of r in R/(q). Raise δ to the ith power and multiply by w. Then lift the result
to an element of V . Reduce the result modulo r to an element of R/(r). Finally,
multiply that element by the inverse of the image of q0 in R/(r).

Let Vq denote the set of elements u of R such that v/q has a periodic r-adic
expansion.
Corollary 1. If A is periodic and no two elements of Vq are congruent modulo
q, then

ai = q−1
0 (wr−i (mod q)) (mod r)

for some w ∈ R/(q).
In our case the stronger condition in the corollary holds.

Theorem 2. A is eventually periodic. If S satisfies Hypotheses H1 and H2, then
A’s eventual period is a divisor of the multiplicative order of r modulo q. If R/(q)
is an integral domain, then the period equals the multiplicative order of r modulo
q. In general, for a given q there is at least one periodic sequence with connection
element q whose period is the multiplicative order of r modulo q.
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Proof: To see that A is periodic, it suffices to show that the r-degree of the
extra memory of the AFSR is bounded, for then there are finitely many distinct
states of the AFSR. Eventually the state repeats and from then on the output
is periodic.

Suppose that at some point the AFSR is in state

(aj , aj+1, · · · , aj+k−1;m)

with m =
∑�

i=0 mir
i and m0, · · · ,m� ∈ S. Also, suppose that the maximal r-

degree of the product of two elements of S is d. Then the carry m′ of the next
state satisfies

rm′ = m +
k−1∑
i=1

qiaj+k−i − q0aj+k.

The right hand side is divisible by r and its r-degree is at most max{�, d}, so
the r-degree of m′ is at most max{�− 1, d− 1}. Thus the r-degree of the carry
decreases monotonically until it is less than d, and then remains less than d
forever.

To describe the eventual period, it suffices to consider strictly periodic se-
quences since q is also a connection element of every shift of A. We claim that no
two elements of Vq are congruent modulo q. One consequence of Hypothesis H1
is that the r-adic sum of two periodic sequences is the term-wise sum, so is also
periodic. Thus to prove our claim it suffices to show that no nonzero element of
Vq is divisible by q. Suppose to the contrary that uq ∈ Vq. Then u = uq/q has
a periodic r-ary expansion. But this contradicts the fact that any element of R
has a unique r-adic expansion.

Now consider the series of numerators u0, u1, · · · of the rational representa-
tions of the r-adic elements associated with the shifts of A. The period is the
least t such that ut = u0. By the argument in the preceding paragraph, this is
equivalent to ut ≡ u0 (mod q). For every i,

ui−1

q
= ai−1 + r

ui

q
,

and so ui−1 = qai−1 + rui. Therefore ui ≡ r−1ui−1 ≡ r−iu0 (mod q) by induc-
tion. Thus ut ≡ u0 (mod q) if and only if rtu0 ≡ u0 (mod q), which is equivalent
to (rt − 1)u0 ≡ 0 (mod q).

If R/(q) is an integral domain, then this says that i is the multiplicative
order of r modulo q. If R/(q) is not an integral domain, then it implies that i is
a divisor of the multiplicative order of r modulo q.

Finally, consider the coefficient sequence of the r-adic expansion of 1/q. This
sequence may not be periodic, but it is eventually periodic, for some j the its
shift by j positions is periodic. This shift has a rational representation u/q, and
by the above argument, u ≡ r−j (mod q). In particular, u is invertible modulo
q, so (ri − 1)u ≡ 0 (mod q) if and only if ri ≡ 1 (mod q). Thus in this case the
period equals the multiplicative order of r modulo q. ��

Corollary 2. (To the proof.) A has an exponential representation.
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4 �-Sequences and Randomness

Let A be an AFSR of sequence of the type described in Section 2. The period
A is largest if R/(q) is a field and r is primitive. Then A has period phg − 1 for
some g. A is a punctured de Bruijn sequence of span k if each nonzero sequence
B of length k in a period of A occurs once and the all-zero sequence of length
k does not occur. To produce punctured de Bruijn sequences over Fphe we want
the period to be of the form phek − 1. Thus hg = hek, so g = ek.

Definition 1. Let r, q ∈ R, q =
∑k

i=1 qir
i − q0 with qk 	= 0, |R/(r)| = phe,

S ⊆ R, and suppose Hypotheses H1 and H2 hold. Let |R/(q)| = phg, and let
R/(q) be a field. Let A = (a0, a1, · · ·) be the coefficient sequence of the r-adic
expansion of a rational function u/q such that u 	= 0 ∈ R (or equivalently, that
is the nonzero periodic output sequence from an AFSR with connection element
q). Then A is an (r, q)-adic �-sequence if A is periodic with period phg − 1. That
is, if r is primitive modulo q.

Theorem 3. Suppose A is an (r, q)-adic �-sequence, Hypotheses H1, H2, and
H3 hold, and qk ∈ Fph . Then the following hold.

1. A is a punctured de Bruijn sequence. Thus the number of occurrences of a
sequence B of length m ≤ k in a period of A is phe(k−m) if B 	= (0, · · · , 0)
and is phe(k−m) − 1 otherwise.

2. A has the shift and add property
3. A is balanced.
4. A has the run property.
5. A has ideal autocorrelations. (Care is needed in defining autocorrelations

over non-prime fields.)

Detailed definitions of these properties may be found in Golomb’s book [2].

Proof: Properties (3), (4) and (5) follow from properties (1) and (2).
Since qk = Fphe and Hypothesis H2 holds, we have

|R/(q)| = |S|k = phek.

Thus A has period phek − 1. The various shifts of A plus the all-zero sequence
give phek periodic sequences corresponding to elements u/q. Thus,

|Vq| ≥ phek.

We have seen that the elements of Vq are distinct modulo q, so

|Vq| ≤ phek.

Thus,
|Vq| = phek = |R/(rk)|.

By Hypothesis H3, the elements of Vq are distinct modulo rk, so Vq is a complete
set of representatives modulo rk.
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The set of occurrences in A of a block B of k elements corresponds to the
set of shifts of A that begin with B. By the above, every nonzero u/q with
u ∈ Vq occurs as a shift of A, so the set of occurrences in A of B corresponds
to the set of nonzero u/q, u ∈ Vq, that begin with B. We claim that the u/q
are distinct modulo rk, so that each nonzero B occurs once. Suppose not, so
that u/q ≡ v/q (mod rk) for some u 	= v ∈ Vq. Then u ≡ v (mod rk) since
q is invertible modulo r, and hence also modulo rk. But by Hypothesis H3 the
elements of Vq are distinct modulo rk. It follows that A is a punctured de Bruijn
sequence.

Furthermore, if u, v ∈ Vq, then u+ v ∈ Vq. The shifts of A account for all the
u/q with u 	= 0 ∈ Vq so the SAA property follows. ��

5 �-Sequences and Blackburn Sequences

Blackburn [1] showed that a sequence A = a0, a1, · · · of period pek − 1 over Fpe

has the shift and add (SAA) property if and only if there is a primitive element
α ∈ Fpek and a surjective Fp-linear function T : Fpek → Fpe such that ai = T (αi)
for all i ≥ 0. We call sequences realized this way Blackburn sequences.

Theorem 4. Let A be a Blackburn sequence that is a punctured de Bruijn se-
quence. Then A is an (r, q)-adic �-sequence over Fp.

This section is devoted to a proof of this theorem.

Corollary 3. Every punctured de Bruijn sequence with the SAA property is an
(r, q)-adic �-sequence over Fp.

Let A = a0, a1, · · · be a sequence with ai = T (αi) with T an Fp-linear function
from Fpek to Fpe and α primitive in Fpek . We first find necessary and sufficient
conditions for A to be a punctured de Bruijn sequence. If β0, · · · , βe−1 is a basis
of Fpe over Fp, then there are Fp-linear functions Ti : Fpek → Fp, i = 0, · · · , e−1,
such that T =

∑e−1
i=0 βiTi.

Lemma 2. ([10–p. 56]) If f : Fpn → Fp is Fp-linear, then there is a constant
u ∈ Fpn such that

f(x) = Trpn

p (ux).

Thus we have

Tj(x) = Trpek

p (ujx) with uj ∈ Fpek , i = 0, · · · , e− 1.

As was pointed out by a referee of an earlier paper [4], this makes it possible
to characterize the sequences that have the SAA property and uniform distri-
butions. We include a proof since, to our knowledge, this fact has not been
described in the literature.
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Theorem 5. Let A have the SAA property. Then A is a punctured de Bruijn
sequence if and only if

V = {ujα
i : 0 ≤ j < k, 0 ≤ i < e}

is a basis for Fpek over Fp.

Proof: The sequence A is a punctured de Bruijn sequence if and only if each
nonzero k-tuple of elements of Fpe occurs exactly once in each period of A,
and the zero k-tuple does not occur. Since the period of A is pek − 1, this is
equivalent to each such k-tuple occurring at most once in A, and the zero k-
tuple not occurring. Since A has the SAA property, it is equivalent simply to
the zero k-tuple not occurring. Indeed, if any k-tuple occurs twice, then we can
shift A by the distance between the two occurrences, then subtract A (the same
as adding A p− 1 times) from this shift to obtain an occurrence of the all zero
k-tuple.

The all-zero k-tuple occurs if and only if for some n we have an = an+1 =
· · · = an+k−1 = 0. That is,

Trpek

p (ujα
i+n) = 0

for 0 ≤ j < k and 0 ≤ i < e. The set

αnV = {ujα
i+n : 0 ≤ j < k, 0 ≤ i < e}

is a basis for Fpek over Fp if and only if V is. A linear function is zero on a basis
if and only if it is identically zero. But the trace function is not identically zero.
Thus, if V is a basis, then A is a punctured de Bruijn sequence.

Conversely, if
e−1∑
i=0

k−1∑
j=0

cijujα
i = 0

with each cij in Fp and not all zero, then for any n,

e−1∑
i=0

k−1∑
j=0

cijTr
pek

p (ujα
i+n) = 0.

That is, the Fp-coordinates of all k-tuples satisfy a common linear relation. Hence
not all nonzero values of k-tuples can occur and A is not a punctured de Bruijn
sequence. ��

Our goal now is to realize a shift of A as a maximum period AFSR sequence
over a function field, i.e., an �-sequence. That is, we want to find a ring R =
Fp[z1, · · · , zn]/I with I an ideal, an element r ∈ R, a subset S ⊆ R, and an
element q ∈ R so that A is the output from an AFSR based on R, r, S with
connection element q. That is,

ai = q−1
0 (bri (mod q)) (mod r),
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and equivalently,
∑∞

i=0 air
i = u/q in the ring Rr of r-adic elements over R, for

some u ∈ R.
We achieve this as follows. For any Fp-linear function f , let Kf denote the

kernel of f . We construct an appropriate R together with functions Γ : R →
Fpek and Δ : R → Fpe so that KΓ = (q),KΔ = (r), and Δ(s) = qT (cΓ (s)) for
s ∈ S and some constant c 	= 0 ∈ Fpek .

Let f(x) be the minimal polynomial of r = α−1 over Fpe so that

f(x) =
k∑

i=0

fix
i, fi ∈ Fpe .

We have fk = 1 ∈ Fp and

f0 = r(pek−1)/(pe−1),

since f0 is the product of the Galois conjugates rpj

, j = 0, · · · , k−1. Let β = f0.
Then β is primitive in Fpe and 1, β, · · · , βe−1 is a basis of Fpe over Fp.

We have

fi =
e−1∑
j=0

fijβ
j , fij ∈ Fp.

Thus we can write

f(x) =
e−1∑
j=0

(
k∑

i=0

fijx
i)βj =

e−1∑
j=0

zj(x)βj .

The polynomial zj(x) ∈ Fp[x] has degree at most k. In particular, if e ≥ 2, then
zj(x) does not have r as a root unless zj(x) is identically zero.

Note that fk = 1, which implies that z0(x) has degree k and is nonzero. All
other zi(x) have degree at most k − 1. Since f0 = β, z1(x) has constant term 1,
so is nonzero, and all other zi(x) have constant term 0.

Lemma 3. There exist c, γ0, · · · , γe−1 ∈ Fpek so that

a.
∑e−1

j=0 zj(r)γj = 0;
b. γ0 = 1;
c. T (cγ1) = 1; and
d. T (cγ0), · · · , T (cγe−1) are linearly independent over Fp.

Proof: See Appendix A. ��
Suppose conditions (a), (b), (c), and (d) hold. By conditions (b) and (d) we

have T (c) = T (cγ0) 	= 0. We define Γ (yi) = γi and Γ (x) = r. We also define
Δ(yi) = δi = T (c)−1T (cγi) for i = 0, · · · e − 1, and Δ(x) = 0. We then extend
these to ring homomorphisms. Let I be the intersections of the kernels of Γ and
Δ. The functions Γ and Δ induce functions on R = Fp[x, y0, · · · , ye−1]/I for
which we shall use the same names. It follows from condition (a) that

k∑
i=0

e−1∑
j=0

fijγjr
i = 0.
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Let

S = {
e−1∑
i=0

siyi : si ∈ Fp}.

Let

qi =
e−1∑
j=0

fijyj ∈ S,

so that

Γ (qi) =
e−1∑
j=0

fijγj .

Let q =
∑k

i=0 qix
i. Then Γ (q) = 0. We have Γ (y1) = f0 so q0 = y1 and

Δ(q) = Δ(q0) = T (c)−1T (cγ1) = T (c)−1 by condition (c). Also, fk = 1 so∑e−1
j=0 fijγj = 1 and qk = 1.

Lemma 4. Let c, γ0, · · · , γe−1 satisfy the conditions of Lemma 3. If R, S, and
q are as above, then Hypotheses H1, H2, and H3 hold.

Proof: See Appendix B. ��
The sequence generated by an AFSR based on R, x, and S with connection

element q is given by bi = q−1
0 (x−i (mod q)) (mod x) which really means

bi = Δ(q0)−1 ·Δ(Γ−1
S (Γ (x)−i)))

= Δ(q0)−1 ·Δ(Γ−1
S (r−i))

= T (c) ·Δ(Γ−1
S (αi)),

where ΓS is the restriction of Γ to S. On the other hand ai = T (cαi) so we want
to see that

T (cαi) = T (c) ·Δ(Γ−1
S (αi))

for every i. The powers of α are precisely the images of the nonzero elements of
S under Γ , so it suffices to show that for every y ∈ S we have

T (cΓ (y)) = T (c) ·Δ(y). (4)

Since T , Γ , and Δ are Fp-linear, it suffices to see that equation (4) holds for y
in an Fp-basis for S, such as {y0, y1, · · · , ye−1}. That is, it suffices to see that
T (cγi) = T (c)δi. This holds by the definition of δi. This completes the proof of
Theorem 4.

6 Rational Approximation

In this section we consider the problem of finding an AFSR over R, r, S that
generates a sequence A. This is equivalent [8] to finding u, q ∈ R such that the
α(A, r) = u/q, so we define the Rational Approximation Problem for AFSRs
over R, r, and S as:
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Rational Approximation over R, r, and S
Instance: A prefix of sequence A of elements of S.
Problem: Find elements u and q ∈ R so that α(A, r) = u/q.

We may approach problem with successive rational approximations: For each
i, find ui, qi ∈ R with α(A, r) ≡ ui/qi (mod ri). Such an algorithm converges
after T steps if α(A, r) = uT /qT . We measure the quality of the algorithm
in terms of the smallest T after which it converges, with the smallest such T
expressed as a function of the size of the smallest AFSR that outputs A and
we measure the quality in terms of the time complexity expressed as a function
of T . In the Berlekamp-Massey algorithm (rational approximation for LFSRs),
when the previous approximation fails at the next stage, a new approximation
is formed by adding a multiple of a (carefully chosen) earlier approximation. If
λ is the size of the smallest LFSR that outputs A, then the algorithm converges
in 2λ steps with time complexity O(T 2) [11].

One might try the same approach with AFSRs over more general rings. But if
there are carries when approximations are added, then the proof of convergence
breaks down. Xu and the author overcame this in a general setting [9]. The key
idea is to produce a new approximation that works for several new terms. To
make this work, we need an index function φ : R → Z ∪ {−∞} so that the
following holds.:

Property 1. There are non-negative integers a, b ∈ Z such that

1. φ(0) = −∞ and φ(z) ≥ 0 if z 	= 0;
2. for all z, y ∈ R we have φ(zy) ≤ φ(z) + φ(y) + a;
3. for all z, y ∈ R, we have φ(z ± y) ≤ max{φ(z), φ(y)}+ b; and
4. for all z ∈ R and n ≥ 0 ∈ Z, we have φ(rnz) = n + φ(z).

We define −∞ + c = −∞ for every integer c. Let nφ = max{φ(z) : z ∈ S} ∪
{φ(1)}. For a pair x, y ∈ R we define Φ(x, y) = max(φ(x), φ(y)).

If an AFSR over R and r has connection number q =
∑k

i=0 qir
i with qi ∈ T

and produces output sequence A with α = α(A, r) = u/q, then φ(q) and φ(u)
are bounded by affine functions of k and φ(m), where m is the initial memory.

Generally φ(m) measures the storage needed for m. From this and an expres-
sion for u in terms of q and the initial state, we show that λ = max(φ(u), φ(q))
is at most linear in the size of the AFSR. If we bound the execution time of a
rational approximation algorithm in terms of λ, then we will have bounded the
execution time in terms of the size of the AFSR. If A is an infinite sequence
of elements of S and λ is the minimal value of Φ(u, q) over all pairs u, q with
α(A, r) = u/q, then we say λ is the r-adic complexity of A.

We also need a subset P of R so that the following holds.

Property 2. There are c > d ≥ 0 ∈ Z such that

1. if s ∈ P , then rc does not divide s;
2. if z, y ∈ R, then there exist s, t ∈ P such that rc|sz + ty; and
3. if z, y ∈ R and s, t ∈ P , then φ(sz + ty) ≤ max{φ(z), φ(y)}+ d.
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We call P an interpolation set. Let MP be the cost of finding s, t in
Property 2.2.

Theorem 6. [9] Let φ be an index function and let P be an interpolation set for
R and r. Then there is a register synthesis algorithm for AFSRs over R, r, S with
time complexity O(MPT

2) such that if λ is the r-adic complexity of a sequence
A, then given a prefix of

T >
2c

c− d
λ +

c(2(a + b) + c + b �log(c)�+ nφ)
c− d

+ 1 ∈ O(λ)

symbols of A, the algorithm produces an AFSR that outputs A.

Suppose
R = Fph [x1, · · · , xn]/I = Fph [x]/I

and r ∈ R, so that R/(r) is finite. Thus |R/(r)| = r = phg for some g ∈ Z. Let
S be a set of representatives for R modulo r. We want to construct an index
function and interpolation set. Define φ(v) = degr(v) and φ(0) = −∞. Then
Property 1 holds with a = max{degr(uv) : u, v ∈ S} and b = 0.

If a = 0, then our AFSRs are LFSRs, so we assume that a ≥ 1. Let

P = {
a∑

i=0

sir
i : si ∈ S, sa ∈ Fph , (s0, · · · , sa) 	= (0, 0)},

c = 2a, and d = 2a− 1 so 0 ≤ d < c. Part 1 of Property 2 is immediate.
If

s =
a∑

i=0

sir
i ∈ P and z =

n∑
i=0

zir
i

with zi ∈ S, then φ(sjzi) ≤ a and φ(sazi) ≤ 0, so that φ(sz) ≤ n+ 2a− 1. Thus
if s, t ∈ P and z, y ∈ R, then φ(sz + ty) ≤ Φ(sz, ty) ≤ Φ(z, y) + 2a − 1 = d..
Thus part 3 of Property 2 holds.

Next let z, y ∈ R. Let

μ : (P ∪ {(0, 0)})2 → R/(rc)

be defined by μ(s, t) = sz + ty (mod rc). Then μ is an Fph -linear map from a
set of cardinality

(|P |+ 1)2 = |S|2a|Fph |2 = p2h(ea+1)

to a set of cardinality
|S|c = p2hea.

The former set is larger, so μ has a nontrivial kernel. That is, there exist s, t ∈ P ,
not both zero, such that rc divides sz + ty. This proves part 2 of Property 2. It
follows that we have a rational approximation algorithm in this setting.
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Theorem 7. Let S be a complete set of representatives modulo r satisfying
Hypotheses H1 and H2. Let a = max{degr(uv) : u, v ∈ S}. Then there is
a register synthesis algorithm for AFSRs over R, r, S with time complexity
O(MPT

2), such that if λ is the r-adic complexity of a sequence A, then the al-
gorithm produces an AFSR that generates the sequence if it is given a prefix of
T > 4aλ + 8a2 + 1 ∈ O(λ) symbols of the sequence.

For cryptography this gives us another security test that stream ciphers must
pass. For coding theory this may give us new classes of algebraic geometry codes
with efficient decoding algorithms, but this is a subject for future research.
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A Proof of Lemma 3

Suppose that
z1(r)
z0(r)

·KT ⊆ KT + FpT
−1(1).
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The right hand side equals KT + Fpv for any element v with T (v) = 1. Let
u ∈ Fpe−Fp and define T ′(y) = uT (y). Then T ′ is also Fp-linear and KT ′ = KT .
However

z1(r)
z0(r)

·KT ′ 	⊆ KT ′ + FpT
′−1(1).

Now suppose we can show that any sequence A = a0, a1, · · · generated by
Blackburn’s method using primitive element r−1 and linear function T ′ in fact
is an �-sequence, say based on ring R, x ∈ R, and set of representatives S, with
connection element q ∈ R, and satisfying Hypotheses H1, H2, and H3. That is,∑∞

i=0 aix
i = z/q for some z ∈ R.

Lemma 5. The sequence A′ = u−1a0, u
−1a1, · · · is an �-sequence based on R,

x ∈ R, S, and connection integer q satisfying Hypotheses H1, H2, and H3.

Proof: Let û ∈ S reduce to u modulo x. Let S′ = û−1S. Then S′ is an Fp-vector
space and contains Fp. Thus Hypothesis H1 holds. Hypothesis H2 holds, since
any v ∈ R can be written v = û−1v′ for some v ∈ R. If moreover w ∈ R, then
we can write

ûw =
t∑

i=0

wix
i,

with wi ∈ S so

w =
t∑

i=0

û−1wix
i.

Since
∑∞

i=0 aix
i = z/q, we also have

∞∑
i=0

û−1aix
i =

û−1z

q
.

It follows that A′ is an �-sequence. Hypothesis H3 holds by similar reasoning. ��
Thus we may assume from here on that

z1(r)
z0(r)

·KT 	⊆ KT + FpT
−1(1). (5)

We claim that we can pick γ1, γ2, · · · , γe−1 so that T (γ1) = 1, T (γ1), · · · ,
T (γe−1) are linearly independent over Fp, and

z1(r)
z0(r)

KT 	⊆ KT +
e−1∑
j=1

Fpγj . (6)

This is possible: To see this, first pick γ1 arbitrarily so that T (γ1) = 1. Then
by equation (5) there exists κ ∈ KT so that (z1(r)/z0(r))κ 	∈ KT + FpT

−1(1).
Finally, we can pick γ2, · · · , γe−1 so that

T (
z1(r)
z0(r)

κ), 1, T (γ2), · · · , T (γe−1)

are Fp-linearly independent.



296 A. Klapper

In particular, we have κ ∈ KT with

z1(r)
z0(r)

κ 	∈ KT +
e−1∑
j=1

Fpγj .

Let

γ0 = −
e−1∑
j=1

zj(r)
z0(r)

γj .

Thus
∑e−1

j=0 zj(r)γj = 0.
Suppose that T (γ0), · · · , T (γe−1) are linearly dependent over Fp. Then we

have T (γ0) =
∑e−1

j=1 bjT (γj) for some bj ∈ Fp. Let

γ′
j =

⎧⎨⎩γj + zj(r)
z0(r)

κ if j = 0
γj − κ if j = i
γj otherwise.

Then T (γ′
1) = 1, T (γ′

1), · · · , T (γ′
e−1) are linearly independent over Fp, and∑e−1

j=0 zj(r)γ′
j = 0. Suppose that T (γ′

0), · · · , T (γ′
e−1) are linearly dependent over

Fp. Then we have T (γ′
0) =

∑e−1
j=1 cjγ

′
j for some cj ∈ Fp. Since T (γ′

j) = T (γj) for
j ≥ 1, it follows that

T (
zj(r)
z0(r)

κ) =
e−1∑
j=1

(cj − bj)T (γj).

This contradicts equation (6) and proves the following lemma.

Lemma 6. There exist γ0, γ1, · · · , γe−1 ∈ R so that T (γ1) = 1,
∑e−1

j=0 zj(r)γj =
0, and the images T (γ0), T (γ1), · · · , T (γe−1) are linearly independent over Fp.

Now let c = γ0. For j = 0, · · · , e− 1, let γ′
j = c−1γj . Then

1.
e−1∑
j=0

zj(r)γ′
j = 0;

2. γ′
0 = 1;

3. T (cγ′
1) = 1; and

4. T (cγ′
0), T (cγ′

1), · · · , T (cγ′
e−1) are linearly independent over Fp.

This completes the proof of Lemma 3.

B Proof of Lemma 4

That Fp ⊆ S follows from (2), and the closure under addition is immediate from
the definition. Thus Hypothesis H1 holds.
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We have Δ(y0) = 1 and Γ (y0) = 1, so y0− 1 ∈ I. We know from (4) that the
set of δj spans Fpe over Fp, so every product δiδj can be written uniquely as

δiδj =
e−1∑
�=0

vij�δ�.

Therefore

yiyj −
e−1∑
�=0

vij�y� ∈ KΔ.

If

yiyj −
e−1∑
�=0

vij�y� ∈ KΓ ,

then it is in I. Otherwise we have

Γ (yiyj −
e−1∑
�=0

vij�y�) = αt

for some t. Thus

yiyj −
e−1∑
�=0

vij�y� − xt ∈ I.

In particular, every element of R can be written as a finite sum
∑s

i=0 uix
i with

ui ∈ S. This implies that every element of R/(q) can be written in this form
with s < k. Thus |R/(q)| ≤ pek. But the image of R in Fpek is all of Fpek and is
a quotient of R/(q). Hence |R/(q)| = pek and (q) = KΓ in R. Thus Hypothesis
H2 holds.

Suppose that Hypothesis H3 is false. Then there are distinct elements u, v ∈ R
such that u/q and v/q have periodic x-adic expansions and u ≡ v (mod q). Since
the termwise difference of two periodic sequences is periodic and corresponds to
the difference of the corresponding x-adic elements, we can assume that u ∈ R
with u = wxk. But then the x-adic expansion of u/q is xk times the x-adic
expansion of w/q, hence has k consecutive zeros. But this is false for a punctured
de Bruijn sequence. Thus Hypothesis H3 holds.
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Abstract. In order to reduce key sizes and bandwidth, cryptographic
systems have been proposed using minimal polynomials to represent fi-
nite field elements. These systems are essentially equivalent to systems
based on characteristic sequences generated by a linear feedback shift
register (LFSR). We propose a general class of LFSR-based key agree-
ment and signature schemes based on n-th order characteristic sequences.
These schemes have the advantage that they do not require as much
bandwidth as their counterparts based on finite fields. In particular, we
present a signature scheme based on a new computational problem, the
Trace Discrete Logarithm Problem (Trace-DLP). The Trace-DLP and its
variants are discussed and their relationship with well-known finite field-
based computational problems is examined. In addition, we prove the
equivalence between several LFSR-based computational problems and
their finite field-based counterparts.

1 Introduction

A good portion of public-key cryptography is based upon finite fields. Some of
the most notable examples are Diffie-Hellman key agreement [1] and the Digital
Signature Standard [13]. However, since field sizes must be chosen large enough
to avoid the so-called “index-calculus” attacks, finite field elements normally
require a large amount of bits in order to represent them. For applications where
bandwidth is limited, this is undesirable.

As a result, several cryptosystems have been proposed which reduce the rep-
resentation of finite field elements. Examples of such systems are LUC [9, 16],
GH [6], and XTR [7]. These systems reduce representations of finite field ele-
ments by representing them with the coefficients of their minimal polynomials.
Due to the Newton Identity, these methods are essentially the same as systems
based on n-th order characteristic sequences generated by linear feedback shift
registers (LFSR’s). In particular, LUC can be considered as a second-order se-
quence, while GH and XTR can be considered as third-order sequences. We also
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note that fifth-order sequences have also been proposed [14, 3, 4] and that Nieder-
reiter [10, 11, 12] has proposed encryption and key agreement schemes based on
general n-th order LFSR sequences.

This paper proposes schemes based on n-th order characteristic sequences
generated by an LFSR. In particular, we propose general key agreement and
signature schemes where the sizes of signatures and keys are directly related to
the sizes of the representations of elements. In addition, we present new compu-
tational problems, namely the Trace-Discrete Logarithm Problem (Trace-DLP)
and its variants, on which the security of our signature schemes is based. We
present a thorough discussion of these computational problems and tie them
to more well-known problems. In particular, we prove the equivalence of several
LFSR-based computational problems to their counterparts based on finite fields.

This paper is presented as follows. Section 2 describes the connection between
finite fields and characteristic sequences which lead to the reduced representa-
tions produced in Section 3. Section 4 lists the operations required to be able
to perform the necessary computation for our cryptographic schemes, which are
given in Section 5. Section 6 gives a thorough discussion of the computational
problems based on finite fields and sequences. Section 7 summarizes and suggests
some areas for future study.

2 LFSR’s, Characteristic Sequences, and Minimal
Polynomials

We first draw the connection between LFSR sequences and finite fields through
the use of characteristic sequences and minimal polynomials.

Consider the sequence generated by a linear feedback shift register (LFSR)
of order n over GF (q) where q is a prime power. This sequence is given by the
recurrence

sk+n = a1sk+n−1 − a2sk+n−2 + · · ·+ (−1)n+1ansk

for all k ≥ 0 where a1, . . . , an are elements of GF (q).
Let

f(x) = xn − a1x
n−1 + a2x

n−2 − · · ·+ (−1)nan (1)

and suppose that this polynomial is irreducible over GF (q) with γ a root of f
in GF (qn)∗. Also, let si = (si, si+1, . . . , si+n−1) be the i-th state of the LFSR
sequence. By choosing our initial state s0 in a special way, namely si = Tr(γi)
for i = 0, . . . , n−1 where Tr is the trace map from GF (qn) to GF (q), we ensure
that sk = Tr(γk) for all k ≥ 0.

The sequence is strictly periodic with period, say, Q. We may then define
sk = sQ+k for all k ≤ 0. Hence, we may consider the sequence {sk} with indices
running over all integers.

A sequence defined in this fashion will be called the n-th order characteristic
sequence over GF (q) generated by γ or f(x). It is well-known that the following
is true.
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Proposition 1. Let {si} be an n-th order characteristic sequence over GF (q)
generated by γ ∈ GF (qn)∗. Then the period of {si} is equal to the order of γ.

Characteristic sequences are closely related to minimal polynomials of finite
field elements by the Newton Identity.

Lemma 1 (Newton Identity). Let γ ∈ GF (qn)∗ and ti = Tr(γi), 0 ≤ i < n.
Then

n−1∏
j=0

(x− γqj

) = xn +
n∑

j=1

(−1)jbjx
n−j

where for 0 < j ≤ n, the bj’s is defined recursively by the relation

tj − tj−1b1 + · · ·+ (−1)jjbj = 0 (2)

For all integers k, define the minimal polynomial of γk over GF (q) to be

fγk(x) = xn − a1,kx
n−1 + a2,kx

n−2 − · · ·+ (−1)n−1an−1,kx + (−1)nan,k

The Newton Identity tells us that for any m ∈ {1, . . . , n}, we can efficiently
determine the set {a1,k, a2,k, . . . , am,k} from {sk, s2k, . . . , smk} and vice-versa.

Let us now specialize to the case where n ≥ 2 and γ, and hence γk for all k,
has an order dividing qn−1 + qn−1 + · · ·+ q + 1. Now

ai,k =
∑

0≤j1<j2<···<ji≤n−1

γk(qj1+qj2+···+qji )

When i = n, this becomes an,k = γk(1+q+q2+···+qn−1) = 1. Also, for any 1 ≤ i ≤
n− 1, we have that

ai,k =
∑

0≤j1<j2<···<ji≤n−1

γk(qj1+qj2+···+qji )

=
∑

0≤j1<j2<···<jn−i≤n−1

γ−k(qj1+qj2+···+qjn−i )

= an−i,−k (3)

Remark 1. In the previous discussion, it is not necessary that f(x) be irreducible.
We may loosen this restriction by saying that f(x) is a polynomial whose roots
are conjugate over GF (q). The previous and following analysis will still hold.

3 Reducing Representations of Finite Field Elements

Let γ ∈ GF (qn)∗. Ordinarily, for any integer k, γk would require n log q bits for
its representation, normally in a polynomial basis over GF (q). Our goal in this
section is to obtain a smaller representation of γk. Again, suppose that n ≥ 2
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and that γ has an order dividing qn−1 + qn−2 + · · · q + 1. Then the minimal
polynomial of γk would be

fγk(x) = xn − a1,kx
n−1 + a2,kx

n−2 − · · ·+ (−1)n−1an−1,kx + (−1)n

since the constant term is an,k = 1 as shown in the previous section. Thus, at the
tradeoff of representing of giving γk the same representation as its conjugates
{γk, γkq, . . . , γkqn−1}, we may represent γk by the set (a1,k, a2,k, . . . , an−1,k), a
total of (n− 1) log q bits. For our purposes, we will accept this tradeoff. Observe
that we are now using n−1

n as many bits as in the ordinary case.
We now describe two special cases where we obtain an even shorter represen-

tation. Suppose q = p2 and n is even. Let γ ∈ GF (p2n)∗ have an order dividing
pn + 1. Then γkpn

= γ−k from which we see that for each 1 ≤ i ≤ n− 1,

an−i,k = ai,−k =
∑

0≤j1<j2<···<ji≤n−1

γ−k(qj1+qj2+···+qji )

=
∑

0≤j1<j2<···<ji≤n−1

γkpn(qj1+qj2+···+qji )

= apn

i,k = ai,k

where the first equality was established in (3) and the last equality follows from
the fact that n is even and ap2

i,k = ai,k since ai,k ∈ GF (p2). Hence, we may
represent γk (and its conjugates) by the set (a1,k, . . . , an/2,k) which requires
n
2 log q bits to represent. This now requires 1

2 as many bits as in the ordinary
case.

Finally, suppose q = p2 and n is odd. Let γ ∈ GF (p2n)∗ have an order
dividing pn−1− pn−2 + · · · − p+ 1. We again have that γkpn

= γ−k and for each
1 ≤ i ≤ n− 1, we get the similar result

an−i,k = ai,−k = apn

i,k = ap
i,k

where the last equality is established from the fact that n is odd and ap2

i,k = ai,k.
Hence, we may represent γk (and its conjugates) by the set (a1,k, . . . , a(n−1)/2,k)
which requires n−1

2 log q bits to represent. This now requires n−1
2n as many bits

as in the ordinary case.
To consider all three cases concurrently, we shall define r by

r =

⎧⎨⎩
n− 1 for general q and n
n/2 if q = p2 and n is even

(n− 1)/2 if q = p2 and n is odd

and define the set Ak = (sk, s2k, . . . , srk). Observe that from the Newton Iden-
tity, we can recover the minimal polynomial coefficients {a1,k, a2,k, . . . , ar,k} and
hence the entire minimal polynomial fγk from Ak.

Example 1. Let n = 2, q = p where p is prime, and the order Q of γ ∈ GF (p2)∗

divides p + 1. Then Ak = (sk) which needs only log p bits for representation,
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only 1
2 as many as in the ordinary case. This is the basis of the LUC [9, 16]

cryptosystem. Hence, LUC may be viewed as using second-order characteristic
sequences over GF (p).

Example 2. Let n = 3, q = p where p is prime, and the order Q of γ ∈ GF (p2)∗

divides p2+p+1. Then Ak = (sk, s2k) which needs only 2 log p bits for representa-
tion, only 2

3 as many as in the ordinary case. This is the basis of the GH [6] cryp-
tosystem. Hence, GH makes use third-order characteristic sequences over GF (p).

Example 3. Let n = 3, q = p2 where p is prime, and the order Q of γ ∈ GF (p2)∗

divides p2 − p + 1. Then Ak = (sk) which needs only 2 log p bits for representa-
tion, only 1

3 as many as in the ordinary case. This is the basis of the XTR [6]
cryptosystem. Hence, XTR may be viewed as using third-order characteristic
sequences over GF (p2).

Example 4. Let n = 5, q = p where p is prime, and the order Q of γ ∈ GF (p2)∗

divides p4 + p3 + p2 + p + 1. Then Ak = (sk, s2k, s3k, s4k) which needs only
8 log p bits for representation, only 4

5 as many as in the ordinary case. This is
the basis of the cryptosystem proposed by Giuliani and Gong [3]. Hence, this
system makes use of fifth-order characteristic sequences over GF (p).

Example 5. Let n = 5, q = p2 where p is prime, and the order Q of γ ∈ GF (p2)∗

divides p4−p3 +p2−p+1. Then Ak = (sk, s2k) which needs only 4 log p bits for
representation, only 2

5 as many as in the ordinary case. This is the basis of the
cryptosystem proposed by Quoos and Mjølsnes [14] and Giuliani and Gong [3, 4].
Hence, may be viewed as using fifth-order characteristic sequences over GF (p2).

4 Operations to Calculate Sequence Terms

There are two main operations which will be needed for our schemes in the next
section. We describe them here.
Sequence Operation I (SO1): Given Ak and an integer l, where 0 ≤ k, l < Q,
compute Akl.
Sequence Operation II (SO2): Given states sk and sl for some 0 ≤ k, l < Q,
compute sk+l.

SO1 can be performed efficiently by the algorithm due to Fiduccia [2], while
SO2 can be done efficiently from the theory of shift register sequences [5]. We will
now work toward detailing these procedures, starting first with some background.

Define the n× n matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 (−1)n+1

1 0 0 · · · 0 0 (−1)nan−1

0 1 0 · · · 0 0 (−1)n−1an−2

...
...

...
. . .

...
...

...
0 0 0 · · · 0 0 a3

0 0 0 · · · 1 0 −a2

0 0 0 · · · 0 1 a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The determinant of C is 1, which means that C is nonsingular. If we now consider
the i-th state si = (si, . . . , si+n−1) as a row vector, then we have that

si+1 = siC

for all i ∈ Z. We can iteratively apply this relation to get

si+k = siC
k (4)

for all i, k ∈ Z with the convention that C0 = In, the n × n identity ma-
trix. For each i ∈ Z, construct the matrix Mi whose rows consist of the states
si, . . . , si+n−1, that is

Mi =

⎡⎢⎢⎣
si

si+1

· · ·
si+n−1

⎤⎥⎥⎦
Then from (4), we get

Mi+k = MiC
k (5)

for all i, k ∈ Z. Note that since C is nonsingular, the Mi’s all have the same
rank. If the Mi’s were singular, we would have a relation of the form

si+l = d1si+l−1 + · · ·+ dlsi

for all i ∈ Z and some l with 1 ≤ l < n, and we could consider this as an l-th
order sequence over GF (q). For our purposes, we will assume that the Mi’s are
nonsingular.

To perform SO2, we simply calculate Ck = M−1
0 Mk from (5), whence we can

calculate sk+l from (4).
To perform SO1, we populate C with the coefficients a1,k, . . . , an−1,k in place

of a1, . . . , an−1 and use the well-known Cayley-Hamilton theorem.

Theorem 1 (Cayley-Hamilton). A matrix satisfies its characteristic polyno-
mial. That is, if F (x) is the characteristic polynomial of a matrix C, then F (C)
is the zero matrix.
It is easily seen that the characteristic polynomial of C is fγk(x). We now
define sk,l = (skl, sk(l+1), . . . , sk(l+n−1)). This is exactly the l-th state of the
n-th order characteristic sequence generated by γk. We can obtain the states
sk,l, sk,2l, . . . , sk,rl by Fiduccia’s algorithm.

Algorithm 1. Fiduccia

Input: C, fγk(x), sk,1, l
Output: sk,l.
1. w ← �log2 l�.
2. li ∈ {0, 1} are such that l =

∑w
i=0 li2

i.
3. R(x) ← x.
4. for i from w − 2 down to 0 do

4.1 R(x) ← R(x) · R(x) mod fγk(x).
4.2 if li = 1, R(x) ← R(x) · x mod fγk(x).

5. D ← R(C).
6. sk,l ← sk,0D.
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5 Cryptographic Schemes

In this section, we list some cryptographic schemes using finite fields and LFSR
sequences. The first two examples are finite field-based key agreement and sig-
nature schemes which are well-known in cryptography. The three LFSR-based
schemes which follow it are analogues of these systems.

5.1 Finite Field Diffie-Hellman Key Agreement

Diffie and Hellman [1] proposed the following key agreement scheme in their
seminal paper.

Domain Parameters: q, n,Q, γ.

Alice:

1. Chooses random private key l, 0 ≤ l < Q.
2. Computes public key γl and transmits this to Bob.
3. Receives Bob’s public key γk.
4. Computes the shared secret (γk)l = γkl.

Bob: Performs the symmetric operation.

Alice and Bob then both have the shared secret γkl.

5.2 Finite Field ElGamal Signature Scheme

The following signature scheme has served as the basis for the Digital Signature
Standard (DSS) [13]. To be consistent with notation from the DSS, we shall
write g in place of γ.

Domain parameters: q, n,Q, g, Q prime.
Private Key: w, 0 ≤ w < Q.
Public Key: h = gw.

Signature Generation:

1. Hash the message M to obtain H(M).
2. Choose random k and compute r = gk.
3. Calculate s ≡ k−1(H(M) + wr) (mod Q).
4. The signature is (r, s).

Signature Verification:

1. Compute u = rs.
2. Compute v = gH(M)hr.
3. If u = v accept, otherwise reject.
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5.3 LFSR-Based Diffie-Hellman Key Agreement

Niederreiter first proposed a Diffie-Hellman key agreement scheme using general
LFSR sequences in [11, 12]. We propose a Diffie-Hellman scheme specifically
using characteristic sequences with reduced representations. This has the benefit
that it requires Alice and Bob to transmit fewer bits to obtain the shared secret.

Domain Parameters: q, n,Q,A1.
Alice:

1. Chooses random private key l, 0 ≤ l < Q.
2. Computes public key Al from A1 and l using SO1 and transmits this to

Bob.
3. Receives Bob’s public key Ak.
4. Computes the shared secret Akl from Ak and l using SO1.

Bob: Performs the symmetric operation.

Observe that both Alice and Bob transmit sets of the form Ak which are only
r log q bits.

5.4 General LFSR-Based ElGamal Signature Scheme

Domain parameters: q, n,Q,A1, Q prime.
Private Key: w, 0 ≤ w < Q.
Public Key: sw, s2w, . . . , smw where 1 ≤ m ≤ r.
Signature Generation:

1. Hash the message M to obtain H(M).
2. Choose random k and compute Ak using SO1.
3. Let r = sk obtained from Ak.
4. Calculate s ≡ k−1(H(M) + wr) (mod Q).
5. The signature is (Ak, s).

Signature Verification:

1. Compute r and l = H(M)r−1 (mod Q).
2. Compute first sl, s2l, . . . , sml from A1 and l using SO1.
3. Compute u = (sw+l, s2(w+l), . . . , sm(w+l)) from the public key and the

previous step using SO2.
4. Compute Aksr−1 , A2ksr−1 , . . . , Amksr−1 from Ak and sr−1 using SO1 and

let v = (sksr−1 , s2ksr−1 , . . . , smksr−1).
5. If u = v accept, otherwise reject.

The signature consists of Ak which is r log q bits in size and s which is logQ
bits. However, the public key is mn log q bits which is quite large. We can reduce
this to n log q bits by taking m = 1. The public key would then be the same
size as a finite field element in canonical representation. However, the signature
would still use a reduced representation. The specific signature for m = 1 is
listed as follows.
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5.5 Specific LFSR-Based ElGamal Signature Scheme

Domain parameters: q, n,Q,A1, Q prime.
Private Key: w, 0 ≤ w < Q.
Public Key: sw.
Signature Generation:

1. Hash the message M to obtain H(M).
2. Choose random k and compute Ak using SO1.
3. Let r = sk obtained from Ak.
4. Calculate s ≡ k−1(H(M) + wr) (mod Q).
5. The signature is (Ak, s).

Signature Verification:

1. Compute r and l = H(M)r−1 (mod Q).
2. Compute first sl from A1 and l using SO1.
3. Compute u = sw+l from the public key and the previous step using SO2.
4. Compute Aksr−1 from Ak and sr−1 using SO1 and let v = sksr−1 .
5. If u = v accept, otherwise reject.

Observe that signature generation is unchanged. Only signature verification
has been modified.

6 Computational Complexity Problems

Let us examine the computational complexity problems relevant to the schemes
of the previous section and discuss their relations to more well-known problems.

For a problem A, we write A ∈ P if it can be solved in probabilistic polyno-
mial time in its inputs. For two problems A and B, we shall write A ≤P B if A
can be solved in probabilistic polynomial time with polynomially many queries
to an oracle solving B. We also write A =P B if both A ≤P B and B ≤P A.

6.1 LFSR-Related Problems

Let us first state some traditional finite field problems.

Definition 1. The Discrete Logarithm Problem (DLP) is, given β ∈ 〈γ〉,
to find l such that β = γl.

Definition 2. The Diffie-Hellman Problem (DHP) is, given γ along with
γk and γl, to determine γkl.

Definition 3. The Decisional Diffie-Hellman Problem (DDHP) is, given
γ along with γk, γl, γkl, γc where c is chosen randomly so that γc 	= γkl, to
determine which one of γkl or γc is the solution to the DHP with γ, γk, γl.

We now define the analogous complexity problems involving LFSR’s. We shall
refer to them as LFSR-based problems.
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Definition 4. The LFSR-Based Discrete Logarithm Problem (LFSR-
DLP) is, given A1 and Al, to find l.

Definition 5. The LFSR-Based Diffie-Hellman Problem (LFSR-DHP)
is, given A1 along with Ak and Al, to determine Akl.

The key agreement scheme in Section 5.3 is based upon the LFSR-DHP.

Definition 6. The LFSR-Based Decisional Diffie-Hellman Problem
(LFSR-DDHP) is, given A1 along with Ak, Al, Akl, Ac where c is chosen ran-
domly so that Ac 	= Akl, to determine which one of Akl or Ac is the solution to
the LFSR-DHP with input A1, Ak, Al.

In [17], it was essentially proven that the LFSR-DLP is computationally
equivalent to the DLP. We show this proof and prove the analogous for the
Diffie-Hellman and Decisional Diffie-Hellman problems below.

Theorem 2. 1. DLP =P LFSR-DLP.
2. DHP =P LFSR-DHP.
3. DDHP =P LFSR-DDHP.

Proof. In the course of this proof, we will repeatedly transfer from sets of the
form Ak to the minimal polynomial γk. This can be done by using the Newton
Identity. We will also need to find a root of fγk . This can be done efficiently using
a root-finding algorithm such as the ones due to Rabin [15] or van Oorschot and
Vanstone [18].

1) Given an instance A1, Ak of the LFSR-DLP, we find roots γ and β of
the respective minimal polynomials. Then the discrete log l where β = γl is a
solution to the LFSR-DLP.

Conversely, if β = γl, then we can find the respective minimal polynomials
of γ and β and obtain the sets A1 and Al. Solving the LFSR-DLP would give
an integer k such that l = kqi for some i = 0, . . . , n− 1. A quick check will tell
us which is the correct l. This proves the first assertion.

2) Given an instance A1, Ak, Al of the LFSR-DHP, we can again find the
respective polynomial roots γ, γkqi

, γlqj

where 0 ≤ i, j < n. Solving the DHP
with these three inputs gives γklqi+j

whose minimal polynomial yields the set
Aklqi+j = Akl.

Conversely, suppose we have an instance γ, γk, γl of the DHP. Converting
to minimal polynomial representations, we solve the LFSR-DHP with instances
A1, Ak, Al and A1, Ak+1, Al to get Akl and Akl+l respectively. Finding roots gives
us γklqi

and γ(kl+l)qj

where 0 ≤ i, j < n. We now calculate γ(kl+l)qj−l. Finding
the value of j such that this is equal to γklqi

for some i gives the solution to the
DHP. This proves the second assertion.

3) To prove the third assertion, we note that a solution to the DHP with
input γ, γk, γl is γc if and only if Ac is a solution to the LFSR-DHP with input
A1, Ak, Al and Ac+l is a solution to the LFSR-DHP with input A1, Ak+1, Al.
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Hence, these 2 LFSR-DDHP oracle queries would give the correct decision for
the DHP.

Conversely, Ac is a solution to the LFSR-DHP with input A1, Ak, Al if and
only if γcqi

is a solution to the DHP with input γ, γk, γl for some i = 0, . . . , n−1.
This can be ascertained with at most n queries to the DDHP oracle. ��

We now turn our attention to representations using states. We can define the
following computational problems.

Definition 7. The State-Based Discrete Logarithm Problem (S-DLP)
is, given s1 and sl, to determine l.

Definition 8. The State-Based Diffie-Hellman Problem (S-DHP) is, given
s1 along with sk and sl, to determine skl.

Definition 9. The State-Based Decisional Diffie-Hellman Problem (S-
DDHP) is, given s1 along with sk, sl, skl, sc where c is chosen randomly so that
sc 	= skl, to determine which one of skl or sc is the solution to the S-DHP with
input s1, sk, sl.

Lemma 2. 1. DLP ≤P S-DLP.
2. DHP ≤P S-DHP.
3. DDHP ≤P S-DDHP.

Proof. This lemma follows immediately from the fact that given γ and γk, we
can calculate sk from the relation

sk+i = Tr(γk+i) = Tr(γk(γ)i)

and that Tr is an efficiently computable function.

Lemma 3. 1. S-DLP ≤P LFSR-DLP.
2. S-DHP ≤P LFSR-DHP.
3. S-DDHP ≤P LFSR-DDHP.

Proof. Given a state sk = (sk, . . . , sk+n−1), we can use SO2 to calculate
s2k, s3k, . . . , srk and hence get Ak. Following the proof of Theorem 2, the result
follows.

Theorem 3. 1. DLP =P S-DLP.
2. DHP =P S-DHP.
3. DDHP =P S-DDHP.

Proof. This follows immediately from Lemmas 2 and 3 and Theorem 2.
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6.2 Trace-Related Complexity Problems

Let us now formally define problems related to the security of our signature
scheme. The security of the signature scheme listed in Section 5.5 is based on
the following problem.

Definition 10. The Trace Discrete Log Problem (Trace-DLP) is the prob-
lem of finding, given an element t ∈ GF (q), an index l such that Tr(γl) = t, or
determining that there is no such index.

The security of the more general signature scheme in Section 5.4 is based on this
problem.

Definition 11. The m-Trace Discrete Logarithm Problem
(m-Trace-DLP) is the problem, given elements t1, . . . , tm, of finding an integer
l such that Tr(γli) = ti for all i = 1, . . . ,m, or determining that there is no such
index.

If this problem were tractable, then we could forge signatures by performing the
following algorithm.

Algorithm 2.

Input: Signature parameters, public key, message M .
Output: Valid signature.

1. Perform the first three steps of signature generation as indicated.
2. Use SO1 to calculate (sh(M)r−1 , . . . , smh(M)r−1).
3. Use SO2 to compute (sh(M)r−1+w, . . . , sm(H(M)r−1+w)).
4. Solve the m-Trace-DLP with ti = si(H(M)r−1+w) to get l.

5. The forged signature is (Ak, s) with s = rlk−1 (mod Q).

The following problems are related to the Trace-DLP problems and will aid
is in their examination.

Definition 12. The Trace Inverse Problem (TraceInv) is the problem,
given t ∈ GF (q), of finding an element β ∈ 〈γ〉 such that Tr(β) = t, or de-
termining that no such element exists.

Definition 13. The m-Trace Inverse Problem (m-TraceInv) is the prob-
lem, given t1, . . . , tm ∈ GF (q), of finding an element β ∈ 〈γ〉 such that Tr(βi) =
ti for i = 1, . . . ,m, or determining that no such element exists.

6.3 The Complexity of Trace-Related Problems

Let us now try to examine how feasible the m-Trace-DLP is, how this changes
for different values of m, and whether or not we can relate it to the DLP.

Intuitively, it would seem at first glance that the m2-Trace-DLP should be
at least as difficult as the m1-Trace-DLP if m1 < m2. For given t1, . . . , tm2 and
an element β ∈ 〈γ〉 which solves the m2-Trace-DLP, β would also solve the m1-
Trace-DLP with input t1, . . . , tm1 . In addition, there may be elements β ∈ 〈γ〉
which solve the m1-Trace-DLP , but not the m2-Trace-DLP with these inputs.
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However, when trying to make an actual reduction argument, we run into a
problem. Suppose we have an oracle to solve the m2-Trace-DLP and we wish to
solve the m1-Trace-DLP (again with m1 < m2) with input t1, . . . , tm‘ . In order
to use the oracle, we must extend by including elements tm1+1, . . . , tm2 in the
oracle call. But it is unclear how to choose these elements. If we choose them at
random, then there may not be a solution to the m2-Trace-DLP with this input,
even though there is a solution to the m1-Trace-DLP with the truncated input.

We now discuss the relations amongst the problems presented in the previous
two subsections. We begin by first relating the Trace-DLP and the DLP. We can
use TraceInv to aid in this connection.

Lemma 4. m-TraceInv ≤P m-Trace-DLP.

Proof. Given γ and t1, . . . , tm, use the oracle for the m-Trace-DLP to find l.
Then set β = γl.

This theorem is useful for making the following association.

Theorem 4. For m1 < m2, if m1-TraceInv ∈ P , then m1-Trace-DLP ≤P m2-
Trace-DLP.

Proof. Let t1, . . . , tm ∈ GF (q). Since m1-TraceInv can be solved in polynomial
time, we can find β = γl such that Tr(βi) = ti for i = 1, . . . ,m1. We then set
ti = Tr(βi) for i = m1 +1, . . . ,m2. Now present t1, . . . , tm2 to the oracle to solve
the m2-Trace-DLP to get l which solves the m1-Trace-DLP.

For the moment, let us assume that m-TraceInv ∈ P . Then the larger we
choose m, the more difficult the m-Trace-DLP becomes. But does it get increas-
ingly more difficult with every incrementation or is there a limit to how hard it
can get? This is answered by the following theorem.

Theorem 5. r-Trace-DLP =P DLP.

Proof. The r-Trace-DLP is exactly the LFSR-DLP, which by Theorem 2 is com-
putationally equivalent to the DLP.

Corollary 1. For all m ≥ r, m-Trace-DLP =P r-Trace-DLP.

Proof. Clearly, r-Trace-DLP ≤P m-Trace-DLP since given Ak, we can uniquely
calculate sik from Ak for all i > r. But for any instance of the m-Trace-DLP,
the solution of the truncated instance to the r-Trace-DLP would be a solution
to the m-Trace-DLP.

The question now becomes, how difficult is m-TraceInv? Let us examine just
the TraceInv. Given an element t ∈ GF (q), it is actually quite simple to find
an element β ∈ GF (qn) such that Tr(β) = t. In fact β = 1

n t is a preimage of t
provided that n is coprime to q. However, when we want our preimage to be in
a (relatively small) subgroup of GF (qn)∗, it becomes much more difficult to find
preimages. In general, this problem is still open to the knowledge of this author,
and appears difficult to solve. But in some instances, TraceInv and m-TraceInv
can be solved in polynomial time with high probability.
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Proposition 2. Suppose that γ has order approximately qr. Then m-TraceInv
∈ P .

Proof. We may assume that m ≤ r, since if m > r, we may truncate any input
t1, . . . , tm to t1, . . . , tr and solve r-TraceInv with this input. Given a solution
β, we simply check that ti = Tr(βi) for i = r + 1, . . . ,m. Note that any other
solution to the r-TraceInv with this input would be conjugate to β and thus give
the same traces for all of their powers.

Let t1, . . . , tm ∈ GF (q). We wish to find one of its solutions β ∈ 〈γ〉, if one
exists.

Let A be the m-tuple of elements t1, . . . , tm in GF (q) by choosing tm+1, . . . , tr
at random in GF (q) such that ti takes the place of sik in the representation
within A. If A = Ak for some k, we would be able to construct its corresponding
minimal polynomial fγk over GF (q). Finding a root β of fγk would give β = γkqj

,
with Tr(βi) = ti for i = 1, . . . ,m, solving the m-TraceInv Problem.

Given a candidate polynomial, we need only find a root β and then check
that β has order dividing Q. These are efficient operations.

Thus, we need only determine the probability of success if we choose our set
A in this fashion. Since the order of γ is ∼ qr and each minimal polynomial has
n roots, there are approximately, qr/n polynomials which would give success.
But there are qr possible r-tuples of elements in GF (q). Thus, the probability
that a randomly chosen tuple represents the coefficents of a minimal polynomial
is approximately qr/nqr = 1/n. Hence, repreating this trial polynomially many
times in n, we are likely to succeed with high probability. If no valid β is produced
after a small number of trials, then with high probability, there is no such β.

Remark 2. We note that if γ has order instead approximately qc for some c < d.
Then the probability for success would be 1/nqd−c. It would then take exponen-
tially many attempts to achieve a non-negligible probability.

7 Conclusions and Discussion

We have presented a new general class of cryptosystems based on characteristic
sequences generated by LFSR’s. We have proposed a signature scheme based
on the Trace-DLP and its variants which takes advantage of the compact rep-
resentations finite field elements. The complexity of the Trace-DLP and related
problems was examined. We also have proven the equivalence of the LFSR-based
and State-based sequence problems with their counterparts based on finite fields.

To the knowledge of the authors, this is the first time complexity problems
involving traces have been proposed. This is an area which deserves more study.
It would also be very nice to find an LFSR-based signature scheme in which both
the public key and the signature can be represented by reduced representations.
Finally, it would be nice to develop other applications dependent upon the Trace-
DLP and TraceInv problems.
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Cité Scientifique, Bâtiment M3,

59655 Villeneuve d’Ascq cedex – France
{Vincent.Benony, Eric.Wegrzynowski, Caroline.Fontaine}@lifl.fr

2 USTL-Laboratoire Paul Painlevé, Bâtiment M2,
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Abstract. T-functions have been introduced by Shamir and Klimov in
[1]. Those functions can be used in order to design a new class of stream
ciphers. We present in this paper an algorithm which can retrieve the
internal state of a particular class of pseudo-random generators based
on T-functions. This algorithm has time complexity of O(2

n
4 ) and has

memory complexity of O(n log2 n) for pseudo random generators which
put out the n/2 most significants bits of their internal state at each
time clock, n being the length of the internal state of the pseudo-random
generator.

1 Introduction

Designing pseudo-random generators (PRGs) is of major interest in cryptogra-
phy. A PRG can be viewed as the composition of a deterministic automaton
(whose internal state is evolving according to its transition function f), and
a filtering function, which computes the output of the PRG from the internal
state of the automaton. Our work concerns a recent kind of automaton, pro-
posed by Klimov and Shamir in 2002 [1]. The authors discussed its suitability
for cryptography in [2], presenting two attacks, which enable an opponent to
derive the internal state of the automaton from consecutive outputs of the PRG.
We present here an improvement of these attacks. This does not discredit the
choice of the automaton itself, but shows that the filtering function has to be
chosen very carefully.

2 Presentation of Klimov and Shamir’s Scheme

Klimov and Shamir proposed in [1] a new method to design invertible mappings:
those mappings are a composition of primitive functions, which can be found on
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x >> n/2

x + (x2 ∨ C)

x

Fig. 1. Klimov and Shamir proposal

any recent micropocessor. The interest of using such functions is the efficiency
of their software implementation.

The Automaton: we will only recall the properties we need to present our result;
the reader can refer to [1, 2] for more details. The internal state at time t is an
integer, 0 ≤ xt < 2n, whose binary expansion, also denoted by xt, is expressed
with exactly n bits. Given a function f : N → N, the transition from a state
xt to a state xt+1 is defined by xt �→ xt+1 = f(xt) mod 2n. We will use the
same notation as in [2], and denote by [xt]i the i-th component of xt; [xt]0 is
the least significant bit, and [xt]n−1 the most significant one. When the index
t is not needed, we omit it. Klimov and Shamir study triangular functions (T-
functions), that is, functions f such that the bit [f(x)]i only depends on the bits
[x]0, . . . , [x]i. They propose a suitable subset of invertible T-functions f , which
ensure that their iteration will define a single cycle, of maximal length 2n.

Hence, they focus on a particular case of such functions, taking:

f(x) = x + (x2 ∨ C) mod 2n

where the addition and multiplication are the usual ones on integers, ∨ denotes
the bitwise logic or operator, and C is a constant integer satisfying [C]0 =
[C]2 = 1.

The Filtering Function: in [2], the authors propose to put out the m) n higher
bits. In [1], they mention the really good statistical behavior of the particular
case m = n/2, arguing that it ”is better than for some of the AES candidates
themselves!”. Hence, m = n/2 is a very interesting case to study and we will
focus on it in this paper (see Figure 1).

The Two Attacks: Klimov and Shamir propose two attacks in [2], requiring only
the output of the PRG. They have data and memory complexity of O(2

n
2 ) for

the first one, and O(2
n
3 ) for the second one. These attacks can be applied for

any value of m ≤ n/2.

We present here an improved attack for the case m = n/2, whose data com-
plexity is O(2

n
4 ) and memory complexity is O(n log2 n).

3 Definitions and Facts

Our attack aims at retrieving the internal state of a PRG in the particular case
where C satisfies log2 C ≤ n/4, by observing on average O(2

n
4 ) consecutive
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outputs of the PRG. In [1], the authors propose to consider the particular case
C = 5 which can ensure a single cycle. Let us take a look at some particular
states which could give us useful information: states where the half-higher of the
half-lower bits are all zeros, that is, states xt such that

[xt]( n
2 −1)... n

4
= 0 ⇐⇒ xt mod 2n/2 < 2n/4. (1)

Let us introduce some more notation : let ut be the output of the PRG at
time t, and vt the unknown part of the internal state:

ut = [xt](n−1)... n
2

and vt = [xt]( n
2 −1)...0

Now, we can state some simple lemmas:

Lemma 1. ∀x, y ∈ N, we have max(x, y) ≤ x ∨ y ≤ x + y.

Proof. The inequality max(x, y) ≤ x∨y is obvious, since x ≤ x∨y and y ≤ x∨y.
We will now prove the second inequality by induction on the smallest length

of the binary expansion of x and y, denoted by L ∈ N.
Let L = 0. This means that x or y is equal to 0, and the result states easily.
Now, suppose that the inequality holds for any smallest length less than or

equal to L ≤ k; we will show that it still holds for a smallest length equal to
L + 1. Suppose that the smallest length of the binary expansions of x and y is
equal to L + 1. Two cases have to be considered, according to the occurence of
a carry when computing x + y.

1. No carry: in this case, x ∨ y = x + y.
2. A carry occurs; without loss of generality, let us suppose that the first carry

occurs when adding bits at position 0 ≤ i ≤ L. Let x = xh2i +2i−1 +x� and
y = yh2i + 2i−1 + y�, with x�, y� < 2i−1. We can state

x + y = (xh + yh + 1)2i + (x� ∨ y�)
≥ (xh + yh)2i + (x� ∨ y�)
≥ (xh ∨ yh)2i + (x� ∨ y�) by induction hypothesis.

Since the right part of the last inequality is in fact x ∨ y, this concludes the
proof. ,

Lemma 2. Let x = u2n/2 + v, where u < 2n/2 and v < 2n/4. Let x′ = f(x)
mod 2n = u′2n/2 + v′, where u′ < 2n/2 and v′ < 2n/2. Then, we have:

u′ = u(2v + 1) mod 2n/2. (2)

Proof. From Lemma 1 and v < 2n/4, we can write:

v + (v2 ∨ C) ≤ 2n/2 − 2n/4 + C.

But, as log2 C ≤ n/4, we have:

v + (v2 ∨ C) < 2n/2.
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Hence,

x = u 0 v

x2 ∨ C = 2uv v2 ∨ C

x + (x2 ∨ C) = u(2v + 1) v + (v2 ∨ C)

which concludes the proof. ,

Lemma 3. Let x and x′ be two integers defined as in Lemma 2; then, u and u′

are divisible by the same powers of two.

Proof. Let k be the number of zeros at the end of u. So, u = 2kũ, where ũ is an
odd number. Then u′ = 2kũ(2v+1) mod 2n/2. As 2v+1 is an odd number too,
the product ũ(2v + 1) is odd, and u′ has exactly k zeroes at its end. ,

4 The Attack

We now focus on the effective realization. From Lemma 2, we can see that if we
have an internal state whose half-higher of half-lower bits are all zeros, then it is
possible to retrieve this whole state from consecutive outputs. Lemma 3 gives us
a necessary condition on the PRG outputs in order to detect if two consecutive
outputs are really interesting for the attack. We will try to solve Equation (2)
(in v) for all pairs (for u = ut, u′ = ut+1) of consecutive outputs having the
same divisibility by powers of two. If solutions exist, this equation can be solved
by using the extended Euclid’s algorithm to determine v as a candidate value
for vt; we can remark here that if the computed value is greater than or equal
to 2n/4, then it is sure that the attack missed, because we are only trying to
recover states for which vt < 2n/4 ; we can also remark that if the computed
value is smaller that 2n/4, then it may be the right one, or not (see below). This
computation is achieved by finding a and b such that:

2n/2a + utb = 2s, where 2s = gcd(2n/2, ut).

Once we have found them, we have :

vt =
but+1 − 2s

2s+1
mod 2

n
2 −s. (3)

Unfortunately, not all these states can be used for the attack, as some will
give a wrong computed value for vt. Indeed, from Equation (3), the number of
solutions for vt may be greater than one if s ≥ n/4. Considering such cases
should change the memory complexity of our algorithm, so we will omit them
for the moment.

The major problem for the attacker is to be sure that the attack succeeded
after the computations. In order to check it, a new PRG will be designed using
the computed state. Looking for a divergence between this simulated PRG and
the outputs of the attacked one will solve the problem.
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If we denote by ct the state he computed/guessed from the outputs ut and
ut+1, we have ct = xt + ε where ε is the error he made. If ε = 0, then we can say
that the attack was successful; if ε 	= 0, we can estimate the divergence which
will be introduced between the simulated PRG and the real one.

Let us take a look at the evolution of these two PRGs. After one iteration of
the PRG, the internal state of the real PRG will be

xt+1 = xt + (x2
t ∨ C)

and the internal state of the simulated PRG will be

ct+1 = ct + (c2t ∨ C) = xt + ε + [(x2
t + ε2 + 2εxt) ∨ C]

which is roughly equal to

xt + (x2
t ∨ C) + E(ε) = xt+1 + E(ε)

where the error E(ε) is a polynomial of degree 2 in ε.
This error will grow quadratically at each iteration of the PRG. We can

approximate the error’s evolution by saying that the error’s length will double
at each iteration; so, it will need log2(n/2) iterations before the error disturbs
the n/2 most significant bits of the internal state.

We may want to know how many consecutive outputs the attack needs to
succeed; as 23n/4 states satisfy Relation (1), the average distance between a
randomly chosen state and one of those states is 2n/4, i.e. we will have to produce
2n/4 outputs of the PRG on average in order to reach a “good state”.

Hence, a simple method to determine if the computed state is the good one
is to compare log2(n/2) real outputs of the PRG with log2(n/2) outputs of the
simulated PRG. The verification process has data complexity O(n log2(n)).

5 An Example

In order to be more clear, we will now describe a scenario for the attack. Let us
consider, as an example, a PRG with an internal state of 16 bits. This is a really
small PRG, but this will illustrate the attack.

The first step of our attack is to find a pair of consecutive outputs which verify
the condition on divisibility, that is, two outputs which have the same number
of zeros at the end of their binary expansion. Let have a look at Figure 2.

The first pair of consecutive outputs (left column) which meets this condition
is:10010110, 01001110. The attacker will suppose that the unknown part of the
internal state has n/4 = 4 zeros as its half most significant bits. We can see here,
that this assumption is false, but, the attacker has no way to know this, a priori.

So, the attacker has to solve the equation exposed in Lemma 2:

u′ = u(2v + 1) mod 2n/2

78 = 150(2v + 1) mod 28

v = 10
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Internal states (n = 16)

High parts
(outputs)

Low parts
(hidden)

01011101 01010000

10010110 01010101

01001110 10010010

10011001 11010111

01001100 01101100

10011010 00000001

11001110 00000110
...

...

Fig. 2. Failed attack

x >> n/2

x + (x2 ∨ C)

10010110 00001010

Real PRG : 01001110, 10011001, 01001100, . . .

Simulated PRG : 01001110, 00100010, 11001000, . . .

Fig. 3. Failed attack - verification

The computed value satisfies v ≤ 2n/4, so it may be the right one. But the
attacker has to check it. To do so, he will create a new PRG which will have as
internal state, the value he just computed (see Figure 3). He can be sure that if
he did not compute the right value, the output of this new PRG and the output
of the real PRG will diverge after at most log2(n/2) = 3 iterations! Here, we
can see that the third output is not the same than the real one, so the attacker
states he did not compute the right value for vt.

Now, let us have a look at another pair of consecutive outputs which meets
the condition on divisibility. The two states are now 10011010 and 11001110 (see
Figure 4).

The attacker tries to solve the equation:

u′ = u(2v + 1) mod 2n/2

206 = 154(2v + 1) mod 28

v = 1

The computed value satisfies v ≤ 2n/4, so it is perhaps the right one. But, as
previously, he has to check it (see Figure 5).



Cryptanalysis of Klimov-Shamir Pseudo-Random Generator 319

Internal states (n = 16)

High parts
(outputs)

Low parts
(hidden)

01011101 01010000

10010110 01010101

01001110 10010010

10011001 11010111

01001100 01101100

10011010 00000001

11001110 00000110
...

...

Fig. 4. Successfull attack

x >> n/2

x + (x2 ∨ C)

10011010 00000001

Real PRG : 11001110, 01110110, 00100001, . . .

Simulated PRG : 11001110, 01110110, 00100001, . . .

Fig. 5. Successfull attack - verification

This time, log2(n/2) = 3 consecutives output of the new PRG coincide with
the real ones, so, the attacker can be sure that this v was the good one.

6 The Algorithm

Here is a pseudo-code version of the used algorithm:

crack(ut, ut+1) :=
s := log2(gcd(ut, 2n/2))
s′ := log2(gcd(ut+1, 2n/2))
if ut 	= 0 and s = s′ then

find a and b, b ≥ 0, an integer solution of 2n/2a + utb = 2s

vt := but+1−2s

2s+1 mod 2
n
2 −s, and xt := vt + 2n/2ut

if vt < 2n/4 then return xt else return false
else

return false
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attack(u) :=
n := the length of the internal state
l := log2 n
t := 0
seeds := {false, false, . . . , false}, containing l elements
success := {0, 0, . . . , 0}, containing l elements
do

seeds0...(l−2) := seeds1...(l−1)

success0...(l−2) := success1...(l−1)

seedsl−1 := crack(ut, ut+1)
successl−1 := 0
for all elements seedsj of seeds do

if seedsj 	= false then seedsj := f(seedsj)
if seedsj = ut+1 then successj := successj + 1

if success0 = l we are done!
t := t + 1

loop until success

7 Discussion

We saw in previous sections that the time complexity of our attack is O(2
n
4 ).

This time complexity only measures in average the number of PRG outputs we
need to retrieve the internal state. Indeed, in such attacks the aim is to retrieve
the internal state of the PRG with the least possible outputs. Notice that it does
not measure the time consuming of calculation itself.

From this point of view, we can improve our attack by considering consecutive
outputs of the form :

ut = . . . 1 0

ut+1 = . . . 1 . . .

(we do not impose divisibility condition on ut and ut+1) with the further as-
sumption on the internal state :

[xt]( n
2 −1)... n

4 + s
2

= 0 ⇐⇒ xt mod 2n/2 < 2n/4+s/2

where s = log2(gcd(ut, 2n/2)) is supposed to be even.
This is an extension of conditions imposed in the attack. Namely, objects can

be considered as parts of higher dimension objects : n + 2s where some bits are
ignored (2s higher bits).

We can thus apply the attack in this context with the following consecutive
truncated outputs :

ũt =
ut

2s
, ũt+1 =

ut+1 − (ut+1 mod 2s)
2s
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and solve the equation :

ũt(2x̃t + 1) = ũt+1 mod 2
n
2 −s

to find solutions in x̃t such that xt mod 2n/2 < 2n/4+s/2.
The equation may have several many solutions.
Clearly this new attack needs more calculation since half pairs (ũt, ũt+1)

verify the required hypothesis.
Let us calculate the time complexity of this new attack. The number of

internal states that can be used for fixed s is :

for s = 0 : . . . . . . 0 . . . : 2
3n
4

for s = 2 : . . . . . . 0 0 0 1 . . . : 2
3n
4 −2

for s = 4 : . . . . . . 0 0 0 0 0 1 . . . . : 2
3n
4 −3

...
...

...
for s = n/2 : 0 0 1 . . . . . . : 2

3n
4 −(n

4 +1)

So the total number of states is :

2
3n
4 +

n/4∑
s̃=1

2
3n
4 −(s̃+1) = 2

3n
4 + 2

3n
4 −1 − 2

n
2 −1.

So asymptotically, the number of internal states that can be used in the new
attack is 50% greater than in the previous one.

8 Conclusion

The attack has been implemented in MAPLE, and the algorithm’s time complex-
ity is O(2

n
4 ), whereas its memory complexity is O(n log2 n); this is better than

the attacks exposed in [2]. As an example, the average time in order to retrieve
the internal state of a 64 bits long PRG is 10 seconds on a 2.4Ghz processor. It
would be possible to retrieve the internal state of a 128 bits long PRG by using
232 outputs of this PRG.

There are many possibilities to prevent this attack:

– by choosing a constant C which satisfies log2 C > n/4; this may introduce
the ∨ function into equations, and make the resolution more difficult;

– by using another filtering function to produce the output from the internal
state; this could significantly reduce the data rate of the PRG, but it would
also increase its security.

Those precautions could prevent the attacker from knowing a significant part
of the internal state and, consequently, from deducing the content of the internal
state.
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Lengths 1 and 2�
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Abstract. We associate a generating function of two formal variables
with a given binary sequence and a generating function of three for-
mal variables with a given pair of binary sequences. The first function
gives information about all subsequences of the sequence and the second
function gives information about all common subsequences of the pair of
sequences. It is shown that, in many cases, these functions can be easily
found, which is of interest for various applications such as reconstruction
of sequences, pattern recognition, data transmission over channels with
deletions, etc. [1], [2], [3]. This conclusion is demonstrated for random
sequences chosen from a completely randomized probabilistic ensemble
of binary sequences and from the ensemble of random sequences consist-
ing of runs of lengths 1 and 2. The results show that the latter ensemble
can be considered as a very good candidate for the ensemble of random
codes capable of correcting deletion errors.

1 Generating Functions Associated with Binary
Sequences

Let v = (v1, v2, . . .) be an infinite binary sequence and let vt = (v1, . . . , vt) for
all t ≥ 1. For all r ≥ 1, let v[r] = (0r1r)∗ denote the sequence obtained by
concatenating runs of length r with the first bit equal to 0. In particular,

v[1]
�
= (01)∗, v[2]

�
= (0011)∗.

Given a sequence v and a vector u� ∈ {0, 1}�, introduce Del(v|u�) ∈ {0, 1, . . .}
as the smallest integer d such that u� is a subsequence of the string v�+d. Thus,
Del(v|u�) = d implies that one can delete d components of the vector v�+d−1 and
attach component v�+d to the result in order to obtain u�, and this procedure is
not possible if d decreases. The total number of subsequences of length � of the

� This work was supported by the Philips Research Laboratories (The Netherlands)
and DFG (Germany).
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Fig. 1. Mappings � → � + Del(v|u�), � = 1, . . . , 8, for sequences u8 = 00011101 and
v = v[1],v[2]. The generating functions of the mapping of the sequence u8 to the
sequences v[1] and v[2] are equal to D4L8 and D7L8, respectively. The generating
function of the mapping of the sequence u8 to the pair of sequences (v[1],v[2]) is equal
to D4

1D7
2L8

string vt, where t ≥ �, is equal to the number of vectors u� with Del(v|u�) ≤ t−�.
This number can be expressed as nv(0, �) + . . . + nv(t− �, �), where

nv(d, �)
�
=
∣∣∣{u� : Del(v|u�) = d

}∣∣∣ (1)

for all d, � ≥ 0. We will assume that nv(0, 0) = 1 and nv(d, 0) = 0 for all d 	= 0.
Given two sequences, v1 and v2, let

nv1,v2(d1, d2, �)
�
=
∣∣∣{u� :

(
Del(v1|u�),Del(v2|u�)

)
= (d1, d2)

}∣∣∣ (2)

for all d1, d2, � ≥ 0. We will assume that nv(0, 0, 0) = 1 and nv(d1, d2, 0) = 0
for all (d1, d2) 	= (0, 0). All vectors u� counted in nv1,v2(d1, d2, �) are common
subsequences of v�+d1

1 and v�+d2
2 . If vt1

1 and vt2
2 are two given strings, then the

length of their longest common subsequence is equal to the largest � such that
nv1,v2(d1, d2, �) > 0 for some d1 ≤ t1 − �, d2 ≤ t2 − �.

Notice that different vectors (j1, . . . , j�) such that j1 < j2 < . . . < j� =
�+Del(v|u�) and ui = vji

for all i = 1, . . . , � may exist. However (Del(v|u1), . . . ,
Del(v|u�)) is a unique vector, and it is constructed by the following greedy
algorithm : (a) set i = j = 1; (b) find the smallest d ≥ 0 such that ui = vj+d

and set Del(v|ui) = d; (c) increase i by 1 and j by d; (d) if i ≤ �, then go to (b).
Notation above is illustrated in Fig. 1 and Table 1.
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Table 1. Representation of vectors of length � = 1, 2, 3 as subsequences of the sequences
v[1] and v[2], where d1 = Del(v[1]|u�) and d2 = Del(v[2]|u�). Components of the
vectors v�+d1 [1] and v�+d2 [2] that are mapped to components of the vector u� are
given in the bold font

� u� d1 v�+d1 [1] d2 v�+d2 [2]

1 0 0 0 0 0
1 1 0 1 2 0 0 1

2 0 0 1 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1
1 0 1 0 1 0 3 0 0 1 1 0
1 1 2 0 1 0 1 2 0 0 1 1

3 0 0 0 2 0 1 0 1 0 2 0 0 1 1 0
0 0 1 1 0 1 0 1 0 0 0 1
0 1 0 0 0 1 0 2 0 0 1 1 0
0 1 1 1 0 1 0 1 1 0 0 1 1
1 0 0 2 0 1 0 1 0 3 0 0 1 1 0 0
1 0 1 1 0 1 0 1 4 0 0 1 1 0 0 1
1 1 0 2 0 1 0 1 0 2 0 0 1 1 0
1 1 1 3 0 1 0 1 0 1 4 0 0 1 1 0 0 1

Given a sequence v and a pair of sequences (v1,v2), the integers defined in
(1), (2) can be specified by the generating functions

Nv(D,L)
�
=
∑

d,�≥0

nv(d, �)DdL�, (3)

Nv1,v2(D1, D2, L)
�
=

∑
d1,d2,�≥0

nv1,v2(d1, d2, �)Dd1
1 Dd2

2 L�, (4)

where D,D1, D2, L are formal variables.
We will consider two ensembles of binary sequences. Let the ensemble of

“completely random” binary sequences consist of all sequences whose compo-
nents are i.i.d. random variables taking values 0 and 1 with probability 1/2.
Denote

n1/2(d, �)
�
= 2−(�+d)

∑
v�+d

nv�+d(d, �), (5)

n1/2(d1, d2, �)
�
= 2−(2�+d1+d2)

∑
v

�+d1
1 ,v

�+d2
2

n
v

�+d1
1 ,v

�+d2
2

(d1, d2, �). (6)

Introduce also the [1p2q] probabilistic ensemble of binary sequences consisting
of runs of lengths 1 and 2 and having the first bit equal to 0, p ∈ [0, 1] is fixed
and q = 1− p. Let v−1 = v0 = 1. For all t ≥ 1, associate the probability
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Ω1p2q
(vt)

�
=

t∏
j=1

ω1p2q
(vj |vj−1, vj−2)

with the binary string vt, where⎡⎢⎢⎣
ω1p2q

(0|0, 0) ω1p2q
(1|0, 0)

ω1p2q
(0|0, 1) ω1p2q

(1|0, 1)
ω1p2q

(0|1, 0) ω1p2q
(1|1, 0)

ω1p2q
(0|1, 1) ω1p2q

(1|1, 1)

⎤⎥⎥⎦ �
=

⎡⎢⎢⎣
0 1
q p
p q
1 0

⎤⎥⎥⎦ .
If Ω1p2q

(vt) > 0, then we say that vt belongs to the [1p2q] ensemble. Let us
denote

n1p2q
(d, �)

�
=
∑
v

Ω1p2q
(v)nv(d, �), (7)

n1p2q
(d1, d2, �)

�
=
∑
v1,v2

Ω1p2q
(v1)Ω1p2q

(v2)nv1,v2(d1, d2, �), (8)

where v = v�+d, v1 = v�+d1
1 , v2 = v�+d2

2 , and introduce the generating functions

N1p2q
(D,L)

�
=
∑

d,�≥0

n1p2q
(d, �)DdL�, (9)

N1p2q
(D1, D2, L)

�
=

∑
d1,d2,�≥0

n1p2q
(d1, d2, �)Dd1

1 Dd2
2 L�. (10)

In the present correspondence we show that coefficients defined in (5)–(8) can
be easily found. Moreover, the method of their computing is rather general and it
can be also successfully used for computing coefficients of generating functions
defined in (3), (4) for arbitrary sequences v and arbitrary pairs of sequences
(v1,v2). As a result, one gets data needed for the study of problems related to
structure of sequences and their applications. The role of ensembles of random
sequences introduced above is explained by the point that formalization is very
simple in this case and that the properties of the obtained generating functions
N1p2q

(D,L) and N1p2q
(D1, D2, L) can be interesting for constructing efficient

random block codes capable of correcting deletion errors.

2 Coefficients of Generating Functions Associated with
“Completely Random” Binary Sequences

Lemma 1. For all d, d1, d2, � ≥ 0,

n1/2(d, �) =
(
� + d− 1

d

)
2−d, (11)

n1/2(d1, d2, �) =
(
� + d1 − 1

d1

)(
� + d2 − 1

d2

)
2−(d1+d2+�), (12)

where n1/2(d, �), n1/2(d1, d2, �) are defined in (5), (6), and
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E1/2(δ)
�
= lim

�→∞

1
�

log n1/2(�δ, �) = (1 + δ)h
( δ

1 + δ

)
− δ, (13)

E1/2(δ1, δ2)
�
= lim

�→∞

1
�

log n1/2(�δ1, �δ2, �) = E1/2(δ1) + E1/2(δ2)− 1, (14)

h(x)
�
= −x log x − (1 − x) log(1 − x), x ∈ (0, 1), is the binary entropy function

and δ, δ1, δ2 ≥ 0. Thus, E1/2(δ) < E1/2(1) = 1 for all δ 	= 1 and E1/2(δ) > 0 for
all δ ∈ (0, δ0), where δ0 = 3.404 . . . is solution to the equation h(δ/(1 + δ)) =
δ/(1 + δ). Furthermore, |E1/2(δ)| <∞ for all δ ≥ 0.

Proof: Given a vector u�, one can construct all strings v�+d with Del(v|u�) = d
by the following algorithm. Choose � positions j1 < j2 < . . . < j� in such a way
that j1, . . . , j� ∈ {1, . . . , � + d} and j� = � + d. Set vji

= ui for all i = 1, . . . , �.
For all i ∈ {1, . . . , � − 1} such that ji+1 > ji + 1, set vj = 1 ⊕ uji+1 for all
j ∈ {ji + 1, . . . , ji+1 − 1}. Thus,

n1/2(d, �) = 2−(�+d)
∣∣∣{ (u�,v�+d) : Del(v�+d|u�) = d

}∣∣∣
= 2−(�+d)

∑
u�

∣∣∣{v�+d : Del(v�+d|u�) = d
}∣∣∣

= 2−d

(
� + d− 1
�− 1

)
,

and (11) follows. Similarly,

n1/2(d1, d2, �) = 2−(2�+d1+d2)
∑
u�

(
� + d1 − 1

d1

)(
� + d2 − 1

d2

)
,

and (12) follows. The asymptotic formulas (13), (14) readily follow from (11),
(12) and Stirling’s approximation for the binomial coefficients.

The counting argument used in the proof of Lemma 1 is based on the fact
that the cardinality of the set of vectors v�+d such that Del(v�+d|u�) = d does
not depend on u�. For example, if d = � = 2, we construct 3 strings of length
� + d = 4 having a fixed vector u� as a subsequence, and n1/2(2, 2) = 3 · 2� ·
2−(�+d) = 3/4. Namely, if u2 = 00, then v4 ∈ {0110, 1010, 1100}; if u2 = 01, then
v4 ∈ {0001, 1001, 1101}; if u2 = 10, then v4 ∈ {1110, 0110, 0010}; if u2 = 11,
then v4 ∈ {1001, 0101, 0011}. Similarly, if d1 = d2 = �, then there are 32 pairs
of strings of length 4 having a fixed vector u2 as a common subsequence, and
n1/2(2, 2, 2) = (3/4)2 · 2−4.

Exponents E1/2(δ) and E1/2(δ, δ) will be shown in Fig. 6 and Fig. 7 together
with the corresponding exponents obtained for the [1p2q] ensemble.
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3 Generating Functions Associated with Random Binary
Sequences Consisting of Runs of Lengths 1 and 2

3.1 Computing the Generating Function Nv[r](D, L)

Let us introduce the r-run representation of a given vector u� by the formula

u� = (0r1 , 1r2 , . . . , 0rk−1 , 1rk), (15)

where parameters k and r1, . . . , rk are uniquely determined by (15) and the
conditions : ⎧⎨⎩

r1, . . . , rk ∈ {0, . . . , r},
r1 + . . . + rk = �,
ri = 0 ⇒ ri−1 = r, i = 1, . . . , k

(16)

(we assume that 00, 10 are the 0-length vectors and set r0
�
= r). For example, if

r = 3, then 111110100001 = (00, 13, 00, 12, 01, 11, 03, 10, 01, 11).
The r-run representation is unique and

Del(v[r]|u�) =
k−1∑
i=1

(r − ri) (17)

for all � = r1 + . . . + rk−1 + 1, . . . , r1 + . . . + rk. Therefore, enumeration of
all possible numbers k and r1, . . . , rk satisfying (16) gives coefficients of the
generating function Nv[r](D,L). Let us sequentially form a vector r = (r1, r2, . . .)
using the machine with 3 possible states : S, S+, and F (see Fig. 2). If the current
state of the machine is S, then the last integer included in the vector r is equal
to r. In this case, the next integer has to be chosen from the set {0, . . . , r}. If
this integer is equal to r, then the machine stays in state S, otherwise it moves
to state S+ where 0 cannot be chosen as the next integer. State F is introduced
to describe all possible ways of terminating the process.

One can easily see that the assignment of transfer functions associated with
the edges of the transition diagram in Fig. 2 and the definition of the transfer
function of a path as the product of transfer functions of edges of that path
result in a conclusion that the generating function Nv[r](D,L) is equal to the
sum of transfer functions of all paths leading to state F. Therefore

Nv[r](D,L) = N (S) + (N (S) + N (S+))
r−1∑
j=1

Lj ,

where N (s) = N (s)(D,L), s = S, S+, are solutions to the system of linear equa-
tions [

1− Lr −Lr

−Dr −
∑r−1

j=1 D
r−jLj 1−

∑r−1
j=1 D

r−jLj

] [
N (S)

N (S+)

]
=
[

1
0

]
.
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S S+

F

�
Lr

�
∑r−1

j=1 Dr−jLj
�

�

∑r−1
j=0 Dr−jLj

Lr

1

∑r−1
j=0 Lj ∑r−1

j=1 Lj

�

� �

Fig. 2. The 3-state machine introduced to compute the number of subsequences of the
sequence v[r]

Table 2. Transitions of the 3-state machine at a 0-run of length r = 3 represented as
results of transformations of input vectors

s Type(s) Input s′ Type(s′) hr(s, s
′)

S or S+ 0 0 0 1 000 S 0 0 0 1 L3

S or S+ 0 0 0 1 001 S+ 0 0 0 1 DL2

S or S+ 0 0 0 1 01 S+ 0 0 0 1 D2L

S 0 0 0 1 1 S+ 0 0 0 1 D3

The method of counting described above seems to be very general. In partic-
ular, computing the generating function Nv(D,L) for an arbitrary sequence v
can be also organized using the formula (17) with the parameter r depending on
i in such a way that r is equal to the length of a run of the sequence v containing
the (r1+ . . .+ri−1+1)-st bit of this sequence. If v is a sequence of period T, then
this approach brings a machine having at most 2T + 1 states, and the solution
has be easily found. To extend this method to the problem of computing the
joint generating function for two given sequences, let us also introduce a repre-
sentation of the transitions of the machine in Fig. 2 as results of transformations
of input vectors belonging to the (r + 1)-element set consisting of the vector 0r

and vectors (0i, 1), i = 0, . . . , r − 1, for the 0-run and consisting of the vector
1r and vectors (1i, 0), i = 0, . . . , r− 1, for the 1-run. This representation can be
easily understood from the numerical example given in Table 2, where hr(s, s′)
denotes the transfer function associated with the corresponding transformation.
We will use the method above for computing the generating functions of random
binary sequences with the restricted lengths of all runs.

3.2 Computing the Generating Function Nv[1],v[2](D1, D2, L)

The suggested way of computing the generating function Nv[1],v[2](D1, D2, L) is
an extension of considerations of the previous subsection. This extension should
be clear from Fig. 3 and Table 3. As a result,

Nv[1],v[2](D1, D2, L) = N (S) + (N (S) + N (S+))L,
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S S+

F

�
D1L

2
� D2L

�
�

D1D
2
2 + D2L

D1L
2

1

1 + L L

�

� �

Fig. 3. The 3-state machine introduced to compute the number of common subse-
quences of a pair of sequences (v[1],v[2])

Table 3. Transitions of the 3-state machine at a pair of 0-runs of the pair of sequences
(v[1],v[2]) represented as results of transformations of input vectors

s Type(s) Input s′ Type(s′) h1,2(s, s
′)

S or S+ 0 1 0 1 0 0 S 0 1 0 1 D1L
2

0 0 1 1 0 0 1 1

S or S+ 0 1 0 1 0 1 S+ 0 1 0 1 D2L
0 0 1 1 0 0 1 1

S 0 1 0 1 1 S+ 0 1 0 1 D1D
2
2

0 0 1 1 0 0 1 1

S or S+ 0 1 0 1 0 F 0 1 0 1 L
0 0 1 1 0 0 1 1

S 0 1 0 1 ∅ F 0 1 0 1 1
0 0 1 1 0 0 1 1

where N (s) = N (s)(D1, D2, L), s = S,S+, are solutions to the system of linear
equations [

1−D1L
2 −D1L

2

−D1D
2
2 −D2L 1−D2L

] [
N (S)

N (S+)

]
=
[

1
0

]
.

3.3 Computing the Generating Functions Associated with Random
Binary Sequences Consisting of Runs of Lengths 1 and 2

Note that the [1120] and [1021] ensembles contain only sequences v[1] and v[2],
respectively. Notation above allows us to present a simple proof of the important
known result [4], which says that the sum

∑
d≤�δ nv(d, �), being interpreted as

the size of “a ball” of radius �δ having the center v�(1+δ), is bounded from above
by the size of a corresponding ball having the center v�(1+δ)[1]. However, the
statement that, for all sequences belonging to the [1p2q] ensemble, the size of a
ball is bounded from below by the size of a corresponding ball having the center
v�(1+δ)[2] is not true in general.
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Lemma 2. For all sequences v and all � ≥ 1, δ ∈ [0, 1],∑
d≤�δ

nv(d, �) ≤
∑
d≤�δ

nv[1](d, �). (18)

Proof: Given a vector u� with Del(v|u�) = d ≤ �δ, let Δ� = (Δ1, . . . ,Δ�), where

Δi
�
= Del(v|ui)− Del(v|ui−1) for all i = 1, . . . , � and Del(v|u0)

�
= 0. Construct

the vector Δ′
� = (Δ′

1, . . . ,Δ
′
�) whose components are defined as Δ′

i = min{Δi, 1},
i = 1, . . . , �. Then Δ′

1 ≤ Δ1, . . . , Δ
′
� ≤ Δ� and

Δ′
1 + . . . + Δ′

� ≤ Δ1 + . . . + Δ�. (19)

Different vectors u� specify different vectors û� by the following rule : set ûi =
vji

[1], where ji = i + Δ′
1 + . . . + Δ′

i−1 for all i = 1, . . . , �. Since Del(v[1]|û�) =
Δ′

1 + . . . + Δ′
�, this construction and inequality (19) prove (18).

Theorem 1. Let the polynomials N (s) = N (s)(D,L), s = S, S+, and N (s) =
N (s)(D1, D2, L), s = S,S+, be defined as solutions to systems of linear equations[

1− a −a
−b− c 1− c

] [
N (S)

N (S+)

]
=
[

1
0

]
,

[
1− a2 −a2

−b2 − c2 1− c2

] [
N (S)

N (S+)

]
=
[

1
0

]
,

where
a

�
= pL + qL2, b

�
= (p + qD)D, c

�
= qDL,

and

a2
�
= p2L +

(
q2 + pq(p + qD1)D1 + pq(p + qD2)D2

)
L2,

b2
�
=
(
p2 + pq(D1 + D2) + q2D1D2

)
D1D2,

c2
�
=
(
pq(D1 + D2) + q2D1D2

)
L.

Then the generating functions N1p2q
(D,L) and N1p2q

(D1, D2, L) defined in (7)−
(10) can be expressed as

N1p2q
(D,L) = N (S) + (N (S) + N (S+))qL

=
(
1 + q(1 + b)L− c

)∑
k≥0

[
Z1p2q

(D,L)
]k
,

N1p2q
(D1, D2, L) = N (S) + (N (S) + N (S+))(1− p2)L

=
(
1 + (1− p2)(1 + b2)L− c2

)∑
k≥0

[
Z1p2q

(D1, D2, L)
]k
,

where

Z1p2q
(D,L)

�
= a + c + ab, Z1p2q

(D1, D2, L)
�
= a2 + c2 + a2b2. (20)
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Proof: To find the generating function N1p2q
(D,L) we use the approach de-

veloped for computing the function Nv[r](D,L) and introduce the 3-state ma-
chine whose transition diagram is given in Fig. 4. The transfer functions associ-
ated with edges are obtained as linear combinations of transfer functions associ-
ated with corresponding edges at the diagrams of machines for Nv[1](D,L) and
Nv[2](D,L) taken with coefficients p and q, respectively.

The way of computing the generating function N1p2q
(D1, D2, L) can be also

easily understood, since it is based on the transition diagram in Fig. 5, which is
constructed as an extension of the diagrams in Fig. 2 and Fig. 3. As soon as the
machine enters states S or S+, we choose lengths of current runs in v1 and v2.
By construction, both runs are either 0-runs or 1-runs. If these runs have equal
lengths, then we assign the transfer functions to edges according to Fig. 2 for
r = 1 with the weight p2 and for r = 2 with the weight q2. If the length of the
run in v1 is equal to 1 and the length of the run in v2 is equal to 2, then we
take transfer functions from Fig. 3 with the weight pq. In the case when lengths
of runs are 2 and 1, then the procedure is the same with the exchanged indices
of variables D1 and D2.

S S+

F

�
pL + qL2

� qDL
�

�

pD + qD2 + qDL

pL + qL2

1

1 + qL qL

�

� �

Fig. 4. The 3-state machine introduced to compute the expected number of subse-
quences of random sequences belonging to the [1p2q] ensemble

S S+

F

�
a2 � c2

�
�

b2 + c2

a2

1

1 + (1 − p2)L (1 − p2)L

�

� �

Fig. 5. The 3-state machine introduced to compute the expected number of common
subsequences of a pair of random sequences belonging to the [1p2q] ensemble

Note that the result of Theorem 1 implies

Nv[1](D,L) =
∑
k≥0

(
L + DL

)k

=
∑
�≥0

�∑
d=0

(
�

d

)
DdL�, (21)

Nv[2](D,L) =
(
1 + (1−D + D2)L

)∑
k≥0

(
DL + L2 + D2L2

)k

, (22)
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Nv[1],v[2](D1, D2, L) =
(
1 + (1−D2 + D1D

2
2)L
)

·
∑
k≥0

(
D2L + D1L

2 + D2
1D

2
2L

2
)k

. (23)

One can easily check that these equalities agree with initial parts of the gener-
ating functions given in Table 1. Notice also that

Nv[1],v[2](D, 1, L) = Nv[1](D,L), Nv[1],v[2](1, D, L) = Nv[2](D,L).

3.4 Asymptotic Behavior of the Expected Number of Subsequences
of Random Binary Sequences Consisting of Runs of Lengths 1
and 2

Let
E1p2q

(δ)
�
= lim sup

�→∞

1
�

log n1p2q
(�δ, �),

E1p2q
(δ1, δ2)

�
= lim sup

�→∞

1
�

log n1p2q
(�δ1, �δ2, �),

where δ, δ1, δ2 ∈ [0, f ] are fixed, f = 1 if p ∈ {0, 1}, and f = 2 if p ∈ (0, 1). The
solution

Ev[1](δ)
�
= E1120(δ) = h(δ)

can be readily found from (21) and Stirling’s approximation for the binomial co-
efficients. However, in general case, (20) bring polynomials such that one is sup-
posed to compute the sum of all coefficients of monomials D�δL� and D�δ1

1 D�δ2
2 L�

obtained from [Z1p2q
(D,L)]k and [Z1p2q

(D1, D2, L)]k, k = 0, 1, . . . Nevertheless,
we have closed formulas by the statement below.

Theorem 2. 1. The function E1p2q
(δ) can be expressed as

E1p2q
(δ) = −ξδ − λ, (24)

where ξ and λ are reals determined by the equations

Z1p2q
(2ξ, 2λ) = 1,

∂Z1p2q
(2ξ, 2λ)/∂ξ

∂Z1p2q
(2ξ, 2λ)/∂λ

= δ. (25)

2. The function E1p2q
(δ1, δ2) can be expressed as

E1p2q
(δ1, δ2) = −ξ1δ1 − ξ2δ2 − λ, (26)

where ξ1, ξ2, and λ are reals determined by the equations

Z1p2q
(2ξ1 , 2ξ2 , 2λ) = 1

and
∂Z1p2q

(2ξ1 , 2ξ2 , 2λ)/∂ξ1
∂Z1p2q

(2ξ1 , 2ξ2 , 2λ)/∂λ
= δ1,

∂Z1p2q
(2ξ1 , 2ξ2 , 2λ)/∂ξ2

∂Z1p2q
(2ξ1 , 2ξ2 , 2λ)/∂λ

= δ2.
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Proof: We use a general statement given below. The proof is included in the
Appendix.

Lemma 3. Suppose that I is a finite set of pairs of non–negative integers and
that a polynomial

Z(D,L) =
∑

(i,j)∈I
z(i, j)DiLj

is given in such a way that z(i, j) > 0 for all (i, j) ∈ I. Let Z(δ) be the set of
pairs of reals (ξ, λ) such that

Z(2ξ, 2λ) = 1,
∂Z(2ξ, 2λ)/∂ξ
∂Z(2ξ, 2λ)/∂λ

= δ. (27)

Then

|Z(δ)| ≥ 1 =⇒ E(δ|Z) = max
(ξ,λ)∈Z(δ)

[
−ξδ − λ

]
,

Z(δ) = ∅ =⇒ E(δ|Z) = −∞,

where
E(δ|Z)

�
= lim

�→∞

1
�

log
∑
k≥0

Coef(�δ,�)
[
Zk(D,L)

]
,

where Coef(�δ,�)
[
Zk(D,L)

]
is the coefficient of the monomial D�δL� in the rep-

resentation
Zk(D,L) =

∑
d,�≥0

Coef(d,�)

[
Zk(D,L)

]
DdL�.

One can easily check that the set Z(δ) constructed for the polynomial Z1p2q
(δ)

is either an empty set or it contains only one pair (ξ, λ), and the first claim of
Theorem 2 follows. The second claim is proven similarly with the use of a gen-
eralized version of Lemma 3.

Conditions (25) imply that parameters ξ and λ in (24) are reals determined
by the equations

(P1(2ξ) + P2(2ξ)2λ)2λ = 1,
P ′

1(2
ξ) + P ′

2(2
ξ)2λ

P1(2ξ) + 2P2(2ξ)2λ
= δ (28)

where [
P1(D) P2(D)
P ′

1(D) P ′
2(D)

]
=
[
p + (p2 + q)D + pqD2 q + pqD + q2D2

(p2 + q)D + 2pqD2 pqD + 2q2D2

]
.

Hence, the parameter λ can be expressed as

λ = log

√
1 + 4P2(2ξ)/P 2

1 (2ξ)− 1
2P2(2ξ)/P1(2ξ)
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In particular, if p ∈ {0, 1}, then

ξ = 0 =⇒ Ev[1](1/2) = Ev[2](2/3) = 1;

ξ →∞ =⇒ δ → 1−, Ev[1](δ) → 0, Ev[2](δ) → log(
√

5− 1)− 1;
δ > 1 =⇒ Ev[1](δ) = Ev[2](δ) = −∞.

Some properties of the function E1p2q
(δ) for p ∈ (0, 1) are stated below.

Lemma 4. If p ∈ (0, 1), then

|E1p2q
(δ)| <∞, for all δ < 2,

lim
δ→2−

E1p2q
(δ) = log(pq),

E1p2q
(δ) = −∞, for all δ > 2.

Proof: If ξ →∞, then

P2(2ξ)/P1(2ξ) → q/p, P2(2ξ)/P 2
1 (2ξ) → (1/p2)2−2ξ, λ =→ 1

pq
2−2ξ,

because
√

1 + ε − 1 = ε/
√

1 + ε + O(ε2) by Taylor power series. As a result,
δ → 2− and −ξδ − λ→ log(pq).

Examples of exponents E1p2q
(δ) are shown in Fig. 6. Notice that

max
p∈[0,1]

δ1(p) = 7/2− 2
√

2, p∗
�
= arg max

p∈[0,1]
δ1(p) = 3− 2

√
2,

where δ1 is defined by the equation E1p2q
(δ1) = 1, i.e., if δ = 1 and a sequence

v belongs to the [1p2q] ensemble, then the sum at the left–hand side of (18) is
bounded from below by the corresponding sum for a random sequence belonging
to the ensemble [1p∗21−p∗ ].

A further discussion of properties of the exponents E1p2q
(δ) and E1p2q

(δ1, δ2)
is postponed to another paper. In the present correspondence we only indicate
interesting points of the exponent E1p2q

(δ) in Table 4 and show the function
E1p2q

(δ, δ) in Fig. 7 for p = 1/2.

3.5 Appendix: Proof of Lemma 3

Let A(δ) be a collection of probability distributions α=
(
α(i, j)∈ [0, 1],(i, j)∈

such that ∑
(i,j)∈I

iα(i, j) = δ,
∑

(i,j)∈I
jα(i, j) = 1. (29)

For a fixed � ≥ 1, let A(�)(δ) ∈ A(δ) be a finite set consisting of probability
distributions with �α(i, j) ∈ {0, . . . , �} for all (i, j) ∈ I. Then

| A(�)(δ) | ≤ (� + 1)|I|,

I
)
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Fig. 6. Exponents E1p2q (δ) for p = 0, 1/2, 1 and E1/2(δ)

because each entry of α ∈ A(�)(δ) can take at most � + 1 values. Furthermore,
conditions z(i, j) > 0, (i, j) ∈ I, imply an existence of at most∑

(i,j)∈I

[
1 + min

{�δ
i
,
�

j

}]
≤ (� + 1)|I|

different values of k such that Coef(�δ,�)[Zk(D,L)] > 0. Since each value of k can
be obtained as �

∑
(i,j)∈I α(i, j) for some α ∈ A(�)(δ) and vice versa : for any

fixed k one can find the corresponding probability distribution α,

2�F�(Z) ≤
∑
k≥0

Coef(�δ,�)
[
Zk(D,L)

]
≤ |I|(� + 1)1+|I|2�F�(Z),

where

F�(Z)
�
=

1
�

log max
α∈A(δ)

(
�
∑

(i,j)∈I α(i, j))
)
!∏

(i,j)∈I(�α(i, j))!

∏
(i,j)∈I

(
z(i, j)

)�α(i,j)

,

Using Stirling’s approximation formula for the factorial, we write

F�(Z) = max
α∈A(δ)

Φ(α) + O
( log �

�

)
,
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Table 4. Values of the parameters δ1, δ0, δ−∞ defined by the equations E1p2q (δ1) = 1,

E1p2q (δ0) = 0, δ0 > 0, and E1p2q (δ−∞) = −∞. The corresponding values of the

function E1/2(δ) are given in the last line

p δ1 δ0 δ−∞ E1p2q (1) E1p2q (2−)

1 1/2 1 1 0 −∞
0.9 0.545 1.267 2 0.595 −3.474
0.8 0.582 1.378 2 0.716 −2.644
0.7 0.611 1.445 2 0.778 −2.252
0.6 0.633 1.484 2 0.813 −2.059
0.5 0.650 1.501 2 0.832 −2
0.4 0.662 1.497 2 0.841 −2.059
0.3 0.669 1.473 2 0.840 −2.252
0.2 0.671 1.425 2 0.829 −2.644
0.1 0.671 1.342 2 0.802 −3.474
0 2/3 1 0.694 −∞

1 3.404 ∞ 1 0.755

�

�
δ

0
0.65 1

1

−1

−0.64
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Fig. 7. Increasing parts of the functions E1p2q (δ), E1p2q (δ, δ) for p = 1/2 (solid lines)

and E1/2(δ), E1/2(δ, δ) (dashed lines)

where

Φ(α) =
∑

(i,j)∈I
α(i, j) log

z(i, j)
∑

(i′,j′)∈I α(i′, j′)

α(i, j)
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One can check that Φ(α) is a convex up function of α(i, j) for all (i, j) ∈ I.
Therefore, using the Lagrange multipliers method, we conclude that if α ∈ A(δ)
maximizes Φ(α), then

∂Φξ,λ(α)
∂α(i, j)

= 0, for all (i, j) ∈ I,

where ξ, λ are reals chosen in such a way that conditions (29) are satisfied and

Φξ,λ(α)
�
=
∑

(i,j)∈I
α(i, j) log

z(i, j)
∑

(i′,j′)∈I α(i′, j′)

α(i, j)

+ ξ
( ∑

(i,j)∈I
iα(i, j)− δ

)
+ λ
( ∑

(i,j)∈I
jα(i, j)− 1

)
.

Hence
α(i, j)∑

(i′,j′)∈I α(i′, j′)
= z(i, j)2ξi+λj .

and conditions (29) can be equivalently introduced as equations (27).
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Abstract. It is shown that the generalized Berlekamp-Massey algorithm
(GBMA, in short) for solving the linear synthesis problem of a multi-
sequence r over F2 can be obtained naturally from a special form of the
multi-continued fraction algorithm, called the multi-strict continued frac-
tion algorithm (m-SCFA, in short). Moreover, the discrepancy sequence
in acting GBMA on r is expressed explicitly by the data associated to
the multi-strict continued fraction expansion C(r) which is obtained by
applying m-SCFA on r. As a consequence, a 1-1 correspondence between
multi-sequences of any given length and certain multi-strict continued
fractions is established.

1 Introduction

Continued fraction algorithm (CFA) [1, 2, 3] for a single power series over a
field F is a powerful tool in dealing with the optimal rational approximation
problem. The CFA was applied [1] to solve the linear synthesis problem of a
single sequence over F . It was shown [2] that the CFA is virtually equivalent to
Berlekamp’s algorithm (BMA, in short) [4, 5] in dealing with the linear synthesis
problem of a single sequence. Later it was shown [6] further that an iterative
algorithm obtained naturally from the CFA is exactly the same as the BMA
when F is the binary field F2.

Recently, a multi-continued fraction algorithm (m-CFA, in short), as a gener-
alization of the CFA, is introduced in dealing with the optimal rational approx-
imation problem of the multi-formal Laurent series (including power series).

In this work it is shown that the generalized Berlekamp-Massey algorithm[7,
8] (GBMA, in short) for solving the linear synthesis problem of a multi-sequence r
over F2 can be also obtained naturally from a special form of the multi-continued
fraction algorithm, called the multi-strict continued fraction algorithm (m-SCFA,
in short). Moreover, the discrepancy sequence in acting GBMA on r is expressed
explicitly by the data associated to the multi-strict continued fraction expansion
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C(r) which is obtained by applying m-SCFA on r. As a consequence, a 1-1
correspondence between multi-sequences of any given length and certain multi-
strict continued fractions is established.

2 Multi-strict Continued Fraction Algorithm (m-SCFA)

Let Z be the ring of integers, F2 the binary field, F2[z] the polynomial ring over
F2, F2((z−1)) = {

∑
i≥t aiz

−i|t ∈ Z, ai ∈ F2} the Laurent series field over F2,
m a positive integer, F2[z]m and F2((z−1))m the column vector space over F2[z]
and F2((z−1)) of dimension m respectively, and Zm the integer set {1, 2, · · · ,m}.

A linear order on Zm × Z is defined as follows: for any two elements (h, v)
and (h′, v′) in Zm ×Z, we define (h, v) < (h′, v′) if v < v′, or v = v′ and h < h′.
We denote (m,n)+ = (1, n + 1), and (j, n)+ = (j + 1, n) if j < m. For each
(j, i) ∈ Zm × Z, we call z−iej a monomial, which will be denoted by m(j,i)

occasionally, where ej is the j-th standard basis element, and

z−iej =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
z−i

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
←− j .

We denote by M the set of all possible monomials. Then, any non-zero element
r = (r1, · · · rj , · · · , rm)τ in F2((z−1))m can be expressed uniquely as

r =
∑

(h,v)≤(j,i)∈Zm×Z

cj,i(r)z−iej , cj,i(r) ∈ F2

for some (h, v) ∈ Zm × Z, which is called the monomial decomposition of r,
where τ means transpose. We call cj,i(r) the (j, i)-th coefficient of r; we say
z−iej belongs to r and denote z−iej ∈ r if cj,i(r) 	= 0.

Define Iv(r) = (h, v) and v(r) = v, where (h, v) = min{(j, n) ∈ Zm ×
Z|z−nej ∈ r}. We call Iv(r) and v(r) the indexed valuation and valuation of r
respectively. By convention, Iv(0) = (1,∞), v(0) = ∞, where 0 is the m-tuple
made of all zeros.

Fact 1. Let α, β ∈ F2((z−1))m. Then

1. Iv(α) = (1,∞) ⇔ α = 0.
2. If Iv(α) = (h, v), then Iv(rα) = (h, v + v(r)) for any r ∈ F2((z−1)).
3. Iv(α + β) ≥ min {Iv(α), Iv(β)}, and the equality holds true if and only if

Iv(α) 	= Iv(β). �
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For any finite sum A =
∑

(j,i)∈M cj,iz
−iej ∈ F2((z−1)), we define Supp+(A) =

max{(j, i) | cj,i 	= 0 }, which is the maximal indexed valuation of the monomials
which belong to A.

For any element β =
∑

biz
−i in F2((z−1)), denote �β� =

∑
i≤0 biz

−i and
{β} =

∑
i≥1 biz

−i. For any element r = (r1, r2 · · · , rm)τ ∈ F2((z−1))m, de-
note �r� = (�r1�, �r2�, · · · , �rm�)τ and {r} = ({r1}, {r2}, · · · , {rm})τ . Denote
by Diag.(λ1, · · · , λk, · · · , λm) the diagonal matrix of order m with the k-th di-
agonal element being equal to λk, where λk ∈ F2((z−1)) and 1 ≤ k ≤ m.

Multi-strict Continued Fraction Algorithm (m-SCFA) [9, 10]: Given 0 	=
r ∈ F2((z−1))m with v(r) > 0. Initially, set a0 = 0 ∈ F2[z]m, Δ−1 = Im, and
α0 = β0 = r. Suppose [a0, h1, a1, · · · , hk−1, ak−1],

Δk−2 = Diag.(z−ck−1,1 , · · · , z−ck−1,j , · · · , z−ck−1,m),

αk−1 and βk−1 = (βk−1,1, · · · , βk−1,j , · · · , βk−1,m)τ ∈ F2((z−1))m have been
defined for an integer k ≥ 1, where Im is the identity matrix of order m, hk ∈ Zm,
ak ∈ F2[z]m, ck−1,j ∈ Z, Δk−2 is a diagonal matrix of order m. If αk−1 	= 0,
then the computations for the k-th round are defined by the following steps:

1. Take (hk, ck) = Iv(Δk−2αk−1) ∈ Zm × Z.
2. Take an m×m diagonal matrix

Δk−1 = Diag.(z−ck,1 , · · · , z−ck,j , · · · , z−ck,m),

where

ck,j =
{
ck−1,j if j 	= hk,
ck if j = hk.

3. Take ρk = (ρk,1, · · · , ρk,j , · · · , ρk,m)τ ∈ F2((z−1))m, where

ρk,j =

{
βk−1,j

βk−1,hk

if j 	= hk,
1

βk−1,hk

if j = hk.

4. Take αk = {ρk} and Ak = �ρk�.
5. Let Ak =

∑
m∈M cm(Ak)m be the monomial decomposition of the polyno-

mial tuple Ak, cm(Ak) ∈ F2. Take βk = ρk − ak, where

ak =
∑

m∈Ak,Iv(Δk−1m)<Iv(Δk−1αk)

cm(Ak) m.

6. Take μ = k and the algorithm terminates if αk = 0; otherwise, go to the
(k + 1)-th round.

Denote μ = ∞ if the above procedure never terminates. As a result of the m-
SCFA, we get an expansion form

C = C(r) =
[

h1, h2, · · · , hk, · · ·
0, a1, a2, · · · , ak, · · ·

]
, 1 ≤ k ≤ μ, μ =∞ or μ <∞, (1)
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which is called the multi-strict continued fraction expansion (m-SCFE, in short)
of r. We call m the dimension of C and μ the length of C.

Associated to C(r), let ak,hk
be the hk-th component of ak, and

tk = deg (ak,hk
),

vk,j =
∑

1≤i≤k,hi=j

ti, v0,j = 0, vk = vk,hk
,

dk =
∑

1≤i≤k

ti,

nk = dk + vk−1,hk
,

(hμ+1, vμ+1) = (1,∞), if μ <∞,

nμ+1 = ∞ if μ <∞,

Dk = Diag.(zvk,1 , · · · , zvk,j , · · · , zvk,m), D0 = Im,

where deg (ak,hk
) denotes the degree of the polynomial ak,hk

, 1 ≤ k ≤ μ and
1 ≤ j ≤ m. In order to show these parameters are associated to C(r), we also
write μ = μ(C), dk = dk(C), Dk = Dk(C) and so on. It is known [9, 10] that
C(r) satisfies the following three conditions: for 1 ≤ k ≤ μ,
1. tk ≥ 1. In particular, ak,hk

	= 0.
2. Iv(Dkak) = (hk, vk−1,hk

).
3. Supp+(Dkak) < (hk+1, vk+1).

As a consequence, the parameters satisfies the following conditions:

(hk, vk−1,hk
) < (hk+1, vk+1), 1 ≤ k ≤ μ,

or equivalently,
(hk, nk) < (hk+1, nk+1), 1 ≤ k ≤ μ.

Conversely, any expansion of the form (1) is called a multi-strict continued
fraction (m-SCF, in short) if it satisfies the above three conditions.

3 m-SCFA and GBMA over F2

We restate the linear synthesis problem by the language of formal Laurent series.
An infinite sequence r = {ai}i≥1 of elements ai in F2 is identified with the Lau-
rent series whose valuation is larger than 0: r =

∑
i≥1 aiz

−i ∈ F2((z−1)); and the
n-prefix (a1, a2, · · · , an) of r, which is a sequence of length n and denoted by r(n),
is identified with the element

∑
1≤i≤n aiz

−i in F2((z−1)). Correspondingly, an
m-tuple r = (r1, · · · rj , · · · , rm)τ of infinite sequences over F2 is considered as an
element in F2((z−1))m whose valuation is larger than 0, that is, the symbol rj is
considered as a power series; the (j, n)-prefix (r(n)

1 , · · · , r(n)
j , r

(n−1)
j+1 , · · · r(n−1)

m ) of
the multi-sequence r, considered as a multi-sequence of length (j, n) and denoted
by r(j,n), is identified with the element

∑
1≤i≤j r

(n)
i ei +

∑
j<i≤m r

(n−1)
i ei.
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Now some well-known concepts [12] can be restated as follows: a minimal
polynomial of r(j,n) is a polynomial f with the minimal degree such that Iv(fr) >
(j, n−deg(f)); the linear complexity of r(j,n), denote by Lr(j, n), is the degree of
the minimal polynomials of r(j,n); the (j, n)-th discrepancy of f(z) on r, denoted
by δj,n(f ; r), is the (j, n− deg(f))-th coefficient of fr. We call {gj,n}(j,n)≥(1,1) a
minimal polynomial profile of r and {δ(j,n)+(gj,n; r)}(j,n)≥(1,1) the corresponding
discrepancy sequence of r, which will be identified with

∑
(1,1)≤(j,n) δ(j,n)+(gj,n; r)

m(j,n)+ , if gj,n is a minimal polynomial of r(j,n) for each (j, n). The linear syn-
thesis problem is mainly to find a minimal polynomial profile of r.

In the sequel we fix a non-zero multi-sequence r ∈ F2((z−1))m, and keep the
notation C(r) for it.

Associated to C(r), let qk be the (m+1,m+1)-th element of the matrix Bk,
0 ≤ k ≤ μ, where Bk are square matrices of order (m+1) over F2[z] and defined
iteratively as below:

B0 = Im+1, Bk = Bk−1Ehk
A(ak), A(ak) =

(
Im ak

0 1

)
, k ≥ 1,

where Eh is the matrix of order (m + 1) which comes by exchanging the h-th
column and the (m + 1)-th column of the identity matrix Im+1, i.e.,

Eh =

⎛⎜⎜⎝
I 0 0 0
0 0 0 1
0 0 I 0
0 1 0 0

⎞⎟⎟⎠ ←− h

←− m + 1

Denote

Nk =
{
{(j, n)|(1, 1) ≤ (j, n) < (h1, n1)} for k = 0,
{(j, n)|(hk, nk) ≤ (j, n) < (hk+1, nk+1)} for 1 ≤ k ≤ μ.

Then we have Zm × Z+ = ∪̇0≤k≤μNk, where Z+ denotes the set made of all
positive integers, and ∪̇ denotes the disjoint union. A minimal polynomial profile
of r is obtained directly from the m-SCFA as shown by the following theorem.

Theorem 1. [10] deg(qk) = dk, and qk is a minimal polynomial of r(j,n) for
each (j, n) ∈ Nk. As a consequence, denote gj,n = qk for (j, n) ∈ Nk, then {gj,n}
is a minimal polynomial profile of r, and the corresponding discrepancy sequence
is expressed directly by the data associated to C(r) as follows:∑

(j,n)≥(m,0)

δ(j,n)+(gj,n; r) =
∑
k≥1

z−nkehk
,

where we make convention that gm,0 = 1.

We will show in the following Theorem 2 that another minimal polynomial
profile {fj,n} of r, which is different to that given by Theorem 1, is constructed
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naturally from C(r), and an iterative algorithm for getting them is also obtained
naturally from C(r).

Let ak =
∑

1≤i≤μk
mk,i be the monomial decomposition of ak, where the

monomials mk,i are ordered in the way such that they satisfy the inequality:

Iv(Dkmk,i) < Iv(Dkmk,i+1).

We denote

Iv(Dkmk,i) = (jk,i, vk−1,hk
+ xk,i) ∈ Zm × Z, 1 ≤ k ≤ μ, 1 ≤ i ≤ μk.

Then

(jk,i, vk−1,hk
+ xk,i) < (jk,i+1, vk−1,hk

+ xk,i+1), 1 ≤ i < μk,

(jk,μk
, vk−1,hk

+ xk,μk
) = Supp+(Dkak) < (hk+1, vk+1),

or equivalently,

(jk,i, nk + xk,i) < (jk,i+1, nk + xk,i+1), 1 ≤ i < μk,

(jk,μk
, nk + xk,i) = Supp+(Dkak) < (hk+1, nk+1).

Define

fj,n =
{
q0 = 1, if (j, n) ∈ N0,
qk,i, if (j, n) ∈ Nk,i,

where qk,i is the last component of the column vector

Bk−1Ehk

(
ak,i

1

)
, ak,i =

∑
1≤t≤i

mk,t

and

Nk,i =
{
{(j, n)|(jk,i, nk + xk,i) ≤ (j, n) < (jk,i+1, nk + xk,i+1)} if 1 ≤ i < μk,
{(j, n)|(jk,i, nk + xk,μk

) ≤ (j, n) < (hk+1, nk+1)} if i = μk.

It is clear that
Nk = ∪̇1≤i≤μk

Nk,i.

In order to show an iterative relation among fj,n, we let

A(k) =

⎛⎜⎜⎜⎜⎜⎜⎝

A(k; 1)
...

A(k;h)
...

A(k;m)

⎞⎟⎟⎟⎟⎟⎟⎠
be an array of size m× 2, whose h-th row, denoted by A(k;h), is defined as
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A(k;h) = (Qk−1,h, vk,h) ∈ F2[z]× Z, 0 ≤ k ≤ μ,

where Qk−1,h is the (m + 1, h)-th element of the matrix Bk. Define

Aj,n = A(k), ∀ (j, n) ∈ Nk, 0 ≤ k ≤ μ,

and the h-th row of Aj,n will be denoted by Aj,n(h).

Theorem 2. 1. {fj,n}(j,n)≥(1,1) is a minimal polynomial of r.
2. The polynomials fj,n can be obtained iteratively according to the following

iterative algorithm:
Initially, set fm,0 = 1, deg(fm,0) = 0 and Am,0 = A(0).
Assume fj,n, deg (fj,n) and Aj,n have been obtained for some (j, n) ≥ (m, 0).
Denote d = deg (fj,n), Aj,n(h) = (gh, wh) ∈ F2[z]×Z for h ∈ Zm, (j∗, n∗) =
(j, n)+, d∗ = deg(fj∗,n∗). Compute δ = δ(j,n)+(fj,n; r). Then
(a) If δ = 0, then (fj∗,n∗ , d∗, Aj∗,n∗) = (fj,n, d, Aj,n).
(b) If δ = 1 and n∗ − d > wj∗ , then

fj∗,n∗ = fj,nz
n∗−d−wj∗ + gj∗ ,

d∗ = n∗ − wj∗ ,

Aj∗,n∗(h) =
{
Aj,n(h) if h 	= j∗,
(fj,n, n

∗ − d) if h = j∗.

(c) If δ = 1 and n∗ − d ≤ wj∗ , then

fj∗,n∗ = fj,n + gj∗zwj∗−n∗+d,

d∗ = d,

Aj∗,n∗ = Aj,n.

The Theorem 2 will be proved in the next sections. Comparing the iterative
algorithm given in Theorem 2 with the GBMA [7, 8, 13], we get the following
corollary.

Corollary 1. Acting on r, the iterative algorithm obtained from m-SCFA as
shown in Theorem 2 is the same as the generalized Berlekamp-Massey Algorithm;
and C(r) =

∑
1≤k≤μ z−dkDkak is the corresponding discrepancy sequence, ex-

pressed explicitly by data associated to C(r). �

Denote by R the set of all possible multi-infinite sequences over F2 of dimen-
sion m. For any multi-infinite sequence r over F2 of dimension m, denote

C(r) =
∑

1≤k≤μ

z−dkDkak.

The following corollary is clear.

Corollary 2. The mapping r �→ C(r) is an isometry [14] in the sense that it is
injective from R onto R, and preserves distance in the sense that:

Iv(r− r′) = Iv(C(r)−C(r′)) ∀r ∈ R, r′ ∈ R. �
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Let R(h,n)(m) be the set of all multi-sequences of dimension m and length
(h, n); and let C(h,n)(m) be the set of all possible multi-strict continued fractions
C of dimension m and of finite length satisfying the condition Supp+(Dμaμ) ≤
(h, n− dμ), where we assume C is of the form (1), μ = μ(C), Dμ = Dμ(C) and
dμ = dμ(C) are parameters associated to C as defined in section 2, and dμ(C)
will be called the d-value of C, denoted simply by d(C).

For any given multi-strict continued fraction of the form (1), the (h, n)-
segment of C, denoted by C(h,n), is defined as

C(h,n) =
[

h1, h2, · · · , hk, · · · , hw−1, hw

0, a1, a2, · · · , ak, · · · , aw−1, a
∗
w

]
,

where w is an integer such that 0 < w ≤ μ and (hw, nw) ≤ (h, n) < (hw+1, nw+1)
and a∗w is the sum of all monomials m which belong to aw such that Iv(Dwm) ≤
(h, n− dw), where all these parameters hw, nw, dw and Dw are associated to C.

The following theorem is proved based on Theorem 2, here we omit its proof,
as the space is limited.

Theorem 3. The map r �→ C(r)(h,n) is a 1-1 correspondence from R(h,n)(m)
onto C(h,n)(m). Moreover, the linear complexity of r, denoted by Lr, equals to
d(C(r)(h,n)). In particular, if we denote Rn,d(m) = {r ∈ R(m,n)(m) | Lr = d },
and Cn,d(m) = { C ∈ C(m,n)(m) | d(C) = d }, then |Rn,d(m)| = |Cn,d(m)|.

4 Proof of Theorem 2

Before proving Theorem 2, we recall some properties of C(r) which are developed
in [10, 11], and give some lemmas as preparations.

For 1 ≤ k ≤ μ and 1 ≤ j ≤ m, define l(k, j) = k0 if there exists an integer
k0 ≥ 1 such that hk0 = j and hi 	= j for all k0 < i ≤ k, and l(k, j) = 0 otherwise.
It is clear that l(k, j) is a function associated to C(r) and defined on the set
[1, μ]× Zm, where [1, μ] = {k ∈ Z | 1 ≤ k ≤ μ }.

Denote

rk = (−Im r)
(
p

k
qk

)
= rqk − p

k
; (2)

and denote by P k−1,j( ∈ F2[z]m ), Qk−1,j( ∈ F2[z] ) and Rk−1,j( ∈ F2((z−1))m )
the j-th column of Pk−1, Qk−1 and Rk−1 for 1 ≤ j ≤ m, respectively. It is clear
that

(−Im r)Bk = (−Rk−1 rk), (3)

(−Im r)
(
Pk−1,j

Qk−1,j

)
= −Rk−1,j . (4)
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Proposition 1. [10, 11]

1. For 1 ≤ k ≤ μ, we have ⎧⎪⎪⎨⎪⎪⎩
l(k, j) < k if j 	= hk,
hl(k,j) = j if l(k, j) > 0,
vk,j = vl(k,j), and
vk,j = 0⇔ l(k, j) = 0.

2. For 1 ≤ k ≤ μ, we have
(a)

Bk−1Ehk
=
(
Pk−1 Pk−2,hk

Qk−1 Qk−2,hk

)
.

(b)

(
Pk−1,j

Qk−1,j

)
=

⎧⎪⎪⎨⎪⎪⎩
(
Pk−2,j

Qk−2,j

)
if j 	= hk,(

p
k−1

qk−1

)
if j = hk;

and (
Pk−1,j

Qk−1,j

)
=

⎧⎪⎪⎨⎪⎪⎩
(
p

l(k,j)−1

ql(k,j)−1

)
if l(k, j) ≥ 1,(

ej

0

)
if l(k, j) = 0.

As a consequence, l(k, j) ≥ 1 if Qk−1,j 	= 0.
3. For 1 ≤ k ≤ μ, we have

(a)

(−Im r)Bk−1Ehk
= (−Rk−1 −Rk−2,hk

).

(b)

−Rk−1,j =
{
−Rk−2,j if j 	= hk,
rk−1 if j = hk;

and

Rk−1,j =
{
Rl(k,j)−1,j = −rl(k,j)−1 if l(k, j) ≥ 1,
ej if l(k, j) = 0.

4. For 0 ≤ k ≤ μ, we have
(a) ck,j = vk,j and Δk−1 = Dk for 0 ≤ k ≤ μ.
(b) Iv(Rk−1,j) = (j, vk,j) and Iv(rk) = (hk+1, vk+1).
(c) The matrix Rk−1 is invertible. In particular, Rk−1,j 	= 0 for 1 ≤ j ≤ m.
(d) Iv(Rk−1α) = Iv(Δk−1α) = Iv(Dkα) for any α ∈ F2((z−1))m. �
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Lemma 1. Let 1 ≤ k ≤ μ. Then

1. mk,i = ejk,i
zvk,jk,i

−vk−1,hk
−xk,i for 1 ≤ i ≤ μk. In particular, vk,jk,i

−
vk−1,hk

− xk,i ≥ 0.
2. Denote a+

k,i =
∑

i≤t≤μk
mk,t for 1 ≤ i ≤ μk. Then

Iv(Rk−1a
+
k,i) = Iv(Dkmk,i).

Proof. 1. Write simply mk,i = zxeh, then Dkmk,i = z−vk,h+xeh, thus

(jk,i, v + xk,i) = Iv(Dkmk,i) = Iv(z−vk,h+xeh) = (h, vk,h − x),

which leads to this item.
2. Note that

Rk−1a
+
k,i+1 = Rk−1a

+
k,i −Rk−1mk,i

and

Iv(Rk−1mk,i) = Iv(Dkmk,i) < Iv(Dkmk,i+1)

≤ Iv(Dka
+
k,i+1) = Iv(Rk−1a

+
k,i+1),

we see

Iv(Rk−1a
+
k,i) = Iv(−Rk−1mk,i). �

Lemma 2. Let 1 ≤ k ≤ μ. Then

1.

qk,1 = ztkqk−1 + Qk−2,hk
,

qk,i = qk,i−1 + zvk,jk,i
−vk−1,hk

−xk,iQk−1,jk,i
, 2 ≤ i ≤ μk.

2. A(0;h) = (0, 0,−1)for 1 ≤ h ≤ m; and A(k;h) = A(k − 1;h) if h 	= hk.

Proof. 1. We have qk,i = Qk−1ak,i + Qk−2,hk
. Write simply v = vk−1,hk

. Note
that mk,i = ejk,i

zvk,jk,i
−v−xk,i , we see Qk−1mk,i = Qk−1,jk,i

zvk,jk,i
−v−xk,i .

In particular, Qk−1mk,1 = Qk−1,hk
ztk , since (jk,1, xk,1) = (hk, 0) and vk,hk

−
v = tk. Then

qk,1 = Qk−1mk,1 + Qk−2,hk
= ztkQk−1,hk

+ Qk−2,hk

= ztkqk−1 + Qk−2,hk
.

For 2 ≤ i ≤ μk, we have

qk,i = Qk−1(ak,i−1 + mk,i) + Qk−2,hk
= qk,i−1 + Qk−1mk,i

= qk,i−1 + zvk,jk,i
−v−xk,iQk−1,jk,i

.

2. It comes from definitions and Proposition 1. �
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Lemma 3. deg (qk,i) = dk for 1 ≤ k ≤ μ and 1 ≤ i ≤ μk.

Proof. Write simply vk−1,hk
= v. Note that ak = ak,i +

∑
i<t≤μk

mk,t, we have

qk,i = (01×m 1)Bk−1Ehk

(
ak,i

1

)
= (Qk−1, Qk−2,hk

)
(
ak −

∑
i<t≤μk

mk,t

1

)
= qk −

∑
i<t≤μk

Qk−1mk,t

= qk −
∑

i<t≤μk,Qk−1,jk,t
�=0

Qk−1,jk,t
zvk,jk,t

−v−xk,t .

Denote d(k, t) = deg(Qk−1,jk,t
zvk,jk,t

−v−xk,t). For any given t > i, write simply
s = jk,t. Then

d(k, t) = deg(Qk−1,s) + vk,s − v − xk,t = dl(k,s)−1 + vl(k,s) − v − xk,t

= nl(k,s) − v − xk,t,

thus
dk − d(k, t) = dk − nl(k,s) + v + xk,t = nk + xk,t − nl(k,s).

Note that t > i ≥ 1 and

(s, nl(k,s)) = (hl(k,s), nl(k,s)) ≤ (hk, nk) = (jk,1, nk + xk,1)
< (jk,t, nk + xk,t) = (s, nk + xk,t),

we get nl(k,s) < nk + xk,t, hence dk − d(k, t) = nk + xk,t − nl(k,s) > 0. �

In the sequel, we denote

rk,i = rqk,i − p
k,i

, (5)

N
(0)
k,i = (jk,i, nk + xk,i) (6)

for 1 ≤ k ≤ μ, 1 ≤ i ≤ μk and N
(0)
μ+1,1 = (1,∞) if μ <∞. It is clear that⎧⎨⎩

ak,μk
= ak,

(p
k,μk

, qk,μk
) = (p

k
, qk),

rk,μk
= rk;

(7)

and
(hk, nk) = N

(0)
k,1 < N

(0)
k,2 < · · · < N

(0)
k,μk

< N
(0)
k+1,1. (8)

Denote by cj,n(α) the (j, n)-th coefficient of α for any α ∈ F2((z−1))m. Then
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Lemma 4. 1. δj,n(q0; r) = cj,n(r) for all (1, 1) ≤ (j, n).
2. Let 1 ≤ k ≤ μ and 1 ≤ i ≤ μk. Then

δj,n(qk,i; r) = cj,n−dk
(rk,i) if N

(0)
k,i < (j, n).

In particular, δj,n(qk; r) = cj,n−dk
(rk) if N (0)

k,μk
< (j, n).

Proof. 1. It is easy to check, based on the fact that q0 = 1.
2. We need only prove cj,n−dk

(rqk,i) = cj,n−dk
(rk,i) for N

(0)
k,i < (j, n), since

deg(qk,i) = dk and δj,n(qk,i; r) = cj,n−dk
(rqk,i). Note that rk,i = rqk,i − p

k,i

and (jk,i, nk + xk,i) = N
(0)
k,i , it is enough to prove cj,n−dk

(p
k,i

) = 0 for
(jk,i, nk + xk,i) < (j, n), or equivalently,

Supp+(p
k,i

) ≤ (jk,i, nk + xk,i − dk) = (jk,i, vk−1,hk
+ xk,i). (9)

Note that p
k,i
∈ F2[z]m, we see Supp+(p

k,i
) ≤ (m, 0) < (jk,i, vk−1,hk

+
xk,i) if vk−1,hk

+ xk,i > 0. Now we may assume vk−1,hk
+ xk,i = 0. With

this assumption, we have vk−1,hk
= xk,i = 0. Then we need only prove

Supp+(p
k,i

) ≤ (jk,i, 0). Note that (hk, 0) = (jk,1, xk,1) < (jk,2, xk,2) < · · · <
(jk,i, xk,i), we get ⎧⎪⎪⎨⎪⎪⎩

xk,1 = xk,2 = · · · = xk,i = 0,
hk = jk,1 < jk,2 < · · · < jk,i,
ak,i =

∑
1≤s≤i z

vk,jk,s ejk,s
,

Pk−2,hk
= ehk

(since vk−1,hk
= 0).

Therefore, we have

p
k,i

= (Pk−1, Pk−2,hk
)
(
ak,i

1

)
= ehk

+
∑

1≤s≤i

Pk−1,jk,s
zvk,jk,s .

Note that Supp+(ehk
) = (hk, 0) < (jk,i, 0), it is enough to prove

Supp+(Pk−1,jk,s
zvk,jk,s ) ≤ (jk,i, 0) (10)

for those s such that 1 ≤ s ≤ i and Pk−1,jk,s
	= 0. For the case vk,hjk,i

> 0, we
see Supp+(Pk−1,jk,s

zvk,jk,s ) ≤ (m,−vk,jk,s
) < (jk,i, 0), since Supp+(Pk,jk,i

)
≤ (m, 0). For the case vk,hjk,i

= 0, we have l(k, jk,i) = 0, then Pk−1,jk,s
=

ejk,s
, hence, Supp+(Pk−1,jk,s

zvk,jk,s ) = Supp+(ejk,s
) = (jk,s, 0) ≤ (jk,i, 0). �

Lemma 5. 1. For 1 ≤ k ≤ μ, and 1 < i ≤ μk, we have
(a) Iv(rk,i−1) = (jk,i, vk−1,hk

+ xk,i) = (jk,i, nk + xk,i − dk).

(b) cj∗,n∗−dk
(rk,i−1) =

{
0 if (j∗, n∗) < N

(0)
k,i ,

1 if (j∗, n∗) = N
(0)
k,i .
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2. For 1 ≤ k ≤ μ, we have
(a) Iv(rk−1) = (hk, vk) = (hk, nk − dk−1).

(b) cj∗,n∗−dk−1(rk−1) =

{
0 if (j∗, n∗) < N

(0)
k,1 ,

1 if (j∗, n∗) = N
(0)
k,1 .

Proof. We have

rk,i = (−I r)
(
p

k,i

qk,i

)
= (−I r)Bk−1Ehk

(
ak,i

1

)
= (−Rk−1 −Rk−2,hk

)
(
ak,i

1

)
= −Rk−1ak,i −Rk−2,hk

,

and then

rk = rk,μk
= −Rk−1ak,μk

−Rk−2,hk
= −Rk−1ak −Rk−2,hk

.

1. Note that

rk = −Rk−1(ak,i−1 + a+
k,i)−Rk−2,hk

= rk,i−1 −Rk−1a
+
k,i

and

Iv(−Rk−1a
+
k,i) = Iv(Dkmk,i) ≤ Iv(Dkmk,μk

)

≤ Supp+(Dkak) < (hk+1, vk+1) = Iv(rk),

where a+
k,i is defined as in Lemma 1, we get

Ld(rk,i−1) + Ld(−Rk−1a
+
k,i) = 0.

Then Iv(rk,i−1) = Iv(Rk−1a
+
k,i), which together with Lemma 1 lead to

Iv(rk,i−1) = Iv(Dkmk,i) = (jk,i, vk−1,hk
+ xk,i). The part (b) is an easy

consequence of (a).
2. The part (a) is known from Proposition 1, and (b) is an easy consequence

of (a). �

For the sake of convenience, we denote N
(0)
k,μk+1 = N

(0)
k+1,1 for 1 ≤ k ≤ μ.

Lemma 6. Let 1 ≤ k ≤ μ. Then

1. δj,n(q0; r) =

{
0 if (j, n) < N

(0)
1,1 ,

1 if (j, n) = N
(0)
1,1 .

2. δj,n(qk,i; r) =

{
0 if N (0)

k,i < (j, n) < N
(0)
k,i+1,

1 if (j, n) = N
(0)
k,i+1.

Proof. It is an easy consequence of Lemma 4 and Lemma 5. �

The following lemma is prepared for transferring the relation between qk,i

and qk,i−1, which is given in Lemma 2, to that between f(j,n)+ and fj,n.
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Lemma 7. Let (j, n) ≥ (m, 0). Denote (j∗, n∗) = (j, n)+, δ = δj∗,n∗(fj,n, r),
d = deg fj,n, d∗ = deg fj∗,n∗ . Denote by Aj,n(h) = (gh, wh)τ the h-th column
of Aj,n for 1 ≤ h ≤ m. Then

1. If (j, n)+ 	∈ ∪1≤k≤μ{N (0)
k,i |1 ≤ i ≤ μk}, then δ = 0 and

(fj∗,n∗ , d∗, Aj∗,n∗) = (fj,n, d, Aj,n).

2. If (j, n)+ = N
(0)
k,1 for some 1 ≤ k ≤ μ, then

δ 	= 0,
(j∗, n∗) = (hk, nk),

(fj,n, fj∗,n∗) = (qk−1, qk,1),
(d, d∗) = (dk−1, dk),

( Aj,n, Aj∗,n∗ ) = ( A(k − 1), A(k) ),
(fj,n, n

∗ − d,−δ)τ = A(k;hk),
n∗ − d− wj∗ = tk.

3. If (j, n)+ = N
(0)
k,i for some 1 ≤ k ≤ μ and 1 < i ≤ μk, then

δ 	= 0,
(j∗, n∗) = (jk,i, nk + xk,i),

(fj,n, fj∗,n∗) = (qk,i−1, qk,i),
(d, d∗) = (dk, dk),

( Aj,n, Aj∗,n∗ ) = ( A(k), A(k) ),
n∗ − d− wj∗ = −(vk,jk,i

− vk−1,hk
− xk,i) ≤ 0.

4. δ 	= 0 if and only if (j, n)+ = N
(0)
k,i for some 1 ≤ k ≤ μ and 1 ≤ i ≤ μk.

Moreover, If δ 	= 0, then (j, n)+ = N
(0)
k,1 if and only if n∗ − d > wj∗ ; and

(j, n)+ = N
(0)
k,i with i > 1 if and only if n∗ − d ≤ wj∗ .

Proof. In this proof we use Lemma 1, Lemma 3 and Lemma 6 frequently.

1. We prove it for the cases (j, n)+ ∈ N0 and (j, n)+ 	∈ N0 separately. If
(j, n)+ ∈ N0, then (j, n) = (m, 0) or (j, n) ∈ N0, fj∗,n∗ = q0 = fj,n, δ =
δ(j,n)+(q0; r) = 0, d∗ = deg(q0) = d, Aj∗,n∗ = A(0) = Aj,n. If (j, n)+ 	∈ N0,
then N

(0)
k,i ≤ (j, n) < (j, n)+ ∈ Nk,i for some 1 ≤ k ≤ μ and 1 ≤ i ≤ μk.

Then fj,n = qk,i = fj∗,n∗ , δ = δj∗,n∗(qk,i; r) = 0, d = deg(fj,n) = deg(qk,i) =
deg(fj∗,n∗) = d∗, Aj∗,n∗ = A(k) = Aj,n.

2. Under the assumption we have (j, n) ∈ Nk−1,μk−1 , fj,n = qk−1 and (j∗, n∗) =
(hk, nk). Then fj∗,n∗ = qk,1, δ = δj∗,n∗(qk−1, r) = δhk,nk

(qk−1, r) = 1,
d∗ = deg(qk,1) = dk, d = deg(qk−1) = dk−1, Aj,n = A(k − 1), Aj∗,n∗ =
A(k), (gj∗ , wj∗)τ = Aj,n(j∗) = A(k − 1;hk) = (Qk−2,hk

, vk−1,hk
)τ . Note

that A(k;hk) = (Qk−1,hk
, vk,hk

), Qk−1,hk
= qk−1 = fj,n, d = deg(fj,n) =

deg(qk−1) = dk−1 and vk,hk
= nk − dk−1 = n∗ − d, we get A(k;hk) =

(fj,n, n
∗ − d). Then n∗ − d− wj∗ = vk,hk

− vk−1,hk
= tk.



M-CFA and GBMA over F2 353

3. Under the assumption we have (j, n) ∈ Nk,i−1, (j∗, n∗) = N
(0)
k,i = (jk,i, nk +

xk,i), fj,n = qk,i−1, fj∗,n∗ = qk,i, d = deg(qk,i−1) = dk = deg(qk,i) = d∗,
δ = δj∗,n∗(qk,i−1; r) = 1. Note that (gj∗ , wj∗)τ = Aj,n(j∗) = A(k; j∗) =
(Qk−1,j∗ , vk,j∗)τ , we see

n∗ − d− wj∗ = nk + xk,i − dk − vk,j∗ = −(vk,jk,i
− vk−1,hk

− xk,i) ≤ 0.

4. It is an easy consequence of the above items. �
Proof of Theorem 2. In this proof we use Lemma 2, Lemma 3 and Lemma 7
frequently.

1. If (j, n) ∈ N0, then fj,n = q0, hence fj,n is a minimal polynomial of r(j,n)

from Proposition 1. Now we assume (j, n) ∈ Nk with 1 ≤ k ≤ μ. W.l.o.g., we
may assume (j, n) ∈ Nk,i for some i: 1 ≤ i ≤ μk, hence, fj,n = qk,i. We see qk

is a minimal polynomial of r(j,n), and the linear complexity L(j, n) of r(j,n)

is deg(qk) = dk from Proposition 1. If i = μk, we have fj,n = qk,μk
= qk, so

fj,n is a minimal polynomial of r(j,n). If i < μk, note that deg(qk,i) = dk,
it is enough to prove qk,i is a characteristic polynomial of r(j,n). Note that
rk,i = rqk,i − p

k,i
and (j, n) < N

(0)
k,i+1 = (jk,i+1, nk + xk,i+1), we see

Iv({rqk,i}) = Iv({rk,i}) ≥ Iv(rk,i) = Iv(Dkmk,i+1)
= (jk,i+1, vk−1,hk

+ xk,i+1) = (jk,i+1, nk − dk + xk,i+1) > (j, n− dk),

hence, qk,i is a characteristic polynomial of r(j,n).
2. (a) It is an easy consequence of Lemma 7.

(b) If δ 	= 0, n∗ − d > wj∗ , then (j∗, n∗) = (j, n)+ = N
(0)
k,1 = (hk, nk). We

have

fj∗,n∗ = qk,1 = ztkqk−1 + Qk−2,hk
= zn∗−d−wj∗ fj,n + gj∗ ;

deg(fj∗,n∗) = d∗ = dk = dk−1 + tk = d + tk = n∗ − wj∗ ;
Aj∗,n∗(h) = A(k;h) = A(k − 1;h) = Aj,n(h) if h 	= hk = j∗;
Aj∗,n∗(j∗) = A(k; j∗) = A(k;hk) = (fj,n, n

∗ − d).

(c) If δ 	= 0, n∗ − d ≤ wj∗ , then (j∗, n∗) = (j, n)+ = N
(0)
k,i with i > 1. We

have

fj∗,n∗ = qk,i = qk,i−1 + zvk,jk,i
−v−xk,iQk−1,jk,i

= fj,n + z−n∗+d+wj∗ gj∗ ;
deg(fj∗,n∗) = d∗ = dk = d;

Aj∗,n∗ = A(k) = Aj,n.

3. Keep the notation m(j,n) = z−nej and mN
(0)
k,i = z−(nk+xk,i)ejk,i

. We have

δ =
∑

(m,0)≤(j,n)

δ(j,n)+(fj,n; r)m(j,n)+

=
∑

(j,n)∈N0

δ(j,n)+(q0; r)m(j,n)+ +
μ∑

k=1

μk∑
i=1

∑
(j,n)∈Nk,i

δ(j,n)+(qk,i; r)m(j,n)+ .
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Note that

z−dkDkmk,i = z−dk−vk−1,hk
−xk,iejk,i

= z−nk−xk,iejk,i
= mN

(0)
k,i ,

we get

δ =

{
mN

(0)
1,1 +

∑
1≤k≤μ−1,1≤i≤μk

mN
(0)
k,i+1 +

∑
1≤i<μμ

mN
(0)
μ,i+1 if μ <∞

mN
(0)
1,1 +

∑
1≤k≤μ,1≤i≤μk

mN
(0)
k,i+1 if μ =∞

=
∑

1≤k≤μ,1≤i≤μk

mN
(0)
k,i

=
∑

1≤k≤μ,1≤i≤μk

z−dkDkmk,i

=
∑

1≤k≤μ

z−dkDkak. �
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Abstract. The group structure of the 2-dimensional sidelobe-invariant
transformations for binary arrays is characterized. The design of an ef-
ficient exhaustive backtracking search algorithm, which exploits such
group structure to reduce the search space and, in the meantime, applies
the partially determined autocorrelation values as backtracking condi-
tions, is presented. As a consequence of applying the algorithm, all op-
timal binary arrays with minimum peak sidelobe levels consisting of up
to 49 elements are obtained and tabulated.

1 Introduction

Consider an M × N binary array a = [a(m,n)] where each a(m,n) is 1 or −1.
Its 2-dimensional (2D) aperiodic autocorrelation function C(j, k) is defined as

C(j, k) =
∑

m

∑
n a(m + j, n + k)a(m,n) (1)

Here, we take a(m,n) = 0 when m /∈ [1,M ] or n /∈ [1, N ] such that C(j, k) is 0
for |j| ≥ M or |k| ≥ N . We define an array to be optimal if its largest out-of-
phase autocorrelation magnitude (also called the peak sidelobe level), |C(j, k)|,
is no greater than that of any other array of the same sizes. The minmum peak
sidelobe (MPS) level for a size of M ×N is the peak sidelobe level of an optimal
array of the specified size. An optimal array is also called a MPS array in the
literature. It is further called a Barker array if the MPS level achieved is only
1. The problem of finding the MPS levels and the corresponding optimal arrays
for large sizes is evidently a computationally challenging task.

� This work was supported by the National Science Foundation of China (NSFC)
and the Research Grants Council of Hong Kong (RGC) joint research scheme with
Project No. N HKUST617/02 (No. 60218001).
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Alquaddoomi and Scholtz [1] presented a potential application of MPS arrays
to high resolution radar and results of exhaustive backtracking searches for opti-
mal arrays of sizes M ×N with M ≤ 8 for N = 2, M ≤ 9 for N = 3, and M ≤ 7
for N = 4, all with MPS ≤ 3. Kutruff and Quadt [2] conducted trial-and-error
searches for near-optimal binary arrays with sizes no more than 5 × 5 towards
the purpose of applications to loudspeaker arrays. Such arrays with sizes 4× 3
and 5 × 5 were cited in [3–Table VI] as Kutruff-Quadt codes. (A comparison
with Table 2 here shows that the 5 × 5 array therein is actually suboptimal.)
Other potential applications of MPS arrays include 2D system identication, 2D
synchronization/positioning, coded aperture imaging [4] and spread spectrum
image watermarking [5].

Exhaustive enumeration results for optimal binary sequences (i.e., M = 1)
have been conducted for lengths up to 48 (see [6]). The group structure of
sidelobe-invariant transformations for binary sequences and its use for efficient
representation and regeneration of the class of equivalent optimal sequences were
discussed in [7] and [8]. The group of 2D sidelobe-invariant transforms for bi-
nary arrays is larger and has a far more complicated structure. In this paper, the
group structure of 2D sidelobe-invariant transforms is characterized in details.
An efficient backtracking search algorithm exploiting some of the group prop-
erties is developed, and a new search for all 2D optimal arrays of sizes M ×N
with MN ≤ 49 is accomplished.

2 The Group of 2D Sidelobe-Invariant Transformations

Let SMN denote the set of all M ×N binary arrays. A sidelobe-invariant trans-
formation is defined to be a function from SMN to itself that preserves the
set of sidelobe levels. For the binary case, the five 2D transformations given in
Table 1 are sidelobe-invariant. The final column gives the (i, j)th element in the
transformed array in terms of a(i, j), the original array.

Let G denote the group generated by the five sidelobe-invariant transforma-
tions in Table 1. The group G partitions SMN into equivalence classes in which
any two elements a, b are in the same equivalence class if and only if ∃g ∈ G
such that g(a) = b. In each equivalence class, we identify a unique array in order
to reduce the search space. This can be specified as the array that gives the
lexicographically (lex) smallest string formed by taking row-wise, the logarithm
to base −1 of each of its elements.

Theorem 1. The elements of the group of 2D sidelobe-invariant transforma-
tions for binary arrays can be represented by a binary 5-tuple that indicates the
composition of the 5 basic transformations C,H, V, P,Q listed in Table 1. As a
corollary, the order of the group is 32.

2.1 Characterization of the Group Structure

While the order of the group of transformations is always 32, the specific group
structure depends on the parity of M and N . When both M and N are odd, the
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Table 1. 2D sidelobe-invariant transformations for binary arrays

Transformation Notation Definition

Complementation C −a(i, j)
Horizontal reversal H a(i, N − j + 1)
Vertical reversal V a(M − i + 1, j)

Alternate row complementation P (−1)i+1a(i, j)
Alternate column complementation Q (−1)j+1a(i, j)

non-commutative cases do not arise and we have an abelian group isomorphic
to (Z2)5. For the case where M is even and N is odd, we have only one non-
commutative relation, PV ≡ CV P . Since Q and H are part of the center of G
(they commutate with all elements), we see that G is isomorphic to the direct
product of the group of order 8 formed by 〈C, V, P 〉 and the abelian group, Z2×Z2

formed by 〈H,Q〉. The group formed by 〈C, V, P 〉 is D4, the dihedral group of
order 8, which can be verified from the presentation relations (see [7] and [8]
for a similar discussion on sequences). When N is even and M is odd, 〈C,H,Q〉
forms D4 and 〈V, P 〉 forms (Z2)2 to generate G as their direct product. For the
case when M and N are both even, we have both the relations, PV ≡ CV P and
QH ≡ CHQ occurring simultaneously. In this case, G can not be decomposed
as a direct product but is a central product of two dihedral groups of order 8,
D4 ∗D4, with C being the element amalgamated in the central product. The two
dihedral groups in question can be verified as 〈P, V,C〉 and 〈Q,H,C〉 from the
presentation relations. This group is also known as the “extraspecial 2-group of
order 32 and type plus” (see [9] for a presentation of this group).

2.2 Identifying the Representative in an Equivalence Class

For any array a, define the transformation, N , as,

N(a) = Cα · P β ·Qγ(a) (2)

where α, β, γ are either 0 or 1, and are determined from the array values, a(1, 1),
a(2, 1) and a(1, 2) so as to force a(1, 1), a(2, 1) and a(1, 2) to 1 in the transformed
array, N(a). This process may be called normalization.

Theorem 2. N(a) is the lex smallest element in the equivalence class of a due
to the subgroup generated by 〈C,P,Q〉. As a corollary, a is the representative
element of its equivalence class if and only if a is the lexicographically smallest
of {N(a), N(H(a)), N(V (a)), N(HV (a))}.

This is one of the ideas incorporated in the backtracking algorithm to search
only one array out of each equivalence class.
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3 Design of the Backtracking Search Algorithm

The basic structure of the algorithm used is the classical backtrack using the
depth first search (see [10] for a general discussion on the backtracking tech-
nique). Traversing down a path in the search tree corresponds to assigning val-
ues to the array elements in a specific order. We use backtracking conditions
to avoid traversing down the paths that are certain to not result in the arrays
being sought for. Two types of backtracking conditions have been used here. One
type is the backtrack executed when the path can not lead to an array with the
minimum peak sidelobe (see [6],[13]). The elements are filled alternately from
the top left corner and the bottom right corner. The specific sequence of fill-
ing the array elements can be varied heuristically to adopt to the order that
might be expected to give strong correlation backtrack constraints early in the
tree traversal. The backtrack conditions are verified for every new position in
the search tree (i.e. for every new assignment of an array value). Another type
corresponds to the backtrack executed when the path can not lead to the repre-
sentative array of an equivalence class (see [1],[12]). It can be implemented in an
efficient manner based on the relevant characterization result in Section 2. The
details are omitted here due to the limitation of space.

4 The Search Results

Numerous previously unknown optimal binary arrays have been found by ap-
plying our efficient backtracking search. Table 2 lists the MPS level and the
total number Neq of equivalence classes of the optimal binary arrays of every
size M ×N with MN ≤ 49. Comparing the search results reported in [1], new
optimal binary arrays are obtained for sizes M ×N with 9 ≤M ≤ 24 for N = 2,
10 ≤ M ≤ 16 for N = 3, 8 ≤ M ≤ 12 for N = 4, and all tabulated sizes for
N = 5, 6, and 7. The MPS level increases faster for the 2D than the 1D case
if we compare MPS arrays and sequences with the same number of elements.
While all the sizes till 48 for the 1D case have MPS = 3, the value 3 saturates
earlier for the 2D case at around 30 for MN . Also, the number of arrays which
achieve MPS = 4 is very large. An analogous count for the number of MPS = 4
sequences has not been exhibited previously for any length. Note that the new
searches described in [13] were not exhaustive.

5 Concluding Summary

The group structure for the 2D sidelobe-invariant transforms was presented and
the reduced array groups due to the presence of certain symmetry were analyzed.
Efficient backtracking search algorithm that takes advantages of the group struc-
ture of sidelobe-invariant transformations was developed. As a consequence of
carrying out the search, numerous new MPS arrays with up to 49 elements have
been discovered.
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Table 2. M × N optimal binary arrays with MN ≤ 49

M × N MPS Neq SSE

2 × 2 1 1 2
3 × 2 2 3 11
4 × 2 2 4 12
5 × 2 2 6 29
6 × 2 2 5 42
7 × 2 2 8 39
8 × 2 2 6 48
9 × 2 3 106 73

10 × 2 3 89 58
11 × 2 3 92 83
12 × 2 3 73 84
13 × 2 3 27 109
14 × 2 3 20 130
15 × 2 3 3 135
16 × 2 3 4 176
17 × 2 3 1 193
18 × 2 4 153627 190
19 × 2 4 123746 219
20 × 2 4 149635 236
21 × 2 4 91759 281
22 × 2 4 108622 294
23 × 2 4 48335 295
24 × 2 4 54668 352

3 × 3 2 6 17
4 × 3 2 7 24
5 × 3 2 15 41
6 × 3 2 4 48
7 × 3 3 87 77

M × N MPS Neq SSE

8 × 3 2 1 80
9 × 3 3 24 117

10 × 3 3 2 168
11 × 3 4 245354 161
12 × 3 4 342207 176
13 × 3 4 388928 197
14 × 3 4 322901 252
15 × 3 4 299315 265
16 × 3 4 207554 288

4 × 4 2 4 40
5 × 4 3 104 62
6 × 4 3 71 84
7 × 4 3 12 110
8 × 4 3 6 128
9 × 4 4 464909 166

10 × 4 4 619256 228
11 × 4 4 552020 238
12 × 4 4 403650 420

5 × 5 3 46 90
6 × 5 3 7 162
7 × 5 4 461388 168
8 × 5 4 688470 216
9 × 5 4 653050 242

6 × 6 4 539884 162
7 × 6 4 647846 233
8 × 6 4 576041 296

7 × 7 4 488588 315
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Abstract. In this paper, we propose two new construction methods for
quaternary Hadamard matrices. By the first method, which is applica-
ble for any positive integer n, we are able to construct a quaternary
Hadamard matrix of order 2n from a binary sequence with ideal auto-
correlation. The second method also gives us a quaternary Hadamard
matrix of order 2n from a binary extended sequence of period 2n − 1,
where n is a composite number.

1 Introduction

A generalized Hadamard matrix H of order N is an N × N matrix satisfying
HH† = NIN , where † denotes the conjugate transpose and IN is the iden-
tity matrix of order N [3,8,13]. In other words, any two distinct rows of H are
orthogonal. For this reason, Hadamard matrices have been studied for the appli-
cations in many areas such as wireless communication systems, coding theory,
and signal design[1,4,14,15,16]. Hadamard matrices have strong ties to sequences.
Matsufuji and Suehiro proposed the complex Hadamard matrices related to bent
sequences[9]. Popovic, Suehiro, and Fan[12] proposed orthogonal sets of quater-
nary sequences by using quadriphase sequence family A by Boztas, Hammons,
and Kumar[2].

In this paper, we propose two new construction methods for quaternary
Hadamard matrices. By the first method, which is applicable for any positive
integer n, we are able to construct a quaternary Hadamard matrix of order 2n

from a binary sequence with ideal autocorrelation. The second method also gives
us a quaternary Hadamard matrix of order 2n from a binary extended sequence
of period 2n− 1, where n is a composite number. Before we proceed to the next
section, let us clarify some terms and notations used throughout this paper.

Let F2n be the finite field with 2n elements. Let F ∗
2n = F2n \ {0} and s(x)

be a mapping from F2n to F2 or Z4. If we restrict the mapping s(x) to F ∗
2n and

replace x by αt, where α is a primitive element in F2n , then we can obtain a
sequence s(αt), 0 ≤ t ≤ 2n − 2, of period 2n − 1. Hence, for convenience, we

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 361–372, 2005.
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will use the expression ‘a binary or quaternary sequence s(αt) of period 2n − 1’
interchangeably with ‘a mapping s(x) from F2n to F2 or Z4’.

For δ ∈ F ∗
2n , the crosscorrelation function between two quaternary sequences

si(x) and sj(x) is defined as

Ri,j(δ) =
∑

x∈F∗
2n

ω
si(xδ)−sj(x)
4 ,

where w4 is a complex fourth root of unity.
Let f(x) be a mapping from F2n onto F2m , where m|n. The function f(x)

is said to be balanced if each nonzero element of F2m appears 2n−m times and
zero element 2n−m − 1 times in the list {f(x)|x ∈ F ∗

2n}. A function f(x) is said
to be difference-balanced if f(δx) − f(x) is balanced for any δ ∈ F2n\{0, 1}. It
is easy to see that the binary sequence with difference-balance property has the
ideal autocorrelation property necessarily and sufficiently.

It is not difficult to see that a variable v over Z4 can be expressed using two
binary variables v1 and v2 as

v = v1 + 2v2,

where addition is modulo 4.
Let us define two maps φ and ψ as

φ(v) = v1, ψ(v) = v2.

It can be shown that φ(v − w) and ψ(v − w) of the difference v − w are
expressed as

φ(v − w) = v1 + w1

ψ(v − w) = v1w1 + w1 + w2 + v2. (1)

2 New Constructions of Quaternary Hadamard Matrices

In this section, we propose two constructions for quaternary Hadamard matrices
from binary sequences with ideal autocorrelation.

Lemma 1. For a positive integer n, let g(t) be a binary sequence of period
2n − 1 with ideal autocorrelation. Then for any z, 1 ≤ z ≤ 2n − 2, the following
sequence qz(t) given by

qz(t) = g(t) + 2g(t + z)

is balanced over Z4.

Proof . Let Nz(a, b), a, b ∈ {0, 1} be the number of t such that g(t) = a and
g(t+ z) = b. Since g(t) has the ideal autocorrelation property, it is balanced and
difference-balanced. Thus we have

Nz(0, 0) + Nz(0, 1) = 2n−1 − 1
Nz(0, 0) + Nz(1, 0) = 2n−1 − 1
Nz(0, 0) + Nz(1, 1) = 2n−1 − 1.
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Finally, from the facts that

∑
a

∑
b

Nz(a, b) = 2n − 1,

we can conclude that qz(t) is balanced. �

Using the above lemma, we get the quaternary Hadamard matrices as in the
following theorem.

Theorem 1. Let n be an integer and g(t), 0 ≤ t ≤ 2n − 2, be a sequence of
period 2n − 1 with ideal autocorrelation. Then the following matrix HQ is a
2n × 2n quaternary Hadamard matrix.

HQ = (hij), 0 ≤ i, j ≤ 2n − 1,

where hij is given as

hij =

⎧⎪⎨⎪⎩
1, for i = 0 or j = 0
w

2g(j−1)
4 , for i = 1 and 1 ≤ j ≤ 2n − 1

w
g(j−1)+2g(i−1+j−1)
4 = w

qi−1(j−1)
4 , otherwise.

Proof . Let ui be the ith row of HQ. It is clear that uiu
†
i = 2n, 0 ≤ i ≤ 2n− 1.

In proving the orthogonality between ui and uk, we should consider the following
three cases.

Case 1) i = 0 and 1 ≤ k ≤ 2n − 1 :
From Lemma 1 and balance property of g(t) and qk(t), it is clear that u0 is

orthogonal to uk, for any k, 1 ≤ k ≤ 2n − 1.

Case 2) i = 1, 2 ≤ k ≤ 2n − 1 :
In this case, u1u

†
k is given as

u1u
†
k = 1 +

2n−2∑
t=0

w
2g(t)−g(t)−2g(t+k−1)
4

= 1 +
2n−2∑
t=0

w
g(t)−2g(t+k−1)
4 .

From Lemma 1, it is straightforward that g(t)−2g(t+k−1) is also balanced
and thus u1u

†
k = 0, i.e., u1 is orthogonal to uk.
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Case 3) 2 ≤ i < k ≤ 2n − 1 :
In this case, uiu

†
k is given as

uiu
†
k = 1 +

2n−2∑
t=0

w
{g(t)+2g(t+i−1)}−{g(t)+2g(t+k−1)}
4

= 1 +
2n−2∑
t=0

w
2(g(t+i−1)+g(t+k−1))
4

= 1 +
2n−2∑
t=0

(−1)g(t+i−1)+g(t+k−1).

From the difference-balance property of g(t), uiu
†
k = 0. �

Here is an example of an 8 × 8 quaternary Hadamard matrix constructed
from the above theorem.

Example 1. Let α be a primitive element in F23 . Using the m-sequence tr31(α
t)

of period 7, we can construct the quaternary sequences of period 7 as

s0(t) = 2tr31(α
t)

si(t) = tr31(α
t) + 2tr31(α

t+i), 1 ≤ i ≤ 6,

which gives us HQ

HQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0
4 ω0

4 ω0
4 ω0

4 ω0
4 ω0

4 ω0
4 ω0

4

ω0
4 ω2

4 ω0
4 ω0

4 ω2
4 ω0

4 ω2
4 ω2

4

ω0
4 ω1

4 ω0
4 ω2

4 ω1
4 ω2

4 ω3
4 ω3

4

ω0
4 ω1

4 ω2
4 ω0

4 ω3
4 ω2

4 ω3
4 ω1

4

ω0
4 ω3

4 ω0
4 ω2

4 ω3
4 ω2

4 ω1
4 ω1

4

ω0
4 ω1

4 ω2
4 ω2

4 ω3
4 ω0

4 ω1
4 ω3

4

ω0
4 ω3

4 ω2
4 ω2

4 ω1
4 ω0

4 ω3
4 ω1

4

ω0
4 ω3

4 ω2
4 ω0

4 ω1
4 ω2

4 ω1
4 ω3

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

�

No, Yang, Chung, and Song constructed extended sequences with ideal auto-
correlation from sequences of shorter period with ideal autocorrelation[11].

Theorem 2 (No, Yang, Chung, and Song[11]). Let n and m be positive
integers such that m|n. Let f(y) be the function from F2m to F2 with difference-
balance property such that f(0) = 0. Let r be an integer such that gcd(r, 2m −
1) = 1 and 1 ≤ r ≤ 2m − 2. Then the sequence of period 2n − 1 defined by

f([trn
m(x)]r)

has the ideal autocorrelation property. �
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Using the extended sequences, we can construct the quaternary Hadamard
matrix as in the following theorem.

Theorem 3. Let n and m be integers such that m|n, and r be an integer such
that 1 ≤ r ≤ 2m − 2 and gcd(r, 2m − 1) = 1. Let T = 2n−1

2m−1 and f(y) be the
sequence from F2m to F2 which has the balance and difference-balance properties.
Let si(αt) be defined as

s0(αt) = 2f([trn
m(αt)]r)

si(αt) = f([trn
m(αt)]r + 2f([trn

m(βiαt)]r), 1 ≤ i ≤ 2m − 2,

where β = αT is a primitive element in F2m .
Then the following matrix HL is a 2n × 2n quaternary Hadamard matrix.

HL = (hij),

where hij is given as

hij =

{
1, if i = 0 or j = 0

w
s�(i−1)/T	(j−1+iT )
4 , otherwise,

where �x� denotes the greatest integer not exceeding x and iT = (i− 1) mod T .
�

Proof of the above theorem requires following lemmas.

Lemma 2. Let m, e, and n be positive integers such that n = em. Let q = 2m

and A = {1, α, · · · , αT−1}, where α is a primitive element in F2n and T = qe−1
q−1 .

Let v(x) be a function from Fqe onto Fq with the balance and difference-balance
properties. Further assume that v(x) satisfies v(yx) = yv(x) for any y ∈ Fq and
x ∈ Fqe . For a given δ ∈ Fqe \Fq, let Mδ(a, b) be the number of x2 ∈ A satisfying

v(δx2) = a and v(x2) = b, a, b ∈ Fq.

Then, we have

Mδ(0, 0) =
qe−2 − 1
q − 1

=
2n−2m − 1

2m − 1∑
c∈F∗

q

Mδ(c, 0) =
∑

c∈F∗
q

Mδ(0, c) = qe−2 = 2n−2m

∑
d∈F∗

q

Mδ(cd, d) = qe−2 = 2n−2m, for any c ∈ F ∗
q .

Proof . Let Nδ(a, b) be the number of x ∈ F ∗
qe satisfying v(δx) = a and v(x) = b.

Let x = x1x2, where x1 ∈ Fq and x2 ∈ A. Because v(x) is difference-balanced,
v(δx)− v(cx) = v(δx)− cv(x) is balanced for any c ∈ F ∗

q and 0 occurs qe−1 − 1
times as x varies over F ∗

qe . Thus we have∑
a∈Fq

Nδ(ca, a) = qe−1 − 1. (2)
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Since v(x) is balanced, we have∑
a∈Fq

Nδ(a, 0) =
∑
b∈Fq

Nδ(0, b) = qe−1 − 1. (3)

Also, note that ∑
a∈Fq

∑
b∈Fq

Nδ(a, b) = qe − 1. (4)

Now, we have∑
a∈Fq

∑
b∈Fq

Nδ(a, b) =
∑
a∈Fq

Nδ(a, 0) +
∑
b∈Fq

Nδ(0, b)

−Nδ(0, 0) +
∑

c∈F∗
q

∑
a∈F∗

q

Nδ(a, ca)

=
∑
a∈Fq

Nδ(a, 0) +
∑
b∈Fq

Nδ(0, b)−Nδ(0, 0)

+
∑

c∈F∗
q

⎧⎨⎩∑
a∈Fq

Nδ(a, ca)−Nδ(0, 0)

⎫⎬⎭ . (5)

Plugging (2), (3), and (4) into (5), we have

Nδ(0, 0) = qe−2 − 1. (6)

From (2) and (6), we also have∑
a∈F∗

q

Nδ(ca, a) =
∑
a∈Fq

Nδ(ca, a)−Nδ(0, 0) = qe−2(q − 1).

Let β = αT . For a given x2 such that v(δx2) = cv(x2), the ordered pair
(v(δx), v(x)) = (x1v(δx2), x1v(x2)) takes each value in the list

(c, 1), (cβ, β), · · · , (cβq−2, βq−2)

exactly once as x1 varies over F ∗
q . Therefore we have∑

a∈F∗
q

Nδ(ca, a) = (q − 1)
∑

a∈F∗
q

Mδ(ca, a),

which, in turn, tells us that ∑
a∈F∗

q

Mδ(ca, a) = qe−2.
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Similarly, we have

Mδ(0, 0) =
Nδ(0, 0)
q − 1

=
qe−2 − 1
q − 1∑

c∈F∗
q

Mδ(c, 0) =

∑
c∈F∗

q
Nδ(c, 0)

q − 1
= qe−2

∑
c∈F∗

q

Mδ(0, c) =

∑
c∈F∗

q
Nδ(0, c)

q − 1
= qe−2.

�

Lemma 3. Let s(x) be a function from any domain B to Z4, where s(0) = 0.
Define two Boolean constituent functions of s(x) as

φs(x) = φ(s(x)), ψs(x) = ψ(s(x))

and their modulo-2 sum as

μs(x) = φs(x) + ψs(x). (7)

Let Nf (c) denote the number of occurrences of f(x) = c as x varies over B.
Then, we have∑

x∈B

ω
s(x)
4 = (Nψs

(0)−Nμs
(1)) + j(Nμs

(1)−Nψs
(1)).

Proof . It is clear that∑
x∈B

ω
s(x)
4 = (Ns(0)−Ns(2)) + j(Ns(1)−Ns(3))

and

Nψs
(1) = Ns(2) + Ns(3) (8)

Nψs
(0) = 2n −Nψs

(1) = Ns(0) + Ns(1) (9)
Nμs

(1) = Ns(1) + Ns(2). (10)

From (8), (9), and (10), we have

Ns(0)−Ns(2) = Nψs
(0)−Nμs

(1)
Ns(1)−Ns(3) = Nμs

(1)−Nψs
(1).

Thus we prove the lemma. �
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Corollary 1. Let s(x) be a function from F2n to Z4. Then,∑
x∈F2n

ω
s(x)
4 = 0

if and only if the functions ψs(x) and μs(x) are balanced.

�
Now we are ready to prove Theorem 3.

Proof of Theorem 3. Let vi be the ith row of HL, 0 ≤ i ≤ 2n − 1. We have
to show that viv

†
k = 0 for all i 	= k. The case when i = 0 is simple. Since v0

is an all one sequence, we need to show that the row sum is zero for each row
vk, k 	= 0. From the structure of HL, it is manifest that the rows v1+lT through
vT+lT , 0 ≤ l ≤ 2m − 2, are the cyclic shifts of sl(x). Also note that s0(x) is
balanced since it is in fact the binary extended sequence, and sl(x), l 	= 0, is also
balanced from Lemma 1. Thus we have v0v

†
k = 0 for all k 	= 0.

Now, for any nonzero i and k, i 	= k, viv
†
k can be expressed as

viv
†
k = 1 +

2n−2∑
t=0

w
s�(i−1)/T	(t+iT )−s�(k−1)/T	(t+kT )
4

= 1 +
∑

x∈F∗
2n

w
si′ (δx)−sk′ (x)
4 ,

where δ = αiT −kT , i′ = �(i − 1)/T �, and k′ = �(k − 1)/T �. For δ = αiT −kT ,
showing that viv

†
k = 0 is equivalent to showing that the crosscorrelation Ri′,k′(δ)

between si′(x) and sk′(x) is −1.
For a, b ∈ F2m\F2, define two quaternary sequences ua(x) and ub(x) of period

2m − 1 as

ua(x) = f(x) + 2f(ax)
ub(x) = f(x) + 2f(bx)

and let d(x, η) = ua(ηx)− ub(x). Define Sψd
and Sμd

as

Sψd
=
∑

x∈F∗
2m

∑
η∈F∗

2m

(−1)ψ(d(x,η))

Sμd
=
∑

x∈F∗
2m

∑
η∈F∗

2m

(−1)μ(d(x,η)).

Then from (1) and (7), Sψd
and Sμd

can be expressed as

Sψd
=
∑

x∈F∗
2m

∑
η∈F∗

2m

(−1)f(ηx)f(x)+f(x)+f(bx)+f(aηx) (11)

Sμd
=
∑

x∈F∗
2m

∑
η∈F∗

2m

(−1)f(ηx)f(x)+f(ηx)+f(bx)+f(aηx). (12)
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Now, let I1(x) and I2(x) be the inner summation in (11),∑
η∈F∗

2m

(−1)f(ηx)f(x)+f(x)+f(bx)+f(aηx)

for the cases when f(x) = 0 and f(x) = 1, respectively, i.e.,

I1(x) =
∑

η∈F∗
2m

(−1)f(bx)+f(aηx)

and
I2(x) =

∑
η∈F∗

2m

(−1)f(ηx)+1+f(bx)+f(aηx).

Then Sψd
can be expressed as

Sψd
=

∑
x∈{x|f(x)=0,x∈F∗

2m}
I1(x) +

∑
x∈{x|f(x)=1,x∈F∗

2m}
I2(x). (13)

The first term in (13) is computed as∑
x∈{x|f(x)=0,x∈F∗

2m}
I1(x) =

∑
x∈{x|f(x)=0,x∈F∗

2m}
(−1)f(bx)

∑
η∈F∗

2m

(−1)f(aηx)

=
∑

x∈{x|f(x)=0,x∈F∗
2m}

(−1)f(bx)+1,

since f(x) is balanced.
The second term in (13) is computed as∑

x∈{x|f(x)=1,x∈F∗
2m}

I2(x) =
∑

x∈{x|f(x)=1,x∈F∗
2m}

(−1)f(bx)+1
∑

η∈F∗
2m

(−1)f(ηx)+f(aηx)

=
∑

x∈{x|f(x)=1,x∈F∗
2m}

(−1)f(bx)

since f(x) is difference-balanced.
Thus, we have

Sψd
=

∑
x∈{x|f(x)=1,x∈F∗

2m}
(−1)f(bx) −

∑
x∈{x|f(x)=0,x∈F∗

2m}
(−1)f(bx).

Finally, from the difference-balance property, we have

(f(x), f(bx)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, 0), 2m−2 − 1 times
(1, 0), 2m−2 times
(0, 1), 2m−2 times
(1, 1), 2m−2 times,
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as x varies over F ∗
2m . Therefore, we have

Sψd
= 1.

In the similar way, we get Sμd
= 1.

Now consider two sequences

si′(x) = f([trn
m(x)]r) + 2f(ar[trn

m(x)]r)
sk′(x) = f([trn

m(x)]r) + 2f(br[trn
m(x)]r),

where a = βi′ and b = βk′
for nonzero i′ and k′. Then Ri′,k′(δ) is given by

Ri′,k′(δ) =
∑

x∈F∗
2n

ω
si′ (δx)−sk′ (x)
4

=
∑

x2∈A

∑
x1∈F∗

2m

ω
{f(xr

1[trn
m(δx2)]

r)+2f(xr
1ar[trn

m(δx2)]
r)}

4

· ω−{f(xr
1[trn

m(x2)]
r)+2f(xr

1br[trn
m(x2)]

r)}
4 .

Case 1) i′ 	= k′ for nonzero i′ and k′ :
For δ /∈ F2m , with the replacement of trn

m(δx2) by cd and trn
m(x2) by d and

also from Lemma 2, Ri′,k′(δ) is rewritten as

Ri′,k′(δ) =
∑

d∈F∗
2m

Mδ(cd, d)
∑

c∈F∗
2m

∑
x1∈F∗

2m

ω
{f([x1cd]r)+2f([x1acd]r)}−{f([x1d]r)+2f([x1bd]r)}
4

+Mδ(0, 0)
∑

x1∈F∗
2m

ω0
4

+
∑

c∈F∗
2m

Mδ(c, 0)
∑

x1∈F∗
2m

ω
{f([x1c]r)+2f([x1ac]r)}
4

+
∑

c∈F∗
2m

Mδ(0, c)
∑

x1∈F∗
2m

ω
−{f([x1c]r)+2f([x1bc]r)}
4

= 2n−2m
∑

c∈F∗
2m

∑
x1∈F∗

2m

ω
{f([x1c]r)+2f([x1ac]r)}−{f(xr

1)+2f([x1b]r)}
4

+
2n−2m − 1

2m − 1

∑
x1∈F∗

2m

ω0
4

+2n−2m
∑

x1∈F∗
2m

ω
{f([x1c]r)+2f([x1ac]r)}
4

+2n−2m
∑

x1∈F∗
2m

ω
−{f([x1c]r)+2f([x1bc]r)}
4 .

From Lemma 3 and the facts that Sψd
= 1 and Sμd

= 1, Ri′,k′(δ) can be
computed as

Ri′,k′(δ) = 2n−2m + 2n−2m − 1 + 2× 2n−2m(−1) = −1.
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For δ = 1, we have

Ri′,k′(1) =
∑

x∈F∗
2n

ω
(f([trn

m(x)]r)+2f(ar[trn
m(x)]r))−(f([trn

m(x)]r)+2f(br[trn
m(x)]r))

4

= −1

from the difference-balance property of f(x).

Case 2) i′ = k′ for nonzero i′ and k′ :
Obviously, Ri′,i′(1) = 2n−1. When δ /∈ F2m , the correlation function is given

as

Ri′,i′(δ) = 2n−2m
∑

c∈F∗
2m

∑
x1∈F∗

2m

ω
{f([x1c]r)+2f([x1ac]r)}−{f(xr

1)+2f([x1a]r)}
4

+
2n−2m − 1

2m − 1

∑
x1∈F∗

2m

ω0
4

+2n−2m
∑

x1∈F∗
2m

ω
{f([x1c]r)+2f([x1ac]r)}
4

+2n−2m
∑

x1∈F∗
2m

ω
{f(xr

1cr)+2f([x1ac]r)}
4

= 2n−2m + 2n−2m − 1 + 2× 2n−2m(−1) = −1.

Case 3) i′ = 0 or k′ = 0 :
In this case, it is easy to show that Ri′,0(δ) = R0,i′(δ) = −1 for δ /∈ F2m and

R0,0(δ) = −1 for δ 	= 1. �
Here is an example of 64×64 quaternary Hadamard matrix constructed from

the Theorem 3.

Example 2. Let α be a primitive element in F26 . Let T = 26−1
23−1 = 9 and r = 5.

Using the GMW-sequence tr31([tr
6
3(α

t)]r) of period 63, we can construct quater-
nary sequences of period 63 as

s0(t) = 2tr31([tr
6
3(α

t)]5)
si(t) = tr31([tr

6
3(α

t)]r) + 2tr31([tr
6
3(α

t+9i)]5), 1 ≤ i ≤ 8.

These sequences make a quaternary Hadamard matrix as

HL = (hij),

where hij is given as

hij =

⎧⎪⎨⎪⎩
w0 if i = 0 or j = 0
w2tr3

1([tr6
3(α

j−1+i9 )]5) if 1 ≤ i ≤ T and j 	= 0
wtr3

1([tr6
3(α

j−1+i9 )]r)+2tr3
1([tr6

3(α
j−1+i9+9�(i−1)/9	)]5) otherwise,

where i9 = (i− 1) mod 9.
�
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Abstract. We enumerate the inequivalent self-dual additive codes over
GF(4) of blocklength n, thereby extending the sequence A090899 in The
On-Line Encyclopedia of Integer Sequences from n = 9 to n = 12. These
codes have a well-known interpretation as quantum codes. They can also
be represented by graphs, where a simple graph operation generates the
orbits of equivalent codes. We highlight the regularity and structure of
some graphs that correspond to codes with high distance. The codes can
also be interpreted as quadratic Boolean functions, where inequivalence
takes on a spectral meaning. In this context we define PARIHN , peak-
to-average power ratio with respect to the {I, H, N}n transform set. We
prove that PARIHN of a Boolean function is equivalent to the the size of
the maximum independent set over the associated orbit of graphs. Finally
we propose a construction technique to generate Boolean functions with
low PARIHN and algebraic degree higher than 2.

1 Self- ual Additive Codes over GF(4)

A quantum error-correcting code with parameters [[n, k, d]] encodes k qubits in a
highly entangled state of n qubits such that any error affecting less than d qubits
can be detected, and any error affecting at most d−1

2 qubits can be corrected. A
quantum code of the stabilizer type corresponds to a code C ⊂ GF(4)n [1]. We
denote GF(4) = {0, 1, ω, ω2}, where ω2 = ω+1. Conjugation in GF(4) is defined
by x = x2. The trace map, tr : GF(4) �→ GF(2), is defined by tr(x) = x + x.
The trace inner product of two vectors of length n over GF(4), u and v, is
given by u ∗ v =

∑n
i=1 tr(uivi). Because of the structure of stabilizer codes, the

corresponding code over GF(4), C, will be additive and satisfy u ∗ v = 0 for
any two codewords u,v ∈ C. This is equivalent to saying that the code must
be self-orthogonal with respect to the trace inner product, i.e., C ⊆ C⊥, where
C⊥ = {u ∈ GF(4)n | u ∗ c = 0,∀c ∈ C}.

We will only consider codes of the special case where the dimension k = 0.
Zero-dimensional quantum codes can be understood as highly-entangled single
quantum states which are robust to error. These codes map to additive codes

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 373–388, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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over GF(4) which are self-dual [2], C = C⊥. The number of inequivalent self-
dual additive codes over GF(4) of blocklength n has been classified by Calder-
bank et al. [1] for n ≤ 5, by Höhn [3] for n ≤ 7, by Hein et al. [4] for n ≤ 7, and
by Glynn et al. [5] for n ≤ 9. Moreover, Glynn has recently posted these results
as sequence A090899 in The On-Line Encyclopedia of Integer Sequences [6]. We
extend this sequence from n = 9 to n = 12 both for indecomposable and de-
composable codes as shown in table 1. Table 2 shows the number of inequivalent
indecomposable codes by distance. The distance, d, of a self-dual additive code
over GF(4), C, is the smallest weight (i.e., number of nonzero components) of
any nonzero codeword in C. A database of orbit representatives with information
about orbit size, distance, and weight distribution is also available [7].

Table 1. Number of Inequivalent Indecomposable (in) and (Possibly) Decomposable
(tn) Self-Dual Additive Codes Over GF(4)

n 1 2 3 4 5 6 7 8 9 10 11 12

in 1 1 1 2 4 11 26 101 440 3,132 40,457 1,274,068
tn 1 2 3 6 11 26 59 182 675 3,990 45,144 1,323,363

Table 2. Number of Indecomposable Self-Dual Additive Codes Over GF(4) by Distance

d\n 2 3 4 5 6 7 8 9 10 11 12

2 1 1 2 3 9 22 85 363 2,436 26,750 611,036
3 1 1 4 11 69 576 11,200 467,513
4 1 5 8 120 2,506 195,455
5 1 63
6 1

Total 1 1 2 4 11 26 101 440 3,132 40,457 1,274,068

2 Graphs, Boolean Functions, and LC-Equivalence

A self-dual additive code over GF(4) corresponds to a graph state [4] if its gen-
erator matrix, G, can be written as G = Γ + ωI, where Γ is a symmetric
matrix over GF(2) with zeros on the diagonal. The matrix Γ can be inter-
preted as the adjacency matrix of a simple undirected graph on n vertices. It
has been shown by Schlingemann and Werner [8], Grassl et al. [9], Glynn [10],
and Van den Nest et al. [11] that all stabilizer states can be transformed into
an equivalent graph state. Thus all self-dual additive codes over GF(4) can be
represented by graphs. These codes also have another interpretation as quadratic
Boolean functions over n variables. A quadratic function, f , can be represented
by an adjacency matrix, Γ , where Γi,j = Γj,i = 1 if xixj occurs in f , and Γi,j = 0
otherwise.
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Example 1. A self-dual additive code over GF(4) with parameters [[6, 0, 4]] is
generated by the generator matrix⎛⎜⎜⎜⎜⎜⎜⎝

ω 0 0 1 1 1
0 ω 0 ω2 1 ω
0 0 ω ω2 ω 1
0 1 0 ω ω2 1
0 0 1 ω 1 ω2

1 ω2 0 ω 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

We can transform the generator matrix into the following generator matrix of
an equivalent code corresponding to a graph state,⎛⎜⎜⎜⎜⎜⎜⎝

ω 0 0 1 1 1
0 ω 1 1 0 1
0 1 ω 1 1 0
1 1 1 ω 1 1
1 0 1 1 ω 0
1 1 0 1 0 ω

⎞⎟⎟⎟⎟⎟⎟⎠ = Γ + ωI.

Γ is the adjacency matrix of the graph shown in fig. 1(a). It can also be repre-
sented by the quadratic Boolean function f(x) = x0x3 + x0x4 + x0x5 + x1x2 +
x1x3 + x1x5 + x2x3 + x2x4 + x3x4 + x3x5.

(a) The “Wheel” (b) The “2-clique of 3-cliques”

Fig. 1. The LC Orbit of the [[6,0,4]] “Hexacode”

Recently, Glynn et al. [5,10] has re-formulated the primitive operations that
map equivalent self-dual additive codes over GF(4) to each other as a single,
primitive operation on the associated graphs. This symmetry operation is re-
ferred to as Vertex Neighbourhood Complementation (VNC). It was also discov-
ered independently by Hein et al. [4] and by Van den Nest et al. [11]. The
identification of this problem as a question of establishing the local unitary
equivalence between those quantum states that can be represented as graphs
or Boolean functions was presented by Parker and Rijmen at SETA’01 [12].
Graphical representations have also been identified in the context of quantum
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codes by Schlingemann and Werner [8] and by Grassl et al. [9]. VNC is another
name for Local Complementation (LC), referred to in the context of isotropic
systems by Bouchet [13,14]. LC is defined as follows.

Definition 1. Given a graph G = (V,E) and a vertex v ∈ V . Let Nv ⊂ V be the
neighbourhood of v, i.e., the set of vertices adjacent to v. The subgraph induced
by Nv is complemented to obtain the LC image Gv.

It is easy to verify that (Gv)v = G.

Theorem 1 (Glynn et al. [5,10]). Two graphs G and H correspond to equiv-
alent self-dual additive codes over GF(4) iff there is a finite sequence of vertices
v1, v2, . . . , vs, such that (((Gv1)v2)···)vs = H.

The symmetry rule can also be described in terms of quadratic Boolean func-
tions.

Definition 2. If the quadratic monomial xixj occurs in the algebraic normal
form of the quadratic Boolean function f , then xi and xj are mutual neighbours
in the graph represented by f , as described by the n × n symmetric adjacency
matrix, Γ , where Γi,j = Γj,i = 1 if xixj occurs in f , and Γi,j = 0 otherwise. The
quadratic Boolean functions f and f ′ are LC equivalent if

f ′(x) = f(x) +
∑

j,k∈Na
j<k

xjxk (mod 2),

where a ∈ Zn and Na comprises the neighbours of xa in the graph representation
of f .

A finite number of repeated applications of the LC operation generates the orbit
classes presented in this paper and, therefore, induces an equivalence between
quadratic Boolean functions. We henceforth refer to this equivalence as LC-
equivalence and the associated orbits as LC orbits. If the graph representations of
two self-dual additive codes over GF(4) are isomorphic, they are also considered
to be equivalent. This corresponds to a permutation of the labels of the vertices in
the graph or the variables in the Boolean function. We only count members of an
LC orbit up to isomorphism. As an example, fig. 1 shows the graph representation
of the two only non-isomorphic members in the orbit of the [[6, 0, 4]] “Hexacode”.

A recursive algorithm, incorporating the package nauty [15] to check for graph
isomorphism, was used to generate the LC orbits enumerated in table 1. Only
the LC orbits of indecomposable codes (corresponding to connected graphs) were
generated, since all decomposable codes (corresponding to unconnected graphs)
can easily be constructed by combining indecomposable codes of shorter lengths.

Consider, (a) self-dual additive codes over GF(4) of blocklength n, (b) pure
quantum states of n qubits which are joint eigenvectors of a commuting set of
operators from the Pauli Group [1], (c) quadratic Boolean functions of n vari-
ables, (d) undirected graphs on n vertices. Then, under a suitable interpretation,
we consider objects (a), (b), (c), and (d) to be mathematically identical.
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3 Regular Graph Structures

Although a number of constructions for self-dual additive codes over GF(4) ex-
ist [5,16], it appears that the underlying symmetry of their associated graphs has
not been identified or exploited to any great extent. We highlight the regularity
and structure of some graphs that correspond to self-dual additive codes over
GF(4) with high distance. Of particular interest are the highly regular “nested
clique” graphs. Fig. 2 shows a few examples of such graphs. There is an upper

(a) The [[6, 0, 4]]
“2-clique of 3-cliques”

(b) The [[12, 0, 6]]
“3-clique of 4-cliques”

(c) The [[18, 0, 6]]
“2-clique of 3-cliques of
3-cliques”

(d) The [[20, 0, 8]]
“5-clique of 4-cliques”

(e) The [[25, 0, 8]]
“5-clique of 5-cliques”

Fig. 2. “Nested Clique” Graphs

bound on the possible distance of self-dual additive codes over GF(4) [2]. Codes
that meet this bound are called extremal. Other bounds on the distance also
exist [1, 17]. Of the codes corresponding to graphs shown in fig. 2, the [[6, 0, 4]],
[[12, 0, 6]], and [[20, 0, 8]] codes are extremal. To find the “nested clique” graph
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representations, one may search through the appropriate LC orbits. Also note
that all “nested clique” graphs we have identified so far have circulant adjacency
matrices. An exhaustive search of all graphs with circulant adjacency matrices
of up to 30 vertices has been performed.

If d is the distance of a self-dual additive code over GF(4), then every vertex
in the corresponding graph must have a vertex degree of at least d − 1. This
follows from the fact that a vertex with degree δ corresponds to a row in the
generator matrix, and therefore a codeword, of weight δ+1. All the graphs shown
in fig. 2 satisfy the minimum possible regular vertex degree for the given distance.
Some extremal self-dual additive codes over GF(4) do not have any regular graph
representation, for example the unique [[11, 0, 5]] and [[18, 0, 8]] codes. For codes
of length above 25 and distance higher than 8 the graph structures get more
complicated. For example, with a non-exhaustive search, we did not find a graph
representation of a [[30, 0, 12]] code with regular vertex degree lower than 15.

4 The {I, H, N}n Transform

LC-equivalence between two graphs can be interpreted as an equivalence between
the generalised Fourier spectra of the two associated Boolean functions.

Definition 3. Let

I =
(

1 0
0 1

)
, H =

1√
2

(
1 1
1 −1

)
, N =

1√
2

(
1 i
1 −i

)
,

where i2 = −1, be the Identity, Hadamard, and Negahadamard kernels, respec-
tively.

These are unitary matrices, i.e., II† = HH† = NN † = I, where † means conju-
gate transpose. Let f be a Boolean function on n variables and s = 2−

n
2 (−1)f(x)

be a vector of length 2n. Let sj , where j ∈ Z2n , be the jth coordinate of s. Let
U = U0 ⊗ U1 ⊗ · · · ⊗ Un−1 where Uk ∈ {I,H,N}, and ⊗ is the tensor product
(or Kronecker product) defined as

A⊗B =

⎛⎜⎝a00B a01B · · ·
a10B a11B · · ·

...
...

. . .

⎞⎟⎠ .

Let S = Us for any of the 3n valid choices of the 2n × 2n transform U . Then
the set of 3n vectors, S, is a multispectra with respect to the transform set, U ,
with 3n2n spectral points. We refer to this multispectra as the spectrum with
respect to the {I,H,N}n transform. (Using a similar terminology, the spectrum
with respect to the {H}n transform would simply be the well-known Walsh-
Hadamard spectrum). It can be shown that the {I,H,N}n spectrum of an LC
orbit is invariant to within coefficient permutation. Moreover if, for a specific
choice of U , S is flat (i.e., |Si| = |Sj |, ∀i, j), then we can write S = v4f ′(x)+h(x),



Spectral Orbits and PAR of Boolean Functions w.r.t. {I, H, N}n 379

where f ′ is a Boolean function, h is any function from Zn
2 to Z8, and v4 = −1.

If the algebraic degree of h(x) is ≤ 1, we can always eliminate h(x) by post-
multiplication by a tensor product of matrices from D, the set of 2× 2 diagonal
and anti-diagonal unitary matrices [18], an operation that will never change the
spectral coefficient magnitudes. Let M be the multiset of f ′ existing within the
{I,H,N}n spectrum for the subcases where h(x) is of algebraic degree ≤ 1. The
{I,H,N}n-orbit of f is then the set of distinct members of M . In particular, if
f is quadratic then the {I,H,N}n-orbit is the LC orbit [18].

Example 2. We look at the function f(x) = x0x1 + x0x2. The corresponding
bipolar vector, ignoring the normalization factor, is

s = (−1)f(x) = (1, 1, 1,−1, 1,−1, 1, 1)T .

We choose the transform U = N ⊗ I ⊗ I and get the result

S = Us = (v, v7, v7, v, v7, v, v, v7)T , v4 = −1.

We observe that |Si| = 1, ∀i, which means that S is flat and can be expressed
as

S = v4(x0x1+x0x2+x1x2)+(6x0+6x1+6x2+1).

We observe that h(x), the terms that are not divisible by 4, are all linear or
constant. We can therefore eliminate h(x), in this case by using the transform

D =
(

1 0
0 i

)
⊗
(

1 0
0 i

)
⊗
(
v7 0
0 v

)
.

We get the result
DS = (−1)x0x1+x0x2+x1x2 ,

and thus f ′(x) = x0x1 + x0x2 + x1x2. The functions f and f ′ are in the same
{I,H,N}n orbit, and since they are quadratic functions, the same LC orbit.
This can be verified by applying the LC operation to the vertex corresponding
to the variable x0 in the graph representation of either function.

5 Peak-to-Average Power Ratio w.r.t. {I, H, N}n

Definition 4. The peak-to-average power ratio of a vector, s, with respect to
the {I,H,N}n transform [19] is

PARIHN (s) = 2n max
∀U∈{I,H,N}n

∀k∈Z2n

|Sk|2, where S = Us.

If a vector, s, has a completely flat {I,H,N}n spectrum (which is impossible)
then PARIHN (s) = 1. If s = 2−

n
2 (1, 1, . . . , 1, 1) then PARIHN (s) = 2n. A

typical vector, s, will have a PARIHN (s) somewhere between these extremes.
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For quadratic functions, PARIHN will always be a power of 2. The PAR of s
can be alternatively expressed in terms of the generalised nonlinearity [19],

γ(f) = 2
n
2 −1

(
2

n
2 −

√
PARIHN (s)

)
,

but in this paper we use the PAR measure. Let s = 2−
n
2 (−1)f(x), as before.

When we talk about the PARIHN of f or its associated graph G, we mean
PARIHN (s). It is desirable to find Boolean functions with high generalised
nonlinearity and therefore low PARIHN [20]. PARIHN is an invariant of the
{I,H,N}n orbit and, in particular, the LC orbit. We observe that Boolean func-
tions from LC orbits associated with self-dual additive codes over GF(4) with
high distance typically have low PARIHN . This is not surprising as the distance
of a quantum code has been shown to be equal to the recently defined Aperiodic
Propagation Criteria distance (APC distance) [20] of the associated quadratic
Boolean function, and APC is derived from the aperiodic autocorrelation which
is, in turn, the autocorrelation “dual” of the spectra with respect to {I,H,N}n.
Table 3 shows PARIHN values for every LC orbit representative for n ≤ 12.

Table 3. PARIHN of LC Orbit Representatives

n Number of orbits with specified PARIHN

2 4 8 16 32 64 128 256 512 1024 2048

1 1
2 1
3 1
4 1 1
5 1 2 1
6 1 5 4 1
7 6 14 5 1
8 9 52 32 7 1
9 2 156 212 60 9 1
10 1 624 1,753 639 103 11 1
11 3,184 25,018 10,500 1,578 163 13 1
12 12,323 834,256 380,722 43,013 3,488 249 16 1

Definition 5. Let α(G) be the independence number of a graph G, i.e., the size
of the maximum independent set in G. Let [G] be the set of all graphs in the LC
orbit of G. We then define λ(G) = maxH∈[G] α(H), i.e., the size of the maximum
independent set over all graphs in the LC orbit of G.

Consider as an example the Hexacode which has two non-isomorphic graphs in
its orbit (see fig. 1). It is evident that the size of the largest independent set of
each graph is 2, so λ = 2. The values of λ for all LC orbits for n ≤ 12 clearly show
that λ and d, the distance of the associated self-dual additive code over GF(4),
are related. LC orbits associated with codes with high distance typically have
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small values for λ. Table 4 summarises this observation by giving the ranges of λ
observed for all LC orbits associated with codes of given lengths and distances.
For instance, [[12, 0, 2]] codes exist with any value of λ between 4 and 11, while
[[12, 0, 5]] and [[12, 0, 6]] codes only exist with λ = 4.

Table 4. Range of Maximum Independent Set Size

d Range of λ for specified n
2 3 4 5 6 7 8 9 10 11 12

2 1 2 2,3 3,4 3–5 3–6 3–7 4–8 4–9 4–10 4–11
3 2 3 3,4 3,4 3–5 4–6 4–7 4–8
4 2 3,4 3,4 3–5 4–6 4–7
5 4 4
6 4

Definition 6. Let Λn be the minimum value of λ over all LC orbits with n
vertices.

From table 4 we observe that Λn = 2 for n from 3 to 6, Λn = 3 for n from 7 to
10, and Λn = 4 when n is 11 or 12.

Theorem 2. Λn+1 ≥ Λn, i.e., Λn is monotonically nondecreasing when the
number of vertices is increasing.

Proof. Consider a graph G = (V,E) with n + 1 vertices. Select a vertex v and
let G′ be the induced subgraph on the n vertices V \{v}. We generate the LC-
orbit of G′. The LC operations may add or remove edges between G′ and v,
but the presence of v does not affect the LC orbit of G′. The size of the largest
independent set in the LC orbit of G′ is at least Λn. This is also an independent
set in the LC orbit of G, so Λn+1 ≥ Λn. ��

A very loose lower bound on Λn can also be given. Consider a graph contain-
ing a clique of size k. It is easy to see that an LC operation on any vertex in the
clique will produce an independent set of size k − 1. Thus the maximum clique
in an LC orbit, where the largest independent set has size λ, can not be larger
than λ + 1. If r is the Ramsey number R(k, k + 1) [21], then it is guaranteed
that all simple undirected graphs with minimum r vertices will have either an
independent set of size k or a clique of size k + 1. It follows that all LC orbits
with at least r vertices must have λ ≥ k. Thus Λn ≥ k for n ≥ r. For instance,
R(3, 4) = 9, so LC orbits with at least 9 vertices can not have λ smaller than 3.

For n > 12, we have computed the value of λ for some graphs corresponding
to self-dual additive codes over GF(4) with high distance. This gives us upper
bounds on the value of Λn, as shown in table 5. The bounds on Λ13 and Λ14 are
tight, since Λ12 = 4 and Λn+1 ≥ Λn.

For n = 10, there is a unique LC orbit that satisfies, optimally, λ = 3,
PARIHN = 8 and d = 4. One of the graphs in this orbit is the graph complement
of the “double 5-cycle” graph, shown in fig. 3.
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Table 5. Upper Bounds on Λn

n 13 14 15 16 17 18 19 20 21

Λn ≤ 4 4 5 5 5 6 6 6 9

Fig. 3. The “Double 5-Cycle” Graph

Theorem 3 (Parker and Rijmen [12]). Given a graph G = (V,E) with a
maximum independent set A ⊂ V , |A| = α(G). Let s = (−1)f(x), where f(x)
is the boolean function representation of G. Let U =

⊗
i∈A Hi

⊗
i�∈A Ii, i.e., the

transform applying H to variables corresponding to vertices v ∈ A and I to all
other variables. Then max∀k∈Z2n |Sk|2 = 2α(G), where S = Us.

Arratia et al. [22] introduced the interlace polynomial q(G, z) of a graph G.
Aigner and van der Holst [23] later introduced the interlace polynomial Q(G, z).
Riera and Parker [24] showed that q(G, z) is related to the {I,H}n spectra of
the quadratic boolean function corresponding to G, and that Q(G, z) is related
to the {I,H,N}n spectra.

Theorem 4 (Riera and Parker [24]). Let f be a quadratic boolean function
and G its associated graph. Then PARIHN of f is equal to 2deg Q(G,z), where
degQ(G, z) is the degree of the interlace polynomial Q(G, z).

Theorem 5. If the maximum independent set over all graphs in the LC orbit
[G] has size λ(G), then all functions corresponding to graphs in the orbit will
have PARIHN = 2λ(G).

Proof. Let us for brevity define P (G) = PARIHN (s), where s = 2−
n
2 (−1)f(x),

and f(x) is the boolean function representation of G. From theorem 3 it follows
that P (G) ≥ 2λ(G). Choose H = (V,E) ∈ [G] with α(H) = λ(G). If |V | = 1
or 2, the theorem is true. We will prove the theorem for n ≥ 2 by induction
on |V |. We will show that P (H) ≤ 2α(H), which is equivalent to saying that
P (G) ≤ 2λ(G). It follows from theorem 4 and the definition of Q(H, z) by Aigner
and van der Holst [23] that P (H) = max{P (H\u), P (Hu\u), P (((Hu)v)u\u)}.
(We recall that Hu denotes the LC operation on vertex u of H.) Assume, by
induction hypothesis, that P (H\u) = 2λ(H\u). Therefore, P (H\u) = 2α(K\u) for
some K\u ∈ [H\u]. Note that K\u ∈ [H\u] implies K ∈ [H]. It must then be
true that α(K\u) ≤ α(K) ≤ α(H), and it follows that P (H\u) ≤ 2α(H). Similar
arguments hold for P (Hu\u) and P (((Hu)v)u\u), so P (H) ≤ 2α(H). ��

As an example, the Hexacode has λ = 2 and therefore PARIHN = 22 = 4.



Spectral Orbits and PAR of Boolean Functions w.r.t. {I, H, N}n 383

Corollary 1. Any quadratic Boolean function on n or more variables must have
PARIHN ≥ 2Λn .

Definition 7. PARIH is the peak-to-average power ratio with respect to the
transform set {I,H}n, otherwise defined in the same way as PARIHN .

Definition 8. PARl is the peak-to-average power ratio with respect to the infi-
nite transform set {U}n, consisting of matrices of the form

U =
(

cos θ sin θeiφ

sin θ − cos θeiφ

)
,

where i2 = −1, and θ and φ can take any real values. {U} comprises all 2 × 2
unitary transforms to within a post-multiplication by a matrix from D, the set
of 2× 2 diagonal and anti-diagonal unitary matrices.

Theorem 6 (Parker and Rijmen [12]). If s corresponds to a bipartite graph,
then PARl(s) = PARIH(s).

It is obvious that {I,H}n ⊂ {I,H,N}n ⊂ {U}n, and therefore that PARIH ≤
PARIHN ≤ PARl. We then get the following corollary of theorems 5 and 6.

Corollary 2. If an LC orbit, [G], contains a bipartite graph, then all functions
corresponding to graphs in the orbit will have PARl = 2λ(G).

Thus, all LC orbits with a bipartite member have PARIHN = PARl. Note that
these orbits will always have PARl ≥ 2�n

2 � [12] and that the fraction of LC orbits
which have a bipartite member appears to decrease exponentially as the number
of vertices increases. In the general case, PARIHN is only a lower bound on
PARl. For example, the Hexacode has PARIHN = 4, but a tighter lower bound
on PARl is 4.486 [12]. (This bound has later been improved to 5.103 [25].)

6 Construction for Low PARIHN

So far we have only considered quadratic Boolean functions which correspond
to graphs and self-dual additive codes over GF(4). For cryptographic purposes,
we are interested in Boolean functions of degree higher than 2. Such functions
can be represented by hypergraphs, but they do not correspond to quantum
stabilizer codes or self-dual additive codes over GF(4). A non-quadratic Boolean
function, f(x), can, however, be interpreted as a quantum state described by
the probability distribution vector s = 2−

n
2 (−1)f(x). A single quantum state

corresponds to a quantum code of dimension zero whose distance is the APC
distance [20]. The APC distance is the weight of the minimum weight quantum
error operator that gives an errored state not orthogonal to the original state
and therefore not guaranteed to be detectable.

We are interested in finding Boolean functions of algebraic degree greater than
2 with low PARIHN , but exhaustive searching becomes infeasible with more than
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a few variables. We therefore propose a construction technique for nonquadratic
Boolean functions with low PARIHN using the best quadratic functions as build-
ing blocks. Before we describe our construction we must first state what we mean
by “low PARIHN”. For n = 6 to n = 10 we computed PARIHN for samples from
the space Z2n

2 , to determine the range of PARIHN we can expect just by guess-
ing. Table 6 summarises these results. If we can construct Boolean functions with
PARIHN lower than the sampled minimum, we can consider our construction to
be somewhat successful.

Table 6. Sampled Range of PARIHN for n = 6 to 10

n 6 7 8 9 10
# samples 50000 20000 5000 2000 1000

Range of PARIHN 6.5–25.0 9.0–28.125 12.25–28.125 14.0625–30.25 18.0–34.03

Parker and Tellambura [26, 27] proposed a generalisation of the Maiorana-
McFarland construction for Boolean functions that satisfies a tight upper bound
on PAR with respect to the {H,N}n transform (and other transform sets), this
being a form of Golay Complementary Set construction and a generalisation of
the construction of Rudin and Shapiro and of Davis and Jedwab [28]. Let p(x)
be a Boolean function on n =

∑L−1
j=0 tj variables, where T = {t0, t1, . . . , tL−1}

is a set of positive integers and x ∈ Zn
2 . Let yj ∈ Z

tj

2 , 0 ≤ j < L, such that
x = y0 × y1 × · · · × yL−1. Construct p(x) as follows.

p(x) =
L−2∑
j=0

θj(yj)γj(yj+1) +
L−1∑
j=0

gj(yj), (1)

where θj is a permutation: Z
tj

2 → Z
tj+1
2 , γj is a permutation: Z

tj+1
2 → Z

tj

2 , and gj

is any Boolean function on tj variables. It has been shown [27] that the function
p(x) will have PARHN ≤ 2tmax , where tmax is the largest integer in T . It is
helpful to visualise this construction graphically, as in fig. 4. In this example,
the size of the largest partition is 3, so PARHN ≤ 8, regardless of what choices
we make for θj , γj , and gj .

γ2

θ2

x5

x4

x0 x3

x6

γ1θ0

γ0 θ1

x1

x2

Fig. 4. Example of Construction with PARHN ≤ 8

Observe that if we set L = 2, t = t0 = t1, let θ0 be the identity permutation,
and g0 = 0, construction (1) reduces to the Maiorana-McFarland construction



Spectral Orbits and PAR of Boolean Functions w.r.t. {I, H, N}n 385

over 2t variables. Construction (1) can also be viewed as a generalisation of the
“path graph”, f(x) = x0x1+x1x2+ · · ·+xn−2xn−1, which has optimal PAR with
respect to {H,N}n. Unfortunately, the “path graph” is not a particularly good
construction for low PARIHN . But as we have seen, graphs corresponding to self-
dual additive codes over GF(4) with high distance do give us Boolean functions
with low PARIHN . We therefore propose the following generalised construction.

p(x) =
L−1∑
i=0

L−1∑
j=i+1

Γi,j(yi)Γj,i(yj) +
L−1∑
j=0

gj(yj), (2)

where Γi,j is either a permutation: Zti
2 → Z

tj

2 , or Γi,j = 0, and gj is any Boolean
function on tj variables. It is evident that Γ can be thought of as a “generalised
adjacency matrix”, where the entries, Γi,j , are no longer 0 or 1 but, instead, 0
or permutations from Zti

2 to Z
tj

2 . Construction (1) then becomes a special case
where Γi,j = 0 except for when j = i + 1 (i.e., the “generalised adjacency ma-
trix” of the “path graph”). In order to minimise PARIHN we choose the form
of the matrix Γ according to the adjacency matrix of a self-dual additive code
over GF(4) with high distance. We also choose the “offset” functions, gj , to be
Boolean functions corresponding to self-dual additive codes over GF(4) with
high distance. Finally for the non-zero Γi,j entries, we choose selected permuta-
tions, preferably nonlinear to increase the overall degree. Here are some initial
results which demonstrate that, using (2), we can construct Boolean functions
of algebraic degree greater than 2 with low PARIHN . (We use an abbreviated
ANF notation for some many-term Boolean functions, e.g. 012, 12, 0 is short for
x0x1x2 + x1x2 + x0.)

Example 3 (n = 8). Use the Hexacode graph f = 01, 02, 03, 04, 05, 12, 23, 34,
45, 51 as a template. Let t0 = 3, t1 = t2 = t3 = t4 = t5 = 1. (See fig. 5.) We use
the following matrix Γ .

Γ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 02, 1 02, 1 02, 1 02, 1 02, 1
3 0 3 0 0 3
4 4 0 4 0 0
5 0 5 0 5 0
6 0 0 6 0 6
7 7 0 0 7 0

⎞⎟⎟⎟⎟⎟⎟⎠
Let g0(y0) = 01, 02, 12 and all other gj any arbitrary affine functions. Then,
using (2) to construct p(x) we get p(x) = 023, 024, 025, 026, 027, 01, 02, 12, 13,
14, 15, 16, 17, 34, 37, 45, 56, 67. Then p(x) has PARIHN = 9.0.

Example 4 (n = 8). Use the Hexacode graph f = 01, 02, 03, 04, 05, 12, 23, 34,
45, 51 as a template. Let t0 = 3, t1 = t2 = t3 = t4 = t5 = 1. (See fig. 5.) We use
the following matrix Γ .
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x7 x4

x3

x5x6

x0

x2

x1

Γ0,1

Γ0,2

Γ2,0

Γ4,3 Γ3,4

Γ3,2

Γ2,3

Γ1,5

Γ5,4

Γ4,5

Γ1,2

Γ2,1Γ5,1

Γ4,0

Γ0,4

Γ1,0

Γ0,3

Γ3,0

Γ5,0 Γ0,5

Fig. 5. Example of Construction with low PARIHN

Γ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 02, 1 12, 0, 1, 2 01, 02, 12, 1, 2 01, 02, 12 02, 12, 1, 2
3 0 3 0 0 3
4 4 0 4 0 0
5 0 5 0 5 0
6 0 0 6 0 6
7 7 0 0 7 0

⎞⎟⎟⎟⎟⎟⎟⎠
Let g0(y0) = 01, 12 and all other gj any arbitrary affine functions. Then, us-
ing (2) to construct p(x) we get p(x) = 015, 016, 023, 025, 026, 027, 124, 125,
126, 127, 01, 04, 12, 13, 14, 15, 17, 24, 25, 27, 34, 37, 45, 56, 67. Then p(x) has
PARIHN = 9.0.

Example 5 (n = 9). Use the triangle graph f = 01, 02, 12 as a template. Let
t0 = t1 = t2 = 3. (See fig. 6.) Assign the permutations

Γ0,1 = Γ0,2 = (12, 0, 1, 2)(01, 2)(02, 1, 2),
Γ1,0 = (34, 5)(35, 4, 5)(45, 3, 4, 5),
Γ1,2 = (45, 3, 4, 5)(34, 5)(35, 4, 5),
Γ2,0 = (68, 7, 8)(78, 6, 7, 8)(67, 8),
Γ2,1 = (78, 6, 7, 8)(67, 8)(68, 7, 8).

Let g0(y0) = 01, 02, 12, g1(y1) = 34, 35, 45, and g2(y2) = 67, 68, 78. Then, us-
ing (2) to construct p(x) we get, p(x) = 0135, 0178, 0245, 0267, 1234, 1268,
3467, 3568, 4578, 014, 015, 016, 017, 018, 023, 024, 025, 028, 034, 068, 125, 127,
128, 134, 145, 167, 168, 234, 235, 245, 267, 268, 278, 348, 357, 358, 378, 456, 457,
458, 468, 478, 567, 568, 578, 05, 07, 08, 13, 14, 17, 23, 25, 26, 28, 36, 37, 38, 46,
56, 58, 01, 02, 12, 34, 35, 45, 67, 68, 78. Then p(x) has PARIHN = 10.25.

The examples of our construction satisfy a low PARIHN . Further work should
ascertain the proper choice of permutations. Finally, there is an even more
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x0

x2

x1

x3

x4

x5

x6

x7

x8

Γ0,2

Γ2,0 Γ2,1

Γ1,2

Γ0,1 Γ1,0

Fig. 6. Example of Construction with low PARIHN

obvious variation of construction (2), suggested by the graphs of fig. 2, where the
functions gj are chosen either to be quadratic cliques or to be further “nested”
versions of construction (2). We will report on this variation in a future paper.
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3. Höhn, G.: Self-dual codes over the Kleinian four group. Mathematische Annalen

327 (2003) pp. 227–255 http://arxiv.org/math/0005266.
4. Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys.

Rev. A 69 (2004) http://arxiv.org/quant-ph/0307130.
5. Glynn, D.G., Gulliver, T.A., Maks, J.G., Gupta, M.K.: The geometry of additive

quantum codes. Submitted to Springer-Verlag (2004)
6. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. Web page (2004)

http://www.research.att.com/~njas/sequences/.
7. Danielsen, L.E.: Database of self-dual quantum codes. Web page (2004) http:

//www.ii.uib.no/~larsed/vncorbits/.
8. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with

graphs. Phys. Rev. A 65 (2002) http://arxiv.org/quant-ph/0012111.
9. Grassl, M., Klappenecker, A., Rotteler, M.: Graphs, quadratic forms, and quantum

codes. In: Proc. IEEE Int. Symp. Inform. Theory. (2002) p. 45
10. Glynn, D.G.: On self-dual quantum codes and graphs. Submitted to

Elect. J. Combinatorics. http://homepage.mac.com/dglynn/.cv/dglynn/Public/
SD-G3.pdf-link.pdf (2002)

11. Van den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action
of local Clifford transformations on graph states. Phys. Rev. A 69 (2004) http://
arxiv.org/quant-ph/0308151.



388 L.E. Danielsen and M.G. Parker

12. Parker, M.G., Rijmen, V.: The quantum entanglement of binary and bipolar se-
quences. In Helleseth, T., Kumar, P.V., Yang, K., eds.: Sequences and Their Appli-
cations, SETA’01. Discrete Mathematics and Theoretical Computer Science Series,
Springer-Verlag (2001) Long version: http://arxiv.org/quant-ph/0107106.

13. Bouchet, A.: Isotropic systems. European J. Combin. 8 (1987) pp. 231–244
14. Bouchet, A.: Recognizing locally equivalent graphs. Discrete Math. 114 (1993)

pp. 75–86
15. McKay, B.D.: nauty User’s Guide. (2004) http://cs.anu.edu.au/~bdm/nauty/

nug.pdf.
16. Gulliver, T.A., Kim, J.-L.: Circulant based extremal additive self-dual codes over

GF(4). IEEE Trans. Inform. Theory 50 (2004) pp. 359–366
17. Grassl, M.: Bounds on dmin for additive [[n, k, d]] QECC. Web page (2003) http://

iaks-www.ira.uka.de/home/grassl/QECC/TableIII.html.
18. Riera, C., Petrides, G., Parker, M.G.: Generalized bent criteria for Boolean func-

tions. Technical Report 285, Dept. of Informatics, University of Bergen, Norway
(2004) http://www.ii.uib.no/publikasjoner/texrap/pdf/2004-285.pdf.

19. Parker, M.G.: Generalised S-box nonlinearity. NESSIE Public Docu-
ment, NES/DOC/UIB/WP5/020/A. https://www.cosic.esat.kuleuven.ac.be/
nessie/reports/phase2/SBoxLin.pdf (2003)

20. Danielsen, L.E., Gulliver, T.A., Parker, M.G.: Aperiodic propagation criteria
for Boolean functions. Submitted to Inform. Comput. http://www.ii.uib.no/

~matthew/GenDiff4.pdf (2004)
21. Radziszowski, S.P.: Small Ramsey numbers. Elect. J. Combinatorics (2002) pp. 1–

42 Dynamical Survey DS1, http://www.combinatorics.org/Surveys/ds1.pdf.
22. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial of a graph. J.

Combin. Theory Ser. B 92 (2004) pp. 199–233 http://arxiv.org/math/0209045.
23. Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra and its

Applications 377 (2004) pp. 11–30
24. Riera, C., Parker, M.G.: Spectral interpretations of the interlace polynomial. Sub-

mitted to WCC2005. http://www.ii.uib.no/~matthew/WCC4.pdf (2004)
25. Parker, M.G., Gulliver, T.A.: On graph symmetries and equivalence of the six

variable double-clique and wheel. Unpublished (2003)
26. Parker, M.G., Tellambura, C.: A construction for binary sequence sets with low

peak-to-average power ratio. In: Proc. IEEE Int. Symp. Inform. Theory. (2002)
p. 239 http://www.ii.uib.no/~matthew/634isit02.pdf.

27. Parker, M.G., Tellambura, C.: A construction for binary sequence sets with low
peak-to-average power ratio. Technical Report 242, Dept. of Informatics, Uni-
versity of Bergen, Norway (2003) http://www.ii.uib.no/publikasjoner/texrap/
pdf/2003-242.pdf.

28. Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay comple-
mentary sequences and Reed-Muller codes. IEEE Trans. Inform. Theory 45 (1999)
pp. 2397–2417



New Constructions and Bounds for 2-D Optical
Orthogonal Codes

Reza Omrani, Petros Elia, and P. Vijay Kumar

Communication Sciences Institute, Department of Electrical Engineering - Systems,
University of Southern California,3740 McClintock Ave.,

Los Angeles, CA 90089-2565, USA
{omrani, elia, vijayk}@usc.edu

Abstract. Some efficient constructions and bounds for 2-D optical or-
thogonal codes in which the spreading is carried out over both wavelength
and time are provided. Such codes are of current practical interest as they
enable optical communication at lower chip rate.

The bounds provided include 2-D versions of the Johnson bound as
well as a novel bound that makes use of the properties of a maximum-
distance separable codes.

1 Introduction

An (n, ω, κ) OOC C, 1 ≤ κ ≤ ω ≤ n, is a family of {0,1}-sequences of length n
and Hamming weight ω satisfying:

n−1∑
k=0

x(k)y(k ⊕n τ) ≤ κ (1)

for {x, y} in C, either x 	= y or τ 	= 0, where ⊕n denotes addition modulo n and
κ is the maximum collision parameter(MCP).

Let Φ(n, ω, κ) denote the largest possible cardinality of an (n, ω, κ) OOC
code. Then by the Johnson bound [1][2]

Φ(n, ω, κ) ≤
⌊

1
ω

⌊
n− 1
ω − 1

⌊
n− 2
ω − 2

· · ·
⌊
n− κ

ω − κ

⌋⌋⌋⌋
:= J(n,w, κ). (2)

An OOC C of size | C | is said to be optimal when | C |= Φ(n, ω, κ) and asymp-
totically optimal if

lim
n→∞

| C |
Φ(n, ω, κ)

= 1.

Some optimal or asymptotically optimal constructions can be found in [2][3][4][5].
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With 1-D OOCs, the code size grows relatively slowly with increase in se-
quence length n. As a result, for the kinds of code size desired in practice, the
code length is necessarily large, causing an excessively high chip rate. The ad-
vent of WDM technology has made it possible to spread in both wavelength and
time [6]. The corresponding codes, termed 2-D Optical Orthogonal Codes(2-D
OOC), tend to require smaller code lengths and hence lower chip rates.

2 2-D OOCs

A 2-D (Λ×T, ω, κ) OOC C is a family of {0, 1} Λ×T arrays of constant weight
ω. Each pair {A,B} in C is required to satisfy:

Λ∑
λ=1

T−1∑
t=0

A(λ, t)B(λ, (t⊕T τ)) ≤ κ (3)

whenever either A 	= B or τ 	= 0.
To simplify implementation, additional restrictions on the codewords may be

placed such as:

– one-pulse per wavelength(OPPW): each row of every (Λ× T ) code array in
C has Hamming weight = 1.

– at most one-pulse per wavelength(AM-OPPW): each row of each (Λ× T )
code array in C has Hamming weight ≤ 1.

Figure 1 shows an example of a 2-D OOC with at most one-pulse per wave-
length (AM-OPPW) restriction.

The corresponding Johnson bound on code size in the 2-D case is given by [7]:

Φ(Λ× T, ω, κ) ≤
⌊

1
T

⌊
ΛT

ω

⌊
ΛT − 1
ω − 1

· · ·
⌊
ΛT − κ

ω − κ

⌋⌋⌋⌋
=
⌊
Λ

ω

⌊
ΛT − 1
ω − 1

· · ·
⌊
ΛT − κ

ω − κ

⌋⌋⌋
:= J(Λ× T, ω, κ) (4)

λ1
λ2
λ3
λ4

λ5
λ6

λ1
λ2
λ3
λ4

λ5
λ6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Fig. 1. A (6 × 6, 5, 1) AM-OPPW 2-D OOC, with 8 codewords
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Theorem 1. It can be shown[7]:

ΛJ(ΛT, ω, κ) ≤ J(Λ× T, ω, κ) ≤ ΛJ(ΛT, ω, κ) + (Λ− 1) .

3 Generalization of the Johnson Bound to Nonbinary
Constant Weight Codes

To our knowledge, the following result has not previously appeared:

Theorem 2. If A(Λ, ω, κ) is the maximum possible size of a constant-weight
code of length Λ, Hamming weight ω, maximum number of nonzero agreements
between any two codewords less than or equal to κ over an alphabet of size (T +1)
which contains 0 then A(Λ, ω, κ) is bounded by the following upper bound:

A(Λ, ω, κ) ≤
⌊
TΛ

ω

⌊
T (Λ− 1)
ω − 1

· · ·
⌊
T (Λ− κ)
ω − κ

⌋⌋⌋
Since an optical code with at-most one-pulse-per-wavelength restriction can

be regarded as a constant-weight code over an alphabet of size (T + 1), The
above bound can be adapted to the following bound on the size of AM-OPPW
OOCs.

Corollary 1.

ΦAM−OPPW (Λ× T, ω, κ) ≤
⌊
Λ

ω

⌊
T (Λ− 1)
ω − 1

· · ·
⌊
T (λ− κ)
ω − κ

⌋⌋⌋
Applying the new bound to a (6× 6, 5, 1) AM-OPPW 2-D OOC shows that

the AM-OPPW 2-D OOC shown in Figure 1 is an optimal AM-OPPW 2-D
OOC.

Remark 1. For the exactly one pulse per wavelength, in which case, Λ = ω, the
bound in the Corollary above reduces to the Singleton bound:

Φ(Λ× T, ω, κ) ≤ Tκ.

Remark 2. For the binary case the bound reduces to the well-known Johnson
bound[1].

4 Constructions of 2-D OOCs

4.1 Chinese-Remainder-Theorem (CRT) Construction

Let {sk} be a 1-D periodic sequence of period n = n1n2 with (n1, n2) = 1. Let
the 2-D doubly periodic binary array S(k1, k2) of period (n1×n2) be defined by

S(k (mod n1), k (mod n2)) = s(k).

Then it can be shown that there is a 1-1 correspondence between the 2-D doubly-
periodic correlation values of {S} and the 1-D correlation values of {s}.
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From this it follows that if we have an (n, ω, κ)-OOC S = {{s(p)
k }|1 ≤ p ≤ P}

with n = ΛT where (Λ, T ) = 1, we can generate a 2-D OOC of size ΛP by
associating with each 1-D OOC {s(p)

k }, the Λ 2-D OOCs corresponding to the Λ
distinct vertical cyclic shifts {S(p)(k1 ⊕Λ τ1, k2)}, 0 ≤ τ1 < Λ of {S(p)(k1, k2)}.
Thus, the 2-D code family has Λ times the size of the 1-D family[7].

Theorem 3. Let n = ΛT, (Λ, T ) = 1. A 1-D OOC of Johnson-bound-achieving
size J(n,w, κ) gives rise to a 2-D OOC whose size differs at most by (Λ − 1)
from the corresponding 2-D Johnson bound J(Λ×T,w, κ). If in addition, the 1-D
OOC is of optimal size 1

ΛT

⌊
ΛT
w

⌊
ΛT−1
w−1 · · ·

⌊
ΛT−κ
w−κ

⌋⌋⌋
then the 2-D OOC resulting

from the above method is also optimal with respect to the Johnson bound[7].

4.2 Function-Plot Construction

A 2-D OOC can be regarded as the graph of a function λ = f(t), 0 ≤ t ≤ T − 1,
0 ≤ λ ≤ Λ − 1 mapping time into wavelength or vice-versa, t = f(λ). All of
the constructions below employ polynomial functions whose degree is bounded
above by the desired value of MCP κ.

Polynomial Constructions When Either Λ or T Is Prime

[P1 ] Mapping Wavelength to Time, T = p is prime:
Let 1 ≤ Λ ≤ p, and λ ∈ {1, 2, · · · , Λ}. Here we consider polynomials f(λ)
mapping wavelength into time. For any 0 ≤ δ ≤ p − 1, we declare two
polynomials f(λ), f(λ)+δ to be equivalent. Then the different code matrices
correspond to choosing precisely one polynomial from each equivalence class.
For each polynomial f(·) the (Λ × T ) code array C is given by C(λ, t) = 1
iff f(λ) = t, where 0 ≤ λ ≤ Λ − 1. This results in a (Λ × p, Λ, κ) 2-D OOC
with size pκ, and κ ≤ Λ ≤ p [7]. When κ = 1, this construction is equivalent
to the carrier-hopping prime codes of length p by Kwong and Yang[8].

[P2 ] Mapping Time to Wavelength, Λ = p is prime:
Let T | (p−1). Here we consider polynomials mapping time into wavelength.
Let α ∈ Zp have multiplicative order T . Let us associate to time slot t, the
element αt. We define two polynomials f(x), g(x) in Fκ to be equivalent if
f(αix) = g(x) for some i ∈ ZT . We construct a 2-D OOC by discarding
all polynomials f(x), which satisfy f(αix) = f(x) for i 	= 0, and choosing
one function f(·) from each of the remaining equivalence classes and asso-
ciating to it, the (Λ × T ) code array C by letting C(λ, t) = 1 iff f(αt) = λ
where t ∈ ZT and Λ ∈ Zp. This results in a (p × T, T, κ) 2-D OOC of size
1
T

∑
d|(p−1)

(
p�

κ+1
d � − 1

)
μ(d) [4][7].

Polynomial Constructions When T or Λ = pm − 1, p Prime
Let α be a primitive element of GF (pm).

[P3 ] Mapping Wavelength to Time, T = pm − 1 :
Let 1 ≤ Λ ≤ pm and associate to each time slot t, the element αt. We
define two polynomials f(x), g(x) in Fκ to be equivalent if αif(x) = g(x)
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for some i ∈ Z. After choosing one function from each equivalence class, we
proceed to construct a (Λ × (pm − 1), w, κ) 2-D OOC with w ≥ Λ − κ and
size qκ+1−1

q−1 by assigning one code array to each of the chosen functions as
described above. We have w ≥ Λ − κ because for some values within the
domain f(x) = 0 which is not within the range. To keep the weight constant
for any codeword we delete some arbitrary ones to keep the weight equal to
Λ − κ for all codewords. This leads to a (Λ × (pm − 1), Λ − κ, κ) 2-D OOC
with size qκ+1−1

q−1 [7].
[P4 ] Mapping Time to Wavelength, Λ = pm − 1 :

Let us associate to each wavelength λ, the element αλ. Let T | (pm −
1), and β ∈ GF (pm) have multiplicative order T . We define two poly-
nomials f(x), g(x) in Fκ to be equivalent if f(βix) = g(x) for some i ∈
ZT . By discarding all polynomials f(x), which satisfy f(βix) = f(x) for
i 	= 0, and choosing one function from each of the remaining equivalence
classes, and assigning one code array to each of these functions as de-
scribed above, we can construct a (pm − 1 × T, T − κ, κ) 2-D OOC of size
1
T

∑
d|(pm−1)

(
pm�κ+1

d � − 1
)
μ(d) [4][7].

Remark 3. In the function plot constructions if one maps wavelength into time,
the resulting 2-D OOC will be of maximally OPPW-type. The same is the case
if κ = 1 and the mapping proceeds from time to wavelength.

Theorem 4. All of the above constructions are asymptotically optimal with re-
spect to the Johnson bound.

Construction P1 above can be shown to be optimal by Corollary 1.

4.3 Construction P1 – A Reed-Solomon Code Construction

Consider a (Λ × T, ω, κ) 2-D OOC C with exactly one pulse per wavelength.
Using the new bound of Corollary 1, it follows that when the 2-D OOC code is
required to place precisely one pulse per wavelength, the code size C is upper
bounded by:

| C | ≤ Tκ.

With each code array A(λ, t) in C, we can identify a column vector a of length
Λ whose symbols are drawn from the set ZT of integers modulo T as follows:

aλ = t iff A(λ, t) = 1, 1 ≤ λ ≤ Λ.

A (Λ× T, ω, κ) 2-D OOC can now be constructed using this identification.
The (Λ × T, ω, κ) 2-D OOC is equivalent to a CZT

code of length Λ over the
alphabet ZT such that (a) dmin(CZT

) ≥ Λ − κ and (b) the added condition
a ∈ CZT

, implies a + b1 ∈ CZT
for any b ∈ ZT , where 1 is the all-1 vector.
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Theorem 5. Let T be prime and Λ ≤ T . Let CT be a Reed-Solomon (RS) code
over the field ZT having minimum distance

dmin = Λ− κ .

Then the corresponding (Λ×T, ω, κ) is an optimal code under the one-pulse-per
wavelength restriction.

This construction can be shown to be identical to construction P1 above. The
new viewpoint however, will be of use in the construction below.

4.4 At Most One Pulse per Wavelength – Mixing RS and Constant
Weight Codes

Consider a (Λ × T, ω, κ) 2-D OOC C under the requirement that there is
at most one pulse per wavelength. We propose a construction that makes use
of a combination of a constant weight binary code and a maximal near-MDS
code. Let Ccw be a constant weight binary code of maximum size with following
parameters: length= Λ, weight= ω, and maximum real inner product of any two
codes ≤ κ. The size of Ccw is upper bounded by | Ccw | ≤

∏κ
l=0�

(Λ−l)
(ω−l) �.

The idea is to construct a 2-D OOC whose code arrays are partitioned into
| Ccw | subsets with each subset associated to a distinct codeword in Ccw. Con-
sider a codeword in Ccw where the 1’s in this binary codeword, appear in the
ω symbol locations i1, i2, · · · , iw. We associate with this codeword, a maximal
collection of 2-D code arrays with MCP κ which are such that only the wave-
lengths associated to rows i1, · · · , iw contain a pulse. No pulse is sent along any
of the other wavelengths. Now for any of | Ccw | choices of ω wavelengths we can
use the construction of the previous part to generate | Coppw | 2-D OOCs with
exactly one pulse per wavelength.

It is easy to see that the union of these 2-D code array subsets forms an
overall 2-D OOC code with parameters (Λ× T, ω, κ), and size | Ccw || Coppw |.

For the case when T is prime and ω ≤ T , each subset can be constructed using
Reed-Solomon codes and is therefore of maximal possible size Tκ. The overall
size of the 2-D OOC for this case is given by | Ccw | Tκ ≤ Tκ

∏κ
l=0�

(Λ−l)
(ω−l) �.

This should be compared against the bound from Corollary 2. From this we see
that if the underlying binary constant weight code is asymptotically optimal,
the same holds for our overall constructions.

This construction generalizes a previous construction by Yang, Kwong, and
Chang [9].
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Abstract. Recently, there has been an upsurge of interest in using
Code-Division Multiple-Access communication over optical fiber chan-
nels (OCDMA). In this paper we provide a new Johnson-bound-optimal
construction of OOC with parameter λ = 1. We use the idea of the same
construction to generate OOCs with λ > 1. A new bound for optical
orthogonal codes based on a known bound for constant weight codes is
introduced. This bound is used to prove the optimality of our construc-
tions. We also present a recursive technique for generating OOCs with
λ = 1 that makes use of a recursive construction for cyclic block designs
by Colbourn and Colbourn [1]. This technique has yielded several new
optimal constructions for Optical Orthogonal Codes.

1 Introduction

Recently there has been an upsurge of interest in applying Code Division Multi-
ple Access (CDMA) techniques to optical networks (OCDMA) [2]. The spreading
codes used in an OCDMA system are called optical orthogonal codes(OOC).

An (n, ω, λ) Optical Orthogonal Code (OOC) C where 1 ≤ λ ≤ ω ≤ n, is a
family of {0,1}-sequences of length n and Hamming weight ω satisfying

n−1∑
k=0

x(k)y(k ⊕n τ) ≤ λ (1)

for {x, y} ∈ C, either x 	= y or τ 	= 0, where ⊕n denotes addition modulo n. We
will refer to λ as the maximum correlation parameter(MCP).

� Work partially supported by NSF CISE Grant No. EIA-0080926.
�� Work partially supported by DARPA OCDMA Program Grant No. N66001-02-1-

8939.

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 396–405, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Topics on Optical Orthogonal Codes 397

Let Φ(n, ω, λ), denote the largest possible cardinality of an (n, ω, λ) OOC
code. Then by the Johnson upper bound [3]:

Φ(n, ω, λ) ≤
⌊

1
ω

⌊
n− 1
ω − 1

⌊
n− 2
ω − 2

· · ·
⌊
n− λ

ω − λ

⌋⌋⌋⌋
. (2)

An OOC of size P is optimal when P = Φ(n, ω, λ) and asymptotically optimal
if:

lim
n→∞

P

Φ(n,w, λ)
= 1.

There are many optimal and asymptotically optimal constructions in the
literature satisfying the Johnson bound with λ = 1 [3][4][5]. Even there are some
constructions with λ = 2 which satisfy the Johnson bound [6]. We have not found
any construction with λ > 2 satisfying the Johnson bound in the literature, in
addition we couldn’t find any optimal construction for λ > 2 either.

It is known that the Johnson Bound is not always achievable, for example
[7] gives some bounds for constant weight codes which are tighter than Johnson
bound in some regions, hence their equivalent bound for OOC are tighter than
the above bound. It seems that, Johnson bound is not very tight for special cases
when λ is larger than 1.

A (v, k, t)-DDS is a family (Bi|i ∈ I, t = |I|) of subsets of Zv each of cardi-
nality k, such that among the tk(k − 1) differences {a− b(mod v)|a, b ∈ Bi; a 	=
b; i ∈ I}, each nonzero element g ∈ Zv occurs at most once.A (v, k, t)-DDS is
called a perfect DDS if the tk(k− 1) differences give all the nonzero elements of
Zv. Therefore tk(k − 1) = v − 1.

Lemma 1. The concept of an (n, ω, 1)-OOC is equivalent to a (v, k, t)-DDS with
n = v, k = ω, and P = t, where P is the size of (n, ω, 1) OOC. ��

Based on the definition of a perfect DDS, a perfect OOC can be defined as
one that attains the Johnson bound without using the brackets.

In Section 2 a new optimal construction for λ = 1 is generated, and then
generalized to λ > 1. In Section 3 a new upper bound on the size of OOC
is derived, and then used to prove the optimality of some OOC constructions
which were not know to be optimal previously. In Sections 4 and 5 a recursive
construction for OOCs is introduced, and used to construct families of optimal
and perfect OOCs.

While most of the results of this paper can be found in [5][12][13][14], by the
same authors of this paper, it should be mentioned that these results have been
presented here from a new perspective, and most of the proofs are new proofs,
and they are more related here.

2 New Optimal Constructions for OOCs

In this section we need to use some properties of affine geometries.In following
we are going to introduce the necessary concepts:
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The points of EG(a, q), the affine geometry of dimension a over GF (q), con-
sist of all elements of GF (qa). Let ξ0, ξ1, · · · , ξd be d + 1 linearly independent
elements of GF (qa). The qd points of the form:

ξ0 + v1ξ1 + v2ξ2 + · · ·+ vdξd

with vi ∈ GF (q) for 1 ≤ i ≤ d, constitute a d-flat in EG(a, q) passing through
the point ξ0[8][9][10].Moreover each d-flat can be shown as a subset of size qd

of the set {−∞, 0, 1, · · · , qa − 2} using the mapping logβ when β is a primitive
element of GF (qa) over GF (q). A d-flat, for d = 1 is called a line, and for
d = a − 1 is called a hyperplane. Any two d- flat either are not intersecting, or
their intersection is a (d− 1)-flat.

Lemma 2. Let {c1, c2, · · · , cqd} represent the points on a d-flat , then the set
{c1 + i, c2 + i, · · · , cqd + i} mod (qa − 1), for any given integer i is also defines
some d-flat, which we call it a cyclic shifted version of the original d-flat.

Proof. If ξ0, ξ1, · · · , ξd are linearly independent points generating the d-flat:

∀cj ,∃ v1j , · · · vdj ∈ GF (q) : βcj = ξ0 +
d∑

k=1

vkjξk

⇒ βcj+i = βcjβi = ξ0β
i +

d∑
k=1

vkjξkβ
i

All we need is to show that ξ0β
i, · · · ξdβ

i are linearly independent, which is
obvious.

��
If we start with a d-flat and start cyclically shift it by one unit, the d-flat

is called cyclic if at some point we return to the original d-flat. The smallest
number of shifts to return to the original d-flat is called the cycle of d-flat.

Theorem 1. In EG(a, q), every d-flat is cyclic, and the cycle of any d-flat not
passing through origin, is equal to qa − 1.

Proof. Let the integers C = {c1, c2, · · · , cqd} represent the points on a d-flat.
Since ci + (qa − 1) = ci mod (qa − 1), obviously every d-flat is cyclic. If we
assume that the cycle of C is equal to g, C = C+g mod (qa−1), then obviously
g|(qa − 1). Let’s assume g < (qa − 1). Let’s add all the elements of C and C + g
mod (qa − 1):

qd∑
i=1

ci =
qd∑

i=1

(ci + g) =
qd∑

i=1

ci + qdg mod (qa − 1)

⇒ qdg = 0 mod (qa − 1) ⇒ (qa − 1)|qdg ⇒ qa − 1
g

|qd
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Since we assumed g < (qa− 1), then qa−1
g is an integer greater than 1, which

means that there is a common factor greater than 1 between qa−1 and qd which
is impossible. So g = (qa − 1), and we are done. Note that the above argument
is not true when the d-flat is passing through origin. That is because, when the
d-flat is passing through origin one of the cis is equal to −∞, and −∞+g = −∞.

��
The above theorem which was originally stated in [9], is the key property of

affine geometries we use to construct OOCs.

2.1 λ = 1

A new construction for OOC is presented in this section, which is obtained by
generalizing the earlier construction of DDS due to Bose and Chowla [11]:

Theorem 2. Take α a primitive element of GF (qa) over GF (q). For any vector
�i = (�1, · · · , �i−1, �i = 1) with all �j ∈ GF (q) and i ≤ a − 1, define P�i

(x) =
�ix

i+1 + �i−1x
i + · · · �1x = xi+1 + �i−1x

i + · · · �1x. Each of these polynomials is
generating one codeword of the code. The codeword corresponding to the P�i

(x)
has a 1 precisely in the coordinates corresponding to logβ(P�i

(α) + v) for any
v ∈ Fq, where β is any primitive element of GF (qa) over GF (q).

The above construction gives us an (n = qa − 1, ω = q, λ = 1) OOC with
qa−2 + qa−3 + ... + 1 codewords, for any q which is a power of a prime[12].

Proof. Take two elements P�i
(α) and 1 in GF (qa). These two elements are lin-

early independent so all the elements of the form P�i
(α) + v for v ∈ FG(q) are

making a line not passing through the origin, in an EG(a, q) affine geometry.
Using the Theorem 1 we know that each of these lines has a cycle of length
qa − 1, so any cyclic shift of these lines is another line in the geometry.

Now we need to prove that none of these lines is a cyclic shift of some other
line in this set:

Assume that P�i
(α) + v is a cyclic shift of P�′j (α) + v′, so:

ατ (P�i
(α) + v) = P�′j (α) + v′

If ατ ∈ GF (q) this is impossible, so we assume ατ ∈ GF (qa) \GF (q). So:

ατP�i
(α)− P�′j (α) = v′ − ατv (3)

Depending on τ , ατ can be written as a linear combination of αa−1, · · · , α, 1,
with at least one nonzero power of α. Assume ατ =

∑a−1
i=0 ciα

i then, the left
hand side of the Equation 3 can be written as as a fixed expression in power of
α say

∑a−1
i=0 c′iα

i:
a−1∑
i=0

c′iα
i =

a−1∑
i=1

(−v)ciα
i + (v′ − v)
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Since we know at least one of cis for i > 0 is nonzero then Equation 3 can have
maximally one solution . So the two lines have maximally one point in common,
and are not identical.

We can conclude that each of the lines P�i
(α) + v is a representative of a

distinct cyclic orbit of length qa − 1. Since each two distinct lines can inter-
sect maximally at one point, so this set of representatives is satisfying all the
conditions of a (qa − 1, q, 1) OOC.

��

Remark 1. The case for a = 2 is the Bose(-Chowla) construction. It is easy to
check that our new construction of Theorem 2 is optimal with respect to the
Johnson bound.

Remark 2. The above Theorem is proved in [12] directly without using the prop-
erties of affine geometries.

2.2 λ > 1

The generalized Bose-Chowla OOC construction of Theorem 2 can be used to
construct a new class of OOC with λ ≥ 2 [13][14]:

Theorem 3. Let Fqa , be a finite field with qa elements, with α and β primitive
elements of Fqa over Fq. Now construct a single codeword of length qa− 1 which
has 1 precisely in the coordinates corresponding to logβ(αa−1 + �a−2α

a−2 + · · ·+
�1α + �0) for all �i ∈ Fq. This gives rise to an OOC with parameters (qa −
1, qa−1, qa−2) of size Φ = 1.

Proof. The elements αa−1, αa−2, · · · , α, 1 are linearly independent elements of
GF (qa). By the definition of an (a−1)-flat(hyperplane), all the points of the form
αa−1 + �a−2α

a−2 + · · · + �1α + �0 are making a hyperplane for all �i ∈ GF (q).
Since this hyperplane is not passing through the origin, by Theorem 1, it is
cyclic of length qa − 1. Using the fact that any two (a − 1)-flats can intersect
maximally in qa−2 points, it can be concluded that this hyperplane makes a
(qa − 1, qa−1, qa−2) OOC of size 1.

��

Theorem 4. If the set S consists of the support of all ones of the new code,
then amongst all the differences (si−sj |si, sj ∈ S; i 	= j), every logβ θ where θ ∈
Fqa \Fq occurs exactly qa−2 times, and none of logβ θ with θ ∈ Fq occurs[13][14].

Proof. The number of occurrence of each difference r is actually equal to the
number of intersecting points between the original hyperplane, and its cyclic
shifted version by r. If βr 	= 1 ∈ GF (q) the two hyper planes are not inter-
secting. That is because, if we have any intersection, we should have a nonzero
linear combination of αa−1, · · · , α, 1 equal to 0, which is impossible. From the
remaining differences each can occur either qa−2 times(the number of points in
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intersection of two hyperplanes), or not occurring at all. Since there exist to-
tally qa−1(qa−1−1) differences between the elements of S, and each can happen
maximally qa−2 times, there should be qa− q different families of differences, so
any difference r, with r ∈ GF (qa) \GF (q) should happen exactly qa−2 times.

��
The above theorem says that the construction in Theorem 3 corresponds to a

relative difference set [15] as well. While the existence of a relative difference set
with these parameters was previously known, mentioning it here is important,
since we have given a direct construction of it.

Remark 3. References [13][14] give an alternate proof of the Theorems 3 and 4
without using the properties of affine geometries, and only using the algebraic
properties of the structure. To our knowledge the proof in [13][14] is a new proof.

3 New Bound on OOC, and Some Optimal Constructions

Theorem 5. Based on a bound on the size of constant weight codes derived by
Johnson[16] the following upper bound on the size of OOCs can be found[13][14]:

Φ(n, ω, λ) ≤
⌊

ω − λ

ω2 − λn

⌋
, whenλ <

ω2

n
(4)

Proof. Johnson has the following bound on the size of constant weight codes
[16]:

A(n, ω, λ) ≤
⌊
n(ω − λ)
ω2 − λn

⌋
, whenλ <

ω2

n

Where A(n, ω, λ) is the maximum achievable size of a constant weight code of
length n, weight ω, and maximum pairwise real inner product λ. Since by adding
all n cyclic shifts of an OOC to it, we will end up with an (n, ω, λ) constant weight
code, the bound in Equation 4 is straight forward.

��

Theorem 6. Any (v, k, λ) difference set is an optimal (v, k, λ) OOC of size
Φ = 1[13][14]. ��

Corollary 1. The following optimal OOCs of size 1 can be constructed using
difference sets[14]:

1. Singer Difference Set:
( qn+1−1

q−1 , qn−1
q−1 , qn−1−1

q−1 ), q a prime power.
2. Quadratic Residues in GF (pr):

(4t− 1, 2t− 1, t− 1), 4t− 1 = pr = 3(mod 4), p a prime.
3. Biquadratic Residues of Primes:

(4x2 + 1, x2, x2−1
4 ), p = 4x2 + 1, p a prime, x odd.



402 R. Omrani, O. Moreno, and P.V. Kumar

4. Biquadratic Residues and Zero Modulo Primes:
(4x2 + 9, x2, x2+3

4 ), p = 4x2 + 9, p a prime, x odd.
5. Octic Residues of Primes:

(p, a2, b2), p = 8a2 + 1 = 64b2 + 9, p a prime,a and b odd integers.
6. Octic Residues and Zero for Primes:

(p, a2 + 6, b2 + 7), p = 8a2 + 49 = 64b2 + 441, p a prime, a odd, b even.
��

Remark 4. While the fact that difference sets are OOCs of size 1 is known for
a long time, their optimality wasn’t proved previously, and even they have been
assumed not to be optimal.

The bound in Theorem 5 can be mixed with a bound from [6] to give the
following bound:

Theorem 7. If λn < ω2 then [14]:

Φ(n, ω, λ) ≤ min(1,
⌊

ω − λ

ω2 − λn

⌋
), whenλ <

ω2

n

��

Remark 5. Substituting the parameters of the new construction from Theorem
3 in the above bound: Φ(qa − 1, qa−1, qa−2) ≤ 1, so the new code from Theorem
3 is always optimal.

4 Recursive Construction for OOC and DDS’s

M.J.Colbourn and C.J.Colbourn proposed two recursive constructions for cyclic
BIBD’s [1]. Their Construction A was generalized [17] to construct DDS recur-
sively as follows:

Construction A′: Given a (v, k, t)-DDS, v 	= 0 (mod k) if gcd(r, (k − 1)!) = 1,
a (vr, k, rt)-DDS may be constructed as follows. For each D = {0, d1, ..., dk−1},
take the r difference sets {0, d1+iv, d2+2iv, ..., dk−1+(k−1)iv}, 0 ≤ i < r, with
addition performed modulo vr. If furthermore, there exists an (r, k, t′)-DDS D′,
then a (vr, k, rt + t′)-DDS can be constructed by adding the t′ difference sets
{0, vs1, ..., vsk−1} for each D′

i = {0, s1, ..., sk−1} of D′ = {D′
i|1 ≤ i ≤ t′}.

This result translates to OOC using Lemma 1 as follows:

Theorem 8. Given an (n, ω, 1), OOC of size Φ(n, ω, 1), n 	= 0 (mod ω), and r
a natural number with all its prime factors greater than or equal to ω, we can
construct an (nr, ω, 1), OOC of size Φ(nr, ω, 1) = rφ(n, ω, 1). In addition if there
is an (r, ω, 1), OOC of size Φ′(r, ω, 1), then we can construct an (nr, ω, 1), OOC
of size Φ(nr, ω, 1) = rΦ(n, ω, 1) + Φ′(r, ω, 1) [12]. ��
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Theorem 9. If the base OOC used in the recursive construction of Theorem 8
is optimal with respect to the Johnson bound in Equation 2, the OOC resulting
from applying the recursive construction in Theorem 8 is at least asymptotically
optimal in the same bound[12]. ��

As it is shown in following, in some cases the recursive construction of theorem
8 can generate optimal OOCs:

Theorem 10. Given an (n, ω, 1) perfect OOC, let r be a natural number such
that its prime factors are ≥ ω then using the first part of Theorem 8 we obtain
an (nr, ω, r)-OOC. Whenever r < ω2 − ω then this OOC is optimal, using the
Johnson Bound in Equation 2 with brackets[12]. ��

Theorem 11. Applying the recursive construction of theorem 8 with r = p, a
prime, to the OOC construction of theorem 3 with q = p, we obtain a (p(pa −
1), p, 1) optimal OOC of size pa−1

p−1 − 1[12]. ��

5 Perfect Optical Orthogonal Codes

Using theorem 8, for any two OOCs, A and B satisfying the conditions of this
theorem, we obtain a new OOC that we call A ∗B. If A,B are two OOCs where
A has parameters (n, ω, 1) and size Φ(n, ω, 1) and B has parameters (r, ω, 1) and
size Φ(r, ω, 1), then we say that A,B ∈ P (ω). Whenever r and ω satisfy the
conditions of Theorem 8(the prime factors of r are bigger than or equal to ω)
we will call B admissible.The new OOC A∗B has parameters (nr, ω, 1) and size
Φ(nr, ω, 1) = rΦ(n, ω, 1)+Φ(r, ω, 1). Applying this method recursively we obtain
the following construction:

Theorem 12. If A,B are perfect OOCs in P (ω),then if B is admissible A ∗Bj

is also a perfect OOC, for any perfect B in P (ω), and j ≥ 0[12].

Proof. Since both A and B are perfect OOCs then for A ∗B:

Φ(nr, ω, 1) = rΦ(n, ω, 1) + Φ(r, ω, 1) =

r
n− 1

ω(ω − 1)
+

r − 1
ω(ω − 1)

=
nr − 1

ω(ω − 1)
So A ∗ B is satisfying Johnson bound without brackets and is perfect too. We
can extend this property inductively to A ∗Bj .

��
Theorem 13. The following two families of perfect OOCs can be generated us-
ing Theorem 12 [12]:

1. For A = (
(

qd′+1−1
q−1

)
, q + 1, 1) and B = (

(
qd+1−1

q−1

)
, q + 1, 1) two OOCs from

projective geometry construction [3],with both d′ and d even integers, and B

admissible then we can construct the family of (
(

qd+1−1
q−1

)i

.
(

qd′+1−1
q−1

)
, q +

1, 1) perfect OOCs for any positive integer i.
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2. For A = (n1, ω, 1) and B = (n2, ω, 1) two OOCs based on Wilson’s BIBD’s
[6] then we can construct the family of (ni

1.n
j
2, ω, 1) perfect OOCs for i, j ≥ 0.

Proof. By considering that (
(

qd′+1−1
q−1

)
, q+1, 1) OOCs from lines of a projective

geometry [3] for d even ,and OOCs based on Wilson’s BIBD’s from [6] are perfect
OOCs, and using Theorem 12 the results are obvious. It should be noted that in
the OOCs based on Wilson’s BIBD, the length of the OOC is always a prime,
so these OOCs are always admissible.

��

Theorem 14. Any perfect OOC is equivalent to an optimal cyclic constant
weight code satisfying the Johnson bound for constant weight codes too[12].

Proof. Adding all the cyclic shifts of an OOC to it generated a cyclic constant
weight code. If the OOC is perfect then Φ(n, ω, λ) = (n−1)···(n−λ)

ω(ω−1)···(ω−λ) , and size

of the corresponding constant weight code is n (n−1)···(n−λ)
ω(ω−1)···(ω−λ) , which is an upper

bound for A(n, ω, λ) by Johnson bound [16].
��
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Abstract. Trace codes over the rings Z2l , are used to construct spher-
ical codes with controlled peak to average power ratios (PAPR). The
main proof technique is the local Weil bound on hybrid character sums
over Galois rings.

Keywords: CDMA, Correlation, Galois Rings, hybrid character sums,
PAPR, PSK.

1 Introduction

In a recent paper [8] weighted degree trace codes of length 2m − 1 have been
proposed to reduce the peak to average power ratios (PAPR) of signals used in
an orthogonal frequency division multiplexing (OFDM) environnment. In that
setting the PAPR of an individual codeword c of period T

PAPR(c) = max
0≤t≤1

∣∣∣.(∑n−1
k=0 cie(−kt)

)∣∣∣
||c|| ,

where e(x) := exp(2πix) for x real (i =
√
−1), (viewed as a complex vector

by Phase Shift Keying (PSK) modulation) is controlled by the maximum in
module of its z-transform ĉ(z) on the unit circle. By use of Lagrange polynomial
interpolation ( [8–§VI.A] ) the problem reduces to producing an upper bound
for the quantity

Md(c) = maxT−1
j=0

∣∣∣ĉ(e( j
T

)
)∣∣∣.

The RHS of this bound turns out, in the case of trace codes, to be an hybrid
character sum (combined additive and multiplicative characters) over a Galois
ring of characteristic 2l. It can be handled using the local Weil bounds of [10].
Furthermore, weighted degree driven trace codes can be defined following [9].
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The aim of the present note1 is to make more explicit, and in places correct
this approach and to extend it to trace codes of length 2l−1(2m − 1). These
generalize to a more complex polynomial trace argument the maximum length
sequences over rings due to Dai [1] and further investigated in [2].

The material is organized as follows. Section II contains definitions and no-
tation on Galois rings. Section III collects the bounds we need on characters
sums. Section IV studies an enumerative problem on polynomials, and allows
us to define the family of codes Sl,m,D. Section V and VI contain bounds on,
respectively, the PAPR of codewords and the minimum Euclidean distance of
the codes we construct.

2 Preliminaries

Let R = GR(2l,m) denote the Galois ring of characteristic 2l with 2lm ele-
ments. Let ξ be an element in GR(2l,m) that generates the Teichmüller set T
of GR(2l,m). Specifically, let T = {0, 1, ξ, ξ2, . . . , ξ2m−2} and T ∗ = {1, ξ, ξ2, . . . ,
ξ2m−2}. The 2-adic expansion of x ∈ GR(2l,m) is given by

x = x0 + 2x1 + · · ·+ 2l−1xl−1,

where x0, x1, . . . , xl−1 ∈ T . The Frobenius operator F is defined for such an x
as

F (x0 + 2x1 + · · ·+ 2l−1xl−1) = x2
0 + 2x2

1 + · · ·+ 2l−1x2
l−1,

and the trace Tr, from GR(2l,m) downto Z2l , as

Tr :=
m−1∑
j=0

F j .

3 Local Weil Bound

Let l be a positive integer ≥ 4, and ω = e2πi/2l

be a primitive 2l-th root of 1 in
C.

Let f(x) denote a polynomial in R[x] and let

f(x) = F0(x) + 2F1(x) + . . . + 2l−1Fl−1(x)

denote its 2-adic expansion. Let di be the degree in x of Fi. Let Ψ(x) be the
standard additive character of R, applied to a typical x ∈ R:

Ψ(x) = ωTr(x).

1 The paper has been written under the partial financial support of the Russian fund
for fundamental research (under project No. 03 - 01 - 00098).
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Let χ be a multiplicative character whose order divides 2m−1. Set Df to be the
weighted degree of f , defined as

Df = max (d02l−1, d12l−2, . . . , dl−1).

With the above notation, we have (under mild technical conditions) the bound∣∣∣∑
x∈T

Ψ(f(x))χ(x)
∣∣∣ ≤ Df2m/2. (1)

See [10] for details.
We will need the following property of the weighted degree:

Lemma 1. Let f(x) ∈ R[x] and α ∈ R∗ = R\2R be a unit of R and let g(x) =
f(αx) ∈ R[x]. Then

Dg = Df ,

where Df , Dg are respectively the weighted degrees of the polynomials f(x) and
g(x).

Proof. Due to the linearity, we can assume that f(x) is of the form 2iF (x),
where F (x) ∈ T is of degree d. Thus

F (x) = c0 + c1x + . . . + cdx
d,

where cj ∈ T , j = 0, 1, . . . , d and the weighted degree Df of f is equal to 2l−1−id.
Suppose that

αk =
l−1∑
j=0

αjk2j .

Substituting αx into F (x), and using the above expansion we obtain that F (αx)
equals

d∑
k=0

ckα
kxk =

d∑
k=0

ck

( l−1∑
j=0

αjk2j
)
xk.

Changing the order of summation, this is

l−1∑
j=0

2j
d∑

k=0

αjkckx
k =

l−1∑
j=0

2jFj(x),

where Fj(x) are polynomials in T [x] of degree at most d. Since α is a unit and
α0k 	= 0 (k = 0, . . . , d), the polynomial

F0(x) =
d∑

k=0

α0kckx
k,

is of degree d. Thus the weighted degree of f(αx) equals 2l−1−id. ��
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4 Polynomials over the Galois Ring GR(2l, m)

Recall that R = GR(2l,m). A polynomial

f(x) =
d∑

j=0

cjx
j ∈ R[x]

is called canonical if cj = 0 for all even j.
Given an integer D ≥ 4, define

SD = {f(x) ∈ R[x] | Df ≤ D, f is canonical},

where Df is the weighted degree of f . Observe that SD is an GR(2l,m)-module.
We have the following (stated in [5–p.459]; see [11–Lemma 4.1] for a detailed
proof):

Lemma 2. For any integer D ≥ 4, we have:

|SD| = 2(D−�D/2l)m,

where �x� is the largest integer ≤ x.

Throughout this note, we let n = 2m and R∗ = R\2R. Let β = ξ(1+2λ) ∈ R,
where ξ ∈ T and λ ∈ R∗. Assume 1 + 2λ is of order 2l−1. Since ξ is of order
2m − 1 then β is an element of order N = 2l−1(2m − 1). Following [2–Lemma
2], we define the code of length N :

Sl,m,D = {(Tr(f(βt)))N−1
t=0 | f ∈ SD}. (2)

5 Peak-to-Average Power Ratios

We prepare the upper bound on the PAPR of codewords by a result on a char-
acter sum.

Theorem 3. Let β = ξ(1 + 2λ) ∈ R, where ξ ∈ T ∗, λ ∈ R∗ = R\2R, and
1 + 2λ ∈ R is an element of order 2l−1. Set N = 2l−1(2m − 1). Then for any
j ∈ [0, 2l−1 − 1], we have∣∣∣N−1∑

k=0

Ψ(f(βk))e2πikj/N
∣∣∣ ≤ 2l−1[Df

√
2m + 1]. (3)

Proof. Since (2l−1, 2m − 1) = 1, as j ranges over {0, 1, . . . , N − 1}, the set of
pairs

{j (mod 2m − 1), j (mod 2l−1)}
runs over all pairs (k1, k2), where k1 ∈ {0, 1, . . . , 2m−2} and k2 ∈ {0, 1, . . . , 2l−1−
1}. Thus the set

{βk; k = 0, 1, . . . , N − 1} = {ξk(1 + 2λ)k; k = 0, 1, . . . , N − 1}
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is equal to the direct product of sets:

{ξk1 ; k1 = 0, 1, . . . , 2m − 2} × {(1 + 2λ)k2 ; k2 = 0, 1, . . . , 2l−1 − 1}, (4)

where
k ≡ k1(mod 2m − 1), k ≡ k2(mod 2l−1).

By the Chinese Remainder Theorem there exist integers c1, c2 such that for all
k = 0, 1, . . . , N − 1 we can write

k = 2l−1c1k1 + (2m − 1)c2k2.

Consequently since β = ξ(1 + 2λ), where ξ2m−1 = 1 and (1 + 2λ)2
l−1

= 1, the
sum of the left hand side of (3) is equal to:

2l−1−1∑
k2=0

2m−2∑
k1=0

Ψ(f(ξk1(1 + 2λ)k2))e2πikj/N . (5)

Set fk2(x) = f(x(1 + 2λ)k2). Then, expressing k as a function of k1 and k2, the
above sum is equal to:

2l−1−1∑
k2=0

2m−2∑
k1=0

Ψ(fk2(ξ
k1))e2πic1k1j/(2m−1)e2πic2k2j/2l−1

.

Using Lemma 1 the weighted degree of fk2 is bounded by Df . Applying (1) to
each of the 2l−1 inner sums yields:

∣∣∣ 2m−2∑
t=0

Ψ(fk2(ξ
t)e2πic1k1j/(2m−1)

∣∣∣ ≤ Df

√
2m + 1.

Thus, the absolute value of (5) can be estimated from above by

2l−1[Df

√
2m + 1].

The result follows. ��
This character sum estimate translates immediately in terms of PAPR.

Corollary 4. For every c ∈ Sl,m,D the PAPR is at most

2l−1

2m − 1
(1 + D

√
2m)2

( 2
π

log(2N) + 2
)2
,

where log stands for the natural logarithm.

Proof. Follows by combining the preceding result and the definition of N into
the Lagrange bound [8–Lemma 9]. ��



Weighted Degree Trace Codes for PAPR Reduction 411

6 Euclidean Distance

We prepare the bound on the minimum Euclidean distance of the code Sl,m,D

by a correlation approach.

Theorem 5. With notation as above, and for all phase shifts τ, in the range
0 < τ < N , let

Θ(τ) =
N−1∑
t=0

ωct−c′t+τ ,

where ct = Tr (f1(βt)) and c′t = Tr (f2(βt)). We then have the bound (l ≥ 4):

|Θ(τ)| ≤ 2l−1[(Df − 1)
√

2m + 1].

Proof. As we have ct = Tr (f1(βt)) and c′t = Tr (f2(βt)), where t ranges between
0 and N − 1 and β = ξ(1 + 2λ) is of order N = 2l−1(2m − 1).

We obtain that:

Θ(τ) =
N−1∑
t=0

Ψ(f1(βt)− f2(βt+τ )). (6)

By definition of Ψ , we have:

Ψ(f1(βt)− f2(βt+τ )) = Ψ(f3(βt)),

where f3(x) = f1(x) − f2(xβτ ). Note that if f(x) ∈ SD then by Lemma 1
f(xβτ ) ∈ SD since the change of variables x → xβτ does not increase the
weighted degree. Moreover SD is an R-linear space. Thus the polynomial f3(x)
belongs to SD along with f1 and f2. Further, as t ranges between 0 and N − 1,
the set {βt ; t = 0, 1, . . . , N − 1} is equal to the product

{ξk1 ; k1 = 0, 1, . . . , 2m − 2} × {(1 + 2λ)k2 ; k2 = 0, 1, . . . , 2l−1 − 1}.

Thus, in (6), the sum over t is equal to

2l−1−1∑
k2=0

2m−2∑
k1=0

Ψ(f3(ξk1(1 + 2λ)k2)) =
2l−1−1∑
k2=0

2m−2∑
k1=0

Ψ(gk2(ξ
k1)), (7)

where gk2(x) = f3(x(1 + 2λ)k2) and for any k2, gk2 ∈ SD. Applying (1) to each
of the 2l−1 sums: ∣∣∣ 2m−2∑

t=0

Ψ(fk2(ξ
t)
∣∣∣ ≤ (Df − 1)

√
2m + 1.

Thus, the absolute value of (7) can be estimated above by

2l−1[(Df − 1)
√

2m + 1]. (8)

The result follows. ��

We are now in a position to estimate the minimum Euclidean distance dE of
our code Sl,m,D.
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Corollary 6. For all integers l ≥ 4 and m ≥ 3 we have

dE ≥ 2l(2m − 2− (D − 1)
√

2m).

Proof. Viewed as a vector of CN by exponentiating by ω, every codeword
of Sl,m,D is of (squared norm) N. The result follows now from the preceding
theorem by the identity on the standard hermitian inner product < ., . > in
CN :

< x− y, x− y >2=< x, x >2 + < y, y >2 −2.(< x, y >).

��

7 Conclusions and Perspective

In this note we constructed a linear code Sl,m,D over the ring Z2l with the
following parameters

– length N = 2l−1(2m − 1)
– size |Sl,m,D| = 2(D−�D/2l)m

– PAPR at most ≤ 2l−1

2m−1 (1 + D
√

2m)2
(

2
π log(2N) + 2)2

– minimum Euclidean distance at least ≥ 2l(2m − 2− (D − 1)
√

2m)

By using similar arguments it can be shown that the parameters of the primi-
tive length trace codes C−1

t in [8] satisfy the following (with D = 2t−1) estimates

– length n = 2m − 1
– size |C−1

t | = 2(D−�D/2e)m

– PAPR at most ≤ (1+D
√

2m)2

2m−1

(
2
π log(2n) + 2

)2
– minimum Euclidean distance at least ≥ 2(2m − 2− (D − 1)

√
2m)

In particular this simplifies and corrects the estimate of [8–VII.C] on the
number of codewords. The minimum distance estimate is new.
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Abstract. The output sequence of a binary linear feedback shift register
with k taps corresponds to a polynomial f(x) = 1+xa1 +xa2 + . . .+xak ,
where the exponents a1, a2, . . . , ak = n are the positions of the taps, and
n, the degree of f(x), is the length of the shift register. Different initial
states of the shift register may give rise to different output sequences. The
simplest shift registers to implement involve only two taps (k = 2). It is
therefore of interest to know which irreducible polynomials f(x) divide
trinomials, over GF(2), since the output sequences corresponding to f(x)
can be obtained from a two-tap linear shift register (with a suitable initial
state) if and only if f(x) divides some trinomial t(x) = xm + xa + 1
over GF(2). In this paper we develop the theory of which irreducible
polynomials over GF(2) do, or do not, divide trinomials.

1 Introduction

Linear feedback shift register sequences have been widely used in many impor-
tant applications, such as wireless communications, bit error rate measurements,
error correcting codes and stream ciphers. There are two main advantages for
using linear feedback shift register sequences: they are extremely fast and easy
to implement both in hardware and software, and they can be readily analyzed
by using algebraic techniques. A thorough introduction to the theory of shift
register sequences is in the book by Golomb [1].

The output sequence of a binary linear feedback shift register with k taps cor-
responds to a polynomial f(x) = 1 + xa1 + xa2 + . . . + xak , where the exponents
a1, a2, . . . , ak = n are the positions of the taps, and n, the degree of f(x), is the
length of the shift register. The period of f(x) is defined as the smallest integer t
such that f(x)|(xt − 1). As shown in [1], the output sequence of a binary linear
feedback shift register is periodic, and if f(x) is irreducible, the period t of f(x)
will always be a divisor of 2n−1. When t = 2n−1, f(x) is called a primitive poly-
nomial over GF(2), which corresponds to a “maximal-length sequence” (or “m-
sequence” for short). It is a fact that every primitive polynomial is also irreducible
over GF(2), but the converse is not true. Generally, different “initial” states of the
shift register may give rise to different output sequences. When the corresponding

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 414–424, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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polynomial f(x) is irreducible, the period of the shift register sequence does not
depend on the initial state, excepting only the initial condition “all 0’s”. Specifi-
cally, if f(x) is a primitive polynomial, all the non-zero initial states of the shift
register will generate the very same m-sequence except for phase shifts.

For certain values of n, there are primitive trinomials xn + xa + 1 of degree
n. These correspond to shift registers in which only two “taps” are involved in
the feedback mod 2 adder. This is the simplest way to generate an m-sequence,
which is why primitive (and irreducible) trinomials have been of special interest
among the set of all primitive (and irreducible) polynomials. Tables of prim-
itive (and irreducible) trinomials can be found in [1] [2] [3] [4]. It is easy to
show that there are irreducible (though not primitive) trinomials over GF(2)
for infinitely many different degrees n. It is also conjectured (and highly likely)
but still unproved that there are primitive trinomials for infinitely many degrees
n. However, by a theorem of R. Swan [5], there are infinitely many degrees n
(including all multiples of 8) for which there are no irreducible trinomials, and
a fortiori no primitive trinomials, over GF(2). When a primitive trinomial of
degree n does not exist, an “almost primitive” trinomial may be used as an
alternative. (A polynomial p(x) of degree n is almost primitive if p(x) 	= 0
and p(x) has a primitive factor of degree > n/2.) Algorithms for finding almost
primitive trinomials can be found in [6]. Moreover, as shown in [7], the moments
of the partial-period correlation of an m-sequence are related to the number of
trinomials of bounded degree (determined by the particular partial period under
consideration) that the characteristic polynomial of the m-sequence divides.

It is therefore of interest to know which irreducible polynomials f(x) divide
trinomials over GF(2), since the output sequence corresponding to f(x) can be
obtained from a two-tap linear feedback shift register (with a suitable initial
state) if and only if f(x) divides some trinomial t(x) = xm + xa + 1 over GF(2).
In this paper we develop the theory of which irreducible polynomials do, or do
not, divide trinomials over GF(2). In Section 2, some basic results and theorems
are presented relating to the “primitivity” t, and a clever criterion is introduced
to determine whether a given irreducible polynomial f(x) divides trinomials, for
every odd primitivity t > 1. In Section 3, further results are presented in terms
of the index r, which is the number of irreducible factors of the “tth cyclotomic
polynomial” Φt(x) over GF(2). We will see how the index r contributes to de-
termining whether a given irreducible polynomial f(x) of prime primitivity t
divides trinomials over GF(2). In Section 4, the “multiplicative module” M is
introduced, which is the set of positive (odd) integers t such that the irreducible
polynomials of odd primitivity t > 1 divide trinomials over GF(2). The set G of
generators of M is discussed. Then the computational results are presented.

2 Basic Theorems

In this section, f(x) denotes an irreducible polynomial of degree n > 1 over
GF(2) having a root α and “primitivity” t, which means that αt = 1 (i.e. that
f(x) divides xt − 1), where t is the smallest positive integer with this property.



416 S.W. Golomb and P.F. Lee

The following facts, many of which depend on the primitivity t of f(x), have
been established.

Theorem 1. f(x) divides some trinomial iff there exist distinct positive integers
i and j with αi + αj = 1.

Proof. The trinomial h(x) = xi + xj + 1 is divisible by f(x) if and only if
h(α) = αi + αj + 1 = 0, i.e. αi + αj = 1. ��

Theorem 2. If f(x) divides any trinomial, then f(x) divides infinitely many
trinomials.

Proof. Suppose f(x) divides xm+xa+1. Then f(x) also divides xm+st+xa+rt+1
for all positive integers r and s. ��

Theorem 3. If f(x) divides any trinomials, then f(x) divides some trinomial
of degree < t.

Proof. If f(x) divides xm + xa + 1, we have αm + αa + 1 = 0. Since αt = 1, this
gives αm′

+αa′
+1 = 0 where m′ ≡ m(mod t) and a′ ≡ a(mod t), from which we

can pick m′ and a′ on the range from 0 to t − 1. Then f(x) must divides some
trinomial xm′

+ xa′
+ 1 of degree < t. ��

Hence, if f(x) divides no trinomial of degree < t, then f(x) will never divide
any trinomials. This provides a finite decision procedure for whether a given irre-
ducible polynomial ever divides trinomials. Also, an irreducible polynomial f(x)
either divides infinitely many trinomials, or divides no trinomials. In the follow-
ing, we show that every primitive polynomial divides infinitely many trinomials,
and present a whole family of irreducible polynomials xt−1 + xt−2 + . . . + x + 1
which divide no trinomials.

Theorem 4. If f(x) is a primitive polynomial of degree n (i.e. if t = 2n − 1),
then f(x) divides trinomials.

Proof. Since α is a root of f(x), the powers 1, α1, α2, α3, . . . , αt−1 are all distinct,
and constitute all the non-zero elements of the field GF(2n). Hence, for all i, 0 <
i < t, 1 + αi = αj for some j 	= i, 0 < j < t. Thus, f(x) divides xi + xj + 1 for
each such pair (i, j). ��

In fact, when f(x) is a primitive polynomial, it divides exactly (t − 1)/2
trinomials of degree < t. Since the primitive polynomials precisely correspond
to m-sequences, this theorem says that every m-sequence can be obtained from
a two-tap linear shift register. This is a very simple and efficient way to generate
an m-sequence.

Theorem 5. For odd t > 3, if f(x) = (xt−1)
(x−1) = xt−1 + xt−2 + . . . + x + 1 is

irreducible, then f(x) divides no trinomials.



Which Irreducible Polynomials Divide Trinomials over GF(2)? 417

Proof. The lowest degree polynomial having the root α of f(x) as a root is
the irreducible polynomial f(x) = (xt−1)

(x−1) = xt−1 + xt−2 + . . . + x + 1, which
has t > 3 terms. Suppose f(x) divides some trinomial xm + xa + 1, so that
αm +αa + 1 = 0. Then xm′

+xa′
+ 1 = 0, where m′ and a′ are m and a reduced

modulo t, respectively, and are less than t. Thus α is a root of xm′
+ xa′

+ 1,
a trinomial of degree ≤ t − 1. But the only polynomial of degree ≤ t − 1 with
α as a root is its minimal polynomial, the t-term irreducible polynomial f(x) of
degree t− 1. ��

This occurs iff 2 is a “primitive root” modulo t with t prime. Examples include
t = 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, . . .. By Artin’s Conjecture [8], there
are infinitely many primes p for which 2 is a primitive root (i.e. where 2 is a
generator of the multiplicative group of GF(p)). Hence, we have infinitely many
irreducible polynomials of this kind, which never divide trinomials.

Definition 1. The “tth cyclotomic polynomial” is given by

Φt(x) =
∏
d|t

(xt/d − 1)μ(d) (1)

where μ(d) is the Möbius mu-function.

For any odd integer t > 3, let Φt(x) = f1(x)f2(x) . . . fr(x) be the factorization
over GF(2) of the “tth cyclotomic polynomial” into irreducible factors. It is
known that all the fi(x)’s have the same degree (say, n) and the same primitivity
t. These factors are all the irreducible polynomials having primitivity t.

Theorem 6. If any one of the fi(x)’s divides a trinomial, then all r of the
fi(x)’s divide trinomials.

Proof. Collectively, the roots of the polynomials f1(x), f2(x), . . . , fr(x) are all
the powers α, α2, α3, . . . , αt−1, of a single root α of Φt(x), which can be taken to
be a root of any one of the polynomials fi(x). Also, the roots of αt = 1 always
form a cyclic group under multiplication. If α is a primitive root of αt = 1,
then every other primitive root will be a power of α. Suppose fi(x) divides
the trinomial xm + xa + 1. Then αm + αa + 1 = 0, where we selected α to
be a root of fi(x). For any other polynomial fj(x) from the set of divisors of
Φt(x), let one of its roots be β = αu, with GCD(t, u) = 1 (i.e. rt + su = 1
for some r, s). Then for some s, 1 ≤ s ≤ t − 1, we have α = βs, from which
(βs)m + (βs)a + 1 = βsm + βsa + 1 = 0 , whereby fj(x) divides the trinomial
xsm + xsa + 1 = 0. ��

Specifically, if any one of the fi(x)’s is already a trinomial, then all the fi(x)’s
divide trinomials. The theorem provides that for any odd t, either all the fi(x)’s
divide trinomials or none divides trinomials. According to this elegant result, a
clever criterion for testing whether an irreducible polynomial divides trinomials
is the following.
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Theorem 7 (Welch’s Criterion). For any odd integer t, the irreducible poly-
nomials of primitivity t divide trinomials iff GCD(1+xt, 1+(1+x)t) has degree
greater than 1.

Proof. Let ct(x) = (xt−1)
(x−1) = f1(x)f2(x) . . . fr(x) (not necessary the tth cy-

clotomic polynomial). Then (1 + xt) = (1 + x)ct(x), and (1 + (1 + x)t) =
xct(1+x) . Thus, except for possible linear factors, GCD(1+xt, 1+ (1+x)t) =
GCD(ct(x), ct(1 + x)). Let ct(x) = (xt−1)

(x−1) = f1(x)f2(x) . . . fr(x) be the factor-
ization of ct(x) into irreducible factors. Then the roots of f1(x), f2(x), . . . , fr(x)
collectively are α, α2, α3, . . . , αt−1 where α 	= 1 and αt = 1. Thus, the roots of
the irreducible factors of ct(1 + x) are 1 +α, 1 +α2, 1 +α3, . . . , 1 +αt−1. Hence,
the GCD in question has degree > 1 if and only if one of the roots (say 1 + αj)
from ct(1 + x) equals to one of the roots (say αi) from ct(x) (i.e. 1 + αj = αi).
This is the precise condition that a factor of ct(x) with α as a root divides the
trinomial xi + xj + 1. ��

This computationally useful criterion, due to L.R. Welch, determines whether
the irreducible polynomials of primitivity t divide trinomials, for any odd integer
t > 3, without directly identifying which irreducible polynomial divides which
trinomial.

3 Further Results

When the primitivity t is a prime p, let Φp(x) = (xp−1)
(x−1) = f1(x)f2(x) . . . fr(x)

be the factorization of the “pth cyclotomic polynomial” into irreducible factors
over GF(2). Here the index r = φ(p)/n = (p− 1)/n is the number of irreducible
factors of Φp(x) over GF(2), and (p− 1)/r is the order of 2 in the multiplicative
group modulo p. Again, all the fi(x)’s have the same degree (say, n) and the same
primitivity p, and they are all the irreducible polynomials having primitivity p
over GF(2). Let α be a root of fi(x). The following results relate to the index r.

Definition 2. Let f(x) be an irreducible polynomial of degree n. The reciprocal
of f(x) is defined as f∗(x) = xnf( 1

x ). When f∗(x) = f(x), then we say f(x) is
“self-reciprocal” (i.e. if α is a root of f(x), then α−1 is also a root of f(x)).

Lemma 1. For prime values p > 3 with Φp(x) = (xp−1)
(x−1) = f1(x)f2(x) . . . fr(x)

as a product of r > 1 irreducible polynomials, if any of the fi(x)’s is self-
reciprocal, then fi(x) cannot be a trinomial.

Proof. Since fi(x) is self-reciprocal, we have fi(x) = x(p−1)/rfi( 1
x ). If fi(x) is

a trinomial, it must be x(p−1)/r + x(p−1)/2r + 1, which divides x3(p−1)/2r + 1,
whereby α3(p−1)/2r = 1, but 3(p − 1)/2r < p for all r > 1, which contradicts p
being the smallest positive exponent with αp = 1. ��

Theorem 8. For prime p > 3, if any of the fi(x)’s is self-reciprocal, then none
of the fi(x)’s divide trinomials.
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Proof. Since fi(x) is self-reciprocal, it cannot be a trinomial by the Lemma.
Suppose fi(x) divides some trinomial. WLOG, fi(x) divides a trinomial ti(x) =
xm + xa + 1 with 1 ≤ a < m < p. Write ti(x) = xm + xa + 1 = fi(x)gi(x).
Then t∗i (x) = xm + xm−a + 1 = fi(x)g∗i (x) where g∗i (x) = xdgi( 1

x ) and d =
degree(gi(x)). Thus ti(x) + t∗i (x) = xm−a + xa = fi(x)(gi(x) + g∗i (x)) and fi(x)
divides xm−a +xa = xa(1+x|m−2a|), where 0 ≤ |m−2a| < p, which contradicts
α, the root of fi(x), having primitivity p, unless m − 2a = 0. In this case,
g∗i (x) = gi(x) and t∗i (x) = ti(x), so that ti(x) = xm + xm/2 + 1, which divides
x3m/2 + 1, so that α3m/2 = 1, whereas also αp = 1. This requires α|p−3m/2| = 1,
but since (p − 1)/r < m < p and r > 1, we have 3(p − 1)/2r < 3m/2 < 3p/2,
from which 0 < |p− 3m/2| < p, contradicting α having primitivity p. ��

Corollary 1. Let p > 3 be a prime and Φp(x) = (xp−1)
(x−1) = f1(x)f2(x) . . . fr(x)

be a product of r irreducible polynomials. If r > 1 is an odd number, then the
fi(x)’s divide no trinomials.

Proof. When r > 1 is odd, then at least one of the fi(x)’s is self-reciprocal. The
result follows from the theorem. ��

Hence, if the index r of the pth cyclotomic polynomial Φp(x) is any odd
number, then all the irreducible factors of Φp(x) divide no trinomials, except for
the trinomial x2 + x + 1 with r = 1 and p = 3, which is already a trinomial.
When r is an even number, it no longer guarantees that at least one of the
f(x)’s is self-reciprocal. But there are only two cases: either at least one of the
f(x)’s is self-reciprocal, or none of them is self-reciprocal. In the former case,
all the f(x)’s divide no trinomials by the above theorem. In the latter case, the
polynomials appear in pairs (i.e. if α is a root of fi(x), then α−1 is a root of
f∗

i (x)). Then the fi(x)’s may or may not divide trinomials.

Theorem 9. Let p > 7 be a prime and Φp(x) = (xp−1)
(x−1) = f1(x)f2(x) be a

product of two irreducible polynomials (i.e. r = 2). Then the fi(x)’s divide no
trinomials.

Proof. If either one of the fi(x)’s is self-reciprocal, then the fi(x)’s divide no
trinomials by the previous theorem. Otherwise, the fi(x)’s form a reciprocal pair.
If α is a root of f1(x), then α−1 is a root of f2(x). Suppose f1(x) divides some
trinomial t1(x) (including the case that f1(x) itself is a trinomial). Then we can
write t1(x) = xm +xa +1 = f1(x)g1(x), with 1 ≤ a < m < p, and replacing α by
α−1 for all roots of t1(x), we get f2(x)g∗1(x) = t∗1(x) = xm +xm−a +1. Then the
product t1(x)t∗1(x) = f1(x)f2(x)g1(x)g∗1(x) = Φp(x)g1(x)g∗1(x) = x2m +x2m−a +
xm+a + xm + xa + xm−a + 1, and this 7-nomial must have both α and α−1 as
roots, which must satisfy both αp = 1 and α−p = 1. We may therefore reduce
all exponents in t1(x)t∗1(x) modulo p, to get an at most 7-term polynomial of
degree < p, but which has all p − 1 roots of Φp(x) as roots, contradicting the
fact that the only (non-zero) polynomial of degree < p with all roots of Φp(x)
as roots is Φp(x) itself, which has p > 7 terms. ��
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Note that when r = 2 and p = 7, neither of the fi(x)’s is self-reciprocal,
where Φ7(x) = x6 + x5 + x4 + x3 + x2 + x + 1 = (x3 + x2 + 1)(x3 + x + 1) has
only 7 terms, and the two factors of Φ7(x) are already trinomials.

Theorem 10. Let p be a prime and Φp(x) = (xp−1)
(x−1) = f1(x)f2(x)f3(x)f4(x) be

a product of four irreducible polynomials (i.e. r = 4). Then the fi(x)’s divide no
trinomials.

Proof. If any one of the fi(x)’s is self-reciprocal, then the fi(x)’s divide no
trinomials by Theorem 8. Otherwise, the fi(x)’s come in pairs. Let α be a root
of f1(x) and α−1 be a root of f2(x). Similarly, let β = αu be a root of f3(x) and
β−1 be a root of f4(x). Suppose f1(x) divides some trinomial t1(x) (including the
case that f1(x) itself is a trinomial). Then we can write t1(x) = xm + xa + 1 =
f1(x)g1(x), with 1 ≤ a < m < p. Replacing α by α−1 for all roots of t1(x),
we get f2(x)g∗1(x) = t∗1(x) = xm + xm−a + 1. Then the product t1(x)t∗1(x) =
f1(x)f2(x)g1(x)g∗1(x) = x2m + x2m−a + xm+a + xm + xa + xm−a + 1 is a 7-term
polynomial which has both α and α−1 as roots. Similarly, suppose f3(x) divides
some trinomial t3(x)(including the case that f3(x) itself is a trinomial). Then
we can write t3(x) = xk + xb + 1 = f3(x)g3(x), with 1 ≤ b < k < p. Replacing
β by β−1 for all roots of t3(x), we get f4(x)g∗3(x) = t∗3(x) = xk + xk−b + 1.
Then the product t3(x)t∗3(x) = f3(x)f4(x)g3(x)g∗3(x) = x2k + x2k−b + xk+b +
xk + xb + xk−b + 1 is also a 7-term polynomial which has both β and β−1 as
roots. Then t1(x)t∗1(x)t3(x)t∗3(x) = f1(x)f2(x)f3(x)f4(x)g1(x)g∗1(x)g3(x)g∗3(x) =
Φp(x)g1(x)g∗1(x)g3(x)g∗3(x) has at most 49 terms, and has α, α−1, β and β−1

as roots, satisfying αp = 1, α−p = 1, βp = 1 and β−p = 1. We may therefore
reduce all exponents in t1(x)t∗1(x)t3(x)t∗3(x) modulo p, to get an at most 49-
term polynomial of degree < p, but which has all p− 1 roots of Φp(x) as roots,
contradicting the fact that the only (non-zero) polynomial of degree < p with
all roots of Φp(x) as roots is Φp(x) itself, which has p > 49 terms. Since the first
Φp(x) = (xp−1)

(x−1) = f1(x)f2(x)f3(x)f4(x), with four irreducible factors, happens
at p = 113 > 49, the result follows. ��

Theorem 11. Let p be a prime and Φp(x) = (xp−1)
(x−1) = f1(x)f2(x) . . . fr(x) be a

product of r irreducible polynomials. If the index r is any even number, then the
fi(x)’s divide no trinomials if p > 7r/2.

Proof. If any one of the fi(x)’s is self-reciprocal, then the fi(x)’s divide no
trinomials by the above theorem. Otherwise, the fi(x)’s appear in pairs. By
using similar arguments, let αi be a root of fi(x) and α−1

i be a root of fi+1(x)
with 1 ≤ i < r, where i is odd. Suppose fi(x) divides some trinomial ti(x)
(including the case that fi(x) itself is a trinomial). Then we can write ti(x) =
xm + xa + 1 = fi(x)gi(x), with 1 ≤ a < m < p. Replacing αi by α−1

i for
all roots of ti(x), we get fi+1(x)g∗i (x) = t∗i (x) = xm + xm−a + 1. Then the
product ti(x)t∗i (x) = fi(x)fi+1(x)gi(x)g∗i (x) = x2m +x2m−a +xm+a +xm +xa +
xm−a +1 is a 7-term polynomial which has both αi and α−1

i as roots. Therefore,
t1(x)t∗1(x)t3(x)t∗3(x) . . . tr−1(x)t∗r−1(x)
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= f1(x)f2(x)f3(x)f4(x) . . . fr(x)g1(x)g∗1(x)g3(x)g∗3(x) . . . gr−1(x)g∗r−1(x)
= Φp(x) · g1(x)g∗1(x)g3(x)g∗3(x) . . . gr−1(x)g∗r−1(x)
has at most 7r/2 terms, and has αi’s and α−1

i ’s as roots, satisfying αp
i = 1 and

α−p
i = 1 for every odd integer i < r. We may therefore reduce all exponents

in t1(x)t∗1(x)t3(x)t∗3(x) . . . tr−1(x)t∗r−1(x) modulo p, to get an at most 7r/2-term
polynomial of degree < p, but which has all p − 1 roots of Φp(x) as roots,
contradicting the fact that the only (non-zero) polynomial of degree < p with
all roots of Φp(x) as roots is Φp(x) itself, which has p > 7r/2 terms. ��

The above theorem also provides a finite decision procedure for whether a
given irreducible polynomial of prime primitivity p divides trinomials, in terms
of the index r. Among the first 1,000,000 odd primes (i.e. 3 to 15,485,867), about
98.9% have their index r ≤ 100; 95.7% have r ≤ 24; and 92.6% have r ≤ 15.
As predicted by Artin’s Conjecture, about 37.4% have r = 1. Also, about 28.1%
have r = 2; 6.6% have r = 3; 4.7% have r = 4; 1.9% have r = 5; 5.0% have
r = 6; 0.9% have r = 7; 3.5% have r = 8; 0.7% have r = 9; and 1.4% have
r = 10. (The probabilistic argument used in Artin’s Conjecture for r = 1 can be
modified for these larger values of r.)

According to the index r (1 ≤ r ≤ 15), we summarize the test results for
whether the irreducible polynomials of prime primitivity p divide trinomials as
follows:

1. When r = 1, f1(x) divides trinomials only at p = 3.
2. When r = 2, the fi(x)’s divide trinomials only at p = 7.
3. When r = 4, the fi(x)’s divide no trinomials.
4. When r = 6, the fi(x)’s divide trinomials only at p = 31.
5. When r = 8, the fi(x)’s divide trinomials only at p = 73.
6. When r = 10, the fi(x)’s divide no trinomials.
7. When r = 12, the fi(x)’s divide no trinomials.
8. When r = 14, the fi(x)’s divide no trinomials.
9. When r > 1 is an odd number, the fi(x)’s divide no trinomials.

4 The Multiplicative Module M

In this section, a “multiplicative module” M is introduced. It is a fact that if the
irreducible polynomials of primitivity t divide trinomials, then the irreducible
polynomials of primitivity mt also divide trinomials for every odd integer m ≥ 1.
Therefore, let M be the set of positive (odd) integers t such that the irreducible
polynomials of odd primitivity t > 1 divide trinomials. Then, in view of the
closure property, we call M a “multiplicative module”. That is, for every t ∈M ,
we also have mt ∈ M for every odd integer m ≥ 1. An element g of M is a
generator of M iff g ∈ M but no proper factor h of g is in M . Let G be the
subset of M consisting of the generators of M . From Theorem 4, the polynomials
of primitivity t = 2n − 1 divide trinomials for every integer n > 1, each of these
numbers (3, 7, 15, 31, 63, 127, 255, 511, . . .) is in M , and each has (at least) one
factor in G.
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Hence, all the “Mersenne primes” (2n − 1 being prime) are automatically
in G. These include {3; 7; 31; 127; 8,191; 131,071; 524,287; 2,147,483,647; . . .}.
Aside from the Mersenne primes, there are other primes in G. The first non-
Mersenne-prime generator is 73, corresponding to eight irreducible polynomials
of degree 9 and primitivity t = 73, which do divide trinomials. (In fact, two of
these eight irreducible polynomials are already trinomials; therefore all eight of
them must divide trinomials). By complete computer search for all odd primes
t < 3, 000, 000, only five other prime elements of G (not Mersenne primes) exist:
{73; 121,369; 178,481; 262,657; and 599,479}. It was mentioned that among the
eight irreducible factors of Φ73(x), two of them are already trinomials. However,
none of the irreducible factors of Φt(x) are trinomials for t = 121, 369 or 178, 481
or 262, 657 or 599, 479. It is not necessary that if the irreducible factors of Φt(x)
divide trinomials, then at least one of the factors has to be a trinomial.

Let Φn(2) denote the nth cyclotomic polynomial evaluated at 2. All the el-
ements of G currently known can be expressed fairly simply in terms of the
numbers Φn(2). The Mersenne primes are precisely the numbers Φn(2) when n is
prime and 2n−1 is prime. Of the other five known prime numbers in G, three are
values of Φn(2): 73 = Φ9(2), 262, 657 = Φ27(2), and 599, 479 = Φ33(2). This sug-
gests the possibility that whenever Φn(2) is prime, where n is an odd prime, then
Φn(2) ∈ G. From [9], which lists the factorizations of 2n − 1 for all odd integers
n < 1200, the first counterexample occurs at 151 = Φ15(2), which is not in G, and
the next non-Mersenne-prime case 4, 432, 676, 798, 593 = Φ49(2) is too large to
test. Besides 73 = Φ9(2), 262, 657 = Φ27(2), and 599, 479 = Φ33(2), the other two
cases result from dividing Φn(2) by a “small” prime factor: 121, 369 = Φ39(2)/79,
and 178, 481 = Φ23(2)/47. These two are both instances where Φn(2) has two
prime factors, and t is the much larger of these two factors. While this may be a
good way to look for likely values of t, it is not a reliable indicator. For example,
Φ35(2) = 71 · 122, 921, but t = 122, 921 is not in G, and the next non-Mersenne-
prime cases, Φ37(2) = 223 · 1, 616, 318, 177 and Φ41(2) = 13, 367 · 164, 511, 353,
are also too large to test by current methods.

If g ∈ G is composite, then (by the definition of G) no prime factor of
g is in G. The smallest composite g ∈ G is 85 = 5 · 17 , where 85 ∈ G
but 5 	∈ G and 17 	∈ G. All the eight irreducible factors of Φ85(x) divide
trinomials, even though none of them is a trinomial. By complete computer
search, there are ten composite elements of G up to t < 800, 000. These are:
{85; 2,047; 3,133; 4,369; 11,275; 49,981; 60,787; 76,627, 140,911; and 486,737}.
Seven other larger composite elements of G are currently known: {1,826,203;
2,304,167; 2,528,921; 8,727,391; 14,709,241; 15,732,721; and 23,828,017}. Among
these seventeen composite elements of G known so far, most of them are ei-
ther divisors of Φn(2) or of Φn(2)Φ2n(2) for various values of n. For example,
2, 047 = 23 · 89 = Φ11(2), 8, 727, 391 = 71 · 122, 921 = Φ35(2), and 14, 709, 241 =
631 · 23, 311 = Φ45(2) are of the form Φn(2); 2, 304, 167 = 1, 103 · 2, 089 =
Φ29(2)/233, 23, 828, 017 = 11, 119 · 2, 143 = Φ51(2)/103, and 486, 737 = 233 ·
2, 089 = Φ29(2)/1103 are of the form Φn(2)/c, where c is a prime factor of Φn(2);
85 = 5 · 17 = Φ4(2)Φ8(2), 3, 133 = 13 · 241 = Φ12(2)Φ24(2), 4, 369 = 17 · 257 =



Which Irreducible Polynomials Divide Trinomials over GF(2)? 423

Φ8(2)Φ16(2), 49, 981 = 151 · 331 = Φ15(2)Φ30(2), 140, 911 = 43 · (29 · 113) =
Φ14(2)Φ28(2), and 15, 732, 721 = 241 · (97 · 673) = Φ24(2)Φ48(2) are of the form
Φn(2)Φ2n(2); 60, 787 = 89 · 683 = Φ11(2)Φ22(2)/23, 76, 627 = 19 · (37 · 109) =
Φ18(2)Φ36(2)/3, 1, 826, 203 = 337 · 5, 419 = Φ21(2)Φ42(2)/7, and 2, 528, 921 =
41 · 61, 681 = Φ20(2)Φ40(2)/5 are of the form Φn(2)Φ2n(2)/c, where c is a prime
factor of Φn(2). The only exception so far, which is neither a divisor of Φn(2)
nor of Φn(2)Φ2n(2), is 11, 275 = 11 · (5 · 41) · 5 = Φ10(2)Φ20(2)Φ5(2). However,
all these composite elements in G suggest testing the following kinds of numbers
for membership in G.

1. If Φn(2) is prime and both of Φn(2) and Φ2n(2) /∈M , then Φn(2)Φ2n(2) ∈ G,
though this is not true for n = 10.

2. If Φn(2) is composite and Φ2n(2) /∈ M , then Φn(2)Φ2n(2)/c ∈ G, where c is
a prime factor of Φn(2).

Also, it seems possible that Φ4n(2) /∈ M for all integers n > 0 (all n up to 15
have been verified); and Φn(2) /∈ M implies Φ2n(2) /∈ M(all n up to 20 have
been verified).

5 Conclusions

The “theory” of the irreducible polynomials which divide trinomials over GF(2)
has an interesting structure. All the polynomials of (odd) primitivity t are the
r irreducible factors of Φt(x) over GF(2), and either all or none of them divide
trinomials. Whether it is “all” or “none” depends to a considerable extent on r.
(For all odd t > 3 and all odd r, the answer is “none”. For r = 4, 10, 12, and 14,
the answer is “none” for all odd primes t. There is only one prime value of t, for
each of r = 2, 6, and 8, for which the answer is “all” rather than “none”. For each
even r > 14, there is only a finite range, t ≤ 7r/2, for prime values of t where
the answer might be “all”.) The odd values of t > 1 such that polynomials of
primitivity t divide trinomials form a “multiplicative module” M , which is closed
with respect to multiplication by odd numbers. The set G of “generators” of M
is quite sparse, and its members seem related to numbers of the form Φn(2).
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Abstract. The absolute indicator and the sum-of-squares indicator are
used as a measure of global avalanche criterion (GAC) to evaluate the
propagation characteristics of Boolean functions in a global manner. In
this paper, we derive a new lower bound on the absolute indicator of
resilient functions and three-valued almost-optimal functions satisfying
the propagation criterion of degree p (or PC(p)).

1 Introduction

The strict avalanche criterion (SAC) or the propagation criterion of degree p (or
PC(p), for short) are employed as a measure of the propagation characteristics
of Boolean functions [8], [15]. Even though a Boolean function satisfies SAC
or PC(p), it may have a cryptographically unwelcome property called a linear
structure. Zhang et al. [17] introduced the global avalanche criterion (GAC) to
compensate for the weak points of SAC and PC(p). The absolute indicator and
the sum-of-squares indicator are used as a measure of the GAC. Son et al. [11]
derived a lower bound on the sum-of-squares indicator of the balanced functions
and Sung et al. [12] improved their results. The GAC of correlation-immune
functions is analyzed in [14], [20]. Recently, Maitra presented better results on
the GAC for correlation-immune and resilient functions in [5].

In this paper, we consider correlation-immune and resilient functions satisfy-
ing PC(p) and derive a new lower bound on their absolute indicators. We give
a counter-example against Theorem of Charpin and Pasalic (Theorem 5, [4]).
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Their corrected bound in [7] is numerically compared with our bound in order
to show that these bounds are complementary to each other. We also consider
the autocorrelation properties of three-valued almost-optimal functions satisfy-
ing PC(p) and derive a new lower bound on their absolute indicators.

The paper is organized as follows. In Section 2, we introduce some defini-
tions and notation for our presentation. In Section 3, we give a counter-example
against Theorem of Charpin and Pasalic [4] and then derive a new lower bound
on the absolute indicator of correlation-immune and resilient functions satisfying
PC(p). In Section 4, we derive a lower bound on the absolute indicator of three-
valued almost-optimal functions satisfying PC(p). Finally, we give concluding
remarks in Section 5.

2 Preliminaries

Let Fn
2 be the set of binary n-tuple vectors, where F2 = {0, 1}. A Boolean func-

tion f with n variables is a function from Fn
2 to F2 and is uniquely represented

by a polynomial in x1, . . . , xn:

f(x1, . . . , xn) = a0 + a1x1 + · · ·+ anxn + a12x1x2 + · · ·+ a1...nx1 . . . xn (1)

where a0, a1, . . . , a1...n ∈ F2 and + denotes the modulo-2 addition. The form in
(1) is called the algebraic normal form (ANF) of f . The degree of f , denoted
by deg(f), is the number of variables in the highest order product term with a
nonzero coefficient. A Boolean function of degree at most 1 is said to be affine.
An affine function whose constant equals to zero is said to be linear. Every linear
function can be expressed by ϕα(x) � α · x for some α = (α1, . . . , αn) ∈ Fn

2 ,
where α · x = α1x1 + · · ·+ αnxn for x = (x1, . . . , xn) ∈ Fn

2 .

For simple notation, let Bn be the set of all Boolean functions with n variables.
For a Boolean function f ∈ Bn, let

F(f) �
∑

x∈Fn
2

(−1)f(x). (2)

Note that F(f) is the difference between the occurrences of one and the occur-
rences of zero in f(x) when x runs through all the elements of Fn

2 . In particular,
f is said to be balanced if F(f) = 0. The Walsh transform of a function f ∈ Bn

with respect to α is defined by F(f + ϕα), where

F(f + ϕα) =
∑

x∈Fn
2

(−1)f(x)+ϕα(x). (3)

The set {F(f + ϕα) |α ∈ Fn
2} is called the Walsh spectrum of f .

Let L(f) be the maximum magnitude of the Walsh transform of f ∈ Bn,
defined by

L(f) � max
α∈Fn

2

|F(f + ϕα)|. (4)
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It is easily checked that L(f) ≥ 2n/2 for any function f ∈ Bn with equality if and
only if f is bent when n is even. The nonlinearity N (f) of f ∈ Bn is defined by
N (f) = 2n−1 −L(f)/2. Note that a bent function has the largest nonlinearity
but is not balanced. f is said to be almost-optimal if L(f) ≤ 2(n+1)/2 when n
is odd, and L(f) ≤ 2(n+2)/2 when n is even. f is said to be three-valued if its
Walsh spectrum takes at most three values 0, ±L(f).

The correlation-immunity of f ∈ Bn is characterized by the set of zero values
in its Walsh spectrum [10], [16]. f is m-th order correlation-immune if F(f +
ϕα) = 0 for any α ∈ Fn

2 such that 1 ≤ wt(α) ≤ m, where wt(α) is the Hamming
weight of α ∈ Fn

2 which is the number of ones in α. An m-th order correlation-
immune function is said to be m-resilient if it is balanced. Note that 0-resilient
functions are balanced functions [13]

The propagation characteristics of f are concerned with its derivatives Dαf
given by Dαf(x) = f(x)+ f(x+α) with respect to any direction α ∈ Fn

2 . When
Dαf is a constant, such α 	= 0 is called a linear structure of f . Note that the set
of all linear structures of f forms a subspace of Fn

2 , called the linear space of f .
f is said to satisfy propagation criterion of degree p, i.e., PC(p) if F(Dαf) = 0
for any α ∈ Fn

2 such that 1 ≤ wt(α) ≤ p.

The absolute indicator and the sum-of-squares indicator are measures to es-
timate the propagation characteristics in a global manner (i.e., GAC) [17]. For
a function f ∈ Bn, the absolute indicator of f is defined by

Δf = max
α∈Fn

2 , α �=0
|F(Dαf)|

and the sum-of-squares indicator of f is defined by

σf =
∑

α∈Fn
2

F2(Dαf).

Note that the smaller Δf and σf , the better the GAC of a function. In [17],
Zhang and Zheng showed that 0 ≤ Δf ≤ 2n and 22n ≤ σf ≤ 23n.

3 The Absolute Indicator of Correlation-Immune
Functions Satisfying PC(p)

Charpin and Pasalic [4] first presented a lower bound on the absolute indicator
of m-resilient functions of degree d satisfying PC(p) in the following.

Theorem 1 ([4]). Let f ∈ Bn be an m-resilient function of degree d satisfying
PC(p). Set ε = �n−m−2

d �. Then for any α ∈ Fn
2 , we have

F(Dαf) ≡ 0 (mod 22m+p+2ε+5−n).

This property is significant only for 2m + p + 2ε + 2 > n.
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Based on the result, Charpin and Pasalic [4] claimed that Δf ≥ 22m+p+2ε+5−n.
However, we show that their claim is incorrect by giving a counter-example in
the following.

Example: Consider the function f ∈ B9 given by

f(x1, . . . , x9) = x1(1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9)
+x2x3 + x4x5 + x6x7 + x8x9.

Note that f has degree d = 2 and is a 0-resilient function. Furthermore, f
also satisfies PC(8). Thus, the claim by Charpin and Pasalic implies that Δf ≥
1024. On the other hand, f has the all-one vector as its linear structure, since
f(x1, . . . , x9) + f(x1 + 1, . . . , x9 + 1) = 1. Therefore, Δf = 512, which is a
contradiction. Note that Δf = 2n for any quadratic non-bent function f ∈ Bn

[17]. �

Remark: Charpin and Pasalic missed the assumption that the function admits
no linear structure in their theorem [4]. Our observation in the above example
was informed to Charpin by Prof. Helleseth after his visit to the authors at
POSTECH in the fall of 2002. Their theorem has been corrected later by Pasalic
in his Ph. D. thesis by adding the condition that 2m + p + 2ε + 5− n ≤ n (see
Theorem 7.11, [7]).

Zheng and Zhang derived a lower bound on the sum-of-squares indicator of
a Boolean function [18] as follows:

Theorem 2 ([18]). Let f ∈ Bn and Nf � #{α ∈ Fn
2 | F(f + ϕα) 	= 0}. Then

σf ≥ 23n

Nf
. Moreover, if f has a three-valued Walsh spectra 0, ±2i, then σf = 23n

Nf
.

Maitra [5] presented an improved lower bound on the sum-of-squares indi-
cator of m-th order correlation-immune and m-resilient functions directly from
the definition of correlation-immunity and resiliency and the bound in Theorem
2 in the following:

Theorem 3 ([5]). Let f ∈ Bn be an m-th order correlation-immune function.
Then σf ≥ 23n

2n−
∑m

i=1 (n
i)

. Moreover, if f is m-resilient, then σf ≥ 23n

2n−
∑m

i=0 (n
i)
.

Following the results by Maitra, we derive a new lower bound on the absolute
indicator of m-th order correlation-immune and m-resilient functions of degree
d satisfying PC(p).

Theorem 4. Let f ∈ Bn be an m-th order correlation-immune function of de-
gree d satisfying PC(p). Then the absolute indicator of f is bounded by

Δf ≥ 2�
n−2
d−1 +2 · k1,
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where k1 is the least integer among all positive integers i1 satisfying

i21 ≥
1

2n − 1−
∑p

j=1

(
n
j

)( 23n−4−2�n−2
d−1 

2n −
∑m

l=1

(
n
l

) − 22n−4−2�n−2
d−1 

)
.

Similarly, when f ∈ Bn is an m-resilient function of degree d satisfying PC(p),
the absolute indicator of f is bounded by

Δf ≥ 2�
n−2
d−1 +2 · k2,

where k2 is the least integer among all positive integers i2 satisfying

i22 ≥
1

2n − 1−
∑p

j=1

(
n
j

)( 23n−4−2�n−2
d−1 

2n −
∑m

l=0

(
n
l

) − 22n−4−2�n−2
d−1 

)
.

Proof. Since f is an m-th order correlation immune function, we have from
Theorem 3

σf =
∑

α∈Fn
2 \{0}

F2(Dαf) + 22n (5)

≥ 23n

2n −
∑m

l=1

(
n
l

) . (6)

Since any derivative Dαf of f is a function of degree d−1 with a linear structure,

F(Dαf) ≡ 0 ( mod 2ε+2)

where ε = �n−2
d−1 � (see [1], [6]). For a nonnegative integer i, set λi � #{α ∈

Fn
2\{0} : |F(Dαf)| = i2ε+2}. Then∑

α∈Fn
2 \{0}

F2(Dαf) =
∑

i

λii
222ε+4 = 22ε+4

∑
i

λii
2.

On the other hand, let λ be the number of α ∈ Fn
2\{0} such that F(Dαf) 	= 0.

Since f satisfies PC(p),

λ ≤ 2n − 1−
p∑

j=1

(
n

j

)
.

So there exists an integer i1 such that

22ε+4
∑

i

λii
2 ≤ 22ε+4λi21 ≤ 22ε+4i21

(
2n − 1−

p∑
j=1

(
n

j

))
(7)

and by (5), (6) and (7), we can define the smallest positive integer k1 among
integers i1 satisfying

23n

2n −
∑m

l=1

(
n
l

) − 22n ≤ 22ε+4i21

(
2n − 1−

p∑
j=1

(
n

j

))
.
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Table 1. Comparison of Lower bounds on the absolute indicator of m-resilient func-

tions of degree d satisfying PC(p) when n = 8, 9, 10 and 11. Here, CP denotes the

correct version of Charpin and Pasalic’s theorem

n d m p Thm 4 CP [7] n d m p Thm 4 CP [7]

8 3 0 3 32 16 10 3 3 2 64 32
8 3 0 4 32 32 10 3 3 3 64 64
8 3 0 5 32 64 10 3 3 4 64 128
8 6 1 5 16 16 10 4 2 2 16 8
8 6 1 6 24 32 10 4 2 3 16 16
8 7 0 7 24 16 10 4 2 4 16 32
9 4 1 3 16 8 11 5 1 5 16 8
9 4 1 4 16 16 11 5 1 6 16 16
9 4 1 5 16 32 11 5 1 7 16 32
9 7 1 6 16 16 11 8 2 5 16 8
9 7 1 7 24 32 11 8 2 6 16 16
9 8 0 8 24 16 11 8 2 7 32 32

From the definition of k1, there exists an element α ∈ Fn
2\{0} such that

|F(Dαf)| ≥ k1 · 2ε+2

and we get a lower bound on the absolute indicator given by

Δf ≥ 2ε+2 · k1.

A similar approach may apply to the case that f is an m-resilient function
of degree d satisfying PC(p). �

Our lower bound on the absolute indicator of m-resilient functions of degree d
satisfying PC(p) is numerically compared with the correct version of Charpin and
Pasalic’s theorem in Tables 1 and 2 for n = 8, . . . , 12. Note that the meaningful
ranges of n, m, p and d may be determined by the Siegenthaler inequality m+d ≤
n − 1 [10] and the Zheng-Zhang inequality m + p ≤ n − 1 [19]. Tables 1 and 2
show that our lower bound becomes tighter than the correct version of Charpin
and Pasalic’s theorem when both m and p are smaller and n gets larger.

In order to compare the actual value of the absolute indicator with its bound
given by Theorem 4 for m-resilient functions of degree d satisfying PC(p), we
give an example in the following.

Example: Consider the function f ∈ B8 given by

f(x1, . . . , x8) = x1(x2 + x3 + x6 + x5x6 + x5x8 + x6x8)
+x3(x2 + x5 + x5x6 + x5x8 + x6x8)
+x4(x5 + x6) + x5(1 + x6 + x7 + x8) + x7x8.

Note that f has n = 8, d = 3, m = 0 and p = 3. It is easily checked by computer
that Δf = 256. Theorem 4 gives Δf ≥ 32, while the correct version of Charpin
and Pasalic’s theorem gives Δf ≥ 16. �
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Table 2. Comparison of Lower bounds on the absolute indicator of m-resilient func-

tions of degree d satisfying PC(p) when n = 12. Here, CP denotes the correct version

of Charpin and Pasalic’s theorem

d m p Thm 4 CP [7] d m p Thm 4 CP [7]

3 0 7 128 64 5 3 8 80 512
3 0 8 128 128 5 4 1 32 16
3 0 9 128 256 5 4 2 32 32
3 1 5 128 64 6 1 5 16 4
3 1 6 128 128 7 0 10 24 32
3 1 7 128 256 7 0 11 72 64
4 1 9 32 256 7 4 4 40 32
4 1 10 96 512 7 4 5 48 64
4 2 1 32 4 8 0 10 24 32
4 2 2 32 8 8 0 11 72 64

4 The Absolute Indicator of Three-Valued
Almost-Optimal Functions Satisfying PC(p)

The sum-of-squares indicator of a Boolean function is related to its nonlinearity
or its Walsh spectrum through the following theorem.

Theorem 5 ([18]). Let f ∈ Bn and let L(f) = maxα∈Fn
2
|F(f + ϕα)|. Then we

have
σf ≤ 2nL(f)2

with equality if and only if the Walsh Spectrum of f takes at most three values,
0, L(f), −L(f).

Applying Theorem 5 to the almost-optimal functions leads directly to the
following corollary.

Corollary 6 ([1]). Let f ∈ Bn be an almost-optimal function. Then the sum-
of-squares indicator of f satisfies σf ≤ 22n+1 when n is odd and σf ≤ 22n+2

when n is even. All cases have equality if and only if the Walsh Spectrum of f
takes at most three values, 0, L(f), −L(f).

The next theorem gives the distribution of the Walsh spectra for a three-
valued Boolean function [1].

Theorem 7 ([1]). Let f ∈ Bn. Assume that the Walsh spectrum of f takes at
most three values, 0, ±L(f). Then L(f) = 2i with i ≥ n/2 and

Nf =
22n

L(f)2
= 22n−2i,

Zf = 2n − 22n−2i

where Nf = #{α ∈ Fn
2 | F(f + ϕα) 	= 0}, Zf = #{α ∈ Fn

2 | F(f + ϕα) = 0}.
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An almost-optimal function with three-valued Walsh spectra is called a three-
valued almost-optimal function [2]. Applying Theorem 7 to this case, we have

Nf = 2n−1, Zf = 2n−1 if n is odd; (8)
Nf = 2n−2, Zf = 3 · 2n−2 if n is even. (9)

When n is odd, it is easily checked from the definition of resiliency that if a three-
valued almost-optimal function has m-resiliency, we have

∑m
i=0

(
n
i

)
≤ 2n−1 = Zf

and therefore m ≤ (n− 1)/2.

A simple lower bound on the GAC of three-valued almost-optimal functions
can be easily obtained from the above results and Lemma 2 [5] in the following.

Corollary 8. Let f ∈ Bn be a three-valued almost-optimal function. The abso-
lute indicator of f is bounded by

Δf >

{
2n/2, if n is odd;√

3 · 2n/2, if n is even.

Proof. From Lemma 2 [5] and Equation (8), we have

Δf ≥
√

1
2n − 1

22n · 2n−1

2n − 2n−1
>

√
1
2n
· 22n = 2n/2.

when n is odd. Similarly, when n is even,

Δf ≥
√

1
2n − 1

22n · 3 · 2n−2

2n − 3 · 2n−2
>

√
1
2n
· 3 · 22n =

√
3 · 2n/2.

�
In the case of three-valued almost-optimal functions of degree d satisfying

PC(p), a stronger bound on their absolute indicator can be derived as follows.

Theorem 9. Let f ∈ Bn be a three-valued almost-optimal function of degree d
satisfying PC(p). When n is odd,

Δf ≥ 2�
n−2
d−1 +2 · l1,

where l1 is the least integer among all positive integers i satisfying

i2 ≥ 22n−4−2�n−2
d−1 

2n − 1−
∑p

j=1

(
n
j

) .
Similarly, when n is even,

Δf ≥ 2�
n−2
d−1 +2 · l2,

where l2 is the least integer among all positive integers i satisfying

i2 ≥ 3 · 22n−4−2�n−2
d−1 

2n − 1−
∑p

j=1

(
n
j

) .
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Proof. For simplicity, consider only the case where n is odd. Because f is a
three-valued almost-optimal function, we have from Corollary 6

σf =
∑

α∈Fn
2 \{0}

F2(Dαf) + 22n = 22n+1

Since any derivative Dαf of f is a function of degree d−1 with a linear structure,

F(Dαf) ≡ 0 (mod 2ε+2)

where ε = �n−2
d−1 � (see [1], [6]). For any α ∈ Fn

2\{0}, there exists a positive integer
i such that 0 ≤ i ≤ 2n−2−ε and F2(Dαf) = i222(ε+2). Set λi = #{α ∈ Fn

2\{0} :
|F(Dαf)| = i 2ε+2}. Then,

∑
α∈Fn

2 \{0}
F2(Dαf) =

c∑
i=1

λii
222ε+4 = 22n, (10)

where c = 2n−2−ε. On the other hand, let λ be the number of α ∈ Fn
2\{0} such

that F(Dαf) 	= 0. Since f satisfies PC(p),

λ ≤ 2n − 1−
p∑

j=1

(
n

j

)
.

The same procedure as in the Proof of Theorem 4 leads to the result. �

It is known in [3] that if the Walsh spectrum of f ∈ Bn takes at most three
values 0, ±L(f) and L(f) = 2i, then the degree d of f satisfies d ≤ n − i + 1.
Therefore, for any three-valued almost-optimal function

d ≤
{

(n + 1)/2, if n is odd;
n/2, if n is even.

Based on Theorem 9, lower bounds on the absolute indicator of three-valued
almost-optimal functions of degree d satisfying PC(p) are listed in Tables 3, 4
and 5, when n = 6 and 7, respectively. Note that Δf > 2n implies that such
function does not exist, as in the case of n = 6, d = 2 and p = 5. Also, note that
if a Boolean function f ∈ Bn has Δf = 2n, then it has a linear structure as in
the cases of n = 7, d = 3, p = 6 and n = 7, d = 4, p = 6 in Table 4.

In the followings we give some examples to compare the actual value of the
absolute indicator with its bound given by Theorem 9 for three-valued almost-
optimal functions of degree d satisfying PC(p).

Example: Consider the function f ∈ B7 given by

f(x1, . . . , x7) = (x1 + x4 + x6)(x4 + x5 + x6)(x2 + x3 + x5 + x7)(x5 + x6 + x7)
+(x1 + x4 + x6)(x2 + x3 + x5 + x7)(x6 + x7)(x2 + x4 + x5 + x6)
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Table 3. Lower bounds on the absolute indicator of three-valued almost-optimal func-

tions of degree d satisfying PC(p) when n = 6

d p Δf d p Δf

2 1 64 3 1 16
2 2 64 3 2 32
2 3 64 3 3 32
2 4 64 3 4 48
2 5 128 3 5 112

Table 4. Lower bounds on the absolute indicator of three-valued almost-optimal func-

tions of degree d satisfying PC(p) when n = 7

d p Δf d p Δf

2 1 128 3 4 32
2 2 128 3 5 48
2 3 128 3 6 128
2 4 128 4 1 16
2 5 128 4 2 16
2 6 128 4 3 16
3 1 16 4 4 24
3 2 16 4 5 48
3 3 16 4 6 128

+(x1 + x4 + x6)(x4 + x5 + x6)(x2 + x3 + x5 + x7)
+(x1 + x4 + x6)(x2 + x3 + x5 + x7)(x2 + x7)
+(x1 + x4 + x6)(x4 + x5 + x6)
+(x2 + x3 + x5 + x7)(x5 + x6 + x7)
+(x6 + x7)(x2 + x4 + x5 + x6).

f is a three-valued almost-optimal function of degree d = 4 satisfying PC(1). It
is easily checked by computer that Δf = 64. Theorem 9 gives Δf ≥ 16. �

Example: Consider the function f ∈ B8 given by

f(x1, . . . , x8) = x1(x2 + x3 + x3x4x7 + x3x4x8 + x3x6x7 + x3x6x8)
+x3(1 + x2 + x4 + x6 + x4x7 + x4x8 + x6x7 + x6x8)
+x4x6(x7 + x8) + x5(x7 + x8) + x8.

f is a three-valued almost-optimal function of degree d = 4 satisfying PC(1). It
is easily checked by computer that Δf = 256. Theorem 9 gives Δf ≥ 32. �
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Table 5. Lower bounds on the absolute indicator of three-valued almost-optimal func-

tions of degree d satisfying PC(p) when n = 8

d p Δf d p Δf

2 1 256 3 3 64
2 2 256 3 4 64
2 3 256 4 1 32
2 4 256 4 2 32
2 5 256 4 3 48
3 1 32 4 4 48
3 2 32 4 5 80

5 Conclusion

We derived a new lower bound on the absolute indicator of m-th order correlation-
immune or m-resilient functions of degree d satisfying PC(p). In a similar way, a
lower bound on the absolute indicator of three-valued almost-optimal functions
was also presented.
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1 Introduction

In this paper we consider functions F : F m
2 → {±1} which satisfy certain linear

and differential properties. The investigation of these properties is motivated by
applications in cryptography.

The linear property that we are interested in is “correlation immunity”, the
differential properties are known under the name of “avalanche criteria”. It is
not our purpose to construct new correlation immune functions or new func-
tions with good differential properties, but we will describe known constructions
(Maiorana-McFarland construction) and its variations in terms of group rings.
This is (notationally) a quite useful description since it yields immediate fur-
ther generalizations and it gives easy ways to obtain bounds on the maximum
nonlinearity of the functions.

Moreover, the group ring approach is suitable if one is interested in the con-
nection between differential and linear properties of functions. We will demon-
strate this by giving very much simplified proofs of main results in [11]. More-
over, we can correct a (minor) mistake in that paper and show an interesting
connection with divisible difference sets.

We note that our viewpoint is not completely new, see [2], for instance.
This paper is organized as follows: In the next section we give the main defini-

tions (avalanche criteria, correlation immunity, nonlinearity). Then we describe
the group ring approach and introduce (divisible) difference sets. In Section 4, we
analyze the Maiorana-McFarland construction and its variations using the notion
of group rings. The final section deals with the connection between “avalanche
critera” and “correlation immunity”.

2 Basic Definitions

Let F : F m
2 → C. The Walsh transform W(F ) of F is a function F m

2 → C
defined as follows:

W(F )(v) =
∑

x∈F m
2

F (x) · (−1)〈v,x〉.

T. Helleseth et al. (Eds.): SETA 2004, LNCS 3486, pp. 437–450, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In many cases, F is a Boolean function, i.e. F (x) ∈ F2 for all x ∈ F m
2 . In this

case we replace the function F (x) by (−1)F (x) (in order to get a complex-valued
function) and we obtain the Walsh transform

W(F )(v) =
∑

x∈F m
2

(−1)F (x)+〈v,x〉. (1)

Throughout this paper, when we speak about Boolean functions F : F m
2 → F2,

we always interprete F as indicated above, and the Walsh transform is always
computed according to (1). The number

L(F ) = max
v∈F m

2

|W(F )(v)|

is called the linearity of F . In the literature, the notion of the nonlinearity
N (F ) is more common. The connection between N (F ) and L(F ) is simply

N (F ) = 2m−1 − 1
2
L(F ).

We are interested in functions F where L(F ) is small, hence N (F ) is large. It is
well known that the maximum Walsh coefficient is ≥ 2m/2 with “=” if and only
if F is a bent function, which is a Boolean function F such that

W(F )(v) = ±2m/2 for all v ∈ F m
2 ,

see [10], for instance.
We call the collection of values W(F )(v), v ∈ F m

2 , the Walsh spectrum
of F . One sometimes refers to properties of the Walsh spectrum as the linear
properties of F .

An important property of the Walsh transformation is the inversion for-
mula which roughly means that we know F if we know its Walsh transform:

F (v) =
1

2m

∑
x∈F m

2

W(F )(x) · (−1)〈v,x〉.

The differential properties of F are also important. We define

D(F )(v) =
∑

x∈F m
2

F (x) · F (v − x).

Again, in the Boolean case this may change to

D(F )(v) =
∑

x∈F m
2

(−1)F (x)+F (v−x).

The set of values D(F )(v) is called the differential spectrum of F .
The following connection between the linear and differential properties of a

function F is well known, see also Section 3:

D(F )(v) =
1

2m

∑
x∈F m

2

|W(F )(x)|2 · (−1)〈v,x〉. (2)
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Using the inversion formula, this shows

[W(F )(v)]2 =
∑

x∈F m
2

D(F )(x) · (−1)〈v,x〉.

Therefore, the linear properties of F are completely determined by the differen-
tial properties, and vice versa.

We note that the bound L(F ) ≥ 2m/2 is an easy consequence of (2): just put
v = 0 and note D(F )(0) = 2m.

Sometimes we are interested only in “partial” properties of the Walsh and
the differential spectrum (correlation immunity, avalanche criteria). The weight
wt(v) of a vector v = (v1, . . . , vm) is the number of entries vi 	= 0. We say that a
function f is k-correlation immune if W(F )(v) = 0 whenever 1 ≤ wt(v) ≤ k.
The function is called k-resilient if it is k-immune and W(F )(0) = 0, i.e. the
function is balanced (the value 1 occurs the same number of times as 0 in the
image of f).

A function F on F m
2 is p-avalanche if D(F )(v) = 0 for all v with 1 ≤

wt(v) ≤ p. This is often called “propagation criterion of degree p”.

3 Discrete Fourier Transform, Group Rings and
Difference Sets

The Walsh transform is a special case of the discrete Fourier transform (DFT)
for abelian groups that we describe next.

Let G be a multiplicatively written abelian group of order n, and let K be
a field that contains a primitive n-th root of unity. In many cases, we have
K = C. Then there are n different homomorphisms G → K∗ (where K∗ is the
multiplicative group of K). We call these homomorphisms characters. They
form a group Ĝ which is isomorphic to G. The identity element is called the
principal character. In the special case that G = F m

2 , characters χv are the
mappings χv(x) = (−1)〈v,x〉.

Now we consider the group algebra K[G]. This may be viewed as the set of
mappings G→ K or, equivalently, the set of formal sums∑

g∈G

a(g) g

where a(g) ∈ K. We may add group ring elements componentwise

(
∑
g∈G

a(g) g) + (
∑
g∈G

b(g) g) =
∑
g∈G

(a(g) + b(g)) g.

The multiplication (convolution) is defined as follows:

(
∑
g∈G

a(g) g) · (
∑
g∈G

b(g) g) =
∑
g∈G

(
∑
h∈G

(a(h)b(gh−1)) g.
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Throughout this paper we will not distinguish between the mapping F : G→ K
and the corresponding group ring element

∑
g∈G F (g) g in K[G].

If F =
∑

g∈G F (g) g, we define F (−1) =
∑

g∈G F (g) g−1. We obtain

F · F (−1) =
∑
g∈G

D(F )(g) g

where D(F )(g) is defined as in Section 2 where we replace the additively written
group F m

2 by the multiplicatively written group G.
Characters can be extended by linearity to homomorphisms

χ : K[G] → K∑
a(g) g �→

∑
a(g)χ(g).

For A ∈ K[G], the element

W(A) =
∑
χ∈Ĝ

χ(A) χ in K[Ĝ]

is called the Fourier transform of A, and the mapping

W : K[G] → K[Ĝ]

A �→ W(A)

is called the discrete Fourier transform (DFT). The most important properties
of the DFT are the inversion formula

F (g) =
1
|G|
∑
χ∈Ĝ

W(F )(χ) · χ(g−1)

and the convolution property

W(F ·H)(χ) =W(F )(χ) · W(H)(χ).

Moreover, we have ∑
g∈G

χ(g) =

⎧⎨⎩
|G| if χ = χ0

0 if χ 	= χ0

which are called the orthogonality relations for characters.
If G is the additive group of F m

2 , the DFT reduces to the Walsh transform.
Group rings in general have been studied extensively in the mathematical litera-
ture. This is the reason why it is worth to point out the close connection between
group rings and (Boolean) functions. A lot of theory has been developed about
group rings and the DFT that may be applicable to the very special case of
Boolean functions. As an example, we describe the well known concept of the
“partial DFT”.
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We assume that G = G1 × G2 is the direct product of two abelian groups.
Let

A =
∑
g∈G

a(g) g =
∑

h∈G1

(∑
k∈G2

a(h k) k

)
h.

We define
Ah :=

∑
k∈G2

a(h k) k in K[G2],

hence we have A =
∑

h∈G1
Ah h. If χ ∈ Ĝ2 is a character of G2, then we define

Aχ :=
∑

h∈G1

χ(Ah)h (3)

which is an element in K[G1]. We may apply characters μ of G2 and get, using
the inversion formula,

χ(Ah) =
1
|G1|

∑
μ∈Ĝ1

(μχ)(A)μ(h−1).

These concepts will be used to prove the results in the final part of this paper.
Another reason for introducing group rings is that usually the literature on

difference sets uses this language, and difference sets occur quite naturally if one
investigates differential properties of functions.

We assume that F : G → {0, 1} is the characteristic function of a set D =
{g ∈ G : F (g) = 1}. We say that D (or the correpsonding characteristic function)
is a (v, k, λ)-difference set in G if

D ·D(−1) = (k − λ) + λG in C[G].

Here we identify subsets T of a group with the corresponding group ring element
T =

∑
g∈T g. Moreover, k − λ is an abbreviation for k − λ times the identity

element of G.
Using characters and the inversion formula, it is easy to see that D ⊆ G is a

(v, k, λ)-difference set if and only if

|χ(D)|2 =

⎧⎨⎩
k2 if χ = χ0

k − λ if χ 	= χ0.

This is true only in the abelian case since the concept of the DFT as described
above works only in that case. We say that D ⊆ G is an (m,n, k, λ1, λ2)-divisible
difference set in G relative to N if G contains a normal subgroup N of order
n such that

D ·D(−1) = (k − λ1) + λ1N + λ2(G−N) (4)
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for some integers k, λ1, λ2 (here k = |D| and |G| = mn). In character terms, this
means (again, only in the abelian case)

|χ(D)|2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k2 if χ = χ0

k − λ1 if χ|N 	= χ0

k − λ1 + n(λ1 − λ2) if χ|N = χ0.

Here χ|N denotes the restriction of χ to the subgroup N . Note that χ|N is a
character of N .

The case of divisible difference sets with k = λ1 is trivial: In this case, D
must be a subset of G which is a union of cosets of N . Therefore, we may apply
the canonical epimorphism Ψ : G → G/N to D to obtain an element Ψ(D) ∈
C[G/N ]. The element Ψ(D) has coefficients 0 and n, therefore D′ := Ψ(D)/n
has coefficients 0 and 1. The following equation follows from (4):

D′(D′)(−1) =
k − λ2

n
+

λ2

n
G/N.

Therefore, Ψ(D)/n is a difference set. Conversely, any difference set in G/N can
be lifted to a divisible difference set in G, see [8], for instance:

Theorem 1. (1) If D is an (m,n, k, k, λ)-divisible difference set in G relative
to a normal subgroup N then Ψ(D)/n is an (m, k/n, λ/n)-difference set in G/N
(where Ψ is the canonical epimorphism G→ G/N).
(2) If D is an (m, k, λ) difference set in a group H, and if G is a group con-
taining N as a normal subgroup such that G/N = H, then the pre-image of D
under the epimorphism Ψ is an (m,n, nk, nk, λn)-divisible difference set in G
relative to N .

Another important class of divisible difference sets that we encounter in Sec-
tion 4 is the following, see [9], for instance:

Theorem 2. Let N be any subgroup of order 2 in F m
2 . Then there exists a divis-

ible difference sets in F m
2 relative to N with parameters (2m−1, 2, 2m−1, 0, 2m−2)

whenever m is odd.

We note that such difference sets cannot exist if m is even: Just apply a
character χ which is nontrivial on N to the divisible difference set D. We have
|χ(D)|2 = 2m−1 which is impossible if m is even since χ(D) ∈ Z.

4 Correlation Immune Functions

We are now going to show how our group theoretic approach can be used to
describe known constructions of correlation immune functions. First of all, we
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want to describe the most important classical construction of correlation immune
functions (Theorem 3), often called the Maiorana-McFarland construction.

Let F m
2 = F s

2 × F t
2 . We are going to construct a Boolean function F on F m

2

such that χ(F ) = 0 for all characters of weight between 0 and k.
Let H(v) be the linear subspace H(v) = {x : (−1)〈v,x〉 = 1} in F t

2 , v ∈ F t
2 .

We call wt(v) the weight of the hyperplane H(v). The affine subspaces are
Ha(v) = {x : (−1)〈v,x〉 = −1}.

Theorem 3. Let Hg, g ∈ F s
2 , be linear hyperplanes in F t

2 , where F m
2 = F s

2 ×F t
2

(as above). The Boolean function

D =
∑

g∈F s
2

±g (Hg −Ha
g ) in C[F s

2 × F t
2 ] (5)

is k-resilient provided that the weight of each Hg is at least k + 1.

Proof. Let χw : x �→ (−1)〈x,w〉 be a character of F t
2 . Then χw(Hg) = 0 if

w 	= v where Hg = H(v). We have χv(Hg −Ha
g ) = 2t. Since the weights of all

hyperplanes in (5) are ≥ k + 1, the case χv(Hg −Ha
g ) = 2t does not occur.

An immediate generalization is in [6]:

Theorem 4. Let τ : F s
2 → ±1. Then

D =
∑

g∈F s
2

τ(g)g(Hg −Ha
g ) in C[F s

2 × F t
2 ]

is k-resilient if and only if the weight of each hyperplane Hg is at least k, and
for all subspaces H of weight k, we have∑

g∈F s
2 : Hg=H

τ(g) = 0.

It is also possible to permit subspaces of weight < k:

Theorem 5. Let τ : F s
2 → ±1. The set

D =
∑

g∈F s
2

τ(g)g(Hg −Ha
g ) in C[F s

2 × F t
2 ]

is k-resilient if and only if the following holds: If j ≤ k is the weight of a subspace
H, then the element

F :=
∑

g∈F s
2 : Hg=H

τ(g)g

satisfies χ(F ) = 0 for all characters of F s
2 of weight ≤ k − j.

Apparently, Theorem 5 has been also known to other people working in this
area, see, for instance, [3]. The main goal of this section is not to present a new
deep theorem but to show that group ring notation is appropriate for studying
correlation immune functions: Theorem 4 and Theorem 5 hardly need a proof!



444 A. Pott

It has been noted that the elements Hg − Ha
g can be replaced by arbitrary

Boolean functions H with the property that the character values χ(H) are 0 for
all characters of weight ≤ k or, as indicated in Theorems 4 and 5, χ(H) 	= 0 for
only few characters of weight ≤ k. The functions corresponding to hyperplanes
are not the only functions that can be used, see [4].

A quite general version of the Maiorana-McFarland-construction may be for-
mulated as follows:

Theorem 6. Let τ : F s
2 → ±1. Let T be a set of Boolean functions on F t

2 (i.e.
group ring elements with coefficients ±1), such that for each character γ ∈ F̂ t

2 of
weight ≤ k there is at most one T ∈ T such that γ(T ) 	= 0. Let Tg (g ∈ F s

2 ) be
a family of Boolean functions Tg ∈ T . Then the sets Sγ := {g ∈ F s

2 : γ(Tg) 	= 0}
are pairwise disjoint where γ runs through the characters of weight ≤ k, and
Tg = Th if g, h ∈ Sγ . Then the function

D =
∑

g∈F s
2

τ(g)gTg in C[F s
2 × F t

2 ]

is k-resilient if and only if the following holds for all characters γ of weight ≤ k:

F (γ) :=
∑
g∈Sγ

τ(g)g (6)

satisfies χ(F (γ)) = 0 for all characters χ of F s
2 of weight ≤ k − wt(γ).

Proof. Obvious.

Note that you may take

T = {H(v)−Ha(v) : v ∈ F t
2 }.

If we omit the condition in Theorem 6 that there is at most one Tg such
that γ(Tg) 	= 0, then the Theorem remains true if we replace F (γ) in (6) by∑

g∈Sγ
τ(g)gγ(Tg). However, such a statement seems to be uninteresting: It only

reformulates the definition of correlation immune functions in F m
2 when F m

2 is
replaced by F s

2 × F t
2 .

Let us briefly look at the linearity of functions constructed according to The-
orem 6. It is possible to give some bounds if the T ′

gs correspond to hyperplanes,
see also [3]. The proof given here is a slightly reformulated version of the proof
in [3].

Theorem 7. Let D be constructed as in Theorem 6, where Tg = Hg −Ha
g for

some hyperplane Hg in F t
2 . Then

L(D) = 2t · max
χ∈F̂ s

2 ,γ∈F̂ t
2

∣∣χ(F (γ))
∣∣.

If eγ is the number of characters χ such that χ(F (γ)) 	= 0, then

max
χ∈F̂ s

2

∣∣∣χ(F (γ))
∣∣∣ ≥√2s · |Sγ |

eγ
≥
√
|Sγ |. (7)
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Proof. We have [F (γ)]2(0) = |Sγ |. The inversion formula gives

[F (γ)]2(0) =
1
2s

∑
χ∈F̂ s

2

W([F (γ)]2)(χ)

which shows (7), which is the only nontrivial part in the theorem.

In Theorem 7, the nonempty sets Sγ form a partition of F s
2 if γ runs through

all characters of F t
2 . Hence there is at least one character γ with |Sγ | ≥ 2s−t. In

the classical case of the Maiorana-McFarland construction, we have Sγ 	= ∅ at
most for characters γ of weight > k. The number of such characters is

∑t
i=k+1

(
t
i

)
.

Therefore, in the classical case there is at least one character γ such that

|Sγ | ≥
2s∑t

i=k+1

(
t
i

) .
This is precisely the bound in [3].

5 Avalanche and Correlation Criteria

We will now investigate the connection between the p-avalanche property and q-
correlation immunity. Most of this is contained in [11], except the bound p+q ≤
m−1 in Theorem 8 for the balanced case. Erroneously, the authors in [11] stated
p+ q ≤ m− 2. The proofs given here are, again, different and more transparent
than in the original paper.

Before we continue, let us define linear structures. Again, this is a concept
in cryptography, see [7]. We say that v ∈ G is a linear structure of D ∈ K[G] if
Dv = ±D. The linear structures form a subgroup of G. They help to prove the
connection between p-avalanche and q-immunity.

The following Proposition is obvious; it is also contained in [7] for the special
case of elementary abelian groups.

Proposition 1. The element v ∈ G is a linear structure of D =
∑

d(g) g ∈
C[G] if and only if χ(v) = 1 for all characters χ ∈ Ĝ with χ(D) 	= 0, or
χ(v) = −1 for all these characters.

Proof. Note χ(Dv) = χ(D)χ(v), hence Dv = D (resp. Dv = −D) if and only
if χ(v) = 1 (resp. χ(v) = −1) for all characters with χ(D) 	= 0.

Note that v is also a linear structure of DD(−1). If D has coefficients ±1, we
can say more, see also [7].

Proposition 2. An element D with coefficients ±1 has a linear structure v if
and only if the coefficient of v in DD(−1) is ±|G|.

Proof. Observe that the coefficient of the identity in (Dv)D(−1) is the same
as the coefficient of v−1 in DD(−1) which is also the coefficient of v.
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Elements D in F m
2 satisfy D = D(−1). Since we only investigate functions on

F m
2 , we may also replace D(−1) by D in the proposition above.

Bent functions D on F m
2 are m-avalanche (which is well known) and they have

constant absolute character value |χ(D)| = 2m/2 (as noted earlier). They have no
linear structure v 	= 0, otherwise D2v = ±D2, but we have D2 = 2m. Therefore,
it is natural to ask about the connection between the avalanche criteria, character
values and linear structures. The following proposition gives a partial answer and
is implicitely contained in [11].

Proposition 3. Assume that F is p-avalanche with p > 0 and |τ(F )| = 2m− p
2

for some character τ . If F is not bent (i.e. p < m), then every vector of weight
p + 1 is a linear structure. Moreover, we must have p = m − 1 and therefore
Fw = ±F for the all-one-vector w in F m

2 .

Proof. We may assume p 	= m since F is not bent. Put S = F 2. We decompose

F m
2 = G1 ×G2 (8)

where G1 is generated by p vectors of the standard basis, and G2 is generated
by the remaining vectors in the standard basis. We write

S =
∑

h∈G2

Shh, Sh ∈ C[G1]. (9)

The avalanche property implies S0 = 2m and Su = x · j (x ∈ C), where u is any
vector of weight 1 in G2 and j is the all-one-vector in G1. Note that x (which
may depend on u) is the coefficient of j + u in S. The partial DFT shows

2m = χ(S0) =
1

2m−p

∑
μ∈Ĝ2

χμ(S).

Let |χμ(F )| = 2m− p
2 , hence χμ(S) = 22m−p and therefore χ′μ(S) = 0 for χ′ 	= χ

(note that χμ(S) ≥ 0 for all characters χ, μ). Similarly,

χ(Su) =
1

2m−p

∑
μ∈Ĝ2

χμ(S)μ(u)

and therefore |x| = |χ(Su)| = 2m. Since the decomposition in (8) is arbitrary, all
vectors of weight p + 1 have coefficients ±2m in S, hence all vectors of weight
p + 1 are linear structures. Since the linear structures form a group, all vectors
would be linear structures provided that p < m − 1. But if every vector is a
linear structure, the function cannot be p-avalanche for some p ≥ 1 since F 2 has
no coefficients 0, see Proposition 2.

Theorem 8. Let F be a q-correlation immune function on F m
2 . If F is p-

avalanche and not bent (which excludes the case p = m), then the following
holds:
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1. If F is balanced, then p + q ≤ m − 1 with equality if and only if p = m − 1
or p = 0.

2. If F is unbalanced, then p+ q ≤ m with equality if and only if p = m− 1 or
p = 0.

The case of equality p = m − 1 may occur only if m is odd. The case p = 0 in
the balanced case occurs precisely for the functions

F (v) = (−1)〈v,j〉 or F (v) = −(−1)〈v,j〉,

where j is the all-one-vector. In the unbalanced case, we have p = 0 if and only
if F is constant, i.e.

F (v) = 1 or F (v) = −1.

This theorem covers basically all of Section 5 in [11]. The case p = m− 1 in
the balanced case is missing in [11].

Proof. Without loss of generality, let us assume that p + q ≤ m with p 	= m.
We decompose F m

2 as in (8). We apply the epimorphism Ψ : G → G/G1 to F 2

and obtain
[Ψ(F )]2 = 2m +

∑
g∈G/G1

g �=1

a(g) g.

The characters of G/G1 are precisely the characters χw of G which are principal
on G1, thus 〈v, w〉 = 0 for all v ∈ G1. If G1 is the subgroup of vectors (x1, . . . , xm)
such that xp+1 = . . . = xm = 0, then we must have w = (0, . . . , 0, yp+1, . . . , ym),
hence wt(w) ≤ q.

We investigate the balanced case first. We have χ([Ψ(F )]2) = 0 for all char-
acters χ of G/G1, a contradiction to [Ψ(F )]2 	= 0. If p+ q = m− 1, then there is
precisely one character χ of G/G1 with χ([Ψ(F )]2) 	= 0. The inversion formula
shows

[Ψ(F )]2 = γ ·
∑

g∈G/G1

χ(g) g

and

γ =
χ([Ψ(F )]2)

2m−p
.

Since the coefficient of the identity in [Ψ(F )]2 is 2m, we have χ([Ψ(F )]2) = 22m−p,
hence |χ(Ψ(F ))| = 2m− p

2 . The mapping γ = χ ◦ Ψ is a character of G such that
|γ(F )| = 2m− p

2 . Proposition 3 shows p = m− 1.
In the unbalanced case, [Ψ(F )]2 = 2m · G/H and therefore χ0([Ψ(F )]2) =

22m−p for the principal character χ0. This shows p = m − 1, using
Proposition 3.

We can characterize the case p = m− 1 in terms of divisible difference sets:

Theorem 9. A function F : F m
2 → {±1} is (m − 1)-avalanche if and only if

DF := {g ∈ F m
2 : F (g) = 1} is a (2m−1, 2, k, λ1, λ2)-divisible difference set in

F m
2 relative to N = {0, j}, where 2m = 4(k − λ2) and j = (1, . . . , 1) is the

all-one-vector.
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Proof. Assume that DF is a divisible difference set with the parameters above.
We have F = 2DF −G (this transforms the element DF with coefficients 0 and
1 into the element F with coefficients ±1), hence

F 2 = 4[DF ]2 + 2mG− 4kG.

This shows that the coefficients of all the elements g 	= 0, j in F 2 are 2m− 4(k−
λ2) = 0, hence the function F is (m− 1)-avalanche.

Conversely, let F be an (m− 1)-avalanche function, hence

F 2 = 2m + λ · j

for some λ ∈ Z. We put DF = F+G
2 which is a group ring element with coeffi-

cients 0 and 1, hence it describes a subset of G which is the desired difference
set: We compute

[DF ]2 =
1
4
F 2 + 2m−2G +

1
2
FG = 2m−2 +

λ

4
j + 2m−2G +

1
2
FG.

We have FG = [χ0(F )]G (where χ0 is the trivial character) since Gh = G for all
h ∈ G. This shows that DF is a divisible (2m, 2, k, λ1, λ2)-difference set relative
to N , where

k = 2m−1 +
χ0(F )

2

λ1 =
λ

4
+ 2m−2 +

χ0(F )
2

λ2 = 2m−2 +
χ0(F )

2
.

We have 2m = 4(k − λ2), which proves the Theorem.

There are only two possible types of divisible difference sets that may occur
in this theorem:

Corollary 1. (1) If F is balanced then DF is a

(2m−1, 2, 2m−1, 0, 2m−2)− divisible difference set. (10)

(2) If F is unbalanced, then Ψ(DF )/2 is a

(2m−1, 2m−2 ± 2(m−3)/2, 2m−3 ± 2(m−3)/2)− difference set, (11)

where Ψ is the canonical epimorphism F m
2 → F m

2 /N .

Proof. (1) If F is balanced, then k = 2m−1, hence λ2 = 2m−2 which implies
λ1 = 0 (by counting differences).
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(2) In this case, Fj = F using Proposition 3, hence Ψ(DF ) is constant on
cosets of N . This is equivalent to saying k = λ1. Therefore, Ψ(DF )/2 is a dif-
ference set in an elementary-abelian 2-group (Theorem 1). It is well known that
such difference sets have the parameters (11), see [1], for instance.

Two remarks are in order: The Boolean functions corresponding to the dif-
ference sets with parameters (11) are bent functions, see [10], for instance. They
exist for all odd m. Using Theorem 2, we can construct the functions F in (2) of
Corollary 1 for all odd m. Examples of type (1) in Corollary 1 exist for all odd
m (Theorem 2), too.

We note that an example of a correlation immune function corresponding to
a difference set with parameters (10) is also contained in [5].

6 Conclusion

In this paper, we have described known variations of the Maiorana-McFarland
construction of correlation immune functions in terms of the unified notion of
group rings. This notion has the advantage of being quite clear, it works for
arbitrary abelian groups, and it immediately yields further generalizations.

In particular, we looked at the connection between correlation immunity and
avalanche properties. We pointed out that certain extremal cases correspond to
difference sets.
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