

Lecture Notes in Artificial Intelligence 3451
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Marie-Pierre Gleizes Andrea Omicini
Franco Zambonelli (Eds.)

Engineering
Societies in the
Agents World V

5th International Workshop, ESAW 2004
Toulouse, France, October 20-22, 2004
Revised Selected and Invited Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Marie-Pierre Gleizes
Université Paul Sabatier
IRIT, Institut de Recherche en Informatique de Toulouse
118, Route de Narbonne, 31062 Toulouse Cédex, France
E-mail: Marie-Pierre.Gleizes@irit.fr

Andrea Omicini
Università di Bologna a Cesena
DEIS, Dipartimento di Elettronica, Informatica e Sistemistica
Via Venezia 52, 47023 Cesena, Italy
E-mail: andrea.omicini@unibo.it

Franco Zambonelli
Università di Modena e Reggio Emilia
DISMI, Dipartimento di Scienze e Metodi dell’Ingegneria
Via Allegri 13, 42100 Reggio Emilia, Italy
E-mail: franco.zambonelli@unimore.it

Library of Congress Control Number: 2005928542

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.1.3, D.2.2, D.2.7, D.2.11, I.6

ISSN 0302-9743
ISBN-10 3-540-27330-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27330-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11423355 06/3142 5 4 3 2 1 0

Preface

The first workshop “Engineering Societies in the Agents World” (ESAW) was
held in August 2000, in conjunction with the 14th European Conference on
Artificial Intelligence (ECAI 2000) in Berlin. It was launched by a group of re-
searchers who thought that the design and development of MASs (multi-agent
systems) not only needed adequate theoretical foundations but also a call for
new techniques, methodologies and infrastructures to develop MASs as artificial
societies. The second ESAW was co-located with the European Agent Summer
School (ACAI 2001) in Prague, and mostly focused on logics and languages,
middleware, infrastructures and applications. In Madrid, the third ESAW con-
centrated on models and methodologies and took place with the “Cooperative
Information Agents” workshop (CIA 2002). The fourth ESAW in London was
the first one that ran as a stand-alone event: apart from the usual works on
methodologies and models, it also stressed the issues of applications and mul-
tidisciplinary models. Based on the success of previous ESAWs, and also given
that the difficult challenges in the construction of artificial societies are not yet
fully addressed, the fifth ESAW workshop was organized in the same spirit as
its predecessors.

In particular, ESAW 2004 took place at the IRIT laboratory of the Université
“Paul Sabatier” (Toulouse, France), at the end of October 2004. It was not co-
located with any other scientific event, in the same way as ESAW 2003. ESAW
2004 remained committed to the use of the notion of MASs as the seeds for
animated, constructive and highly interdisciplinary discussions about technolo-
gies, methodologies and tools for the engineering of complex distributed systems.
The widespread interest in these topics, as well as the effectiveness of ESAW as
a well-established research forum, are witnessed by both the high number of sub-
missions received (46 papers from 20 countries) and by the good participation
(46 researchers from 14 countries).

This fifth workshop mainly focused on effective and methodical develop-
ment of complex software systems in terms of multi-agent societies, as well
as on novel approaches to software modelling and engineering to support the
successful deployment of software systems made up of massive numbers of au-
tonomous components. While designers should be enabled to control and pre-
dict the behavior of their systems, we should also allow emergent global sys-
tem properties and discovered functionality to become commonplace in the
theory and practice of MASs. It is very likely that such innovations will ex-
ploit lessons from a variety of different scientific disciplines, such as sociology,
economics, organization science, modern thermodynamics, and biology. This is
the main reason why the presentations in this workshop covered a number of
these domains.

VI Preface

The following different themes were addressed during the three-day meeting:

– Agent-Oriented Software Engineering. The presentations of this session con-
cerned methodologies, and discussed requirements analysis, specification, de-
sign and deployment phases.

– Negotiation. This session covered different mechanisms to enable agents to
negotiate and to solve conflicts. The different mechanisms presented were
based on biological metaphors, social welfare, and Activity Theory.

– Large-Scale Multi-agent Systems. The papers of this session focused on com-
munication in large systems, semantics, and physical accessibility.

– Roles. Presentations in this session concentrated on the notion of role in
a MAS: in particular, on the notion of role as used in the context of the
argumentation process, and during conversation protocols.

– Organizations. This is one of the main topics in societies of agents, and was
discussed in the context of a normative framework and of virtual knowledge
communities.

– Social Aspects. This session drew a parallel between human and artificial
societies by studying on the one hand the social power theory and on the
other hand the role of sanctions in a society.

– Simulation. This session elaborated on the issues of simulation by using
MASs, focusing on challenges such as the development process and the cali-
bration of parameters in a simulation system.

– Cooperation. This session covered one of the most traditional topics in MAS
research, that is, cooperation.

Two invited presentations tried to bridge between artificial and natural soci-
eties, such as human or animal societies. The first invited talk was given by
Vincent Chevrier, who is an assistant professor at the Université Henri Poincaré
of Nancy (France) and a researcher at LORIA in the MAIA team. He proposed
methodological principles for the design of MASs drawing from the mechanisms
observed in natural systems such as stigmergy or resource access.

Pablo Noriega expounded the other invited presentation concerning e-
institutions. He is a senior researcher at Anáhuac University, Mexico City (Mex-
ico), as well as a visiting researcher at the Institut d’Investigació en Intelligència
Artificial (IIIA) in Barcelona (Spain). He elaborated on how interaction conven-
tions for agents — human or software agents — can be used to engineer complex
open systems by using commitments.

Furthermore, discussions during the meeting emphasized the need for tools
to design large-scale systems and open systems. From the debate, two main
acceptations of the term “openness” clearly emerged: a MAS is open either
when agents can be dynamically added or removed, or when the MAS can take
into account the perturbations coming from the MAS environment.

The original contributions, the slides of the presentations, as well as more
information about the workshop are available online at the ESAW 2004 web-
site (http://www.irit.fr/ESAW04). This postproceedings (ESAW 2004: LNAI
3451) continues the series published by Springer (ESAW 2000: LNAI 1972,
ESAW 2001: LNAI 2203, ESAW 2002: LNAI 2577, and ESAW 2003: LNAI 3071).

Preface VII

This volume contains revised, reworked and extended versions of selected papers
from ESAW 2004, and also includes the contribution of one of the two invited
speakers.

The ESAW 2004 organization would have not been possible without the fi-
nancial help of:

– Agentlink III
– ARTAL Technologies, Labège, France
– ILOG, Paris, France
– IRIT, Toulouse, France
– Université Paul Sabatier, Toulouse, France
– Whitestein, Switzerland

as well as the scientific support of the Alma Mater Studiorum, Università di
Bologna in Cesena, the Università di Modena e Reggio Emilia, and all the mem-
bers of the Program Committee. Our thanks also go to Alfred Hofmann and all
of his Springer crew for their essential role during the realization of the postpro-
ceedings. We also want to thank the local organizers who created a studious and
convivial ambiance during the workshop.

The next ESAW workshop will take place in Turkey supported by the Ege
University of Izmir during the fall of 2005, with Oguz Dikenelli, Marie-Pierre
Gleizes and Alessandro Ricci as the chairs and organizers. We expect that the
next ESAW workshop will keep up its tradition of innovation and stimulating
scientific debate, and also that more applications and demonstrations of running
systems will further prove the feasibility and usefulness of the mechanisms and
methods recommended by agent researchers.

February 2005 Marie-Pierre Gleizes
Andrea Omicini

Franco Zambonelli

Organization

ESAW 2004 Workshop Organizers
Marie-Pierre Gleizes IRIT, Université Paul Sabatier, Toulouse (France)

Andrea Omicini DEIS, Alma Mater Studiorum, Università di Bologna
a Cesena (Italy)

Franco Zambonelli Department of Computer Science, Università degli
Studi di Modena e Reggio Emilia (Italy)

ESAW 2004 Local Organizing Committee
Marie-Pierre Gleizes (Local Chair)

Carole Bernon IRIT,
Valérie Camps Institut de Recherche en Informatique de Toulouse,

Jean-Pierre Georgé Université Paul Sabatier,
Davy Capera Toulouse (France)

Jean-Pierre Mano

ESAW 2004 Program Committee
Alexander Artikis Department of Electrical & Electronic Engineering,

Imperial College London (UK)
Federico Bergenti Dipartimento Ingegneria dell’Informazione,

Università degli Studi di Parma (Italy)
Carole Bernon IRIT, Université Paul Sabatier, Toulouse (France)
Olivier Boissier Ecole Nationale Supérieure des Mines de

Saint-Etienne (France)
Monique Calisti Whitestein Technologies (France/Switzerland)
Jacques Calmet University of Karlsruhe (Germany)

Cristiano Castelfranchi Institute of Cognitive Sciences and Technology, CNR
(Italy)

Luca Cernuzzi Universidad Católica de Asuncion (Paraguay)
Paolo Ciancarini DSI, Alma Mater Studiorum, Università di Bologna

(Italy)
Helder Coelho Department of Informatics of the Faculty of Sciences,

University of Lisbon (Portugal)
R. Scott Cost Department of Computer Science and Electrical

Engineering, University of Maryland Baltimore
County (USA)

Paul Davidsson Department of Software Engineering & Computer
Science, Blekinge Institute of Technology (Sweden)

Rino Falcone Institute of Cognitive Sciences and Technology, CNR
(Italy)

X Organization

Stephan Flake C-LAB, Cooperative Computing & Communication
Lab (Germany)

Zahia Guessoum LIP6, Paris (France)
Andrew Jones Department of Computer Science, King’s College

London (UK)
Anthony Karageorgos University of Thessaly (Greece)

Paul Kearney Intelligent Agents, BT Exact (UK)
Barbara Dunin-Kȩplicz Institute of Computer Science of the Polish

Academy of Sciences, Warsaw (Poland)
Yannis Labrou Fujitsu Laboratories of America (USA)

Lyndon C. Lee Intelligent Agents, BT Exact (UK)
Michael Luck Department of Electronics & Computer Science,

University of Southampton (UK)
Peter McBurney University of Liverpool (UK)
Pablo Noriega Spanish Scientific Research Council, Campus

Universitat Autónoma de Barcelona (Spain)
Eugenio Oliveira Department of Computer and Electrical

Engineering, University of Porto (Portugal)
Sascha Ossowski Universidad Rey Juan Carlos, Madrid (Spain)

H. Van Dyke Parunak Altarum Institute, Ann Arbor, MI (USA)
Paolo Petta Austrian Research Institute for Artificial

Intelligence, Vienna (Austria)
Gauthier Picard IRIT, Université Paul Sabatier, Toulouse (France)

Jeremy Pitt Department of Electrical & Electronic Engineering,
Imperial College London (UK)

Omer Rana Department of Computer Science, University of
Cardiff (UK)

Alessandro Ricci DEIS, Alma Mater Studiorum, Università di
Bologna a Cesena (Italy)

Ken Satoh National Institute of Informatics, Tokyo (Japan)
Onn Shehory IBM Haifa Research Laboratories (Israel)

Christophe Sibertin-Blanc IRIT, Université Paul Sabatier, Toulouse (France)
Munindar Singh Department of Computer Science, North Carolina

State University (USA)
Kostas Stathis Department of Computer Science, City University,

London (UK)
Robert Tolksdorf Institut für Informatik, Freie Universität Berlin

(Germany)
Anand Tripathi University of Minnesota (USA)
Paola Turci Università degli Studi di Parma (Italy)

José M. Vidal Department of Computer Science & Engineering,
University of South Carolina (USA)

Table of Contents

Roles, Organizations and Institutions for Agents

Organizations as Socially Constructed Agents in the Agent Oriented
Paradigm

Guido Boella, Leendert van der Torre . 1

Virtual Enterprise Normative Framework Within Electronic Institutions
Henrique Lopes Cardoso, Eugénio Oliveira . 14

Virtual Knowledge Communities for Corporate Knowledge Issues
Pierre Maret, Mark Hammond, Jacques Calmet . 33

Achieving Competence by Argumentation on Rules for Roles
Ioan Alfred Letia, Monica Acalovschi . 45

Participation Components for Holding Roles in Multiagent Systems
Protocols

Christophe Sibertin-Blanc, Nabil Hameurlain . 60

Semantically Federating Multi-agent Organizations
Riza Cenk Erdur, Oguz Dikenelli, Inanç Seylan, Önder Gürcan 74

Social Issues in Multi-agent Systems

T-Compound Interaction and Overhearing Agents
Eric Platon, Nicolas Sabouret, Shinichi Honiden 90

Managing Conflicts Between Individuals and Societies in Multi-agent
Systems

Rubén Fuentes, Jorge J. Gómez-Sanz, Juan Pavón 106

Motivation-Based Selection of Negotiation Opponents
Steve Munroe, Michael Luck . 119

Modelling Flexible Social Commitments and Their Enforcement
Philippe Pasquier, Roberto A. Flores, Brahim Chaib-draa

DIAGAL: A Generic ACL for Open Systems
Philippe Pasquier, Mathieu Bergeron, Brahim Chaib-draa

139

152

XII Table of Contents

Using Social Power to Enable Agents to Reason About Being Part of a
Group

Cosmin Carabelea, Olivier Boissier, Cristiano Castelfranchi 166

Cooperation and Collective Behaviours in Agent
Societies

Strategies for Distributing Goals in a Team of Cooperative Agents
Laurence Cholvy, Christophe Garion . 178

Collectively Cognitive Agents in Cooperative Teams
Jacek Brzeziński, Piotr Dunin-Kȩplicz, Barbara Dunin-Kȩplicz 191

Cooperative Agent Model Instantiation to Collective Robotics
Gauthier Picard . 209

From Self-Organized Systems to Collective Problem Solving
Chevrier Vincent . 222

Methodologies and Platforms for Agent-Oriented
Engineering

A Sample Application of ADELFE Focusing on Analysis and Design
the Mechanical Synthesis Problem

Davy Capera, Gauthier Picard, Marie-Pierre Gleizes, Pierre Glize . . . 231

SONIA: A Methodology for Natural Agent Development
Fernando Alonso, Sonia Frutos, Löıc Mart́ınez, César Montes 245

Deployment of Distributed Multi-agent Systems
Lars Braubach, Alexander Pokahr, Dirk Bade,
Karl-Heinz Krempels, Winfried Lamersdorf . 261

Using Stand-In Agents in Partially Accessible Multi-agent Environment
Martin Rehák, Michal Pěchouček, Jan Tožička, David Šǐslák 277

Agent-Oriented Simulation

Controlled Experimentation with Agents — Models and
Implementations

Mathias Röhl, Adelinde M. Uhrmacher . 292

Techniques for Analysis and Calibration of Multi-agent Simulations
Manuel Fehler, Franziska Klügl, Frank Puppe . 305

Table of Contents XIII

Models for Multi-agent Systems

Stable Multi-agent Systems
Andrea Bracciali, Paolo Mancarella, Kostas Stathis,
Francesca Toni . 322

Welfare Engineering in Practice: On the Variety of Multiagent Resource
Allocation Problems

Yann Chevaleyre, Ulle Endriss, Sylvia Estivie,
Nicolas Maudet . 335

Author Index . 349

Organizations as Socially Constructed Agents
in the Agent Oriented Paradigm

Guido Boella1 and Leendert van der Torre2

Dipartimento di Informatica - Università di Torino - Italy

CWI - Amsterdam and TU Delft The Netherlands

Abstract. In this paper we propose a new role for the agent metaphor
in the definition of the organizational structure of multiagent systems.
The agent metaphor is extended to consider as agents also social entities
like organizations, groups and normative systems, so that mental atti-
tudes can be attributed to them - beliefs, desires and goals - and also
an autonomous and proactive behavior. We show how the metaphor can
be applied also to structure organizations in functional areas and roles,
which are described as agents too. Thus, the agent metaphor can play a
role similar to the object oriented metaphor which allows structuring ob-
jects in component objects. Finally, we discuss how the agent metaphor
addresses the problems of control and communication in such structured
organizations.

1 Introduction

The role of software engineering is to provide models and techniques that make
it easier to handle the complexity arising from the large number of interactions
in a software system [1]. Models and techniques allow expressing knowledge
and to support the analysis and reasoning about a system to be developed. As
the context and needs of software change, advances are needed to respond to
changes. For example, today’s systems and their environments are more varied
and dynamic, and accommodate more local freedom and initiative [2].

For these reasons, agent orientation emerged as a new paradigm for designing
and constructing software systems [1, 2]. The agent oriented approach advocates
decomposing problems in terms of autonomous agents that can engage in flex-
ible, high-level interactions. In particular, this is a natural representation for
complex systems that are - as many real systems are - invariably distributed
[1]. Compared to the still dominant software paradigm, namely object orien-
tation, agent orientation offers a higher level of abstraction for thinking about
the characteristics and behaviors of software systems. It can be seen as part of
an ongoing trend towards greater interactivity in conceptions of programming
and software system design and construction. Much like the concepts of activ-
ity and object that have played pivotal roles in earlier modelling paradigms -
Yu [2] argues - the agent concept can be instrumental in bringing about a shift
to a much richer, socially-oriented ontology that is needed to characterize and
analyze today’s systems and environments.

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1

2

2 G. Boella and L. van der Torre

The shift from the object oriented perspective to the agent oriented one is
not, however, without losses. Booch [3] identifies three tools which allow cop-
ing with complexity: “1) Decomposition: the most basic technique for tackling
any large problem is to divide it into smaller, more manageable chunks each
of which can then be dealt with in relative isolation. 2) Abstraction: the pro-
cess of defining a simplified model of the system that emphasises some of the
details or properties. 3) Organisation: the process of identifying and managing
interrelationships between various problem solving components.”

In the agent oriented approach, however, decomposition, abstraction and or-
ganization are not yet addressed with the same efficacy as in the object oriented
approach, where an object can be composed of other objects, which can be ig-
nored in the analysis at a certain level of abstraction. The agent metaphor is
sometimes proposed as a specialization of the object metaphor [4]: agents do not
only have - like objects - a behavior which can be invoked by the other agents,
but they also autonomously act and react to changes in the environment fol-
lowing their own goals and beliefs. In contrast, the component view of objects
in the object metaphor could to be lost. The property of agents, i.e., sociality,
closest to the property allowing the aggregation of objects to form more complex
objects is not enough to overcome the gap. In particular, multiagent systems of-
fer as aggregation methods the notion of group or of organization. According to
Zambonelli et al. [5] “a multiagent system can be conceived in terms of an orga-
nized society of individuals in which each agent plays specific roles and interacts
with other agents”. At the same time, they claim that “an organization is more
than simply a collection of roles (as most methodologies assume) [...] further
organization-oriented abstractions need to be devised and placed in the context
of a methodology [...] As soon as the complexity increases, modularity and encap-
sulation principles suggest dividing the system into different suborganizations”.
According to Jennings [1], however, most current approaches “possess insufficient
mechanisms for dealing with organisational structure”. Moreover, what is the se-
mantic principle which allows decomposing organizations into suborganizations
must be still made precise.

The research question of this paper, thus, is: how can the agent oriented
paradigm be extended with a decomposition structure similar to the one pro-
posed by the object oriented paradigm? How can a multiagent system be de-
signed and constructed as an organization using this structure?

The methodology we use in this paper is a normative multiagent framework
we proposed in [6, 7, 8, 9]. The basic idea of this framework is: agents attribute
mental attitudes, like beliefs, desires and goals, to the other agents they interact
with and also to social entities like groups, normative systems, and organizations.
Thus these social entities can be described as agents too, and at the same time,
the components of organizations, namely, functional areas and roles, can be
described as agents, as in the ontology we present in [7]. We call them socially
constructed agents.

This paper is organized as follows. In Section 2 we discuss the progress from
object orientation to agents and socially constructed agents. In Section 3 we

Organizations as Socially Constructed Agents 3

present the formal model and in Section 4 we discuss the issue of control and
communication in an multiagent system structured as an organization. A sum-
mary closes the paper.

2 From Objects to Socially Constructed Agents

The trend in software and requirements engineering and in programming lan-
guages paradigms has been from elements that represent abstract computations
towards elements that represent the real world: from procedural to structured
programming, from objects to agents. Agent systems have no central control au-
thority, instead each agent is an independent locus of control, and the agent’s task
drives the control. Delegating control to autonomous components can be con-
sidered as an additional dimension of modularity and encapsulation. Intentional
concepts such as goals, beliefs, abilities, commitments, etc., provide a higher-
level characterization of behavior. One can characterize an agent in terms of
its intentional properties without having to know its specific actions in terms
of processes and steps. Explicit representation of goals allows motivations and
rationales to be expressed. The agent concept provides a local scope, for recon-
ciling and making tradeoffs among competing intentionality, such as conflicting
goals and inconsistent beliefs. By adopting intentional modelling, the networks
of dependencies among the agents can be modelled and reasoned about at a high
level of abstraction. Moreover, cooperation among agents cannot be taken for
granted. Because agents are autonomous, the likelihood of successful coopera-
tion is contingent upon many factors. However, an agent that exists within a
social network of expectations and obligations has behaviors that are confined
by them. The agent can still violate them, but will suffer the consequences. The
behavior of a socially situated agent is therefore largely predictable, although
not in a precise way.

Given that agents are nowadays conceived as useful abstractions for modelling
and engineering large complex systems, the need for a disciplined organizational
principle for agent systems emerges clearly in the same way as the formaliza-
toin of the object decomposition principle does in the case of object oriented
systems.

One of the main features of the object perspective is that objects are com-
posed by other objects and that objects can be replaced by other objects with
the same properties (e.g., the same interface). This is not entirely true for agents.
According to Jennings [1], “the agent oriented approach advocates decompos-
ing problems in terms of autonomous agents”, but no further decomposition
seems possible. To overcome this flatness limitation, the organization metaphor
has been proposed, e.g., by [10, 5]. Organizations are modelled as collections of
agents, gathered in groups [10], playing roles [1, 11] or regulated by organizational
rules [5]. What is lacking is a notion of organization as a first class abstraction
which allows decomposing into subproblems the problem which a system wants
to solve, using a recursive mechanism (as the object decomposition is) until
autonomous agents composing a multiagent system are reached.

4 G. Boella and L. van der Torre

The desired solution is required to model at least simple examples taken
from organizational theory in Economics as the following one. Consider a simple
enterprise which is composed by a direction area and a production area. The
direction area is composed by the CEO and the board. The board is composed
by a set of administrators. The production area is composed by two production
units; each production unit by a set of workers. The direction area, the board,
the production area and the production units are functional areas. In particular,
the direction area and the production areas belong to the organization, the board
to the direction area, etc. The CEO, the administrators and the members of the
production units are roles, each one belonging to a functional area, e.g., the CEO
is part of the direction area.

This recursive decomposition terminates with roles: roles, unlike organiza-
tions and functional areas, are not composed by further social entities. Rather,
roles are played by other agents, real agents (human or software) who have to
act as expected by their role.

The object metaphor is not adequate to deal with such a structure, because
each entity can be better described in terms of belief, desires and goals, and of its
autonomous behavior. We talk, e.g., about the decisions of the CEO, or about the
organization’s goal to propose a deal, about the belief of the production area that
the inventory is finished, etc. Hence, at first sight, these entities can be described
as autonomous agents. But this is not sufficient, since the agent metaphor does
not account for the decomposition structure of an organization relating it with
its functional areas and roles. Moreover, organizations, functional areas and roles
are entities belonging to social reality: they do not exist in the same sense as
(human or software) agents do and do not exist without agents. Thus, if we
want to follow this intuition, the agent metaphor must be extended. Inspired by
Searle [12]’s analysis of social reality we define organizations, functional areas
and roles as socially constructed agents. These agents do not exist in the usual
sense of the term, but they are abstractions which other agents describe as if
they were agents, with their own beliefs, desires and goals, and with their own
autonomous behavior. The argument goes as follows:

1. agents can attribute to other (human or software) agents mental attitudes
and an autonomous behavior to explain how they work, regardless of the
fact that they really have any mental attitudes (the intentional stance of
Dennett [13]);

2. according to Searle [12], agents create new social entities like institutions -
e.g., money and private property - by means of collectively attributing to
existing entities - e.g., paper bills - a new functional status - e.g., money -
and new qualities.

3. if the new functional status is composed by mental attitudes and autonomous
behavior, the new entities are described as agents: socially constructed agents.

4. hence, socially constructed agents, qua agents, can create new socially con-
structed agents by attributing mental attitudes to them, in turn.

Agents create organizations by collectively attributing them mental attitudes;
organizations, as socially constructed agents, can create new social entities like

Organizations as Socially Constructed Agents 5

functional areas and roles which are the components of the organization. Func-
tional areas, as agents, can in turn apply the agent metaphor to create subareas
and further roles, and so on. Roles are descriptions of the behavior which is
expected by agents who, with their own mental attitudes, play these roles: the
role’s expected behavior is described in terms of mental attitudes, since roles
are considered socially constructed agents. Modelling roles by attributing them
mental attitudes allows a more expressive way to describe the expected behavior
with respect, e.g., the scripts proposed by Activity Theory [14]. In this manner,
we have a way to structure an organization in components with an homogeneous
character - since they are all agents - in the same way as the object orientation
allows structuring objects by means of objects. An advantage of this way of
structuring an organization is that its components can be described as agents
with beliefs, desires and goals. Hence, the same decomposition approach advo-
cated by [1] is used for structuring an organization: it is decomposed in a set
of autonomous agents: not only real ones, but socially constructed agents like
functional areas and roles; socially constructed agents do not exist, but they
are only used as abstractions in the design analysis to structure an organiza-
tion. At the end of the process there are only human or software agents which,
to coordinate their behavior, behave as if they all attribute the same beliefs,
desires and goals to the organization. This is a subjective approach to coordina-
tion [14].

Another reason why organizations, functional areas and roles should be all
considered as agents - and not simply groups - is that they have private properties
and agents who are employed in them; so a department can possess a building and
machines, employ people, etc. Moreover they are the addressees of obligations
(e.g., to pay the employees), permissions (e.g., a role can use a certain machine)
and powers (e.g., the role of CEO can take decisions). This is what is also meant
by the law when such social entities are defined as “legal persons”: they are
considered persons with obligations and rights [15]. Finally, organizations and
functional areas, as legal institutions, are normative agents themselves: they
are agents who can pose (via agents playing roles in them) obligations on the
roles and on the employees, e.g., by giving orders to them, or endow them with
permissions and powers.

There is a difference with the decompositional view of the object oriented
perspective which must be noticed. The parts of an object exist by themselves
and the object itself exists only as long as its (essential) parts exist. In con-
trast, in an organization the perspective is reversed: the “components” of the
organization exist only as long as the organization exists, while the organiza-
tion itself can exist even without its components. The role of CEO does not
have sense if the organization which the role belongs to does not exist anymore.
The reason is that an organization as a social entity has no physical realization.
The organization exists because of the attribution of mental attitudes by the
agents of a society. In turn, functional areas and roles exist only as long as the
organization attributes mental attitudes to them. An important consequence

6 G. Boella and L. van der Torre

of this view is that an organization can restructure itself while continuing to
exist.

As [16, 10] claim, a multiagent system should not make any assumption about
the implementation of the agents. As Yu [2] notices, the agent perspective does
not mean necessary that entities should be implemented with mental attitudes:

Agent intentionality is externally attributed by the modeller. From a
modelling point of view, intentionality may be attributed to some entity
if the modeller feels that the intentional characterization offers a useful
way for describing and analyzing that entity. For example, some entity
that is treated as an agent during modelling may end up being imple-
mented in software that has no explicit representation and manipulation
of goals, etc.

Socially constructed agents defined in terms of beliefs, desires and goals are
only an abstraction for designing the system. Moreover, the behavior of roles is
described by mental attitudes, but this does not require that the agents playing
roles in the organizations are endowed with beliefs and motivations: it is sufficient
that their behavior conforms to that of the role they are playing.

In Figure 1, we summarize the approach: the multiagent system in the oval
is composed of three real agents (boxes) who collectively attribute beliefs (B),
desires (D) and goals (G) to the organization (parallelogram). The organization,
in turn, attributes mental attitudes to two functional areas and functional areas
to three roles. The organization and the functional areas are attributed also
norms (V), facts (f), institutional facts (i) and decisions (the triangle d).

MAS

f

i

G

D

B

d

f

i

G

D V

B

d

f

i

G

D V

B

d

f

i

G

D V

B

d

f

i

G

D

B

d

collective
attribution

f

i

G

D

B

d

fG

D

B fG B fG

D

B

D

social
reality

attribution

functional
areas

organization

roles

attribution

role play

d d d

realityagents

Fig. 1. The attribution of mental attitudes

Organizations as Socially Constructed Agents 7

3 The Conceptual Model

We introduce the conceptual model necessary to cope with socially constructed
agents: first the multiagent system with the attribution of mental attitudes to
agents, then the normative system.

First of all, the structural concepts and their relations. We describe the differ-
ent aspects of the world and the relationships among them by introducing a set
of propositional variables X and extending it to consider also negative states of
affairs: L(X) = X ∪{¬x | x ∈ X}. The relations between the propositional vari-
ables are given by means of conditional rules written as R(X) = 2L(X) × L(X):
the set of pairs of a set of literals built from X and a literal built from X, written
as l1 ∧ . . . ∧ ln → l or, when n = 0, � → l. The rules are used to represent the
relations among propositional variables existing in beliefs, desires and goal of
the agents.

Then there are the different sorts of agents A we consider. Besides real agents
RA (either human or software) we consider as agents in the model also socially
constructed agents, i.e., organizations OA, functional areas FA, and roles RO.
The different sorts of agents are disjoint and are all subsets of the set of agents
A: RA ∪OA∪FA∪RO ⊆ A. All these agents have mental attitudes; by mental
attitudes we mean beliefs B, desires D and goals G.

Mental attitudes are represented by rules, even if they do not coincide with
them: MD : B ∪ D ∪ G → R(X). When there is no risk of confusion we abuse
the notation by identifying rules and mental states. To resolve conflicts among
motivations we introduce a priority relation by means of ≥: A → 2M × 2M a
function from agents to a transitive and reflexive relation on the powerset of the
motivations M = D ∪ G containing at least the subset relation. We write ≥a

for ≥ (a). Moreover, different mental attitudes are attributed to all the different
sorts of agents by the agent description relation AD : A → 2B∪D∪G∪A. We write
Ba = AD(a) ∩ B, Aa = AD(a) ∩ A for a ∈ A, etc.

Also agents are in the target of the agent description AD relation for the
following reason: organizations, functional areas and roles exist only as profiles
attributed by other agents. So they exist only as they are described as agents
by other agents, according to the agent description relation. The AD relation
specifies that an agent b ∈ OA∪FA∪RO exists only as far as some other agents
{a ∈ A | b ∈ Aa} attribute to it mental attitudes. The set (FA ∪ RO) ∩ Ao

represents the immediate “components” of the organization or functional area
o ∈ OA ∪ FA. The decomposition structure of an organization ends with roles.
Roles are described as agents, but they do not create further socially constructed
agents; rather, roles are associated with agents playing them, PL : RO → RA.

We introduce now concepts concerning informational aspects. First of all, the
set of variables whose truth value is determined by an agent (decision variables)
[17] are distinguished from those P which are not (the parameters). Besides, we
need to represent also the so called “institutional facts” I. They are states of
affairs which exist only inside normative systems and organizations: as Searle
[12] suggests, money, private property, marriages, etc. exist only as part of so-
cial reality; since we model social reality by means of the attribution of mental

8 G. Boella and L. van der Torre

attitudes to social entities, institutional facts can be modelled as the beliefs at-
tributed to these agents, as done by [8]. Similarly, we need to represent the fact
that social entities like normative systems and organizations are able to change
their mental attitudes. The actions determining the changes are called creation
actions C. Finally, inspired by Lee [18] we introduce the notion of documents
DC: “we use the term ‘document’ since most information parcels in business
practice are mapped on paper documents”.

As concerns the relations among these concepts, we have that parameters
P are a subset of the propositional variables X. The complement of X and
P represents the decision variables controlled by the different agents. Hence
we associate with each agent a subset of X \ P by extending again the agent
description relation AD : A → 2B∪D∪G∪A∪(X\P). We write Xa = AD(a) ∩ X.

Moreover, the institutional facts I are a subset of the parameters P : I ⊆ P .
When a belief rule Y ∧ c → p ∈ Ba has an institutional fact p ∈ I as consequent,
we say that c ∈ X counts as p in context Y - using Searle [12]’s terminology -
for agent a ∈ OA ∪ FA ∪ RO.

The creation actions C are a subset of the institutional facts C ⊂ I. Since
agents are attributed mental attitudes, we represent their modification by adding
new mental attitudes expressed as rules. So the creation action relation CR :
{b, d, g}×A×R(X) → C is a mapping from rules (for beliefs, desires and goals)
to propositional variables, where CR(b, a, r) stands for the creation of m ∈ Ba,
CR(d, a, r) stands for the creation of m ∈ Da, and CR(g, a, r) stands for the
creation of m ∈ Ga, such that the mental attitude m is described by the rule
r ∈ R(X): r = MD(m).

Finally, the document creation relation CD : DC → X is a mapping from
documents to decision variables representing their creation. We write CD(d) ∈
Xa for the creation of document d ∈ DC.

We define a multiagent system as MAS = 〈RA, OA, FA, RO, X, P, B, D, G,
AD, MD, PL,≥, I, C, DC〉.

We introduce obligations posed by organizations and functional areas by
means of a normative multiagent system. Let the norms {n1, . . . , nm} = N be
a set. Let the norm description V : OA ∪ FA → (N × A → X) be a function
from agents to complete functions from the norms and agents to the decision
variables: we write Vo for the function V (o) and Vo(n, a) for the decision variable
of agent o ∈ RA ∪ OA ∪ FA representing that it considers a violation of norm n
by agent a ∈ A.

NMAS = 〈RA, OA, FA, RO, X, P, B, D, G, AD, MD, PL,≥, I, C, DC, N, V 〉
is a normative multiagent system .

Following [6], obligations are defined in terms of goals of the addressee of
the norm a and of the agent o. The definition of obligation contains several
clauses. The first one defines obligations of agents as goals of the normative
agent, following the ‘Your wish is my command’ strategy, the remaining ones
are instrumental to the respect of the obligation.

Organizations as Socially Constructed Agents 9

Agent a ∈ A is obliged by normative agent o ∈ OA ∪ FA to decide to do
x ∈ L(Xa ∪ P) with sanction s ∈ L(Xo ∪ P) if Y ⊆ L(Xa ∪ P) in NMAS,
written as NMAS |= Oao(x, s|Y), if and only if there is a n ∈ N such that:

1. Y → x ∈ Do ∩ Go: if agent o believes Y then it desires and has as a goal
that x.

2. Y ∪ {∼x} → Vo(n,a) ∈ Do ∩ Go: if agent o believes Y and ∼x, then it has
the goal and the desire Vo(n,a): to recognize it as a violation by agent a.

3. Y ∪ {Vo(n,a)} → s ∈ Do ∩ Go: if agent o believes Y and decides Vo(n,a),
then it desires and has as a goal that it sanctions agent a.

4. � →∼s ∈ Da: agent a desires ∼s, which expresses that it does not like to
be sanctioned.

Since obligations are defined in terms of mental states, they can be created
by means of the creation actions C introducing new desires and goals, as shown
by [8]. In this paper, we will use the shorthand CR(o, Oao(x, s|Y)) to represent
the set of creation actions necessary to create an obligation Oao(x, s|Y).

4 Control and Communication in Organizations

Instead of having a single global collection of beliefs and motivations, modelling
organizations as socially constructed agents allows allocating different beliefs Ba,
desires Da and goals Ga to separate agents a ∈ Ao composing the organization
o ∈ OA. Agents can be thought of as a locality for intentionality. In this way
it is possible to distribute subgoals of Go among the different functional areas
and roles a ∈ Ao to decompose problems in a hierarchical way and to avoid to
overburden them with too much goals. In particular, the goals Gr attributed to
role r ∈ RO represent the responsibilities which agent b ∈ A playing that roles
(PL(r) = b) has to fulfill.

The beliefs attributed to the organization (Bo) and attributed by the orga-
nization to its components (Bm and m ∈ Ao) represent their know how and the
procedures used to achieve the goals of the organization; these beliefs are repre-
sented for example by statutes and manuals of organizations. As in case of goals,
different beliefs Ba can be distributed to functional areas and roles a ∈ Ao. In
this way the organization can respect the incapsulation principle and preserve
security and privacy of information, as requested by [10].

The beliefs, desires and goals of the components of an organization play
also another role. They express the institutional relations among the different
components: in particular, the control and communication relations among the
functional areas and roles. Both issues will be addressed using the notion of
document. Documents are the way information parcels are represented in orga-
nizations and represent also the records of decisions and information flow.

The institutional relations of control and communication among the compo-
nents of an organization are defined in terms of the “counts as” relation. For
Jones and Sergot [19], the “counts as” relation expresses the fact that a state of
affairs or an action of an agent “is a sufficient condition to guarantee that the

10 G. Boella and L. van der Torre

institution creates some (usually normative) state of affairs”. As [19] suggest this
relation can be considered as “constraints of (operative in) [an] institution”. In
Section 3 we propose to model “counts as” relations by means of belief rules of
the socially constructed agents. They express how an organization, a functional
area or a role provide an institutional classification of reality.

In an organization it is fundamental to specify how agents can control other
agents by giving orders to them [10, 5]; the control is achieved by the command
structure of an organization. In fact, organizations can be seen as burocracies
according to [20]. Control has two dimensions: how the organization and its func-
tional areas can pose (via agents playing roles in them) obligations (commands)
to roles, and who has the power to create these obligations (since, as organi-
zations and their units are socially constructed agents, they do not act). For
example, a production unit can decide to give a production order to its mem-
bers and the decision of the production unit can be taken by a director of that
unit. The basic block of control is the creation of obligations. As described in the
conceptual model, an agent can change its own mental attitudes. In particular,
an organization o can change its desires and goals so to create a new obligation
Oao(x, s | Y) by means of the creation action CR(o, Oao(x, s | Y)). It is possible
to create sanction-based obligations addressed to agent a ∈ A since the agents
involved in organizations are depended on them, for example, for the fact that
organizations pay them salaries and decide benefits.

The creation actions C of an organization o are parameters, hence they are
not directly controlled by it: the organization does not act directly, but only by
means of the actions of the agents composing it. Creation actions achieve their
effect to introduce new obligations if some other action “counts as” a creation
action for the organization: this relation is expressed by a belief rule of the
organization o, e.g., c → CR(o, Oao(x, s | Y)) ∈ Bo. Since there is no other
way for making true the creation action, only the organization itself can specify
who create new obligations. In particular, c ∈ Xr can be an action CD(d) of
a role r ∈ RO of producing a document d ∈ DC: in this way the organization
o specifies that the role r has control over some other role a ∈ RO such that
a ∈ Ao. The document d represents the record of the exercise of the power of
agent r. Also functional areas are modelled as agents in an organization: hence,
the same mechanism can be used to specify that an agent r has control over
role a ∈ RO, where r and a can belong to the same functional area m ∈ FA
({r, a} ⊆ Am ∩ RO).

Since the “counts as” relation can be iterated, it is possible to specify how
a role r ∈ RO belonging to a functional area m ∈ FA (r ∈ Am) of an organi-
zation o ∈ OA can create an obligation Oao(x, s | Y) directed to a functional
area or role a ∈ FA ∪ RO directly belonging to the organization: a ∈ Ao. This
is possible since an action c ∈ Xr of role r can count as an institutional fact
p ∈ I for the functional area m: c → p ∈ Bm. In turn, the institutional fact
p can count as the creation of an obligation Oao(x, s | Y) by the organization
o: p → CR(b,o, Oao(x, s | Y) ∈ Bo; this obligation is directed towards agent a
which belongs to the organization o. These relations are only possible since the

Organizations as Socially Constructed Agents 11

beliefs Bm of the functional area m are attributed to agent m by the organiza-
tion o itself, since m ∈ Ao. For example, a decision of the CEO counts as an
obligation of the entire organization since the direction functional area to which
the CEO belongs considers the CEO’s decision as made by itself and the orga-
nization, in turn, considers the decision of the direction as having the obligation
as a consequence. In this way, the organization, when it creates its components
by attributing mental attitudes to them, at the same time, constructs its con-
trol structure.

The second issue is communication among roles. It is often claimed [10] that
the organizational structure specifies the communication possibilities of agents.
Agents can communicate almost by definition and standard communication lan-
guages have been defined for this aim [21]. What the organization can specify is
their possibility to communicate to each other in an institutional way by means
of documents; as Wooldridge et al. [22] claim, organizations specify “systematic
institutionalized patterns of interactions”.

Communication among socially constructed agents is based on the same prin-
ciple as control. It relies on the fact that the beliefs of a functional area or of a
role are attributed to them by the higher level socially constructed agent which
they are attributed mental attitudes by. In this way we can express the fact that
a document created by a role r ∈ RO communicates some belief p to an organi-
zation or functional area m ∈ OA∪FA it belongs to r ∈ Am: CD(d) → p ∈ Bm,
where CD(d) ∈ Xr is an action creating a document d ∈ DC. This is read as
the fact the action of role r “counts as” the official belief p of agent m. The
document d represents the record of the communication between r and m.

Analogously, we can specify official communication among roles. A role r ∈
RO communicates to a role a ∈ RO that p ∈ P if there is some action CD(d) ∈
Xr creating a document d ∈ DC such that CD(d) → p ∈ Ba. Note that Ba

are not the beliefs of the agent b ∈ RA playing role a (b = PL(a)). Rather
they are the beliefs attributed to the role by the functional area m ∈ FA:
since the role a is created by the functional area m, those beliefs are attributed
to a by the functional area m. When an agent b ∈ RA which plays the role
a ∈ RO knows that document d has been created, it has to act as if it had the
belief p, while it is not requested to be psychologically convinced that p is true.
Otherwise agent b does not stick to its role anymore and it becomes liable to
having violated its duties.

5 Summary

In this paper we propose a way to model the organizational structure of multi-
agent systems. Organizations are composed by functional areas and roles; func-
tional areas, in turn, are composed by functional areas and roles. Roles are played
by agents. Using the methodology of attributing mental attitudes to social en-
tities, we show that organizations and their components can be described as
agents: socially constructed agents. Since socially constructed agents are agents,
they can construct, in turn, other agents which constitute their components.

12 G. Boella and L. van der Torre

This strategy allows creating a decomposition structure as rich as the one in ob-
ject orientation. Moreover, it allows progressively decomposing an organization
in simpler agents described by beliefs and motivations to manage the complex-
ity of a multiagent system. Finally, since agents can be subject to obligations
and endowed with permissions and powers, all the social entities composing an
organization can be the addressees of norms and powers; at the same time, so-
cially constructed agents can be normative systems imposing obligations on their
components, i.e., organizations can be modelled as burocracies [20].

This paper is part of a wider project modelling normative multiagent systems.
In [8] we model normative systems by means of the agent metaphor: we attribute
them beliefs, desires and goals: beliefs represent the constitutive rules of the
organization while regulative rules, like obligations, are modelled in terms of
goals of the system. In [6] we extend the model to virtual communities and we
use the agent metaphor to describe local and global policies. In [9], constitutive
rules are used to define contracts and games among agents are extended to allow
an agent to change the obligations enforced by the normative system. Roles have
been introduced in [23]. This paper constitutes a step forward in this project in
that the agent metaphor is used to explain how organizations can create other
social entities like functional areas and roles and, at the same time, specify their
behavior. In this way we account for their definitional dependency characteristic
of social entities [24]. Our ontology of social reality is presented in [7].

Future work concerns defining the relation between roles described as agents
and the agents playing those roles. Moreover, contracts, described in [9] can be
introduced to regulate the possibility to create new obligations, new roles and
new social entities inside an organization [10].

References

1. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2)
(2000) 277–296

2. Yu, E.: Agent orientation as a modelling paradigm. Wirtschaftsinformatik 43(2)
(2001) 123–132

3. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-
Wesley, Reading (MA) (1988)

4. Bauer, B., Muller, J., Odell, J.: Agent UML: A formalism for specifying multiagent
software systems. Int. Journal of Software Engineering and Knowledge Engineering
11(3) (2001) 207–230

5. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The
Gaia methodology. IEEE Transactions of Software Engineering and Methodology
12(3) (2003) 317–370

6. Boella, G., van der Torre, L.: Local policies for the control of virtual communities.
In: Procs. of IEEE/WIC WI’03, IEEE Press (2003) 161–167

7. Boella, G., van der Torre, L.: An agent oriented ontology of social reality. In:
Procs. of FOIS’04, Torino (2004)

8. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative
multiagent systems. In: Procs. of 9th International Conference on the Principles of
Knowledge Representation and Reasoning (KR’04), AAAI Press (2004) 255–265

Organizations as Socially Constructed Agents 13

9. Boella, G., van der Torre, L.: Contracts as legal institutions in organizations of
autonomous agents. In: Procs. of AAMAS’04, ACM Press (2004) 948–955

10. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multiagent systems. In: LNCS n. 2935: Procs. of AOSE’03, Springer
Verlag (2003) 214–230

11. McCallum, M., Norman, T., Vasconcelos, W.: A formal model of organisations
for engineering multi-agent systems. In: Procs. of CEAS Workshop at ECAI’04.
(2004)

12. Searle, J.: The Construction of Social Reality. The Free Press, New York (1995)
13. Dennett, D.: The intentional stance. Bradford Books/MIT Press, Cambridge (MA)

(1987)
14. Ricci, A., Omicini, A., Denti, E.: Activity theory as a framework for mas coordi-

nation. In: Procs. of ESAW’02. (2002) 96–110
15. Pacheco, O., Carmo, J.: A role based model of normative specification of orga-

nized collective agency and agents interaction. Autonomous Agents and Multiagent
Systems 6 (2003) 145–184

16. Dignum, V., Meyer, J.J., Weigand, H.: Towards an organizational-oriented model
for agent societies using contracts. In: Procs. of AAMAS’02, ACM Press (2002)
694–695

17. Lang, J., van der Torre, L., Weydert, E.: Utilitarian desires. Autonomous Agents
and Multiagent Systems (2002) 329–363

18. Lee, R.: Documentary Petri nets: A modeling representation for electronic trade
procedures. In: Business Process Management, LNCS 1806, Berlin, Springer Verlag
(2000) 359–375

19. Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Journal
of IGPL 3 (1996) 427–443

20. Ouchi, W.: A conceptual framework for the design of organizational control mech-
anisms. Management Science 25(9) (1979) 833–848

21. Finin, T.W., Labrou, Y., Mayfield, J.: KQML as an agent communication language.
In Bradshaw, J., ed.: Software Agents. MIT Press, Cambridge (1995)

22. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. Autonomous Agents and Multi-Agent Systems 3(3) (2000)
285–312

23. Boella, G., van der Torre, L.: Attributing mental attitudes to roles: The agent
metaphor applied to organizational design. In: Procs. of ICEC’04, IEEE Press
(2004)

24. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guar-
ino, N.: Social roles and their descriptions. In: Procs. of KR’04. (2004)

199 – 209

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 14–32, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Virtual Enterprise Normative Framework Within
Electronic Institutions

Henrique Lopes Cardoso and Eugénio Oliveira

LIACC, Faculty of Engineering, University of Porto,
R. Dr. Roberto Frias, 4200-465 Porto, Portugal

eco@fe.up.pt
Polytechnic Institute of Bragança,

5301-854 Bragança, Portugal
hlc@ipb.pt

Abstract. Virtual Enterprises are a major trend within the B2B scenario.
Technological support towards enabling this cooperation model includes the
multi-agent systems paradigm. In this paper we identify requirements of Virtual
Enterprise contracts, developing a normative framework for contract validation
and enforcement. Furthermore, we enclose this conception within the structure
of an Electronic Institution, which governs and supports the interaction of
agents in business scenarios, providing specific services such as brokering,
reputation, negotiation mediation, and contract related services. We focus on
electronic contracting as a means of establishing cooperation agreements, and
we describe the institution’s role on the e-contracting life-cycle.

1 Introduction

Virtual Enterprises are a major trend in cooperative business. Specialization and
flexibility are some of the key aspects of an every day more dynamic and global
market. The concept of Virtual Enterprise has been applied to many forms of
cooperative business relations, like outsourcing, supply chains, or temporary
consortiums. We approach this latter case, since it clearly addresses the demand for
flexible and dynamic arrangements between different enterprises. We also find it
convenient to relate the constitution of Virtual Enterprises to legislation on
consortium contracts [20], which regulates the coordination of efforts between
enterprises towards accomplishing some activity, where each participant maintains its
own core business, while aligning it with other members’ activities.

Technological support to the creation of such relationships is arising in many
forms. The most ambitious ones intend to automate (part of) the process of creation
and operation of Virtual Enterprises, mainly through multi-agent technology
approaches, where each agent can represent each of the different enterprises. In fact,
research on multi-agent technology addresses issues that fit the Virtual Enterprise
scenario. Agents are autonomous, interact with other agents, and enable approaching
inherently distributed problems with negotiation and coordination capabilities.

In this paper we develop on the application of multi-agent systems to the Virtual
Enterprise lifecycle, by conceptualizing the more general framework of an Electronic

 Virtual Enterprise Normative Framework Within Electronic Institutions 15

Institution (improving on [23]), which provides assistance to the automated
specification of business agreements. The institution represents a normative system
that establishes a level of trust enabling the interaction of heterogeneous,
independently developed and privately owned agents. We are particularly interested
in formalizing business relationships through electronic contracts, and specifically in
designing and exploring e-contracts representing Virtual Enterprise configurations.

Therefore, we identify requirements for a contract formalizing the Virtual
Enterprise constitution. We then distinguish operational contracts that can be achieved
inside this cooperation agreement. Following a normative agent perspective, we
suggest the organization of norms in three hierarchical levels of abstraction: (i)
institutional norms, used to validate the creation of virtual enterprise contracts; (ii)
constitutional norms, expressing the cooperation agreement and used to impose and
check the compliance of operational contracts; and (iii) operational norms, which can
be monitored and enforced during the Virtual Enterprise activity.

This paper is organized as follows. Section 2 addresses the Virtual Enterprise
concept and its lifecycle, bringing to discussion the notion of consortium contracts. In
section 3 we develop the Electronic Institution framework, detailing its regulations
and services. We then examine, in section 4, the problem of formalizing electronic
contracts from a normative perspective, relating contract handling to institutional
services; we also identify requirements of a Virtual Enterprise contract. In section 5
we develop a normative framework comprising the institution, the Virtual Enterprise
and its operation, and we propose a specification for contracts focusing on the
underlying cooperation commitment. We conclude in section 6 describing our current
efforts and related work.

2 Virtual Enterprises

The shift, in the last decades, from an industrial economy (based on mass production
models) to an information economy associated to the globalization of markets has
brought an enormous increase in competitiveness, leading to the need for new
organizational models. Enterprise cooperation models have emerged, where different
enterprises coordinate the necessary means to accomplish shared activities or reach
common goals. This association of strengths enables enterprises to build privileged
relationships, based on an increase of advantages through resource and competence
sharing, and risk minimization.

Cooperation arrangements are particularly relevant in small and medium
enterprises (SME), due to their reduced size and high specialization and flexibility.
These kinds of enterprises have been adopting new strategies that enable them to
adapt to a constantly changing market, organizing themselves in strategic
partnerships. While allowing themselves to maintain their business independence,
partners are able to reach otherwise unreachable (physical and customer) markets and
to take advantage of economies of scale. Furthermore, many large companies are
isolating parts of their businesses, making them autonomous in order to increase the
overall flexibility and achieve greater performances. Outsourcing models are also
becoming dominant, enabling enterprises to concentrate on their core competencies.

16 H. Lopes Cardoso and E. Oliveira

Thus, there is an increasing emphasis in cooperation and coordination of small
business units.

The concept of a Virtual Enterprise (VE) arose from this trend, and has been
defined as “a temporary consortium of autonomous, diverse and possibly
geographically dispersed organizations that pool their resources to meet short-term
objectives and exploit fast-changing market trends” [6]. We distinguish a VE from a
mere tight integration of two business entities in outsourcing (e.g. [15]) or supply
chain configurations. In these cases, information technology approaches are focused
on managing inter-organizational workflows, providing a fine-grained cooperation
between the parties, which in turn tends to the establishment of middle- or long-term
relationships. Our conceptualization demands for a greater flexibility, as explicitly
stated in the definition presented above.

We associate the creation of a VE to the concept of a consortium contract, which is
present in the Portuguese legislation [20]. A consortium is a contract according to
which two or more entities coordinate their efforts towards accomplishing some
activity. This may include the execution of an enterprise (a common example is a civil
construction project, like a bridge), the supply of equal or complementary goods
produced by the consortium’s members to third parties, or the production of goods
that can be split amongst the consortium’s members. With the creation of a
consortium, a new entity can be formed that represents this joint activity to third
parties – the consortium is said to be external. In other cases, an internal consortium
can be created, namely when its goal does not include the supply of goods to third
parties (although the members’ goals might).

The lifecycle of a VE has been studied by some researchers. A simple macro-
model that fits our VE conceptualization might include the following stages: business
definition, formation, operation, regulation, and dissolution. Operation and regulation
are interleaved phases that go on while the VE exists. The creation of the VE starts
with the definition of the business to be developed; this process may initiate because
of a client need or because of a market opportunity detected by an enterprise. The
formation phase typically includes the definition of goals, the selection of participants
through negotiation, and the definition of their roles and respective obligations. The
electronic market architecture reported in [21], which this work improves upon,
considers a market agent that exists to establish the need (that is, the product or
service to be delivered by the VE), and to coordinate the negotiation process in the
VE formation phase.

In the operation phase the participants develop the intended business, which may
comprise the search for customers (if they are not pre-determined) and the carrying
out of activities involved with business enactment. VE adjustments can take place at
the regulation phase, when unexpected events occur, making members leave the VE
and creating the need for new partners in order to accomplish the established goals.
Rules determining how this process is achieved are normally settled at the formation
phase. When members verify that the VE has fully accomplished its goals, or decide
that it is no longer justified, the VE is dissolved.

There have been lately many research efforts towards infrastructures supporting the
VE model. A promising approach is the area of multi-agent systems, which naturally
address a number of characteristics in the VE domain, namely their distributed nature,

 Virtual Enterprise Normative Framework Within Electronic Institutions 17

with autonomous enterprises, and the need for coordination and distributed problem
solving. Autonomous agents can represent the individual interests of different
enterprises and negotiate in order to constitute a VE. They can then cooperate by
coordinating their activities in order to fulfill the virtual enterprise’s purpose.
Approaches to the establishment of VEs through multi-agent negotiation can be found
in [21].

3 Electronic Institutions

Interactions between members of a society are regulated by institutions. These
institutions define the rules of the game, stating what is forbidden and permitted to the
individuals and in what conditions [9]. An Electronic Institution (EI) will be the
electronic counterpart of such an institution, imposing regulations on electronic
members (agents) that adhere to this electronic society. In particular, an EI will rule
the interaction between electronic parties engaged in business transactions, providing
an environment where regulated agent interactions can take place. One of the main
roles of such an environment is to provide the necessary level of trust that enables
agents from different sources to safely engage in business interactions.

Fig. 1. Regulations and services of an Electronic Institution

First of all, an EI provides a normative system of reference under which agents
reach cooperation agreements. When adhering to the institution, an agent abides to a
set of imperative norms that regulate and support interactions taking place within the
EI. Since the formalization of business relationships (through electronic contracts) are
of primary importance, specific regulations on this matter are included as well. The
imposed normative system is composed of regulations on the following:

 Electronic Institution

Members Contract
registry

Ontologies Business
norms

Transaction
repository

Contract
templates

Members’
reputation

Negotiation
Protocols

Negotiation
mediation

Reputation

Brokering Registration

Contract validation /
registration (notary)

Contract monitoring
and enforcement

18 H. Lopes Cardoso and E. Oliveira

− Identity of members: agents must be identified in order to engage in interactions
within the EI; also, the signatures of agents when signing contracts must be
validated by the institution;

− Shared ontology specifications: agents must be able to use the same ontological
commitments, so that they can successfully interact, especially in business
engagements; the specifications may include both domain-independent business
terms and domain-dependent vocabulary;

− Interaction and negotiation protocols: the EI may assist the interaction process,
imposing a set of well-defined protocols; this is particularly relevant when business
relations are created through a process of negotiation, that may require mediation;

− General business norms: these are norms applicable to any business engagement,
establishing trust by ensuring that certain behaviors are expected and will be
enforced;

− Contract specification: contracts must be specified according to pre-established
directives.

Based on these regulations, the EI also provides support towards facilitating
business cooperation between its members. We are particularly interested in
mechanisms that enable electronic contract specification and enforcement. In [23] an
EI sketch is presented, aiming at supporting the VE lifecycle. Refining that model, we
distinguish a set of services that adherent agents can benefit from:

− Registration: a service that enables agents to register in the EI, granting them
access to the remaining services;

− Brokering: yellow-pages support, enabling agents to easily find potential partners;
− Contract templates: pre-formatted contracts that boost the formalization of typical

business relations, while assuring conformance to contract specification
regulations;

− Negotiation mediation: using predefined protocols, the EI can act as an
intermediary in the negotiation process, taking advantage of template structures
and ensuring that resulting contracts are in accordance to business norms;

− Contract validation: contracts obtained by two or more parties (and namely not
constructed using templates or institutional mediation) can be validated towards the
general norms, ensuring that they comply with the overall regulations of the
community;

− Notary: contract registry services are provided to store consummated (signed)
contracts, ensuring their legal existence;

− Contract monitoring and enforcement: mechanisms that monitor and enforce the
execution of contracts according to their clauses and general institutional norms,
registering the fulfillment of transactions and applying predicted non-conformance
sanctions;

− Reputation mechanisms: these ensure that errant behavior will have a negative
impact on an agent’s reputation, thus discouraging it.

These regulations and services are depicted in figure 1.
The formation of Virtual Enterprises is an intricate process that typically requires

some pre-existing enterprise pool – a cluster of enterprises. A cluster has also been

 Virtual Enterprise Normative Framework Within Electronic Institutions 19

referred to as a “breeding” or “nesting” environment [2], where members share some
common elements that make cooperation arrangements feasible (be it technologies,
business-related resources, etc.). Advances in information and communication
technologies make it possible to support cluster formation. In particular, the
Electronic Institution concept permits essential elements when establishing VEs, such
as mutual trust building, common ontologies and standard business practices.

4 B2B E-Contracts

In B2B electronic commerce, more attention has been given recently to contract
formation and fulfillment. In fact, this issue is part of the so-called B2B transaction
model, as presented in [14]. Approaches to B2B contract handling (e.g. [13])
identify the need to specify and represent contracts, and further to monitor and
enforce them.

Contracts can have different forms, representing business agreements ranging from
simple deals used to exchange resources (such as in purchasing a product), to
complex business relationships between parties. However, most of the research
literature devoted to e-contract automation simplifies contracts to the former type,
defining one time relationships between a customer and a seller. Little attention has
been given to contracts that result from a Virtual Enterprise formation process (an
exception might be [22]). These contracts are more complex in the sense that they
need to specify how several involved parties should behave, during a period of time,
in order to participate in a cooperation effort towards a common goal.

4.1 E-Contracts and Norms

Contracts are formalizations of the behavior of a group of agents that jointly agree on
a specific business activity. Contracts are used as a means of securing transactions
between the involved parties, forming a normative structure that explicitly expresses
their behaviors’ interdependencies. Electronic contracts are virtual representations of
such contracts. The aim of e-contracting is to improve the efficiency of contracting
processes, supporting an increasing automation of both e-contract construction (using
automated tools) and execution (integrating with business processes). Within our
framework, e-contracts will be obtained by agents representing different enterprises,
meeting inside the EI to which they adhered.

The components of a contract include the identification of participants, the
specification of products and/or services included and a discrimination of actions to
be performed by each participant. These actions are usually accompanied with time
and precedence constraints. Typified business relations can recurrently use pre-
formatted contracts. In this case, contracts usually have a set of identified roles to be
fulfilled by the parties involved in the relation.

The core of a contract is composed of contract clauses. These clauses can specify
different types of behavior norms that will guide the interaction between the parties.
Broadly speaking, three types of norms can exist within a contract structure:

20 H. Lopes Cardoso and E. Oliveira

• obligation: an agent has an obligation towards another agent to bring about a
certain state of affairs (by executing some action), before a certain deadline;

• permission: an agent is allowed to execute some action, within a given window of
opportunity (specified either by a deadline or more generally by a state of affairs);

• prohibition: an agent is forbidden to bring about a certain state of affairs (some
action is interdicted).

A formal approach to model such norms is deontic logic [27] (also known as the
logic of normative concepts), a branch of modal logic. The normative concepts
obligation, permission and prohibition are analogous to the modal concepts of
necessity, possibility and impossibility, respectively.

When representing contracts, another fundamental concept is typically added to the
norms above: the sanction. Any obligation must be accompanied by at least one
sanction, as obligations without sanctions are ineffective [17]. Thus, obligations are
not absolute, but relative to their associated sanctions in case of non-performance
[24]. Prohibitions can be addressed in an analogous way. A prohibition is sometimes
handled as a negated obligation, that is, a duty for not performing some action (see,
for instance, [17]).

Approaches to the automation of contractual relationships necessarily include this
sanction component. Particularly when that automation is based on the autonomous
agent paradigm, norms cannot be taken as constraints on the behavior of each
contractual party.1 Each agent is able to deliberatively reason about its goals and the
norms it has committed to (hence the notion, in [3], of deliberative normative agents).
An agent can violate a norm in order to accomplish a private goal that it considers to
be more important. When doing so, the agent is aware of the sanction it will be
subject to.

Norms and Electronic Institutions. Contracting is normally subject to contract law.
This law is enforced by the court, and can be seen as a normative system that
contracts must abide to. Generally speaking, we can thus say that a contractual
relationship will have a normative system of reference (enforced by an institution),
according to which the contract will be built, detailing the interactions that will take
place between the parties. The relation between the contract and the normative system
is hierarchical, meaning that the contract can inherit norms from the normative system
already established, using it as a ground basis.

Electronic institutions, while regulating the interactions that can take place
between agents, can represent normative systems that limit the behavior of
participants and describe the penalties incurred when norms are violated. Contractual
relations created inside the institution must abide to the imposed norms, specifying
the details of a particular business relation.

1 Although most initial research on norms in multi-agent systems has focused on norms as

constraints on behavior via social laws. Agents were not allowed to deviate from these
laws, which were used to ensure cooperation between interacting autonomous selfish
agents.

 Virtual Enterprise Normative Framework Within Electronic Institutions 21

4.2 E-Contract Handling

Any contractual relationship can be said to evolve through a number of steps. These
can be resumed to the following three stages [28]:

• information discovery: clients find potential suppliers;
• contract negotiation: the parties negotiate the contract terms – the result of this

stage is a legally binding contract, reflecting the agreement made;
• execution: the contract terms are fulfilled by the parties, namely involving product

delivery or service rendering, and the corresponding payments.

The first stage thus comprises the brokering phase of B2B electronic commerce.
One can also conceptualize it as a pre-contractual phase, involving a definition of the
products or services sought/sold by clients/suppliers, and the utilization of yellow-
pages services allowing potential partners to contact each other. The second stage is
devoted to the negotiation of the terms of an agreement – it is the contractual phase,
since a contract is being constructed. That agreement will express a number of steps
to be performed by the contractual parties. Hence, the parties negotiate not only
attributes of products/services but also details of how those products/services will be
delivered/rendered and paid. The document that represents the agreement reached is a
legally binding contract, signed by those involved. Typically, it will also specify how
to handle exception conditions, such as those related with non-fulfillment of duties
(e.g. late delivery or non-payment). The third stage is the post-contractual phase, that
is, after the contract is established it is time to proceed as agreed. It is also referred to
as the fulfillment phase. In more complex and integrated interactions, the parties
involved will eventually engage their business processes, forming an inter-enterprise
workflow.

E-contracts are achieved inside controlled environments – Electronic Institutions –
that establish certain rules of behavior to be followed by its members, ensuring a level
of trust that is crucial to the interaction of heterogeneous, independently developed
and privately owned agents. The three stages presented above are supported by the
Electronic Institution framework as follows.

Information discovery assistance is a typical function of electronic markets in
general, but in the VE case special care can be given to the process of finding
potential strategic business partners, with appropriately tailored services. Cooperative
business relationships may involve more than the supply of merchandise, requiring a
tighter cooperation between the parties involved. Therefore, more attention is needed
in the partner selection phase.

The contract negotiation phase is assisted through contract template availability,
negotiation mediation services (such as those presented in [21]), and norm
conformance checking, allowing only legal and enforceable contracts to be formed.
Several researchers acknowledge the need for a starting ground in contracting (see,
for instance, [28], [17], and [24]). In fact, starting a negotiation where nothing is fixed
represents a too ill-structured problem to consider automating. The importance of a
contract template resides on its ability to provide a structure on which negotiation can
be based. Furthermore, certain kinds of business relations are formally typified (for

22 H. Lopes Cardoso and E. Oliveira

instance, sales and purchases). In this sense, instead of beginning from scratch a new
contractual relation, two (or more) agents can use an electronic contract template,
which is a contract outline containing domain-independent interaction schemata and
variable elements (such as price, quantity, deadlines, and so on) to be filled-in with
domain-specific data resulting from a negotiation [17]. If all goes well, the result of
the negotiation will be an actual contract, instantiated from the template, which will
be signed by the parties. Templates thus provide a structure that allows negotiation, as
a process of cooperative construction of a business relation, to be focused on those
elements that, when instantiated, will distinguish the agreement obtained from other
contractual relationships. Meanwhile, the common elements in relations of the same
type will be preserved. These common elements might include, for example, outline
commitments of the involved parties, which when instantiated through negotiation
will detail their concrete objects (eventually including technical properties) and
temporal references.

Contract execution is enforced by appropriate monitoring services, which register
transactions and deal with non-fulfillment situations. The execution of an e-contract
consists on the parties following the norms they committed to when signing the
contract. If any deviations from the prescribed behavior should occur, sanctions can
be applied as specified in the contract or in its normative system of reference.
However, the parties involved will typically not voluntarily submit themselves to such
penalties. Therefore, appropriate mechanisms to monitor and enforce norm execution
are needed. Only a trusted third party (the EI) can enable the necessary level of
confidence between the parties involved in a business relation. The verification of
real-world contracts is often dependent on external (physical world) entities, which
must interface with the EI to allow the automation of the process.

4.3 Requirements of a Virtual Enterprise Contract

A normative conception of contracts is normally used for contract representation.
Hence, general languages for representing norms in contracts have been proposed
(e.g. [17], [24], and [8]). However, little research is devoted to the representation of
VE contracts.

Normative Statements. Based on the operators of deontic logic, normative
statements can be formally represented as [24]:

 ns: ϕ θs,b (α < ψ)

where

 ns is a label
 ϕ is an activation condition
 θ is a deontic operator (obligation, permission, or prohibition)
 s is the subject of θ
 b is the beneficiary of θ
 α is the action to perform or the state of affairs to bring about
 ψ is a deadline

 Virtual Enterprise Normative Framework Within Electronic Institutions 23

In this approach, obligations are not absolute, but relative to their associated
sanctions. That is, deviation from prescribed behavior is admitted and properly
addressed through sanctions. These are defined just like the other normative
statements, but by specifying the non-fulfillment of a given obligation as the
activation condition. Sanctions may give rise to other obligations or prohibitions:
either the beneficiary of the violated norm is granted a right (the subject has a new
obligation towards the beneficiary) or the subject of the violated norm is refused a
right (he is forbidden to do something).

This representation of norms allows for the construction of any contract that can be
entirely specified using these building blocks. For instance, contracts reflecting
simple purchasing operations might be composed of four such norms: (1) a seller’s
obligation to provide a requested good by a certain deadline; (2) a buyer’s obligation
to pay by a certain deadline, after receiving the demanded good; (3) a sanction
predicting possible non-fulfillment of delivery on the seller’s part – e.g. a discount;
and (4) a sanction predicting possible late payment on the buyer’s side – an interest
rate, for example.

Virtual Enterprise Contracts. The contracts we are interested in might also benefit
from a group of enhancements that facilitate contract construction. According to our
approach, an electronic contract is a formalization of a business agreement that two or
more agents, representing different entities, establish as a cooperative business
activity.

A VE thus constitutes a complex case of a business agreement, and certain aspects
of its nature must be contemplated. Namely, the following list of requirements must
be taken into account:

− The contract will represent an ongoing (although limited in duration) relationship
between the signatories. This is in contrast to sell/purchase operations, which have
a very short-term nature, limited to order-delivery-payment operations (if we
disregard possible warranty periods);

− Some interactions between the parties may be continuously repeated. Particularly
when the goal of the VE considers the production of goods that are to be supplied
to third parties, members exchange resources, production outputs or information in
a cyclical manner. The VE (and its formalizing contract) may terminate not by a
pre-specified deadline or at the end of a predetermined normative path, but when
its members decide to cancel their conjoint operation;

− Support for the exit and entrance of partners has to be given. VE contracts can
specify conditions according to which partners may leave or enter the organization.
A VE has a flexible structure, allowing for this kind of adjustments to occur,
particularly when the involved parties fail to perform their duties. In this case, a
member may leave the VE not for its own initiative, but because its behavior
imposes an expulsion, possibly with associated indemnities. Nevertheless, the VE’s
related business can survive with the entrance of new partners;

− When representing a new entity, the VE may establish contracts with third parties,
namely customers. The constitution of the VE might regulate the way how these
contracts are to be formed;

24 H. Lopes Cardoso and E. Oliveira

− An important aspect of the VE operation is how profits are to be exchanged. That
is, the transfer of payments can occur depending on the transfer of (partial)
products between the members of the VE, or only when goods are sold to the final
customers (assuming that the VE’s goal is such). In the latter case, a party’s return
on investment depends on the success of the VE, making risk an explicit factor to
consider when entering the joint venture (which typically implies participation both
in profits and losses).

A contract representation language that is convenient to formalize VE agreements
should therefore take into account these concerns. VE contracts cannot be constructed
just with the normative statement represented above. Richer operators are needed to
specify such contracts. We also find it convenient to split the VE contractual
formalization in two levels of abstraction: constitutional and operational (see section 5).

Practical requirements also arise when one attempts to automate contract
monitoring and enforcement. In particular, contracts must provide directions as to
how and when to verify their fulfillment. In the next section we distinguish contracts
that can be enforced from contracts than can only be verified on creation. A contract
will be enforceable if it is possible to verify if the parties’ actions conform to the
agreement (this verification may eventually require the utilization of external entities’
services). Event-based monitoring systems must be exploited in order to check for
contract compliance. Many contractual actions are dependent on deadlines, which
require a monitoring system to act in response to defined timers [19]. This mixed
event and time-based approach allows for checking both if occurring actions are in
accordance to the contract and if missing actions are in violation of obligations.

5 Virtual Enterprise Normative Framework

In this section we propose a hierarchical organization of norms, in an environment
addressing the establishment and operation of VE contractual relationships.

A VE contract represents a framework within which further interaction between its
participants takes place. This will include the establishment of operational settlements
(contracts) for the exchange of products/services that implement the desired level of
cooperation that led to the formation of the VE in the first place. The VE contract
therefore adds a normative layer to the electronic institution’s framework. Operational
contracts made within the VE constitution must abide to these norms. Figure 2
illustrates the hierarchical relationship between three levels of norms: institutional,
constitutional and operational.

According to this model, it is important to distinguish between verifiability and
enforceability. Institutional norms provide a framework against which a VE contract
can be validated. Accordingly, this VE cooperation agreement establishes a platform
of cooperation within which operational contracts between VE participants can be
checked. However, only operational contracts will be enforceable, in the sense that
only these contracts specify the concrete interactions that must take place between
some of the agents participating in the VE. The verification (validation) of contracts
occurs when contracts are created, whereas their monitoring and enforcement takes

 Virtual Enterprise Normative Framework Within Electronic Institutions 25

place at the execution stage. We take a passive perspective on the verification of
contracts – the institution will react to the creation of a new contract – and an active
one on the enforcement of contracts – the institution will proactively check the
fulfillment of contractual norms.

Institutional norms (the law)

Virtual Enterprise constitution
(cooperation agreement)

Operational contract
(executable norms)

C
on

tr
ac

t v
al

id
at

io
n

C
on

tr
ac

t
m

on
ito

ri
ng

 /
en

fo
rc

em
en

t

Fig. 2. Normative framework

Besides providing a layer according to which operational contracts are validated,
another important role of the VE constitutional contract is to specify the conditions
that participants must accept when establishing operational contracts. When adhering
to the constitution of a given VE, agents impose themselves a level of cooperation
that is then reflected in the terms of executable contracts. The non-acceptance of such
terms should be sanctioned, ultimately by the expulsion from the VE.

5.1 Institutional Norms

Institutional norms include regulations on general contracting activities and on
consortium contracts in particular, as well as default rules to resolve any issues that
have not been explicitly addressed by the parties. These two groups of regulations
influence the formation of both VE constitutional contracts and operational contracts.

Contract law theory [4] identifies two roles for default rules. On one hand, they can
be used to be left in place, that is, they can specify default values that the parties
would agree on, with the intent of minimizing contracting effort. On the other hand,
certain default rules can intentionally provide unfavorable default values, forcing
contractual parties to explicitly deal with specific contract clauses, making sure that
every participant is aware of the agreed values. Another use of this latter case is to
make contractual parties fill in certain formalities in their contract, without which the
contract would not be valid or enforceable.

One possible way to guarantee that parties deal with specific contract details is
through the use of institutionally provided contract templates. These may contain
predefined values as well as un-instantiated (negotiable) parts.

26 H. Lopes Cardoso and E. Oliveira

Since different contractual relations can have a lot in common, contracts (and
templates) can be underspecified, relying instead on institutional norms to complete
the overall picture. These norms include default values for certain contractual issues
(e.g. a 5 days deadline for any payment after delivery), and imposed regulations
concerning exceptional contract execution situations (though not necessarily contract
violations).

Regarding consortium contracts, examples (inspired in [20]) of institutional
regulations include general rules about how a consortium contract may be modified,
conditions according to which an agent can exonerate himself from the contract,
rescind situations towards a non-compliant member, and consortium ending settings.
Also, according to the consortium’s nature, regulations on the split of externally
received payments or profit share policies can be defined.

As figure 2 suggests, we aim at providing a normative background that can be
computationally exploited in validating, monitoring and enforcing contracts.

5.2 Virtual Enterprise Constitutional Norms

Depending on the type of VE created (see consortium goals and types in section 2),
different kinds of norms can be included in the VE contract. However, some common
elements include:

• Duration: specifically, a starting date for the VE operation and ending conditions;
• Membership: rules for the exit of partners and the entrance of new ones;
• Cooperation terms: demanded workload for each partner, agreed prices for each

partners’ contribution, and workflow process general outline.

In the case of a consortium with the goal of selling the result of the cooperation
effort to third parties, the VE contract might also regulate issues on profit exchange
and on the creation of contracts that represent such selling activity.

VE Contract Specification. Focusing on the cooperation commitment that parties
impose themselves when establishing a VE contract, we consider the following
contract structure:

VEContract = <H, CoopEff, BP>

• Header (H): identifies the contract and its normative system of reference,
introduces the organization participants and the resources (products, services,
payments, etc.) that are to be exchanged between them, specifies a signing date and
includes the parties’ digital signatures;

H = <Id, NormSys, Partics, Ress, Date, Signs>
Partics = {Partici}

Ress = {Resk}
Signs = {Signi}

• Cooperation effort (CoopEff): indicates workload acceptance levels and associated
prices for each of the participating agents; these are obtained from the negotiation
process, as described in [21];

 Virtual Enterprise Normative Framework Within Electronic Institutions 27

CoopEff = {<Partici, Resk, Wload>}
Wload = <MinQt, MaxQt, Freq, UnitPr>

Freq ∈ {per_day, per_week, per_month, per_year}

• Business process (BP): describes the flow of resources between participants, in the
form of request permits indicating allowed requests that parties may perform
towards their partners; these requests activate obligation chains (sequences of
obligations where each one is dependent on the fulfillment of the previous one)
that implement the business transaction steps composing the required workflow.

BP = <{ReqPermm}, {OblChainn}>
ReqPerm = <Who, Whom, What>

Who, Whom ∈ Partics; What ∈ Ress; <Whom, What, _> ∈ CoopEff
OblChain = <OblRule1, OblRule2, …, OblRulep>

OblRule = <ActCond, Obl>

According to this layout, we regard request permits as permissions (rights) granted
to agents for demanding the contribution of the envisaged agent, bounded by the
cooperation effort that it committed to. The enactment of such permission activates an
obligation chain describing the procedures to carry out. Making these obligations
dependent on requests relieves us from pre-specifying the exact dates when all the
exchanges should occur, which is difficult to evaluate and subject to contingencies.

The workload acceptance levels (together with their agreed prices) include both a
minimum desired production output (under which a partner’s participation may not be
profitable anymore) and a maximum committed contribution to the organization (over
which the partner is not compromised to assure). We intend to exploit these ranges
when checking the conformance of agents to their contractual cooperation promises,
and when evaluating conditions for contract exoneration.

The VE contract structure should become more complex as we introduce more
elements such as sanctions, contract duration, and membership rules. However, these
additional elements can just as well be defined as default regulations at the
institutional level, keeping the contract contents focused on the essential. The core of
a specific cooperation agreement can be captured by the above structure.

5.3 Operational Norms

Contracts representing concrete exchange of products/services will include specific
actions to be performed by each of the contractual parties, which must be members of
the VE. These contracts implement the VE cooperation agreement, representing the
workflow processes outlined in the VE constitutional contract.

Norms present in such contracts consist of obligations related to delivery and
payment of such products/services. At this level, contracts may be composed of
normative statements as approached in [24] and discussed in section 4.3. The degree
of detail of such norms will determine the possibility for monitoring and enforcement
of operational contracts.

According to the specification above on VE contracts, operational norms become
active when a request is made by an agent concerning the exchange of resources

28 H. Lopes Cardoso and E. Oliveira

between consortium’s participants. The obligation chain indicates actions to be
performed by the involved parties, being amenable to institutional monitoring
activities based on a business transaction repository.

We can regard the constitutionally predicted obligation chains as templates for
operational norms that are instantiated, by the enactment of requests, with specific
data depending on the chain scope, such as dates and quantities.

6 Current and Related Work

We are refining our Electronic Institution’s model depicted in figure 1, developing a
computational framework for facilitating multi-agent contracting in Virtual Enterprise
scenarios, and for monitoring contract execution. We develop on [21], where an
advanced negotiation protocol is presented, specifically tailored to handle the
formation of Virtual Enterprises, and on [23], where a simplified model of an EI is
sketched to support the VE lifecycle.

We are applying our efforts on the specification of a representation formalism that
allows us to model institutional norms and to represent both constitutional and
operational contracts. This representation should allow the validation of contracts
(according to the normative framework presented in the previous section), as well as
the enforcement of operational contracts and their monitoring. In particular, we are
defining an XML schema for specifying VE contracts, according to the structure
briefly presented in section 5.2; this will be used to provide contract negotiation
support tools. A promising approach towards norm representation and verification is
the use of a rule-based inference engine (e.g. JESS, as used in [11]), which allows for
a declarative representation and thus facilitates norm updating, both from the creation
of new contracts and from institutional norm evolution (see future work below).

Since it is impossible to computationally force an agent to fulfill an obligation, we
envisage the effect of triggering sanctions not only as introducing new obligations,
but also as disabling certain agent actions while within the institution (prohibitions, in
normative jargon). This appears to be the approach taken in [9], with the concept of
normative rules.

Contract law [4] includes some essential elements that we have adopted. The
essence of contract is commitment: the assurance that others will, when the time
comes, uphold their end of a bargain. Whereas in some situations reputation
mechanisms can provide that assurance, contracting offers an additional recourse
when these “non-legal sanctions” are insufficient to constrain opportunism: parties
expose themselves to legal sanctions for non-fulfillment of duties. The utilization of
default rules, which define the parties’ obligations in the absence of any explicit
agreement to the contrary, allows resolving issues that have not been explicitly
addressed by the parties. Relational contract theory [16] studies continuing relations
that are naturally self-enforceable. Instead of a detailed enforceable contract based on
a third party, a relational contract is based on repeated interactions and social norms,
representing an informal agreement sustained by the value of future relationships.
Relational contracts may arise both because of problems in achieving enforceable

 Virtual Enterprise Normative Framework Within Electronic Institutions 29

contracts and due to the costs of legal enforcement. Although formal contracts seem
opposite to relational ones, they may coexist. Contracting parties use a mix of legal
and extralegal mechanisms. Formal contracts are preferred when establishing
relationships between unknown parties. On the other hand, regular partners generally
rely on implicit relationships, supported by trust and by the threat of withholding
business from anyone who has broken a promise in the past.

Our model of an EI supports these two contractual paradigms, including both
reputation facilities and contract enforcement functionalities. We capture contract law
elements by exploiting a hierarchical normative framework where the EI has the
central role of establishing common business rules.

There is not much work, to the best of our knowledge, devoted to the formalization
of VE contractual agreements. In [22], VE contract establishment is addressed, and
the authors distinguish between agreements and contracts. Agreements, composed of
framework clauses, are seen as mutually accepted rules of engagement between
parties, whereas contracts are agreements with a legally binding weight (and
sufficiently specific to be legally enforceable).

Within the multi-agent research community, some researchers address the
advantages of anticipating sanctions (also called de-commitment penalties) in multi-
agent formal contracting, introducing the concept of a leveled commitment contract
[25], and study reasoning decision processes that consider strategic breaches [25][12].

The execution of contracts is assisted in [24] with a contract fulfillment protocol, a
collaborative protocol based on the normative statements’ lifecycle. Agents
communicate about their intentions on fulfilling contractual norms, allowing partners
to know what to expect from them and permitting a fluent and prompt execution of
contracts, since agents do not have to wait for the fulfillment of their partners’
obligations to start executing their own (hence the collaborative nature). In [19] the
authors identify, from a monitoring perspective, requirements for a business contract
language. They focus on the time-constrained nature of contractual actions and on
event-based monitoring of contracts.

The real-world application of agents in automated contract fulfillment is
challenged by the presence of complex legal issues and subjective judgments of agent
compliance [14]. Some work on these matters has been made, for instance, in [5],
where an e-market controller agent (a third party) is suggested to resolve disputes
arising from subjective views on contract compliance, thereby playing the role of a
judge. This agent holds a representation of the contract, and when a conflict occurs it
collects evidence from the involved parties and obtains information from independent
advisors, such as certification authorities, regulators, or controllers of other associated
markets.

The study of norms in multi-agent systems is relatively recent. Some pertinent
references include [1], [18] and [26]. In [1] the authors distinguish between regulative
and constitutive norms, which have not a direct correspondence to our institutional
and constitutional normative layers. While their approach differentiates norms
according to their nature (regulating behavior vs. describing the legal consequences of
actions), ours is mainly concerned with norm scope.

30 H. Lopes Cardoso and E. Oliveira

A two-level conception of normative agent interactions is also proposed by others.
In [7] the authors model a society of agents distinguishing between an institutional
level (where social norms and rules are specified) and an operational level (dependent
on the goals of each agent). In [24] two classes of sanctions are suggested:
endogenous sanctions, which are specified in the contract, and exogenous sanctions,
which are defined within the normative system to which the contract is subject. The
latter are applied when clauses without specified endogenous sanctions are violated.

The electronic institution concept has been developed by other researchers,
although perhaps with different perspectives. One of the most comprehensive works
on the design, specification and development of electronic institutions is ISLANDER
[10], together with the AMELI infrastructure [11]. This approach considers dialogical
institutions, where agent interaction is made by the utterance of illocutions and is
fully specified in a performative structure consisting of scenes and transitions among
these scenes. Furthermore, norm compliance is assured through the use of mediator
agents called governors, preventing norm violation. A questionable limitation of this
approach is the lack of autonomy agents are confronted with when entering such an
institution. Moreover, since the institution is totally based on the definition of
interactions among scenes, it becomes a too rigid model, using norms to restrict
behavior and avoiding the need for sanctions. Our model intends to be more open, and
addresses the wider perspective of an institution providing support for commitment
expression through contracts. These can be negotiated inside the institution, but need
not be; enforcement mechanisms are to be in place, based on sanction imposition and
reputation, thereby guiding agent behavior (as opposed to restricting agent
autonomy).

For future work, we intend to develop mechanisms that allow agents to learn the
level of detail they should allow their contracts to include, according to their
contractual parties’ reputations. Also, the EI itself might impose certain specifications
in new contracts signed by those who have previously denoted non-fulfillment of
duties.

An open topic we intend to investigate is whether new institutional norms can
emerge from the continuous operation of the EI. For instance, the EI can observe that
a certain kind of business relationship is becoming common, and thus might benefit
from specifically tailored regulations, or from appropriate templates facilitating this
cooperation structure.

References

1. Boella, G., & van der Torre, L. (2004). Regulative and Constitutive Norms in Normative
Multiagent Systems. In Proceedings of 9th International Conference on the Principles of
Knowledge Representation and Reasoning (KR’04), Whistler, Canada.

2. Camarinha-Matos, L. M., & Afsarmanesh, H. (2003). Elements of a base VE
infrastructure. Journal of Computers in Industry, 51(2), pp. 139-163.

3. Castelfranchi, C., Dignum, F., Jonker, C., & Treur, J. (2000). Deliberative Normative
Agents: Principles and Architectures. In N. Jennings & Y. Lesperance (eds.), Intelligent
Agents VI: Agent Theories, Architectures, and Languages, Springer, pp. 364-378.

 Virtual Enterprise Normative Framework Within Electronic Institutions 31

4. Craswell, R. (2000). Contract Law: General Theories. In B. Bouckaert & G. De Geest
(eds.), Encyclopedia of Law and Economics, Volume III: The Regulation of Contracts,
Cheltenham, Edward Elgar, pp. 1-24.

5. Daskalopulu, A., Dimitrakos, T., & Maibaum, T. (2001). E-Contract Fulfilment and
Agents’ Attitudes. In Proceedings of the ERCIM WG E-Commerce Workshop on The Role
of Trust in e-Business, Zurich, Switzerland.

6. Davulcu, H., Kifer, M, Pokorny, L. R., Ramakrishnan, C. R., Ramakrishnan, I. V., &
Dawson, S. (1999). Modeling and Analysis of Interactions in Virtual Enterprises. In
Proceedings of the Ninth International Workshop on Research Issues on Data
Engineering: Information Technology for Virtual Enterprises (RIDE 1999), IEEE
Computer Society, pp.12-18.

7. Dignum, V., & Dignum, F. (2001). Modelling agent societies: co-ordination frameworks
and institutions. In P. Brazdil & A. Jorge (eds.), Progress in Artificial Intelligence:
Knowledge Extraction, Multi-agent Systems, Logic Programming, and Constraint Solving,
LNAI 2258, Springer, pp. 191-204.

8. Dignum, V., Meyer, J., Dignum, F., & Weigand, H. (2002). Formal Specification of
Interaction in Agent Societies. In M. G. Hinchey, J. L. Rash, W. F. Truszkowski, C. Rouff,
& D. Gordon-Spears (eds.), Formal Approaches to Agent-Based Systems, Springer, pp. 37-
52.

9. Esteva, M., Rodríguez-Aguilar, J. A., Sierra, C., Garcia, P., Arcos, J. L. (2001). On the
Formal Specification of Electronic Institutions. In Dignum and Sierra (eds.), Agent-
mediated Electronic commerce: The European AgentLink Perspective, LNAI 1991,
Springer, pp. 126-147.

10. Esteva, M., de la Cruz, D., & Sierra, C. (2002). ISLANDER: an electronic institutions
editor. In The First International Joint Conference on Autonomous Agents and Multi-agent
Systems (AAMAS 2002), ACM Press, pp. 1045-1052.

11. Esteva, M., Rodríguez-Aguilar, J. A., Rosell, B., & Arcos, J. L. (2004). AMELI: An
Agent-based Middleware for Electronic Institutions. In N. Jennings, C. Sierra, L.
Sonenberg, & M. Tambe (eds.), The Third International Joint Conference on
Autonomous Agents & Multi-agent Systems (AAMAS'04) – Volume 1, New York: ACM,
pp. 236-243.

12. Excelente-Toledo, C. B., Bourne, R. A., & Jennings, N. R. (2001). Reasoning about
commitments and penalties for coordination between autonomous agents. In E. André, S.
Sen, C. Frasson, & J. P. Müller (eds.), Proceedings of the Fifth International Conference
on Autonomous Agents, New York: ACM, pp. 131-138.

13. Goodchild, A., Herring, C., & Milosevic, Z. (2000). Business Contracts for B2B. In H.
Ludwig, Y. Hoffner, C. Bussler & M. Bichler (eds.), Proceedings of the CAISE*00
Workshop on Infrastructure for Dynamic Business-to-Business Service Outsourcing
(ISDO’00), CEUR Workshop Proceedings, pp. 63-74.

14. He, M., Jennings, N. R., & Leung, H. (2003). On agent-mediated electronic commerce.
IEEE Transactions on Knowledge and Data Engineering, 15(4), 985-1003.

15. Hoffner, Y., Field, S., Grefen, P., & Ludwig, H. (2001). Contract-Driven Creation and
Operation of Virtual Enterprises. In Computer Networks, The International Journal of
Computer and Telecommunications Networking, volume 37, Elsevier North Holland, pp.
111-136.

16. Hviid, M. (2000), Long-Term Contracts and Relational Contracts. In B. Bouckaert and G.
De Geest (eds.), Encyclopedia of Law and Economics, Volume III: The Regulation of
Contracts, Cheltenham, Edward Elgar, pp. 46-72.

32 H. Lopes Cardoso and E. Oliveira

17. Kollingbaum, M. J. & Norman, T. J. (2002). Supervised Interaction – Creating a Web of
Trust for Contracting Agents in Electronic Environments. In Castelfranchi and Johnson
(eds.), In The First International Joint Conference on Autonomous Agents and Multi-agent
Systems (AAMAS 2002), ACM Press, pp. 272-279.

18. Lopez y Lopez, F., & Luck, M. (2003). Modelling Norms for Autonomous Agents. In E.
Chavez, J. Favela, M. Mejia & A. Oliart (eds.) Proceedings of the Fourth Mexican
International Conference on Computer Science (ENC'03), IEEE Computer Society, pp.
238-245.

19. Neal, S., Cole, J., Linington, P. F., Milosevic, Z., Gibson, S., & Kulkarni, S. (2003).
Identifying requirements for Business Contract Language: a Monitoring Perspective. In
Proceedings of the 7th International Enterprise Distributed Object Computing Conference
(EDOC 2003), IEEE Computer Society, pp. 50-61.

20. Neto, A. (2002). Contrato de Consórcio e de Associação em Participação. In Contratos
Comerciais: Legislação, Doutrina e Jurisprudência, Lisboa: Ediforum, ISBN: 972-8035-
56-X, pp. 407-425.

21. Oliveira, E. & Rocha, A. P. (2000) Agents Advanced Features for Negotiation in
Electronic Commerce and Virtual Organisations Formation Process. In F. Dignum & C.
Sierra (eds.) Agent Mediated Electronic Commerce: The European AgentLink Perspective,
LNAI 1991, Springer, pp. 78-97.

22. Quirchmayr, G., Milosevic, Z., Tagg, R., Cole, J., & Kulkarni, S. (2002). Establishment of
Virtual Enterprise Contracts. In R. Cicchetti, A. Hameurlain, R. Traunmüller (eds.),
Database and Expert Systems Applications: 13th International Conference, DEXA 2002,
Springer, pp. 236-248.

23. Rocha, A. P. & Oliveira, E. (2001) Electronic Institutions as a framework for Agents’
Negotiation and mutual Commitment. In P. Brazdil, A. Jorge (eds.), Progress in Artificial
Intelligence: Knowledge Extraction, Multi-agent Systems, Logic Programming, and
Constraint Solving, LNAI 2258, Springer, pp. 232-245.

24. Sallé, M. (2002). Electronic Contract Framework for Contractual Agents. In R. Cohen and
B. Spencer (eds.), Advances in Artificial Intelligence: 15th Conference of the Canadian
Society for Computational Studies of Intelligence, Springer, pp. 349-353.

25. Sandholm, T. W., & Lesser, V. R. (2001). Leveled Commitment Contracts and Strategic
Breach. Games and Economic Behavior, 35, 212-270.

26. Vázquez-Salceda, J., Aldewereld, H., & Dignum, F. (2004). Implementing norms in
multiagent systems. In G. Lindemann, J. Denzinger, I.J. Timm, & R. Unland (eds.)
Multagent System Technologies, LNAI 3187, Springer, pp. 313-327.

27. von Wright, G. (1951). Deontic logic. Mind, 60, 1-15.
28. Weigand, H., Schoop, M., de Moor, A., & Dignum, F. (2003). B2B Negotiation Support:

the need for a communication perspective. Group Decision and Negotiation, 12(1), 3-29.

Virtual Knowledge Communities for Corporate
Knowledge Issues

Pierre Maret1, Mark Hammond2,3, and Jacques Calmet3

1 INSA de Lyon, LIRIS (CNRS FRE 2672),
20, avenue Albert Einstein. F-69621 Villeurbanne, France

pierre.maret@insa-lyon.fr
2 Department of Computing, Imperial College London,

180 Queen’s Gate, SW7 2AZ, London, England
mrh00@doc.ic.ac.uk

3 University of Karlsruhe, IAKS,
Am Fasanengarten 5, D-76131 Karlsruhe, Germany

calmet@ira.uka.de

Abstract. Corporate knowledge consists both of information that is
available throughout a company and of information technology frame-
works and paradigms. Considering an enterprise as a distributed com-
putational paradigm, multi-agent systems can be proposed to address
knowledge management issues within a company. We consider in this pa-
per a new approach for corporate knowledge based on the agent oriented
abstraction paradigm. This paradigm provides a high level of abstraction.
We investigate here the concept of virtual knowledge communities, which
is a convenient concept for addressing dynamical distributed knowledge
management. It allows improved simulation and support for knowledge
management processes, and therefore to innovate with new methods in
this field. Our approach is well-suited for instance to filter the amount
of knowledge that is transmitted throughout a company.

1 Introduction

Knowledge management (KM) is a critical issue within knowledge-intensive or-
ganizations [1]. Corporate knowledge consists of both information that is avail-
able throughout a company and of information technology frameworks and
paradigms. Most approaches to knowledge management remain mainly founded
on centralization and objectivity. They are generally based on the database
paradigm. Examples of such systems are numerous. However centralization and
objectivity appear incompatible with the very nature of knowledge. Bonifacio [2]
criticizes most current knowledge management systems where ”all perspectival
aspects of knowledge should be eliminated in favor of an objective and general
representation of knowledge”. In [2] the authors propose a peer-to-peer architec-
ture which emphasizes distributed knowledge management and knowledge nodes.
Kornfeld [3] claimed years ago that diversity and concurrency of (scientific) com-
munities are essential to their progress. We argue that approaches to knowledge

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 33–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 P. Maret, M. Hammond, and J. Calmet

management must maintain compliance with the very nature of knowledge that
is subjective, distributed and contextual.

Multiagent systems (MAS) have been introduced as a methodology to address
distributed computing problems in artificial intelligence. They have evolved as a
management methodology and a software engineering design principles leading
to object-oriented-like systems. The main software agents developed in the KM
area implement functionalities [4] such as extraction of knowledge from document
bases [5, 6, 7], user’s profile identification [5], and knowledge targeted diffusion
[8, 9]. When adequately considering most of these tools, we observe that they
solely cover single issues of corporate knowledge and that they do not propose a
broad and generic view on corporate knowledge. Indeed, the level of abstraction
remains mostly insufficient and the broad scope of available knowledge is not
considered appropriately.

Considering an enterprise as a distributed computational paradigm, multi-
agent systems can be proposed to address knowledge management issues within
a company. Processes within the company tend to make agents produce and
exchange knowledge with each other. This constitutes a key issue addressing the
domain of agent societies. Examples of such systems are numerous (for instance
[10], [11]) Within multi-agent societies, a balanced articulation must be found
between organizational control and autonomous social behavior of agents. The
works of Lesser concerning organizational design confront the organizational con-
trol and emergent organization [12]. Bradshaw proposes a framework to specify,
manage and enforce agent behavior using DAML-based policies [13]. Exploring
security issues inside open organizations, Omicini [14] calls for a systemic vision
of MAS, explicitly accounting for social issues (social intelligence) as opposed to
focusing on individual agent’s intelligence. Calmet [15] proposed the liberal ap-
proach for agent communities, based on the work of Weber in sociology. Weber
considers a society as the result of the actions of its actors. This liberal point
of view has been taken to describe the Agent Oriented Abstraction [16] where
agents are seen as made of two components: the knowledge component and a
decision making system. The concept of knowledge management into a society
of agents becomes fully meaningful in this context [17].

Among the various approaches to corporate knowledge, the one we adopt
considers that corporate knowledge consists of i) the overall knowledge detained
by agents and ii) the ability of agents to cooperate with each other for achiev-
ing their goals. Corporate knowledge encompasses then any piece of information
available in an enterprise from the technology required to design and produce
goods to management decision policy through human relations and internal or
external communication. The decision mechanism encompasses (but is not lim-
ited to) the behavior of agents regarding domains of interests and knowledge
exchanges.

In this paper we investigate the concept of virtual knowledge communities,
which is a convenient concept for addressing dynamical distributed knowledge
management. It is well-suited to filter the amount of knowledge that is transmit-
ted throughout a company. The concept of community (of interest or of practice)

Virtual Knowledge Communities for Corporate Knowledge Issues 35

is central in the knowledge management area. Examples are [18] and [19]. It
seems that this concept has hardly been addressed in the framework of agent so-
cieties. We notice however that, like individuals and computer systems (and even
internet nodes), agents are autonomous and heterogeneous. Moreover, relative
to traditional approaches, agent-based modeling introduces openness and dy-
namicity, which is highly compatible with knowledge processes. Agent societies
therefore constitute the right level of abstraction for modeling and engineer-
ing corporate knowledge systems which are complex articulated systems. The
Agent Oriented Abstraction provides a high level of abstraction. E-business and
enterprise-wide applications could therefore significantly gain from our approach
for corporate knowledge. It allows improved simulation and support for knowl-
edge management processes, and therefore allows innovation with new methods
in this field.

This paper is organized as follow: section 2 introduces briefly key concepts
for the management of knowledge of agents: ontology, knowledge clusters and
instances. Then in section 3 we describe the concept of virtual knowledge commu-
nity. Section 4 concerns the implementation of a Jade-based prototype system.
Section 5 consists of a discussion and of some concluding remarks. We illustrate
some of the concepts we do use with a purposely almost trivial example. A more
significant example taken from corporate knowledge would not fit in the format
of the paper.

2 Agents, Ontology and Knowledge

Agents are active objects with the ability to perceive, to reason and to act.
In addition, it is assumed that agents have explicitly represented knowledge
and communication ability [20]. For our purposes, we discuss hereafter three
key notions used in our approach: ontology, knowledge cluster and knowledge
instances.

The knowledge of an agent is represented in the vocabulary of an ontology.
Agents are related to an ontology to talk and reason about things and facts. We
consider a high-level ontology for frame-based description of knowledge. Knowl-
edge is described in terms of Predicates, Concepts, Actions. This is compliant
with the ACL-FIPA specifications. Attributes related to these terms are such as
name, slots, arguments. We call an instance of the ontology a knowledge clus-
ter. A knowledge cluster represents some structured knowledge. Basic operators
on knowledge clusters can be defined, such as addition, filtering, search, is-sub-
part-of, comparison. Knowledge clusters can be defined recursively. A knowledge
cluster may be related to the overall knowledge of an agent, a specific task or to
a given topic. A simple example of a knowledge cluster related to the domain of
software maintenance is given hereafter (with a simplified syntax).

– Concept
– name: Software
– slots: Name-Software, Version

36 P. Maret, M. Hammond, and J. Calmet

– Concept
– name: Incident
– slot: Description-Incident

– Concept
– name: Location
– slot: Description-Location

– Predicate
– name: IncidentDecription
– arguments: Software, Incident, Location

We call knowledge instances instances of objects defined into the knowledge
clusters. An example of knowledge instances of an agent is given hereafter.

– Software : Jade(”3.1”)
– IncidentDescription : (Jade(”3.1”) , ”System refuses to...”, ”While ...”)

We assume that agent’s knowledge consists of knowledge clusters and in-
stances. Under this assumption, an agent’s knowledge varies from agent to agent,
which is fully compliant with individuals’ knowledge. Moreover, while processing
tasks, agents use, produce and acquire knowledge. Thus, knowledge can not be
uniquely considered at design time (inherent knowledge). So, we assume that
agent’s knowledge evolves during the agent’s life, thanks to individual activity
and exchanges within the agent society. These assumptions are trivial regarding
knowledge instances, but they are not trivial regarding knowledge clusters.

3 Virtual Knowledge Communities

We have defined corporate knowledge as the overall knowledge detained by
agents within a system and their ability to cooperate with each other in order to
achieve their goals. We introduce now the concept of a virtual knowledge com-
munity as a means for agents to share knowledge about a topic. The description
hereafter aims at equipping agents with a layer through which they have the abil-
ity to act as members of knowledge communities. Agents are in charge of tasks
within the society and they are provided with knowledge and decision mecha-
nisms (agent oriented abstraction). Membership in a knowledge community does
not replace the intrinsic goal of an agent for which it was introduced into the sys-
tem. The concept of virtual knowledge community aims to increase the efficiency
with which information is made available throughout an organization. This leads
firstly to a more efficient achievement of the goals assigned to the agents, and
secondly, provides a learning or data-mining mechanism. This mechanism can be
proactive or reactive depending on the circumstances. Business activities such
as e-business or virtual enterprises are usually dynamic processes. Thus, agents
ought to be able to create, join, feed, mediate and use knowledge communities
dynamically. Also, agents ought to increase their knowledge.

Virtual Knowledge Communities for Corporate Knowledge Issues 37

3.1 Modeling Virtual Knowledge Communities

A virtual knowledge community is composed of a topic, members and a space for
exchanging messages. We previously described the knowledge of agents in terms
of knowledge cluster and instances. Thus, the topic of a knowledge community
is described similarly. Agents participating in a community are supposed to
send and access messages related to the community topic. We assume that the
locations of knowledge exchanges are message buffers where agents’ contributions
are posted and accessed. The content of messages is composed of a knowledge
cluster and a set of knowledge instances.

3.2 Knowledge Community Processes

Agents’ actions related to knowledge communities are the following: initiate and
terminate a community, join a community and exchange knowledge. Community
initiation can be done by any agent which becomes then the community leader.
Initiation consists of creating a topic and a message buffer, and of advertising
about the community. Advertising is not done through a specific shared feature
(for instance the Federation Directory Service in the approch of [10]), which
would introduce some centralization. Initiation is done thanks to a broadcast
message that each agent of the system is able to send through the system it
belongs to. Advertising consists then in broadcasting a community initiation
cluster and a buffer reference dedicated to messages’ exchanges related to this
community. The community initiation cluster is necessary a sub-part of the ini-
tiator’s cluster. It can also contain instances. An example is given hereafter,
continuing the simple previous example:

– Concept
– name: Software
– slots: Name-Software, Version

Community termination consists of erasing the community message buffer
created during initiation. An agent considers joining communities in receiving
and in evaluating the initiation message and more specifically the posted knowl-
edge clusters. An agent may be willing to join a community when the intersection
between a community cluster and its own cluster is not empty. It sends then a
so-called join message to the leader. A negotiation process is initiated with the
community leader, which evaluates the candidate and the conflicts that may
arise [21]. The role of the leader can be compared to the negotiator introduced
in the approach described in [11].

Exchanging knowledge within a community consists of posting and accessing
request and inform messages. They are sent to the community buffer and contain
a knowledge cluster or instances. An example of an inform message related to
the previous community cluster is given hereafter. In this example, the sender
agent proposes specializations of the concept Software.

38 P. Maret, M. Hammond, and J. Calmet

– Concept
– superconcept: Software
– name: Proprietary-software
– slots: Price

– Concept
– superconcept: Software
– name : Open-source-software

3.3 Social Behavior as Agent’s Knowledge

In an open and moving environment, it can not be assumed that agents use the
same terms for the same real world objects. Also, it is not possible to believe
that agents will succeed in exchanging knowledge without a minimum seman-
tic effort. However this effort and this ability must remain controlled by the
agent itself. Agent’s autonomy is then preserved. We assume that this ability
is itself knowledge. It can take any format in the framework of the knowledge
cluster: reference to any accessible ”normalized” clusters, implementation of an
own matching table or function... Semantic interpretation of the content of any
knowledge clusters is then left to the capabilities and features of each agent.
It must be outlined that this approach is a design decision for our model. One
could select a more generic approach, using for instance KOMET [22] where a
mediator system extracts the relevant knowledge from agents in a semantically
sound way. The following example illustrates the basic expression of two knowl-
edge matching abilities. The predicate ”convert-into” enables the agent to match
”SW” with ”Software”. The action ”Convert” expresses the ability for the agent
to initiate conversion functions for clusters.

– Predicate
– name: Convert-into
– arguments: Software, SW

– Action
– name: Convert
– arguments: conversion-function, cluster-in, cluster-out

Regulation of the knowledge community is also a societal issue. Each agent
may define policies specifying their behavior regarding knowledge communities:
what are the circumstances in which they would choose create, delete, join a
community, send and access knowledge. Of course, this policy can be different
for every agent and a single agent may implement several policies. For instance, it
can range from joining a community if a given cluster or a given instance appears
into the community cluster, to joining a community when the intersection with
the community cluster reaches a given percentage, etc. The initiator of a commu-
nity can also perform regulation regarding the use of its community. This may
prevent any inappropriate functioning due to (purposely or not) unfair agents.
The implemented policy can be very liberal or it can filter or moderate contri-
butions (considering for instance the message sender or the message content).
Again, we assume that agent’s potential behaviors are part of its knowledge.

Virtual Knowledge Communities for Corporate Knowledge Issues 39

The following example sketches behaviors of agents when joining a community.
Instances of these behaviors follow. In the example, the agent ”knows” three be-
haviors for deciding to join a community: when the concept ”Software” is present
into the community cluster, when the instance ”Jade(3.1)” is present into the
community cluster, or when the community cluster is covered by more than p%
of the agent’s cluster. One, both or none of the behaviors can be activated.

– Action
– name: Join-on-cluster
– arguments: Cluster

– Action
– name: Join-on-knowledge-instance
– arguments: Instance

– Action
– name: Join-on-cluster-intersection-rate
– arguments: value

– Knowledge instances
– Join-on-cluster (concept(Software))
– Join-on-knowledge-instance (Jade(”3.1”))
– Join-on-cluster-intersection-rate (p)

Exchanges in-between agents suppose the existence of communication mech-
anisms. Again, in an open and generic approach, it can not be considered that
agents always use a same and unique communication mechanism. For instance,
knowledge exchange within a community can be carried out in a negotiation or
in a cooperation mode. Thus, we consider that communication mechanisms be-
longs to agent’s knowledge. Each agent can then possess several communication
mechanisms and it selects the appropriate one when creating or joining a com-
munity. We are aware that it is easy to argue that many of the implicit societal
problems involved in this model could be better discussed. However, we set our
approach in a well-defined model of agent society, as previously quoted, and any
discussion is more relevant for [15] than for this paper.

4 Implementation of a Prototype System

4.1 Aims of the System

The aim of the prototype is to design and create a working system, in which
agents with heterogeneous personal ontologies can create, destroy, leave and join
communities in order to share knowledge clusters and instances with each other.
Emphasis is on the sharing of knowledge, the creation of mappings between
personal concepts and normalized concepts and on establish the mechanisms
with which agents can dynamically move between communities and update their
personal knowledge.

To summarize what is provided within the prototype we list the inputs to the
system, the decisions a decision making system makes on the agents behalf and

40 P. Maret, M. Hammond, and J. Calmet

the results we observe. The prototype allows the creation of multiple agents on
different machines, each with a given personal ontology, given personal knowl-
edge instances, a set of given normalized ontologies and a set of mappings for
each normalized ontology as inputs. Each one of the sets of mappings details
any mappings an agent already has from its personal ontology predicates and
concepts to the normalized ones. The agents are allowed to join and leave the
system at any given time, in any given order. The agents are not hard-coded
with any knowledge about existing communities to join (except for the global
’community of communities’) or other agents to communicate with.

In light of the agent-oriented abstraction approach previously cited, agents
are provided with a decision making system linked to their knowledge compo-
nent. The decision making system is involved for instance when an agent creates
a new community. Here it specifies which one of the normalized ontologies the
agent should use to create this community. The decision making system is also
involved whenever the agent encounters a new concept for which it does not
already possess a mapping. Here the decision making consists in determining
which concept, if any, to map to. Finally, the decision making system is involved
when adding goals to an agent (for goal driven agents) or when choosing which
part of its knowledge it should share (for altruistic agents). For all of these types
of decisions, we implemented a human-based approach. An automated approach
could be designed with no conceptual changes.

The results of the prototype system take the form of a user readable inter-
active output, showing the actions the agent is undertaking while it performs
them. Thus, we can analyse the behavior of the agents. This is quite useful since
the actions the agents make depend on other agents in the system as well as on
themselves. This way, the actions decided by an agent may be non predictable
in advance. We observe that agents can update their personal ontology, personal
knowledge instances and personal mappings when appropriate.

4.2 System Implementation

JADE (Java Agent Development Framework), a Java based software develop-
ment framework that fully conforms to FIPA standards for intelligent agents
[23], was chosen to implement the prototype system. The most important aspect
of JADE that makes it useful for the prototype system is its support for message
passing and user defined ontologies. Agents are created by simply extending the
jade.core.Agent class. This makes the development of different kinds of agents
very straightforward.

Classes. The main class of our system is the CommunityAgent class. It is an
abstract class that all different types of agents must extend. We propose two ex-
tensions of the CommunityAgent: the IndividualAgent and the SocialAgent.
These two different types of agent have different behaviors. An individualistic
agent instigates or joins a community because it needs knowledge from a certain
domain, and will leave a community when it has got what it wants from the
community or if it is not getting enough from it (e.g. it has been in the commu-

Virtual Knowledge Communities for Corporate Knowledge Issues 41

Jade.content.onto.ontology

AbsContentElementListKnowledgeCluster

11

personalOntology

KnowledgeClusterOntology

Jade.core.Agent

PersonalKnowledge
int:CommunityID

CommunityAgent

1

personalKnowledgeInstance

Fig. 1. Simplified class diagram (Unified Modeling Language formalism)

nity too long with no benefit). Its goals are chosen through its decision making
mechanism, in the form of concepts that the agent wants to add to its knowl-
edge. An individualistic leader will kill a community once it has completed the
knowledge it requires. A sociable agent instigates a community purely because
it has nothing else to do and for the good of all. The community will only die if
everyone leaves the community. Sociable agents join every community that con-
cern them (whose community cluster overlaps his own domain of knowledge) and
never leave active communities where they may still be able to offer something.
From a security point of view it is difficult to distinguish in this model between
social agents and intruding passive agents. However, since JADE is not a secure
platform as a forthcoming publication will show, this is not a crucial comment.

Each CommunityAgent has exactly one PersonalKnowledge object. The
PersonalKnowledge class extends the KnowledgeClusterOntology class which
represents an ontology that describes the classes of objects that make up knowl-
edge clusters, namely concepts and predicates. One might say that the Knowl-
edgeClusterOntology is a meta-ontology that describes knowledge clusters. The
personal knowledge consists of both personal ontology(KnowledgeCluster class),
and personal knowledge instances (AbsContentElementList class). The class di-
agram can be seen in Fig.1 where ’1’ means ’contains one attribute of class...’.

Agent Communications. Any communication in the system is done through mes-
sage passing. Messages sent are of type jade.lang.acl.ACLMessage, inform
or request. There are three types of request messages that can be sent by
CommunityAgent’s: joinCommunity, readFromBuffer (request to read from the
community buffer) and KnowledgeCluster (an agent wishes to increase a clus-
ter with both ontological and instance knowledge). There are four types of
inform messages: inform content message containing a knowledgeCluster or
knowledge instances that are being shared by an agent, updateRole (from
leaders to members following an update of an agent’s role), leavingCommunity
and communityDead.

System run. Let us take the example of two agents (Mark and Jose), instances
of the IndividualAgent class. They have different personal names for all the

42 P. Maret, M. Hammond, and J. Calmet

concepts in their ontology (for instance concepts SW and Software), but they
have both a reference to the same normalized ontology. Jose already has the
mappings from his personal concepts to the ones in the normalized ontology con-
tained in his mapping file (Program stands for SW). Mark does not. Moreover,
Jose has ontological knowledge that Mark does not have (OpenSourceSoftware
is a SW). Jose has instances of this knowledge also (JADE is instance of Open-
SourceSoftware). While performing the test run, we see that through knowledge
communities and agent’s goals, knowledge sharing takes place. Mark can gain
both ontological knowledge, as well as instances, even though Jose’s concepts
are not included in the normalized ontology, and Mark and Jose have different
names for all the terms they share in common. Agents can then dynamically
collaborate, pool their knowledge and gain information, although they did not
build it into their initial system.

5 Discussion and Conclusion

Considering an enterprise as a distributed computational paradigm, we pro-
posed in this paper a generalization of corporate knowledge based on the agent
paradigm. We used the Agent Oriented Abstraction paradigm, which has been
proposed to describe the concept of agents in a fully generic way. It provides
a high level of abstraction and considers that agents consist of knowledge and
decision mechanisms. This abstraction mechanism leads to practical applications
for corporate knowledge.

We described the concept of virtual knowledge community to model instances
of corporate knowledge. This concept can be useful in real applications as well
as in theoretical researches. The approach extends the field of knowledge man-
agement to societies of agents. Virtual knowledge communities constitute a nice
framework for addressing and testing various aspects of corporate knowledge, es-
pecially knowledge modeling, autonomy of actors and exchange processes. Our
work now provides the possibility to simulate and support knowledge manage-
ment processes more appropriately and therefore to innovate with new methods
in this field. Virtual knowledge communities also constitute a non trivial domain
for applying and testing agents’ key properties such as autonomy, heterogeneity,
openness and dynamicity.

The virtual knowledge community concept enables agents to diffuse and to
extend their knowledge within a society of agents. Knowledge is not limited to
a specific ”domain of interest”, rather it is considered that knowledge owned
by agents also comprises knowledge about communication mechanisms, hetero-
geneity resolution, and societal behavior. Knowledge exchanges are carried out
within a set of agents concerned about a common topic. Exchanging knowl-
edge instances is common and necessitates that the agents possess roughly the
same knowledge structure. Thanks to the generalized approach of agent’s knowl-
edge, including knowledge matching ability in particular, agents have the ability
to share knowledge structures while preserving autonomy. Future works will
consider improving the structure and the modeling of agent’s knowledge. The

Virtual Knowledge Communities for Corporate Knowledge Issues 43

concept of knowledge annotations has been introduced in the agent oriented
abstraction paradigm to structure the knowledge. However, support for such a
paradigm can not be found in traditional agent platforms.

A societal issue is to define well adapted agent policies enabling the emergence
of pertinent and fruitful knowledge exchanges. Society’s organization may be
impacted by the emergent organizations arising from knowledge societies. This
is a well known issue in sociology and in human resource management. In this
paper, we did not mention the security issue, which is also a societal issue. Since
the system is open, it requires security policies to ensure only trustworthy agents
can access the communities, and to prevent malicious attacks from untrustworthy
agents. Work on this issue is in progress [24].

Practical applications of our approach are numerous. Agents can consist of
intelligent knowledge assistants, as described in [25], [26], [23]. The interest of
our approach compared to [23] is that we do not consider a unique description
of the domain of interest of agents. The approach is also well suited to filter the
amount of knowledge that is transmitted throughout a company. Indeed, knowl-
edge broadcast is a high-relevance issue within companies. Another application
concerns mobile systems. In this area, agents typically meet others ones that
were not designed in coordination. Through knowledge communities, an agent
could communicate with others to gain knowledge that is of common interest.
In a traditional system, an analyst may need to redesign at least part of the
existing system to accommodate this new source of knowledge.

References

1. Fisher, G., Ostwald, J.: Knowledge management: problems, promises, realities and
challenges. Intelligent Systems 16 (2001) 60–72

2. Bonifacio, M., Bouquet, P., Mameli, G., Nori, M.: Peer-mediated distributed knowl-
edge management. In: American Association for Artificial Intelligence Spring Sym-
posium Technical Report SS-03-01, 1–8, ISBN 1-57735-078-9. (2003)

3. Kornfeld, W.A., Hewitt, C.: The scientific community metaphor. IEEE Transaction
on systems, man and cybernetics 11 (1981) 24–33

4. van Elst, L., Dignum, V., Abecker, A.: Towards agent-mediated knowledge man-
agement. In: Agent-Mediated Knowledge Management. Volume 2926 of LNAI.,
Springer-Verlag (2003)

5. CoMMA: Available electronically at
http://www.si.fr.atosorigin.com/sophia/comma/htm/homepage.htm (2004)

6. J.-R. Chen, S.R.W., Wragg, S.D.: A distributed multi-agent system for collabora-
tive information management and sharing. In: Proc. of the 9th ACM International
Conference on Information and Knowledge Management. (2000) 382–388

7. FRODO: Home page (2004) Available electronically at
http://www.dfki.uni-kl.de/frodo/.

8. Campiello: Home page (2004) Available electronically at
http://klee.cootech.disco.unimib.it/˜campiello/.

9. Benjamin, V.R.: Skills management in knowledge-intensive organizations. In: Proc.
of the EKAW 2002 International Conference. Volume 2473 of LNCS., Springer
Verlag (2002) 80–95

44 P. Maret, M. Hammond, and J. Calmet

10. Cenk-Erdur, R., Dikenelli, O., Seylan, I., Gurcan, O.: Semantically federat-
ing multi-agent organizations. In: Engineering Societies in the Agents World
(ESAW’04), 20-22 October 2004. (2004)

11. Sibertin-Blanc, C., Hameurlain, N.: Participation components for holding roles in
mas protocols. In: Engineering Societies in the Agents World (ESAW’04) 20-22
October 2004, Universit Paul Sabatier, Toulouse, France. (2004)

12. Sims, M., Goldman, C., Lesser, V.: Self-organization through bottom-up coali-
tion formation. In: Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, Melbourne, Australia. ACM Press.
(2003) 867–874

13. Bradshaw, J.: Representation and reasoning for DAML-based policy and domain
services in kaos and nomads. In: Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, ACM Press (2003)
835–842

14. Omicini, A., Ricci, A.: Integrating organisation within a mas coordination infras-
tructure. In: Engineering Societies in the Agents World (ESAW’03), 29-31 October
2003, Imperial College, London, UK. (2003) 165–172

15. Calmet, J., Daemi, A., Endsuleit, R., Mie, T.: A liberal approach to openness
in societies of agents. In: Engineering Societies in the Agents World (ESAW’03),
London, UK, 29-31 October 2003. Volume 3071 of LNAI., Springer-Verlag (2003)
81–92

16. Calmet, J., Maret, P., Endsuleit, R.: Agent oriented abstraction. Royal Academy
of Sciences Journal. Special Issue on Symbolic Computation in Logic and Artificial
Intelligence 98 (2004)

17. Maret, P., Calmet, J.: Corporate knowledge in cyberworlds. IEICE Transaction
on Information and Systems. Special Issue on Cyberworlds (2005)

18. Bonifacio, M., Bouquet, P., Cuel, R.: Knowledge nodes: the building blocks of a
distributed approach to knowledge management. Journal of Universal Computer
Science 8 (2002) 652–661

19. Gordon, M., Fan, W., Rafaeli, S., Wu, H., Farag, N.: The architecture of comm-
knowledge. combining link structure and user actions to support an online com-
munity. Int. J. Electronic Business 1 (2003) 69–82

20. Weiss: Multi-agent Systems. MIT Press (1999)
21. Munroe, S., Luck, M.: Motivation-based selection of negotiation partners. In: En-

gineering Societies in the Agents World (ESAW’04) 20-22 October 2004, Universit
Paul Sabatier, Toulouse, France. (2004)

22. Jacques Calmet, Sebastian Jekutsch, P.K., Schü, J.: KOMET – a system for the
integration of heterogeneous information sources. In: International Symposium
on Methodologies for Intelligent Systems. Volume 1325 of LNAI., Springer-Verlag
(1997) 318–327

23. FIPA: Personal assistant specification (2004) Available electronically at
http://www.fipa.org/specs/fipa00083/XC00083B.html.

24. Endsuleit, R., Mie, T.: Secure multi-agents computations. In: Proceedings of In-
ternational Conference on Security and Management (CSREA) , Las Vegas. (2003)

25. Ford, K.M., Glymour, C., Hayes, P.: Cognitive prostheses. AI Magazine 18 (1997)
26. Hoffman, R.R., Ford, K.M., Hayes, P.J., Bradshaw, J.M.: The Borg hypothesis.

Intelligent Systems 18 (2003) 73–75

Achieving Competence by Argumentation on
Rules for Roles

Ioan Alfred Letia1 and Monica Acalovschi2

1 Technical University of Cluj-Napoca,
Department of Computer Science,

Baritiu 28, RO-3400 Cluj-Napoca, Romania
letia@cs-gw.utcluj.ro

2 University of Medicine and Pharmacy Iuliu Hatieganu,
Third Medical Clinic,

RO-3400 Cluj-Napoca, Romania
monacal@umfcluj.ro

Abstract. We consider the deep venous thrombosis (DVT) as case study
for the specification and implementation of a multi-agent system. The
DVT is an application with low clinical accuracy, needing objective tests,
some of them satisfactorily accurate in experienced hands and others
more definite but invasive. Whether one or more decision makers are in-
volved in this activity is a matter of context, but the main events are
decided by a process that has in itself some forms of argumentation.
Our approach is an argumentative multi-agent system specified by rules
capturing various roles in the diagnosis activity. Although the DVT sce-
nario is a real one, more aspects of health care than the ones presented
in this paper can conveniently be accommodated in this framework by
extending the set of roles and refining the set of rules.

1 Introduction

There are many situations in the medical setting when conflicts of opinion may
appear between different care providers, each judging the situation based on its
own knowledge and duty. Consider the case of a patient that has just been di-
agnosed; there are several possible treatments given the diagnosis and a choice
must be made among those treatments. Different care providers may have differ-
ent opinions about the optimal treatment based on their role and expertise. Still,
a decision has to be made based on their possible contrary opinions. Another
point of divergence between medical professionals may be the investigations that
are more appropriate to perform for establishing a diagnosis. Some investigations
are cheaper, while others may be less harmful to the patient.

Although sometimes it is possible to make decisions in diagnosis taking into
account just the information available [1], in the cases considered above several
roles are involved in the medical decision process, a choice having to be made
between the possible conflicting opinions of each role. Additional information
may be needed for making that choice, due to the multiple options available.

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 45–59, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

46 I.A. Letia and M. Acalovschi

Automated monitoring of medical protocols has been already tackled with a
multi-agent system [2], using a negotiation process to mediate between multiple
medical protocols, where role refers to a particular service that can be played
by a staff person. A multi-agent environment to support training of diagnostic
reasoning and modeling of domains with complex and uncertain knowledge [3]
uses Bayesian networks to offer physicians probabilistic reasoning.

The framework described in this paper aims to help automate/model the
decision making between different roles that are involved in the medical care
process by making use of the knowledge base of each role and also by additional
knowledge needed to solve conflicts of opinion between roles. Recent work [4, 5]
is used to develop a more flexible methodology required by realistic applications
in the health providing activity. The particular contributions of this paper are
threefold: first, we provide a realistic motivating scenario which is quite per-
vasive in the health providing world; second, we show how a role specified by
rules can be combined with one based on experience; third, we show how expe-
rience made public in the Web Ontology Language is used in the argumentation
process.

The paper is organized as follows. Next the basic argumentation frame-
work [4, 5] is summarily presented. Then the DVT scenario is explained in
terms of rules used by the physicians [6] and results obtained from a controlled
trial [7]. Two roles extracted from [6, 7] are then derived as AIM98Agent and
NEJM03Agent, and their interaction by argumentation is portrayed. After a
brief description of the implementation and related work some conclusions are
drawn.

2 Basic Argumentation Framework

We are using the reasoning in an argumentative manner provided by Gorgias1 [4,
5], to determine the case in a certain context. Following the example found in
the Gorgias package on the agent wanting to find out if its security interest in a
certain ship (i) is perfected (c), it currently has possession (p) of the ship, and
according to the ”Uniform Commercial Code”(u) a security interest in goods may
be perfected. According to the federal law ”Ship Mortgage Act” (m) a security
interest in a ship may only be perfected by filing a financing statement (e).
These are the rules used to determine whether the security interest is perfected
or not.

Rules =
{

u : c ← p
m : ¬c ← i,¬e

}

In this example, other facts are: a statement has not been filed (¬e), the
”Uniform Commercial Code” (u) is newer than the ”Ship Mortgage Act” (m),
with the later a federal act, and the former a state act.

1 http://www.cs.ac.cy/˜nkd/gorgias

Achieving Competence by Argumentation on Rules for Roles 47

D : [¬c; m, f2, f3]

A : [f4, post(u, m), f1, u; E1]

¬a

������������������
A : [f4, post(u, m), f1, u; E2]

¬a

������������������

D : [f6, f5, sup(u, m); E1]

a

��

D : [f6, f5, sup(u, m); E2]

a

��

Fig. 1. Defender/attacker argumentation tree

Facts =

f1 : p
f2 : i
f3 : ¬e
f4 : n(u,m)
f5 : f(m)
f6 : s(u)

There are two principles expressing contexts: one is the ”Lex Posterior”, which
gives precedence to newer laws (u is newer than m), and the other is the ”Lex
Superior”, which gives precedence to laws supported by the higher authority (m
has higher authority since it is a federal law).

Contexts =

post(X,Y) : X ≺ Y ← n(X,Y)
sup(X,Y) : Y ≺ X ← s(X), f(Y)
cpr : sup(X,Y) ≺ post(X,Y)

The proof tree for [¬c] is shown in the figure 1, where a node is marked with
D for defendant or A for attacker. The two extensions used are E1={f2, f3,m}
and E1={f2, f3, f5, f6, sup(u,m)}.

3 Deep Venous Thrombosis Scenario

Deep venous thrombosis (DVT) could be defined as the presence of an occlusive
thrombus (clot) within a deep vein, impairing the normal blood flow. Deep ve-
nous thromboses occur most commonly in the lower extremities, and half cause
pulmonary emboli (the most severe complication of DVT) in the absence of treat-
ment. A familial or a personal history of prior DVT and the hypercoagulation
states: antithrombin III deficiency, antiphospholipidic syndrome, polycytaemia
vera, thrombocytemia, . . . are major predisposing risk factors. Patients particu-
larly prone to the development of DVT are also those who are seriously ill and
have been at bed rest for prolonged periods. Some of the patients who are at
highest risk are those who have congestive heart failure, stroke, recent myocar-
dial infarction, malignancies, pelvic /abdominal surgery, especially orthopedic
procedures, trauma - particularly with prolonged immobilization. In addition,

48 I.A. Letia and M. Acalovschi

persons more than 60 years old have an increased incidence of DVT, as do obese
persons, patients with varicose veins, users of contraceptives or high-dose es-
trogen therapy. Pregnancy and the period following childbirth favor DVT. Long
journeys, venous compression, venous catheter insertion or injections might favor
DVT in the presence of other risk factors.

Episodes of DVT are often clinically silent, therefore a high level of suspicion
is necessary. Pretest assessment of the probability of DVT is useful (i.e. eval-
uation of predisposing factors or conditions) when deciding the investigations
required to establish diagnosis. History and physical examination are neither
sensitive nor specific for diagnosis. The presence of symptoms or signs as pain
or edema is not sufficient for diagnosis and implies the need for objective diag-
nostic testing. The objective testing is crucial, because undiagnosed DVT can
cause fatal pulmonary embolism, and because of DVT therapy is effective, but
its inappropriate use should be avoided. Clinical suspicion may dictate the speed
and type of evaluation.

Among the objective tests, the serum level of D-dimers (established by ELISA)
has a high sensitivity (>95%), a lower specificity and a high negative predictive
value. A positive test makes DVT probable, but requires further evaluation;
a negative test excludes with high probability DVT. Venous ultrasonography,
combined with Doppler, is satisfactorily accurate in experienced hands, read-
ily available, non-invasive and repeatable. Impedance plethysmography is non-
invasive, safe, but useful especially for diagnosing proximal DVT in symptomatic
patients. Its performances are increased when associated with other noninvasive
tests. Contrast venography is the reference (“gold”) standard for the diagnosis
of DVT, being the most definitive diagnostic test, but it is an invasive exam-
ination, associated with risks for the patient and high technical demands and
costs. Therefore, investigation using non-invasive ultrasound techniques in com-
bination with the D-dimer test is often regarded as sufficient in symptomatic
patients with suspected DVT.

3.1 Rules for Diagnosis

The findings that are diagnostic of DVT (see [6]) can be expressed by the rules
shown in the figure 2 (with a rule of grade A stronger than one of grade B
and one of grade B stronger than one of grade C). The first two rules say that

diagDV T (grA) ← ultrasonography(commonFemoral) ∨ ultrasonography(popliteal)
diagDV T (grB) ← ultrasonography(superficialFemoral)

∨ultrasonography(distalPopliteal) ∨ ultrasonography(deepCalf)
diagDV T (grA) ← plethysmography(abnormal), clinical(high)
diagDV T (grB) ← plethysmography(abnormal), (clinical(moderate) ∨ clinical(low))
diagDV T (grA) ← venography(defect)
diagDV T (grC) ← venography(suggestive)

Fig. 2. Rules that are diagnostic of DVT

Achieving Competence by Argumentation on Rules for Roles 49

exclDV T (grA) ← venography(normal)
exclDV T (grA) ← ultrasonography(normal), clinical(low)
exclDV T (grC) ← ultrasonography(normal), dDimer(normal)
exclDV T (grB) ← plethysmography(normal), dDimer(normal)

Fig. 3. Rules that exclude DVT

venography ← ultrasonography(superficialFemoral)
∨ ultrasonography(distalPopliteal) ∨ ultrasonography(deepCalf)

ultrasonography ←plethysmography(abnormal),(clinical(moderate) ∨ clinical(low))
venography ← plethysmography(abnormal), (clinical(moderate) ∨ clinical(low))
ultrasonography ← venography(suggestive)
plethysmography ← venography(suggestive)
clinical ← venography(suggestive)

Fig. 4. Rules recommending examinations

venous ultrasonography shows DVT in the case of non-compressibility of the
common femoral vein or popliteal vein (grade A), while non-compressibility that
is confined to the superficial femoral vein, the distal portion of the popliteal vein,
or the deep veins of the calf is associated with a lower predictive value (grade B).
The following two rules express that impedance plethysmography shows DVT
in the case of an abnormal result and a high clinical suspicion of deep venous
thrombosis (grade A), while an abnormal result of impedance plethysmography
combined with a moderate or low clinical suspicion of DVT has lower predictive
value (grade B). The last two rules on venography say that an intraluminal
filling defect seen in more than one view are diagnostic of DVT (grade A), while
onfilling of the deep veins despite repeated injection of contrast, are just highly
suggestive of DVT (grade C).

Findings of the group of experts that exclude DVT (see [6]) include the rules
shown in the figure 3. The first rule says that a normal result of venography
excludes DVT (grade A). A normal ultrasonography and (i) low clinical suspicion
of DVT (grade A) or (ii) a normal result on a d-dimer assay (grade C) are
shown by the following two rules to exclude DVT. A normal result on impedance
plethysmography and a d-dimer assay (grade B) exclude DVT as shown by the
last rule.

The recommendations for the diagnosis of DVT (see [6]) also include the rules
for investigations shown in the figure 4. Non-compressibility that is confined to
the superficial femoral vein, the distal portion of the popliteal vein, or the deep
veins of the calf should be evaluated with venography (first rule). An abnormal
result of impedance plethysmography combined with a moderate or low clinical
suspicion of deep venous thrombosis should be evaluated with venous ultrasonog-
raphy or venography (second and third rule). Nonfilling of the deep veins despite
repeated injection of contrast (highly suggestive of DVT), must be interpreted
in the light of clinical presentation and other investigations, such as results of
impedance plethysmography or venous ultrasonography (the last three rules).

50 I.A. Letia and M. Acalovschi

Patients(1096)

Unlikely(601)

dDimer(317)

!dDimer

+dDimer

Ultrason

+DV T −DV T

0 V TEs

−dDimer

−DV T

2 V TEs

¬dDimer(284)

Ultrason

+DV T −DV T

4 V TEs

Likely(495)

dDimer(249)

Ultrason

+DV T −Ultrason

!dDimer

+DD

Ultrason+

+DV T −DV T

0 V TEs

−DD

−DV T

0 V TEs

¬dDimer(246)

Ultrason

+Ultrason

+DV T

−Ultrason

Ultrason+

+DV T −DV T

2 V TEs

Fig. 5. Patient outcomes in the evaluation trial

3.2 Controlled Trials

An evaluation of d-dimer in the diagnosis of suspected DVT [7] has concluded
that DVT can be ruled out in a patient who is judged clinically unlikely to have
DVT and who has a negative d-dimer test, and therefore ultrasound testing can
be safely omitted in such patients.

The results of this controlled trial are shown in the figure 5 (see [7]). All
patients were first evaluated using a clinical model and divided into two groups
considered (clinically) unlikely or likely to have DVT. They were then randomly
assigned either to undergo ultrasound imaging alone (control group) or to un-
dergo d-dimer testing. Those in the later group then underwent ultrasound imag-
ing (Ultrason) if they had been judged clinically likely to have DVT or if they
were judged clinically unlikely but the d-dimer test (!DD) was positive (+DD).

The primary outcome of this evaluation was the development of a venous
thrombo-embolic event (VTE) in patients in whom DVT had initially been ruled
out. They offer histories for re-evaluating the diagnosis model or, as we consider
here, knowledge for an evaluation agent that can also provide cues for argu-
mentation to the diagnosing agent. For example, we can see that there were
two patients judged clinically unlikely who, with a negative d-dimer test (–DD),
DVT was ruled out (–DVT) but still developed a venous thrombo-embolic event
(2 VTE). For the patients judged clinically likely a second ultrasound imaging

Achieving Competence by Argumentation on Rules for Roles 51

(Ultrason+) was performed after one week, which helped to reduce risk in the
group with the d-dimer test.

4 Argumentation with Rules for Roles

The diagnosis process takes place on a time line and can be visualized as in the
figure 6. In the state si the agents know the history H of the diagnosis process

s0a0s1 . . . ai−1︸ ︷︷ ︸
H
↓

past

si aisi+1 . . . sn−1an−1sn︸ ︷︷ ︸
F
↓

future

Fig. 6. Course of action

for the patient and have to decide about the future F, the remaining course of
actions so that the proper conclusion is reached. That means that the patient
will finally be diagnosed either as +DVT and the corresponding treatment will
be applied or –DVT and no VTE event should occur in a reasonable period
(three months in the controlled trial).

A state of a patient is represented by the results of the investigative actions.
For example, {−c0,+d1,−u2} shows the state of the patients judged clinically
unlikely with a positive d-dimer test and a negative ultrasonography investiga-
tion, which should have been ruled out for DVT. The patients with the state
{+c0,−u1,−u2} have been ruled out for DVT in the evaluation but two of them
have developed VTE (see figure 5).

4.1 The AIM98Agent Role [6]

The set of preferences over actions in the DVT scenario, regardless of context,
is {c ≺ v, c ≺ u, c ≺ p, c ≺ d, u ≺ v, p ≺ v, d ≺ v, d ≺ u}, that is clinical exami-
nation is preferred to venography, . . ., d-dimer is preferred to ultrasonography.
The preferences on diagnostic rules are:

gr0 : d(A) ≺ d(B) (1)

gr1 : d(A) ≺ d(C) (2)

gr2 : d(B) ≺ d(C) (3)

Our rules that are diagnostic of DVT in the state si are transformed from the
diagnostic rules of the group of experts discussed previously and shown in the
figure 2.

d0 : dvt(A) ← u(cF) ∈ si ∨ u(p) ∈ si (4)

d1 : dvt(B) ← u(sF) ∈ si ∨ u(dP) ∈ si ∨ u(dC) ∈ si (5)

d2 : dvt(A) ← p(a) ∈ si ∧ c(h) ∈ si (6)

d3 : dvt(B) ← p(a) ∈ si ∧ (c(m) ∈ si ∨ c(l) ∈ si) (7)

52 I.A. Letia and M. Acalovschi

d4 : dvt(A) ← v(d) ∈ si (8)

d5 : dvt(C) ← v(s) ∈ si (9)

while those that exclude DVT are the transformation of the the rules of experts
shown in the figure 3.

e0 : ¬dvt(A) ← v(n) ∈ si ∧ c(l) ∈ si (10)

e1 : ¬dvt(C) ← dd(n) ∈ si (11)

e2 : ¬dvt(A) ← p(n) ∈ si ∧ dd(n) ∈ si (12)

The rules recommending an action ai are in the state si include the rules for
investigations recommended by experts and shown in the figure 4.

a0 : v(A) ← u(sF) ∈ si ∨ u(dP) ∈ si ∨ u(dC) ∈ si (13)

a1 : u(B) ← p(a) ∈ si ∧ (c(m) ∈ si ∨ c(l) ∈ si) (14)

a2 : v(A) ← p(a) ∈ si ∧ (c(m) ∈ si ∨ c(l) ∈ si) (15)

a3 : u(B) ← v(s) ∈ si (16)

a4 : p(A) ← v(s) ∈ si (17)

a5 : c(C) ← v(s) ∈ si (18)

If preferable, we can use rules showing preferences over actions in a given
context,

c0 : u ≺ v ← p(a) ∈ si ∧ (c(m) ∈ si ∨ c(l) ∈ si) (19)

c1 : d ≺ u ← v(s) ∈ si (20)

that is ultrasonography is preferred to venography when plethysmography is
abnormal and clinical assessment is medium or low, and d-dimer is preferred to
ultrasonography when venography is suggestive.

4.2 The NEJM03Agent Role [7]

We use the Web Ontology Language (OWL)2 to represent ontologies, developed
and accessed in the SWI Prolog tool Triple. For instance, an excerpt of the OWL
representation of the patient outcomes in the evaluation trial (figure 5) are shown
in the figure 7. The rules are also made available to various agents, when public,
in OWL with a proper encoding.

An NEJM03Agent has access to the controlled trial histories and is capable
to extract a history like

{c(l)0}︸ ︷︷ ︸
s0

u1︸︷︷︸
a1

{c(l)0, u(n)1}︸ ︷︷ ︸
s1

¬dvt︸ ︷︷ ︸
a2

{c(l)0, u(n)1,¬dvt}︸ ︷︷ ︸
s2

w︸︷︷︸
a3

{c(l)0, u(n)1,¬dvt, V TE}︸ ︷︷ ︸
s3

2 http://www.w3.org/TR/2004/REC-owl-ref-20040210/

Achieving Competence by Argumentation on Rules for Roles 53

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!DOCTYPE rdf:RDF [
<!ENTITY owl ’http://www.w3.org/2002/07/owl#’>
<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>
<!ENTITY t20 ’http://www.swi-prolog.org/packages/Triple20/’>
<!ENTITY xsd ’http://www.w3.org/2001/XMLSchema#’>
]>
<rdf:RDF

xmlns:owl="&owl;"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;"
xmlns:t20="&t20;"
xmlns:xsd="&xsd;"

>
<owl:DatatypeProperty rdf:about="&t20;nrPatients">
<rdfs:domain rdf:resource="&t20;Patients"/>
<rdfs:range rdf:resource="&xsd;positiveInteger"/>

</owl:DatatypeProperty>
<owl:ObjectProperty rdf:about="&t20;testValueDDimer">
<rdf:type rdf:resource="&owl;FunctionalProperty" />
<rdfs:domain rdf:resource="&t20;Patients"/>
<rdfs:range rdf:resource="&t20;DResult"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="&t20;hasDVT">
<rdf:type rdf:resource="&owl;FunctionalProperty" />
<rdfs:domain rdf:resource="&t20;Patients"/>
<rdfs:range rdf:resource="&t20;DResult"/>

</owl:ObjectProperty>

Fig. 7. Excerpt of the evaluation trial in OWL

showing that out of 601 patients found clinically unlikely to have VDT after a
normal ultrasonography test on 284 of them the decision (action) has been made
that they do not have VDT. But still, after a period of waiting, four of them
have developed VTEs.

Another path this agent can extract from the tree of the controlled trial is

{c(h)0}︸ ︷︷ ︸
s0

u1︸︷︷︸
a1

{c(h)0, u(n)1}︸ ︷︷ ︸
s1

w(1)2︸ ︷︷ ︸
a2

{c(h)0, u(n)1, w(1)2}︸ ︷︷ ︸
s2

u3︸︷︷︸
a3

{c(h)0, u(n)1, w(1)2, u(n)3}︸ ︷︷ ︸
s3

{c(h)0, u(n)1, w(1)2, u(n)3}︸ ︷︷ ︸
s3

¬dvt︸ ︷︷ ︸
a4

{c(h)0, u(n)1,¬dvt}︸ ︷︷ ︸
s4

w︸︷︷︸
a5

{c(h)0, u(n)1,¬dvt, V TE}︸ ︷︷ ︸
s5

showing that out of 495 patients found clinically likely to have VDT after two
normal ultrasonography consecutive tests on 246 the decision has been made that
they do not have VDT. After a period of waiting, two of them have developed

54 I.A. Letia and M. Acalovschi

Patient AIM98agent NEJM03agent

t

s2 = {c(l)0, p(a)1, u(n)2}
-dvt

+dvt(4 VTEs)

venography

invasive(venography); dDimer

dDimer

s3 = {c(l)0, p(a)1, u(n)2, d(n)3}
-dvt

+dvt(2 VTEs); week(1), ultrasonography

week(1)

s4 = {c(l)0, p(a)1, u(n)2, d(n)3, w(1)4}

ultrasonography

s5 = {c(l)0, p(a)1, u(n)2, d(n)3, w(1)4, u(n)5}

-DVT

Fig. 8. Sequence diagram illustrating argumentation

VTEs. These histories are exploited by the NEJM03Agent to argue on whether a
course of action might be successful or not to attain the goal of either diagnosing
the patient as having DVT (to be treated) or not, but without incurring the risk
of a VTE.

4.3 Argumentation on DVT Diagnosis

Let us consider the case of a patient judged clinically low to which a plethys-
mography test revealed abnormality, while the ultrasonography has shown a
normal case as shown in the figure 8. The AIM98Agent is tempted to decide no
DVT, but to make sure is requesting the NEJM03Agent’s opinion about it. The
NEJM03Agent retrieves from its OWL controlled trial history four such cases
that have later developed VTEs, and therefore cannot accept this decision. The
AIM98Agent proposes venography, but then NEJM03Agent replies that it is in-
vasive and proposes instead d-Dimer, to which AIM98Agent agrees. The tree
showing this process of argumentation is depicted in the figure 9.

Now in situation s3, the AIM98Agent decides no DVT, letting NEJM03Agent
know about the new proposal. Again, NEJM03 disagrees, this time mention-
ing two such cases in its historical representation of the controlled trial, and
proposing instead ultrasonography after one week. The AIM98Agent agrees and

Achieving Competence by Argumentation on Rules for Roles 55

AIM : [s2]

NEJM : [+dvt(4 V TEs)]

−dvt

a

���������������������
NEJM : [invasive(venogr)]

venogr dDimer

��

AIM : [s3]

dDimer

������������������

NEJM : [+dvt(2 V TEs)]

−dvt

week(1),ultrason

������������������
AIM : [s4]

week(1)

��

AIM : [s5]

ultrason

��

AIM : [−DV T]

��

Fig. 9. Sample argumentation tree between the AIM98Agent and the NEJM03Agent

requests the patient to come back after one week and have ultrasonography. On
the new state s5 it decides that the patient does not have DVT.

5 Implementation

The current implementation of the system is in the Open Agent Architecture
(OAA)3. For each user agent a solvable is defined which is called by the coordi-
nator agent whenever a new reasoning step is performed. The AIM98Agent and
the NEJM03Agent are implemented as user agents, defined via solvables through
which the coordinator agent can announce them of the opportunity to perform
an action or of a decision that has been taken that concerns them.

Other rules are introduced in the system that express the common sense
reasoning, which is not expressed in the rules (4 - 18) extracted from the experts
in the domain. For instance, rule (21) says that we prefer rule a2 to rule a1 when
the current course of action is over a certain length k.

c2 : a2 ≺ a1 ← i > k (21)

The rules for the protocol are similar to the ones in [8], in order to provide
more flexibility to the interaction between the agents involved in argumentation.

p0 : tell(Y, X, accept, D) ← tell(X, Y, propose, D) ∧ ¬counterArg(Y, D) (22)

p1 : tell(Y, X, reject, D, D1) ← tell(X, Y, propose, D) ∧ counterArg(Y, D, D1)(23)

Here, p0 states the accepting alternative, when agent Y has no counterargument
to the proposal D of X. The rule p1 is used by Y when it does not agree with

3 http://www.ai.sri.com/˜oaa/

56 I.A. Letia and M. Acalovschi

the proposal D of X and shows its counterargument and, eventually, another
alternative for action in D1.

These rules allow more refinement, particularly important when the agents
performing the diagnosis have to face various patients with quite different health
history. We also did not consider here the asymptomatic or the recurrent ver-
sion of DVT [6], which require a more complex dialog between the AIM98 and
NEJM03 agents.

6 Related Work

The system for the assistance and supervision of the real-time application of
medical protocols presented in [2] is based on the specification by medical proto-
cols of possible sequences of composite, concurrent and repeated actions. In this
system the roles specify particular services and medical protocols specify pos-
sible interactions between medical services. It is suggested that it can be used
to manage both medical guidelines and medical protocols. Our proposal of roles
offers more flexibility, in the sense that the behavior of the agents is specified by
medical rules and other rules that take into account the context.

The AMPLIA multi-agent intelligent learning environment [3] is designed to
support training of diagnostic reasoning and modeling of domains with complex
and uncertain knowledge. The system deals with uncertainty using Bayesian net-
works. Used in the training of medical students, the qualitative and quantitative
model built by the learning student is compared with the one provided by a do-
main expert. The interaction between the domain agent and the learner agent is
performed according to an interaction protocol. While our system can be further
developed to allow medical students to learn the process of diagnosis, the repre-
sentation of medical knowledge by rules seems to be more acceptable to human
agents and therefore our alternative would provide a significant advantage.

The integration of medical services [11] aims to ease the communication and
provide meaningful transformation among distributed and heterogeneous appli-
cations. An intelligent broker transforms a client request of a valid high level
service into several elementary steps. For each step a specific agent is used to
realize the operation configured in the step. The mapping among different vocab-
ularies is done by a semantic component using XML as the interchange format.
Our framework has the capability to cover both the contexts that appear in such
an application and the communication in OWL which is defined on top of XML
may accept a shared ontology or even several ontologies.

The argumentation framework based on the language E [9] uses a basic ontol-
ogy of actions, fluents and time-points inspired by the event calculus. We intend
to further develop our system to take advantage of the benefits offered by the
event calculus.

The PARMA protocol [10] permits argument over proposals for actions, en-
abling participants to rationally propose, attack, and defend, an action or course
of actions. The basic protocol in our system can easily be developed to cover more
complex interactions between agents.

Achieving Competence by Argumentation on Rules for Roles 57

A conversation moderator [12] has been devised to guarantee that the shared
objectives in the conversation between participants will be observed. The solution
of dissociating the strategic dimension from the tactical dimension in the applica-
tion of protocol rules has the benefit of defining the role of the conversing agent
(concerning strategy) and the role of the moderator (concerning tactics). This
line seems to be very convenient to be pursued in the development of our system.

7 Conclusions

Our prototype implementation of argumentation has shown the convenience to
extend the scenario of DVT with symptoms caused by different diseases. Thus,
given a patient which presents a set of symptoms different specialists with dif-
ferent areas of expertise may draw different conclusions about the disease the
patient is suffering of. Controversies may also appear in the medical setting be-
tween the medical staff and the administrative personnel. For example, while the
main concern of a physician is the healthy state of the patient, the administrative
personnel is more concerned with available resources.

Although work on argumentation in negotiation [13] seems to be quite ad-
vanced, the roles imposed in some activities in the applications that we envisaged
require more cooperation, even if argumentation is a significant instrument in
such contexts. In this respect the approach considered in this paper, with ap-
plication to the health providing service, but also other services, is more in line
with the fault-tolerant multi-agent systems by assigning missing roles [14], as the
main objective is the quality of the service provided to customers. Viewed as a
collective human work activity, a future evaluation of our framework will consider
performance through the coordination enabled by the activity theory [15].

Since our main goal is in advising human agents in their decisions on acting
in the real world our next step in this line of research will be on how argu-
mentation on the acts could be further refined to better capture their effects
on agents’ objectives [16]. Ideas of the domino agent model and the PROforma
language will be considered for representation in a future development of our
argumentation scheme [17]. We are also interested in finding out how electronic
institutions [18] can contribute to better model/automate argumentation pro-
cesses in more realistic applications. To enable comparison with well known and
deployed architectures like dMARS we will also develop a specification using the
Z notation [19].

Acknowledgments

We are grateful for the comments of reviewers who helped us to improve the
paper. Part of this work has been supported by a grant 423-33531 from the Na-
tional Research Council of the Romanian Ministry for Education and Research.
We would also like to acknowledge the contribution of Cristina Feier, Raluca
Vartic, Anca Chioran and Robert Baban to the implementation of the current
prototype.

58 I.A. Letia and M. Acalovschi

References

1. Acalovschi, M., Blendea, D., Feier, C., Letia, I.A., Dumitrascu, D., Veres, A.: Risk
factors for symptomatic gallstones in patients with liver cirrhosis: a case control
study. American Journal of Gastroenterology 98 (2003) 1856–1860

2. Alsinet, T., Ansotegui, C., Bejar, R., Fernandez, C., Manya, F.: Automated mon-
itoring of medical protocols: a secure and distributed architecture. Artificial Intel-
ligence in Medicine 27 (2003) 367–392

3. Vicari, R.M., Flores, C.D., Silvestre, A.M., Seixas, L.J., Ladeira, M., Coelho, H.: A
multi-agent intelligent environment for medical knowledge. Artificial Intelligence
in Medicine 27 (2003) 335–366

4. Kakas, A., Moraitis, P.: Argumentation based decision making for autonomous
agents. In Rosenchein, J., Wooldridge, M., Sandholm, T., Yokoo, M., eds.: Second
International Joint Conference on Autonomous Agents and Multiagent Systems,
Melbourne, Australia (2003) 883–890

5. Kakas, A., Moraitis, P.: Argumentative agent deliberation, roles and context. Elec-
tronic Notes in Theoretical Computer Science 70 (2002)

6. Kearon, C., Julian, J.A., Newman, T.E., Ginsberg, J.S.: Noninvasive diagnosis of
deep venous thrombosis. Annals of Internal Medicine 128 (1998) 663–677

7. Wells, P.S., Anderson, D.A., Rodger, M., Forgie, M., Kearon, C., Dreyer, J., Kovacs,
G., Mitchell, M., Lewandowski, B.: Evaluation of d-dimer in the diagnosis of
suspected deep-vein thrombosis. The New England Journal of Medicine 349 (2003)
1227–35

8. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Logic-based agent communication
protocols. In Dignum, F., ed.: Advances in Agent Communication. LNAI 2922.
Springer-Verlag (2004) 91–107

9. Kakas, A., Miller, R., Toni, F.: An argumentation framework for reasoning about
actions and change. In Gelfond, M., Leone, N., Pfeifer, G., eds.: International
Conference on Logic Programming and Nonmonotonic Reasoning. LNCS 1730,
Springer-Verlag (1999) 78–91

10. Atkinson, K., Bench-Capon, T., McBurney, P.: A dialogue game protocol for multi-
agent argument over proposal for action. In: 1st International Workshop on Argu-
mentation in Multi-Agent Systems, New York, NY, USA (2004)

11. Xu, Y., Sauquet, D., Degoulet, P., Jaulent, M.C.: Component-based mediaton ser-
vices for the integration of medical applications. Artificial Intelligence in Medicine
27 (2003) 283–304

12. Sibertin-Blanc, C., Hameurlin, N.: Participation components for holding roles in
multiagent systems protocols. In Gleizes, M.P., Omicini, A., Zambonelli, F., eds.:
Engineering Societies in the Agents World. Springer-Verlag (2005) This volume.

13. Rahwan, I., Ramchurn, S., Jennings, N., McBurney, P., Parsons, S., Sonenberg, L.:
Argumentation-based negotiation. The Knowledge Engineering Review (2004) to
appear.

14. Mellouli, S., Mineau, G., Moulin, B.: Laying the foundations for an agent modelling
methodology for fault-tolerant multi-agent systems. In Omicini, A., Petta, P., Pitt,
J., eds.: Engineering Societies in the Agents World IV, London, UK (2003)

15. Ricci, A., Omicini, A., Denti, E.: Activity theory as a framework of MAS coordi-
nation. In Petta, P., Tolksdorf, R., Zambonelli, F., eds.: Engineering Societies in
the Agents World III. LNCS 2577. Springer-Verlag (2003) 96–110

16. Greenwood, K., Bench-Capon, T., McBurney, P.: Towards a computational account
of persuasion in law. In: International Conference on Artificial Intelligence and Law,
Edinburgh, Scotland, ACM Press (2003) 22–31

Achieving Competence by Argumentation on Rules for Roles 59

17. Fox, J., Beveridge, M., Glasspool, D.: Understanding intelligent agents: analysis
and synthesis. AI Communications 16 (2003) 139–152

18. Letia, I.A., Vasconcelos, W.W.: Norms and their role in a model of electronic
institution. In Lindemann, G., Moldt, D., Paolucci, M., eds.: Regulated Agent-
Based Systems. LNAI 2934. Springer-Verlag (2004) 240–258

19. d’Inverno, M., Kinny, D., Luck, M.: The dMARS architecture: a specification of the
distributed multi-agent reasoning system. Autonomous Agents and Multi-Agent
Systems 9 (2004) 5–53

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 60–73, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Participation Components for Holding Roles in
Multiagent Systems Protocols

Christophe Sibertin-Blanc1, Nabil Hameurlain2

1 IRIT, Université Toulouse 1,
Place A. France, F-31042 Toulouse Cedex

sibertin@univ-tlse1.fr
2 LIUPPA, Université de Pau, Avenue de l’Université,

BP 1155, 64012 Pau Cedex
nabil.hameurlain@univ-pau.fr

Abstract. An autonomous agent in a MAS involves in a protocol – more
exactly in a conversation following the rules of a protocol - in order to reach
objectives, some ones shared with all other participants, some others specific
and private. We assume a MAS architecture where each conversation is
monitored by a middleware component - a conversation moderator - that
guarantees that the shared objectives will be reached. This paper addresses the
means an agent requires to be able to exercise its autonomy and reach its own
objectives in the course of conversations. The first step is to define these
objectives and this leads to distinguish the strategic and tactic levels in agents'
behaviours. The strategic level must be handled by the agent itself; the required
capabilities are abstract and relevant for larges categories of similar protocols.
Once a strategy is set for a conversation, its application at the tactic level can be
delegated to a middleware component, called a participation, that intervenes in
the conversation on the behalf of the agent. This component is specific to the
role held by the agent and it is tailored to make the best use of the subtleties of
the protocol’s rules. This approach brings many engineering benefits.

1 Introduction

Protocols are one of the mechanisms used by the designers of a MAS to ensure
coordination between the entities of the system – the agents. A Protocol can be
defined as a set of rules that agents respect during a conversation, i.e. a process which
proceeds according to this protocol. These rules determine who may take part in a
conversation, and how each participant can or must contribute to its good processing.
The main benefits of coordination by protocol are to ensure the efficiency of
interactions among agents and the predictability of the system behaviour.

When an agent engages in a conversation, it is to achieve objectives, some of these
objectives being common to all the participants of the conversation and others
specific to each agent. For example in an auction, the common objective is to arrive at
a transfer of property, while the seller and the bidders have opposite own objectives,
to sell at the higher price and to buy at the lower price possible. The bind between the

 61

participants in a conversation is their agreement mutually recognized on the protocol
rules and their engagement to follow them. Thus, the full benefit from coordination
by protocols needs on the one hand the protocol rules are respected and also each
agent has the insurance that they will be respected by others participants; otherwise,
there is no guarantee that the common objectives of the protocol will be achieved. On
the other hand, the benefit from coordination by protocols needs each agent is able to
act autonomously, in such a way that it uses the protocol’s rules in order to reach its
own objectives.

Concerning the respect of protocol rules, Hanachi and Sibertin-Blanc proposed to
manage each conversation by a specific agent, the Moderator of this conversation,
charged to enforce the protocol rules [9]. The idea is to dissociate the interventions in
the conversation, which are realised by participating agents, and checking whether
these interventions obey to the protocol rules, which is entrusted to the conversation’s
moderator. The participants are thus in physical impossibility to contravene the rules
of the protocol [7]. This approach considers protocols as first class components of a
system at the design and implementation levels; a conversation is not just the result of
interactions between agents but the running of a well defined process. Protocols
become resources at the disposal of functional agents, and this gives solution to
considerable problems in engineering MASs such as the specification, the verification
and the formal validation of protocols, their reuse and adaptive maintenance, the
separation of the aspects in the design and implementation of agents, the
interoperability between agents, or scaling issues [9].

This paper follows the same approach and studies how to allow agents to fully
exercise their autonomy when taking part in conversations. The difficulty is that the
proper use of the rules of a protocol in order to achieve a specific objective needs a
large amount of knowledge about this protocol. If this knowledge is hard-coded into
agents, they will be overloaded and become difficult to maintain when the protocol
rules changes; in addition, each agent will be qualified only for a small number of
protocols because this knowledge is specific to each protocol. This solution features
all the drawbacks of mixing different aspects. Another solution consists in encoding
this knowledge in moderators and equipping each agent with an engine allowing it to
acquire this knowledge and to deduce how to pursue its own objectives while
observing the protocol rules. It is a solution of this kind that is proposed in [2] with a
declarative meta-model applicable to all protocols, and in [6] with a language of
meta-description of protocols which is pointed as being far from easy to identify.
Both solutions are not into line with the moderator approach, because they raise many
engineering difficulties about e.g. the size of agents, their maintainability, their
interoperability, and the use of a wide variety of protocols as resources.

Another solution is to distinguish and thus to dissociate (so applying the
“separation of concern” principle which is the base of the moderator approach), the
strategic dimension and the tactical dimension in the application of protocol rules.
Strategic issues are to be managed by agents, because they are closely related to the
agents’ objectives and to their autonomy. As for tactical issues, that is the operational
behaviour that enacts a given strategy, they can be devoted to a new kind of middle
agents which we call Participation.

 Participation Components for Holding Roles in Multiagent Systems Protocols

62 C. Sibertin-Blanc and N. Hameurlain

In [14] we studied the concepts of strategy and tactic in the context of the
participation of agents to conversations. When an agent takes part and holds a role in
a conversation, it has its own objectives, which fall into the set of objectives that are
compliant with holding that role in a conversation of that protocol. The strategy of the
agent with regard to this conversation is merely an operational statement of its
objectives, goals or desires. Thus, a strategy is the result of a choice that is to be made
by the agent itself. Accordingly, holding a role in conversations of a protocol requires
that the agent is equipped with the strategic kit associated to this (role, protocol) pair,
so that it is able to decide and to state explicitly its own strategy. Let’s remark that a
strategic kit has a large scope of use since strategic issues are quite abstract; as an
example, all the auction protocols have the same strategic kit for the bidder role, and
the same holds for the vendor role. Thus agents are not overloaded by the introduction
of these strategic kits.

Once an agent has fixed its strategy, the significant choices are made and the
tactical details of their application can be delegated to an auxiliary component. This
component, which we call a Participation, is in charge to take part in one
conversation on the behalf of the agent in such a way that it realizes the strategy
decided by the agent. Thus it must be aware of the strategic choices of the agent,
have a full knowledge of the rules of the protocol followed by the conversation, and
relate the both that is: apply the rules in the best way with regard to the strategic
instructions. This paper focuses on the design and implementation of Participation
components. In the second section, we summarize the principles of specifying and
implementing protocols by means of moderators according to [9]. Section three
introduces the participation components and the resulting architecture for protocols
in MAS. Section four and five address the structure and design of Participations:
their strategic part in relation with agents and their tactic part in relation with
moderators.

Table 1. Items in the definition of a protocol

• The variables that intervene in the definition of the conversation objective or in the
characterization of its state with respect to this objective,

• The roles that agents can hold in the course of a conversation,
• The types of intervention that agents can carry out to take part in a conversation, to

make it progress and to influence the variables value,
• The initial state of a conversation, i.e. the conditions which must be satisfied so that

a conversation can start,
• The final state that characterizes the completion of a conversation,
• Casting constraints on the attribution of roles that determine the conditions to

satisfy so that an agent may take a certain role in a given conversation,
• The behaviour constraints that determine the structure of control of the

conversations, i.e. in which cases an agent playing a certain role can carry out a
given intervention, as well as the effect of this intervention.

 63

Fig. 1. Architecture for the implementation of protocols with moderators

2 Moderator for the Specification and Implementation of
Protocols

Coordination by moderators rests on the architecture shown in Figure 1, of which we
introduce the various components.

For a protocol defined by the elements in Table 1, it is possible to conceive an
agent type, called a P_Agent type. Each instance of this type controls the course of a
conversation following this protocol. Such an instance, called a Moderator, manages
the value of protocol variables and guarantees that the protocol rules are strictly
observed. Instantiated at the beginning of a new conversation, a moderator:

− has an attribute for each protocol variable;

− satisfies, at the date of its creation, the conditions of the protocol initial state;

− decides if an agent may become a participant to the conversation. To this end, it
receives from agents requests to hold a role in the conversation, and answers
positively if (and only if) the request is compatible with the protocol’s casting
constraints;

− ensures that the course of the conversation fulfils the protocol’s behaviour
constraints. To this end, any intervention of a participant in the conversation is
directed at the moderator; if the current state of the conversation is such that this
intervention is coherent with the behaviour rules of the protocol, the moderator
accounts for and processes the intervention. The effect of this intervention
consists in changing the state of the conversation, modifying the value of the
variables, sending an answer to the intervening agent (immediately or differed
until the reception of another intervention), or informing other participants of the
occurrence of this intervention;

− allows the transparency of this conversation; in compliance with confidentiality
rules, it answers the requests about general information (e.g. date of initialisation,
number of participants), the state or the value of variables of the conversation; it
can also be designed to bring a true help to the agents, for example in announcing

Moderator

Functional Agent

Library of
Protocols

Server of
Conversations

 Participation Components for Holding Roles in Multiagent Systems Protocols

64 C. Sibertin-Blanc and N. Hameurlain

the occurrence of meaningful events or in making the rules of the protocol to be
known;

− decides the end of the conversation, after having detected either that the final
state is reached, or that the conversation is blocked because of the defection of a
participant whose contribution is essential to the completion of the conversation.

[9] indicates how to design, validate and implement such moderators by using a
formalism based on the Petri nets, the CoOperative Objects [13].

The role of the Conversation Server shown in Figure 1 is to allow functional
agents to access the protocols and conversations. The library of protocols stores
information on all protocols, in particular their definition in the form of P_Agents.
The Conversation Server manages a database on the conversations in progress or
completed, containing information such as the followed protocol, the date of
initialisation, the identity of the agent initiator, the identity of the moderator or the
date of completion of the conversation. The server of conversation answers questions
issued by agents, while taking account of the confidential character of certain
conversations. If the system considered extends on a large network, the conversation
server can be distributed or duplicated on several sites.

Fig. 2. Introduction of Participations in the architecture

The components of this architecture interact in the following way in the course of a
conversation. An agent wishing to launch a new conversation requests the server of
conversation; if the conditions of the initial state of the protocol are satisfied, the
server creates a new moderator and returns its identity to the agent which becomes
entrusted with the role initiator of the conversation. To take part in a conversation, an
agent must know the identity of the conversation’s moderator, obtained from the
Conversation Server, the initiator agent, or from any other agent. Then it asks the
moderator for the authorization to hold a certain role in this conversation. If the
answer is positive, the agent takes part in the conversation by addressing its
interventions to the moderator, which takes them into account according to the current
state of the conversation and the rules of the protocol; the progress of a conversation
is thus completely managed by its moderator. Lastly, when the moderator detects that

Server of
Conversations

Library of
Protocols

Participation
Moderator

 65

the conditions of the final state of the conversation are reached, it ends the
conversation and finishes its own execution.

3 Participations

A participation is an intermediary component between an agent and the moderator of
a conversation, which has the tactical capacity to implement the agent’s strategy
according to the conversation’s rules. As a moderator is an instance of a P_Agent, a
participation is an instance of a type, which we call a R_Agent type. A R_Agent is
defined for a couple (role, protocol), the role being played by the agent in a
conversation follwing the protocol.

The life cycle of a participation proceeds as follows. When an agent addresses to a
moderator a request to occupy a certain role in a conversation, the latter checks
whether this request satisfies the casting constraints on the attribution of roles. If it
does, the moderator creates a new participation by instantiating the corresponding
R_Agent and returns its identity to the agent. This participation will interact with the
agent (for the strategic aspects) and with the moderator (for the tactical aspects). At
the end of the conversation, the moderator causes the termination of the participation
of all agents taking part in the conversation, before finishing itself. If the agent leaves
the conversation before its completion, it will be able to cause itself the termination of
its participation.

Now the question is: what is the structure and behaviour of a participation, and
how to design an R_Agent? The difficulty stems from the fact that a participation
component is intended to bridge the gap between an agent’s strategy that is abstract
and declarative in nature and the moderator’s behaviour rules that are much more
precise and operational. Thus it must match the requirements of a strategic kit (on the
agent side) and of a P_Agent control structure (on the moderator side), and go and
come between the two in order to translate strategic objectives into interventions in
the conversation, and vice-versa. The resulting architecture of a participation is shown
in Figure 3. The two following sections show how the strategy related part is derived
from the strategic kit and the behaviour related part is deduced from the protocol’s
behaviour constraints that apply to this role. As for the tactic engine, it implements
the operational semantics of the strategies that can be defined with the strategy kit, so
it is to be defined by the designer of the strategy kit.

4 The Strategic Part of an R_Agent

The strategy chosen by an agent allows it to select the conversations in which it
intends to take part, either by initiating a new conversation or by holding a role in a
running conversation. Once it is engaged in a conversation, this strategy in addition
allows the agent to determine how to intervene in this conversation. These
interventions are performed by the participation which is the intermediary component
between the agent and the moderator of the conversation. The strategy has thus to
take the form of instructions given by the agent to the participation.

 Participation Components for Holding Roles in Multiagent Systems Protocols

66 C. Sibertin-Blanc and N. Hameurlain

From there we come naturally to the idea of expressing a strategy as the value
taken by a set of parameters. Let us consider for example the strategies that are
relevant for a bidder in an auction protocol. From a bidder point of view, the two
essential variables of an auction are the object put for sale and the price of the current
bid, which last value will be the selling price. On this basis, two opposite strategies
can be identified, according to the importance attached to each variable. If the priority
is given to the object, the bidder takes part only in auctions where the object
corresponds exactly to what it seeks, and it will not hesitate to pay a high price to get
this object. If the priority is given to the price, the bidder takes part in auction where
the object corresponds roughly to what it seeks, and will abandon as soon as the price
rises. In both cases, the price that the bidder is ready to pay is related to both its
evaluation of the object value and the amount of its financial resources.

Fig. 3. The structure of an R_Agent

The knowledge needed to determine and express these strategies is given in Table 2.
A strategy are characterised by the value of parameters adequacy_rate and
financing_rate. The strategy of priority to the object corresponds to high values
for both the adequacy_rate and financing_rate variables: the agent is ready
to overpay the very object it seeks. On the opposite, the strategy of priority to the price
corresponds to a low value for each of the two parameters. We have in fact the means of
defining a continuum of strategies, including strategies apparently not effective but
which may be appropriate in very particular cases: let us name as "thrifty" the strategy
with high adequacy_rate and low financing_rate, and as "bored basket" the
one with low adequacy rate and high financing_rate.

To determine if it will take part in an auction A, an agent use the matching function
to evaluate the adequacy between the object that it seeks and the object for sale, and then
decides according to the criterion: matching(wanted, A.object) >
adequacy_rate. When an agent has decided to participate in an auction, it just has to
set the maximum price it is ready to bid, i.e. the value it attributes to the object being sold
multiplied by the financial effort it is ready to make, under the bound of its available
resources, i.e.:

Min{value(A.object)*financing_rate,available_amount}.

Tactic
engine

Role’s behavior
AGENT

MODERATOR

Variables of the
strategic kit

The protocol’s
behaviour constraints

The strategies’
operational semantics

Strategic
variables

67

Once an agent acts as a bidder in an auction, it just has to pass this maximum price
to its participation to makes this participation able to apply the agent’s strategy (the
participation is a private auxiliary of the agent, and this does not publicly reveal its
intention). Then, the participation interacts with the moderator by addressing
interventions to take part in the conversation, and by obtaining information either in
response to its interventions or by consulting public data.

Table 2. Strategic Kit to define strategies of the bidder role in auction protocols

adequacy_rate: Percentage; / the matching between what the agent seeks
 and the object on sale
financing_rate: Percentage; /financing effort the agent is ready to make
wanted: Goods; /object which the agent seeks
available_amount: Currency; / financial resources
max_price: Currency; /the amount it is ready to pay
matching(o1, o2: Goods): Percentage; /returns the adequacy between o1 and o2
value(o: Goods): Currency; / returns an evaluation of the price of o

5 The Behaviour Part of a R_Agent

An R_agent is to be designed in such a way that, once the value of the strategic
variables is set by the agent, the interventions issued by the participation towards the
conversation’s moderator effectively implement the strategy defined by the variables.

For efficiency reasons, it is better to integrate the tactic engine and the behavioural
constraints of the role into a single structure, an event[condition]/action
labelled transition system that describes all the possible behaviours of participations:
the effective behaviour of any participation will be a path from the initial state of this
role behaviour transition system (RBTS for short) to a terminal one. Such transition
systems are well-known structures very close to UML State-Transition diagrams [12]
or flat StateCharts [10], and we just recall brief indications about their semantics. A
condition is a guard associated with a transition from a state to another one: the
transition can occur only if the condition evaluates to true; the action is performed at
each occurrence of the transition; as for the event, its occurrence enables the
occurrence of the transition. The default condition is True, the default action is
noop and the default event is continuously present. An example is given in Figure
5. The interactions of the participation with the moderator are mapped to actions and
events of the RBTS: a call of the participation towards the moderator is implemented
as an action, and a result sent by the moderator to the participation is received as an
event. The strategic variables appear in the conditions of the RBTS to select the
appropriate transition when several ones are enabled and so determine the effective
behaviour of the participation. Conversely, some actions can assign a value to these
variables to account for the evolution of the conversation. An RBTS is expected to be
deterministic whatever value is given to the strategic variables. The reason for that
property is that the behaviour of the participation is controlled by the agent via the

 Participation Components for Holding Roles in Multiagent Systems Protocols

68 C. Sibertin-Blanc and N. Hameurlain

strategic variables; thus, undeterministic cases should correspond to situations where
there are several equivalent ways to reach a same objective.

The RBTS of a R_Agent is built in two steps. The first step consists in extracting
the constraints that apply to the role from the whole set of the protocol’s behaviour
constraints. It results in an event/action labelled transition system that catches all the
behaviours of the role complying with the rules of the protocol; so participations do
not overload moderators with irrelevant interventions. It may be a large system,
especially if it includes ineffective or inoperative behaviours (This situation occurs if
the protocol rules are designed just to protect participants the ones against the others
and do not care about the efficiency of agents). According to the formalism used to
express the behaviour constraints of the protocol, the generation of this transition
system is an automatic step (see table 4). The second step introduces tactic into this
transition system to implement the strategies defined by the value of the strategic
variables. The aim of this transformation is to reduce the number of paths so that from
each state, the only possible action is the one that complies with the objectives stated
by the value of the strategic variables. The first kind of transformation is to remove
transitions associated with an action inappropriate for whatever strategy, and to
remove transitions associated with the related events. The second kind of
transformation concerns transitions associated with an action appropriate only within
a certain range of value of strategic variables: they have accordingly to be guarded by
a condition. Lastly, some actions may be introduced to change the value of strategic
variables. All these transformations have to be done by the designer of the Strategic
kit. They define the meanings of the strategic variables, according to the places where
they appear in conditions and actions, and as a consequence define the operational
semantics of the elements in the strategic kit.

Table 3. The fish-market auction protocol

Role and casting constraints: a single fixed vendor, any number of bidders, the
vendor cannot be a bidder.

Initial state: the vendor has a bucket of fish to sell for an initial price.
Final state: the bucket of fish is sold to a bidder (the vendor has given the bucket

and the bidder has paid the final price).
Interventions and behavioural constraints: at any moment while the bucket is not

yet attributed, a bidder can make a bid to signal its interest for the bucket of fish.
If no (or more than one) bidder is interested, the vendor announces a lower (or
higher) price. When one, and only one, bidder is interested, the vendor attributes
the fish to that bidder. Once the bucket of fish is attributed, the vendor gives the
fish and receives the payment while the bidder pays the price and receives the
fish.

An example

To give a flavour of this process, we consider the bidder role (cf. Fig. 5) of the fish
market auction protocol as specified in Table 3 [15]. Figure 4 gives an overview of a

 69

class FishMarket;
inherits AuctionProtocol;
attributes
 bidders: list of agent*; //list of bidder agents
 vendor: agent*; //the creator agent
operations //the C++ code of operations is not shown
 grant_bidder(a: agent*): bool is <C++Code> //apply for the bidder role
 current_price(): Currency is <C++Code> //returns the current price of auction,
 FishMarket(vendor: agent*, p: Currency): FishMarket* is <C++Code>
services
 to_announce(newp: Currency): Status; //Intervention Services for vendor
 to_attribute(): Status;
 to_give(f: Fish): Currency;
 to_bid(): Status; // Intervention Services for bidders
 to_pay(p: Currency): Fish;
 newprice() : Currency; //Inquiry services
OBCS

price <Currency>
•

bid<COOREQ>

t2
to_announce

newp

OK

t1
to_announce

newp

OK

t4
to_bid

<COOREQ,
 Currency>

t9 to_attribute

OK

<COOREQ>

t10
to_bid

OK

to_pay

f

to_give

p

t13

to_give

f
t12

to_pay

p
<COOREQ>

<Currency> <Fish>

<COOREQ>

t5to_bid

p

<req, p>

req

p f

req

req

pf

req

req

req

req

req

p

newpoldpnewpoldp

<req,newp>

2*req

p

Fig. 4. The Fish market protocol's P_Agent as a CoOperative Object class

Priorities
t9 < t4;
t4 < t1, t2

newprice

newprice

End

p

p

newp

t6

t
7

 Participation Components for Holding Roles in Multiagent Systems Protocols

70 C. Sibertin-Blanc and N. Hameurlain

CoOperative Object class [13] that is the P_Agent, i.e. the type of the moderators, of
this protocol. The behavioural constraints are coded in the high level Petri net, and we
explain only the part concerning the bidder role (see [9] for an exhaustive
presentation of this P_Agent). As long as the fish is not yet attributed, a bidder
participant can send a to_bid() request (transition t4) to intervene in the auction
process; it will receive either a R_to_bid(p)answer (transition t5) if there are
several bidders, p being the new price announced by the vendor, or a
R_to_bid(“OK”)answer (transition t10) if it is the only one bidder. In this latter
case, the vendor attributes the fish to it, it is expected to send a to_pay(p) request
and it will receive the fish with the R_to_pay(f) answer. A bidder may also send a
newprice() request to the moderator; then it receives either a
R_newprice(“End”) answer (transition t7) if the to_attribute action
already occurred, or a R_newprice(p) answer – p being the most recently
announced price of the auction (transition t6).

R_Agent Bidder_Fishmarket;
 object: Goods;
 p, max_price: Currency;
 RBTS

Fig. 5. The R_Agent of the bidder role in the fish market protocol

To select the features concerning the bidder role, this Petri net is abstracted [8] and
actions related to other roles are neglected; more precisely, transitions t1, t2, t9,
t12 and t13 are labelled with the null action ε. In addition, the net is slightly
modified to rule out behaviours that are aberrant while allowed by the protocol’s
rules: a bidder has never advantage to perform two consecutive bids without receiving
the answer to the first one, and it is useless that it performs two consecutive
newprice() requests. This transformation adds two places with one initial token
each that prevent the repetitive occurrences of transitions t4, t6 and t7. Then the
algorithm given in table 4 is applied. It is based on the standard algorithm to compute
the marking graph of a Petri net [11] and skips transitions that are ε-labelled. In a call
Graphe((M1,…,Mn),M), (M1,…,Mn) are markings that are reached by the
occurrence of an ε-labelled transition; they will be aggregated with another state by
the fusion operation so that they do not appear as individual states in the generated

/ p:= Current_price()

R_to_bid ("OK") / / to_pay (p)

R_to_bid (p) /

[p<=max_price]

 / to_bid()

[p>max_price]/ newprice()
 R_new_price ("End") /
 object := Nul

 R_to_pay (f)/
 object := f

R_newprice (p) /

0

1 2 3

4 5 6

 71

transition system. In the generated transition system, each transition is labelled either
by one of the actions to_bid(), to_pay() or newprice(), or by one of the events
R_to_bid(p), R_to_bid(“OK”), R_to_pay(f), R_newprice(“End”) or
R_newprice(p). This transition system is not shown, it includes 11 states, 5 of them
being terminal states.

Table 4. Algorithm for the extraction of the behaviour of a role

In : a labelled Petri net N = <P, T, A, λ, M0> where λ : T → A ∪ {ε}
Out : a labelled transition system S = <Q, →, qO > where → ⊂ Q x A x Q,
 and Language(N) = Language(S)
Begin

 Q:={M0}; qO:= M0; →:= ∅;
 Graphe((), M0)
end.
 Graphe((M1,…,Mn), M)

 If (M1 = M or M∈Q) then
 fusion(M1,…, Mn, M)
 return
 If M is a dead marking then return

 For each t∈T such that M' M t→

 If λ(t) ≠ ε then
 Q:= Q ∪{M’}
 →:= → ∪ {(M, λ(t), M’)}
 Graphe((), M’)
 Else Graphe((M1, Mn, M), M’)

End;

The RBTS shown in figure 5 is obtained by introducing some tactic in this
transition system. Some transitions and the corresponding target states have been
removed: it is useless to issue a newprice() request while a to_bid() has not yet
been answered, since the two requests will provide the same answer - the new price
announced. Also it is useless to send a newprice() request once a
R_to_bid(“OK”) has been received. The other transformation consists in adding a
condition to the transitions from state 4: according to the level of the auction’s current
price wrt the agent’s max_price either a to_bid() or a newprice() request is to
be sent.

6 Conclusion

The idea to define a component realising the behaviour that an agent must follow by
adopting a role is not new. However, in proposals such as [1], [3], [4], [16] or [5], role
components are embedded into the internal structure of agents. Even if the
componential architecture of the agents enables them to adopt and to leave roles
without disturbance, the dynamic allocation of the roles is left up to the designer. The

 Participation Components for Holding Roles in Multiagent Systems Protocols

72 C. Sibertin-Blanc and N. Hameurlain

autonomy of agents is limited to the management of interactions among their
components and they cannot control how the role is held by these components [5].

According to the approach presented in this paper, designing a protocol is to design
a P_Agent that implements the protocol’s rule and guarantees that these rules are
obeyed in the course of conversations. So, no agent can deviate from its task with
regard to the whole system. On the other hand, according to the agents’ autonomy
constitutive principle of MASs, agents require the possibility to define their own
objectives and to use protocols’ rules in the best way with regard to their resulting
strategy. Thus a protocol designer is also concerned by the practical use of protocols
by agents, it is required to identify the objectives and strategies compliant with this
protocol. The main function of the participation components proposed in this paper
precisely is to balance the system and agent requirements and to give the best
compromise between the two. The resulting MAS architecture allow to design, to
validate and to implement the system’s rules and the agents’ capabilities as distinct
elements. This strengthen the engineering qualities studied in [9], notably the
interoperability between agents since no assumption is made about their model or
architecture.

References

1. Amiguet, M., Muller, J-P., Baez, J., Adina, N.: The MOCA Platform: Simulating the
Dynamics of Social Networks. In MABS’02, AAMAS’02 Workshop, (2002).

2. Bartolini, C., Preist, C., Jennings, N.: Architecting for Reuse; A Software Framework for
Automated Negotiation. In Proc. 3rd Int. Workshop on Agent-Oriented Software
Engineering, Bologna (It), (2002), 87-98.

3. Becht, M., Gurzki, T., Klarmann, J., Muscholl, M.: ROPE: Role Oriented Programming
Environment for Multiagent Systems. In Fourth IFCIS Conference on Cooperative
Information Systems, Edinburgh, (1999).

4. Brazier, F. M. T., Dunin Keplicz, B., Jennings, N., Treur, J.: Desire: Modelling Multi-
agent Systems in a Compositional Formal Framework. In International Journal of
Cooperative Information Systems, 6 (1997), 67-94.

5. Cabri, G., Leonardi, L., Zambonelli, F.: BRAIN: “a Framework for Flexible Role-based
Interactions in Multi-agent Systems. In Proceedings of CoopIS 2003, (2003).

6. Carabelea, C., Beaune, P.: Engineering a Protocol Server Using Strategy-Agents”. In Proc.
CEEMAS 2003, F. Marik & al (Eds), LNAI 2691, (2003). 413-422.

7. Castelfranchi, C.: Engineering Social Order. In Proc. Int. Workshop on Engineering
Societies in the Agents World (ESAW 2000), A. Omicini, R. Tolksdorf, F. Zambonelli
Eds., LNAI 1972, Berlin, Springer-Verlag, (2000), 1-18.

8. Hameurlain, N.: Formal Semantics for Behavioural Substitutability of Agent Components:
Application to Interaction Protocols. In From Theory to Practice in Multi-Agent Systems,
LNCS/ LNAI 2296, (2002), 131-140.

9. Hanachi, C., Sibertin-Blanc, C.: Protocol Moderators as Active Middle-Agents in Multi-
Agent Systems. In Autonomous Agents and Multi-Agent Systems, Kluwer, 8, 3, (2004),
131-164.

10. Harel, D.: Statecharts: a Visual Formalism for Complex Systems. In Science of Computer
Programming, 8 (1987).

73

11. Murata, T.: Petri Nets: Properties, Analysis and Applications. In Proceedings of the IEEE,
77, 4, (1989), 541-580.

12. OMG Unified Modeling Language Specification UML V1.5,
http://www.omg.org/technology/uml/index.htm, (2003).

13. Sibertin-Blanc, C.: CoOperative Objects : Principles, Use and Implementation. In Petri
Nets and Object Orientation, G. Agha & F. De Cindio Eds., LNCS Springer-Verlag,
(2000), 210-241.

14. Sibertin-Blanc, C., Belhadj, K., Hameurlain, N.: Strategies and tactics for the participation
of agents in protocols. Irit report, submitted to publication, (2003).

15. Venkatraman, M., Singh, M. P.: Verifying Compliance with Commitment Protocols:
Enabling Open Web-Based Multiagent Systems. In Autonomous Agents and Multi-Agent
Systems. vol. 2 (3), (1999), 217-236.

16. Yoo, M-J., Briot, J-P., Ferber, J.: Using Components for Modelling Intelligent and
Collaborative Mobile Agents. In Proc. of WETICE’98, IEEE Computer Science, (1998),
276-281.

 Participation Components for Holding Roles in Multiagent Systems Protocols

Semantically Federating
Multi-agent Organizations

Riza Cenk Erdur, Oguz Dikenelli, Inanç Seylan, and Önder Gürcan

Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

{erdur, oguzd, seylan,gurcan}@staff.ege.edu.tr

Abstract. We believe that successful co-operation between multi-agent
systems providing services in a specific domain can be realized by con-
structing an infrastructure that supports the semantic interoperability
between them. In this paper1, we introduce a conceptual architecture for
the semantic interoperability of multi-agent systems in the large-scale.
The most important element of the proposed conceptual architecture is
the federation. A federation established for a particular domain speci-
fies the common characteristics of multi-agent systems in that domain.
Hence, a special ontology is required at the federation level for defining
the common characteristics of each multi-agent system in a particular
domain as its own meta-knowledge. This meta-knowledge is then used
in the semantic discovery of the multi-agent systems with which to co-
operate. Since different multi-agent systems may use different ontologies,
an ontology translation service is also defined at the federation level.

1 Introduction

Work on agent development frameworks, tools and methodologies have reached
to such a level [1] that it now needs less effort and time to develop a multi-agent
system in a specific domain. As a result of this progress, we expect that many
commercial or governmental organizations will develop their own multi-agent
systems for providing various services on the Internet. We will call each of these
organizational multi-agent systems as a “Multi-agent Organization (MO)”. For
example, we call a multi-agent system that is designed and implemented based
on the specific requirements of an organization in tourism domain as a MO in
tourism domain. The reason behind introducing the MO concept is the need for
defining a basic conceptual element, which will be used as a separate entity at
the conceptual level in terms of semantic interoperability.

In an environment where there are a large number of MOs, one of the major
challenges will be establishing co-operations between the MOs providing ser-
vices in the same or similar domains. We believe that successful co-operations

1 This work is supported in part by the Scientific and Technical Research Council of
Turkey, Project Number: 102E022.

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 74–89, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Semantically Federating Multi-agent Organizations 75

can be established by providing an infrastructure supporting the semantic in-
teroperability of the MOs. To illustrate the need for a semantic interoperability
infrastructure, we will give an example from an application in tourism domain.
Let us think of a user who is a member of a specific MO in tourism domain and
who wants to plan her travel. Typically, she will need to arrange transporta-
tion, accommodation and activities during the visit. Now, assume that during
the construction of the travel plan, the user only preferred 4-star hotels with a
pool and a fitness center. In this case, three possibilities may be considered: The
first possibility is that the hotel reservation service is provided in the local MO
and the user preferences can be satisfied there. The second possibility is that
the local MO already provides hotel reservation service, but at the time of the
request user preferences cannot be satisfied. For example, all the 4-star hotels
with a pool and a fitness center are all completely booked. In this situation, to
construct the best travel plan, co-operations with the related external MOs must
be established in order to discover an agent giving a service that is capable of
satisfying the user requirements completely. The third possibility is that the local
MO does not provide the requested service. In this case, again co-operations with
the related external MOs are needed. These examples show that co-operations
between MOs are frequently needed and for successful co-operations it is critical
to provide the following capabilities in the agent systems:

– Discovery of external MOs: A capability for discovering the most related
MOs to co-operate with is needed. To realize this capability, first, a special
ontology, which will be used in representing the meta-knowledge belonging
to MOs, should be defined. Then, a kind of semantic matching algorithm can
be executed over that defined meta-knowledge so that the most semantically
related MOs are matched.

– Translating between different ontologies: It cannot be guarantied that all
MOs in a specific domain use the same ontology as the domain ontology.
For example, MOs in tourism domain may use different kind of tourism
ontologies. In this case, ontology translation service is needed to co-operate
with external MOs.

The need for the above capabilities, led us to define a new architectural element
above the MO level. We call this new element as “Federation”. A federation
is established for a specific domain and defines an ontology to represent the
meta-knowledge of MOs in that domain. The semantic discovery of external
MOs and translating between different ontologies are also realized at the feder-
ation level.

In this paper, we propose a conceptual architecture, which forms the basis for
the semantic interoperability of MOs and hence large-scale multi-agent integra-
tion. Federation is an important concept in the proposed architecture, since the
semantic interoperability is realized at federation level. We have instantiated
the elements in the proposed conceptual architecture in connection with our
FIPA-compliant agent development framework and platform [5]. For example,
we have constructed a federation in tourism domain by implementing a feder-
ation directory service for discovering external MOs in tourism domain and a

76 R.C. Erdur et al.

federation ontology service for maintaining and translating ontologies. We have
then implemented two example MOs in tourism domain and developed a case
where the first MO co-operates with the second one using the services provided
by the tourism federation.

Finally, we think that to state its difference from the interoperability infras-
tructures discussed in FIPA’s [7] (Foundation for Intelligent Physical Agents)
various specifications, will make it more easier to identify where our architec-
ture stands. The first kind of interoperability discussed in FIPA agent message
transport service specification [9] is the network protocol level interoperability.
In this specification, FIPA proposes IIOP (Internet Inter ORB Protocol) to be
used as the underlying protocol for sending and receiving agent communication
language messages between different agent platforms. Network level interoper-
ability is of course important, but interoperability at the MO level requires more
high-level protocols to be defined. So, we also use IIOP as the underlying net-
work protocol to obey FIPA standards, but our proposed architecture defines
the conceptual elements needed for the semantic interoperability of MOs and is
therefore independent of the network protocol used in messaging. The other kind
of interoperability, which is mentioned in FIPA agent management specification
[8], is directory facilitator level interoperability. According to this specification,
each directory facilitator in a platform registers with all other directory facilita-
tors in the external platforms. So, when a directory facilitator receives a search
request, it may propagate this search to other directory facilitators that are
registered with it. We think that this kind of approach, which is based on the
cross registration of directory facilitators, is not suitable for open and large-scale
multi-agent environments. What we need is an architecture that is specifically
designed for integrating MOs in the large scale. In addition, in the directory
facilitator FIPA proposes a capability matching based on the parameters and
values [8]. Different than FIPA, we benefit from the opportunities provided by
the semantic web and use a semantic based capability matching in the directory
facilitator in our architecture.

In the rest of the paper, we first define the concepts that we use for defining
the architecture for the semantic interoperability of MOs. This will provide a
clear understanding of the proposed architecture. Section 3 describes the con-
ceptual architecture for the semantic interoperability of MOs. Section 3 also
explains the ontological infrastructure of the given conceptual architecture and
gives the agent and service interactions for discovering the requested MOs. In
section 4, the semantic matching process, which is used in discovering the most
semantically related external MOs, is explained in more detail. Section 5 includes
the conclusion and finally references are listed.

2 The Concepts of Semantic Interoperability

To form the basis for the conceptual architecture that is introduced in section 3,
we define the basic concepts of semantic interoperability in this section. Three
basic concepts, which are the platform, multi-agent organization (MO) and fed-

Semantically Federating Multi-agent Organizations 77

eration, have been defined. The concepts of MO and federation have been partly
mentioned in the introduction section so that we could explain our motivation
more clear. They will be explained in more detail in this section. The platform
and federation concepts have already been used in multi-agent literature, but
sometimes in different senses. Hence, another important objective of this section
is to define them again from the semantic interoperability perspective.

2.1 Platform

The platform is the physical infrastructure in which the agents are deployed. In
literature, there are standards such as FIPA, which defines an agent platform [8].
There are also well known agent platform implementations such as RETSINA
[17] and JADE [2]. JADE is a FIPA compliant platform, whereas RETSINA has
its own standards. Whether FIPA compliant or not, all these platform imple-
mentations define the basic services such as agent management service (AMS),
directory service (DS) / directory facilitator (DF) and message transport service
(MTS), which are necessary for constructing a multi-agent organization (MO).
We use the platform concept in the same sense as previous work and define it
generally as the physical infrastructure where agents are deployed and which
provides the basic platform services. However, in our case, we made one exten-
sion to the standard platform by adding a new element, which has the role of
finding out the related external MOs by propagating the search to the federa-
tion level. We call this new element as the “External Multi-agent Organization
Search Service” (EMOS). This element will be explained in detail in section 3.

2.2 Multi-agent Organization

In our interpretation, a multi-agent organization (MO) is a multi-agent system
designed and implemented based on specified requirements in a specific domain.
A MO lives on a platform. It may be built using one of the well-known agent
oriented software development techniques such as [3, 4, 12, 19]. In the develop-
ment process, agent behaviors, agent interactions, ontologies used and rules of
the organization are defined. Then, each element of the platform is instantiated
based on this knowledge. For example, a MO in tourism domain has agents that
provide services co-operatively to satisfy their users’ requirements, a pre-defined
tourism ontology and a directory service ontology. This MO uses the basic ser-
vices provided by the platform on which it is deployed. Of course, there may be
more than one MO deployed on a platform. The important point here is that
we try to integrate MOs semantically; hence, in conceptual level each MO on a
platform is taken as a separate entity in terms of semantic interoperability. As a
conclusion, each MO is the basic conceptual element of semantic interoperability.

2.3 Federation

In agent systems literature, the federation concept has sometimes been used to
define an agent organization where agents do not communicate directly with

78 R.C. Erdur et al.

one another. In this kind of organization, which is proposed by Genesereth and
Ketchpell [11], agents in a federation communicate with the facilitators of the fed-
eration and these facilitators communicate with one another. This federated ar-
chitecture has been defined as an alternative to direct communication of agents.
If this federated architecture is evaluated in terms of FIPA specifications, we
can say that the message transport service defined in the FIPA specifications [8]
corresponds to the facilitator in the federated architecture and the FIPA agent
platform [8] corresponds to the federation concept. Since our architecture aims
at providing the interoperability of multi-agent organizations (MOs) deployed
on different platforms, we use the term federation in a different meaning. In our
architecture, federation is the element that brings together the MOs in a specific
domain. For example, a MO in tourism domain subscribes to a federation that
is specifically defined for tourism domain.

A federation established for a specific domain defines the common charac-
teristics of the MOs belonging to that domain. A federation also defines federal
rules. These common characteristics and rules require an ontology to be defined
at the federation level. From this perspective, the most critical part of the fed-
eration is the federation directory service (FDS). FDS is used for identifying the
specific MOs that provide the required services. Each federation has to define a
specific ontology for FDS besides other federal rules such as about pricing policy,
certification, etc. The specific ontology of the FDS is maintained by the service,
which is called as the federation ontology service (FOS). In our architecture,
FDS is the key element in providing the semantic interoperability of MOs, since
it is the only element that can be semantically searched to locate the desired
external MOs. Both FDS and FOS are explained in detail in section 3.

In reality, different MOs in similar domains may create different federations.
In this case, the architecture scales up a level and a “confederation” can be
defined so that related federations can be brought together. We believe that

Federation Level

Multi-Agent Organization Level

Federation
Ontology
Service

Federation
Directory
Service

MOs in Specific Domains

Platform Level

Core Platform Services

MTSAMSDF

Fig. 1. Concepts and layers of semantic interoperability

Semantically Federating Multi-agent Organizations 79

the concept of confederation is the next step for creating very large and scal-
able multi-agent systems. However, before a confederation can be established,
there must be a well-defined infrastructure for federation level. In this paper,
we focus on defining the infrastructure for the federation level. Hence, the con-
ceptual architecture that is given in the next section defines the elements, on-
tologies and interactions up to a federation level. The concept of confederation
has only been put forward here as an idea for constructing very large multi-
agent systems and confederation level of the architecture will not be discussed
in this paper.

After defining the concepts of platform, MO and federation, we conclude this
section by emphasizing that each of these concepts forms a different layer of the
conceptual architecture that is going to be discussed in the following section. The
layers of the conceptual architecture and services in each layer are shown in Fig 1.
As it can be seen from Fig 1., the platform level includes the directory, agent
management, message transport services whereas the federation level includes
the federation directory and ontology services as explained before in this section.
In the MO level there exists various MOs designed and implemented based on
the specific requirements in various domains.

3 Conceptual Architecture for the Semantic
Interoperability of Multi-agent Organizations

In this section, first the elements of the conceptual architecture are described.
Then, the ontological infrastructure of the given conceptual architecture is dis-
cussed. Finally, the interactions that take place during the discovery of remote
multi-agent organizations (MOs) are given.

Federation

Federation
Directory
Service
(FDS)

Federation
Ontology
Service
(FOS)

Message
Transport
Services
of Other
Platforms

IIOP
Protocol

Agent-1 Agent-N...

Multi-agent
Organization

Directory
Facilitator

Agent Management
Service

Message Transport
Service

External MO
Search Service

(EMOS)

ACL MSGs

Platform

Fig. 2. Elements of the conceptual architecture

80 R.C. Erdur et al.

3.1 Elements of the Conceptual Architecture

The elements of the conceptual architecture are shown in Fig. 2. Since, the fed-
eration is above the MO layer, it is defined as an external service for MOs.
The elements of the conceptual architecture are explained in the following para-
graphs.

As it is explained in the previous section, the platform consists of elements
such as agent management service (AMS), agent directory service / directory
facilitator (DF) and message transport service (MTS). In our architecture, these
services have been implemented as being compliant to the FIPA standards.

The AMS maintains an index of all the agents that are currently resident
on a platform, which includes the names and addresses of agents. At initializa-
tion, each agent registers itself with this service. This service is also responsible
for managing the operation of the platform, such as maintaining the life cycle
of an agent.

The DF provides yellow pages services to other agents in the platform. Agents
may register their services with the DF or query it to find out the services offered
by other agents.

The MTS, delivers agent communication language messages between agents
within a platform and to agents resident on other platforms. To deliver a message
to an agent that is resident on an other platform, it is preferred by FIPA that
MTS does not directly communicate with the remote agent, instead it commu-
nicates with the MTS of the remote platform, which then delivers the message
to the requested agent. To provide protocol level interoperability, FIPA speci-
fies that Internet Inter ORB (IIOP) protocol should be used between different
MTSs to communicate with each other. The MTS in our implementation has
also been developed based on IIOP. However, FIPA does not propose a specific
protocol to be used for intra-platform communication. We use a Java Remote
Method Invocation (RMI) based infrastructure for intra-platform communica-
tion. We preferred Java RMI for intra-platform communication, since it supports
pure Java distributed computing and provides a high level interface than sock-
ets. If performance is very important then inter-process communication methods
can also be used for communication of agents when the agents are on the same
physical machine.

The gray shaded elements in Fig. 2 are the new elements that we have added
to support semantic interoperability of the MOs. External MO Search Service
(EMOS) is the only platform element, which is responsible for the semantic
interoperability. Main functionality of EMOS is to request the federation’s di-
rectory service to match the semantically related MOs that provide the required
goals/services and to get the directory facilitator addresses of the matched MOs.
EMOS is designed based on the idea of matchmaking; hence, after querying the
remote directory facilitators of the matched MOs and locating the proper agents,
it passes the addresses of the remote agents to the user agent. To get the re-
quired service from the agents in external MOs, the user agent then using that
specific domain’s ontology, requests the discovered remote agents to get the re-
quired service. However, we cannot expect all the external MOs to use the same

Semantically Federating Multi-agent Organizations 81

domain ontology as the local MO, so an ontology translation service is needed.
When this is the case, EMOS gets the request from the user agent and forwards
it to the federation ontology service so that the content of the request message
is translated into a form, which is represented using the domain ontology of the
matched external MO with which to co-operate. The translated message is then
sent to the message transport service of the external MO.

The federation has two basic elements, which are the federation directory ser-
vice (FDS) and the federation ontology service (FOS) as shown in Fig 2. FDS has
a semantic matching engine, which matches incoming requests against the stored
MO meta-knowledge represented using the federation directory service ontology.
The federation directory service ontology together with other ontologies used in
the system will be discussed in section 3.2.

MOs may use different domain ontologies locally, but when they have to col-
laborate, they need to understand each other. For this purpose, we have defined
FOS, which is able to translate from one organization’s domain ontology to the
other. Thus, we can say that FOS is responsible for translating and maintaining
domain ontologies. In literature, there are frameworks that are used for mapping
between different ontologies. For example, MAFRA framework [15], which is op-
erating within the KAON (Kalsruhe Ontology and Semantic Web Tool) [13] en-
vironment, is a well-known ontology-mapping framework. KAON environment of
course provides sophisticated support for distributed ontology management and
versioning. But, our main purpose is to couple the ontology management service
to the multi-agent environment, not to develop a sophisticated semantic web tool
suit. Additionally, any agent or service residing on the platform can query the on-
tology management service at any time using the agent communication language
semantics. For these reasons, we have designed our own ontology management ser-
vice, instead of trying to use an ontology mapping service from the existing work.

3.2 Ontological Infrastructure of the Conceptual Architecture

There are three kinds of ontologies used in the conceptual architecture. The first
one is the Directory Service Ontology (DS-Ontology) that is used by the agents in
a multi-agent organization (MO) for advertising their capabilities to their local
organization’s directory services. The DS-Ontology is not related with multi-
agent organization interoperability, it is responsible for only locating an agent
within a MO. In defining the DS-Ontology, we have followed FIPA specifications
and used the directory facilitator agent description template that is defined in
the FIPA Agent Management Ontology specification [8]. Although not directly
related with the MO interoperability, just to make our local directory service
more intelligent than the FIPA’s ordinary directory facilitator, we implemented
a semantic matching algorithm to match the requests against the agent service
descriptions stored in the local directory facilitator.

The second ontology is the Federation Directory Service Ontology (FDS-
Ontology). FDS ontology is used in matching remote MOs, so it is important in
terms of semantic interoperability of MOs. FDS-Ontology is used by the MOs to
advertise their capabilities to the FDS. In our architecture, the user requests are

82 R.C. Erdur et al.

preferred to be satisfied within the organization unless otherwise stated. If the
requests cannot be satisfied within the organization, a proper MO is matched
based on the FDS-Ontology. In this matching, the aim is to find a structurally
identical (e.g. same encoding, protocols, content languages) and semantically
similar organization. After a proper MO is matched, the remote agents that are
giving the required services are located using the DF-Ontology of the matched
MO. After locating the remote agents, the user agent collaborates with those
remote agents. This collaboration needs more detailed domain knowledge and
can be realized using a domain ontology. As it is implicit in the preceding sen-
tence, the third ontology type used in the architecture is the ontology of the
domain at discourse. For example, in a typical tourism application, concepts
about the detailed room properties can be specifically used in the collaboration,
but they do not need to be used during agent or MO discovery process. This
is because, while the DS-Ontology aims at representing services of the agents
within an organization and the FDS-Ontology aims at classifying the MOs at a
higher level, the domain ontologies contain a lot of domain specific concepts and
relations. As mentioned before, the FDS-Ontology, which is specifically defined
for the semantic interoperability of MOs, is the most important ontology type
in our system and its general structure is shown in Fig. 3.

As shown in Fig. 3, the “Platform Description” concept has slots related
with the platform that the MO resides on. For example, message transport ser-
vice address, supported content languages, ontology languages, protocols and
encoding are the slots for this concept. This concept is required for matching
a structurally identical organization. The “Provider” concept has slots related
with the commercial or governmental organization that developed this MO. The
“Service Description” concept is used for expressing the service types provided

Fig. 3. General structure of the FDS-Ontology describing meta-knowledge about MOs

Semantically Federating Multi-agent Organizations 83

by that organization. The values for the service type attribute come from an on-
tology specifically defined for expressing the service types in that domain. Since
each federation is established in a specific domain such as tourism and this is an
implicit knowledge for the federation, we did not need to use a concept about
domain in the FDS-Ontology.

3.3 Agent and Service Interactions for Matching Multi-agent
Organizations

The interactions that take place during external multi-agent organization (MO)
and agent discovery are shown as a collaboration diagram in Fig 4.

Each numbered message in the collaboration diagram is explained below:

1. The agent queries the local directory service using the DS-Ontology to find
out the agents providing the requested service within the MO.

2. In this step, we assume that agents providing the requested services cannot
be found within the local MO. Hence, the directory service requests the
EMOS to initiate the external MO discovery.

3. The EMOS prepares a request using the FDS-Ontology and sends it to the
FDS of that domain’s federation. To prepare a FDS request, EMOS gets
the platform specific knowledge such as supported protocols, encodings and
content languages from the agent management service of its platform. It then
adds the requested service type to the FDS request by extracting it from the
original request.

4. The FDS matches the proper MOs and sends the necessary knowledge (e.g.
message transport service, directory service addresses of the matched orga-
nizations and the degree of semantic match) to the EMOS.

5. The EMOS sends the requests to the directory services of the matched MOs
beginning from the ones having the highest degree of match (i.e. exact match)

Agent

Local
Directory
Service

1

2

3

4
5

6
7

8

9

EMOS

FDS

Remote
Agents

Remote
Directory
Service

Fig. 4. Collaboration diagram for matching multi-agent organizations

84 R.C. Erdur et al.

to find out the proper agents in those organizations. We assume in this
interaction that the directory service ontologies of the matched platforms are
the same (i.e. uses FIPA agent directory service description template). Hence,
no ontology translation is needed. However, if they use different directory
service ontologies, ontology translation service is needed and this service is
provided by the federation ontology service (FOS) as mentioned before.

6. Each matched organization sends EMOS the addresses of the agents that
are capable of providing the requested services.

7. EMOS passes the addresses of remote agents to the original requester agent.
8. The agent prepares requests using the ontology it knows for that domain

and sends the requests to the matched remote agents. Again, the FOS must
be referred in case of any translation need between the different ontologies
in that domain.

9. The remote agents send the results to the original requester agent.

4 The Multi-agent Organization Matching Process

We have implemented all services in our architecture based on a generic service
definition interface. By this way, we have both defined a common service model
and made all the services capable of understanding agent communication lan-
guage messages. In the following subsections, we first explain the generic service
definition interface, since in our environment all services including the federa-
tion directory service (FDS) is implemented based on this generic service model.
Then, the software architecture of the multi-agent organization (MO) descrip-
tions matching engine that has been integrated into the FDS will be given.

4.1 Generic Service Definition Interface

We preferred each service in a multi-agent environment to be able to handle agent
communication language (ACL) messages both to communicate with agents and
with each other. Hence, there must be a generic service infrastructure in order
to generalize this capability. In our architecture, this is accomplished using an
abstract service class. There may be two kinds of services, internal or exter-
nal. Internal services are inside the platform and by default they communicate
using remote method invocation. The internal service logic is implemented in
classes derived from an abstract class for internal services, which itself is de-
rived from the basic abstract service class. Services that are to be found in
any multi-agent platform such as agent management service, directory facili-
tator service and message transport service are examples for internal services.
External services are services that are outside of any platform boundary and
they communicate via Internet Inter ORB protocol (IIOP). The external service
structure is realized in an abstract external service class, which is also derived
from the basic abstract service class. An example for an external service is the
“Federation Directory Service”, which is a federation level service as explained
in section 3.1.

Semantically Federating Multi-agent Organizations 85

Extending a service’s capabilities should be easy for an agent developer, so
command pattern [10] has been used. A message’s performative is the main
message parameter which differentiates a message from another. Handling of the
received message depends on the receiver agent or service. So, the performative of
the incoming message and the type of the receiver together form the behavioral
difference in the command pattern that is implemented for message handling.
The class model for the command interface used is shown in Fig 5 on the next
page. The IFIPAMsgCommand is the command interface and each service has
its own commands. For example, when the FDS receives an ACL message with
the “request” performative, it instantiates the “request” performative specific
command for itself, which is shown as the FDSRequestCommand in Fig 5. The
other services behave in the same way when an ACL message arrives. This
means that they instantiate the specific commands for themselves and pass the
execution to these command objects.

The Java code showing how a service creates the specific command based on
the ACL message performative and how it passes the control of execution to this
command is given in the code fragment below:

public void message(FIPATransportMsg msg) {

...
String performative = message.getPerformative();
// create a command according to performative
IFIPAMsgCommand command=
commandFactory.getCommand(performative);
// execute the command to handle the message
command.execute(message, this);

}

Within the concrete implementation of the “execute” method, the message
content is parsed and the related functionality of the service is called passing the
parsed knowledge as parameter. As a conclusion, any platform service is simply
connected to the platform by implementing concrete command objects for any
type of message that may be sent to the service.

4.2 Software Architecture of the Semantic Matching Engine

We have first defined a generic matcher architecture to facilitate capability
matching for any kind of entity such as semantic web services, agents or multi-
agent organizations (MOs). Then, different services that need semantic matching
capability are implemented based on this generic architecture. For example, the
FDS implementation is based on the main interface or classes such as Matcher,
AdvertisementDB, Ontolog, MatchResult that are provided by the generic ar-
chitecture. The algorithm that is used for the semantic matching is derived
from the work [14, 16], where semantic matching is used for the autonomous

86 R.C. Erdur et al.

Fig. 5. The command interface for services

Fig. 6. The software architecture of the MO description matching engine

discovery of semantic web services. The software architecture of the MO descrip-
tions matching engine in the FDS is shown in Fig 6.

Semantically Federating Multi-agent Organizations 87

We think that a generic capability matching engine should semantically
match an Entity against the other entities that are advertised. An entity can
be a service profile in a semantic web service domain or it is a MODescription
in our case. AdvertisementDB represents the group of the entities, which are
semantically processed and compared to a given entity to determine if it sup-
plies the desired capabilities. In FDS implementation, MODescriptionDB class
implements the generic AdvertisementDB interface. Ontolog is the generic in-
terface that represents the primitive reasoning module of a matching engine.
Implementations of this component will determine ontology class relations and
find superclass distances between the ontology classes with specified URIs. Since
FDS holds the semantic knowledge (i.e. MO descriptions) in OWL [18] format,
a special class named as OwlOntolog that implements the Ontolog interface has
been defined.

Any matching engine implementation should implement the Matcher inter-
face. This provides generalization of the different matching implementations and
users of those engines will deal with only one service: “match”. In the FDS im-
plementation, a MOMatcher class that implements the generic matcher interface
has been defined as shown in Fig 6. The result of each semantic match operation
is encapsulated in a MatchResult object. The result includes the matched entity
and its match degree such as exact, plug-in, subsume, or fail.

When the FDS receives a match request, first of all it has to parse the re-
quest. Since the services in our architecture can understand agent communi-
cation language messages, the request comes in FIPA ACL as mentioned be-
fore. We use FIPA RDF content language to represent the content part of
each ACL message. Our choice for the query language is the OWL-QL [6].
The choice of OWL-QL is the natural outcome of storing the directory ser-
vices’ internal knowledge in OWL ontologies. But, OWL-QL is not yet suf-
ficient for being used in semantic matching of agent or service capabilities.
For example, a way of passing the requested service’s input and output pa-
rameters to the semantic matching engine must be found. Hence, we have ex-
tended OWL-QL to cope with this problem. The difference of extended OWL-
QL is its capability of carrying semantic matching parameters such as exact-
match, plug-in-match, subsume-match. In summary, FDS implementation in
our system can parse OWL-QL in the FIPA-RDF content in order to extract
the concepts to be matched and to understand the required minimum degree
of match. Then by satisfying the minimum match degree, the FDS matches
the request against the MO meta-knowledge represented in OWL and stored
in the FDS.

5 Conclusion

We think that the idea of establishing agent federations will form the basis
for constructing open, large and scalable multi-agent systems and will make it
possible for different multi-agent systems in specific domains to co-operate. This

88 R.C. Erdur et al.

paper is the first step towards this goal and proposes a conceptual architecture
for establishing agent federations by semantically bringing the multi-agent or-
ganizations together. The elements defined in the conceptual architecture are
instantiated in connection with our FIPA compliant agent development frame-
work and platform [5] and the prototype is tested for example requests in tourism
domain.

References

1. AgentLink Web Site.: http://www.agentlink.org
2. Bellifemine, F., Poggi, A., and Rimassa, G.: Developing Multi-agent Systems with

a FIPA-Compliant Agent Framework. Software Practice and Experience, 31 (2001)
103-128.

3. Bernon C., Gleizes, M., Peyruqueou, S., and Picard, G.: ADELFE, a methodology
for adaptive multi-agent systems. In Petta, P., Tolksdorf, R., Zambonelli, F. (eds).
Engineering Societies in the Agents World III (ESAW’02), LNAI 2577, Springer
Verlag, (2002) 156-169.

4. Dikenelli, O. and Erdur R.C.: SABPO: A Standards Based and Pattern Oriented
Multi-Agent Development Methodology, . In Petta, P., Tolksdorf, R., Zambonelli,
F. (eds). Engineering Societies in the Agents World III (ESAW’02), LNAI 2577,
Springer Verlag, (2002) 213-226.

5. Erdur, R.C. and Dikenelli, O.: A Standards Based Agent Framework for Instanti-
ating Adaptive Agents. In the proc. of AAMAS’03, Melbourne, Australia, (2003)
984-985.

6. Fikes, R., Hayes, P. and Horrocks, I.: OWL-QL - A Language for Deductive Query
Answering on the Semantic Web. Knowledge System Laboratory-Stanford Uni-
versity. (2003), available at http://ksl-web.stanford.edu/KSL-Abstracts/KSL-03-
14.html.

7. FIPA(a).: FIPA Web Site: http://www.fipa.org
8. FIPA(b).: Agent Management Specification, Document Number:SC00023K,

(2004).
9. FIPA(c).: Agent Message Transport Service Specification, Document Num-

ber:SC00067F, (2003).
10. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns, Addison

Wesley, Reading (MA), (1995).
11. Genesereth, M. and Ketchpel, S.: Software Agents. Communications of the ACM.

37(7) (1994) 48-53.
12. Giunchiglia, F, Mylopoulos, J., and Perini, A.: The Tropos Software Develop-

ment Methodology: Processes, Models and Diagrams. In the proc. of AAMAS’02,
Bologna, Italy. (2002) 35-36.

13. Kaon Karlsruhe Ontology and Semantic Web Tool.: available at
http://km.aifb.uni-karlsruhe.de/kaon2/server.

14. Li, L. and Horrocks, I.: A Software Framework for Matchmaking Based on Semantic
Web Technology. In the proc. of WWW’2003, Budapest, Hungary. (2003) 331-339.

15. Maedche, A., Motik, B., Silva, N. and Volz, R.,: MAFRA: A Mapping Frame-
work for Distributed Ontologies. In the proceedings of Knowledge Engineering
and Knowledge Management, Ontologies and the Semantic Web, 13th Interna-
tional Conference, EKAW 2002. Asuncin Gmez-Prez, V. Richard Benjamins (Eds.),
Spain, October 1-4, LNCS 2473, Springer Verlag. (2002) 235-250.

Semantically Federating Multi-agent Organizations 89

16. Paolucci, M., Kawamura, T., Payne, T. R. and Sycara, K.: Semantic Match-
ing of Web Services Capabilities. In the proc. of the First International Se-
mantic Web Conference (ISWC), Sardinia-Italy, June, (2002), available at:
http://www.daml.org/services/pub-archive.html.

17. Sycara, K. and Zeng, D.:, Coordination of Multiple Intelligent Software Agents.
International Journal of Cooperative Information Systems (IJCIS), 5(2&3) (1996)
181-212.

18. Web Ontology Language (OWL).: http://www.w3.org/TR/PR-owl-features-
20031215.

19. Wooldridge, M., Jennings, N.R. and Kinny, D.: The Gaia Methodology for Agent
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(3) (2000) 285-312.

T-Compound Interaction and
Overhearing Agents

Eric Platon1, Nicolas Sabouret2, and Shinichi Honiden1

1 National Institute of Informatics, 2-1-2 Hitotsubashi,
Chiyoda, 101-8430 Tokyo

2 Laboratoire d’Informatique de Paris 6, 8,
Rue du Capitaine Scott, 75015 Paris

{platon, honiden}@nii.ac.jp, nicolas.sabouret@lip6.fr

Abstract. Overhearing is an indirect interaction type that enacts agents
to listen to direct interactions among other agents without taking explicit
part in the exchanges. In this paper, we propose a formal model of over-
hearing named T-compound and a methodology to describe generalised
interaction networks in Multi-Agent Systems. The compound is defined
with the π-calculus as an interaction composite. It is handled as an in-
teraction primitive distinct from the traditional point-to-point one, so
that our methodology can treat both cases homogeneously.

1 Introduction

Multi-agent systems (MAS) rely on the interactions among their agents, either
human, hardware or software. Our work highlights the design of interactions in
MAS, and we think relevant to exploit the recent concept of overhearing [1, 2]
in addition to traditional direct interactions. This notion refers to one type of
indirect interactions that occurs frequently in natural systems, typically when
two agents are interacting, say discussing, and a third one is just a passive audi-
ence that could however intervene if required. This presentation of overhearing
presents the positive aspects of the paradigm. The counterpart named ‘eaves-
dropping’ in the MAS community implies various concerns including security
and reliability. In the frame of this paper, we focus on interaction requirements
for cooperative agents to leverage overhearing advantages. We let eavesdropping
as peculiar issue to be addressed separately.

Present work on overhearing exploited this mechanism in various scenarii
such as monitoring agent systems and group formation. These applications show
the relevance of the concept and its generality. However, it results from these
systems that overhearing relies on an unusual interaction infrastructure, since
current technologies only exploit direct links among agents. In this paper, we
propose a formal model named the T-compound, based on the π–calculus [3],
and a methodology to enable and encapsulate systematic use of overhearing
interactions, when required. Exploitation of both direct and indirect interactions
leads to new perspectives on systems, and we will show some situations whereby
this double usage is even necessary.

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 90–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

T-Compound Interaction and Overhearing Agents 91

This paper begins in Section 2 with a presentation of the concept of over-
hearing, its interest for MAS, and the relevance of formal modeling with the
π–calculus. Then, we propose in Section 3 our model and a methodology to de-
scribe the interaction dimension in MAS. In Section 4, we develop an example
with the proposed method. Finally, we relate our approach to other activities in
modeling overhearing in Section 5, before concluding in Section 6.

2 MAS, Overhearing, and π–Calculus

2.1 MAS and Overhearing

The notion of overhearing was recently introduced in the MAS community as
reported by Gutnik et al. [4]. It was originally proposed to endow agents with
monitoring abilities to reason about the apparent behaviour of other agents, i.e.
their interactions. This concept endows one agent with the capacity to capture
information from the interaction of two or more other agents. Fig.1 depicts such
a situation in its simplest case.

MAS presently exploit direct interactions, such as the discussion link between
agents A and B on Fig.1. Overhearing is an instance of indirect interaction that
might be relevant in the MAS paradigm. In fact, research in the field of natural
sciences show that numerous MAS based on complex societies exploit mean-
ingful forms of communication without explicit receiver. For instance, termites
build their hills by working together, but they do not exchange any information
directly. They rely on the notion of stigmergy whereby they determine their be-
haviours according to the current state of the environment. One termite puts
a piece of material for the hill, and other termites (including the first one) will
then pile on top [5].

Indirect interactions already leveraged relevant results in MAS with stig-
mergy and other techniques [6]. Overhearing has now an increasing number of
applications. Original work refers to monitoring agent systems [7], large group
communication [1], dynamic group formation [2], conversation recognition [4],
and some forms of coordinations [8, 9, 10]. In addition, the phenomenon often
appears in agent systems that focus on a variety of concerns. Hence, the Helper
Agent reacts to silences in an instant messaging discussion between humans to
suggest common topics and increase the interest of the participants [11]. The M

Discussion

ListenA B

P

Fig. 1. Overhearing Situation

92 E. Platon, N. Sabouret, and S. Honiden

workspaces at run-time [12]. COLLAGEN observes the flight ticket reservation
process of the user to propose alternatives when no solution can be found for
a given request [13]. In the remainder of this paper, we attempt to make more
systematic the usage of overhearing in such systems, and novel applications.

2.2 Interaction and Formal Model

In order to exploit different kinds of interactions, MAS developers need a repre-
sentation scheme. Formal models consist in proper representations of phenom-
ena and remain mostly neutral regarding implementation details. Also, they can
clarify the view of the system and reduce the effects of complexity by using
mathematical compact formulae, based for instance on sets or recursivity.

In consequence, we propose in this paper a formal model that relies on the
π-calculus from Milner [3] to leverage its interaction- and dynamism-oriented
syntax, mechanisms, and expressive power that ‘can in principle model (...) any
computational aspect of agents’ [14]. This heritage provides a robust model of
traditional interactions and our extension enacts an instance of overhearing.

In addition to the grounds provided with the calculus, Milner developed a
set of techniques to study concurrent systems, including equivalence relations.
We expect the comparison between interaction structures and between apparent
behaviours will enable advanced reasoning capabilities in agents exploiting over-
hearing. In particular, one agent may hear a conversation and try to match the
stream to a known protocol [4]. As it is unlikely to perfectly match an existing
models, the notion of equivalence allows more flexibility. In the remainder of this
paper, we focus first on the syntax and semantics of the formal model, whereas
the exploitation of equivalence belongs to our future work.

2.3 The π-Calculus in This Paper

The model presented in this paper exploits a subset of the π–calculus, originally
from R. Milner [3]. This section aims at detailing the elements we retained
and their meaning. The π–calculus features much more elements and advanced
notions, but the present notations and mechanisms are sufficient in this paper.

The π–calculus is a modern process algebra for concurrent systems. It serves
to represent and reason about interactions among concurrent processes and their
dynamics such as mobility and changes in the interaction network (reorganisa-
tion, life-cycle). In the frame of this paper, we call agents the processes of the
π–calculus, in the sense of the MAS community [15].

Pπ is the set of agent names denoted by capitalised words. The set of Greek
letters ℵ = (α, β, ...) represents the interaction channels that can link two agents.
Other strings and small characters in the set Str label the messages that are sent
in the different channels. Finally, I is an interval of integers [0,1,2,...].

system surveys the actions of people in a virtual meeting room to optimise their

T-Compound Interaction and Overhearing Agents 93

• 0 is the agent termination, in addition to Pπ

→ It is usually omitted at the end of definitions, i.e. P = α.Q is written
instead of P = α.Q.0

• 〈.〉 and (.) represent the sending and reception operators
→ They accept the same syntax for any channel α and message x: α〈x〉 and

α(x). The operator omission denotes any of them is applied.
• ‘.’ (dot) is the successor operator

→ Given the channels α, β and the agent P , well-formed formulae are α.P
and α.β.P (it is also generalised to n agents).

• ‘new’ is the restriction operator
→ Given the channels α, β and the agent P , well-formed formulae are

new(α)P and new(α)new(β)P. In the second case, we also write new(αβ)P
to have more compact formulae.

• + represents the choice operator
→ It allows writting P + Q for any agent P and Q. The generalisation for

n of agents is:
∑n

i=1 Ai = (A1 + ... + An)
• | is the concurrent operator

→ It accepts the formula P | Q for any agent P and Q, and the generalisa-
tion:

∏n
i=1 Ai = (A1 | ... | An)

Finally, the well-formed agents verify the following equation. An agent P is
either of the items in this formula, and also their compositions with recursive
definitions.

P ::= 0 ∨ α.P0 ∨ new(α)P ∨
∑
i∈I

Pi ∨
∏
i∈I

Pi (1)

Semantics. First, the agent termination 0 is a constant that means no activity,
neither internal nor interactive. It is a final state that represents the termination
(end of life) of agents. Along interaction channels, two complementary actions
can occur, namely the sending and reception of messages. The formulae α〈x〉 and
β(y) respectively mean that the message x is sent through α and y is received
through β. The successor operator ‘.’ defines sequences of channels. The agent
α.P means α is used to send or receive messages, and then the behaviour is P .
Also, α.β denotes a sequence of two channels leading to the termination. The
‘new’ operator allows controlling the scope of an interaction, in a similar way
as local variables in functions of programming languages. new(α)P means that
α can only be used in the formula of P. Out of the scope of P, the name α
refers to another link. In particular, the restricted α cannot be used to link P
to external agents. The sum of agents relies on the usual choice operator. P can
behave as any member of the sum. For instance, P = α.P0 + β.P1 will evolve
as P0 if α is used, and as P1 if β is triggered. Similarly, the parallel operator ‘|’
represents the composed execution of P0 and P1. The focus on interactions of
the calculus composes agents by communication channels as presented hereafter
in the system evolution.

Syntax. We now define the well-formed formulae (wff) of our restricted π–
calculus.

94 E. Platon, N. Sabouret, and S. Honiden

System Evolution. The π-calculus defines how systems evolve. The basic
mechanism is the reaction between two composed agents (parallel execution)
along a common channel; one sending a message and the other one receiving.
Let’s illustrate how this is run.

P
def
= (α〈x〉.P0 + β〈y〉.P1) | α(x).0 (2)

According to the reaction rule, α(x).0 reacts with the first element α〈x〉.P0
of the sum, so that x is passed through α. The second element of the sum is
discarded (choice) and the system becomes (we use the intuitive property that
A in parallel with 0 is equivalent to A [3]):

(P0) | 0 = P0 (3)

3 T-Compound Model

3.1 T-Compound Formula

Informally, the T-compound is depicted on Fig.1, page 91; the shape of the
interaction justifying the name of the composite. The T-compound is formally
a 5-tuple (A, B, P, α, hα)∈ P3

π × ℵ2 that verifies structural properties.
Let us consider 3 different agents (A, B, P) ∈ P3

π and 2 distinct channels
(α, hα) ∈ ℵ2 for the communications (A, B) and (A, P) respectively. This con-
figuration is depicted on Fig.2.

The fundamental case where A sends messages to B and P overhears is for-
mally written as follows:

T (A, B, P)
def
= new(αhα)(A|B|P) where

A
def
= α〈x〉.hα〈x〉.A

B
def
= α(x).B

P
def
= hα(x).P

(4)

The definition of the compound means a T is the parallel execution of three
agents, each of them playing specific interactions. Agent definitions are recursive
to represent the interaction cycle of agents as expected along their lives, that
is each agent chooses one of its eligible actions, performs it, and then recovers
the capability to choose from its initial action set. The two interaction names
used in the T-compound are restricted to these three agents to enforce a proper

A B

P

h

Fig. 2. T-compound Interaction Infrastructure

T-Compound Interaction and Overhearing Agents 95

mechanism of overhearing. Restriction in the π–calculus makes the compound
as a coherent interaction entity. It allows the composition of T-compounds with
other interaction instances as it avoids conflicts among channels (unicity of names
and proper scopes).

In the agent formulae, A can first send x through α and has to send it through
hα to return to its initial state (otherwise the π-calculus semantics blocks the
agent, waiting for triggering hα). Thus, B receives the message x as a direct
interaction through α (the primary intention of A) and P receives a copy of x
through hα representing the overheard event. Fig.2 shows the correspondence
with the formula. In the π-calculus, we represent overhearing as a constraint on
a direct channel, i.e. the dashed arrow is formally hα as copy of α.

Note that a channel between two agents does not mean they are actually
interacting, since this depends on their intentions or imposed protocols. Instead,
channels represent which interactions are possible at this level of modeling, i.e.
the system infrastructure. This is typical for overhearing, where agents may have
this ability and use it only in specific situations (possibly ordered by the user).

3.2 Interaction Design Elements

With the T-compound formal model, we now define agent interactions as two
primitives, and we build a collection of interaction composites relevant in most
practical cases. This collection allows constructing a methodology unfolding steps
to define generalised MAS interaction infrastructures.

Given S ⊆ Pπ an agent set (the system to be modeled), we first define two
interaction primitives over the subsets of S, namely MONO and T0. Then,
frequent compositions of these two basic elements allow defining three practical
cases named DUPLEX, T1, and T2. We compiled these interaction elements in
Table 1 and detail their syntax and semantics hereafter.

In the following equations, X |= φ means that the set of agents X satisfies
the interaction type φ.

∀S0 ⊆ S : S0 |= MONO(A, B) ⇔

|S0| = 2, (A, B) ∈ S2
0 , A �= B,

∃α ∈ ℵ so that
A = α〈x〉.A and
B = α(x).B

(5)

Table 1. Interaction Design Elements

Formal Elements (* primitives) Meaning
MONO(A,B) * A sends messages to B.

DUPLEX(A,B) A and B converse.

T0(A,B,P) * A sends messages to B and P hears them.

T1(A,B,P) A and B converse and P hears A’s talks.

T2(A,B,P) A and B converse and P hears both talks.

96 E. Platon, N. Sabouret, and S. Honiden

∀S0 ⊆ S : S0 |= T0(A, B, P) ⇔

|S0| = 3,
P ∈ S0 P �= A, P �= B
(A, B, P) verifies formula (4) for x

(6)

MONO represents the fundamental direct interaction, i.e. the usual π–
calculus channel from one agent to another encapsulated in this interaction
compound. T0 corresponds to the definition (4) and represents the basic case
of overhearing.

These two primitives are sufficient to describe MAS interaction infrastruc-
tures extended with systematic overhearing. This is due to the fine-grained ap-
proach of these interaction compounds. However, MAS interactions shall require
coarser-grained elements for practical designs. The simplest and most frequent
example is the conversation between two agents, that must be defined with two
MONO. Therefore, we combine the two primitives into relevant patterns useful
for MAS interaction design.

∀S0 ⊆ S : S0 |= DUPLEX(A, B) ⇔
{

MONO(A, B)
MONO(B,A) (7)

∀S0 ⊆ S : S0 |= T1(A, B, P) ⇔
{

T0(A, B, P)
MONO(B,A) (8)

∀S0 ⊆ S : S0 |= T2(A, B, P) ⇔
{

T0(A, B, P)
T0(B, A, P) (9)

DUPLEX describes usual agent conversations. It is built from two symmet-
rical and complementary MONO that define the utterances from A to B and
B to A respectively. T1 corresponds to situations where agent A and B converse
and P can only overhear the messages from A. In practice, this case has been
demonstrated relevant to reduce the complexity of conversation recognition [4].
In addition, it allows modeling a case typical to overhearing. Human agents A
and P are in the same room and A calls B on the phone (in another room).
In this scenario and with normal conditions, P can only listen to A. Finally, T2
refers to the full case of overhearing where P can hear both A and B. This is the
most frequent situation when the three agents share the same ‘space’.

3.3 MAS Interactions with Our Model

From this collection of interaction elements, we propose two views of interaction
infrastructures, namely the system-level IS and agent-centred IA interaction
sets. These two tools can be of use in the design of MAS interactions, as they
provide points of view orthogonal to the traditional interaction protocols. Our
sets aim at a comprehensive description of system interactions, while interaction
protocols form a library of scenarii played in part or whole of the system. Inter-
action design can be thought of as a common exploitation of the three views. In
the remainder of this section, we describe our methodology to build these two
views from static system specifications (that is, the procedure must be re–run if
the specifications change).

T-Compound Interaction and Overhearing Agents 97

IS represents all system interactions in a single view. It is a set of interaction
elements from the collection in Table 1 and thus allows explicitly showing over-
hearing cases. This feature is important so that designers keep track of this inter-
action pattern and can better avoid unexpected situations leading to potential
eavesdropping breaches. Also, it treats direct interactions and overhearing with
equal importance, so that system representations are homogeneous. Formally, IS
is defined by the following equation, where ‘*’ denotes that the corresponding
interaction element can appear zero or several times:

IS = {MONO∗, DUPLEX∗, T ∗
0 , T ∗

1 , T ∗
2 } (10)

IA is equivalent to IS , though it represents interactions per agent. Each agent
appears together with its set of interactions in the system. This view implies var-
ious consequences, such as highlighting overloaded agents that perform too many
interactions, defining groups and roles, and aligning the infrastructure with in-
teraction protocols (roles can be assigned to agents in their context). The formal
description of IA is a π–calculus expression showing the concurrent execution of
system agents (Ai)i≤|S| and their respective interactions (

∑
j≤Ii

αj)i≤|S|.

IA =
∏

i≤|S|

∑
j≤Ii

αj .Ai (11)

Algorithm 1 describes our methodology that takes in input the raw system
interaction specifications I and the empty sets IS and IA. Outputs are optimised
interaction sets compiled from I, without specification redundancy and improper
interaction compounds.

Algorithm 1 Interaction Description Methodology
1: I={raw interaction element list (MONO, DUPLEX, etc.)}, IS=∅, IA=∅
2: remove redundant elements(I)
3: compose element types(I)
4: minimize(I)
5: IS=I
6: rewrite(IS ,IA)

The method first removes from the specification set I any obvious redundant
interaction element with the procedure remove redundant elements on line 2.
This algorithm is not detailed as it merely compares elements and eliminates re-
peating ones (note that DUPLEX and T2 feature a ‘symmetry’, so T2(A, B, P)
and T2(B, A, P) are redundant). Then, compose element types on line 3 combines
elements according to the properties (7), (8), and (9) (see Appendix). Finally,
minimize produces IS by comparing and removing elements that contain com-
mon features. Typically, MONO(A, B) and T0(A, B, P) can be produced by
the specification to outline two different aspects of the interactions between A
and B. However, T0(A, B, P) is enough in terms of interaction infrastructure,

98 E. Platon, N. Sabouret, and S. Honiden

while the other element is redundant (see Appendix). Our hypothesis is that if
an overhearing case has been explicitly defined, it overrides a matching direct
interaction. This hypothesis is appropriate since an overhearing situation must
be explicitly decided by the designer and it is a stronger constraint on agent
behaviours (T0 above ‘includes’ the MONO structural information).

Algorithm 2 rewrite(Input: IS , Input–Output: IA)
1: for all Interaction element in IS do
2: Develop the π-calculus formula
3: if compound agent A in IA then
4: Complete the interaction formula of A:
5: IA=(IA \ {∑

i
aold

i .A}) ∪ {∑
i
aold

i .A +
∑

i
anew

i .A}
6: else
7: IA=IA ∪ {∑

i
ai.A}

8: end if
9: end for

Once IS is finished, the procedure builds IA by calling rewrite on line 6. This
sub-procedure shown on Algorithm 2 browses IS and develops each encountered
interaction element according to its π–calculus formula. Then it extracts the
agents contained in the current expression, together with the interactions in
which they are involved. If an agent is not part of IA, it is added with its
interactions (line 7). Otherwise, the formula of this agent in IA is completed
with the new interaction links (line 4–5). The procedure terminates and the
two aimed interaction sets are completed. The next section now illustrates an
execution of this procedure with an example.

4 Example: The Board of Directors

This example models a meeting among the head of a company and its division
directors. In other words, our system targets a user and its software advisor
agents. In the following, we first suppose all agents can listen to all discussions,
and the user is put aside to receive the final advice from the completed debate.
We run the methodology for this simple specification. Then, we suppose that the
user agent can also send messages to the assistants (to give new orders, etc.). We
consequently modify the initial scenario and apply once more the methodology
to adapt the interaction sets.

4.1 First Specifications

Given n≥3 agents (Ai)i≤n and the integers i and j, αij is the communication
channel from Ai to Aj . The agent U represents the user interface that compiles
the final report from the board and ciu the corresponding channel from agent i.
Consequently, the complete system is S = {(Ai)i≤n, U}. Hereafter is the raw

T-Compound Interaction and Overhearing Agents 99

A1

A3

A2

α23 and α32α13 and α31

α12 and α21

U

c1u

c2u

c3u

cu1 (specification 2)

cu2 (spec 2)

cu3 (spec 2)

Fig. 3. Board of 3 Directors and the User

interaction set I issued from the specifications for n agents, and we then detail
the case n = 3 to illustrate the methodology.

I = {(T2(Ai, Aj , Ak))i �=j �=k, (MONO(Ai, U))i≤n} (12)

The first term represents the discussions among the advisors and their abil-
ity to overhear conversations in the meeting room, even if they are not active
participants. The second term is the final report from each agent to the user
interface U . Let us now study in more details the case n = 3. Fig.3 shows the
interactions that must appear according to the scenario specifications.

The application of the methodology based on the specifications yields the
following. The input I is processed, and the output is just IS=I and the corre-
sponding IA.

1: I={(T2(Ai, Aj , Ak))i�=j �=k, (MONO(Ai, U))i≤3}, IS=∅, IA=∅
2: remove redundant elements(I) does not change I (no redundant element)
3: compose element types(I) does not change I (T2 and MONO do not combine)
4: minimize(I) does not change I (T2 and MONO involve different agents)
5: IS=I
6: rewrite(IS ,IA) as described hereafter for the two first iterations.

Rewrite procedure: iteration 1 First element of I:

T2(A1, A2, A3) = (
P1 = α12〈x12〉.α13〈x12〉.A1 + α21(x21).A1 |

A1 talks to A2 and allows A3 to overhear, or A1 receives from A2
P2 = α21〈x21〉.α23〈x21〉.A2 + α12(x12).A2 |

A2 talks to A1 and allows A3 to overhear, or A2 receives from A1
P3 = α13(x12).A3 + α23(x21).A3

A3 receives overheard messages from A1 or from A2)
Consequently : IA(iteration1) = (P1 | P2 | P3)

(13)

100 E. Platon, N. Sabouret, and S. Honiden

Rewrite procedure: iteration 2 Idem with the second element of I:

T2(A2, A3, A1) = (Q1 = α23〈x23〉.α21〈x23〉.A2 + α32(x32).A2 |
Q2 = α32〈x32〉.α31〈x32〉.A3 + α23(x23).A3 |
Q3 = α21(x23).A1 + α31(x32).A1)

Consequently : IA(iteration2) = (P1 + Q3 | P2 + Q1 | P3 + Q2)

(14)

In the end, IS is equal to the raw specifications, and IA contains four agents
with all their individual interactions.

IS = {(T2(Ai, Aj , Ak)i �=j �=k, (MONO(Ai, U))i≤3} IA = (
3∏

i=1

Ai)|cU (15)

where cU =
∑

i≤3 ciu(riu).cU is the set of interactions for the user agent U. We
detail hereafter the formula of A1 only, as the other formulae are similar.

A1 = (α12〈x12〉.α13〈x12〉.A1 + α13〈x13〉.α12〈x13〉.A1+ //A1 talks,
//others overhear

α21(x21).A1 + α31(x31).A1+ //One talk to A1
α21(x23).A1 + α31(x32).A1+ //A1 overhears
c1u(r1u).A1) //A1 reports

(16)
This example shows how IS represents all system interactions in a compact

syntax, and how IA allows handling interactions individually for each agent.

4.2 Second Specifications

In this second case, the specification revision expands the interactions of U (see
Fig.3). Our methodology solves the inconsistencies that potentially appear, so
that we only need to add the new intended interactions to I. There are two
means to extend I and let U be able to engage conversations with assistants.
Some designers could add explicit DUPLEX(U, Ai); others would complete the
initial reports from assistants to user with symmetrical MONO(U, Ai). Our
methodology accepts both cases and computes the same result. We now unfold
the procedure twice with the two possible extensions of I, namely J1 and J2, and
we show it yields the same expected sets.

J1 = I ∪ {(DUPLEX(Ai, U))i≤n} J2 = I ∪ {(MONO(U, Ai)i≤n} (17)

In both cases, the execution of the methodology is similar to the previous
section and we will just emphasize the differences.

In the case of J2, elements are composed on line 3 so that the MONO added
by the new specifications are combined as expected with the MONO already
representing the reports from assistants to user. Then, the minimization on line 4
does not influence J2 as there is no compatible item to match. The composition
of MONO is performed as follows:

T-Compound Interaction and Overhearing Agents 101

1: JX={as defined above}, IS=∅, IA=∅
2: remove redundant elements(JX) /*no change*/
3: compose element types(JX) /*only modifies J2*/
4: minimize(JX) /*only modifies J1*/
5: IS=JX

6: rewrite(IS ,IA) is given hereafter

compose element types(J2):
J2 = JM∪JD∪JT0∪JT1∪JT2 = JM∪{∅}∪{∅}∪{∅}∪JT2 (line 1)

Compose steps: Only one iteration affects the output (line 8):
compose(JM , JM , JD)
For x ∈{1,2,3}:
MONO(U, Ax) matches MONO(Ax, U) (compose line 14)
So JM = JM\{MONO(U, Ax)} and JM = JM\{MONO(Ax, U)}, and
JD = JD∪{DUPLEX(U, Ax)} (compose line 15)

→JM ends empty and JD has three new elements
Completion J2 = {∅}∪JD∪{∅}∪{∅}∪JT2 (line 11)
J2 = {(T2(Ai, Aj , Ak))i �=j �=k, (DUPLEX(U, Ai))i≤n}

In the case of J1, the composition has no effect, and modifications are carried
out by the following minimization. As DUPLEX are added to the specifications,
the initial MONO representing the reports to the user agent are redundant and
will be eliminated.

minimize(J1):
J1 = JM∪JD∪JT0∪JT1∪JT2 = JM∪JD∪{∅}∪{∅}∪JT2 (line 1)

Minimize step 1 min(JM , JD ∪ JT0 ∪ JT1 ∪ JT2) (line 2)
For x ∈{1,2,3}:
MONO(Ax, U) matches DUPLEX(U, Ax) (min line 3)
So JM = JM\{MONO(U, Ax)} (min line 4)

→JM ends empty
Minimize step 2 min(JD, JT0 ∪ JT1 ∪ JT2) has no effect (line 3)
Minimize step 3 min(JT0 , JT1 ∪ JT2) has no effect (line 4)
Minimize step 4 min(JT1 , JT2) has no effect (line 5)
Completion J1 = {∅}∪JD∪{∅}∪{∅}∪JT2 (line 6)
J1 = {(T2(Ai, Aj , Ak))i �=j �=k, (DUPLEX(U, Ai))i≤n}

In the end, both approaches lead to the same interaction set IS=J1=J2, and
consequently the same IA as follows, with the detail for agent A1 (n = 3).

IA = (
n∏

i=1

Ai)|cU where cU =
∑
i≤n

(ciu(riu).cU + cui〈rui〉.cU) (18)

Aspecification2
1 = (Aspecification1

1 + //formula (16)
cu1〈ru1〉.A1) //A1 gets orders

(19)

This example shows the robustness of the methodology to design choices
and how incremental design of interactions with IS and IA could be exploited,
especially for open MAS.

102 E. Platon, N. Sabouret, and S. Honiden

5 Work Related to Overhearing Modeling

Gutnik et al. proposed the first formal model dedicated to overhearing for con-
versation recognition [4]. Their representation embodies conversation notions
(roles, states, transitions, speech acts, etc.) and the practical exploitation for
their issue of identification. Although they propose a ‘comprehensive formal
model of the general problem’ of overhearing, this first attempt is specialised
to a peculiar aspect. Our model aims at describing MAS infrastructures with
traditional and overhearing interactions, and it is consequently a complemen-
tary approach.

Busetta et al. proposed an implementation of overhearing [1]. Albeit this work
is not a formal model, it stands close to our proposal. It is a multicast communi-
cation among agents in a cooperative group. When taking on a channel identified
by a discussion theme, all registered listener agents receive the information. This
work shows a conceptual difference between our framework and implementation
issues. Our approach requires fine-grained details of interactions, whereas the
implementation of Busetta is a single broadcast. Thus, implementing efficiently
a model is not trivial, especially in the case of open MAS. A corollary of this
statement is that our formal model do not scale as the implementation.

6 Conclusion

In this paper, we proposed a formal model of interaction in π-calculus that
embodies the recent concept of overhearing, represented here as an interaction
composite named the T-compound. The aim of this model is to provide a general
description of interactions in MAS, orthogonally to other design issues (agents,
environment or organisation). This description is performed by a methodology
that compiles two views for the study of MAS interactions. The first repre-
sentation shows all interactions that can occur in a given system. The second
one represents an agent-centred description of all these interactions. These two
views of the same system can provide MAS designers with relevant information
for analysis and design.

Our current model covers static interactions of MAS. Dynamism is not in-
cluded yet and we intend to introduce this feature necessary in open systems. It
will enact considering agents that have new acquaintances, join or quit dynam-
ically the system, or feature mobility. We also pointed out the scalability of our
approach is rather low, considering open or large-scale MAS. Hence, we are work-
ing on the agent environment so that overhearing would be relayed through it.
In fact, Omicini et al. and Mamei et al. described two infrastructures to support
coordination among agents [9, 8] based on the environment. These approaches
do not address explicitly the case of overhearing, but they embody related ideas.
Our present endeavours are to study the consequences of such environments
on our formal definition, methodology, and the pragmatics (computation and
management concerns).

T-Compound Interaction and Overhearing Agents 103

References

1. Busetta, P., Donà, A., Nori, M.: Channelled multicast for group communications.
In: Autonomous Agents and Multi-Agent Systems. (2002)

2. Legras, F., Tessier, C.: Lotto: Group formation by overhearing in large teams. In:
Autonomous Agents and Multi-Agent Systems. (2003)

3. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Press
(1999)

4. Gutnik, G., Kaminka, G.A.: Towards a formal approach to overhearing: Algorithms
for conversation identification. In: Autonomous Agents and Multi-Agent Systems.
(2004)

5. Resnick, M.: Learning about life. Artificial Life Journal 1 (1994)
6. Keil, D., Goldin, D.: Modelling indirect interaction in open computational systems.

In: WETICE. (2003)
7. Kaminka, G.A., Pynadath, D.V., Tambe, M.: Monitoring teams by overhearing: A

multi-agent plan-recognition approach. Journal of Artificial Intelligence Research
17 (2002) 83–135

8. Mamei, M., Zambonelli, F.: Motion coordination in the quake 3 arena environment:
a field-based approach. In: Workshop on Environment for Multi-Agent Systems.
(2004)

9. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In: Autonomous
Agents and Multi-Agent Systems. (2004)

10. Tummolini, L., Castelfranchi, C., Ricci, A., Viroli, M., Omicini, A.: ”Exhibition-
ists” and ”Voyeurs” do it better: A shared environment for flexible coordination
with tacit messages. In: Workshop on Environment for Multi-Agent Systems.
(2004)

11. Isbister, K., Nakanishi, H., Ishida, T., Nass, C.: Helper agent: Designing an assis-
tant for human-human interaction in a virtual meeting space. In: CHI. (2000)

12. Riecken, D.: M: An architecture of integrated agents. In Bradshaw, J., ed.: Software
Agents. AAAI Press (2000) 419

13. Rich, C., Sidner, C.: Collagen: When agents collaborate with people. In: First
International Conference on Autonomous Agents. (1997)

14. Esterline, A.C., Rorie, T.: Using the π-calculus to model multiagent systems. In:
FAABS. Volume 1871 of LNAI., Springer–Verlag (2001) 164–179

15. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley (1999)

A Algorithm Appendix

Algorithm 3 modifies a set I by combining interaction elements into more com-
plex ones (15 cases) with the sub-procedure compose in Algorithm 4.

Algorithm 4 receives three interaction sets I, J, K from the procedure com-
pose element types in Algorithm 3. Elements of I are matched with elements of
J that feature common agents in reversed order, and new compounds are pro-
duced in K. The procedure applies the composition properties (7), (8), and (9)
and solves other to cases such as T1(A, B, P) and T1(B, A, P) that, as T0, breed
T2(A, B, P) in terms of infrastructure (12 more cases).

104 E. Platon, N. Sabouret, and S. Honiden

Algorithm 3 compose element types(Input–Output: interaction set I)
1: I=IM ∪ ID ∪ IT0 ∪ IT1 ∪ IT2

2: for (I1,I2)∈{(ITx ,ITx),(IM ,IT2),(ID,IT2),(ITx ,ITy>x)}, x ≤ 3 and y ≤ 3 do
3: compose(I1, I2, IT2) /*This loop handles rule (9) in compose(IT0 , IT0 , IT2)*/
4: end for
5: for (I1,I2)∈{(IM ,ITx≤1),(ID,ITx≤1)} do
6: compose(I1, I2, IT1) /*This loop handles rule (8) in compose(IM , IT0 , IT1)*/
7: end for
8: for (I1,I2)∈{(IX ,IX),(IM ,ID)}, X ∈ {M, D} do
9: compose(I1, I2, ID) /*This loop handles rule (7) in compose(IM , IM , ID)*/

10: end for
11: I=IM ∪ ID ∪ IT0 ∪ IT1 ∪ IT2

Algorithm 4 compose(Input–Output: interaction sets I,J,K)
1: for all X ∈ I do
2: for all Y ∈ J do
3: if ∃ agents (A,B,P) so that X(A, B, P) and Y (B, A, P) exist then
4: I=I\{X}; J=J\{Y }; K=K∪{T2(A, B, P)}; Break the loop
5: end if
6: if ∃ agents (A,B,P) so that (X(A, B) and Y (B, A, P)) exist then
7: I=I\{X}; J=J\{Y };
8: if Y is T2 then
9: K=K∪{T2(A, B, P)}; Break the loop

10: else
11: K=K∪{T1(A, B, P)}; Break the loop
12: end if
13: end if
14: if ∃ agents (A,B) so that X(A, B) and Y (B, A) exist then
15: I=I\{X}; J=J\{Y }; K=K∪{DUPLEX(A, B)}; Break the loop
16: end if
17: end for
18: end for

Algorithm 5 minimize(Input–Output: interaction set I)
1: I=IM ∪ ID ∪ IT0 ∪ IT1 ∪ IT2

2: min(IM , ID ∪ IT0 ∪ IT1 ∪ IT2) /*Line 2–5 minimize each subset
3: min(ID, IT0 ∪ IT1 ∪ IT2) relative to subsets of
4: min(IT0 , IT1 ∪ IT2) more complex interaction
5: min(IT1 , IT2) elements*/
6: I=IM ∪ ID ∪ IT0 ∪ IT1 ∪ IT2

T-Compound Interaction and Overhearing Agents 105

Algorithm 6 min(Input–Output: interaction set I, Input: set list J={(Ji)i≤n}
1: for all X ∈ I do
2: for all Y in a set of J do
3: if ∃ agents (A,B,P) so that (X(A, B) and Y (A, B)) or (X(A, B) and

Y (A, B, P)) or (X(A, B, P) and Y (A, B, P)) exist then
4: I=I\{X}
5: if X is DUPLEX(A, B) and Y is T0(A, B, P) then
6: J0=J0\{T0(A, B, P)} /*corresponds to T0 interactions in that case*/
7: J1=J1∪{T1(A, B, P)} /*corresponds to T1 interactions in that case*/
8: end if
9: Break the loop

10: end if
11: end for
12: end for

Algorithm 5 modifies a set I by matching interaction elements and keep-
ing only the most constraining ones. For example, MONO(A, B, P) matches
DUPLEX(A, B), T0(A, B, P), T1(A, B, P), and T2(A, B, P). As it is less con-
straining, the procedure will eliminate it if one of the others is found. The min-
imization is performed by the sub-procedure min in Algorithm 6.

Algorithm 6 receives from minimize in Algorithm 5 a set I and a set list J,
ordered by increasing complexity of interaction elements. The aim is to match el-
ements in I with elements in a set of J that feature common agents in the same or-
der (line 3). If a match occurs (we counted 15 cases), the element of I is discarded
(line 4) as it is redundant and less complete. In the case of DUPLEX(A, B)
and T0(A, B, P) (line 5), there is an exception. The former is a ‘conversation’
and the second a single overhearing, so the result of the match is a ‘conversa-
tion overheard on one side’, i.e. T1(A, B, P). In such a case, T0(A, B, P) is also
removed (line 6) and T1(A, B, P) is created (line 7). The procedure ends with a
minimized I, relative to J.

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 106–118, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Managing Conflicts Between Individuals and Societies
in Multi-agent Systems*

Rubén Fuentes, Jorge J. Gómez-Sanz, and Juan Pavón

Universidad Complutense Madrid, Dep. Sistemas Informáticos y Programación
28040 Madrid, Spain

{ruben, jjgomez, jpavon}@sip.ucm.es
http://grasia.fdi.ucm.es

Abstract. The development of multi-agent systems (MAS) implies considering
both the social and individual levels of these systems. However, the elements in
these levels are not necessarily consistent. Conflicts can arise between the goals
of the community and those of individual agents. These contradictions are
potentially very complex, given the inherent intentional nature of agents and the
interactive features of their societies. Developers can face these problems about
contradictions with traditional software engineering verification techniques.
Nevertheless, these techniques always depend on the understanding of
developers about what properties to check. Abstractions of the agent paradigm
offer a new possibility for verification: the use of expert knowledge from social
sciences to detect and solve this kind of problems. Social sciences and MAS
research share a similar view about their objects of study: societies of
intentional actors. With this basis, it is possible to adapt the expertise of social
sciences to the study of MAS, providing a new source of knowledge for the
verification of MAS focused in their social and intentional features. Based on
our previous research, we have developed a method to solve motivational
contradictions with one of these social theories, the Activity Theory. This
method is explained with a case study about the management of a bookstore.

1 Introduction

In Agent Oriented Software Engineering (AOSE), systems are modelled as
organizations of agents that interact to achieve their own goals or those of their
designers. When modelling these Multi-Agent Systems (MAS), developers have to
consider the objectives that the organization pursues as a whole, but also the goals of
its agents. The complete set of goals present in a MAS may be inconsistent. This
situation does not always imply analysis mistakes. For example, agents can act on
behalf of different customers, the profit of individual agents can be reduced to
improve the overall gain of the community, or developers can deal with competing
organizations.

* This work has been funded by Spanish Ministry of Science and Technology under grant

TIC2002-04516-C03-03.

 Managing Conflicts Between Individuals and Societies in Multi-agent Systems 107

AOSE typically studies this kind of conflictive configurations in a MAS with
traditional verification techniques from the software engineering that focus on very
concrete social and intentional issues. Examples of these verifications involving
specific agents’ features are the satisfaction of goals by tasks, e.g. INGENIAS [16],
the exchange of the correct information between tasks, e.g. DESIRE [4], or the
analysis of the motivation in organizations, e.g. the work in [17]. The disadvantage of
this way of working is that it does not consider those features with an overall
approach. As it only focuses on some specific aspects, it disregards how other features
can have influence over those aspects. These methods conflict the holistic design view
that is one of the main concerns in AOSE [19].

Looking for solutions to this problem, our research turned to the use of social
sciences. These disciplines study this sort of aspects in human organizations with a
systemic approach, i.e. considering both social and individual issues. Besides, the use
of social sciences for software engineering has already precedents. They are widely
used in Requirements Engineering [15], Computer Supported Cooperative Work
(CSCW) [11], or Human-Computer Interaction (HCI) [12]. For AOSE, this interest is
increased by the fact that the natural metaphor for most of MAS approaches is that of
systems with intentional actors, which is close to human organizations.

In this line, our previous work [7, 8, 9] establishes the suitability of one of these
social theories, the Activity Theory, to work with the development of MAS. The
Activity Theory (AT) [18] is a framework for the study of human behaviours and
actions. It considers activities with both the social and individual levels interleaved in
developmental-historical processes. As part of our research with MAS, we provide a
design vocabulary for AT that can be translated to different MAS methodologies [7],
tools for requirements elicitation in MAS [9], and a process to deal with their
contradictions based on AT research [8].

In this paper, we show how these knowledge and techniques can help to deal with
motivational conflicts in MAS. Our management of conflicts comprehends the
understanding of general social properties in MAS. Social properties are here
considered in the line of [5] as those related with the organizational, cognitive,
developmental, evolutionary, and motivational aspects of the system. All of these
views have influence over MAS goal problems. That is why the process that verifies
and solves this kind of conflicts is built over these social properties. As a sketch of
the process, we can say that tools for requirements elicitation become the key to
expand the specifications in new areas while contradictions allow the study of the
goal conflicts in those specifications. The whole approach is illustrated in this paper
with a case study of a bookstore in Internet.

The remaining sections are organized as follows. Section 2 gives a brief overview
about the vocabulary used to represent the knowledge of the AT and its use inside a
MAS software process. The following section focuses on the use of AT techniques to
deal with motivational conflicts in MAS. Section 4 presents a case study with these
techniques. Finally, there is a discussion about the use of the AT in the example and
the benefits and limitations of this approach to study MAS specifications.

108 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

2 Activity Theory for MAS

Activity Theory (AT) is based on the psychological and sociological theory of L.S.
Vygotsky (1978) and A.N. Leontiev (1989). It focuses on the interaction of human
activity and consciousness within its relevant environmental context.

The basic unit of analysis in the AT is the human activity. Activities are driven by
people needs. The basic principles of the AT include object orientedness,
internalisation/externalisation, mediation, hierarchical structure, and development. In
the AT, the human mind emerges, exists, and can only be understood within the
context of human interaction with the world and this interaction, i.e., the activity, is
socially and culturally determined [13].

The principle of mediation plays a central role in the AT. An activity always
contains various artefacts (e.g. instruments, signs, procedures, machines, materials,
laws, forms of work, or organisations). These artefacts have a mediating role [1].
Relations between elements of an activity are not directed, but mediated. Tools shape
the way human beings interact with their context [14]: the relationship between the
subject and the object of the activity is mediated by a tool. The tool allows the subject
transforming the object into the product that satisfies his objectives. A tool can be
anything used in the transformation process, including both material tools and tools
for thinking. The relationship between subject and community is mediated by rules
and the relationship between object and community is mediated by the division of
labour - how the activity is distributed among the members of the community, that is,
the role each individual in the community plays in the activity, the power each wields,
and the tasks each is held responsible for.

These concepts constitute the common core of the modelling vocabulary for AT as
agreed in its research community. This vocabulary has been translated into UML
terms using stereotypes [7] to facilitate its use in a software development process. To
complete the graphical vocabulary of the AT for MAS, some other entities, e.g.
activity systems or roles, and relationships, e.g. contributions or decompositions, were
added to the previous core.

The vocabulary for AT allows developers to represent the knowledge from the AT
as diagrams, what we call structural patterns. Since our purpose is providing support
tools for existing agent-oriented methodologies, these AT patterns have to be
translated to agent related terms (according to the corresponding methodology). We
have shown in [7] that this translation is feasible for agent-oriented methodologies
with an underlying Believe-Desire-Intention (BDI) model [2], by considering the
intentional and social features of both theories.

Once the mapping between AT and agent concepts is established, it is possible to
apply AT techniques in the MAS development process. Based on this, we have
implemented two support tools in the INGENIAS Development Kit
(http://ingenias.sourceforge.net), the Requirements Elicitation Guide (REG)
(formerly known as the Activity Checklist for MAS [9]) and the analysis of
contradictions [7].

The REG is based on the Activity Checklist from the AT. The original Activity
Checklist [13] is an analytical tool to elicit information about the context of activities

 Managing Conflicts Between Individuals and Societies in Multi-agent Systems 109

in HCI studies. It describes in natural language areas, aspects, and questions that act
as reminders for researchers of the elements to analyze. The areas are the main topics
of introspection about a system according to the AT. These topics include several
relevant features for analysis, i.e. the aspects. Questions describe the relevant
information to gather about a given aspect. Our work has evolved this checklist
adapting it to the particular concerns of MAS requirements. In the new checklist,
questions have representations with structural patterns in UML that act as frames to
collect the information of their answers in a format suitable for software development.

The other key tool obtained from the AT is the analysis of contradictions.
Contradictions in the AT [14] represent tensions between the components related in
an activity. The AT states that these contradictions are the propellers of the system
evolution: a system changes trying to solve its inner contradictions. Thus,
contradictions are a cardinal topic in AT studies. The expert knowledge of the AT
about contradictions and their solutions in humans’ organizations has been adapted to
MAS [7]. In the same way that the questions of the REG, contradictions are described
as UML structural patterns with explanations in natural language. These repositories
of contradictions contain ready-to-use properties that developers can check in their
models thanks to the mappings and a detection process [8].

The combination of these techniques gives developers tools to deal with the social
and intentional features of MAS using knowledge from social sciences. They provide
guidelines in the development, e.g. “What do I have to introspect?” or “Do my agents
have true motives to collaborate?”, and language and processes to elicit social
properties, e.g. those described by the REG, and to solve inconsistencies, e.g.
solutions for AT contradictions.

The next section introduces with more detail how to use these tools to manage
motivational conflicts.

3 AT to Deal with Conflicts in MAS Design

Most of current approaches to deal with motivational issues in MAS adopt a point of
view too constrained [10]. They focus on the goals, the tasks that satisfy them, or the
agents that pursue those goals. That way of doing constitutes an extrapolation of
traditional verification techniques. It mainly relies on syntactic rules about the
elements, e.g. “a goal always has a related task that is able to satisfy it”.

Such approaches to solve motivational issues in MAS have two clear drawbacks.
First, they hardly consider the real influence of the environment. That effect is beyond
the scope of goals, tasks, or resources involved in MAS workflows; it also
encompasses aspects like the structure of the organization, the norms describing
power relationships, or the users’ interests behind the agents. The second issue is that
these approaches heavily depend on developers’ knowledge about what useful
properties they have to verify or how to solve conflicts. However, these properties are
not about common software artefacts and do not belong to the common background in
computer science. This makes difficult for developers considering useful situations
that are not evident.

110 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

Fig. 1. AT goals conflict management

Our solution for this problem is the use of AT to provide the additional knowledge
that developers need to reason about the social and intentional aspects of MAS. The
AT tools of the REG [9] and the analysis of contradictions [7] are the required
techniques. Their formulation is a join venture between AT and agent experts. These
techniques crystallize the conceptual framework and experience of AT research about
the analysis of social systems. Consequently, they can provide hints about the aspects
that the MAS specifications should consider or the conflicts that can appear and how
they can be solved. The process that integrates these tools appears in Fig. 1.

The process in Fig. 1 has as parameter the specifications of a MAS. The first step is
to translate the MAS specification into AT terms, what does the corresponding
support tool. The result can be represented as a set of views of the MAS in the UML
language for AT. This is illustrated later in the case study of section 4. At this point
developers can work out two kinds of problems. The first one is whether their
specifications cover all the aspects about a given part of the MAS. The second one is
that they try to discover whether their MAS has or not motivational conflicts.

The REG is the tool to solve the first problem. As stated before, the REG is
structured in areas, aspects, and questions. An example of them appears in Fig. 2. The
table includes the question used in the case study of section 4 pointed out with a “ ”.
Developers should read the descriptions of areas and aspects to determine what are the
features of their MAS most probably underspecified. When they make their choice, the
guide offers them a set of questions representing information that specifications should

 Managing Conflicts Between Individuals and Societies in Multi-agent Systems 111

include about that topic. The results of answering those questions are new diagrams for
the MAS specifications in the AT language, like that in Fig. 6.

Aspects Questions
Objectives
context

What are the evidences that allow thinking in a given moment that the
objective can be achieved?
Are there processes that force the actor to respect organization norms?
What are the decision mechanisms in the organization? Is it a
hierarchy? Is it a committee?

Potential
conflicts
between
objectives

Does the satisfaction of the objectives of the component interfere with
the satisfaction of others actor’s objectives?
Could society rules force the agent to desist from the objective?
Does the agent’s objective come from an organization objective?

Fig. 2. Examples of aspects and questions in the Means/ends area

The detection and solution of conflicts relies on the analysis of motivational
contradictions. The AT identifies regular patterns, some of which are contradictions,
that appear in human organizations, and with them it explains how social systems
change or why sometimes they do not behave as expected. Motivational conflicts are
among those contradictions. An example of them is the Need State contradiction [3],
which is illustrated below with the case study. Contradictions are composed by two
structural patterns: a match pattern and a solution pattern. The match pattern describes
the goal conflict in terms of AT concepts. The detection process traverses the
specification looking for groups of elements that correspond with the pattern. An
identification of the pattern can point out a motivational conflict (like that in Fig. 7).
The solution pattern describes an answer that an organization has adopted for that
concrete conflict. It is a hint on how the specifications could be modified. This
solution is a rearrangement of the elements in the match pattern, maybe with
additional elements. A solution example appears in Fig. 8.

An important remark about the process in Fig. 1 is that it is hard to apply without
automated support, as it involves a lot of repetitive work. The process involves
repositories of AT properties, which have to be instantiated to concrete MAS
specifications thanks to mappings. Besides, the addition of new elements to some
given MAS specifications with the REG or carrying out the pattern matching to detect
contradictions, require traversing the specifications looking for the correct elements.
In this sense, assistants to apply the AT techniques are needed. A partial architecture
of one of these assistants appears in [8]. These tools can be integrated through well-
defined APIs with existing MAS modelling environments.

4 Case Study: Bookstore in Internet

This example for goals conflict management with the AT in a MAS process is
inspired by the Juul Møller Bokhandel A/S [6]. Its full specification with the
INGENIAS notation can be found at http://grasia.fdi.ucm.es/ingenias.

112 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

Briefly, Juul Møller is a bookstore that works with the Norwegian School of
Management. The bookstore has an agreement with the School. Thanks to the
agreement, teachers of the School provide to Juul Møller the list of books for the next
course in advance. In exchange, Juul Møller sells the books to students with
discounts. This agreement allows Juul Møller negotiating with publishers to obtain
better prices and increasing sales.

The problems for the bookstore come when students begin to buy books in
Internet. They have discovered that sites such as Amazon.com (http://amazon.com) or
Blackwell’s (http://www.blackwell.com) are as good providers as Juul Møller. They
sell books at almost the same prices than Juul Møller and their delivery times are even
better when teachers change course books at the beginning of the term.

a) Agents

b) Workflow

Fig. 3. a) and b) Student’s Agent and workflow to buy books with INGENIAS. Circles
represent goals, rectangles represent facts, and ellipses represent tasks

 Managing Conflicts Between Individuals and Societies in Multi-agent Systems 113

Satisfaction relationships

Fig. 4. Satisfaction relationships to buy books with INGENIAS. Circles represent goals and
ellipses represent tasks

To avoid losing customers, Juul Møller wants to enter in the e-commerce and
preserve the agreement. It tries to develop a site that gives to teachers and students
appealing new and specialized services. Of course, this new system will be developed
with the latest agent technology.

Fig. 3. a) and b) Student’s Agent and workflow to buy books with INGENIAS.
Circles represent goals, rectangles represent facts, and ellipses represent tasks.

Fig. 4 shows part of the specification of the new system with INGENIAS.
The MAS have agents for students, teachers, different employees of Juul Møller,

and even to access external bookstores (such as Amazon.com or Blackwell’s) or
publishers. Every agent has to carry out tasks on behalf of its user, what can imply
that it has to request services. At the same time, it has to offer some services to the
overall organization. Fig. 4 focuses in two of these agents, the Student’s Agent and the
Sales Department Agent. These agents collaborate when the user needs to find the
best place to buy books. The Student’s Agent compares the prices that the Sales
Department Agents of different bookstores provide him. The Sales Department Agent
can represent any bookstore, for instance, that of Juul Møller.

As one of the main goals when building the MAS for Juul Møller is preserving the
current status quo, i.e. the agreement, the MAS has to work in this way. Let see with
AT tools if this happens.

The first step is to translate the current MAS specifications to the AT language.
This process can be done with an assistant tool that applies the mappings. In this case,
the translation uses the mappings for INGENIAS introduced in [8]. The mappings
describe how an origin structure with concepts of a given MAS methodology
corresponds with another target one that only uses AT concepts. The translation of the
specifications encompasses instantiations of all the target structures whose origin
structures where identified over the MAS models. Part of the resulting translations for
the specifications in Fig. 4 can be seen in Fig. 5.

With the translated information, the development team tries to know if this
configuration helps to preserve the agreement between the bookstore and the school.

114 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

The agreement is modelled as a set of goals, i.e. AT objectives, pursued by actors in
the system, i.e. AT subjects or communities. In this case, the customers who represent
Juul Møller did not relate the goals that are relevant for the MAS among themselves
or with other goals of the context. Therefore, developers need to elicit further
information about these relationships.

Fig. 5. Partial translation of specifications to AT

Fig. 6. Answer to a question about conflicts between objectives

Developers can use the REG [9] to elicit the new information. The guide includes
an area called Means/ends that has an aspect about Potential Conflicts between
Goals. As an example, its sixth question is “Does the satisfaction of the objectives of

 Managing Conflicts Between Individuals and Societies in Multi-agent Systems 115

the component interfere with the satisfaction of others actor’s objectives?”. Like all
the questions in the guide, this has a related structural pattern expressed in UML. The
pattern acts as a frame of which the customer fills up slots with the information of the
answer. This information can be new values or elements already in the specifications.
Fig. 6 shows the answer to this question. The relationship between the Student’s
Agent and his objective comes from his activities. The community Juul Møller
represents the global interests of the bookstore company. This community pursues the
objective Sell More Books. The customer’s answer points out to a conflict between
goals. When the students choose the best place to buy their books, it could be a
different one from Juul Møller. In that case, their choice decreases the sales of the
bookstore and thus damages the agreement.

The apparent contradiction in Fig. 6 deserves a deeper analysis that determines its
real impact over the considered activities. If there is a real conflict about this
situation, it could raise from different causes and therefore demand different
solutions. Developers use the AT contradictions to carry out this analysis. The process
presented in [8] admits that developers customize patterns for specific elements. In
this case, the elements of interest are those in Fig. 6.

Developers would check (probably with the help of a software assistant) the
possible contradictions that can exist in the specifications. In the current problem, a
contradiction called the Need State [3] appears. An activity emerges to satisfy a given
need of its subject [14]. However, the relation between the activity and its needs is not
static. The activity is characterized by the concrete object whose transformation
satisfies the needs. As the object can change, the activity can also be transformed in
new activities. The Need State emerges when the activity satisfies no longer the needs
of its subject because of the changes in its object. Fig. shows the Need State for Juul
Møller. All the members of Juul Møller and their agents, like the Sales
DepartmentAgent, share the common goal of Sell More Books. Thus, their activities

Fig.7. Need State contradiction in Juul Møller

116 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

Fig. 8. A possible solution for the Need State contradiction in Juul Møller

should contribute positively to that goal. However, the activity Process Answer that
the Student’s Agent carries out has a negative effect over this goal. In this new
situation, the activity Answer Inquiry does not guarantee the satisfaction of the
objectives of the Sales Department Agent. A Need State contradiction emerges for this
agent. Note in Fig. 7. that the information to detect the contradiction was obtained
mixing several views in the existing specifications from the INGENIAS methodology.

AT research has studied several possible solutions for a Need State contradiction.
Fig. 8. presents one of the more common: the addition of a new activity that contributes
to the satisfaction of the harmed goal. The new activity can provide new objects or
repair existing ones. In the case of Juul Møller, developers introduce the new activity
Obtain Statistics. This activity does not interfere with the remaining configuration of
the MAS but produces additional objects that benefit the objective of Sell More Books.
The statistics about the students’ queries can help Juul Møller to determine what their
habits are. This information helps to improve its service and thus to increase its sales.

The application of these techniques based on the AT is an interactive process with
the user. Most of the work in this case study can be automated. Nevertheless, user’s
decisions are needed about whether the identified contradictions make real sense in
the domain or to restrict the search of patterns to certain elements.

5 Conclusions

This paper has shown an approach to the discovering and solving of contradictions
about goals in MAS, considering the individual and social level of these systems. This
kind of conflicts is common in MAS design because agents may act on behalf of

 Managing Conflicts Between Individuals and Societies in Multi-agent Systems 117

different users and organizations. In this heterogeneous and changing context,
developers cannot expect that the considered set of goals is always consistent.

We think that solving this problem is not just a question of traditional verification,
where developers have to give a notation and a process to prove properties over
specifications in that language. This is also a problem of what the interesting
properties are. Here, our research has led us to the use of social sciences, concretely
the Activity Theory, to provide this knowledge.

The proposed process allows developers to acquire new information about the
MAS and verify its social properties. Main features of this process are:

 Use of the AT as a source of knowledge about social properties in human
societies. This information can be applied to the elicitation and verification of the
same kind of social features in MAS.

 Translation with mappings from the AT language to MAS vocabularies. These
correspondences allow the application of AT techniques to agent-oriented
methodologies.

 Representation of properties as structural patterns with UML. This representation
comes with a textual explanation that facilitates the comprehension of its social
meaning. The UML patterns are suitable to represent information in the
development process. Besides, they allow approaching the verification process as
one of pattern matching.

By having a repository of properties coming from the AT, developers can
overcome some of the difficulties with motivational conflicts in MAS. They have
ready to use libraries of potentially interesting properties that they could elicit or
verify in their MAS. Moreover, they have a method to apply these properties in their
development if they provide the mappings for their methodology. Even if they adopt
another approach to use the properties, e.g. some formalism, the knowledge about the
properties is still reusable for their MAS.

The application of the AT method for MAS can be automated as proved previous
research. The resulting tools have interfaces that allow their integration with current
modelling environments.

An open issue in this method of conflict management is that developers do not
know what the most convenient properties to check in a given situation are. Here,
developers need heuristics that help them to decide, and this is a current research
topic. These heuristics could be integrated with the support tools in order to guide the
developer in this process.

References

1. Bednyi, G. Z., Meister, D.: The Russian Theory of Activity: Current Application to Design
and Learning. Lawrence Erlbaum Associates. 1997.

2. Bratman, M. E.: Intentions, Plans, and Practical Reason. Harvard University Press. 1987.
3. Bratus, B. S., Lishin, O. V.: Laws of the development of activity and problems in the

psychological and pedagogical shaping of the personality. Soviet Psychology XXI, 38-50.
1983.

118 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

4. Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings, N. R., and Treur, J.:
DESIRE:Modelling Multi-Agent Systems in a Compositional Formal Framework.
International Journal of Cooperative Information Systems, special issue on Formal
Methods in Cooperative Information Systems: Multi-Agent Systems, 1997.

5. L. L. Constantine: Constantine on Peopleware. Englewood Cliffs, NJ: Yourdon Press, 1995.
6. Espen Andersen: Juul Møller Bokhandel A/S. Case Study available at

http://www.espen.com/. 2001.ï
7. R. Fuentes, J.J. Gómez-Sanz, J. Pavón: Activity Theory for the Analysis and Design of

Multi-Agent Systems. In Proceedings of the Fourth International Workshop on Agent
Oriented Software Engineering (AOSE 2003), Melbourne, Australia, July 2003. Volume
2935 of Lecture Notes in Computer Science, pages 110–122. Springer Verlag. 2003.

8. R. Fuentes, J.J. Gómez-Sanz, J. Pavón: Social Analysis of Multi-Agent Systems with Activity
Theory. In Proceedings of CAEPIA 2003, San Sebastian, Spain, November 2003. Volume
3040 of Lecture Notes in Artificial Intelligence, pages 526-535. Springer Verlag. 2004.

9. R. Fuentes, J.J. Gómez-Sanz, J. Pavón: Towards Requirements Elicitation in Multi-Agent
Systems. In Proceedings of the 4th International Symposium From Agent Theory to Agent
Implementation, AT2AI 2004, pages 582-587, Vienna, Austria, April 2004.

10. R. Fuentes, J.J. Gómez-Sanz, J. Pavón: Verification and Validation Techniques for Multi-
Agent Systems. Upgrade, Vol. V, n. 4, August 2004.

11. Hughes, J., King, V., Rodden, T., Andersen, H.: Moving out from the control room:
ethnography in system design. In Proceedings of the ACM 1994 Conference on Computer
Supported Cooperative Work - CSCW'94. ACM Press, pp. 429-439.

12. Hutchins, E., Klausen, T.: Distributed cognition in an airline cockpit. In D. Middleton &
Y. Engestrom (Eds.), Communication and Cognition at Work. Beverly Hills, CA.: Sage
Books. 1992.

13. V. Kaptelinin, B. A. Nardi, C. Macaulay: The Activity Checklist: A tool for representing
the “space” of context. Interactions, 6 (4), p27-39. 1999.

14. Aleksie Nikolaevich Leontiev: The problem of activity in the history of Soviet psychology.
In Soviet Psychology, 27(1), 22–39. 1989.

15. Nuseibeh, B.A., Easterbrook, S.M.: Requirements engineering: A roadmap. In
Proceedings of the 22nd International Conference on Software Engineering (ICSE’00), pp.
35–46. 2000.

16. Pavón, J and Gómez-Sanz, J. J.. Agent Oriented Software Engineering with INGENIAS. In:
Multi-Agent Systems and Applications III, 3rd International Central and Eastern European
Conference on Multi-Agent Systems, CEEMAS 2003. Lecture Notes in Computer Science
2691, Springer Verlag (2003) 394-403.

17. J. Sichman, Y. Demazeau: On Social Reasoning in Multi-Agent Systems. Inteligencia
Artificial, Revista Iberoamericana de Inteligencia Artificial, Special Issue on Development
of Multi-Agent Systems, n°13, pp. 68-84, AEPIA. 2001.

18. L. S. Vygotsky: Mind and Society. Cambridge MA, Harvard University. 1978.
19. Michael J. Wooldridge: Agent-based software engineering. IEEE Proceedings on Software

Engineering, 144(1):26–37, February 1997.

Motivation-Based Selection of Negotiation
Opponents

Steve Munroe and Michael Luck

Electronics and Computer Science,
University of Southampton, Southampton, UK

{sjm01r, mml}@ecs.soton.ac.uk

Abstract. If we are to enable agents to handle increasingly greater lev-
els of complexity, it is necessary to equip them with mechanisms that
support greater degrees of autonomy. This is especially the case when it
comes to agent-to-agent interaction which, in systems of selfish agents,
often follows the format of negotiation. Within this context, a problem
which has hitherto received little attention is that of identifying appro-
priate negotiation opponents. Furthermore, the problem is particularly
difficult in dynamic systems where the need to negotiate over issues and
the evaluation of resources may change over time. Such dynamics de-
mand high degrees of autonomy from agents so that such factors can be
handled at run-time and without the aid of human controllers. To that
end, this paper draws inspiration from biological organisms and theories
of motivation, and describes a motivation-based architecture comprising
a number of motivation-based classification and selection mechanisms
used to evaluate and select between negotiation opponents. Opponents
are evaluated in terms of the likely issues they will want to negotiate
over and the amount of conflict this might entail. Additionally, the ex-
pected cost of a negotiation with an opponent is examined in relation to
the agent’s current motivational evaluation of its resources. The mecha-
nisms allow prioritisation between each method of evaluation dependent
upon motivational needs. Some preliminary evaluation of the model is
also presented.

1 Introduction

Negotiation is a particularly important form of interaction between agents. It
allows agents to reach agreement over shared concerns, and there are many exist-
ing frameworks (e.g. [1, 2, 3]). Most frameworks focus on the problems inherent
within the negotiation episode, such as which negotiation strategies and tactics
offer the best results, and how best to employ them. They provide a host of
techniques and methods that allow agents to autonomously navigate through a
negotiation episode. However, though the actual steps taken within a negotia-
tion are often left to the agent to decide, the form and focus of the negotiation
is still most often handled by some user of the agent. Thus, though an agent
may be used to negotiate the conditions of a holiday package for example, the

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 119–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

120 S. Munroe and M. Luck

issues negotiated over, the constraints on what are acceptable outcomes, and the
opponents negotiated with, are often not decided by the agent, but are presented
as given constraints. This may be fine in such purchase negotiation as this but,
in persistent, multi-agent systems where agents must go about their tasks away
from human direction, this is clearly not adequate. To address this, agents must
be given the ability to decide what they need to negotiate about, what con-
straints impact upon those needs, and which opponents best meet these needs.
In fact, there is a growing realisation that the decisions that must be made prior
to negotiation represent key problems that must be addressed if agents are to
use negotiation more autonomously than they do at present (e.g.[4]).

1.1 Opponent Selection for Negotiation

When the need for negotiation arises, there may be a number of potential ne-
gotiation opponents that an agent can choose from. Each opponent may exhibit
different service-related characteristics that distinguish it from other opponents.
For negotiation to be successful, the preferences of the agent requiring the ser-
vice must coincide with the service-related characteristics of the opponent. For
example, an agent needing to negotiate on the time of delivery of some service,
is better served by an opponent who does not have a preference for this issue.
In this way, the issue can be settled quickly and at the value most preferred by
the agent. In other words, the agent should attempt to avoid those opponents
who have strong preferences regarding service delivery times, as this may risk
conflict on the issue, potentially leading to a negotiation that is long, difficult
and prone to failure. Thus, an agent should have, in order to increase its chances
of engaging in successful negotiations, the ability to reason about the compati-
bility of an opponent’s interests with its own in order to avoid negotiations with
a high conflict potential.

An additional factor that impacts upon opponent choice is the relative im-
portance of the negotiation issues chosen. For example, an agent looking to
negotiate the purchase of a service, with only limited monetary resources, will
place a greater value on that resource and so will be influenced towards those op-
ponents offering cheaper prices. Good performance on price is, therefore, a more
influential selection criterion than other issues, and opponent selection should
reflect this. At different times, and with different constraints, however, oppo-
nent selection may be influenced by different criteria, such as the quality of the
offered service.

1.2 Autonomy and Motivation

While existing negotiation frameworks allow for autonomous agent behaviour
within negotiation, they mostly omit consideration of it before negotiation be-
gins. However, if agents are to make the kinds of decisions that must be made
before negotiation begins, they must be able to display autonomy here as well.
Our approach to enable such autonomy is to adopt the construct of motivation,
which is defined in [5] as

Motivation-Based Selection of Negotiation Opponents 121

“any desire or preference that can lead to the generation and adoption
of goals and that affects the outcome of the reasoning or behavioural task
intended to satisfy those goals.”

Motivation influences the decision-making of an agent, leading to the adoption
of those activities that best serve its motivational interests. This approach is
similar to the more commonly used economic approach that uses the notion
of utility to guide agent activity. Utility-based agents act under the principle
of utility-maximisation, in which activities with higher utility are chosen over
those with lower utility. However, whereas utility is an economic abstraction of
value or benefit that is overlaid on an agent’s choices by the agent designer,
motivation is an internally derived measure of value determined both by a set of
internal state variables (such as hunger or thirst, for example) and the external
environment. For example, in the presence of food, an agent may or may not
choose to eat depending on the state of its internal environment (specifically its
hunger motivation). In this sense, motivation grounds the generation of mea-
sures of value (such as utility) in the agent’s internal state, and thus is in a sense
prior to, and generative of, such notions. By examining options and weighing
up their motivational worth, an agent can be guided in choosing motivation-
ally relevant activities, and it is exactly this behaviour that defines for us the
essence of autonomy. An agent is autonomous if it makes decisions and selects
courses of actions that further its own interests based upon its own assessment
of the situation.

In this paper, we describe an approach to the selection of negotiation op-
ponents based upon consideration of the likely amount of conflict that might
result form a particular selection, and the extent to which an opponent is ex-
pected to meet the constraints that impact upon the agent’s ability to settle
the issue of price. We describe a motivated agent architecture and a number of
motivated decision-making mechanisms that allow an agent to assess the vari-
ous needs that it has regarding the issues of the forthcoming negotiation, and
evaluate the how a particular opponent meets those needs. While the paper is
free of formal description, a formal model of the motivated agent architecture
exists and can be obtained from the authors. The paper proceeds as follows. In
Section 2 related work is described. Section 3 describes our motivated agent ar-
chitecture and our negotiation goal model comprising an attribute classification
mechanism, and in Section 5 we discusses the kinds of information needed about
opponents for selection to work. Section 6 describes the selection mechanisms
that work by either minimising conflict or minimising resource use, and Section
7 presents some preliminary evaluation of the model. Finally, Section 8 offers
some concluding remarks.

2 Related Work

Much work is currently been undertaken that examines opponent selection from
the point of view of trust and/or service reputation (e.g. [6, 7]), where both

122 S. Munroe and M. Luck

refer to the fidelity of the opponent’s behaviour with regard to the negotiated
outcome. Whilst trust and reputation are of great importance for designers of
agent systems, especially systems characterised by openness they are, we argue,
only part of the story and must be supplemented with the kinds of issues we
are investigating in this paper such as information relating to the underlying
interests and motivations of the negotiation participants and how this influences
the kinds of negotiation encounter they prefer.

Non trust-based opponent selection has been addressed by a number of re-
searchers too. Work by Tesfatsion [8] examines how agents select opponents
based upon the amount by which they exceed a fixed performance-based tol-
erance threshold. Though this work examines similar problems to those in this
paper, it does not address the specific problems of the minimisation of conflict
through the smart selection of negotiation opponents, and assumes fixed perfor-
mance thresholds — whereas we deal with dynamically changing performance
requirements. In [9], Banerjee et al. examine the formation of coalitions, and
agents must choose partners based on the expected payoffs gained over a period
of time. Although the work considers partner selection, it focuses on coopera-
tive encounters and does not deal with the problems of negotiation. Another
approach to opponent selection, using cognition-based strategies, is described
in [10], in which several heuristic decision-functions facilitate the selection of
optimal opponents. However, the work does not examine the effects of changing
evaluations of resources and how this affects selection of opponents, nor does it
deal with considerations of conflict, but instead, focuses on the efficacy of the
decision heuristics.

Motivation has long been used in psychology [11] and ethology [12], where it
is used to explain the higher-level desires of an organism. In computational set-
tings, motivation is increasingly being used as a higher-level control mechanism
that directs the goal generation, action-selection and decision-making activities
of software agents (e.g. [13, 14]) and robots (e.g. [15, 16]). The importance of
motivation as an enabler of autonomy in computational agents was perhaps first
identified by d’Inverno and Luck [5], who discuss the importance of motivation
in allowing an agent to generate its own goals, as opposed to adopting them from
others. Further analysis of this view can be found in [17]. More recent efforts have
extended Luck and d’Inverno’s ideas to consider cooperation [13], planning [18]
and norm-based multi-agent systems [19]. The use of motivation within negoti-
ation is a relatively new approach. An early example is described in [20], where
motivation is used to enable cooperative negotiations that aim to increase the
utility of all participants. Perhaps the closest work to ours is that of Urbig et al.
[4], which looks at the links and interdependencies of issue selection and partner
choice, as well as their effect on behaviour during negotiation. However, their
approach differs from ours by focusing on a formal specification of the possible
interdependencies between the three aspects, rather than the development of an
agent architecture and accompanying classification and selection mechanisms to
enable the autonomy necessary to address these problems.

Motivation-Based Selection of Negotiation Opponents 123

3 Motivated Agents and Negotiation Goals

Our previous work [21] has involved the development of a motivated agent archi-
tecture, which enables autonomous decision-making and action selection for com-
putational agents. In the architecture, the external environment, goals, actions
and resources are linked to the motivations of the agent through motivational
cues, which are essentially beliefs which, when true, impact on the strength of
the agent’s motivations. The goals pursued, and the actions and resources used
to satisfy goals, are all determined by the effects they have upon the agent’s
motivations via the cues to which they are linked. Thus, for example, a ware-
house agent may notice that a box has been left lying in a corridor. If boxes in
the wrong location act as cues for the agent, it will affect the intensity of the
motivation linked to the cue. This may cause the agent to generate a goal to
put the box back into its correct location in the warehouse. Whether this goal
is adopted depends upon the size of the effect that satisfying this goal will have
on motivational intensity levels. Once a goal is adopted, the agent must then
select an appropriate plan, which may call for the use of some resources that
enable the plan, and the agent must assess the motivational effects of executing
the plans using any associated resources.

Figure 1 shows our motivated agent architecture. The agent forms a view
of the environment, which is linked, along with the agent’s goals, actions and
resources, to cues which, if true, affect the agent’s motivational intensity levels.
If motivational intensities rise above certain threshold levels, goals are generated
and the agent’s decision-making module then considers the various actions and
resources at its disposal, determines what the effect of their use would be on mo-
tivational intensity, and selects those that have the most beneficial effects. These
are then passed on to the effectors of the agent to take action. In the rest of this

Fig. 1. The motivated agent architecture

124 S. Munroe and M. Luck

Table 1. Possible values for three different negotiation goal attributes

Attribute Attribute Values

Price 10 20 30 40

Delivery Mon Tues Wed Thurs Fri

Quality Low Med High

paper we describe a classification mechanism and two selection mechanisms that
lie within the decision-making component of the motivated agent architecture.

3.1 Negotiation Goals

Though the model above provides a general view of motivated agents, we need
to refine it to describe how an agent can generate and reason about negotiation
goals. In our work we have developed a model of negotiation goals that allows
agents to autonomously decide what they want to negotiate about, what they do
not want to negotiate about and what they do not care about. The components
of a goal are its attributes, which represent the traditional AI notion of an
atom composed of a predicate and a sequence of terms. So, for example, an
attribute of a goal to place a box in a store room could be represented as:
In(boxA, storeRoom).

Our model is unique, however, in that we classify attributes according to
their status in a forthcoming negotiation. Those attributes of a negotiation goal
that describe what must be achieved are called fixed attributes, while those that
may form the focus of the negotiation are called potential attributes. Potential
attributes allow us to model negotiation issues such as price, time or quality, and
they are composed of a predicate and a set of values to instantiate the predicate.
So, for example, Price(boxA,X) must have a range of values that can instantiate
the variable, X . Table 1 shows the three potential attributes of Price, Time and
Quality along with a set of values for each that can be used for instantiation.

Thus, a negotiation goal initially comprises a set of fixed attributes for de-
scribing what must be achieved, and a set of potential attributes that may or
may not be negotiated over. Table 2 shows the initial structure of such a goal.
The example goal here is the goal to place a box in a particular location. The
identity of the box and the name of the location therefore represent fixed at-
tributes of the goal. The potential attributes refer to the price the agent is willing
to pay to have this goal satisfied, the time at which the goal is to be satisfied
and the quality of the method used to move the box (imagine there are three
possible ways to move the box, each with a different chance of damaging the
contents of the box). Initially, the goal consists of just these types of attributes
(i.e. fixed and potential). The task of the agent upon the generation of this
goal is to decide which of the potential attributes are to be made negotiable,
which should be made fixed and therefore, not negotiable, and which are of
no importance (called slack attributes) and therefore, can be omitted from the
negotiation altogether.

Motivation-Based Selection of Negotiation Opponents 125

Table 2. The initial structure of a negotiation goal

Partial Goal Template

Attributes Fixed Potential

Box id �
Destination �
Price �
Time �
Quality �

The decision about the status of a potential attribute depends on two factors.
First, the preferences of the agent towards how the attribute will be instantiated
must be considered. Constructing these preferences is achieved by assessing the
effects of each instantiation on the agent’s current activities. Second, the designer
must supply a set of classification rules that are applied to the agent’s preferences
to determine whether the attribute is fixed, negotiable or slack. The form of the
classification rules depends on the designer’s needs for the domain in question,
but we offer some example rules here:

1. An attribute is classified as fixed if the preferences of the agent contains
at most one value that has positive motivational worth and all the rest as
having negative motivational worth.

2. An attribute is classified as negotiable if the preferences of the agent contains
more than one value that has positive motivational worth.

3. An attribute is classified as slack if all the values contained in the agent’s
preferences have the same motivational worth (both positive or negative).

The rationale for these rules is as follows. If only one value of an attribute has
positive motivational worth, it is preferable for the agent to demand that this
value be met in any forthcoming negotiations as, if any other value is used to
instantiate the attribute, the agent will be in a worse state than previously.
This means that the agent should include the attribute with the value as a fixed
attribute of the negotiation goal. If, however, more than one value is identified
that gives the agent positive motivational worth, then the agent can be afford
to be flexible with regard to the attribute. Through this flexibility the agent
increases its chances of reaching a successful settlement with an opponent, as
there is greater room for agreement. Finally, if all the values for a given attribute
have the same level of worth, there is no point in negotiating over the attribute,
as the agent is indifferent to any instantiation. This allows the agent to prune
irrelevant issues, thus making the negotiation more efficient and provides an
incentive to opponents to enter into negotiation as, if they know that a preferred
issue is irrelevant to the other agent, they can instantiate the attribute using
their own preferred value.

In Figure 2, we show our attribute preference construction and classification
mechanism. The potential attributes from a negotiation goal are passed to the pref-
erence generator that examines each possible value that can be used to instantiate

126 S. Munroe and M. Luck

Fig. 2. The attribute preference construction and classification mechanism

Table 3. The final structure of a negotiation goal

Negotiation Goal Template

Attributes Fixed Potential Negotiable Slack

Box id �
Destination �
Price �
Time �
Quality �

the attribute, and assesses their motivational worth by examining how the use of
a value affects motivations via cues linking the attribute to motivations. By doing
this for all the values of an attribute, a preference attribute is formed, which is sim-
ply a potential attribute with an associated preference ordering over its attribute-
values. At this point, the preference attribute is passed to the attribute classifier
that applies the attribute classification rules stored in the attribute classification
rule library. After the application of the rules, each preference attribute of the ne-
gotiation goal is classified as either fixed, negotiable or slack. The final form of a
negotiation goal for an agent wanting to engage in negotiation will be like that of
Table 3. In the table the price attribute has been made negotiable, the time at-
tribute has been made slack, and the quality attribute has been made fixed, along
with the other two previously identified fixed attributes of box id and destination.

4 Constructing Preferences ver Potential Attributes

Imagine a situation in which an agent is considering a goal regarding the move-
ment of a box from one location to another. The fixed attributes of the goal state

o

Motivation-Based Selection of Negotiation Opponents 127

Table 4. Three example plans

Plan name Description Quality

planA Move the box with a trolley High
planB Move the box by carrying it manually Medium
planC Move the box by dragging it Low

that a particular box, boxA is to be moved to a particular location, roomB , i.e
In(boxA, roomB). One of the potential attributes of the goal concern the qual-
ity of any plans used to satisfy the goal, where there exist three possible plans
each with a different quality rating {high,med , low} (imagine that each plan has
a different chance of causing damage to the box, with the plan with the lowest
chance has the highest quality rating). Three example plans are given in Table 4.

Now, in general, higher quality plans are preferred, hence we may have the
preference ordering: planA > planB > planC in which case the client agent
chooses planA. However, there may be times when it is better to use planB
or even planC . For example, using trolley required for planA might mean that
another goal that needs the trolley is affected. However, this information may
only be available at runtime, and so it is important for the agent to be able
to re-order its preferences to meet the demands of the current situation. In the
remainder of this section we show how this can be achieved.

4.1 A Motivated Preference Construction and Classification
Mechanism

When considering the different ways in which a potential attribute can be in-
stantiated, it is necessary to determine what effects it has on the agent’s current
activities. In order to do this we take the current activities of an agent, rep-
resented by the agent’s intentions, each of which comprises a goal and a set of
plans used to satisfy the goal. Plans represent the actions and subgoals that must
be achieved before the goal can be satisfied and, in order to check whether any
given instantiation of a potential attribute hinders or facilitates an intention,
we must examine the plans associated with the intention to see what effects the
instantiation has.

First we get the subgoals of an intention denoted by the term subgoals, which
takes an intention and returns the set of subgoals encoded in the plans used to
satisfy that intention. Then, we take a specific instantiation and determine those
subgoals that are hindered hindered and those that are facilitated facilitated .

4.2 Scoring the Effect of an Instantiation

Having identified which intentions are hindered and which are facilitated, we
next must provide a means to score each instantiation as a function of the degree
of hinderance and facilitation. Then, we use this score to determine the prefer-
ence ordering of the various different possible instantiations. The two functions,
hinderscore and facilitatescore, defined below provide this functionality. The

128 S. Munroe and M. Luck

functions take an intention, int , and obtain its worth (derived from the strength
of the motivation responsible for the goal’s generation), which is then divided by
the number of unhindered subgoals in the case of hinderscore or the number of
facilitated subgoals in the case of facilitatescore (+1 is added to the denominator
of hinderedscore to avoid division by zero).

hinderscore = −1 × int .worth
1 + (#{int .subgoals} − #{int .hindered})

(1)

facilitatescore =
int .worth

#{int .facilitated} (2)

We do this for all of the intentions of the agent and, once this is done, we combine
both the hinder and facilitate scores into an overall score.

overallscore =
n∑

i=0

facilitatescore(inti) +
j∑

i=0

hinderscore(intj) (3)

where i is the number of goals that are facilitated, and j is the number of goals
that are hindered.

4.3 Potential Attribute Preference Orderings

Once we have calculated the overall score for each of the values associated with
a potential attribute we can use this to order the values. This provides us with a
preference ordering over the values for a potential attribute. Once a preference
ordering has been established over the attribute-values associated with a poten-
tial attribute we call such an attribute a preference attribute. As an example,
consider a goal to have a box moved from one room in a warehouse to another.
The time when the box can be moved is a potential attribute, and the values
that can instantiate the attribute are drawn from the set Days:

Days = {Mon,Tues,Wed ,Thur ,Fri ,Sat ,Sun}

If a preference ordering has been established over this set, then time is a pref-
erence attribute and its pref relation might look like : {Wed > Tues > Mon >
(Thur ,Fri ,Sat ,Sun)}, meaning that Wednesday is preferred over Tuesday, which
is preferred over Monday, which is preferred over Thursday, Friday, Saturday and
Sunday, all of which are equally preferred.

4.4 Resource Dependent Attributes

In the goal of Table 3, the attribute of price is negotiable. This is the usual
situation for such an attribute, as the values that can instantiate the attribute
constitute the use of a resource and, in general, a preference over the use of
different amounts of resource can always be identified. For example, an agent

Motivation-Based Selection of Negotiation Opponents 129

buying a service off another agent always prefers cheaper prices over more ex-
pensive ones, and vice versa for an agent selling the service. Such attributes of a
negotiation goal are, therefore, classed as resource dependent, and the problem
here is not one of identifying the structure of the preference, but rather the limits
on what values are acceptable.

One way to do this is to simply ensure that the amount that an agent pays 1

must not incur more costs than the benefit the agent gains from the satisfaction
of its goal. However, in most negotiation frameworks, the utility to be gained
from a goal is fixed, and the amount of acceptable cost is calculated from a
position of zero cost. For example, imagine an agent with a goal of utility 10,
where utility is measured in dollar units. In determining how much an agent
can spend in order to satisfy the goal, it is easy to see that, in order to be
efficient, the agent must not spend more that $10. However, we might assume
that the agent is only happy to spend this much as long as it has $100 in reserve,
but that if this reserve falls to $50 then spending tha that amount might not
seem so attractive, and the agent may lower its limit to, say, $8 2. By doing
so, the agent begins to focus on optimising the use of its monetary resources as
the resource dwindles, by changing the value placed on the resource in response
to changes in the quantity available. Such dynamic evaluation of resources is
often overlooked in negotiation frameworks, and we argue that this limits their
flexibility to deal with dynamic domains in which access to resources changes
over time. Thus, the overall worth of a particular resource cannot be merely
represented by its objective worth, but must also be supplemented by a subjective
worth derived by the current need an agent has for it. To model this subjective
need we use resource-based motivations that track the levels of resources available
to an agent (via appropriate cues), increasing in intensity when such resources
diminish, and decreasing in intensity when they are renewed. The intensity of
such motivations is used to identify the unit value of a given resource. Only
when the unit value of a resource is determined, is it possible to calculate the
maximum amount, or the reservation, of the resource that can be used to settle
an issue. The reservation is thus calculated to be that quantity of resource, the
use of which has a cost equal to the benefit gained from the negotiation goal
being satisfied.

In order to deal with resource-dependent attributes, we must make some
changes to the mechanism shown in Figure 2. Figure 3 shows the amended
mechanism, in which the dashed lines indicate the new connections, and there is
a decision point where the type of attribute being dealt with is determined. If the
attribute is resource dependent, then a default preference structure is used that
simply describes a, monotonic preference between the different values associated

1 We focus on the perspective of a buyer in the description of the evaluation of re-
sources, though the analysis is similar (albeit reversed) for the seller’s perspective

2 This behaviour is simply that identified by economists when making the point that
utility does not equate to monetary worth — in other words, the richer a person,
the less utility he gains by increasing his wealth and conversely, as shown above, the
less wealthy a person, the more utility is lost by a decrease in wealth.

130 S. Munroe and M. Luck

Fig. 3. The attribute preference construction and classification mechanism with

resource-dependent attributes

with the attribute. Next, the associated resource is evaluated by the agent’s
resource-based motivations to determine its current unit worth. This is then
passed, along with the default preference structure, to the reservation calculator
that determines the maximum amount of resource that can be used, i.e. that
unique quantity of resource whose total worth is equal to the worth of the goal.
The amended preference structure is then passed to the attribute classifier as
per other, non-resource-dependent attributes, and is classified according to the
rules in the classification rule library.

5 Knowledge About Negotiation Opponents

In order for selection to work the agent must have some information about
prospective opponents. In this section we describe such information.

5.1 An Opponent’s Past Issue Choices for a Negotiation Goal

In previous negotiations, an opponent will have made choices over what potential
attributes it wanted to negotiate over. Assuming that a record of these choices
has been stored and that there is some regularity to the choices, it it possible
to predict the opponent’s choice of attributes for a future negotiation over the
same goal. If the opponent’s choices are variable, then the information about
the choice of attributes might be based on a probability distribution over the
attributes. To avoid unnecessary complications at this time, we assume that the
record of an opponent’s attribute choice for a given negotiation goal is of the
form of a frequency distribution. Thus, for a given issue, we get the probability
of it being chosen by

choiceProb =
chosen(a)

available(a)
(4)

Motivation-Based Selection of Negotiation Opponents 131

Table 5. Table showing the frequency of attribute selection for three negotiation op-

ponents

Opponent
Attributes
A B C

1 0.5 0.7 0.2

2 0.4 0.4 0.9

3 0.3 0.8 0.4

where chosen(a) returns the number of times the attribute, a, has been chosen
by the opponent and available(a) returns the amount of times the attribute a
has been available as a potential choice. Thus, for a given negotiation goal with
three attributes and three different negotiation opponents we may end up with
the information shown in Table 5.

In the table, we can see three potential opponents in the first column labelled
1, 2, and 3. In the second, third and fourth columns, we have probabilities
attached to each of the attributes (labelled A, B, C) for each opponent, calculated
as the frequency that the attribute has been chosen in past negotiations for the
current negotiation goal. A selecting agent then uses these frequency scores in
combination with its own set of attribute choices to determine which opponents
are likely to select issues that do not conflict with its own choices. We discuss
how this can be achieved in Section 6.

5.2 Price Profiles of Negotiation Opponents

We must also provide our agent with information regarding opponent price
ranges if our agents are to be able to assess the suitability of opponents with
regard to current resource levels and their associated value. In negotiation, the
participants normally announce initial ask prices (which can be considered the
prices at which an opponent advertises its services) that then become adjusted
through a process of concession-making in order to discover a price that all par-
ticipants can accept. Initial ask prices tend to exaggerate the reservation price
in order to increase the chance that a deal can be struck that is better for the
agent than the reservation point.

Now, different agents may have different rules for setting initial ask prices
given a reservation price but, for a given agent, the distance between the reser-
vation and initial ask prices will tend to be stable. This means that any observed
change in the initial ask price of an agent for a negotiation goal reflects a change
in the subjective evaluation of the resource by the agent, where this change
gives rise to a new (but private) reservation price and a corresponding publicly
observed change in the initial ask price.

The deal price of a negotiation is the price at which agreement is found, and
it depends upon a number of factors. First, it depends upon the initial ask prices
of each participant of the negotiation, second, their reservation prices and third,
the sequence of offers and counter offers on price made by each participant, i.e.

132 S. Munroe and M. Luck

Table 6. Ask prices, deal prices and concessionary flexibility for an opponent

Neg
Instance

Price Profile For Negotiation Opponent
Ask price Deal price Concessionary flexibility

1 10 9 0.1

2 9 7 0.2

3 11 8 0.3

their concession strategy. Though in general, agents will be able to select from a
set of different concession strategies (each of which will affect the deal price), for
simplicity we assume the agents only have one concession strategy, and we leave
to later work the added complexity that different concession strategies bring to
negotiation.

Given a fixed concession strategy for the agents, the distance between the
initial ask price and any subsequent deal price will follow a predictable pattern
that can be analysed by the other participants in the negotiation to predict what,
given a particular initial ask price, the final deal price will be. The information
about an opponent’s initial ask price and deal price (what we call the price
profile) must be available if an agent is to make judgements on the quality of an
opponent on price.

Thus, over a number of negotiations it becomes possible to predict the deal
price that will result in a negotiation for a particular goal with a particular
negotiation partner by considering the amount of concessionary flexibility an
opponent has shown during previous negotiations.

Table 6 shows the the price profile of a seller agent over three separate nego-
tiations for the same negotiation goal. The first column indicates the negotiation
instance and the second and third columns represent the initial ask price and
the deal prices obtained. The fourth column shows the concessionary flexibility
exhibited by the agent, which takes the difference of the initial ask price and
the deal price and maps this difference to an interval of [0,1] where 0 means no
flexibility and 1 represents maximum flexibility (i.e. the agent has accepted a
price of zero. Not a likely situation!). The average concessionary flexibility can
then be calculated as

aveCF =
Σn

i=0cfi
n

(5)

where cfi is the i th concessionary flexibility score and n is the total number of
negotiations for which the information is available. So, for any new negotiation
over the same goal with this opponent, even with different initial ask prices, we
can use the average concessionary flexibility of the opponent to make a prediction
about what the deal price will be. The expected deal price can then be compared
against the agent’s own reservation price to predict whether a negotiation with
an opponent advertising an initial ask price is likely to reach a deal on price that
is acceptable to the agent.

Motivation-Based Selection of Negotiation Opponents 133

6 Negotiation Opponent Selection Mechanisms

The process of opponent selection now consists of an analysis of the possible issue
selections of the opponent and their expected deal price. To make an optimal
selection, the agent must minimise two measures. First, when considering issue
selection, the agent should select the opponent that offers a minimal amount
of conflict, and second, when considering price the agent should attempt to
minimise the use of its monetary resource. We describe each of these in detail
in the following subsections.

6.1 Selecting o Minimise Conflict

Negotiation issues are those negotiable attributes that have been identified by
more than one of the participants. Those attributes that have been identified
by only one participant are uncontested , as none of the other participants in
the negotiation have classified the attribute as negotiable and, therefore, do not
have a preference for its instantiation. A clear criterion on which selection can
therefore be based is the minimisation of the amount of contested attributes in
the forthcoming negotiation through the identification of those opponents who
contest the least number of negotiable attributes.

In Figure 4, two agents have each identified which of a negotiation goal’s
attributes they want to negotiate over (shown by the two circles covering the
attribute set of the negotiation goal). The intersection of these two subsets of
attributes are those attributes identified by both participants and are therefore
contested and thus potentially in conflict. These attributes thus represent the
issues of the negotiation. When considering different opponents, the agent should

Fig. 4. Identifying Negotiation Issues

t

134 S. Munroe and M. Luck

Fig. 5. The conflict minimisation selection mechanism

look for smaller intersections indicating less potential conflict and thus fewer
issues to negotiate over. As the number of issues increases, the potential conflict
increases and the negotiation becomes more difficult to resolve successfully.

Figure 5 shows the selection mechanism based on minimisation of conflict.
The negotiation goal and the set of attributes identified as negotiable by the
agent is passed, along with information about an opponent, to the issue analyser.
The issue analyser examines the issues that the opponent is expected to select,
and calculates the amount of conflict that can be expected in terms of the number
of contested issues identified. This results in a conflict score which we calculate as

conflictScore = −1 × #{negattagent ∩ negattopponent} (6)

where negattagent are the attributes identified as negotiable by the selecting
agent and negattopponent are the expected negotiable attributes of the opponent.
The opponent is then rated according to its conflict score and is passed to the
opponent selection component.

6.2 Price-Based Selection

When considering resources and their use in negotiation, an agent must try to
select those opponents that are likely to accept a price that falls within the
agent’s own current reservation price. Given information about an opponent’s
concessionary flexibility, the agent takes the opponent’s current ask price and es-
timates what the deal price will be, and then compares this to its own reservation
price. If the expected deal price for an opponent exceeds the reservation price,
then the opponent is omitted from further analysis, otherwise it is passed to the
opponent selection module. Figure 6 shows the selection mechanism based on
price considerations. Information about the current resource being used (here
a monetary resource), the reservation of the resource and information on the
current opponent are all passed to the resource manager.

Motivation-Based Selection of Negotiation Opponents 135

Fig. 6. The price-based selection mechanism

The resource manager calculates the expected deal price, given the initial
ask price of the opponent and its concessionary flexibility score, and examines if
this is under the reservation price. If this is so, the resource manager sends the
information about the opponent to the opponent rater which ranks the opponent
in relation to the other opponents under consideration. Once all opponents have

Fig. 7. The opponent selection mechanism

136 S. Munroe and M. Luck

been so ranked, they are sent to the opponent selection module that performs
the selection.

6.3 Combining Conflict Minimisation and Price-Based Selection
Mechanisms

We now combine both selection processes into one mechanism; the opponent
selection mechanism shown in Figure 7. In addition to the components in the
conflict and resource selection mechanisms, the opponent selection mechanism
shows a motivational component that can be used to weigh one selection process
over another. This allows an agent to change the focus of selection from one
criterion to another as required. Thus, for example, at times of extremely low
resource levels, the agent can prioritise those opponents who offer extremely
cheap services while paying less attention to the number of issues that might need
negotiating over. At other times, for example when a negotiation goal has a large
amount of value, the agent can prioritise the minimisation of conflict so as to
increase the chance of engaging in a successful negotiation while de-emphasising
the importance of cost. The mechanism is simply the two selection mechanisms
discussed above combined into one, and thus we omit further discussion of the
individual components.

7 Evaluating the Model

The work presented in this paper is still in development, but we have performed
a limited evaluation to examine if a buyer agent using only the price-based se-
lection mechanism is able to select the best negotiation opponent in terms of
optimising monetary resources. We tested this in the following way. First we cal-

Fig. 8. Performance of price-based opponent selection

Motivation-Based Selection of Negotiation Opponents 137

culated which opponents, out of a set of available opponents, offered the optimal
deal price for the agent given its current resource evaluation, then we allowed
the agent itself to choose an opponent and we compared this choice with the
previously identified optimal opponents to obtain a measure of variation of the
agent’s selection choice from optimal. Each run of the experiment lasted for 200
negotiation rounds. In each run there was 1 buyer-agent, a pool of 100 potential
opponents, and we performed 20 such runs. The buyer agent had a conserve
money motivation that determined the current reservation value on the agent’s
monetary resource. The graph in Figure 8 shows the average variation between
the buyer-agent’s obtained deal prices resulting from its opponent selection and
the optimal deal prices over the 20 experimental runs. The buyer-agent eventu-
ally learns to find the best opponents given its current motivational state, shown
by the variation line falling to 0 after negotiation number 150. Future work will
involve more extensive experimentation on various aspects of the model to as-
certain its benefits and limitations.

8 Conclusion

By linking negotiation issues to motivations, agents are able to evaluate prospec-
tive negotiation opponents in terms of a) the likelihood that a conflict over issues
will exist and b) the expected performance of the opponents on resource-based
issues. Such evaluation is important for systems that need agents to act in an
autonomous manner. As an agent’s circumstances change, the need to negotiate
over issues may also change, and this must be considered when making selections
over which opponent to negotiate with. In this paper, we have described a moti-
vated agent architecture comprising a classification mechanism and two selection
mechanisms that enable an agent to successfully identify those opponents with
whom the chances of conducting a negotiation with both minimal conflict and
suitable outcomes is possible. In terms of future work, an important factor when
investigating negotiation is to consider the impact that protocols and strategies
may have on the outcome. Though our work currently ignores these considera-
tions, our aim is to show how an autonomous approach to opponent selection,
might be constructed. We expect future work to address the problems involved
in opponent selection in more demanding negotiation scenarios such as those
that include multiple strategies and protocols.

References

1. David, E., Azoulay-Schwartz, R., Kraus, S.: Protocols and strategies for automated
multi-attribute auctions. In: 1st International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS 2002), Bologna, Italy, ACM Press (2002) 77–85

2. Sierra, C., Jennings, N.R., Noriega, P., Parsons, S.: A framework for
argumentation-based negotiation. In Singh, M.P., Rao, A.S., Wooldridge, M., eds.:
Intelligent Agents IV. Volume 1365 of LNCS. Springer-Verlag (1998) 177–192

3. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for au-
tonomous agents. Journal of Robotics and Autonomous Systems 24 (1998) 159–182

138 S. Munroe and M. Luck

4. Urbig, D., Schroter, K.: C-IPS approach to negotiating agents: Specifying dynamic
interdependencies between issue, partner, and step. In: 3rd International Joint
Conference on Autonomous Agents and Multi Agent Systems (AAMAS 2004).
(2004)

5. d’Inverno, M., Luck, M.: Understanding Agent Systems. Springer-Verlag (2001)
6. Sabater, J., Sierra, C.: Social regret, a reputation model based on social relations.

SIGecom Exch. 3 (2002) 44–56
7. Ramchurn, S.D., Sierra, C., Godo, L., Jennings, N.R.: Devising a trust model

for multi-agent interactions using confidence and reputation. Applied Artificial
Intelligence 18 (2004) 833–852

8. Tesfatsion, L.: A trade network game with endogenous partner selection. In:
Computational Approaches to Economic Problems. Kluwer (1997) 249–269

9. Banerjee, B., Sen, S.: Selecting partners. In: 4th International Conference on
Autonomous Agents (AGENTS 2000), Barcelona, Spain, ACM Press (2000) 261–
262

10. Dutta, P.S., Moreau, L., Jennings, N.R.: Finding interaction partners using
cognition-based decision strategies. In: IJCAI 2003 Workshop on Cognitive Mod-
eling of Agents and Multi-Agent Interactions. (2003) 46–55

11. Maslow, A.: The farther reaches of human nature. Penguin Books, New York
(1971)

12. Tinbergen, N.: The study of instinct. Oxford University Press, Oxford (1989)
13. Griffiths, N.: Motivated Cooperation. PhD thesis, University of Warwick (2000)
14. Coddington, A., Luck, M.: Towards motivation-based plan evaluation. In Russell,

I., Haller, S., eds.: 16th International FLAIRS Conference, St. Augustine, FL, USA
(2003) 298–302

15. Morignot, P., Hayes-Roth, B.: Adaptable motivational profiles for autonomous
agents. Technical report, Knowledge Systems Laboratory, Stanford University
(1995)

16. Balkenius, C.: The roots of motivation. In J.A. Mayer, H.L. Roitblat, S.W. Wilson,
editors, From Animals to Animats 2 (Cambridge, MA: MIT Press, 1993)

17. Luck, M., Munroe, S., d’Inverno, M.: Autonomy: Variable and generative. In
Hexmoor, H., Castelfranchi, C., Falcone, R., eds.: Agent Autonomy, Kluwer (2003)
9–22

18. Coddington, A.: Self-motivated Planning in Autonomous Agents. PhD thesis,
University of London, London (2001)

19. López y López, F., Luck, M., d’Inverno, M.: Constraining autonomy through
norms. In: 1st International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2002), Bologna, Italy, ACM Press (2002) 674–681

20. Zhang, X., Lesser, V., Wagner, T.: A proposed approach to sophisticated ne-
gotiation. In AAAI Fall Symposium on Negotiation Methods for Autonomous
Cooperative Systems (2001)

21. Munroe, S., Luck, M., d’Inverno, M.: Towards motivation-based decisions for worth
goals. In Marik, V., Mueller, J., Pechoucek, M., eds.: 3rd International Central and
Eastern European Conference on Multi-Agent Systems (CEEMAS 2003). (2003)
17–28

Modelling Flexible Social Commitments
and Their Enforcement

Philippe Pasquier, Roberto A. Flores, and Brahim Chaib-draa

Laval University, Computer Science and Software Engineering Department,
Sainte-Foy, QC, G1K 7P4, Canada

{pasquier, flores, chaib}@iad.ift.ulaval.ca

Abstract. For over a decade, agent research has shown that social com-
mitments support the definition of open multiagent systems by capturing
the responsibilities that agents contract toward one another through their
communications. These systems, however, rely on the assumption that
agents respect the social commitments they adopt. To overcome this limi-
tation, in this paper we investigate the role of sanctions as elements whose
enforcement fosters agents’ compliance with adopted commitments. In
particular, we present a model of flexible social commitments to which
sanctions are attached, and where the enforcement of sanctions act as a
social control mechanism for the satisfaction of commitments.

1 Introduction

A multi-agent system (MAS) is considered an open MAS if the following prop-
erties hold [1]:

1. Agents behavior and interactions cannot be predicted in advance;
2. Agents’ internal architecture is not publicly known;
3. Agents do not necessarily have common goals, desires or intentions.

The first of those properties implies that the execution of open MAS is non-
deterministic. Open societies are usually subject to unanticipated outcomes in
their interactions. The second property implies that an open MAS can have
members with different internal architectures; therefore, they can be heteroge-
neous. The third property implies that the members of an open society may be
non-benevolent, non-cooperative or even insincere. In addition, the agents may
fail to, or choose not to, conform to some of the normative aspects of the MAS
in order to achieve their individual goals. In that context, providing the means
and tools for the achievement of a chosen/emergent social order in such system
is a challenging issue.

In the MAS literature, the reactive and proactive behavior of deliberative
agents has traditionally been modelled using mental states. In systems using
these types of agents, social order is naturally achieved on the assumption that
agents are cooperative and collaborative, i.e., that they are sincere in following
the behavior specified in the system. This raises a particularly acute problem

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 139–151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

140 P. Pasquier, R.A. Flores, and B. Chaib-draa

given that mental states are private to agents and cannot be inspected by other
agents who wish to verify compliance with the specifications. This same trend
has been followed in the specification of the semantics of agent communication
languages, whose mentalistic definitions disqualify their use by heterogeneous
agents in open systems, which are systems where agents cannot be assumed to
be sincere nor to support others inspecting their internal states.

Social commitments are defined as responsibilities contracted by one agent
(the debtor) toward another (the creditor), raising the expectation that the
debtor will act to satisfy committed responsibilities [2]. This notion of commit-
ment is a social one, and should not be confused with the notion of individual
commitment, which emphasizes the persistence of intentions in practical reason-
ing, nor with the collective commitments of a group of agents. The use of social
commitments removes the aforementioned drawbacks of mentalistic approaches,
namely: the assumption that agents’ internal architectures must conform to a
particular mentalistic specification of communication semantics (embedding sin-
cerity) and the assumption that this internal state can be inspected for verifica-
tion purposes. Accordingly, social commitments can be defined independently of
any agent internal architecture and decision making process1, thus supporting
the development of heterogeneous open systems [1].

During the 1990s, social commitments were introduced as a way to capture
the public aspects of communications [3]2. From then on, several research efforts
have aimed at extending the use of commitments in communications as follows:

– by introducing agent communication languages (e.g., [4, 5, 6]) and models to
build interaction protocols (e.g., [7, 8, 9]) using social commitments,

– by extending and complementing these approaches with theoretical [10] and
practical [11] advances in the use of commitment-based agent languages.

Social commitments is a second order concept that is difficult to formalize
and several social commitment-based formalizations can be found in the agents
community. While some are rather restrictive and tend to consider commitments
as directed obligations (e.g., using deontic logics [12]), sometimes with the pos-
sibility of unilateral de-commitments [11, 13], others are more flexible and allow
the dynamic modification of commitments [3].

The notion of social commitment should be more flexible than usual obli-
gations/prohibitions but also more rigid than permissions. More precisely, our
contention is that (in the context of agent communications) social commitments
are different from other normative propositional attitudes in that operations like
modification, cancellation or (eventually unintended) violation should be mod-
elled. This is important since commitments are first-class entities capturing the
shared semantics of dialogues, which ground manipulations in the social layer.

1 This doesn’t mean that social commitments are independent of usual mental states
but rather that this dependency is not part of the social commitment model per se.

2 Although social commitments can be used for system conventions, organizational
structures and agent roles, in this paper we restrict our analysis to their use in
communications.

Modelling Flexible Social Commitments and Their Enforcement 141

Therefore, being able to cancel or modify commitments is a key feature that
allows agents to reassess the consequences of past dialogues in the context of
dynamic environments. This semantical flexibility should not be confused with
the commonly considered structural flexibility of dialogues.

This flexibility feature in social commitment models prevents their enforce-
ment through regimentation, as is usually the case in approaches based on de-
ontic logics3. However, given this view on flexible commitments in current ACL
models, a major question remains unaddressed: what should happen in cases
when agents do not respect adopted commitments? Current social commitment-
based approaches are valid and useful under the assumption that commitments
are generally respected. This is a strong assumption that we should inquire fur-
ther. Indeed, we should describe the mechanisms supporting this functionality
in open, heterogeneous systems.

In our view, the fundamental challenge is how to support the enforcement
of flexible social commitments. This problem, which has been neglected in the
modelling of recent agent communication frameworks, is addressed in this paper
by introducing an ontology of social control tools for commitment-based MAS
and proposing a model of social commitments compatible with our previous
dialogical frameworks [8, 6], which enables the introduction of the previously
mentioned social control tools in open MAS.

2 Ontology of Sanctions and Social Control Mechanisms

Introduced in sociology as early as the end of the 19th century, the concept of
social control originally denoted the capacity of a group or society to regulate
itself and to secure coherency and unity in social life [15]. Social control, in
this sense, relates to how social action is coordinated toward a chosen or an
emergent social order. Often seen as all-encompassing, practically representing
any phenomenon leading to conformity or as a broad representation of regulated
mechanisms placed upon society’s members, social control can be viewed as the
glue holding society together [16].

Modern theories of social control focus on the strategies and techniques
that help to regulate agent behavior, and lead to conformity and compliance
with the rules of society (at both the macro and the micro levels). In the re-
mainder of this section, we detail the main elements used in the enforcement
of social commitments: (1) sanctions, which are considered in their general
sense of incentives (the next section presents an ontology of sanctions along
their different dimensions), and (2) philosophies of punishment (section 2.2),
which result in punishment strategies determining the type of sanction (and its
magnitude) to be applied, and explains how sanctions are assigned to social
commitments.

3 For example, due to their nature and goals, deontic logics do not even consider the
possibility of violation. We refer the reader to [14] for a detailed discussion on the
differences between commitments and obligations.

142 P. Pasquier, R.A. Flores, and B. Chaib-draa

2.1 Sanctions

In this paper, we only consider individual sanctions and, for simplicity, leave
aside other types of sanctions, such as collective sanctions [17] (which may be
associated to teams, roles or groups of agents). In the next subsections, we go
through the three main dimensions of sanctions: direction, type and style.

Sanction Directions – Sanctions have a specific direction. It is usually useful
to consider both:

– positive sanctions: positive sanctions are rewards that encourage a continu-
ation of desired behavior. For example, it is common in open systems that
agents accept committing to a task only if the associated reward is worth
pursuing.

– negative sanctions : on the other hand, negative sanctions are used to dis-
courage norm violating behavior. For example, agents that cannot fulfill their
commitments are expected to be punished.

In brief, positive sanctions are incentives to pursue a particular behavior
while negative sanctions are incentives against its violation. For the sake of
simplicity, we will use sanction to denote negative sanction in the rest of the
paper, addressing positive sanctions as rewards.

Sanction Types – The first sanction type is automatic sanctions, which arises
when the violators action carries its own penalty (e.g., because it is not being
coordinated with the actions of others). For example, someone who drives on
the wrong side of the road has a higher than normal probability of crashing into
another car. We will not consider these unintended (since no one decides that
they should apply) sanctions in the scope of this paper.

Within the vast literature addressing this topic from various perspectives
including economics, criminology, sociology, social psychology, AI and MAS, we
encounter three broad types of non-automatic sanctions: (1) material sanctions,
(2) social sanctions, and (3) psychological sanctions.

Material sanctions include physical sanctions like violence or repairing ac-
tions, as well as financial sanctions like fees. Material sanctions can be applied
immediately at the time of occurrence or be delayed through time.

There are social sanctions as well. Trust, credibility and reputation are social
values that could be affected by social sanctions. As pointed out in [18], social
sanctions are usually the effects of some implicit informational disclosure where
the violator’s action conveys information about himself that he would rather not
have others know. For example, that an agent violates a commitment without
any explicit reason, unintentionally signals that he does not really care much
about respecting the commitment, which is information that other agents could
take into account when evaluating his reputation.

Psychological sanction types, which may be more useful in believable agents
[19] and which have been used in advanced mono-agent design in mixed commu-
nities, can be important as well. Examples of psychological sanctions are guilt

Modelling Flexible Social Commitments and Their Enforcement 143

(where the violator feels bad about his violation as a result of his knowledge of
social norms, quite apart from external consequences), and shame (where the
violator feels that his action has lowered himself either in his own eyes or in the
eyes of other agents).

The time horizon of sanctions indicates whether the effects of sanctions are
long-lasting or short-lived. This concept is important since some sanction types
may extend through time (e.g., trust, reputation, credibility) while others may
not (e.g., immediate material sanctions). Subtle and complex phenomena, like
forgiveness, can require taking into account this time issue.

Sanction Styles – For the specific formal needs of MAS, we distinguish two
sanctions styles: implicit and explicit. Implicit sanctions are ”autonomously”
and unilaterally decided by agents. The major difficulty associated with im-
plicit sanctions is that they are not publicly known and agents have to discover
whether or not they have been sanctioned (for example, by noticing that others
do not communicate with them anymore). On the contrary, explicit sanctions
are publicly known (at least among the interacting agents).

Another useful distinction can be made between a priori decided sanctions
and a posteriori decided sanctions. In particular, a posteriori decided sanctions
should be avoided in MAS, since they do not allow agents to reason about the
pros and cons of respecting their commitments. That the punished agent can
disagree with the sanction assigned a posteriori may lead to litigation.

In the remainder of the paper, we will consider only a priori defined explicit
sanctions. Among a priori known explicit sanctions, we can distinguish static, a
priori known, explicit, sanction systems provided to all agents at design time,
and dynamically decided, a priori, explicit sanctions, which are negotiated by
the agents through their communications.

2.2 Punishment Policies

Social control mechanisms to enforce social commitments should be designed
according to a philosophy of punishment. By punishment, we mean the imposi-
tion of sanctions to satisfy open system designers’ desire for retribution against
wrongdoers. According to social control theorists, there are five different philoso-
phies of punishment from which all punishment policies can be derived [20]:
deterrence, retribution, incapacitation, rehabilitation and restoration. However,
since punishment philosophies like incapacitation, rehabilitation and restoration
focus on the choice of sanctions types and styles rather than on the choice of
sanctions strength, we will present only the two remaining philosophies, and
discuss their adequacy for open MAS:

– Deterrence: issued from the classical school of criminology, and supported by
philosophers like Beccaria [21] and Bentham [22], deterrence is a utilitarian
principle stating that the aim of sanctions is to prevent future violation.
For deterrence to be effective, punishment must be swift, certain and severe.
Applied to the enforcement of social commitment in MAS, it means that

144 P. Pasquier, R.A. Flores, and B. Chaib-draa

commitments should be associated with heavy and explicit sanctions. This
extreme position, i.e. using severe sanctions with a high prohibitive effect,
tends to transform social commitments into mere obligations, losing part of
the flexibility objective desired for commitments.

– Retribution: retribution considers that the violation should be repaired by a
penalty as severe as the wrongful act.

Retribution is a practically manageable choice for open MAS. Indeed, the
last decades of work in economics and law provide two basic reasons why it is
best for sanctions to equal harm4. Here, we reformulate these arguments toward
retribution punishment policies using MAS terminology.

The first argument concerns the level of precautions taken by parties, where
the term ”precautions” is to be interpreted generally. If sanctions are less than
harm, precautions will tend to be inadequate and agents will tend to not respect
adopted social commitments when it is to their advantage to do so. Symmetrically,
if sanctions exceed harm, precautions will be excessive and may preclude agents
committing to wanted commitments (this is the case with the deterrence pun-
ishment philosophy). For example, even if sincerely wanting to, an agent will not
commit to a course of action if the sanctions attached to violation (which may oc-
cur unintentionally) are prohibitive. However, it has been shown that if sanctions
equal harm, agents will have socially correct incentives to take precautions [23].

The second reason why it is desirable for sanctions to equal harm involves
the agents’ level of activity, that is, the extent to which agents participate in
risky activities. An agent’s level of activity affects the magnitude of expected
total harm, independently of the precautions taken when engaging in an activ-
ity. For example, the more commitments an agent takes (its level of activity),
the greater the possible number of accidents (violations) will occur, indepen-
dently of the safety features of the agent (which affect the expected harm per
commitment) [23].

It is worth noticing that concluding that damages should equal harm would
require making two assumptions. The first assumption is that agents are risk
neutral. If injurers are risk averse then the optimal level of sanctions tends to
be lower than harm, because it reduces the imposition of risk on injurers and
because sanctions do not need to be as high to induce injurers to behave ap-
propriately. The second assumption is that of strict liability, which stipulates
that injurers are definitely found liable and that no injurer cannot escape the
corresponding sanctions.

3 Sanctions in Social Commitment-Based Approaches

In our dialogical frameworks [8, 6], social commitments are mutually established.
In these approaches, agent communication is seen as the social process by which

4 Here, harm is the violation of a particular social commitment and is at least equal
to the effort that is needed to fulfill the commitment.

Modelling Flexible Social Commitments and Their Enforcement 145

the social commitment layer, which captures most of the inter-agent dependen-
cies, is manipulated. The success conditions of a dialogue unit (whether in a
protocol for proposal (PFP) in [8], or in a dialogue game instance in [6]) is the
social acceptance of the proposed operation on social commitments (i.e., cre-
ation, cancellation, modification or discharge) while the satisfaction conditions
of these dialogue units are linked to the satisfaction conditions of the (even-
tually) resulting social commitments, which are the conditions under which a
social commitment is fulfilled.

So far, we have highlighted three major points in the modelling of social
commitments and their enforcement. A model of social commitments should be
provided that: (1) support the semantic flexibility described earlier; (2) provide a
clear, generic model for the treatment of explicit sanctions, in particular how they
are attached to commitments, and the cases in which they apply; and (3) allows
for a diversity of punishment policies to be supported. For example, one system
could support explicit static sanctions involving only monetary transactions,
while another could support agents with the ability to use explicit, dynamically
negotiated, repairing actions. The next section introduces our common model of
social commitments, which fulfils claims (1), (2) and (3) when explicit sanctions
are used.

3.1 A Common Model of Social Commitment and Its Enforcement

In order to introduce sanctions within commitment-based agent communication
frameworks, we first present our generic model of social commitments. Given that
explicit sanctions are part of the life-cycle of commitments, the model clearly
indicates the mechanisms through which sanctions are linked to commitments,
and the time when they could apply. At the same time (to support claim (3)),
the model is flexible enough to allow designers to control the sanctioning process.

Conceptually, social commitments are directed responsibilities contracted by
an agent toward an other. We express commitments as 6-term predicates of
the form:

C(x, y, α, t, sx, sy)

where agent x is committed to agent y to satisfy the content α at time t, under
sanctions sx and sy, which specify the different sanctions that can be applied to
x and y according to the states and transitions applicable to this commitment.
We leave for a later section the description of the dynamics and mechanisms
for associating social commitments with their corresponding sanctions. Figure 1
shows our state/transition model of social commitments, which indicates that
a social commitment can be either accepted (denoted as C(x, y, α, t, sx, sy)) or
rejected (denoted as ¬C(x, y, α, t, sx, sy)). It is worth noticing that a rejected
commitment (¬C(x, y, α, . . .)) is not equivalent to an accepted commitment with
negative content (C(x, y,¬α, . . .)). In particular, Figure 1 shows that a commit-
ment can be in one of the following states:

– inactive: we assume a closed world hypothesis for social commitments. This
means that all non-explicitly, socially-accepted commitments are rejected

146 P. Pasquier, R.A. Flores, and B. Chaib-draa

(i.e., they are non-commitments), which means that they are, by default,
inactive.

– active: a commitment is active if it has been explicitly accepted using a
grounding process, and if its conditions of satisfaction (denoted as CoS in
Figure 1) can be met.

– violated : this state arises when an active commitment has been violated,
which is the case if it cannot be fulfilled as specified by its content (for
example, if its the deadline is past) or if its content is proven to be false
(in the case of propositional content). The satisfaction conditions of violated
commitments cannot be fulfilled.

– fulfilled : a commitment is fulfilled if its content has been achieved or proven
to be true (in the case of propositional content). In other words, that the
satisfaction conditions of the commitment have been fulfilled5.

– cancelled : this state indicates that the commitment has been socially estab-
lished as rejected. This state arises in the following circumstances: (1) if an
active commitment is explicitly rejected through dialogue, (2) if the sanc-
tions (possibly empty) associated with a violated commitment are applied,
meaning that their compensatory effects allow cancelling the commitment,
or (3) if the reward (which could also be nil) associated with the commitment
is granted. This means that a cancelled commitment does not hold anymore.

Figure 1 also indicates the different transitions that could lead into these
states. In order to fulfill the second requirement, we indicate the associated
sanction operations for each transition:

1. creation: creation does not involve the application of sanctions but rather
their attachment to social commitments. In particular, the negotiation of
a commitment subsumes the negotiation of its sanctions. This negotiation
can be complex (in the case of explicit dynamic sanction systems) or triv-
ial (in the case of explicit static sanction systems shared among agents,
where agents simply check whether or not associated sanctions match sys-
tems’ conventions). This is the only transition in our model that allows the
establishment of (a priori) sanctions. In particular, establishing (a posteri-
ori) sanctions in subsequent transitions may lead to phenomena (such as
litigation) that lie outside the scope of our analysis.

2. cancellation: cancellation deals with the rejection of an accepted active com-
mitment, and opens the possibility of applying the corresponding sanctions.
Usually, dialogical frameworks allow the hearer (the non-initiator of a dia-
logue) of the cancellation to decide whether or not to apply the sanctions
for the cancelling agent.

3. violation: violation itself is not necessarily achieved through dialogue or any
other mutually recognizable event. As such, the occurrence of a transition of

5 It is worth noticing that in practice it may be possible to create an already fulfilled
or violated commitment, for example, when referring to the past. However, these
types of scenarios are not considered in this analysis.

Modelling Flexible Social Commitments and Their Enforcement 147

Active
(CoS can be m et)

Inactive

Fulfilled
(CoS have been m et)

Violated
(CoS cannot be m et)

Accepted Rejected

4

3
6

2

1

1

2

3

4

6

Activates another
com m itm ent

Creation

Cancelation

Violation

Fulfillment

Update / delegation

C(X,Y, t, p, Sx, Sy)

Cancelled7

5

5 Discharge of a violated com m itment

7 Discharge of a fulfilled com m itm ent

Fig. 1. The state/transition model of social commitments

this type has to be discovered and memorized for a later, socially-grounded,
discharge (which is a transition described below).

4. fulfilment : analogously to violation, fulfilment is a transition that requires
a mutually grounding event. This transition does not bring any reward but
entails a socially grounded discharge where these rewards apply.

5. discharge of a violated commitment : the discharge of violated commitment
leads to dialogues where: (1) it is socially recognized that the commitment
has been violated (and that is true forever), and (2) corresponding sanctions
are applied. Usually, only the debtor’s sanctions (sx) are applied, given its
responsibility to fulfill the commitment. Furthermore, those sanctions could
apply independently of the debtor’s direct involvement in the violation.

6. update6: updating a commitment is a double transition (as shown in Figure 1)
consisting of cancelling a commitment and creating a new one (and we as-
sume that the new one is different than the one being cancelled). Updates are
socially established through dialogue and sanctions can be associated to this
transition. However, updating is different from a sequencing of cancellation

6 Some authors [24] consider delegation of debtor or assignment of a new creditor as
particular social commitment operations. We do not, and argue that in our dialogical
frameworks, delegation is a special case of updating.

148 P. Pasquier, R.A. Flores, and B. Chaib-draa

and creation with respect to sanctions (which is our main reason for intro-
ducing this transition). In practice, the sanctions of updating a commitment
may be less severe than those of cancelling, and (in general) it may not be
unreasonable that agents could avoid sanctions altogether given satisfactory
arguments. Indeed, it will be the hearer of the updating that should decide
if sanctions apply or not, and to what extent.

7. discharge of a fulfilled commitment : discharging a fulfilled commitment leads
to a dialogue in which it is socially recognized that the commitment has been
fulfilled (and that is true forever) and whether the eventual reward (indicated
as part of the debtor’s sanctions (sx) as a positive sanction) is applied.

Another basic distinction (which does not appear in Figure 1) lies between es-
tablished social commitments and non-established social commitments; where
non-established states are inactive, violated and fulfilled (which are states that
are not reached through socially grounded processes), and established states
are active and cancelled (which are states that are reached through socially
grounded processes). This means that transitions 1, 2, 5, 6 and 7 occur through
dialogue whereas transitions 3 and 4 do not necessarily occur through social
processes.

For example, in order to traverse transitions 3 and 4, we programmed our
DIAGAL [6] dialogue manager (DM) as follows: each time an action is issued by
an agent, the DM of that agent attempts to discover whether this action fulfills
or not any of its commitments. If it does, transition 3 is applied, and a discharge
dialogue game with the creditor is started to ground this fulfilment and receive
potential rewards. In the same manner, all DMs check for violation (usually
by observing the expiration of commitments’ deadlines) and start a discharge
violated commitment game if one is found. This mechanism has the property that
both the grounding and the discharge of fulfilled and violated commitments are
done at the moment that agents witness the occurrence of such states.

This generic state-transition model defines an operational semantic for our
dialogue primitives. In particular, DIAGAL dialogue games, when successful, act
as the grounding mechanisms through which transitions are realized. These dia-
logue games implement the sanction manipulation mechanism described above.
In addition, the DIAGAL language is sound and complete with respect to its se-
mantics, which means that all transitions are covered and nothing else7. Finally,
it is worth noticing that it is possible to avoid the update and cancel transitions
by not including the corresponding games in the implementation of a system,
which results in a simpler but less flexible model of commitments as the one
mentioned in section 1.

3.2 The Enforcement of the Enforcement System

One of the assumptions made in punishment-based social control mechanisms
is that harming agents are always sanctioned. This assumption, which we have

7 The same holds true for conversations under the PFP [4] approach.

Modelling Flexible Social Commitments and Their Enforcement 149

referred to earlier as strict liability, implies that every harm is discovered and
that sanctions are always applied as expected. This is a view that has been
generally modelled through a regimentation hypothesis, which consists of the
strict conformance of system implementations with its corresponding specifi-
cations [25]. In the case of social commitments, regimentation was assumed
by implying that social commitments were systematically respected by com-
mitted agents. By arguing that this is not a realistic scenario, we shifted the
focus of regimentation away from commitments and into the domain of sanc-
tions by providing a simple mechanism to ensure efficient harm discovering
(through the grounding of every transition of our model including the dis-
charge of fulfilled and violated commitments as described in the previous
section).

For the time being, we then suggest the use of software engineering constraints
to ensure that the application of sanctions is treated as a strict obligation under
regimentation. That is, if sanctions are not respected, they will be somehow
discovered and considered as system errors. This could be done by assuming
that: (1) the dialogical level rules are obligations (an agent is not allowed to
digress from dialogical rules), and (2) the breach of sanctions is considered a
system error (the system should be able to coerce agents into respecting the
application of sanctions).

On the one hand, explicit material sanctions are easier to consider as firm
obligations in a system since they are easier to verify than other sanction types.
On the other hand, we assume that it should be the agents’ decision whether or
not to take psychological and non-material social sanctions into account. And
lastly, social sanctions will usually take effect even if the agent does not realize
that they exist. As such, the problem of the enforcement of sanctions thus does
not have to be considered for these sanctions types.

4 Conclusion

In this paper we have raised the problem of the enforcement of flexible social
commitment in open systems. We have introduced tools for treating this prob-
lem (section 2), namely sanctions (section 2.1) and punishment philosophies (sec-
tion 2.2). We have then provided a generic social commitment model (section 3.1)
that gives the operational semantic of our previous dialogical frameworks (pre-
sented in [8, 6]), supporting the enforcement of social commitments through ex-
plicit sanctions (statically specified or dynamically negotiated). Finally, we have
presented the conditions under which this solution for the enforcement of social
commitment does not lead to the meta-problem of the enforcement of sanctions
(section 3.2). The proposed model does not make further assumptions about the
agents so that the property of being able to develop open heterogeneous MAS
using a flexible social commitment-based model (as introduced in section 1)
is safe.

The discharge of commitments, completing their life-cycle, hasn’t been fully
considered in previous social commitment models. By filling this gap, we think

150 P. Pasquier, R.A. Flores, and B. Chaib-draa

that our model that addresses the problem through agent communication will
be helpful for further study of the long term effects of iterated dialogues conse-
quences according to various communication pragmatics and punishment poli-
cies. Notice that the design of (domain dependent) punishment policies, linking
objective (or subjective) actions values to material sanctions, is an open re-
search issue.

References

1. Hewitt, C.: Open information systems semantics for distributed artificial intelli-
gence. Artificial Intelligence 47 (1991) 76–106

2. Castelfranchi, C.: Commitments: from individual intentions to groups and orga-
nizations. In: Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS-95), San Francisco, CA (1995) 41–48

3. Singh, M.P.: A social semantics for agent communication languages. In Dignum,
F., Greaves, M., eds.: Issues in Agent Communication. Springer-Verlag: Heidelberg,
Germany (2000) 31–45

4. Flores, R., Kremer, R.: Bringing coherence to agent conversation. In Wooldridge,
M., Ciancarini, P., Weiss, G., eds.: Agent-Oriented Software Engineering II. Volume
2222 of Lecture Notes in Computer Science., Springer-Verlag (2001) 50–67

5. McBurney, P., Parson, S.: Agent ludens : games for agent dialogues. In: Proceedings
of the Workshop on Game Theoretic and Decision Theoretic Agents. (2000)

6. Pasquier, P., Bergeron, M., Chaib-draa, B.: DIAGAL : a Generic ACL for Open
Systems. In: Proceedings of The Fifth International Workshop Engineering Soci-
eties in the Agents World (ESAW). Lecture Notes in Artificial Intelligence (LNAI),
Springer-Verlag (2004)

7. Fornara, N., Colombetti, M.: Defining interaction protocols using a commitment-
based agent communication langage. In Rosenchein, J.S., Sandholm, T.,
Wooldridge, M., Yokoo, M., eds.: Proceedings of the second Autonomous Agents
and Multi-Agents Systems conference (AAMAS’03), Melbourne, Australie, ACM
Press (2003) 520–527

8. Flores, R., Kremer, R.C.: A principled modular approach to construct flexible
conversation protocols. In Tawfik, A.Y., Goodwin, S.D., eds.: Proceedings of the
17th Canadian Conference on Artificial Intelligence. Volume 3060 of Lecture Notes
in Computer Science (LNCS)., London, Canada, Springer-Verlag (2004)

9. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying
event calculus planning using commitments. In Castelfranchi, C., Johnson, W.,
eds.: Proceedings of the 1st International Joint Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), Bologna, Italy (2002) 527–534

10. Pasquier, P., Chaib-draa, B.: The cognitive coherence approach for agent com-
munication pragmatics. In: Proceedings of The Second International Conference
on Autonomous Agent and Multi-Agents Sytems (AAMAS’03), ACM Press (2003)
544–552

11. Excelente-Toledo, C.B., Bourne, R.A., Jennings, N.R.: Reasoning about commit-
ments and penalties for coordination between autonomous agents. In Müller, J.,
Andre, E., Sen, S., Frasson, C., eds.: Proceedings of the Fifth International Con-
ference on Autonomous Agents, Montreal, Canada, ACM Press (2001) 131–138

12. Dignum, F., Kinny, D., Sonenberg, L.: From desires, obligations and norms to
goals. Cognitive Science Quarterly 2 (2002) 407–430

Modelling Flexible Social Commitments and Their Enforcement 151

13. Sandholm, T.W., Lesser, V.R.: Advantages of a leveled commitment contract-
ing protocol. In: Proceedings of the Thirteenth National Conference on Artificial
Intelligence, Portland, OR (1996)

14. Vogel Carey, T.: How to confuse commitment with obligation. The Journal of
Philosophy (1975) 276–284

15. Martindale, D.: The theory of social control. In Roucek, J., ed.: Social Control
for the 1980s: A Handbook for Order in a Democratic Society. Greenwood Press,
Westport, CT (1978) 46–58

16. Hechter, M., Opp, K.D.: Introduction. In Hechter, M., Opp, K.D., eds.: Social
Norms, Russell Sage Foundation (2001) xi–xx

17. Levinson, D.J.: Collective sanctions. Public law research paper no. 57, NYU Law
School, Ctr for Law and Business Research (2003)

18. Posner, R.A., Rasmusen, E.B.: Creating and enforcing norms, with special refer-
ence to sanctions. International Review of Law and Economics 19 (1999) 369–382

19. Bates, J.: The role of emotion in believable agents. Communications of the ACM
37 (1994) 122–125

20. Vold, G.B., Bernard, T.J., Snipes, J.B.: Theoretical Criminology. Fifth edition
edn. Oxford University Press (2002)

21. Beccaria, C.: On Crimes and Punishments. New Jersey: Prentice Hall (1963)
22. Bentham, J.: An Introduction to the Principles of Morals and Legislation. The

Athlone Press, London (1970)
23. Polinsky, M., Shavel, S.: Punitive damages. In Newman, P., ed.: The New Palgrave

Dictionary of Economics and The Law. Volume 3. Macmillan Reference Limited,
London (1998) 192–198

24. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a uni-
fication of normative concepts. Artificial Intelligence and Law 7 (1999) 97–113

25. Artikis, A.: Executable Specification of Open Norm-Governed Computational Sys-
tems. PhD thesis, Department of Electrical and Electronic Engineering, Imperial
College London (2003)

DIAGAL: A Generic ACL for Open Systems

Philippe Pasquier, Mathieu Bergeron, and Brahim Chaib-draa

Laval University, Computer Science and Software Engineering Department,
Sainte-Foy, QC, G1K 7P4, Canada

{pasquier, bergeron, chaib}@iad.ift.ulaval.ca

Abstract. In this paper, we present the latest version of our dialogue
games based agent communication language (DIAGAL) which allows the
agents to manipulate the public layer of social commitments through di-
alogue. We show that DIAGAL is complete according to the sequential
creation, cancellation, update and discharge of social commitments. We
also extend and refine notions of success and satisfaction previously asso-
ciated with speech-acts to this new dialogical setting. Finally, we explain
why DIAGAL is a good candidate for open and heterogeneous MAS
development.

1 Introduction

Regarding communication, the multi-agent systems (MAS) community has been
concentrating for some years on building a standard interactional framework.
Main current agent communication languages (ACL), KQML and FIPA-ACL [1],
are both based on speech acts theory. In those ACLs, semantics of messages is
formulated in terms of mental states, i.e., private aspects of agents [2]. Dialogue
is supposed to emerge from the chaining of produced speech acts stemming
from agents’ intentions by way of recognition and reasoning on others’ men-
tal states.

More recently, the use of these approaches for artificial agents communica-
tion has been criticized [3, 4]. Among these critics, we can note the semantic
verification problem: agents should be able to verify that the others act ac-
cording to held dialogues1. For messages semantics to be verifiable, it would
be necessary to have access to agents’ private mental states which is generally
not possible. A second major problem raised by this formulation is the sin-
cerity assumption. This hypothesis, necessary for the definition of ACL men-
talistic semantic, is considered too restrictive by the MAS community since
it forbids certain dialogue types in domains where such a hypothesis would
not hold, as is the case for negotiation dialogues in electronic business for in-
stance [5].

1 This semantics verification should not be mistaken with the formal semantics check-
ing: agents are implemented in accordance with the ACL mathematical or logical
semantics.

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 152–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

DIAGAL: A Generic ACL for Open Systems 153

This is why some authors have proposed social approaches for agent com-
munication introducing a public conventional layer expressed in terms of social
commitments [6]. These approaches (1) resolve the semantic verification prob-
lem, (2) do away with the sincerity hypothesis and, (3) facilitate the treatment
of the social aspects of communication. These new approaches inaugurate a
shift of paradigm since agents do not necessarily have to reason on others inten-
tions anymore but rather they must reason on taken and to be taken social com-
mitments. These social commitments are those stemming from past dialogues,
issued from systems conventions and norms or associated to agents’ roles. In
that context, dialogue units (which could be speech acts as well as dialogue
games) are seen as a means to manipulate the social commitments layer. For
example, asking an agent to close the door would be seen as an attempt to com-
mit him to do so (i.e. an attempt to create a new social commitment) instead
of an attempt to make him adopt the corresponding (unverifiable) intention.
Among these social commitments based approaches, which can be considered
as conventional, dialogue games [7, 8, 9, 10] offer a compromise between strictly
speech acts based approaches (with either “mentalistic” or “social” semantics)
which do not specify anything about dialogue structure (which is supposed to
emerge) and protocols which reduce the searching space for possible continua-
tions to its strict minimum, causing the loss of the flexibility and adaptability of
conversations.

The next sections will describe (section 2), discuss and exemplify (section 2.6)
the main components of our dialogue games agent communication language (DI-
AGAL). We will then extend and refine the notions of success and satisfaction
traditionally associated with speech acts (section 3). Finally, we will discuss
DIAGAL for heterogenous agents communication in open systems (section 4)
before concluding.

2 A Dialogue Game Agent Language

2.1 Social Commitments

The notion of social commitment should not be confused with the notion of
individual commitment used to emphasize individual intention persistance in
practical reasoning nor with collective commitments which stand for the inter-
nal commitment of a group of agents. Conceptually, commitments are oriented
responsibilities contracted towards a partner or a group. Following Walton and
Krabbe [11], we distinguish action commitments from propositional commit-
ments. Since [12] discusses our modelling of flexible social commitments and
their enforcement through sanctions, we simply re-introduce the basic nota-
tions here.

Commitments are expressed as predicates with an arity of 6. Thus, an ac-
cepted action commitment takes the form:

C(x, y, α, t, sx, sy)

154 P. Pasquier, M. Bergeron, and B. Chaib-draa

meaning that agent x is committed towards agent y to α at time t, under
the sanctions sx and sy. An accepted propositional commitment would have
propositional content p instead α. Rejected commitments, meaning that x is
not committed toward y to α, take the form ¬C(x, y, α, t, sx, sy). This notation
for commitments is inspired from [13], and allows us to compose the actions
or propositions involved in the commitments: α1|α2 classically stands for the
choice, and α1 ⇒ α2 for the conditional statement that α2 will occur in case of
the occurrence of the event α1. Finally, agents keep track of each commitment
in which they are debtor or creditor in their agendas, which constitutes a kind
of distributed “Commitment Store”.

Now, we need to describe the mechanism by which the commitments are
discussed and created, updated, cancelled or even discharged through dialogue.
This mechanism is precisely modelled within our game structure.

2.2 Game Structure

The main particularity of social commitments is that they must be socially es-
tablished in order to hold. This means that every change on the social commit-
ment layer (reified in agendas) should be grounded by the conversing agents. We
share with others [7, 8, 9] the view of dialogue games as structures regulating the
mechanism under which some commitments are discussed through the dialogue.
However, unlike previous models [7, 8, 9], we adopt a strict commitment-based
approach within game structure and express the dialogue rules in terms of di-
alogical commitments [6]. To account for the fact that some commitments are
established within the contexts of some games and only make sense within this
context, we make explicit the fact that those dialogical commitments are partic-
ular to game g (by indicating g as a subscript). This will typically be the case of
the dialogue rules involved in the games, as we will see below. In our approach,
games are considered as bilateral structures defined by:

– entry conditions, (E): expressed in terms of extra-dialogical commitments,
entry conditions are conditions which must be fulfilled to enter the
game;

– dialogue rules, (R): expressed in terms of dialogical commitments, dialogue
rules specify what the conversing agents are “dialogically” committed to do.
The fulfilment of those rules will lead to reaching either the success or the
failure conditions of the game;

– success conditions, (S): success conditions indicate the result, the effect in
terms of extra dialogical commitments, of the dialogue game if the modifica-
tion of the public layer which was the purpose of the game has been socially
accepted;

– failure conditions, (F): failure conditions indicate the effect in terms of extra
dialogical commitments of the dialogue game if the modification of the public
layer has been socially rejected.

DIAGAL: A Generic ACL for Open Systems 155

Move Operations

prop.in(x, y, g) create(y, Cg(y, x, acc.in(y, x, g)
|ref.in(y, x, g)|prop.in(y, x, g′)))

prop.out(x, y, g) create(y, Cg(y, x, acc.out(y, x, g)
|ref.out(y, x, g)))

acc.in(x, y, g) create dialogical commitments for game g

acc.out(x, y, g) suppress dialogical commitments for game g

ref.in(x, y, g) no effect on the public layer

ref.out(x, y, g) no effect on the public layer

Fig. 1. DIAGAL contextualization game

2.3 Grounding and Composing the Games

The specific question of how games are grounded through the dialogue is cer-
tainly one of the most delicate. Grounding refers to the process of reaching
mutual belief (or common ground) [14]. We model it using presentation and
acceptance. Following [15], we assume that agents can use some meta-acts of
dialogue to handle the games structuration and thus propose to enter a game,
propose to leave a game, and so on. Games can have different status: they can
be open, closed, or simply proposed. How this status is discussed in practice is
described in a contextualization game which regulates this meta-level communi-
cation as proposed in [6]. Figure 1 indicates the current contextualization moves
and their effects in terms of commitments. For example, when a proposition to
enter a game g (prop.in(x, y, g)) is played by agent x, agent y is committed
to accept (acc.in), to refuse (ref.in) or to propose entering another game g′

(prop.in(y, x, g′)), which would lead to a presequencing type of dialogue games
structuration.

Concerning the possibility of combining the games, the seminal work of [11]
and the follow-up formalization of [15] have focused on the classical notions of
embedding and sequencing. Recent works, including ours, extend this to other
combinations [16, 9]:

– Sequencing noted g1; g2, which means that g2 starts immediately after ter-
mination of g1.

– Choice noted g1|g2, which means that participants play either g1 or g2 non-
deterministically.

– Pre-sequencing noted g2 ↪→ g1, which means that g2 is opened while g1 is
proposed.

– Embedding noted g1 < g2, which means that g1 is now opened while g2 was
already opened.

If one wants to make explicit the initiator and partner of each game, composi-
tions can be rewritten as follows: [x, y]g1; [y, x]g2 or [x, y]g1|[y, x]g2 or [x, y]g2 ↪→
[y, x]g1 or [x, y]g1 < [y, x]g2. In that case, [x, y]g1 means that the initiator of g1

156 P. Pasquier, M. Bergeron, and B. Chaib-draa

is x and the partner is y. Notice that the previous contextualization game only
considers sequencing, pre-sequencing and embedding.

2.4 Dialog Games

Within our framework, extra-dialogical commitments capture the shared seman-
tics of dialogues seen as the grounded manipulation of the social layer. Being
able to cancel or modify commitments is then a key feature that allows the
agents to rediscuss the consequences, the common interpretation, of past di-
alogue as time goes on according to environment changes. This feature is es-
sential in modern MAS deployed in dynamic and complex environments. This
semantical flexibility should not be confused with the structural flexibility of
dialogues.

Our social commitment model (which gives the operational semantics of the
dialogue games presented below) is presented in [12] and considers five oper-
ations: creation, cancellation, update, discharge of fulfilled commitments and
discharge of violated commitments. We have defined basic dialogue games for
those operations according to the different types of commitments which can hold
between two agents x and y. However, in order to save space and because the
games for manipulating propositional commitments are highly similar to those
that concern action commitments, we will present only the games that manipu-
late action commitments. DIAGAL contains 7 dialogue games that allow agents
to attempt the aforementioned operations on action commitments:

1. for an attempt to have an action commitment from y toward x accepted,
agent x can use a Request game (rg);

2. for an attempt to have an action commitment from x toward y accepted,
agent x can use an Offer game (og);

3. for an attempt to retract an action commitment from x toward y, agent x
can use a Cancel.ActionC game (cag);

4. for an attempt to retract an action commitment from y toward x, agent x
can use a Release.ActionC game (rag);

5. for an attempt to update an action commitment , agent x or y can use an
Update.ActionC game (uag);

6. for an attempt to discharge a violated action commitment, agent x can use
a Discharge.Violated.ActionC game (dvag);

7. for an attempt to discharge a fulfilled commitment, agent x can use a Dis-
charge.Fulfilled.ActionC game (dfag).

Notice that in the assumption that dialogue moves are made sequentially,
the set of DIAGAL dialogue games is sound and complete according to our
social commitment model (presented in [12]). Completeness means that all tran-
sitions (creation, cancellation, updating and discharge) of the underlying social-
commitment model can be consumed by those games whereas soundness indi-
cates that nothing other than those permitted transitions is possible. The latter
is ensured through entry conditions that prevent, for example, cancelling a com-
mitment that has not been created,. . .

DIAGAL: A Generic ACL for Open Systems 157

Within commitments, time is expressed using a simple instant theory with <
as the precedence relation. The next subsections detail these games. Sanctions
were omitted in our games specifications for better readability. Notice that the
game rules structure provides an elegant turn-taking mechanism by entailing
that tj < tk < tl < tf .

Request Game (rg) – This game captures the idea that the initiator x “re-
quests” an action α from the partner y and the latter can “accept” or “refuse”.
The conditions and rules of the request game are as follows:

Erg ¬C(y, x, α, ti) and ¬C(y, x,¬α, ti) ∀ ti, ti < tj
Srg C(y, x, α, tf)
Frg ¬C(y, x, α, tf)
Rrg 1) Cg(x, y, requestd1 (x, y, α), tj)

2) Cg(y, x, requestd1 (x, y, α) ⇒
Cg(y, x, acceptd2 (y, x, α)|refused3 (y, x, α), tk), tj)

3) Cg(y, x, acceptd2 (y, x, α) ⇒ C(y, x, α, tf), tj)
4) Cg(y, x, refused3 (y, x, α) ⇒ ¬C(y, x, α, tf), tj)

Offer Game (og) – An offer is a promise that is conditional upon the partner’s
acceptance. To make an offer is to put something forward for another’s choice
(of acceptance or refusal). To offer then, is to perform a conditional commissive.
Precisely, to offer α is to perform a commissive under the condition that the
partner accepts α. Conditions and rules of the DIAGAL offer game are as fol-
lows:

Eog ¬C(x, y, α, ti) and ¬C(x, y,¬α, ti) ∀ ti, ti < tj
Sog C(x, y, α, tf)
Fog ¬C(x, y, α, tf)
Rog 1) Cg(x, y, offerd1 (x, y, α), tj)

2) Cg(y, x, offerd1 (x, y, α) ⇒
Cg(y, x, acceptd2 (y, x, α)|refused3 (y, x, α), tk), tj)

3) Cg(x, y, acceptd2 (y, x, α) ⇒ C(x, y, α, tf), tj)
4) Cg(x, y, refused3 (y, x, α) ⇒ ¬C(x, y, α, tf), tj)

Cancel.ActionC Game (cag) – This game can be used in order to have an al-
ready accepted commitment rejected, i.e. to cancel a commitment. In this game,
the debtor (x) of a commitment Ci proposes its cancellation. Then, the creditor
can agree or not with the cancellation. If the creditor agrees with the retraction,
the debtor will not have to face the sanction attached with the commitment Ci

while he will have to do so if he disagrees. According to the creditor’s opinion
(agree or disagree), the debtor can decide to really cancel the commitment and
face the associated sanction or change his mind and keep it (probably to avoid
facing the sanctions). The conditions and rules of the Cancel.Action game are
as follows:

158 P. Pasquier, M. Bergeron, and B. Chaib-draa

Ecag ∃ ti, ti < tj : C(x, y, α, ti)
Scag ¬C(x, y, α, ti)
Fcag C(x, y, α, ti)
Rcag 1) Cg(x, y, canceld1 (x, y, (α, ti)), tj)

2) Cg(y, x, canceld1 (x, y, (α, ti)) ⇒
Cg(y, x, agreed2 (y, x, canceld1(α, ti))|

disagreed3 (y, x, canceld1(α, ti)), tk), tj)
3) Cg(x, y, disagreed3 (y, x, canceld1(α, ti)) ⇒

Cg(x, y, confirmd4 (x, y, canceld1(α, ti))|
declined5 (x, y, canceld1(α, ti)), tl), tj)

4) Cg(x, y, agreed2 (y, x, canceld1(α, ti)) ⇒ ¬C(x, y, α, ti), tj)
5) Cg(x, y, confirmd4 (x, y, canceld1(α, ti)) ⇒ ¬C(x, y, α, ti), tj)
6) Cg(x, y, declined5 (x, y, canceld1(α, ti)) ⇒ C(x, y, α, ti), tj)

Release.ActionC Game (rag) – Similar to the Cancel.ActionC game, the
Release.ActionC game allows retracting an action commitment and negotiating
the sanction applications, but contrary to the former it allows the creditor in-
stead of the debtor to attempt the cancellation. The rules of the Release.ActionC
game are thus similar to the Cancel.ActionC game rules and they are as
follows:

Erag ∃ ti, ti < tj : C(y, x, α, ti)
Srag ¬C(y, x, α, ti)
Frag C(y, x, α, ti)
Rrag 1) Cg(x, y, released1 (x, y, (α, ti)), tj)

2) Cg(y, x, released1 (x, y, (α, ti)) ⇒
Cg(y, x, agreed2 (y, x, released1(α, ti))|

disagreed3 (y, x, released1(α, ti)), tk), tj)
3) Cg(x, y, disagreed3 (y, x, released1(α, ti)) ⇒

Cg(x, y, confirmd4 (x, y, released1(α, ti))|
declined5 (x, y, released1(α, ti)), tl), tj)

4) Cg(x, y, agreed2 (y, x, released1(α, ti)) ⇒ ¬C(y, x, α, ti), tj)
5) Cg(x, y, confirmd4 (x, y, released1(α, ti)) ⇒ ¬C(y, x, α, ti), tj)
6) Cg(x, y, declined5 (x, y, released1(α, ti)) ⇒ C(y, x, α, ti), tj)

Update.ActionC Game (uag) – If an agent wants to modify a commitment
(change any attribute(s) of the commitment except the debtor or the creditor),
he can try to retract the commitment and create a new one with the new at-
tribute. However, the cancellation may cause some undesirable sanctions to be
applied. This is why, we have defined the Update.ActionC and Update.PropC
games that allow attempts to update commitments without having to face
sanctions.

In the Update.ActionC game, agent x who initiates the game asks agent y
if he agrees to cancel the commitment Ci and replace it with the commitment
Cj . Then, agent y can agree or not to the modification of the commitment. If

DIAGAL: A Generic ACL for Open Systems 159

the agent y agrees with the modification, the commitment Ci is cancelled and a
new commitment Cj is created.

The conditions and rules of the Update.ActionC game are indicated here,
assuming that: (1) if the initiator x is the creditor then cre = x and deb = y
while (2) if the initiator x is the debtor then cre = y and deb = x:

Euag ∃ ti, ti < tj : C(deb, cre, α, ti)
Suag ¬C(deb, cre, α, ti) and C(deb, cre, α′, tf)
Fuag C(deb, cre, α, ti)
Ruag 1) Cg(x, y, updated1 (x, y, (α, ti), α′), tj)

2) Cg(y, x, updated1 (x, y, (α, ti), α′) ⇒
Cg(y, x, agreed2 (y, x, updated1((α, ti), α′))|

disagreed3 (y, x, updated1((α, ti), α′)), tk), tj)
3) Cg(x, y, agreed2 (y, x, updated1((α, ti), α′)) ⇒

C(deb, cre, α′, tf), tj)
4) Cg(x, y, agreed2 (y, x, updated1((α, ti), α′)) ⇒

¬C(deb, cre, α, ti), tj)
5) Cg(x, y, disagreed3 (y, x, updated1((α, ti), α′)) ⇒

C(deb, cre, α, ti), tj)

Discharge.Violated.ActionC and Discharge.Fullfilled.ActionC Games.
A socially accepted extra-dialogical commitment can be active (its conditions of
satisfaction2 can be met), violated (its conditions of satisfaction could not be
met anymore) or fulfilled (its conditions of satisfaction has been met).

In our model, the violation as well as the fulfilment of an extra-dialogical
action commitment must be grounded, and the agents may want the eventual
associated sanctions or rewards to apply. The Discharge.Violated.ActionC (dvg)
is the tool for attempting such a grounding while the Discharge.Fullfilled.ActionC
(dfg) is used to discharge fulfilled action commitment. The use of those games
eventually entail positive (for fulfilment) or negative (for violation) sanctions
to apply as discussed in [12]. The conditions and rules of those games are as
follows:

Edfg ∃ ti, ti < tj : C(deb, cre, α, ti)
Sdfg ¬C(deb, cre, α, ti)
Fdfg C(deb, cre, α, ti)
Rdfg 1) Cg(x, y, discharged1 (x, y, C(deb, cre, α, ti), tj)

2) Cg(y, x, discharged1 (x, y, C(deb, cre, α, ti) ⇒
Cg(y, x, acceptd2 |refused3 , tk), tj)

3) Cg(x, y, acceptd2 (y, x, α) ⇒ apply(sx) and ¬C(x, y, α, ti), tj)
4) Cg(x, y, refused3 (y, x, α) ⇒ C(x, y, α, ti), tj)

2 Which will not be defined here since they depend on the choice of a particular content
language, which we leave open for genericness.

160 P. Pasquier, M. Bergeron, and B. Chaib-draa

Edvg ∃ ti, ti < tj : C(deb, cre, α, ti)
Sdvg ¬C(deb, cre, α, ti)
Fdvg C(deb, cre, α, ti)
Rdvg 1) Cg(x, y, discharged1 (x, y, C(deb, cre, α, ti), tj)

2) Cg(y, x, discharged1 (x, y, C(deb, cre, α, ti) ⇒
Cg(y, x, acceptd2 |refused3 , tj+1), tj)

3) Cg(x, y, acceptd2 (y, x, α) ⇒ apply(sx) and ¬C(x, y, α, ti), tj)
4) Cg(x, y, refused3 (y, x, α) ⇒ C(x, y, α, ti), tj)

2.5 DIAGAL Extra-Features

Intensity Degrees – Notice that in previous games, the embedded speech acts
are labelled with an integer dx indicating the illocutionary force intensity degree
relative to the default basic illocutionary force degree in Vandervecken [17] clas-
sification. For example, in the request game the embedded request speech act
stands for the directive category for action which is mapped to: suggest = −2,
direct = −1, request = 0, demand = 1, order = 2, according to the intensity
degree factor dynamically chosen by the agent. Allowing agents to use the ap-
propriate illocutionary forces intensity degree for each dialogue/speech act leads
to many variations of those basic games. While being crucial in mixed commu-
nities, this feature is also important in modern agent communication language
since some agent architectures allow the agent to use different meaningful inten-
sity degrees [18].

Deontic Version – In order to use DIAGAL, agents should embed our dialogue
manager (described in [18]) which (1) loads the contextualization game and the
various dialog games and (2) manages the agenda according to dialogues. While
doing so reduces the aforementioned semantic flexibility, in certain systems, it is
simpler to model commitment as directed obligation that cannot be updated nor
cancelled. To do so within DIAGAL, the dialogue managers just have to load
the games for creations and discharges only.

Social Context – A great number of agents applications rely on an organiza-
tional level that structures the agents acquaintances and facilitates social control.
In such systems, it can be the case, for example, that an agent is not allowed to re-
ject requests from a hierarchical superior. In order to take this social context into
account, we have supplied our dialogue manager with special features to update
the rules of the different dialogue games to take into account three possibilities:
(1) the conversing agent is on the same social level as the concerned agent, (2)
the conversing agent is superior to the agent, (3) the conversing agent is inferior
to the agent. For space reasons, we will just mention those features here.

2.6 Conversation Example

Suppose an agent x wishes that an agent y repair its car. Therefore, agent x pro-
poses to agent y to enter a request game (the only game whose success condition
is an action commitment of the wanted form). When the agent y receives the mes-

DIAGAL: A Generic ACL for Open Systems 161

Agent x Agent y

prop.in(x, y, rg1)

acc.in(y, x, rg1)

request(x, y, A)

prop.in(y, x, rg2)

acc.in(x, y, rg2)

request(x, y, A B)

accept(x, y, A B)

prop.out(y, x, rg2)

acc.out(x, y, rg2)

accept(y, x, A)

prop.out(x, y, rg1)

acc.out(y, x, rg1)

R
eq

ue
st

 G
am

e
1

(R
g1

)

R
eq

ue
st

 g
am

e
2

(r
g2

)

create(Cg(y, x, acc.in(y, x, rg1) | ref.in (y, x, rg1) | prop.in(y, x, g'), t1))

fulfilled the previous commitme nt and create the Rg1 dialogical commitments

fulfilled the Rg1 rule 1 and create(Cg(y, x, accept(y, x, A) | refuse(y, x, A), t3))
create(Cg(x, y, acc.in(x, y, rg2) | ref.in (x, y, rg2) | prop.in(x, y, g'), t4))

fulfilled the previous commitme nt and create the Rg2 dialogical commitments

fulfilled the Rg2 rule 1 and create(Cg(x, y, acc ept(x, y, A B) | refuse(x, y, A B), t6))

fulfilled the Rg2 rule 2 and create(C(x, y, A B, t7))

create(Cg(x, y, acc.out(x, y, rg2) | r ef.out (x, y, rg2), t8))

fulfilled the previous commitment

fulfilled the Rg1 rule 2 and create(C(y, x, A, t10))

create(Cg(y, x, acc.out(y, x, rg1) | r ef.out (y, x, rg1), t11))

fulfilled the previous commitment

Agenda management

Fig. 2. Conversation example with agendas management

sage prop.in(x,y,rg) (issued from the contextualisation game, Figure 1) his dia-
logue manager adds the commitment C(y, x, acc.in(y, x, rg)|ref.in(y, x, rg)|prop
.in(y, x, g′)) to his agenda. Agent y thus has three choices to fulfill this commit-
ment: accept to play the game, refuse to play the game or propose another game.

For the sake of our example, we assume that y accepts to play a Request game,
meaning that he has the resources and the will to enter a dialogue with x. The
dialogue managers of x and y then add all the Request game rules (indicated
in section 2.4) to their respective agendas. The first rule stipulates that x is
committed to make a request C(x, y, request(x, y, α)). Agent x thus makes his
request in order to fulfill this dialogical commitment. The second rule indicates
that if x makes a request, y is committed to accept or reject it. On its side,
before responding to x ’s request, y decides to embed another Request game as an
attempt to commit x to pay him if he accepts the request and repairs the car. The
conversation continues according to the different rules sustaining dialogues games
and agents’ decisions. Finally, at the end of the conversation, two extra-dialogical
commitments remain: C(y, x, A) and C(x, y, A ⇒ B) where A stands for the
action “Repair the car” and B stands for the action “Pay for the car repairs”.
The complete conversation is presented in Figure 2. The left side of the figure
presents the sequence diagram of the conversation between x and y while the
right side presents the effects of each message on the contents of their agendas.
Notice that the discharge of those commitments will occur once their fulfilment
or violation have occurred, which are detected in the way described in [12].

3 Success and Satisfaction in DIAGAL

In standard speech act theory [17], success and satisfaction conditions play a
central role. This section indicates how such fundamental notions are extended
and refined in DIAGAL.

162 P. Pasquier, M. Bergeron, and B. Chaib-draa

Success conditions of a speech act are the conditions that must hold in the
utterance context in order for the speaker to succeed in its accomplishment. In
the case of a promise, for example, the speaker should be ready to commit on
the content of his promise and succeed in uttering his promise and he should be
heard and understood by the appropriate agents [19].

By providing a dialogical rather than monological approach to language prim-
itives, dialogue games allow extending and redefining success conditions in two
different categories: dialogical success and extra-dialogical success. First, each
DIAGAL game is played with dialogical success (which is close to the mono-
logical success conditions previously defined) if and only if all the dialogical
commitments attached to it are fulfilled. That means the agents accept to enter
the game and play it until the failure or success conditions are reached, with
possible interruptions due to dialogue structure. Secondly, through success and
failure conditions of the dialogue games, extra-dialogical success allows taking
into account the hearer and thus introducing a more socially aware notion of
success. Since from the hearer’s point of view, an assertive succeeds if he agrees
to it (independently of the truth of the content which is more related to the
satisfaction conditions), a request succeeds if he accepts it. . . . In this context,
there are several reasons why a dialogue game can fail: (1) the hearer can refuse
to enter the game for several possible reasons (his attention is kept somewhere
else, he doesn’t have enough resources to process the communication at this par-
ticular time, he doesn’t want to communicate with the initiator agent, . . .) (2)
the initiator embedded speech act success conditions are not fulfilled (meaning
that the corresponding dialogical commitments is not fulfilled) (3) the failure
conditions are reached, meaning that the hearer refuses the wanted change on
the social layer. A dialogue game can thus be played with dialogical success and
extra-dialogical failure.

On their side, Satisfaction conditions of a speech act gathers the conditions
that must be obtained for the perlocutionary effects of this speech act to be
obtained. For example, an assertion is satisfied if it’s true, a request is satisfied
if it is granted, a promise is satisfied if it is kept,. . . Satisfaction conditions relate
speech acts to the world through their coverage of the different directions of fit
between world and words. In social commitment based approaches, we need to
consider only two of the four basic directions of fit3:

1. The words-to-world direction of fit: the point of speech acts having this
direction of fit is to represent how things were/are/will be in the world.
Such speech acts are satisfied when their propositional contents fit the state
of affairs existing in the world.

2. The world-to-words direction of fit: the point of speech acts having this
direction of fit is to have the world transformed by the speaker (commissive)
or by the hearer (directive) in order to match the propositional content of

3 The two other directions of fit are not necessary since no operation corresponding to
the double direction of fit nor the empty one were defined in those approaches yet.
The rationale for that is beyond the scope of this paper.

DIAGAL: A Generic ACL for Open Systems 163

the utterance. Such a speech act is satisfied when the world is transformed
to fit its propositional content.

Within DIAGAL, conditions of satisfaction are captured by the notion fulfilment
of social commitments which indicate that the direction of fit between words
and world is resolved. In our approach, social commitments keep track of the
dialogues from which they are issued between the moment of extra-dialogical
success and a hypothetical actual satisfaction time.

Thus, while traditional success and satisfaction conditions have always been
problematic to implement and verify in distributed settings (without accessing
the agents’ mental states), the DIAGAL approach takes a step ahead. Notice
that as in speech act theory, success and satisfaction conditions are linked in
the sense that one cannot expect satisfaction without previous extra-dialogical
success which itself requires dialogical success. Finally, the crucial question of es-
tablishing and verifying the fulfilment of social commitments is addressed in [12].

4 DIAGAL for Open Systems

An open MAS is characterized by its variable number of agents and the hetero-
geneity of its agents that are usually independently developed. Since DIAGAL
semantics does not relate to any supposition about the decision making mecha-
nisms of the conversing agents, it’s an appropriate tool for open and heteroge-
neous systems communications. In order to use an ACL automatically, agents
should be able to process its semantic. With previous mentalistic semantics, a
strong assumption was made about the nature of rational agents that should
at least have mental states which form and semantics match those used for the
ACL semantics. This constraint was known as the semantic alignment problem,
described in [5]. DIAGAL does not rely on such a strong assumption about the
architecture of agents nor on their decision making mechanism. Since DIAGAL
does not involve any references to agents’ (hypothetical) mental states, it solves
the semantic alignment problem.

Actually, DIAGAL can be used by agents which hold mental states (like
the various BDI-like architectures) as well as by agents involving other internal
decision process mechanisms. To use DIAGAL, the only assumptions needed are
that (1) agents embed our dialogue manager enabling them to use DIAGAL and
(2) they shared the model of flexible social commitments and their enforcement
described in [12] which gives the operational semantics of the games and (3) the
sanction system chosen for the enforcement of commitments should be respected
as indicated in [12].

5 Conclusion

We hope to have shown that as an ACL, DIAGAL offers a complete set of tools to
manipulate the social commitments layer (reifying in agents agendas) in open or

164 P. Pasquier, M. Bergeron, and B. Chaib-draa

heterogeneous MAS. At the syntactic level, dialogue games appear to be a good
alternative between strictly “mentalistic” or “social” approaches and protocols.
At the semantic level, the sincerity assumption is avoided and dialogue games
are defined in terms of entry conditions, success conditions and failure conditions
expressed in terms of verifiable extra-dialogical social commitments. Finally, the
conventional part of pragmatics is expressed in terms of conditional dialogical
social commitments specifying the rules of the games. Besides, the contextual-
ization game ensures the grounding of dialogue games (taking into account the
attentional level of agents) while dialogue games ensure the grounding of each
modification in the social commitments layer.

There are at least two ways of using DIAGAL in MAS:

1. DIAGAL can be used to specify protocols as particular compositions of di-
alogue games. For example, one can express the request for action protocol
using DIAGAL games, as in [20].

2. DIAGAL can also be used dynamically as an agent language. For any at-
tempt to get a particular modification on the social commitments layer, an
agent just has to choose the DIAGAL game whose success condition unifies
with the wanted change. This approach was used to validate our theory of
agent communication pragmatics [18].

Finally, a dialogue game simulator (DGS) including many dialogue metrics has
been developed to support previous DIAGAL version prototyping. In this frame-
work, contextualization and dialogue games are XML files with their DTD while
the standard dialogue manager has been implemented in Java. As future work,
we plan to adapt it to the new version presented here and to make this com-
plete yet versatile agent communication framework and test-bed available to
the community.

References

1. FIPA: FIPA ACL message structure specification, foundation for intelligent phys-
ical agents. http://www.FIPA.org (2002)

2. Labrou, Y., Finin, T.: Semantics for an agent communication language. In Singh,
M.P., Rao, A., Wooldridge, M.J., eds.: Intelligent Agents IV: Agent Theories, Ar-
chitectures, and Languages. Volume 1365 of Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, Germany (1998) 209–214

3. Moulin, B.: The social dimension of interactions in multi-agent systems. In: Agent
and Multi-agent Systems. Volume 1441 of Lecture Notes in Artificial Intelligence
(LNAI). Springer, Berlin (1997)

4. Singh, M.P.: Agent communication languages: rethinking the principles. IEEE
Computer 12 (1998) 40–47

5. Dignum, F., Greaves, M.: Issues in agent communication : An introduction. In
Dignum, F., Greaves, M., eds.: Issues in Agent Communication. Number 1916 in
LNAI, Springer-Verlag: Heidelberg, Germany (2000) 1–16

6. Maudet, N., Chaib-draa, B.: Commitment-based and dialogue-game based proto-
cols - new trends in agent communication language. Knowledge Engineering 17
(2002) 157–179

DIAGAL: A Generic ACL for Open Systems 165

7. Dastani, M., Hulstijn, J., der Torre, L.V.: Negotiation protocols and dialogue
games. In: Proceedings of the Belgium/Dutch AI Conference (BNAIC’2000), Kaat-
sheuvel (2000)

8. Flores, R., Kremer, R.: Bringing coherence to agent conversation. In Wooldridge,
M., Ciancarini, P., Weiss, G., eds.: Agent-Oriented Software Engineering II. Volume
2222 of Lecture Notes in Computer Science., Springer-Verlag (2001) 50–67

9. McBurney, P. Parsons, S., Wooldridge, M.: Desiderata for agent argumentation
protocols. In: Procceedings of the First International Conference on Autonomous
Agents and Multi-Agents. (2002)

10. Pasquier, P., Chaib-draa, B.: Engagements, intentions et jeux de dialogue. In
Herzig, A., Chaib-draa, B., Mathieu, P., eds.: Modèles formels de l’interaction,
Actes des Secondes Journées Francophones, Cépaduès (2003) 289–294 papier court.

11. Walton, D.N., Krabbe, E.: Commitment in Dialogue. Suny Press (1995)
12. Pasquier, P., Flores, R., Chaib-draa, B.: Modelling flexible social commitments and

their enforcement. In: Proceedings of the Fifth International Workshop Engineering
Societies in the Agents World (ESAW). Lecture Notes in Artificial Intelligence
(LNAI), Springer-Verlag (2004)

13. Singh, M.P.: A social semantics for agent communication languages. In Dignum,
F., Greaves, M., eds.: Issues in Agent Communication. Springer-Verlag: Heidelberg,
Germany (2000) 31–45

14. Clark, H.H.: Using Language. Cambridge University Press (1996)
15. Reed, C.: Dialogue frames in agent communication. In: Proceedings of the Third

International Conference on MultiAgent Systems (ICMAS). (1998)
16. Chaib-draa, B., Maudet, N., Labrie, M.A.: DIAGAL, a tool for analyzing and mod-

elling commitment-based dialogues between agents. In: Proceedings of Canadian
AI 2003. Number 2671 in Lecture Notes in Artificial Intelligence (2003) 353–369

17. Vanderveken, D.: Meaning and Speech Acts: Principles of Language Use. Cam-
bridge University, Cambridge, UK (1990)

18. Pasquier, P., Andrillon, N., Chaib-draa, B.: An exploration in using cognitive
coherence theory to automate BDI agents’ communicational behavior. In Dignum,
F., ed.: Advances in Agent Communication - International Workshop on Agent
Communication Languages, ACL’03. Volume 2922 of Lecture Notes in Artificial
Intelligence (LNAI)., Springer-Verlag (2003) 37–58

19. Searle, J.R., Vanderveken, D.: Foundations of Illocutionary Logic. Cambridge
University Press, NY (1985)

20. Chaib-draa, B., Maudet, N., Labrie, M.A.: Request for action reconsidered as
dialogue games based on commitments. In: Workshop on Agent Communication
Language (AAMAS02). (2002)

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 166–177, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Social Power to Enable Agents to Reason About
Being Part of a Group

Cosmin Carabelea1, Olivier Boissier1, and Cristiano Castelfranchi2

1 SMA-G2I-ENS Mines de St.Etienne,
158 Cours Fauriel, St.Etienne, F-42030, France
{carabelea, boissier}@emse.fr

2 ISTC-CNR-Rome, Viale Marx 15, 00137, Rome, Italy
c.castelfranchi@istc.cnr.it

Abstract. One of the main challenges in multi-agent systems is the
coordination of autonomous agents. In order to achieve this coordination, the
agents are considered to be part of what we call a group (e.g., organization,
institution, team, normative society, etc.). Our goal is to enable an agent to
reason about the implications of being part of a group: what does it gain or lose,
what are the constraints imposed on its behaviour. The theory of social power
has been proposed as a paradigm to describe the agent's behaviour. In this paper
we use this theory, we formalize it and we extend it to include group-related
aspects. We then show how, using this theory, an agent is able to reason about
the constraints imposed on its behaviour by the group, for example to decide
whether it should enter or not a group.

1 Introduction

One of the main challenges in multi-agent systems is the coordination of autonomous
agents. Many mechanisms have been proposed to achieve this coordination. Among
them, of interest to our work, we can cite organizational design [17] and norms [1]. In
this paper we will use the term group to denote a collection of agents coordinated by
one or more of these mechanisms. Particular examples of types of groups are
institutions [8], teams [16] or normative societies [1]. Generally speaking, a group
contains several elements (e.g., agents, roles, norms) and several coordination and
control mechanisms. These mechanisms are used, for example, to assign agents to
roles [6], or for group's decision-making (e.g., choosing group's goals and distributing
them among members) [16], to negotiate or to plan [12], to punish agents that violate
norms [1], etc.

Besides designing coordination and control mechanisms for autonomous agents,
another difficult problem in open systems is to enable agents to reason about these
mechanisms, or, more generally, to reason about what does it mean to be part of a
group. For example, when an agent enters a group, how does it understand what it
will lose, what it will gain, what new constraints are imposed on its behaviour? Our
aim in this work is to enable an agent to reason about the implications of being part
of a group.

 Using Social Power to Enable Agents to Reason About Being Part of a Group 167

Several authors have proposed the notion of social power as a paradigm that can be
used to explain the agents' behaviour (see for example [5] or [11]). One of the uses of
this theory of social power is to enable the designer (or an observer) of a multi-agent
system to analyze and predict the agents' behaviour in a group. Another interesting
use of this theory is to enable the agents to reason about their (and others') powers
when being part of the group. Thus, they will be able to understand the implications
(i.e., the constraints they face) of being part of a group. However, in order to be used
by artificial agents, the theory of social power needs to be formalized.

Based on the work in [4], in this paper we propose formal definitions for several
forms of power, ranging from individual and social (Section 2) to group-related ones
(Section 3). In Section 4 we describe how an agent can use this power theory to
reason about what it means to be part of a group and to decide whether to be part of a
group or not. Finally, we draw some concluding remarks and trace directions for
future work.

2 Non-institutional Powers

The author of [5] argues that the notion of power is not intrinsically social and does
not refer only to the theory of society or at least of social action: power can be related
to individual. Using as basis the work described in [15], we use the basic notions of
action, resource, plan and goal (noted respectively a, r, pl and g) to describe the
behaviour of an agent. These notions will be used to define the individual powers of
an agent, i.e., the powers it has without considering other agents. We will then use
these powers to identify power relationships between agents, to address what we call
social powers. Although all the following definitions are context dependent, to keep
them simple, we will not use in the different formulae an additional parameter
representing the context. However, we would like to stress out that an agent can have
a power in a context and not have it in another.

Due to space reasons, we will not describe here all the predicates used in our
definitions. Most of these predicates have self explanatory names, e.g., believes,
can_empower (an agent can give a permission to another one), can_commit_to (an
agent can form an intention or commitment to do something), etc. A more detailed
description of all the used predicates can be found in [4].

2.1 Individual Powers

An agent can have several types of individual powers: executional powers (can_do),
deontic powers (entitled_to) and full (total) powers (power). In what follows we will
use as examples only actions and goals. Nevertheless, the notions we introduce can be
easily extended for resources or plans.

2.1.1 Executional and Deontic Powers: Can_do and Entitled_to
We note by can_do the executional power an agent has. For example, we say that an
agent can do an action, if it has all the needed resources, both external and internal
(know-how, skills) to execute that action. Or we say that an agent can do a goal if it

168 C. Carabelea, O. Boissier, and C. Castelfranchi

has a plan (or it can obtain one) to achieve the goal and it can do all the subgoals,
actions or resources needed by that plan:

can_do(X, r) =d has(X, r)
can_do(X, a) =d know_how(X, a) ∧ (∀r needs(a, r) can_do(X, r))
can_do(X, plg) =

d ∀α∈plg can_do(X, α), α - a resource, action or goal in the plan
can_do(X, g) =d ∃ plg achieves(plg, g) ∧ can_do(X, plg) (1)

Besides the executional power, an agent can have a deontic power to execute an
action, to achieve a goal, etc. We note this by entitled_to. Its meaning is that the agent
has all the necessary permissions to execute the action and use the necessary
resources. Or, in the case of a goal, the agent is entitled to achieve the goal if it has
the permissions to pursue the goal and it is entitled to do all the elements of a plan
that achieves the goal. The entitled_to definitions for resources, actions and goals are
similar with the ones above and they are not given here due to space reasons.

Let's take for example an agent A that has the resource printer, the only resource
needed by the action print, and the agent knows how to print documents. We can thus
say that can_do(A, print). Even if A knows how to print a document, one must also
specify if A is forbidden (or allowed) to use the printer or to print using it. For
example, we can say that A has all the rights to print a document using that printer:
entitled_to(A, print).

2.1.2 Full Powers: Power
If an agent has both the executional (can_do) and deontic (entitled_to) powers, then
we say that it has the power_of executing/achieving the action/goal:

power_of(X, a/g) =d can_do(X, a/g) ∧ entitled_to(X, a/g) (2)

The above definitions are not sufficient to fully describe a power of an agent. If we
consider the agent A from the previous example, it can print and it has the permission
for it, so it has the power of doing so: power_of(A, print). A first condition for a
cognitive agent to really have a power is to be aware that it has that power (otherwise
it cannot use it). Thus, in order to have a full power, an agent must be aware it has
that power and it also must be able to form an intention to (or to commit to) use its
power. If an agent cannot commit whenever it wants to use its power, it does not
really have the full power. This is the reason why we introduce the notion of having
access to a power, which allows us to define what having a full power (noted power)
means:

access_to(X, p) =d believes(X, power_of(X,p)) ∧ can_commit_to(X, p) (3)

power(X, p) =d power_of(X,p) ∧ access_to(X, p) (4)

2.2 Social Powers: Dependence, Power over and Influencing Power

The notions introduced in the previous section are taken from the point of view of an
agent and do not take into consideration the other agents in the system. Very often an

 Using Social Power to Enable Agents to Reason About Being Part of a Group 169

agent X lacks the power_of executing an action or achieving a goal. There are many
reasons for this, among them being that it lacks some resources or the knowledge how
to do it, or even the permissions to do it. If there is another agent, Y, that can provide
X with the thing it lacks, we say that X depends on Y for the execution of the action
or the achievement of the goal and we write depends_on(X, Y, a/g). For example, in
the case of a goal and a lack of executional power:

depends_on(X, Y, g) =d ∀plg achieves(plg, g) ∃α∈plg ¬can_do(X, α) ∧
can_do(Y, α)

(5)

Or, in the case where the power X lacks is a deontic power:

depends_on(X, Y, g) =d ¬entitled_to(X, g) can_empower(Y, X, g) (6)

In the previous example, the agent A has the power of printing: power_of(A, print).
Let's assume there is another agent, B, that has the goal of printing a document D, but
it does not know how. If A is the only agent having the power of printing, then B
depends on A to achieve its goal: depends_on(B, A, print document D).

Due to space reasons, we will not enter into details here; the dependence
relationship is deeply analyzed in [15], together with dependencies towards several
agents (OR- and AND-dependence) or the mutual or reciprocal dependences. As
seen above, our approach extends the existing theory of dependence by taking into
account the deontic aspect: an agent can depend on another due to the lack of deontic
power.

We would like to stress out that the dependence relationship is objective, i.e., it
exists even if the agents are not aware of it. However, if X believes that it depends on
Y for an action/goal, then we say that Y has a power over X for that action/goal:

power_over(Y, X, a/g) =d believes(X, depends_on(X, Y, a/g)) (7)

The last power relationship we introduce here is the influencing power an agent has
over another one. From the social point of view (i.e., not institutional and not
normative), an agent has influencing power over another agent, if the other agent is
aware that it depends on the first for one of its goals:

infl_power(Y,X,p) =d power_of(X, p) ∧ (∃g goal(X,g) ∧ power_over(Y, X, g)) (8)

In this definition, p is a power of X that is not necessarily related to the action or
the goal for which X depends on Y. Using the above example, imagine that B also has
the power of negotiating objects in e-markets: power_of(B, negotiate). Because B
depends on A for its goal to print – depends_on(B, A, print) – and both agents are
aware of this situation, A acquires the power of influencing B for the power related to
negotiation: infl_power(A, B, power_of(B, negotiate)).

As we will discuss in Section 3, there are other ways in which an agent can obtain
a power of influencing another agent. In the following we will describe how an agent
can use its power of influencing over another agent to acquire new powers.

170 C. Carabelea, O. Boissier, and C. Castelfranchi

2.3 Putting at the Disposal of

There are many operations the agents can execute in order to modify their powers
and/or the powers of another agent, like empowerment, putting at the disposal of,
requesting power, etc. (see [5] and [4]). We will focus here on the two operations
related to the influencing power: the putting of a power at the disposal of another
agent and the request for a putting at the disposal. But first, we will introduce what
we call an indirect power.

The full power of an agent, presented in the previous sections is a direct power of
an agent. The agent has the power of executing an action (or to satisfy a goal) and it
also has access to its power. We say that an agent has an indirect power if it has
access to the power of another agent. The predicate used bellow, transferred_to
denotes the fact that an agent has transferred the access to its own power to another
agent. The indirect power means that an agent cannot use it directly, but if it commits
to use it, the other agent will do it:

ind_power (Y, p) =d ∃X: power_of(X, p) ∧ transferred_to(X, Y, p) (9)

When an agent X that has a full power gives to another agent Y access to its power,
we say that X puts at the disposal of Y its power. Thus, Y is able to use this power
whenever it wants to:

power (X, p) ∧ puts_at_disposal_of(X, Y, p) ind_power (Y, p) (10)

We can note that in this definition, X does not offer its power p to Y (e.g., a
resource), but the access to the power p (e.g., the access to the resource). In other
words, Y has the control over the power of X: it can decide whenever it wants to use
(indirectly) the power.

An interesting question is whether X still keeps its direct power of p or it loses it
when putting it at the disposal of Y. The nature of the access_to predicate makes that
X loses its access to its power:

power_of(X, a/g) ∧ access_to(X, a/g) ∧ puts_at_disposal_of(X, Y, a/g)
power_of(X, a/g) ∧ ¬access_to(X, a/g) ∧ transferred_to(X, Y, a/g)

(11)

If an agent has the power of influencing another agent for a power and it wants that
power, it requests the second agent to put at its disposal the power:

power(X, p) ∧ infl_power(Y, X, p) ∧ requests_power(Y, X, p)
puts_at_disposal_of(X, Y, p)

(12)

Thus, by using the Formula 11, the request_power operation has the effect of
obtaining an indirect power. Using the previous example, due to a dependence, the
agent A has the power of influencing B for B's power of negotiating: infl_power(A, B,
power_of(B, negotiate)). If A requests B to put at its disposal its power to negotiate, A
will obtain an indirect power to negotiate: whenever A decides to, B will negotiate on
its behalf – ind_power (A, negotiate). This example illustrates how, by reasoning
upon the dependencies existing between them, the agents in a multi-agent system are
able to acquire new powers. The next section will show how the fact that they belong
to a group enables the agents to obtain even more powers.

 Using Social Power to Enable Agents to Reason About Being Part of a Group 171

While we are aware of the fact that there are autonomous agents that can refuse a
request_power, in this paper we will not focus on this aspect of the power theory. The
interested reader is invited to [4] for more details on how agent autonomy can be
defined by using the power theory.

3 Agents' Powers in a Group

The previous section described the various forms of powers an agent have by itself
(individual powers) and the power relationships that appear because of dependencies
between agents. All the definitions above were given without taking into account
institutional aspects, i.e., the fact that the agents belong to a group. In the following
we will describe what are the institutional aspects we take into account and we will
show how agent's powers are influenced by them.

3.1 What Is a Group Made of ?

There are many approaches on how to coordinate autonomous agents. The top-down
ones usually specify an explicit organizational structure that is known to all agents
(e.g., the MOISE+ model [9]), while the bottom-up ones try to ensure the
coordination without using an organizational structure known by all agents (e.g.,
GPGP/TAEMS [12]). In this paper we call group a collection of agents coordinated
by one or more coordination mechanisms. We use this term to denote the common
things in the notions of institution [8], organizational structure [3] or [17], team [16],
normative society [1], etc. A group contains several elements (e.g., roles, norms) and
several coordinations and control mechanisms (e.g., assigning agents to roles [6],
punishing agents that violate norms [1], etc.).

In this paper we focus on how the group's elements influence the agents' powers,
i.e., what new forms of power appear because the agents belong to a group. Based on
the group models proposed in the literature (institutions, normative societies, etc.), we
consider a group formed by three types of elements. A group contains a set of roles, a
set of authority relationships between the roles (i.e, a hierarchy of roles) and a set of
deontic specifications of the roles' expected behaviour (i.e., norms). In the following
we will show how this model, although simple, allows us to model the powers that
appear in a group. We will then show that the power relationships we introduced can
be extended to other coordination elements, such as the contract [2] (or its weaker
form, the commitment) [10].

We would like to point out that in this paper we do not propose formal definitions
for the notions we use to define a group (norms, roles, etc.). Defining these notions is
a very active research area in the multi-agent community (see for example [1], [6] or
[17]). The aim of this paper is not to replace this related work, but to complement it
by defining agents' powers using these notions.

3.2 Power Relations in a Group

In Section 2 we introduced the notion of power over that describes the power an agent
has over another. The source of this power over is the goal (action) dependence of the

172 C. Carabelea, O. Boissier, and C. Castelfranchi

second agent on the first (Formulae 5 and 6). However, if the agents are part of a
group, there are two other sources for the power of an agent over another: the
authority relationships and the norms.

3.2.1 Power over Due to Authority over
An agent can have power over another because it has authority over that agent. In
other words, if there are two roles and there is an authority relation between them, the
authority relation will exist between any agents playing the roles and this gives an
agent a power over another:

power_over(Y, X, p) =d ∃ R1, R2: plays(X, R1) ∧ plays(Y, R2) ∧
authority_over(R1, R2, p)

(13)

If both agents are aware of the roles they play and of the relations between their
roles, then Y has also the power of influencing X (Formula 8). If it requests this
power p (Formula 12) and X puts it at Y's disposal, then Y acquires the indirect power
regarding X's power p. Thus, whenever Y wants, X will use its power p.

For example, in the case of a soccer team, there are two roles: coach and player.
Some agents can play only using their right foot, some using their left, and some
using both. We model this by saying that an agent has the power_of(A, play ball with
left/right foot). We also consider that an agent should be able to play a given move
(e.g., pass to another player, run to a given position, receive ball and shoot) –
power_of(A, play move). The hierarchical structure in this group specifies that the role
coach has authority over the role player for the power of a player to play a move:
authority_over(coach, player, power_of(player, play move)). If an agent B plays the
role coach and an agent A plays the role player, then power_over(B, A, power_of(A,
play move). Using the reasoning above, B acquires the indirect power for power_of(A,
play move) and thus, whenever B (coach) wants, A (player) plays a move.

We would like to point out that the authority_over relation (and thus the
power_over one) depends on the power p: a role can have authority over another role
for a power, but not have it for another. Using the example above, the authority
relation does not say anything about the power of an agent to play the ball with its
right/left foot. Thus, the agent playing the role coach cannot decide whenever it wants
with what foot a player will play the ball.

3.2.2 Power over Due to Norms
Another source for the power over relation is the existence of a norm. If an agent
plays a role and there is a norm targeting that role and concerning a power p, then any
agent that plays that role has its behaviour regarding p constrained by the norm:

power_over(group, X, p) =d ∃R belongs_to(R, group) ∧ plays(X, R) ∧
has_norm_on(group, R, p)

(14)

The same reasoning concerning the influencing power and the requesting of a
power can be done for this form of the power_over. Thus, the group can acquire an
indirect power regarding p: whenever the group wants, the agent X uses its power p.
Using the example above, let's say there is an obligation in the soccer team that all

 Using Social Power to Enable Agents to Reason About Being Part of a Group 173

players use the same equipment. This norm targets the role player and the power_of a
player to wear a given equipment, and thus we have power_over(soccer team, A,
power_of(A, wear equipment)), where A is an agent playing the role player. If the
group requests this power from the agent and the agent puts it at the group's disposal,
then whenever the group decides that A wears a given equipment, A wears.

It is out of the scope of this paper to talk about agent autonomy, more precisely
about norm-autonomy [7]. However, we would like to point out that if an agent
refuses the requests_power operation, it does not put at the disposal of the group its
power_of. Thus, the decision on what equipment the agent will wear will not be made
by the group, but by the agent.

This definition of power_over differs from the others in the sense that it is not
another agent which has a power over an agent, but it is the group that has this
power. Often, the group empowers an agent to act as its representative and thus this
agent acquires the power over, but this is just a transfer of power: it is the group that
has real power over. A good example of this situation is given in [5]: an agent does
not surrender herself to a policeman, but to the institution represented by the
policeman.

3.3 Other Sources for the Power over

In this paper we chose to describe a group in terms of roles, authority relations and
norms. Other terms have been used as well to define agent institutions or societies.
For example, the authors of [2] use the notion of contract as a coordination element in
a group. We can extend the above definitions by defining the power of an agent over
another due to a contract between them:

power_over(Y, X, p) =d ∃C: contract(X, Y, p, C) (15)

This is to say that Y has the power over X for p because X signed a contract with Y
regarding p. It is obvious that this is just a particular form of the norm-based
definition of power_over (Formula 14). Y has this power over because both agents are
part of a group in which there is a norm that says that all contracts must be fulfilled.
However, in some situations, it can be useful to model this situation directly using the
notion of contract and not by passing through the intermediary of norms.

The notion of contract can be weakened to the one of social commitment [10][14].
We then say that an agent has power over another because the second is committed
towards the first for a power:

power_over(Y, X, p) =d committed_to(X, Y, p) (16)

If an agent X commits to an agent Y for a power p and Y is aware of this, then Y
has the power of influencing X for p (Formula 8). It is likely that Y will try to use this
influencing power and to request X to put at its disposal the power p (Formula 11). It
is still an open question for us whether to use the above definition only when the
agents are part of a group or even if there is no group with norms that enforce the
fulfillment of commitments. If there is no such norm, there is nothing that ensures that
X will fulfill its commitment and thus will put at the disposal of Y its power p.

174 C. Carabelea, O. Boissier, and C. Castelfranchi

4 Reasoning About Entering a Group Using the Power Theory

In this paper we are interested in how to enable agents to reason about the existing
relationships with other agents and with the society in which they evolve. A similar
attempt has been done in [13], where the authors propose a model of normative multi-
agent systems and identify the normative constraints imposed to agents. While we
generally agree with their approach, we believe their model lacks the capacity of
capturing the dynamicity of these constraints, e.g., a norm that is not always active.
We believe that the power theory is a suitable tool to model these constraints and that
this theory can be tailored to different organization models. In this section we will
show how an agent can use the notions introduced in the previous sections to reason
about what it means to be part of a group. Such an agent will then be able to decide
whether to enter or not a group.

Even if an agent is not part of a group, it still interacts with other agents. It is to be
expected that the agent is not self-sufficient, i.e., its powers do not allow it to achieve
all its goals. The agent depends on other agents to achieve its goals, so the other
agents have power over this agent (see for example the agents A and D in Figure 1). If
the others are aware of the existing dependencies, they will have the power of
influencing the agent. Thus, there are constraints imposed on the behaviour of the
agent because it lacks some of the powers it needs.

When an agent is part of a group, it is also subject of several power_over relations.
If it plays a role in that group and the group specifies a hierarchy of roles, it is to be
expected that some agents playing the appropriate roles will have power over this
agent. For example, as Figure 1 shows, agent A belongs to a group G where it plays
the role R2. Since the agent B plays the role R1 and there is an authority_over relation
from R1 to R2, A can compute that B has power_over A (cf. Formula 13). For the
same reason, A has power_over C. Moreover, since the group is a normative one, i.e.,
the roles' behaviour is regulated by norms (see link has_norm_on from group to
roles), the group has power_over the agents because of the norms (cf. Formula 14).
As argued in the previous section, these power_over relations are in fact relations of
influencing power. Thus, the fact that an agent belongs to a group and plays a role in
that group greatly limits the liberty of the agent: other agents (or the group) will have
the power of influencing this agent, hence imposing constraints on its behaviour.

In both of situations described above, when an agent does and does not belong to a
group, the agent's behaviour is constrained by other agents. However, in the second
case, if the agent is not part of the group, the constraints on its behaviour are due to
the insufficiency of its powers. When it is part of a group, to these constraints are
added those due to the fact that it belongs to a group and thus other agents have the
power of influencing it. If those agents request its powers and the agent puts them at
their disposal, it will lose access to its powers.

 So why should an agent enter a group then, if this means that it loses powers? The
answer is that by entering a group, an agent also gains power. The most direct form of
power gained is because an agent entering a group usually receives resources (e.g., a
payment for playing a role) and permissions to use resources of the group (e.g., the
permission to use a printer). These powers gained by the agent are represented in

 Using Social Power to Enable Agents to Reason About Being Part of a Group 175

Figure 1 by the power_of arrow towards some resources. An agent loses some powers
because it plays a role in a hierarchy of roles and thus other agents will have authority
over it. But the agent might have authority over other agents, so it will gain access to
their powers (e.g., relationship between A and C in Figure 1).

C

Group G

R3

B

R1

A

R2

D

resources
A

R3

agent

role

group

power_over
power_of
contains
depends_on
authority_over
has_norm_on
contract_on

Fig. 1. Several power_over relations from the point of view of agent A in a group G

However, the main reason for an agent to enter a group is because of the security
the group provides. The agent's behaviour will be constrained by norms, but so will be
the behaviour of the other agents too. Even if the agent loses some powers because of
the norms, the same powers will be lost by the other agents too. For example, no
agent will be able to cheat the others. In Figure 1, this situation is represented by the
power that A has over B because of a contract between B and A. Because B's
behaviour is regulated by the norms too, B will have to obey the contract it has signed
with A (or to disobey and suffer the consequences) since these norms impose such a
behaviour.

It is clear for us that an agent facing the decision whether to enter or not a group
must be able to do more than just recognize the group's structure or norms. It must be
able to understand how the fact that it will be part of the group will hinder or facilitate
the achievement of its goals. By using the power theory and reasoning about the
power relationships that will appear within the group, the agent will be able to decide
whether it is worth or not to enter the group, i.e., whether the power it loses are
compensated by the ones it gains or not.

It is worth mentioning that the power theory can be used by the group to reason
whether to allow or not an agent to enter a group (or to play a role). If the group has
goals and delegates some of them (or subgoals of them) to a role, the agent playing
the role should have at least the power of achieving those goals. Thus, reasoning
about the powers of an agent, a group computes the utility of that agent for the
group.

176 C. Carabelea, O. Boissier, and C. Castelfranchi

5 Conclusions

Using the social power theory, a designer (or an observer) of a multi-agent system can
analyze and predict the agents' behaviour in a group. Moreover, the same theory can
be used by the agents themselves to reason about the constraints imposed to their
behaviour when being part of a group. However, in order to enable the agents to use
it, one must formalize this theory. In this paper we proposed formal definitions for
several forms of power, ranging from individual and social to group-related ones. In
order to validate our approach, in the near future we intend to describe a multi-agent
application in terms of powers and to enable the agents within the application to
reason about their powers. Towards this aim, we started to implement in Prolog a
power-based reasoning mechanism. The MOISE+ model [9] allows the specification
of organizational structures and it will be used to specify the group-related aspects.

Placing agents together in a group (institution, organization, normative society)
does not solve all the problems of coordinating autonomous agents. One must also
provide solutions to various problems, such as assigning agents to roles in a group [6],
making decisions in a group (e.g., choosing group's goals, assigning subgoals to
members) [12][16], punishing norm violation [1], etc. Our power-based model does
not try to substitute these solutions, but to provide a complementarity to them. For
example, if the group is a normative one (i.e., there are norms constraining the agents'
behaviour), norm enforcing mechanisms must be present (e.g., penalties, lowering
reputations, etc.). Our model enables agent to be aware of how the norms limit their
powers and thus of the constraints imposed on their behaviour by these norms.
However, if an autonomous agent decides to disobey a norm, it is the norm enforcing
mechanisms that is used to punish it.

As pointed out in [4], there is a direct relationship between autonomy and power.
We intend to investigate this relationship and to propose formal definitions for
several types of agent autonomy, such as social- or norm-autonomy. Using these
definitions, the designer of a multi-agent system will be able to describe the system
in terms of power and to detect what degrees of autonomy are necessary for the
agents within.

Institutional empowerment is an important operation with power we did not
discuss in this paper. As future work, we would like to define this operation and to
study the various forms of empowerment that can appear within a group.

Acknowledgements

The authors would like to thank the Rhône-Alpes Region for financing an internship
of the first author at ISTC/CNR-Rome, via a EURODOC scholarship. The Ph.D.
study of the first author is partially funded by the French Embassy in Romania.

References

1. Boella, G., Lesmo, L.: Norms and Cooperation: Two Sides of Social Rationality. In
Hexmoor, H., and Falcone, R., (eds.): Agent Autonomy, Kluwer (2002).

2. Boella, G., van der Torre, L.: Contracts as legal institutions in organizations of
autonomous agents. In Proceedings of AAMAS’04, New York (2004).

 Using Social Power to Enable Agents to Reason About Being Part of a Group 177

3. Boella, G., van der Torre, L.: Organizations as socially constructed agents in the agent
oriented paradigm. This volume (2005).

4. Carabelea, C., Castelfranchi, C., Boissier, O.: Autonomy and social power. In
Proceedings of JFSMA04, Paris (2004), 195-208.

5. Castelfranchi, C.: A micro and macro definition of power. In ProtoSociology – An
International Journal of Interdisciplinary Research, 18-19 (2002), 208-268.

6. Dastani, M.M., Dignum, V., Dignum, F.: Role-Assignment in Open Agent Societies. In
Proceedings of AAMAS'03, Melbourne, ACM Press (2003).

7. Dignum, F.: Autonomous Agents with Norms. In AI and Law Journal, 7 (1999), 69-79.
8. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In

Intelligent Agents VIII, LNAI 2333, Springer-Verlag, Berlin (2002), 348-366.
9. Hubner, J., Sichman, J.S., Boissier, O.: A model for the structural, functional, and deontic

specification of organizations in multiagent systems. In Proceedings of 16th Brazilian
Symposium on Artificial Intelligence, Porto de Galinhas, Brazil (2002), 118-128.

10. Jennings, N.R.: Commitments and Conventions: The Foundation of Coordination in
Multi-Agent Systems. The Knowledge Engineering Review, 8 (3), (1993), 223-250.

11. Jones, A.J.J., Sergot, M.: A Formal Characterisation of Institutionalised Power. Journal of
IGPL, 3, (1996), 427-443.

12. Lesser, V., et al.: Evolution of the GPGP/TAEMS Domain-Independent Coordination
Framework. International Journal of Autonomous Agents and Multi-Agent Systems, 9(1)
(2004), 87-143.

13. Lopez y Lopez, F., Luck, M.: A Model of Normative Multi-agent Systems and Dynamic
Relationships. In Linderman, G., et al. (eds.): Regulated Agent-Based Social Systems,
LNAI 2934, Springer-Verlag, Berlin (2004), 259-280.

14. Pasquier, Ph., Flores, R., Chaib-draa, B.: Modeling flexible social commitments and their
enforcement. This volume (2005).

15. Sichman, J., Demazeau, Y., Conte, R., Castelfranchi, C.: A Social Reasoning Mechanism
Based on Dependence Networks. In Proceedings of ECAI'94, Amsterdam, (1994).

16. Tambe, M.: Towards Flexible Teamwork. Journal of AI Research, 7 (1997), 83-124.
17. Vazquez-Salceda, J., Dignum, F.: Modelling Electronic Organizations. In Marik, V., et al.

(eds.): MAS and applications III, LNAI 2691, Springer-Verlag, Berlin (2003), 584-593.

Strategies for Distributing Goals in a Team of
Cooperative Agents

Laurence Cholvy1 and Christophe Garion2

1 ONERA Toulouse, 2 avenue édouard Belin, 31055 Toulouse, France
cholvy@cert.fr

2 SUPAERO, 10 avenue édouard Belin, 31055 Toulouse, France
garion@supaero.fr

Abstract. This paper addresses the problem of distributing goals to
individual agents inside a team of cooperative agents.

It shows that several parameters determine the goals of particular
agents. The first parameter is the set of goals allocated to the team; the
second parameter is the description of the real actual world; the third
parameter is the description of the agents’ ability and commitments. The
last parameter is the strategy the team agrees on: for each precise goal,
the team may define several strategies which are orders between agents
representing, for instance, their relative competence or their relative cost.
This paper also shows how to combine strategies. The method used here
assumes an order of priority between strategies.

1 Introduction

Reaching a complex goal often needs to consider a group of agents which must
cooperate in order to achieve this goal [1]. For instance, nations often group
into coalitions in order to maintain peace in a conflicting area, that means shar-
ing information about the situation, providing emergency medical treatment,
providing displaced civilian services, providing engineering infrastructure sup-
port etc [2].

The goal allocated to the group is some proposition that one desires the
group to make true, or equivalently, goals define some desirable worlds the group
must reach. But, as Boutilier noted it in [3], goals are not always achievable. It
may happen for instance that none of the agents in the team has the ability to
make this proposition true. Furthermore, goals may be defeated for reasons other
than inability. It is often natural to specify general goals, but list exceptional
circumstances that make the goal less desirable than the alternatives. Rather
than a categorical distinction between desirable and undesirable situations, it is
more general to rank worlds according to their degree of preference. The most
preferred worlds correspond to goal states in the classical sense. However, when
such states are unreachable, a ranking on alternatives becomes necessary.

In a previous paper [4] we have considered this general case and we have
defined a goal distribution process which allocates goals to individual agents

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 178–190, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Strategies for Distributing Goals in a Team of Cooperative Agents 179

of a group, according to the preferences representing the goals allocated to the
group, the actual world and the agents’ ability and commitments.

The agents we consider are cooperative in the sense that they do not contra-
dict each other in their commitments (for instance, we discard the case when one
agent commits himself to make a proposition true whilst another one commits
himself to make this proposition false) and their commitments do not contradict
a goal of the group. Notice that this process of goals distribution is not based
on a negotiation between the agents like in [5, 6, 7]. More precisely, it may be
viewed as managed by a central authority which knows how is the real world,
what are the agents’ abilities and the agents’ commitments and which allocates
to each agent some goals which correspond to the most preferred situations the
group can thus reach.

In this present paper, we refine this work and we show that a fourth parameter
can be used for determining the goals of particular agents. This last parameter
is the strategies the team agrees on. We will see that a strategy depends on a
particular goal and is an order between the agents that are able to achieve it.
For instance, given a particular goal, agents may be ordered according to their
relative competence for achieving it. Agents may also be ordered according to
their relative cost for achieving this goal.

We will also show how to combine strategies. For instance, given a particular
goal, we could want to order agents by taking into account their relative com-
petence and their relative cost. The method used here for combining strategies
assumes a priority order between the strategies.

This paper is organized as follows. In section 2, we summarize the process
described in [4]. This process is illustrated on an example in section 3. Section 4
focuses on the notion of strategies and combination of strategies. This point is
illustrated in section 5. Finally, section 6 is devoted to a discussion.

2 Distribution of Goals Addressed to a Group of Agents

2.1 Preferences Representation

To represent preferences, we use a logic [3], [8] whose language LB is based on a
set of atomic propositional variables PROP with the usual connectives and two
modal operators �,

←
�.

Models are of the form M = 〈W, ≤ val〉. W is a set of possible worlds, ≤ is a
total preference preorder on W (a reflexive and transitive relation on W × W).
If w and w′ are two worlds of W , then w ≤ w′ means that w is at least as
preferred as w′. Finally, val is a valuation function on W 1. For any formula ϕ
of W , val(ϕ) is the set of worlds of W which classically satisfy ϕ.

Let M = 〈W, ≤, val〉 be a model. Satisfaction of modal formulas is defined
as follows:

1 I.e. val : PROP → 2W and val is such that val(¬ϕ) = W − val(ϕ) and val(ϕ1 ∧
ϕ2) = val(ϕ1) ∩ val(ϕ2).

180 L. Cholvy and C. Garion

– M |=w �ϕ iff ∀w′ ∈ W w′ ≤ w =⇒ M |=w′ ϕ.
– M |=w

←
� ϕ iff ∀w′ ∈ W w′ �≤ w =⇒ M |=w′ ϕ.

�ϕ is true at a world w if and only if ϕ is true at all worlds at least as
preferred as w (including w).

←
� ϕ is true at world w if and only if ϕ is true at

all the worlds less preferred than w.
Boutilier then defines two dual modal operators : �ϕ ≡def ¬�¬ϕ means that

ϕ is true at some equally or more preferred world and
←
� ϕ ≡def ¬ ←

� ¬ϕ means
that ϕ is true at some less preferred world.

↔
� ϕ ≡def �ϕ∧ ←

� ϕ and
↔
� ϕ ≡def �ϕ∨ ←

� ϕ correspond respectively to
classical necessity and possibility.

A formula ϕ is valid in M (noted M |= ϕ) iff ∀w ∈ W M |=w ϕ.
Conditional preferences are formulas of the form I(β|α) which means that

“ideally, if α is true, then β is true”. The connective I(−|−) is defined by
I(β|α) ≡def

↔
� ¬α∨ ↔

� (α ∧ (�α → β)). I(β|α) is valid in M iff either α is
false in every world of W , or there is some world w which satisfies α and such
that every world at least as preferred as w satisfies α → β.

2.2 Description of the Actual World

Following a centralized approach, we consider that the team of agents is aware
of a shared description of the situation. The actual world is thus described by
a finite and consistent set of formulas of PROP . It is denoted KB2. Cl(KB)
denotes its closure by classical logical consequence3.

2.3 Controllability

Let A = {a1, . . . , an} be a finite set of agents. Like Boutilier, for each agent ai,
we partition the literals of PROP into two sets: Cai (the literals that ai can
control) and Cai (the literals uncontrollable by ai). We assume that each agent
of the group controls at least one literal:

Assumption 1. ∀ai ∈ A Cai
�= φ

The notion of controllability for a group of agents is then defined by:

Definition 1. Let lit(PROP) be the set of literals in the propositional language.
The set of controllable literals by the group of agents is C =

⋃
ai∈A

Cai
and the

set of uncontrollable literals by the group of agents is C = lit(PROP) − C.

Extension to general propositions is given below:

Definition 2. Let w and w′ be two worlds of W . Let us note w′−w = {l : w′ |=
l, w |= ¬l and l is a literal}. A proposition ϕ is:

2 Knowledge Base.
3 In the original work, this closure is defined as a default closure.

Strategies for Distributing Goals in a Team of Cooperative Agents 181

– controllable iff ∀w ∈ W (w |= ¬ϕ ∃w′ ∈ W w′ |= ϕ and (w′ − w) ⊆ C);
– influenceable iff ∃w ∈ W (w |= ¬ϕ ∃w′ ∈ W w′ |= ϕ and (w′ − w) ⊆ C). In

this case, we say that ϕ is influenceable in w.
– uninfluenceable iff it is not influenceable.

2.4 Contexts

Definition 3. A world w ∈ W is a context for some influenceable proposition
ϕ iff ϕ is influenceable in w or w |= ϕ.

The contexts of an influenceable proposition ϕ are the worlds in which either
ϕ is false but the agent can change the valuations of some controllable literal to
make ϕ true, or the worlds in which ϕ is already true.

Definition 4. The set on non-contextual propositions of KB is defined by:
NC(KB) = {ϕ ∈ Cl(KB) : Cl(KB) is not a context for ¬ϕ}

NC(KB) represents the propositions whose truth value will not be changed
by some agents’ actions (because the group of agents has no ability to do that).
We suppose here that NC(KB) is complete.

2.5 CK-Goals of the Group

Definition 5. Let P be a set of conditional preferences. ϕ is a CK goal4 for A
iff P |= I(ϕ|NC(KB)) and KB is a context for ϕ.

2.6 Commitments

Given a literal controllable by an agent, this agent can express that it will do
an action that will keep or make this the literal true (we say that the agent
commits itself to achieve the literal), or the agent can express that it will not
do an action that can make the literal true (we will say that the agent commits
itself not to achieve the literal), or finally, the agent can express nothing about
the literal (we will say that the agent does not commit itself neither to achieve
the literal nor not to achieve the literal).

To represent the commitments of each agent ai, we will use three subsets
of Cai

: Com+,ai
, Com−,ai

and Pai
. defined as follows. If l is a literal, if l

is controllable by ai and l ∈ Com+,ai
, it means that “the agent ai commits

itself to achieve l”; if l is a literal, if l is controllable by ai and l ∈ Com−,ai ,
it means that “the agent ai commits itself not to achieve l”. Finally, Pai =
Cai

− (Com+,ai
∪Com−,ai

) is the set of controllable literals by ai and for which
ai does not commit itself to anything (i.e. ai does not commit itself neither to
achieve them nor not to achieve them).

We impose two constraints on those sets.

4 For Complete-Knowledge goal as introduced by Boutilier.

182 L. Cholvy and C. Garion

Constraint 1. ∀ai ∈ A Com+,ai
is consistent.

Constraint 2. ∀ai ∈ A Com+,ai ∩ Com−,ai = φ

Those two constraints express a kind of consistency for the agent’s commit-
ments. The first constraint expresses the fact that an agent does not commit
itself to achieve both l and ¬l. The second constraint expresses the fact that an
agent cannot commit itself both to achieve l and not to achieve l.

Definition 6. Com+,A is the set of positive commitments of the agents:
Com+,A =

⋃
ai∈A

Com+,ai

Com−,A is the set of “negative” commitments of the agents:
Com−,A = {l ∈ KB : ∀ai ∈ A ¬l controllable by ai ⇒ ¬l ∈ Com−,ai}.

The meaning of Com−,A is the following: if all the agents that control a
literal l commit themselves not to achieve l and ¬l ∈ KB, we will consider that
¬l will remain true. We suppose that there is no external intervention.

An assumption that we do on the agents’ commitments is: every CK goal of
A is consistent with the union of Com+,A and of Com−,A.

Assumption 2. For every formula ϕ such that P |= I(ϕ|NC(KB)) and KB
is a context for ϕ, then Com−,A ∪ Com+,A ∪ {ϕ} is consistent.

This restriction allows to eliminate some problematic cases like the case where
an agent which controls l commits itself to achieve l and another one which
controls ¬l commits itself to achieve ¬l (i.e. Com+,A not consistent). It also
eliminates the case where a literal, which is not consistent with the group’s CK
goals, is true in KB and will remain true because the agents of the group which
could make it false do not commit themselves to it, or finally, the case where the
positive and negative commitments of the group are not consistent with some
CK goal of the group. If this assumption is not verified, the agents must review
their commitments.

2.7 Effective Goals

If the assumption 2 is verified, then the agents’ commitments are consistent with
the group’s CK goals. The goals of each agent do not only depend on NC(KB),
but also on the commitments of the other agents.

Definition 7. We define:

D(KB) = NC(KB) ∪ Com+,A ∪ Com−,A

D(KB) contains the propositions of KB for which KB is not a context, i.e.
NC(KB), plus the set of positive commitments of the agents, i.e. Com+,A and
the set of “negative” commitments of the agents, i.e. Com−,A. We have proved
that D(KB) is consistent. This set will be used in the conditional part of I(−|−)
to deduce the effective goals of each agent as follows:

Strategies for Distributing Goals in a Team of Cooperative Agents 183

Definition 8. Let P be a set of preferences addressed to the group A. ϕ is an
effective goal for ai, denoted by EGoalai

(ϕ), iff P |= I(ϕ|D(KB)) and KB is a
context for ϕ for ai.

As we use the I(−|−) operator, we are sure that an agent cannot have con-
tradictory goals.

Effective atomic goals are defined by :

Definition 9. Let P be a set of conditional preferences. A set of atomic goals
is a set of controllable literals L = {l1, . . . , ln} such that:

– ∀i ∈ {1, . . . , n} Cl(KB) is a context for li.
– for all CK goal ϕ given P, P |= NC(KB) ∧ L → ϕ.

In the following, Ag(ϕ) will denote the set of agents who have ϕ as effective
goal:

Definition 10. Ag(ϕ) = {ai ∈ A : Σ |= I(ϕ|D(KB)) et KB is a context for
ϕ for ai}.

3 Example

Let us consider a group of two agents a1 and a2 and assume that the preferences
imposed to the group {a1, a2} are the following: if the door is sanded, then it
should be lacquered and not covered with paper and if the door is not sanded,
then it should be covered with paper and not lacquered.

The representation of this scenario is the following: P = {I(l ∧ ¬p|s), I(p ∧
¬l|¬s)}. For each model of P, I(l ∧ ¬p|s) means that there is a world which
satisfies s and such that all preferred worlds satisfy s → l ∧ ¬p. I(p ∧ ¬l|¬s)
means that there is a world which satisfies ¬s and such that all preferred worlds
satisfy ¬s → ¬l ∧ p.

1. Suppose that KB = {s,¬l, ¬p} i.e. the door is sanded but not lacquered nor
covered with paper. We have Cl(KB) = KB.

Suppose that ¬s is uncontrollable by the agents (i.e. the agents have no
“means” to unsand the door). Furthermore, suppose that Ca1 = {l} and that
Ca2 = {p, ¬p} (i.e. a1 can lacquer the door, a2 can cover it with paper or
remove the paper if necessary). In this case, NC(KB) = {s}, because KB
is a context for l and for p. l ∧ ¬p is a CK goal of the group5.

If the agents do not commit themselves to anything, D(KB) = {s}, and
then EGoala1(l) and EGoala2(¬p) hold. a1 has for atomic goal set {l} (i.e.
its only goal is to lacquer the door) and a2 has {¬p} for atomic goals set (i.e.
its only goal is not to cover the door with paper). This implies Ag(l) = a1,
Ag(¬p) = a2 and Ag(¬l) = Ag(s) = Ag(¬s) = Ag(p) = ∅.

5 In fact, it is theonly one that is interesting. We can also deduce for instance that
(l ∧ ¬p) ∨ p is a CK goal of the group.

184 L. Cholvy and C. Garion

2. Suppose now that KB = {¬s,¬l, ¬p}, Ca1 = {l, ¬l} and Ca2 = {s, p,¬p}.
In this case, NC(KB) = φ and (l ∧ ¬p) ∨ (¬l ∧ p) is a CK goal of the group.

If D(KB) = φ (i.e. the agents do not commit themselves to anything), no
effective goal can be derived, because a2 controls s and could make s true.

But if a2 commits itself not to achieve s (i.e. it commits itself not to sand
the door), then Com−({a1, a2} = {¬s} and EGoala2(p) and EGoala1(¬l)
can be deduced: a2 has for effective goal to cover the door with paper and a1
has for effective goal to keep the door unlacquered. I.e Ag(p) = a2, Ag(¬l) =
a1 and Ag(l) = Ag(¬p) = Ag(s) = Ag(¬s) = ∅.

4 Strategies

The process described in the previous sections allocates goals to agents by taking
into account their ability and their commitments. Here, we show how to extend
this process in order to take into account more characteristics of the agents (like
for instance, their competence, their cost or the required duration for achieving
a goal). But, in order to be as general as possible, these characteristics are
represented by preference order among the agents and are associated with each
goal. These preference orders are called strategies.

4.1 Mathematical Preliminaries and Notations

Definition 11. Let E be a set. ≤E is an order on E iff ≤E is a reflexive,
anti-symmetrical and transitive relation on E.

Definition 12. Let E be a set and ≤E an order on E. Then min≤E
(E) = {ei ∈

E : ∀ej ∈ E ej ≤E ei ⇒ ej = ei}.

We define also the minimum of a set for a family of orders.

Definition 13. Let E be a set and ≤E= {≤i
E : i ∈ {1, . . . , n}} a set of orders

on E. Then min≤E
(E) =

⋂
i∈{1,...,n}

min≤i
E

E.

4.2 Notion of Strategy

Definition 14. A strategy is a function S : lit(PROP) → A × A such that
for any literal l, S(l) is an order ≤S(l) on Ag(l).

Being a function, a strategy associates a literal with at most one order which
will be used to select one or several agents. For instance, let us consider a group
of three agents {a1, a2, a3} achieving a task l. We know that a1 and a2 are more
competent than a3 to do l. We can define a strategy S reflecting this relative
level of competence by imposing that a1 ≤S(l) a3 and a2 ≤S(l) a3 hold.

Strategies for Distributing Goals in a Team of Cooperative Agents 185

4.3 Effective Goals

The notion of effective goals can then be refined by taking into account the
notion of strategy as follows:

Definition 15. A′ ⊆ A is optimal for l according to the strategy S iff A′ =
min≤S(ϕ) Ag(l)

This is denoted by OGoalSA′(l). This means intuitively that A′ is the subgroup
of agents preferred according to S in order to achieve l.

Let us notice some basic properties:

– As A′ ⊆ Ag(l), every agent in A′ is such that l is an effective goal for it;
– Consider a literal l such that l is an effective goal for only one agent. In

this case, according to the previous definition, this agent will be optimal
for l whatever the strategy we consider (if we assimilate the agent and the
subgroup constituted by this single agent).

– Let l be a literal which is not an effective goal. In this case, Ag(l) = ∅. Thus,
for any strategy S, min≤S(l)Ag(l) = ∅. So OGoalS∅ (l) holds and no agent is
optimal for l.

4.4 Families of Strategies

We present in the following two main classifications of strategies.

Selective and Non-selective Strategies. Selective strategies are strategies
which select a single agent among the agents for which l is an effective goal.

Definition 16. A strategy S is a selective strategy for l iff | min≤S(ϕ) Ag(ϕ)|=1.

Example 1. Let us resume the example provided in section 3. Suppose that
KB = {¬p, ¬l, ¬r}, Ca1 = {p, l} and Ca2 = {l, r, ¬r}. If a1 commits itself
to do p and a2 commits itself to do l, then D(KB) = {p, l}. Thus OGoala1(p∧ l)
and OGoala2(l ∧ ¬r). Both a1 and a2 have l for effective goal.

First, notice that as Ag(p) = {a1} and Ag(¬r) = {a2}, for every strategy
(S), OGoalS{a1}(p) and OGoalS{a2}(¬r) hold.

Consider here a selective strategy S. Suppose that min≤S(l) Ag(l) = {a1},
then OGoalS{a1}(p), OGoalS{a2}(¬r) and OGoalS{a1}(l) hold.

Non-selective strategies are strategies which allocate a goal to several agents.

Definition 17. A strategy S is a non-selective strategy for l iff | min≤S(ϕ)

Ag(ϕ)| > 1.

Example 2. In the previous example, suppose now that S is a non-selective strat-
egy for l, then | min≤S(ϕ) Ag(ϕ)| > 1. But Ag(ϕ) = {a1, a2}, thus min≤S(ϕ) Ag(ϕ)
= {a1, a2}. In this case, we cannot deduce that OGoalS{a1}(l) nor OGoalS{a2}(l)
holds. But OGoalS{a1,a2}(l) holds.

186 L. Cholvy and C. Garion

Voluntary and Non-voluntary Strategies. Voluntary strategies assign a
task to the agents which committed themselves to achieve it. The formal defini-
tion is the following:

Definition 18. Let l be a literal and S a strategy. S is a voluntary strategyϕ
iff ∀ai ∈ Ag(l) ∀aj ∈ Ag(l) ai ≤S(l) aj iff Eng+(ai) |= l and Eng+(aj) �|= l.

By using such an order, all the agents in min≤S(ϕ) Ag(l) commit themselves
to achieve l. Non-voluntary strategies do not assign a goal to the agents which
commit themselves not to achieve it. These strategies are less restrictive than
the previous ones: an agent which did not commit itself to do l nor to not do l
can be selected.

Definition 19. Let l be a literal and S a strategy. S is a non-voluntary strategy
for l iff ∀ai ∈ Ag(l) ∀aj ∈ Ag(l) ai ≤S(l) aj iff Eng−(ai) �|= l and Eng−(aj) |= l.

4.5 Combining Strategies

We can wonder on what we will define strategies. The first possibility is to use
“primitive” strategies, i.e. strategies which are defined on only one criteria. This
criteria can be for instance the relative competence of the agents, the cost of
each agent in term of resources or the time an agent will take in order to achieve
the task.

There are of course lots of other primitive criteria on which a strategy can be
based. Most important is the fact that “in real life”, such decisions are not taken
considering only one primitive factor, but several criteria which are combined
in order to determine the “best” agents to select. To take this into account, we
have to combine strategies.

For doing so, we suggest to use a priority relation between strategies. This
comes to associate levels of importance to criteria. For instance, we could want
to choose the agents which are, for a given task, the most competent to achieve
it and the less costly, assuming that the competence is a criteria which is more
important than the cost.

In the following, we present a mathematical framework for combining
strategies.

Our objective is the following: we consider two orders ≤1 and ≤2 on the same
set E and we want to obtain one or several orders ≤1◦2, called orders combined
considering ≤1 having priority on ≤2, which verify first the order ≤1 and then
are “completed” by a part of ≤2. We suggest to use the technique developed in
belief bases priority merging [9] by representing the order relation by a binary
predicate of a first order logic.

Definition 20. Let E = {e1, . . . , en} be a finite set. Let ≤E= {≤i : i ∈ N} the
set of possible orders on E. E and ≤E are represented by the first-order language
LE and the theory TE defined as in the following:

1. the language LE is constituted by classical logical symbols (an enumerable
set of variables, connectives, quantifiers), a set of constants symbols defined

Strategies for Distributing Goals in a Team of Cooperative Agents 187

by {e1, . . . , en}, a set of predicate symbols {�i : ≤i∈≤E} ∪ {=} where
each �i and = are binary predicate symbols.

2. TE = {¬(ei = ej) : (i, j) ∈ {1 . . . n}2 i �= j} ∪
⋃

≤i∈≤E

RAT(�i)

where RAT (�i) = {∀x �i (x, x), ∀x∀y �i (x, y)∧ �i (y, x) → x =
y, ∀x∀y∀z �i (x, y)∧ �i (y, z) →�i (x, z)}.

The theory TE lists the Unique Name Axioms and the mathematical prop-
erties of orders. For the sake of simplicity, we will denote �i (x, y) by x �i y in
the following.

When someone wants to represent an order on a set, he/she does not de-
scribe the order by extension. On the contrary, he/she gives the relations which
are verified by the elements of the set, the remaining relations are deduced by
using the mathematical properties of orders. Thus, we will consider a set of ex-
plicit literals which will allow to generate the whole order (by using transitivity,
antisymmetry and reflexivity).

For instance, if we consider a set E1 = {a1, a2, a3}, then the explicit set
{a1 ≤E1 a2, a2 ≤E1 a3} allows to build the order ≤E1 on {a1, a2, a3} such that
a1 ≤E1 a2, a1 ≤E1 a3, a2 ≤E1 a3, a1 ≤E1 a1, a2 ≤E1 a2, a3 ≤E1 a3, a2 �≤E1 a1,
a3 �≤E1 a2 and a3 �≤E1 a1.

We will characterize orders by generating them from explicit sets associated
to a theory.

Definition 21. Let E be a set, LE and TE as previously defined. Ei, set of
formulas of the kind ei �i ej with ei ∈ E and ej ∈ E is an explicit set iff
Cl(TE ∪ Ei) is consistent.

The order ≤i on E called order generated by Ei is defined by: ∀ei ∈ E ∀ej ∈
e ei ≤E ej iff Cl(TE ∪ Ei) � ei �i ej

It is easy to prove that we obtain an order by using the axioms in TE .
For instance, in the previous example, we can see that {a1 �E1 a2, a2 �E1 a3}

is an explicit set generating ≤E1 .
We now define how to combine two orders, one having priority on the other.

We use the explicit sets defining the orders for building maximal consistent sets
of first-order formulas. Notice that we can obtain several explicit sets.

Definition 22. Let E be a set and LE the first-order language associated with
E. Let E1 E2 two explicit sets generating respectively the orders ≤1 and ≤2 on
E. We note E1→1◦2 = {ei �1◦2 ej : ei �1 ej ∈ E1} and E2→1◦2 = {ei �1◦2
ej : ei �2 ej ∈ E2}.

The explicit set E i
1◦2 is defined by E i

1◦2 = {ej �i
1◦2 ek : (ej �1◦2 ek) ∈

(E1→1◦2∪E i
2→1◦2)} where E i

2→1◦2 is a maximal subset of E2→1◦2 such that E1→1◦2∪
E i
2→1◦2 ∪ TE is consistent.

We note ≤i
1◦2 the order on E generated by E i

1◦2 and we denote by n1◦2 the
number of different orders we can obtain from ≤1 and ≤2 by giving priority
to ≤1.

188 L. Cholvy and C. Garion

If the different orders can be reduced to a single order, we will note ≤1◦2 this
order.

Definition 23. If ∃i ∈ {1, . . . , n1◦2} such that ∀j ∈ {1, . . . , n1◦2} Ej
1◦2 ⊆ E i

1◦2,
then we note E1◦2 = E i

1◦2.

Example 3. Let us consider E = {e1, e2, e3} and examine some examples:
Suppose that ≤1 is generated by {e3 �1 e2} and ≤2 is generated by {e2 �2

e3, e1 �2 e2}. Then E1→1◦2 = {e3 �1◦2 e2} and E2→1◦2 = {e2 �1◦2 e3, e1 �1◦2
e2}. The only subset of E2→1◦2 consistent with E1→1◦2 ∪ TE is {e1 �1◦2 e2}
(because E1→1◦2 ∪ TE � ¬e2 �1◦2 e3), thus we obtain an order ≤1◦2 generated
by {e3 �1◦2 e2, e1 �1◦2 e2}. In this case min≤1◦2 E = {e1, e3}.

Suppose now that ≤1 is generated by {e3 �1 e2} and ≤2 is generated by
{e1 �2 e3, e2 �2 e1}. Then E1→1◦2 = {e3 �1◦2 e2} et E2→1◦2 = {e1 �1◦2
e3, e2 �1◦2 e1}. There are two maximal consistent subset of E2→1◦2 consistent
with E1→1◦2 ∪ TE . Thus we obtain two orders: ≤1

1◦2, generated by {e3 ≤1
1◦2

e2, e1 ≤1
1◦2 e3} and ≤2

1◦2, generated by {e3 ≤2
1◦2 e2, e2 ≤2

1◦2 e1}. In this case,
min≤1◦2 E = ∅.

5 Example

Let us resume the example in section 3 and consider a group of three agents
{a1, a2, a3}. Let us suppose that KB = {¬s,¬l, ¬p}, that Ca1 = {s, l}, that
Ca2 = {l, p, ¬p} and that Ca3 = {l}. if a1 commits itself to do s, that a2 and
a3 commit themselves to do l, then D(KB) = {s, l}. Thus OGoala1(s ∧ l),
OGoala2(l ∧ ¬p) and OGoala3(l) hold. The three agents have to lacquer the
door.

Let us suppose that we do not want that several agents have the same task
for efficiency reason. We have to find a selective strategy to select only one agent.

A voluntary strategy SV for l gives the following order: a2 ≤SV (l) a1 and
a3 ≤SV (l) a1. This strategy is not sufficient to select a single agent because it
cannot choose between a2 and a3.

Let us suppose that there is a strategy SE for l which reflects the relative
efficiency of the agents to achieve l: a1 ≤SE(l) a2 and a2 ≤SE(l) a3. In this case,
there are two solutions: either ≤SE(l)◦SV (l) is chosen (the efficiency of the agent
is privileged) and thus a1 is optimal for l, either ≤SV (l)◦SC(l) is chosen (the
voluntary agents are privileged) and in this case a2 is optimal for l.

6 Discussion

This work focused on determining the individual goals of agents from goals
addressed to a team of agents, a representation of agents and strategies. In
order to do that, we have relied on the support of some previous work and
Boutilier’s work on qualitative decision theory. We have defined the notion of
strategy for allocating tasks to a sub-team of agents and we have shown how to

Strategies for Distributing Goals in a Team of Cooperative Agents 189

combine strategies in order to refine the allocation process. We are aware that,
as for the strategies combination method, we could have used another one like,
for instance an arbitration method [10]. It would have come to select the “less
worst” agent given all the primitive criteria (this can be viewed as a maximin
selection). This present work does not contribute in combination techniques. Its
originality concerns the use of the Qualitative Decision Logic to the case of a
team of several agents and the extension of the model of agents since we consider
their ability, their commitments and, through the notion of strategy, any other
characteristics we want.

However, this work is rather preliminary and it could be extended in several
ways.

First, instead of having an unique set KB which represents a common point
of view about the real world, we could consider that the agents do not share the
same beliefs about the real world. In the worst cases, these beliefs may happen to
be contradictory and belief bases merging techniques (cf. [10, 11]) could be used
in order to solve the conflicts. We could also consider that there is no central
entity and that the agents communicate in order to inform the others about
their commitments.

We also intend to work on the notion of strategy in order to obtain gen-
eral properties on strategies and define global strategies. Moreover, the present
strategies are defined for literals only and we could envisage to define them to
propositions. However, in this case, relations between for instance S(l), S(l′) and
S(l ∧ l′) should be defined.

References

1. Kraus, S., Shehory, O.: Methods for task allocation via agent coalition formation.
Artificial Intelligence 101 (1998) 165–200

2. Barès, M.: Formal approach of the interoperability of C4IRS operating within a
coalition. In: Proceedings of the 5th International Command and Control Research
and Technology Syposium. (2000)

3. Boutilier, C.: Toward a logic for qualitative decision theory. In Doyle, J., Sande-
wall, E., Torasso, P., eds.: Principles of Knowledge Representation and Reasoning
(KR’94), Morgan Kaufmann (1994) 75–86

4. Cholvy, L., Garion, C.: Distribution of goals addressed to a group of agents. In
Rosenschein, J.S., Sandholm, T., Wooldridge, M., Yokoo, M., eds.: Proceedings of
the Second International Joint Conference on Autonomous Agents and Multiagent
Systems, ACM Press (2003) 765–772

5. Kraus, S.: Negociation and cooperation in multi-agent environments. Artificial
Intelligence Journal - Special Issue on Economic Principles of Multi-Agent Systems
94 (1997) 79–98

6. Grosz, B., Hunsberger, L., Kraus, S.: Planning and acting together. AI Magazine
20 (1999) 23–34

7. Soh, L., Tsatsoulis, C.: Allocation algorithms in dynamic negociation-based coali-
tion formation. In: Workshop on Teamwork and Coalition Formation (affiliate
workshop of 1st International Conference On Autonomous Agents and MultiAgent
Systems). (2002)

190 L. Cholvy and C. Garion

8. Boutilier, C.: Conditional logics of normality : a modal approach. Artificial Intel-
ligence 68 (1994) 87–154

9. Cholvy, L.: Reasoning about merged information. In Gabay, D., Smets, P., eds.:
Handbook of Defeasible Reasoning and Uncertainty Management Systems. Vol-
ume 3. Kluwer Academic Publishers (1998) 233–263

10. Konieczny, S., Pino-Pérez, R.: Merging information under constraints: a qualitative
framework. Journal of Logic and Computation 12 (2002) 773–808

11. Cholvy, L., Garion, C.: Answering queries addressed to several databases according
to a majority approach. Journal of Intelligent Information Systems 22 (2004) 175–
201

Collectively Cognitive Agents in
Cooperative Teams

Jacek Brzeziński1, Piotr Dunin-Kȩplicz1, and Barbara Dunin-Kȩplicz1,2

1 Institute of Computer Science, Polish Academy of Sciences,
Ordona 21, 01-237 Warsaw, Poland

2 Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland

Abstract. This research continues a line of recent investigation result-
ing already in Dunin-Kȩplicz and Verbrugge theory of collective motiva-
tional attitudes as well as a formal theory of teamwork.

In this paper we aim to describe our work over a theory of collective
commitments in cooperative teams basing on a software test–bed for
conducting trust–based agent experiments. First, short introductions to
the theories of collective commitments and trust are given. Next, the
most important properties of the system are presented together with a
scenario of interplay. Finally several tests are described that compare
different versions of a commitment applied in various situations.

1 Introduction

A lion’s share of a novelty of MAS, in particular in BDI systems, pertains to
the concept of motivational attitudes in Cooperative Problem Solving (CPS).
What characterizes intentions and commitments, especially the collective ones,
is the interplay between environmental and social aspects, which may become
rather complex nowadays due to the increasing complexity of MAS. For example,
when asking what it means for a group of agents to be collectively committed to
do something, both circumstances in which the group is acting and properties
of the organization it is part of, have to be taken into account. This shows
the importance of differentiating the scope and the strength of the notion of
collective commitment. The resulting characteristics may differ significantly, and
even become logically incomparable.

To formally model different aspects of collective commitments, including dif-
ferent scopes and degrees of awareness of cooperating agents, the idea of a dial
used to tune the nature of the commitment to the particular purpose seems to
be both technically interesting and intuitively appealing. In [3] a sort of tuning
mechanism is provided. This logical device enables the system developer to cal-
ibrate a type of collective commitment fitting the circumstances, analogously to
adjusting dials on a sound system. The appropriate dials, characterized in the
sequel, belong to the device representing a general schema of collective commit-
ment. The resulting notion of (group) commitment, described in multi-modal

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 191–208, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

192 J. Brzeziński, P. Dunin-Kȩplicz, and B. Dunin-Kȩplicz

logics, may then be naturally implemented in a created multi–agent system.
This way the tuning mechanism may be viewed as a bridge between theory
and practice.

This paper presents a simulation framework to investigate some properties of
BDI systems in which different definitions of collective commitments will be used.
These properties include overall condition of the system, agents behaviour, level
of interaction between agents and their willingness to cooperate. This simulator
that allows one to conduct his own experiments bases on the Dunin-Kȩplicz
and Verbrugge theory ([3, 7]), uses the Castelfranchi and Falcone theory of trust
([1, 8]) to distinguish different levels of agents’ collective awareness and uses
the ideas developed in the social agents framework ([9, 10]) as a basis for the
implementation.

Two factors seem the most interesting. First of all different levels of social
awareness require different amount of data to be sent to each of the participating
agents. Therefore agents use different equations which take into account only
information they receive to estimate chances of succeeding the plan. We would
like to find out which level is sufficient for productive cooperation. Also, agents
may tend to avoid projects that are likely to fail. When the group consist of many
agents with low rate of ability to do atomic actions leading to the realization of
the overall goal it might be better to use one of the weaker cases of commitment
to tempt them to take part in the cooperation.

The type of collective commitment used in the MAS is not simply a matter
of communication limitations or system developer’s assumptions. The amount
of information that is known to the group can be limited by the legal aspects
of the system. Some information about the contract has to be hidden from the
contractors so e.g. the robust collective commitment model cannot be used.
Our aim is to check how trust information can be collected and used in the
commitment models with limited knowledge.

The paper is structured in the following way. In section 2, different notions
of collective commitments are briefly treated, while section 3 presents basic no-
tions of the theory of trust. In section 4 essential building blocks of the presented
simulator are sketched. The central section 5 presents a scenario of agents inter-
action as well as discussion on different cases of collective commitments. Next, in
the section 6 some details about the experimental results are presented. Finally,
section 7 discusses possible extensions of the simulator and conclusions.

2 Collective Commitments in CPS

Dynamic aspects of social and collective commitments in teams of agents in-
volved in Cooperative Problem Solving (CPS) have been extensively described
in [7]. Ever changing motivational attitudes as well as different levels of social
awareness affect the way agents interact with each other in a multi–agent system
are formally expressed in a tuning machine for collective commitments. In order

Collectively Cognitive Agents in Cooperative Teams 193

to formally illustrate the expressive power of such a logical device, five definitions
of commitments corresponding to different teamwork types occurring in practice
are presented. Apparently, the entire spectrum of possibilities is much wider,
due to the number of possibly independent choices to be made.

Collective intentions of doing a complex action lead to building collective
commitment among a team of agents. The four–stage model of agents’ inter-
action ([13]) is adopted here to model an example of CPS. The consecutive
stages are:

1. potential recognition, when the leading agent recognizes the potential for
cooperative action in order to reach its complex goal,

2. team formation, at which stage the leading agent attempts to establish a
group of agents that can collectively fulfill the goal by means of building a
collective intention in this group,

3. plan generation, when the social plan of fulfilling the goal is built and the
collective commitment is formed,

4. team action, when the agents involved in the group do their tasks as de-
scribed in the social plan and eventually achieve the main goal.

In our example this model is slightly modified — the team formation level out-
puts with a ready social plan. Also, at any level agents can fail to do some
actions or can be presented with new opportunities. Such changes lead to the
reconfiguration problem when the group has to react to alterations in their envi-
ronment while still being able to fulfill the overall goal. However we will not deal
with reconfiguration here while it is on a list of the future enhancements to the
system. Failure at the stage of the team formation will result in repeating this
stage with a different group of agents. If the social plan fails to succeed (one of
the atomic actions fails) the leading agent will not pay for any part of the job,
whether succeeded or not.

Let us present the most important formulas used in this paper, which are
formally defined in [3]:

BEL(i, ϕ) agent i believes proposition ϕ.
C-BELG(i, ϕ) group G collectively believes proposition ϕ, that is: every agent

believes in ϕ, every agent believes that every agents believe in ϕ and so forth.
COMM(i, j, ϕ) agent i commits to agent j to make ϕ true.
COMM(i, j, α) agent i commits to agent j to perform action α.
GOAL(i, ϕ) agent i has a goal that ϕ be true.
INT(i, ϕ) agent i has an intention to make ϕ true.
E-INTG(ϕ) every agent in group G has an individual intention to make ϕ true.
C-INTG(ϕ) group G has a collective intention to make ϕ true.
constitute(ϕ, P) the social plan P is correct with respect to the overall goal

ϕ, meaning that after the successful realization of plan P, ϕ holds.

Following Dunin-Kȩplicz and Verbrugge ([3]) we will present different notions
of collective commitments. Even though they express solely basic ingredients

194 J. Brzeziński, P. Dunin-Kȩplicz, and B. Dunin-Kȩplicz

constituting such structures, they are applicable in different situations manifest-
ing various strengths of the commitment.

Robust Collective Commitment (RCC)1. In the case of the robust collective com-
mitment, for every action α that occur in a social plan P there should be one
agent in the group who is socially committed to at least one (mostly other) agent
in the group to fulfill the action. Moreover the team as a whole is aware of every
single social commitment that has been established about particular action from
the social plan. This way everybody’s responsibility is in public:

R-COMMG,P (α) ↔
C-INTG(α) ∧ constitute(ϕ, P) ∧ C-BELG(constitute(ϕ, P)) ∧
(∀α∈P ∃i,j∈G COMM(i, j, α)) ∧ (∀α∈P ∃i,j∈G C-BELG(COMM(i, j, α))).

Strong Collective Commitment (SCC). In the case of the strong collective com-
mitment there is no public awareness about particular social commitments, but
the group as a whole believes that every part of the plan is within someone’s
responsibility:

S-COMMG,P (α) ↔
C-INTG(α) ∧ constitute(ϕ, P) ∧ C-BELG(constitute(ϕ, P)) ∧
(∀α∈P ∃i,j∈G COMM(i, j, α)) ∧ C-BELG(∀α∈P ∃i,j∈G COMM(i, j, α)).

Weak Collective Commitment (WCC). In case of the weak collective commit-
ment there is no awareness in the team that the plan leads to proper realization
of the goal, however agents are still aware about their share in the overall goal
and the fact, that all actions are taken on by committed members:

W-COMMG,P (α) ↔
C-INTG(α) ∧ constitute(ϕ, P) ∧ (∀α∈P ∃i,j∈G COMM(i, j, α)) ∧
C-BELG(∀α∈P ∃i,j∈G COMM(i, j, α)).

Team Commitment (TC). The following definition of the team commitment rep-
resents another step in weakening the notion of collective commitments. There
is no collective belief that all actions have been adopted by committed members,
but a team as a whole still exists:

T-COMMG,P (α) ↔
C-INTG(α) ∧ constitute(ϕ, P) ∧ (∀α∈P ∃i,j∈G COMM(i, j, α)).

Distributed Commitment (DC). The case of the distributed commitment deals
with situation, when agents remain aware solely about their piece of work. They

1 We will use acronyms like RCC, SCC, WCC, TC and DC when describing different
notions of a collective commitment.

Collectively Cognitive Agents in Cooperative Teams 195

do not know neither the overall goal nor other members of the team. They be-
come a loosely coupled group of agents that work in a distributed manner sharing
some undefined goal:

D-COMMG,P (α) ↔ constitute(ϕ, P) ∧ (∀α∈P ∃i,j∈G COMM(i, j, α)).

3 Theory of Trust

Basic Properties. The interaction between agents in this framework is closely
related to the socio-cognitive theories, as in [1, 8]. Several properties of an agent
are considered:

– trustworthiness of an agent a — an objective probability that a will suc-
cessfully execute a delegated task g in a world of state W :
trustworthiness(a, g, W)=F(DoA(a, g, W), DoW(a, g, W)).
DoA describes agent a’s degree of ability to do task g and DoW describes
agent’s willingness to do task g,

– trust — a degree in which agent a trusts agent b about g in W : subjective
probability, a function of a’s belief about the willingness and ability of b
executing task g in W :
DoT(a, b, g, W)=F’(SDoA(a, b, g, W), SDoW(a, b, g, W)).
The functions SDoA and SDoW take into account direct experience of agent
b (described by function SExpA and SExpW) and testimonies (reputation
assertions) regarding b made by its peers (described by SRepA and SRepW).

Direct Experience. The degree of trust between agents changes dynamically as
described in the following trust modifier equations ([12]):

SExpW(a, b, g) := SExpW(a, b, g) + (α * (1 - SExpW(a, b, g))
SExpW(a, b, g) := SExpW(a, b, g) + β * SExpW(a, b, g).
The α and β are rewarding and punishing parameters, that is: rates in which

good (bad) experience increases (decreases) trust. Similar equations can be used
to modify SExpA.

In our framework agent’s use only the trust values, not taking into account
the testimonies of other agents, that constitute a reputation of an agent.

Reputation. The reputation is based on testimonies that other agents give about
specific agent. The following function takes into account strength and number
of assertions as well as creditability of the sources:

SRepW(a, b, g) = 1
n

∑
i=1..n(RecW(ri, b, g)*DoT(a, ri, REC)), where RecW

is ri’s recommendation about b and DoT here describes the degree of a’s trust
in ri’s ability of making such recommendations.

In our framework this value is calculated to obtain a difference between repu-
tation and agents’ objective probability, which is then used to graphically present
the weighted difference between subjective and objective abilities of agents.

196 J. Brzeziński, P. Dunin-Kȩplicz, and B. Dunin-Kȩplicz

Our trust model is extremely simple, but it is good enough to present all the
needed traits of the system. In future work we plan to address this issue, because
with more detailed and complex trust model, the system should perform better
in sense of terms of learning and the number of successful contracts.

4 Architecture of the Simulation Framework

We are now going to present the main components of the system: the agents,
values of trust and protocols used in the communication.

4.1 Agents

Our multi-agent system consists of BDI agents with the following properties:

– Beliefs: believes(A, f) — means that f is a belief of the agent A.
– Intentions: intends(A, a) — means that the agent A intends to perform

the action a
– Abilities: able(A, a, x) — means that the agent A is able to perform the

action a, and a probability of the success of a is x. We assume that each
agent knows his own abilities, so the following formula is true: believes(A,
able(A, a, x)) for each action a. We also use the following notation for specific
agents: DoA(A, a)=x.

– Trust: trusts(A, B, a, x) — means that the degree of trust of the agent A
to the agent B about the action a is x. We also use the following notation:
DoT(A, B, a)=x.

Agents act in the world which allows a set of elementary environmental actions
to be performed:

– Actions = {a1..an}.

There are three routines that can be executed by the agents:

– sendMessage(m) — sending a message m (always succeeds),
– broadcastMessage(G, m) — broadcasting a message m to a group of agents

G (always succeeds),
– performAction(o) — execution of elementary action o.

Two roles of agents are considered:

– Managers — agents that execute tropisms to generate tasks. Task is a com-
plex action, represented as a set of elementary actions to be performed for
specific amount of money. Managers are not allowed to execute elementary
environmental actions, but they are able to delegate specific actions (or sets
of actions) to other agents (Workers),

– Workers — agents able to perform elementary environmental actions. Work-
ers cannot delegate actions.

Collectively Cognitive Agents in Cooperative Teams 197

4.2 Trust

All agents store the following trust values: trust to Workers about executing
specific actions and trust to Managers.

In our example trust describes abilities of agents only. We assume that all
the agents are always 100% willing to perform all the actions, so we do not need
willingness factor for a time being.

Agents’ reputation is calculated only to represent an average difference be-
tween reputation and objective abilities.

4.3 Protocols

In the process of interaction we use the following communication protocols:

Introduction: when the agents perform a kind of handshake before establishing
cooperation.

Contract Net: launched by the Manager to establish collective commitment
in a group of selected agents and then perform a compound task.

Information: sending a single piece of information.

5 Scenario of Agents Interaction

Let us now present interaction scenario scheme, other interesting properties of
the system and eventually how the different notions of collective commitments
affect the agents.

5.1 Generic Scheme

1. Agent M (Manager) has got a task to perform in a form of (O - set of
elementary actions, s - budget).

2. Potential recognition phase:

(a) agent M sends ”call for proposals” to all the Worker agents in the system
(content = (O - set of actions)):

(b) agents respond returning a set of pairs: {(action, price), ...}
(c) agent M generates the first element from a sequence of possible groups

that can perform the task collectively using the group quality function.
This function takes into account:
i. trust of M to other agents in the group,
ii. prices proposed by the agents (and their relation to the task budget),
iii. a risk factor describing preferences of M (M can prefer cheaper but

less trustworthy groups, or more expensive but more trustworthy
ones),

(d) the collective commitment is built (we assume that workers’ decisions
mean that bilateral commitments between workers and Manager are set,
which implies that collective commitment is in place).

198 J. Brzeziński, P. Dunin-Kȩplicz, and B. Dunin-Kȩplicz

Group G . Group consists of agents that are collectively able to perform
task O = {o1, ..., on}. Each of the agents in the group can be expected
to perform one or more elementary actions. So we can divide task O into
the disjoint subsets of O, representing subtasks delegated to other agents. A
set of those subsets we call S. Allocation of actions L is a set of pairs (A,
s), where A is an agent, and s is a subset of O representing actions to be
realized by agent A.

3. Team formation phase:
(a) Agent M selects a group G from a sequence of groups.
(b) Agent M broadcasts specific information to all the agents of G. This set

of information depends on the model of collective commitments. We as-
sume that the following information are broadcasted using broadcastMes-
sage() so we assume that they are 100% trustworthy and all the agents
in the group are aware of that. The components are:
i. An offer to form a group G [RCC, SCC, WCC, TC]2

ii. An offer to participate in task O = {o1..on} [RCC, SCC, WCC, TC]
iii. An allocation of elementary actions L [RCC]
iv. Division of task O into subtasks S [SCC, WCC]
v. An offer to perform specific action (or actions) for price x [RCC,

SCC, WCC, TC, DC]

(c) Agents decide whether they want to join the group G or not taking into
account the estimation of success chance of the task. Agents can esti-
mate the probability of such success taking into account the information
they have received in the previous step. So, the formula for a function
estimating task success chance depends on the mental state of the agent
(level of the agent’s knowledge about the task) which depends on the
model of collective commitments. The task success estimation function
is a subjective conditional probability value that consists of some of the
following factors:
i. Trust to the Manager M [RCC, SCC, WCC, TC, DC]
ii. Trust to other members of the group G [RCC, SCC, WCC, TC]
iii. Ability to perform a delegated set of actions SA [RCC, SCC, WCC,

TC, DC]

Agent decides to join the group if the value of the task result estimation
function is above a predetermined threshold.

(d) If all the agents decide to enter the group G, the collective commitment
is constructed. If not, agent M withdraws the current task and attempts
to start another.

4. Plan generation phase is not applicable here because the plan has a very
simple form and is already constructed.

5. Team action phase:
(a) Agents perform their actions and inform M about the results.
(b) If all the agents’ actions have succeeded, the task also succeeds and all

the agents collect their payments.

2 Applicable commitment models are specified in square brackets.

Collectively Cognitive Agents in Cooperative Teams 199

(c) On the other hand, if one or more actions failed, no agent collects his
payment and all the group members receive information about failure.

(d) Agents modify their trust value based on direct experience to other group
members depending on information about action results they receive
from the Manager. This information is also dependent on the model of
collective commitment.

5.2 Properties of the System

Let us now present some important properties of the system.

Trust. Each agent stores a degree of trust to other agents and the information
about their abilities to perform atomic actions. The initial value of DoT(A, B,
a) is set to DoA(A, a). The assumption that other agents in the group have
similar abilities seems reasonable and practical — similarly to the real world
case, at first agents have no other premises to believe that it is not true. The
degree of trust to the Manager will be set to a constant value chosen in an
experimental way.

While the system is working the value of DoT evolves. Depending on the
model of the commitment agents receive different information when the task
fails. In the stronger model agents are informed precisely about the cause of the
failure and can punish (in terms of adjusting trust) only those agents that have
not fulfilled their parts of the plan. In the weaker cases the failure affects trust
values to all the agents in the group. In case of the success all the agents in the
group are awarded for completing the task.

Task Result Estimation Function. The task result estimation function is a pro-
duct of factors which depend on publicly known properties of the plan. The
stronger the model of the commitment is, the more precise is the estimation of
chances of success of performing the task.

The choice of the task result estimation function as well as changing the
values of trust to other agents is crucial for the system. Our goal is to modify
these functions if appropriate, so that eventually the values of DoT of particular
agents strive for the real abilities of the others. The weaker the commitment
is, the harder it may be to fulfill this condition — in these cases the degree
of trust to the Manager is one of the most important factor in the task result
estimation function.

The commitment structure in our system is fairly simple — the Manager is
a part of every bilateral commitment of the plan. This can be later enhanced
so that the responsibility for failed tasks is more diffused in the system, as set
forth in section 7.

Bidding. Manager decides to hire Workers if he can find appropriate group
among Workers that sent bids. Manager chooses group, and sends award mes-
sages to all the members along with some data regarding group and its members
dependent on the collective commitment model. In the next step all the members
have to decide if they really want to participate in the task. They can base this

200 J. Brzeziński, P. Dunin-Kȩplicz, and B. Dunin-Kȩplicz

decision on the estimation of probability of success of the task, which can be
calculated from current trust values and received data (see above). This estima-
tion of probability is compared to quotient of investment and gain (investment
is a sum of costs of all the actions that agent has to perform in order to com-
plete his part of the task; gain is the money that he will receive when the task
succeeds). If estimation of probability is greater than investment to gain ratio,
agent decides to participate.

Agent bids only if two conditions hold: its abilities concerning actions in the
task are greater than ability threshold. The agent also has to have enough money
to perform all the actions that he bids for.

Budget. We assume that Manager has some budget that he can spend on the
payoffs. In the tests we use budget-per-action factor, so overall budget is calcu-
lated as product of this factor and number of actions. Manager selects a group
of Workers by choosing the best Workers that he can afford to hire (sum of their
proposed prices is less or equal to the budget). Budget is an important factor in
the tests — when it is high, the Manager can afford to hire more expensive agents
with higher abilities. If budget is low, Manager is only able to hire Workers with
low abilities, so the probability of failure increases.

Payment that the Worker expects is calculated using the following formula:
payment = at * atp + a * ap, where at is the ability threshold, atp is the ability-
threshold-to-price factor, a is the agent ability and ap is ability-to-price factor.

5.3 Analysis of Robust Collective Commitment

Properties. Collective intention is in place, all the agents know the properties of
the plan, all the agents know the action allocation and commitment allocation.

Comment. Goal, plan details, contract details, group structure, commitment
structure and responsibility in the group are public. Since all the information
is public all agents have the perfect information about the planned activity of
the group, so the task result estimation function should be very accurate (given
valid trust data).

Information Sent to Workers. An offer to create a group G with intention to
realize task O (C-BEL), an offer to participate in task O = {o1..on} (C-BEL),
an allocation of sets of elementary actions L = {(I, SI): I ∈ G \ {M}, SI ⊆ O}
(C-BEL), an offer to perform a set of actions SA for a price of x.

Task Result Estimation Function. Factors: trust to the Manager, agent’s abili-
ties to execute its actions, trust to the other members of group G about their
allocated actions. Formally:

DoT(A, M, ”team-selection”) *
∏

a∈SA
DoA(A, a) *

T
∏

I∈G\{A,M}
∏

a∈SI
DoT(A, I, a).

Collectively Cognitive Agents in Cooperative Teams 201

Direct Experience Modification. All the information about successes and failures
of the group members is broadcasted. The agents can use very accurate data to
modify their trust values.

5.4 Analysis of Strong Collective Commitment

Properties. Collective intention is in place, all the agents know the properties of
the plan.

Comment. Goal, plan details, contract details and group participation are pub-
lic. Commitment structure is not public, so part of responsibility is on side of
the Manager. Agents do not know the allocation of actions so they can use some
average value of degree of trust concerning all actions performed by the group
in the task result estimation function.

Information Sent to Workers. An offer to create a group G with intention to
realize task O (C-BEL), an offer to participate in task O = {o1, ..., on} (C-
BEL), number of elementary actions allocated to specific agents N = {(I, NI):
I ∈ G \ {M, A}, NI ∈ N} (C-BEL), an offer to perform a set of actions SA for a
price of x.

Task Result Estimation Function. Factors: trust to the Manager, agent’s abilities
to execute its actions, trust to the other agents of the group G, calculated as an
average trust about executing remaining actions. Formally:

DoT(A, M, ”team-selection”) *
∏

a∈SA
DoA(A, a) *∏

I\{A,M}(
1

|O|−|SA|
∑

a∈O\SA
DoT(A, I, a))NI .

Direct Experience Modification. Only failure information is broadcasted. The
message contains the following: agent, failed action.

5.5 Analysis of Weak Collective Commitment

Properties. Collective intention is in place, agents do not know the properties of
the plan.

Comment. Goal, plan details, group structure are public. Commitment structure
is not public, so part of responsibility is on side of the Manager. Contract details
are not public neither, so group members do not know if contract is valid. Group
has to trust the Manager about validity of the contract and ”team-selection”.

Information Sent to Workers. An offer to create a group G with intention to
realize task O (C-BEL), an offer to participate in task O = {o1, ..., on} (C-BEL),
agent’s abilities to execute its actions, an offer to perform a set of actions SA for
a price of x.

202 J. Brzeziński, P. Dunin-Kȩplicz, and B. Dunin-Kȩplicz

Task Result Estimation Function. Factors: trust to Manager, agent’s abilities to
execute its actions, trust to other agents of the group G, calculated as an average
of trust values to those agents on all the actions from O. Formally:

DoT(A, M, ”team-selection”) *
∏

a∈SA
DoA(A, a) *∏

a∈O\SA
(1

|G|−2

∑
I\{A,M}DoT(A, I, a)).

Direct Experience Modification. Only failure information is broadcasted. The
message contains the following: agent, failed action.

5.6 Analysis of Team Commitment

Properties. Collective intention is in place; agents know only about their own
part in the task.

Comment. Agent receive no information about the causes of the failure (so it is
only informed that some anonymous agent in the group has failed).

Information Sent to Workers. An offer to create a group G with intention to
realize task O (C-BEL), an offer to participate in task O = {o1, ..., on} (C-BEL),
an offer to perform a set of actions SA for a price of x.

Task Result Estimation Function. Factors: trust to Manager, agent’s abilities to
execute its actions, trust to other agents of the group G, calculated as an average
of trust values about remaining actions. Formally:

DoT(A, M, ”team-selection”) *
∏

a∈SA
DoA(A, a) *∏

a∈O\SA
(1

|G|−2

∑
I\{A,M}DoT(A, I, a)).

Direct Experience Modification. Only the team action result is broadcasted.

5.7 Analysis of Distributed Commitment

Properties. There is no real group G. Agents know only about their own tasks.

Comment. No information is public. Agent has no information about other team
members so he has no trust values to other team members. Trust to the Manager
is the most important component of the task result estimation function.

Information Sent to Workers. An offer to perform a set of actions SA for a price
of x.

Task Result Estimation Function. Factors: agent’s abilities to execute its actions,
trust to the Manager. Formally:

DoT(A, M, ”team-selection”) *
∏

a∈SA
DoA(A, a).

Direct Experience Modification. No information is broadcasted. The only trust
values that is modified as a result of the team action is the trust to the Manager.

Collectively Cognitive Agents in Cooperative Teams 203

6 Test Results

6.1 Implementation

This framework has been developed in C++. There are several configuration
parameters, for example: alpha reward, beta punish (real) – rewarding and
punishing values for modification of direct experience. default trust value
(real) is the initial value of a subjective degree of trust. If not set, the agent will
use its own ability values. Another parameter, random default trust (real) can
be used to slightly randomize the default trust value.

6.2 Test Configuration

Series of tests were conducted to compare agents’ behaviour when using different
notions of collective commitments. These tests share similar properties: there are
16 Workers controlled by 1 Manager. Tests run up to 100000 contracts (which
translates to approximately 300000 ticks of the internal clock).

A task size is one of the important configuration parameters. The bigger the
task is the more rules of a particular type of a commitment affect the results.
With one action there is only one Worker that decides whether he wants to
execute the task. With bigger tasks, agents decide if they want to cooperate
with other ones and this is where the rules of a collective commitment affect their
decisions. However, if a task is too big it may be hard to execute it successfully
— therefore we have chosen experimentally a value of 4 actions in every task.

While there are several properties that can be tested at a time, the following
are the most important:

– successes, i.e. number of successful contracts,
– failures, i.e. number of failed contracts,
– efficiency, i.e. ratio of successful contracts to total number of contracts.

This value is taken from the contracts within the last 10000 ticks, because
otherwise the history of older contracts would strongly affect it,

– reputation diff, i.e. an average difference between agents’ reputation and
their real abilities.

One should expect that the stronger the notion of a commitment is, the higher
the efficiency value should be at en expense of smaller number of contracts in
total. With weaker models this ratio should be significantly lower but with higher
number of total completed tasks.

The results of the simulation should not be dependent on the agents’ abilities.
In fact with higher abilities it is only easier for the system to find a group of
agents that is able to fulfill the task. Therefore we set these abilities randomly
between 0.5 and 1. Action cost was set to 0.5 which means that the expected
investment/gain ratio (calculated by the Workers in order to decide whether to
participate or not) is 50%.

204 J. Brzeziński, P. Dunin-Kȩplicz, and B. Dunin-Kȩplicz

6.3 Discussion

At first, in order to check a behaviour of the system we set the alpha reward and
beta punish parameters to 0. Together with setting random default trust to
a low value it makes the system behave ideally — when trust is equal to abilities.
This is the state the system with real settings should be led to.

When choosing a default trust value we can do one of the following things:
either use actual ability slightly affected by the random default trust parame-
ter (effectively we can observe the simulation in a state that is in fact very close
to what we expect) or set default trust value to 1. It would give us a clearer
view of the evolution of the system — this value is incorrect but forces the agents
to be more interactive and to accept more contracts when the simulation starts.

Efficiency. (Fig. 1 and 2.) Using RCC gives us the best efficiency at a level
up to 72%. There are many successful contracts generated (above 2600) and
quickly the system reaches an ideal state — generating only contracts which are
very likely to succeed. SCC gives a lower efficiency (maximum of 58%), thus it
takes more time to reach a good state. However there is a significantly bigger
number of successful contracts. It is worth noting that the value of the efficiency
is still higher than the expected value of investment/gain ratio (50%) which
means that the system earns more comparing to the investments made by the
agents. Both WCC and TC have an average efficiency rate at a similar level
comparing to the stronger models, but with less contracts (around 2000 and 500
respectively). The TC behaviour is unstable — at times which it can generate
90% of successful contracts, but after a while its efficiency falls dramatically (due
to a low number of tasks accepted by the agents). DC has a very low but stable
ratio of successful contracts (37%) — close to expected, with an average ability
to successfully perform an action of 0.75 and 4 actions in a task the probability
of positive effects of a contract is 0.754 = 0.32.

Learning. Comparing the efficiency and reputation diff curves (fig. 2) show
the differences in the learning time when using different notions of collective
commitments. It is clear that the stronger the collective commitment used is,
the faster the agents learn. The reputation diff factor is stable and low with
RCC, SCC and WCC, which means that there is not much difference between
agents’ beliefs about abilities of the others. With TC this value is even lower but
the agents are very conservative when deciding about joining a group. With DC
agents are in fact unable to learn so they bid in every contract and fail often.

Other Conclusions. Some of the properties of the presented example of a
simulation arise from the fact that the Manager chooses a random group of the
agents from the bids it has received. Should the Manager choose Workers basing
of its trust it would most likely make the number of successful contracts higher
but on the other hand it would obscure the view of the interactions we wanted
to show in the simulation.

Collectively Cognitive Agents in Cooperative Teams 205

Fig. 1. Number of successful and failed contracts with respect to different models of

collective commitment

It is clear that using the strong notions of a collective commitment allows
agents to learn quickly and therefore to carefully (but not too carefully) decide
about a cooperation with the others. With plenty of information they receive

206 J. Brzeziński, P. Dunin-Kȩplicz, and B. Dunin-Kȩplicz

Fig. 2. Evolving efficiency and reputation diff values

they can pretty well estimate chances of success and act accordingly. Compar-
ing the strongest notions, RCC and SCC, it is clear that in a longer period of
time SCC gives the best results — with many successful contracts and pretty
high efficiency.

Collectively Cognitive Agents in Cooperative Teams 207

7 Conclusions and Possible Extensions

We have created a small but useful application that can be used to investigate
dependencies between the model of a collective commitment applied to a team-
work and the evolution of trust in a group. Designed to be simple and efficient,
it allows conducting large and long-term experiments. New theories of collective
commitments and trust have been applied — agents interact with each other in
a way of a simplified contract-net protocol and form teams that can be described
by different notions of a commitment. The decision process whether to join or
leave the group is done basing on ever evolving trust values. Since with different
models of the group structure agents receive different amount of information one
can observe how these various properties of a commitment applied in a team can
affect the way the agents learn how to choose their collaborators to help them
complete their tasks.

It should be noted that the proposed models of building a collective commit-
ment within a group are not the only ones that can be built using the tuning
machine proposed in [3]. They reflect some typical organizational structures that
can be observed in the real world but other ones could be developed in this frame-
work as well. We also assume that the commitment model is given and all the
agents in the system commit to perform actions only if their mental state is
relevant to that model. But we can also assume that Manager agent can try dif-
ferent models of commitment structure (even complex commitment structure —
consisting of different types of commitments in different subgroups) to realize
the task.

There are some extensions considered. Firstly, expanding the hierarchy of
the agents allows us to use more complex and more realistic commitment sce-
narios. Also we can introduce a realistic situation when while the compound task
succeeds the Manager fails to pay out for the work. This would allow us to differ-
entiate between the trust values for ”team–selection” and ”team–management”
thus leading to slightly different formulas of the task result estimation functions.
Secondly, we can introduce institutional restrictions, i.e. permissions for agents
to perform specific actions (agent is able to perform an action, but it is not
allowed to, however it can occasionally perform the action, i.e. to increase its
profit). We can test different trust modifications models based on agents’ moral
attitude etc. Thirdly, we can introduce the reconfiguration algorithm as in [2],
allowing dynamic evolution of the group and commitment structure. It would
allow us to examine role of trust in a dynamic evolution of the group.

Acknowledgements

This work is supported by the Polish KBN Grant 7T11C 006 20 and by the Polish
KBN grant supporting EU-funded ALFEBIITE Project (IST-1999-10298).

208 J. Brzeziński, P. Dunin-Kȩplicz, and B. Dunin-Kȩplicz

References

1. Castelfranchi C., Falcone, R.: Socio-cognitive theory of trust. Technical Report.
In: ALFEBIITE Deliverable report D1 (2001)

2. Dunin-Kȩplicz, B., Verbrugge, R.: A Reconfiguration Algorithm for Distributed
Problem Solving. In: Engineering Simulation 18 (2001) 227-246

3. Dunin-Kȩplicz, B., Verbrugge, R.: A tuning machine for collective commitments.
In: Procs. of The First International Workshop on Formal Approaches to Multi-
Agent Systems, FAMAS’03, Warsaw (2003) 99-116

4. Dunin-Kȩplicz, B., Verbrugge, R.: Tuning machine for Cooperative Problem Solv-
ing. In: Fundamenta Informaticae 63(2-3) (2004) 283-307

5. Dunin-Kȩplicz, B., Verbrugge, R.: Calibrating collective commitments. In Marik,
V., Mueller, J., Pechoucek, M, eds.: Procs. of The 3rd International Central and
Eastern European Conference on Multi-Agent Systems (CEEMAS 2003), LNAI
2691 (2003) 73-83

6. Dunin-Kȩplicz, B., Verbrugge, R.: Collective intentions. In: Fundamenta Informa-
ticae 51(3) (2002) 271-295

7. Dunin-Kȩplicz, B., Verbrugge, R.: Evolution of collective commitments during
teamwork. In: Fundamenta Informaticae 56(4) (2003) 329-371

8. Falcone, R., Castelfranchi, C.: The socio-cognitive dynamics of trust. Does trust
create trust? In Falcone, R., Singh, M., Tan, Y., eds.: Trust in Cyber-Societies:
Integrating the Human and Artificial Perspectives, LNAI 2246 (2001)

9. Kamara, L., Artikis, A., Neville, B., Pitt, J.: Simulating Computational Societies.
In Petta, P., Tolksdorf, R., Zambonelli, F., eds.: Engineering Societies in the Agents
World III, 3rd International Workshop, ESAW 2002, Madrid, Spain, September 16-
17, 2002, Revised Papers, LNCS 2577 (2003) 53-67

10. Neville, B., Pitt, J.: A Computational Framework for Social Agents in Agent Me-
diated E-commerce. In Omicini, A, Petta, P., Pitt, J., eds.: Engineering Societies
in the Agents World IV, 4th International Workshop, ESAW 2003, London, UK,
October 29-31, 2003, Revised Selected and Invited Papers, LNCS 3071 (2004) 376-
391

11. Smith, R. G., Davis, R.: Distributed Problem Solving: The Contract-Net Approach.
In: Proceedings of 2nd Conference of Canadian Society for Computational Studies
of Intelligence (1978)

12. Witkowski, M., Artikis, A., Pitt, J.: Experiments in building experimental trust in
a society of objective-trust based agents.In Falcone, R., Singh, M., Tan, Y., eds.:
Trust in Cyber-Societies: Integrating the Human and Artificial Perspectives, LNAI
2246 (2001)

13. Wooldridge, M., Jennings, N.: Towards a theory of collective problem solving. In
Perram, J. Mueller, J., eds.: Distributed Software Agents and Applications, LNAI
1069 (1996) 40-53

Cooperative Agent Model Instantiation
to Collective Robotics

Gauthier Picard

IRIT, Université Paul Sabatier,
F-31062 Toulouse Cedex, France

picard@irit.fr
http://www.irit.fr/SMAC

Abstract. The general aim of our work is to provide tools, methods
and models to adaptive multi-agent systems designers. These systems
consist in several interacting agents and have to optimize problem solv-
ing in a dynamic environment. In this context, the ADELFE method,
which is based on a self-organizing adaptive multi-agent system model,
was developed. Cooperation is used as a local criterion to self-organize
the collective in order to reach functional adequacy with the environment.
One key stage during the design process is to instantiate a cooperative
agent model that is an extension to classical reactive models in which
cooperation subsumes any other nominal behavior. A sample implemen-
tation of the agent model in the collective robotics domain – resource
transportation – will illustrate a discussion on the model.

1 Introduction

Self-organization in artificial systems promises to be an appropriate solution
to overcome openness, flexibility and adaptiveness requirements in dynamical
environments. Adaptive Multi-Agent Systems (or AMAS) paradigm proposes to
use cooperation notion as the engine of self-organization mechanisms in order
to make the system reach functional adequacy [1]. Therefore, designers of such
agent societies must focus on the parts rather than the whole global system; i.e.
a priori equipping parts with organization capabilities rather than organizing
them. Implementations of such systems have already successfully solved complex
problems such as flood forecasting with STAFF in which data, originated from
sensors, self-organize to reach the right prevision function [2].

In this context, ADELFE method establishes an AMAS design process [3]
which aims at guiding non-specialist engineers to develop MAS from A to Z.
Besides notations (UML and A-UML) and tools (OpenTool1), ADELFE provides
a cooperative agent model which has already been described in the previous
ESAW edition [4]. Figure 1 describes this model. Unlike some other multi-agent
engineering approaches which try to fit agent design with nature-inspired models,

1 OpenTool is released by TNI-Valiosys (www.tni-valiosys.com).

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 209–221, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

210 G. Picard

Interaction

Representations

Skills

Aptitudes

Cooperation

Stimuli Action

Fig. 1. The different modules of a cooperative agent and their dependencies. Aptitudes

and Cooperation modules process in parallel during the decision phase to make the

agent act. Cooperative behavior subsumes nominal behavior

such as ant behaviors, ADELFE lies on a theoretical notion which comes near
to the social notion of cooperation. The challenge resides in specifying local
cooperation rules that will lead agents to organizational changes and therefore
to change the global function of the system.

Cooperative behavior will be defined in a proscriptive approach: “An agent is
cooperative if it avoids non cooperative situations (or NCS)”. The AMAS theory
identifies several types of NCS, resulting from the analysis of the cooperation
definition: an agent is cooperative if: (c1) all perceived signals are understood
without ambiguity and (c2) the received information is useful for the agent’s
reasoning and (c3) reasoning leads to useful actions toward other agents. There-
fore, a NCS occurs when ¬c1 ∨ ¬c2 ∨ ¬c3. We identify seven NCS subtypes that
express these conditions: incomprehension (an input has no interpretation), am-
biguity (an input has two or more interpretations), incompetence (the agent has
no rule to process input), unproductiveness (the agent’s reasoning do not lead
to any conclusion), concurrency (two agents execute actions that lead to same
conclusions), conflict (the agent’s action put another agent out) and uselessness
(the agent’s action has no impact in its environment). The cooperative attitude
of an agent must avoid all these NCS. Cooperative agent design focuses on NCS
specification – like a kind of exception-oriented programming in which designers
focus on exceptions.

This article aims at detailing the agent design in ADELFE and showing the
optimization of a problem solving concerning resources transportation, described
in section 2 realized by an cooperative agents society in which the global behavior
presents emergent properties. For more information about the ADELFE process
usage, see [3] or the paper in the same workshop about the Mechanical Synthesis
Problem [5]. In section 3, the cooperative agent model is instantiated to solve the

Cooperative Agent Model Instantiation to Collective Robotics 211

resource transportation problem. Section 4 studies different possible cooperative
behaviors that can be assigned to agents. Some experiments have been done
to compare these different solutions in section 5, which leads to a discussion in
section 6. Finally, section 7 concludes on perspectives.

2 Resource Transportation Problem

The resource transportation problem is a classical task in Collective Robotics [6],
and was proposed as a relevant benchmark for robotic systems by [7]. Robots
must transport resources (boxes) as fast a possible from a zone A to a zone
B, separated by a constrained environment. In our example, these zones are
linked by two corridors too narrow for robots to cross one another side by side
(cf. figure 2). This environment leads to a spatial interference problem, e.g.
robots must share common resources: the corridors. Once engaged in a corri-
dor, what must a robot do when facing another robot moving in the opposite
sense? Spatial interference has been tackled by [8] in the case of robots circu-
lating in corridors and having to cross narrow passages (doors). Their solution
is to solve conflicts by aggressive competition (with explicit hierarchy), sim-
ilarly to eco-resolution by [9]. [10] propose to solve such problems thanks to
attraction-repulsion mechanisms based on altruistic behaviors triggering – a re-
verse vision of the eco-resolution. In our case, we expound a viewpoint halfway
between the two firsts, in which robots are neither altruistic nor individualist and
cannot directly communicate any information or intention. Moreover, no plani-
fier system will anticipate trajectories because the use of planification in multi-
robot domain remains inefficient, considering the high dynamics of a robot’s
environment.

Fig. 2. The environment of the resource transportation problem is composed of: a claim

room (at left), a laying room (at right) and two narrow corridors (at top and bottom).

Robots pick boxes against the left wall of the claim room (claim zone) and drop them

against the right wall of the laying room (laying zone)

212 G. Picard

3 Cooperative Model Instantiation

This section shows the instantiation – i.e. fulfilling each module – of the coop-
erative agent model in order to design robots able to realize the transportation
task. This work appears in the ADELFE process in the Design Work Defini-
tion, and more precisely in the Design Agents Activity [3]. ADELFE process is
an extension to the Rational Unified Process (RUP) and consists in four work
definitions – specifically extended to agent oriented engineering – : preliminary
requirements, final requirements, analysis and design. Requirements defines the
environmental context of the system. Analysis identifies the agents within other
object classes.

3.1 Modules Fulfilling

The Perceptions Module represents inputs for agents. Concerning robots, they
can know positions of the two zones (claim and laying). Indeed, this paper only
focuses on adaptation to a circulation problem rather than a foraging one, i.e.
robots’ task is not to find boxes but to transport them from a room to another.
Here is a possible list of perceptions for transporter robots: position of the claim
zone, position of the laying zone, a perception cone in which objects are differen-
tiable (robot, box or wall), proximity sensors (forward, backward, left and right),
a compass and the absolute spatial position. The environment is discretized as
a grid whose cells represent atomic parts on which a robot, a box or a wall can
be situated. The Perceptions Module also defined limit values of perceptions
(e.g. 5 cells).

The Actions Module represents outputs of agents on their environment. Pos-
sible actions for transporter robots are: rest, pick, drop, forward, backward, left
and right. Robots cannot drop boxes anywhere in the environment but only in
the laying zone. They cannot communicate directly or drop land marks on the
environment. In the case of social agents that are able to communicate, commu-
nication acts are specified in this module.

The Skills Module contains knowledge about the task the agent must per-
form. Skills enable robots to achieve their transportation goals. Therefore, a
robot is able to calculate which objective it must achieve in terms of its cur-
rent state: if it carries a box then it must go to the laying zone else it must
reach the claim zone. As a function of its current goal, the Skills Module pro-
vides an action to process to achieve it. Robot’s goals are: reach claim zone
and reach laying zone. Moreover, robots have intrinsic physical characteristics
such as their speed, the number of transportable boxes or the preference to
move forward rather than backward – as ants have. Such preferences are called
reflex values.

The Representations Module contains knowledge about the environment
(physical or social). Representation a robot has on its environment is very lim-
ited. From its perceptions, it cannot identify a robot from another, but can know
if it is carrying a box or not. It also can memorize its past absolute position,
direction, goal and action.

Cooperative Agent Model Instantiation to Collective Robotics 213

The Aptitudes Module enables an agent to choose an action in terms of its
perceptions, skills and representations. Concerning transporter robots, a design
choice must be taken at this stage. In terms of the current goal, the Skills Module
provides preferences on each action the robot may do. The Aptitudes Module
chooses among these actions what will be the next action to reach the goal. Many
decision functions can be considered; e.g. an arbitrary policy (the action having
the highest preference is chosen) or a Monte Carlo method-based policy that is
chosen for our example. Therefore, the Aptitudes Modules can be summed up
in a Monte Carlo decision function on the preference vector (the list of action
preferences for an agent) provided by the Skills Module. In the same manner, the
Cooperation Module provides preference vectors in order to solve NCS described
in section 4.

3.2 Action Choosing

At each time t, a robot has to choose between different actions that are proposed
by the two decision modules (skills and cooperation). At time t, each action actj
of the robot ri is evaluated. For each action, this value is calculated in terms of
perceptions, representations and reflexes in the case of a nominal behavior:

V nomi
ri

(actj , t) = wpri
(actj , t) + wmri

(actj , t) + wrri
(actj)

with:

– V nomi
ri

(actj , t) represents the value for the action actj at time t for the robot
ri,

– wpri(actj , t) represents the calculated value in terms of perceptions,
– wmri(actj , t) represents the calculated value in terms of memory,
– wrri(actj , t) represents the calculated value in terms of reflexes.

As for aptitudes, an action preference vector is generated by the Cooperation
Module: V coop

ri
(actj , t). Once these values calculated by the two modules for each

action of a robot, the vector on which the Monte Carlo drawing will process is
a combination of the two vectors in which the cooperation vector subsumes the
nominal vector:

Vri
(t) = V nomi

ri
(t) ≺ V coop

ri
(t)

3.3 Nominal Behavior

The nominal behavior is described with rules that modify the values in the V nomi

preference vector. This vector is obtained by adding values2 from perceptions
(wpri

(actj , t)) and values from reflexes (wrri
(actj , t)). The table 1 shows values

to increase in the wpri
(actj , t) to achieve to two disjoint goals : reach claim zone

(¬car) and reach laying zone (car).

2 Memory is not necessary to process a nominal behavior.

214 G. Picard

Table 1. Specification of the nominal behavior in terms of perceptions

Perceptions Effects
¬car ∧ cBox ↗ wpri(pick, t)
¬car ∧ ¬cBox ∧ sBox ↗ wpri(forward, t)
¬car ∧ ¬cBox ∧ ¬sBox ∧ ¬inCZ ↗ wpri(< CZdir >, t)
¬car ∧ ¬cBox ∧ ¬sBox ∧ inCZ ↗ wpri(backward, t)

↗ wpri(forward, t)
↗ wpri(left, t)
↗ wpri(right, t)

car ∧ cLZ ↗ wpri(drop, t)
car ∧ ¬cLZ ↗ wpri(< LZdir >, t)

- car: ri is carrying a box;
- cBox: ri is close a box;
- sBox: ri is seeing a box;
- inCZ: ri is in the claim zone;
- cLZ: ri is close to laying zone;
- cLZ: ri is close to laying zone;
- < CZdir >: the move to do to go to claim zone;
- < LZdir >: the move to do to go to laying zone;
- ↗: increasing.

Reflex values are static and also depend on perceptions – but only on the
direction of the robot. As for ants, robots may prefer moving forward then back-
ward [11]. For example, values for wrri

(actj , t) can be :

- wrri
(forward, t) = 50 ;

- wrri
(left, t) = 10 ;

- wrri
(right, t) = 10 ;

- wrri(backward, t) = 0 ;

Thus, even if a goal leads a robot to a wall, the robot can move by side,
as ants do to forage and to avoid dead end. Nevertheless, this mechanism is
not sufficient to avoid deadlocks in long narrow corridors in which robots cannot
cross. The goal is more influent than reflexes. As a consequence, we need to define
cooperation rules to enable all robots to achieve their tasks without deadlock.

Finally, robots do not process their nominal next action from a memory.
Therefore, ∀j, wmri(actj , t) = 0.

4 Cooperative Behaviors Study

In the previous section, the different modules of a robot and its components have
been detailed, except the Cooperation Module. This section aims at discussing
cooperation rules to establish in order to enable the multi-robot system to be in
functional adequacy with its environment.

Cooperative Agent Model Instantiation to Collective Robotics 215

4.1 Cooperative Unblocking

Beyond two robots acting to transport boxes in a same environment, the nominal
behavior cannot be adequate. Indeed, a robot owns skills to achieve its tasks,
but not to work with other robots. In this very constrained environment, spatial
interference zones appear. If two robots, a first one carrying a box and moving
to the laying zone and a second one moving to the claim zone to pick a box,
meet in a corridor, the circulation is blocked – because they cannot drop boxes
outside the laying zone. Then, it is necessary to provide cooperative behaviors
to robots. Two main NCS (non cooperative situations) can be reactively solved:

A robot is blocked. A robot r1 cannot move forward because it is in front of
a wall or another robot r2 moving in the opposite sense3. In this case, if
it is possible, r1 must move to its sides (left or right). This corresponds to
increasing values of the cooperative action vector related to side movements:
V coop

r1
(t, right) and V coop

r1
(t, left). If r1 cannot laterally move, two other solu-

tions are openned. If r2 has an antagonist goal, the robot which is the most
distant from its goal will move backward (increasing V coop

ri
(t, backward))

to free the way for the robot which is the closest to its goal (increasing
V coop

ri
(t, forward) even if it may wait). If r2 has the same goal than r1, ex-

cept if r1 is followed by an antagonist robot or if r1 moves away from its
goal (visibly it moves to a risky4 region), r1 moves backward; else r1 moves
forward and r2 moves backward.

A robot is returning. A robot r1 is returning5 as a consequence of a traffic
blockage. If it is possible, r1 moves to its sides (an is no more returning).
Else, r1 moves forward until it cannot continue or if encounters another robot
r2 which is returning and is closer to its goal than r1. Table 2 sums up the
behavior in this situation. If there is a line of robot, the first returning robot
is seen by the second one that will return too. Therefore, the third one will
return too and so on until there is no more obstacle.

These rules correspond to resource conflict (corridors) or uselessness when a
robot must move backward and away from its goal. In the case of robots, situations
will not be specified as incomprehension because robots are unable to communi-
cate directly. These rules, which are simple to express, ensure that robots cannot
block each other in corridors. But, this cooperation attitude only solves problem in-
stantly, creating returningmovementand then implies time loss to transportboxes.

4.2 Cooperative Anticipation

By taking into account the previous remark, it seems possible to specify coop-
eration rules to anticipate blockage situations in order to make the collective

3 If r2 moves in another direction than the opposite direction of r1, it is not considered
as blocking because it will not block the traffic anymore.

4 It is risky in the sense it may occur a lot of non cooperative situations such as
conflicts.

5 A robot is considered as returning until it has no choice of side movements.

216 G. Picard

Table 2. Example of specification of the “a robot is returning” uselessness NCS

With:
– ret: ri is returning;
– freeR: right cell is free;
– freeL: left cell is free;
– ant: in front of an antinomic robot;

– toGoal: ri is moving to goal;
– cGoal: ri is closer to its goal than its

opposite one;
– ↗: increasing.

more efficient. We call this optimisation cooperation rules. Previous rules enable
robots to extract from blockage. A robot is in such a situation because it was
crossing a zone frequented by antinomic robots. So as to prevent this situation,
robots must be able to avoid such risky zones: zones from which antinomic robots
come. Then, an anticipation rule can be specified:

A robot sees an antinomic robot. If a robot r1 perceives a robot r2 having an
antinomic goal, if r1 can move to its sides it does it else it moves forward.

Nevertheless, this reactive anticipation presents a major problem: once a
robot has avoided the risky zone, no mechanism ensures that it will not go in it
again, led by its goal. In order to tackle this difficulty, robots can be equipped
with a memory of the risky zones (in the Representations Module). Each time
t a robot ri experiments an anticipation situation facing a robot rj , it adds to
its memory a tuple (or virtual marker) 〈posX(rj , t), posY (rj , t), goal(ri, t), w〉 in
which posX(ri, t) and posY (ri, t) represent the coordinates of rj at the mo-
ment t. goal(ri, t) represents the goal ri was achieving at time t. w repre-
sents a repulsion value. The higher the value is, the more the robot will try
to avoid the zone described by the marker when it is achieving another goal
than goal(ri, t). Therefore, the robot inspects all its personal markers6 whose
distance is inferior to the perception limit (to fulfill the locality principle). A
marker with a weight w and situated in the direction dir at a distance d in-
duces that V coop

ri
(t, diropp) will be increased of w (diropp is the opposite direc-

tion to dir).
As the memory is limited, tuples that are added must disappear during

simulation run-time. For example, the weight w can decrease of a given value
δw (called forgetting factor) at each step. Once w = 0, the tuple is removed
from the memory. This method corresponds to the use of virtual and personal
pheromones. Finally, as ants do, robots can reinforce their markers: a robot

6 Robots cannot share their memory as they cannot communicate.

Condition Action

ret ∧ freeR ↗ V coop
ri

(t, right)
ret ∧ freeL ↗ V coop

ri
(t, left)

ret ∧ ¬(freeL ∨ freeR) ∧ ant ∧ toGoal ∧ cGoal ↗ V coop
ri

(t, backward)
ret ∧ ¬(freeL ∨ freeR) ∧ ant ∧ toGoal ∧ ¬cGoal ↗ V coop

ri
(t, forward)

ret ∧ ¬(freeL ∨ freeR) ∧ ant ∧ ¬toGoal ↗ V coop
ri

(t, backward)
ret ∧ ¬(freeL ∨ freeR) ∧ ¬ant ↗ V coop

ri
(t, forward)

Cooperative Agent Model Instantiation to Collective Robotics 217

moving to a position corresponding to one of its marker with another goal, re-
initializes the marker. In fact, if the robot is at this position, it might be a risky
zone when it tries to achieve another goal.

5 Experiments

In order to validate this approach and to compare cooperative behaviors of
transporter robots, the expounded model has been implemented and simulated.

5.1 Experimental Setup

The simulation environment corresponds to two rooms (25 x 30 cells) separated
by two long and narrow corridors (30 x 1 cells). 300 robots are randomly placed
in the claim room. These robots can perceive at 5 cells, and can make a move of
one cell at each step. If they can anticipate conflicts, their memory can contain
1500 tuples with w = 400 and δw = 1.

5.2 Reaction Versus Anticipation

The figure 3 shows a comparison between the results of the previously presented
cooperative behaviors. The unblocking behavior-equipped robots obtain a lin-
ear efficiency with no blockage, unlike nominal behavior-equipped individualist
robots. By adding blockage anticipation, the collective becomes more efficient (at
least 30% more boxes are transported). This corresponds to an optimisation of
the unblocking behavior. According to the AMAS paradigm, we can experimen-
tally observe that the local resorption of NCS leads to the collective functional

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 20000 40000 60000 80000 100000
Steps

Bo
xe
s

Cooperative unblocking behavior
Cooperative anticipative and unblocking behavior
Nominal behavior

Fig. 3. Number of transported boxes for 15 simulations (300 robots, 2 corridors, 5-

ranged perception), corresponding to the nominal behavior (individualist) and the

two cooperative ones: the cooperative unblocking behavior (see section 4.1) and the

cooperative anticipation behavior (see section 4.2)

218 G. Picard

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20000 40000 60000 80000 100000
Steps

Ro
bo
ts

Moving to claim zone
Moving to laying zone

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20000 40000 60000 80000 100000
Steps

Ro
bo
ts

Moving to claim zone
Moving to laying zone

Fig. 4. Number of incoming robots for a corridor and for the two cooperative behaviors:

unblocking behavior (right) and anticipation unblocking behavior (left)

adequacy. Finally, the more the NCS are taken into account, the higher the
performances are.

5.3 Emergence of Corridor Dedication

The figure 4 presents the corridor-going for the two cooperative behaviors. In
the case of anticipation behavior, we can observe the emergence of a sense of
traffic. Robots dedicate corridors to particular goals. We can assign the emergent
property to this phenomenon because robots do not have any notion of corridor
– unlike some previous work [12]. Thus, just thanks to local data, robots estab-
lished a coherent traffic behavior that leads to an optimization of the output.

Fig. 5. Global markers positioning (sum of all individual memories)

Cooperative Agent Model Instantiation to Collective Robotics 219

Moreover, the sense of traffic varies from a simulation to another with only little
initial variations of some robots.

In fact, markers are positioned only at one corridor entry for one direction as
figure 5 shows. This figure shows the sum of all the markers for all the robots.
This data is not known from robots. It is only calculated for monitoring purpose.

According to the distinction made by [13], the functionality of system is
weakly emergent because robots do not have any global knowledge about the
number of boxes they have transported and it does not motivate them to trans-
port more boxes.

5.4 Adaptation and Robustness

Some simulations has been launched in dynamic environments with random cor-
ridor closures. These simulations show the collective always sets another corridor
dedication unless the corridor closure frequency is to high in comparison with
the forgetting factor (δw).

6 Discussion

By regarding the previous results, instantiating the agent model proposed by
ADELFE has several advantages. Firstly, unlike ant-inspired algorithms [7],
robots do not mark their environment with pheromones but memorize virtual
and personal markers. Secondly, contrary to competition-based [8] or altruis-
tic [10] approaches, robots do not need direct communication to alarm, inform
close robots or exchange requests and intentions. Thirdly, cooperative behavior
encoding is insensitive to the number of robots, to the topography and to the
dimensions of the environment. Fourthly, no global feedback is needed to lead
the system to functional adequacy, which prevents the system to reach local
extrema. Finally, the incremental method proposed by ADELFE to define non
cooperative situations – necessary ones and optimization ones – opens up a new
way toward a living design methodology within which behaviors are assigned
to robots (or agents) as design and development progress in terms of designers’
requirements (this activity is called fast prototyping in the ADELFE process).
Of course, this will need to develop a simulation/design platform, as adequate
to the cooperative agent model as possible.

Nevertheless, some choices have been taken concerning the affectation of val-
ues that can drastically modify the global behavior. By now, ADELFE does not
provide any guidance to appropriately instantiate these values; designers must
do it by themselves. For instance, the initial weight for markers and the for-
getting factor have been adjusted to the time robots spend to cross the entire
environment. This might be completely different for a more complex environ-
ment with more or less corridors which can dynamically open or close. Some
simulations has been done with such environments, and the affected values seem
correct unless corridors are too near or frequence of closure is too fast. These
values also may be learned during run-time, which is one of our perspectives.

220 G. Picard

Moreover, from the resource transportation problem, we focused on particu-
lar NCS: conflict and uselessness. If robots were equipped with high-level com-
munication capabilities (to exchange data as markers in order to share their
experiences), incomprehension and ambiguity may raise. In this case, ADELFE
proposes to analyze interaction protocols between agents and identify such si-
tuations.

Lastly, the application we chose and the solution we considered are typical
examples of “flat” systems within which no a priori hierarchy is defined. Self-
organization leads the society to an adequate functioning without having spec-
ified a static organization; that is due to the homogeneity of the collective. On
the contrary, if the collective is heterogeneous (different speeds, different func-
tions, complementary or not), notions of hierarchy and/or priority are relevant.
So as to ensure extensionality7 and irreductibility8 properties of emergent sys-
tems [14], predefining an organization is prohibited; in this case, the function of
the system is intentionally defined, and therefore is not adaptive. Consequently,
organization is an emergent phenomenon of relations between agents and is not
a predefined schema.

7 Conclusion

In this paper, we presented an instantiation of the cooperative agent model pro-
posed by ADELFE in the domain of Collective Robotics. This application helps
us highlighting the possibility to iteratively and compositionally design agents’
behaviors. Considering the ignorance of the global task and the environment,
the self-organizing collective reaches an emergent coherent behavior, which is
then more robust to environmental risks (such as traffic jams). Our simulation
application tackles a simple problem with a simple environment.

Concerning the cooperative agent model, extending the ADELFE method to
development and automatic code generation based on the MDA (Model Driven
Architecture) paradigm seem to be promising perspective [15]. Actually, by for-
mally specifying the model and by defining transformation rules, proceeding
from design models to development instantiations becomes conceivable.

References

1. Capera, D., Georgé, J., Gleizes, M.P., Glize, P.: The AMAS theory for complex
problem solving based on self-organizing cooperative agents. In: 1st International
Workshop on Theory and Practice of Open Computational Systems (TAPOCS) at
IEEE 12th International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 2003), IEEE (2003) 383–388

7 This means the function of the system is defined by relations between input and
output, but not by an algorithm.

8 Churchland defines the emergence in terms of the irreductibility of properties as-
signed to a high-level theory associated to components in a lower-level theory.

Cooperative Agent Model Instantiation to Collective Robotics 221

2. Georgé, J.P., Gleizes, M.P., Glize, P., Régis, C.: Real-time simulation for flood
forecast: an adaptive multi-agent system staff. In Kazakov, D., Kudenko, D.,
Alonso, E., eds.: Proceedings of the AISB’03 symposium on Adaptive Agents and
Multi-Agent Systems(AAMAS’03), University of Wales, Aberystwyth (2003)

3. Picard, G., Gleizes, M.P.: The ADELFE Methodology – Designing Adaptive Co-
operative Multi-Agent Systems. In Bergenti, F., Gleizes, M.P., Zambonelli, F.,
eds.: Methodologies and Software Engineering for Agent Systems, Kluwer (2004)

4. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Designing Agents’ Behaviours
within the Framework of ADELFE Methodology. In: Fourth International Work-
shop on Engineering Societies in the Agents World (ESAW’03), Imperial College
London, UK, 29-31 October. Volume 3071 of Lecture Notes in Artificial Intelli-
gence., Springer-Verlag (2004)

5. Picard, G., Capera, D., Gleizes, M.P., Glize, P.: A Sample Application of ADELFE
Focusing on Analysis and Design : The Mechanism Design Problem. In: Fifth
International Workshop on Engineering Societies in the Agents World (ESAW’04),
20-22 October 2004, Toulouse, France. (2004)

6. Vaughan, R., Støy, K., Sukhatme, G., Matarić, M.: Blazing a trail: Insect-inspired
resource transportation by a robotic team. In: Proceedings of 5th International
Symposium on Distributed Robotic Systems. (2000)

7. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press (1999)

8. Vaughan, R., Støy, K., Sukhatme, G., Matarić, M.: Go ahead make my day:
Robot conflict resolution by aggressive competition. In: Proceedings of the 6th
International Conference on Simulation of Adaptive Behaviour. (2000)

9. Ferber, J.: Multi-Agent System: An Introduction to Distributed Artificial Intelli-
gence. Harlow: Addison Wesley Longman (1999)

10. Lucidarme, P., Simonin, O., Liéègeois, A.: Implementation and Evaluation of a Sat-
isfaction/Altruism Based Architecture for Multi-Robot Systems. In: Proceedings
of the 2002 IEEE International Conference on Robotics and Automation, ICRA
2002, May 11-15, 2002, Washington, DC, USA, IEEE (2002) 1007–1012

11. Topin, X., Fourcassié, V., Gleizes, M.P., Theraulaz, G., Regis, C., Glize, P.: The-
ories and experiments on emergent behaviour: From natural to artificial systems
and back. In: Proceedings of the 3rd European Conference on Cognitive Science
(ECCS’99), Certosa di Pontignano, SI, Italy (1999)

12. Picard, G., Gleizes, M.P.: An Agent Architecture to Design Self-Organizing Col-
lectives: Principles and Application. In Kazakov, D., Kudenko, D., Alonso, E.,
eds.: AISB’02 Symposium on Adaptive Multi-Agent Systems (AAMASII). Volume
2636 of LNAI., Univerity of London, UK, Springer-Verlag (2002) 141–158

13. Müller, J.P.: Emergence of collective behaviour: simulation and social engineering.
In: Fourth International Workshop on Engineering Societies in the Agents World
(ESAW’03), Imperial College London, UK, 29-31 October. (2004)

14. Ali, S., Zimmer, R., Elstob, C.: The question concerning emergence : Implication
for Artificiality. In Dubois, D., ed.: Computing Anticipatory Systems : CASYS’97
- First International Conference. (1997)

15. Soley, R., the OMG Staff Strategy Group: Model driven architecture. White paper
Draft 3.2, OMG (2002)

From Self-Organized Systems to Collective
Problem Solving

Chevrier Vincent

LORIA UMR 7503,BP 239, F-54506 Vandoeuvre cedex
chevrier@loria.fr

Abstract. The reactive multi-agent approach emphasizes individual sim-
plicity over the collective complexity of the task being performed. How-
ever, to apply such an approach to a problem, the components of the
multi-agent system have to be designed in such a way that the society
be able to fulfill its requirements with a reasonable efficiency. Inspiration
from natural self-organized systems is a way to solve this conception
issue.

This article illustrates two cases of how natural self-organized systems
can be transposed to engineer societies of agents that collectively solve
problems. It presents two original self organized models conceived in
cooperation with biologists and details how transposition principles have
been used to design collective problem solving systems.

1 Introduction

This article concerns the design of multi-agent systems that collectively solve
a problem. It focuses on reactive systems made up of simply behaving agents
with decentralized control that despite their individual simplicity are able to
collectively solve problems whose complexity is beyond the scope of individuals:
”‘intelligence”’ of the system can be envisaged as a collective property.

One of the difficulties in the design of reactive multi-agent systems is to spec-
ify simple interactions between agents and between them and their environment
so as to make the society be able to fulfill its requirements with a reasonable
efficiency. This difficulty is proportional to the distance between the simplicity
of individuals and the complexity of the collective property.

Taking inspiration from self-organized phenomena in biology is a way to
tackle this engineering problem. This article describes two original models, trans-
posed from collective behavior in biology, to engineer societies of agents that
collectively solve problems.

2 Context of the Work

Reactive multi-agent systems [1] are systems made up of simply behaving units
with decentralized control. Agents are situated in a dynamic environment through

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 222–230, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

From Self-Organized Systems to Collective Problem Solving 223

which they interact. They are characterized by limited (possibly no) represen-
tation of themselves, of the others and of the environment. Their behaviors are
based on stimulus-response rules. Decision-making is based on limited informa-
tion about the environment and on limited internal states and does not refer to
explicit deliberation. The individuals do not have an explicit representation of
the collective task to be achieved because of their simplicity. Therefore, the so-
lution of the problem is a consequence of successive interactions between agents
and the environment. In such systems, the regulation of activities can be achieved
by self-organization.

Camazine et al [2] define self-organization as a process in which pattern at the
global level emerges solely from numerous interactions among lower-lever compo-
nents of the systems. Self-organized mechanisms are robust, decentralized, and
can resist to perturbations. Reactive multi-agent systems can be viewed as artifi-
cial self organized ones. Their characteristics enable them to adapt dynamically
their function or structure to changing conditions without external intervention.
This is one of the reasons why their applications are becoming more and more
attractive: from scene animation in movies 1 to optimization problems [3, 4]; or
flood forecast [5]. A lot of examples of transposition of natural self-organized
systems for problem solving can be found in [6].

Applying a self-organized approach to solve a given problem requires design-
ing a system as three components: the environment, the agent behaviors and the
dynamics of the whole such that the agent society is able to fulfill its requirements
with a reasonable efficiency. The difficulty is proportional to the distance between
the simplicity of individuals and the complexity of the collective property.

Designing such systems can be achieved by applying some guidelines or
methodologies such as [7, 8, 1] or using some formal framework [9].

Another approach can be the transposition of natural self-organized systems.
Social models in biology can be a source of inspiration for designing reactive
multi-agent systems. Several collective phenomena exist in nature and knowledge
about the organization of animal societies can be transposed into multi-agent
systems as collective problem solving methods, or at least used as a metaphor
in view of designing these systems.

In this article, we detail how two original self organized models built in coop-
eration with biologists have been transposed to collective problem solving. The
first is inspired from the collective weaving in social spiders and it has been trans-
posed to region detection in grey scale images; the second models specialization
among a group of rats and it has been transposed to allocation problem.

3 Principles for Transposition

The key idea of transposition is to reuse a collective mechanism that exists in a
biological self organized system. The hypothesis underlying this approach is that

1 MASSIVE: Multiple Agent Simulation System In Virtual Environment,
http://www.massivesoftware.com

224 C. Vincent

the complex collective behavior exhibited by societies of animals is a response
to some environmental problem faced by the society.

In our case, a self-organized system that collectively solve a problem is de-
scribed as:

– An environment that is a representation of the problem (its initial conditions
and constraints);

– A collective pattern that is interpreted as a solution of the problem at macro
level;

– Individual behaviors at micro level that generates the pattern from the en-
vironmental constraints.

Transposition consists of adapting each of these elements found in a biological
system to the context of the problem concerned, and in preserving the collective
response. Concretely, it needs to encode the problem and relating it to swarm
mechanism and to interpret the collective results as an exploitable solution in
the problem domain:

– the pattern in problem domain is the same as in natural systems; the dy-
namics principles that enable it are unchanged,

– the environment is modified to model the problem,
– agents’ behavior is adapted to make the link between the environment and

the system dynamics
– For efficiency purposes, some new behaviors can be added.

The next sections describe two natural self organized systems and detail how
we applied these transposition principles.

4 From Web Weaving to Region Detection

This section presents a collective phenomena in social spiders and its transposi-
tion to region detection in gray level images. Details about the simulation model
and the problem solving can be found in [10].

4.1 Biological Considerations

Among the thousands of spider species in the world, only about fifteen species
can be qualified as social spiders. Anelosimus eximius is a species of social spider
which can be found in French Guiana. The individuals live together, share the
same web and cooperate in various activities such as brood care, web weaving,
hunting,

Despite their apparent individual simplicity, these spiders are exhibit inter-
esting collective behavior such as web weaving. A. eximius are small animals
(5 mm) and yet they are able to collectively build silky structures bigger than
ten m3 that always respect architectural properties whatever be the biological
environment. Webs are not geometrical but twofold: an horizontal hammock and
an aerial network of silk lines.

From Self-Organized Systems to Collective Problem Solving 225

4.2 Simulation Model

We built a multi-agent model to reproduce the collective behavior of web weav-
ing. It is a reactive model characterized by the absence of social reference and
by simple individual behavioral items.

In our proposal, the environment models the natural vegetation and the web
being built. It is implemented as a square grid in which each position corresponds
to a stake characterized by its height. The web is constituted by the set of silk
drag lines whose extremities are fixed on the top of two stakes. The set of agents
is composed of spiders. They are always located on the top of a stake and behave
according to two independent items:

1. a movement item which consists of the spider moving to a reachable stake
: one of the 8 adjacent stakes or one linked by (at least) one silk drag line;

2. a silk fixing item which consists of the spider dropping a silk drag line on
the top of the current stake.

All behavioral items are stochastic: the silk fixing is ruled by a constant probabil-
ity and the movements are determined by a contextual probability distribution
which depends on the silk attraction factor.

Interactions are mediated by the silk drag lines. As spiders move, they con-
struct silky structures in the environment which offer new paths for their move-
ments. Spiders are attracted by silk drag lines and are likely to follow a drag
line instead of moving to an adjacent stake. By this way, past actions put traces
in the environment which in turn favor some actions over others. This kind of
coordination is called stigmergy[11].

The simulation of this activity starts with an environment empty of silk
and consists, during a fixed number of cycles, of making the spiders execute
successively their two behavioral items. These simulations show that the silk
attraction factor plays a key role in the building: when it is too low, the silk is
fixed everywhere in the available space, when it is about average, a collective
web is built; and when its is too high, spiders are trapped in their own web and
separate webs are built.

4.3 Transposed Model

The problem we chose was of extracting various regions from an image. Segment-
ing an image A consists of providing a partition of pixels (a set of regions) that
share some properties: mainly they must be a connected set of pixels of homo-
geneous radiometric characteristics, in our case the gray level; their intersection
has to be empty.

This problem shows some similarities to collective weaving. It requires an
exploration of a space that has to be restricted to a subset of its elements (the
pixels of the region). Furthermore, such an application enables visual assessment.

Initially, the environment corresponds to an image. Basically, all spiders are
put in it and are in charge of detecting one region. The agents will explore
the image and lay down drag lines on some pixels: those that are interesting.

226 C. Vincent

Silk fixing is then a way to ensure pixel selection. Each agent is described by
the same behavior and provided with parameters, which characterize the region
it has to detect. Finally, the environment contains collective webs that will be
interpreted to deduce regions by considering the pixels on which the web is
fixed. The environment corresponds to a gray level image and is represented by
a two dimensions array whose elements are the pixels of the image, the gray level
correspond to height of stakes. Silk drag lines are put between pixels.

Agents are characterized by three items executed sequentially:

1. the movement item that is the same as in the simulation model;
2. the silk fixing item is now contextual: the probability to fix the silk is pro-

portional to the distance between the gray level of the pixel and the gray
level the spider has to detect

3. otherwise the ’Return to web’ item that makes the spider to return to the
web according to constant probability.

The last item is a new one. It is needed to ensure the spider does not build a web
on pixels that share the same gray level but that are not necessarily connected
and do not correspond to a region. This item restricts the exploration to pixels
in the neighborhood of the already selected ones.

The interaction is still based on stigmergy as it was in the simulation model
and therefore the dynamics of the system is the same as in simulation.

By gathering all the pixels an agent has woven on, we obtain a region; that
is, pixels are put together without a consideration of the number of times the
agent has woven on them. By applying a threshold on the number of fixed drag
lines, we can restrict the pixels that belong to a region.

4.4 Comments

All the ingredients for detecting various regions are available in our approach if
the required parameters are well assessed. It is also possible to detect simultane-
ously several regions by gathering agents with the same initial parameters into
groups. However, a drawback has to be solved in order to produce a real appli-
cation: parameters have to be empirically adjusted and we have to determine
the number of agents and their initial position.

5 From Specialization to Task Allocation

This part presents a reactive model that enables the reproduction of the special-
ization that is observed in groups of rats confronted by an increasing difficulty to
reach food. Details of the simulation model and especially its adaptive properties
can be found in [12].

5.1 Biological Considerations

The self-organized phenomenon in biology, modeled in this section, is social
differentiation in a group of rats in a diving-for-food situation. This situation is

From Self-Organized Systems to Collective Problem Solving 227

a complex social task in which, for a group of 6 rats, the food accessibility is
made difficult by progressive immersion in water of the only path of access to the
food source (the feeder). This experimental schedule leads to the emergence of a
specialization in the group of rats, in two stable profiles: supplier and non-carrier
rat. The non-carrier (a) animals never dive, but get food only by stealing it from
the suppliers by fighting for it. The supplier (b) rats dive, bring the food back
to the cage and cannot defend the food they carried. So, putting groups of rats
in a situation in which they have an increasing difficulty to reach food, leads to
the emergence of a social structure.

5.2 Simulation Model: Hamelin

We propose a reactive model to reproduce this phenomenon in which agents
don’t have cognitive abilities (even if rats do have).

In this model, the environment corresponds to the feeder and the water-
submerged path.

All rats are reactive agents characterized by 4 internal states and 3 behavioral
items. The states are:

– The strength of the agent s, which stands for its ability to win when it is
involved in a fight.

– Its anxiety (or fear) for the water θ corresponding to its reluctance to dive
into water.

– Its hunger h which embodies the need for food and constitutes the motivation
for the agent.

– The possessed amount of food Food implemented as the size of the owned
pellet.

The behavior of the agent is a combination of items: to dive, to attack (and
fight) and to eat. Each of them is stochastically triggered or carried out. The
associated probability is computed according to the internal state of the rat and
biological observations.

The dive action is modeled as a response threshold [13]. Fight is modeled as a
dominance relationship [14]. We reused these existing models and coupled them.
When the action is effectively performed a reinforcement alters the internal state
of the agents allowing them to learn and modify their behaviors according to
their past actions.

This model prove to be sufficient to reproduce the collective phenomenon and
to exhibit adaptive properties both at collective and individual levels.

5.3 Transposed Model

The general framework to transpose the Hamelin model consists of a dynamic
task allocation problem among machines, connected together in a network. Ini-
tially the tasks are available on a central server. The machines can acquire the
data by accessing directly the server or by ’attacking’ each other. As some poli-
cies are put on the server in order to avoid crashes, some agents can easily

228 C. Vincent

access the server while others not so easily(and the more an agent can connect,
the easier it is for it to access).

We use this toy example to assess the transposition principles we expressed
in case of the Hamelin model; and in that context proposed a first transposed
model. The expected pattern is a specialization of agents according to their
access mode to the server.

The environment corresponds to the server and the network between ma-
chines. Environment is characterized by such features as the maximum number
of connections, the data size, etc.

The machines are the agents of the system. Their internal states are trans-
posed as follow:

– The strength has the same meaning as in the simulation model.
– The anxiety characterizes the difficulty to connect to the server.
– The hunger corresponds to the available space to store data.
– The amount of food represents the data stored.

The transposition of behavioral items was made as follow. Diving corresponds
to accessing directly the data on the server, fighting is unchanged and is ruled by
the same principles as in simulation. Eating is now associated to the processing
of the data.

The dynamics of the system is, as in the simulation model, based on the
coupling of the diving and fighting items.

We ran experiments with this transposed model and the results are encourag-
ing. They show that specialization appears in the set of machines and that there
is a gain in processing time when using the specialization model with respect to
a system with no specialization.

However, they are obtained on specific instances of problem and we need more
experiments to have a better assessment of the transposed model, especially, by
applying the model to a wider range of problem instances.

6 Concluding Remarks

This article described how self-organized models in biology can be transposed
to engineer societies of agents that collectively solve problems.

It focused on two original self organized models established in cooperation
with biologists and detailed how transposition principles have been instantiated
in those cases.

The first model concerned the web weaving activity of social spiders. This
model extends the repertoire of biologically inspired systems by providing a new
collective mechanism of stigmergy based on silk. The main difference with exist-
ing mechanisms is that there is the possibility in the spider model to integrate
non-local information in local processing. The second model deals with social
differentiation in group of rats. It proposes a reactive model with no social cog-
nition nor global stimulus that produces a social structure.

From Self-Organized Systems to Collective Problem Solving 229

This article also pointed out that the development and analysis of these
transposed system requires experiments[15, 16] to find the relevant value of pa-
rameters that enable efficient solving of the problem. This is the reason why our
current direction of work is the development of a platform for the analysis of
artificial self-organized systems[17].

Acknowledgment

The author would like to acknowledge Christine Bourjot for her valuable com-
ments on this text.

Part of the work presented here was partially funded by the Région Lorraine
in the Pôle de Recherche Scientifique et Technologique ”Intelligence Logicielle”.

References

1. Parunak, H.V.D.: Go to the ant. Engineering Principles from Natural Agent
Systems. Annals of Operations Research 5 (1997) 69–101

2. Camazine, S., Deneubourg, J.L., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organization in Biological Systems. Princeton University Press. (2001)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. Oxford University
Press. (1999)

4. Dury, A., Le Ber, F., Chevrier, V.: A reactive approach for solving constraint
satisfaction problems. In: Proceedings of the 5th International Workshop on In-
telligent Agents V, Agent Theories, Architectures, and Languages, LNAI 1555,
Springer-Verlag (1999) 397–412

5. Georgé, J.P., Gleizes, M.P., Glize, P., Regis, C.: Real-time simulation for flood fore-
cast: an adaptive multi-agent system S. In: Proceedings of the AISB’03 symposium
on Adaptive Agents and Multi-Agent Systems, University of Wales, Aberystwyth,
7-11 April. (2003)

6. Di Marzo Serugendo, G., Foukia, N., Hassas, S., Karageorgos, A., Mostéfaoui,
S.K., Rana, O.F., Ulieru, M., Valckenaers, P., van Aart, C.: Self-organization:
paradigms and applications. In: Engineering Self-Organising Systems: Nature-
Inspired Approaches to Software Engineering LNAI 2977, Springer-Verlag (2004)
1 – 19

7. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Designing agents behaviours
within the framework of adelfe methodology. In: Proceedings of Engineering
Societies in the Agents World, ESAW 03, LNAI 3071, Springer Verlag (2004) 311
– 32

8. Muller, J.P.: Emergence of collective behavior and problem solving. In: Proceedings
of Engineering Societies in the Agents World, ESAW 03, LNAI 3071., Springer
Verlag (2004) 1 – 21

9. Kazadi, S., Chung, M., Lee, B., Cho, R.: On the dynamics of puck clustering
systems. Robotics and Autonomous Systems 46(1) (2004) 1–27

10. Bourjot, C., Chevrier, V., Thomas, V.: A new swarm mechanism based on social
spiders colonies : from web weaving to region detection. Web Intelligence and Agent
Systems : An International Journal - WIAS 1 (2003) 47–64

230 C. Vincent

11. Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez
bellicositermes natalensis et cubitermes sp., la théorie de la stigmergie : essais
d’interprétation du comportement des termites constructeurs. Ins. Soc. 6 (1959)
41–84

12. Thomas, V., Bourjot, C., Chevrier, V., Desor, D.: Hamelin: A model for collective
adaptation based on internal stimuli. In: From animals to animats 8 - Eighth
International Conference on the Simulation of Adaptive Behaviour - SAB’04, Los
Angeles, USA. (2004) 425–434

13. Theraulaz, G., Bonabeau, E., Deneubourg, J.L.: Response threshold reinforcement
and division of labour in insect societies. Proc. Roy. Soc. London B 265 (1998)
327–332

14. Hemelrijk, C.K.: Dominance interactions, spatial dynamics and emergent reci-
procity in a virtual world. In: Proceedings of the fourth international conference
on simulation of adaptive behavior. (1996) 545–552

15. Edmonds, B.: Using the experimental method to produce reliable self-organised
systems. In: Proceedings of the 2nd International Workshop on Engineering Self-
Organising Applications (ESOA 2004) at 3rd AAMAS, New York. (2004)

16. Edmonds, B., Bryson, J.: The insufficiency of formal design methods the necessity
of an experimental approach for the understanding and control of complex mas.
In: Proceedings of the 3rd Internation Joint Conference on Autonomous Agents
and Multi Agent Systems (AAMAS’04), New York, ACM (2004) 936–943

17. Bourjot, C., Chevrier, V.: A platform for the analysis of artificial self-organized
systems. In: Proceedings of Advances in Intelligent Systems - Theory and Appli-
cations AISTA 2004. Luxembourg. (2004)

A Sample Application of ADELFE
Focusing on Analysis and Design
he Mechanical Synthesis Problem

Davy Capera, Gauthier Picard, Marie-Pierre Gleizes,
and Pierre Glize

IRIT, Université Paul Sabatier,
F-31062 Toulouse Cedex, France

{picard, capera, gleizes, glize}@irit.fr
http://www.irit.fr/SMAC

Abstract. This paper aims at explaining how to follow an agent-orien-
ted process to develop a multi-agent mechanism design system. ADELFE
methodology is devoted to adaptive multi-agent systems in which adap-
tation is enabled by cooperative self-organization. Two main works are
emphasized. First, the analysis leads to the agent identification by study-
ing the interactions both between the system and its environment and
within the system itself. Second, the different modules of the agents and
their cooperative attitude are modeled during the design phase. Such an
approach is promising, but raises some difficulties considering the notion
of cooperation, which is discussed before concluding.

1 Introduction

In spite of the ever increasing number of developed agent-oriented applications,
Multi-Agent Systems have still not manage to break through to the industrial
side. This lack of acknowledgment may have two main reasons. First, to transmit
any technology to industrial level, academics must provide guidelines, formalisms
and tools to manipulate their technologies. MAS community has done a large
effort in this methodological domain. DESIRE [1] or GAIA [2] are examples of
early agent-oriented methodologies embedded in industrial projects that provide
rich formalisms. Moreover, for a few years, a real work has been made in nor-
malizing agent-oriented concepts, as in the AUML community within the OMG
[3]. Some methodologies, such as ADELFE1 [4] has been enriched by pedagogi-
cal tutorials –significant examples of how to develop an application with a given
method– and tools to enlarge the multi-agent developers community, in the same
way than MESSAGE/INGENIAS [5] or agentTool [6]. The second reason may
be the lack of real applications for everyday industrial use. MAS community has

1 ADELFE a French RNTL-funded project which partners are ARTAL Technologies
and TNI-Valiosys from industry and IRIT and L3I from academia.

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 231–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

t

232 D. Capera et al.

to exhibit proofs of the agent technology efficiency and to tackle unsolved or
mis-solved problems. For instance, the time table (or scheduling) problem has
not been really solved by agent-technology, even if some works seem promising
[7]. But real comparisons to already used technology, such as CSP-based or evo-
lutionary solvers, has not yet exhibited agents’ relevance. In this article, as an
example of this kind of application, we will expound a problem which has been
proposed by the aeronautics industry: the mechanism design.

Mechanism design consists in assembling mechanical components such as
links (rigid bodies, bars) and joints (hinges, cams, etc.), in order to build a
mechanical system which performs a specific function such as following a pre-
cise trajectory. Our objective is to develop an automated tool – based on the
adaptive multi-agent systems paradigm – which is able to synthesize a mecha-
nism from a given set of goals and constraints through a self-assembling process.
ADELFE method is devoted to develop applications in which components co-
operatively self-organise to reach an adequate and adapted functionnality, and
thus ADELFE is relevant to tackle the mechanical synthesis problem. Currently,
there is no software, used by industrial mechanism designers, that includes any
tool to support the synthesis phase of the mechanism design. Nevertheless, some
researches were done in this way by [8], using a multi-expert system based on
agent principle, or [9] which is based on an abstract representation of the kine-
matic structures.

With the aim of illustrating the use of the ADELFE methodology to a prob-
lem of mechanical synthesis, the article is structured as follows. Section 2 ex-
pounds the ADELFE methodology and its foundations. Sections 3 and 4 explain
the application of the analysis and design phases, i.e. how to fill in the different
modules of the agents. Finally, after a brief discussion in section 6, the paper is
concluded with some perspectives.

2 ADELFE Overview

ADELFE enables the development of software with emergent functionality and
consists in a notation based on UML/AUML, a design method, a platform made
up of a graphical design tool [10] and a library of components that can be used
to make the application development easier.

2.1 Process, Notations and Tools

The objective of ADELFE is to cover all the phases of a classical software design
from the requirements to the deployment. ADELFE process is an extension of
the RUP (Rational Unified Process) [4] and adds some specific steps to design
adaptive systems. Only the requirements, analysis and design require modifica-
tions in order to be tailored to AMAS and are presented in the next paragraphs.
ADELFE focuses on some aspects not already considered by existing method-
ologies such as complex environment, dynamics or software adaptation led by
self-organization during which models are specified using UML/AUML nota-

A Sample Application of ADELFE Focusing on Analysis and Design 233

tions [3]. OpenTool software, released by TNI-Valiosys, has been modified to fit
with these notations and Adaptive Multi-Agent Systems (AMAS) requirements.
Likewise, the process is supported by an interactive tool with the aim of eas-
ing following the process by monitoring the advancement, the produced models
and documents, and by providing a guideline example. These tools are freely
available at www.irit.fr/ADELFE.

2.2 Theoretical Foundations

The Adaptive Multi-Agent System (AMAS) theory has been used in several
projects and applications. It aims at defining adaptive multi-agent systems in
which self-organization is led by local cooperation. In such systems, adaptation
is viewed as a three-level concept. At the higher level, the system has to compute
an adequate coherent function as a reaction to the dynamisms of its environment.
To obtain a new function that fits better with the environment, the system has
to change its internal organization at the medium level. The organization of the
MAS is represented by links between the agents. These links can be for instance
workflow links, belief links or more simply communication links. Organizational
changes are consequences of local link changes between agents. Therefore, at
the lower level, agents must know how to change their links with their acquain-
tances to produce a new organization, and then a new coherent function, which
induces the need of a local –i.e. not explicitly informed of the global function–
criterion to decide when changes are necessary. The AMAS theory proposes to
use the cooperation criterion as the engine of self-organization. Cooperation is
defined in three points corresponding to the ”perceive - decide - act” agents’
life-cycle [11]:

(c1) All perceived signals must be understood without ambiguity
(c2) The received information is useful for the agent’s reasoning
(c3) Reasoning leads to useful actions toward other agents

Consequently, an agent must change its links when it detects it does not fit
with this criterion. We then use a proscriptive definition of cooperation (¬c1 ∨
¬c2 ∨¬c3) called non cooperative situations (or NCS). If an agent is in a NCS, it
acts to try to act to come back to a cooperative situation (to be as cooperative
as possible). This approach can be viewed as an exception oriented specification,
where the program functionality is principally defined by “what it must not
do” instead of “what it must do” in classical programming. This framework
enables to prove the functional adequacy theorem [11]: “For any functionally
adequate system in a given environment, there is a system having a cooperative
internal medium which realizes an equivalent function”. It has an important
methodological impact : to design a system, designers only have to ensure agents’
behaviors are cooperative to ensure the system provides an adequate function.
It also raises some problems : ”How can we design agents to obtain coherent
societies?” The ADELFE methodology aims at providing an answer to these
design difficulties.

234 D. Capera et al.

3 Analysis

The analysis work aims at abstracting the application domain into classes start-
ing from the requirements. In an agent-oriented process, it should also lead to
the identification of the agent classes by analyzing the interaction models.

Attachment points

Trajectory point

Hinges

Bars

Hinges
Trajectory

Attachment points

Trajectory point

Hinges

Bars

Hinges
Trajectory

Fig. 1. An example of a 4-bars mechanism

3.1 Domain Analysis

As we are working collaboratively with partners coming from aeronautical indus-
try (European project SYNAMEC2), our software – named Mechanical Synthesis
Solver or MSS – focuses on solving design problems for “X-bars” mechanisms.
This kind of mechanisms contains only three types of mechanical components:
rigid bodies, joints (rotoidal or prismatic) and attachment points. Usually, the
goal of the mechanism consists in following a given trajectory, in avoiding obsta-
cles and in staying contained in a given envelope. Mechanisms devoted to control
plane wings ailerons or outer flaps of nozzle fit with this “X-bars” mechanisms
pattern. The figure 1 shows a “4-bars” mechanism made up by four rotoidal
joints (hinges), three rigid bodies (bars) and two attachments points to the en-
velope – which is not drawn here3. The actuation is a rotation of the upper left
hinge which cyclically performs a top-down wipe while the “trajectory point”
roughly fits with the vertical trajectory all along. In section 2.2, we claimed that
the system adaptation is triggered by interactions occurring between the system
and its environment. Obviously, the motion computation of mechanisms is not
a trivial task and so we will use an external tool MECANO to compute this

2 SYNAMEC is a Growth European project involving Samtech (Belgium), ALA
(Italy), Cranfield University (England), INTEC (Argentina), Paul Sabatier Univer-
sity (France), SABCA (Belgium), SNECMA (France).

3 The envelope on which the attachment points are fixed is topologically viewed as
the fourth bar

A Sample Application of ADELFE Focusing on Analysis and Design 235

MechanismMechanical
Component 1*

Trajectory
Point

1

1

Attachment
Point

RigidBody
+ support+ attach

*0..1

Joint

+ attach

+ attachment

0..1

*

+ attach

+ attach

*

*

Bar

Hinge

Slider
Physical

Environment

Trajectory
+ toFitWith

1..* 1

1

*

Envelop

1

0..1

Obstacle

1

*

Mechanical
System

1

1

1

1

«actor»
MecanoMechanical

Synthesis
Solver1 1

Mecano
Simulation
Manager * 11 1

Fig. 2. Preliminary class diagram of the MSS domain

simulation of the system activity. Thus, the MSS learns a relevant mechanism
by using a loop composed of the following phases:

1. The simulation engine computes the motion of the current mechanism.
2. Data related to the new mechanism state are sent to the mechanical com-

ponents in order to update their state.
3. In compliance with the AMAS theory, MSS performs optimization by solving

NCS detected by the agents, which leads to a new mechanism.

The interface with the simulator is performed through files which describe,
in input, characteristics of the mechanism, the environment and the commands
related to the desired motion (the ”actuation function”). Moreover this interface
allows to recover the new mechanism characteristics after MECANO has com-
puted the motion. The domain description is represented in a preliminary class
diagram shown in figure 2.

3.2 AMAS Adequacy

The next activity of ADELFE analysis is related to the AMAS theory. With
through eleven questions, an ADELFE tool provides a measure of the AMAS
adequacy degree. That tool answers two main questions : Is the use of an adaptive
multi-agent system useful to tackle the problem ? Are there any parties of the
system which need to be broken up into adaptive multi-agent systems ?

The main criterion that leads to use an AMAS for the mechanism design
problem, is the complexity: there is a huge number of mechanisms to check.
Moreover, this search space is discontinuous: minor topological modifications
can lead to drastic modification of the global behavior. The fact that the system
is open (some components are added to the mechanism during the process) and
dynamical (the user can interact with the system to drive the process) increases
the complexity. Finally, mechanisms are made up by several, and potentially very
numerous, more simple entities, which match with multi-agent system paradigm.

3.3 Agent Identification

Agent identification relevance depends on the nature of the problem to tackle.
When considering systems with which humans strongly interact, designers nat-

236 D. Capera et al.

: Mecano : MecanoSimulation
Manager

getDistance()

launchMecanoSimulation()

: Trajectory
Point

informAboutDistance(dist)

writeDescription()

changePosition()

: RigidBody

writeDescription()

requestModification()
changeSize()

: Joint

writeDescription()

requestModification()
unlink()

:
Attachment

Point

writeDescription()

requestLink()

acceptLink()

Fig. 3. A sample MSS sequence diagram

urally identify agents as representative of human actors. Therefore, methodolo-
gies which are specific to this kind of problems do not address this issue. In
the analysis workflow of GAIA [2], the agents are already identified and the
methodology does not provide anything to realize this identification. But, when
considering simulation-based solving systems, such as MSS, agent identification
is not so clear.

As a function of the theoretical paradigms used, methodologies propose sev-
eral ways to identify agents. In TROPOS the agents are found inside the set of
actors, but it results from the analysis of the predefined goals and soft-goals [12].
In AAII, the elaboration and refinement of the agent model and the interaction
model help the designer to define agents [13]. The agent definition, which is given
in MESSAGE [14] and in ADELFE, defines the features that will be ascribed
to the entities that the developer will choose to consider as agents. Moreover,
ADELFE proposes to analyze preliminary interaction models to identify high-
risk entities in terms of cooperation or cognition.

Figure 3 shows a typical information flow from the MECANO application
to each part of a mechanism (and the other way round). Considering ADELFE,
agent identification focuses on the analysis of active objects. From the MECANO
result file, the MecanoSimulationManager gets the distance between the Trajectory
and the TrajectoryPoint. So, if this distance is different from zero, the position of
the TrajectoryPoint has to be changed to get closer to the Trajectory. Either, the
TrajectoryPoint changes its position by itself, or this modification is performed by
the RigidBoby which it is attached to, as in this example. In the same way, a
RigidBody modification could be obtained by changing its shape, its position or
by delegating the problem to its neighbors –Joint in the example. Therefore, in a
general way, this kind of problem can be solved either by changing properties of
the given component or by propagating the problem. But, sometimes the problem

A Sample Application of ADELFE Focusing on Analysis and Design 237

could not be solved thanks to these modifications, and so the topology of the
mechanism has to be changed. In our example, the link between the RigidBody and
the Joint is broken and a new link with a compatible component (AttachmentPoint
for instance) has to be created. Finally, the mechanical components inform the
manager of their positions as input for the next MECANO computation.

By using AMAS terminology, TrajectoryPoint can be in a NCS –called in-
competence– when it does not fit with the trajectory. In the same manner, a
RigidBody or AttachmentPoint are useless if not attached to joints, and vice versa.
In addition, these MechanicalComponent classes and the TrajectoryPoint have to
manage their acquaintances not to flood the system by information exchange,
and have to be able to add or remove agents from their acquaintance data base.
These criteria are sufficient to identify these classes as being cooperative agent
classes. To sum up, the identified agent classes are: MechanicalComponent and all
its sub-classes, and TrajectoryPoint (see figures 2 and 4). To encapsulate common
properties, a top-level generic MechanicalAgent class from which the two previous
classes inherit is defined.

4 Agent Design

Generally, in object-oriented methodologies, the design works lead to a precise
definition of classes in terms of fields, methods, and also results in the model of
the dynamic behaviors of these classes by using sequence diagrams and state-
machines. In ADELFE, these two aspects – static and dynamic – are met by
filling the different modules of the agents (including their cooperative attitude)
and by modeling their interaction languages with AUML protocols.

4.1 Agents’ Modules

ADELFE proposes a generic cooperative agent model [15]. This model decom-
poses agent’s cognitive functions into six modules. The main mechanical agents’
modules are shown in figure 4, in bold face : characteristics, perceptions, actions,
skills, aptitudes, representations and cooperation.

The Characteristic module which manages the intrinsic properties of agents.
These mainly are the points (named “noeuds” or nodes in MECANO) which
describe the mechanical components (the two extremities of a bar, the two attach
points of a hinge, etc.). Each characteristic can be updated either by the agent
itself or consequently to a specific message reception from MECANO (after a
simulation step).

The Interaction module is the interface between the agent and its environ-
ment. This module is made up of two submodules: the Action module and the
Perception module. The Action module contains the actions available for the
agent and manages the messages sending (sendMessage), i.e. the outputs. Figure
4 shows agents always have actions related to their characteristics (linkAttach1,
linkAttach2, unlinkAttach1 or unlinkAttach2) and other specific actions (changePosi-
tion in Bar and TrajectoryPoint).The Perception module mainly manages the re-

238 D. Capera et al.

«cooperative agent»
Mechanical
Component

perception
characteristic
representation
aptitude
cooperation
action

«cooperative agent»
RigidBody

perception
characteristic
representation
aptitude
cooperation
action

«cooperative agent»
Joint

perception
interaction
characteristic
representation
aptitude
cooperation
action

«cooperative agent»
TrajectoryPoint

perception
characteristic

+ noeud: Noeud
+ translation: Vector3D

representation
- distance: Float

aptitude
cooperation

- distanceIncompetence ()
action

- changePosition ()

«cooperative agent»
AttachmentPoint

perception
characteristic

+ attach1: Joint
representation
aptitude
cooperation

- attach1Uselessness ()
action

- linkAttach1 ()
- unlinkAttach1 ()

«cooperative agent»
Bar

perception
interaction
characteristic

+ attach1: Noeud
+ attach2: Noeud
+ supportedPoint: Noeud
+ stiffness: Float

representation
- attachedAgent1: Joint
- attachedAgent2: Joint
- supportedPointAgent: TrajectoryPoint

aptitude
cooperation

- attach1Uselessness ()
- attach2Uselessness ()
- goalIncompetence ()

action
- linkAttach1 ()
- linkAttach2 ()
- unlinkAttach1 ()
- unlinkAttach2 ()
- changePosition ()

«cooperative agent»
Hinge

perception
interaction
characteristic

+ attach1: Noeud
+ attach2: Noeud

representation
- attachedAgent1: MechanicalComponent
- attachedAgent2: MechanicalComponent

aptitude
cooperation

- attach1Uselessness ()
- attach2Uselessness ()

action
- linkAttach1 ()
- linkAttach2 ()
- unlinkAttach1 ()
- unlinkAttach2 ()

«cooperative agent»
Slider

perception
interaction
characteristic
representation
aptitude
cooperation
action

«cooperative agent»
MechanicalAgent

- perceive ()
- decide ()
- act ()

perception
+ readMessages (String)

characteristic
representation

- acquaintances: Vector
- getAcquaintanceNamed (String) : Acquaintance
- addAcquaintance (Acquaintance)
- messageMemory: Vector

aptitude
- computeActionMessage (ActionMessage)
- computeDataMessage (DataMessage)
- computeNCSMessage (NCSMessage)
- computeAnswerDescriptionActionMessage (AnswerDescriptionActionMessage)
- computeQueryDescriptionActionMessage (QueryDescriptionActionMessage)
- computeLinkActionMessage (LinkActionMessage)
- computeUnlinkActionMessage (UnlinkActionMessage)
- computeAcceptLinkActionMessage (AcceptLinkActionMessage)
- computeProposalLinkActionMessage (ProposalLinkActionMessage)
- computeQueryLinkActionMessage (QueryLinkActionMessage)
- chooseAction ()

cooperation
- detectNCS () : Integer

action
- sendMessage (Message)

Fig. 4. The agent class diagram for MSS

ceived messages (a mechanical agent only perceives its environment through
messages by using readMessage method), i.e. the inputs.

The Representation module manages information about the agent’s environ-
ment (social or physical) or itself. It contains the acquaintances of the agent, i.e.
information about the other agents of the system. For each known agent, the
representation module contains its type, its name, etc. This knowledge base is
dynamically updated during the agent lifetime (addAcquaintance). MechanicalA-
gent can also store previously received messages into a messageMemory. Moreover
agents can have information on themselves in terms of their type – for example a
Bar and Hinge owns information about agents they are connected to – or specific
data such as the distance to the trajectory for the TrajectoryPoint.

The Cooperation module contains the list of the NCS (see section 2.2).
Each NCS is described by a conditional trigger and by the list of actions that
the agent can use to solve the problem. This module is described in the sec-
tion 4.2.

The Aptitude module manages messages processing according to the message
type and action selection. For instance every MechanicalAgent can ask its descrip-
tion to another agent and answer to such a query. Therefore, it must have ap-
titudes to process these kind of messages (computeQueryDescriptionActionMessage
and computeAnswerDescriptionActionMessage). Moreover, since MechanicalAgents has
to self-assembly, they must be able to process messages about link or unlink ac-
tions (computeLinkActionMessage, computeUnlinkActionMessage, computeQueryLinkAc-
tionMessage, etc.). These abstract methods must be implemented in every Mechan-
icalAgent’s subclass. The chooseAction method selects the actions to do at a given
time considering the current state of knowledge (perception, messages, represen-
tation and triggered NCS).

A Sample Application of ADELFE Focusing on Analysis and Design 239

The Skill module is not used for MechanicalAgents because they don’t perform
their “function” themselves (it is simulated by MECANO) and then they can’t
have any knowledge about their real activity – MECANO computation is a
black-box from the agents’ point of view.

4.2 Agent’s Cooperative Attitude

The Cooperation module contains the local cooperation rules that lead agents’
self-organization. Ideally, every agent knows when it is no more cooperative and
then knows what to do to come back to a cooperative state. This is the main
design challenge of AMAS: find all the NCS. In the MSS application, two main
NCS have been identified:

uselessness: when an agent does not have all its partners. For example, a Bar or
a Hinge or a AttachmentPoint is useless if one of its attachment points is not
connected to another MechanicalComponent. To solve this NCS, agents must
find a partner by negotiating for example as seen in section 4.3.

incompetence: when an agent does not reach its goal. For example, a Trajecto-
ryPoint agent is incompetent if its distance to the trajectory is different from
zero. This situation has already been detected during the agent identifica-
tion as being a criterion to “agentify” the TrajectoryPoint class. The relevant
action that agents must perform in such situations is to change their position
to get closer to their goal for example.

Every agent owns a method called detectNCS which applies cooperation rules
and put the solving actions in an “action-to-do” list that will be used by the
Aptitude module when it performs chooseAction.

4.3 Agents’ Interactions

ADELFE proposes to model agent interactions by specifying AUML protocols
[3]. These protocols enable to describe agents’ interaction languages (the meth-

Bar / seeking partner

attach1Uselessness
Test()

linkAttach1()

Joint /
Attach 2

Joint /
Acquaintance

proposalLinkActionMessage(message)

linkAttach1()

queryLinkActionMessage(?message)

Joint /
UnknownAgent

proposalLinkAction
Message(message)

queryLinkAction
Message(?message)

linkAttach1()

x

computeProposalLink
ActionMessage(?message)

acceptLinkActionMessage(message)

acceptLinkAction
Message(message)

Fig. 5. A sample protocol diagram for MSS

240 D. Capera et al.

ods they need to communicate) and resolution negotiation algorithm. For exam-
ple, the figure 5 shows the resolution protocol for a Bar agent to solve a uselessness
NCS. Here, the Bar sends a query to two Joints it knows: the one which is already
linked to (Attach2 role) and another it may have encountered before (Acquaintance
role). This last one directly answers positively. On the other hand, Attach2 can-
not answer positively because it is already linked. Therefore, it delegates and
informs another agent it knows about the situation (UnknownAgent role). This
last one answers positively too. Now, the Bar must analyze the proposals and de-
cide which agent will be connected to the free attachment. This decision making
process is labeled by the computeProposalLinkActionMessage method on the XOR
node. In terms of the results of this decision, the Bar may send acceptance to its
preferred partner and then perform a link action.

5 Some Results for Dimensional Adjustment

A prototype of the modeled system has been implemented for ”X-bars” mecha-
nism problems, and especially to study the dimensional adjustment. These ex-
periments focus on the resolution actions related to distanceIncompetence and
goalIncompetence NCS.

5.1 Reactive Algorithm

Firstly, a very reactive algorithm has been tested. The Bar’s NCS resolution
action is directly induced by the stiffness value it perceives – the Bar applies a

0

2

4

6

8

10

12

1 4 7 10 13 16 19 22 25 28 31

Simulation Steps

D
is

ta
n

ce

Fig. 6. Results for two different 4-bars mechanisms with a reactive resolution algorithm

A Sample Application of ADELFE Focusing on Analysis and Design 241

translation vector to each of its ends – that leads to a modification of its position
and/or length. In the same manner, the TrajectoryPoint computes a translation
for its position.

Figure 6 shows the results for two different 4-bar simulations with initial
mechanisms whose dimensions are faulty. Distance between the trajectory point
and the trajectory quickly decreases for the first example. Simulation results in
a well-sized mechanism as shown in figure 1. Nevertheless, the distance is not
exactly null because the only solution is not a straight line (as specified by the
user) but a very thin 8-shaped cycle. On the other hand, the reactive algorithm
fails to find a solution for the second example. In fact, this algorithm cannot find
solutions that requires the mechanism to reach and cross a singular position in
the search space (a straight-line-shaped mechanism for example).

5.2 Learning-Based Algorithms

To address this problem, a second kind of algorithms has been tested by adding
learning capabilities to agents. Each agent learns the modification it has to per-
form by reasoning on the intensity of the NCS it perceives (based on reinforce-
ment learning principles). A new problem occurs with the Bar when it changes
its ends, because MECANO has to re-assembly the mechanism, which disturbs
the agents’ learning (agents cannot rightly judge the impact of their actions). To
address this second problem, a solution is to remove physical resolution actions
to the Bars, i.e. they can only send messages and propagate their NCS to other
agents (Hinges). Nevertheless, this solution is equivalent to algorithms based on
cost functions, and therefore implies the same problems of crossing local maxima
or singular points.

5.3 Further Works

Previous algorithms could be used by designers to optimize dimensions of a
given roughly well-designed mechanism. But, our system aims at autonomously
designing the best possible mechanism by self-assembly of elementary compo-
nents (i.e. self-organization of MechanicalAgents). Therefore, the system must be
able to find the best dimensioning for a given topology, independently of the
initial state, which is not the case of previously proposed algorithms. The idea
is now to explore other local criteria to lead dimensional adjustments, such as
length balance of bars connected to the same joint, minimization of dimensions
and motion lock avoidance.

6 Discussion

AMAS theory proposes an interesting approach to develop adaptive system by
designing cooperative agents. The main outcome of this kind of theory is to
support the design of artificial systems with a theoretical background whereas to
“mimic” natural systems. In a near future, the key of artificial system design will

242 D. Capera et al.

be to understand mechanisms which implement complex systems and relations
between micro and macro behaviors.

Nevertheless, the notion of cooperation raises some methodological problems.
Firstly, AMAS theory ensures the multi-agent system will produce an adequate
function if all the agents composing it are cooperative. It means that designers
must exhaustively list all the possible local non cooperative situation. Currently,
ADELFE only proposes an analysis by NCS type, state by state, for each agent.
But during this analysis there is no mean to ensure the exhaustiveness of NCS
enumeration - only hints and guidance. Moreover, cooperation notion remains
vague and strongly depends on the granularity of agents. Secondly, if we suppose
NCS as being exhaustively found, what are the actions to perform to solve them?
Once again this problem is strongly linked to the notion of cooperation and many
algorithms might be used. For example, several algorithms have been tested for
actions related to incompetence NCS: reactive algorithms, learning-based algo-
rithms, cooperative memory-based algorithms. In this last solution, each agent
stores errors (size and direction) it perceives into a cooperative memory module
(which is recursively defined as an AMAS). Then, each error is represented by a
cooperative agent which acts according to NCS rules. For example, if two errors
are similar, the smallest one disappears, since it is a concurrent situation. At
the agent’s decision phase, this module computes the most cooperative action to
decrease the size of errors –the main idea is to decrease the worse error avoiding
creating a new worse one.

To tackle these problems, two paths could be explored: theoretical or/and
experimental. By developing theories on adaptive multi-agent systems, we could
find new properties on cooperation. Yet, the AMAS theory employs coopera-
tion notion as a generic behavior of an entity which has to be instantiated for
a given application. Therefore, discovery of new NCS types cannot result from
demonstrations, but only from observation and generalization. Considering a
more experimental angle of attack seems more relevant. Future works should fo-
cus on more interactive methodologies, as the Living Design concept does [16].
This approach proposes to shift agent design to more living phases (test, deploy-
ment and maintenance) compared to classic object-oriented design processes.
Designing agents becomes a more interactive activity during which designers
equip running agents with their modules, in real time. It requires defining min-
imal behavior and norms on agent concepts. FIPA does a lot of work in this
direction. In addition, ADELFE project will now focus on such problematics
thanks to the MDA paradigm, by defining more detailed agent models.

7 Conclusion

In this article, the ADELFE methodology has been applied to a mechanical
synthesis problem. The two main phases, analysis and design, led to a self-
organizing multi-agent model where each mechanical component is “agentified”.
Self-organization of the collective is a way to reach an adequate structure using
agents’ cooperative attitude.

A Sample Application of ADELFE Focusing on Analysis and Design 243

Nevertheless, the notion of cooperative attitude raises some problems such
as exhaustiveness of the cooperation rules for each agent and the choice of the
most cooperative action at a given time to reach a more cooperative state. This
implies to study different heuristics and algorithms to tackle as close as possible
the notion of cooperation as defined in the AMAS theory. Thus, two main future
work directions are opened. First, by formalizing agent and multi-agent models
or refining their meta-models, some new properties may be discovered, such as
the relevance of a local cooperation measure. Second, experience is the main way
to succeed in finding cooperation rules. The concept of Living Design may be an
real solution to interactively define agents’ models and cooperative attitude.

Finally, a prototype called Mechanical Synthesis Solver (MSS) has been de-
veloped and shows promising results on dimensional adjustments [17]. The next
step of these experiments is to use self-organization to modify the topology of
mechanisms by adding, removing and spatially re-organizing agents.

References

1. Brazier, F., Jonker, C., Treur, J.: Compositional Design and Reuse of a Generic
Agent Model. International Journal of Cooperative Information Systems 9 (2000)

2. Wooldridge, M., Jennings, N., Kinny, D.: A Methodology for Agent-Oriented Anal-
ysis and Design. In Oren Etzioni and Jörg P. Müller and Jeffrey M. Bradshaw, ed.:
Proceedings of the 3rd International Conference on Autonomous Agents (Agents
99), ACM Press (1999)

3. Odell, J., Parunak, H., Bauer, B.: Extending UML for Agents. In: Proceedings of
the Agent Oriented Information Systems (AOIS) Workshop at the 17th National
Conference on Artificial Intelligence (AAAI). (2000)

4. Picard, G., Gleizes, M.P.: The ADELFE Methodology – Designing Adaptive Co-
operative Multi-Agent Systems (Chapter 8). In Bergenti, F. and Gleizes, M-P. and
Zambonelli, F., ed.: Methodologies and Software Engineering for Agent Systems,
Kluwer Publishing (2004)

5. Gomez Sanz, J., Fuentes, R.: Agent Oriented System Engineering with INGENIAS.
In: Fourth Iberoamerican Workshop on Multi-Agent Systems, Iberagents’02. (2002)

6. DeLoach, S., Wood, M.: Developing Multiagent Systems with agentTool. In Castel-
franchi, C. and Lesperance, Y., ed.: Intelligent Agents VII. AgentTheories Architec-
tures and Languages, 7th International Workshop (ATAL 2000), Springer-Verlag
(LNCS 1986) (2001)

7. Bernon, C., Gleizes, M.P., Peyruqueou, S., Picard, G.: ADELFE: a Methodology
for Adaptive Multi-Agent Systems Engineering. In Petta, P. and Tolksdorf, R. and
Zambonelli, F., ed.: Third International Workshop on Engineering Societies in the
Agents World (ESAW-2002), Springer-Verlag (LNAI 2577) (2002)

8. Campbell, M., Cagan, J., Kotovsky, K.: Agent-based Synthesis of electro-
mechanical design configurations. In: Proceedings of DETC98 1998 ASME Design
Engineering Technical Conferences. (1998)

9. Tsai, L.W.: Mechanism Design: Enumeration of kinematic structures according to
function. CRC Press (2001)

10. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Tools for Self-Organizing Ap-
plications Engineering. In: First International Workshop on Engineering Self-
Organizing Applications (ESOA) at AAMAS’03, Melbourne, Australia (2003)

244 D. Capera et al.

11. Capera, D., Georgé, J., Gleizes, M.P., Glize, P.: The AMAS theory for complex
problem solving based on self-organizing cooperative agents. In: 1st International
workshop on Theory and Practice of Open Computational Systems (TAPOCS) at
IEEE 12th International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 2003), IEEE Computer Society (2003) 383–
388

12. Castro, J., Kolp, M., Mylopoulos, J.: A Requirements-driven Development Method-
ology. In Dittrich, K., Geppert, A., Norrie, M., eds.: Proceedings of the 13th Inter-
national Conference on Advanced Information Systems Engineering (CAiSE’01),
Springer-Verlag (LNCS 2068) (2001) 108–123

13. Kinny, D., Georgeff, M., Rao, A.: A methodology and modelling technique for
systems of BDI agents. In de Velde, W.V., Perram, J.W., eds.: Agents Breaking
Away: Proceedings of the Seventh European Workshop on Modelling Autonomous
Agents in a MultiAgent World, Springer-Verlag (LNAI 1038) (1996) 51–71

14. Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P.,
Kearney, P., Stark, J., Evans, R., Massonet, P.: Agent Oriented Analysis Using
Message/UML. In Wooldridge, M., Wei, G., Ciancarini, P., eds.: Agent-Oriented
Software Engineering II, Second International Workshop, AOSE 2001, Springer-
Verlag (LNCS 2222) (2001) 119–135

15. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Designing Agents’ Behaviors
within the Framework of ADELFE Methodology. In: Fourth International Work-
shop on Engineering Societies in the Agents World (ESAW-2003), Imperial College
London, UK (2003)

16. Georgé, J.P., Picard, G., Gleizes, M.P., Glize, P.: Living Design for Open Com-
putational Systems. In: International Workshop Theory And Practice of Open
Computational Systems (TAPOCS) at 12th IEEE International Workshop on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03),
Linz, Austria, IEEE Computer Society (2003)

17. Capera, D., Gleizes, M.P., Glize, P.: Mechanism Type Synthesis based on Self-
Assembling Agents. Journal on Applied Artificial Intelligence 18 (To appear in
2004)

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 245 – 260, 2005.
© Springer-Verlag Berlin Heidelberg 2005

SONIA: A Methodology for Natural Agent Development

Fernando Alonso, Sonia Frutos, Loïc Martínez, and César Montes

Facultad de Informática, Universidad Politécnica de Madrid,
28660 Boadilla del Monte (Madrid), Spain

{falonso, sfrutos, loic, cmontes}@fi.upm.es

Abstract. Agent-Oriented Software Engineering has emerged as a powerful
engineering discipline that can deal with the complexity of today's software
systems (primarily in distributed and open environments) better than other more
traditional approaches. However, AOSE does not provide a software
development process that naturally leads, if the problem so requires, to an agent
architecture. Current agent development methodologies have two separate
drawbacks. One is that development processes tend to target an agent
organization, which is not necessarily always the best structure, as of the
requirements definition stage. The other is that the identification and design of
agents are complex, and designer experience plays an essential role in their
definition. In this paper, we present the SONIA methodology (Set of mOdels
for a Natural Identification of Agents) in an attempt to solve these problems.
Based on a generic problem-independent analysis and a bottom-up agent
identification process, SONIA naturally outputs an agent-based system.

1 Introduction

Agent-Oriented Software Engineering (AOSE), based on the agent paradigm, has
materialized as a powerful technology for developing complex software systems, and
it is well suited for tackling the complexity of today's software systems [1]. Having
emerged, like so many other disciplines, from Artificial Intelligence, it is now a
melting pot of many different computing sciences areas (Artificial Intelligence,
Software Engineering, Robotics, and Distributed Computing).

The AOSE concept includes the development of autonomous software agents
(autonomous elements, with reactive and proactive social ability, trying to accomplish
their own task [2]), multi-agent systems (MAS) (a set of autonomous agents that
interact with each other, each representing an independent focus of system control
[3]), and agent societies (where the social role of the agents and social laws delimit
agent operation [4]).

Agents, MAS and agent societies are now well enough known for researchers and
companies to be attracted by the prospects of large-scale agent engineering. The
interest they are showing is actually the logical consequence of the successes
achieved in this direction, resembling the sequence of events that already took place
in other development engineering disciplines (like objects, for example) [5].

246 F. Alonso et al.

In this paper, we describe the SONIA methodology, an approach for naturally
producing a MAS from the system requirements. In section 2, we explain what
problems AOSE faces. Section 3 contains an analysis of current agent development
methodologies. Section 4 describes the structure of the proposed SONIA
methodology and its application to the ALBOR project. Finally, section 5 states the
conclusions on the natural development of agents.

2 Problems of AOSE

AOSE is obviously not a panacea, as its use is not always justified. There are
problems that an agent approach cannot solve, and others where the outlay and
development time required by such an approach would be too costly to be acceptable
for companies. We have identified a set of topics to be taken into account when
applying AOSE to real problems [6]:

− Reach agreement on agent theory. This new paradigm will not be able to expand
unless the agent model is standardized with respect to what characteristics define
an agent, what types of architecture are available for agents, what agent
organizations are possible, what types of interactions there are between agents, etc.
Just as UML (Unified Modeling Language) [7] was established to model objects, a
modeling language for agents needs to be agreed upon (perhaps AUML [8]).

− Provide mechanisms for deciding whether the problem should be dealt with using a
MAS. Even if it is initially justified to conceive a multi-agent solution for a given
problem, a MAS could turn out to be no good in the end, because, for example, no
agents can be identified or there are no interactions between the identified agents.

− Train development team members in the field of agents and MAS. A team of
developers is not usually familiar with agents and MAS these days, which means
that they will have to be trained beforehand in this field if they are to be receptive
to such projects and to prevent delays in project development.

− Provide special-purpose programming languages and development tools. Although
the last few years have seen new languages for programming agent behavior take
root, general-purpose languages like Java and C++, etc., are widely used. On the
other hand, there are fewer development tools for representing agent structure, and
they focus mainly on a particular agent architecture.

− Use methodologies suited to the development processes. For organizations to adopt
MAS development, the right methodology needs to be provided to guide the team
of developers towards the achievement of objectives, without this requiring in-
depth training in this field. A critical stage in the development of a MAS is the
selection of the methodology to be followed. A good methodology should provide
the models for defining the elements of the multi-agent environment (agents,
objects and interactions) and the design guidelines for identifying these elements,
their components and the relationships between them.

As regards the question of methodology, a wide variety of methodological
proposals have emerged for AOSE development [9][10][11][12]. Although they have

 SONIA: A Methodology for Natural Agent Development 247

all played an important role in establishing this field, they do not provide suitable
mechanisms for formulating a natural process for developing a MAS system or an
agent society from system requirements. That is, the gradual discovery and
identification of concepts, relationships, tasks, knowledge, behaviors, objects, agents,
MAS and agent societies from the problem statement. Additionally, a good
methodology should not force a given architecture (object-oriented, agent-oriented,
etc.) upon developers from the beginning. It is the system specifications analysis that
should point developers towards the best suited architecture for solving the problem.

Based on research and development efforts in the field of AOSE, we think that an
agent-oriented development methodology should have the following features [6]:

− It should not condition the use of the agent paradigm right from analysis. It is too
risky to decide whether the system is to be designed using a multi-agent architecture
in the analysis or conceptualization phase, as the problem is not fully specified at this
early stage of development. It is not until the design phase that enough is known
about the problem specifications and architecture to make this decision.

− It should naturally lead to the conclusion of whether or not it is feasible to develop
the system as a MAS. At present, it is the developer who has to decide, based on his
or her expertise, whether or not to use a MAS to solve the problem. Because of its
high cost, this is a tricky decision that cannot be made using heuristics. Note that,
depending on the application domain, design and implementation using a multi-
agent architecture may have a high development cost (time, money and resources),
apart from calling for experienced personnel. On the other hand, the modularity of
multi-agent systems may improve development costs.

− It should systematically identify the components of a MAS. Current methodologies
leave too much to the designer with respect, for example, to agent identification.
Designer experience is therefore vital for producing a quality MAS.

Component-driven bottom-up agent identification is the most objective
criterion, as it depends exclusively on the problem and eases the systematization
and automation of the identification process. On the other hand, the role (or actor)-
driven criterion is more subjective, as roles or actors depend on the
analyst/designer who identifies them.

− If the problem specifications call for an agent society, it should naturally lead to
this organizational model. The development of a software system using a
reductionist, constructivist or agent society architecture should be derived from the
problem specifications, which will lead to the best suited architecture. Current
agent-oriented methodologies focus on the development of the actual agent
architecture (internal agent level) and/or its interactions with other MAS agents
(external agent level), but very few cover the concept of social organization.

− It should produce reusable agents, should be easy to apply and not require
excessive knowledge of agent technology. The concept of reuse has been one of the
biggest contributions to software development. The provision of libraries has
furthered procedure-, object-, or component-oriented engineering. For this advance
to take place in AOSE, agent components (interaction protocols, etc.) need to be
reusable and easy to use. Current agent-oriented design methodologies and
methods do not account for reusable systems and call for high proficiency in MAS

248 F. Alonso et al.

technology for use. As MAS technology is related to many disciplines (artificial
intelligence, psychology, sociology, economics, etc.), intensive knowledge of agent
technology is required. This relegates the design of these systems to universities,
research centers and companies with the latest technology.

The specific characteristics of MAS and MAS development-related problems
indicate that agent-based problem solving cannot be dealt with intuitively. It calls for
a methodological process that naturally leads to the use of agents in problem solving.

3 Analysis of Current Agent Development Methodologies

On account of the advance in agent technology over the last ten years, several
methodologies have emerged to drive MAS development [9][10][11][12]. These
methodologies are classed according to the discipline on which they are based (Fig. 1):

− Agent Technology-Based Approaches: they focus on social level abstractions, like
the agent, group or organization.

− Object Orientation-Based Approaches: they are characterized by extending object-
oriented techniques to include the notion of agency.

− Knowledge Engineering-Based Approaches: they are characterized by emphasizing
the identification, acquisition and modeling of knowledge used by the agent
components.

OO-based
methodologies

OO-based
methodologies

KE-based
methodologies

KE-based
methodologies

Agent-based
methodologies
Agent-based

methodologies

Agent-Oriented MethodologiesAgent-Oriented Methodologies

ODAC (2002)
MaSE (2001)

MASSIVE (2001)
DESIRE (1997)

AAII (1996)
AOMEM (1996)
AOAD (1996)
MASB (1994)

ODAC (2002)
MaSE (2001)

MASSIVE (2001)
DESIRE (1997)

AAII (1996)
AOMEM (1996)
AOAD (1996)
MASB (1994)

MAS-CommonKADS (1999)
CoMoMAS (1997)

MAS-CommonKADS (1999)
CoMoMAS (1997)

Tropos (2004)
Gaia (2003)

Prometheus (2003)
SODA (2001)
Styx (2001)
HLIM (1999)

Cassiopeia (1995)

Tropos (2004)
Gaia (2003)

Prometheus (2003)
SODA (2001)
Styx (2001)
HLIM (1999)

Cassiopeia (1995)

Fig. 1. Agent-Oriented Methodologies

3.1 Agent Technology-Based Methodologies

Agent Technology-Based Methodologies focus on social level abstractions, like the
agent, group or organization.

The most representative methodologies are: Tropos [13], Gaia [14], Prometheus
[15], SODA [16], Styx [17], HLIM [18] and Cassiopeia [19]. Table 1 describes the
most significant methodological aspects of agent technology-based methodologies for
our analysis.

 SONIA: A Methodology for Natural Agent Development 249

Table 1. Agent Technology-Based Methodologies

Although this methodological line is gaining in importance in agent development,
the methodologies suffer from some limitations on key points:

− These methodologies propose the use of the agent paradigm as of the specification
(Prometheus, HLIM, Cassiopeia) or analysis (Tropos, Gaia, SODA, Styx) phases.
The choice of a multi-agent system should be a design decision. Therefore, a good
agent-oriented methodology should not conduct a specific agent-oriented analysis.
None of the methodologies account for the use of a generic analysis model that can
be used to evaluate whether or not a multi-agent approach is suitable.

− All of the methodologies identify agents from social roles (Gaia, SODA, Styx,
HLIM, Cassiopeia) or actors (Tropos, Prometheus) following a top-down
identification process and none from their components.

− Three aspects need to be dealt with to develop a MAS: intra-agent structure, inter-
agent structure and social structure. Most of the methodologies cover the intra-
agent and inter-agent aspects (Tropos, Gaia, Prometheus, Styx, HLIM), but only
SODA and Cassiopeia account for social structure.

− The analysis of the environment is a key point. SODA is the only methodology to
analyze the environment, its entities and their interactions.

3.2 Object Orientation-Based Methodologies

Object Orientation-Based Methodologies are characterized by extending object-
oriented techniques [20] to include the notion of agency.

The most representative methodologies are: ODAC [21], MaSE [22], MASSIVE
[23], DESIRE [24], AAII [25], AOMEM[26], AOAD[27] and MASB[28]. Table 2
lists which of the examined methodological features object orientation-based
methodologies have.

Table 2. Object Orientation-Based Methodologies

agent paradigm
selection

specification or analysis phase
(all)

design phase
(none)

agent identification
process

role-driven top-down
(all)

component-driven bottom-up
(none)

MAS aspects intra- & inter-agent
(Tropos, Gaia, Prometheus, Styx, HLIM)

social structure
(SODA, Cassiopeia)

environment
analysis

environment
(SODA)

objects
(Tropos, Prometheus, Styx, SODA)

agent paradigm
selection

specification or analysis phase
(ODAC, AOAD)

design phase
(MaSE, MASSIVE, DESIRE, AAII, AOMEM,

MASB)

agent identification
process

role-driven top-down
(ODAC, MaSE. MASSIVE, AAII, AOMEM,

AOAD, MASB)

component-driven bottom-up
(DESIRE)

MAS aspects intra- & inter-agent
(ODAC, MASB, DESIRE, AAII, AOMEM,

AOAD, MASB)

social structure
(MASSIVE, AOAD)

environment
analysis

environment
(MASSIVE)

objects
(ODAC, MASB)

250 F. Alonso et al.

From the viewpoint of correct agent orientation, this methodological line is beset
by the following problems. It does not account for the use of a generic analysis model.
Some methodologies (ODAC and AOAD) identify agents during analysis. Only the
DESIRE methodology implements a proper component-driven bottom-up agent
identification process. Almost all the methodologies (ODAC, MASB, DESIRE, AAII,
AOMEM, AOAD and MASB) cover the intra-agent and inter-agent aspects, but only
MASSIVE and AOAD cover the social structure. Finally, with the exception of
MASSIVE, none of the methodologies takes into account the environment features.

These methodologies treat agents like complex objects, which is wrong, because
agents have a higher level of abstraction than objects. They also fail to properly
capture the autonomous behavior of agents, interactions between agents, and
organizational structures [17].

3.3 Knowledge Engineering-Based Methodologies

Knowledge Engineering-Based Methodologies are characterized by emphasizing the
identification, acquisition and modeling of knowledge used by the agent components.

The most representative methodologies originate from the CommonKADS
methodology [29] are MASCommonKADS [30] and CoMoMAS [31]. Table 3 lists
the features of these methodologies for our analysis.

Table 3. Knowledge Engineering-Based Methodologies

These methodologies also present some problems. Like the other approaches
described earlier, these methodologies do not account for the use of a generic analysis
model. MAS-CommonKADS identifies agents during analysis, following a role-
driven top-down process (identifying actors). Both of them account for the intra-agent
and inter-agent aspects, but do not cover social issues or analysis of the environment.

3.4 Analysis of Current Agent Development Methodologies

The methodological approach based directly on agent technology is perhaps better
than the other two, because it is based on the intrinsic concept of agent and agent
organization in a MAS. It basically falls down on the point that it confines problem
analysis to the agent paradigm, whereas this paradigm may turn out to be unsuitable if
agent technology is not a good option for dealing with the problem in question.

Briefly, we believe that a good AOSE methodology is one that defines an
architecture-independent generic analysis model and a design model that can

agent paradigm
selection

specification or analysis phase
(MAS-CommonKADS)

design phase
(CoMoMAS)

agent identification
process

role-driven top-down
(MAS-CommonKADS)

component-driven bottom-up
(CoMoMAS)

MAS aspects intra- & inter-agent
(all)

social structure
(none)

environment
analysis

environment
(none)

objects
(none)

 SONIA: A Methodology for Natural Agent Development 251

systematically identify agents following a component-driven bottom-up agent
identification process, can identify the intra-agent, inter-agent and social structure of
the system, can analyze the environment and can identify environment objects.

4 SONIA Methodology

The SONIA (Set of mOdels for a Natural Identification of Agents) methodology [6]
allows the generation of a multi-agent architecture to solve a problem (whose
conceptualization is not conditioned by the agent paradigm) according to a Multi-
Agent Design Model that systemizes and automates the activities of identifying the
MAS components.

The phases and stages of which the SONIA methodology is composed are listed
below, along with the models generated in each stage (Fig. 2):

− Conceptualization: The problem is analyzed on the basis of the problem statement
using an analysis model that does not condition the design paradigm. The result is
an initial Structural Model, which describes the overall structure of the domain and
an initial Task Model, which describes how to solve problems occurring in the
domain.

− Extended Analysis: The above models are refined and expanded to include the
features of the environment and the external system entities, producing the
following models: an Environment Model, which defines the external system
entities and system interactions with these entities; a Structural Model, which
includes domain knowledge structures of the external system entities that interact
with the system; and a Task Model, which adds the functionalities required for
interaction with the external system entities.

The Conceptualization and Extended Analysis stages form the MAS analysis
phase.

− Synthesis: This stage is aimed at improving the identification of agents from their
components. For this purpose, the elements of the Structural and Task Models are
grouped depending on concepts that are characteristic of agents such as knowledge,
behaviors and responsibilities.

This stage provides a smooth transition from analysis to design, outputting: a
Knowledge Model, which identifies the knowledge components inherent to the
problem by grouping concepts and associations from Structural Model; a Behavior
Model, produced by grouping tasks, subtasks and methods from the Task Model;
and a Responsibility Model, output by establishing the relationships between
knowledge components and behaviors.

− Architectural Design: In this stage, we decide whether or not the system will be
designed following a multiagent architecture. If a MAS is designed, the entities of
the architecture are also defined.

The generated models are: an Agent Model, which identifies and defines what
elements should be designed as autonomous agents; an Object Model, which
identifies and defines what passive elements there are in the environment; and an

252 F. Alonso et al.

Interaction Model, which identifies and defines the relationships among agents and
between agents and objects.

The stages of Synthesis and Architectural Design are what make up the design
phase.

Extended
Analysis

Extended
Analysis

Architectural
Design

Architectural
Design

SynthesisSynthesisKnowledge
Model

Responsibility
Model

Behavior
Model

Object Model

Interaction
Model

Agent Model

ConceptualizationConceptualizationInitial
Structural Model

Initial
Task Model

Structural Model

Environment
Model

Task Model

ANALYSIS

DESIGN

Fig. 2. Phases of the SONIA methodology

Although the methodological process is top-down, this methodology follows a
bottom-up process to build the MAS architecture. Instead of identifying the MAS
entities and then the components of these entities, the methodology starts by
identifying the atomic elements (concepts, associations, tasks, etc.) output by system
analysis, which are then grouped into more complex elements (components), from
which the agents and objects of the MAS architecture will be able to be identified.
This makes the generated system highly extensible and facilitates agent and
component extension, modification and reuse.

In the following, the phases and stages of the SONIA methodology and their
application to the development of the ALBOR project (Barrier-Free Computer
Access) are briefly described [32][33].

ALBOR was conceived as an Internet-based intelligent system designed to provide
guidance on the evaluation of disabled people’s computer access skills and on the
choice of the best suited assistive technologies.

Each system session is divided into four stages:

1. User identification: user personal particulars and other information are collected in
order to start the session.

 SONIA: A Methodology for Natural Agent Development 253

2. Session preparation: the user is informed about the goals of the questionnaire, how
the session will be performed and whether any preliminary training is necessary.

3. Survey taking: the user is asked a series of questions, which will be depend on
responses to questions already answered and will be confined to the questions
strictly necessary for the evaluation of the person in question.

4. Result evaluation: an evaluation report with several recommendations for the user
to decide which is best suited for her/him is sent to the user.

4.1 Analysis

The elicited requirements are analyzed using the Set Theory Based Conceptual Model
(SETCM) [33][34], an analysis method that was defined to achieve several goals. First,
the method is design independent: it uses terminology other than design languages to
give a real understanding of the problem under analysis. Second, SETCM is able to
analyze problems of different kinds, ranging from the simpler, algorithmic problems to
more complex and knowledge-based problems. Third, the method has a solid formal
foundation, thanks to which it can unambiguously represent the results of the analysis.
Fourth, SETCM includes a comprehensive and easy-to-understand textual notation,
which is a deterrent to the use of mathematical notations. Finally, the method includes
a graphical notation, which eases the understanding of large models.

SETCM is design independent and capable of analyzing complex problems thanks
to the fact that the SETCM modeling elements were carefully chosen and defined.
These elements were selected from the elements commonly used in other approaches,
eluding design-specific terms and incorporating new elements where necessary. Some
of these elements are concepts, associations, attributes, classifications, tasks and task-
methods. The elements were defined using Set Theory vocabulary, which is the basis
of mathematics. For instance, an association is a subset of the Cartesian product of the
elements involved. The SETCM elements are grouped into two components: the
Structural Model, which represents the structure of a domain (elements and
relationships between them) and the states that can occur within this domain, and the
Task Model, representing domain problem solving.

To achieve the goal of establishing a formal foundation, all the modeling
primitives were formalized using the main elements of Cantor’s naïve set theory,
while defining a rigid modeling structure that eludes the contradictions of this theory.
Thus, SETCM has a formal modeling core (with more than 700 formalized symbols).
This core contains a large set of formal primitives that can be added to in the future by
defining and formalizing new elements based on existing components.

The last two goals (textual and graphical notations) are concerned with resolving
pragmatic issues. The textual notation represents all the SETCM modeling primitives,
is a substitute for the use of mathematics and is highly readable. The graphical
notation is based on UML using stereotypes and eases the understanding of large
quantities of information, reduces the apparent complexity of the analytical models
and is more expressive than the textual notation [34].

SETCM has been applied to develop real systems, which were finally designed
using a variety of paradigms (structured, object-oriented, knowledge-based) and even
a combination of paradigms.

254 F. Alonso et al.

As mentioned earlier, the Initial Structural Model and the Initial Task Model of
SONIA are built using SETCM. These models are refined and expanded to capture
the system Environment and External Entities, successively producing:

− An Environment Model, which defines the system external entities and their
interactions with the system.

− A Structural Model, which includes structures from the knowledge domain of the
external entities that interact with the system.

− A Task Model, which adds the functionalities required to interact with the system
external entities defined in the Environment Model.

4.2 Design of the Multi-agent Architecture

The Analysis phase is followed by the Multi-Agent Architecture Design, which is
divided into two stages: Synthesis and Architectural Design.

The Synthesis stage allows the component-driven identification of agents (bottom-
up process) in the Multi-Agent Architecture Design stage. The elements of the
Structural Model and Task Model are grouped depending on characteristics of agents,
such as knowledge, behaviors and responsibilities, outputting the following models:

− A Knowledge Model, which identifies the knowledge components by grouping
Structural Model concepts and associations. These groupings are identified because
the internal cohesion of their members is high, coupling with other groupings is
low and they are used to perform tasks of the same behaviors. The knowledge
components will be used internally or shared by the agents.

The groupings resulting from the first version of the model only check for high
cohesion and low coupling among their members. The final version will be built
when the responsibilities between knowledge components and behaviors
(Responsibility Model) are established and will also check that the members of the
groupings are used to do the same tasks.

− A Behavior Model, produced by grouping Task Model tasks, subtasks and
methods. The behaviors will be part of the agents. These groupings are identified
because their tasks and subtasks depend on each other through their methods and
they use the same knowledge components in problem solving.

The groupings from the first version of the model only check for the dependence
of some tasks on others through task methods. The final version, which is built
when the responsibilities between knowledge components and behaviors
(Responsibility Model) are established, will also check that they use the same
knowledge in problem solving.

− A Responsibility Model, output by relating knowledge components to behaviors.
The purpose of this model is to be able to identify agents and environment objects.

A key activity during the design of this model is to refine the Knowledge and
Behavior Models to meet all the conditions.

The Architectural Design stage focuses on the definition of the architectural
components by means of the following models: Agent Model, Object Model and
Interaction Model.

 SONIA: A Methodology for Natural Agent Development 255

Not until the Agent Model is built is a decision made as to whether the architecture
can be implemented by means of agents or a different paradigm needs to be used.
This choice is chiefly based on whether or not agents can be identified. For an entity
to be able to considered as an autonomous agent, it should have a behavior and the
right knowledge components to perform the tasks of this behavior, have at least one
defined goal and one utility, and perceive and act in the environment.

If no agents can be identified, another design paradigm will have to be chosen. One
possible alternative would be an object-oriented design, reusing objects and
interactions identified in the multi-agent architecture design stage. Another possibility
would be to design the system as a knowledge-based system, reusing the knowledge
components, behaviors and responsibilities output in the synthesis stage.
The Architectural Design models are:

− An Agent Model, which identifies and defines, from the Responsibility, Knowledge
and Behavior Models, what entities should be designed as autonomous agents. An
agent is identified because it is an environment-sensitive entity (it perceives and
acts in the environment) that has knowledge to bring into play its behaviors in
pursuit of goals and is activated when its utilities are required.

Therefore, knowledge is groupings of concepts and associations that the agent
uses to reason and behaviors are groupings of tasks that allow the agent to develop
the function for which it was conceived. The result of executing a behavior can
affect the environment objects or its internal knowledge.

Goals are objectives pursued by the agent. The agent will execute behaviors to
achieve its goals. Utilities are triggers that activate the agent. The agent will assess
the execution of some of its behaviors if their utilities are met. Goals and utilities
are logical conditions on the state of the environment objects or on the state of their
internal knowledge.

Sensors listen to the environment objects and notify the agent every time a
change takes place in the objects they are listening in on. This notification can
cause some of the agent’s utilities or goals to be met. Actuators modify
environment objects, and the agent will use the respective actuator every time it
needs to modify an environment object during behavior execution.

− An Object Model, which identifies and defines, from the Responsibility, Knowledge
and Behavior Models, what passive elements are part of the environment. These
objects are knowledge components identified during the synthesis phase. The main
feature of an object is that the knowledge of this object is responsible for more than
one behavior or, in other words, is shared by several behaviors. Access to objects
will be divided by levels, and the knowledge components that are accessed by the
same behavior tasks will be grouped at the same level.

− An Interaction Model, which identifies and defines what relationships there are in
the system among agents and between agents and objects.

Agent-agent relations occur when both agents interact to take any particular
action. This interaction takes place according to interaction protocols based on
speech act theory [35]. In the case of a reductionist MAS system (designed by one

256 F. Alonso et al.

and the same person), the interaction protocol is designed at the same time as the
actual agent. In the case of a constructivist MAS system (designed by different
people), the interaction protocols are located in a library and are accessed by the
agents at interaction time. Agent-object relations occur when an agent accesses an
object level, either through a sensor or an actuator.

This architecture accounts for the two communication types: asynchronous
communication, using environment objects to subscribe to events of interest to the
agent; and synchronous communication, through protocols contained in the
Interaction Model.

4.3 Design of the ALBOR System

Fig. 3 shows how the Analysis, Synthesis and Architecture Models are built. For
simplicity’s sake, it shows only the concepts and associations that are the source of
the “Questionnaires” knowledge component, and tasks and methods that are the
source of the “TakeSurvey” behavior.

The concepts and associations gathered in the Analysis phase were synthesized
as knowledge components using a technique based on Kelly’s constructs [36], and
the tasks and methods as behaviors using heuristics applied to task decomposition
and task dependencies. These techniques, used to output the knowledge components
and behaviors, assure highly coherent and low-coupled groupings. Then the
responsibilities between knowledge components and behaviors were established
from the relationships of concept/association used in task/subtask. These
responsibilities lead to changes in the Knowledge and Behavior Models. The
models are modified according to knowledge and behavior grouping/division rules
based on the cardinalities of the relationships of concept/association used in
task/subtask. The Knowledge, Behavior and Responsibility Models are the final
result of the synthesis.

It is not until the Agent Model is built that a decision is made as to whether the
architecture can be implemented by means of agents or a different paradigm needs to
be used. This choice is chiefly based on whether or not agents can be identified. For an
entity to be able to be considered as an autonomous agent, it should have a behavior
and the right knowledge components to perform the tasks of this behavior, have at least
one defined goal and one utility, and perceive and act in the environment.

To complete the multi-agent architecture design phase, the environment agents and
objects were identified. The objects were identified from the Responsibility Model,
and the knowledge shared by several behaviors was chosen as environment objects.
Following this criterion, we identified the “Users”, “External” and “Media” objects.
Agents were also identified from responsibilities. Again, agents should have a
behavior, knowledge components, goals and utilities, and sensors and actors. For
example, the responsibility between “Questionnaires” knowledge and “TakeSurvey”
behavior produces “Survey-Taker”. The Agent, Object and Interaction Models are the
final result of the architecture design stage.

 SONIA: A Methodology for Natural Agent Development 257

Task ModelStructural Model

<<agent>>

Survey-Taker
<<agent>>

DecisionMaker

<<object>>

Users

<<object>>

External
<<agent>>

Advisor

<<object>>

Media

<<concept>>

Questionnaire

<<concept>>

Section

<<association>>

HasSections

<<association>>

HasQuestions

<<concept>>

Question

<<association>>

HasResponses

<<association>>

HasMedium

<<association>>

HasMedium

<<association>>

NextQuestion

<<concept>>

Response

<<task>>

TakeSurvey

<<method>>

TakeSurvey.

<<task>>

ShowQuestion
<<task>>

ShowMedium

<<method>>

ShowQuestion
<<method>>

ShowMedium

<<task>>

Response

<<method>>

Response

<<task>>

GetNext

<<method>>

GetNext

<< knowledge >>

Media

<<knowledge>>

Questionnaires

<< knowledge >>

Recommen.

<< knowledge >>

Rules

<< knowledge >>

External

<< knowledge >>

Users

<< behavior >>

IdentifyUser

<< behavior >>

ShowReport

<<behavior>>

TakeSurvey
<< behavior >>

EvalAptitude

<< behavior >>

InitSession

Architectural
Design Models

Synthesis
Models

Analysis
Models

Fig. 3. ALBOR: From analysis models to architectural design models

5 Conclusions

AOSE is unquestionably a very good technique for solving complex problems,
especially in distributed, open and heterogeneous environments. For this technology
to be routinely used in companies like object-oriented approaches are, there is a need
for mechanisms suited for deciding whether or not the problem should be solved
using agents. Also the identification and design of agents should be a natural and
straightforward process that does not require a lot of expertise so that there is no
obstacle to its application by developers. Although they have made a big contribution
to improving AOSE, current agent development methodologies do not satisfactorily
solve the above-mentioned problems.

In this paper, we have pointed out some features that an agent-oriented
development methodology should have and detailed which of these features are
missing from the most important methodologies used within the agent paradigm.
Also, we have presented an overview of the SONIA methodology, illustrated by the
ALBOR case study, which includes these features and naturally leads from
requirements elicitation to MAS and agent-based development.

258 F. Alonso et al.

References

1. Zambonelli, F., Jennings, N. R., Omicini, A., Wooldridge, M.: Agent-Oriented Software
Engineering for Internet Applications. In: Omicini, A., Zambonelli, F., Klusch, M.,
Tolksdorf, R. (eds.): Coordination of Internet Agents: “Models, Technologies and
Applications”. Springer-Verlag (2001) 326-346

2. Huhns, M., Singh, M. P. (eds.): Readings in Agents. Morgan Kaufmann, San Mateo, CA.
(1998)

3. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons, LTD
(2002)

4. Epstein, J. M., Axtell, R. L.: Growing Artificial Societies: Social Science from the Bottom
Up. The Brooking Institution Press & The MIT Press (1996)

5. Lind, J.: Issues in Agent-Oriented Software Engineering. In: Ciancarini, P., Wooldridge,
M. (eds.): Agent-Oriented Software Engineering, LNAI 1957. Springer-Verlag (2001)
45-58

6. Frutos, S.: Modelo de Diseño de una Arquitectura Multi-Agente Basado en un Modelo de
Sociedad de Agentes (Multi-Agent Architecture Design Model based on an Agent Society
Model). PhD Thesis. Universidad Politécnica de Madrid, Spain (2003)

7. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley Longman (1999)

8. Odell, J., Parunak, H. V. D., Bauer, B.: Extending UML for Agents. In: Wagner, G.,
Lesperance, Y., Yu, E. (eds.): Proc. of the Agent-Oriented Information Systems
Workshop at the 17th National Conference on Artificial Intelligence. ICue Publishing
(2000)

9. Weiss, G.: Agent Orientation in Software Engineering. Knowledge Engineering Review,
Vol. 16(4) (2002) 349-373

10. Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: The State of the
Art. In: Ciancarini, P., Wooldridge, M. (eds.): Agent-Oriented Software Engineering,
LNAI 1957. Springer-Verlag, Berlin (2001) 1-28

11. Tveit, A.: A Survey of Agent-Oriented Software Engineering. First NTNU CSGSC (2001)
12. Iglesias, C.A., Garijo, M., González, J.C.: A Survey of Agent-Oriented Methodologies. In:

Müller, J.P., Singh, M. P., Rao, A. (eds.): Intelligent Agents V (ATAL'98), LNAI 1555.
Springer-Verlag, Berlin (1999) 317-330

13. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent Oriented
Software Development Methodology. Int. Journal of Autonomous Agent and MultiAgent
System, Vol. 8(3) (2004) 203-236

14. Zambonelli, F., Jennings, N. R., Wooldridge, M.: Developing Multiagent Systems: The
Gaia Methodology. ACM Transactions on Software Engineering and Methodology, Vol.
12(3) (2003) 317-370

15. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent
Agents. In: Giunchiglia, F., Odell, J., Weiss, G. (eds.): Agent-Oriented Software
Engineering III, LNCS 2585. Springer-Verlag. Berlin (2003) 174-185

16. Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design of Agent-
Based Systems. In: Ciancarini, P., Wooldridge, M. (eds.): Agent-Oriented Software
Engineering, LNAI 1957. Springer-Verlag. Berlin (2001) 185-194

17. Bush, G., Cranefield, S., Purvis, M.; The Styx Agent Methodology. The Information Science
Discussion Paper Series, Number 2001/02. University of Otago. New Zealand (2001)

 SONIA: A Methodology for Natural Agent Development 259

18. Elammari, M., Lalonde, W.: An Agent-Oriented Methodology: High-Level and
Intermediate Models. Proc. of the First Bi-Conference. Workshop on Agent-Oriented
Information Systems (AOIS'99). Heidelberg, Germany (1999)

19. Collinot, A., Carle, P., Zeghal, K.: Cassiopeia: A Method for Designing Computational
Organizations. Proc. of the First Int. Workshop on Decentralized Intelligent Multi-Agent
Systems. Krakow, Poland (1995) 124-131

20. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison Wesley Longman. Reading, MA (1999)

21. Gervais, M.: ODAC: An Agent-Oriented Methodology Based on ODP. Journal of
Autonomous Agents and Multi-Agent Systems, Vol. 7(3) (2002) 199-228

22. Wood, M. F., DeLoach, S. A.: An Overview of the Multiagent Systems Engineering
Methodology. In: Ciancarini, P., Wooldridge, M. (eds.): Agent-Oriented Software
Engineering, LNAI 1957. Springer-Verlag, Berlin (2001) 207-222

23. Lind, J.: Iterative Software Engineering for Multiagent Systems: The MASSIVE method,
LNCS- 1994. Springer-Verlag (2001)

24. Brazier, F. M. T., Dunin-Keplicz, B., Jennings, N., Treur, J.: Desire: Modeling Multi-
Agent Systems in a Compositional Formal Framework. Int. Journal of Cooperative
Information Systems, Vol. 6. Special Issue on Formal Methods in Cooperative Information
Systems: Multiagent Systems (1997)

25. Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modeling Technique for Systems
of BDI Agents. In: van de Velde, W., Perram, J. W. (eds.): Agents Breaking Away
(MAAMAW'96), LNAI 1038. Springer-Verlag, Berlin (1996) 56-71

26. Kendall, E. A., Malkoun, M. T., Jiang, C. H.: A Methodology for Developing Agent Based
Systems. In: Zhang, C., Lukose, D. (eds.): Distributed Artificial Intelligence - Architecture
and Modeling, LNAI 1087. Springer-Verlag, Germany (1996) 85-99

27. Burmeister, B.: Models and Methodology for Agent-Oriented Analysis and Design. In:
Fischer, K. (ed.): Working Notes of the KI'96 Workshop on Agent-Oriented Programming
and Distributed Systems, Saarbrücken, Germany (1996)

28. Moulin, B., Cloutier, L.: Collaborative Work Based on Multi-Agent Architectures: A
Methodological Perspective. In: Aminzadeh, F., Jamshidi, M. (eds.): Soft Computing:
Fuzzy Logic, Neural Networks and Distributed Artificial Intelligence. Prentice-Hall, N.J.,
USA (1994) 261-296

29. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde,
W., Wielinga, B.: Knowledge Engineering and Management. The CommonKADS
Methodology. The MIT Press. Cambridge, MA (1999)

30. Iglesias, C.A., Garijo, M., González, J.C., Velasco, J. R.: Analysis and Design of
Multiagent Systems using MAS-CommonKADS. In: Singh, M. P., Rao A. S., Wooldridge,
M. (eds.): Intelligent Agents IV: Agent Theories, Architectures, and Languages
(ATAL97), LNAI 1365. Springer-Verlag, Berlin (1999) 313-326

31. Glaser, N.: The CoMoMAS Methodology and Environment for Multi-Agent System
Development. In: Zhang, C., Lukose, D. (eds.): Multi-Agent Systems - Methodologies and
Applications, LNAI 1286. Springer-Verlag, Berlin (1997) 1-16

32. Alonso, F., Barreiro, J. M., Frutos, S., Montes, C.: Multi-Agent Framework for
Intelligent Questionnaire on the Web. Proc. of the Third World Multiconference on
Systemics, Cybernetics and Informatics (SCI-99) and the Fifth Int. Conference on
Information Systems Analysis and Synthesis (ISAS’99), Vol. III. Orlando, USA (1999)
8-15

260 F. Alonso et al.

33. Alonso, F., Frutos, S., Fuertes, J. L., Martínez, L. A., Montes, C.: ALBOR. An Internet-
Based Advisory KBS with a Multi-Agent Architecture. Int. Conference on Advances in
Infrastructure for Electronic Business, Science, And Education on the Internet (SSGRR
2001), L’Aquila, Italy (2001) 1-6

34. Martínez, L.A.: Método para el Analysis Independiente de Problemas (Method for
Independent Problem Analysis). PhD Thesis. Universidad Politécnica de Madrid. Spain
(2003)

35. Austin, J.L.: How to Do Things with Words. Harvard University Press. Cambridge, MA
(1962)

36. Kelly, G. A.: The Psychology of Personal Constructs. Norton (1995)

Deployment of Distributed Multi-agent Systems

Lars Braubach1, Alexander Pokahr1, Dirk Bade1,
Karl-Heinz Krempels2, and Winfried Lamersdorf1

1 University of Hamburg, Dept. of Computer Science,
Distributed and Information Systems,

Vogt-Klln-Str. 30, 22527 Hamburg, Germany
{braubach, pokahr, lamersd}@informatik.uni-hamburg.de

2 University of Aachen, Dept. of Computer Science, Informatik IV,
Ahornstr. 55, 52074 Aachen, Germany
krempels@informatik.rwth-aachen.de

Abstract. The agent metaphor has shown its usefulness for modelling
as well as implementing complex and dynamic applications. Although a
number of agent applications has been successfully realised and used, it
must be stated that the distribution of commercial off-the-shelf applica-
tions is very scarce. For this discontenting situation, at least two reasons
can be identified. On the one hand, the development of agent-based appli-
cations is difficult suffering from insufficient standards and tools and on
the other hand deployment issues are little researched and supported. In
this paper, several deployment-related topics are discussed and a vision
for the deployment of distributed multi-agent systems is conceived. From
the vision, requirements for launching and configuring agent applications
are derived. According to these requirements, a platform independent
reference model of the proposed deployment infrastructure is presented.
The reference model provides the basis for the development of our AS-
CML (Agent Society Configuration Manager and Launcher) tool, which
is currently implemented for the JADE and Jadex multi-agent platforms.

1 Introduction

Multi-agent systems (MAS) are composed of autonomous, interacting, more or
less intelligent entities. The agent metaphor has proven to be a promising choice
for building complex and adaptive software applications, because it addresses
key issues for making complexity manageable already at a conceptual level [1].
Furthermore, agent technology can be seen as a natural successor of the object-
oriented paradigm and enriches the world of passive objects with the notion of
autonomous actors. Therefore, one would suppose agent applications to be in
widespread use in academic as well as in industrial projects. The contrary is the
case. Even though many agent applications are developed in various domains [2],
most of them are specialised solutions that are deployed in at most one setting.
The question arises: Why are agent applications not yet widely distributed?

One reason for this is that the development of MAS is inherently difficult and
error prone, because of several intricate issues. First, the development process for

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 261–276, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

262 L. Braubach et al.

building agent applications is in most cases ad-hoc and not based on a generally
accepted methodology, like for example the well-known Unified Process for UML
[3] in the object-oriented world. For agent systems, no such common ground
exists due to different agent architectures and missing standards. In consequence,
a methodology has to be chosen independently for each project among several
alternatives. This choice is crucial for the project’s success and is constrained by
domain and implementation aspects [4]. In addition, whatever methodology is
selected, the tool support is always relatively poor and does not cover all phases
of the development process.

Besides the methodology, the development of agent-based applications is dif-
ficult, because the software is distributed and dynamic in nature and demands
various new skills and a new way of thinking from the developers. E.g. an object-
oriented software engineer cannot easily change to the agent paradigm without
considering ontology descriptions and studying the abstract speech-act based
agent communication. Additionally, intelligent agents often use mentalistic no-
tions or employ rule-based approaches.

Another important reason for the scarce distribution of commercial off-the-
shelf agent applications is that there is currently no support for the deployment
of agent applications. In areas such as distributed object systems, systematical
guidelines and mechanisms for all activities concerned with deployment issues
have been developed. These guidelines ensure that a properly developed dis-
tributed application can be packaged into a reusable, maintainable, and config-
urable piece of software. However, although multi-agent systems composed of au-
tonomous proactively (inter-)acting entities differ considerably from distributed
object systems, the issue of appropriate deployment techniques for MAS is not
yet very much researched.

The vision of this paper is to specify agent applications at a high-level us-
ing constraints to declare what system properties need to be fulfilled for the
application to work properly. E.g. one could demand certain services and agent
roles to be available, whereby the deployment environment has the task to in-
terpret and supervise these constraints and has to start agent instances accord-
ingly. As a first step towards this high-level deployment for MAS we propose a
reference model for the launching of distributed multi-agent applications that
are specified by declaring which and how many agent instances shall be in-
stantiated in what order. As part of the reference model a generic meta-model
for the specification of agent applications is described, which consists of one
layer for the definition of agent types and another one for the ordered com-
position of agent instances belonging to a certain application scenario. To un-
derline the applicability of the proposed model a prototype implementation is
presented.

The rest of the paper is structured as follows. The next section presents some
background on deployment in general and deployment of agents in particular.
We use our vision to derive requirements for deployment of distributed multi-
agent systems in section 3. To meet these requirements, in section 4 a reference
model is presented, and it is explained in section 5 how the reference model is

Deployment of Distributed Multi-agent Systems 263

implemented in our Agent Society Configuration Manager and Launcher tool
(ASCML). The last section summarises the paper, gives some conclusions, and
outlines areas for future work.

2 Background

The Object Management Group (OMG) defines deployment as “the processes be-
tween acquisition of software and execution of software”. In [5] a general deploy-
ment process for distributed systems is specified, which consists of five phases.
In the installation step the software is acquired and stored in a local reposi-
tory that not necessarily needs to be the program’s execution location. Next,
the software can be functionally configured in the sense that application specific
properties are set to certain values. This may result in several different applica-
tion configurations. Thereafter a deployment plan taking into account the target
environments and the software requirements is developed. With the help of this
deployment plan, the code placement can be done in the preparation phase. Fi-
nally, the application can be launched, which demands the starting and runtime
configuration of software at the planned nodes in the target environment.

For agent-based applications, this process is more dynamic and flexible, be-
cause the application constituting elements are autonomous agents instead of
passive components. Nevertheless, the above-mentioned activities are important
for MAS as well and will be discussed with respect to their peculiarities in the
following. Concerning the installation step, two distinct kinds of software have to
be available. On the one hand, the agent infrastructure, which is responsible for
offering the basic agent services like messaging, white and yellow pages service
needs to be acquired. For this purpose, normally agent platforms are used. On
the other hand, the application specific agent software needs to be accessible,
whereby for certain types of applications it may be sufficient to load portions of
agent code dynamically. The functional configuration of MAS can be done by
adjusting the available agent start-parameters and by fine-tuning the number of
agents to be started. E.g. the number of service agents could be used to tune the
application’s scalability for small and large enterprises accordingly. The plan-
ning and preparation steps for MAS involve the decisions about the placement
of infrastructure and application code on the environment nodes. Therefore,
considerations about possibly mobile agents and dynamic code retrieval have to
be taken into account; e.g. movements of agents may require platforms to be
installed on network nodes, where no agents are initially running.

The launching of MAS differs to a great extent from starting a component-
based application. Component-based applications have a hierarchical structure
and are usually launched using a single starting point, which creates the nec-
essary subcomponents. On the contrary, agent-based applications consist of a
bundle of autonomous actors that are self-dependent after birth. Hence, to de-
fine configurations of agent applications notions conceptually more abstract than
single agents are necessary. Minimum for the description of an agent application
at a concrete level is that agent instances and dependencies between these in-

264 L. Braubach et al.

stances can be expressed. Nevertheless, specifications that are more abstract are
desirable and could support a higher degree of robustness and maintainability.

In [6] several agent platforms are compared with respect to their support for
the analysis, design, implementation, and deployment phase. In correspondence
to our actual research, it turns out that only very few platforms address issues
of deployment at all. Positive exceptions can be found within Agent Academy
[7], AgentBuilder [8], ZEUS [9], AgentFactory [10] and BlueJADE [11]. To our
knowledge only the Agent Academy and the somewhat outdated AgentBuilder
frameworks offer tool support for the specification and launching of agent ap-
plications. Both platforms allow the simple designation of parameterised agent
instances from formerly defined agent types. These agent instances will be started
altogether, when the so defined agent application is launched. ZEUS and Agent-
Factory utilise tools for the generation of human readable starting scripts that
contain a list of ordered commands for instantiating and starting agents. In con-
trast to the aforementioned tools, BlueJADE is an attempt to integrate an agent
framework into an application server treating the platform as manageable ser-
vice. Hence, it shifts the responsibility of agent management to the application
server, which allows starting and stopping individual agents as well as platforms.
The conceptual problems of specifying agent applications are not addressed.

One obvious drawback of all solutions found, consists in the missing possibil-
ity to define any kinds of dependencies that may constrain the order of agents to
start. Additionally, the agent application meta-models are specified only implic-
itly, rendering the creation of a cross-platform launching tool almost impossible.
With respect to our vision it has to be stated that currently available solutions
carry out the definition of agent applications merely at the concrete level, what
makes it difficult having flexible and scalable applications. By utilising a more
abstract approach, agents could be started in response to certain application and
environmental demands. This more abstract way of an agent application is also
related to organisational approaches [12, 13]. These aim to structure MAS with
respect to the organisational settings found in the addressed problem domain.
Hence, the motivation for structuring agents is different but the concepts have
some similarities and probably will allow a consolidation of both directions.

Directly related to the starting of agent applications is the dynamic applica-
tion reconfiguration, which either could be done automatically by the configura-
tion environment, or could be done manually by some administration authority.
An abstract application specification could be a promising starting point for dy-
namic configuration mechanisms as well, because application constraints could
be supervised and used to trigger reconfiguration actions.

Until now, the extent to which dynamic reconfiguration is supported by agent
platforms, is mostly reduced to the allocation of agents to network nodes to cope
with varying network loads. E.g. the RECoMa [14] reconfiguration manager of
the RETSINA [15] framework was developed to launch agents, reallocate them
to other computers, and monitor their runtime states. Some aspects of more ad-
vanced configuration mechanisms for agent-based applications have been covered
by a preliminary and now deprecated FIPA specification [16], which underlined

Deployment of Distributed Multi-agent Systems 265

the importance of agent dependency specifications, life cycle management, and
monitoring mechanisms. The idea of the FIPA Agent Configuration Manage-
ment work group was to introduce configuration domains in which a designated
management agent is responsible for monitoring this domain.

Due to the fact that there are only few agent applications in the market, it is
not astonishing that the development of configuration concepts and tools has not
gained much interest until to date. Widening the horizon of considered configu-
ration targets from agent-based to distributed component-based applications, it
is interesting that agent-based approaches for configuring component-based ap-
plications can be found. E.g. in [17] a hierarchical agent-based infrastructure for
monitoring and configuring distributed applications is proposed.

3 Requirements

Having presented the current state of the art with respect to deployment of
multi-agent systems, a lack of concepts, standards, and tools can be identified,
in particular for launching and dynamic reconfiguration of complex agent-based
applications. These two aspects of deployment are essential to achieve the vision
of specifying agent applications at a high level. In the following, we will discuss
the desirable features with respect to the launching of preconfigured multi-agent
systems and investigate what is needed to achieve dynamic reconfiguration of
agent-based applications.

Before going into details about launching of agent applications, we have to
clarify some terms used in the following. Configurations of component-based
applications can be defined at two levels: Component level configurations and
application level configurations [18]. For agent-based systems, the agent level
and the application level can be distinguished. Considering a single agent, a dis-
tinction can be made between the static implementation parts and the running
processes. When we need to highlight this distinction, we refer to the former as
agent type and to the latter as agent instance. This distinction can also be made
at the application level. We use the term society type to refer to the static prop-
erties of a multi-agent application. A society type in our terms is a composition
of agent types, supplemented with some (e.g. interaction) constraints. A society
instance refers to the instantiation of a society, and is composed of single agent
instances and concrete dependencies between those instances. The model should
be recursive to allow societies to be part of larger societies on the type as well
as on the instance level.

3.1 Basic Management Services

To support the launching of distributed multi-agent applications several ba-
sic services can be identified. First of all, services are needed for starting and
stopping agent and society instances. For invoking these services, at least the
following information has to be supplied. The start of an agent instance should
be based on a given agent type definition which has to contain a reference to

266 L. Braubach et al.

the agent implementation (e.g. a Java class) and should declare the parameters
that can be supplied to an agent of this type. To instantiate an agent, its type
definition, the name for the agent instance (according to FIPA) and the assigned
values for the parameters have to be supplied. To stop an agent instance only
the agent identifier has to be known.

A society instance definition should contain all additional information re-
quired to instantiate a multi-agent application based on a society type defini-
tion. Therefore, a society instance definition has to contain the concrete agent
instances with names and parameter assignments, as well as any dependencies
that have to be respected when launching the application. This allows starting
a complete society by just referring to the instance definition. To be able to
identify a running application, a unique name should be given to each started
society. It has to be assured that the agent instances belonging to a society are
known, so that a society instance can also be stopped as a whole.

In order to launch distributed applications these basic services should be avail-
able remotely, therefore issues of security and accounting have to be considered
[19]. In addition, it is desirable that only minimal requirements are necessary
for the manual configuration of network nodes, which could be achieved by code
distribution and a service that allows remotely starting new agent platforms.

The basic services additionally require a launch process management that has
to make sure, that the correct agents, societies, and platforms are launched at the
correct nodes at the correct times. One can imagine several ways to specify this.
At the concrete level, it is possible to directly define the dependencies between
agent instances of a society instance. The launch process management can then
determine the launch order based on a topological sort of the dependency graph.

Constraints that are more abstract such as dependencies to specific services
or roles can be employed to define application characteristics already at the
type level (i.e. in agent type or society type definitions). In addition, application
specific constraints and network load characteristics can be used to determine
the allocation of agent instances to the available network nodes.

3.2 Monitoring and Reconfiguration

Once an application has been launched, the monitoring and reconfiguration of
the running societies and agent instances should be supported. On the one hand,
an administrator might want to observe a running application and manually add
or remove agent instances or reallocate mobile agents to new network nodes. On
the other hand a monitoring service should take care of the constraints and de-
pendencies specified in the type and instance definitions and perform appropri-
ate actions when the constraints get violated, e.g. by starting additional service
agents to assure a given response time. By detecting failures and relaunching of
agents, as well as detecting agents which are no longer needed by any applica-
tion, the monitoring service can increase the robustness of agent applications.
The exact mechanisms available to the monitoring service to alter a running sys-
tem have to be customized carefully for each application to reflect the varying
degree of autonomy for each agent.

Deployment of Distributed Multi-agent Systems 267

To support monitoring and reconfiguration of agents and applications it is
necessary to provide the responsible monitoring entities with relevant state in-
formation about the monitored entities and vice versa to be able to communicate
back reconfiguration commands to the relevant agents. In addition, the recon-
figuration of a larger application often requires a coordinated set of reconfigu-
rations against the individual agents that constitute the system. Furthermore,
reconfigurations need to assure that the system is in a consistent state after the
reconfiguration has been performed [17, 18]. These issues are beyond the scope
of this paper and will not be further elaborated.

4 Deployment Reference Model

In the following, we describe our approach towards realising the vision of dis-
tributed deployment of multi-agent applications. The approach is based on the
idea of specialised service agents that are responsible for launching and managing
agents and societies on their platform. These service agents are called ASCML
(Agent Society Configuration Manager and Launcher). Fig. 1 depicts the deploy-
ment reference model. On each agent platform, at least one ASCML agent will be
available to manage the societies on that platform. ASCML agents may respond
to remote requests, e.g. from other ASCMLs, in order to start (subordinated)
society instances remotely. In the reference model, each society instance will be
managed by exactly one ASCML. A society instance is a virtual concept only
known to the ASCML agent that started it and has no representation on the
agent platform. Therefore, societies may easily span across several platforms,
having one root ASCML responsible for the whole society instance and local
ASCMLs responsible for different subparts. Agent instances (e.g. generic agents
such as a yellow page service) may belong to several society instances at once,
and therefore - knowingly or not - may be under control of several ASCML
agents.

The reference model is able to capture most of the requirements of the last sec-
tion. The ASCML agent provides the basic management services for starting and

Fig. 1. Deployment reference model

268 L. Braubach et al.

stopping agent and society instances, and is also responsible for launch-process-
management as well as monitoring and dynamic reconfiguration. This external
approach is considered advantageous compared to an internal approach where
configuration management is built into the single entities [18]. The ASCML is
a self-contained component with a standardised interface. Porting the ASCML
to different FIPA-compliant agent platforms should be straightforward, making
the reference model well suited to achieve deployment capabilities in heteroge-
neous environments. The reference model does not directly support starting and
stopping of remote agent platforms, as an ASCML and a running agent platform
have to be present at each network node. To meet this requirement some kind
of bootstrapping component would be necessary, which is out of the scope of
this paper.

Launching, as well as the planned monitoring and reconfiguration services
are based on specifications of agents and societies. To facilitate reusability of
specifications a society instance is not defined in one large file, but in two dif-
ferent types of files describing an agent application at different levels. Agent
type specifications define self-contained agents at the single-agent level. Society
specifications define multi-agent applications by referencing the specifications of
included agents and society instances. Both specifications follow an XML schema
definition as described in the next two sections.

While we are currently creating the specification files manually, we envisage
that graphical user interfaces will be used to compose and configure larger agent
applications. Additionally, tools can be developed to crosscheck created specifica-
tions for consistency. Once the specifications have been created, the deployment
engineer has to take care, that each ASCML agent has access to the specification
files for those agents and societies that it has to start on its platform.

4.1 Agent Type Specification

Fig. 2 depicts the structure of an agent type specification. An ASCML agent will
read the agent type specification e.g. when it is requested to instantiate an agent
of that type. The agent element captures important properties of an agent such
as the agent’s implementation class and the type, which identifies the required
agent platform (e.g. JADE [20]). The single-valued parameters and multi-valued
parameter sets represent typed arguments that can be supplied when creating a
new instance of the agent. Additionally, it is possible to specify one or more (for
parameter sets) default values that are used by the ASCML, when no explicit
value is provided for the creation of a specific agent instance. Both kinds of
parameters can be further elaborated with additional constraint elements, used
for restricting the set of allowed values for the parameter. Furthermore, FIPA-
compliant service and agent descriptions [21] can be included in the agent type
definition. These allow specifying the services that an instance of this agent type
can provide when it is instantiated.

available at http://jadex.sourceforge.net/schemas/

1

1

Deployment of Distributed Multi-agent Systems 269

Fig. 2. The agent meta-model

Fig. 3. The agent society meta-model

4.2 Society Type Specification

A society type (see Fig. 3) defines a multi-agent application at the type level.
The society contains a declaration part in which all agent types and enclosed
subsocieties have to be defined. This declaration part is not necessary from
the technical point of view, but it enhances the readability of the application
specifications and facilitates model checking by making explicit the available
element types. The contained society instances represent different application
configurations, whereby each society has to provide at least one default society
instance. This society instance will be selected for instantiation when the society
needs to be launched without further information available.

A society instance consists of concrete agent instances and subsociety in-
stances that need to be created when the society is started. For the specification
of agent instances, at least the mandatory parameter values have to be supplied.
Additionally, platform dependant tool options can be specified in a generic way.
They can be used to activate tools and e.g. can be utilized to facilitate the de-

270 L. Braubach et al.

bugging process by using agent observation tools such as the Sniffer agent in
JADE. Dependency elements are used to establish an implicit ordering of the
entities to be started.

In addition to the agents to be created, a society can contain an arbitrary
number of subsocieties that can contain further subsocieties as well. This allows
a recursive application definition and facilitates the creation of distributed MAS.
Each referenced subsociety instance refers to a concrete society instance, which
itself belongs to a declared society specification. For the purpose of starting a
remote society, a so-called launcher identifier can be declared. This identifier
designates the remote ASCML agent responsible for starting the corresponding
remote society. In analogy to agent instances, dependencies can be specified for
subsocieties as well.

4.3 Dependencies

Dependencies are used to express relationships between elements at the instance
level. If one element declares itself dependent from another element this means
that the declaring element cannot be started until the referenced element is
available. In our model five different types of dependencies can be distinguished:
agent type, agent instance, society type, society instance and service dependen-
cies. An agent type dependency can be used to wait for an arbitrary number
of agents of a specified type to be running, while an agent instance dependency
exactly refers to a designated agent, identified by its unique name. Both kinds
of dependencies also exist for the society element, which means that it is possi-
ble to wait for a specified number of societies with a certain type as well as for
directly known societies. The last kind of dependency is the most abstract one
and allows defining indirect relationships between elements, because the element
depends on a service (following FIPA) to be available.

All kinds of dependencies can either be marked active or passive denoting
if the ASCML has the duty to actively engage in action when the dependency
does not hold. If a dependency is declared active the ASCML will try to start
missing entities, whereby the mechanism for deciding what instance need to be
launched depends on the type of dependency and its parameterisation. In case
of a passive dependency, the ASCML will wait until the dependency condition
holds (e.g. retesting the condition from time to time).

4.4 Example

The following example further explains the meta-model presented in the prior sub-
sections. It relies on a slightly modified version of the JADE Party example appli-
cation provided with the JADE-distribution. In this scenario, guests are invited to
a party by an organizer and spread a rumour until it is known by all guests and
the party ends (cf. JADE Party Java docs). Hence, the JADE Party consists of
two different types of agents, a Host- and a Guest-agent that make up the basis for
the corresponding society type. By defining different settings, e.g. specifying the
number of guests taking part in the party, different society instances may be set up.

Deployment of Distributed Multi-agent Systems 271

Fig. 4. Guest- and Host-agent type definitions

With the agent type definition all required information for starting an agent
of this type is specified (see Fig. 4). The definition of both agent types contains
the name, which is used in connection with the package declaration to uniquely
identify a model within the ASCML’s scope. The class-attribute reflects the
agent’s implementation class, which is instantiated at the agent’s start-up and
the type-attribute serves as the agent-platform type identifier (e.g. JADE) and
is evaluated by the ASCML to choose among the set of platform-dependent
managing-services for starting and stopping agents. Additionally, for the Host
agent type one parameter for the number of party guests is specified, in this case
obliging the Host not to start the party before at least the specified number of
guests has arrived. The parameter is non-optional meaning that a concrete value
has to be specified by an agent instance of this type.

Besides the definition of the agent types, an additional definition of the society
type, together with a set of society instances is needed (see Fig. 5). It contains

Fig. 5. Definition of the JADE Party-society type

1 <agent name="Guest" package="examples.party" class="GuestAgent" type="JADE"/>

1 <agent name="Host" package="examples.party" class="HostAgent" type="JADE">
2 <parameters>
3 <parameter name="guestsToWaitFor" type="Integer" optional="false"/>
4 </parameters>
5 </agent>

01 <society name="BirthdaySociety" package="examples.party">
02
03 [import and declaration of used agenttypes and referenced societies are omitted]
04
05 <societyinstances default="SmallParty">
06
07 <societyinstance name="SmallParty">
08 <agentinstances>
09 <agentinstance name="Birthday Child" type="Host">
10 <parametervalue name="guestsToWaitFor"> 10 </parametervalue>
11 </agentinstance>
12 </agentinstances>
13 <societyinstanceref name="Guests"societytype="BirthdaySociety"societyinstance="SmallGuestpool">
14 <dependency active=”false”>
15 <agenttype name="Host" quantity="1"/>
16 </dependency>
17 <launcher name="ASCML@remotecomputername:5000/JADE">
18 <address> http://192.168.0.170:5010/acc </address>
19 </launcher>
20 </societyinstanceref>
21 </societyinstance>
22
23 <societyinstance name=”SmallGuestpool”>
24 <agentinstances>
25 <agentinstance name=”Guest No_%N” type=”Guest” quantity=”10” />
26 </agentinstances>
27 </societyinstance>
28
29 </societyinstances>
30
31 </society>

272 L. Braubach et al.

the definition of the SmallParty society instance (lines 7-21), which represents the
main application and a helper society instance called SmallGuestpool (lines 23-27).

One agent instance, named “Birthday Child”, is contained within the Small-
Party. This instance relies on the agent type Host, indicated by the attribute type
(line 9), and therefore has to supply a value for the guestsToWaitFor-parameter
(cf. agent type definition). Besides the agent instance also the subsociety Guests
(line 13-20) is defined as reference to the SmallGuestpool society instance. To
make sure the guests do not join the party before the host is ready, a dependency
is specified (lines 14-16) forcing the ASCML to first wait for the dependency be-
fore going on starting the referenced society instance. Once the dependency is
satisfied, the ASCML may try to start the subsociety by sending a request to the
launcher (lines 17-19). The launcher, identified by its FIPA-conform name and a
set of addresses, has to be an ASCML-agent as well. Assuming this ASCML also
has access to the given society instance, it may now start the agent instances
contained within the society instance.

The subsociety SmallGuestPool consists of a collection of guests, which are
agents of the same type (line 25). For convenience, not every individual agent
has to be provided with its own definition. It is sufficient to specify the number
of agents contained within the collection by using the quantity-attribute and a
naming scheme for enumerating the agent instances.

5 Prototype Realization

The deployment reference model is the basis for the currently developed ASCML
prototype. The reference model as described above is platform independent,
therefore allowing agent applications not only to be spread across different hosts
but also to be composed of agents developed for different platforms. The launcher
tool currently exists in two (slightly different) versions, developed for the JADE
[20] and Jadex [22, 23] platforms.

5.1 Architecture

The ASCML is subdivided into three co-operating subsystems: the launcher, the
repository, and the GUI. To enable subsystems being individually exchanged,
modified or enhanced the connection between these components is lightweight
based on interfaces and event mechanisms. In the following each of the subsys-
tems is described in more detail and their role within the ASCML’s architecture
(as depicted in Fig. 6) is highlighted.

The repository-subsystem provides facilities to manage all necessary data
used within the ASCML such as agent- and society models, properties and
project-management data. The repository is used as an abstract shared data
structure and may be accessed by all other subsystems. Furthermore, it is respon-
sible for loading and saving model-objects from and to different data sources,
like XML-files or databases. Changes made to the data contained within the
repository are acquainted by events to all registered listeners.

Deployment of Distributed Multi-agent Systems 273

Fig. 6. The ASCML architecture

The GUI-subsystem facilitates the interaction between the user and the un-
derlying subsystems. It provides dialogs to view and change data contained
within the repository and allows the user to interact with the launcher to perform
actions such as starting and stopping of agent and society instances.

The launcher-subsystem realises the interface between the ASCML and the
underlying agent-platform. It is responsible for the basic agent- and society man-
agement, which includes starting and stopping of agent instances, delegation of
action-requests to remote ASCMLs and resolving dependencies defined by soci-

Fig. 7. The ASCML tool screenshot

274 L. Braubach et al.

eties. It encapsulates the logic for communicating with the local agent-platform
as well as with remote ASCMLs. Therefore parts of the launcher are platform-
dependent, but may easily be exchanged to support different agent-platforms.

5.2 Example Usage

The graphical user interface of our ASCML implementation is depicted in fig-
ure 7. On the left hand side, one can see the specification repository tree with
some known agent and society types, whereas on the right hand side details of
the selected tree element are shown. In this example, the society type called
BirthdaySociety and a couple of tool agents are available. In the BirthdaySo-
ciety, two different instances (SmallGuestpool and SmallParty) are predefined
as ready to run application configurations. In the depicted scenario, two tool
agents (sniffer and introspector) already have been started. On the right hand
side some details of the SmallGuestpool such as the contained agent instances
are presented.

6 Conclusion and Outlook

In this paper, we have argued that deployment techniques are important for the
wide-spread and industrial adoption of multi-agent system technology. We have
investigated the general requirements and the extent to which existing deploy-
ment techniques can be adapted to support the launching and configuration of
distributed multi-agent systems.

To address the arising issues we have proposed a reference model that specifies
the general launching and configuration infrastructure. The reference model is
based on the notions of agents and societies as constituting entities. For the
reference model a FIPA-compliant service interface has been designed, which
allows (parts of) applications to be started on different hosts and possibly on
different platforms. A prototype of the deployment tool (ASCML) has been
implemented for the JADE and Jadex frameworks.

Future extensions will be done on two levels. On the conceptual level we
will further investigate, which elements and relationships are necessary for the
specification of abstract multi-agent applications according to our vision of scal-
able and adaptive systems. For this purpose, we need to extend our definition
of agent societies incorporating more advanced concepts such as roles and con-
straints, taking into account existing organisational models. The usage of roles
promises e.g. to capture the relationships between agents at a more abstract level
enabling dependencies to be specified between roles and not only at the agent
instance level. The introduction of application constraints will not only lever-
age the abstraction level of the application specification, but also can be seen
as a starting point for dynamic application reconfiguration. This is because the
configuration environment could use these constraints to ensure certain proper-
ties of the application and engage in appropriate actions whenever this becomes
necessary.

Deployment of Distributed Multi-agent Systems 275

On the tool level, the ASCML will be extended to live up to its name by
introducing user interfaces for the easy construction of agent-based applications.
This will further improve the tool’s usability and additionally can be exploited to
reduce the number of application specification mistakes. Monitoring capabilities
(e.g. observing the lifecycle state of agents) will be added to the tool to facilitate
automatic reconfiguration of running applications.

Acknowledgements

This work is partially funded by the DFG German priority research programme
SPP 1083: Intelligent Agents in Real-World Business Applications.

References

1. Jennings, N.R.: An agent-based approach for building complex software systems.
Communications of the ACM 44 (2001) 35–41

2. Jennings, N.R., Wooldridge, M.J.: Agent Technology - Foundations, Applications
and Markets. Springer Verlag (1998)

3. Arlow, J., Neustadt, I.: UML and the Unified Process: Practical Object-Oriented
Analysis and Design. Addison-Wesley (2002)

4. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W.: Evaluation of Agent-
Oriented Software Methodologies – Examination of the Gap Between Modeling
and Platform. In: Proc. of the 5th Int. Workshop on Agent-Oriented Software
Engineering (AOSE-2004). (2004)

5. (OMG), O.M.G.: Deployment and Configuration of Component-based Distributed
Applications Specification. (2003) http://www.omg.org/.

6. Ricordel, P., Demazeau, Y.: From analysis to deployment: A multi-agent platform
survey. In: Engineering Societies in the Agents World, Springer-Verlag (2000) 93–
105

7. Mitkas, P.A., Kehagias, D., Symeonidis, A.L., Athanasiadis, I.N.: A framework
for constructing multi-agent applications and training intelligent agents. In: Proc.
of the 4th Int. Workshop on Agent-Oriented Software Engineering (AOSE-2003).
(2003) 96–109

8. Systems, R.: AgentBuilder User’s Guide. (2000) http://www.agentbuilder.com/.
9. Nwana, H., Ndumu, D., Lee, L., Collis, J.: ZEUS: a toolkit and approach for build-

ing distributed multi-agent systems. In: Proc. of the 3rd conference on Autonomous
Agents, ACM Press (1999) 360–361

10. Collier, R.W.: Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications. PhD thesis, University College Dublin (2001)

11. Cowan, D., Griss, M., Burg, B.: BlueJADE - A service for managing software
agents. Technical Report HPL-2001-296R1, Hewlett Packard Laboratories (2002)

12. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: an Organi-
zational View of Multi-Agent Systems. In Giorgini, P., Mller, J., Odell, J., eds.:
AOSE. Volume 2935 of Lecture Notes in Computer Science., Springer (2003) 214–
230

13. Odell, J.J., Parunak, H.V.D., Fleischer, M.: The role of roles in designing effective
agent organizations. In: Software Eng. for Large-Scale MAS, Springer (2003) 27–38

276 L. Braubach et al.

14. Giampapa, J., Juarez-Espinosa, O., Sycara, K.: Configuration Management for
Multi-Agent Systems. In: The 5th International Conference on Autonomous Agents
(Agents 2001), ACM Press (2001) 230–231

15. Sycara, K., Giampapa, J., Langley, B., Paolucci, M.: The RETSINA MAS, a Case
Study. In: Software Engineering for Large-Scale Multi-Agent Systems: Research
Issues and Practical Applications. Volume LNCS 2603. Springer-Verlag (2003)
232–250

16. Foundation for Intelligent Physical Agents: FIPA Agent Configuration Manage-
ment Specification. Document no. FIPA00090 (2001)

17. Castaldi, M., Carzaniga, A., Inverardi, P., Wolf, A.: A Light-weight Infrastructure
for Reconfiguring Applications. In Westfechtel, B., van der Hoek, A., eds.: Software
Configuration Management, ICSE Workshops SCM 2001 and SCM 2003, Springer
(2003)

18. Castaldi, M.: Dynamic Reconfiguration of Component Based Applications. PhD
thesis, Department of Computer Science, University of L’Aquila, Italy (2004)

19. Sloman, M.: Management issues for distributed services. In: Proc. of the 2nd Int.
Workshop on Services in Distributed and Networked Environments, IEEE (1995)
52–55

20. Bellifemine, F., Rimassa, G., Poggi, A.: JADE – A FIPA-compliant agent frame-
work. In: 4th Int. Conf. on the Practical Applications of Agents and MAS (PAAM-
99). (1999)

21. for Intelligent Physical Agents, F.: FIPA Agent Management Specification. Doc-
ument no. FIPA00023 (2002)

22. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a BDI-
Infrastructure for JADE Agents. EXP – in search of innovation 3 (2003) 76–85

23. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A Short Overview. In:
Net.ObjectDays 2004: AgentExpo. (2004) 76–85

Using Stand-in Agents in Partially Accessible
Multi-agent Environment

Martin Rehák, Michal Pěchouček, Jan Tožička, and David Šǐslák

Department of Cybernetics,
Czech Technical University in Prague,

Technická 2, Prague 6, 166 27 Czech Republic
{rehakm1, pechouc, tozicka}@labe.felk.cvut.cz

sislakd@feld.cvut.cz

Abstract. This contribution defines a metrics and proposes a solution
for the problem of agents inaccessibility in multi-agent systems. We define
the stand-in pattern for knowledge maintenance and remote presence in
distributed agent systems with communication inaccessibility. Our imple-
mentation has been designed and tested in the A-globe agent platform.
We also present a set of measurements quantifying agents’ inaccessibility
in our domain and comparing the usefulness of different solution in the
environments with different inaccessibility.

1 Introduction

Nowadays, most agent systems are physically localized in one location or con-
nected by fixed networks. Therefore, the inaccessibility is coped with on the lower
parts of the protocol stack. The agents themselves treat the inaccessibility situ-
ations as rare, error causes and can not react appropriately in such situations.
With the increasing use of physically distributed agent systems in the external
environment and the appearance of mobile or static mesh networks [1] for their
connection, agent developers will have to solve accessibility or inaccessibility
related problems to make their systems more reliable and useful.

Therefore, agents’ inaccessibility [2] in a multi-agent community is an un-
easy problem of a high practical importance. Agents become inaccessible when
they want to communicate but it is not possible. There are several different
reasons why an agent may become inaccessible from the other members of the
multi-agent community - such as malfunction of the communication links, com-
munication traffic overload, agent leaving the communication infrastructure for
accomplishing a specific mission, agent failing to operate, etc.

Consequently, there is a need for an unified and general technology for main-
taining social stability/sustainability in multi-agent system with inaccessible
agents.

Within the frame of our work we have been comparing the original concept
of the stand-in agents with the classical relaying approaches. While relaying
provides a simple re-direction technology used in computer networks (e.g. it pro-
vides only routing of messages in order to implement accessibility between two

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 277–291, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

278 M. Rehák et al.

agents where direct connection is not possible), deployment of stand-in agents
represents more advanced concept and suggest a whole set of interesting research
problems. Conversely, the stand-in agent is a distant representative of a respec-
tive agent – the owner. Stand-in agents are created by their owner and they
migrate to different segments of the communication infrastructure that may be-
come inaccessible in the near future. When inaccessibility occurs the stand-in
agent acts on the owners behalf.

In this article we will discuss the problem of inaccessibility and suggest spe-
cific quantities for measuring inaccessibility. In the section 3 we will discuss
possible solutions for inaccessibility. Selected approaches will be then compared
in section 4, together with validation of applicability of theoretical concepts pre-
sented in the section 2.

2 Measuring Inaccessibility

Systematically we distinguish between several classes of inaccessibility. Inacces-
sibility can be caused e.g. by unreliability of the communication infrastructure,
balancing the cost of the communication, dynamic changes of the communication
infrastructure topology, etc.

Quantification of inaccessibility in a multi-agent system is an important prob-
lem. In the following we discuss several metrics of inaccessibility that we have
been using throughout our research project.

Let us introduce a measure of inaccessibility, a quantity denoted as ϑ ∈
[0; 1]. This measure is supposed to be dual to the measure of accessibility
– ϑ ∈ [0; 1], where ϑ + ϑ = 1. We will want ϑ to be 1 in order to denote
complete accessibility and ϑ to be 0 in order to denote complete inaccessibility.
In the following text we will mostly describe the agents’ accessibility while the
inaccessibility is its complement.

We will use the random graph theory [3] in order to describe some gen-
eral properties of communication inaccessibility in multi-agent systems. Ran-
dom graph theory has been recently successfully used for theoretical studies of
complex networks [4]. Let us represent the multi-agent community as a graph.
The agents are represented by nodes and available communication links – con-
nections where the information exchange is possible – by edges. Unlike in the
general case of agents inaccessibility, the random graphs theory works with an
assumption that all edges are present with the same probability p. In our domain,
this probability is represented by link accessibility: p = ϑ.

The ϑ link accessibility can be determined in two ways. Firstly as time ac-
cessibility ϑt:

ϑt =
tacc

tinacc + tacc
, (1)

where tacc denotes the amount of time when communication is possible while
tinacc denotes time when agents are disconnected.

Similarly, we may measure accessibility as a function of sent communication
messages (communication accessibility ϑm):

Using Stand-in Agents in Partially Accessible Multi-agent Environment 279

Fig. 1. The dependency of probability of existence path between two agents and link

accessibility. This graph is the same for the link accessibility with or without the

symmetry

ϑm =
|m| − |mfail|

|m| , (2)

where |m| denotes the total number of messages sent and |mfail| the number of
messages that failed to be delivered. The accessibility measure ϑt is symmetrical
between entities A and B

ϑt(A, B) = ϑt(B,A), (3)

while the accessibility measure ϑm is not necessarily symmetrical.
In the following we will discuss ϑt while most conclusions apply equally to ϑm.
We have been investigating primarily the domain of mobile ad-hoc networking

among computational units constantly changing their physical location. In this
domain, ϑt accessibility depends on the environment agent positions only, while
ϑm accessibility depends also on other factors, like communication link load or
limited social knowledge of the agents.

We have determined the probability of existence path between two agents
- path accessibility - depending on link accessibility in simple mathematical
simulation. The result is shown in Figure 1. Classical result of the random graph
theory is that there exists a critical probability at which large cluster appears.
In our domain, we assume that there is a critical accessibility – ϑc such that
below ϑc the agent community is composed of several isolated groups but above
ϑc most of agents become mutually path-accessible (using relay agents). The
ϑc value is represented by the quick growth in the Figure 1. This observation
is similar to a percolation transition known in the field of mathematics and
statistical mechanics [5]. In the field of multi-agent systems, it means that the
relay agents are more efficient than isolated stand-in agents for link accessibility
bigger than ϑc. Our testing scenario, presented in section 4 and implemented
using actual multi-agent system based on A-globe [6] allows to set up and
verify properties of both cases.

280 M. Rehák et al.

Table 1. Different cases of accessibility as described by random graph theory

ϑtn < 1 The network is typically composed of isolated trees. The diameter
is equal to the diameter of trees.

ϑtn > 1 A large cluster is formed. The diameter is equal to the largest
cluster diameter and if ϑtn > 3.5 it is proportional to ln(n)

ln(ϑtn) .

ϑtn > ln(n) The graph is probably totally connected and the diameter is very
close to ln(n)

ln(ϑtn) .

Second relevant result of random graph theory is the average length l∗ of path
between any two vertices and the diameter ld of a graph (i.e. maximal distance
between any two nodes). It holds [4]:

l∗ ∼ ld =
ln(n)

ln(ϑtn)
,

where n is number of agents.
In our domain, the length of the path says how many relays has to be used

in order to convey a message between the agents A and B. And as a result
of random graph theory, the maximal number of relays necessary is not much
greater then the number of relays in average case.

Table 1 summarizes several results of random graph theory important for our
study of inaccessibility.

These properties are well observable also in our domain (see section 4.2).

3 Solving Inaccessibility

We are now going to analyze existing methods coping with inaccessibility. Two
main approaches can be distinguished between them: building remote aware-
ness or remote presence.

When an agent builds remote awareness, allows the remote agents to update
their social knowledge with relevant information about itself and to let them
operate using this information. This process may be implemented using either
pull or push information retrieval operations. Typical examples are acquaintance
models described in section 3.3, matchmaking middle agents (3.2) or synchro-
nization and search in peer-to-peer networks [7].

When an agent builds a remote presence, it does so in order to operate
actively in the remote location. As a collateral effect of this action, the agent
may also build a remote awareness - as in the stand-in case, but this does not
necessarily apply when we use middle agents. Examples of this approach are
relaying (3.1), stand-ins (3.4) or broker middle agents (3.2).

3.1 Relay Agents and Adaptive Networks

First, and perhaps the most classical solution to the inaccessibility problem are
relay agents (or low-level entities), responsible for setting up a transmission path

Using Stand-in Agents in Partially Accessible Multi-agent Environment 281

through other elements when the direct contact between parties is impossible.
Such protocols are currently widely implemented for routing in various types
of networks, like TCP/IP [8] or on lower levels [1]. However, this solution is
efficient only if the network is in a ”reasonably connected” state (see third row of
Table 1 and Figure 1). Besides this limitation, that can be clearly distinguished
in the results of our experiments, there are several other factors limiting the
use of relayed connection. These factors are for example reduced battery life
due to the fact that all the messages must be transmitted several times, or
network maintenance overhead, especially in case of mobile networks. Another
factor limiting the use of relaying in agent systems is the dynamic nature of
their topology if the agent platforms are based on moving entities. In this case,
relaying cost increases as the link maintenance and path-finding in dynamic
environment is a non-trivial process.

3.2 Middle Agents

Middle agent is a term that can cover a whole range of different facilitators in
a multi-agent system. In an overview article [9], authors list different types of
middle agents - Matchmakers and Brokers (Facilitators). Matchmakers may
provide remote awareness by notifying interested agents about the presence of
service providers, while the brokers can act as intermediaries and pass actual
service requests between two mutually inaccessible parties. Even if this solution
may perform very well in many situations, it may be unusable if middle agents
are difficult to find, unreliable, or can not be trusted with private preferences of
different parties. Stand-in agents described later are intended to close this gap.

3.3 Social Knowledge and Acquaintance Models

Social knowledge represent necessary and optional information which an agent
needs for its efficient operation in the multi-agent community. The social knowl-
edge is mainly used for reduction of communication, provides self-interested
agents with a competitive advantage and allows agents to reason about the
others in environments with partial accessibility.

The acquaintance model is a very specific knowledge structure containing
agent’s social knowledge. This knowledge structure is in a fact a computational
model of agents’ mutual awareness. It does not need to be precise and up-to-date.
Agents may use different methods and techniques for maintenance and exploita-
tion of the acquaintance model. There have been various acquaintance models
studied and developed in the multi-agent community, eg. tri-base acquaintance
model [10] and twin-base acquaintance model [11]. In principle, each acquaintance
model is split into two parts: self-knowledge containing information about an
agent itself and social-knowledge containing knowledge about other members
of the multi-agent system.

While the former part of the model is maintained by the social knowl-
edge provider (an owner), the latter is maintained by the social knowledge
requestor (a client).

282 M. Rehák et al.

Social knowledge can be used for making operation of the multi-agent system
more efficient. The acquaintance model is an important source of information
that would have to be repeatedly communicated otherwise. Social knowledge
and acquaintance models can be also used in the situations of agents’ short
term inaccessibility. However, the acquaintance models provides rather ’shallow ’
knowledge, that does not represent a complicated dynamics of agent’s decision
making, future course of intentions, resource allocation or negotiation prefer-
ences. This type of information is needed for inter-agent coordination in situation
with longer-term inaccessibility.

3.4 Stand-in Agent

An alternative option is to integrate the agent self-knowledge into a mobile com-
putational entity that is constructed and maintained by the social knowledge
provider. We will refer to this computational entity as a stand-in agent. The
stand-in agent resides either on the same host where the social knowledge re-
questor operates or in the permanently accessible location. While using stand-in,
the social knowledge requestor does not create an acquaintance model of its own.
Instead of communicating with the provider or middle agent, it interacts with the
stand-in agent. Therefore, the client agent is relieved from the relatively complex
task of building and keeping up-to-date detailed acquaintance model and both
provider and requestor may benefit from the full-fledged remote presence. Fac-
toring the acquaintance model out of the each requestor agent internal memory
allows it to be shared between all locally accessible agents, further minimizing
the traffic and computational resources necessary for model maintenance.

In our implementation the community of stand-in agents operates in two
phases: stand-in swarming, information propagation and social knowl-
edge synchronization.

During the swarming phase, stand-ins propagate through the system to reach
the locations that may become inaccessible in the future. First, existing stand-in
agent or knowledge provider determines set of currently accessible locations using
broadcast-like mechanism of underlying communication infrastructure. It ana-
lyzes the locations and decides which entities are interesting for further stand-in
agent deployment, either because of the presence of knowledge requestor agent
or because it considers the location to be interesting for future spread. Then, it
may decide to create and deploy its clones on one or more of these accessible
locations. After its creation, each deployed stand-in agent chooses the type of
functionality it will provide in its location and repeats the evaluate/deploy pro-
cess. The swarming propagation strategy is a crucial element of agent system
tuning, as we must find a delicate balance between information spread efficiency
and resources consumed by stand-ins.

Information propagation between members of the stand-in community is also
a challenging process to tune, because the information flows not only from the
knowledge provider towards the stand-in community, but also from the stand-in
community towards knowledge provider, or even within the isolated parts of the
stand-in community.

Using Stand-in Agents in Partially Accessible Multi-agent Environment 283

Fig. 2. The concept of the stand-in agent

When a member of the stand-in community receives an update of the shared
knowledge, or updates this knowledge after having acted on behalf of knowledge
provider, it must determine if the information update is valuable enough to be
propagated to other members of the community and eventually to the knowledge
provider itself. It determines the list of currently accessible stand-ins in the com-
munity to which it will send the updated knowledge set or relevant subset and
keeps the updated information ready for future synchronization with currently
inaccessible stand-ins.

In our current implementation, we do present two limit approaches to in-
formation synchronization. In the first configuration, we consider the cost of
communication to be important and the stand-ins therefore synchronize their
knowledge only when they encounter. When they receive an information up-
date, they don’t propagate it to other accessible members of the community.

Our second approach is based on an assumption that communication is cheap
and that all updates are worth to be propagated to all accessible members of
the community. In this approach, any stand-in that updates the information or
receives more recent version sends this update to all accessible members of the
community. When two stand-ins become accessible, they exchange their informa-
tion and join it into the shared common version, as ensured by domain-specific
joining algorithm. This policy ensures an optimum information quality on do-
main elements, but must be optimized for domains with big number of locations
and represented agents, for example using existing results from peer-to-peer net-
works research domain [7].

The most important added value of stand-in agent is not in providing remote
awareness, but in providing rich and proactive remote presence by acting on
behalf of knowledge provider. However, as in any system working on the shared
data, synchronization problems arise in the agent community when the stand-ins
accept commitments in place of knowledge provider. Situation is further com-
plicated by the fact that no reasonable locking protocol may be implemented

284 M. Rehák et al.

between the components that are inaccessible in a given moment. Until now, we
have not explicitly addressed the synchronization problem. Its solution may use
e.g. sophisticated multi-level negotiation protocols, the concept of structured
(rich) commitments or advanced methods of synchronization between locally
accessible agents.

The concept stand-in agents are currently advantageous in the two very spe-
cific situations:

– in the very dynamic environment, with relatively low path accessibility
(this can be e.g. in situations where a low number of unmanned vehicles are
collaboratively inspecting large areas), or

– in the non-trusted environment with at least some communication inac-
cessibility (in these cases the agent do not want to provide sensitive knowl-
edge for sharing while off-line).

In our current work, we are analyzing and optimizing the collaboration pat-
terns of the stand-in community to make the approach scalable.

3.5 Towards Optimization of the Stand-in Approach

The measurements presented in the next section (4) provide us with the limits
of performance of various inaccessibility solutions depending on the accessibility
of the environment. They show that the use of stand-ins (see 3.4) or other remote
awareness and presence technologies allows the multi-agent system to operate
in highly inaccessible environments. Currently, we are answering many crucial
practical questions concerning the efficient stand-in use.

All these questions are related to the scalability of the approach - until now,
we have considered the processing power and bandwidth as either cheap and un-
limited or very expensive. With the use of stand-ins in larger domains, these basic
assumptions are not valid anymore and consequent issues must be addressed.

The first problem is stand-in deployment. In the large domains featuring
significant number of nodes, the complete flooding with stand-ins and their de-
ployment in each container would mean that the stand-ins would outnumber
all other agents by a large factor, making their use prohibitive. This would not
only consume the memory and processing power of the nodes, but it would also
increase the bandwidth necessary for information synchronization and action
coordination in the system.

Therefore, we must optimize both the stand-in deployment and information
synchronization using domain independent methods. We will try to maintain the
system performance close to the theoretical limit established in the experiments
(sect. 4.2), while minimizing the number of stand-ins and synchronization mes-
sages. On the other hand, this optimization shall not decrease system robustness
in respect to the failures - it shall adapt rapidly to the changing situation and
keep the information up-to-date under most circumstances.

In our current research, we have pre-selected two approaches to system opti-
mization. The pre-selection criteria were very simple ones - efficiency, robustness
to the failure of elements and stability in the rapidly changing environment of

Using Stand-in Agents in Partially Accessible Multi-agent Environment 285

mobile ad-hoc networks. The first model is inspired by biology, the second one
by micro-economy.

Social dominance and altruism models [12, 13] were successfully used to
partition the group of agents into those who work for the good of the community
and the others who profit from the altruism of the first group. Interestingly,
observations during the experiments with rats in the laboratory environment
confirm that such approach actually maximizes the survival rate for the members
of the community and is stable with respect to changes in the groups of observed
rats - both properties being of particular interest to us.

During the experiments with rats, it was determined that a sufficient number
of individuals behaves in an altruistic manner. They bring the food and share it
with the others, who only consume. Surprisingly, when the group is split, half of
the previous altruists change their behavior and become passive, while half of the
group that was previously lazy becomes altruistic. This behavior is formalized
by a simple mathematical model presented in [12].

I our approach, the stand-ins will be split between altruists and ”lazy” in-
dividuals. Altruists will form a backbone of the community, as they will pass
the information to other altruists and adjacent lazy stand-ins. While the con-
figuration of the community changes, we expect the stand-ins to adopt the new
social role and maintain the functionality of the community. The main problem
to solve is the actual modification of the model and automatic adaptation to
various types of environments with diverse accessibility and mobility character-
istics.

Simulated micro-payments model. In this model, stand-ins answer the
information updates with a micro-payment, indicating the usefulness of the re-
ceived information. As the agents subtract the virtual price attributed to the
sending of the synchronization message from the received payment, the net-
work shall optimize itself if the agents value the information most upon the first
reception and decrease the payment for the updates that are already known.
To optimize the number of agents, the approach is similar. Agents who don’t
generate sufficient gain from representing the owner agent or from relaying the
updates to the others in the community terminate themselves.

The main challenge in this approach is in fine-tuning the mechanism - opti-
mizing the virtual costs and payments and determining the probabilities which
will be applied to sending unsolicited updates or re-creation of already self-
destroyed stand-ins by adjacent stand-ins - both parameters are essential for
community re-adaptation in changing environment. All the mentioned param-
eters will be hardly constant - they will undoubtedly vary in function of the
accessibility characteristics, defined in section 2.

We are also analyzing the methods how to enhance these essentially emergent
models with a global vision - in a way similar to the adaptive adaptation (or
meta-adaptation) as proposed for example by Bedau and Packard [14]. Both
emergent (bottom-up) and meta-reasoning approaches are analyzed for this task.

Using the stand-ins as a part of the system brings another interesting aspect.
As the owner gives more power to the stand-ins, it increases the likelihood of

286 M. Rehák et al.

identifying the optimum partner for the operation. On the other hand, as the
parts of the stand-in community may get isolated, an issue of concurrence must
be solved. This problem is very similar to adjustable autonomy in human-agent
relationship, as studied by Sierhuis et al. [15].

4 Experiments

In this section, we will describe a set of accessibility experiments with a multi-
agent simulation. The goal of the experiments was to validate the relevance of the
theory presented in the first part (Section 2) of this contribution on a real multi-
agent system and to determine the boundaries of applicability of the solutions
to the inaccessibility problem presented in the second part (Section 3). First we
will investigate and analyze inaccessibility in our scenario and after this we will
study how inaccessibility affects performance of our system. Three techniques
for coping with inaccessibility will be analyzed.

In our measurements, we will validate if the classical random-graph model
presented in Section 2 is appropriate for our case, or if we need to apply more
realistic network modelling techniques [16]. Then, we will measure the influence
the inaccessibility has to the solution of the model domain and the efficiency of
three possible approaches dealing with the problem.

4.1 Testing Scenario

For our measurements, we have prepared a simulation featuring a logistics prob-
lem in collaborative environment, where the humanitarian aid must be delivered
to the zone ravaged by a disaster. In the domain, we will deploy three main types
of entities: 5 aid sources, called ports, where the material comes in; 5 aid sinks,
called villages, where it is consumed and 7 transports carrying the aid between
ports and villages. Each transport has its predefined route that does not change
during the simulation. Aid requests in the villages are generated by predefined
script to ensure uniformity between simulation runs. They must be transmit-
ted to the ports to ensure that the proper material is loaded on the transport
going to the village. The way these requests are transmitted depends on the
inaccessibility solution that is currently applied. We suppose that the physical
communication links between the entities are limited-range radios, therefore the
link exists if the distance is smaller then parameter �. This parameter varies
between different scenario runs to model different possible configurations, from
complete link accessibility to only local (same position) accessibility Test domain
is shown in Fig. 3.

In total, 33 results are presented, with 11 different communication ranges
and 3 different approaches solving the inaccessibility problem:

– relaying transmissions by relay agents (3.1) – loading of the goods on a trans-
port is possible only if a communication path exists between the destination
village and the port in the moment when port-based entities negotiate the
cargo to load,

Using Stand-in Agents in Partially Accessible Multi-agent Environment 287

Fig. 3. Test domain used for the experiments contains 5 ports, 5 villages and 7 trans-

ports. Circles represent the accessibility ranges, while the lines the actual accessibility

and ongoing communication between nodes

– stand-in agents that only carry the information with no sharing in the stand-
in community (see section 3.4),

– community stand-in agents, sharing the information updates with other
members of the stand-in agent community (see also section 3.4).

To guarantee the uniformity of results, we have used the same negotiation
protocols and work-flow for the interaction between the acting agents and their
environment. Both the requests in villages and goods in ports are generated
from unique pseudorandom sequence used for all measurements.The only aspect
that differentiates the scenarios is the mode of information transmission between
requesting villages and goods providers in the ports.

4.2 Measuring Accessibility

On Figure 4, we can identify three major states of the community from the acces-
sibility point of view, as defined in section 2. At first, before the communication
radius reaches 60, static community members are isolated and information is not
transmitted (see first row of Table 1), but only carried by moving entities. In
this state, path accessibility is not significantly different from link accessibility.
Therefore, probability of relaying is almost negligible.

Then, with increasing communication radius, larger connected components
do start to appear, covering several static and mobile entities and allowing the
use of relaying over these portions of the graph. This phase appears around the
percolation threshold, that can be observed above radius of 80, corresponding
with link accessibility of 0.2. This state is characterized by important variability
of connected components. Due to the dynamic nature of our system, these com-
ponents are relatively short-lived, resulting in a high variability of the system,

288 M. Rehák et al.

Fig. 4. Left: The dependency of probability of existence path between two agents and

link accessibility in our test scenario. The dot lines show average deviation of values.

The gray thin line shows theoretical value for random graph with 10 nodes (see Fig. 1).

Right: The dependency of link and path accessibility on communication radius

Fig. 5. Number of visible entities for different types of entities in our scenario, for

communication radius of 80, near percolation threshold

as we can see on Figure 5. Path accessibility in the community may be described
by relation (see second row of Table 1).

In the last state, when communication radius is above 120 and link accessi-
bility reaches 0.4, the entities become almost completely connected. This state
of the community is described by relation (see third row of Table 1). System
properties does not change when we further increase the radius and link acces-
sibility.

The dynamic nature of our network near percolation threshold is clearly vis-
ible on the following graph (Figure 5), where we present the number of locations
visible from one randomly chosen entity of each location type over a period of
time. As we are near the percolation threshold, in the state described by second
row of Table 1, we can observe the appearance of relatively large, but short lived,
accessible components.

In the Figure 5, we may also note that the transport is accessible from sig-
nificantly more locations than static elements. As this holds for all transports in

Using Stand-in Agents in Partially Accessible Multi-agent Environment 289

Fig. 6. The average requests coverage of three presented inaccessibility solutions and

different accessibility settings

our scenario, a parallel with scale-free networks [16] arises. In these networks, a
small number of nodes called hubs has significantly more connections with others
than the rest, while in the random networks most nodes have the same number
of adjacent edges. In this respect, transport platforms with stand-ins on them
serve as hubs of our system, spreading the information as they roam through
the map. In our future experiments, we will examine this possibility and test the
hypothesis on a larger agent community.

4.3 Comparing the Solutions

After having determined the extent of inaccessibility in our system, we will
study the effects inaccessibility has on the system performance. The system
performance is given by a number of goods successfully delivered to villages.
Zero value means complete failure, when no goods were transported, while 1
implies that all orders were completed.

On the following graph (see Figure 6), we can observe the relationship be-
tween path accessibility and overall system performance for each of three so-
lutions. Here we present the average requests coverage for different solution of
inaccessibility. Results do follow the accessibility state partitioning from the
previous paragraph. We can see that relay agents start to be reasonably useful
when the link accessibility reaches 0.2, in the middle of the transition phase,
well corresponding to the percolation threshold. Performance of isolated, non
communicating stand-in remains constant. This is easy to understand, as these
agents communicate only locally. They present an optimal solution for discon-
nected networks, as they require only a small number of messages to function.

On the other hand, performance of interacting community of stand-ins is more
than a mere supremum of both previous methods. This is allowed by the dynamic
nature of the system, where the stand-ins on mobile entities carry the up-to-date
information through the system and spread it in small local communities, but
relatively often. Thanks to this approach, the efficiency of system with these
stand-ins approaches the optimum level with path accessibility of 0.4, instead of
0.9 for relay agents.

290 M. Rehák et al.

5 Conclusions and Future Work

In our experiments, we have proved that the theory describing the behavior
of random graphs can serve as a basis for formalization and measure of the
inaccessibility within multi-agent systems. In the future, we will extend our
experiments to verify the hypothesis that the scale-free approach can be used
to precise description of our system around percolation threshold. Moreover, we
have provided several solutions, including new concept of stand-in agent, for
inaccessibility and experimentally determined their boundaries of applicability.

As we have illustrated above, stand-in agents provide more than a viable
alternative to message relaying in environments with low link accessibility or
high cost of communication. They allow efficient coordination and collaboration
in communities with low and transient accessibility and they match the perfor-
mance of relaying in connected communities. However, the implementation of the
stand-in agents for a given domain is not trivial and its use in larger communi-
ties of agents requires some additional tuning of two principal methods they use
– swarming of the stand-in agents and knowledge distribution/synchronization.
Currently implemented version of stand-ins is appropriate for environments with
low and moderate accessibility, due to the fact the number of messages used for
knowledge updates grows rapidly with increasing accessibility and the size of the
domain. To extend its operational use for environments with the accessibility be-
yond the ”transition phase”, stand-ins shall be aware of the typical information
flows in their neighborhood and better target their information updates, as men-
tioned in section 3.5.

Given the plummeting prices of hardware and many emerging low cost plat-
forms designed specifically to be embedded with the environment to provide
the measurements [17], we will often face the situations when the communica-
tion ability will be a limiting factor of such systems, due to the limited battery
power and constraints on their emitters. In such cases, the sole cost of communi-
cation would prohibit the use of advanced negotiation or auctioning techniques
between the agents residing on different nodes of the system. Stand-ins, created
by all interested agents and deployed on an agreed node that provides sufficient
computational resources and where the negotiation takes place, can be a solution
to this problem too.

Acknowledgement

The research described in this chapter has been supported in parts by the
EOARD/AFRL projects number FA8655-04-1-3044, FA-8655-02-M-4057 and
ONR grant N00014-03-1-0292.

References

1. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multi-
hop routing in sensor networks. In: Proceedings of the first international conference
on Embedded networked sensor systems, ACM Press (2003) 14–27

Using Stand-in Agents in Partially Accessible Multi-agent Environment 291

2. Pěchouček, M., Dob́ı̌sek, M., Lažanský, J., Mař́ık, V.: Inaccessibility in multi-
agent systems. In: Proceedings of International Conference on Intelligent Agent
Technology. (2003) 182–188

3. Bollobas, B.: Random Graphs. 2nd edn. Cambridge University Press (2001)
4. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.

Phys. 74 (2002) 47–97
5. Grimmett, G.: Percolation. Springer-Verlag, New York (1989)
6. A-Globe: A-Globe Agent Platform. http://agents.felk.cvut.cz/aglobe (2004)
7. Elias Leontiadis, Vassilios V. Dimakopoulos, E.P.: Cache updates in a peer-to-

peer network of mobile agents. In: Proceedings of the Fourth IEEE International
Conference on Peer-to-Peer Computing, IEEE Computer Society (2004) 10–17

8. Stallings, W.: Data and computer communications (5th ed.). Prentice-Hall, Inc.
(1997)

9. Sycara, K.: Multi-agent infrastructure, agent discovery , middle agents for web
services and interoperation. In: Mutli-agents systems and applications, Springer-
Verlag New York, Inc. (2001) 17–49

10. Pěchouček, M., Mař́ık, V., Štěpánková, O.: Role of acquaintance models in agent-
based production planning systems. In Klusch, M., Kerschberg, L., eds.: Cooper-
ative Infromation Agents IV - LNAI No. 1860, Heidelberg, Springer Verlag (2000)
179–190

11. Cao, W., Bian, C.G., Hartvigsen, G.: Achieving efficient cooperation in a multi-
agent system: The twin-base modeling. In Kandzia, P., Klusch, M., eds.: Coop-
erative Information Agents. Number 1202 in LNAI, Springer-Verlag, Heidelberg
(1997) 210–221

12. Thomas, V., Bourjot, C., Chevrier, V., Desor, D.: Hamelin : A model for collec-
tive adaptation based on internal stimuli. In Schaal, S., Ijspeert, A., Billard, A.,
Vijayakumar, S., Hallam, J., Meyer, J.A., eds.: From animal to animats 8 - Eighth
International Conference on the Simulation of Adaptive Behaviour 2004 - SAB’04,
Los Angeles, USA. (2004) 425–434

13. Simonin, O., Ferber, J.: Modeling self satisfaction and altruism to handle action
selection and reactive cooperation. In: Proceedings Supplement SAB 2000, The
Sixth International Conference on the Simulation of Adaptative Behavior, From
Animals to Animats 6, Paris, France (2000) 314–323

14. Bedau, M.A., Packard, N.H.: Evolution of evolvability via adaptation of mutation
rates. Biosystems 69 (2003) 143–162

15. Sierhuis, M., Bradshaw, J., Acquisiti, A., van Hoof, R., R., J., Uszok, A.: Human-
agent teamworks and adjustable autonomy in practice. In: Proceedings of the 7th
International Symposium on Artificial Intelligence, Robotics and Automation in
Space: i-SAIRAS - NARA, Japan (2003)

16. Barabi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286
(1999) 509–512

17. Estrin, D., Culler, D., Pister, K., Sukhatme, G.: Connecting the physical world
with pervasive networks. IEEE Pervasive Computing 1 (2002) 59–69

Controlled Experimentation with Agents —
Models and Implementations

Mathias Röhl and Adelinde M. Uhrmacher

University of Rostock,
Department of Computer Science and Electrical Engineering,

Albert-Einstein-Str. 21, 18059 Rostock, Germany
{mroehl, lin}@informatik.uni-rostock.de

Abstract. The deployment of multi-agent systems demands for justi-
fied confidence into their functioning, both with respect to correctness
of behaviour and with respect to timeliness thereof. Depending on the
stage of the development process different mechanisms and abstractions
are needed to facilitate the evaluation of interacting agents. We propose
a modelling and simulation framework based on a discrete-event for-
malism for supporting the development process of multi-agent systems;
from specification to implementation. The framework allows for the in-
cremental refinement of agents and experimental set-ups while providing
rigorous observation facilities. The benefit of using discrete-event mod-
elling and simulation techniques for evaluating agents is illustrated using
a simple example based on the Contract Net Protocol.

1 Introduction

Approaches for developing agents have matured to a broad spectrum of methods.
Design methodologies support the development of agents by an agent-oriented
development process [1] or by providing modelling languages enriched with agent
concepts [2]. Formal analysis of agents based on logics are particularly aimed at
rational agents and pruned for reasoning about changing beliefs [3]. Other ap-
proaches suggest to develop communities of agents by defining social norms and
regulations [4]. In contrast to static techniques, testing activities are dynamic
analysis methods that require the execution of software. Testing concentrates on
the validation of an implementation against a specification and thereby comple-
ments software design and static analysis.

Developing agents is of an intrinsically experimental and exploratory nature:
“the development of any agent system — however trivial — is essentially a
process of experimentation” [5]. Surprisingly, only little work has been done so
far on developing methods for testing agents [6]. Current methodologies and tools
for MAS concentrate on supporting the design and implementation of agents,
leaving a gap between specifications and implementations [7].

For exploiting the potential of MAS formal design methodologies and meth-
ods for observing and evaluating emergent behaviour have to be brought together

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 292–304, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Controlled Experimentation with Agents — Models and Implementations 293

by a rigorous experimental approach allowing for consistent observation of MAS
[8]. Pursuing a simulation-based approach rooted in general systems theory, our
work is addressing this deficiency.

2 Experimentation with Multi- gent Systems

To construct agents essentially means to develop software that is able to suc-
cessfully accomplish specified tasks in a certain environment [9]. Consequently,
validation of agent behaviour has to take into account the conditions under
which the agent is intended to work correctly, i.e., testing has to treat agents as
systems that frequently interact with their environment. The usage of a virtual
environment in contrast to the real environment typically reduces costs and ef-
forts and allows to test a system’s behaviour in “rare event situations”. Virtual
environments are easier to observe and to control, and probe effects are easier to
manage. “For software engineers, virtual environments offer a powerful means
of integration and systems testing” [10]. Environment models can be used to
generate the different test cases dynamically during simulation, including spe-
cific interaction patterns and time constraints [11]. As testing cannot show the
absence of faults but only their presence [12], the validity of the environmental
models will be crucial, independently whether abstract models of agents are ex-
perimentally evaluated [13], single agent modules are embedded for testing [14],
or entire agent systems are plugged into the virtual environment [15].

Simulation is an experiment performed on a model and “a model M of a
system S and an experiment E is anything to which E can be applied in order
to answer questions about S” [16]. This definition of model emphasises that a
model is not developed for a system “per se”, but always for a combination of
a system to be analysed and questions to be asked. According to this defini-
tion, multiple objectives require multiple models. The concept of experimental
frame has been introduced to model experimental assumptions and system’s re-
quirements explicitly [17]. Developing an experimental frame for testing agents
requires a modelling formalism that is sufficiently expressive to model complex
dynamic environments for agents and that is able to express different kinds of
timing requirements.

2.1 Discrete-Event Modelling and Simulation

Devs (Discrete EVent System specification) is one of the formal approaches to
discrete event modelling and simulation stemming from general systems theory
[18]. It provides a powerful basis for modelling test settings by being able to
encode many other modelling formalisms like statecharts and petri nets [19]. For
example, Giambiasi et al. made concrete use of this capability by transforming
timed input/output automata specifications into a Devs simulation model for
validating a control system [20].

Devs distinguishes between atomic and coupled models. An atomic model is
described by a state set, a set of input ports, a set of output ports, an internal and

A

294 M. Röhl and A.M. Uhrmacher

external transition function, an output function, and a time advance function (cf.
Definition 1). The internal transition function dictates state transitions due to
internal events, the time of which is determined by the time advance function. At
an internal event, the model produces output. The external transition function
is triggered by inputs.

Definition 1. An atomic Devs model is a structure 〈X,Y, S, s0, δint, δext, λ, ta〉,
where

– X = {(i, v)|i ∈ InPorts, v ∈ Xi} is the set of input ports and values
– Y = {(o, v)|o ∈ OutPorts, v ∈ Yo} is the set of output ports and values
– S is the set of sequential states
– s0 is the initial state
– δint : S → S is the internal transition function
– δext : Q × X → S is the external transition function, with

Q = {(s, e) : s ∈ S, 0 ≤ e ≤ ta(s)} the set of total states
– λ : S → Y is the output function
– ta : S → R

≥0 ∪ {∞} is the time advance function [21]

Coupled Devs models support the hierarchical, modular construction of mod-
els. The interface of a coupled model equals that of an atomic model. It is de-
scribed by a set of component models, which may be atomic or coupled, and
by the couplings that exist among the components, and between the compo-
nents and its own input and output ports. Coupled Devs models do not add to
the expressiveness of the formalisms, as atomic and coupled Devs models have
shown to be bisimilar. Nevertheless, coupled models enable the structuring of
large models into smaller ones and they are the means for modular, hierarchical
modelling. For the definition of syntax of coupled models and the definition of
semantics of Devs models the reader is referred to [21].

In simulation, we distinguish between physical time, simulation time, and
wall clock time. Whereas simulation time and physical time are connected by a
semantic relation, i.e. one tick in simulation time refers to a fixed quantum in
physical time, wall clock time is not necessarily related to either of both. Execu-
tion is normally done in an unpaced mode, which means, that simulation time
jumps as fast as possible from one event to the next, neglecting the simulation
time (and thus the represented physical time) that lies inbetween [22]. Figure
1 shows part of an execution of two Devs models. While the wall clock time
continuously progresses throughout the simulation, simulation time increases at
distinct time points according to scheduled events. The production of output by
Model1, the reception of the according input by Model2, the internal transition
of Model1, and the determination of next internal event times are all realised
at the same simulation time tsim

i . In the depicted case the value of the next
simulation time would be calculated by tsim

i+1 = tsim
i + min(ta(s1), ta(s2)).

2.2 Modelling and Simulation of Multi- gent Systems

The agent metaphor promotes the design of systems as consisting of entities
which concurrently act and interact, and whose configuration and environment

A

Controlled Experimentation with Agents — Models and Implementations 295

Simulator Model1 Model2

λ(s1)

δint(s1)

δext(s2, e, x)

ta(s1)

ta(s2)

Fig. 1. Execution Fragment of two Devs Models

Fig. 2. State transitions versus model transitions

is frequently changing. Variable structure models are a prerequisite to specify
and analyse such systems adequately.

To support the modelling and simulation of agents that dynamically adapt
their interaction, composition, and behaviour pattern the formalism dynDevs
was developed [23], which adds reflection to the Devs formalism. An atomic
model in dynDevs is defined as a set of model incarnations M(m0) that inherit
state set, transition functions, output, and time advance function from Devs
atomic models. The reflectivity is introduced by the model transition function
ρα which maps states of incarnations into a set of model incarnations.

ρα : S → M(m0) (1)

Thereby, sequences of models are produced (cf. Figure 2), starting with the
initial model incarnation m0. By switching to another incarnation, a model can
change its own state and its behavior pattern, i.e. its transition, output, and
time advance function, during simulation.

As the coupled model holds the information about composition and interac-
tion between components, a change of composition or interaction, even though
induced by atomic models, takes effect at the level of coupled models. Therefore,
coupled dynDevs models were introduced, that are the means for modelling
adaptable system structures. For a more detailed discussion of the formalism
and the definition of semantics of dynDevs models, see [23].

296 M. Röhl and A.M. Uhrmacher

2.3 External Processes

To test planning and commitment strategies of agents [24], dynDevs models
have been equipped with peripheral ports (XP , YP), which are now used to
support the interaction of atomic models with external processes in general.

The classical ports of Devs models collect and offer events that are pro-
duced by models. In addition, the peripheral ports allow dynDevs-models to
communicate with processes that are external to the simulation. Thereby, the
simulation system does not interact with external agents as one black box, but
each single model can function as an interface to external processes. The model
functions were extended to handle input and output from respectively to external
processes:

δint : S × XP → S × YP (2)
δext : Q × X × XP → S × YP (3)

λ : S × XP → Y (4)

The state transition functions and the λ-function of the interface model de-
scribe how incoming data is transformed into data that can be used within
the simulation. The functions δint and δext are furthermore responsible for the
transformation of simulation data into data usable by the externally running
software.

The role of the ta-function is typically to model the pro-activeness of an
entity, as it triggers internal events by the flow of time. In the case of externally
running software, “pro-activeness” from the point of view of the simulation is
triggered by incoming data. The simulation system uses the time model function
tm to translate the resource consumption of the externally running software into
simulation time:

tm : R
≥0 → R

≥0 (5)

External processes are invoked by the simulation system and the information
put into the peripheral output ports is forwarded to them. After the external
computation has finished, the results of these invocations arrive at the peripheral
input ports of the according model at a simulation time which is determined by
the time model. The time model might be constant for abstracting from actual
resource consumption of external processes.

3 An Example — Evaluating Collaborative Agents

Depending on the actual phase in developing agents specifications , single mod-
ules, or entire agents might be tested. In the following we will illustrate how
simulation can be used to facilitate controlled experimentation within virtual
environments during different phases of the development. A simple, however ex-
tensible experimental set-up, shall help to answer the question: How well are
certain models or implementations of collaborative agents suited for solving a
global task?

Controlled Experimentation with Agents — Models and Implementations 297

Agent?Agent?

Agent

Environment1: Task

Agent

3: propose, refuse

4: actions

5: actions

2: cfp
4: accept, reject

Fig. 3. Cooperation via the contract net protocol

The example comprises multiple agents with individual bounded capabilities.
Tasks appear frequently in the environment. Only one of the agents is notified.
To solve a task agents use deliberation to select appropriate action sequences. If
the agent notices that he is not capable of performing all necessary actions by
himself he may use the Contract Net Protocol [25] for getting help. To initiate
coordination he launches a call for proposals (cfp) into the network of agents.
Receivers of a cfp respond either with a proposal or by refusing the call. The
initiator of the cfp may either reject or accept a proposal. Depending on the
current task each agent may be the initiator or a participant of a contract.

For reasons of simplicity we make several assumptions. All agents are benevo-
lent. (Sub)tasks committed to are really solvable by the responsible agent. Tasks
are decomposable into a set of sub-tasks with no causal inter-relationships. Only
one level of delegation is sufficient for solving the task. At each time point only
one task is launched into the network of agents. However, due to the time needed
for solving tasks the agents might be confronted with different tasks at a time.

Engineering agents for such a scenario will at least require to i) formalise the
requirements for the agents, ii) design a prototype and evaluate it, and iii) im-
plement the agent and test the implementation against the requirements. These
development phases can be naturally supported by modelling and simulation
based on dynDevs. We will illustrate this, by starting to construct an experi-
mental frame that formalises the conditions under which the agents are expected
to work.

The next step will be to model a prototype agent for the above scenario. First
everything will be modelled within the simulation system. Arriving at a point,
where the modelled network of agents works as it is supposed to do we can start
to successively replace parts of models by implementations that shall be tested.
This is illustrated by providing an implementation for the most critical functional
part of the agent model: the deliberative one. Subsequently, time models can be
used for the execution of tests.

3.1 Specification of the Experimental Frame

Our first step is to model an experimental set-up according to the informal
description above. At the level of experimental frame the network of agents is
treated as a black box, which interact via two communication channels with
the task environment. This abstraction is directly supported by the modelling
formalism by means of a coupled model.

298 M. Röhl and A.M. Uhrmacher

The Environment model defines the conditions under which agents are re-
quired to work correctly. It is modelled as an atomic model responsible for gen-
erating new tasks every 10 time units and evaluating actions of the agents. The
group of agents failed if after 10 time units not all actions necessary for solving
the tasks were received. Example 1 shows the according model definition. The
actual calculation whether the set of received actions suffices takes place within
the function evaluate(), which is referenced by the model definition.

Example 1. The Environment is defined as an atomic dynDevs model, where

– InPorts = {“fromAgents”}, with XfromAgents = Actions
– OutPorts = {“toAgents”}, with YtoAgents = Tasks
– S = {2Actions × Tasks}
– s0 = (∅, t), with t ∈ Tasks
– δext(s, e, x, xp) =

Object input = x.getPortValue("fromAgents");
if (input instanceof Action)
s.executedActions.add(input);

– δint(s, xp) =

evaluate(s.curTask, s.executedActions);
s.curTask = new Task();

– λ(s, xp) =

send("toAgents", s.curTask);

– ta(s) =

return 10.0;

– XP = ∅, YP = ∅, tm(s) = 0
– M(m0) = {m0}, ρα(s) = m0

For the environment model no variable structures and no peripheral ports
are needed. An intuitive, statechart-like representation of the dynamics of the
environment is given within Figure 4. The dashed arrows represent internal tran-
sitions and the solid lines denote external transitions.

Please note, that model functions of atomic Devs and dynDevs models can
be arbitrary functions. Within the simulation system James [23] these functions
can be specified by using the Java programming language.

3.2 The Network of Agents

Having formalised the experimental frame for our agent(s), the next step is to
model the network of agents. The collaboration diagram of the contract net pro-
tocol 3 can be easily mapped to a coupled model. Figure 5 shows the components
of the network and the couplings between them. The Network model is respon-
sible for the routing of messages between the agents. For our example a very
simple network model suffices that delivers messages with randomised delays.

Controlled Experimentation with Agents — Models and Implementations 299

toAgents

Task

evolve

after 10.0
/ evaluate(curTask, executedActs)
 curTask=new Task()
 send("toAgents",curTask)

action received
/ executedActs+= action

fromAgents

Environment

 fromEnv toEnvNetwork of
Agents

Action

Fig. 4. Experimental Frame for Evaluating a Group of Problem Solving Agents

Agent 1
accept, reject,
refuse, propose

toAll

toEnv

fromEnv

toEnv

fromAgent

toOne

. . .

cfp

Action

fromEnv

Network of Agents

Network

toAn

. . .

toA1

broadcast

direct

Agent n

Task

cfp, accept, reject,
refuse, propose

Fig. 5. The network of agents refined according to the contract net protocol

3.3 Modelling an Agent

Now we are ready for modelling a prototypical agent. Example 2 shows part of
the definition for a sample agent.

Example 2. Part of the agent’s definition:

– S = {Phases × 2Actions × {true, false}}, where
Phases = {“idle”, “deliberate”, “wait4Proposals”, . . . }

– δext(s, e, x, xp) =

Object input = x.getPortValue("fromEnv");
if(s.phase.equals("idle") && (input instanceof Task)) {
s.phase="deliberate";
s.actions = Planner.plan(s.availableActions, input);
s.able = true;

}
...

300 M. Röhl and A.M. Uhrmacher

– ta(s) =

if(s.phase.equals("deliberate"))
return 3.0;

...

– λ(s, xp) =

if(s.phase.equals("deliberate")) {
if(s.able) output("toEnv", s.actions);
else output("toAll", new CFP());

}
...

– δint(s, xp) =

if(s.phase.equals("deliberate")) {
if(s.able) s.phase="idle";
else s.phase="wait4proposals";

}
...

– XP = ∅, YP = ∅, tm(s) = 0

By default the agent waits for tasks appearing in his environment (phase
idle). In phase deliberate the agent tries to generate a plan for successfully ac-
complishing the announced task. The set of actions which he is not able to
execute are interpreted as sub-tasks that he may delegate to other agents. Con-
sequently, he launches a call for proposal for these sub-tasks to other agents. In
phase wait4proposals the initiator of a cfp waits for proposals. Agents receiving
a cfp turn themselves to deliberation for deciding how to achieve sub-tasks and
whether the cfp can be accepted or must be rejected.

The agents dynamically generate plans for solving a task. We omit the entire
definition of the agent model and concentrate on a critical part, namely the
deliberation. In the definition of example 2 the task decomposition is done by
simply calling a plan method that implements a planner prototypically. Due
to the fixed ta-value, resources consumed for task selection are abstracted to a
constant amount of time, i.e. the agent will always finish the deliberation after
3.0 units of simulation time.

Using such prototypical models the coordination mechanism of the agents
can be evaluated and whether the set of actions the network of agents comes up
with is sufficient for solving the task offered by the environment or not.

Many extension of this simple scenario can be imagined. E.g. if an agent is
busy solving one task and receives another call for proposal it might decide to
clone itself and to launch the new agent into the network, hoping that free capac-
ities for calculation are somewhere available in the network. Depending on the
degree of specialisation of agents this strategy might improve the performance
of the multi-agent system.

Controlled Experimentation with Agents — Models and Implementations 301

3.4 From Models to Implementations

When models have matured and parts of the agent become implemented, the
focus of analysis moves from models to implementations. Having constructed a
logically valid model, which means that the agents really succeed in the experi-
mental frame, the timing behaviour can move into the focus of interest.

Critical parts of the agents are no longermeremodels but implemented software
and thereby external to the simulation. If the implementation does not possess an
own clock, a synchronous interaction of simulation and the external software will
prove beneficial, as it gives the simulation system full control over the experiment.

Suppose the development group responsible for implementing the deliberation
comes up with a run-time optimised Planner implementation. The implementa-
tion should now be used instead of the prototype within the transition functions.
Example 3 shows how the agent model communicates with the external planner.

Example 3. Using peripheral ports to communicate with an external planner:

– XP = {(i, v)|ep ∈ ExtInPorts ∧ v ∈ XP i}, where ExtInPorts = {“fromP”}
and XP fromP = Actions

– YP = {(o, v)|op ∈ ExtOutPorts ∧ v ∈ YPo}, where ExtOutPorts = {“toP”}
and YP toP = Tasks

– δext(s, e, x, xp) =

Object input = x.getPortValue("fromEnv");
if(s.phase.equals("idle") && (input instanceof Task)) {
s.phase="deliberate";
Object[] params = {s.availableActions, input};
outputExt("toP", new YPMsg("Planer", "plan", params));

}
...

– ta(s) =

if(s.phase.equals("deliberate"))
return Double.POSITIVE_INFINITY;

...

– λ(s, xp) =

if(s.phase.equals("deliberate")) {
s.actions = xp.actions;
s.able = xp.able;
if(s.able) output("toEnv", s.actions);

else output("toAll", new CFP());
}
...

Java reflection will be used to instantiate the Planner and invoke its plan()-
method with the task received from the environment and the set of possible

302 M. Röhl and A.M. Uhrmacher

finishEP

deltaExt(s,e,x,xp)

Agent Simulator

ExternalProcessThread

outputExt("toP", ...)
<<create>>

Planner

plan(problem)

solution

lambda(s,x_p)

ti
sim

twc

to
sim

inputExt("fromP", solution)

ta(s)

infinity

output("toEnv", actions)

Fig. 6. Synchronous interaction with an externally running Planner instance

actions. Now, not only the correctness of the generated plan is evaluated but the
execution performance as well.

The simulation system and software interact in a synchronous manner. The
peripheral input ports are filled by the simulator with data from the external
software at a time determined by the time model, e.g., tsim

o = tsim
i + tm(∆twc)

(cf. Figure 6).
Using the time model different types of temporal abstraction can be realised

between wall clock time, consumed resources on the one hand and simulation
time on the other hand. Most often the consumed wall clock time is used as a
resource, as it is easily accessible. However, its usage endangers the repeatabil-
ity of simulation runs and implicitly introduces uncertainties due to hardware
configuration and current work load. To avoid this type of uncertainties other
approaches for defining time models exist, that require more efforts and depend
on the type of implementation, the language used, or the underlying operating
system. For some planning systems the number of expanded nodes might be a
suitable measure for the consumed resources, some languages facilitate the over-
loading of operators [26], and sometimes a performance counter on top of the
operation system may be used [27].

4 Discussion and Future Work

dynDevs provides a general framework for discrete event simulation and is
firmly rooted in systems theory. Models are defined as time-triggered, compos-
ite, and reflective automata. The operational semantic is clearly defined by ab-
stract simulators. Extended by peripheral ports that allow to specify how models
interact with external processes dynDevs supports the re-use and successive re-
finement of experimental settings from specification to implementation.

Controlled Experimentation with Agents — Models and Implementations 303

Based on the formalism dynDEVS the simulation system James has been
implemented [23]. Due to its variable structure facilities it is cut tailored for the
modelling and simulation of open dynamic systems. The flexibility of the simula-
tion system has been and is being put to test in such diverse areas as cell biology
[28], testing of mobile agents [29], and testing of software aimed at running on
mobile robots [30]. Furthermore, James has been applied to analyse economic
and demographic dynamics in pre-modern European towns in the aftermath of
mortality crises [31].

To illustrate basic principles in moving from models to implementations we
presented an abstract MAS scenario comprising an experimental frame which
launches tasks into a network of agents. In spite of the simplicity of the scenario,
an effective and timely accomplishment of tasks cannot be foretold by a static
analysis. The sample scenario assigns work load, efficiency of single agents, and
effort required for accomplishing sub-tasks arbitrarily. Therefore, future work
will be directed towards applying the presented framework to a concrete agent
application, e.g., for evaluating the efficiency of data querying in P2P networks.

References

1. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: the Tropos project. Information Systems 27 (2002) 365–389

2. Odell, J., Parunak, H.V.D., Fleischer, M., Breuckner, S.: Agent UML: A formalism
for specifying multiagent software systems. In Giunchiglia, F., Odell, J., Weiss, G.,
eds.: Agent-Oriented Software Engineering III. Volume 2585 of Lecture Notes in
Computer Science. Springer (2003) 16–31

3. van der Hoek, W., Wooldrige, M.: Towards a logic of rational agency. Journal of
Autonomous Agents and Multi-Agent Systems 11 (2003) 133–157

4. Ryan, M., Schobbens, P.Y.: Agents and roles: Refinement in alternating-time
temporal logic. In Meyer, J., Tambe, M., eds.: Intelligent Agents VIII: Agent
Theories, Architectures, and Languages. Volume 2333 of Lecture Notes in Artificial
Intelligence. Springer-Verlag (2002) 100–114

5. Wooldridge, M., Jennings, N.R.: Pitfalls of agent-oriented development. In: Pro-
ceedings of the 2nd International Conference on Autonomous Agents. (1998) 385–
391

6. Dam, K.H., Winikoff, M.: Comparing agent-oriented methodologies. In: Pro-
ceedings of the Fifth International Bi-Conference Workshop on Agent-Oriented
Information Systems, Melbourne (2003)

7. Hilaire, V., Koukam, A., Gruer, P., Müller, J.P.: Formal specification and proto-
typing of multi-agent systems. In: ESAW 2000. Volume 1972 of Lecture Notes in
Artificial Intelligence. Springer Verlag (2000) 114–127

8. Moro, G., Viroli, M.: On observing and constraining active systems. In: ESAW
2000. Volume 1972 of Lecture Notes in Artificial Intelligence. Springer Verlag
(2000) 34–51

9. Wooldridge, M.: The computational complexity of agent design problems. In: Pro-
ceedings of the Fourth International Conference of Multi-Agent Systems (ICMAS-
2000), Boston (2000) 341–348

10. Lutz, R.: Software engineering for safety: A roadmap. In Finkelstein, A., ed.: ICSE
- Future of SE Track, ACM Press (2000) 213–224

304 M. Röhl and A.M. Uhrmacher

11. Schütz, W.: The testability of distributed real-time systems. Kluwer Academic
Publishers, Boston / Dordrecht / London (1993)

12. Myers, G.J.: The Art of Software Testing. John Wiley & Sons, Inc. (1979)
13. Wolpert, D.H., Lawson, J.W.: Designing agent collectives for systems with marko-

vian dynamics. In: AAMAS 2002: Autonomous Agents and Multi-Agent Systems.
(2002)

14. Montgomery, T.A., Durfee, E.H.: Using MICE to Study Intelligent Dynamic Coor-
dination. In: Second International Conference on Tools for Artificial Intelligence,
Washington, DC, Institute of Electrical and Electronics Engineers (1990) 438–444

15. Pollack, M.E.: Planning in Dynamic Environments: The DIPART System. In Tate,
A., ed.: Advanced Planning Technology. AAAI (1996)

16. Minsky, M.: Models, minds, machines. In: Proc. IFIP Congress. (1965) 45–49
17. Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation. Academic

Press, London (1984)
18. Zeigler, B.P.: Theory of Modelling and Simulation. John Wiley, New York (1976)
19. Vangheluwe, H.: DEVS as a common denominator for multi-formalism hybrid sys-

tem modeling. In: Proceedings of the IEEE International Symposium on Computer
Aided Control System Design, Anchorage, Alaska (2000) 129–134

20. Giambiasi, N., Paillet, J.L., Châne, F.: From timed automata to DEVS models.
In Chick, S., Sánchez, P., Ferrin, D., Morrice, D., eds.: Proceedings of the 2003
Winter Simulation Conference, New Orleans, USA (2003) 923–931

21. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation. 2nd
edn. Academic Press, London (2000)

22. Fujimoto, R.M.: Parallel and Distributed Simulation Systems. John Wiley and
Sons (2000)

23. Uhrmacher, A.M.: Dynamic Structures in Modeling and Simulation - a Reflective
Approach. ACM Transactions on Modeling and Simulation 11 (2001) 206–232

24. Schattenberg, B., Uhrmacher, A.M.: Planning agents in James. Proceedings of the
IEEE 89 (2001) 158–173

25. FIPA: FIPA Contract Net Interaction Protocol Specification.
http://www.fipa.org/specs/fipa00029 (2002)

26. Anderson, S.D.: Simulation of multiple time-pressured agents. In: Proc. of the
Wintersimulation Conference, WSC’97, Atlanta (1997)

27. Browne, S., Dongarra, J., Garner, N., Ho, G.S., Mucci, P.: A portable program-
ming interface for performance evaluation on modern processors. The International
Journal of High Performance Computing Applications 14 (2000) 189–204

28. D genring, D., Röhl, M., Uhrmacher, A.M.: Discrete event, multi-level simulation
of metabolite channeling. BioSystems 75 (2004) 29–41

29. Uhrmacher, A.M., Röhl, M., Kullick, B.: The role of reflection in simulating and
testing agents: An exploration based on the simulation system james. Applied
Artificial Intelligence 16 (2002) 795–811

30. Himmelspach, J., Röhl, M., Uhrmacher, A.: Simulation for Testing Software Agents
– An Exploration Based on James. In Chick, S., Sánchez, P., Ferrin, D., Morrice,
D., eds.: Proceedings of the 2003 Winter Simulation Conference, New Orleans,
USA (2003) 799–807

31. Ewert, U.C., Röhl, M., Uhrmacher, A.M.: What good are deliberative interventions
in large scale disasters? Exploring the consequences of crisis managment in pre-
modern towns with agent-oriented simulation. In: Agent Based Computational
Demography. Physica Verlag (Springer) (2003)

e

Techniques for Analysis and Calibration of
Multi-agent Simulations

Manuel Fehler, Franziska Klügl, and Frank Puppe

Lehrstuhl für Künstliche Intelligenz und Angewandte Informatik,
Institut für Informatik, Universität Würzburg, Am Hubland, 97074 Würzburg

{fehler, kluegl, puppe}@ki.informatik.uni-wuerzburg.de

Abstract In this paper we present analysis and calibration techniques
that exploit knowledge about a multi agent society in order to calibrate
the system parameters of a corresponding society simulation model. The
techniques address typical problems of multi agent simulation calibra-
tion like the vast amount of parameters that need to be calibrated, the
complex parameter dependencies due to interactions between the simu-
lated agents and the generally enormous computational cost of running
a multi agent simulation.

1 Motivation

Multi-Agent Simulation forms a useful tool for understanding and designing so-
cieties. As in standard simulation, existing, planned or hypothetic systems are
mapped to models. Multi-agent simulation is special as agents and societies in
the original are explicitly represented in the model with their autonomy, indi-
vidual goals, etc. This form of micro simulation provides several advantages not
only compared to macro models, but also to other individual- or process based
paradigms for simulation, like object-oriented simulation, cellular automatons,
queuing or petri networks [1].

However, there are some drawbacks. The most important one is due to the
micro-macro link that is often hardly explicitly treatable. Independent of the
particular aim of simulating – e.g. for explanation or prediction – the modeler
wants to produce a simulated system which’s behavior satisfies a global or partial
goal or condition, e.g. the global goal of optimal nectar influx or specific coali-
tion structures that are observable from the global view. However, the model
is designed bottom up from the agents perspective based on some (hypothetic)
individual goals or behavior. Its basic structure mostly forms no problem as the
entity of observation is the entity of modeling: the individual agent. But the par-
ticular parameter setting used for the concrete simulation, is not found easily.
In multi-agent simulation the set of parameters is clearly more extensive than
in other, more restricted forms of modeling. Thus, this problem of parameter
calibration has to be tackled carefully and thoroughly. Often some parameter
can be set based on empirical findings, but the others have to be estimated in a

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 305–321, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

306 M. Fehler, F. Klügl, and F. Puppe

reasonable way. As parameters on the local level of a simulated multi-agent sys-
tem have to be set in a way that a certain global goal is reached, we may call this
problem a society calibration problem to denote its multi-level characteristic.

The rest of the paper is organized as follows: In the next section we will
present these concepts in more detail. Instead of proposing a try-and error cal-
ibration scheme we show how this problem can be solved as a black box opti-
mization problem in section 3. The main part of the paper tries to use knowledge
about the original system and the general requirements onto the model to sug-
gest different approaches for white box optimization. The paper ends with a
short discussion and presentation of further work.

2 Society Calibration Problem and Its Solutions

Calibration is an important step in every process concerning the development
of simulation models – independent from the actual modeling paradigm used.
Model parameters, like birthrate, agent movement speed, or local goal adapta-
tion have to be set in a way that a structurally correct model produces a valid
outcome. This problem is particularly hard for multi-agent simulations, due to
the multi-level characteristics that have to be met, the dynamic and flexible
interaction behavior and often practically unforeseeable feedback loops. Multi-
agent models are often highly sensible to parameter changes, especially when
agent-class level parameters are changed and a huge number of agents is con-
cerned. Although this problem is present in every multi-agent system design,
not only for simulated environments, it is not explicitly tackled in any agent-
oriented software design method proposed. Extensive test and simulation phases
are responsible not only for identifying problematic parameter settings, but also
for identifying structural deficits [2, 3].

The simple try and simulate step is quite unsatisfying as it is quite ineffective.
A good alternative seems to be to tackle calibration as an optimization problem
– which was already proposed for standard simulation techniques [4]. Parameter
settings form the input values, simulation outcome the fitness values to be fed
into a optimization algorithm. This is tackled in the following sections.

3 Black Box Optimization Solutions

Standard society calibration techniques treat a society simulation model as a
black box, which computes a function that cannot be written down explicitly
[5]. In general black box calibration methods try to obtain and use an approxi-
mate relationship between input and output variables of the simulation for de-
termining the ”optimal” input setting. Some popular black box calibration ap-
proaches are gradient based search methods, stochastic approximation methods,
sample path optimization, response surface optimization and heuristic search
methods [6]. An advantage of the black box approach is that it is not impor-
tant for the calibration procedure what kind of simulation has to be calibrated.

Techniques for Analysis and Calibration of Multi-agent Simulations 307

This advantage is also a big drawback. Since no knowledge about the inter-
nal structure and the parameter dependencies of the simulation model is used,
the search spaces that have to be searched by the calibration algorithms are
often so big that they cannot be searched thoroughly in a limited amount of
time. The disadvantage is aggravated by the fact that specially running a multi-
agent simulation is very computationally expensive which limits the number of
simulation runs that can be made in a limited amount of time. Extra knowl-
edge can only be applied to black box calibration via constraints on the input
parameters. An example of black box calibration for MAS is the evolutionary
programming integrated into the SADDE methodology for MAS design by Sierra
et. al. [7].

4 White Box Calibration

In white box simulation calibration we explicitly use model knowledge to enhance
the calibration process. That way structural properties of the simulation model
and knowledge about dependencies between the parameters that are to be cal-
ibrated can be exploited in order to reduce the configuration search space and
the complexity of parameter dependencies and to decrease the computational
cost of parameter configuration evaluation.

4.1 Example Used to Illustrate the White Box Calibration
Approach

The white box society calibration concepts will be illustrated by applying them
to an exemplary multi agent simulation model of a honey bee society in which
we simulate the foraging and the brood attending behavior of honey bees. A
bee hive is situated in the center of an environment with different food sources.
Inside the bee hive we simulate the brood area of the bees in which bee larvae
are fostered. The simulated brood area consists of a single comb. The cells of
this comb contain bee brood that needs to be fed. The brood is attended by
bees specialized on feeding brood. The nectar that is needed to feed the brood
is harvested by specialized foraging bees that leave the bee hive to find nectar
patches that are scattered in the environment around the bee hive, collect nectar
from discovered patches and transport the nectar to the hive. The nectar patches
have variable qualities and distances from the hive. Since the flight of foraging
bees is an energy consuming process, the bees need to find patches that are close
to the bee hive and that offer a maximum nectar quality in order to harvest a
maximum amount of nectar in a limited amount of time. The only way to find
a nectar patch is to fly around randomly or to use information about a patch
discovered by other bees. Bees share information about patches by dancing after
returning from a successful foraging flight. These dances encode quality and
position of the corresponding patch. By dancing bees can recruit other bees to
collect from the same patch. Bees that are already collecting from a certain patch
can forget that patch in order to find a better one.

308 M. Fehler, F. Klügl, and F. Puppe

The honey bee MASim described contains a large amount of parameters that
need to be calibrated. The most interesting ones include thresholds for feeding
the brood, parameters that direct the search for hungry brood and bee agent
parameters that guarantee maximum nectar gain, e.g. parameters that define
when a bee agent should search for new patches, when a bee agent should forget
its current patch in order to find a better one or when a bee agent should dance
for the patch it is collecting from in order to recruit another bee, etc.

5 Starting Points for White Box Calibration

In this section we introduce several techniques that can help to decrease the com-
plexity of parameter relationships in a MASim, which may lead to smaller search
spaces for the calibration process and can decrease the computational complexity
of single simulation runs needed for the calibration process. For each technique
we give certain requirements that need to be met by a simulation model to which
we want to apply the technique. In general each technique can be applied to any
multi-agent simulation that meets these requirements. Thus, the techniques are
also suited for adaptive and open MASims. In adaptive MASims we can use the
techniques to calibrate the parameters that control the adaption mechanism. In
open MASims the calibration of the parameters of the environment is especially
important. They define the behavioral constraints for all agents which enter
the system.

5.1 General Model Decomposition

In general model decomposition is a method to break the MASim model into
smaller submodels that can be treated as individual models by the calibration
process. Using smaller models can result in reduced parameter search spaces
and decreased computational complexity for each of these models. This can
result in faster convergence to the optimal parameter configuration for each
of the individual submodels. The hope in doing this is to be able to combine
the optimally calibrated submodels to a nearly optimally calibrated full model,
by having to calibrate only those model parameters that link the individual
submodels. This is also possible if the parameter calibration of one submodel
depends on the parameter configuration of another submodel. In that case an
ordered calibration of the submodels can lead to the desired calibration of the
combined model. However, if the parameter configurations of two submodels have
a too strong influences on each other, individual calibration can result in useless
configurations for the combined model. There are several reasonable dimensions
for decomposition.

5.2 Functional Decomposition

Independent Macro Model Parts as Functional Units: Certain parts of
a MASim model may be mostly independent from the rest of the model.

Techniques for Analysis and Calibration of Multi-agent Simulations 309

Example: The honey bee MASim can be decomposed into a brood attendance
submodel and an foraging submodel, only linked via the collected nectar that
is fed to the brood. If we simply assume that the foraging bee agents collect
enough nectar for the brood to be fed the models are independent and can be
calibrated separately.

Possible Gain: Less environmental computation and less agent updates for
each of the submodels.

Individual Agents as Functional Units: Society MASims are inherently
modular simulations due to the fact that individual agents are simulated. This
offers the possibility to calibrate the individual agents separately.

Requirements: Calibrating the individual agents separately is often not pos-
sible since the interaction between the agents leads to strong dependencies be-
tween their parameters. However certain parts of the agents’ behavior may be
independent from the rest of the system parameters we have to calibrate.

Example: For a given environment the patch search process by random flight
of an individual bee agent is independent from the rest of the simulated society
and world.

Possible Gain: Simulation and parameter calibration of only one agent at a
time required.

Groups of Agents as Functional Units: In society MASims groups of agents
often work together to solve some problem. If a group and each agent that is part
of the group are mostly independent from the rest of the system parameters, the
problem solving process of such a group can be calibrated separately from the
rest of the system.

Example: The group of foraging bees and the group of brood attending bees
are independent from each other and can be calibrated separately.

Speedup: Possible Gain: Less agent updates and reduced dimension of pa-
rameter configuration search space. No calibration of internal group behavior.

Environment as a Functional Unit: A MASim consists of two main parts: the
environment and the multi agent system. Often the environment describes the
problem setting for the simulated MAS. Without a valid environmental model
the parameters of the MAS cannot be calibrated correctly. In general the envi-
ronment may consist of more than agents, e.g. the physics of the simulated world.
In such cases and especially with a complex environment, the environment can
and have to be calibrated separately before the rest of the MASim.

Example: We extend the brood attendance submodel of the honey bee exam-
ple in such a way that the brood not only needs to be fed but it needs to be kept
warm as well. To simulate the warming of the brood we need a model of heat
dispersion in the brood nest. Heat dispersion between cells of the brood comb
is independent from any agent interaction. The parameter for heat dispersion
between cells can be calibrated without having to simulate any agents.

Possible Gain: Static agent-environment relationships calibrated using help
variables representing agent actions.

310 M. Fehler, F. Klügl, and F. Puppe

5.3 Decomposition Based on Goal Oriented Top-Down
MAS-Design

In many agent-oriented software engineering methods the design of a MAS hap-
pens in a Top-Down fashion, i.e. the global problem that is to be solved by the
MAS is decomposed into a subproblem hierarchy [8]. Roles are identified for
solving the subproblems and agents are designed to fill into the identified roles.
If the multi agent society model can be decomposed in a similar way, this can
be exploited for the reduction of parameter configuration search spaces in the
society calibration process as well.

Requirements: In order to calibrate subproblems from the subproblem hier-
archy of a simulated MAS the subproblems need to be nearly independent from
each other.

Another requirement for calibration along a goal hierarchy is that we need to
be able to link the calibrated subproblems together in order to find a calibration
for the overall model. This may require additional calibration of parameters that
influence how separate subproblem solutions are combined in the full simulation.

Example: We decompose the foraging submodel of the honey bee example.
The global goal of the foraging bee agents is to collect a maximum amount of
nectar during a certain time interval. To achieve this goal the agents need to
find patches with optimal nectar gain and share information about discovered
patches in order to enable other agents to collect from good patches without
having to find them on their own. Figure 1 visualizes an exemplary subproblem
hierarchy.

Requirements: To overcome dependencies on resources and problem solving
features of other agents we can build simplified models in which simplified re-
sources and features are supplied by the simulation system. This is only possible
if the parameters to be calibrated can be clearly separated into parameters in-

Global Goal
Maximum
amount of

nectar

Subgoal 1
All agents

collect from
optimal patch

Subgoal 2
Optimally

efficient nectar
collection

flights

Subgoal 1.1
Optimally

efficient scout
flights

Subgoal 1.2
Optimally

share patch
information

among agents

Subgoal 1.3
Make optimal

use of avaiable
patch

information

Subgoal 1.3.1
Stop search

flights if
information is

avaiable

Subgoal 1.3.2
Forget patches

of lesser
quality to be

recruited

Fig. 1. An exemplary subproblem hierarchy

Techniques for Analysis and Calibration of Multi-agent Simulations 311

fluencing actual problem solving and parameters influencing resource and help
acquisition.

Example: To switch efficiently between different patches the parameter that
defines when a bee agent ought to forget its patch needs to be calibrated. Since
a bee can profit from information about already discovered patches only if it is
recruited by other agents the parameter influencing when a bee recruits others for
its patch needs to be calibrated as well. If we simply supply patch information
artificially to a bee agent that needs to decide if it is reasonable to forget its
patch we do not need to calibrate the recruitment parameter. We simply need
to calibrate the way available patch information is handled by a forgetting bee
agent (also see section 5.6).

Possible Gain: Reduction of the parameter space for each submodel and
shorter simulation runs due to reduced internal simulation times.

5.4 Decomposition Based on Behavioral Agent Models

Another way of decomposing the parameter configuration search space is to clas-
sify parameters into categories based on the possible different agent behaviors.
In general there will be two types of parameters: parameters that influence what
type of behavior the agent adopts and parameters that influence the outcome
of a specific agent behavior. Once the parameters are categorized each category
can be associated with a goal, like optimal behavior adoption or optimal action
performance for a certain behavior. If these goals can be measured by evaluation
functions the parameters of each category can be calibrated separately which
reduces the configuration parameter search space.

Requirements: For each parameter it has to be possible to clearly associate it
with one category. If a parameter influences the choice of a behavior and outcome
of a behavior as well, these two categories cannot be calibrated separately. Finally
we need to be able to decide for each category about an evaluation function for
that category.

Example: Figure 2 shows a visualization of the behavior of an agent perform-
ing some abstract task. First the agent is inactive. Then some threshold triggers
the agent’s willingness to accomplish a task. He moves out to find a task. There
are several different tasks the agent could solve. Every task is associated with
a threshold that triggers the agent’s willingness to solve the task. During task
accomplishment certain environmental influences or the occurrence of another
task with higher activation values can make the agent switch tasks or simply
stop task accomplishment.

In this example each threshold is defined by an own parameter. The global
goal is to accomplish a maximum amount of tasks in a limited amount of time.
To calibrate the parameters we check whether tasks are found, how many of
the found tasks were selected for accomplishment and how many tasks were
accomplished at all. If we find that no tasks were accomplished, we check whether
the parameters for the selection mechanism need to be adjusted. If no tasks were
found to be selected, we need to calibrate parameters for the search mechanism
and so on.

312 M. Fehler, F. Klügl, and F. Puppe

Agent without a Task

Search for Task

Task Selection/Allocation

Task Accomplishment

Parameters that trigger
willingness to accomplish

a task

Parameters that define
searching routines/

success

Parameters that define
selection of task/between

different tasks
Parameters that make
agent abandon/switch

tasks

No task selected

Parameters that make
agent become idle

Task accomplished

Fig. 2. An exemplary behavioral model

Possible Gain: Simplification of the parameter search space structure.

5.5 Decomposition Based on Temporal Phases

It may be possible to identify mostly independent time phases during a MASim
run. These time phases can be on different hierarchical levels, e.g. the goal of
the whole simulated MAS can change over time or the problem solving process
of single agents can be decomposed into different phases.

Example: An example in which temporal decomposition can be applied would
be a MASim with a day/night cycle. If the simulated society shows different and
independent behavior during day and night time, the parameters relevant for
MASim behavior at each of these phases can be calibrated separately.

Possible Gain: Restriction of the parameter search space dimension to only
those parameters which are required during each phase. Furthermore simulat-
ing the individual situations may require less internal simulation time for each
submodel.

5.6 Abstractions and Metamodels

Abstraction of a MASim model is a convenient way to reduce the computational
cost of a MASim and the complexity of the parameter configuration search space
that needs to be searched in order to find the optimal calibration for the MASim.
Although an abstracted society model may not be able to answer the question
we want to tackle with the full multi agent society simulation, the information
gained from simulating the abstract model may be used to reduce the parameter
configuration search space in a more detailed model.

Techniques for Analysis and Calibration of Multi-agent Simulations 313

Abstraction by Aggregation. Abstraction by aggregation reduces model com-
plexity by aggregating micro parts of the model into valid macro model repre-
sentations. The following MAS properties can be exploited for abstraction by
aggregation:

– Aggregation of functional groups: Functional groups of agents that
have already been calibrated can be abstracted and be replaced by macro
agents with the same behavior as the groups.
Possible Gain: Less agent updates. No calibration of internal group param-
eters.

– Abstraction at model scale: Society MASim models can be represented
at different scales without loosing validity. A model is referred to as being of
lower scale than another if the society consists of fewer agents and a possibly
smaller environment is used, but the same simulation results are achieved.
Simulation of MASim models of lower scale is often computationally less
expensive since fewer agents need to be updated each turn. MASim compo-
nents that can be scaled are numbers of agents or resources of the same type
or the measures of the MASim environment. In order to scale the model we
need to know the scaling relationship between the different system compo-
nents that we want to scale. We need to know if a bisection of the number of
agents requires a bisection of the size of the environment in order to remain
a valid model or if the relationship may be exponential.
Example: If X foraging bee agents can harvest a environment of size Y, fewer
bee agents can harvest a smaller environment as efficiently if the proportion
of patches stays the same.
Possible Gain: Reduction of computational complexity for reduced model.

– Abstraction of deterministic agent actions and inactive agents:
MASims can consist of highly stochastic processes. However certain deter-
ministic aspects may be found, like deterministic agent actions with out-
comes that can be computed directly. If there is no further system interac-
tion, the agents or components can be removed from the system and returned
at appropriate time with the results of their actions. A special case of such
deterministic agents are agents that do essentially nothing. Updating these
agents is completely redundant and can be omitted.
Example: Once a bee agent has learned of the position of a new patch it flies
there and returns with the amount of nectar that is defined by the quality
of the patch and the energy loss from flying to the patch. We can remove
the agent and save the relevant information, i.e. amount of nectar and patch
that was harvested, in a hashtable. Each simulation step the system checks
the hashtable whether a foraging bee agent returns to the hive. The outcome
of the collection flight is then added to the simulation. A simple counter can
be used to keep track of inactive agents waiting in the hive.
Possible Gain: The described technique is a form of implementation opti-
mization to speed up the computation of a single simulation run. Besides the
computational gain such model optimization techniques often makes editing
editing and changing the model after calibration impossible. For this rea-

314 M. Fehler, F. Klügl, and F. Puppe

son all model implementation techniques, like code optimization, should be
handled with great care.

– Abstracting simulation modules as metamodels and probability
distributions: The modularity inherent in MASims can be exploited to
learn functions (e.g. neural networks [9]) that exhibit the same input/output
behavior as the original modules or, if an appropriate stochastic distribution
can be found, that represents the distribution of certain input variable val-
ues supplied by some agents during a simulation, the input variables and
possibly the agents can be replaced by a pseudo-random number generator
with the desired distribution. In this manner internal processes of agents or
other system modules, whose interiors have already been optimized, can be
computed directly from a learned function, an appropriate lookup table or a
probability distribution. A drawback of learning a function or distribution is
that it requires additional simulation runs which can diminish the gain from
using the function afterwards.
Example: The only connection between the inside and the outside world of
the bee hive is the harvested nectar needed to feed the bee brood agents.
Once the nectar harvesting process is calibrated it may be possible to learn a
function that represents the foraging submodel. This function have to return
the amount of nectar that is returned to the hive at each point in time during
a simulation. Another possibility would be to replace the submodel by a
pseudo-random number generator with the learned distribution of nectar
income.

Abstraction by Reducing Heterogeneity. Abstraction techniques that re-
duce heterogeneity try to create simulation models that are simpler in terms of
parameter complexity relationships by replacing heterogenic MASim modules by
simpler homogeneous variants.

Requirements: The simplified models must still be valid representations of
the original model. It is much more difficult to justify the validity of a model
with reduced heterogeneity than to justify the validity of an aggregated model.

Example: In order to calibrate the foraging submodel of the honey bee MASim
we reduce the heterogeneity of the patch environment. The randomly distributed
patches with random quality of are replaced by only two patches, one with better
and one with lesser quality. The MASim model can then be calibrated in such a
way that the bee agents choose optimally between these two patches. However it
is not sure if the calibration of the simplified model can help for the calibration
of the original model.

Possible Gain: Reduction of the parameter configuration search space struc-
ture and therefore faster convergence of an applied black box search method.

Abstraction by Reducing Systems of Mass Agents for Easier Model
analysis. In simulations of societies of masses of agents of the same type, e.g.
ant or bee societies [10, 11], the global problem of the simulated MAS is solved by
solving identical smaller problems very often. The individual agents solve small
parts of the global problem. The combination of these small solutions results

Techniques for Analysis and Calibration of Multi-agent Simulations 315

in a solution for the full problem. In this case the settings for all agents of the
same type can be found by analyzing an individual agent and calibrating the
parameters influencing the agent in such a way that the solution of the small
problem solved by that agent is optimized.

Example: We want to find a relation between parameters influencing when
bee agents should dance for a patch and when bee agents should forget a patch
in order to find a better one. The global goal of the foraging collecting a max-
imum amount of nectar is achieved by a massive amount of identical foraging
bee agents. Each of these agents solves its individual problem of collecting a
maximum amount of nectar. If we analyze a MAS of a single foraging bee agent,
we can draw conclusions when the agent should forget a patch. A patch should
be forgotten if there is a chance of finding a better patch. The patch offering
maximum nectar gain should never be forgotten. Since a foraging agent needs
to collect nectar in a limited amount of time the probability of forgetting a
patch should be linearly lower with increasing patch quality. This analysis of the
decisions of a single bee agent leads to the following relationships:

pforget (ThisPatch) = 1 − QualityOfThisPatch

QualityOfOptimalPatch

Now we analyze a system of two bee agents. The question we want to answer
is when a bee agent should dance for its patch in order to recruit the other agent.
An agent collecting from a patch with maximum quality should definitely recruit
the other agent. An agent collecting from patches with less quality should recruit
the other if there is a significant chance that the recruited agent did not collect
from patch with better quality than that of the patch in question before. The
probability of dancing for a patch with better quality should be higher than for a
patch with lesser quality. This results in an equation similar the equation above.

By analyzing a reduced system of one and two foraging bee agents we identi-
fied constraints for the dancing and forgetting probabilities of patches that would
possibly have been overlooked while dealing with larger numbers of agents.

Possible Gain: Reduction of computational complexity of the submodel. Eas-
ier analysis of the resulting model. Substitution of model parameters by identified
model relationships.

6 Sketch of a White Box Calibration Method

In this section we give an outline of a method that can be used to apply the
described techniques. A calibration process always needs some means to evaluate
the validity of structural properties or some model parameter configuration. For
this reason we start the calibration of each (sub) model by stating the simulation
question, i.e. what defines if the society model is valid? From this question we
derive the goal function that will be used to evaluate model realism. As the
problem setting, e.g. the non agent environment, constraints the calibration of
the rest of the society model, we start model parameter tuning by adjusting the

316 M. Fehler, F. Klügl, and F. Puppe

problem setting for the model, i.e. static model relationships that define how the
input parameters for dynamic variables need to be tuned. After that we try to
decompose the model into submodels in a hierarchical way. A promising order for
model decomposition is first to try to decompose the model into several temporal
phases and situations. Next we try to decompose each of the resulting submodels
further into spatial submodels. These steps may be repeated recursively. Next
we try to apply task based decomposition and behavior based decomposition.
Finally the creation of reduced and simplified submodels is advisable in order to
analyze internal model relationships. For each of the submodels a goal function
and critical situations need to be identified. By calibrating the submodels only
during those critical situations the time needed for a single simulation run can be
reduced. The final step of the calibration process is merging the submodels, i.e.
propagation of calibration results to higher levels of the decomposition hierarchy.
This may require further calibration of parameters linking the submodels, e.g.
threshold parameters describing an agent adaption process via switching between
different behaviors.

7 Application Example

In this section we give a coherent calibration description of the honey bee multi
agent simulation model used for illustrating the techniques presented in this
paper. The simulation model consists of two main parts. An inside world, i.e.
the bee hive, and an outside world, which is the environment around the hive
with flower patches for nectar collection. As described before the main goal of
all bee activity is to keep the bee state alive. To achieve this the bees perform
two main activities. The first is to try to collect enough nectar to allow the
bees to perform all energy consuming actions necessary for hive survival. The
second is to compensate any bee life losses by ”creating” as many new bees as
possible. The bee queen lays new eggs in the brood nest. Then worker bees which
are specialized on fostering brood care for the newly born bees. They do this
by making sure that the brood is always fed up and comfortably warm. In our
micro model we focus on simulating these two main bee hive activities. A more
detailed general description of the model is given in section 4.1.

The goal of applying the proposed calibration techniques is to create easier
to handle auxiliary models which allow to focus on calibrating those parameter
relationships that cannot be dealt with separately. To do so we use the proposed
decomposition and abstraction techniques to strip the preliminary models of all
details irrelevant for the current model parameter calibration problem.

7.1 Macro Level Model Decomposition

We start model decomposition on an abstract level. The first step is to spec-
ify the global simulation question and derive the corresponding goal function
from it. The simulation question is: ”What valid local behavior of the honey
bees guarantees the survival of the bee state?”. The corresponding goal function

Techniques for Analysis and Calibration of Multi-agent Simulations 317

describes that we want to minimize the number of dead brood while being as
energy efficient as possible, i.e. maximizing the amount of collected nectar and
minimizing the amount of required energy for fostering the brood. The world in-
side the bee hive and the outside world are linked by the collected nectar and the
hatching new foraging bees. Bee brood fostering is responsible for compensating
bee life losses and nectar collection guarantees that bee brood can be successfully
fostered. As a result all model parameters of model parts inside the bee hive are
in some way linked to all parameters of model parts on the outside world.

However if we simply assume that ”enough” nectar is foraged and ”enough”
new brood is successfully fostered the simulation model can be decomposed into
an inside and an outside world. The term ”enough” either needs to be specified
by a domain expert or is modeled by posing optimality constraints on the two
sub models. On the one hand we require that a maximum possible amount
of nectar is foraged in a limited amount of time and given a certain constant
number of bees. On the other hand we require that a maximum number of brood
is successfully fostered given a certain constant number of bees and consuming
a minimum amount of energy. The application of these constraints is valid as
we may assume that evolution created a very energy efficient bee behavior. In
the consequence we only have to deal with two smaller independent simulation
models in the further course of the calibration process.

7.2 Auxiliary Foraging Model

In this section we describe the calibration process for the bee foraging sub model.

Goal Oriented Model Decomposition. The first step is to state the new
simulation question for this sub model and to derive the corresponding goal
function from it. The foraging sub model is valid, if the bee agents collect a
maximum amount of nectar in a limited amount of time. The second part of
the goal function is important because the bee agents can always collect infinite
amounts of nectar in infinite time. Although this is not part of their local knowl-
edge the foraging bees work together solving several sub problems, like searching
or information sharing, in order to reach the goal of maximum nectar income.
Because of this we can apply goal oriented decomposition to simplify calibration
using auxiliary models. Figure 1 shows the goal oriented decomposition for the
foraging model. To collect a maximum amount of nectar the bee agents need to
collect from a patch which is optimal in terms of net energy gain, i.e. patch gain
less required flying energy. Additionally, each individual collection flight needs to
be optimally efficient. To enable each bee agent to collect from an optimal patch
the bee agents need to search for patches, communicate the quality of discovered
patches to other bees and finally reason about the received patch information.

Sub Model 1: Patch Searching Behavior. The first sub goal that has to be
reached is to find a patch with optimal net energy gain as quickly as possible.
Here we need to design valid agent movement and supply model parameters
for valid flying speeds and energy consumption. An additional model parameter

318 M. Fehler, F. Klügl, and F. Puppe

concerning searching behavior is a ”stop searching” probability value. This value
defines when a bee agent should return to the hive before it finds a patch. The
optimal value for this model parameter is strongly related to the amount of
available patch information in the bee hive and has to be calibrated later. What
remains is to calibrate when a bee agent should start a search flight. The value
of the corresponding model parameter is also closely linked to the rest of the
simulation model, e.g. the amount of available information in the hive. For this
reason this model parameter has to be calibrated later. However its value does
not influence the actual search behavior which can be tested and validated using
a model with only a single bee agent.

Sub Model 2: Information Sharing Behavior. When a bee agent returns
from a nectar collection flight it can share information about the position and
quality of its patch to recruit other bee agents. In order to collect a maximum
amount of nectar in a limited amount of time all bee agents should always collect
from the patch with best known quality. However, as the bee agents have only
limited time for nectar collection the agents have to collect from suboptimal
patches too. The quality of the best patch currently ”known” to the hive is
available to all bee agents when they return to the hive. This is because the bee
agents can observe the quality of the nectar available in the hive. As described
in section 5.6 a simple model analysis leads to a linear relationship defining
information sharing. The shorter the simulation runtime the more important it
is to collect from suboptimal patches.

Sub Model 3: Reasoning About Shared Information. Up to now the
bee agents can search for patches and share patch information with other bees.
The next step is to calibrate bee agent reasoning behavior for available patch
information, i.e. when a bee agent should abandon its current collection patch
to be recruited for a better patch. In this case a similar strategy as the one
described in the last section applies. A bee should abandon its current patch if
the nectar quality available in the bee hive suggests that recruitment for a patch
with better quality is possible.

Calibrating Interdependent Model Parameters. The last step of calibrat-
ing the foraging sub model is to tune interdependent parameters, namely the
model parameter that defines when unsuccessful search flights should be stopped
and the parameter that defines when an inactive bee agent should begin a new
search flight instead of waiting for recruitment by a another foraging bee agent.
The value for the parameter defining when to start search flights depends on the
available information about patches. If no bee agent shares information then bet-
ter patches need to be searched, otherwise bee agents should rather use available
information than go in their own search flights. As a result we model the ”start
search” parameter as a probability for commencing a search flight if no informa-
tion has been shared with the bee agent. The model parameter value defining
when to stop an unsuccessful search flight is modeled as a fixed probability.
Actually, the parameter value depends on the amount of available information

Techniques for Analysis and Calibration of Multi-agent Simulations 319

in the bee hive, but this amount is not known to a bee agent while searching.
The decomposition and analysis process up to know allowed us to define certain
model parameters without actually having to use black box calibration methods.
Only these last two parameters will be calibrated using a global search method.

Applying Implementation Optimization. Before we actually use black box
optimization we apply implementation optimization to the foraging micro model
as described in section 5.6. We do this to increase the number of model parameter
configurations that can be evaluated in a limited amount of time. Inactive agents
waiting in the bee hive are represented as a simple counter and bee agents on
deterministic collection flights are simply treated in a event-based fashion, i.e. by
adding the results of their collection flights to the simulation at the correct time.

7.3 Auxiliary Brood Fostering Model

In this section we describe the calibration process of the inside bee hive sub
model. Once again the first step is to state the relevant simulation question:
”How do the bees guarantee the survival of as much brood as possible, while
being as energy efficient as possible?”. A corresponding goal function would
measure the number of dead brood in a given amount of time and the amount
of energy required. As described before the brood needs to be kept warm and
fed up. As the tasks of keeping the brood warm and feeding the brood are
independent this allows us to decompose the model.

Auxiliary Heating Model. The simulation question for this sub model is:
”What local bee agent behavior is responsible for keeping the hive cells at a
constant temperature while requiring a minimum amount of heating energy?”.
The defining factors for the nest temperature are bee agents heating single cells
and temperature dispersion between nest cells. Consequently the heating model
can be decomposed into two parts. An environmental model describing realis-
tic heat dispersion between nest cells and a behavioral agent model describing
heating behavior optimized in respect to constant nest temperature and energy
efficiency. It is clear that the environmental model constraints the behavioral one
and has to be calibrated first. The calibration of the heat influence parameters
between cells is performed using measurement data from a real bee hive.

The next step is to calibrate the behavioral heating model. This model can
be further decomposed based on the different agent behaviors that occur. On
the one hand we calibrate behavior that leads to a bee agents decision to heat a
certain cell, and on the other hand we have to calibrate what ”group” behavior,
i.e. agent heating temperatures and heating agent distributions across cells of
the nest, leads to an optimally energy efficient warming of the brood nest. We
begin with an abstracted model. The bee agents are represented by static heat
sources distributed across the nest cells heating at a certain temperature. With
this model we analyze what numbers of heating agents and what agent distri-
butions are required to keep the brood nest warm while requiring a minimum
amount of heating energy. We are not concerned with how such distributions

320 M. Fehler, F. Klügl, and F. Puppe

come to be, but with what distributions are good. Creating a certain bee agent
distribution is part of the next calibration stage in which we use the results
from the distribution model to model and calibrate bee movement behavior and
heating thresholds in such a way that we get as close to the optimal distribution
as possible. Of course, the individual bees have no actual local knowledge about
what heating distributions are good. The ”optimal” heating distribution only
serves as a guideline for the further model calibration. As can be seen we are
no longer concerned with keeping the brood alive now, which is the goal in the
full micro model. Instead our goal is to simply keep the brood nest at a desired
temperature. This has the advantage that we do not have to design a tempera-
ture damage model for the bee brood in order to measure heating success, which
would have been an infeasible task as no valid data is available for his.

Auxiliary Feeding Model. The feeding sub model can be modeled and cali-
brated similarly to the heating model. The feeding bee agents move around the
brood nest randomly and check each brood cell they pass. If the brood is hun-
gry the agents feed the brood. The required state of brood hunger for feeding
is modeled using a feeding threshold which is being tuned to be able to feed a
number of brood agent with as few fostering agents as possible.

7.4 Combining the Auxiliary Models

This is the final step of the calibration process. We have created valid simulation
models of bee foraging and bee brood fostering. To combine these models we link
them by modeling death of foraging bees, by replacing them by hatching brood
and by using the foraged nectar as an energy supply. The two calibrated sub
models constraint these population control parameters. We can simply calibrate
them now using black box calibration.

8 Discussion and Further Work

In this paper we argued that black box society calibration methods are prob-
lematic due to the high complexity of society MASims in terms of complexity
of model parameter relationships and computational costs for simulating the
MASim model. We favor a white box approach to the calibration of MAS soci-
ety simulations instead, that exploits the structural modularity that is inherent
to MASims. In the previous sections we described decomposition and abstrac-
tion methods that can help to reduce the computational complexity of a MASim
and to decrease the complexity of parameter relationships in the MASim model,
which results in smaller parameter configuration spaces that have to be searched
in order to find an optimal parameter configuration. The described techniques
need to be applied with great care. For each submodel a problem setting needs to
be identified that allows to transfer the calibration results from lower to higher
model decomposition levels. Implementation optimization can lead to computa-
tionally faster models but will possibly hinder structural changes to the model

Techniques for Analysis and Calibration of Multi-agent Simulations 321

after this optimization has been applied. Therefore, to use white box optimiza-
tion techniques for MASims as efficiently as possible a method for the application
of these techniques needs to be defined as it was sketched in Section 6. In this
paper we systematically described building blocks for a calibration methodology.
The next step is to sort them into a calibration methodology and integrate them
into the MASim design methodology by Oechslein [12]. The methodology can
then be supported by technical means like parallel calibration of independent sub
models and automatic transfer of calibration results between related calibration
sub models.

Acknowledgement

The work described in this paper was supported by DFG under SFB 554(D3/4)
”Emergent Behavior in Superorganisms”

References

1. Klügl, F., Oechslein, C., Puppe, F., Dornhaus, A.: Multi-Agent Modelling in Com-
parison to Standard Modelling. AIS’2002 Artificial Intelligence, Simulation and
Planning in High Autonomy Systems (2002) 105–110

2. Davidsson, P., Johansson, S.J., Persson, J.A., Wernstedt, F.: Agent-based Ap-
proaches and Classical Optimization Techniques for Dynamic Distributed Resource
Allocation: A preliminary study. In: AAMAS’03 workshop on Representations and
Approaches for Time-Critical Decentralized Resource/Role/Task Allocation, Mel-
bourne, Australia (2003)

3. Himmelspach, J., Röhl, M., Uhrmacher, A.M.: Simulation for testing software
agents - an exploration based on james. In Chick, S., Sanchez, P.J., Ferrin, D.,
Morrice, D.J., eds.: Proceedings of the Winter Simulation Conference 2003. (2003)

4. Andradottir: A Review of Simulation Optimization Techniques. In: Proceedings
of the Winter Simulation Conference 1998. (1998)

5. Fu, M.C.: Optimization for Simulation: Theory vs. Practice (Feature Article).
INFORMS Journal on Computing, Vol.14, No.3 (2002) 192–215

6. Azadivar, F.: Simulation Optimization Methodologies. In: Proceedings of the
Winter Simulation Conference 1999. (1999)

7. Sierra, C., Sabater, J., Agust-Cullell, J., Garcia, P.: Evolutionary programming in
SADDE. In: AAMAS 2002. (2003) 1270–1271

8. Wooldridge, Jennings, Kinny: The Gaia Methodology for Agent-Oriented Analysis
and Design. Autonomous Agents and Multi-Agent Systems, 3 (2000) 285–312

9. Panayiotou, Cassandras, Gong: Model Abstraction for Discrete Event Systems
Using Neural Networks and Sensitivity Information. In: Proceedings of the Winter
Simulation Conference 2000. (2000)

10. Gordon, D.M.: The organization of work in social insect colonies. Nature (1996)
121–124

11. Pasteels, J.M., Deneubourg, J.L., Goss, S. In: Self-organization mechanisms in ant
societies (1) trail recruitment to newly discovered food sources. (1987) 155–176

12. Oechslein, C.: A Process Model with Integrated Specification- and Implementation
Language for Multi-Agent Simulation. Note: In German. Shaker Verlag GmbH
(2004)

Stable Multi-agent Systems

Andrea Bracciali1, Paolo Mancarella1, Kostas Stathis2,1,
and Francesca Toni3,1

1 Dipartimento di Informatica, Università di Pisa
{braccia, paolo}@di.unipi.it

2 Department of Computing, City University London
kostas@soi.city.ac.uk

3 Department of Computing, Imperial College London
ft@doc.ic.ac.uk

Abstract. We present an abstract declarative semantics for multi-agent
systems based on the idea of stable set, and argue that it can be suit-
ably employed to describe, and to some extent verify, the dynamics of
complex systems of autonomous and heterogeneous interacting agents.
We view agents as black-boxes, whose semantics is abstractly understood
as an input-output transformation from the agents’ observations about
their environment, to the actions they perform. Stable sets (of actions)
characterise multi-agent systems able to reach an equilibrium point. Our
semantics via stable sets takes into account the possibility that agents
may fail. We illustrate how stability can characterise multi-agent systems
by means of examples. We also draw considerations about how stable sets
can be effectively approximated.

1 Introduction

The increasing complexity of software development calls for enhanced methods
supporting the design, development and verification phases in the life-cycle of
applications. Such methods are required to be formal, possibly supported by
automated tools, and at an architectural level. Indeed, coding is no longer the
main activity in building applications, but rather the emphasis is on the defini-
tion of the components which constitute an application and their relationships
within an overall architecture. This approach requires models and verification
tools, which are neither applicable, nor needed, when developing code. More-
over, the advent of a network-centric model of computation fosters the develop-
ment of applications based on interacting components that may be autonomous,
i.e. independent computational units with their own goals, possibly belonging
to different domains, and heterogeneous, e.g. following different programming
paradigm.

Many of the models and techniques developed within the field of Multi-agent
systems (MAS) appear to be successfully applicable in the aforementioned con-
text. Indeed, MAS feature architectures of autonomous and heterogeneous “in-
telligent components,” which interact with one another in the environment where

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 322–334, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Stable Multi-agent Systems 323

they are situated. There are competing models for agent programming (such as
BDI[1], AgentSpeak(L)[2], 3APL[3], IMPACT[4], KGP[5], to cite but a few),
and MAS design methodologies (such as Gaia [6] and Prometheus [7]), as well
as paradigms to describe and reason about the way in which they can interact
and coordinate their tasks, possibly in cooperative or competitive ways (such as
LAILA [8]). Moreover, a lot of research in MAS has been traditionally influenced
by other disciplines, like economics, ecology, psychology, which have contributed
to better understand the “organisational” aspects of such systems.

Taking into consideration the amount of different agent programming models
proposed, we aim at developing a high-level description framework, which, by
reasoning at an abstract semantical level, allows us to formally model the evo-
lution of a MAS, by abstracting away from the peculiarities of a specific agent
programming model, paradigm, or methodology. In this paper we show how our
abstract approach, originally introduced in [9], can be adapted to the study of
MAS, as well as distributed applications in general, where agents/components
interact in order to fulfill their own goals, but may fail under certain conditions.

We view agents as “black-boxes”, whose “semantics” is expressed as an input-
output transformation describing the behaviour of agents in their environment.
Given the environment of the agent, which may contain the “observable be-
haviour” of the other agents in the MAS, and an initial plan (i.e. a set of actions
the agent intends to execute in order to accomplish its goals), the semantics of
an agent determines (i) its observable behaviour, as an output set of actions from
the pool of actions that the agent can perform, and (ii) its mental state, which is
private and thus inaccessible to other agents. This consists of a representation of
the knowledge of the agent, which may include its goal, plans, constraints, etc.
In addition, the mental state of an agent and its beliefs about the environment in
which it is situated may report a failure condition, for instance when the agent is
not able to plan for its goal with respect to a dynamically changing and possibly
partially accessible environment. The framework we propose is intended to be
instantiated for any concrete agent architecture/theory that can be abstracted
away in terms of the aforementioned “semantics”.

Building on top of the above agent semantics, we define a notion of stability on
the set of all actions performed by all agents in the system, and we characterise
“good” MASs, as those reaching, by means of the “coordinated contribution” of
their agents, an equilibrium point, where, intuitively speaking, no agent needs
to further operate within the system and accepts the currently reached state.
A set of actions (by the different agents) is stable if, assuming that an “oracle”
could feed each of the agents with all the actions in the set performed by the
other agents (and all events happening in the world), then each agent would do
exactly what is in the set, namely their observable behaviour would be exactly
what the set envisages. This notion of stability is reminiscent of that of Nash
equilibrium state in economics game-theory [10], where players accept a sort of
“optimal compromise”, and has been also inspired by the notion of stable model
semantics for non-monotonic logic [11], according to which a model for a non-
monotonic knowledge base exists if a “coherent compromise” between positive

324 A. Bracciali et al.

and negative knowledge can be reached (the detailed comparison with these
works is out of the scope of this paper).

For the purpose of verification, in [9] we have shown how this kind of ap-
proach can be used to formalise properties, like individual success of agents
and overall success, robustness and world-dependence of a MAS. Moreover, we
have also shown how, in a specific case of “well-behaved” logic-based agents,
stable sets can be constructively approximated (by adapting well known seman-
tic approximation techniques of Computational Logic, viz. the TP bottom-up
operator [12]).

Here, we extend the approach of [9] by considering the possibility that agents
may fail at some stage, a possibility which appears relevant from the viewpoint
of engineering complex systems. An agent is in a failure state when it is not able
to “properly” operate within its environment. The new approach is illustrated
by examples in the context of the well-known Blocks World, chosen as a simple
and paradigmatic scenario for the interaction of planning agents. Specifically for
this context, an agent may fail when its planned course of actions would lead to
a violation of some physical law, like the impossibility for two different blocks to
be in the same position. This situation, which may be temporary, is represented
by the agent semantics as a failure mental state (⊥) and an empty set of actions
in response of the current environment and plan. It is worth noting that the
agent metaphor we use in the rest of the paper, could be recast in terms of more
generic components and adapted to different verification scenarios.

We first define the agent semantics and the notion of stable set, showing an
example of successful cooperation for agents in a MAS, which corresponds to the
existence of a stable set, and an example of failure, for which a stable set does
not exists. Then we discuss how stable sets can be approximated by temporarily
suspending failing agents, until they are able to reconcile their mental states
with the current environment, and letting the successful ones operate. If all the
agents are in a failure state we say that the MAS is compromised. Few simple
examples show cases in which this way of operating may or may not lead to the
construction of stable sets, according to which the MAS can evolve. To illustrate
the generality of the approach in a simple way, we have abstracted away from
modeling the details of time evolution and interleaving of actions. Finally, a brief
comparison with similar approaches and some concluding remarks are reported.

2 Single Agent Abstract Semantics

The semantics of single agents is defined in an input-output style, by abstract-
ing away from the agents’ internals and, in particular, independently of any
programming paradigm. We also refer informally to goals, plans and knowledge
of agents, as well as failure and success of agents.

The input for an agent semantics consists of (i1) a representation of the
world in which the agent is situated (referred to as its environment), which
may encompass events occurred in the world and actions performed by other
agents in the system, and (i2) an initial plan, namely a set of actions, that the

Stable Multi-agent Systems 325

agent has decided to execute in order to fulfill its goals. The output consists
of (o1) the information that the agent is able to derive, (referred to as the
knowledge or mental state of the agent), possibly encompassing both its goals
and a representation of the world that it has observed, and (o2) the set of actions
that the agent decides to perform as a consequence of its inputs (typically, this
set includes the actions of the original plan).

Moreover, each agent is equipped with a notion of failure, represented as ⊥.
This is used to represent any circumstance in which the agent is not able to cope
with the environment, e.g. it is not able to devise any plan, or its observations
are not coherent with some of its constraints. A failed agent is required not to
commit to the execution of any action. For the sake of simplicity, we do not
explicitly deal with the representation of time, but we assume that actions are
distinguished by their execution time (i.e. the same action executed at different
instants will be represented by different items in A(i)) and executed in the
“proper” order.

We indicate agents with 1, 2, . . . i, . . . n, and with A(i) and O(i) the set of
actions and observations of agent i, respectively. Given a set ∆ ⊆ ∪i(A(i)∪O(i)),
∆(j) = ∆ ∩ A(j) is the set of actions in ∆ pertaining to agent j.

Definition 1. Given an agent i, its input-output semantics is indicated as

Si(∆in, ∆0) =< M, ∆out >,

where ∆in ⊆ O(i) and ∆0 ⊆ A(i) are the observations and initial plan of the
agent, respectively, ∆out is the set of actions of the agent, and M is the mental
state of the agent, such that either 1) M = ⊥ and ∆out = ∅, and the agent is
failed, or 2) M �= ⊥ and ∆0 ⊆ ∆out ⊆ A(i), and the agent is successful.

The mental state M , that can be logically understood as a model for the agent,
is typically private to the agent itself, while the set of output actions ∆out is the
public side of the agent, observable by all the other agents in the system. The
initial plan ∆0 of the agent can be thought of as being determined by the agent
itself, whereas the observations ∆in might be about other agents. Notice that,
given ∆in and ∆0, Si(∆in,∆0) might not be unique (namely Si may not be
a function), since in general agents may exhibit non-deterministic behaviours.
However, in all the examples in this paper, the agent semantics will always be
uniquely determined. The following example illustrates Definition 1.

Example 1. In the well-known Blocks World, blocks are piled in stacks, with
the usual constraints that a block can be moved only if it is on top of a stack,
two blocks can not be in the same place, etc. Since our framework abstracts
away from the specific paradigms used to build agents, we adopt an informal,
self-explaining, language to describe the mental states and actions of the agents,
while the world is represented in pictorial form. We also assume that actions
are performed in sequence, abstracting away from any formal representation of
temporal ordering. Consider the situation in the figure, with blocks 1, 2 and 3
on stack A, and an agent i with the initial plan of moving block 2 to stack C,

326 A. Bracciali et al.

represented as ∆0 = {2toC}. This plan is unfeasible since the planned action
2toC violates a law of the physical world (that one cannot move a block which
is not clear). Let W be an appropriate representation of this situation. Then:

(a) The agent may be able to extend its plan, e.g. by first moving block 1 to
B. Hence, we will have Si(W, {2toC}) = < M, {1toB, 2toC} >, where M is any
appropriate mental state. In this case, the agent is successful.

(b) On the other hand, the agent may not be
able to suitably revise ∆0 to render it feasible, and
it may end up in what we consider a failure state,
whereby the planned action 2toC violates some in-
ternal constraint of the agent intended to enforce
coherence with the physical world. In this case,
Si(W, {2toC}) = < ⊥, ∅ >, and the agent is failed.

1

2

3

A B C

3 MAS Declarative Semantics and Stability

We consider a multi-agent system (MAS) as a collection of n agents, n ≥ 2, situ-
ated in a world W. The semantics of the MAS is given in terms of the semantics
of the agents that constitute it. We indicate with Wi the set of observations
that agent i is able to draw from W, namely Wi = W ∩ O(i). In the follow-
ing we will use the shorthand < X >Y for the tuple < Xi1 , . . . , Xik >, with
Y = {i1, . . . , ik} ⊆ {1, .., n}. Given < X >Y , Xi is the i-th element of the tu-
ple. The semantics of a MAS can then be defined on top of the single-agent
semantics, as follows.

Definition 2. A multi-agent system MAS =< A,W > consists of a set of
agents A = {1, . . . , n}, n ≥ 2, and a world W. Given the tuple < ∆in∪W,∆0 >A
of observations and initial plans for each agent, the semantics of MAS is

< M, ∆out >A,

where, for all i ∈ A, Si(∆i
in ∪ Wi,∆i

0) =< M i,∆i
out >. A multi-agent system is

compromised if, for all i ∈ A, M i = ⊥.

In a compromised MAS, all the agents are failed. However an autonomously
changing environment might allow some of the agents to recover from failure.
The input observations of the agents, ∆i

in, refer to events in the world as well
as actions by other agents. It is legitimate to characterise these observations so
that each agent is aware of what all the others are doing within the system. This
can be done by recursively defining the input observations of each single agent as
depending on the output actions of all the other agents and those performed by
the agent itself. The existence of a solution of such recursive definition of the se-
mantics represents a stability condition of the system. Indeed, all the agents have
agreed in a coordinated manner on a course of actions. Such stability condition
can be defined as follows.

Stable Multi-agent Systems 327

Definition 3. A multi-agent system MAS =< A,W > is stable if there exists
∆ =

⋃
i∈A

∆i
out, such that, for each i ∈ A,

Si(∆−i ∪Wi, ∆i
0) =< M i, ∆i

out >

where ∆−i =
⋃

j ∈ A
j �= i

∆(j). The set ∆ is called a stable set for MAS.

Notice that ∆−i is the set of all actions performed by all the agents except agent
i. By the previous definition, the sets ∆1

out, . . . , ∆
n
out are a solution for the set of

mutually recursive equations

S1(∆−1 ∪W1, ∆1
0) =< M1, ∆1

out >
...

Sn(∆−n ∪Wn, ∆n
0) =< Mn, ∆n

out >

where each ∆−i occurring on the left-hand side of the i − th equation is defined
in terms of the ∆j

out sets, occurring in all the other equations. Intuitively, a
set of actions (by the different agents) is stable if, assuming that an “oracle”
could feed each of the agents with all the actions in the set performed by the
other agents (and all events happening in the world), then each agent would do
exactly what is in the set, namely their observable behaviour would be exactly
what the set envisages. Note that stability could consists in an infinite course
of actions (e.g. when agents “steadily” keep on repeating their behaviour) and
that stability does not imply the success of all the agents, indeed a failed agent
might be part of a stable MAS. The following example illustrates a stable MAS.

Example 2. Consider again the Blocks World situation of Example 1, with the
difference that now we have two agents operating according to the picture below.
Agent 1 is responsible to move odd-numbered blocks
in the stack B, while agent 2 is responsible to put
even-numbered blocks in the stack C. Let us suppose
that the agents have initially the goals mvToB and
mvToC, respectively. Trivially, the set:

∆ = {1toB1, 2toC2, 3toB1}

1
1

��

2 2

��
3

1

��
A B C

where each action is indexed according to its executor, is a stable set for the
system. Indeed, being W an appropriate representation of the world

S1({2toC2} ∪W1, {1toB1, 3toB1}) = < M1, {1toB1, 3toB1} >
S2({1toB1, 3toB1} ∪W2, {2toC2}) = < M2, {2toC2} >

where M1 |= mvToB and M2 |= mvToC (i.e. goals are satisfied). The previous
equations can be read as “If agent 1 observes that agent 2 is moving block 2 to
C, then it will move blocks 1 and 3 to B, while if agent 2 observes that blocks 1
and 3 are moved by agent 1, then it will move block 2 to C”. Finally, note that
we overlook here, as in the rest of the paper, issues concerning the treatment of
time and ordering between actions.

328 A. Bracciali et al.

The relevance of the existence of stable sets for a MAS is due to their inter-
pretation as viable courses of actions that satisfy all the agents present in the
system, given the current state of the world. The next example illustrates a case
where the lack of a stable set corresponds to the impossibility for the agents in
the system to coordinately accomplish their tasks, without resulting in a failure.
Here, failure is due to the violation of a physical law of the world, which occurs
as a consequence of the sum of the actions performed by the agents.

Example 3. Let us consider the different situation of the Blocks World illus-
trated below, where block 1 is on stack A and block 2 is on stack B. It is easy
to agree on the fact that, being ∆1

0 = {1toB1}, and ∆2
0 = {2toB2}, there is no

stable set for the system. Indeed both agents would like to place their block in the
same position, ending up in a failure state. Differ-
ently from Example 2, where agent 2 resolves its ini-
tial failure state by coordinating its behaviour with
that of agent 1, the MAS is here compromised.

1
1

��
22

��
A B C

4 Constructing Stable Sets by Means of Successful
Agents

In [9] we have shown how stable sets can be constructed for the case of a simple
agent programming language based on Abductive Logic Programming. In that
context, stable sets can be approximated by exploiting well known bottom-up
techniques, traditionally used in Computational Logic. Here, we illustrate how
stable set construction can be approached by means of a modification of the
same technique, with respect to any agent architecture and language that can
be understood abstractly in terms of the defined input-output semantics.

Informally speaking, starting from a current partial state of a system, the
input for the single agent semantics is extracted, and, if possible, a more defined
semantics for the system is returned, taking into consideration the actions exe-
cuted by the agents according to their semantics and the current inputs. A bit of
care is necessary in order to select a (maximal) subset of agents that can success-
fully operate within the system. This step can be (possibly infinitely) repeated
to constructively approximate, if any, a stable set. Suitable assumptions on agent
languages may guarantee the convergence of the method, as shown in [9].

The construction of the stable set in Example 2 relies upon agent 2 “waiting”
until the state of the world has become consistent with its plans. Recall that
failed agents, whose mental state can not deal with the current state of the
world, could play a part in future states that the MAS can reach. In a sense, we
impose that the set of executed actions at each step represents a stable set for the
restricted system of currently successful agents. If the system is compromised,
the semantics results in empty sets of actions and all the mental states are
⊥. The step-wise semantic approximation is defined as follows in terms of the
T A operator, which maps (tuples of) observations (actions by other agents and
events in the world) onto (tuples of) mental states and new observations.

Stable Multi-agent Systems 329

Definition 4 (T A operator). Let MAS =< A,W > be a multi-agent system,
and < ∆ >A be a tuple of sets of actions. The T A operator is defined as follows:

T A(< ∆ ∪W >A) =

{
< J, Γ >A if A+ = A

T A(< ∆ ∪W >A+) ⊕ < ⊥, ∆ >A− otherwise

where A = A+ ∪ A− such that

∀k ∈ A+. Sk(Wk ∪ ∆−k, ∆k) = < Jk, Γ k > �= < ⊥, ∅ >

∀k ∈ A−. Sk(Wk ∪ ∆−k, ∆k) = < ⊥, ∅ >

and ⊕ merges tuples according to the order induced by agent names.

The previous definition can be read as follows. Given the observations < ∆ >A
of the agents and the environment W (which, for simplicity, we assume to be
fixed and unchanging), the MAS is partitioned into:

1. the set A+ of agents that, taking into consideration the up-to-now plans
of the other agents, the world and their own committed actions (at some
previous step) Sk(Wk ∪ ∆−k,∆k), are successful (Jk �= ⊥), and

2. the set A− of agents that, taking into consideration the up-to-now plans of
the other agents, the environment and their own committed actions (at some
previous step) Sk(Wk ∪ ∆−k,∆k), are failed (Jk = ⊥).

The T A operator returns a “more defined” semantics for the overall MAS ob-
tained by recursively seeking (T A(< ∆ ∪ W >A+)) whether the restricted set
of potentially successful agents A+ may successfully agree on a set of actions,
without taking into consideration the actions of the currently failing agents in
A−. The more defined semantics for the overall MAS is returned as soon as a
(sub-)set of “reciprocally” successful agents is found (and in this case their con-
tribution to the system is recombined with the previous one by the idle agents,
⊕), or all the agents are failed and the MAS is compromised (A− = A).

The world is a parameter of T A, which is supposed not to change while
agents are coordinating themselves, while the mental states are recomputed at
each successive application of T A for the successful (active) agents. In this way,
recomputing at each iteration their mental states, agents are forced to check their
consistency against the new situations. The performed actions are recorded in
the output of the operator and then used as input at the next application of
T A, and hence, following the idea of stability, notified to all the agents. More
precisely,

T A
i+1(< ∆ ∪W >A) = T A(< Γ ∪W >A),

where T A
i (< ∆ ∪ W >A) =< J, Γ >A.

In [9] we have shown that, having chosen a specific agent language based on
Abductive Logic Programming, the corresponding T A operator enjoys conver-
gence properties to a minimal fix-point, from which a stable set can be extracted.
However, notice that in [9] consistency issues were not taken into account.

330 A. Bracciali et al.

Provided that, for a chosen agent language, the T A operator of Definition 4
does converge, we can give the following Definition 5, where T A

∞ denotes the
fix-point of T A, as a constructive way of approximating, if any, a stable set.
This definition is relevant as a basis on which a verification methodology can be
developed, according to the idea that the existence of stable sets guarantees the
overall good engineering of the system. The study of general conditions for the
convergence of T A to a stable set is scope for future work. However, we will give
an example to show how Definition 5 captures the construction of a stable set
for a Blocks World which has a stable set, and another one which shows how
Definition 5 correctly fails to produce a stable set in a case where a stable set
does not exist.

Definition 5. Given a multi-agent system MAS =< {1, . . . , n},W > and a
set of initial plans < ∆0 >A, the concrete semantics of MAS is defined as

< J, ∆ >A= T A
∞ (< ∆0 ∪W >A).

The next example shows how a stable set can be derived from < J,∆ >A, the
result of the application of T A

∞ . More precisely, the iteration of the application
of T A converges to a fix-point after few iterations.

Example 4. The stable set of the MAS in Example 2 can be approximated, and,
actually, constructed, by few applications of the T A operator. Assuming that
the agents have the goals of Example 2, and are not provided with an initial
plan, the concrete semantics of the MAS is given by

T A
∞ (<< W >, < W >>).

While calculating T A
1 (<< W >,< W >>), the second agent can not find a

partial plan, i.e. S2(W, ∅) =< ⊥, ∅ >, indeed there is nothing it can do at
present. Hence A+ = {1} and A− = {2}:

T A(<< W >, < W >>) = << M1
1 , {1toB1} >, < ⊥, ∅ >> .

Analogously, at the next step agent 2 moves block 2 (accomplishing its goal),
and agent 1 is suspended (W is updated with executed actions):

T A(<< {1toB1} ∪W >, < {1toB1} ∪W >>) = << ⊥, ∅ >, < M2
1 , {2toC2} >> .

Finally, also agent 1 completes its task mvToB (since S1(W∪{2toC2}, {1toB1}) =
< M1

2 , {1toB1, 3toB1} >):

T A(<< {2toC2, 1toB1} ∪W >, < {2toC2, 1toB1} ∪W >>) =
<< M1

2 , {1toB1, 3toB1} >, < M2
2 , {2toC2} >> .

which is a fix-point of T A, unless the world changes or agents introduce new
plans. The union of the output actions of the agents is the stable set of Example 2.

It is also interesting to verify that a stable set cannot be constructed for the
case of Example 3, where two agents are attempting to execute plans that make
both the agents not consistent, when executed in the same environment.

Stable Multi-agent Systems 331

Example 5. Let us try to construct a stable set for the Blocks World of Exam-
ple 3, whose concrete semantics, given the initial plans of the agents, is:

T A
∞ (<< {1toB1} ∪W >, < {2toB2} ∪W >>).

Let us assume that, given the current state of the world, neither agents need to
generate further actions in order to accomplish their tasks, and that, without
knowing what the other agent is doing, each one can reach a successful mental
state encompassing the actions performed in this first step: S1(W, {1toB1}}) =
< M1, {1toB1} >, and S2(W, {2toB2}) =< M2, {2toB2} >. We have that in
two steps, the agents, aware of each other’s actions, end up in a failure state,
and the MAS is compromised:

T A(<< {1toB1} ∪ W >, < {2toB2} ∪ W >>) =<< M1, {1toB1} >, < M2, {2toB2} >> .

T A(<< {2toB2, 1toB1} ∪ W >, < {2toB2, 1toB1} ∪ W >>) =<< ⊥, ∅ >, < ⊥, ∅ >> .

5 Related Work

The work we present in this paper is close to several approaches, based on Com-
putational Logic, whose aim has been to provide formal models to understand
MAS environments, like [13, 14, 15]. While we share with many of these propos-
als the use of well known logic-based techniques, like bottom-up approximations
and the idea itself of stability, the distinguishing aim of our work has been to
devise a model for MAS, which, independently of specific agent paradigms, al-
lows us to reason at an abstract and “declarative” level. Moreover, we also aim
to define, in agreement with the Computational Logic tradition, an operational
counterpart for the declarative settings. This will enable us to support forms of
automated verifications.

Modal logic approaches whose aim has been to provide frameworks for prov-
ing properties of MAS are also well-documented, for example, see the frame-
work of Lomuscio and Sergot [16] on deontic interpreted systems. Earlier work of
Wooldridge and Lomuscio [17] define a family of multi-modal logics for reason-
ing about the information properties of computational agents situated in some
environment. We differ from these approaches in the way we understand an envi-
ronment. Their defininion of an environment is based on a definition often found
in distributed systems [18], in that an environment does not contain the other
agents. Instead in our approach the environment of an agent contains the state
of the world and the other agents, and is closer to [19].

Other formal frameworks exist, for example, Viroli and Omicini in [20] view
MAS as the composition of observable systems. These systems are based, like in
our framework, on the assumption that the hidden part of an agent manifests
itself through interactions with the environment, and on how an agent makes
its internal state perceivable in the outside. However, we differentiate ourselves
from them by the kind of environment accessibility by agents, i.e. the way agents
perceive other agents in terms of their performed actions.

332 A. Bracciali et al.

6 Final Remarks

We have illustrated how a semantic characterisation of MAS can be used for
checking whether the agents in the system can successfully cooperate, and hence
the system can be considered well designed. In particular, in this paper, extend-
ing the approach previously introduced in [9], we have addressed the issue of
dealing with agents that may temporarily fail, not being “consistent” with the
environment in which they operate. We have shown how the notion of stable
set, on which the approach is based, can be adapted to deal with this case. Both
the semantics and the methodologies adopted are inspired mainly by the field of
Computational Logic, but they also appear in other areas, like Economics and
Game Theory. We have illustrated the proposed notions by applying them to
the simple scenario of Blocks World.

Approaching the modeling of a complex system, like a MAS, at a semantic
level allows us to define an abstract framework, which does not depend on the
specific, possibly different, agent programming paradigms. However, further (se-
mantical) characterisation of agents would be useful in order to better specify
the properties that can be verified by means of the framework, and, also, the
computational aspects of such verification. For instance, the choice of a specific
agent language in [9] granted some preliminary results about the convergence
of the bottom-up approximation of semantics. General conditions for the con-
vergence of T A, and more general properties of MAS and their stable sets, are
scope for future work.

A characterization of time at the agent language level, allowing for a more
precise representation of plans as ordered sequence of actions, would add ex-
pressiveness to the framework, tightening the relation between agent and system
semantics.

The stable set represents an “ideal” course of actions, on which all the agents
in the system agree, given the current state of the environment. This notion
could be further exploited in order to characterise evolutions of MAS through
stability conditions: the system evolves by means of agents aiming to stability,
which may be compromised by either a variation in the environment or new
plans/actions introduced by some of the agents in the system. Importantly, our
declarative approach is provided with a computational counterpart, which seems
amenable, under certain assumptions on agent semantics, to support automated
verification. This issues, as well as its computational costs (for given classes of
agent semantics) is currently under investigation.

Moreover, the relationships between our notion of stability and of that of Nash
equilibrium [10], from the field of Economics, are worth being further studied.

Another interesting line of research is the study of the relations between
stability and negotiation among agents. Actually, stable sets, when they exist,
can be interpreted as a sort of shared agreement between agents. It would be
interesting to study how agents can cooperate to the construction of a “preferred”
stable set, by coordinating the course of actions they perform. Economics and
Game Theory might also be applied.

Stable Multi-agent Systems 333

Finally, we plan to extend our framework in order to incorporate social no-
tions, such as social goals, joint goals amongst agents, social rules, conformance
to them, and adoption of multi-agent system’s expectations by individual agents.
Also, we intend to adopt this extended framework for KGP agents, as defined
in [5], and study the problem of properties verification in that context.

References

1. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Pro-
ceedings of the Third International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KRR92), Boston, MA (1992)

2. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In van Hoe, R., ed.: MAAMAW96. Volume 1038 of LNCS., Springer-Verlag (1996)
42–55

3. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.C.: Agent programming
in 3APL. Autonomous Agents and Multi-Agent Systems 2(4) (1999) 357–401

4. Arisha, K.A., Ozcan, F., Ross, R., Subrahmanian, V.S., Eiter, T., Kraus, S.: IM-
PACT: a Platform for Collaborating Agents. IEEE Intelligent Systems 14 (1999)
64–72

5. Kakas, A., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The kgp model of agency.
In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI).
(2004)

6. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3
(2000) 285–312

7. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelligent
agents. In: Proceedings of the Third International Workshop on AgentOriented
Software Engineering at AAMAS 2002, (2002)

8. Ciampolini, A., Lamma, E., Mello, P., Torroni, P.: LAILA: A language for coor-
dinating abductive reasoning among logic agents. Computer Languages 27 (2002)
137–161

9. Bracciali, A., Mancarella, P., Stathis, K., Toni, F.: On modelling declaratively
multi-agent systems. In: Proc. of Declarative Agent Languages and Technologies
(DALT 2004). LNCS, To appear (2004)

10. Nash, J.: Equilibrium points in n-person games. Proceedings of the National
Accademy of Science (1950)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R., Bowen, K.A., eds.: Proceedings of the 5th International Conference
on Logic Programming, MIT Press (1988) 1070–1080

12. Apt, K.R.: Logic programming. In: Handbook of Theoretical Computer Science.
Volume B. Elsevier Science Publishers (1990) 493–574

13. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Co-operation and
competition in ALIAS: a logic framework for agents that negotiate. Computational
Logic in Multi-Agent Systems. Annals of Mathematics and Artificial Intelligence
37 (2003) 65–91

14. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Computing environment-aware
agent behaviours with logic program updates. In Pettorossi, A., ed.: Logic Based
Program Synthesis and Transformation, 11th International Workshop, (LOP-
STR’01), Selected Papers, Springer-Verlag (2002) 216–232

334 A. Bracciali et al.

15. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In
Flesca, S., Greco, S., Leone, N., Ianni, G., eds.: Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (JELIA’02). Volume 2424 of LNCS,
Springer-Verlag (2002) 50–61

16. Lomuscio, A., Sergot, M.: Deontic interpreted systems. In van der Hoek, W.,
Wooldridge, M., eds.: Studia Logica 75 (Special Issue on The Dynamics of Knowl-
edge). Kluwer Academic Publishers (2003)

17. Wooldridge, M., Lomuscio, A.: A logic of visibility, perception, and knowledge:
completeness and correspondence results. Journal of the IGPL 9 (2001)

18. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995)

19. Abramsky, S.: Semantics of Interaction. (Technical report) Available at
http://www.dcs.ed.ac.uk/home/samson/coursenotes.ps.gz.

20. Viroli, M., Omicini, A.: Multi-agent systems as composition of observable systems.
In Omicini, A., Viroli, M., eds.: AI*IA/TABOO Joint Workshop - Dagli oggetti
agli agenti: tendenze evolutive dei sistemi software” (WOA). (2001)

Welfare Engineering in Practice: On the Variety
of Multiagent Resource Allocation Problems

Yann Chevaleyre1, Ulle Endriss2, Sylvia Estivie1,
and Nicolas Maudet1

1 LAMSADE, Université Paris IX-Dauphine,
Paris 75775 Cedex 16 (France)

{chevaley, estivie, maudet}@lamsade.dauphine.fr
2 Department of Computing, Imperial College London,

180 Queen’s Gate, London SW7 2AZ (UK)
ue@doc.ic.ac.uk

Abstract. Many problems studied in the multiagent systems commu-
nity can be considered instances of an abstract multiagent resource allo-
cation problem. In this problem, which is now better understood theoret-
ically, the goal is to satisfy a criterion of global optimality (formulated
in terms of a suitable notion of social welfare), given that the agents
sharing a set of resources follow a local rationality criterion reflecting
their individual preferences. In this paper, we first show that this simple
decentralised resource allocation framework allows us to model a wide
variety of applications. These applications thereby benefit from all the
theoretical results concerning the framework. We then draw up a list
of criteria which can guide the application designer working within the
framework and illustrate the relevance of our approach by discussing
several applications in view of this list of design criteria.

1 Introduction

In this paper, we further develop the framework of welfare engineering [1], which
addresses the design of suitable rationality criteria for autonomous software
agents participating in negotiations over resources in view of different notions
of social welfare, as well as the development of such notions of social welfare
themselves. That is, as we shall explain, welfare engineering is complementary
to both mechanism design and classical welfare economics.

Several companion papers have studied the theoretical properties of the wel-
fare engineering framework and have, in particular, been concerned with iden-
tifying appropriate rationality criteria for a given choice of the notion of social
welfare used to assess the quality of negotiation outcomes [2, 3, 1]. The second
aspect of welfare engineering, namely the design of suitable notions of social
welfare in view of the properties of the application domain, however, has re-
ceived less attention so far. As we shall illustrate in this paper, the strength of
our framework lies in the fact that it is flexible enough to cater for a surpris-
ingly large variety of application domains. All theoretical results concerning this

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 335–347, 2005.
Springer-Verlag Berlin Heidelberg 2005

336 Y. Chevaleyre et al.

framework thus apply to these applications. The flip-side of the coin is, of course,
that in absence of precise guidelines we may soon encounter difficult design is-
sues when trying to translate real applications into our abstract framework. In
particular, it leaves the designer with a difficult choice to make when having
to decide which social welfare measure is the most appropriate in the context
of a given application. The main purpose of this paper is to present a number
of criteria (derived from constraints attached to the application domains) that
will help the designer in this task, and to illustrate their relevance to several
real applications.

The remainder of this paper is organised as follows. Section 2 introduces the
general methodology underlying the welfare engineering approach and discusses
its relation to classical welfare economics and mechanism design. The basic mul-
tiagent resource allocation framework used in this paper is defined in Section 3,
which also discusses how to account for additional concepts such as monetary
side payments or agent roles. Section 4 introduces the problem of the “designer
scope” and Section 5 discusses several concrete applications that can be mod-
elled as multiagent resource allocation problems. A preliminary list of design
criteria for applications based on the abstract multiagent resource allocation
framework is given in Section 6. These criteria are then discussed in view of
the example applications introduced before. Our conclusions are presented in
Section 7.

2 Welfare Engineering

As mentioned in the introduction, welfare engineering is closely related to both
welfare economics and to mechanism design.

An important issue addressed by welfare economics (and specifically by wel-
farism) is the question of how to measure the well-being of society with respect
to the welfare of individuals. Technically, an answer to this question can be
formalised by defining a social welfare ordering, i.e. a mapping from a set of
individual preference relations or utility functions to a societal preference rela-
tion over alternative states of affairs [4]. In the classical literature, the question
as to what social welfare ordering is the right one is mostly discussed from a
philosophical or ethical point of view [5, 6, 7]. Different answers to this question
will typically claim to be rather general in scope (because they are derived from
general ethical principles, for instance) and they are, of course, understood to
apply to human society. In contrast to this, welfare engineering is concerned
with choosing (and possibly designing) tailor-made social welfare orderings that
are appropriate for specific applications; and the focus is on societies of artifi-
cial agents. An example is the elitist social welfare ordering [1], which favours
states in which the most successful agent enjoys a very high utility. This would
be considered inappropriate for assessing the welfare of human society, but it
may be just the right indicator of success for a distributed computing appli-
cation in which several software agents are working towards their goals, but

Welfare Engineering in Practice 337

the user of the system is only interested in (at least) one of them achieving its
goal as quickly as possible. Then, if agents measure their individual welfare in
terms of how close they are to achieving their own goal, the elitist social welfare
correctly reflects the value of a given state for the user of the system.

Using the terminology of Wolpert and Tumer [8], while understanding the
social consequences of agents having certain behaviour profiles constitutes a for-
ward problem, the design of such behaviour profiles with the aim of achieving a
particular effect at the social level presents us with an inverse problem. Mech-
anism design (referred to as “inverse game theory” by Papadimitriou [9]) is an
example for such an inverse problem.

Mechanism design [10, 11] is concerned with the problem of designing suitable
rules of interaction between agents such that the outcome of that interaction
can be guaranteed to be “optimal”, given a suitable criterion for optimality and
assuming certain interests on the part of individual agents. A standard example
is the design of auction protocols that maximise revenue for the auctioneer and
reduce the need for counter-speculation on behalf of the bidders [12]. Often, the
notion of optimality can be defined in terms of a social welfare ordering. The
interests of individual agents are typically taken to be fixed: agents are assumed
to be rational in the sense of aiming solely at maximising their personal welfare.
In welfare engineering, rather than designing an interaction mechanism for a
given notion of social welfare and a given type of agent, we introduce a further
variable into the equation by making the rationality criteria on the basis of which
agents decide on their moves (such as whether or not to accept a proposal) a
further object of design. These rationality criteria determine the behaviour profile
of an agent. For instance, a negotiation system populated by agents that have
been designed to accept deals (concerning the exchange of resources) that either
benefit themselves or that are inequality-reducing can be shown (under a number
of conditions) to converge towards a state that is Lorenz optimal, a notion of
social optimality combining ideas from both the utilitarian and the egalitarian
programme [1, 4].

In summary, a distributed social optimisation problem, such as the problem
of finding a socially optimal allocation of resources by means of negotiation, has
the following three important parameters:

(i) the social welfare ordering used to assess the quality of a solution;
(ii) the social intera ction mechanism used by the agents to arrive at a solution;

(iii) the behaviour profiles of individual agents further restricting their moves
within the boundaries given by the interaction mechanism.

Welfare economics provides several off-the-shelf solutions for (i), while welfarism
is particularly concerned with assessing their respective benefits from a general
point of view. Mechanism design is concerned with (ii), for a given choice re-
garding (i) and taking (iii) as fixed. Welfare engineering addresses all three pa-
rameters, but particularly (i) and (iii): by formulating tailor-made social welfare

338 Y. Chevaleyre et al.

orderings for specific applications and by designing appropriate agent behaviour
profiles (possibly in tandem with a social interaction mechanism).1

3 Resource Allocation by Negotiation

Let us consider a society of (at least 2) agents A, and a finite set of discrete
(non-divisible) resources R. A resource allocation is a partitioning of the set R
amongst the agents in A. For instance, given an allocation A with A(i) = {r3, r7},
agent i would own resources r3 and r7. Given a particular allocation of resources,
agents may agree on a (multilateral) deal to exchange some of the resources they
currently hold. In general, a single deal may involve any number of resources
and any number of agents. It transforms an allocation of resources A into a new
allocation A′; that is, we can define a deal as a pair δ = (A,A′) of allocations
(with A �= A′). To measure their individual welfare, every agent i ∈ A is equipped
with a utility function ui mapping sets of resources (subsets of R) to rational
numbers. We abbreviate ui(A) = ui(A(i)) for the utility value assigned by agent
i to the set of resources it holds for allocation A.

This describes our formal negotiation framework in its most abstract form.
As we shall discuss next, this framework allows for many classical concepts to
be easily represented.

Monetary Payments. A deal may be coupled with a number of monetary side
payments to compensate some of the agents involved for an otherwise disad-
vantageous deal. Rather than specifying for each pair of agents how much the
former is supposed to pay to the latter, we simply say how much money each and
every agent either pays out or receives. This can be modelled using a payment
function p mapping agents in A to rational numbers. Such a function has to
satisfy the side constraint

∑
i∈A p(i) = 0, i.e. the overall amount of money in

the system remains constant. If p(i) > 0, then agent i pays the amount of p(i),
while p(i) < 0 means that it receives the amount of −p(i). We distinguish deals
with money and deals without money. For the latter, p(i) is required to be 0
for every agent i ∈ A. Note that for the framework without money, it would be
sufficient to model an agent’s preferences by means of a (not necessarily strict)
total order over alternative bundles of resources.

Limited Money. The model as it is allows the use of arbitrarily high side pay-
ments: each agent can give an unlimited amount of money during a deal. This
is not realistic, as agents are assumed to be “infinitely rich” [2]. Another, much
more realistic, way of handling money is to turn it into a resource. As our model
only allows us to use discrete resources, we need to “discretise” money, by choos-
ing the smallest money unit the system will handle (for example a euro), and

1 The idea of working with tailor-made concepts rather than aiming for general solu-
tions is also present in the automated mechanism design approach of Conitzer and
Sandholm [13].

Welfare Engineering in Practice 339

by creating the corresponding resources. Thus, if we decide to put 1000 euros
in the society of agents, we can choose to put 100 resources of 1 euro, and 90
resources of 10 euros each, as if it were bank notes or coins. Thus, in addition
to the “normal” resources in R we create the set of resources

We also have to make sure that these resources have the appropriate value. For
each agent i having the resource set R, its individual welfare must be such that:

ui(R) = ui(R\Rmon) + |R ∩ {r 1
1 , . . . , r 1

100}| + 10 × |R ∩ {r 10
1 , . . . , r 10

90 }|

Approximating Flows. Using the same idea, it is possible to approximate the
representation of continuous resources such as water or energy. For example, if
a group of farmers wishes to exploit a river to irrigate their land, the water flow
could be divided into 100 resources, each representing one percent of the total.

Roles. In many applications, such as most types of auctions, agents have fixed
roles: some agents own resources to begin with and are sellers, while other agents
have money and are buyers. This can also be represented in this framework
by putting suitable restrictions on the admissibility of deals. For instance, the
legality of a deal δ for a buyer i would be modelled as follows:

δ = (A,A′) allowed iff A(i) ⊆ A′(i)

Alternatively, rather than restricting the range of legal deals, we can also model
the utility functions of agents in such a way that they will behave as either sellers
or buyers. For instance, if one agent values a given resource less than another
agent, then the former will have an incentive to sell that resource to the latter.

Protocol Restrictions. We can also express restrictions on the negotiation proto-
col and the agent communication language used to agree on deals. For instance,
if only bilateral negotiation is possible, i.e. if any one deal may involve no more
than two agents, this can also be modelled by means of suitable restrictions on
the admissibility of a deal δ.

4 The Problem of the Designer Scope

As noted by Wurman et al. [14], “when analyzing any multiagent involving ne-
gotiation, we must be very careful to clearly state which elements of the system
are under the control of the designer”. These authors distinguish three cases:

– agent scope —the designer controls a single agent.
– mechanism scope —the designer controls the mechanism, but not the agents

that participate in it.
– system scope —the designer controls both the mechanism and the agents.

Rmon = {r 1
1 , . . . , r 1

100, r
10

1 , . . . , r 10
90 }

340 Y. Chevaleyre et al.

In addition to these cases, we can also envisage mixed situations where the de-
signer may control the mechanism and a subset of the agents of the system. To
make things clear, we give some definitions concerning the different roles of the
actors in a resource allocation process:

– proprietor role —the person who actually owns the application and defines
the mechanism. We assume that this role is taken by exactly one person.

– end-user role —the role taken by people or organisations who will use the
application. Each user may own a number of agents.

Note that the roles can be cumulated, that is, the same person can have both
the role of the proprietor and that of a user. This could be the case when the
proprietor initially owns the resources to be distributed. It is also important to
stress that there is, in theory, no requirement for an end-user to own a single
agent. In most applications however, it is explicitly forbidden to hold more than
one agent. This is a very important problem, considering that it is technically
very difficult (or impossible) to design systems that prevent users from adopt-
ing this strategy. In e-auctions, this problem is known as the false-name bids
problem [15], and a current trend of research is developing mechanisms that are
strategy-proof regarding this issue.

When the proprietor is represented by one or several agents in the system, it
can also control and modify their individual utility functions or other aspects of
their behaviour profiles.

5 Example Applications

In order to further demonstrate the wide relevance of the abstract resource al-
location framework presented in Section 3, we introduce three example applica-
tions, which we shall also refer to throughout the next section when we we are
going to use these applications to illustrate our design criteria. Amongst these
applications, only the last gives the designer a system scope; the others are cases
where the designer only has mechanism scope.

E-Auctions. Different kinds of e-auctions have been implemented on the Inter-
net, in the context of B2C (business-to-customer), C2C (customer-to-customer),
or B2B (business-to-business) applications. Despite a first-sight similarity, C2C
e-auctions platforms all have different characteristics which make it difficult
to offer a single description. We base our discussion on three important C2C
e-auctions platforms, namely EmClub, EBay, and 321Enchere. In these appli-
cations, the proprietor does not necessarily hold all the resources initially (the
role of the application is just to allow negotiation between users). E-auctions
platforms have strong constraints on the type of interaction (cf. negotiation pro-
tocol). Clearly, there are sellers and buyers in the sense that the former can
only sell, and the latter only buy. A famous example of B2B e-auctions, possi-
bly involving combinatorial deals, is the spectrum licenses allocation process led
by the Federal Communications Commission (FCC) in the United States. This

Welfare Engineering in Practice 341

allocation process involves auctioning off thousands of licenses with different ge-
ographic coverage and bandwidth. In order to deal with the large number of
licences, these auctions were dispatched into several groups. The state (propri-
etor of the system) initially owns (all) the resources, so it may be represented by
an agent in the society. The type of auction used by the FCC is the Simultaneous
Multiple Round auction (SMR). This application of course necessitates that we
model the roles of seller and buyer, as discussed in the previous section.

Allocation of Satellite Resources. Lemâıtre et al. [16] describe an earth observa-
tion application where users send observation requests to a satellite they have
jointly funded. Resources are earth observation images, which are initially held
by the virtual proprietor (that is, the coalition of all the users: roles are cumu-
lated). While there is the option to include a proprietor agent in the system
(the “satellite agent”), closer inspection of the problem reveals that it may be
unnecessary, as we are not concerned with the individual welfare of that agent.

Multiagent Patrolling. To patrol is the act of walking or travelling around an
area, at regular intervals, in order to protect or supervise it. This task is by
nature a multi-agent task and there are a wide variety of problems that may be
formulated as patrolling task. As a concrete example, during the development
of an interactive computer game, one may face the problem of coordinating a
group of units to patrol a given rough terrain in order to detect the presence
of “enemies”. The quality of the strategies used for patrolling may be evaluated
using different measures. Informally, a good strategy is one that minimises the
time lag between two passages to the same place and for all places. In [17], it was
shown that in many applications of the patrolling problem, the territory could
be represented by a graph. Given such a graph, the patrolling task refers to con-
tinuously visiting all the graph nodes so as to minimise the time lag between two
visits. The edges may have different associated lengths (weights) corresponding
to the real distance between the nodes. Recently [18], the patrolling problem has
been formalised as a resource allocation problem. More precisely, each node of
the graph to be explored can be represented by a resource, and the utility of
each agent represented how well it patrols over the nodes (resources) it owns. In
addition, agents can exchange nodes (resources) using a negotiation procedure,
in order to maximise their patrolling performance.

6 Criteria for Social Welfare Selection

How do we assess the overall well-being of the society? There exists a large
variety of social welfare measures that one can think of. To start with, there are
a number of measures that have long been studied in welfare economics. On top
of that, one may design new social welfare orderings that may not be appropriate
in human societies, but which could be of relevance in artificial ones.

– Utilitarian [4, 2] —the utilitarian social welfare of an allocation of resources
A is defined as the sum of utilities enjoyed by its members.

342 Y. Chevaleyre et al.

– Nash product [4] —the Nash product of an allocation of resources A is defined
as the product of utilities enjoyed by its members.

– Egalitarian [4, 3] —the egalitarian social welfare of an allocation of resources
A is defined as the utility enjoyed by the currently weakest agent.

– Elitist [1] —the elitist social welfare of an allocation of resources A is defined
as the utility enjoyed by the currently happiest agent.

– Lorenz optimality [4, 1] —this is a combination of ideas from the utilitarian
and the egalitarian approaches.

– Envy-freeness [19, 1] —an allocation of resource is envy-free iff there is no
agent that would prefer another agent’s set of resources over its own.

– Pareto optimality [4, 2] —an allocation of resources A is called Pareto optimal
iff there is no other allocation that would make at least one of the agents in
the society better off without making any of the others worse off.

A key difference between these different social welfare measures lies in the fact
that some of them require interpersonal comparison of satisfaction levels, while
others do not. Utilitarianism and egalitarianism, for instance, only make sense
if we have the ability to compare utilities ascribed by different agents to their
allocations. Envy-freeness and Pareto optimality, on the other hand, only require
that each individual is able to compare its own alternatives.

Our aim is to present a list of criteria that should guide the designer of an
application who wants to use the multiagent resource allocation framework, and
in particular to support him or her in choosing the appropriate social welfare
measure. The list that we are going to put forward is admittedly incomplete,
but consists of the criteria we found had the most obvious consequences on the
choice of a relevant social welfare measure.

6.1 Type of Proprietor Payment

We start by turning our attention towards an issue of critical importance during
the design of a resource allocation system, namely the means by which the pro-
prietor of the application actually gets paid. We envisage different possibilities
(not mutually exclusive, as our application examples shall show):

– Utility-dependent —this corresponds to cases where users will contribute
to the proprietor gain at a level which depends on their own satisfaction, as
expressed by their utility functions. Typically that could be done by imposing
of a tax on their gains.

– Transaction-dependent —the proprietor is payed on the basis of the sequence
of transactions. For example, we may have a tax on each transaction (what-
ever its content), or we may have taxes on the number of resources actually
exchanged, and so on. A variant of this case is time-dependence, where only
the duration of the negotiation matters, regardless on the actual length (in
terms of the number of transactions) of the process.

– Membership-dependent —the agents pay a fee when they enter the society
in order to negotiate.

Welfare Engineering in Practice 343

Apart from the purely utility-dependent case, it would then be necessary to in-
troduce new global parameters to assess the quality of the negotiation process.
In many cases, however, utility functions can be fixed such that they influence
the global social welfare. Note that we do not make any assumptions as to how
the reward is actually transfered to the proprietor. This can done directly from
the users to the proprietor, by means of money transfer for instance. Alterna-
tively, some authority external to the society can interfere and give rewards and
penalties. This can be done on the basis of a separate agenda (for instance in
the case of public services, you should make sure that everyone has some mini-
mal access to the resources). This authority, however, would in the end base its
judgement on one the items listed above.

Example Applications. Each of the C2C e-auction applications has specific strate-
gies regarding payment, but they generally use a mixture of transaction-dependent
and membership-dependent strategies. EBay and 321Enchere require that sell-
ers pay a fee to enter the auction, and also applies a tax on each deal, which
depends on the amount and on the type of object sold. Together with tax, sell-
ers have to pay when they conclude a transaction. In fact, a fourth strategy is
also used by these platforms: sellers may have the possibility to pay in order
to have options facilitating the deals (advertising, photo, etc.). This is different
in the case of the allocation of earth observation images. The fact that users
have co-funded the satellite, may be interpreted a partners initially paying some
sort of membership fee. Of course, the satellite should also be exploited in the
most efficient way, so each user’s satisfaction will depend upon its utilities. In
the case of the spectrum allocation process led by the FCC, it is clearly a utility-
dependent strategy: the (only) seller will collect at the end of the auction process
the payments the buyers are committed to pay (which depend on their gains).

Discussion. When the proprietor payment is utility-based, there is a strong in-
centive to adopt a utilitarian framework. Transaction-dependent payments cor-
respond to very practical cases, for instance situations where we should take into
account the cost or the gain induced by a transaction. Membership-dependent
payment of the proprietor require a rather different approach. As the gain en-
joyed by the proprietor is actually defined at the beginning of an application
run, the focus will shift to a different matter, namely making the application
attractive for a large number of agents (note that this only makes sense if the
application allows for multiple runs, of course). An important ingredient is then
to make sure that each agent receives a fair share of the overall gain, i.e. in such
applications we would typically favour an egalitarian notion of social welfare or
we would try to achieve envy-free allocations of resources.

6.2 Application Dynamics During a Run

The next category of criteria that we shall investigate details how the society
may evolve over time. It is first important to determine whether (and how) the
number of users may vary during an application run. We envisage different cases:

344 Y. Chevaleyre et al.

– Fixed —application users remain unchanged during an application run.
– Restricted —the number of users may vary, but only under predefined con-

ditions. These conditions may be of various kinds. First of all, there may
be unidirectional restrictions: it is possible that only new users are allowed,
or symmetrically that users are only allowed to quit the application. On an
orthogonal perspective, it is possible that the restriction applies to the whole
set of agents (e.g. the application must always involve between 10 and 20
simultaneous users), or that agents are permitted to enter the society if they
fulfil certain criteria (e.g. holding some resources).

– Unrestricted —users are allowed to enter and quit the system as they wish.

Similarly, we may also distinguish to what extent the set of resources present in
the system may change during an application run.

Example Applications. All C2C e-auctions platforms require buyers and sellers
to be registered when participating in the auction (they have to create an ac-
count). New buyers can enter the auction even if it has already started, bringing
along new resources as well. The FCC e-auction was open to any eligible company
or individual that submitted an application and payment up-front, and that was
deemed a qualified bidder by the Commission. To comply with the procedure,
each buyer must be uniquely registered, i.e. there are no incoming agents.

Discussion. The application dynamics will have a direct impact on the kind of
agent society used, and can be related to the well-known classification of agent
societies proposed by Davidsson [20]. At first glance, users and resources migra-
tion during an application run may look somewhat beyond what our abstract
framework can handle. However, although most of the theoretical results on
the possibility to negotiate socially optimal allocations reported in previous pa-
pers [2, 3, 1] do not directly apply to societies where the number of agents may
vary, we do not regard this as a strong limitation. Firstly, we must observe that
most of the concepts used still make sense in this extended framework. Under
certain restrictions, they may well be used and provide useful results. For in-
stance, if we define utilitarian social welfare in terms of average utility rather
than the sum of utilities, this concept can be used in a meaningful manner for
societies with varying membership. Secondly, such extensions have been consid-
ered to some extent in the welfare economics literature [10] and it seems likely
that some results could be transferred to our framework as well.

6.3 Application Dynamics Between Runs

Under the same category, a key concern of the welfare engineer should be to
consider whether the application could be run several times, and if so, whether
and how the characteristics could be modified between the potential different
application runs. It is indeed possible for an application to be run under a fixed
policy regarding the number of users, while allowing user or resource migration
between different applications runs.

Welfare Engineering in Practice 345

A similar distinction as given above for the application dynamics during a run
applies to the application dynamics between runs (for both users and resources).

Example Applications. The satellite application can be used several times by the
same users. Each negotiation phase starts with a new bundle of images to be
allocated. C2C e-auctions applications can be run several times, but users may
(and actually are likely to) be different. On the other hand, the allocation of
spectrum licenses has been run only once.

Discussion. User and resource migration between different application runs has
quite different consequences. Clearly the proprietor will be motivated to take
into account long-term consequences: under the assumption that the proprietor
payment is somewhat related to the number of users enjoying the application,
it could for instance make sense to design the platform so that the satisfaction
of users will motivate them to join the application instead of quitting this one
(and possibly joining a concurrent one), hence motivating an egalitarian flavour
(even if this may decrease the proprietor’s profit for a single run). Also, if the
application is expected to be run several times with the same users (as a coali-
tion), it could be important to ensure that envy will not jeopardise the coalition
in the long run.

7 Concluding Remarks

In this paper, we have shown that multiagent resource allocation is a powerful
paradigm which covers a wide range of applications. Following the ideas of the
welfare engineering approach, we have also presented a number of criteria an
application designer building such an application can use to decide on a suitable
social welfare ordering for measuring the quality of a resource allocation.

To conclude, it is interesting to examine whether these applications actually
implement the kind of measure hinted at by our discussion of the criteria. E-
auctions have largely adopted a purely utilitarian approach, even in cases where
the possible repetition of application runs with the same users should motivate
the introduction of some sort of fair treatment of the users. A few years ago,
studying different retailer sites, Guttman and Maes [21] already noticed that
“online auctions are unnecessarily hostile to customers and offer no long-term
benefits to merchants”, even if merchants “care less about profit on any given
interaction and care more about long-term profitability”. In the specific case of
the FCC e-auction, which was run only once, we also witness an utilitarian
approach, as expected. C2C sites are based on different kinds of payments, and
in particular on membership fees. To secure a minimum level of satisfaction of
users, they have developed different strategies. One of them is the “reserve price”
option: sellers can use it to stimulate bidding on their item, even if they would
not sell if the price happens to be lower than their reserve price.

The satellite application requires both a fair treatment of the co-funders,
and an efficient use of the satellite. This leads to the adoption of procedures

346 Y. Chevaleyre et al.

involving notions of social welfare borrowing from both utilitarian and egalitarian
principles. In fact, Lemâıtre et al. [16] propose and experiment with four different
procedures to cope with this efficiency/equity tradeoff.

As far as the multiagent patrol application is concerned, the appropriate
choice of a social welfare ordering really depends on the target application (video
games, Internet applications, etc.). On the one hand, the utilitarian social welfare
measures how well the patrolling job is done on average and will favour strategies
in which the average time lag between two visits is to be minimised. On the other
hand, the egalitarian social welfare estimates how bad the worst of the agents
does, and will favour patrolling strategies in which all parts of the territory are
to be visited equally often.

References

1. Endriss, U., Maudet, N.: Welfare engineering in multiagent systems. In: Engineer-
ing Societies in the Agents World IV. LNAI, Springer-Verlag (2004)

2. Endriss, U., Maudet, N., Sadri, F., Toni, F.: On optimal outcomes of negotia-
tions over resources. In: Proceedings of the 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2003), ACM Press (2003)

3. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Resource allocation in egalitarian
agent societies. In: Secondes Journées Francophones sur les Modèles Formels
d’Interaction (MFI-2003), Cépaduès-Éditions (2003)

4. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press
(1988)

5. Sen, A.K.: Collective Choice and Social Welfare. Holden Day (1970)
6. Rawls, J.: A Theory of Justice. Oxford University Press (1971)
7. Harsanyi, J.C.: Can the maximin principle serve as a basis for morality? American

Political Science Review 69 (1975) 594–609
8. Wolpert, D.H., Tumer, K.: An introduction to collective intelligence. Technical

Report NASA-ARC-IC-99-63, NASA Ames Research Center (1999)
9. Papadimitriou, C.H.: Algorithms, games, and the Internet. In: Proceedings on 33rd

Annual ACM Symposium on Theory of Computing (STOC-2001), ACM (2001)
10. Arrow, K.J., Sen, A.K., Suzumura, K., eds.: Handbook of Social Choice and Wel-

fare. Volume 1. North-Holland (2002)
11. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)
12. Vickrey, W.: Counterspeculation, auctions and competitive sealed tenders. Journal

of Finance 16 (1961) 8–37
13. Conitzer, V., Sandholm, T.: Complexity of mechanism design. In: Proceedings of

the 18th Annual Conference on Uncertainty in Artificial Intelligence (UAI-2002),
Morgan Kaufmann (2002)

14. Wurman, P.R., Wellman, M.P., Walsh, W.E.: Specifying rules for electronic auc-
tions. AI Magazine 23 (2002) 15–23

15. Yokoo, M., Sakurai, Y., Matsubara, S.: The effect of false-name bids in combina-
torial auctions: New fraud in Internet auctions. Games and Economic Behaviour
46 (2004) 174–188

16. Lemâıtre, M., Verfaillie, G., Fargier, H., Lang, J., Bataille, N., Lachiver, J.M.:
Equitable allocation of earth observing satellites resources. In: Proceedings of the
5th ONERA-DLR Aerospace Symposium (ODAS’03). (2003)

Welfare Engineering in Practice 347

17. Machado, A., Ramalho, G., Zucker, J.D., Drogoul, A.: Multi-agent patrolling: An
empirical analysis of alternative architectures. In: Proceedings of the 3rd Interna-
tional Workshop on Multi-agent Based Simulation (MABS-2002). LNCS, Springer-
Verlag (2002)

18. Almeida, A., Ramalho, G., Santana, H., Tedesco, P., Menezes, T., Corruble, V.:
Recent advances on multi-agent patrolling. In: Proceedings of the Brazilian Sym-
posium on Artificial Intelligence. (2004)

19. Brams, S.J., Taylor, A.D.: Fair Division: From Cake-cutting to Dispute Resolution.
Cambridge University Press (1996)

20. Davidsson, P.: Categories of artificial societies. In: Engineering Societies in the
Agents World II. LNAI, Springer-Verlag (2003)

21. Guttman, R.H., Maes, P.: Agent-mediated integrative negotiation for retail elec-
tronic commerce. In: Agent Mediated Electronic Commerce. LNCS, Springer-
Verlag (1999)

Author Index

Acalovschi, Monica 45
Alonso, Fernando 245

Bade, Dirk 261
Bergeron, Mathieu 152
Boella, Guido 1
Boissier, Olivier 166
Bracciali, Andrea 322
Braubach, Lars 261
Brzeziński, Jacek 191

Calmet, Jacques 33
Capera, Davy 231
Carabelea, Cosmin 166
Castelfranchi, Cristiano 166
Chaib-draa, Brahim 139, 152
Chevaleyre, Yann 335
Cholvy, Laurence 178

Dikenelli, Oguz 74
Dunin-Kȩplicz, Barbara 191
Dunin-Kȩplicz, Piotr 191

Endriss, Ulle 335
Erdur, Riza Cenk 74
Estivie, Sylvia 335

Fehler, Manuel 305
Flores, Roberto A. 139
Frutos, Sonia 245
Fuentes, Rubén 106

Gómez-Sanz, Jorge J. 106
Garion, Christophe 178
Gleizes, Marie-Pierre 231
Glize, Pierre 231
Gürcan, Önder 74

Hameurlain, Nabil 60
Hammond, Mark 33
Honiden, Shinichi 90

Klügl, Franziska 305
Krempels, Karl-Heinz 261

Lamersdorf, Winfried 261
Letia, Ioan Alfred 45
Lopes Cardoso, Henrique 14
Luck, Michael 119

Mancarella, Paolo 322
Maret, Pierre 33
Mart́ınez, Löıc 245
Maudet, Nicolas 335
Montes, César 245
Munroe, Steve 119

Oliveira, Eugénio 14

Pavón, Juan 106
Pěchouček, Michal 277

Picard, Gauthier 209, 231
Platon, Eric 90
Pokahr, Alexander 261
Puppe, Frank 305

Rehák, Martin 277
Röhl, Mathias 292

Sabouret, Nicolas 90
Seylan, Inanç 74
Sibertin-Blanc, Christophe 60
Šǐslák, David 277
Stathis, Kostas 322

Toni, Francesca 322
Tožička, Jan 277

Uhrmacher, Adelinde M. 292

van der Torre, Leendert 1
Vincent, Chevrier 222

Pasquier, Philippe 139, 152

	Frontmatter
	Roles, Organizations and Institutions for Agents
	Organizations as Socially Constructed Agents in the Agent Oriented Paradigm
	Virtual Enterprise Normative Framework Within Electronic Institutions
	Virtual Knowledge Communities for Corporate Knowledge Issues
	Achieving Competence by Argumentation on Rules for Roles
	Participation Components for Holding Roles in Multiagent Systems Protocols
	Semantically Federating Multi-agent Organizations

	Social Issues in Multi-agent Systems
	T-Compound Interaction and Overhearing Agents
	Managing Conflicts Between Individuals and Societies in Multi-agent Systems
	Motivation-Based Selection of Negotiation Opponents
	Modelling Flexible Social Commitments and Their Enforcement
	DIAGAL: A Generic ACL for Open Systems
	Using Social Power to Enable Agents to Reason About Being Part of a Group

	Cooperation and Collective Behaviours in Agent Societies
	Strategies for Distributing Goals in a Team of Cooperative Agents
	Collectively Cognitive Agents in Cooperative Teams
	Cooperative Agent Model Instantiation to Collective Robotics
	From Self-Organized Systems to Collective Problem Solving

	Methodologies and Platforms for Agent-Oriented Engineering
	A Sample Application of ADELFE Focusing on Analysis and Design The Mechanical Synthesis Problem
	SONIA: A Methodology for Natural Agent Development
	Deployment of Distributed Multi-agent Systems
	Using Stand-in Agents in Partially Accessible Multi-agent Environment

	Agent-Oriented Simulation
	Controlled Experimentation with Agents --- Models and Implementations
	Techniques for Analysis and Calibration of Multi-agent Simulations

	Models for Multi-agent Systems
	Engineering Stable Multi-agent Systems
	Welfare Engineering in Practice: On the Variety of Multiagent Resource Allocation Problems

	Backmatter

