

Lecture Notes in Computer Science 3525
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ali E. Abdallah Cliff B. Jones
Jeff W. Sanders (Eds.)

Communicating
Sequential Processes
The First 25 Years

Symposium on the Occasion of 25 Years of CSP
London, UK, July 7-8, 2004
Revised Invited Papers

13

Volume Editors

Ali E. Abdallah
London South Bank University
Faculty of BCIM
Institute for Computing Research
103 Borough Road, London, SE1 0AA, UK
E-mail: A.Abdallah@lsbu.ac.uk

Cliff B. Jones
University of Newcastle upon Tyne
School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: cliff.jones@ncl.ac.uk

Jeff W. Sanders
Oxford University Computing Laboratory
Parks Road, Oxford OX1 3QD, UK
E-mail: Jeff.Sanders@comlab.ox.ac.uk

The cover illustration is the work of Bill Roscoe.

Library of Congress Control Number: 2005925390

CR Subject Classification (1998): D.2.4, F.3, D.1.3, D.3.1

ISSN 0302-9743
ISBN-10 3-540-25813-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25813-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11423348 06/3142 5 4 3 2 1 0

Preface

This volume, like the symposium CSP25 which gave rise to it, commemorates
the semi-jubilee of Communicating Sequential Processes.

Tony Hoare’s paper “Communicating Sequential Processes”1 is today widely
regarded as one of the most influential papers in computer science. To commem-
orate it, an event was organized under the auspices of BCS-FACS (the British
Computer Society’s Formal Aspects of Computing Science specialist group).
CSP25 was one of a series of such events organized to highlight the use of formal
methods, emphasize their relevance to modern computing and promote their
wider application. BCS-FACS is proud that Tony Hoare presented his original
ideas on CSP at one of its first meetings, in 1978.

The two-day event, 7–8 July 2004, was hosted by London South Bank Uni-
versity’s Institute for Computing Research, Faculty of Business, Computing and
Information Management. The intention was to celebrate, reflect upon and look
beyond the first quarter-century of CSP’s contributions to computer science. The
meeting examined the impact of CSP on many areas stretching from semantics
(mathematical models for understanding concurrency and communications) and
logic (for reasoning about behavior), through the design of parallel programming
languages (i/o, parallelism, synchronization and threads) to applications vary-
ing from distributed software and parallel computing to information security,
Web services and concurrent hardware circuits. It included a panel discussion
with panelists Brookes, Hoare, de Roever and Roscoe (chaired by Jeff Sanders),
poster presentations by PhD students and others, featured a fire alarm (requir-
ing evacuation in the rain!) and concluded with the presentation of a fountain
pen to Prof. Sir C. A. R. Hoare.

We owe thanks to the BCS-FACS steering committee and its chairman,
Jonathan P. Bowen, for their overwhelming support. Special thanks are due
to Dedian Hopkin (LSBU Vice Chancellor) for opening the event in the newly
built Keyworth Centre; Chris Clare (Dean), Geoff Elliot (Deputy-Dean), and
Terry Fogarty (Head of the Institute for Computing Research) for providing a
stimulating environment for hosting the event. Our gratitude goes to our spon-
sors for their generous support: Microsoft Research, Cambridge, UK; Formal
Systems Europe, Limited; Handshake Solutions, Philips, Netherlands; Verified
Systems International,GmbH, Germany; Formal Methods Europe (FME); and
London South Bank University, Institute for Computing Research. We would
like to thank the local organization team: Ali N. Haidar, Michelle Hammond,
Kalpesh Kapour and Paul Boca for their hard work to ensure the smooth
running of the local arrangements.

1 Communications of the ACM, 21(8):666–667, 1978.

VI Preface

We would also like to thank Bill Roscoe for his “Golden Valley”2 painting
used in the cover of this book. This was the favorite among CSP25 authors who
considered several other alternatives. What’s its relevance to CSP25? In the
words of one of the contributing authors:

It’s a lovely scene with a prominent feature, the much-branching tree
representing CSP, and the road winding off representing the 25 years so
far, with the rest hidden behind the tree. (Who knows where it may still
lead?)

After presentation at the symposium, the contributions were reworked by
their authors and fully refereed. We are grateful to all for their timely and
efficient work, particularly in the refereeing process where helpful and incisive
comments were made. The resulting papers are gathered here, as they were in
the workshop, into session-sized chunks, described below.

The conference website can be found at www.lsbu.ac.uk/menass/csp25 and
www.bcs-facs.org

Semantic Foundations

The first paper to confront the denotational semantics of CSP with due re-
gard to the interplay between communication and abstraction was “A Theory
of Communicating Sequential Processes3” by Steve Brookes, Tony Hoare and
Bill Roscoe. Before it, the simplistic but intuitively compelling traces model
had been the basis for a semantics capable of capturing safety properties but
not of capturing liveness (being too weak to capture deadlock or divergence).
That paper concentrated on the communicating fragment of CSP, TCSP, based
on recursively defined communicating processes evolving in parallel. The study
concentrated, inevitably, on the distinction between the choice of events due to
the environment choosing from a menu (external choice) and as the result of ab-
straction (internal, or nondeterministic, choice); in a subsequent paper4 Brookes
and Roscoe extended the denotational model to account also for divergence.

This collection begins with two papers on the semantic foundations of CSP.
Brookes replaces the naive traces semantics with one based on actions and Roscoe
extends the semantics of divergence and provides an appropriate definition of
fixed point. Each paper responds to developments in theoretical computer sci-
ence during the couple of decades since the 1984 and 1985 papers: the former
by acknowledging work on action-based transition systems and the latter by ac-
knowledging progress in our understanding of divergence and fixed points. Each
paper provides stronger techniques whilst retaining the flavor of the original
CSP.

2 Autumn scene in the Golden Valley, Herefordshire, 2000.
3 JACM, 31(3):560–599, 1984.
4 “An Improved Failures Model for CSP,” Proc. Seminar on Concurrency, Springer,

LNCS 197, 1985.

Preface VII

In the cleverly titled Retracing the Semantics of CSP Brookes argues for a
traces semantics that is at once more general than that of CSP and yet retains
much of the simplicity and design elegance of the original. The only cost is re-
evaluation of the notion of trace, to make it action based, and imposition of
a fairness condition on processes. The result is a general formalism allowing a
bisimulation-type equivalence between processes that differ only in atomicity of
their actions.

In Seeing Beyond Divergence Roscoe shows how to refine the standard deno-
tational model of a mild extension of TCSP to reveal traces of a process, more
extended than just the minimal traces, after which it may diverge. Concentrat-
ing on possible divergence, and so ignoring ‘refusals or failures’ information, he
constructs a model (named SBD as in the title of the paper) to distinguish a
process’s various opportunities to diverge — something TCSP has never done.
To provide meaning to recursion in SBD Roscoe shows that neither greatest nor
least fixed points would be correct and so he is forced to use a two-stage process
whose result he calls a reflected fixed point.

A further contribution to fixed-point theory in CSP is provided by Mike
Reed in his paper Order, Topology and Recursion Induction in CSP later in this
volume.

Refinement and Simulation

The major difference between CSP and, for example, the process algebra CCS5

lies in the distinction each makes between processes. Whilst processes in CSP
are related by refinement (one can be replaced by the other for the purpose of
implementation), those in CCS are related by the finer notion of (bi)simulation.

In July 2002 a workshop was held at Microsoft Research Ltd. Cambridge to
contemplate the differences and similarities between the various process algebras,
with the aim of reconciling the fundamental ideas of refinement and simulation,
particularly for CSP and CCS. One outcome has been the two papers in this
section. Not surprisingly, established co-authors Hoare and He have produced
related treatments. Each paper uses the notion of barbed traces in a treatment
of process algebra in which refinement and simulation coincide. In fact a combi-
nation of the papers, which the reader will find of quite contrasting styles, might
be regarded as an extra chapter for their book6. Use of barbed traces might be
regarded as an alternative solution to the high-level plan of Brookes.

Hardware Synthesis

From its early days CSP has been closely associated with hardware design. David
May provides an entertaining account of those days in CSP, occam and trans-
puters, the paper of his after-dinner speech. He makes a convincing case for

5 Robin Milner, Communication and Concurrency, Prentice-Hall, 1989.
6 Unifying Theories of Programming, Prentice-Hall, 1998.

VIII Preface

remembering our own (collective) principles as we progress and for valuing more
highly the things at which we are good; and he draws potent conclusions for
industry, research and education.

At the same time as inmos, occam and CSP exploited highly-synchronized
communication, asynchronous hardware design was enjoying a resurgence of pop-
ularity7. The appropriate modification to CSP and the revised laws (thought of
as being obtained by inserting unbounded buffers along channels) was under-
taken by Mark Josephs whose paper Models for Data-Flow Sequential Processes
extends that work to a wider family of processes and more sophisticated semantic
models. It provides some laws and concentrates on denotational semantics.

Philips Electronics, Eindhoven, has shown a long-standing commitment to the
use of formal methods and in particular to the work on asynchronous CSP. In his
monumental paper Implementation of Handshake Components, Ad Peeters shows
how CSP underlies the techniques of the established Handshake Technology
developed at Philips for the design and implementation of unclocked circuits.
The interest focuses on handshaking protocols that are efficient and correct in
the various paradigms for unclocked design — summarized in this self-contained
article. Peeters demonstrates the remarkable extent to which process algebra
successfully pervades the various levels of abstraction.

Transactions

The laws satisfied by asynchronous processes communicating lazily via streams,
as treated in the previous section, for example in the article by Mark Josephs,
resemble those satisfied in transaction processing: a topic at the heart of applied
formal methods. In fact, in his book Communicating Sequential Processes Hoare
introduced operators to model the interrupt, checkpoint, rollback and recovery of
transaction-processing systems. In this section that topic is further explored; the
main concern is to maintain atomicity in a distributed system. Some treatments
have attempted to do so using event refinement, the process algebra version of
the data refinement of sequential programming.

But in A Trace Semantics for Long-Running Transactions Michael Butler,
Tony Hoare and Carla Ferreira give an elegant calculus of compensations for a
restriction of CSP to achieve a similar result. They adopt a traces semantics
in which an action is compensable if it can subsequently be undone atomically,
and presents a compositional ‘cancellation’ semantics for processes with nested
interruption and compensation.

In Practical Application of CSP and FDR to Software Design Jonathan
Lawrence acknowledges the difficulty confronting transfer of research — in this
case concerning CSP — to industry and presents a case study encapsulating
valuable lessons. The study centers on a recent IBM project using CSP and
FDR to produce a multi-threaded connection pooling mechanism connecting a
transaction-processing system to a Web server. The project spanned three days

7 Ivan Sutherland, “Micropipelines”, CACM, 32:720–738, 1989.

Preface IX

and included formal specification in CSP of the required system, validation with
some degree of confidence that it captured the informal requirements, expression
of the design in CSP and verification of its correctness in FDR. The result was
so successful that subsequent enhancements to the delivered Java code could
confidently be done by hand. Lawrence highlights the value of applied MSc’s
which include projects providing students with an opportunity to transfer what
they have learnt on the MSc to the workplace.

Concurrent Programming

The extremely active occam user group continues the application of CSP begun
in the work described by May in this volume to programming-language design.
In Communicating Mobile Processes Peter Welch and Frederick Barnes intro-
duce occam-π as a hybrid of occam and the π-calculus introduced by Milner and
studied extensively in CCS. The approach is largely pragmatic, including bench-
marks and the outline of applications. It is envisaged that a semantics would be
denotational, following those of CSP and influenced by the π-calculus.

In Model-Based Design of Concurrent Programs Jeff Magee and Jeff Kramer
use Label Transition Systems (LTS), a notation based on CSP, to model concur-
rent systems and to study their behaviours. Their approach combines clear mod-
elling with tools that support graphical animations and systematic generation
of parallel implementations in concurrent Java. Both safety checks (essentially
traces properties) and liveness checks (under assumptions concerning scheduling
and choice) are achieved. They conclude that such animations are useful both
to students and practitioners in overcoming resistance to formal methods.

Security

One of formal methods’ huge successes in the past decade has been to reasoning
about security. In terms of CSP, the success has been largely due to work by Bill
Roscoe et al. and Gavin Lowe (with the Caspar tool).

In Verifying Security Protocols: an Application of CSP Steve Schneider and
Rob Delicata provide an elegant case study showing how CSP, with the notion
of a rank function, can be used to reason about an authentication protocol.
After proposing a putative protocol their analysis locates a flaw and verifies the
correctness of a modification. In verification, the rank function is used to show
that illegitimate messages do not occur. The paper is self-contained and might
be used by those familiar with CSP as an introduction to this topical area.

Over the years various models of computation have been used to formalize
non-interference. Typically these floundered on non-determinism, “input/output”
distinctions, input totality and so forth. In Shedding Light on Haunted Corners
of Information Security Peter Ryan outlines how process algebras, in particular
CSP, can be applied to give a formal characterization of the absence of informa-
tion flows through a system. Unfortunately, Peter Ryan was unable to attend
due to compelling personal reasons at the last minute. Hence, only the abstract
of his talk is included in this volume.

X Preface

Linking Theories

Whilst security has provided one important playing field for CSP, probability
has provided another. The challenge is to express and reason about distributed
probabilistic algorithms using a variant of process algebra that includes a com-
binator for choice, with given probability, between two processes. Unacceptable
attempts abound. In Of Probabilistic wp and CSP — and Compositionality, Car-
roll Morgan starts ‘afresh’ from the successful work on probabilistic sequential
programming and targets process algebra via the intermediary of action sys-
tems. His translation throws up healthiness conditions for probabilistic CSP and
suggests a program of work that might — finally — result in a compositional
probabilistic process algebra. Incidentally his discussion of (general) composi-
tionality using the example of eye color and the Mendelian concept of allele is a
gem.

In this section is included the abstract for the talk by Mike Reed Order,
Topology and Recursion Induction in CSP that might be thought of as a contri-
bution to semantic foundations. He presents a recursion-induction principle that
produces least fixed points for functions whose least fixed points are maximal
(i.e., deterministic in the failures model of CSP). The setting is a Scott domain
and the results are general enough to cover existing instances of recursion in-
duction in CSP; in topology they are strong enough to provide answers to open
questions from domain theory and point-set topology.

Automated Development, Reasoning and Model Checking

As a formal method, CSP was slow to respond to the pressure for automation.
Perhaps as a result, Formal Methods’ tool FDR achieved immediate success; for
instance it has played a crucial role in many of the papers in this volume. But
it, and its scope, still progress as the papers by Michael Goldsmith and Ranko
Lazić indicate.

In Operational Semantics for Fun and Profit Michael Goldsmith observes
that a source of computation inefficiency in FDR is evaluation of the structured
operational semantics of the operationally–presented target system (an evalua-
tion that is necessary whenever a denotational property is to be determined). He
proposes a supercompilation procedure to overcome it, if not in every case then
at least in many. An unexpected benefit of supercompilation is transformation
of a process to a form accessible to previously studied watchdog transformations
that enable a refinement check to be recast in more efficient form.

The method of data independence allows a model-checking argument, con-
cerning a process whose data type takes on a single value, to be extended to
that process with arbitrary data value. In On model Checking Data-Independent
Systems with Arrays with Whole-Array Operations Ranko Lazić, the originator
of the technique of data independence in CSP, Tom Newcomb, and Bill Roscoe
show how to extend it to programs using arrays indexed by one data-independent
variable that have values from another. They obtain simple and natural condi-
tions for decidability or undecidability of realistic questions concerning the use
of such types.

Preface XI

For all its use, and all its appearance in this volume, FDR is far from being
the only formalism for animating CSP. In the article by Magee and Kramer
Model-Based Design of Concurrent Programs an alternative has already been
demonstrated.

Industrial-Strength CSP

We have seen how CSP has been used to study theoretical aspects of concurrency
and that it seems to offer yet further potential for doing so. We have seen how it
has been used in hardware design, at both the implementation and design levels.
And we have seen how its tools offer industrial-strength model checking. But
what about the broader scope of software engineering?

In Industrial-Strength CSP: Opportunities and Challenges in Model-Checking,
Sadie Creese demonstrates the use of FDR in reasoning about various aspects of
high-integrity systems from industry, as seen from her perspective in the Systems
Assurance Group within QinetiQ.

In the paper Applied Formal Methods — from CSP to Executable Hybrid
Specifications Jan Peleska discusses his work at Verified Systems International
and the University of Bremen. His case studies are drawn from an impressively
realistic range, including an implementation of Byzantine agreement to provide
a fault-tolerant component of the International Space Station, and the avionics
controller of the Airbus A340. He discusses the difficulties involved in the pro-
duction of large and complex systems. Hybrid methods become important and
executability, in the form of tools available for prototyping, necessary to convince
coworkers. But in the end formal methods, and in particular CSP, remainS just
one of a spectrum of techniques that contribute to product quality.

Reflections!

It is not often that burgeoning areas are afforded the luxury of reflecting on
both their past and futures. With the contributions contained in this volume
the reader has evidence enough to decide the relevance of Gilbert Ryle’s warn-
ing (Dilemmas, The Tarner Lectures, 1953, Cambridge University Press, digital
printing 2002, page 14.)

Karl Marx was sapient enough to deny the impeachment that he was a
Marxist. So too Plato was, in my view, a very unreliable Platonist. He
was too much of a philosopher to think that anything that he had said
was the last word. It was left to his disciples to identify his foot marks
with his destination.

Ali E. Abdallah, Cliff B. Jones and Jeff W. Sanders
London, Newcastle and Oxford, January 2005

PrefaceXII

Sponsors

BCS- Formal Aspect of
Computing Science

specialist group
London South Bank

University, UK
Microsoft Research,

Cambridge, UK

Formal Methods
Europe

Handshake
Solutions, Philips,

Netherlands

Verified Systems
International, GmbH,

Germany

Formal Systems (Europe)
Limited

Table of Contents

Semantic Foundations

Retracing the Semantics of CSP
Stephen Brookes . 1

Seeing Beyond Divergence
A.W. Roscoe . 15

Refinement and Simulation

Process Algebra: A Unifying Approach
Tony Hoare . 36

Linking Theories of Concurrency
He Jifeng . 61

Hardware Synthesis

CSP, and Transputers
David May . 75

Models for Data-Flow Sequential Processes
Mark B. Josephs . 85

Implementation of Handshake Components
Ad Peeters . 98

Transactions

A Trace Semantics for Long-Running Transactions
Michael Butler, Tony Hoare, Carla Ferreira . 133

Practical Application of CSP and FDR to Software Design
Jonathan Lawrence . 151

Concurrent Programming

Communicating Mobile Processes
Peter H. Welch, Frederick R.M. Barnes . 175

occam

X VI Table of Contents

Model-Based Design of Concurrent Programs
Jeff Magee, Jeff Kramer . 211

Linking Theories

Of Probabilistic wp and CSP — and Compositionality
Carroll Morgan . 220

Order, Topology, and Recursion Induction in CSP
Mike Reed . 24

Security

Verifying Security Protocols: An Application of CSP
Steve Schneider, Rob Delicata . 243

Shedding Light on Haunted Corners of Information Security
Peter Ryan . 264

Automated Development and Model Checking

Operational Semantics for Fun and Profit
Michael Goldsmith . 265

On Model Checking Data-Independent Systems with Arrays with
Whole-Array Operations

Ranko Lazić, Tom Newcomb, Roscoe . 275

Industrial Strength CSP

Industrial Strength CSP: Opportunities and Challenges in
Model-Checking

Sadie Creese . 292

Applied Formal Methods From CSP to Executable Hybrid
Specifications

Jan Peleska . 293

Author Index . 321

2

-

AW. .

-

–

Retracing the Semantics of CSP

Stephen Brookes

Carnegie Mellon University

Abstract. CSP was originally introduced as a parallel programming
language in which sequential imperative processes execute concurrently
and communicate by synchronized input and output. The influence of
CSP and the closely related process algebra TCSP is widespread. Over
the years CSP has been equipped with a series of denotational seman-
tic models, involving notions such as communication traces, failure sets,
and divergence traces, suitable for compositional reasoning about safety
properties and deadlock analysis. We revisit these notions (and review
some of the underlying philosophy) with the benefit of hindsight, and
we introduce a semantic framework based on action traces that permits
a unified account of shared memory parallelism, asynchronous commu-
nication, and synchronous communication. The framework also allows a
relatively straightforward account of (a weak form of) fairness, so that we
obtain models suitable for compositional reasoning about liveness prop-
erties as well as about safety properties and deadlock. We show how to
incorporate race detection into this semantic framework, leading to mod-
els more independent of hardware assumptions about the granularity of
atomic actions.

1 Introduction

The parallel programming language CSP was introduced in Tony Hoare’s classic
paper [15]. As originally formulated, CSP is an imperative language of guarded
commands [11], extended with primitives for input and output and a form of
parallel composition which permits synchronized communication between named
processes. The original language derives its full name from the built-in syntac-
tic constraint that processes belong to the sequential subset of the language.
The syntax of programs was also constrained to preclude concurrent attempts
by one process to write to a variable being used by another process: this may
be expressed succinctly as the requirement that processes have “disjoint local
states”. These design decisions, influenced by Dijkstra’s principle of “loose cou-
pling” [10], lead to an elegant programming language in which processes interact
solely by message-passing. Ideas from CSP have passed the test of time, having
influenced the design of more recent parallel programming languages such as
Ada, [18], and Concurrent ML [26].

Most of the subsequent foundational research has focussed on a process al-
gebra known as Theoretical CSP (or TCSP) in which the imperative aspects
of the original language are suppressed [2]. In TCSP (and in) processes

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): CSP LNCS 3525, pp. 1–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

25,

occam

occam

2 S. Brookes

communicate by message-passing along named channels, again using a synchro-
nized handshake for communication. TCSP permits nested parallelism and recur-
sive process definitions, and includes a form of localization for events known as
hiding. Instead of Dijkstra-style guarded commands TCSP includes two forms
of “choice”: internal choice, and external choice. The internal form of choice
corresponds to a guarded command with purely boolean guards: if more than
one guard is true the selection of branch to execute is non-deterministic and
made “internally” without consideration of the surrounding context. An exter-
nal choice corresponds to a guarded command with input guards, for which
the “truth” of a guard depends on the availability of matching output in the
surrounding context.

Hoare’s early paper on CSP [15] presented an informal sketch of a semantics
for processes, expressed in intuitive terms with the help of operational intu-
ition. Plotkin later gave a more formal structured operational semantics for a
semantically more natural extension of the language [25]. Plotkin employed a
more generous syntax allowing nested parallelism, and a more flexible scoping
mechanism for process naming. Over the years CSP has become equipped with
a series of semantic models of successively greater sophistication, each designed
to support compositional reasoning about a specific class of program property.

In 1980 Hoare introduced a mathematical account of communication traces
that developed more rigorously from the intuitions outlined in the original CSP
paper [16]. In this model a process is taken to denote a set of communication
traces, built from events which represent abstract records of communication. A
trace here represents a partial history of the communication sequence occurring
when a process interacts with its environment; since communication is synchro-
nized an input or output event really stands for a potential for communication.
And since traces record a partial behavior it is natural to work with (non-empty)
prefix-closed sets of traces. This semantics is suitable for reasoning about simple
safety properties of processes, but is too abstract for many purposes since it
ignores the potential for deadlock. For example, the processes

if (true→ a?x;h!x) (true→ b?x;h!x) fi
if (a?x→ h!x) (b?x→ h!x) fi

have the same set of communication traces, but only the first one may deadlock
when run in parallel with a process such as b!0. Moreover, if stop is a process
incapable of any communication (so that its only communication trace is the
empty trace), the processes

if (a?x→ h!x) fi
if (a?x→ h!x) (a?x→ stop) fi
if (a?x→ h!x) (true→ stop) fi

have the same communication traces (because of prefix-closure) although there
are clear operational reasons to distinguish between these processes.

The need to model deadlock led to the failures model of Hoare, Brookes and
Roscoe [2], in which communication traces were augmented with information

Retracing the Semantics of CSP 3

about the potential for further communication, represented abstractly (and neg-
atively) as a refusal set. A failure (α,X) consists of a communication trace α
and a set X of events, representing the ability to perform the communications
in α and then refuse to perform any of the events in X. (Obviously it is equally
reasonable to develop a positively formulated notion of acceptance set or ready
set rather than refusal [22].) Again operational and observational intuitions sug-
gest that a process should denote a set of failures closed under certain natural
rules. The mathematical foundations of the failures model were explored more
deeply in the D.Phil. theses of Bill Roscoe and myself [1, 27]. A more readily
accessible account, which also discusses a variety of related semantic models, is
obtainable in Roscoe’s book [28].

The failures model, like the communication traces model fromwhich it evolved,
allows compositional reasoning about safety properties; but failures also permit
distinctions based on the potential for deadlock. Revisiting the above examples,
the processes

if (true→ a?x;h!x) (true→ b?x;h!x) fi
if (a?x→ h!x) (b?x→ h!x) fi

do not denote the same set of failures: only the first process can refuse to input
on a (or refuse to input on b). Similarly the processes

if (a?x→ h!x) fi
if (a?x→ h!x) (a?x→ stop) fi
if (a?x→ h!x) (true→ stop) fi

do not have the same failures. The behavioral distinctions between these exam-
ples, expressible in terms of failures, have a natural operational intuition.

The failures model, although offering good support for safety properties and
deadlock analysis, still suffers from a deficiency with respect to the phenomenon
of infinite internal chatter, or divergence. We illustrate the problem with an
example. The program

chan a in
(while true do a?x) ‖ (while true do a!0)

involves two processes which keep communicating “internally” on the hidden
channel a. Externally, no visible communication is apparent, and it is natural
to ask what responses, if any, the program should be deemed to provide to its
environment if the environment offers a potential for communication. Presum-
ably the environment cannot ever discover in a finite amount of time that the
program will never become capable of communication, since the program never
reaches a “stable” configuration. There is no way to represent this kind of behav-
ior adequately within the confines of the failures model, since divergence (while
doing no external communication) could only be represented by failures contain-
ing the empty trace (and all possible refusal sets), but this would be tantamount
to equating deadlock with divergence.

In response to this problem, Brookes and Roscoe proposed a further aug-
mentation of failures to incorporate divergence traces [3]. A divergence trace

4 S. Brookes

represents a sequence of communications leading to a possible divergent behav-
ior. For pragmatic reasons, again based on observability criteria and the view
that a well behaved process should respond to its environment in a finite amount
of time, divergence is treated as a catastrophe in this model. Thus, a process
is taken to denote a failure set F , together with a set D of divergence traces,
satisfying the following catastrophic closure rule:

– if α ∈ D then for all traces β and refusal sets X, (αβ,X) ∈ F , and for all
traces β, αβ ∈ D.

As an example, the simple divergent program listed above has the empty trace
as a possible divergence trace, from which it follows from the closure rule that
its denotation includes all failures and all divergence traces. In contrast the
denotation of a deadlocked process would consist of all failures involving the
empty trace, together with the empty set of divergence traces.

The failures/divergences model, despite its rather awkward name, has become
the standard semantics for an enormous range of CSP research and implemen-
tation [17]. This model underpins the FDR model checker [12], which has been
used successfully for the analysis of (and detection of bugs in) parallel systems
and protocols [30]. Roscoe and Hoare have also shown how to incorporate state
directly into the structure of failure sets, in developing a failure-style semantics
for occam [29].

2 Reflection

In these early models of CSP the focus is on finite behaviors, with infinite traces
either ignored or regarded as being present only by virtue of finite prefixes.
Consequently these models did not take fairness into account. Yet fairness as-
sumptions, such as the guarantee that a process waiting for input will eventually
be synchronized if another process is simultaneously (and persistently) waiting
for a matching output, are vital when trying to reason about liveness proper-
ties [24, 23]. As a result it can be argued that these models are, by their very
design, less than ideally suited to reasoning about liveness.

Although it is possible to develop straightforward variants of these models
that incorporate infinite traces [28], it is not obvious how to augment them in
such a way that only fair traces get included. Indeed there is a plethora of distinct
fairness notions in the literature [13], and it is not clear which (if any) of these
notions are simultaneously a reasonable abstraction from network implementa-
tion and adaptable to CSP. Susan Older’s Ph.D. thesis [21] contains a detailed
discussion of the problems that arise as well as a family of models tailored to
specific fairness notions. Older’s models can be regarded as failures/divergences
equipped with infinite traces and book-keeping information about persistently
enabled communication [6]. As Older discovered, it can be very difficult to fig-
ure out a suitable augmentation regime for extending failures/divergences to
match a given notion of fairness, largely because of the fact that enabledness
of communication for one process depends on enabledness of matching commu-

Retracing the Semantics of CSP 5

nication in another process. The difficulties seem less severe when dealing with
asynchronous communication [5].

The models described so far were developed specifically with TCSP in mind,
and serve this role admirably. However, CSP is not the only paradigmatic paral-
lel programming language and it is natural to compare the semantic framework
built for CSP with the models developed over the years for shared memory par-
allel programs and for networks of asynchronously communicating processes. By
the same token, TCSP is not the only process algebra, and the emphasis in CSP
on deadlock and divergence is in sharp contrast to the focus on bisimulation in
calculi based on Milner’s CCS [19, 20]. Unfortunately there is frustratingly little
similarity in structure between the early semantic models developed for these
other paradigms and these CSP models. For instance the resumptions of Hen-
nessy and Plotkin [14], and the transition traces of Park [24] (later adapted by
this author [4]), originally proposed to model shared memory parallel programs,
bear no obvious structural relationship with failures.

These semantic disparities make it difficult to apply techniques successful
in one setting to similar problems occurring in the other settings. For instance,
Older’s construction of fair models of CSP does not immediately suggest an anal-
ogous construction for a language of asynchronously communicating processes.
A further disparity is caused by the emphasis (for obvious reasons) on state
in traditional models of shared memory parallelism, in contrast to the prevail-
ing tendency in process algebras such as CSP and CCS to abstract away from
state [19, 2].

In a paper presented in tribute to the twentieth anniversary of CSP [7] this
author proposed a semantic model based on transition traces, suitable for mod-
elling both shared memory parallel programs and networks of processes com-
municating asynchronously on named channels. At that time it seemed unlikely
that similar techniques would prove suitable for modelling synchronized commu-
nication, because of the difficulties encountered by Older in adapting failures to
fairness in the synchronous setting. Nevertheless the author discovered later that
essentially the same framework can also be made to work for synchronously com-
municating processes, provided a simple enough notion of fairness is adopted [8].
This is a somewhat surprising turn of events given the prior history of separate
development. More recently still, we realized that it is possible to modify this
semantic framework in a natural way to handle race conditions, leading to an im-
proved semantics in which assumptions about the granularity of atomic actions
become less significant [9]. We will now summarize the main technical notions
behind this semantics. The key turns out to involve the choice of a suitably gen-
eral notion of trace, which can be presented in a process algebraic formulation
and separately instantiated later in a state-dependent setting.

3 Communicating Parallel Processes

We will work with a language combining shared memory parallelism with com-
municating processes. Thus processes will be allowed to share state and will be

6 S. Brookes

permitted to interact by reading and writing to shared variables as well as by
sending and receiving messages. We also include resources and conditional crit-
ical regions to allow synchronization and mutually exclusive access to critical
data.

Let P range over processes and G over guarded processes, given by the fol-
lowing abstract grammar, in which e ranges over integer-valued expressions, b
over boolean expressions, h over the set Chan of channel names, x over the set
Ide of identifiers, and r over resource names. We omit the syntax of expressions,
which is conventional.

P ::= skip | x:=e | P1;P2 | if b then P1 else P2 | while b do P |
P1‖P2 | with r when b do P | resource r in P |
h?x | h!e | if G fi | do G od | P1 � P2 | chan h in P

G ::= (h?x→ P) | G1 G2

As in CSP, P1 � P2 is “internal” choice, and G1 G2 is “external” choice. We
distinguish syntactically between guarded and general processes merely to en-
force the constraint that the “external choice” construct is only applicable to
input-guarded processes. This allows certain simplifications in the semantic def-
initions but is not crucial. It is straightforward to extend our semantics to allow
mixed boolean and input guards.

The construct chan h in P introduces a local channel named h with scope
P . One can also allow locally scoped variable declarations, but we omit the
details. We write chans(P) for the set of channel names occurring free in P . In
particular, chans(chan h in P) = chans(P)− {h}.

A process of form resource r in P introduces a local resource name r, whose
scope is P . A process of form with r when b do P is a conditional critical region
for resource r, with body P . A process attempting to enter such a region must
wait until the resource is available, acquire the resource and evaluate b: if b is
true the process executes P then releases the resource; if b is false the process
releases the resource and waits to try again. A resource can only be held by one
process at a time. We use the abbreviation with r do P when b is true.

4 Actions

The behavior of a process will be explained in terms of the actions that it can
perform. An action can be regarded as an atomic step which may or may not be
enabled in a given state, and if enabled has an effect on the state. Let Vint be the
set of integers, with typical member v. An action has one of the following forms:

– A read x=v, where x is an identifier and v is an integer.
– A write x:=v, where x is an identifier and v is an integer.
– A communication h?v or h!v, where h is a channel name and v is an integer.

Each communication action has a direction: h! for output, h? for input, on
a specific channel h.

– A idling action of form δX , where X is a finite set of directions.

Retracing the Semantics of CSP 7

– A resource action of one of the forms try(r), acq(r), rel(r), where r is a
resource name.

– An error action abort.

We will not yet provide formal details concerning states and effects, relying in-
stead for now on the following intuitions.

A read x=v is enabled only in a state for which the current value of x is v,
and causes no state change. A write x:=v is only enabled in states for which x
has a current value, and its effect is to change the value of x to v.

An input action h?v or output action h!v represents the potential for a process
to perform communication, and can only be completed when another process
offers a matching communication on the same channel. We write match(λ1, λ2)
when λ1 and λ2 are matching actions, i.e. when there is a channel h and an
integer v such that {λ1, λ2} = {h?v, h!v}. We let chan(h?v) = chan(h!v) = h.

An idling action δX represents an unrequited attempt to communicate along
the directions in X. When X is a singleton we write δh? or δh!. When X is empty
we write δ instead of δ{}; the action δ is also used to represent a “silent” local
action, such as a synchronized handshake or reading or writing a local variable.

An action of form try(r) represents an unsuccessful attempt to acquire re-
source r, and acq(r) represents a successful attempt to do so; rel(r) represents
the act of releasing the resource. Parallel execution is assumed to be constrained
to ensure that at all stages each resource is being held by at most one process.
Thus at all stages the sets of resources belonging to each process will be disjoint.
Correspondingly, for an action λ and a disjoint pair of resource sets A1 and A2

we define a resource enabling relation (A1, A2) λ−−→ (A′
1, A

′
2), characterized by the

following rules:

(A1, A2)
try(r)−−−−−→ (A1, A2)

(A1, A2)
acq(r)−−−−−→ (A1 ∪ {r}, A2) if r �∈ A1 ∪A2

(A1, A2)
rel(r)−−−−−→ (A1 − {r}, A2) if r ∈ A1

(A1, A2) λ−−→ (A1, A2) otherwise

Since A1 and A2 are disjoint, if (A1, A2) λ−−→ (A′
1, A

′
2) it follows that A′

2 = A2, and
A′

1 is disjoint from A2. Intuitively, when (A1, A2) λ−−→ (A′
1, A2) holds, a process

holding resources A1 can safely perform action λ in a parallel environment that
holds resources A2, and will hold resources A′

1 afterwards.
The abort action represents a runtime error, is always enabled, and leads to

an error state, which we denote abort.

5 Action Traces

An action trace is a non-empty finite or infinite sequence of actions. Let Tr
be the set of action traces; we will use α, β, γ as meta-variables ranging over
traces. We write αβ for the trace obtained by concatenating α and β. We assume
that δ behaves as a unit for concatenation, so that αδβ = αβ for all traces α

8 S. Brookes

and β; this means, effectively, that we ignore finite idling, since δn = δ for all
n > 0. However, we still distinguish infinite idling (represented by the trace δω)
from δ. We also assume that abort behaves as a zero for concatenation, so that
α abort β = α abort , for all traces α and β. This means that we regard an error
as fatal, so there is no need to observe what happens “after” abort.

We assume given the trace semantics for expressions, so that for an integer
expression e we have [[e]] ⊆ Tr × Vint . Similarly for a boolean expression b we
have [[b]] ⊆ Tr×{true, false}. We let [[b]]true = {ρ | (ρ, true) ∈ [[b]]} and similarly
for [[b]]false. The only actions occurring in expression traces are δ and reads.

A process denotes a set of traces, denoted [[P]] ⊆ Tr. The semantics of pro-
cesses is defined denotationally, by structural induction. We list here some of the
key clauses.

[[h!e]] = δ{h!}
∞{ρ h!v | (ρ, v) ∈ [[e]]}

[[h?x]] = δ{h?}
∞{h?v x:=v | v ∈ Vint}

[[P1;P2]] = [[P1]] [[P2]]
[[P1‖P2]] = [[P1]] {}‖{} [[P2]]
[[with r when b do P]] = wait∞ enter

where wait = {try(r)} ∪ acq(r) [[b]]false rel(r)
and enter = acq(r) [[b]]true [[P]] rel(r)

[[chan h in P]] = {α\h | α ∈ [[P]] & h �∈ chans(α)}

The semantic clauses for input and output commands include traces that rep-
resent infinite waiting for matching output and input, respectively. Sequential
composition corresponds to concatenation of traces. The trace set of a condi-
tional critical region reflects the operational behavior discussed earlier: waiting
until the resource can be acquired and the test expression evaluates to true. In
the special case where b is true we can derive the following simpler formula:

[[with r do P]] = try(r)∞ acq(r) [[P]] rel(r).

The clause for a local channel declaration “forces” synchronization to occur on
the local channel. We write α\h for the trace obtained from α by deleting h! and
h? from all sets of directions occurring in idling actions along α.

The clause for parallel composition involves a form of mutex fairmerge for
trace sets. When A1 and A2 are disjoint sets of resource names and T1 and T2

are trace sets, T1 A1‖A2 T2 denotes the set of all (synchronizing) interleavings of
a trace from T1 with a trace from T2, subject to the constraint that the process
executing T1 starts with resources A1 and the process executing T2 starts with
resources A2, and at all stages the resources held by the two processes stay
disjoint. For each pair of traces α1 and α2 we define the set of traces α1 A1‖A2 α2,
and then we let T1 A1‖A2 T2 =

⋃{α1 A1‖A2 α2 | α1 ∈ T1 & α2 ∈ T2}.
We design this fairmerge operator so that the potential of a race (concurrent

execution of actions which may interfere in an unpredictable manner) is treated
as a catastrophe. We write λ1 �	 λ2 to indicate a race, given by the following
rules:

Retracing the Semantics of CSP 9

x=v �	 x:=v′

x:=v �	 x=v′

x:=v �	 x:=v′

h!v �	 h!v′

h?v �	 h?v′

In particular, we regard as a race any concurrent attempt to write to a variable
being read or written by another process. And we also treat concurrent attempts
to input to the same channel, or to output to the same channel, as a race.

For finite traces (including the empty sequence to allow a simpler base case)
the set of mutex fairmerges using any given pair of disjoint resource sets can be
characterized inductively from the following clauses:

α A1‖A2 ε = {α | (A1, A2) α−−→ ·}
ε A1‖A2 α = {α | (A2, A1) α−−→ ·}
(λ1α1) A1‖A2 (λ2α2) = {abort} if λ1 �	 λ2

(λ1α1) A1‖A2 (λ2α2) =
{λ1γ | (A1, A2)

λ1−−→ (A′
1, A2) & γ ∈ α1 A′

1
‖A2 (λ2α2)}

∪ {λ2γ | (A2, A1)
λ2−−→ (A′

2, A1) & γ ∈ (λ1α1) A1‖A′
2
α2}

∪ {δγ | match(λ1, λ2) & γ ∈ α1 A1‖A2 α2}
if ¬(λ1 �	 λ2)

The above clauses actually suffice for all pairs of traces, one of which is fi-
nite. We can extend this mutex fairmerge relation to pairs of infinite traces in a
natural manner, imposing a fairness constraint that reflects our assumption that
a pair of processes waiting for a matching pair of communications will eventu-
ally get scheduled to communicate. This is a variant of weak process fairness
adapted to take account of the synchronization mechanism used for CSP-style
communication. Although we omit the full definition, note the following special
case involving two infinite waiting traces:

δX
ω

A1‖A2 δY
ω = {}

if ∃h. (h? ∈ X & h! ∈ Y) ∨ (h! ∈ X & h? ∈ Y). This captures formally the
fairness assumption from above: there is no fair way to interleave the actions of
these two traces because there is a persistent opportunity for synchronization
that never gets taken.

6 Examples

We now revisit the examples discussed earlier, previously used to illustrate com-
munication traces, failures, and divergences.

First, we contrast the action traces of an internal choice with those of the
corresponding external choice.

[[(a?x→ h!x) � (b?x→ h!x)]] = δ{a?}
∞{a?v x:=v h!v | v ∈ Vint}

∪ δ{b?}
∞{b?v x:=v h!v | v ∈ Vint}

10 S. Brookes

[[if (a?x→ h!x) (b?x→ h!x) fi]] = δ{a?,b?}
∞{a?v x:=v h!v | v ∈ Vint}

∪ δ{a?,b?}
∞{b?v x:=v h!v | v ∈ Vint}

As with the failures model this semantics distinguishes properly between these
processes. There is an obvious sense in which the ability to “refuse” input on
a is represented here by the presence of a trace involving infinite waiting for
input on b.

Similarly we have

[[a?x→ h!x]] = δ{a?}
∞{a?v x:=v h!v | v ∈ Vint}

[[if (a?x→ h!x) (a?x→ stop) fi]] =
δ{a?}

∞{a?v x:=v h!v | v ∈ Vint}
∪ δ{a?}

∞{a?v x:=v α | α ∈ [[stop]] & | v ∈ Vint}
so that again we distinguish correctly between these processes. (We note in
passing here that every process, even stop, denotes a non-empty set of traces.)

The divergent program discussed earlier,

chan a in
(while true do a?x) ‖ (while true do a!0),

denotes the action trace set {δω}. We see no compelling reason to distinguish
this program from a deadlocked process such as stop or the process

chan a in (a?x;h!x),

which will never be able to engage in external communication on channel h
because the local channel a is not in scope for any external process. This process
waits forever for input on the local channel, a phenomenon that gives rise to
the trace δ{}

ω. Indeed our semantics gives this program the corresponding trace
set {δω}. We also choose not to interpret divergence as catastrophic, although
it would be possible to derive a model along those lines by imposing suitable
closure conditions on action trace sets.

The following semantic equivalences illustrate how our model supports rea-
soning about process behavior.

Theorem 1 (Synchronous Laws)
The following laws hold in the synchronous trace semantics:

1. [[chan h in (h?x;P)‖(h!v;Q)]] = [[chan h in (x:=v; (P‖Q))]]
2. [[chan h in (h?x;P)‖(Q1;Q2)]] = [[Q1; chan h in (h?x;P)‖Q2]]

provided h �∈ chans(Q1)
3. [[chan h in (h!v;P)‖(Q1;Q2)]] = [[Q1; chan h in (h!v;P)‖Q2]]

provided h �∈ chans(Q1).

These laws reflect our assumption of fairness, and can be particularly helpful
in proving liveness properties. They are not valid in an unfair semantics: if
execution is unfair there is no guarantee in the first law that the synchronization
will eventually occur, and there is no guarantee in the second or third laws that
the right-hand process will ever execute its initial (non-local) code.

Retracing the Semantics of CSP 11

7 Granularity

Our semantics involves actions which represent rather high-level operations, such
as assignments of an entire integer value to a variable, and communication of an
entire integer value along a channel. Rather than assuming that such actions are
implemented at the hardware or network level as indivisible atomic operations,
we have designed our parallel composition so that any concurrent attempt to
perform actions whose combined effect is sensitive to granularity is treated as a
catastrophe. As a consequence, our semantics can be shown to be independent
of granularity in a precise sense.

Specifically, we can give a “low-level” semantics for processes, based on “low-
level” actions that represent fine-grained atomic steps. At low-level we assume
that integers are represented as lists of words, with some fixed word size W, and
that messages are transmitted as sequences of packets, of some fixed packet size
M . A high-level read of the form x=v then corresponds to a sequence of low-level
reads of the form x.0=w0 . . . x.k:=wk, where x.0, . . . , x.k represent the various
components of x and the sequence of word values w0 . . . wk represents the integer
v (for word size W). Similarly a high-level write corresponds to a sequence of
low-level writes. A high-level input action h?v corresponds to a sequence of low-
level input actions terminated by an end-of-transmission signal, and similarly for
an output action. Let us write v = [w0, . . . , wk]W to indicate that the given word
sequence represents v, i.e. that v = w0 + 2Ww1 + · · · + 2kWwk, with a similar
notation v = [m0, . . . ,mn]M for messages. In the low-level semantics, which we
will denote [[P]]low , we would thus have:

[[h!e]]low = {ρ h!m0 . . . h!mn h!EOT | (ρ, v) ∈ [[e]] & [m0, . . . ,mn]M = v}
[[h?x]]low = {h?m0 . . . h?mn h?EOTx.0:=w0 . . . x.k:=wk |

v = [m0, . . . ,mn]M = [w0, . . . , wk]W }
A high-level state σ describes the values of a finite collection of variables, so

that σ is a finite partial function from identifiers to integers. A low-level state can
be regarded as a finite partial function τ from identifiers to lists of words. The
effect of a high-level action λ can be formalized as a partial function λ==⇒ between
high-level states, and similarly for low-level actions and their effect on low-level
states. In both cases we use abort for an error state. There is an obvious way
to define an appropriate notion of correspondence between high- and low-level
states: σ ≈ τ if dom(σ) = dom(τ) and, for each x ∈ dom(σ), σ(x) = [τ(x)]W . It
can then be shown that for all processes P :
– for all high-level traces α of P , if σ ≈ τ and σ

α==⇒ σ′ �= abort then there
is a low-level trace β of P and a low-level state τ ′ such that τ

β==⇒ τ ′ and
σ′ ≈ τ ′;

– for all low-level traces β of P , if σ ≈ τ and τ
β==⇒ τ ′ then there is a high-level

trace α of P such that either σ
α==⇒ abort or σ

α==⇒ σ′ for some high-level
state σ′ such that σ′ ≈ τ ′.

This formalizes the sense in which our high-level action trace semantics expresses
behavioral properties of programs in a manner independent of assumptions about

12 S. Brookes

details such as word size or packet size. The role played in this result by the race-
detecting clause in our definition of parallel composition is crucial.

8 Asynchrony

To model a language of asynchronously communicating processes, with the same
syntax, we need only to make a few modifications in the key semantic definitions
concerning communication. Specifically, the clauses for input, sequential compo-
sition, and conditional critical regions remain as before but we alter the clauses
for output (since waiting is no longer required), parallel composition (since syn-
chronization is no longer needed), and local channel declaration (since an output
to a local channel can occur autonomously but we still require the inputs to obey
the queueing discipline). The new clauses are:

[[h!e]] = {ρ h!v | (ρ, v) ∈ [[e]]}
[[P1‖P2]] = [[P1]] {}‖{} [[P2]]
[[chan h in P]] = {α\h | α ∈ [[P]]h}

We adjust the definition of interleaving, to delete the synchronization case:

(λ1α1) A1‖A2 (λ2α2) = {abort} if λ1 �	 λ2

(λ1α1) A1‖A2 (λ2α2) =
{λ1γ | (A1, A2)

λ1−−→ (A′
1, A2) & γ ∈ α1 A′

1
‖A2 (λ2α2)}

∪ {λ2γ | (A2, A1)
λ2−−→ (A′

2, A1) & γ ∈ (λ1α1) A1‖A′
2
α2}

otherwise

We also need to adjust the definition of fairmerge for pairs of infinite traces to
fit with the asynchronous interpretation, along the lines of [8] but modified to
handle race conditions as above.

Given a trace set T and channel h, we let Th be the set of traces α in T along
which the actions involving h obey the queue discipline. We write α\h for the
trace obtained from α by replacing each action that mentions channel h by δ.

Theorem 2 (Asynchronous Laws)
The following laws hold in the asynchronous trace semantics:

1. [[chan h in (h?x;P)‖(h!v;Q)]] = [[chan h in (x:=v;P)‖Q]]
2. [[chan h in (h?x;P)‖(Q1;Q2)]] = [[Q1; chan h in (h?x;P)‖Q2]]

provided h �∈ chans(Q1).

Again these laws reflect our assumption of fair execution. There is an obvious
similarity with the corresponding pair of laws from the synchronous setting, but
note the subtly different positioning of the assignment to x in the first law.

Retracing the Semantics of CSP 13

9 Conclusion

We have introduced a semantic framework based on action traces and a form
of resource-sensitive, race-detecting, parallel composition. This can be used to
provide models for a language combining shared memory parallelism with com-
municating processes. (We explore the use of such a semantics for shared memory
programs, and connections with separation logic, in [9].) This language can be
viewed as a generalization of CSP that retains and expands on the imperative
essence of original CSP yet possesses a semantic model that reflects the elegance
of the design principles behind the original language. Action traces allow the
expression of concepts such as failures and divergences, familiar from the tradi-
tional models of CSP, without the need to commit to a catastrophic treatment
of divergence.

The syntactic constraints built into the original version of CSP – disjoint local
states, no nested parallelism, and restricted patterns of communication between
processes because of the naming discipline – are sufficient to rule out race condi-
tions, so that for programs in the original CSP we could adapt our semantics in
the obvious manner, by deleting the race-detection clauses. Our language – and
semantics – allow a more generous syntax within which one can reason about
program behavior in a manner independent of hardware assumptions.

References

1. Brookes, S., A model for communicating sequential processes, D. Phil. thesis, Ox-
ford University (1983).

2. Brookes, S.D. and Hoare, C.A.R., and Roscoe, A.W., A theory of communicating
sequential processes, JACM 31(3):560–599 (1984).

3. Brookes, S. and Roscoe, A.W., An improved failures model for CSP, Proc. Seminar
on Concurrency, Springer-Verlag LNCS 197, 1985.

4. Brookes, S., Full abstraction for a shared-variable parallel language, Proc. 8th IEEE
Symposium on Logic in Computer Science, IEEE Computer Society Press (1993),
98–109.

5. Brookes, S., Fair communicating processes, in A.W. Roscoe (ed.), A Classical
Mind: Essays in Honour of C.A.R. Hoare, Prentice-Hall International (1994),
59–74.

6. Brookes, S., and Older, S., Full abstraction for strongly fair communicating pro-
cesses, Proc. 11th Conference on Mathematical Foundations of Programming Se-
mantics (MFPS’95), ENTCS vol. 1, Elsevier Science B. V. (1995).

7. Brookes, S., Communicating Parallel Processes, Symposium in Celebration of the
work of C.A.R. Hoare, Oxford University, MacMillan (2000).

8. Brookes, S., Traces, Pomsets, Fairness and Full Abstraction for Communicating
Processes, Proc. CONCUR’02, Springer-Verlag, 2002.

9. Brookes, S., A semantics for concurrent separation logic, to appear in: Proc. CON-
CUR’04, Springer-Verlag, September 2004.

10. Dijsktra, E. W., Cooperating sequential processes, in: Programming Languages,
in F. Genuys (ed.), Academic Press (1968), 43–112.

11. Dijkstra, E. W., Guarded Commands, Nondeterminacy, and Formal Derivation of
Programs, Comm. ACM 18(8):453–457 (1975).

14 S. Brookes

12. Formal Systems (Europe) Ltd, Failures-Divergence Refinement: FDR2 Manual,
1997.

13. Francez, N., Fairness, Springer-Verlag (1986).
14. Hennessy, M. and Plotkin, G.D., Full abstraction for a simple parallel programming

language, Proc. 8th MFCS, Springer-Verlag LNCS vol. 74, pages 108-120 (1979).
15. Hoare, C. A. R., Communicating Sequential Processes, Comm. ACM, 21(8):666–

677 (1978).
16. Hoare, C.A.R., A model for communicating sequential processes, in: On the con-

struction of programs, McKeag and McNaughton (eds.), Cambridge University
Press (1980).

17. Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall (1985).
18. Inmos Ltd., 2 reference manual, Prentice-Hall (1988).
19. R. Milner, A Calculus of Communicating Systems, Springer LNCS 92, 1980.
20. R. Milner, Communication and Concurrency, Prentice-Hall, London, 1989.
21. Older, S., A Denotational Framework for Fair Communicating Processes, Ph.D.

thesis, Carnegie Mellon University, (1997).
22. Olderog, E-R., and Hoare, C.A.R., Specification-oriented semantics for communi-

cating processes, Acta Informatica 23, 9-66, 1986.
23. S. Owicki and L. Lamport, Proving liveness properties of concurrent programs,

ACM TOPLAS, 4(3): 455-495, July 1982.
24. Park, D., On the semantics of fair parallelism. In D. Bjørner, editor, Abstract

Software Specifications, Springer-Verlag LNCS vol. 86 (1979), 504–526.
25. Plotkin, G. D., An operational semantics for CSP, In D. Bjørner, editor, Formal

Description of Programming Concepts II, Proc. IFIP Working Conference,
North-Holland (1983), 199-225.

26. Reppy, J., Concurrent ML: Design, Application and Semantics, in: Functional
Programming, Concurrency, Simulation and Automated Reasoning, P.
Lauer (ed.), Springer-Verlag LNCS 693, 165–198 (1993).

27. Roscoe, A.W., A mathematical theory of communicating processes, D. Phil. thesis,
Oxford University (1982).

28. Roscoe, A.W., The Theory and Practice of Concurrency, Prentice-Hall
(1998).

29. Roscoe, A.W. and Hoare, C.A.R., The laws of programming, Theoretical
Computer Science, 60:177–229 (1988).

30. Roscoe, A.W., Model checking CSP, in A Classical Mind: Essays in Honour
of C.A.R. Hoare, Prentice-Hall (1994).

occam

occam

Seeing Beyond Divergence

A.W. Roscoe

Oxford University Computing Laboratory

Abstract. A long-standing complaint about the theory of CSP has been
that all theories which encompass divergence are divergence-strict, mean-
ing that nothing beyond the first divergence can be seen. In this paper
we show that a congruence previously identified as the weakest one to
predict divergence over labelled transition systems (LTS’s) can be given
a non-standard fixed-point theory, which we term reflected fixed points
and thereby turned into a full CSP model which is congruent to the
operational semantics over LTS’s.

1 Introduction

The author has long (actually 26 years!) worked on mathematical models for
concurrent systems, in particular Hoare’s CSP [7]. The models he has used –
based on observable behaviours – bear an obvious similarity to the congruences
studied, for example, by Valmari and his co-workers [15, 16]. The main difference
has been that those in the CSP “school” have sought complete semantic theories
in which the semantics of every term – including recursive ones – could be calcu-
lated denotationally, whereas Valmari has concentrated on congruences1 for sets
of non-recursive operators. Thus he did not seek to supply a fixed-point theory of
recursion over his congruences, being happy to rely on the operational semantics.

The models themselves have been broadly similar, particularly after one fac-
tors out the differences (more or less irrelevant to this paper) caused by the
different choice operators used: either the CSP � and � (the latter not being re-
solved by a τ) and the CCS + (which is resolved by τ , necessitating knowledge
of initial stability). All inhabit the world of finite and infinite traces, diver-
gence traces, and failures/acceptances. The only difference has been that the
CSP models have been unable to determine what the non-minimal traces are
that a process can diverge on, and what the infinite traces are beyond potential
divergence. (The failures/divergences/infinite traces model U gives all relevant
information up to a minimal divergence, and the stable failures/traces model F
gives all information on finite traces and stable failures whether beyond potential
divergence or not. See [11] for details of these.)

The main reason for this difficulty is that none of the straightforward ways of
finding fixed points give the correct (i.e. operationally correct) answer. We show

1 The semantic value arises here from applying the observations used to determine a
congruence to the operational (LTS) semantics of the process under examination.

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): CSP LNCS 3525, pp. 15–35, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

25,

16 A.W. Roscoe

here how this problem can be solved using the model of [9] and a more exotic
method of calculating fixed points.

Since divergence is generally considered an error it is possible to argue (and
the author has in the past!) that there is little point in being able to see the fine
details of what goes on beyond it. In many cases that is true; fortunately so given
the complications we will see in this paper. In other circumstances, however,
divergence may represent an abstraction of some phenomenon a designer finds
acceptable such as a “busy wait”, and it is then fair to ask what will happen if
the system gets beyond that point by taking a different branch. For example an
operating system designer might well require that once a system has accepted
a close down command then it does so cleanly and finitely, even though it may
have passed through many potentially divergent states before this point. The
reader should therefore realise that this paper provides a sophisticated option
for those who require this extra discernment, rather than a model that should
be a natural first choice.

For simplicity in this paper we present a model which predicts only finite and
infinite traces and divergences – ignoring failures. The latter can be calculated
independently through F , or alternatively an extra component can straightfor-
wardly be added to the model we present.

We adopt the full language of CSP from [11], including the interrupt operator
� (which has some interesting properties). We note that since a model without
failures identifies �, � and +, this model will also work for languages in the style of
CCS. The semantics of CSP over U and the other standard models can be found in
[11], as can the operational semantics of the language. Some of the simpler forms of
operational/denotational congruence result are proved in that book, but not the
much harder result for U , which is proved in [13]. This paper rests heavily both on
this latter result and adaptations of the techniques used in proving it, for example
the idea of an approximating sequence of abstraction functions.

The rest of this paper is organised as follows. In the next section we recall
two congruences without divergence strictness which would, if a fixed-point the-
ory could be developed, solve our problem. However we see that one of these
cannot have a conventional denotational fixed-point theory, which leads us to
concentrate on a single model. In the section following that we see why neither
the least nor greatest fixed point gives a sensible semantics for recursion over it.
In Section 4 we demonstrate a fixed point that does apparently give the correct
answer, and we show that it is the operationally correct one.

In appendices we give a summary of notation, models, etc (essentially follow-
ing [11]), and the new semantics for CSP.

2 Congruences and Fixed Points

The CFFD congruence (see, for example, [14]) records a process’s finite and
infinite traces, its divergence traces and its stable failures (pairs (s,X) where
X is a set of actions that the process can refuse in some stable, namely τ -free,
state after trace s, where neither s nor X includes the invisible event τ). Since

Seeing Beyond Divergence 17

we are not seeking to model failures in this paper, it makes sense to simplify
CFFD to CFFDT , in which the component of stable failures is removed. This
remains a congruence since in CSP and similar languages refusal information
does not affect traces or divergences through any operator. (For it to do so
would correspond to the operational semantics having a form of negation in the
antecedents to some transitions.)

Since CFFD and CFFDT are attractive congruences (seemingly containing
just the information we are looking for) it is natural to ask whether we can find a
denotational fixed-point theory for them. Unfortunately the answer appears to be
no, at least in any conventional sense, if we want that theory to be operationally
congruent.

Theorem 1 . There are pairs of CSP recursions whose operational semantics
yield different values in CFFD and CFFDT , but which generate identical func-
tions from each of these two models to itself. Therefore there can be no opera-
tionally congruent definition of recursion derived from the function a recursion
represents.

Proof. Let Σ = {a}. Consider the process

FA = STOP � (FA � a → (div � STOP))

(Here, div denotes a process that does nothing but diverge.) This may diverge
immediately since the nondeterministic choice may always resolve to the right
and interrupt may never occur. However it might perform any finite number of
a’s thanks to layers of interrupts occurring, and plainly may diverge after any
of them. For CFFD, which records failures, it can refuse any set after any trace.
However, crucially, it cannot perform an infinite trace of as since whenever it
performs its first a the number of subsequent ones has some finite bound. (The
bound is the number of recursive unfoldings that have occurred up to the point
that the first a occurs.)

Notice that FA has every possible trace, divergence and failure except for the
infinite trace aω. The same value can be created without interrupt by using, for
example, infinite nondeterministic choice.2

Now consider these two CSP contexts:

F1(P) = FA � P

F2(P) = FA � a → P

The functions F1 and F2 that these contexts generate are identical: the non-
deterministic choice of FA means that all behaviours other than aω belong to

2 The particular version given here in terms of � is due to Valmari. The author had
earlier discovered other examples which made use of infinite nondeterministic choice.
Subsequent to the CSP 25 conference he learned that Paul Levy had independently
discovered the same result via a similar counterexample to his own.

18 A.W. Roscoe

both Fi(P) independent of the value of P . Furthermore, in each case it is clear
that this infinite trace is present if and only if P has it. It follows that F1 and
F2 are, extensionally, the same function.

However, operationally, the recursions Pi = Fi(Pi) yield different values. P1

can perform an arbitrarily large finite number of τs and then act like FA, or can
simply diverge without reaching FA. The important thing is that it has no way
of performing the trace aω. On the other hand P2 can obviously perform this
trace by always picking the right-hand of its two nondeterministic options.

It follows that the extensional value of a function over CFFD or CFFDT does
not determine the value of the recursion produced by that function.

The above example works by using the FA process to shroud the difference
between what F1 and F2 do to P . The example would not work if we removed
FA’s ability to diverge after any trace since it is clear that P1 would in any
case diverge on 〈〉, whereas P2 would not diverge, and if FA could (for example)
diverge on the empty trace then P2 could diverge on all traces.

It turns out that the type of difficulty we have experienced with F1 and F2

only occurs in cases like this, where the difference between the two recursions
is restricted to infinite traces which belong to divergences(P), the closure of the
set of divergent traces (namely, the infinite traces that have an infinite chain of
divergent prefixes).

The clear lesson to draw from this example is that we either need to add detail
to, or remove detail from, our model in order to get a working fixed-point model
of recursion. One possibility, which coincides with the abstraction from CFFD
made by Puhakka and Valmari for a related reason3 in [10] (see also [9]), is not
to care about whether an infinite trace which has an infinite chain of divergent
prefixes is present or not: we may choose either to omit all such traces or to
include them all. The point of interest here is that the operationally determined
values of processes P1 and P2 above are identified by this new equivalence: the
trace aω is put into the don’t-care category by the divergences P1 and P2 share.

If, as is typically the case in CSP, we want to have a simple theory of refine-
ment, the correct choice is to include, rather than exclude, all traces that are
the limits of chains of divergences. For obviously the process P = a → P refines
P � FA, but this would not appear from the usual reverse containment relation if
we were forced to exclude aω from the representation of the right-hand process.

We therefore use the model SBD (standing for seeing beyond divergence) in
which each process is represented by a triple (T , I ,D), where T and D are the
finite traces and divergence traces, and I is the union of the infinite traces and
the infinite traces in D . (This model’s elements are obviously in 1-1 correspon-
dence with the members of the Tr −DivTr −Enditr congruence from [10].) The
healthiness conditions on this model (in the style usually used for CSP models)
are

T1 T is nonempty and prefix-closed.
I1 s ∈ Σ∗ ∧ s û ∈ I ⇒ s ∈ T

3 The most abstract congruence capable of detecting all divergence traces.

Seeing Beyond Divergence 19

D1 D ⊆ T
D2 u ∈ Σω ∧ ({s ∈ Σ∗ | s < u} ∩D) is infinite =⇒ u ∈ I

We term the infinite traces covered by D2 ω-divergent traces. Following [10]
we term the set of these DivCl(P) for process P .

The above model differs from Tr − DivTr − Enditr in that it specifically
includes rather than excludes the members of DivCl(P). That does not affect
which processes are considered equivalent, but it gives a smoother definition of
refinement, as discussed above.

By extension from the result of [10], this is the weakest congruence which
predicts all divergences of a CSP process. We will show in the next section that
it is possible to find a working, if complex, fixed-point theory that calculates the
values of recursive processes. The reasons why it is a congruence for all CSP
operators are, in essence

– If we have two processes that differ only in ω-divergent traces, then the result
of applying any CSP operator to them could only differ in either a divergence
(which can arise because an infinite trace is hidden in one but not the other)
or an infinite trace.

– However if the ω-divergent trace u of P generates, in C [P], the divergence
trace s, then certainly there is a finite prefix t of u such that all t ≤ t ′ ≤ u
yield the trace s in C [P]. However we know that infinitely many of these t ′

are divergence traces of P , meaning that C [P] gets the divergence from u’s
divergent prefixes as well as u itself. (For once C [P] has generated the trace
s via t , and has carried on generating internal actions through subsequent
actions of u, then as soon as P ’s trace reaches divergent t ′ then C [P] can
diverge without any more actions of u occurring.) Therefore the divergence
would still be in C [P] even if u were removed from P .

– If an ω-divergent trace u of P yields the infinite trace v in C [P] then either a
finite prefix of u also generates v or none do. In the former case the presence
of v does not depend on u, so u may be removed without affecting it. In the
latter an infinite chain of divergent prefixes of u will yield an infinite chain
of divergent prefixes of v : this means that v is ω-divergent in C [P] and so
in the category of traces whose presence is immaterial thanks to D2.

In any case removing an ω-divergent trace from P will never affect the presence
of any behaviour of C [P] that is recorded in SBD.

3 Greatest and Least Fixed Points

It is clear that SBD provides a less abstract view of CSP processes than the
finite/infinite traces and divergences model I which is strict after divergence,
in the sense that the value of a process in SBD trivially yields the value in I.
(More details of I and the projection Π which performs the translation are given
below.)

This immediately tells us quite a lot about the value of any recursive term
in SBD: it must be one that projects to the value calculated in I. The existing

20 A.W. Roscoe

theory of CSP models tells us how to compute this as a fixed point. For details
on this and why the result is operationally correct, see [13, 11]. In order to
understand how we might solve the fixed-point problem for SBD, it is a good
idea to review how other CSP models solve this problem.

The first model for CSP [6] was the finite traces model T in which each
process is represented by its (nonempty and prefix-closed) set of finite traces
(sequences of visible events). It is straightforward to give a semantics to each
non-recursive CSP operator over T which is operationally correct. The fixed-
point theory which has always been quoted as standard for that model is based
on least fixed points under subset (corresponding to greatest fixed points under
refinement). There is a clear operational intuition for this: if we run the recursive
process μ p.F (p) then any actual trace will have occurred after a finite time, so
that the recursion can only have been unwound a finite number of times. Since
μ p.F (p) can only actually do anything once it has been unwound, it follows that
(on the assumption that the operational and semantic representations of F are
congruent), every trace comes from Fn(STOP) for some n. The reverse is also
true for similar reasons.

Given that every CSP operator is continuous under the subset order (see [11],
Chapter 8), this informally justifies the use of this fixed point. For a formal proof
that it is correct, see [11], Chapter 9.

The second model for CSP was the failures model of [2] which adopted the
opposite fixed-point strategy: it takes the refinement-least. The argument used
there4 was based on a clear rationale: assume the worst and you will not be
disappointed. But of course there was a good pragmatic reason too: there is no
least element of that model under subset. A consequence of that decision was
that ill-defined recursions such as μ p.p were given lots of traces even though
there was no operational reason for doing so. This was the origin of the intuition
that a divergent process should be identified with the least refined one: however
that model did not in fact stand careful examination when it came to divergent
terms. This led to the introduction of the divergences component in [3] leading
to the now-standard failures/divergences model N .

Brief consideration of how the mathematics of fixed points works reveals
that the refinement-least fixed point is necessary in considering divergence. For
example the recursion μ p.p plainly is divergent operationally, if it means any-
thing at all, so within N we want it to denote the least refined process, since
that is the only one which is immediately divergent. If we were to throw away
the refusal components of failures (giving a finite traces/divergences model) so
that we regained a ⊆-least element (STOP again), the ⊆-least fixed point would
not be operationally correct. The essential point here is that a divergence is
not something that can ever arise in a finite number of iterations of F (·) from
STOP except where F (P) may diverge even though P does not. So, with this
class of exceptions,

⋃{Fn(STOP) | n ∈ N} cannot diverge either: this is not
true of operational fixed points. Rather each particular divergence should be

4 That paper was written before there was a proper operational semantics for CSP.

Seeing Beyond Divergence 21

proved absent in some number of iterations of F (·), which is the essence of the
�-least fixed-point calculation.5 Unless it can be proved absent, it is deemed to
be there; and indeed this is accurate since we can again prove congruence with
the operational semantics.

An interesting observation that can be made here is that we now know that
both ⊆ greatest and least fixed points are accurate for computing operationally
congruent fixed points for any non-divergent process in (finitely nondetermin-
istic) CSP. It follows that these two are the same, so the fixed point is actu-
ally unique. Another way of demonstrating the uniqueness of fixed points for
divergence-free processes is via a more rigid divergence-based order as shown in
[12]. (The only way P ≤ Q is if Q ’s divergences are a subset of P ’s and P and
Q agree precisely on all traces not in divergences(P): this is called the strong
order, but only makes sense for divergence-strict models.)

Since T and N , a number of other CSP models on similar lines have been
developed. Notable amongst these are the stable failures model F and infi-
nite traces/failures/divergences model U . The former, representing a process
as (F ,T) (its sets of stable failures – ones generated in a τ -free state – and finite
traces) contains only finitely observable behaviours and, like T , uses subset-least
fixed points. The latter represents a process as (F ,D , I), its sets of failures, di-
vergences and infinite traces, each closed under divergences so as to make the
divergent process bottom under refinement. This has a particularly interesting
fixed-point theory, since the healthiness conditions relating failures and infinite
traces cause the refinement partial order to be incomplete. Nevertheless, as can
be shown by various methods [13, 1], refinement-least fixed points do exist for all
CSP-definable functions and are operationally congruent. The proof of the con-
gruence between operational and denotational semantics, which is both difficult
and crucial to the present paper, may be found in [13]. U (introduced in that
paper) is in essence the minimal extension of N that can cope accurately with
unboundedly nondeterministic operators, and treats divergence in the same way.

As mentioned earlier in relation to CFFD, U can be simplified to I in which
failures are replaced by finite traces, so a process is represented as (T ,D , I).
This at least makes the incompleteness problem go away6, though it does not
significantly affect the congruence proof. Once again the model has a refinement
top (STOP) and since the greatest fixed point of μ p.a → p has no infinite trace
(it can simply perform every finite trace of a’s) we see that the use of the �-
least fixed point is vital not only for divergences (as discussed above) but also for

5 With respect to �, not all operators are continuous, though they are monotone (see
[11] Chapter 8), meaning that fixed-point calculations may need to go to higher
ordinals that ω. However this model only turns out to be operationally congruent
for finitely nondeterministic CSP, in which operators are continuous. The essence of
the proof that that in the finitely nondeterministic case this method predicts the
correct divergences is an application of König’s Lemma.

6 Though this is really superficial, since there is still an imperative to demonstrate that
the set of infinite traces calculated is consistent with the set of failures calculated
via the stable failures model.

22 A.W. Roscoe

infinite traces: operationally, this process obviously does have an infinite trace,
which is correctly predicted by the �-least fixed point.

The conclusion to this survey is that the �-least fixed point is necessary to
handle infinite behaviours (namely infinite traces and divergences) properly, but
that ⊆ is the correct order to use for finitary ones (namely finite traces and
stable failures). The latter is emphasised by the fact that T and F are accurate
for the full language (including unbounded nondeterminism) and predict the
correct behaviours even beyond potential divergence (which is just as well since
the models don’t know when this occurs). We get away with using �-least fixed
points for finite traces and failures prior to divergence simply because these parts
of a process are uniquely determined so any fixed-point theory would work. And
of course in the failures/divergences model we do not have to worry about what
happens after divergence because everything is mapped to bottom.

In this section we have switched between component-wise subset (⊆) and
refinement (�) – opposites – in discussing fixed points thanks to historical con-
ventions. However from now on, in discussing the calculation of fixed points over
SBD, we will use only ⊆.

4 Reflected Fixed Points

Greatest fixed points do not produce the operationally correct values in SBD:
for example the recursion μ p.p is given all finite and infinite traces rather than
just the empty trace, which is the right answer. (It is also given all divergences
rather than the correct {〈〉}.) Nor do least fixed points, since the same (divergent)
recursion is given the non-divergent value STOP , and the process μ p.a → p is
given no infinite trace.

We therefore have to seek a new way of producing a fixed point. In this sec-
tion we will do this, as part of an overall exercise in demonstrating that the
CSP semantics over SBD including this fixed-point theory is congruent to the
operational semantics. These two things go hand in hand since the operational
justification of the fixed-point theory only makes sense in the context of congru-
ence proof, which we now develop.

As with any congruence proof, we need to be careful in distinguishing opera-
tional terms and semantic values. The proof itself will be by structural induction
over all CSP terms in which all free process identifiers are instantiated by nodes
of an arbitrary labelled transition system (LTS), perhaps the set of closed CSP
terms themselves, for all such instantiations simultaneously, as opposed to in-
ducting separately for each one.

Since we need to distinguish between different sorts of semantics, we use the
notation SBD[[P]]ρ to mean the denotational semantics of the term P in SBD
where the denotational environment ρ : PV → SBD gives the binding of all
process variables that might appear free in P . Similarly I[[P]]η is the denotational
semantics over I.

Specifically, we will aim for the following result.

Seeing Beyond Divergence 23

Theorem 2 . For each CSP term P , and each operational environment σ :
PV → Ĉ (C being an arbitrary LTS and Ĉ its set of nodes), we have

Ψ(P [σ]) = SBD[[P]](Ψ(σ))

where Ψ is the natural map from the nodes of any LTS to SBD, P [σ] is P with the
substitution of each variable v by σ[v], and Ψ(σ) is the function from PV to SBD
(a denotational environment) produced by applying Ψ to σ(v) for each variable v7.

Additionally, the function SBD[[P]] of denotational environments is
monotone.

The second part of this result is necessary to justify some of the constructions
and arguments we make below. It is straightforward aside from the case of a
recursive term, which requires a more complex inductive argument which we
will discuss later. (Note that SBD[[μ p.P]] is not even defined at present since
we don’t yet know how to calculate the value of a recursive term.)

To prove this result we need to consider every possible top-level structure for
P . These split up into three categories:

– The case where the term P is just a process variable is trivial.
– There are many cases in which P is either a process constant (like STOP)

or a non-recursive operator. The semantics of all non-recursive operators
over SBD are given in Appendix B. In every case they are identical to the
semantics over I implied8 in [13] except that the clauses used to enforce di-
vergence strictness are omitted. In each case it is reasonably straightforward
to prove that the denotational and operational semantics of the operator are
congruent using the same techniques as in [13].

Of course these results simply parallel the result of [10] that SBD is a
congruence.

– P might be a recursion μ p.Q . As in [13], we do not explicitly cover mutual
recursion in this proof because of the extra book-keeping, but there is no
doubt that the same techniques used below would work for any finite mutual
recursion; in infinite mutual recursions similar techniques should work.

The rest of this section is devoted to developing a fixed-point method
which makes the result true for μ p.Q on the assumption that it is true for Q .

LetΦbe the abstractionmap (analogous toΨ)whichmaps the nodes of anyLTS
to I (this is essentially the same as the function of the same name defined in [13]).

Fix an operational environment σ, and let Θ = Ψ((μ p.Q)[σ]) be the opera-
tionally correct value in SBD relating to the recursion evaluated over σ.

The recursion (for this fixed σ) yields functions FSBD : SBD → SBD and
FU : I → I defined by

FI(X) = I[[Q]]η[X /p]

FSBD(X) = SBD[[Q]]ρ[X /p]

7 This lifting Ψ(σ) of Ψ mapping operational to denotational environments actually
equals the functional composition Ψ ◦ σ.

8 The semantics in that paper is given over the more complex model U .

24 A.W. Roscoe

where η = Φ(σ) and ρ = Ψ(σ) are the denotational environments corresponding
to σ over the respective models.

Now let Π be the projection from SBD to I obtained by closing up under
divergence-strictness . (All extensions of divergences are added to all three com-
ponents.) By construction we have Φ = Π ◦ Ψ and since Q is (by our overall
inductive assumption in proving Theorem 2) operationally accurate over SBD
we get, for all members T of an LTS,

FI(Π(Ψ(T))) = Φ(Q [σ[T/p]]) = Π(Ψ(Q [σ[T/p]])) = Π(FSBD(Ψ(T)))

Since we can without loss of generality assume that our transition system
maps onto SBD under Ψ (analogously to the arguments used in [13]) this tells
that for each x ∈ SBD we have

FI(Π(x)) = Π(FSBD(x))

or in other words we have a commuting diagram.
Let Ω be the greatest (i.e. �-least) fixed point of FI . Thanks to the known

congruence of that semantics with the operational one, we have

Ω = Φ((μ p.Q)[σ]) = Π(Θ)

Furthermore, if K is any member of Π−1(Ω) we get

Π(FSBD(K)) = FI(Π(K)) = FI(Ω) = Ω

In other words FSBD maps Π−1(Ω) to itself.
If Λ = (T ,D , I) is any member of I, then Π−1(Λ) is the interval (i.e., ⊆-

convex subset) in SBD between its ⊆-greatest element, Λ itself, and its least,
which we denote Λ̃ and equals (T ′,D ′, I ′) where

T ′ = T \ {t ŝ | t ∈ D ∧ s �= 〈〉}
D ′ = D \ {t ŝ | t ∈ D ∧ s �= 〈〉}
I ′ = I \ {t û | t ∈ D ∧ u ∈ Σω}

In other words, in all three components, every behaviour following a potential
divergence has been removed. So

Π−1(Λ) = {K ∈ SBD | Λ̃ ⊆ K ⊆ Λ}
The preceding two paragraphs show (together with an easy demonstration of

the existence of least upper bounds) that Π−1(Ω) is a complete lattice preserved
by the function FSBD. The monotonicity of FSBD then tells us that it has both
greatest and least fixed points within Π−1(Ω).

We know that Θ ∈ Π−1(Ω). It is also a fixed point of FSBD since

Θ = Ψ(μ p.Q [σ])

= Ψ(Q [σ[μ p.Q [σ]/p]]) (1)

= SBD[[Q]](Ψ(σ[μ p.Q [σ]/p])) (2)

= FSBD(Ψ(μ p.Q [σ])) (3)

= FSBD(Θ)

Seeing Beyond Divergence 25

Here (1) follows by the operational semantics of recursion (which is to execute a
τ action and unfold to the term on the right), (2) by our inductive assumption
that the denotational and operational semantics of Q are congruent, and (3) by
our definition of FSBD.

It follows that Θ lies between the least and greatest fixed points of FSBD
within Π−1(Ω). If these are the same, we have no more to do, but unfortunately
this is not always the case, as for example in the recursion μ p.p.

We will prove, however, that the least fixed point in Π−1(Ω) is always the
operationally correct one, and furthermore that it is always given by the standard
formula⋃∞

n=0 Fn
SBD(Ω̃)

(bearing in mind that Ω̃ is the bottom element of the complete lattice we are
concentrating on). As is common, the proof that the above term, which we will
name Ξ, equals Θ, comes in two parts.

That Ξ ⊆ Θ is easy, since Ω̃ ⊆ Θ and

Fn
SBD(Ω̃) ⊆ Θ ⇒ Fn+1

SBD(Ω̃) ⊆ FSBD(Θ) = Θ

giving the result for Ξ =
⋃∞

n=0 Fn
SBD(Ω̃) by induction.

The intuition behind the argument up to this point can be explained as follows.
We know that Ω is the accurate model of our recursion in I. Therefore all the
behaviours recorded in Ω̃ must actually be present in Θ (for we know that none
of them have been inserted by divergence strictness). Since all of these behaviours
are present and Θ is a fixed point of FSBD it follows that all the behaviours of
every Fn

SBD(Ω̃) are in Θ. Hence Ξ ⊆ Θ.

It is unfortunately more difficult to prove Θ ⊆ Ξ. If this were false, then
thanks to the definition of SBD (especially D2), Θ has a behaviour not present
in Ξ of one of the following sorts:

– A finite trace.
– A divergence.
– An infinite trace u such that there is some maximal divergence d with d < u.

(Note that any infinite trace without such a maximal divergence would imply
the existence of a divergence in Theta \Ξ.)

Necessarily the finite trace or divergence s would have to be a proper extension of
some longest divergence, namely there would have to be a divergence t < s which
is maximal subject to this. (Differences cannot appear up to the first divergence
since we are operating entirely within Π−1(Ω), a region in which all processes
agree up to that point.) We can assume the infinite trace is also the extension
of a longest divergence t because if there was no maximal divergence < u then
either Θ would have a divergence not in Ξ or Ξ would have u by axiom D2.

This suggests that, in proving Θ ⊆ Ξ, we might try to work by induction
based on this maximal divergence. One thought is to count how many divergences

26 A.W. Roscoe

there are along a trace, or use the length of trace of the maximal divergence,
but these do not work, at least easily, thanks to the complications of hiding.
What we actually do is to count how many computation steps (both visible and
τ) in the operational semantics of μ p.F (p) are needed to reach this maximal
divergence (though not to execute it): clearly this is always a finite number.

We use the technique of an increasing sequence of abstraction functions which
approximate Ψ , similar to that used in the main congruence result of [13]. How-
ever we only need an ω-sequence of them here rather than the arbitrary ordinals
in the Φα of that paper. The construction we use is exactly that of the previous
paper except for the Φ0 case, in which we map a process to the subset-least
member of SBD that is consistent with its value in I. (In the previous paper it
was mapped to bottom.)

Suppose we are given an LTS C and that P ∈ Ĉ . Define

Ψ0(P) = Φ̃(P)

Ψn+1(P) = ?x : P0 →�{Ψn(Q) | P x−→ Q}
if P is stable

Ψn+1(P) = ?x : P0 →�{Ψn(Q) | P x−→ Q}
� �{Φn(Q) | P τ−→ Q}

if P is not stable

We can view Ψn as Gn(Ψ0) where G : (Ĉ → SBD)→ (Ĉ → SBD) is implied by
the n + 1 case above. (Syntactically it is precisely the same as the G operator
in [13], though the model is different.) Since Ψ0 is the ⊆-minimal abstraction
consistent with Φ, and we know that (over I) G(Φ) = Φ it follows that Ψ1(P) ⊇
Ψ0(P) and hence inductively that the Ψi are a ⊆-increasing sequence.

Let Ψ∗(P) =
⋃{Ψn(P) | n ∈ N}, where again

⋃
is component-wise union

followed by closure under D2.
G(Ψ) = Ψ by construction, as the natural abstractions of the members of

an LTS plainly satisfy the defining equations of G. It therefore follows from
induction on the n in Ψn that Ψ∗(P) ⊆ Ψ(P) for all P . In fact, Ψ∗ = Ψ , as
demonstrated by the following argument.

If b is any behaviour of Ψ(P)\Ψ∗(P), then (as argued for Θ\Ξ above) by D2
we can assume that b is not an infinite trace with an infinite number of divergent
prefixes in Ψ(P). Therefore there is some proper prefix s of the trace of b which
is the maximal such trace on which P can diverge. Consider any sequence Q of
states in P ’s operational behaviour which witnesses b. If a is the next event on
the trace of b, let b′ be the residue of b after s 〈̂a〉 and let Q ′ be the first state
in Q after s 〈̂a〉. No state from Q ′ to the last of the sequence can be divergent
by our assumptions unless it is the last in the sequence and b is a divergence.

By construction b′ is in Ψ0(Q ′), as no proper prefix of b′ is divergent in Q ′,
and inducting backwards along the sequence of states on our path from P to Q ′

would easily show that b ∈ Ψn(P) (for n the length of the path). This contradicts
our assumption that b is not in Ψ∗(P), and we can conclude that indeed Ψ = Ψ∗.

Seeing Beyond Divergence 27

The claim that Θ ⊆ Ξ will be proved if we can show that, for every n,

Fn
SBD(Ω̃)) ⊇ Ψn(μ p.Q [σ]) (A)

since in the limit this proves Ξ ⊇ Θ, which is what remained to be proved.
This claim is proved by induction: the n = 0 case is trivial since both sides

equal Ω̃.
The n + 1 case is a corollary to the following result.

Lemma 1 . For all terms Q ′ and operational environments σ,

Ψn(Q ′[σ]) ⊆ SBD[[Q ′]](Ψn(σ))

Note that if Q ′ = Q (Q as in the term μ p.Q we are addressing in main in-
ductive step) and X is an arbitrary member of the underlying transition system,
this result implies

Ψn(Q [σ[X /p]]) ⊆ SBD[[Q]](Ψn(σ[X /p]))

and the right hand side of this inequality is trivially a subset of FSBD(Ψn(X)).
(It may be a proper subset since Ψn is applied to all components of σ[X /p], not
just the p one.)

That the step case of the proof of (A) above is a corollary follows thanks to
the τ which is generated on unfolding μ p.Q , which implies:

Ψn+1((μ p.Q)[σ]) = Ψn(Q [σ[(μ .p.Q)[σ]/p]]) ⊆ FSBD(Ψn((μ p.Q)[σ]))

The proof of Lemma 1 is by adding it to the structural induction of the main
theorem: they are actually proved together. Note that this is the approach used
in [13] for a very similar result involving the functions Φα.

Before we look at any technical details of the proof it is helpful to realise that
this seemingly very technical result actually has a simple intuition. If we accept
that Theorem 2 holds for our given Q , then what this lemma says is that the
behaviours of Ψ(Q [σ]) for which any non-final divergence occurs before the nth
state cannot depend on any behaviour of any σ[q] which can only happen beyond
a non-final divergence later than n. This can be argued at least semi-formally
thanks to two properties of the operational semantics:

(1) When any context C [P] runs, the first n steps of its behaviour depend on
at most n steps of P . This is because no operational semantic clause ever
lets an operand perform an action (visible or invisible) without the overall
process doing so as well. (For example, though P \ X hides visible actions of
P , in the operational semantics these are turned into τ actions, which still
count for our purposes.)
Therefore once Q [σ] has performed n operational steps, none of the compo-
nents σ[[q]] can have performed more than n.

28 A.W. Roscoe

(2) If the first step of C [P] depends on what actions P has available, and P
can immediately diverge, then so can C [P]. This is because the operational
semantics of every CSP operator (P ⊕Q say) whose immediate actions de-
pend on one of its operands (P say) also has a clause which promotes a τ

action of P (P τ−→ P ′) to one of P ⊕Q , namely (P ⊕Q) τ−→ (P ′ ⊕Q).

Let Q be any sequence of states that Q ′[σ] can go through executing a be-
haviour in which there is no divergent state between step n and any final di-
vergence (namely one reflected in Ψn(Q ′[σ]). Necessarily, once a component σ[p]
has been driven (in Q) to a point where it diverges beyond its own step n
(which because of (1) above is beyond step n overall), then either the overall
behaviour does not depend on it at all or is within a divergent tail of its own –
so anything the component may do after this point is irrelevant to Ψn(Q ′[σ]).
For the component of Q which contains this state of σ[p] is itself divergent
by (2).

We can infer that no behaviour in any Ψ(σ[p]) \ Ψn(σ[p]) is necessary to
deduce a behaviour of Ψn(Q ′[σ]).

To give a fully formal proof of the Lemma 1 part of our main induction
requires separate lemmas for each CSP operator very much in the style of those
given in [13] for the corresponding result. For recursion it is necessary to perform
inductions which follow the derivation of the fixed point: a transfinite one for the
fixed point in I followed by an ordinary one for the fixed point within Π−1(Ω)
we are now justifying. We omit these here for brevity.

The overall fixed-point calculation is summarised in Figure 1. The left-hand
side of the picture shows the entire model SBD, and the small diamonds in it
are the regions Π−1(X) for each value X in the ⊆-greatest or �-least fixed-
point iteration within I, whose ultimate fixed point is Ω. Note that since these
diamonds are the preimages of the members of I, they are necessarily disjoint;
of course the preimage of a divergence-free member of I is a singleton set. The
right-hand side is an expanded view of Π−1(Ω), showing the iteration from its
top towards the operationally correct value Θ. The left-hand side is not a very
accurate picture of I, since the latter has a top element. Our argument nowhere
uses this however, and would work just as well for an expanded model that
replaced finite traces by failures. This has no top (and indeed, like the model U
which it extends, is incomplete).

It is mainly because of this potential generalisation that the picture is drawn
the way up it is, with refinement from bottom to top (i.e. upside down with
respect to ⊆).

The remaining part of Theorem 2 is the monotonicity of SBD[[μ p.Q]]η as a
function of the environment η. To prove this we show that each part of the con-
struction illustrated in Figure 1 is monotone in η. If η ⊆ η′ then Π(η) ⊆ Π(η′),
and the monotonicity of the semantics over I implies Ω ⊆ Ω′. (We use the
obvious convention that primed terms are derived from η′ in the same way
that unprimed ones are derived from η.) This immediately implies Ω̃ ⊆ Ω̃′.

Seeing Beyond Divergence 29

Ω

∼
Ω

Ω

Θ

nF
∼

(Ω)

SBD

Fig. 1. Illustration of the reflected fixed-point calculation

The fact that SBD[[Q]] is monotonic by (structural) induction then shows by
induction (on n) that

Fn
SBD(Ω̃) ⊆ (F ′

SBD)n(Ω̃′)

for all n.
This concludes our demonstration that Theorem 2 and Lemma 1 hold.
The shape of the process illustrated in Figure 1 leads us to term the new fixed-

point method the reflected fixed point. We hope it might find use elsewhere, the
most obvious possibility being the refinement of other types of programming
languages from divergence-strict to not divergence-strict.

Obviously it only produces interesting answers in cases where the value of
a recursion is (not necessarily immediately) divergent, since otherwise Π−1(Ω̃)
has exactly one point.

The simplest example to check is the recursion Q1 = μ p.p. In this case Ω is
the refinement-least element of I and SBD, and Ω̃ = ({〈〉}, {〈〉}, ∅), the process
which diverges immediately and has no other trace. Since the the function of this
recursion is the identity function, it follows that Ω̃ is the value of the reflected
fixed point, which is of course operationally accurate.

As a second example consider

Q2 = ((a → Q2; b → SKIP) � SKIP) \ {a}

Like P1, this can diverge immediately, and so has the same Ω and Ω̃ as the
first example. This time, however, the first iteration from Ω̃ brings in an extra

30 A.W. Roscoe

trace 〈�〉, and each subsequent one brings longer and longer ones of the forms
〈b〉n and 〈b〉n 〈̂�〉, but no further divergence and no infinite trace. Therefore the
reflected fixed point has the single divergence 〈〉, all these finite traces and no
infinite trace. This is operationally correct since the behaviour of Q2 is rather
like that of FA earlier in the sense that once a b is performed there is already a
limit on how many more are allowed.

Finally, consider the recursions for the processes P1 and P2 defined using FA
earlier. Once again we get the same Ω and Ω̃, but this time every iterate from
Ω̃ in both recursions after the zeroth equals FA, and therefore so do both limits.
But of course the model axioms tell us that FA has the infinite trace aω thanks
to D2, meaning that within the understanding of SBD this value is operationally
accurate for both.

The above method of calculating a fixed point is closely related9 to the one
devised for similar purposes in a language of streams (also using an analogue of
our axiom D2) by Manfred Broy in [4], though he uses the Egli-Milner power-
domain in place of our divergence-strict model I to find an approximation.

5 Conclusions

It is fascinating to contemplate the iteration towards a reflected fixed point.
The first stage, potentially requiring any ordinal length, manages to characterise
accurately all the operational behaviour up to and including the first divergence.
Observing what behaviours this proves (under any finite number of iterations)
must be present in the fixed point then gives us the correct value in SBD.
Nothing can then distinguish the one remaining thing one might want, namely
which ω-divergent infinite traces are operationally present.

In a real sense the second stage of our fixed-point process is lifting the calcu-
lation done in the first to the post-divergence world, and our (forced) decision
to ignore ω-divergent traces means that this can happen relatively simply.

Obviously this fixed-point process is too complex to use regularly to find the
semantics of particular processes. Generally speaking this is best done in practice
by abstraction from operational semantics. What it does is show how CSP with its
SBD congruence can be viewed as a self-contained theory that can exist without
the corresponding operational semantics, and give considerable understanding of
the nature of recursions. It will also allow us to derive mathematical properties of
fixed points (such as their monotonicity, and forms of recursion induction).

Other two-stage fixed-point techniques have been proposed, such as that of
Yifeng Chen in [17] and the one by Broy in [4] already discussed above. Others,
such as the optimal fixed point [8], have been proposed which yield an answer
which is in general between greatest and least.

Similar fixed-point methods (as demonstrated by Broy’s work) will apply
to other fixed-point calculations based around potentially diverging finite and

9 The author was not aware of the details of Broy’s work until his own work was
complete.

Seeing Beyond Divergence 31

infinite sequences. They may also apply in other forms of programming languages
semantics where one wishes to liberalise a strict interpretation of divergence or
undefinedness.

It will, of course, be interesting to compare and reconcile the similar calcu-
lations here and in [4].

The infinite-trace component of SBD is not necessary when the process un-
der consideration is finite-state. It still, of course, has the capability to make
finer distinctions than the failures/divergences model N thanks to the lack
of divergence closure. There would be no problem in extending the capabil-
ities of the refinement checker FDR [5] to handle finite-state processes over
SBD.

Acknowledgements

This work has benefitted enormously from a number of discussions with Antti
Valmari. He, together with others such as Michael Goldsmith, have made helpful
suggestions after reading earlier versions of this paper. I have had interesting
discussions with Paul Levy in the later stages of writing this paper. I am also
grateful for the numerous suggestions of an anonymous referee.

The work reported in this paper was partially supported from EPSRC and
the US Office of Naval Research.

References

1. G. Barrett, The fixed-point theory of unbounded nondeterminism, Formal Aspects
of Computing, 3, 110–128, 1991.

2. S.D. Brookes, C.A.R. Hoare and A.W. Roscoe, A theory of communicating sequen-
tial processes, Journal of the ACM 31, 3, 560–599, 1984.

3. S.D. Brookes and A.W. Roscoe, An improved failures model for CSP, Proceedings
of the Pittsburgh seminar on concurrency, Springer LNCS 197, 1985.

4. M. Broy, A theory for nondeterminism, parallelism, communication and concur-
rency, Theoretical Computer Science 45, pp1–61 (1986).

5. Formal Systems (Europe) Ltd., Failures-Divergence Refinement, User Manual, ob-
tainable from
http://www.fsel.com/fdr2 manual.html

6. C.A.R. Hoare, A model for communicating sequential processes, in ‘On the con-
struction of programs’ (McKeag and MacNaughten, eds), Cambridge University
Press, 1980.

7. C.A.R. Hoare, Communicating sequential processes, Prentice Hall, 1985.
8. Zohar Manna and A. Shamir. The theoretical aspects of the optimal fixed point,

SIAM Journal of Computing, 5, 14 - 426, 1976.
9. A. Puhakka, Weakest Congruence Results Concerning “Any-Lock”, Proc. TACS

2001, Fourth International Symposium on Theoretical Aspects of Computer Soft-
ware, October 29-31 2001, Sendai, Japan, Lecture Notes in Computer Science 2215,
Springer-Verlag 2001, pp. 400-419.

32 A.W. Roscoe

10. A. Puhakka, A and A. Valmari, Weakest-Congruence Results for Livelock-
Preserving Equivalences, Proceedings of CONCUR ’99 (Concurrency Theory), Lec-
ture Notes in Computer Science 1664, Springer-Verlag 1999, pp. 510-524.

11. A.W. Roscoe The theory and practice of concurrency, Prentice-Hall International,
1998.

12. A.W. Roscoe, An alternative order for the failures model, in “Two papers on
CSP”, technical monograph PRG-67, Oxford University Computing Laboratory,
July 1988. Also Journal of Logic and Computation 2 (5), 557–577, 1992.

13. A.W. Roscoe, Unbounded nondeterminism in CSP, in “Two papers on CSP”, tech-
nical monograph PRG-67, Oxford University Computing Laboratory, July 1988.
Also Journal of Logic and Computation, 3 (2), 131–172, 1993.

14. A. Valmari, A Chaos-Free Failures Divergences Semantics with Applications to
Verification, Millennial Perspectives in Computer Science: Proceedings of the 1999
Oxford–Microsoft Symposium in honour of Sir Tony Hoare, Palgrave ”Cornerstones
of Computing” series, 2000, pp. 365-382.

15. A. Valmari, The weakest deadlock-preserving congruence, Information Processing
Letters 53, 341–346, 1995.

16. A. Valmari and M. Tienari An improved failures equivalence for finite-state systems
with a reduction algorithm, Protocol Specification, Testing and Verification XI,
North-Holland, 1991.

17. Yifeng Chen, A fixpoint theory for non-monotonic parallelism, Theoretical Com-
puter Science, Vol. 308 No 1-3, pp.367-392, 2003.

Appendix : Notation

This paper follows the notation of [11], from which most of the following is taken.
N natural numbers ({0, 1, 2, . . .})
Σ (Sigma): alphabet of all communications
τ (tau): the invisible action
Στ Σ ∪ {τ}
Σ� Σ ∪ {�}
Σ∗� {s, s 〈̂�〉 | s ∈ Σ∗}
A∗ set of all finite sequences over A
Aω set of all infinite sequences over A

〈〉 the empty sequence
〈a1, . . . , an〉 the sequence containing a1,. . . , an in that order
aω the infinite trace 〈a, a, a, . . .〉
s t̂ concatenation of two sequences
s \ X hiding: all members of X deleted from s
s ‖

X
t the set of traces composed from subsequences s and t

which share members of X and are disjoint elsewhere.
s ≤ t (≡ ∃ u.s û = t) prefix order
S closure of S (= S ∪ {u ∈ Σω | {s ∈ S | s < u} is infinite})

A

Seeing Beyond Divergence 33

Processes:
μ p.P recursion
a → P prefixing
?x : A→ P prefix choice
P � Q external choice
P � Q , �S nondeterministic choice
P ‖

X
Q generalised parallel

P \ X hiding
P [[R]] renaming (relational)
P � Q “time-out” operator (sliding choice)
P � Q interrupt

P [x/y] substitution (for a free identifier x)

Transition Systems:
Ĉ The set of nodes in transition system C .
P a−→ Q (a ∈ Σ ∪ {τ}) single action transition
P s=⇒ Q (s ∈ Σ∗) multiple action transition with τ ’s removed
P t�−→ Q (t ∈ (Στ))∗) multiple action transition with τ ’s retained
P ref B P refuses B
P div P diverges

Models:
T traces model
N failures/divergences model (divergence strict)
F stable failures model
I finite and infinite traces/divergences model with

divergence strictness
U failures/divergences/infinite traces model

with divergence strictness

CFFD failures/divergences/infinite traces
congruence/model without divergence strictness

CFFDT finite and infinite traces/divergences congruence/model
without divergence strictness

SBD finite and infinite traces/divergences model strict
under ω-divergent infinite traces

⊥N (etc.) bottom elements of models
�F (etc.) top elements of models
� refinement over whatever model is clear from the context
P ≤ Q strong order (over divergence-strict models)
I[[P]]η denotational semantics of P in I
SBD[[P]]ρ denotational semantics of P in SBD

34 A.W. Roscoe

Appendix B: CSP Semantics Over the New Model

The semantics of recursion has been discussed extensively in the main body of the
paper. What remains to be done, therefore, is to provide a recipe for calculating
the semantic result of applying any one of the non-recursive operators to the
right number of members of SBD. As usual we factor this into recipes for the
three components separately.

In general discussions of operators we will refer to a typical binary one P ⊕
Q. However there is nothing specific to binary operators there and appropriate
modifications of the statements hold for all.

In each case the recipe for traces(P ⊕Q) is precisely the same for the traces
model T , and depends only on the traces component of the arguments to the
relevant operator. This is, of course, not surprising, but it is pleasing since it has
not been true of any previous CSP model supporting divergence.

traces(STOP) = {〈〉}
traces(SKIP) = {〈〉, 〈�〉}

traces(a → P) = {〈〉} ∪ {〈a 〉̂ s | s ∈ traces(P)}
traces(?x : A→ P) = {〈〉} ∪ {〈a 〉̂ s | a ∈ A ∧ s ∈ traces(P [a/x])}

traces(P � Q) = traces(P) ∪ traces(Q)

traces(P ‖
X

Q) =
⋃{s ‖

X
t | s ∈ traces(P) ∧ t ∈ traces(Q)}

traces(P ; Q) = traces(P) ∩Σ∗ ∪
{s t̂ | s 〈̂�〉 ∈ traces(P) ∧ t ∈ traces(Q)}

traces(P [[R]]) = {s ′ | ∃ s ∈ traces(P) | s R s ′}
traces(P \ X) = {s \ X | s ∈ traces(P)}
traces(P � Q) = traces(P) ∪

{s t̂ | s ∈ traces(P) ∩Σ∗ ∧ t ∈ traces(Q)}

The recipes for divergences involve, in different cases, all three components.
They are the same as previous CSP models, but without the closure constructions
used to enforce divergence strictness.

divergences(STOP) = ∅
divergences(SKIP) = ∅

divergences(a → P) = {〈a 〉̂ s | s ∈ divergences(P)}
divergences(?x : A→ P) = {〈a 〉̂ s | a ∈ A ∧ s ∈ divergences(P [a/x])}

divergences(P � Q) = divergences(P) ∪ divergences(Q)

divergences(P ‖
X

Q) =
⋃{s ‖

X
t | s ∈ divergences(P) ∧ t ∈ traces(Q)}

∪ ⋃{s ‖
X

t | s ∈ traces(P) ∧ t ∈ divergences(Q)}

Seeing Beyond Divergence 35

divergences(P ; Q) = divergences(P) ∪
{s t̂ | s 〈̂�〉 ∈ traces(P) ∧ t ∈ divergences(Q)}

divergences(P [[R]]) = {s ′ | ∃ s ∈ divergences(P) | s R s ′}
divergences(P \ X) = {u \ X | u ∈ infinites(P) ∧ u \ X is finite}

∪ {s \ X | s ∈ divergences(P) ∩Σ∗ ∧ t ∈ Σ∗�}
divergences(P � Q) = divergences(P) ∪

{s t̂ | s ∈ traces(P) ∧ t ∈ divergences(Q)}

In each case the basic recipe for infinites(P ⊕ Q) depends only on the sets
Traces(P) and Traces(Q) of all finite and infinite traces of the arguments. How-
ever in some cases a clause adding the ω-divergent infinite traces is need to make
D2 true.

infinites(STOP) = ∅
infinites(SKIP) = ∅

infinites(a → P) = {〈a 〉̂ u | u ∈ infinites(P)}
infinites(?x : A→ P) = {〈a 〉̂ u | a ∈ A ∧ u ∈ infinites(P [a/x])}

infinites(P � Q) = infinites(P) ∪ infinites(Q)

infinites(P � Q) = infinites(P) ∪ infinites(Q)

infinites(P ‖
X

Q) = {u ∈ Σω | ∃ s ∈ Traces(P),

t ∈ Traces(Q).u ∈ s ‖
X

t}
∪ (Σω ∩ divergences(P ‖

X
Q))

infinites(P ; Q) = infinites(P)
∪ {s û | s 〈̂�〉 ∈ traces(P) ∧ u ∈ infinites(Q)}
∪ (Σω ∩ divergences(P ; Q))

infinites(P [[R]]) = {u ′ | ∃ u ∈ infinites(P).u R u ′}
∪ (Σω ∩ divergences(P [[R]]))

infinites(P \ X) = {u ′ ∈ Σω | ∃ u ∈ infinites(P).u \ X = u ′}
∪ (Σω ∩ divergences(P \ X))

infinites(P � Q) = infinites(P) ∪ {s û | s ∈ traces(P) ∧ u ∈ infinites(Q)}
∪ (Σω ∩ divergences(P � Q))

Process Algebra: A Unifying Approach

Tony Hoare

Microsoft Research, 7 J J Thomson Avenue,
Cambridge CB3 0FB, UK

Abstract. Process algebra studies systems that act and react contin-
uously with their environment. It models them by transition graphs,
whose nodes represent their states, and whose edges are labelled with
the names of events by which they interact with their environment. A
trace of the behaviour of a process is recorded as a sequence of observ-
able events in which the process engages. Refinement is defined as the
inclusion of all traces of a more refined process in those of the process
that it refines. A simulation is a relation that compares states as well as
events; by definition, two processes that start in states related by a sim-
ulation, and which then engage in the same event, will end in states also
related by the same simulation. A bisimulation is defined as a symmetric
simulation, and similarity is defined as the weakest of all simulations. In
classical automata theory, the transition graphs are deterministic: from
a given node, there is at most one edge with a given label; as a result,
trace refinement and similarity coincide in meaning.

Research over many years has produced a wide variety of process alge-
bras, distinguished by the manner in which they compare processes, usu-
ally by some form of simulation or by some form of refinement. This paper
aims to unify the study of process algebras, by maintaining the identity
between similarity and trace refinement, even for non-deterministic sys-
tems. Obviously, this unifying approach is entirely dependent on prior
exploration of the diversity of theories that apply to the unbounded diver-
sity of the real world. The aim of unification is to inspire and co-ordinate
the exploration of yet further diversity; in no way does it detract from
the value of such exploration.

1 Introduction

Process algebra is the branch of mathematics that has been developed to ap-
ply to systems which continuously act and react in response to stimuli from
their environment. It is applied to natural systems such as living organisms and
societies, and also to artificial systems such as networks of distributed com-
puters. It is applied at many levels of abstraction, granularity and scale, from
the entire collection of computers connected to the World Wide Web, through
multiple processes time-sharing in a single computer, right down to electronic
signals passing between the hardware circuits from which a computer is made.
We assume that this is sufficient motivation for the study of process algebra as
a branch of Computer Science.

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, pp. 36–60, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

Process Algebra: A Unifying Approach 37

With such a range of applications, it is not surprising that there is now a wide
variety of process algebras developed to meet differing needs. Fortunately, the
axiomatic techniques of modern algebra establish order among the variations,
and assist in the selection or development of a theory to meet new needs. The
approach taken in this paper emphasises the essential unity of the study of the
subject. In particular, it crosses a historical divide between theories that were
based on the foundation of Milner’s Calculus of Communicating Systems (CCS
[4]) and those that owe their origin to the theory of Communicating Sequential
Processes (CSP [9]).

In CCS and its variants and successors, the standard method of comparing
two processes is by simulation, defined as a relation that is preserved after every
action of the pair of processes between which it holds. The relation is often
required to be symmetric, and then it is called a bisimulation. Similarity is
defined as the existence of a simulation between two given processes [6]; it can
be efficiently computed by automatic model checking, or proved manually by an
elegant co-inductive technique.

In CSP and its variants, the standard comparison method is refinement, which
in its simplest form is defined as inclusion of the traces of the observed behaviour
of a more refined process in those of the refining process. This is an intuitive
notion of correctness (at least for safety properties), and it has been applied in
the stepwise design and development of the implementation of a process, starting
from its more abstractly expressed specification. Such reasoning exploits the
expressive and deductive power of the mathematics of sets and sequences.

The divergence between CCS and CSP is not accidental, but reflects a slight
difference in the primary purposes for which the two calculi were designed. The
purpose emphasised by CCS is to model and to analyse the behaviour of existing
concurrent systems, including those which occur in nature and which are not
implemented on a computer. The purpose emphasised by CSP is to formalise
the specification of a concurrent system that is intended to be implemented as
a computer program, and to verify that the implementation is correct, in the
sense that it satisfies its specification. The only difference is one of emphasis:
both CCS and CSP have been successfully used for both purposes. More detailed
comparisons of these two calculi may be found in [10, 2].

This paper shows how to combine the particular advantages of similarity with
those of refinement, simply by ensuring that they mean the same thing.

The next section introduces the standard theory of deterministic automata
by means of an ‘after’ function, which maps each process and event onto the
process that results after occurrence of that event. It defines the basic concepts
of simulation and refinement, and proves they are the same. Non-determinism
is introduced in Section three by means of a silent transition ‘τ ’, representing
an internal choice of an implementation to move from the current state to a
different one, without any external cause or externally observable effect. Such
internal moves are committed, and cannot be reversed. The reflexive transitive
closure of the internal transition is known as reduction, and we postulate that it
is a simulation. A weak transition is defined as an observable event preceded and

38 T. Hoare

followed by reduction. Weak similarity is defined in terms of weak transitions,
in the same way as before. Because reduction is a simulation, weak similarity is
proved to be the same as that defined in terms of purely deterministic transitions.

Trace refinement guarantees the safety of an implemented process against
what is permitted by the specification that it refines. However, a process should
also be adequately responsive to stimuli from its environment, and refinement of
simple conventional traces does not guarantee responsiveness. Indeed the most
refined process by this definition is the one that does nothing. In Section four,
responsiveness is turned into a safety property by introduction of events known
as ‘barbs’ [4, 5, 7], which can be used to record the failure of a process to respond
to possibilities of interaction offered by its environment. Barbs are treated as or-
dinary events, and are recorded at the end of ordinary traces. Barbed simulation
is defined as an ordinary simulation that takes these events into account. As
a result, barbed simulation is still the same as barbed trace refinement. The
problem of divergence can be treated in a similar way.

The paper is illustrated by a series of simple process calculi. The deterministic
fragment of the calculus is reminiscent of Milner’s lock-step synchronous SCCS,
the non-deterministic one is more like CCS, and the barbed calculus is based on
a familiar version of CSP. The calculi are defined by recursive definitions of the
‘after’ function, and by definitions of the tau-successors of each syntactic term;
these effectively provide a structured operational semantics [8] for the calculi.
Not a single axiom or definition or theorem is lost or changed in moving from
one of these calculi to the next.

2 Deterministic Transition Systems

A deterministic transition system is an edge-labelled graph in which all edges
leading from the same node have distinct labels. The nodes of the graph stand
for the possible states of a process, and the labels stand for observable events in
which the process can engage together with its environment.

For a fixed transition system, the existence of an edge labelled e leading from
node p to node q is stated by p

e−→ q ; this triple is known as a transition. Its
meaning is that a process in state p can move to state q on occurrence of the
event denoted by the label e . The corresponding abstract relation on nodes is
denoted e−→ , defined as the set {(p, q) | p e−→ q}. We will use the relational
calculus to simplify the statement and proof of many of the theorems. The semi-
colon will denote (forward) relational composition

S o
9 T =def {(p, r) | ∃ q. (p, q) ∈ S & (q, r) ∈ T}

Our proofs will rely on the fact that composition is associative and has the
identity relation as its unit. Also, it distributes through arbitrary unions of
relations.

Process Algebra: A Unifying Approach 39

Because of determinism, we can define a function p/e (p after e), which maps
a node p to the node at the other end of the edge labelled e. It describes the
behaviour of process p after it has engaged in the event e.

Definition of (/e)

p/e =def q iff p
e−→ q

To make this into a total function, it is convenient to introduce a special node ∗,
which is not a process, but merely serves as a value for p/e in the case that
p /−e→ , where p /−e→ means that there is no edge from p which is labelled by e.
It is also convenient to postulate that ∗ is an isolated node, and has no incoming
or outgoing edges. This property effectively defines the purpose of ∗, and is
formalised as follows:

∀ p, e. ∗ /−e→ p & p /−e→ ∗

2.1 Traces

The after function can usefully be extended to apply also to sequences of events
rather than just single events. If s is such a sequence, p/s is the state that process
p reaches after engaging in the whole sequence s of events, one after the other.
It can be found in the transition graph by starting with p and following a path
along edges labelled by the successive events of s. If there is no such path, the
result is ∗. The formal definition is by induction on the length of the trace.

Extended Definition of (/s)

∗/s =def ∗
p/<> =def p
p/<e>s =def (p/e)/s

A trace of a process is defined to be the sequence of labels on the edges of some
finite path of consecutive edges starting at p.

Definition of Traces

traces(p) =def {s | p/s �= ∗}
The non-process ∗ has no traces; the empty sequence is a trace of every process;
and the non-empty traces of a process p are all sequences of the form <e>t′,
where t′ is a trace of p/e.

Theorem 2.1.1 Let labels� be the set of all finite sequences of labels. The
following properties hold.

traces: nodes −→ labels�

traces(p) = {} iff p = ∗
<> ∈ traces(p) iff p �= ∗
t ∈ traces(p/e) iff <e>t ∈ traces(p)

40 T. Hoare

Theorem 2.1.2 The function traces() is uniquely defined by the four clauses
of Theorem 2.1.1.

Proof: The statement of Theorem 2.1.1 is effectively a definition of the traces
function by primitive recursion on the length of the trace.

A node q is said to refine p if every trace of q is also a trace of p. The ordering
relation p ≥ q means that p is refined by q.

Definition of Refinement

p ≥ q =def traces(q) ⊆ traces(p)

Refinement in a process calculus is used to model program correctness. Let spec
be a specification, describing the intended behaviour of a process prog in terms
of all the traces that it may give rise to. Being a specification, the description may
take advantage of any mathematical concepts that apply to sets of sequences of
events. But the actual process prog must be described in the restricted notations
of a process calculus, or an implemented programming language that is based
upon it. The semantics of the process calculus (as described in Section 2.3)
determines exactly which traces are possible for prog. Now a proof that prog
refines spec shows that no visible behaviour of prog can ever fall outside the set
of behaviours permitted by spec. It thereby serves as a proof of the correctness
of prog with respect to spec.

Refinement can also be used to justify optimisation of a program. Let opt
be a better version of a program prog, for example, more efficient in resources
of communication or computation, or more responsive to the needs of its users.
Then the optimisation is valid just if opt refines prog. This is because every
specification satisfied by prog will also be satisfied by opt, as stated by the
following theorem.

Theorem 2.1.3 Refinement is reflexive and transitive, i.e.,

(reflexive) p ≥ p
(transitive) p ≥ q & q ≥ r =⇒ p ≥ r

The preceding account of refinement takes safety as an adequate criterion of
correctness; it supposes that a process that does less actions is always safer
than one that does more. But obviously, failure to respond to the expected
stimuli from the environment is also a serious error, one that in practice (all too
frequently) manifests itself as deadlock or as livelock of a computer system. A
definition of responsiveness states that a process that has more traces is more
responsive than one that has less traces. A full specification of correctness should
therefore also specify the desired lower bounds on the responsiveness of the
system. The introduction of non-determinism in the next section will permit
these lower bounds to be specified at the same time as the upper bound, in

Process Algebra: A Unifying Approach 41

a single process specification, with the result that a single proof of refinement
ensures both safety and responsiveness.

In Section 2.3, we shall define a number of operators, both parallel and se-
quential, for constructing a complex process, say F (p, q), out of simpler com-
ponents p and q. These operators can be applied equally well to specifications
as to processes written in the calculus or an available programming language
that implements it. Suppose we want F (p, q) to satisfy some overall specifica-
tion F -spec, and decide to split the whole task into two sub-tasks: to write a
program p and a program q to meet specifications p-spec and q-spec respec-
tively; the intention is to combine them later by F . Before starting work (may
be in parallel) on these two tasks, it would be a good idea to check that we have
got their specifications right. This can be done in advance by proving that F (p-
spec, q-spec) is a refinement of F -spec. Then, when p-spec has been correctly
implemented by p (i.e., p-spec ≥ p) and similarly q-spec has been implemented
by q, we can safely plug the implementations p and q into F , in place of their
specifications. If such a procedure has been consistently and carefully followed
throughout, we can have high confidence that the result F (p, q) is free from de-
sign errors (because F (p, q) satisfies F (p-spec, q-spec), which is already known
to satisfy F -spec). Furthermore, correctness of the assembly has actually been
proved before implementation of the components. This method of engineering
design is known as step-wise decomposition.

But wait! The validity of the method is dependent on a basic property of the
function F : it must respect the ordering relation of refinement between processes.
More formally, it must be monotonic in all its arguments.

Definition of Monotonicity. A function F is monotonic wrt ≥ iff

F (p, q, . . .) ≥ F (p′, q′, . . .) whenever p ≥ p′ & q ≥ q′, and . . .

An example is provided by the only function on processes that we have defined
so far, the after function /e.

Theorem 2.1.4

p ≥ q =⇒ p/e ≥ q/e

Proof: If q is ∗, traces(q/e) is empty, so the consequent is trivial. Otherwise let t
be a trace of q/e. Then by Theorem 2.1.1, <e>t is a trace of q. By the antecedent
of this theorem, it is also a trace of p. By Theorem 2.1.1 again, t is a trace of p/e.

The preceding theorem states that every transition respects the ordering ≥, in
the sense that if two processes are related by ≥ before an event, they are still so
related after it. An alternative formulation of the same theorem can be given in
terms of the relation e−→ .

42 T. Hoare

Theorem 2.1.5

p ≥ q & q
e−→ r =⇒ ∃p′. p

e−→ p′ & p′ ≥ r

Proof: Let p ≥ q and q
e−→ r. Then <e> is a trace of q, and therefore of p. So

p
e−→ p/e. By Theorem 2.1.4, p/e ≥ q/e. Because of determinism, q/e = r. So

p/e ≥ r, and p/e can play the role of p′ in the statement of the theorem.

An even neater formulation of the same theorem can be stated using the re-
lational calculus, as we shall often do from now on. It is weak commutivity
principle, which permits interchange of refinement with any e-transition, when
they are composed sequentially.

Theorem 2.1.5 (Alternative Formulation)

(≥ o
9

e−→) ⊆ (e−→ o
9 ≥)

Here is another example of a relation satisfying the same weak commutivity
principle. Let ≡ stand for equality of the trace sets of two processes, formally
defined by mutual refinement.

Definition of Trace Equivalence

p ≡ q =def p ≥ q & q ≥ p

Theorem 2.1.6

(≡ o
9

e−→) ⊆ (e−→ o
9 ≡)

In standard automata theory, trace equivalence is taken as a sufficient condition
for identity of two processes. We shall not do this, because in the next section
we want to make distinctions between processes that have the same traces. In
the final section, we will show that trace equivalence is after all an adequate
definition of identity of processes.

2.2 Simulation

The principle of weak commutivity introduced in the last two theorems of the
previous section suggests that the following definition.

Definition of Simulation. A relation S between processes (i.e., excluding the
non-process node ∗) is defined to be a simulation if the relational composition
(S o

9
e−→) is contained in (e−→ o

9 S), for all labels e. A bisimulation is defined as
a simulation that is symmetric.

Examples of bisimulation include the empty relation, the identity relation and
≡, whereas ≥ is just a simulation; so is the relation

{(p, q) | traces(q) = {<>} }.

Process Algebra: A Unifying Approach 43

Theorem 2.2.1 If S and T are simulations, so is their relational composition.

Proof: The assumptions are:

(A1) (S o
9

e−→) ⊆ (e−→ o
9 S) and (A2) (T o

9
e−→) ⊆ (e−→ o

9 T)

(S o
9 T) o

9
e−→ = S o

9 (T o
9

e−→) by associativity of o
9

⊆ S o
9 (e−→ o

9 T) by A2 and monotonicity of o
9

= (S o
9

e−→) o
9 T by associativity of o

9

⊆ (e−→ o
9 S) o

9 T by A1 and monotonicity of o
9

= e−→ o
9 (S o

9 T) by associativity of o
9

Theorem 2.2.2 The union of any set of simulations is a simulation. The inter-
section of any non-empty set of simulations is a simulation.

Proof: Relational composition distributes through union; and since e−→ is a
partial function, (e−→ o

9) distributes through intersections of non-empty set of
relations.

Theorem 2.2.3 If R is a simulation, so is its reflexive transitive closure R�,
defined as the union of the identity relation with R, (R o

9 R), (R o
9 R o

9 R), etc.

Proof: Follows from the previous two theorems.

In CCS and related calculi, bisimulation is the basic relation used to reason
about the correctness of programs and their optimisation. Correctness means
that there exists a bisimulation between a specification and its program, or
between a program and its optimised version. Remarkably, it is not necessary to
specify exactly which relation has been used as the bisimulation: any bisimulation
will do. It can be chosen to match the needs of each particular proof. Thus what
every proof establishes is the bisimilarity of two processes, where bisimilarity
(and its asymmetric version similarity) is defined as follows

Definition of Similarity. Similarity is defined as the set union of all simula-
tions. Bisimilarity is the union of all bisimulations.

Theorem 2.2.2 says that similarity is itself a simulation, in fact the largest of
all simulations, and the same applies to bisimilarity. In summary, bisimilarity is
the correctness relation established by all bisimulation proofs in CCS, and other
process calculi which take bisimulation as the basis of reasoning about processes.

Theorem 2.2.4 Similarity is reflexive and transitive.

Proof: Reflexive because identity is a simulation; transitive because similar-
ity composed with itself is a simulation; and every simulation is contained in
similarity.

44 T. Hoare

Theorem 2.2.5 Every simulation is relationally contained in refinement.

Proof: By induction on the length of a trace. Let S be a simulation and let
p S q. Let t be a trace of q. If t is of length 0, it is the empty sequence, which is
a trace of every p. Otherwise, let t be <e>t′. Then for some q′, q

e−→ q′ and t′

is a trace of q′. Since S is a simulation, there is a p′ such that (1) p
e−→ p′ and

p′ S q′. Since t′ is shorter than t, we can by induction assume that the traces of
p′ include the traces of q′. Since t′ is a trace of q′, it is also a trace of p′. Since
we proved above at (1) that p

e−→ p′, <e>t′ is a trace of p.
We now state the theorem that is the goal of this whole Section.

Theorem 2.2.6 In a deterministic transition system, similarity and refinement
are the same.

Proof: By Theorem 2.1.5, refinement is a simulation, and therefore contained
in the largest simulation. Theorem 2.2.5 gives the reverse inclusion.

It is worthy of note that none of the proofs in this section, except that of
Theorem 2.2.6 and the second claim of Theorem 2.2.2, relies on the determinacy
of the underlying transition system.

2.3 Example: A Synchronous Calculus

The purpose of a process calculus is to define a particular transition system. It
first defines the syntax for naming the nodes of the transition system, and then
uses induction on the structure of the syntax to define which nodes are connected
by transitions, and what the labels on the edges are. The calculus postulates that
there is a node in the underlying transition graph that is named by each of the
terms of the calculus, as constructed in accordance with its syntax; furthermore,
each node of the graph has exactly one name.

In this section we will present a synchronous deterministic calculus based
loosely on Milner’s SCCS. The primitives of its syntax and their intended mean-
ings are:

STOP never does anything
RUN can do anything at any time.

There are two monadic combinators, called prefixing and restriction; they both
mean the same as in CCS:

f.p does f first, and then behaves like p
p\f can always do anything that p can do, except f

There are two parallel combinators:

(p |&| q) can always do what both p and q can do at the same time
(p |or| q) can do whatever either p or q can do, as long as possible

These parallel combinators are chosen for their simplicity and elegance. They
do not correspond to any of the parallel combinators of either CCS or CSP.

Process Algebra: A Unifying Approach 45

Note that the syntax must not contain in its syntax a notation for ∗, which
is not a process. For the same reason, a process calculus cannot include the after
operator, because it sometimes gives the result ∗ . However, the after operator
remains useful in reasoning about the calculus at a more abstract level.

The specification of the labelled edges of the underlying transition system is
formalised as an inductive definition of the after operator, where the induction
is over the structure of the term that names the parameter. The following table
shows a simple way of doing this. For each node p, it tells how to compute
(recursively, where necessary) the name of the node at the other end of the edge
labelled e. It is easy to check that the formal definition accords with the informal
description given above to explain the meaning of each notation.

Definition of (/e)

STOP/e = ∗
RUN/e = RUN

f.∗ = ∗
(f.p)/e = p if e = f

= ∗ otherwise

(p |&| q)/e = (p/e) |&| (q/e) if p
e−→ & q

e−→
= ∗ otherwise

(p |or| q)/e = (p/e) |or| (q/e) if p
e−→ & q

e−→
= (p/e) if p

e−→ & q /−e→
= (q/e) if p /−e→ & q

e−→
= ∗ otherwise

(p\f)/e = (p/e)\f if e �= f
= ∗ otherwise

Note the unusual recursion in the first line of the rule for or-parallelism. It
reveals that continued parallel computation of both operands is needed if the
first event is possible for both of them. Or-parallelism is a deterministic version
of a choice operator, as computed by the traditional determinisation procedure
of automata theory. That is why the or-parallel operator defined here does not
correspond to any of the choice operators in CSP or CCS, which avoid the
inefficiency of the parallel computation by resorting to non-determinism. We
will return to these more familiar choice operators in Section 3.3.

In the standard deterministic model of CSP, the clauses of the following the-
orem are presented as a recursive definition of the operators of the calculus; and
the clauses of the definition of (/) can be proved from them. The equivalence
of two different methods of definition is mildly encouraging in a mathematical
theory, since it forestalls any controversy over which to choose as definitive.

46 T. Hoare

Theorem 2.3.1
traces(STOP) = {<>}
traces(RUN) = labels�

traces(f.p) = {<>} ∪ {<f>t | t ∈ traces(p)}
traces(p |&| q) = traces(p) ∩ traces(q)
traces(p |or| q) = traces(p) ∪ traces(q)
traces(p\f) = {t | t ∈ traces(p) & not(<f> in t)}

where s in t =def ∃u, v. u s v = t

Proof (the last clause, for example). By induction on the length of a trace. The
hypothesis is that traces with maximum length n on both sides of the assertion
are identical.

Base case: <>∈ LHS holds because (p\f) �= ∗. Similarly, <>∈ RHS be-
cause <>∈ traces(p) and (obviously) <> does not contain f .

For the inductive case, we reason as follows.

<e>t ∈ traces(p\f)
iff t ∈ traces((p\f)/e) by definition of traces
iff t ∈ (traces(p/e)\f if f �= e else {}) by definition of ((p\f)/e)
iff f �= e & t ∈ traces(p/e) by definition of ∈
iff f �= e & t ∈ traces(p/e) & not(<f> in t) by induction hypothesis
iff <e>t ∈ traces(p) & not(<f> in <e>t) by definition of in

The traces of each of the constructions of the calculus can be calculated from
the definition of traces() at the beginning of Section 2.1, together with the
definition of /e given above.

Theorem 2.3.2 All the operators are monotonic with respect to refinement.

Proof: Simple Boolean algebra of sets.

In fact a great many equivalences between processes are immediate con-
sequences of elementary equations between their sets of traces. For example,
the following theorems match exactly the properties of the meet operator in a
Boolean algebra.

Theorem 2.3.3

RUN |&| p ≡ p RUN is the unit of |&|
STOP |&| p ≡ STOP STOP is its zero
p |&| p ≡ p |&| is idempotent
p |&| q ≡ q |&| p it commutes
(p |&| q) |&| r ≡ p |&| (q |&| r) it associates

Process Algebra: A Unifying Approach 47

Algebraic laws based on trace equivalence help to explain the way in which
parallel processes interact with each other by synchronised participation in the
same events. Consider the process ((e.p) |or| (f.q)), which offers a choice between
two initial events, either e or f , which we assume to be distinct. Suppose this is
run in and-parallel with an environment (e.r); this process selects e as the next
event to occur, rejecting the possibility of f . Then e must be the next event,
and the subsequent behaviour of the system will involve p, and q will have no
further effect. However, if the environment selects an event, say g, which is not
offered by the or-parallel process, the result is deadlock, indicated by the process
STOP. These facts are summarised algebraically in the following theorem.

Theorem 2.3.4
((e.p) |or| (f.q)) |&| (e.r) ≡ e.(p |&| r) if e �= f
((e.p) |or| (f.q)) |&| (g.r) ≡ STOP if g �= f & g �= e

In addition to its collection of operators, a process calculus usually allows def-
inition of the behaviour of a system by means of recursion. For example, a
perpetually ticking clock may be defined by the recursive equation

clock = tick.clock

The right hand side of such an equation may include any of the operators of the
calculus. The fact that all the operators are monotonic guarantees by Tarski’s
theorem that there exists a trace set that for a process that satisfies the equa-
tion. In all reasonable cases, there will only be one such set. When the solution
is non-unique, CCS specifies that the least solution is intended. Thus the trivial
loop defined by the recursive equation

loop = loop

has STOP as its intended solution, rather than RUN. CSP makes the opposite
choice. The reason is to make it as difficult as possible to prove correctness of
a non-terminating recursion. In the remainder of this paper we will not give
further attention to recursion.

In CCS and related calculi, it is usual to present the semantics in a structured
operational style. For each nameable node, there are clauses which determine a
name for each of its e-derivatives. These essentially determine the structure of
the underlying graph.

Theorem 2.3.5

RUN e−→ RUN
e.p

e−→ p

p |&| q e−→ p′ |&| q′ if p
e−→ p′ & q

e−→ q′

p |or| q e−→ p′ |or| q′ if p
e−→ p′ & q

e−→ q′

p |or| q e−→ p′ if p
e−→ p′ & q /−e→

p |or| q e−→ q′ if p /−e→ & q
e−→ q′

p\f e−→ p′ if e �= f & p
e−→ p′

48 T. Hoare

There is an implicit understanding that this is the entire set of rules for the
transition system, and that if a transition cannot be derived from these rules,
it does not exist. Thus the fact the STOP does not appear in any of the rules
means that it is the source of no edges. The fact that there is only one transition
given for e.p means that if (e.p)

f−→ q, then e = f and q = p. In reasoning
about the calculus, the rules must be strengthened to give both necessary and
sufficient conditions for each transition. When this has been done, the operational
definition of Theorem 2.3.5 can be used to justify the clauses of the definition of
(/e) given earlier in this section.

3 Non-deterministic Transition Systems

For a deterministic system, all the events that happen are observable, predictable
and to some extent controllable (see Theorem 2.3.4) by the environment with
which the system interacts. Non-determinism is introduced into the system when
there are unobservable internal events that change the internal state of the sys-
tem without the knowledge or control of the external environment. Let τ be
such an internal event. (In fact, there can be many such events, but because
they are indistinguishable, we follow convention in letting τ stand for them all).
We define a non-deterministic system as a deterministic transition system, plus
a set of additional τ -labelled edges between the nodes; these do not have to
satisfy the requirement of determinacy: many τ -labelled edges can lead from the
same node to many different nodes. Selection between them is non-deterministic,
uncontrollable and unobservable by the external environment.

In a program-controlled system, the τ event may model a period of internal
computation of the program. In modern process algebras, these internal compu-
tations are specified by algebraic reduction rules, which permit the implementa-
tion to move the state of a process from one that matches the left hand side of
the rule to one that matches the right hand side. In other cases, τ may stand for
an internal communication between components of a system, observable only by
those components; they are deliberately hidden from its outer environment, in
order to present a simpler and more abstract interface.

Non-determinism arises because reduction does not have to satisfy the Church-
Rosser property: whenever there is a possibility of two reductions to two different
states, there may be no possibility of convergence back to the same state again
afterwards. As a result, algebraic reduction involves a commitment that can-
not later be withdrawn. That is what makes non-determinism problematic in
the design and implementation of computer systems. Another reason is that a
program can work perfectly while it is being tested, and still go wrong when
put to serious use. Indeed, the solution to these problems is one of the primary
motives for the study and application of process algebra to proofs of correctness
of computer systems.

In development of an abstract theory of correctness, we are not interested
in the exact number of steps involved in a particular computation. In fact, if
the theory is to be used for purposes of program optimisation, it is essential to

Process Algebra: A Unifying Approach 49

abstract from questions of efficiency, in order that an optimised program can be
proved equal to (or a refinement of) its un-optimised version. We are therefore
not so much interested in the τ−→ relation by itself, but rather in its reflexive
transitive closure, which we denote by an unlabelled arrow.

Definition of Reduction

−→ =def (τ−→)�

We are also interested in the states for which no further internal computation
is possible until after the next externally visible event. In such a stable state, a
process is idle, waiting for a response or a new stimulus from the environment.
Stable states are defined in the same way as normal forms in algebraic reduction

Definition of Stability

p is stable =def p /−τ→

Occurrence of a τ -transition is intended to be totally unobservable from outside
a process. In particular, we cannot tell exactly when the transition took place.
In an unstable state, after occurrence of a visible event e we cannot tell whether
a τ -transition preceded it or followed it, or maybe never occurred at all. This
invisibility is expressed by postulating an algebraic law similar to the definition
of a simulation.

Defining Property of τ

τ−→ o
9

e−→ ⊆ e−→ o
9 −→

or equivalently −→ is a simulation. This condition can also be expressed:

p
τ−→ q =⇒ p/e −→ q/e

In Section 3.3 we will define the τ transitions of a simple process calculus. Care
is needed to show that these definitions are consistent with the axiom. Axioms
like this are often called healthiness conditions: the designer of a calculus must
ensure that healthiness is preserved by all the operators.

There are three reasons for accepting this as the defining property of a τ
transition. First, it represents the invisibility of τ . Secondly, it permits a use-
ful optimisation. If an implementation can detect that an event e will be possible

50 T. Hoare

after an internal computation, it may compile code to do e straight away, either
avoiding the calculation at run time, or at least postponing it till after: efficiency
and responsiveness may thereby be improved. Finally, the postulate achieves our
primary goal of reconciliation of similarity with refinement.

Since simulation implies refinement, the defining property of τ means that a
non-deterministic choice can only reduce the traces of a process, never change
or increase them. Thus the trace set defines the limits of what a process can do,
and includes all possible results of any choices it may make internally.

Weak Simulation

In the evolution of a non-deterministic process, internal invisible activity will
alternate with externally visible events. Each external event will be preceded
and followed by (none or more) internal reductions. We therefore give the usual
definition of the concept of a non-deterministic (or weak) transition.

Definition of Weak Transition

e=⇒ =def (−→ o
9

e−→ o
9 −→)

A weak simulation and weak similarity are defined in the same way as ordinary
(strong) simulation and similarity, using the transition e=⇒ in place of e−→.

The following theorem gives an alternative definition e=⇒, and makes explicit
some of its obvious properties.

Theorem 3.1.1

e=⇒ = (e−→ o
9 −→) = (−→ o

9
e=⇒) = (e=⇒ o

9 −→)

Proof: −→ is a reflexive and transitive simulation.

Theorem 3.1.2 If W is a weak simulation, then (−→ o
9 W) is a simulation.

Proof:
(−→ o

9 W) o
9

e−→ ⊆ −→ o
9 W o

9
e−→ o

9 −→ −→ is reflexive
= −→ o

9 W o
9

e=⇒ by Theorem 3.1.1
⊆ −→ o

9
e=⇒ o

9 W W is a weak simulation
= e−→ o

9 −→ o
9 W by Theorem 3.1.1

Theorem 3.1.3 If S is a simulation, then (S o
9 −→) is a weak simulation.

Proof: similar to the above.

Theorem 3.1.4 Weak similarity is the same as similarity.

Process Algebra: A Unifying Approach 51

Proof: Let W be the largest weak simulation. Because −→ is reflexive, W is
contained in (−→ o

9 W). From Theorem 3.1.2, this is a simulation, and so con-
tained in the largest simulation. The reverse inclusion is proved using Theorem
3.1.3 in place of Theorem 3.1.2. Note that this theorem depends on the defining
property for τ .

The introduction of non-determinism has not required any change in the defini-
tion of traces. So Theorem 3.1.4 achieves our goal of reconciling refinement with
weak similarity in a non-deterministic setting.

3.1 Relationship with CCS

A traditional presentation of a non-deterministic transition system is as an edge-
labelled graph which allows edges with the same source and label to point to
two or more distinct nodes. We can construct such a traditional graph from our
definition of a non-deterministic system, simply by using weak transitions e=⇒
to define its labelled edges, instead of the deterministic transitions e−→ . The
resulting graph will enjoy the following extra properties

(1) (τ−→ o
9

e=⇒) = e=⇒ = (e=⇒ o
9

τ−→)
(2) p

e=⇒ q iff p/e −→ q

(3) p
e=⇒ q =⇒ p

e=⇒ p/e

In standard versions of CCS, the property (1) holds by definition of the weak
transition; furthermore the after function can be defined in CCS in a way that
satisfies the transition rule (2). The only missing property (3) is the one that
states that there exists an edge labelled e between p and p/e. For example,
consider the graph fragment.

�

�

� �

�
�

�
�

�
�

���

�
�
�
�
�
�
���

e e

�
�

���

�
�

��	

τ τ

In a transition graph satisfying property (3), there must be an edge labelled
e from the top node to the middle node of this diagram. In the underlying
transition graph for CCS, such an edge may be missing. Our calculus therefore
cannot be applied to a reactive system in which the possible absence of such an
edge is a significant feature; for study of such a system, CCS would be a better
choice as a model.

In general, our theory can be regarded as a sub-theory of CCS, in that it
applies to the subset of CCS processes which happen to satisfy (3).

52 T. Hoare

3.2 Example: An Asynchronous Calculus

The introduction of non-determinism by means of a τ -transition permits distinc-
tions to be made between processes which have the same traces, but which have
different reductions. For example the RUN process has all sequences of labels as
its traces. So does the CHAOS process of CSP, which is intended to be the most
non-deterministic of all processes. Its extreme non-determinism is indicated by
the fact that it can unobservably change into any other process whatsoever

∀p. CHAOS τ−→ p

In this, it is distinguished from RUN, which has no τ -transitions. However,
both the processes satisfy similar recursive equations, explaining why RUN and
CHAOS have the same traces.

RUN/e = RUN
CHAOS/e = CHAOS

Before proceeding, we must check that these definitions satisfy the healthiness
condition for τ , which is done as follows

RUN τ−→ r =⇒ RUN/e −→ r/e the antecedent is always false
CHAOS τ−→ r =⇒ CHAOS/e −→ r/e the consequent is always true

In general, a process algebra can define the placing of the τ -labelled edges in a
non-deterministic graph by means of a collection of clauses similar to those which
defined the meaning of the after operator in Section 2.3. The postulates define
a set of τ -transitions which the transition system must include. The definition
is completed by saying that these are all the τ -transitions that are included –
there must be no more.

Definition of τ -transitions

STOP, RUN, and f.p have no τ -transitions
(p |&| q) τ−→ (p′ |&| q) if p

τ−→ p′

(p |&| q) τ−→ (p |&| q′) if q
τ−→ q′

(p |or| q) τ−→ (p′ |or| q) if p
τ−→ p′

(p |or| q) τ−→ (p |or| q′) if q
τ−→ q′

(p\f) τ−→ (p′\f) if p
τ−→ p′

The first line forbids an implementation from making internal transitions in cases
where it is not needed or wanted. The next four of these clauses allow reductions
to be made independently for both the operands of a parallel combinator. This
is what permits an implementation to exploit concurrency in execution of the
internal actions of concurrent parallel processes.

Process Algebra: A Unifying Approach 53

Before proceeding further, we must prove that the above definition preserves
the healthiness condition for τ . The pattern of the proof is given just for the
case p\f .

Assume p\f τ−→ r; we need to prove (p\f)/e −→ r/e. Since the traces of p\f
include the traces of r , it follows that p\f e−→ , and so e cannot be f . The
definition given above for τ transitions has only one clause that could justify a
τ transition of p\f , so the assumption must match that clause; consequently
for some p′, r = p′\f and p

τ−→ p′ . The definition of (/e) shows that p′\f e−→
only if p′ e−→ . Now p′ is syntactically simpler than p\f , so we may assume by
induction that it satisfies the healthiness condition. So p/e −→ p′/e, ie, there
is a sequence of τ -transitions stretching between them. Applying the definition
of (\f) to each step of the sequence, we get (p/e)\f −→ (p′/e)\f . From the
definition of (/e) since e �= f ,

(p\f)/e = (p/e)\f −→ (p′/e)\f = (p′\f)/e.

As mentioned in Section 2.3, the implementation of or-parallelism has to be
prepared to execute both its operands concurrently, for as long as the events
that actually happen are possible for both of them. For practical reasons, most
process algebras introduce a choice operator that does not require such parallel
computation. In fact, CSP introduces two choice operators: internal choice (�),
which is made by a process in a manner that cannot be observed or controlled
by the environment; and external choice (��), which can be controlled by the
environment (as described in Theorem 2.3.4, but only on the first step of their
interaction. Although both operators have the same set of traces as |or| , they
are distinguished by their τ -transitions, as we shall now describe.

For an internal choice, denoted by (p � q), the choice between the operands
can be made internally by a τ -transition; so the following clause should be added
to the defining properties of τ -transitions

(p � q) τ−→ p & (p � q) τ−→ q

The after function when applied to (p � q) obeys the same recursion as it
does for (p |or| q)

(p � q)/e = (p/e) � (q/e) if p
e−→ & q

e−→
= (p/e) if p

e−→ & q /−e→
= (q/e) if p /−e→ & q

e−→
= ∗ otherwise

For external choice, the two operands can be reduced, even in parallel; but (as
in CSP) on this first step it is not permitted to withdraw the external choice
between the operands (the CCS + operator does allow such withdrawal). So the
τ definition for �� is the same as for |or| .

54 T. Hoare

(p �� q) τ−→ (p′ �� q) if p
τ−→ p′

(p �� q) τ−→ (p �� q′) if q
τ−→ q′

However, after the first visible event, the behaviour is the same for external
as for internal choice

(p �� q)/e = (p � q)/e

The distinction between internal and external non-determinism is sufficient to
solve the problem of non-deterministic deadlock. The process (p � STOP) has
the same traces as p; but it is distinguished from p because it can indepen-
dently and unobservably withdraw its capability to perform the actions of p.
The withdrawal is justified by the τ -transition from (p � STOP) to STOP.

In Section 2.3, the restriction operator \f was defined as in CCS, to conceal
the event f by preventing it from happening altogether. CSP introduced a dif-
ferent hiding operator, which we will denote by \\f ; it allows an f -transition to
happen whenever it can, but only as an internally hidden event. This is formally
expressed by the postulate

(p\\f) τ−→ (p′\\f) if p
f

=⇒ p′ ∨ p
τ−→ p′

A process (p\\f) for which all f -transitions are hidden obviously cannot engage
in any external occurrence of the event f . But any other event possible for p
may occur; or the operand can perform a hidden f -transition first. The choice
to perform the f event rather than some other possible event is internally non-
deterministic.

(p\\f)/e = ∗ if e = f
= ((p/e)\\f) � ((p/f)\\f)/e otherwise

4 Barbed Transition Systems

So far we have devoted attention to graphs with labels on their edges; but why
shouldn’t nodes have labels too? They could be used to denote properties of the
internal states of a process, independent of any actions they can perform. Let
us introduce a set of node labels B (standing for ‘barbs’), disjoint from the set
of familiar edge labels, which we will denote by L. All labels e and f mentioned
in earlier sections are assumed to be from the set L, which excludes barbs. The
barbs cannot be explicitly mentioned in the syntax of our calculus (e.g., b.p is
forbidden if b is a barb). Their attachment to the nodes of the graph is governed
by specific axioms of the calculus that are known as healthiness conditions.

We use the notation p
b−→ # to state that node p has barb b. To enable us

to continue to use the relational calculus, the symbol # (sharp) will be taken to
denote another special node that is not a process; it is distinct from ∗ and has no
outgoing edges. It will be helpful to draw a barb as an actual barb-labelled edge

Process Algebra: A Unifying Approach 55

of the graph; such edges stick out from the nodes of the graph in the same way
as the barbs stick out from a barbed wire - this is the origin of the name. This
construction ensures that the transition graph satisfies a healthiness condition.

Healthiness Condition for Barbs

p
e−→ q =⇒ e is a barb ≡ q = #.

A barbed trace of a process p is defined in the same way as before, except that
in addition to normal labels from L , it can also include barbs from B . As
a result of the healthiness condition, a barbed trace can contain only a single
barb, one which labels the node at the end of the trace. This barb represents
the last observation that can be made of a process, and is often used to indicate
the reason for termination. For example, a refusal in CSP can be regarded as a
barb indicating that the process has ended in deadlock; and a divergence barb
indicates the possibility of an infinite sequence of internal actions, often known
as livelock. We will explain these phenomena more fully in Sections 4.2 and 4.3.

A barbed simulation is defined as a simulation in which the range of quantifi-
cation of the events ranges over B as well as L. In order to apply our theory to
barbs, we require reduction to be a barbed simulation. This has the consequence
that a state inherits all the barbs of its −→ descendants. Consequently, a barb on
an unstable state describes only the possibility that the state may spontaneously
(and unobservably) change to one that displays the property, – but equally, as
a result of non-determinism, it may not. It is only on a stable state that a barb
denotes a property that can definitely be observed of that state.

These definitions have been carefully formulated to ensure that barbed simu-
lation is the same as barbed trace refinement. In the remaining sections we shall
describe some of the barbs introduced in standard models of CSP.

4.1 Refusals

A refusal ‘ref (X)’ in CSP is an observation of the state of a process which
refuses to engage in any of the events in some set X (a subset of L), even
though all of them are possible (and usually even desirable) in the current state
of its environment. The concept of a refusal barb was introduced into CSP in
order to model non-deterministic deadlock as a safety property rather than as
a liveness property of a process, and so ensure that simple refinement reasoning
can prove its absence.

The intended meaning of a meaningful barb is often defined rather abstractly
by means of a healthiness condition imposed on the underlying transition system.
In the case of the refusals of CSP, the healthiness condition states (rather obvi-
ously) that a stable process can refuse a set if and only if the set contains none
of the events which it can accept and non-stable processes inherit the refusals of
their descendents.

56 T. Hoare

Healthiness Condition for Refusals

p
ref (X)−→ # iff ∃ q. q is stable & p −→ q & ∀x ∈ X. q /−x→

As a consequence, every stable state (and all its predecessors under −→) has an
empty refusal set among its barbs. Furthermore, if a state has ref (X) among its
barbs, then it also has ref (Y) , for all subsets Y of X . However, if a state has
no stable successors under reduction, then it has no refusals according to the
above definition. We will return to this point in the next section.

The healthiness condition enables us to deduce the refusals of all the processes
expressible in the syntax of the calculus. It seems better to deduce the refusals
from a general healthiness condition than to make them part of the definition
of the operators, which would require a separate proof of the preservation of
healthiness.

Theorem 4.1.1

STOP
ref (X)−→ # for all sets X that exclude barbs

RUN
ref (X)−→ # iff X = {}

f.p
ref (X)−→ # iff f /∈ X

(p |or| q) ref (X)−→ # iff p
ref (X)−→ # & q

ref (X)−→ #

(p |&| q) ref (X)−→ # iff ∃Y,Z. X = Y ∪ Z & p
ref (Y)−→ # & q

ref (Z)−→ #

(p\f)
ref (X)−→ # iff p

ref (X−{f})−→ #

The non-deterministic processes introduced in Section 3.3 have their refusals
defined in the following theorem

Theorem 4.1.2

CHAOS
ref (X)−→ # for all sets X

(p � q)
ref (X)−→ # iff p

ref (X)−→ # ∨ q
ref (X)−→ #

(p �� q)
ref (X)−→ # iff p

ref (X)−→ # & q
ref (X)−→ #

(p\\f)
ref (X)−→ # iff p

ref (X∪{f})−→ # ∨ (p/f)
ref (X)−→ #

4.2 Divergences

In spite of the powerful law of inheritance from descendents, there can be nodes
that have no refusal barbs at all. This can happen as a result of concealing
an infinite sequence of f -transitions, for example in the process RUN. Because
RUN can always do an f , RUN\\f can always make an internal transition

RUN\\f τ−→ RUN\\f
As a consequence, even after any number of f ’s , RUN\\f is never stable. Such
a process has an empty set of refusals. What is worse, it has an infinite sequence
of τ -transitions, and is therefore said to diverge.

Process Algebra: A Unifying Approach 57

Divergence is often considered an undesirable feature of a concurrent system,
because there is no way of controlling the amount of system resource that a di-
vergent system may consume. In practice, divergence is a common mechanism of
denial-of-service attacks on the World Wide Web, and one would like to prove its
impossibility. On the other hand, in some circumstances, maybe the possibility
of divergence is of no concern, for example when probabilistic reasoning proves
that it is vanishingly unlikely. It is therefore desirable for a process calculus to
provide some means of specifying whether a process is allowed to diverge; and
that is the purpose of the ‘div ’ barb; its introduction allows refinement as a
means of proving its absence where it is not wanted. A node has a div barb if
it is the origin of a potentially infinite series of τ -transitions, as stated by the
obvious healthiness condition

Healthiness Condition for div :

p
div−→ # iff p

τ−→ p′ τ−→ p′′ τ−→ . . . forever .

The effect of this new barb on the constants and operators of our process calculus
is given by the following theorem

Theorem 4.3.1

CHAOS div−→ #
STOP,RUN and f.p do not have divergence barbs.
(p |&| q), (p |or| q), (p � q), (p �� q) and p\f have a divergence barb iff

one (or both) of their operands has a divergence barb.
(p\\f) div−→ # iff ∃n. p/(fn) div−→ # ∨ ∀ i. f i ∈ traces(P)

In the divergence model of CSP, the occurrence of divergence is regarded as so
undesirable that it is assumed that no specification will actually allow it, and
that any process that allows even just the possibility of divergence is so bad that
it is not worth differentiating from any other process that allows it. This very
strict view of divergence is taken from Dijkstra’s theory of programming, and it
is consistent with a simple treatment of recursion as the largest fixed point of
its defining equation. The view can be introduced into a process calculus by an
additional healthiness condition.

Healthiness Condition for CHAOS (in the divergence model of CSP)

p
div−→ # =⇒ p

τ−→ CHAOS

A consequence of this definition is that even divergent processes will have at
least one refusal barb.

In the standard models of CSP, the semantics of a non-deterministic process
is given in terms of its traces, its failures, and its divergences. Introduction of

58 T. Hoare

barbs enables us to model all of these as just ordinary barbed traces. A failure
is just a trace with a refusal barb at the end. A divergence is just a trace with a
divergence barb at the end. Thus failures/divergence refinement (FDR) can be
considered as simple trace refinement. Theorem 2.2.6 continues to hold. Trace
refinement and similarity are the same.

5 Conclusion

In this paper we have started with the classical theory of deterministic automata,
and the languages of traces which they generate. In the classical theory, a par-
ticular automaton can be completely specified either by its transition graph,
with equality implied by mutual similarity, or by equality of the language of
traces generated by the labels on all the paths leading from a node. The two
methods of defining a process are isomorphic, and so they are mathematically
indistinguishable.

Modern process algebras have extended the classical theory of automata,
firstly by removing the restriction to finite state automata, and secondly by
introduction of non-determinism. The second extension has led to a dichotomy
in the study of process algebra, arising from selection of a refinement (as in CSP)
or a simulation (as in CCS) as the basis of comparisons between processes. The
central goal of this paper has been to re-establish the isomorphism between the
two approaches, even in the presence of non-determinism.

CCS provides a fixed collection of primitive processes and operators capable
of modelling arbitrary concurrent systems, and it defines them in terms of a fixed
set of primitive transitions. All other operators that are needed are expected to
be definable in terms of the primitive set. Proofs about the calculus can therefore
be made by induction on the structure of the syntax and on the number of
operations involved in its execution. The concept of bisimulation gives a way of
proving the most essential equations among terms. Bisimulation minimises the
risk of obscuring distinctions between processes that may later be required in its
potential range of applications.

Bisimilarity has a number of excellent qualities. It is based directly on an op-
erational semantics for the process calculus, which provides an abstract model for
its implementation. This kind of semantics appeals to the operational intuition
of programmers, which is especially useful when diagnosing errors by testing
a program. Bisimulation admits simple and elegant proofs, using co-induction.
And for particular programs, proofs can often be replaced by mechanical check-
ing, because bisimulation is a direct description of an algorithm that can be
used by an efficient model checker. Subtle variations in the definition of bisimi-
larity have offered wide scope for research, and new versions can fairly easily be
introduced for new purposes. The standard variants are sufficiently powerful to
reduce every (finite) process term to a normal form, thereby permitting powerful
algebraic techniques to be used in reasoning. For processes containing recursion,
a head normal form is available.

Process Algebra: A Unifying Approach 59

CSP is based on the concept of a trace (possibly barbed) as a description
of the observable behaviour of a concurrent interactive process. There is an
extensible collection of operators defined in terms of the trace sets that they
generate. Proofs about the calculus are conducted by standard mathematical
theories of sets and sequences. Basic properties of the calculus are postulated
by means of healthiness conditions, which must be preserved by each operator
that is introduced into the syntax. Further barbs and healthiness conditions can
be introduced to model properties of particular systems, but they may require
restrictions on the use of any operator that does not preserve the condition.
CSP pays particular attention to notions of correctness of implementation. In a
specification, the traces may be described in any clear and convenient formalism;
whereas implementations are expressed in the notations of the calculus, and
intermediate designs can exploit a mixture of notations. Correctness is modelled
by trace inclusion, so the calculus supports the standard engineering design
strategies of stepwise refinement and stepwise decomposition. The intention is
to make refinement and equality as comprehensive as possible, so that programs
are easier to prove correct and to optimise. But care has been taken to describe
and distinguish undesirable behaviours like deadlock and divergence, which can
afflict any real distributed system.

Of course, when bisimulation and refinement are reconciled, all their separate
advantages can be combined and exploited whenever the occasion demands.
Although in this paper only CCS and CSP have been considered in detail, is
hoped that the reconciliation can be extended to more modern process calculi.

The secret of reconciliation of a simulation-based calculus with a trace-based
one is to require the reduction relation to be a simulation. This and other healthi-
ness conditions can be expressed as additional transition rules, suitable for inclu-
sion at will in the operational semantics of any calculus that seeks reconciliation.
The new transitions may be interpreted by an implementer of the calculus as per-
mission to be kind to the user of the process, in the sense of giving the user more
opportunities to avoid deadlock. The new transitions offer additional possibili-
ties for resolving non-determinism at compile time; they validate more algebraic
laws, so giving more opportunities for optimisation. But there is no compulsion
to be kind – in fact, during system test, it is actually kinder for an implemen-
tation to expose all possibilities of error. That too is allowed by the theory.

Acknowledgements

The goal of unification of theories of concurrency was first pursued in the Esprit
Basic Research Action CONCUR. This was a Europe-wide research contract
aiming at concurrence (in the sense of agreement) between various process alge-
bras current at the time, particularly ACP [1], CCS and CSP.

A renewed attempt to reconcile simulation with refinement was encouraged
by the earlier success of power simulation [3]. The inspiration for the particular
approach of this paper derives from a Workshop held in Microsoft Research
Ltd., at Cambridge on 22-23 July 2002. Those who contributed to the discussion

60 T. Hoare

were Ernie Cohen, Cedric Fournet, Paul Gardiner, Andy Gordon, Robin Milner,
Sriram Rajamani, Jakob Rehof, and Bill Roscoe. Subsequently, He Jifeng and
Jakob Rehof made essential simplifications and clarifications.

The first draft of this paper was published by the Technical University at
Munich as lecture notes for the Marktoberdorf Summer School in August 2004.
This version was prepared with the kind assistance of Ali Abdallah.

References

1. J.A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37(1):77–121, 1985.

2. S. D. Brookes. On the relationship of CCS and CSP. In Proceedings of the 10th
Colloquium on Automata, Languages and Programming, volume 154 of Lecture
Notes in Computer Science, pages 83–96. Springer-Verlag, 1983.

3. P.H.B. Gardiner. Power simulation and its relation to Traces and Failures Refine-
ment. Theoretical Computer Science, 309(1):157–176, 2003.

4. R. Milner. Communication and concurrency. Prentice Hall, 1989.
5. R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Proceeding

of the 19th International Colloquium on Automata, Languages and Programming
(ICALP ’92), volume 623 of Lecture Notes in Computer Science, pages 685–695.
Springer-Verlag, 1992.

6. D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings of 5th GI Conference, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer-Verlag, 1981.

7. I.C.C. Phillips. Refusal testing. Theoretical Computer Science, 50(3):241–284,
1987.

8. G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

9. A. W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.
10. R.J. van Glabbeek. Notes on the methodology of CCS and CSP. Theoretical

Computer Science, 177(2):329–349, 1997.

Linking Theories of Concurrency

He Jifeng�

Shanghai East China Normal University

Abstract. Bisimulation is an equivalence relation widely used for com-
paring processes expressed in CCS and related process calculi [1, 6, 8, 9].
Simulation is its asymmetric variant. The advantages of bisimilarity are
simplicity, efficiency and variety. Proofs based bisimulation for particu-
lar programs can often be delegated to a model checker. Refinement is a
weaker asymmetric relation used for the same purpose in CSP [2, 3, 14].
Its advantages are abstraction, expressive power and completeness. Re-
finement permits proofs of more equations and inequations than bisim-
ilarity. When bisimulation and refinement are reconciled, all their dis-
tinctive advantages can be combined and exploited whenever the occa-
sions demands. This paper shows how to link these two approaches by
introducing an observation-preserving mapping, which gives rise a Ga-
lois connection between simulation and refinement. The same mapping
is also applicable to coincide barbed simulation with failures/divergence
refinement.

1 Introduction

In the study of process calculi, such as ACP [1], CCS [8], CSP [2, 3, 14], and the
pi-calculus [9], there are two standard approaches to the definition of similarity
or equivalence of processes: bisimulation and refinement.

Bisimulation was firstly introduced in CCS [8] to identify processes of the
same behaviour. It has simulation as an asymmetric version. A bisimulation is
an equivalence relation between the nodes of two directed edge-labelled graphs.
The relation must be preserved by simultaneous passage to a successor node
along any edge which has the same label in both graphs: more precisely, if the
sources of the two transitions are bisimilar, then each transition of one of them
must be matched by some identically labelled transition of the other, and the
targets of the two transitions must be bisimilar. A process calculus is usually
defined by means of a structural operational semantics [13], which ascribes a
node in a graph to each process expressible in the notations of the calculus. This
node represents the initial state of the process. The other nodes of the graph
represent possible subsequent states of the machine executing the process; the
machine can change from the source state of the transition to its target state on

� On leave from Shanghai East China Normal University. The work is partially sup-
ported by the 211 Key project of the Ministry of Education, and the 973 project (no
2002CB312001) of the Ministry of Science and Technology of China.

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, pp. 61–74, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

62 HJ

occurrence of the event which labels the transition. Two processes are defined
as bisimilar if their initial states are bisimilar.

The advantages of bisimulation are simplicity, efficiency and variety. Bisim-
ilarity is based directly on an operational semantics for the process calculus,
which provides an abstract model of an implementation; it thereby appeals di-
rectly to the operational intuition of programmers, which is especially useful
when diagnosing errors in a program. Proofs using bisimulation for particular
programs can often be delegated to a model checker.

Refinement is defined in terms of set inclusion. The semantics of the process
calculus is presented denotationally. It ascribes to each process the set of all pos-
sible observations that could be made of its behaviour in any execution of it. If
all possible observations of the implementation are included in those permitted
for the specification, the implementation is defined to be correct. The justifica-
tion of the definition is based on the philosophical principal that no violation
of the specification could ever be observed, and requires that the theory must
include enough observations to represent all possible ways in which a process
can go wrong. In CSP [3], there are four familiar varieties of refinement. The
first uses only traces. The second, failures refinement, deals with deadlock by
recording the refusals that are allowed at the end of each trace. Either of these
can be extended to deal with livelock.

The advantages of refinement are abstraction, expressive power, coarseness
and completeness. The observational semantics exploits the familiar abstractions
of set theory. This permits a process to be specified by an arbitrary mathematical
description of the observations of its behaviour: the specification does not have
to be encoded in the syntax of the calculus. New operators can often be defined
in the model, without invalidating theorems proved by normal mathematical
properties of sets. Refinement permits proofs of more equations and inequations
than bisimilarity; and each additional algebraic laws may be useful for program
optimisation and for reasoning about program correctness [11].

As described in [5], when bisimulation and refinement are reconciled, all their
distinctive advantages can be combined and exploited whenever the occasions
demands. This paper shows how to link these two approaches. Section 2 captures
the co-algebraic feature of bisimulation by providing it a defining equation. This
facilitates algebraic reasonings later in linking bisimulation and refinement theo-
ries. Section 3 gives trace refinement a defining equation, and explores its relation
with simulation in an algebraic framework. We coincide simulation and traces re-
finement for transition-deterministic processes in Section 4. Section 5 introduces
the notion of observation-preserving mapping, and examines its properties. It il-
lustrates how to link traces refinement and simulation by a Galois connection [7].
We discuss barbed simulation in Section 6. It is shown that the link mechanism
between traces refinement and simulation can also be applicable to the barbed
case. Section 7 characterises communication sequential processes by introducing
a simple healthiness condition. It presents a Galois link with the process calculi
which distinguish chaotic behaviour from divergent one.

e.

Linking Theories of Concurrency 63

2 Simulation

We use A to represent the set of all visible actions which appear at the interface
of the system, and λ to range over this set. Let τ denote an invisible action that
is internal to the system. We will use a to range over the set Aτ =df A ∪ {τ}.

Definition 2.1 (Labelled Transition System)

A labelled transition system over Aτ is a pair (P, T) consisting of

– a set P of processes;
– a ternary relation T ⊆ P ×Aτ × P

If (P, a, Q) ∈ T we write P
a→ Q to indicate that P can move to Q by performing

action a. �

Define ⇒=df
τ→∗

as the reflexive and transitive closure of τ→, and define the

relation λ⇒=df⇒; λ→, where ′;′ denotes relational composition. Let the predicate

P
λ⇒=df ∃Q • (P λ⇒ Q).

Definition 2.2 (Weak Simulation)

A binary relation R over processes is a weak A-simulation if for all λ ∈ A

(R; λ⇒) ⊆ (λ⇒;R)

We use ≤A to denote the greatest weak simulation, and define ≈A to be the
greatest symmetric relation satisfying the previous inequation. �

In the following we are going to prove the existence of ≤A and ≈A by con-
struction of their defining equations. Let R be a binary relation over P. For any
subsets X and Y of P we define

X Pow(R)Y =df ∀P ∈ X • ∃Q ∈ Y • (P RQ) ∧ ∀Q ∈ Y • ∃P ∈ X • (P RQ)

and P
λ
↪→ X =df (X = {S | P λ⇒ S}).

We use
λ←↩ to denote the converse of the binary relation

λ
↪→.

Theorem 2.1 (Defining equation of weak simulation)

(1) R is a weak simulation iff R ⊆ ⋂
λ∈A(

λ
↪→;⊇;Pow(R);

λ←↩)

(2) ≤A = μR •⋂
λ∈A(

λ
↪→;⊇;Pow(R);

λ←↩)

where μX •F (X) stands for the greatest fixed point of the equation X = F (X).

64

Proof. of (1). (only-if-part): Suppose P RQ. Let P
λ
↪→ X and Q

λ
↪→ Y .

From Definition 2.2 it follows that

∀T ∈ Y • ∃S ∈ X • SRT

Let X ′ = {S ∈ X | ∃T • T ∈ Y ∧ SRT}. One has

P (
λ
↪→;⊇)X ′ and X ′ (Pow(R);

λ←↩)Q

as required.

(if-part): If P RQ , then from the fact that
λ
↪→ is a function we conclude that

P
λ
↪→ X ∧Q

λ
↪→ Y ⇒ ∃X ′ • (X ⊇ X ′ ∧ X ′Pow(R)Y)

which is equivalent to

P
λ
↪→ X ∧Q

λ
↪→ Y ⇒ ∀T ∈ Y • ∃S ∈ X • SRT

as required by the Definition 2.2.

(2). From (1) and Tarski’s fixed-point theory [15], we conclude that μR•⋂λ∈A(
λ
↪→

;⊇;Pow(R);
λ←↩) is a weak simulation. The conclusion that it is the greatest weak

simulation follows from Tarski’s greatest fixed-point theorem and (1). �

≈A can also be defined as the greatest fixed point

Theorem 2.2 ≈A = μR •⋂
λ∈A(

λ
↪→;Pow(R);

λ←↩)

Proof. Similar to Theorem 2.1. �

The following properties of weak simulation will be used in the later proof.

Lemma 2.1

(1) (τ→ ∪idP) is a weak simulation, where idP is the identity relation over P.
(2) ≤A is transitive.

Proof. (1) From the fact that (τ→; λ⇒) ⊆ λ⇒.

(2) First one has ≤A= (idP ;≤A) ⊆ (≤A;≤A). Next we show that (≤A;≤A) is
a weak simulation.

≤A;≤A; λ⇒ {(≤A; λ⇒) ⊆ (λ⇒;≤A)}
⊆ ≤A; λ⇒;≤A {(≤A; λ⇒) ⊆ (λ⇒;≤A)}
⊆ λ⇒;≤A;≤A �

HJ e.

Linking Theories of Concurrency 65

The following lemma states that the definition of ≤A is equivalent to the original
one given by Robin Milner in [9].

Lemma 2.2

≤A is the greatest relation satisfying the inequations

(1) (R; τ→) ⊆ (⇒;R)

(2) (R; λ→) ⊆ (λ⇒;⇒;R).

Proof. Let ≤ be the greatest relation satisfying (1) and (2). Similar to Lemma
2.1 we can show

(a) τ→⊆≤
(b) ≤;≤=≤

First we want to establish ≤A⊆≤ by showing ≤A satisfies (1) and (2).

≤A; τ→ {Lemma 2.1(1)}
⊆ ≤A;≤A {Lemma 2.1(2)}
= ≤A {idP ⊆⇒}
⊆ ⇒;≤A

≤A; λ→ { λ→⊆ λ⇒}
⊆ ≤A; λ⇒ {Definition 2.2}
⊆ λ⇒;≤A {idP ⊆⇒}
⊆ λ⇒;⇒;≤A

Finally we prove that ≤ is also a weak simulation, and so ≤ is a subset of ≤A.

≤; λ→ {Inequation (2)}
⊆ λ⇒;⇒;≤ {Fact (a)}
⊆ λ⇒;≤∗;≤ {Fact (b)}
⊆ λ⇒;≤

≤; τ→n
; λ→ {Inequation (1)}

⊆ ⇒n;≤; λ→ {Previous proof}
⊆ ⇒n; λ⇒;≤ {(⇒n; λ⇒) ⊆ λ⇒}
⊆ λ⇒;≤ �

66

3 Traces Refinement

A trace of the behaviour of a process is a finite sequence of names recording the
visible events in which the process has engaged up to some moment in time.

tracesA(P) =df {〈〉}
⋃
{〈λ〉s | λ ∈ A ∧ ∃S • P λ⇒ S ∧ s ∈ tracesA(S)}

Definition 3.1 (Traces Refinement)

Q is a traces refinement of P , denoted P �A Q, if

tracesA(Q) ⊆ tracesA(P)

We define P ≡A Q =df P �A Q ∧Q �A P �

Similar to the treatment of ≤A and ≈A we are going to form the defining equa-
tions for �A and ≡A.

Let X and Y be subsets of P. Define

X ⊇tr Y =df

⋃
{tracesA(P) | P ∈ X} ⊇

⋃
{tracesA(Q) | Q ∈ Y }

X equaltr Y =df

⋃
{tracesA(P) | P ∈ X} =

⋃
{tracesA(Q) | Q ∈ Y }

Theorem 3.1 �A = μR •⋂
λ∈A(

λ
↪→;⊇tr;Pow(R);

λ←↩)

Proof. Let Fλ(R) =df (
λ
↪→;⊇tr;Pow(R);

λ←↩).

First we establish that the inequation LHS ⊆ RHS.

P �A Q {Definition 3.1}
⇒ ⋃{tracesA(T) | Q λ⇒ T} ⊆ {tracesA(S) | P λ⇒ S} {Definition of ⊇tr}
⇒ ∃X, Y • P λ

↪→ X ∧X ⊇tr Y ∧ Y
λ←↩ Q {Y Pow(�A)Y }

⇒ P Fλ(�A)Q

which together with the greatest fixed point theorem [15] implies that LHS ⊆
μR •⋂

λ∈A Fλ(R) = RHS
The opposite inequation RHS ⊆ LHS can be proved by showing inductively

that for any nonempty sequence s of actions of A
(P RHS Q ∧ Q

s⇒)⇒ (P s⇒)

where
〈λ1,...,λn〉

=⇒ =df
λ1⇒; ...; λn⇒. �

Theorem 3.2 (Defining equation of ≡A)

≡A = μR •⋂
λ∈A(

λ
↪→; equaltr;Pow(R);

λ←↩)

HJ e.

Linking Theories of Concurrency 67

Proof. Similar to Theorem 3.1. �

Theorem 3.3 Weak simulation implies traces refinement

Proof ≤A {Theorem 2.1}

= μR •⋂
λ∈A(

λ
↪→;⊇;Pow(R);←↩) {⊇ is a subset of ⊇tr}

⊆ μR •⋂
λ∈A(

λ
↪→;⊇tr;Pow(R);←↩) {Theorem 3.1}

= �A �

4 Transition-Deterministic Processes

Definition 4.1 (Transition-deterministic process)

Define DPA = {P | ∀λ • P λ
↪→ X ⇒ (size(X) ≤ 1 ∧X ⊆ DPA)}

We have for any nonempty sequence s of actions of A

P ∈ DPA ∧ P
s⇒ S ∧ P

s⇒ T ⇒ (S = T) �

Traces refinement implies weak simulation in DP.

Theorem 4.1 If P ∈ DPA, then P �A Q implies P ≤A Q.

Proof. Let R =df {(P, Q) | P ∈ DPA ∧ P �A Q}

P RQ {Definition 3.1}
⇒ ∀λ • ∀T • (Q λ⇒ T ⇒ (〈λ〉 · tracesA(T) ⊆ tracesA(P))) {P ∈ DPA}
⇒ ∀λ • ∀T • ∃S ∈ DPA • (Q λ⇒ T ⇒ (P

λ
↪→ {S} ∧ SRT)) {simplification}

⇒ ∀λ • ((Q λ⇒) ⇒
∃S • (P

λ
↪→ {S} ∧ {S}Pow(R) {T | Q λ⇒ T}))

which is equivalent to

R ⊆ ⋂
λ∈A(

λ
↪→;⊇;Pow(R);

λ←↩)

From Theorem 2.1 we conclude that R is a weak simulation. �

Theorem 4.2 If both P and Q lie in DPA, then P ≡A Q implies P ≈A Q.

Proof. Similar to Theorem 4.1. �

68

5 Observation-Preserving Mapping

Definition 5.1

M is an observation-preserving mapping from P to DPA if

M(P) ≡A P �

Lemma 5.1 IfM is an observation-preserving mapping, then it is a monotonic
link [4]:

(1) Monotonic: P �A Q impliesM(P) ≤A M(Q)

(2) Weakening:M(P) ≤A P

(3) Idempotent: M2(P) ≈A M(P)

Proof. (1) From the assumption thatM is observation-preserving it follows

P �A Q ⇒ M(P) �A M(Q)

which together with Theorem 4.1 implies the conclusion.

(2) FromM(P) ≡A P and Theorem 4.1.

(3) FromM2(P) ≡A M(P) and Theorem 4.2. �

Theorem 5.1 If M is observation-preserving, then

(1) P �A Q iff M(P) ≤A Q

(2) P ≡A Q iff M(P) ≈A M(Q)

Proof of (1) P �A Q {M is observation-preserving}
≡ M(P) �A Q {Theorem 4.1}
⇒M(P) ≤A Q {Theorem 3.3}
⇒M(P) �A Q {M is observation-preserving}
≡ P �A Q

(2) can be proved in a similar way. �

In the remaining of this section we are going to construct an observation-
preserving mapping.

Definition 5.2 (λ-derivative)

Let λ be a visible action, and P
λ⇒. The notation P/λ represents a process which

behaves like P after the occurrence of λ

HJ e.

Linking Theories of Concurrency 69

P
λ⇒ Q

P/λ
τ→ Q

We call P/λ the λ-derivative of P . �

P\λ can engage in all actions P can perform after the λ-transition.

Lemma 5.2 P/λ
α⇒ Q iff P (λ⇒; α⇒)Q for all α ∈ A �

Corollary traces(P/λ) = {s | 〈λ〉s ∈ traces(P)}

Proof. From Definition 3.1 and Lemma 5.2. �

Definition 5.3 (Mapping H)

Let P be a process. The behaviour of the process H(P) is described by the
following transition rules

P
τ→ Q

H(P) τ→ K(Q, P)

Q
τ→ R

K(Q, P) τ→ K(R, P)

P
λ→ S

H(P) λ→ H(P/λ)

Q
λ→ R

K(Q, P) λ→ H(P/λ)

H(P) behaves the same as the process P .

Lemma 5.3

(1) P
λ⇒ iff H(P) λ⇒

(2) init(P) = init(H(P)), where init(P) =df {a | a ∈ Aτ ∧ ∃Q • (P a→ Q).

(3) If P
τ→n

Q for n ≥ 1, then

(a) Q
λ⇒ iff K(Q, P) λ⇒

(b) init(Q) = init(K(Q, P)) �

The following lemma states that H(P) is a member of DP.

Lemma 5.4

(1) H(P) λ⇒ R iff R = H(P/λ)

(2) H(P) τ→n
R iff there exists Q such that P

τ→n
Q and R = K(Q, P) �

Now comes the main theorem of this section.

Theorem 5.2 H is an observation-preserving mapping.

70

Proof 〈λ〉 ∈ tracesA(P) {Definition 3.1}
≡ P

λ⇒ {Lemma 5.3(1)}
≡ H(P) λ⇒ {Definition 3.1}
≡ 〈λ〉 ∈ tracesA(H(P))

〈λ〉s ∈ tracesA(P) {Corollary of Lemma 5.2}
≡ P

λ⇒ ∧ s ∈ tracesA(P/λ) {Lemma 5.3(1) and induction}
≡ H(P) λ⇒ ∧ s ∈ tracesA(H(P/λ)) {Lemma 5.4(1)}
≡ 〈λ〉s ∈ tracesA(H(P)) �

(H, IdP) forms a Galois connection between (P, �A) and (P, ≤A).

Theorem 5.3

(1) P �A Q if and only if H(P) ≤A Q

(2) P ≡A Q if and only if H(P) ≈A H(Q)

Proof. From Theorems 5.1 and 5.2. �

6 Barbs

A barb [10] is used to denote a property of a process, rather than an action which
changes the process. For example, the following barbs have suggestive names.

(1) candiverge is a property of a process that can engage in an infinite sequence
of invisible action τ .

(2) Let X be a subset of A. A process has canrefuse(X) if it cannot perform
the actions in the set X.

P has canrefuse(X) =df init(P) ∩ (X ∪ {τ}) = ∅
(3) canaccept(X) indicates a stable process, which can perform all the actions
of X.

P has canaccept(X) =df τ /∈ init(P) ∧X ⊆ init(P)

We are going to adopt a simple coding trick to unify barbed bisimulation and
barbed traces with their unbarbed versions. Let B be the set of barbs of interest,
and � stand for the state which no action or observation may be made, i.e.,
tracesA(�) = {〈〉}, and there is no barb b in B such that � has b. It can arise
only as described in the following case

If P has barb b, then P
b→ �

Lemma 6.1

DPA = DPA∪B

HJ e.

Linking Theories of Concurrency 71

Proof. From the fact that b→ is a partial function. �

As in Section 3, we define P �A∪B Q =df tracesA∪B(Q) ⊆ tracesA∪B(P)

Definition 6.1 (Barbed Simulation [10])

A binary relation R over processes is a barbed simulation with respect to the
barb set B if it is a weak (A ∪ B)-simulation. �

Definition 6.2 (Stable Barbs)

A barb b is stable if P has b only if it is stable, i.e., τ /∈ init(P), and furthermore,

init(P) = init(Q) ⇒ (P has b iff Q has b) �

Both canaccept(X) and canrefuse(X) are stable barbs.

Lemma 6.2 If b is stable, then P
b⇒ iff H(P) b⇒

Proof. If τ /∈ P, the conclusion follows directly from Lemma 5.3(2) and the
definition of stable barbs. Now consider the case where τ ∈ init(P). From Lemma
5.3(2) we conclude that τ ∈ H(P).

P
b⇒ {and Def of b⇒}

≡ ∃n • ∃Q • P (τ→n
)Q ∧ Q

b→ � {Lemma 5.4(2)}
≡ ∃n • ∃Q • H(P) (τ→n

)K(Q, P) ∧ Q
b→ � {Lemma 5.3(3)}

≡ ∃n • ∃Q • H(P)(τ→n
)K(Q, P) ∧ K(Q, P) b→ � { and Def of b⇒}

≡ H(P) b⇒ �

Lemma 6.3

If b = candiverge then P
b⇒ iff H(P) b⇒.

Proof. From Lemma 5.4(2). �

In the following we consider the case where B only consists of stable barbs and
candiverge.

Theorem 6.1

H of Section 5 is an observation-preserving mapping from P to DPA∪B

Proof. From Lemmas 6.2 and 6.3. �

Like in unbarbed case, (H, IdP) is a Galois connection between barbed traces
refinement and barbed simulation.

Theorem 6.2

(1) P �A∪B Q iff H(P) ≤A∪B Q

(2) P ≡A∪B Q iff H(P) ≈A∪B H(Q)

Proof. From Theorems 5.1 and 6.1. �

72

7 Communicating Sequential Processes

Definition 7.1 (The Chaotic Process)

The behaviour of the chaotic process ⊥ is totally unpredictable, it can engage
in any action, and then move to any process.

⊥ a→ P for all a ∈ Aτ and P ∈ P.

Clearly ⊥ ≤A∪B P for all P ∈ P. �

Definition 7.2

For any P ∈ P, the notation C(P) represents a process which behaves like P
except that it becomes chaotic whenever P enters a divergent state.

P
a→ R

C(P) a→ C(R)
a ∈ Aτ P

b−→ �
C(P) b→ �

P
candiverge−→ �
C(P) τ→ ⊥

Like the observation-preserving mappings, C is a monotonic link.

Lemma 7.1

(1) P �A∪B Q implies C(P) �A∪B C(Q)

(2) C(P) ≤A∪B P

(3) C2(P) ≈A∪B C(P) �

Definition 7.3 (Communicating Sequential Processes)

P is a communicating sequential process if P ≡A∪B C(P).

We use CSP to stand for the set of all communicating sequential processes. �

From Lemma 7.1(3) it follows that C is a mapping from P to CSP. Moreover,
(C, H) forms a Galois connection between (P, ≤A∪B) and (CSP, �A∪B).

Theorem 7.1 P �A∪B C(Q) iff H(P) ≤A∪B Q for all P ∈ CSP and Q ∈ P.

Proof H(P) ≤A∪B Q {Theorem 6.2}
≡ P �A∪B Q {Lemma 7.1(1)}
⇒ C(P) �A∪B C(Q) {P ∈ CSP}
≡ P �A∪B C(Q) {Theorem 6.2}
≡ H(P) ≤A∪B C(Q) {Lemma 7.1(2)}
⇒ H(P) ≤A∪B Q �

HJ e.

Linking Theories of Concurrency 73

8 Conclusion

Process algebras and calculi serve two complementary purposes. The first is to
model and to analyse the behaviour of concurrent systems at various levels of
abstraction. The second is to formalise the specification of a concurrent system,
as well as its implementation as a program, and to verify that the implemen-
tation is correct, in the sense that it satisfies its specification. CCS and CSP
have been used for both purposes, but CCS gives more emphasis on modelling
and CSP to correctness. In modelling concurrent behaviour, CCS and related
calculi define the behaviour of a process by the operational semantics, which
provides an abstract model of an implementation. To compare processes, CCS
introduces an equivalence relation known as bisimilarity, defined co-inductively
on the structure of the behavioural graph of the two processes. The arrows of
the graph are the transitions in which the process may engage. Bisimilarity ap-
peals directly to the operational intuition of programmers. In addressing the
question of correctness, CSP expresses both specification and implementation in
the same algebraic notations, and correctness is identified with an ordering rela-
tion known as refinement. This relation holds between an implementation and a
specification when all possible observations of any execution of the implementa-
tion are included in those described and therefore allowed by the specification.
The observational semantics exploits the familiar abstraction of set theory. This
permits a process to be specified by an arbitrary mathematical description of
the observations of its behaviour. After reconciliation of simulation with refine-
ment, their advantages can be combined and exploited. This was the primary
motivation for the research reported in this paper.

The basic technique for reconciling refinementwith simulationwe haveadopted
here was to construct an observation-preserving mapping, which gives rise a Ga-
lois link between refinement and simulation. The mapping defined in this paper
is actually a monotonic link which converts processes to healthy ones. It was
built by introducing a number of additional non-standard transitions into the
operational semantics of the process algebra. The additional transitions that are
needed have a justifiable intuitive contents, and they turn out to be useful in
dealing with a variety of simulations.

Acknowledgement

The inspiration for this paper derives from a Workshop held in Microsoft Re-
search Ltd., at Cambridge on 22-23 July 2002. Those who contributed to the
discussions were Ernie Cohen, Cedric Fournet, Paul Gardiner, Andy Gordon,
Tony Hoare, Robin Milner, Sriram Rajamani, Jacob Rehof and Bill Roscoe.

References

1. J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Sciences, Vol 37(1): 77–121, 1985.

74

2. S.D. Brookes, C.A.R. Hoare and A.W. Roscoe. A theory of communicating sequen-
tial processes. Journal of the ACM, Vol 31, 1984.

3. C.A.R. Hoare. Communicating sequential processes. Prentice Hall, 1985.
4. C.A.R. Hoare and He Jifeng. Unifying theories of programming. Prentice Hall,

1998.
5. C.A.R. Hoare. Process Algebra: a Unifying Approach. In A.E. Abdallah, C.B. Jones

and J.W. Sanders, editor, Twenty-five Years of Communicating Sequential Pro-
cesses, Lecture Notes in Computer Science, Springer-Verlag, 2005.

6. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and control 94(1), 1991.

7. S. Mac Lane. Categories for the Working Mathematicians. Springer-Verlag, 1971.
8. R. Milner. Communication and concurrency. Prentice Hall, 1989.
9. R. Milner. Communicating and mobile systems: the π -calculus. Cambridge Uni-

versity Press, 1999.
10. R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Proceed-

ings of the 19th International Colloquium on Automata, Languages and Program-
ming (ICALP’92), Lecture Notes in Computer Science, Vol 623, 685–695, Springer-
Verlag, 1992.

11. R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical Com-
puter Science 34, 1983.

12. D.M.R. Park. Concurrency and automata on infinite sequences. Lecture Notes in
Computer Science, Vol 14, 167–183, Springer-Verlag, 1981.

13. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI-FN-
19, Computer Science Department, Aarhus University, Denmark, 1981.

14. A.W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.
15. A. Tarski. A lattice-theoretical fixed-point theorem and its applications. Pacific Jour-

nal of Mathematics, Vol 5: 285–309, 1955.

HJ e.

CSP, occam and Transputers

David May

Bristol University

The following is based on an after-dinner speech at the conference to celebrate
the 25th anniversary of CSP. It’s an informal - and personal - account of the
development of CSP and the related work on the occam language and the Inmos
transputer. This involved many exceptional people, and I’ve only been able to
mention a few of them - but before I start - I’d like to thank them all.

1 The 25th Anniversary of CSP

It’s over 25 years since the publication of Tony’s CSP paper [4] and over 30
years since I first became interested in concurrent systems. In 1973 I was at
Warwick University working on autonomous mobile robots, and had started to
think about how to build control systems to handle a lot of sensors and actuators.
I decided to spend a few months sorting out these problems ... !

At that time microprocessors had only just appeared, but it was already clear
to me that they would open up the potential for low cost, compact, systems with
multiple processors. And, on a larger scale, experimental computer networks and
distributed systems were under construction. In fact, we set up a research project
on programming languages for distributed computing and I tried to persuade
our UK research council to let me build a system with ten processors - but they
inisisted that three processors would be enough! Anyway, we built single-board
microcomputers directly connected with communications links and programmed
in a language I’d designed called EPL which had processes and messages - and
a very efficient implementation.

Over the 1970s there was a lively debate in the UK about architectures and
languages for these systems. I met Tony around 1977 and I think we both realised
that we were working with very similar ideas. Tony had been working on the CSP
language ideas for a while by then, and I’d spend a lot of time on architecture,
compilers and implementation techniques.

The CSP paper was a significant step in that it described a simple language
with considerable expressive power; beyond that it was clear to me that I knew
how to implement most of it efficiently. I think it’s true to say that the CSP
paper provided the first accessible and widely read paper about the principles
of concurrent programming languages and concurrent programs - a point of
reference for a lot of people already working in the field and an invitation to
many more to join it.

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): CSP 2004, LNCS 3525, pp. 75–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

76 D. May

2 The 25th Anniversary of Inmos

The publication of CSP in 1978 coincided with the foundation of the microelec-
tronics company Inmos, with an investment of £50m of venture capital from
the UK government. Iann Barron, one of the founders of Inmos, planned on
establishing UK design and manufacture of microprocessors. Viewing a micro-
computer as a component for the construction of complex electronic systems just
as the transistor is a component for logic gates, he coined the word ‘transputer’
(transistor + computer) to describe such a device.

It was always planned that Inmos would introduce a new language for the
design and programming of concurrent systems. This language was designed
between 1979 and 1983 and was eventually called occam [10]; the development
continued and produced occam2 in 1985 [9]. Looking over the many drafts I still
have, it’s possible to trace the development of occam and to see the influence
of the original CSP paper. There are differences, for example at some point we
added channels; we introduced protocols to describe the messages sent through
channels; we never adopted automatic termination of repetitive guards. All the
time we were concerned about delivering a practical language which could be
efficiently implemented. I wrote the first experimental compiler and designed the
first transputer instruction set around 1981.

And at the same time, Tony and his group in Oxford were working on the
formal models for CSP. I remember the first algebraic definition of occam which
arrived unexpectedly in 1982; this subsequently had a significant influence on
various aspects of the language and the way it was described - and led into Bill
Roscoe’s work on the ‘laws of occam programming’ [6] and the project to build
an automated program transformation system.

Inmos in Bristol turned out to be a highly innovative environment, not least
because an attempt to recruit a small number of graduating students actually
resulted in twenty being recruited - more than the complement of ‘experienced’
staff - most of whom weren’t very experienced! I’ve come to realise that most
creative computer scientists at the time wanted to design their own architec-
ture, programming language and development tools - just like I did - but for-
tunately most of them didn’t get the opportunity! Anyway, we rapidly found
ourselves innovating in almost every area - architecture, programming language,
development environment, computer aided design system - even the style of the
documentation and the packaging of the evaluation boards!

And we took an innovative approach to marketing too - first introducing
occam and then the transputer to the Japanese market. A group of us - including
Tony - went to Japan to present occam to research organisations including the
Institute for new-generation Computing Technology (ICOT). In assembling the
presentations for this trip we struggled to find a suitable simple example of the
use of occam. Eventually we came up with an example of an embedded control
program - the occam tea-maker - for the kind of bedside alarm and tea-maker
which was common in the UK at the time. I’ve never been sure what the Japanese
made of this program as their way of preparing tea is quite different from ours
- but it appeared all over the Japanese technical press anyway!

CSP, occam and Transputers 77

We went to Japan again - this time with Bill Roscoe - to give two presenta-
tions at the second 5th generation conference. Here I presented the transputer as
the implementation of occam [14] whilst Bill tried to persuade his audience that
occam was a logic programming language [5]! But I’m not sure they were ever
convinced by this - or by my remark during the final panel session that occam
was a way of doing logical programming without logic programming!

3 The 20th Anniversary of Transputer (Announcement)

So we can today also celebrate the 20th anniversary of the transputer - or at least,
the 20th anniversary of its announcement! The transputer’s architecture was a
hardware embodiment of occam. Its instruction set had specific instructions to
support concurrent processes, synchronised communication and guarded com-
mands. To construct systems with multiple processors, the transputer had serial
communication links through which the interprocessor messages were passed.

The implementation of these functions in terms of microcode took around
a year - significant complexity arose from the fact that the transputer process
scheduler provided timer-based scheduling and two priority levels. The end result
was to embed a microkernel in around 300 micro-instructions - about 4kbytes of
read-only-memory in total.

To my knowledge, the transputer design remains the best integration of pro-
cessing and communication yet achieved - at a time when processor clock speeds
were less than 10Mhz, it took a few microseconds to transfer a short message
between two processes on different transputers. It’s notable that this has been
one of the neglected areas of computer design over the last 20 years, so that
despite a hundredfold increase in processor clock speeds and communications
rates, the time taken to pass a short message between processes in two different
computers is typically between 100 microseconds and 1 millisecond.

It was inevitable that releasing a microcomputer which could be used to build
multiprocessors easily would lead to research groups and companies building
concurrent ‘supercomputers’. Soon there was a spin-out from Inmos - Meiko -
selling concurrent supercomputers; they were followed by several others. And
many students who passed through computing courses in the 1980s learnt about
occam and programmed small collections of transputers.

In 1985 we started the design of an enhanced transputer with a floating point
unit, resulting in the launch in 1987 of the world’s fastest single-chip floating-
point microcomputer [7]. Although we had expected this to be of interest in
embedded applications, it had much more impact as a component for concurrent
supercomputers.

In fact, many concurrent computing systems were built using transputers
and occam - whenever I watch animated films I’m reminded of the concurrent
implementation of the the Renderman system now used for rendering movies
such as Jurassic Park. This took us into the area of general purpose architectures
which could support programmable and dynamically changing communication
patterns.

78 D. May

So we started to investigate ways of implementing communications. There
was a lot of debate at the time arising from work on VLSI interconnection net-
works which claimed that low-dimensional networks were the most efficient. We
soon realised that this was based on the inappropriate assumptions - optimising
a network for minimum delay under low-load conditions is not the same as opti-
mising a network for bounded delay under high-load conditions - which is what
concurrent computation is all about!

Fortunately, at this time Les Valiant was in Oxford and Tony re-introduced
him to me - I had lost contact with him since he left Warwick in the 1970s. A
series of meetings and letters resulted in us designing the first VLSI message-
routing switch; unfortunately this design was never understood in the company
and it was not used in any commercial products - although we did demonstrate
them and I still have one on my shelves. This switch was designed as a compo-
nent for interconnection networks and included hardware mechanisms to avoid
hot-spots in parallel communication [15]. At the same time, the network pro-
tocols were designed to support synchronised message communication between
processes [12].

The legacy of this work remains today - similar ideas were adopted by the
Inmos spin-out Meiko, and the Meiko technology was subsequently acquired by
Quadrics. They are still based in the UK, and have developed it further into the
interconnection system used in many of the world’s largest supercomputers.

4 Formal Methods

The development of the floating point transputer - and indeed the floating point
software package which preceeded it - highlighted the need for better design
verification techniques. Inmos had already pioneered a number of techniques in-
cluding automatic circuit connectivity checking and design rule checking. Thanks
to an invitation from Tony, I was fortunate to hear Don Good talking about for-
mal program verification at the Royal Society [3]. This led to my suggesting the
formal verification of a software package to implement the proposed IEEE754
standard for floating point arithmetic - a suggestion which was taken up by Geoff
Barrett, at that time a PhD student at Oxford.

Geoff succeeded in this work - within three months we had the specification
- and proof - of the package [1]. Subsequently we employed the outcome of our
project to develop an interactive transformation system based on the ‘laws of
occam programming’ in order to check - by transformation - that the floating
point microprograms could be transformed into the programs in Geoff’s package.
I think this was the earliest use of formal methods in microprogramming [11].

Geoff went on to construct a verification of the transputer process scheduler
as his PhD thesis, and then joined Inmos where he continued to develop novel
verification tools; the inspiration for the FDR refinement checker was a checker
initially written by Geoff to verify the design of the communications processing
system of our next-generation transputer - the T9000 [2].

CSP, occam and Transputers 79

It had always been our intention to move into applications-specific products
and to this end occam was intended to be usable as a hardware design and
synthesis language. There is a great advantage of being able to use the same
language for both hardware design and software design - the implementation
of a specific operation can be easily moved between hardware and software. In
fact, in 1987 we completed an experimental synthesiser which used the optimised
library of modules designed for the transputer as a target - potentially exploiting
a significant investment [13]. We couldn’t pursue this work because of the market
conditions in 1988 although it did give rise to the developments at Oxford of
Handel - now Handel-C. I’ve never understood why our approach to hardware
synthesis has not been taken forward more generally but I’m still optimistic!

5 Market Resistance

It had always been the Inmos strategy to introduce a new concurrent program-
ming language and then to introduce the transputer as the best implementation
of it. The problems with this strategy soon became apparent - selling a language
is much harder than selling a chip!

In fact, it’s very difficult to persuade engineers and programmers to adopt
new tools - especially as replacements for the tools they are familiar with - and if
you imply that their existing tools are out-of-date it appears that you are saying
that their skills are out-of-date! And of course, we didn’t have the resources to
supply occam implementations for lots of other processors and operating systems
prior to the introduction of the transputer.

And another problem emerged as we started to launch the transputer - the
Motorola 68000 had taken over most of the teaching laboratories in the US and
to some extent in Europe, and the transputer’s stack architecture with only a
few registers - chosen to minimise code-size and context-switch overheads - was
just too different. We often encountered the comment: ‘It’s not like a 68000, it
can’t be a microprocessor ...’ !

And we were very naive about the market. We introduced a development
system with the price of a typical PC software product - within weeks we were
contacted by an engineer telling us that his management wouldn’t take our
product seriously because it was too cheap! On checking, we discovered that our
competitors were charging almost 10 times as much as we were for a development
system. So we released the ‘professional development system’ - just the same but
much more expensive - and the problem went away!

Another problem was that the potential market for 32-bit embedded proces-
sors was much too low to sustain the development of new products; few embedded
systems required the performance of more than one processor. At the time, most
embedded systems used a single 8-bit microprocessor programmed in assembler,
and so we had taken on the task of trying to educate most of our customers in
the use of concurrency and high-level languages!

I think that those of us used to CSP or occam don’t realise how much there
is to learn. These languages are small because they don’t provide many different

80 D. May

syntactic representations for the same idea - but you actually have to learn more
ideas and the ways they interact. So even when a programmer has mastered the
concurrent processes and communications, there’s still a long way to go to grasp
guarded commands.

However, in the end I think programmers will have to learn how to use tools
like CSP and occam. I watched the growth of this expertise within Inmos and
saw the chaos resulting from experienced programmers trying to write concurrent
programs without the right tools - in fact when we released the first version of the
occam compiler which checked for aliases and disjointness - we found numerous
mistakes in existing programs!

But I think few programmers realise that such techniques are the key to
fast and reliable programming. And they are also the key to simple, efficient,
optimisng compilers. Unfortunately there is still a widespread view - fostered by
historic features in our programming languages - that efficient programs will be
full of source-level ‘optimisations’. But even if programmers can understand the
impact of their detailed work at source-level on execution efficiency, they only
have the time to work in this way on tiny programs.

6 Principles

CSP and occam were designed around a number of principles. These included the
close integration of communications and processing within a programming lan-
guage. This principle was followed in the transputer, which provided instructions
directly corresponding to the input and output statements [8].

But one of the most important CSP principles was ‘scheduling invariance’,
or the absence of ‘race conditions’. This was achieved by the combination of
synchronised communication and disjointness; checking this at compile-time also
required the prevention of aliases. Twenty years ago I came to the view that
it’s not possible to construct concurrent programs of any complexity quickly
and easily without this principle - and having watched people struggling with
libraries supporting concurrency - and the concurrency support in languages
such as Java - has simply reinforced my view.

I still find myself explaining these principles today! Its a strange phenomenon
that the computing world seems to forget fundamental ideas: as a student I was
taught about the idea of the quit-key which always restores a computer to a
known state - this doesn’t exist on the computer I’m using to write this! In
the 1970’s UNIX introduced the idea that anything that can be done from the
command line can also be done from a program - but today most of the world uses
software which doesn’t follow this principle. I could give many more examples.
Nevertheless, I believe that we can only advance computer design - and software
design - by identifying such principles, applying them - and remembering them!

And finally - simplicity. In a rationale for an early version of occam, we were
able to write:

“Consequently, the major part of this rationale concentrates on justifying the
omission of features from the language. These include syntax, jumps, case con-

CSP, occam and Transputers 81

struction, functions, recursion, types, process names, output guards, automatic
termination/abortion, monitors, signals, semaphores, pointers, delays and ex-
ceptions”.

In the end a few of these crept back into the design, but only after we had
tried to manage without them!

7 Computer Architecture

At this celebration of 25 years of CSP, it seems important to contemplate what
has been achieved in computer architecture and languages, where there are
headed, and what CSP might have to contribute.

First, a disappointment. It is widely accepted that hardware efficiency doubles
ever 18 months, following Moore’s law. Let me now introduce you to May’s law
- software efficiency halves every 18 months, compensating Moore’s law! It’s
not clear what has caused this, but the tendency to add features, programming
using copy-paste techniques, and programming by ‘debugging the null-program’
- starting with a debugger and an empty screen and debugging interactively until
the desired program emerges - have probably all contributed.

In general purpose processors, it seems we are finally reaching the limits to
‘sequential’ processing - or at least the advances will be more difficult and ex-
pensive. In the last few years we have seen rapidly escalating costs of design, as
geometries have shrunk and the number of transistors on a chip has increased.
Further difficulties have arisen in the manufacturing process technology, espe-
cially as regards power consumption; it has become increasingly important to
switch off any part of a system which is not in use.

I think we will see the emergence of single-chip symmetric multiprocessors,
an attempt to hide the costs of shared variables with coherency protocols, and
a re-iteration of the claims that these machines are easy to program - just like
it was with multi-processors 20 years ago! My belief is that with this approach,
performance improvements by use of concurrency will remain around a factor of
two - as it does with super-scalar techniques - regardless of the number of pro-
cessors. A good way to avoid this problem would be to follow the CSP principles
- and in this case the hardware coherency mechanisms aren’t needed!

With hardware enhancements becoming more difficult, I believe that the pres-
sure to improve software will increase. I don’t believe that this is about complex
optimisation tools or tools for managing the development and maintenance of
massive programs - it’s about using the right ideas and tools and using them
with care. And it’s about creating the right abstractions in both hardware and
software. We are already seeing some of this with the increased use of standard
hardware platforms such as Field Programmable Gate Arrays in place of Appli-
cations Specific designs. There is now the potential to fill chips with arrays of
processors which are customised entirely by writing programs and configurations.
An important part of the next generation of semiconductor companies may well
be specialists purely in writing high quality software for specific applications -
they’ll own no hardware designs and no manufacturing capability!

And in computing, there is always a new opportunity ...

82 D. May

8 The Future of CSP

We are now at the early stages of the ubiquitous computing era - with computer-
based wireless devices distributed around the environment or used in wearable -
or even implantable - systems. Over the next few years, we will see the integration
of sensors, processors and actuators in a vast range of mobile devices.

These devices will effectively consume no power; they will scavenge power
from their environment or will be driven by small batteries which last years.
Many of them will be high performance - but only in very short bursts. They
must be engineered for power-efficiency at all levels from process technology to
applications software.

And the mobile devices will communicate with fixed devices - which will be
based on single-chip supercomputers - multiple processors combined on a single
chip. Key issues will be power-efficiency, responsiveness and programmability;
processors will need to switch between idling with no power and delivering results
according to the demands from the environment. We will also have to reverse
the trend of using ever-increasing amounts of memory, which uses both space
and power.

So these systems need small programs and event-driven processing. And their
compilers need to be able to do a lot of static analysis so that they can opti-
mise for power minimisation. And of course, this is what alias and disjointness
checking do - as well as helping to get the programs right in the first place.

I can’t think of a better way to do all this than to use CSP, which provides
a natural way of describing event-driven systems and also brings the benefit
of building concurrent systems using libraries instead of kernels and operating
systems. And, by embedding the concurrency mechanisms in the language it
enables concurrency optimisations in the compilers and tools.

It’s worth pointing out that these systems pose some new challenges for
research. Two examples come to mind. The first is mobility - we’d like to be
able to move processes and channels around securely. The second is wireless
connectivity - what are the appropriate abstractions in an environment where
connections are being made and broken frequently?

9 How Can CSP Have an Impact?

I don’t think I should finish without considering how the CSP community here
in the UK can make a bigger impact than it has. The experience of trying to
develop innovative ideas here and promote them overseas made me observe two
problems. ‘Not-invented-here’ is something most cultures are guilty of - but the
British also have the complementary version - ‘invented here’. We also have a
tendency identified by Charles Babbage who wrote:

“Propose to an Englishman any principle, or any instrument, however ad-
mirable, and you will observe that the whole effort of the English mind is di-
rected to find a difficulty, a defect, or an impossibility in it. If you speak to him
of a machine for peeling a potato, he will pronounce it impossible: if you peel a

CSP, occam and Transputers 83

potato with it before his eyes, he will declare it useless, because it will not slice
a pineapple”.

We must get much better at valuing the things we are good at - and we do
excel in minimal, efficient designs - whether processors, languages or theories.
The ARM processor, the transputer processor now known as the ST20, the BCPL
programming language (as Tony might have said - a significant advance on its
successors) and of course CSP are all obvious examples.

I’d suggest to the industrial community - and the investors here - that in
the immediate future using powerful tools like CSP to tackle applications di-
rectly may provide rich rewards - enabling rapid design of efficient and reliable
electronic products. It just doesn’t make sense to try to sell powerful tools -
especially to an unreceptive market - you have to use them.

I’d suggest to the research community - and to those who fund it - that turning
ideas like CSP into fully supported platforms for future research - with compilers,
tools and libraries - is an important part of the research agenda - especially in
computer science. We have to be able base new research on previous achievements
- which can only happen if the achievements are consolidated in this way.

And I’d suggest to the educational community - both in universities and
schools - that teaching programming is vital - and it should be concurrent pro-
gramming. As I’ve come to realise over the years, in addition to their usefulness
in dealing with computers, concurrent programs can be used to explore - and
design - the techniques used by human organisations to tackle large and complex
tasks. So I find it very odd that business process management experts promote
flow-charts - I’m sure that these help to formalise parts of a process, but they
can’t possibly capture how business processes actually work. We all carry out
tasks concurrently, and we all selectively wait for sets of events! And I’m sure
that the renewed interest in understanding biological systems will draw on - and
cause us to extend - our research on concurrency.

10 Summary

CSP combines three things: concurrency, minimalism and logical structure. And
these principles were also followed in the occam and transputer designs. And both
of these strengths in language design and architecture are still here - CSP is still
very much alive in our research community and the most significant concentra-
tion of microprocessor systems designers in Europe has grown from the original
Inmos team - an extraordinarily successful example of government intervention
to try to establish a new industry.

Recent programming languages have made a virtue of features - aliases, ex-
ceptions, dynamic resource management - adding complexity both in design and
implementation. And the same has happened in hardware design - most new pro-
cessor designs add complexity in both architecture and implementation. None of
this is a good basis for the next generation of computers - or programmers!

So, 25 years on, I believe CSP is still a sound and relevant basis for micro-
computer architecture, design and programming. It has immediate relevance to

84 D. May

single-chip multiprocessors, and provides a starting point for ubiquitous com-
puting components.

In 1978 Tony Hoare wrote in his abstract for the CSP paper:
“This paper suggests that input and output are basic primitives of program-

ming and that parallel composition of communicating sequential processes is a
fundamental program structuring method. When combined with a development
of Dijkstra’s guarded command, these concepts are surprisingly versatile”.

This proposal seems to me every bit as relevant - and innovative - today as
it was when it was written. And I suggest to you that despite it’s age - CSP is
the most recent major innovation in programming language design!

References

1. G. Barrett. Formal methods applied to a floating point number system. IEEE
transactions on software engineering, 15(5):611–621, May 1989.

2. G. Barrett. Model checking in practice: the t9000 virtual channel processor. IEEE
transactions on software engineering, 21(2):69–78, February 1995.

3. D. I. Good. Mechanical proofs about computer programs. In C. A. R. Hoare
and J. C. Shepherdson, editors, Mathematical Logic and Programming Languages,
pages 55–74. Prentice Hall, 1985.

4. C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666–677, August 1978.

5. C. A. R. Hoare and A. W. Roscoe. Programs as executable predicates. In Second
International Conference on Fifth Generation Computer Systems, pages 220–228,
Tokyo, November 1984.

6. C. A. R. Hoare and A. W. Roscoe. The laws of occam programming. Theoretical
Computer Science, 60(2):177–229, September 1988.

7. M. Homewood, D. May, and R Shepherd. The ims t800 transputer. IEEE Micro,
7(5):10–26, October 1987.

8. Inmos. The Transputer Instruction set: a compiler writer’s guide. Prentice hall,
1988.

9. Inmos Ltd. occam-2 Reference Manual. Prentice Hall, 1988.
10. D. May. occam. Sigplan Notices, 18(4):69–79, 1983.
11. D. May. Use of formal methods by a silicon manufacturer. In C. A. R. Hoare, ed-

itor, Developments in Concurrency and Communication, pages 107–129. Addison-
Wesley, 1990.

12. David May. Transputers and routers: components for concurrent machines. In
Proceedings of the 3rd Transputer/occam International Conference, Japan, pages
3–20, Tokyo, May 1990. IOS Press.

13. David May and Catherine Keane. Compiling occam into silicon. In Twentieth
Hawaii International Conference on System Sciences, Hawaii, May 1987. IEEE.

14. David May and Roger Shepherd. The transputer implementation of occam. In
Second International Conference on Fifth Generation Computer Systems, pages
533–541, Tokyo, november 1984.

15. L. G. Valiant. A scheme for fast parallel communication. SIAM Journal on Com-
puting, 11(2):350–361, May 1982.

Models for Data-Flow Sequential Processes

Mark B. Josephs

Centre for Concurrent Systems and Very-Large-Scale Integration,
Faculty of BCIM, London South Bank University,

103 Borough Road, London SE1 0AA, UK
josephmb@lsbu.ac.uk

Abstract. A family of mathematical models of nondeterministic data
flow is introduced. These models are constructed out of sets of traces, suc-
cesses, failures and divergences, cf. Hoare’s traces model, Roscoe’s stable-
failures model and Brookes and Roscoe’s failures/divergences model of
Communicating Sequential Processes. As in CSP, operators are defined
that are convenient for constructing processes in the various models.

1 Introduction

Consider sequential processes that communicate via input streams and output
streams (FIFO buffers of unlimited storage capacity), as in Kahn-MacQueen
data-flow networks [17, 18]. They are capable of the following actions:

– selectively reading data from their input streams,
– unreading (pushing back) data to their input streams,
– writing data to their output streams, and
– termination.

Processes can be composed in parallel. In particular, an output stream of
one process may be connected to an input stream of a second process. Any
datum written to the output stream by the first process should be transferred
(eventually and automatically) to the input stream, where it becomes available
for reading by the second process.

Processes can also be composed in sequence. When one process terminates
its successor starts to execute. An important point here (implicit in [10]) is that
termination does not destroy the contents of input streams and output streams.

Some years ago, the author, Hoare and He [16, 9] devised a process algebra
for (nondeterministic) data flow, as a variant of Communicating Sequential Pro-
cesses (CSP) [12]. (Part of this work was reproduced in [13].) We showed how
to simplify the failures/divergences model [4] of CSP so that refusal sets were
no longer required; failures could instead be identified with (finite) ‘quiescent
traces’ [7, 14] or ‘traces of completed computation sequences’ [23].

At the time we did not consider a binary angelic choice operator, nor se-
quential composition. One purpose of this article is to rectify those omissions.
Note that termination is modelled in CSP by a special symbol

√
(success) [11],

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, pp. 85–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

86 M.B. Josephs

but that would not work for what we shall call Data-Flow Sequential Processes
(DFSP). The solution is to create a ‘stub’ (a sequence of unread inputs) when
termination occurs and there are no pending outputs, cf. [10, 6].

Another purpose of this article is to show how the more recent stable-failures
model [27] of CSP can be adapted for DFSP. Indeed, a series of increasingly
sophisticated models for DFSP will be introduced in a step-by-step manner,
cf. [22]. Note that fairness issues, the focus of [23, 2, 3], are not addressed in
these models.

The rest of this article is organised as follows. In Section 2, we recall the
reordering relation [16, 9] between traces of directed events, a relation that cap-
tures the essence of data-flow communication. Subsequently, we define partial-
correctness models (in Sections 3–5) and a total-correctness model (in Section 6)
for DFSP, guided by what Roscoe [27] has done for CSP. In each case we consider
the semantics of operators appropriate to the model. Conclusions are drawn in
Section 7.

2 Directed Events, Traces and Reordering

A process is associated with an alphabet A, a (possibly infinite) set of symbols1,
partitioned into an input alphabet I and an output alphabet O. A symbol in I
designates the transfer of a particular datum to a particular input stream; a sym-
bol in O designates the transfer of a particular datum from a particular output
stream. Such directed events are considered to be atomic, i.e., instantaneous.

Following Hoare [11], we define a trace to be a finite sequence (string) of sym-
bols in A that expresses the occurrence of events over time as a linear order. In
respect of a process that communicates through streams of unbounded capacity,
however, two facts are noteworthy:

1. Events are independent if they are in the same direction but act upon dif-
ferent streams.

2. The occurrence of an input event does not depend upon the prior occurrence
of an output event.

The first fact would justify taking a more abstract approach, namely, to follow
Mazurkiewicz [21] by defining a trace to be an equivalence class on A∗. The two
facts taken together would justify being more abstract still, namely, to follow
Pratt [24] by defining a trace to be a partially-ordered multiset (pomset) on A.
For example, if a and b are independent input events and c and d are indepen-
dent output events, then the strings cabd and cbad are equivalent, but the only
ordering between events is given by a < d and b < d.

1 To be more concrete, we have in mind compound symbols with s.d referring to
stream s and datum d. We would then require that s0.d0 ∈ I and s1.d1 ∈ O implies
that s0 �= s1. Moreover, if D is a data type associated with stream s, then s.d ∈ A
for all d ∈ D.

Models for Data-Flow Sequential Processes 87

Anyway, the possibility of reordering a trace without affecting the behaviour
of a process was recognized in [7, 28] and was formalised as a relation t � u (t
reorders u) between strings t and u in [16]. Reordering allows

– input symbols to be moved in front of other symbols
– output symbols to be moved behind other symbols

provided the symbols being swapped are associated with different streams. In
other words, it is the strongest reflexive transitive relation (i.e. preorder) such
that tabu � tbau if a ∈ I or b ∈ O, a and b designating transfers on different
streams. For example, if a and b are independent input events and c and d are
independent output events, then badc�cabd. Various properties of the reordering
relation have been proved in [19, 20].

More abstractly, t and u are equivalent (t �� u) if and only if t � u and u � t.
Note that, if two traces are equivalent, then reordering one into the other involves
only the swapping of input symbols and the swapping of output symbols, not
the swapping of input symbols with output symbols.

Not only does � give us Mazurkiewicz’s equivalence classes, but it also be-
comes a partial order on them. Note that a trace t is minimal (up to equiva-
lence) if and only if t ∈ I∗O∗. Kahn [17] modelled a class of data-flow networks
by means of continuous functions from the histories of input streams to the
histories of output streams. For that class, the minimal traces are all that are
needed. Moreover, reordering of a trace corresponds to ‘augmentation’ [25] or
‘subsumption’ [8], a partial order on pomsets.

3 Traces Model

A process with alphabet A (partitioned into I and O) can be modelled by a
set T of traces, i.e., T ⊆ A∗. (Pratt [24] similarly models a process by a set of
pomsets, and Gischer [8] investigates closure under subsumption.) This model
avoids the Brock-Ackerman anomaly [1]. It embodies the following assumptions:

1. Divergence is always possible, i.e., a process may remain unstable indefinitely.
2. Quiescence (also referred to as stable failure) is always possible, i.e., a process

that has become stable may refuse to output.

3.1 Healthiness Conditions

Four conditions must be satisfied by such a set T :
It contains the empty sequence.

ε ∈ T (1)

It is prefix-closed.2

{t, u : tu ∈ T : t} ⊆ T (2)

2 The set comprehension {l : D : E} denotes the set of all values E obtained by
substituting values that satisfy domain predicate D for the variables in the list l.

88 M.B. Josephs

It is receptive.
TI∗ ⊆ T (3)

It is closed under reordering.

{t, u : t ∈ T ∧ u � t : u} ⊆ T (4)

Observe that the space of healthy sets of traces is a complete lattice, with
least (greatest) member A∗ and greatest (least) member I∗, under the superset
(subset) order. Also, for any non-empty subset S of healthy sets of traces,

⋂
S

is the least upper (greatest lower) bound and
⋃

S is the greatest lower (least
upper) bound.

3.2 Operators

It is convenient to construct a process P out of CSP-like operators. traces(P) is
then the set of traces denoted by P . For a given I and O, P is refined by Q if
traces(P) ⊇ traces(Q). It is essential that the operators preserve the healthiness
conditions and are monotonic with respect to the refinement order. It turns out
that the operators are also continuous in the reverse (subset) order [27].

Quiescence. The process stop does nothing, though data can always be trans-
ferred to its input streams. Thus

traces(stop) = I∗

and we can see that stop refines every other process in the traces model.

Recursion. The meaning of a recursively-defined process μX.F (X) is given by⋃
0≤i F

i(stop), the least fixed point of continuous function F with respect to
the subset order.

Nondeterministic Choice. The process P0 � P1 behaves like P0 or like P1.
(Broy [5] calls this ‘erratic’ choice because it is outside the control of the envi-
ronment.)

traces(P0 � P1) = traces(P0) ∪ traces(P1),

the greatest lower bound � with respect to the superset order.

Conditional Choice. Given a Boolean expression B, the process P0 � B � P1

behaves like P0 or like P1, depending upon whether or not B is true.

Prefixing. Given a minimal trace t (i.e. t ∈ I∗O∗), the process t → P reads
data from its input streams and writes data to its output streams in the order
given by t, and then behaves like P . The representation of such a sequence of
internal data transfers as a single step is a convenient abstraction.

traces(t → P) = I∗ ∪ {u, v, w : u ∈ traces(P) ∧ vw � tu : v} .3

3 When the input streams referenced in t are each associated with a data type of
cardinality one, the union with I∗ is redundant.

Models for Data-Flow Sequential Processes 89

stop is a fixed-point of input-prefixing:

t → stop = stop , if t ∈ I∗ .

Guarded Choice. Quiescence and prefixing generalise to guarded choice: the
process |0≤i<nti → Pi is constructed from an indexed set t of minimal traces
(guards) and an indexed set P of processes.

traces(|0≤i<nti → Pi)
= I∗ ∪ {i, u, v, w : 0 ≤ i < n ∧ u ∈ traces(Pi) ∧ vw � tiu : v} .

Observe that in the traces model guarded choice is simply a nondeterministic
choice between prefixed processes.

After. The behaviour of P after the occurrence of t is given by the process P/t,
for any trace t ∈ traces(P). In particular, P/t is always meaningful for t ∈ I∗

and behaves like P with the contents of its input streams determined by t.

traces(P/t) = {u : tu ∈ traces(P) : u} .

We have the following cancellation law:

(t → P)/u = P , if t �� u .

Observe also that

P/t is refined by P/u , if t � u ,

which follows from the definitions of refinement and /, and the property of �

that t0 � t1 implies t0u � t1u.

Parallel Composition. Parallel composition corresponds to blending [28] (in
which internal communication is concealed). Let input alphabet Ii and output
alphabet Oi of Pi partition Ai, for i = 0, 1, with I0 ∩ I1 = ∅ and O0 ∩ O1 = ∅.
Then the process P0 ‖ P1 has input alphabet (I0 ∪ I1) \ C and output alphabet
(O0 ∪O1) \ C, where C = A0 ∩A1, and

traces(P0 ‖ P1)
= {t : t ∈ (A0 ∪A1)∗ ∧ t � A0 ∈ traces(P0) ∧ t � A1 ∈ traces(P1) : t \ C} .

(Closure under reordering is proved in [19].) Pratt proposes a similar operator
on sets of pomsets in [24].

Output-prefixing distributes through parallel composition, as follows:

t → (P0 ‖ P1) = (t0 → P0) ‖ (t1 → P1) ,
where t �� t0t1, if t0 ∈ (O0 \ I1)∗ and t1 ∈ (O1 \ I0)∗ .

Trading is also allowed between output-prefixing and after-input:

(t → P0) ‖ P1 = P0 ‖ (P1/t) , if t ∈ (O0 ∩ I1)∗ .

90 M.B. Josephs

4 Traces/Successes Model

A problem with the traces model is that it says nothing about successful ter-
mination and so one cannot define sequential composition. This is remedied by
modelling the set S of successes, where S ⊆ A∗ × I∗. Often we are only in-
terested in the first component of each pair in S, the set of such traces being
dom(S).

The structure of S (viz. a set of pairs of traces) is new4 and can be understood
as follows. For any t ∈ A∗, u ∈ O∗ and v ∈ I∗, (tu, v) ∈ S records the ability of
the process, after engaging in t, to terminate with u determining the contents of
its output streams (i.e. pending outputs) and v determining the contents of its
input streams (i.e. unread inputs). Of course, this implies that if u = u0u1, then
the process is also able to terminate after tu0, leaving u1 pending and v unread.
The second component of a member of S might be referred to as a ‘stub’, being
what is left over upon termination of a process.

Broy and Lengauer [6] provide another way to model terminating processes.
They generalise from deterministic processes represented by functions from states
to states, to nondeterministic processes represented by sets of such
functions.

4.1 Healthiness Conditions

Three conditions must be satisfied by a pair (T, S) in addition to the four stated
above for T :

The first component of every success is a trace.

dom(S) ⊆ T (5)

S is receptive.

{t, u, v : (t, u) ∈ S ∧ v ∈ I∗ : (tv, uv)} ⊆ S (6)

S is closed under reordering of both components.

{t, u, v, w : (t, u) ∈ S ∧ v � t ∧ w �� u : (v, w)} ⊆ S (7)

Note that, in spite of Condition (6), symbols in the stub v of a success (u, v)
are not necessarily present in u. Such successes can arise from the application of
the after operator and from unreading, as we are about to see.

The space of healthy pairs (T, S) is a complete lattice under the pair-wise
superset (subset) order.

4 Roscoe discusses at length in [27] how termination is modelled in CSP with
√

. He
does mention as an alternative, however, that ‘the termination traces (at least) would
have to be included as a separate component’.

Models for Data-Flow Sequential Processes 91

4.2 Operators

The refinement order remains superset (now in each component). The operators
previously introduced for the traces model can be lifted to the traces/successes
model by defining their successes, and several more operators are now
meaningful.

successes(stop) = ∅ .

successes(P0 � P1) = successes(P0) ∪ successes(P1) .

successes(t → P) = {u, v, w : (u, v) ∈ successes(P) ∧ w � tu : (w, v)} .

successes(|0≤i<nti → Pi)
= {i, u, v, w : 0 ≤ i < n ∧ (u, v) ∈ successes(Pi) ∧ w � tiu : (w, v)} .

successes(P/t) = {u, v : (tu, v) ∈ successes(P) : (u, v)} .

Parallel composition requires distributed termination [27] (in which both com-
ponents must terminate before the composite process can).

successes(P0 ‖ P1) = {t, u : t ∈ (A0 ∪A1)∗ ∧ u ∈ (I0 ∪ I1)∗

∧ (t � A0, u � I0) ∈ successes(P0)
∧ (t � A1, u � I1) ∈ successes(P1) : (t \ C, u \ C)} .

Termination. The process skip differs from stop in that it terminates success-
fully.

traces(skip) = I∗

successes(skip) = {u, v : u ∈ I∗ ∧ u �� v : (u, v)} .

Reaction. The process t, where t is a minimal trace, reads data from its input
streams and writes data to its output streams in the order given by t, and then
terminates successfully. (So ε is the same as skip.)

traces(t) = I∗ ∪ {u, v, w : u ∈ I∗ ∧ vw � tu : v}
successes(t) = {u, v : u ∈ I∗ ∧ v � tu : (v, u)} .

It is a special case of prefixing:

t = t → skip , if t ∈ I∗O∗ .

Unreading. The process t−1, t ∈ I∗, unreads (pushes back) data on its input
streams before terminating successfully. (So ε−1 is also the same as skip.)

traces(t−1) = I∗

successes(t−1) = {u, v : u ∈ I∗ ∧ tu �� v : (u, v)} .

92 M.B. Josephs

Sequential Composition. The process P0;P1 behaves like P0 until that ter-
minates successfully, allowing P1 to take over.

traces(P0;P1)
= traces(P0)
∪ {t0, t1, t, u, v : (t0, v) ∈ successes(P0) ∧ vt1 ∈ traces(P1) ∧ tu � t0t1 : t}

successes(P0;P1)
= {t0, t1, t, v, w : (t0, v) ∈ successes(P0)

∧ (vt1, w) ∈ successes(P1) ∧ t � t0t1 : (t, w)} .
Compare the following law to how division by a non-zero number relates to

multiplication by the reciprocal of that number:

P/t = t−1;P , if t ∈ I∗ .

Iteration ∗P is a special case of recursion [12]: μX.P ;X .

5 Traces/Successes/Failures Model

A problem with the above models is that quiescence is always a possibility. This
is remedied by modelling the set F of (stable) failures, where F ⊆ A∗.

The structure of F (viz. a set of traces) is the same as in the author’s earlier
work [16, 15]. For any t ∈ A∗, t ∈ F records the ability of the process, after
engaging in t, to refuse to output after becoming stable, cf. Roscoe’s stable-
failures model5 [27].

5.1 Healthiness Conditions

Two conditions must be satisfied by a triple (T, S, F) in addition to the seven
stated above for a pair (T, S):

F is a subset of T .
F ⊆ T (8)

F is closed under reordering.

{t, u : t ∈ F ∧ u � t : u} ⊆ F (9)

Note that whether or not a process, after engaging in t ∈ T , is able to
terminate is independent of whether or not it is able to become quiescent. That
is, t �∈ dom(S) ∪ F , t ∈ dom(S) \ F , t ∈ F \ dom(S) and t ∈ dom(S) ∩ F are all
possible.

The space of healthy triples (T,S,F) is a complete lattice under the component-
wise superset (subset) order.

5 Consider a trace t that can be extended by u ∈ O∗ to tu ∈ F and, for simplicity,
define a refusal set to be a set of streams. Then we may associate with t any refusal
set consisting of output streams that are not involved in the events recorded in u [9].

Models for Data-Flow Sequential Processes 93

5.2 Operators

The refinement order remains superset. The operators previously introduced
can be lifted to the traces/successes/failures model by defining their failures, and
several more operators are now meaningful. In particular, the first approximation
to a recursion is now div rather than stop.

failures(stop) = I∗ .

failures(P0 � P1) = failures(P0) ∪ failures(P1) .

failures(t → P)
= (I∗ \ {u, v, w : {u, v} ⊆ I∗ ∧ w ∈ O∗ ∧ vw � tu : v})
∪ {u, v : u ∈ failures(P) ∧ v � tu : v} .
A guarded choice is between those prefixed-processes for which all the inputs

required by their guards are available.

failures((|0≤i<nti → Pi)
= (I∗ \ {i, u, v, w : 0 ≤ i < n ∧ {u, v} ⊆ I∗ ∧ w ∈ O∗ ∧ vw � tiu : v}
∪ {i, u, v : 0 ≤ i < n ∧ u ∈ failures(Pi) ∧ v � tiu : v} .

failures(skip) = failures(t−1) = ∅ .

failures(t) = I∗ \ {u, v, w : {u, v} ⊆ I∗ ∧ w ∈ O∗ ∧ vw � tu : v} .
failures(P/t) = {u : tu ∈ failures(P) : u} .

failures(P0;P1)
= failures(P0)
∪ {t0, t1, t, v : (t0, v) ∈ successes(P0) ∧ vt1 ∈ failures(P1) ∧ t � t0t1 : t} .

failures(P0 ‖ P1)
= {t : t ∈ (A0∪A1)∗∧ ((t � A0 ∈ dom(successes(P0)) ∧ t � A1 ∈ failures(P1))

∨ (t � A0 ∈ failures(P0)) ∧ t � A1 ∈ dom(successes(P1))
∨ (t � A0 ∈ failures(P0) ∧ t � A1 ∈ failures(P1))) : t \ C} .

Divergence. The process div never becomes stable.

traces(div) = I∗

successes(div) = failures(div) = ∅ .

Angelic Choice. The process P0�P1
6 behaves like P0 or like P1, except that

it can only refuse to produce its first output if both P0 and P1 can so refuse.
(In CSP, a similar operator can only refuse to engage in its first event if both
arguments can so refuse.)

traces(P0�P1) = traces(P0) ∪ traces(P1)

successes(P0�P1) = successes(P0) ∪ successes(P1)

failures(P0�P1) = ((failures(P0)∪failures(P1))\I∗)∪(failures(P0)∩failures(P1)) .

6 Unfortunately, Broy [5] uses the symbol ∇ for angelic choice and � for erratic choice.

94 M.B. Josephs

The following ‘step’ law [27] relates angelic choice to guarded choice.

Let Q = |0≤i<mti → Pi and R = |m≤i<nti → Pi. Then
Q�R = |0≤i<nti → ((Pi�((R � i < m � Q)/ti)) � ti ∈ I∗ � Pi) .

6 Successes/Failures/Divergences Model

One may object to the above models on the grounds that they imply that di-
vergence is the best thing that can happen. An alternative approach goes to
the opposite extreme, as in Brookes and Roscoe’s failures/divergences model [4].
Divergence is modelled as chaos, being the worst thing that can happen. The
set D of divergences is a subset of A∗.

In the traces/successes/failures model, T had to be given explicitly because
after certain traces no stable state might be reachable. Now, however, we shall
consider every divergence to be a failure too, enabling us to extract T from F
and S, by means of the following definition:

T = {t, u : u ∈ O∗ ∧ tu ∈ F ∪ dom(S) : t} .

All nine conditions of the previous sections must still be satisfied. There is some
redundancy, however, since Conditions (4), (5) and (8) follow from the definition
of T and Conditions (7) and (9).

6.1 Healthiness Conditions

There are five more healthiness conditions:

Every divergence is a failure.
D ⊆ F (10)

Every divergence paired with any sequence of input events is a success.

D × I∗ ⊆ S (11)

D is extension-closed.
DA∗ ⊆ D (12)

D is closed under reordering.

{t, u : t ∈ D ∧ u � t : u} ⊆ D (13)

Every trace that gives rise to unbounded nondeterminism is a divergence.

{t : |{u : u ∈ O∗ ∧ tu ∈ F : u}|
+ |{u, v : u ∈ O∗ ∧ (tu, v) ∈ S : (u, v)}| =∞ : t} ⊆ D

(14)

Note that Conditions (10), (12) and (14) together imply that {t, u : u ∈
O∗ ∧ tu ∈ D : t} ⊆ D. Note also that, if O �= ∅, then D can be defined to be

Models for Data-Flow Sequential Processes 95

{t : |{u : u ∈ O∗ ∧ tu ∈ F : u}|+ |{u, v : u ∈ O∗ ∧ (tu, v) ∈ S : (u, v)}| =∞ : t},
Condition (13) becoming redundant because it follows from the definition of D
and Conditions (7) and (9).

This time the conditions that we impose mean that our space of healthy
tuples is not a complete lattice, but only a complete partial order (cpo) under
the component-wise superset order.

6.2 Operators

The refinement order remains component-wise superset. Recursion is now the
least fixed point with respect to this order.

As T , F and S have to be augmented to reflect the chaos that arises after di-
vergence, we need new semantic functions traces⊥(P), successes⊥(P),failures⊥(P)
and divergences(P).

The semantic clauses for each operator will be omitted here, but it is worth
making the following point. In the successes/failures/divergences model, if t ∈
O∗, then (t → div) = div and so μX. (t → X) = div . Thus the model is
unsuitable for analysis of networks relying upon processes that output forever
without waiting for input. The traces/successes/failures model should be used
instead.

7 Conclusion

A mathematical framework has been developed for Data-Flow Sequential Pro-
cesses, a CSP-like language that assumes buffered communication between pro-
cesses. DFSP operators include stop, skip, div, recursion, reaction, unread-
ing, after, nondeterministic choice, angelic choice, conditional choice, prefixing,
guarded choice, sequential composition, iteration and parallel composition. Each
term in DFSP denotes a process in an abstract model. The traces/successes/ fail-
ures model is an adaptation of the stable-failures model of CSP; the successes/
failures/divergences model is an adaptation of the failures/divergences model of
CSP.

Upon termination of a process, the contents of its input streams and output
streams remain available to its successor. It suffices to know how that successor
behaves for the single case in which all of the streams are empty, in order to
determine the effect of this sequential composition! This contrasts with the se-
mantics of occam [26], for example. Stubs allow state information to be passed
through a sequence of processes. Alternatively, Broy and Lengauer’s approach [6]
is adequate for nondeterministic choice, but does not handle angelic choice (as
found in ‘nonstrict merge’, for example) [5]. Failures-based models are more
expressive in this respect.

Note that program variables can be accommodated within DFSP: each vari-
able is represented by an input stream on which read and unread actions are
performed; their states are passed through stubs.

This paper has highlighted just a few of the algebraic laws of DFSP, focusing
instead on its denotational semantics. As future work one might follow the same

96 M.B. Josephs

research agenda for DFSP as for CSP [27], namely, algebraic semantics, opera-
tional semantics, relationships between the various semantics, a full-abstraction
result for the denotational models, a characterization of deterministic processes,
application of the theory and provision of tool support.

Acknowledgment

The author is grateful to the anonymous reviewer for his insightful comments.

References

1. J.D. Brock, W.B. Ackerman. Scenarios: A Model of Non-Determinate Computa-
tion. In J. Dia, I. Ramos (editors) Formalization of Programming Concepts, Lect.
Notes in Comp. Sci. 107, pp. 252–259, Springer-Verlag, 1981.

2. S.D. Brookes. On the Kahn Principle and Fair Networks. Technical Report CMU-
CS-98-156, School of Computer Science, Carnegie Mellon University, Pittsburg,
USA, 1998.

3. S.D. Brookes. Traces, Pomsets, Fairness and Full Abstraction for Communicating
Processes. In L. Brim, P. Janar, M. Ketinsky, A. Kuera (editors) CONCUR 2002
— Concurrency Theory, Lect. Notes in Comp. Sci. 2421, pp. 466–482, Springer-
Verlag, 2002.

4. S.D. Brookes, A.W. Roscoe. An improved failures model for CSP. In S.D. Brookes
(editor) seminar on Semantics of Concurrency, Lect. Notes in Comp. Sci. 197,
pp. 281–305, Springer-Verlag, 1985.

5. M. Broy. A Theory for Nondeterminism, Parallelism, Communication, and Con-
currency. Theoretical Computer Science 45, pp. 1–61, 1986.

6. M. Broy, C. Lengauer. On Denotational versus Predicative Semantics. Journal of
Computer and System Sciences 42(1), pp. 1–29, 1991.

7. K.M. Chandy, J. Misra. Reasoning about networks of communicating processes.
Unpublished. Presented at INRIA Advanced NATO Study Institute on Logics and
Models for Verification and Specification of Concurrent Systems, La Colle-sur-
Loupe, France, 1984.

8. J.L. Gischer. The Equational Theory of Pomsets. Theoretical Computer Science
62, pp. 299–224, 1988.

9. He Jifeng, M.B. Josephs, C.A.R. Hoare. A Theory of Synchrony and Asynchrony.
In M. Broy, C.B. Jones (editors) Programming Concepts and Methods, pp. 459–478,
Elsevier Science Publishers (North-Holland), 1990.

10. E.C.R. Hehner. Predicative Programming Part II. Communications of the ACM
27(2), pp. 144–151, 1984.

11. C.A.R. Hoare. A model for communicating sequential processes. In R.M. McK-
eag, A.M. MacNaughten (editors) On the construction of programs, pp. 229–254,
Cambridge University Press, 1980.

12. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
13. C.A.R. Hoare, He Jifeng. Unifying Theories of Programming. Prentice Hall, 1998.
14. B. Jonsson. A model and proof system for asynchronous networks. Proc. 4th An-

nual ACM Symp. on Principles of Distributed Computing, pp. 49–58, 1985.
15. M.B. Josephs, Receptive process theory. Acta Informatica 29, pp. 17–31, 1992.

Models for Data-Flow Sequential Processes 97

16. M.B. Josephs, C.A.R. Hoare, He Jifeng. A theory of asynchronous processes. Tech-
nical Report PRG-TR-6-89, Oxford University Computing Laboratory, Oxford,
England, 1989.

17. G. Kahn. The semantics of a simple language for parallel programming. In
J.L. Rosenfeld (editor) Information Processing ’74, pp. 471–475, North-Holland,
1974.

18. G. Kahn, D.B. MacQueen. Coroutines and networks of parallel processes. In
B. Gilchrist (editor) Information Processing ’77, pp. 993–998, North-Holland, 1977.

19. P.G. Lucassen. A Denotational Model and Composition Theorems for a Calculus of
Delay-Insensitive Specifications. PhD Thesis, University of Groningen, Groningen,
The Netherlands, 1994.

20. W.C. Mallon. Theories and Tools for the Design of Delay-Insensitive Communicat-
ing Processes. PhD Thesis, University of Groningen, Groningen, The Netherlands,
2000.

21. A. Mazurkiewicz. Concurrent Program Schemes and their Interpretation. Technical
Report DAIMI PB-78, Århus University, Denmark, 1977.

22. E.-R. Olderog, C.A.R. Hoare. Specification-Oriented Semantics for Communicating
Processes. Acta Informatica 23, pp. 9–66, 1986.

23. P. Panangaden, V. Shanbhogue. The Expressive Power of Indeterminate Dataflow
Primitives. Information and Computation 98, pp. 99–131, 1992.

24. V.R. Pratt. On the composition of processes. Proc. 9th Annual ACM Symp. on
Principles of Programming Languages, pp. 213–223, 1982.

25. V.R. Pratt. Modeling Concurrency with Partial Orders. International Journal of
Parallel Programming 15(1), pp. 33–71, 1986.

26. A.W. Roscoe. Denotational semantics for occam. In S.D. Brookes, A.W. Roscoe,
G. Winskel (editors) Seminar on Concurrency, Lecture Notes in Computer Science
197, pp. 306–321, Springer-Verlag, 1984.

27. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
28. J.T. Udding. Classification and Composition of Delay-Insensitive Circuits. PhD

Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1984.

Implementation of Handshake Components

Ad Peeters

Handshake Solutions, Philips Electronics, Eindhoven, The Netherlands
Ad.Peeters@philips.com

http://www.handshakesolutions.com

Abstract. Handshake Technology is a clockless design style for digital
circuits, targeted at applications where low energy consumption and ease
of integration are essential. Communicating Sequential Processes play a
role at various levels of representation. The design-entry language has
parallel composition operators, communication channels for broadcast
and narrowcast, and input and output actions on these channels. The
intermediate architecture is based on Handshake Circuits, which is a
network of components connected by handshake channels. In the imple-
mentation of these components in VLSI, models of communication again
play a role.

This paper presents how in Handshake Technology the specification
and implementation of handshake components is addressed. It is based
on a formal definition of handshake protocols, and outlines the obligation
for an implementor to establish a relation between handshake events in
the implementation and the specification. Examples of two phase, four
phase, and spurious-acknowledge implementations of handshake control
circuits are discussed.

1 Introduction

Communicating Sequential Processes [1, 2] play a role in all approaches towards
the design of asynchronous VLSI circuits — for good reasons. First of all, to-
day’s VLSI circuits present a medium with an abundant amount of parallelism,
for which CSP has native operators, both in the language and its formalisms.
Secondly, asynchronous circuits in particular require an explicit handling of com-
munication between parallel processes, since one cannot rely on the magic pres-
ence of a clock for synchronization. In addition, the abstraction level of channel
communication in CSP is just right, whether that has been intentionally or not.
On the one hand, the use of atomic input and output actions abstracts from
the way this is to be implemented, which makes it an extremely useful primitive
for design and modeling languages. On the other hand, the input/output mech-
anism is buffer free, which makes it well-suited for hardware implementation,
where unbuffered implementation is thus left open as an option. This combina-
tion allows for simple and cheap implementation, such in contrast to e.g. the
unbounded buffering primitives in Kahn process networks [3].

CSP is omnipresent in Handshake Technology, which is an extremely disci-
plined asynchronous circuit style developed at Philips Research between 1986

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, pp. 98–132, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

Implementation of Handshake Components 99

and 2001. This technology has been applied in dozens of products in domains
such as wireless communication (pagers, cordless telephones, game controllers),
identification (e-passports and smartcards for access control, public transport,
credit cards, e-purses, and combinations of such functions), and automotive (var-
ious in-vehicle control networks).

In this paper we discuss the implementation of Handshake Technology, in
which we focus on the implementation of handshake protocols in handshake
components. Many different implementations are possible. To properly address
their correctness, a formalization of handshake protocols is required, and the re-
lation between implementation and specification must be covered. This has been
established by introducing a formal notion of handshake channels, and one for
handshake implementations. It is the obligation of an implementor to present a
so-called handshake reduction, which specifies which events in an implementa-
tion are to be interpreted as which handshake events in the specification. Such a
reduction also introduces the inverse challenge, namely given a specification to
find implementations that modulo the reduction will satisfy the specification.

1.1 Handshake Technology

We use the term Handshake Technology to refer to the rigorous asynchronous
circuit style and associated tool set that has been developed since 1986 at Philips
Research, and which today is commercialized by Handshake Solutions. The idea
behind this technology is to make the potential benefits of asynchronous circuits
available to designers that are specialists in application domains rather than in
the domain of gate-level asynchronous circuit design. To that end a design flow
has been developed in which the circuit level details are hidden for the designer.
This design flow is shown in Fig. 1, and is described briefly here. For a more
detailed introduction we refer to [4, 5, 6, 7, 8]. A handshake technology tool set
has also been developed by Manchester University, under the name Balsa [9, 10].

Handshake circuits [6] form the central representation in the Handshake Tech-
nology design flow. A handshake circuit is a network of handshake components,
which use handshake protocols to communicate with each other and the envi-
ronment. At the handshake circuit level, the specific handshake protocols and
data encoding for implementation in e.g. VLSI are not determined yet.

The asynchronous knowledge is hidden in the Handshake Compiler, which
is based on a library that specifies the implementation of each handshake com-
ponent for a given handshake protocol and a given standard-cell library. The
library consists of some fifty different components, most of them parameterized
in e.g., the type of data (signed, unsigned), the number of bits for data, and the
number of handshake ports.

If a designer would have access only to the library of components and the
handshake compiler, then productivity would still be low. That is why a de-
sign language has been added on top of this. The design language, called Haste
(formerly known as Tangram) [11], can be considered as a parallel programming
language, and has constructs for parallelism and synchronized channel communi-
cation that are borrowed directly from CSP. Naturally it also supports sequential

100 A. Peeters

Haste
Program

Haste
Compiler

Handshake
Circuit

Handshake
Compiler

Gate-level
Netlist

�

�

�

�

Function, Area

Timing, Power
Interactive
Analyzer

Simulation
Traces

Handshake Circuit
Simulator

�

�

�

�

�

�

Component

Library

Fig. 1. The Handshake Technology design flow: boxes denote design tools, ovals denote
design representations

composition, data-dependent guarded command constructs, datapath operators,
procedures, functions, and modular compilation. The compilation from Haste to
handshake circuits by the Haste compiler is syntax-directed and transparent
[4, 5], which means that a designer can make design decisions at the Haste level,
and have predictable results.

The design flow offers a simulator at the handshake circuit level, and an
interactive analysis tool that enables the inspection of simulation results directly
at the Haste level. The compilation to gate-level implementations also includes
support for logic optimization, timing characterization, test-pattern generation,
and placement and routing, all based on standard third-party EDA tools.

1.2 Outline

In this paper we focus on the step from a handshake circuit to a gate-level netlist,
and then particularly on the handshake protocols that can be used for the control
part of such a circuit. We start with the formalization of handshake protocols by
introducing handshake channels and handshake descriptions. Several implemen-
tations of handshake channels then pass in review, such as two-phase, four-phase,
and spurious-acknowledge handshake protocols. Subsequently, handshake com-
ponents are introduced, and several implementations are presented to illustrate
the lifting of protocol implementation from channels to components.

Implementation of Handshake Components 101

2 Handshake Protocols

This section introduces a formal framework in which handshake protocols and
implementations thereof can be discussed. The central notion is that of a hand-
shake channel, which is used to describe handshake protocols. Implementations
can be related to this by means of so-called handshake reduction. This is illus-
trated by several examples, such as two- and four-phase handshake implemen-
tations.

2.1 Handshake Channels

Handshake signaling is a communication protocol that establishes point-to-point
synchronization. A handshake involves two partners which play a different role,
called active and passive. The partners exchange so-called request and acknowl-
edge signals. The passive partner waits for a request to arrive and after receipt of
such a request responds with sending an acknowledge. The active partner starts
with issuing a request and then waits for the corresponding acknowledge to ar-
rive. Such a combination of a request and an acknowledge is called a handshake.

In this paper we assume the active and passive roles to be fixed, which means
that one partner will always be active, and the other will always be passive. The
communication medium between the partners is called a handshake channel.
Throughout this paper we conform to the convention to denote an active hand-
shake partner with a fat dot (), and a passive partner with an open circle (),
see Fig. 2.

One may think of handshake communication as the exchange of tokens. Ini-
tially the active partner has the token. Sending a request is then interpreted
as passing the token from the active to the passive partner. An acknowledge is
represented by sending the token from the passive to the active partner. The fat
dot and open circle can then be thought of as indicating the initial distribution
of the tokens.

A handshake essentially synchronizes the active and the passive partner. In
addition to pure synchronization, handshakes can also establish communication
between the partners by encoding data in the request, in the acknowledge, or in
both.

Handshake channels with no data encoded are called nonput channels. A
handshake on a nonput channel establishes a synchronization only; no data is
communicated.

The second type of handshake channels are those with data encoded in the
request. These channels connect an active sender and a passive receiver. So,

passive
partner

active
partner

Fig. 2. A handshake channel represents the communication medium between an active
and a passive handshake partner

102 A. Peeters

nonput channel
passive
nonput

active
nonput

push channel � passive
input

active
output

pull channel � passive
output

active
input

biput channel �� passive
biput

active
biput

Fig. 3. Symbols for the four types of handshake channels

the sender takes the initiative for a communication action. One might say that
the sender pushes the data through the channel, therefore these channels are
referred to as push channels. From a data-flow point of view, push channels are
data driven.

On a pull handshake channel data is encoded in the acknowledge. Such a
channel connects a passive sender and an active receiver. The sender issues data
after receiving a request from the receiver, so one could say that the receiver
pulls the data through the channel. From a data-flow perspective, pull channels
are demand driven.

The fourth type of handshake channels are biput channels, on which data is
encoded in both the request and the acknowledge. One handshake then estab-
lishes the exchange of values between the two partners. The active partner now
initiates the handshake by sending data to the passive partner. The passive part-
ner then responds by sending data back. The handshake partners alternatingly
act as sender and receiver.

The four types of handshake channels are depicted in Fig. 3. On data chan-
nels, arrows indicate the direction(s) of data-flow.

A formalization of the relation between handshake protocols and implemen-
tations thereof requires a formal specification of handshake protocols. This is
captured in the definition of handshake channels given below.

A handshake protocol is the sequence of events that can be observed on a
handshake channel. In a handshake, two types of events can be distinguished,
namely request and acknowledge events. It is therefore relevant to distinguish
these two types in the formalization. The behavior that can be observed by
recording the sequence of events at handshake channels are characterized by
handshake traces, which are sequences of events that satisfy the semaphore prop-
erty [12, 13]. In these traces, request and acknowledge symbols alternate, and the
first symbol (if any) is a request symbol.

Implementation of Handshake Components 103

Definition 1 (Handshake Channel, H).
A handshake channel h is a triple 〈req(h), ack(h), trc(h)〉. The sets req(h) and
ack(h) are disjoint, non-empty sets of request and acknowledge symbols. The set
of handshake symbols, req(h) ∪ ack(h), is denoted by sym(h).

The handshake traces of h, denoted by trc(h), is the set of traces defined by
sem(req(h), ack(h)), where, for disjoint non-empty sets R and A, set sem(R,A)
is defined by:

sem(R,A) = {t : t ∈ (R ∪A)∗ ∧ (∀s : s ≤ t : 0 ≤ len(s#R)− len(s#A) ≤ 1) : t}
A handshake channel is uniquely defined by its request and acknowledge set,

which is also called its signature. The handshake channel with request set R
and acknowledge set A (signature 〈R,A〉) is denoted by H(R,A). The set of all
handshake channels is denoted by H. �

A nonput channel is a handshake channel for which both the request and the
acknowledge set consist of only one symbol. The request set of a push handshake
channel contains at least two symbols, representing the different data that can
be communicated; its acknowledge set exactly one symbol. A pull handshake
channel is characterized by a singleton request set and an acknowledge set con-
taining at least two (data) symbols. For push and pull channels the set of data
items is also called the type of that channel.

For a handshake channel p with a singleton request set we generally use pr

to represent that request. In the case where the acknowledge set of p contains
only one element we use pa. When representing sequences of events (traces)
we use pa(x) to denote the communication of x in the acknowledge of p (for
x ∈ ack(p)). Similarly, we use pr(x) to denote request x on handshake channel
p (for x ∈ req(p)). If it is clear from the context with which handshake channel
an event is associated we sometimes omit the pr() and pa().

A push handshake channel a used to communicate booleans can be modeled
by H({true, false}, {aa}). A trace that may be observed on channel a is

ar(true) aa ar(false) aa ar(false).

This may also be described by

true aa false aa false.

This trace describes the communication of the value true, which is acknowledged
by aa. After this the value false is communicated and acknowledged, and false
is communicated again. The receipt of this last value has not yet been acknowl-
edged by the receiver.

Similarly, H({ar}, {−1, 0, 1}) can be used to model a pull channel for three-
valued symbols (trits), on which in each handshake the receiver first requests new
data, which is then acknowledged by sending a value from the set of symbols.
A sequence that may be observed on this channel is ar 0 ar − 1 ar 1, or
alternatively ar aa(0) ar aa(−1) ar aa(1).

In the rest of the paper we typically use regular expressions to define trace
sets. The traces for a push boolean channel would be specified by expression
∗((true | false) ; aa), these for the pull trits channels by ∗(ar ; (−1 | 0 | 1)).

104 A. Peeters

3 Handshake Implementation

Handshake communication can be implemented many different ways. The goal
of this section is to formalize the relation between handshake specifications and
these implementations. This relation is established in two steps, called abstrac-
tion and reduction. The inverse operations corresponding to these two are re-
alization and refinement, respectively. The relation between the various terms
introduced in this section is illustrated in Fig. 4.

Handshake channels (H)

Handshake descriptions (D)

Handshake implementations

reduction (φ)refinement (φ−1)

realization abstraction

�

�

Fig. 4. Location of terms; up arrows refer to functions, down arrows refer to relations

3.1 Handshake Descriptions

We presume that any implementation of a handshake protocol can be described
by three characteristics, namely, the request and acknowledge events that can be
distinguished and the sequences of such events that can be observed. To capture
this we introduce handshake descriptions.

Definition 2 (Handshake Description).
A handshake description D is a triple 〈req(D), ack(D), trc(D)〉, where req(D)
and ack(D) are non-empty, disjoint sets of symbols, and trc(D) is a prefix-closed
non-empty set of traces over sym(D) = req(D) ∪ ack(D).

The set of all handshake descriptions is denoted by D. �

One may observe that in the definition of handshake descriptions, request
and acknowledge events are distinguished, but alternation of these events in the
trace set is not required. This allows for redundant events that do not obey the
semaphore (alternation) property. This redundancy is filtered out by a so-called
handshake reduction, which will be presented shortly.

3.2 Handshake Abstraction

The relation between a ‘physical’ implementation and its (handshake) descrip-
tion is usually straightforward. In CMOS implementations, typically wires are

Implementation of Handshake Components 105

used to implement handshake channels. The events that can be observed at these
wires are transitions, that is, changes between low and high voltages.

We distinguish up (from low to high) and down (from high to low) transitions
in the abstractions. Transitions on wires are denoted by pairs, identifying the
wire and the direction of the transition. For a wire w an up transition is denoted
by 〈w, ↑〉 and a down transition by 〈w, ↓〉. As shorthands w↑ and w↓ are used.

We do not formalize abstractions further. Some work has been done by others
to formalize transitions with dynamical systems theory [14]. There appears to
be a relation between restrictions on the phase diagram and proper complete
monotonic transitions. These restrictions are also practical in the sense that
they are required to guarantee proper sequential behavior of an asynchronous
circuit [15, 16].

3.3 Handshake Reduction

Handshake reduction formalizes the relation between a description of an imple-
mentation of a handshake protocol and its specification as a handshake channel.
A reduction defines which events have to be interpreted as the actual requests
and which as the actual acknowledges.

In general a handshake reduction is a function from handshake descriptions
(D) to handshake channels (H) that satisfies certain restrictions.

The basis of a reduction is formed by a (partial) function that maps symbols
(events) from D onto symbols from H. This function is referred to as the kernel
of the reduction.

Definition 3 (Handshake Reduction).
A (handshake) reduction φ is a function D �→ H, derived from the partial func-
tion (kernel) φ that maps symbols from D onto symbols from H.

Let D ∈ D, then the request, acknowledge, and trace set of φ(D) are defined
by

– req(φ(D)) = φ(req(D)) = {x : x ∈ req(D) ∧ φ(x) is defined : φ(x)};
– ack(φ(D)) = φ(ack(D)) = {x : x ∈ ack(D) ∧ φ(x) is defined : φ(x)};
– trc(φ(D)) = φ(trc(D)) = {t : t ∈ trc(D) : φ(t)}.

The trace set of φ(D) is based on function φ which is obtained by lifting kernel φ
to traces. This lifting is the constructive part of the reduction and should satisfy
the following rules.

1. φ(ε) = ε,
2. For all s ∈ trc(D), x ∈ sym(D) such that s x ∈ trc(D):

if φ(x) is defined,
then φ(s x) ∈ {φ(s), φ(s)φ(x)},
else φ(s x) = φ(s). �

The rationale behind the above definition is simple. The kernel defines with
which handshake event an event from D has to be associated. This is a partial

106 A. Peeters

function, which implies that some events in the descriptions may be redundant
to the handshake protocol.

From the kernel, reductions can be constructed. This construction is based
on lifting the kernel from symbols to traces. In this lifting, there is a choice in
defining the reduction of traces s x for which the kernel of x (φ(x)) is defined.
This choice allows for redundant occurrences of handshake events, that is, events
that are identified by the kernel as being handshake events may sometimes be
ignored.

Most reductions that pass in review in throughout this paper do not allow
for redundant handshake events. These reductions are called direct handshake
reductions. Reductions that do allow for redundant occurrences of handshake
events are called spurious event reductions.

Throughout this paper, handshake reductions are typically defined as direct
reductions based on a kernel that maps transition events (〈w, ↑〉 or 〈w, ↓〉) onto
handshake events (w).

The reduction of a description need not necessarily result in a proper hand-
shake channel, since alternation of requests and acknowledges is not guaranteed
by the lifted version of the kernel reduction.

Definition 4 (Reduction Modulo φ).
Let φ be a handshake reduction, D a handshake description and H a handshake
channel. Then H is the reduction modulo φ of D if and only if φ(D) = H. �

3.4 Handshake Refinement

Given a reduction it is interesting to know what behaviors in its domain of
descriptions would result in proper handshakes. This is covered by refinement.
A handshake description is called a refinement of a handshake channel if its
reduction results in that handshake.

Definition 5 (Handshake Refinement).
Let φ be a handshake reduction, D ∈ D, and H ∈ H, then D is a refinement of
H modulo φ if and only if φ(D) = H. �

An essential difference between reduction and refinement is that reduction is
a function, whereas refinement is a relation. This means that given a handshake
reduction φ and a handshake channel H, there may be more than one handshake
description that is a refinement of H modulo φ.

3.5 Handshake Realization

Handshake realization is the inverse of handshake abstraction, similar to the re-
lation between refinement and reduction. Realization is based on the abstraction
function and defines how handshake descriptions can be implemented. In later
sections handshake realization is applied to obtain implementations of handshake
components.

Implementation of Handshake Components 107

3.6 Transition Descriptions

All handshake implementations addressed in this paper are targeted at VLSI im-
plementation, which is why we will use a special class of handshake descriptions
based on transition symbols and transition traces. Request and acknowledge
events will thus consist of pairs of a wire name and a transition direction, and
will be of the form w×{↑, ↓}. A restriction on the trace set of such descriptions
is that for all wires the up and down transitions in any trace should alternate.
In this paper we restrict ourselves to such descriptions where the initial state
has all wires low, and hence the first transition is a rising one.

Definition 6 (Transition Descriptions, DT).
A transition description d is a handshake description with sym(d) = req(d) ∪
ack(d) = wires(d)×{↑, ↓}, in which wires(d) is a non-empty set of symbols, and
where the trace set trc(d) is a prefix-closed trace set that satisfies the following
alternation property:

(∀s, x : s ∈ trc(d) ∧ x ∈ wires(d) : 0 ≤ len(s#x↑)− len(s#x↓) ≤ 1)

The set of all transition descriptions is denoted by DT . �

One may observe that both up and down transitions on a certain wire should
be in the symbol set, but should not necessarily be both requests or both ac-
knowledges.

4 Handshake Protocols for Control

In this section several implementations for control (nonput) handshake channels
are reviewed. For each protocol the corresponding description and reduction are
given.

4.1 Two Phase

In two-phase handshake protocols each transition in an implementation has a
meaning, so there is no redundancy, neither in the symbol set, nor in the trace set
of the corresponding handshake description. The two-phase handshake reduction
is therefore rather straightforward, as it simply abstracts from the direction of
the transitions. Two-phase handshaking is also known as transition or two-stroke
signaling.

Definition 7 (Transition Handshake Channel, T).
A transition handshake channel h with request r and acknowledge a, denoted
by T ({r}, {a}), is a handshake structure

〈{r↑, r↓}, {a↑, a↓}, trc(∗(r↑ ; a↑ ; r↓ ; a↓))〉

The set of all such channels is denoted by T (clearly T ⊂ DT). �

108 A. Peeters

The two-phase handshake reduction is a direct reduction of T in which no
event is redundant. The kernel of this reduction is therefore simple; it strips the
direction of the transition from the symbols.

Definition 8 (Two-phase Reduction, φ2).
For a transition handshake channel h, its two-phase reduction φ2(h) is the direct
handshake reduction based on the following kernel function. For all x ∈ wires(h):
φ2(x↑) = x, and φ2(x↓) = x. �

The absence of redundancy implies that the inverse of φ2 is also a function.
This two-phase refinement alternatingly extends occurrences of symbols with up
and down transitions.

Two-phase control handshaking is commonly explained using the timing di-
agram of Fig. 5. It is based on two wires, req , and ack , both assumed to be
initially low. Two kinds of handshakes can then be distinguished, namely Up
(req ↑ ack ↑) and Down (req ↓ ack ↓). Up and Down handshakes alternate, and
after an Up handshake all wires are high. After each Down handshake all wires
are low.

req

ack

Up� Down�

Fig. 5. Two-phase handshaking

The behavior on such channels can easily be described by recording the events
in nonput transition handshakes. The timing diagram in Fig. 5 then depicts
two consecutive handshakes of T ({req}, {ack}). The reduction that defines the
relation with plain handshakes channels is φ2 : T �→ H.

4.2 Four Phase

A communication in a four-phase handshake protocol consists of four phases.
In the first two phases up-going request and acknowledge events take place. In
the last two phases the equivalent down-going events take place. This means
that in comparison to two-phase protocols, messages are sent twice, such that
after each complete communication the channel is back in its initial state. Four-
phase handshake protocols are also known as return-to-zero (RTZ), four-stroke,
four-cycle, and level signaling.

Implementation of Handshake Components 109

For nonput channels we can re-use the transition handshake descriptions that
were introduced for the two-phase protocol earlier. In a four-phase handshake
protocol half of the events are redundant, since the handshake protocol requires
only one request and one acknowledge event. Three kernel reductions can be
identified that result in proper handshakes, namely, early, broad, and late. These
reductions differ in the partition between redundant and functional handshake
events.

Definition 9 (Four-phase Reduction, φ4).
Three different four-phase reductions T �→ H are defined, namely φ4b, φ4e, and
φ4l. For a transition handshake channel T ({r}, {a}), these reductions are based
on the following three kernel reductions:

– broad: φ4b(r↑) = r, and φ4b(a↓) = a.
– early: φ4e(r↑) = r, and φ4e(a↑) = a.
– late: φ4l(r↓) = r, and φ4l(a↓) = a. �

Property 1. For symbols r and a, and reduction φ ∈ {φ2, φ4b, φ4e, φ4l}, transition
handshake channel T ({r}, {a}) is a refinement modulo φ of H({r}, {a}) (and
H({r}, {a}) is a reduction modulo φ of T ({r}, {a})). �

The three four-phase reductions that are defined for this protocol are depicted
(for T ({req}, {ack})) in the timing diagram in Fig. 6.

The broad reduction (sometimes referred to as complete four-phase [6]), de-
fines the up-going request signal as its actual request, and the down-going ac-
knowledge signal as its actual acknowledge.

The early reduction (sometimes referred to as quick four-phase [6]) filters out
down-going requests and acknowledges. In this interpretation the down-going
(return-to-zero) phase of the protocol is functionally redundant.

The counterpart of early is the late reduction, obtained by projection on
down-going requests and acknowledges. When this reduction is applied the up-
going phase of the handshake protocol is basically redundant.

req

ack

Early� Late�

Broad�

Fig. 6. Four-phase nonput handshake reductions

110 A. Peeters

4.3 Spurious Events

The handshake reductions that have been introduced so far are all direct reduc-
tions, that is, no redundant occurrences of handshake events are allowed. This is
reflected in the definition of transition handshake traces, which dictates a strict
alternation of request and acknowledge symbols.

Spurious event protocols are a way of introducing more freedom in this be-
havior, which allows for more implementation freedom. Naturally, a restriction
remains that one should still be able to reconstruct proper handshakes from the
sequences of events (traces) that can be observed, which implies that a proper
reduction must be defined for such protocols.

An interesting protocol turns out to be a four-phase spurious acknowledge
protocol that allows for redundant acknowledge pulses to occur between true
handshakes. The active partner of a handshake can ignore pulses on the ac-
knowledge wire (pairs of up and down transitions) when the handshake protocol
on that channel is in-active, that is, when its request wire is low. An example of
such a scenario is sketched in Fig. 7. This protocol gives rise to some interesting
non-trivial optimizations in control handshake circuits [7, 17]. The corresponding
reduction is based on the kernel of the broad four-phase reduction.

req

ack

Fig. 7. A four-phase handshake followed by two spurious acknowledge pulses. The
actual request and acknowledge events, which remain after reduction and constitute
the reconstructed handshake, are marked by a circle

First the descriptions that characterize the (four-phase) spurious acknowl-
edge protocol are introduced. A generalization towards spurious requests or the
combination of the two is straightforward and omitted here.

Definition 10 (Spurious Acknowledge Descriptions, SA).
For disjoint symbols r and a, spurious acknowledge description SA({r}, {a}) is
a handshake structure

〈{r↑, r↓}, {a↑, a↓}, trc(∗((a↑ ; a↓) | (r↑ ; a↑ ; r↓ ; a↓)))〉
The set of all spurious event descriptions is denoted by SA. �

The associated reduction, φ4s, is based on the same kernel as the broad
four-phase reduction. A direct lifting of this kernel to traces would result in a
reduction that is equivalent to φ4b. However, the lifting of φ4s should filter out

Implementation of Handshake Components 111

redundant events to arrive at proper handshakes. For the step to the trace set
we introduce an auxiliary function ϕ4s that has an additional parameter from
{req , ack}, which encodes the expected handshake event.

Definition 11 (Spurious-event Reduction, φ4s).
Let d = SA({r}, {a}) be a spurious-event description. The kernel of the reduction
is characterized by φ4s(r↑) = r and φ4s(a↓) = a.

For trace t ∈ trc(d), φ4s(t) = ϕ4s(t, req), where ϕ4s is defined as follows. For
x ∈ sym(d) and s ∈ sym(d)∗:

– ϕ4s(ε, req) = ϕ4s(ε, ack) = ε
– if x ∈ req(d) and φ4s(x) is defined

then ϕ4s(x s, req) = φ4s(x)ϕ4s(s, ack)
else ϕ4s(x s, req) = ϕ4s(s, req)

– if x ∈ ack(d) and φ4s(x) is defined
then ϕ4s(x s, ack) = φ4s(x)ϕ4s(s, req)
else ϕ4s(x s, ack) = ϕ4s(s, ack)

The lifting of the reduction from traces to descriptions is now standard:

φ4s(d) = 〈{r}, {a}, φ4s(trc(d))〉. �

Property 2. For symbols r and a, H({r}, {a}) is the reduction modulo φ4s of
SA({r}, {a}), and thus SA({r}, {a}) is a refinement modulo φ4s of H({r}, {a}).
Furthermore, T ({r}, {a}) modulo φ4s = H({r}, {a}). �

5 Handshake Components

Handshake channels form the basis on which handshake components are built.
The most important characteristic of a handshake component is its handshake
interface, that is, the handshake channels via which it interacts with its environ-
ment. This interface restricts the behavior of the component, since it must adhere
to the handshake protocol on all channels. The specification of a handshake com-
ponent may furthermore impose additional restrictions on its behavior, such as
mutual inclusion or exclusion of handshakes on certain channels.

The implementation of handshake components is also founded on handshake
channels. An implementation comprises a choice of a handshake refinement per
channel. This results in the notions reduction and refinement, but also abstrac-
tion and realization, built on these notions for handshake channels.

The way handshake components are treated in this paper differs notably from
the way they are introduced in [6], in which handshake reduction is defined on the
level of handshake circuits, that is, networks of handshake components. For all
channels the same handshake reduction is then chosen. The approach taken here
allows for a more general strategy when striving for efficient implementations of
handshake circuits.

In this section we first formally introduce handshake components and the
formal definitions of reduction and refinement. This is then applied to several

112 A. Peeters

handshake components. An important class of components are protocol convert-
ers, which are refinements of so-called connectors, and which are used to convert
between different handshake reductions. These converters can be applied in the
implementation of other handshake components.

5.1 Handshake Component Descriptions

A handshake component interacts with its environment via handshakes. The
interface with its environment consists of so-called handshake ports, which come
in two flavors, namely active and passive.

The description of handshake components has to cover its relevant charac-
teristics. First of all, the active and passive handshake ports have to be part
of the description. The distinction between active and passive is important for
components, because it dictates how to interact with the other partner in the
handshake on that port. The active handshake ports define on which hand-
shake channels the component is supposed to initiate handshakes; the passive
handshake ports define the handshake channels on which the component should
acknowledge handshakes.

A second characteristic is the behavior, or the allowed sequences of events,
at the interface of the component. An essential restriction on the behavior is
that on each handshake channel the handshake protocol should be obeyed. If all
components would only follow this restriction, then it would not be possible to
build anything interesting from handshake components, so there is more to it.
In general a handshake component restricts its external behavior, for example,
to establish mutual exclusion in access to a resource, or to establish mutual
inclusion to synchronize two otherwise independent parties.

Most of these protocols can be described as a composition of a number of
handshake channels, where the behavior of the composite satisfies the conjunc-
tion of the constituent handshake protocols.

Definition 12 (Composition).
Let H be a set of handshake channels. The composition of H, denoted by
weave(H), is the triple 〈req(H), ack(H), trc(H)〉 defined by:

– req(H) = (∪h : h ∈ H : req(h))
– ack(H) = (∪h : h ∈ H : ack(h))
– sym(H) = (∪h : h ∈ H : sym(h)) = req(H) ∪ ack(H)
– trc(H) = {t : t ∈ sym(H)∗ ∧ (∀h : h ∈ H : t#sym(h) ∈ trc(h)) : t} �

The request and acknowledge sets of the handshake channels in H may have
symbols in common. This is the interesting case, for this means that in the
definition of the trace set of H, the projection requirement is a restriction.

Definition 13 (Handshake Component).
A handshake component P is a triple 〈pas(P), act(P), trc(P)〉, in which pas(P)
and act(P) are lists of handshake channels, and trc(P) is the trace set of P .
Trace set trc(P) should at least obey the handshake protocols at the individual
handshake channels. This is formalized in the following restrictions.

Implementation of Handshake Components 113

1. port(P) = pas(P) ∪ act(P) ⊂ H
2. (∀p, q : p, q ∈ port(P) ∧ p �= q : sym(p) ∩ sym(q) = ∅)
3. trc(P) ⊆ trc(weave(port(P)))
4. trc(P) is non-empty and prefix-closed

The pair 〈pas(P), act(P)〉 is called the handshake signature of P . �

Two things can be noticed in this definition. First, the handshake channels
involved should have disjoint symbol sets. This implies that two handshake chan-
nels should not share a signal. The motivation behind this requirement will be-
come clear when refinements of handshake components are discussed in Sect. 6.2.
The second observation is an implication of this, namely that, because the sym-
bol sets of the handshake channels are disjoint, the composition (weave) of their
traces does not introduce any additional restrictions.

The handshake components discussed in this paper generally impose addi-
tional restrictions on the trace set, and thereby enforce interaction between the
different handshakes involved.

Now that we have handshake ports, we can also distinguish inputs and out-
puts. Inputs are events that are initiated by the environment of the component,
and that are not under direct control of the component itself. Outputs, on the
other hand, are initiated by the component and can be observed by the environ-
ment.

Definition 14 (Input, Output).
For handshake component P , its inputs and outputs are defined by

in(P) = (∪p : p ∈ pas(P) : req(p)) ∪ (∪p : p ∈ act(P) : ack(p));
out(P) = (∪p : p ∈ pas(P) : ack(p)) ∪ (∪p : p ∈ act(P) : req(p)). �

6 Handshake Component Implementation

The definition of handshake components is based on handshake channels. It
seems therefore a natural choice to introduce implementations of handshake
components on basis of implementations of the handshake channels. The basic
idea is that we can for each channel choose an implementation. The associated
handshake reduction then identifies which events are relevant to the handshake
protocol.

For handshake channels, handshake reduction was introduced as the essential
function that relates specifications and implementations. For handshake compo-
nents a derivative thereof is used. First of all the domain and codomain of such
a function should be identified. Therefore we introduce handshake component
descriptions, which are based on handshake channel descriptions. Basically, all
concept that are introduced for handshake channels can be applied to handshake
components as well, see Fig. 8.

114 A. Peeters

Handshake components

Component descriptions

Component implementations

reduction (φ)refinement (φ−1)

realization abstraction

�

�

Fig. 8. Location of terms

6.1 Descriptions

Handshake channels are covered by H, and for their implementation we can
garner from T and SA, and in general from D. Since handshake components
are composed from elements of H we can compose elements of D to obtain
implementations of handshake components.

Definition 15 (Component Descriptions).
A handshake component description D is a triple 〈pas(D), act(D), trc(D)〉, in
which pas(D) and act(D) are lists of handshake channel descriptions, and trc(D)
is the trace set of D.

1. The active and passive ports of D range over D.
port(D) = pas(D) ∪ act(D) ⊂ D

2. Handshake ports have no symbols in common.
(∀p, q : p, q ∈ port(D) ∧ p �= q : sym(p) ∩ sym(q) = ∅)

3. The trace set of D satisfies the handshake protocols of all constituent chan-
nels: trc(D) ⊆ trc(weave(port(D)))
Alternatively: (∀d : d ∈ port(D) : trc(D)#sym(d) ⊆ trc(d))

4. trc(D) is non-empty and prefix-closed

The pair 〈pas(D), act(D)〉 is called the handshake signature of D. �

Special handshake component descriptions can be identified for which the
handshake channels involved range over a particular subset of handshake de-
scriptions only. For control components, for example, the handshake channels
are generally taken from T (and occasionally from SA).

6.2 Reduction

Several handshake reductions for handshake channels have been introduced,
which define, for an implementation of a handshake channel, which events are
redundant and which events contribute to the handshake protocol. These re-
ductions can be lifted to handshake components. With each handshake channel

Implementation of Handshake Components 115

that is used to implement a handshake component a handshake reduction can
be associated. The handshake reduction of the component description is then
obtained by taking the handshake reductions on a per channel basis.

Definition 16 (Reduction).
Let P be a handshake component with n ≥ 0 passive ports 〈i : 0 ≤ i < n : hi〉,
and m ≥ 0 active ports 〈i : n ≤ i < n + m : hi〉.
Furthermore, let D be a handshake component description with n ≥ 0 passive
ports 〈i : 0 ≤ i < n : di〉, and m ≥ 0 active ports 〈i : n ≤ i < n + m : di〉.
Finally, let L = 〈i : 0 ≤ i < n + m : φi〉 be a list of handshake reductions from
D to H.

Component P is a reduction of D (and D a refinement of P) modulo L if the
following conditions are satisfied.

1. (∀i : 0 ≤ i < n + m : φi(di) = hi)
2. φL(trc(D)) = trc(P)

Reduction φL is defined inductively as follows.

1. φL(ε) = ε
2. For trace t ∈ trc(D), 0 ≤ i < n+m, and a ∈ sym(di) such that t a ∈ trc(D):

φL(t a) = φL(t)φi(a)
3. φL(trc(D)) = {t : t ∈ trc(D) : φL(t)} �

6.3 Refinement

Now that we have lifted handshake reduction from handshake channels to hand-
shake components, we have also defined the challenge of handshake refinement.
One needs to choose a handshake protocol for each channel and then to come
up with an appropriate component description that can be reduced to the spec-
ification using the reduction that was selected.

For the two-phase implementation of a handshake component, the refinement
is trivial because it is a deterministic function. A four-phase implementation of
a components is more challenging, as one can garner from the early, broad, late,
and spurious protocol. This freedom of choosing different protocols, and the
freedom that the redundant events offer in this choice, is sometimes referred to
as handshake reshuffling [18].

Throughout this paper, refinements of nonput handshake channels are de-
noted by a, b, c, etcetera, and will be taken from transition handshake descrip-
tions T and spurious-acknowledge descriptions SA.

6.4 Realization

Circuit realizations of handshake components can be arrived at by decompos-
ing the behavior specified for the refinements of component specifications with
the compilation method of Martin [18] for example. Other methods, such as au-
tomated STG-based tools such as Petrify [19] could also be applied. The way
from transition components to CMOS circuits is not the main subject of this

116 A. Peeters

paper, so circuit implementations (when given) are postulated rather then de-
rived. In the circuit diagrams, standard symbols are used for standard gates such
as AND and OR gates [20]. The notation for typical asynchronous elements
such as (generalized) C-elements and mutual-exclusion elements are adopted
from [21].

In all handshake descriptions that have been introduced it is assumed that
in the initial state all handshake wires are low. A circuit realization requires a
procedure to force all handshake channels in their initial state. The property of
self-initialization has been introduced [6] to avoid a global reset, and two forms
of initialization play a role. A circuit realization of a handshake component is
weakly initializable if all its outputs are forced low when all its inputs are low.
The circuit is furthermore strongly initializable if in addition all outputs of all
active ports can be forced low by making all inputs of all passive ports low.

Sometimes one can determine from the handshake refinement that any circuit
realization thereof is not initializable. This is, for instance, the case for the late
refinement of the connector component, cf. the D-element in Sect. 7.3. Self-
initialization is generally hardly a constraint in the realization of early and broad
refinements. Late refinements, however, are generally not initializable.

7 Protocol Converters

The connector handshake component is used for propagating handshakes. It
has two nonput ports, one active and one passive. Such a component awaits
a request on its passive port, propagates this on its active port, waits for the
corresponding acknowledge, and propagates this via its passive port. A connector
with passive port a and active port b thus satisfies not only handshake protocols
H({ar}, {aa}) andH({br}, {ba}) on its ports a and b, respectively, but in addition
also adheres to H({ar}, {br}) and H({ba}, {aa}). The specification and symbol
for the connector are shown in Fig. 9.

The specification of the connector is not too interesting as it does not really
perform a function. In a silicon compiler such as the Haste compiler system, it
proves useful mostly as a renaming operator. Later in this section we discuss its
use as protocol converter, where different handshake protocols are applied to the
two handshake interfaces.

7.1 Connector

The most straightforward four-phase implementation of the connector is based
on the two-phase refinement of the connector protocol, as specified in (1). This is

con(a◦, b•) =
〈〈a〉, 〈b〉, trc(∗(pr ; qr ; qa ; pa))〉 ba

Fig. 9. Specification and symbol for connector component

Implementation of Handshake Components 117

indeed a refinement modulo 〈φ2, φ2〉 of the connector protocol, but a lot of other
refinements can be applied as well. First of all, for all four-phase refinements φ4

the specified behavior is also a refinement modulo 〈φ4, φ4〉. Two mixtures can
also be applied however, namely 〈φ4b, φ4e〉 and 〈φ4b, φ4l〉.

∗ (ar↑ ; br↑ ; ba↑ ; aa↑ ; ar↓ ; br↓ ; ba↓ ; aa↓) (1)
The implementation of this connector refinement is trivial; two wires are

needed to do the renaming at the wire level, as shown in Fig. 10.

�

ar

aa

br

ba

Fig. 10. Connector implementation

When different handshake reductions are used in a four-phase handshake
circuit, protocol converters may be required. A protocol converter is a refinement
of a connector with possibly different reductions for the active and the passive
channel. An element is said to be a converter from protocol A to protocol B if
it has the same port signature as the connector and its behavior according to
reduction A on its passive channel a and reduction B on its active channel b
satisfies the connector protocol.

7.2 S-Element

The S-element is a converter from early to broad. The four-phase refinement of
the connector with early for the passive channel and broad for the active one is
unique, that is, there is only one specification that satisfies these requirements,
which is the fully sequential specification given in (2).

∗ (ar↑ ; br↑ ; ba↑ ; br↓ ; ba↓ ; aa↑ ; ar↓ ; aa↓) (2)

It is readily verified that the appropriate reduction (modulo 〈φ4e, φ4b〉) indeed
results in the connector protocol. Five more reductions of (2) exist that result
in the connector protocol, namely, all reductions 〈φ4e, φ4〉 and 〈φ4b, φ4〉 for all
φ4 ∈ {φ4e, φ4b, φ4l}.

A speed-independent implementation of the S-element is depicted in Fig. 11.
This circuit is also known as Q-element [18].

The S-element implementation shown here is strong initializable. When input
ar is forced low, output br immediately follows via the and-gate, and the C-
element’s output goes high. This then forces aa low. So, forcing the input of the
passive channel low forces all outputs low and the state-holding element in a
known state.

The asymmetric C-element may also be replaced by other asymmetric C-
elements and even by a fully symmetric C-element. This does not change the
initialization argument for br, but for aa the cases where input ba is low and
high have to be distinguished. These both lead to aa low.

118 A. Peeters

s broad bearly a C

−

+

aa
ba

ar
br

y

Fig. 11. S-element: symbol and implementation

7.3 D-Element

The D-element [18] converts from late to broad. Like the S-element, its behavior,
given in (3) is fully sequential and unique.

∗ (ar↑ ; aa↑ ; ar↓ ; br↑ ; ba↑ ; br↓ ; ba↓ ; aa↓) (3)

Again, it can be readily verified that the behavior of the D-element modulo
〈φ4l, φ4〉, for any φ4 ∈ {φ4e, φ4b, φ4l} reduces to the connector protocol.

From the specified behavior in (3) one can already deduce that the D-element
cannot be self initializable. After ar↓ the handshake on b still has to start, so
br has to go high. This implies that making ar low can never force br low. In
Fig. 12 a speed-independent implementation of the D-element is given with an
active-high reset (res).

7.4 T-Element

The T-element is a four-phase refinement of the connector that only sequences
the up-going phase of the handshake protocol and then synchronizes again at
the end. It thus decouples the return-to-zero phase of b from that of a.

The protocol for the T-element is given by

∗ (ar↑ ; br↑ ; ba↑ ; (aa↑ ; ar↓ ‖ br↓ ; ba↓) ; aa↓). (4)

In terms of Martin’s handshake notation this protocol is specified as follows:

∗([ar] ; br↑ ; [ba] ; (aa↑ ‖ br↓) ; [¬ar ∧ ¬ba] ; aa↓).
Three reductions of the T-element behavior result in the connector protocol,
namely, modulo 〈φ4b, φ4b〉, modulo 〈φ4e, φ4e〉, and modulo 〈φ4b, φ4e〉. The T-
element can thus be used as a broad or as an early connector, and as a converter

d broad blate a C

+

−

aa
ba

ar
br

res z

x

Fig. 12. D-element: symbol and implementation

Implementation of Handshake Components 119

t ba
C−

�

aa

baar

br

Fig. 13. T-element: symbol and implementation

qrl ba

C
+

�aa
ba

ar br

Fig. 14. Quick Return Linkage: symbol and implementation

from broad to early. On the other hand, the reduction according to the late
protocol, for instance, violates the connector specification.

A speed-independent implementation of the T-element is given in Fig. 13.
The T-element is also known as ‘autosweeping module’ (ASM in [22]), and is
used in the implementation of the parallel in [23]. In this paper it is used in the
implementation of an early sequencer (Sect. 8) and the parallel (Sect. 9).

7.5 Quick Return Linkage

The Quick Return Linkage (QRL) [24, 25], which is generally contributed to
Seitz, is a protocol converter that is specified by:

ar↑ ; ∗(br↑ ; ba↑ ; aa↑ ; ar↓ ; (aa↓ ; ar↑ ‖ br↓ ; ba↓)) (5)

The QRL acts as a connector in the up-going phase and after this decouples
the return-to-zero phase on the active port from that of the passive port. Es-
sentially it thereby gives an early acknowledge. It can therefore be used as an
‘early’ connector and as a converter from ‘broad’ to ‘early.’ So, the QRL is a
refinement modulo 〈φ4e, φ4e〉, and modulo 〈φ4b, φ4e〉, of the connector protocol.

The QRL is insensitive to spurious acknowledgements on its active port. It
is applied in interfaces, for example to handshake with a clock-signal, which is
then connected to ba. A possible speed-independent implementation is given in
Fig. 14. The implementation of the QRL sequences the two outputs br↓ and aa↓,
thereby exploiting the implementation freedom of the specification, which allows
for parallelism between these events.

The specification in terms of traces does not give too much insight in the
operation of the QRL. A more operational specification can be given in terms of
Martin’s handshake notation, because inputs and outputs are then explicit. The
operation of QRL is then specified by:

∗([ar ∧ ¬ba] ; br↑ ; [ba] ; aa↑ ; [¬ar] ; (aa↓ ‖ br↓)).

120 A. Peeters

Filtering out the actions of the a-protocol gives ∗([¬ba] ; br↑ ; [ba] ; br↓), a protocol
that is also known as the lazy active protocol [18].

7.6 Spurious-Ack Filter

A spurious acknowledgement filter is a protocol converter from early, broad, or
late to the spurious acknowledge protocol. It allows for redundant events on its
active port (as long as it has not been activated along its passive port) and it
prevents propagation of these redundant acknowledges to the passive side, cf. (6).
One may observe that this restricts the behavior of the environment as well, as
redundant events are not allowed while a handshake on a is in progress.

∗ ((ar↑ ; br↑ ; ba↑ ; aa↑ ; ar↓ ; br↓ ; ba↓ ; aa↓) | (ba↑ ; ba↓)) (6)

The symbol and implementation for this filter are given in Fig. 15. The asym-
metric C-elements will filter out pulses on ba while ar is low, and propagate them
when ar is high.

F ba

C

+
�aa ba

ar br

Fig. 15. Symbol and implementation of spurious ack filter

8 Sequencer

A sequencer is a handshake component with one passive ports and several active
ports. When activated along its passive port, it will sequentially perform a hand-
shake on each active port in order, and then complete the handshake on its pas-
sive ‘activation’ port. A sequencer with passive port a and n (n ≥ 1) active ports
b(i) (0 ≤ i < n) is specified (in addition to the handshake protocols on the in-
dividual ports) by handshake protocols H({ar}, {b(0)r}), H({b(i)a}, {b(i+1)r})
(for all i, 0 ≤ i < n− 1), and H({b(n− 1)a}, {aa}).

One may observe that for n = 1 the sequencer is equivalent to a connector.
The first interesting case is the binary sequencer given in Fig. 16. We first address
this component further and then briefly discuss the implementation of the multi-
channel sequencer.

The two-phase refinement of the sequencer is unique, and given in (7).

∗ (ar↑ ; br↑ ; ba↑ ; cr↑ ; ca↑ ; aa↑ ; ar↓ ; br↓ ; ba↓ ; cr↓ ; ca↓ ; aa↓) (7)

Reduction modulo φ2 for all ports indeed results in the sequencer specifica-
tion. This refinement of the sequencer can be implemented with wires only, as
depicted in Fig. 17.

Implementation of Handshake Components 121

seq(a◦, b•, c•) =
〈〈a〉, 〈b, c〉, trc(∗(ar ; br ; ba ; cr ; ca ; aa))〉

;

a

cb

Fig. 16. Specification and symbol of binary sequencer

The two-phase refinement also satisfies some four-phase reductions. The most
straightforward reductions that apply are those that select the up or down cycles
of the two-phase refinement, that is, the reduction modulo φ4e for all ports, and
the reduction modulo φ4l for all ports. The four-phase reductions of (7) that
result in the sequencer protocol are listed in Fig. 17. In the rest of this section,
the two-phase wire-only sequencer implementation will be denoted by the same
symbol as the sequencer in the specification in Fig. 16.

With respect to progress the wire-only sequencer has to be applied with care
because the return-to-zero phase on b can only complete after the first (up) phase
on c has been acknowledged. This might cause deadlock when the completion of
the first phase on c depends on the completion of the return-to-zero phase on b.

The T-element can be used to decouple return-to-zero phases. If a T-element
is connected to channel b, as depicted in Fig. 18, the sequencer still satisfies the
early reduction and will not give rise to deadlock. The return-to-zero phase on
c can furthermore be decoupled from the acknowledge on a by also adding a
T-element to channel c.

The refinement that corresponds to the implementation in Fig. 18 is given
in (8). It is clear that this refinement indeed allows for parallelism between the
down-phase on b and the up-phase on c. This allows the handshake on b to
complete before the first acknowledge on c is given.

∗ (ar↑ ; br↑ ; ba↑ ; (br↓ ; ba↓ ‖ cr↑ ; ca↑ ; aa↑ ; ar↑) ; cr↓ ; ca↓ ; aa↓) (8)

Several reductions of this refinement result in the sequencer protocol. First of
all, the all-early reduction applies, and this is the only reduction with early on a.
There is no reduction to the sequencer protocol with late on a. Four reductions
with broad on a can be applied, three of which have early on b, as listed in
Fig. 18.

Broad refinements of the sequencer can be obtained by applying protocol
conversion to the two-phase refinement. Two possible refinements are give below.

�

ar aa

br

ba cr

ca

〈φ4e, φ4e, φ4e〉
〈φ4b, φ4e, φ4〉
〈φ4b, φ4, φ4l〉
〈φ4l, φ4l, φ4l〉

Fig. 17. Sequencer implementation and four-phase reductions of (7)

122 A. Peeters

;

a

ctb

〈φ4e, φ4e, φ4e〉
〈φ4b, φ4e, φ4〉
〈φ4b, φ4b, φ4l〉

Fig. 18. Early sequencer that avoids deadlock

;

a

csb

〈φ4b, φ4, φ4〉
〈φ4e, φ4, φ4e〉

Fig. 19. Broad sequencer based on S-element

;

a

b d c

〈φ4b, φ4, φ4〉
〈φ4l, φ4l, φ4〉

Fig. 20. Broad sequencer based on D-element

In the first one the protocol on b is converted from early to broad by adding an
S-element. In the second one conversion from late to broad is applied to c by
adding a D-element.

The implementation depicted in Fig. 19 is based on the refinement in (9), the
implementation based on the D-element in Fig. 20 on (10). These refinements
have in common that they are fully sequential, and that the behavior restricted
to b and c is ∗(br ↑ ; ba↑ ; br ↓ ; ba↓ ; cr ↑ ; ca↑ ; cr ↓ ; ca↓). Therefore we can apply
any reduction to b and c, provided that we choose the broad reduction on a.
Especially, the all-broad reduction applies, therefore these implementations are
also called broad implementations.

∗ (ar↑ ; br↑ ; ba↑ ; br↓ ; ba↓ ; cr↑ ; ca↑ ; aa↑ ; ar↓ ; cr↓ ; ca↓ ; aa↓) (9)
∗(ar↑ ; br↑ ; ba↑ ; aa↑ ; ar↓ ; br↓ ; ba↓ ; cr↑ ; ca↑ ; cr↓ ; ca↓ ; aa↓) (10)

For the implementation of multi-channel sequencers we can follow the same
approach as for the binary sequencer, which was presented above. One can start
with a wire-only backbone, e.g. consisting of a tree-structure, and then add
converters to the leafs of this tree. In the Haste system this is exactly the ap-
proach that is followed. In general, a broad refinement may be preferred, es-
pecially when the sequencer has the task to guarantee mutual-exclusive access
to a shared resource, e.g. through a mixer, cf. Sect. 10. However, several cases

Implementation of Handshake Components 123

exist where wire-only or T-element branches can be exploited, for instance when
interfacing to a non-handshake environment via QRL elements. Several efficient
multi-channel sequencer implementations based on broad-only refinements are
presented in [26].

9 Parallel

The parallel component has the same handshake signature as the sequencer.
When activated along its passive port, it sends a request on each active port,
then waits until each handshake has completed, and subsequently signals this
by sending an acknowledge on its passive channel. A parallel component with
passive port a and n (n ≥ 1) active ports b(i) (0 ≤ i < n) is thus specified
(in addition to the handshake protocols on the individual ports) by handshake
protocols H({ar}, {b(i)r}) and H({b(i)a}, {aa}) (for all i, 0 ≤ i < n).

For n = 1 the parallel is equivalent to a connector. The simplest interesting
case is the binary parallel, which is introduced in Fig. 21.

The traces corresponding to the two-phase refinement of this binary parallel
are specified in (11).

∗ (ar↑ ; (br↑ ; ba↑ ‖ cr↑ ; ca↑) ; aa↑ ; ar↓ ; (br↓ ; ba↓ ‖ cr↓ ; ca↓) ; aa↓) (11)

This behavior can be realized with a wire-fork to distribute the incoming request
and a C-element to combine the corresponding acknowledgements, as shown in
Fig. 22.

Both the all-early and the all-late reduction of this implementation result in
the behavior specified for the parallel. However, the all-broad reduction (modulo
〈φ4b, φ4b, φ4b〉) results in the more limited protocol, namely that of the fork
component, whose symbol and specification are given in Fig. 23. Fork satisfies
the parallel specification but in addition synchronizes the handshakes on its
active port. In a two-phase refinement this can only be taken care of by the
environment, but in a four-phase refinement of the parallel this can occur because
of an excess of synchronization in the component itself, as is the case in the all-
broad reduction of Fig. 22. In a four-phase circuit, this additional synchronization
may give rise to deadlock.

The fork-implementation can be taken as a starting point to arrive at broad
four-phase implementations. One may for instance connect S, T, or D-elements
to the active ports of the fork component, as shown in Fig. 24. (In the reductions
given in the figure, φ4 is used to freely refer to early, broad, and late four-phase

par(a◦, b•, c•) =
〈〈a〉, 〈b, c〉, trc(∗(ar ; (br ; ba ‖ cr ; ca) ; aa))〉 ‖

a

cb

Fig. 21. Specification and symbol of binary parallel component

124 A. Peeters

C

�

caba

br cr

aa ar

〈φ2, φ2, φ2〉
〈φ4e, φ4e, φ4e〉
〈φ4b, φ4e, φ4e〉
〈φ4b, φ4l, φ4l〉
〈φ4l, φ4l, φ4l〉

Fig. 22. Two-phase refinement of parallel component and applicable reductions

fork(a◦, b•, c•) =
〈〈a〉, 〈b, c〉, trc(∗(ar ; (br ‖ cr) ; (ba ‖ ca) ; aa))〉

•

a

cb

Fig. 23. Specification and symbol of fork component

•

a

tb t c

〈φ4b, φ4, φ4〉
〈φ4e, φ4e, φ4e〉

•

a

sb s c

〈φ4b, φ4, φ4〉
〈φ4e, φ4, φ4〉

•

a

db d c

〈φ4b, φ4, φ4〉
〈φ4l, φ4, φ4〉

Fig. 24. Three implementations of parallel with applicable reductions

reductions.) In the T-element variant, the excess of synchronization offered by
the fork is removed by decoupling the return-to-zero phases of b and c.

Multi-channel implementations of the parallel component can be based on
a back-bone of fork components. T-elements can be added to convert to the
broad four-phase reduction and avoid the risk of deadlock on the branches where
needed.

Implementation of Handshake Components 125

10 Mixer

The mixer component has several passive ports and one active handshake port.
When activated via a passive port it will perform a handshake on its active port
and then complete the handshake on the initiating passive port.

A mixer component with n (n ≥ 1) passive ports a(i) (0 ≤ i < n) and active
port b is specified by handshake protocols H({i : 0 ≤ i < n : a(i)r}, {br}) and
H({ba}, {i : 0 ≤ i < n : a(i)a}), plus, naturally, the protocols on the individual
ports.

The handshake requirements imply that the handshakes on the different pas-
sive ports should be non-overlapping, that is, pair-wise mutually exclusive. Since
this restricts the requests on the passive ports to not arrive while a handshake
on a different passive port has not yet completed, this clearly is a restriction
that should be implemented by the environment of the component, and can be
exploited in the implementation of the mixer component itself.

Again, the unary mixer is equivalent to a connector, and the first interesting
case is the binary mixer, which is shown in Fig. 25.

For the mixer component, the two-phase refinement is not a viable starting
point when looking at implementations, due to the mutual-exclusion constraint
at the passive ports. As an alternative, we start from the sequential broad four-
phase refinement of (12).

∗(ar↑ ; cr↑ ; ca↑ ; aa↑ ; ar↓ ; cr↓ ; ca↓ ; aa↓
| br↑ ; cr↑ ; ca↑ ; ba↑ ; br↓ ; cr↓ ; ca↓ ; ba↓
)

(12)

From this refinement, the implementation of the request circuit is simple,
as the incoming requests can be implemented with an or-gate. If we decide to
broadcast the acknowledge from the active port to all passive ports we obtain
the circuit shown in Fig. 26.

Interestingly, this circuit is a correct implementation of the mixer if the
spurious-acknowledge protocol is applied to channel a and b. In that case the
behavior of the circuit is specified by (13), and reduction modulo 〈φ4s, φ4s, φ4〉
results in the mixer specification.

∗(ar↑ ; cr↑ ; ca↑ ; (aa↑ ‖ ba↑) ; ar↓ ; cr↓ ; ca↓ ; (aa↓ ‖ ba↓)
| br↑ ; cr↑ ; ca↑ ; (ba↑ ‖ aa↑) ; br↓ ; cr↓ ; ca↓ ; (ba↓ ‖ aa↓)
)

(13)

mix(a◦, b◦, c•) =
〈〈a, b〉, 〈c〉, trc(∗(ar ; cr ; ca ; aa | ar ; cr ; ca ; ba))〉 |

a

b

c

Fig. 25. Specification and symbol for mixer component

126 A. Peeters

�

aa

ba

ca

ar

br

cr 〈φ4s, φ4s, φ4〉

Fig. 26. Mixer implementation and its applicable reductions

�
C

+

C
+

aa

ba

ca

ar

br

cr 〈φ4b, φ4b, φ4〉

Fig. 27. Four-phase implementation of two-party mixer and applicable reductions

To arrive at a clean four-phase implementation, we can add a protocol con-
verter that implements a spurious acknowledge filter to each passive port. Adding
the circuit from Fig. 15 to Fig. 26 results in the implementation presented in
Fig. 27. Clearly, the function of the filters is make sure that acknowledges are
sent in the right direction, and to protect the side that did not issue the request
from receiving a spurious acknowledge pulse.

This implementation of the mixer uses two state-holding elements to remem-
ber where to forward the incoming acknowledge to. Implementations that use
only a single sequential element are also possible. However, an important advan-
tage of the implementation shown here is that it generalizes to a multi-channel
implementation straightforwardly. Furthermore, in a multi-channel implementa-
tion, the C-element on a passive port can be omitted if the corresponding active
partner is robust against the spurious acknowledges thus introduced [7, 17].

11 Mutual Exclusion

Two handshakes are mutually exclusive if they do not overlap, that is, the re-
quest of the one does not occur between the request and the acknowledge of
the other. For the mixer, it was a requirement to the environment to guarantee
this for the passive ports. In this section we look into how to guarantee mutual
exclusion, and how to covert between different four-phase refinements of mutual
exclusion.

A set of n (n > 1) handshake channels a(i) (0 ≤ i < n) is mutual exclusive if
the channels can essentially be considered as one single handshake channel, that
is, if their behavior is restricted to that of handshake channel

H({i : 0 ≤ i < n : a(i)r}, {i : 0 ≤ i < n : a(i)a}).

Implementation of Handshake Components 127

Naturally, in addition each individual protocol H({a(i)r}, {a(i)a}) (for all i,
0 ≤ i < n) should also apply. For instance, three channels a, b, and c are
mutually exclusive if their interaction is restricted to

∗(ar ; aa | br ; ba | cr ; ca).

11.1 Arbiter

Mutual exclusion between independent handshakes can be assured by an arbiter.
The arbiter, which is depicted below, acts as a connector from a to p, and as a
connector from b to q, so handshakes on a and b are simply propagated. How-
ever, the arbiter guarantees the handshakes on p and q to be mutual exclusive.
Therefore it stalls an incoming request when the other handshake is still active,
and arbitrates and sequences such simultaneous requests, thereby eliminating
overlap.

arb(a◦, b◦, p•, q•) =
〈〈a, b〉, 〈p, q〉, trc(AP‖BQ‖PQ)〉 (

a

b

p

q

Fig. 28. Specification and symbol for handshake arbiter

The specification of the trace set of the arbiter is given as the composition
of three behaviors. Expression AP specifies that the arbiter acts as a connector
between a and p. Similarly BQ specifies that handshakes along b are propagated
through q. The third expression, PQ, specifies that handshakes on p and q are
mutually exclusive.

AP = ∗(ar ; pr ; pa ; aa)
BQ = ∗(br ; qr ; qa ; ba)
PQ = ∗(pr ; pa | qr ; qa)

An early four-phase implementation of the arbiter is shown in Fig. 29. It is
based on a so-called mutual-exclusion element, which is also known as interlock
element or basic arbiter [27, 18]. This element adheres to the handshake protocols
on H({ar}, {pr}) and H({br}, {qr}), and in addition guarantees that pr and qr

are not high simultaneously.
Modulo the early four-phase reduction on p and q the implementation of

Fig. 29 satisfies exactly the arbiter protocol specified in Fig. 28. For a broad
four-phase implementation, however, we have to delay the rising of e.g. pr not
only until br and qr are low, but further until qa is low as well. This can be
achieved by adding a mutex converter, which is introduced next.

128 A. Peeters

ar

br

pr

qr

�

�

aa

ba

pa

qa

Fig. 29. Implementation of arbiter based on mutual-exclusion element

�

�

aa

ba

ar

br

pa

qa

pr

qr

Fig. 30. Implementation of early-to-broad mutex converter

ar

br

�

�

aa

ba

C
+

C

+

ca

cr

broad early broad spur broad

Fig. 31. Different protocols in an implementation of the arbitrated mixer

11.2 Mutex Converter

Conversion between early and broad mutual exclusion can be implemented effi-
ciently, for instance as shown in Fig. 30. The early reductions of the handshakes
on a and b are assumed to be mutually exclusive. Given this, this component
guarantees that the broad reductions of the handshakes on p and q are mutually
exclusive. This is implemented by stalling an incoming handshake until the other
has fully completed.

11.3 Arbitrated Mixer

The mixer presented in Sect. 10 has as a restriction for the environment that
the handshakes on the passive ports should be mutual exclusive. In the context
of a silicon compiler, such mutual exclusion can be guaranteed by having strict
sequential access, for instance, by a sequencer. An alternative is to make the

Implementation of Handshake Components 129

mixer receptive, which means that it should be able to receive request on the
different passive ports independently.

A receptive mixer can be obtained by connecting an arbiter component to the
mixer implementation of Fig. 27. As the mixer requires broad mutual exclusion,
a mutex converter is required at the interface of the arbiter and the mixer. In
such an implementation, several handshake protocols play a role, as illustrated
in Fig. 31.

12 Conclusion

We presented a systematic approach to the specification and implementation of
handshake protocols. Handshake protocols are specified by handshake channels,
which characterize the request and acknowledge events and the allowed sequences
thereof. For an implementation of such a handshake channel two notions are
important, namely description and reduction. Handshake descriptions are used
to specify the behavior of the implementation, again in terms of its request
and acknowledge events and the sequences that can be observed. Handshake
reduction then defines which events should be interpreted as handshake events,
and thus contribute to the handshake protocol, and which events should be
considered redundant.

Handshake reduction also introduces a design challenge, which is covered
by its inverse, refinement. Handshake refinements can be used to explore the
handshake descriptions for implementations of a handshake protocol. Especially
for the four-phase implementation of handshake components a rich domain is
available, and early, broad, late, and spurious protocols can be combined freely.

This approach has turned out to work well in the context of the Haste silicon
compiler. Multi-channel components (e.g., for sequencer, parallel, mixer) have
been taken into account from the start, rather than building them from binary
components only. The latter would have required the introduction of extensive
(peephole) optimization steps in the design flow [28].

In this paper we have focused on four-phase implementations of handshake
components for control functions. The approach sketched in this paper can be
(and has been) applied to other components and to other handshake protocols
as well. In cases where the implementations have clean transitions on the sig-
nals involved, one can typically record the events in a specialized handshake
description. This for instance applies to the following cases.

Single track [29] control circuits, in which a single wire can carry both the
request event (in the form of an up transition) and the acknowledge event (as
a down transition). Such single-track handshakes can be recorded in handshake
descriptions of the form 〈{w↑}, {w↓}, trc(∗(w↑ ;w↓))〉. The associated handshake
reduction maps w↑ onto a request event and w↓ onto an acknowledge event.

Pulse mode [30, 31, 32] circuits, where request and acknowledge events are not
encoded as transitions on wires, but rather as pulses on these wires. Often,

130 A. Peeters

non-overlapping pulses are used, which can be modeled through handshake de-
scription 〈{r↑, r↓}, {a↑, a↓}, trc(∗(r↑ ; r↓ ; a↑ ; a↓))〉, and where a reduction that
maps the r↑ onto a request and a↓ onto an acknowledge can be applied.

One hot datapath circuits use one wire for each symbol, which can be modeled
directly as a transition refinement of a handshake channel, and which can be
used both in two-phase and in four-phase form.

Double rail [27] datapath circuits, which can be modeled as the composition
of one-hot channels, where (for a push channel) the different requests share a
single acknowledge wire. The handshake reductions can be based on the two-
and four-phase reductions for control circuits.

Handshake descriptions are not suited to record events on signals where
glitches (transitions that are not complete or clean) are allowed. This applies
for instance to single-rail datapath circuits or sample-based control circuits. In
these cases, it may be preferred to record the state on such signals only when
‘valid’ or ‘sample’ signals indicate that such a recording is safe, that is, results
in a well-defined value.

Single rail [27, 33, 7] datapath circuits use a single wire per bit, and rely on
a data-valid signal and a data-release signal, of which one is encoded in the
request and the other in the acknowledge signal of the handshake protocol. Data-
valid protocols can be expressed directly in the handshake reductions that apply
to these control signals, such as four-phase, two-phase, single-track, and pulse
mode. In four-phase implementations, one may for instance distinguish early,
broad, and late data-valid schemes [7, 21].

Synchronous [34, 35] implementations of handshake protocols go even one step
further, as these (in addition to datapath signals) also allow for glitches on hand-
shake control signals. A separate sample or clock signal defines the moments at
which the handshake wires may be observed. This additional signal may well be
the only signal in such an implementation on which clean transitions are guar-
anteed, and on which the interpretation of all other signals depends. Naturally,
such implementations are less suited for handshake descriptions, and a different
approach is needed, although the formal specifications of handshake channels
and components themselves can be maintained.

Handshake circuits allow for a wide variety of implementations, which can
be based on many different handshake protocols, both asynchronous and syn-
chronous. This makes these circuits an interesting target for compilation from
high-level languages, such as CSP-based parallel programming languages. The
combination of such powerful design languages and the handshake circuit in-
termediate architecture facilitates the exploration of the rich domain offered by
todays VLSI circuits.

Implementation of Handshake Components 131

References

1. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM
21 (1978) 666–677

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
3. Kahn, G.: The semantics of a simple language for parallel programming. Informa-

tion Processing 74 (1974) 471–475
4. Berkel, C.H.K.v., Niessen, C., Rem, M., Saeijs, R.W.J.J.: VLSI programming and

silicon compilation. In: Proc. International Conf. Computer Design (ICCD), Rye
Brook, New York, IEEE Computer Society Press (1988) 150–166

5. Berkel, K.v., Kessels, J., Roncken, M., Saeijs, R., Schalij, F.: The VLSI-
programming language Tangram and its translation into handshake circuits. In:
Proc. European Conference on Design Automation (EDAC). (1991) 384–389

6. Berkel, K.v.: Handshake Circuits: an Asynchronous Architecture for VLSI Pro-
gramming. Volume 5 of International Series on Parallel Computation. Cambridge
University Press (1993)

7. Peeters, A.M.G.: Single-Rail Handshake Circuits. PhD thesis, Eindhoven Univer-
sity of Technology (1996)

8. Kessels, J., Peeters, A.: The Tangram framework: Asynchronous circuits for low
power. In: Proc. of Asia and South Pacific Design Automation Conference. (2001)
255–260

9. Bardsley, A., Edwards, D.: Compiling the language Balsa to delay-insensitive
hardware. In Kloos, C.D., Cerny, E., eds.: Hardware Description Languages and
their Applications (CHDL). (1997) 89–91

10. Bardsley, A.: Implementing Balsa Handshake Circuits. PhD thesis, Department
of Computer Science, University of Manchester (2000)

11. Peeters, A., de Wit, M.: Haste manual. Technical report, Handshake Solutions
(2004)

12. Dijkstra, E.W.: Cooperating sequential processes. Programming Languages (1968)
43–112

13. Snepscheut, J.L.A.v.d.: Trace Theory and VLSI Design. Volume 200 of Lecture
Notes in Computer Science. Springer-Verlag (1985)

14. Brockett, R.W.: Smooth dynamical systems which realize arithmetical and logical
operations. In Nijmeijer, H., Schumacher, J.M., eds.: Three Decades of Mathemat-
ical Systems Theory: A Collection of Surveys at the Occasion of the 50th Birthday
of J. C. Willems. Volume 135 of Lecture Notes in Control and Information Sciences.
Springer-Verlag (1989) 19–30

15. Berkel, K.v.: Beware the isochronic fork. Integration, the VLSI journal 13 (1992)
103–128

16. Mohammadi, S., Furber, S., Garside, J.: Designing robust asynchronous circuit
components. IEE Proceedings, Circuits, Devices and Systems 150 (2003) 161–166

17. Negulescu, R., Peeters, A.: Verification of speed-dependences in single-rail hand-
shake circuits. In: Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems. (1998) 159–170

18. Martin, A.J.: Programming in VLSI: From communicating processes to delay-
insensitive circuits. In Hoare, C.A.R., ed.: Developments in Concurrency and
Communication. UT Year of Programming Series, Addison-Wesley (1990) 1–64

19. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Logic
Synthesis of Asynchronous Controllers and Interfaces. Springer-Verlag (2002)

20. Weste, N.H.E., Eshraghian, K.: Principles of CMOS VLSI Design: a Systems
Perspective. Addison-Wesley (1993) Second Edition.

132 A. Peeters

21. Sparsø, J., Furber, S., eds.: Principles of Asynchronous Circuit Design: A Systems
Perspective. Kluwer Academic Publishers (2001)

22. Nanya, T., Ueno, Y., Kagotani, H., Kuwako, M., Takamura, A.: TITAC: Design
of a quasi-delay-insensitive microprocessor. IEEE Design & Test of Computers 11
(1994) 50–63

23. Bisseling, H., Eemers, H., Kamps, M., Peeters, A.: Designing delay-insensitive
circuits. Technical report, IVO, Eindhoven University of Technology (1990)

24. Rem, M.: Partially ordered computations with applications to VLSI design. In
de Bakker, J.W., van Leeuwen, J., eds.: Distributed Systems, part 2: Semantics
and Logic. Number IV in Foundations of Computer Science. (1983)

25. Udding, J.T.: Classification and Composition of Delay-Insensitive Circuits. PhD
thesis, Dept. of Math. and C.S., Eindhoven Univ. of Technology (1984)

26. Bailey, A., Josephs, M.: Sequencer circuits for VLSI programming. In: Asyn-
chronous Design Methodologies, IEEE Computer Society Press (1995) 82–90

27. Seitz, C.L.: System timing. In Mead, C.A., Conway, L.A., eds.: Introduction to
VLSI Systems. Addison-Wesley (1980)

28. Chelcea, T., Nowick, S.M.: Resynthesis and peephole transformations for the op-
timization of large-scale asynchronous systems. In: Proc. ACM/IEEE Design Au-
tomation Conference. (2002)

29. Berkel, K.v., Bink, A.: Single-track handshaking signaling with application to
micropipelines and handshake circuits. In: Proc. International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems, IEEE Computer Society
Press (1996) 122–133

30. Keller, R.M.: Towards a theory of universal speed-independent modules. IEEE
Transactions on Computers C-23 (1974) 21–33

31. Plana, L.A., Unger, S.H.: Pulse-mode macromodular systems. In: Proc. Interna-
tional Conf. Computer Design (ICCD). (1998) 348–353

32. Nyström, M., Martin, A.: Asynchronous Pulse Logic. Kluwer Academic Publishers
(2002)

33. Sutherland, I.E.: Micropipelines. Communications of the ACM 32 (1989) 720–738
34. Peeters, A., van Berkel, K.: Synchronous handshake circuits. In: Proc. International

Symposium on Advanced Research in Asynchronous Circuits and Systems, IEEE
Computer Society Press (2001) 86–95

35. Page, I., Luk, W.: Compiling into FPGAs. In Moore, W., Luk, W., eds.:
FPGAs. (1991) 271–283

occam

A Trace Semantics for Long-Running
Transactions

Michael Butler1, Tony Hoare2, and Carla Ferreira3

1 School of Electronics and Computer Science, University of Southampton, UK
mjb@ecs.soton.ac.uk

2 Microsoft Research Cambridge, UK
3 Department of Computer Science,

Technical University of Lisbon

Abstract. A long-running transaction is an interactive component of a
distributed system which must be executed as if it were a single atomic
action. In principle, it should not be interrupted or fail in the middle, and
it must not be interleaved with other atomic actions of other concurrently
executing components of the system. In practice, the illusion of atomicity
for a long-running transaction is achieved with the aid of compensation
actions supplied by the original programmer: because the transaction is
interactive, familiar automatic techniques of check-pointing and rollback
are no longer adequate. This paper constructs a model of long-running
transactions within the framework of the CSP process algebra, showing
how the compensations are orchestrated to achieve the illusion of atom-
icity. It introduces a method for declaring that a process is a transaction,
and for declaring a compensation for it in case it needs to be rolled back
after it has committed. The familiar operator of sequential composition is
redefined to ensure that all necessary compensations will be called in the
right order if a later failure makes this necessary. The techniques are de-
signed to work well in a highly concurrent and distributed setting. In ad-
dition we define an angelic choice operation, implemented by speculative
execution of alternatives; its judicious use can improve responsiveness of
a system in the face of the unpredictable latencies of remote communi-
cation. Many of the familiar properties of process algebra are preserved
by these new definitions, on reasonable assumptions of the correctness
and independence of the programmer-declared compensations.

1 Introduction

Business transactions involve hierarchies of activities whose execution needs to
be orchestrated. Business transactions typically involve interactions and coordi-
nation between multiple partners. Business transactions need to deal with faults
that arise at any stage of execution. In standard atomic transactions, such as
database transactions, rollback mechanisms are used to protect against faults by
providing all or nothing atomicity for transactions [7]. In long-running business
transactions, rollback is not always possible because parts of a transaction will

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, pp. 133–150, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

134 M. Butler, T. Hoare, and C. Ferreira

have been committed or because parts of a transaction (e.g., communications
with external agents) are inherently impossible to undo using any automatic
technique. The only solution in principle is to ask the system designer to provide
ways of compensating actions that cannot be undone automatically. A language
for long-running transactions can provide constructs through which the appli-
cation developer declares compensations for actions. The language will then or-
chestrate the compensations in the appropriate way to achieve the desired effect.

In the context of business transactions, Gray and Reuter [7] define a compen-
sation as the action taken to recover from error or cope with a change of plan.
Consider the following example: a client buys some books in an on-line book-
store and the bookstore debits the client’s account as the payment for the book
order. The bookstore later realises that one of the books in the client’s order is
out of print. To compensate the client for this problem, the bookstore can credit
the account with the amount wrongfully debited and send a letter apologising
for their mistake. This example shows that compensation is more general than
traditional rollback in database transactions. Compensation is important when
a system cannot control everything, such as when interaction with other agents
(including humans) is involved. Garcia-Molina and Salem [6] use compensation
to define the concept of sagas. A saga partitions a long-running transaction into
a sequence of several smaller subtransactions, where each of the subtransactions
has an associated compensation. If one of the subtransactions in the sequence
aborts, the compensation associated with those committed subtransactions is
executed in reverse order.

This paper constructs a model of long-running transactions within the frame-
work of the CSP process algebra [8], showing how the compensations are orches-
trated to achieve the illusion of atomicity. Section 2 of this paper gives an in-
troduction to the Compensating CSP language. Section 3 provides a description
of the standard trace semantics of the sequential and the concurrent operators
of CSP, slightly adapted to the needs of our model. The three following sections
put together ideas from the standard semantics to construct the transaction
processing model, and prove the relevant theorems.

Our compensation constructs are not intended to replace atomic transactions.
Instead they extend transaction mechanisms to a higher level of granularity. The
goal of our design is that shorter-running transactions should be nested inside
longer-running transactions, so as to deal with many levels of granularity, from
milliseconds to (say) months. Backtracking will be minimised, by use of com-
pensations at the appropriate level of granularity, so as to preserve as much
progress-to-date as possible. Where possible, basic activities of a long-running
transaction could be implemented as atomic transactions with automatic roll-
back rather than explicit compensation.

The inspiration of this paper derives from the transaction processing features
of Microsoft Biztalk [11], IBMs WSFL [10], IBM’s Business Process Beans [4],
Structured Activity Compensation [3] and the OASIS draft standard for
BPEL4WS [5]. However no attempt has been made to model the particular
semantics of any of these languages.

A Trace Semantics for Long-Running Transactions 135

2 Compensating CSP

The behaviour of an interactive process (typically denoted P ,Q , . . .) can be
recorded as a sequential trace (typically denoted p, q , . . .) of all its environ-
mentally observable actions (typically denoted A,B , . . .), and of certain special
internal actions (like �, indicating successful termination of a process). For ex-
ample, the trace 〈A,B ,�〉 is a behaviour of the process A;B that executes action
A, then action B and then terminates successfully. In the CSP process algebra,
processes are modelled using such traces [8]. The traces of composite processes,
such as a sequential composition (P ;Q) or a parallel composition (P || Q), are
defined in terms of the traces of their constituent processes. The trace model
means that each action that occurs cannot be anything but atomic in the two
usual senses: (1) it either occurs as a whole, or it does not occur at all; (2) it
occurs either wholly before or wholly after every other action.

If a long-running transaction actually fails before successfully completing,
the effect must be as if it had not occurred at all. In a conventional (short
running) transaction system, the effect of the transaction can be undone at any
time by restoring a checkpoint of local state that has been taken before its start.
But a long-running transaction may have interacted with the real world before
failing, and the real world cannot be check-pointed. To solve this problem, the
programmer of the original transaction is asked to provide for each fine-grained
action A a compensation action (often called A◦); its occurrence after the action
A will restore the world to a state which is an acceptable approximation to
the state that it had before the start of the transaction. Thus the primitive
component of a long-running transaction can be written A ÷ A◦, where A is a
fine-grained atomic action, and A◦ is its compensation, which will be invoked if
a failure later in the transaction makes it necessary. Since a complete transaction
P is an atomic action at a coarser level of granularity, it too may be declared to
have its own compensation, for example P÷Q . The coarse-grained compensation
Q over-rides the fine-grained compensations declared inside P .

An implementation of a transaction processing system must ensure that on
failure of a transaction, all the necessary atomic compensations are performed
in an appropriate order to compensate for the effect of everything that has actu-
ally happened so far. For example, if a failure occurs after sequential execution
of the two fine-grained actions 〈A,B〉, the compensations should occur in the
reverse order 〈B◦,A◦〉. To model this strategy, we distinguish between stan-
dard processes P ,Q , . . .), and compensable processes (PP ,QQ , . . .). We repre-
sent a behaviour (pp, qq , . . .) of a compensable process using a pair of sequential
traces with a forward part and a compensation part. For example, the trace
pair (〈A,B ,�〉, 〈B◦,A◦,�〉) is a behaviour of the process (A ÷ A◦); (B ÷ B◦).
Sequential composition of compensable processes is redefined in a non-standard
way to ensure that the compensations for all actions performed will be accumu-
lated in the reverse order to their original performance. Parallel composition of
compensable processes is defined so that compensations for performed actions
will be accumulated in parallel.

136 M. Butler, T. Hoare, and C. Ferreira

Failure of a transaction is signified by another special symbol ! , which ap-
pears like � at the end of a trace. The intended effect of the ! event is to throw
an interrupt. For example, the primitive process THROW which fails immedi-
ately contains the trace 〈 ! 〉. In a purely sequential process, the exception causes
an immediate disruption to the flow of control. An interrupt handler may be
used to catch interrupts: in P � Q , an interrupt raised by P triggers execution
of the handler Q . In parallel processes, the whole group of parallel processes may
fail when one of the processes throws an exception and all the other processes are
willing to disrupt their flow of control and yield to the exception. A process that
is ready to terminate (indicated by �) is also willing to yield to an interrupt. A
process may also yield at mid points in its execution, indicated by the special
symbol ? which again appears at the end of a trace. Parallel composition is
defined so that ! in one process synchronises with ! , � or ? in another process
and the combined event is ! . A compensation pair P ÷ Q is always willing to
yield to an interrupt either before starting P or immediately after completing
P . For example, A÷A◦ will contain the compensable behaviours (〈 ? 〉, 〈�〉) and
(〈A,�〉, 〈A◦,�〉).

A complete transaction is formed from a compensable process PP by en-
closing PP in a transaction block [PP]. This converts PP back into a standard
process. The standard behaviours of a transaction block [PP] are defined in terms
of the compensable behaviours of PP . Successful forward traces of PP represent
successful completion of the whole transaction. The compensations are no longer
needed, and they are discarded. The failed traces of PP need to involve actual
execution of the compensations. The intention in forming a complete transac-
tion from a compensable process is that, in the case of failure, the compensations
will cancel all the forward actions, leaving only a trace containing no observable
actions as a result. We introduce a framework for proving that a transaction
either does nothing, because its forward actions will have been cancelled, or
completes successfully. This is the fundamental principle for a process algebra
that models long-running transactions. In these proofs, we will assume that any
trace is equivalent to one in which any action and its following compensation
have been cancelled. The unrealism of this abstraction should be mitigated in
engineering practice, by ensuring that failures with less desirable compensations
are adequately rare.

External choice (P � Q) is defined in our model as the union of the traces of
the alternatives P and Q , just as in CSP. In implementation, the choice is made
between P and Q according to whichever of them is the first to be able to start.
This choice operation is often used to mitigate the unpredictable variations in
latency that are characteristic of remote interactions on the world wide web. In
a transaction processing system, further improvement is possible, by delaying
the choice until the first of P and Q have not only started but completed;
the actions of the other are then just compensated. This strategy is a kind of
speculative execution; it has been called optimistic scheduling in distributed
system simulation. Its definition is the final achievement of this paper.

A Trace Semantics for Long-Running Transactions 137

Standard processes:
P ,Q ::= A (atomic action)

| P ; Q (sequential composition)
| P � Q (choice)
| P ‖ Q (parallel composition)
| SKIP (normal termination)
| THROW (throw an interrupt)
| YIELD (yield to an interrupt)
| P � Q (interrupt handler)
| [PP] (transaction block)

Compensable processes:
PP ,QQ ::= P ÷ Q (compensation pair)

| PP ; QQ
| PP � QQ
| PP ‖ QQ
| SKIPP
| THROWW
| YIELDD

Fig. 1. Syntax of Compensating CSP

OrderTransaction = [ProcessOrder]

ProcessOrder = (AcceptOrder ÷ RestockOrder) ; FulfillOrder

FulfillOrder = BookCourier ÷ CancelCourier ‖
PackOrder ‖
CreditCheck ; (Ok ; SKIPP

� NotOk ; THROWW)

PackOrder = ‖ i ∈ Items • (PackItem(i) ÷ UnpackItem(i))

Fig. 2. Order transaction example

To keep the semantic definitions simple in this paper, we have avoided sup-
porting synchronised communication between parallel processes. Synchronisa-
tion in parallel process blocks is limited to joint execution of compensations,
joint termination and joint interruption. Dealing with synchronised communica-
tion is a desirable longer term aim.

The syntax of compensating CSP is summarised in Figure 1. Figure 2 presents
a transaction for processing of customer orders in the compensating CSP lan-
guage. The first step in the transaction is a compensation pair. The primary
action of this pair is to accept the order and deduct the order quantity from the
inventory database. The compensation action simply adds the order quantity
back to the total in the inventory database. After an order is received from a
customer, the order is packed for shipment, and a courier is booked to deliver the
goods to the customer. The PackOrder process packs each of the items in the

138 M. Butler, T. Hoare, and C. Ferreira

order in parallel. Each PackItem activity can be compensated by a correspond-
ing UnpackItem. Simultaneously with the packing of the order, a credit check
is performed on the customer. The credit check is performed in parallel because
it normally succeeds, and in this normal case the company does not wish to
delay the order unnecessarily. In the case that a credit check fails, an interrupt
is thrown causing the transaction to stop its execution, with the courier possibly
having been booked and possibly some of the items having being packed. In case
of failure, the semantics of the transaction block will ensure that the appropriate
compensation activities will be invoked for those activities that did take place.

3 Trace Semantics for Standard Processes

We assume a process has an alphabet of actions Σ which does not include any
of the special events in Ω = {�, ! , ? }. For traces s and t , we write st for their
concatenation. Standard processes are defined as non-empty sets of traces each
of the form s〈ω〉 where s ∈ Σ∗ and ω ∈ Ω. Thus all traces of standard processes
are of one of the following forms:
– s〈�〉 trace leading to normal termination
– s〈 ! 〉 trace leading to interrupt throw
– s〈 ? 〉 trace leading to interrupt yield

Unlike the traces model for CSP in [8], we include only completed traces in our
traces model, not prefixes of traces. This simplifies many definitions since the
nature of a trace is indicated by its final symbol.

3.1 Sequential Operators

The process that performs a single atomic event and terminates successfully
consists of a single complete trace:

Definition 1 (Atomic Action). For A ∈ Σ, A = { 〈A,�〉 }
As in CSP the choice between two process is defined as the union of their

traces:

Definition 2 (Choice). P � Q = P ∪Q

With sequential composition P ;Q , execution of Q commences when P has
completed successfully; thus successful traces of P are extended with traces of
Q , while other traces of P remain unchanged. We define a sequential operator
on traces and then lift it to processes in the following way:

Definition 3 (Sequential Composition).

p〈�〉 ; q = pq
p〈ω〉 ; q = p〈ω〉, where ω �= �

P ; Q = { p ; q | p ∈ P ∧ q ∈ Q }
The process SKIP immediately terminates successfully:

A Trace Semantics for Long-Running Transactions 139

Definition 4 (Skip). SKIP = { 〈�〉 }

THROW is the process that immediately raises an interrupt. YIELD is the
process that yields or terminates. These processes are defined as follows:

Definition 5 (Throw and Yield).

THROW = { 〈 ! 〉 } YIELD = { 〈 ? 〉, 〈�〉 }

The process P ;YIELD ;Q may yield to an interrupt from the environment
after executing P and before executing Q .

Sequential processes satisfy the following laws:

P ; (Q � R) = (P ;Q) � (P ;R)
(P � Q);R = (P ;R) � (Q ;R)

P ; (Q ;R) = (P ;Q);R
P ;SKIP = P
SKIP ;P = P

THROW ;P = THROW
YIELD ;YIELD = YIELD

We look now at defining an operator for handling interrupts. For processes
P and Q , P � Q represents a process that behaves as P until an interrupt is
raised by P , at which point it behaves as Q . The interrupt handling operator is
defined as follows:

Definition 6 (Interrupt Handler).

p〈 ! 〉 � q = pq
p〈ω〉 � q = p〈ω〉, where ω �= !

P � Q = { p � q | p ∈ P ∧ q ∈ Q }

Laws for interrupt handling:

(P � Q) � R = P � (Q � R)
SKIP � P = SKIP

YIELD � P = YIELD
THROW � P = P

3.2 Concurrency

In this paper we do not support synchronous execution of observable actions.
A parallel block of processes will synchronise only on joint termination or joint

140 M. Butler, T. Hoare, and C. Ferreira

interruption. We represent this by defining a synchronisation operator on the
special terminal events from the set Ω. If ω and ω′ are terminal events of dis-
tinct concurrent processes, we denote by ω&ω′ the joint terminal event of their
concurrent execution. Evaluations of this operator are enumerated in Table 1.
The first three rows of the table show that the synchronisation of an interrupt
throw with any other terminal event results in an interrupt throw. The next two
rows show that the synchronisation of a yield with either a yield or a successful
termination result in a yield. The first five rows are motivated by our decision
that if a process is willing to terminate (in any of the three ways), then it is
willing to yield to an interrupt from its environment. The last row of Table 1
shows that a pair of parallel processes may terminate successfully when both
processes are willing to terminate successfully. We also define the synchronisa-
tion operator to be commutative; from this and from Table 1 it can be seen that
the operator is well-defined for all operands in the set Ω. Case analysis shows
the synchronisation operator to be associative.

As usual in process algebra, we model asynchronous execution of actions in
separate processes as occurring in an interleaved fashion. Asynchronous actions
can lead to different interleavings; for example, A ‖ B can execute A followed
by B or B followed by A. For traces p and q , we write p ||| q to denote the set
of all interleaving of p and q :

p ||| 〈〉 = {p}
〈〉 ||| q = {q}

〈x 〉p ||| 〈y〉q = { 〈x 〉r | r ∈ (p ||| 〈y〉q) } ∪ { 〈y〉r | r ∈ (〈x 〉p ||| q) }

We define parallel composition of traces to be the set of interleavings of their
observable part followed by the synchronisation of their terminal events. This is
then lifted to sets of traces to define parallel composition of processes:

Definition 7 (Parallel Composition).

p〈ω〉 ‖ q〈ω′〉 = { r〈ω&ω′〉 | r ∈ (p ||| q) }
P ‖ Q = { r | r ∈ (p ‖ q) ∧ p ∈ P ∧ q ∈ Q }

Table 1. Synchronisation of terminal events

ω ω′ ω&ω′

! ! !
! ? !
! � !
? ? ?
? � ?
� � �

A Trace Semantics for Long-Running Transactions 141

Parallel composition is commutative and associative:

P ‖ Q = Q ‖ P
(P ‖ Q) ‖ R = P ‖ (Q ‖ R)

If P does not contain any yields, then YIELD ; P is only willing to yield to
an interrupt either before P commences or when P terminates. This is shown in
the following law (for P not containing any yields):

THROW ‖ (YIELD ;P) = THROW � P ;THROW

This law shows that interrupt does not have priority over other events. This is
what we would expect in a distributed setting where we cannot expect an entire
distributed system to respond immediately to an attempt by one party to raise
an exception.

4 Compensable Processes

A compensable process contains forward behaviour and compensation behaviour.
The intention is that the compensation can be executed to compensate for the
forward action, if necessary (e.g., when an error or interrupt occurs later). Com-
pensable behaviour is modelled by pairs of traces of the form (p〈ω〉, p′〈ω′〉),
where p〈ω〉 represents a forward trace and p′〈ω′〉 represents the corresponding
compensation trace. A compensable process is modelled by a non-empty set of
such pairs.

The choice of compensable processes is as for standard processes:

Definition 8 (Compensable Choice).

PP � QQ = PP ∪QQ

Parallel composition of compensable processes is similar to the standard case:

Definition 9 (Compensable Parallel Composition).

(p, p′) ‖ (q , q ′) = { (r , r ′) | r ∈ (p ‖ q) ∧ r ′ ∈ (p′ ‖ q ′) }

PP ‖ QQ = { rr | rr ∈ (pp ‖ qq) ∧ pp ∈ PP ∧ qq ∈ QQ }

We redefine the sequential composition operator so that the compensation
behaviour of the first process is made to happen after that of the second process.
Behaviours of PP where the forward trace is unsuccessful remain unchanged.

Definition 10 (Compensable Sequential Composition).

(p〈�〉, p′) ; (q , q ′) = (pq , q ′; p′)
(p〈ω〉, p′) ; (q , q ′) = (p〈ω〉, p′), where ω �= �

PP ; QQ = { pp ; qq | pp ∈ PP ∧ qq ∈ QQ }

142 M. Butler, T. Hoare, and C. Ferreira

A compensation pair is a compensable process constructed from two stan-
dard processes. In the pair P÷Q , successfully terminating forward behaviour of
P is augmented by compensation behaviour from Q resulting in a compensable
process. If P throws or yields, the compensation is empty. The rationale for our
definition is that a compensation is intended to be used to compensate, at a
later stage, for a successfully completed forward unit of work and not for an in-
terrupted unit of work. As before we define the pairing operator on compensable
behaviours and then lift it to processes. When lifting to processes, we include an
extra behaviour which allows the compensation pair to yield immediately with
the empty compensation. The operator is defined as follows:

Definition 11 (Compensation Pair).

p〈�〉 ÷ q = (p〈�〉, q)
p〈ω〉 ÷ q = (p〈ω〉, 〈�〉), where ω �= �

P ÷Q = { (〈 ? 〉, 〈�〉) } ∪
{ p ÷ q | p ∈ P ∧ q ∈ Q }

The operators on compensable processes are designed to ensure the correct
compensation is accummulated even when an interrupt is yielded to. For exam-
ple, consider the traces of the following process:

A÷A′; B ÷ B ′ = { (〈 ? 〉, 〈�〉),
(〈A, ? 〉, 〈A′,�〉),
(〈A,B ,�〉, 〈B ′,A′,�〉) }

If this process yields immediately, the compensation is empty. If it yields after ex-
ecuting A, the compensation is A′. If it completes successfully, the compensation
is B ′ followed by A′.

Definition 12 (Compensable Basic Processes).

SKIPP = SKIP ÷ SKIP
THROWW = THROW ÷ SKIP

YIELDD = YIELD ÷ SKIP

Laws:

PP ‖ QQ = QQ ‖ PP
(PP ‖ QQ) ‖ RR = PP ‖ (QQ ‖ RR)

(PP ;QQ) ;RR = PP ; (QQ ;RR)
PP ;SKIPP = PP
SKIPP ;PP = PP

THROWW ;PP = THROWW
YIELDD ; (P ÷Q) = P ÷Q

A Trace Semantics for Long-Running Transactions 143

A transaction block involves running the compensation part of interrupted
forward traces, discarding the compensation parts of terminating forward traces
and completely removing traces whose forward parts are yielding. A transaction
block converts a compensable process into a standard process:

Definition 13 (Transaction Block).

[PP] = { pp′ | (p〈 ! 〉, p′) ∈ PP } ∪
{ p〈�〉 | (p〈�〉, p′) ∈ PP }

Note that non-emptiness of PP is not sufficient to ensure non-emptiness of
[PP]. If PP only contained yielding behaviours, then [PP] would be empty. The
following healthiness conditions, declaring that all processes P and PP consist of
some terminating or interrupting behaviour, will ensure that [PP] is non-empty:

– p〈�〉 ∈ P or p〈 ! 〉 ∈ P , for some p
– (p〈�〉, p′) ∈ PP or (p〈 ! 〉, p′) ∈ PP , for some p, p′

These conditions are true of the basic processes and are preserved by all the
operators.

The transaction block masks interrupts and yields in forward behaviour:

[THROWW] = SKIP
[YIELDD] = SKIP

Assume P is non-yielding. The following laws show that installed compensation is
run in the case of an interrupt and discarded in the case of successful termination:

[P ÷ P ′ ; THROWW] = P ;P ′

[P ÷ P ′] = P

Assume P ,P ′,Q ,Q ′ terminate successfully, neither raising nor yielding to inter-
rupts. The following laws show the effect of the parallel and sequential compo-
sition operators on the order of compensations:

[P ÷ P ′ ; Q ÷Q ′ ; THROWW] = P ;Q ;Q ′;P ′

[(P ÷ P ′ ‖ Q ÷Q ′) ; THROWW] = (P ‖ Q) ; (P ′ ‖ Q ′)
[(P ÷ P ′ ; Q ÷Q ′) ‖ THROWW] = SKIP � (P ;P ′) � (P ;Q ;Q ′;P ′)

[P ÷ P ′ ‖ Q ÷Q ′ ‖ THROWW] =

SKIP � (P ;P ′) � (Q ;Q ′) � (P ‖Q); (P ′ ‖Q ′)

5 Cancellation Semantics for Transactions

So far we have said very little about the relationship between forward actions
and their compensations other than the relative order in which they may occur.

144 M. Butler, T. Hoare, and C. Ferreira

In this section we develop a theory of cancellation for compensable processes
in which the effect of forward actions is cancelled by compensation actions. We
take a very abstract view of cancellation in which we can declare that an atomic
action, say A, is compensated by A◦ and that the behaviour exhibited by A
followed by A◦ is the same as SKIP . We will introduce a cancellation function
that removes cancelling forward and compensation actions from process traces.
We will introduce a correctness criteria on compensable processes which says
they should be self-cancelling. We will introduce a rule which says that when the
cancellation function is applied to a self-cancelling transaction, then the overall
effect is either to perform the normal forward behaviour of the transaction or
to do nothing (SKIP). We will show under what conditions the self-cancellation
property is preserved by the operators of our language.

Assume F is a set of forward actions and C is a set of compensation actions
with F and C being disjoint. We assume that cancel is a relation between F
and C so that cancel(A,A◦) means that A◦ cancels the effect of A. We can also
declare that certain actions are independent so that they can occur in either
order. This would typically be the case for compensations of parallel processes.
We write independent(A,B) to indicate that A and B may be transposed in a
trace as they do not interfere with each other. We assume that independent is
symmetric (unlike cancel).

We now define our cancellation function (C) on traces. If a trace t is of the
form p〈A〉q〈A◦〉r and if cancel(A,A◦) and ∀B ∈ q · independent(A◦,B), then:

C(p〈A〉q〈A◦〉r) = C(pqr)

If trace t does not satisfy the above conditions then no further cancellation can
be applied:

C(t) = t , otherwise

For example, assuming A◦, B◦ and C ◦ cancel A, B and C respectively and
A◦ and B◦ are independent:

C(〈A,B ,C ,C ◦,A◦,B◦〉) = C(〈A,B ,A◦,B◦〉)
= C(〈A,A◦〉), since independent(A◦,B◦)
= C(〈〉)
= 〈〉

Cancellation is lifted to processes by mapping the cancellation function to
each trace. We refer to a transaction block to which cancellation has being
applied, C[PP], as being closed.

A compensation behaviour (p〈ω〉, p′〈ω′〉) is self-cancelling if the forward and
compensation parts together are equivalent to the empty trace and the compen-
sation terminates sucessfully:

self cancelling(p〈ω〉, p′〈ω′〉) = C(pp′) = 〈〉 ∧ ω′ = �

A Trace Semantics for Long-Running Transactions 145

A compensable process PP is self-cancelling, self cancelling(PP), when all its
behaviours are self cancelling. Self-cancelling transactions enjoy some important
properties. If we force an interrupt, then the closed transaction behaves simply
as SKIP :

self cancelling(PP)
C[PP ;THROWW] = SKIP

(1)

The closure of a self-cancelling transaction either completes a forward trace
successfully or, if an exception occurs, terminates immediately with no observ-
able effect:

self cancelling(PP)
C[PP] ⊆ PP� � SKIP

(2)

Here, PP� represents successfully completing executions of PP :

PP� = { t〈�〉 | (t〈�〉, t ′) ∈ PP }
Inequality arises in rule (2) because PP might not have any successful behaviours
or might not have interrupted behaviours. This rule is quite powerful as it al-
lows us to reason separately about the normal behaviour and the compensation
behaviour of a closed transaction block. The abstract specification of a transac-
tion block might be to achieve a certain goal or to do nothing. We verify this by
verifying that PP� achieves that goal and by verifying that PP is self-cancelling.

The following rules allow PP� to be derived through simple structural cal-
culation:

(A÷A◦)� = A
(PP � QQ)� = PP� � QQ�
(PP ‖ QQ)� = PP� ‖ QQ�
(PP ; QQ)� = PP� ; QQ�
THROWW� = NULL

Here NULL stands for the empty set of traces. NULL does not correspond to a
valid process but is a useful calculational artefact. NULL satisfies the following
laws:

NULL ; PP = NULL
PP ; NULL = NULL
NULL ‖ PP = NULL
NULL � PP = PP

The final law above shows that NULL is absorbed by choice. This means that
the result of applying cancellation to a self-cancelling transaction block (rule (2)
above) is a well defined process even if PP� = NULL. Figure 3 shows the result
of calculating the forward behaviour of the order process example of Figure 2.

146 M. Butler, T. Hoare, and C. Ferreira

ProcessOrder� = AcceptOrder ; FulfillOrder�

FulfillOrder� = BookCourier ‖
PackOrder� ‖
CreditCheck ; Ok

PackOrder� = ‖ i ∈ Items • PackItem(i)

Fig. 3. Forward behaviour for order transaction example

We look now at how self cancellation relates to the operators of our language.

cancel(A,A◦) ⇒ self cancelling(A÷A◦)

SKIPP , THROWW and YIELDD are all self-cancelling. Self-cancellation is
preserved by sequential composition and choice:

self cancelling(PP)
self cancelling(QQ)

self cancelling(PP ;QQ)

self cancelling(PP)
self cancelling(QQ)

self cancelling(PP � QQ)

Parallel composition preserves self-cancellation provided the compensations from
parallel processes are independent:

self cancelling(PP)
self cancelling(QQ)

∀A ∈ comp(PP), B ∈ comp(QQ) · independent(A,B)
self cancelling(PP ‖ QQ)

Here, comp(PP) represents the set of compensation actions of PP .
From the above rules, we see the result that, if the programmer of a trans-

action ensures

– an action A is directly paired with its compensation A◦ and
– every compensation is independent of compensations in parallel processes,

then the transaction will be self-cancelling under our theory.

6 Speculative Choice

When the goal of a transaction can be achieved in different ways, responsiveness
may be improved by attempting these different means in parallel. When one
attempt succeeds, the other attempts may be abandoned. Compensation can
be used to cancel the effect so far of the abandoned attempts. In this section,

A Trace Semantics for Long-Running Transactions 147

we define a form of speculative choice which can be shown to be equivalent to
standard choice under the right conditions.

We write PP � QQ for the speculative choice of PP and QQ . The effect of
PP �QQ is to run the forward behaviour of PP and QQ in parallel until one of
them terminates successfully. If PP terminates successfully, then the compensa-
tion accumulated for QQ is run while the compensation for PP is preserved:

(p〈�〉, p′) � (q〈ω〉, q ′) = { (rq ′, p′) | r ∈ (p ||| q) }

Here and below we assume ω, ω′ �= �. Trace r above represents any interleaving
of the forward trace p with the forward trace q . The compensation q ′ is run
immediately, i.e., appended to r , while the compensation trace p′ is preserved.
The case where QQ terminates successfully is similar:

(p〈ω〉, p′) � (q〈�〉, q ′) = { (rp′, q ′) | r ∈ (p ||| q) }

Behaviours in which both processes terminate successfully result in a choice
between one or the other succeeding:

(p〈�〉, p′) � (q〈�〉, q ′) = { (rq ′, p′) | r ∈ (p ||| q) } ∪
{ (rp′, q ′) | r ∈ (p ||| q) }

Behaviours in which neither terminate successfully are also, in which case the
compensations are run in parallel:

(p〈ω〉, p′) � (q〈ω′〉, q ′) = { (rr ′, 〈�〉) | r ∈ (p ||| q) ∧ r ′ ∈ (p′ ‖ q ′) }

The operator on compensable behaviours is lifted to compensable processes:

Definition 14 (Speculative Choice).

PP � QQ = { pp � qq | pp ∈ PP ∧ qq ∈ QQ }

To illustrate the effect of the operator, consider the following example trans-
action block containing speculative choice:

[A÷A′ � B ÷ B ′] = A � B � ((A ‖ B) ; (A′ � B ′))

Here, either A succeeds (because B ÷ B ′ yields immediately) or B succeeds or
both succeed with one of A or B being compensated.

If PP and QQ are self-cancelling and their compensations are independent,
then their speculative choice is self-cancelling:

self cancelling(PP)
self cancelling(QQ)

∀A ∈ comp(PP), B ∈ comp(QQ) · independent(A,B)
self cancelling(PP � QQ)

148 M. Butler, T. Hoare, and C. Ferreira

Under the same conditions, a transaction block consisting of PP � QQ is the
same as one consisting of PP � QQ :

self cancelling(PP)
self cancelling(QQ)

∀A ∈ comp(PP), B ∈ comp(QQ) · independent(A,B)
C[PP � QQ] = C[PP � QQ]

Unlike our other operators, speculative choice is not associative. For example
consider the process (A÷A′ � B÷B ′) � C ÷C ′ and the case where B succeeds
overall. This case results in the compensations for the non-succeeding branches
being run in the order A′ then C ′. On the other hand, if B succeeds overall in
the process A÷A′ � (B ÷B ′ � C ÷C ′), then the compensations for the non-
succeeding branches will be run in the order C ′ then A′. We could get around
this problem by defining an n-ary version of the operator which would select one
succeeding branch, if possible, and run the compensations for the other branches
in parallel.

7 Related Work

Korth et al. [9] define compensating transactions as a way to overcome the lim-
itations of atomicity when dealing with long-running transactions. The authors
propose the use of compensating transactions to allow access to uncommitted
data and to undo committed transactions. In their work compensation is for-
malized in terms of the properties it has to guarantee. Consider a transaction
T , its compensating transaction CT , and a set of dependent transactions on T
(dependent transactions of T are those transactions that read data values writ-
ten by T). The authors say that a compensation is sound when “compensation
does not disturb the outcome of dependent transactions”, i.e., the compensation
has to:

– reverse the effects of execution of T , and
– assure the outcome of the dependent transactions after the execution of the

CT must be the same as if the transaction T did not occur.

As the definition of compensation soundness can be too restrictive the authors
present a definition for weaker forms of soundness. Clearly, there are similari-
ties between [9] and our cancellation semantics. One main difference is that [9]
does not provide a rich language as the work presented here does. Transaction’s
operations are limited to reading or writing a set of data, as the focus is on
transactional databases.

Two of the authors (Butler and Ferreira) developed the StAC (Structured
Activity Compensation) language [2, 3] for modelling long-running business
transactions which includes compensation constructs. An important difference
between StAC and the work presented here is that instead of the execution of
compensations being part of the definition of a transaction block, StAC has ex-
plicit primitives for running or discarding installed compensations (reverse and

A Trace Semantics for Long-Running Transactions 149

accept respectively). StAC gives a precise interpretation to the mechanics of
compensation, including the combination of compensation with parallel execu-
tion, hierarchy and exceptions. However, the design of the language does not
lend itself to reasoning about the intended effect of a transaction in a composi-
tional way. In particular the separation of the accept and reverse operators from
compensation scoping prevents the definition of a compositional semantics: the
semantics of the reverse operator cannot be defined on its own as its behaviour
depends on the context in which it is called. These shortcomings were addressed
in the work presented here.

Recently Bruni et al [1] have developed an operational semantics for a lan-
guage with similar operators to ours, including compensation pairs and trans-
action blocks (or sagas as they call them). Like our work, and unlike StAC, the
execution of compensation is part of the definition of a saga which leads to a
neater operational semantics. They provide a richer form of exception than us
whereby whether or not compensations were run in a saga is visible outside the
saga. They also define a form of speculative choice similar to ours.

8 Conclusions

The operators of our language are quite powerful in the way they take care
of orchestration of compensation and interrupt handling in a nested way. By
working with a trace semantics we have developed a language that supports
compensation in the desired way and has a compositional semantics supporting
modular reasoning about long-running transactions. Our cancellation semantics
is somewhat purist but we believe it points towards what should be achievable
with a language for long-running transactions that is designed with correctness
in mind. In particular, the way in which the cancellation semantics allows rea-
soning about normal behaviour and compensation behaviour to be separated is
very powerful. The design of our proposed structures has been through many
iterations, in which we have sought simpler and simpler formal definitions. We
have also tried to make definitions of each feature logically independent of every
other feature, so as to reduce the risk of complex interaction effects.

Compensating CSP can be regarded as a design pattern for a tightly-
disciplined form of error handling for transactions. The advantage of a special
orchestration language is that the implementation is responsible for avoiding
the deadlocks and race conditions that almost universally accompany a pro-
grammer’s attempt to implement the necessary error recovery protocols.

For this paper we have chosen to use a simple trace semantics making strong
use of the special terminal events. This trace semantics allowed us to develop
simple elegant definitions of the operators which facilitated the proof of the
various laws. However we have avoided modelling several important and well
understood features of process algebras for concurrent and distributed systems.
In particular we have avoided synchronous communication, event hiding and
the distinction between internal and external choice. These will require a richer
semantic model and now that we have achieved a better grasp of compensation

150 M. Butler, T. Hoare, and C. Ferreira

through the trace model, we are in a better position to tackle these other features
in combination with compensation. In our self-cancellation rule for compensation
pairs, we have only allowed for pairs of atomic actions. To deal with the more
general case, our current belief is that we need a semantic model that admits a
notion of event refinement where an atomic event at a course level of granularity
is replaced by a whole process at a finer-grained level.

Acknowledgements

Thanks to Peter Welch, Marc Shapiro, Roberto Bruni, Hernan Melgratti, Peter
Henderson, Mandy Chessell, David Vines and Catherine Griffin for valuable
discussion on compensation and exceptions. Thanks to the anonymous referee
for suggesting improvements in the presentation and thanks to Bertrand Meyer
for pointing out that ‘compensable’ was preferable to ‘compensatable’.

References

1. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensa-
tions in flow composition languages. In POPL 2005, 2005.

2. M. Butler and C. Ferreira. A process compensation language. In Integrated Formal
Methods(IFM’2000), volume 1945 of LNCS, pages 61 – 76. Springer-Verlag, 2000.

3. M. Butler and C. Ferreira. An operational semantics for StAC, a language for
modelling long-running business transactions. In Coordination 2004, volume 2949
of LNCS. Springer-Verlag, 2004.

4. M. Chessell, D. Vines, C. Griffin, V. Green, and K. Warr. Business process beans:
System design and architecture document. Technical report, Transaction Pro-
cessing Design and New Technology Development Group, IBM UK Laboratories,
January 2001.

5. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business process execution language for web services, version 1.1.
http://www-106.ibm.com/developerworks/library/ws-bpel/, 2003.

6. H. Garcia-Molina and K. Salem. Sagas. In Proceedings of ACM SIGMOD, pages
249–259, 1987.

7. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, 1993.

8. C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
9. H. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by com-

pensating transactions. In 16th VLDB Conference, Brisbane, Australia, 1990.
10. F. Leymann. Web services flow language, version 1.0.

http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
2001. IBM.

11. B. Metha, M. Levy, G. Meredith, T. Andrews, B. Beckman, J. Klein, and A. Mi-
tal. BizTalk Server 2000 Business Process Orchestration. IEEE Data Engineering
Bulletin, 24(1):35–39, 2001.

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): CSP LNCS 3525, pp. 151 – 174, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Practical Application of CSP and FDR
to Software Design

Jonathan Lawrence

IBM United Kingdom Ltd.,
MP 154, IBM Hursley Park,
Winchester, SO21 2JN, UK

jlawrence@uk.ibm.com

Abstract. Most published material on CSP and the FDR tool is theoretical and
mathematically rigorous, which can be daunting to the less mathematical
software engineer. It is also often difficult to relate the elegant but abstract
examples in the literature to the problems of the software engineer who must
eventually produce an executable program expressed in a procedural
programming language This paper outlines a number of techniques which may
be used to model procedural designs in CSP and to structure the refinements so
as to render them tractable to verification by the FDR model-checking tool. A
simple example, taken from a recent IBM Software Services engagement, is
used to illustrate some of the ideas presented in the paper.

1 Introduction

This paper describes some of the author’s experiences applying CSP in conjunction
with the FDR model-checking tool to a range of small design problems which have
arisen in the course of recent IBM Software Services consultancy projects.

1.1 Indebtedness to CSP

 The author has been using the CSP notation and FDR tool intermittently for about ten
years; initially for the formalization of a concurrent design for the logging component
of a transaction processing system, and subsequently for a few other minor pieces of
design work and an MSc project.

More recently, and perhaps surprisingly, considerable scope for the application of
CSP and FDR has been found in a number of services engagements involving the
delivery of bespoke software components or system designs. In all such cases to date,
the client has not required and has not been aware that CSP has been used for some
aspect of the project; so use of the notation and tools could not be permitted to
adversely affect other factors such as performance, function and cost.

That the application of CSP is viable in a commercial environment where cost and
delivery schedules are of almost equal importance to quality and reliability, and where
neither safety nor security are critical concerns, is a good indication that the combined
CSP and FDR approach is sufficiently mature for wider use in software engineering.

25,

152 J. Lawrence

Even in cases where CSP has not been formally used for a design, the conceptual
principles behind the notation, and a slightly extended form of CSP communication
diagram, have been found helpful in formulating and recording designs.

1.2 Suitability

The CSP approach is most suitable for tackling problems where communication or
concurrency is a key concern. In this context, communication includes not only the
domain of transport protocols, but also for example a pattern of communication
between tightly-coupled components of a software system; while concurrency would
include interactions with independent entities such as users and external devices as
well as the obvious application to multi-threaded operating environments. It is less
well suited to dealing with systems with large and complex state, for which state-
based notations such as Z, B or VDM are more appropriate.

An important factor in the successful application of CSP and FDR has been a high
degree of selectivity in the choice of problem to tackle. The scope must be
sufficiently well-defined to be able to isolate a portion of the system to treat, while
being sufficiently complex that there is benefit to be gained from the investment of
effort involved. For this reason, the approach has not been applied to every project,
and then, typically, only to one aspect of the design.

The remainder of this paper is devoted to an example exemplifying the type of
problem to which the approach has been applied, concluding with a summary of the
benefits which have been achieved through the use of CSP in software design.

2 Example: A Multi-threaded Connection Pool

The example presented in this paper was developed as part of a recent IBM Software
Services engagement. It illustrates some techniques for the use of CSP and FDR to
model and verify software designs; in this case, applied to a multi-threaded
connection pooling mechanism forming part of a communications adapter between a
Web Server and a transaction processing system.

2.1 Overview

A transport layer to be used for communication provides the notion of a connection
which may be thought of as an established link between the two systems. Once
created, a connection may be used to transmit requests and receive responses on
behalf of any client thread; however only one thread at a time may use a connection
(this restriction is not policed, but if violated leads to unpredictable results). The
creation and destruction of connections is expensive, and the overhead of creating a
fresh connection for each client request would be prohibitive. It is therefore
necessary to maintain a pool of persistent connections and allocate them to client
threads as required, while ensuring that no two threads are ever allocated the same
connection concurrently.

Connections are also a limited resource and costly to maintain, so the number of
open connections must be carefully controlled, and will usually be less than the
number of potential client threads which wish to use them. The design envisaged

 Practical Application of CSP and FDR to Software Design 153

allows for a fixed maximum number, poolsize, of connections to be permanently
allocated; but in order to cater for short-term peaks in demand the system may
allocate further connections up to an additional maximum, extpoolsize. These
extra connections are closed when no longer required. In the event that more
concurrent requests are received than can be accommodated within the total,
(maxconn=poolsize+extpoolsize), the system may suspend up to queuesize
threads to wait for a connection to become free; but requests exceeding this limit are
rejected. This queueing scheme allows some requests to succeed rather than be
rejected, at the cost of some delay, but prevents the system from becoming clogged
with suspended threads.

poolsize extpoolsize queuesize reject

Number of concurrent requests 0

2.2 Specification

Although there is some value in modelling just the design of a software component
and then perhaps using a model-checking tool to verify certain desirable properties
such as deadlock-freedom; much greater benefit is derived if a specification of the
required behaviour is constructed, and the design verified against it. Typically such a
specification will be much simpler than the design, such that it can be shown to meet
the requirements by inspection or informal arguments, possibly supplemented by
additional formal checks using a tool. The level of abstraction to be used in a design
is also usually established at the specification stage.

Definitions
Before the specification can be constructed it is necessary to define some datatypes
and constants used to label entities and determine system parameters. The datatype
ConnId introduces a set of tokens used to identify connection instances.

datatype ConnId = nil | c1 | c2 | c3

nil is a special ‘null’ connection ID which does not refer to a real connection, and is
excluded from the set of actual connection IDs.

ConnSet = diff(ConnId,{nil})

The maximum number of connections which may exist at any time is equal to the
number of valid connection IDs, and there must be at least one connection available
otherwise all requests will deadlock or be rejected.

maxconn = card(ConnSet)
assert maxconn > 0

In a multi-threaded design such as this, it is almost always necessary to be able to
identify the thread taking part in a particular action, and so the datatype ThreadId is
defined to provide labels for threads.

datatype ThreadId = t1 | t2 | t3 | t4

154 J. Lawrence

Some constants determining system parameters:

poolsize = 2 -- no. of connections to keep open
extpoolsize = maxconn – poolsize -- extras
queuesize = 2 -- no. of threads allowed to queue

All the above size parameters must be non-negative.

assert poolsize >= 0
assert extpoolsize >= 0
assert queuesize >= 0

Possible responses from a call to the pool are defined by the datatype Response.

datatype Response = ok | error | full

ok and error both indicate that a link request to the target system was made, and it
succeeded or failed respectively. full indicates that the request was rejected because
all available connections were in use, and the queue was full at the time of the
request. The level of abstraction to be used in the design is thus already beginning to
become apparent from the definition of the possible responses.

Threads
The structure we will use for the specification is a set of independent threads,
represented by interleaved processes, handling requests to the system. call is the
channel on which requests are received at the external interface. enter and exit are
internal channels representing a thread being accepted into, and later leaving the
connection pool. All of these carry a label identifying the thread taking part in the
event, in order to keep track of which threads are in which state and to tie target links
back to the originating thread.

channel call,enter,exit:ThreadId

Note that no actual request data is represented here, even on the call channel. This
is a deliberate abstraction from the real system, simply because we do not care about
the data for the purposes of this specification – we are solely concerned with the
management of the connections, and believe that the transmission of data is a detail
which can safely be added at the implementation stage.

The event reject is used when a request cannot be processed because the system
is full. There is no need to identify a thread on this channel.

channel reject

The channel link represents an invocation of the target system. The thread must be
identified on this channel since otherwise an implementation would be free to return a
response (and probably any associated data) to any thread, rather than the one which
made the request.

channel link:ThreadId.{ok,error} -- no ‘full’ on link

channel return:ThreadId.Response -- any poss. Response

 Practical Application of CSP and FDR to Software Design 155

The process Thread(t) models the behaviour of the single thread with label t, at the
specification level. What we are actually modelling is the behaviour of a thread
within the connection pool, which initially only accepts a call for that thread, then
offers an external choice of reject or enter. This choice is later resolved by a
supervisor process which is monitoring the state of the connection pool.

Thread(t) = call.t -> (reject -> return.t.full -> SKIP

 [] enter.t -> link.t?r ->

 exit.t -> return.t!r -> SKIP);

 Thread(t)

Depending on the branch chosen, the thread either returns immediately with a full
response, or issues a link to the target system before registering its completion via
the exit channel and returning control to the caller via return. Since the channels
enter, exit and reject will be hidden when the specification is assembled, the
external view of a thread may be represented by the following diagram:

Connection
Pool

[link?{ok,error}]

call

return?{ok,error,full}

The diagram represents the connection pool as a black box which accepts call
requests, may optionally issue a link, and then returns to the caller. The response on
return depends on whether the link is issued and if so, what the result was.
Threads do not communicate directly with each other, only indirectly through their
interactions with shared data or synchronization components; so the combined
behaviour of all threads is simply the interleaving of the individual threads.

Threads = ||| t : ThreadId @ Thread(t)

If the internal events were to be hidden at this stage, the external choice on each
iteration of a Thread would become nondeterministic, and the system would be
anarchic, choosing arbitrarily whether to process or reject each request.

Supervisor
To impose order on the system corresponding to our informal requirements for the
connection pool, we introduce a supervisor process which maintains a global view of
the state of the system, monitoring and controlling the possible actions of the threads
according to that view.

The following diagram represents the Supervisor process for the connection pool.
Its state comprises two variables: active, the set of threads which have been
allocated a connection and are in the process of linking to the target system; and
queue, a sequence of threads which have been accepted but are awaiting the
allocation of a connection. Potential example values are given for each variable.

156 J. Lawrence

Supervisor
active : Set(ThreadId) : {t3,t2}
queue : Seq(ThreadId) : <t1,t4>

empty(inter(active,set(queue)))
card(active) <= maxconn
#queue <= queuesize
card(active) == maxconn or

null(queue)

reject

enter

link

exit

The lower portion of the diagram gives an invariant for the state, which is not
necessarily complete, i.e. a partial invariant.

 No thread may be simultaneously active and in the queue.
 The number of active threads is limited to the number of available

connections.
 The size of the queue is limited to queuesize.
 All available connections must be in use for a thread to be queued.

The full CSP definition of the Supervisor process is given below. Note that if the
stated invariant becomes false after any event, the process deadlocks immediately,

Supervisor(active,queue)=
empty(inter(active,set(queue))) and
card(active) <= maxconn and
#queue <= queuesize and
(card(active) == maxconn or null(queue)) &

The choice between enter and reject is based on the state, which is then updated
to reflect that choice.

(if card(active) < maxconn
 then enter?t -> Supervisor(union(active,{t}),queue)
 else if #queue == queuesize -- full
 then reject -> Supervisor(active,queue)
 else enter?t -> Supervisor(active,queue^<t>))
[]

Threads which are active (i.e. have an allocated connection) are permitted to engage
in link or exit. In the latter case the state is updated as the connection is no longer
required by that thread.

([]t : active @ -- active threads only
 link.t?_ -> Supervisor(active,queue)
 [] exit.t ->
 let left = diff(active,{t}) within
 if null(queue)
 then Supervisor(left,queue)
 else Supervisor(union(left,{head(queue)}),
 tail(queue)))

 Practical Application of CSP and FDR to Software Design 157

The style of expressing a CSP process in the form:

P(s) = Inv(s) & [] e : E(s) -> P(s’)

is useful as it allows us to formalize an invariant in a way which will be flagged by
FDR if ever violated since it will quickly result in a total deadlock of the whole
system. Alternatively divergence could be used in a similar pattern.

Assembly
The complete specification for the connection pool is given by the parallel
combination of the threads with the supervisor process in its initial state,
synchronizing on the channels shared by the threads and the supervisor, and hiding
the internal events.

PoolSpec =
 (Threads -- all threads
 [|{|enter,exit,reject,link|}|] -- shared channels
 Supervisor({},<>)) -- initial state
 \ {|enter,exit,reject|} -- hide internals

The structure of the specification is illustrated in the following diagram.

Threads
Supervisor

link
return

call

PoolSpec

enter

exit

link

reject

Validation
At this point, it is appropriate to ask whether what we have specified is actually what
we intended, since clearly if it is not, then even a perfect implementation of it will not
meet the requirements. There are several techniques which can help to validate the
specification:

1. Careful inspection or peer review, paying attention to synchronization and hiding,
which are common sources of error.

2. Use of a tool such as ProBe to explore possible behaviour of the specification.
3. Formulation of expected properties of the specification as CSP processes, and then

using FDR to check those properties.

A couple of quick checks which require little effort to formulate and are sometimes
valid are deadlock and divergence freedom, which both happen to apply in this case.
The deadlock freedom check also implicitly checks that the stated invariant for the
Supervisor state is not violated.

158 J. Lawrence

assert PoolSpec :[deadlock free[FD]]

assert PoolSpec :[divergence free]

An example of a stronger check of the validity of the specification can be formulated
if we consider how we would expect the specification to behave if its link channel is
hidden. In this case, and abstracting the internal state of the supervisor so that the
choice between reject and enter becomes nondeterministic, each thread may
perform an infinite sequence of call-return pairs with a nondeterministic choice of
response on each return event.

ThreadInterface(t) = |~| r : Response @

 call.t -> return.t!r -> ThreadInterface(t)

The multi-threaded version of the interface should be the interleaving of each thread
separately, with no interference between threads. This independence of the threads
only holds with link hidden since otherwise the refusal of the environment to engage
in link for one thread may block another waiting in the queue for a connection.

PoolInterface = ||| t : ThreadId @ ThreadInterface(t)

The FDR refinement check can now be expressed, that our abstract nondeterministic
interface specification is refined by PoolSpec with the link channel hidden. The
validity of this assertion in fact includes the deadlock and divergence freedom
properties by inspection.

assert PoolInterface [FD= PoolSpec \ {|link|}

Frequently, the failure of an eventual refinement check of the design will indicate
errors or inaccuracies in the specification which need to be corrected. In other words,
a ‘correct’ design can be found not to meet the specification originally formulated
because the latter is too prescriptive, or some unforeseen subtlety of the operational
semantics renders the refinement invalid. In such cases it is the specification rather
than the design which needs to be revised and revalidated.

2.3 Design

Design remains the responsibility of the software engineer. CSP and FDR can only
help to model, record and verify a design; they cannot help to conceive it. Often, the
engineer will have an outline design in mind at the specification stage and this will
inform the construction of the specification.

The design for the connection pooling mechanism has four components:

1. The connections provided by the transport layer.
2. A control component which maintains a record of the state of the pool and

queue. This is a single shared data component which is used by all threads
and which does not provide any synchronization except to protect itself.

3. A dispatcher component which has two functions: synchronization (suspend/
resume) of threads in the queue, and connection passing.

 Practical Application of CSP and FDR to Software Design 159

4. The threads. Each client thread is a separate process, identical apart from the
label used to identify it. These represent independent copies of the same
algorithm executing on separate threads, while accessing the same shared
components, and as such are similar to the Thread processes of the
specification.

It would probably be possible to conceive a design (especially in Java) in which the
control and dispatcher functions are combined, but separation of these concerns
results in a cleaner, more understandable, maintainable and portable structure.

Connections
Although we will not need to implement connections, as they are provided by the
transport layer, we need to model them in order to include them in the design. The
technique used here is one way to model resources which can be obtained and
released, such as memory, objects or in this case, connections. The channels create
and close respectively represent the actions of obtaining and releasing a particular
connection, and hence are labelled with a valid connection ID.

channel create,close : ConnSet

The channel start_link is used to represent the use of a particular connection,
by a specified thread, to access the target system. The thread ID is necessary for
the same reason that it appears on the link channel used in the specification;
indeed, end_link will later be renamed to link when the design is fully
assembled.

channel start_link : ConnSet.ThreadId
channel end_link : ConnSet.ThreadId.{ok,error}

The link channel of the specification has been split into two separate channels for the
design. This allows the model to include the possibility of interleaving of link
requests which we wish to guard against, so that its occurrence can be detected by
FDR. The complete interface of the transport layer is given by the following set
definition and will be useful later.

ConnInterface = {|create,close,start_link,end_link|}

It is useful to define a divergent process which can be used to represent a broken
component – often one which has been used in some invalid way. If this state is
reached in an FDR check of the design it will cause the check to fail. A simple
divergent process is:

DIV = STOP |~| DIV

Before a connection has been created, or while a link request is being processed by
a connection on behalf of a thread, it should be invalid for any close or start_link
event to occur for a connection. ConnError is a process which may always accept
any such event and then immediately diverge, causing FDR to flag its occurrence
during a refinement check.

160 J. Lawrence

ConnError(c) = [] e : {|close.c,start_link.c|} @

 e -> DIV

Initially, a connection may be considered to be in a latent, unobtained state in which it
can only validly engage in the action of being created.

Connection(c) = create.c -> Active(c)

 [] ConnError(c)

Any attempt to close or use a connection before it has been created will result in
divergence, so if our design does this it will be detected by FDR. After creation, a
connection may be closed, or used by any thread to initiate a link to the target
system. In the latter case it moves to a distinct Linking state.

Active(c) = close.c -> Connection(c)

 [] start_link.c?t -> Linking(c,t)

In the Linking state a connection may complete the link request and return to the
Active state ready for other requests, but we also allow the possibility of an invalid
event (close or start_link), leading to divergence. If this scenario can arise in the
assembled design it will be detected by FDR, allowing us to police the requirement
that link requests are not interleaved on a connection. This could not be done if a
link remained as a single atomic event in the design.

Linking(c,t) = end_link.c.t?_ -> Active(c)

 [] ConnError(c)

In fact, although a connection is modelled as remaining active after end_link we
will regard an error response as indicating a possible problem with that connection,
and close it without further reuse. Connections are independent of each other, so the
complete transport layer is represented by the interleaving of all possible valid
connections.

Connections = ||| c : ConnSet @ Connection(c)

The following diagram illustrates the structure of Connections, showing how it
is composed of the interleaving of several independent Connection processes
labelled by unique connection IDs. The meaning of the arrows, dashed and dotted
lines for the channels is as explained earlier for the high-level description of the
Connection Pool.

The diagram also anticipates the eventual renaming of end_link to link in the
final system, to conform to the external interface of the specification. This is
explained further when the complete system is assembled later.

This simple model of the transport layer relies for its validity on the way it is used
by the threads: when creating a connection a thread must use an external choice over
all valid connection IDs (… -> create?c -> …) – it may not attempt to create a
particular connection although this is not prohibited by the model.

 Practical Application of CSP and FDR to Software Design 161

Connection(c1)
link?r

start_link.c1

close.c1

end_link.c1?r

create.c1

Connection(c2)
link?r

start_link.c2

close.c2

end_link.c2?r

create.c2

Control
The Control component keeps track of the state of the pool. It provides two
functions: 1) obtain a connection from the pool; and 2) return a connection to the pool
after use. Often when modelling a shared data component such as this, each function
will be represented by a single channel, but in this case a more complicated pattern is
used where each function can result in a choice over several channels, this choice
being determined by the values of the state variables.

The following channels (plus reject which has already been defined) are used to
request a connection from the Control component. The client thread must offer an
external choice of these channels when requesting a connection from Control, and
subsequently act according to the channel actually chosen.

channel allocate,reject -- create a new connection
channel reuse : ConnSet -- reuse a pooled connection
channel wait : ThreadId -- suspend thread

In a similar way, the following channels are used to return a connection to the pool:

channel repool:ConnId -- this may be nil indicating
that the connection is closed
channel release -- release the connection if not
already closed
channel pass:ThreadId -- pass the connection to this
thread

It is convenient, and reduces the likelihood of errors when assembling the complete
system, to define the set of all events in the client interface of Control:

ControlInterface = {|reject,allocate,reuse,wait,
 repool,release,pass|}

The channel close is not included in this definition as it is a demonic event of the
component and is not synchronized with the client threads.

162 J. Lawrence

Control may be represented by the following diagram, following a similar pattern
to that for the Supervisor process of the specification:

Control
count : Nat : 1
pool : Seq(ConnSet) : <c3,c1>
queue : Seq(ThreadId) : <>

count >= 0
#pool <= poolsize
#queue <= queuesize
count + #pool <= maxconn
count==maxconn and null(pool)

or null(queue)

close

reuse

allocate

wait

repool

release

pass

{
{

allocate

release

reject

As for Supervisor, potential example values are given for each state variable, and
an invariant is specified in the lower portion of the diagram, which as before, may be
only partially complete.

The complete CSP definition for the Control component follows.

Control(count,pool,queue) =
count >= 0 and
#pool <= poolsize and
#queue <= queuesize and
count + #pool <= maxconn and
((count == maxconn and null(pool)) or null(queue)) &
((not null(pool) & let front^<last> = pool within
 STOP |~| close!last -> Control(count,front,queue))
[] -- cases when requesting a connection
(if count==maxconn
 then if #queue < queuesize
 then wait?t -> Control(count,pool,queue^<t>)
 else reject -> Control(count,pool,queue)
 else if null(pool)
 then allocate -> Control(count+1,pool,queue)
 else reuse!head(pool) ->
 Control(count+1,tail(pool),queue))
[] -- cases when returning a connection
(if null(queue)
 then if #pool == poolsize
 then release -> Control(count-1,pool,queue)
 else repool?c ->
 if c == nil
 then Control(count-1,pool,queue)
 else Control(count-1,<c>^pool,queue)
 else pass!head(queue) ->
 Control(count,pool,tail(queue))))

 Practical Application of CSP and FDR to Software Design 163

Dispatcher
The dispatcher component combines two functions: explicit thread synchronization
(suspend / resume) and connection passing. The suspend channel identifies the thread
which is to be suspended:

channel suspend : ThreadId

The channels resume and dispatch each identify the thread being resumed, but also
transmit a connection to be used by that thread. This is an input on the resume
channel, and an output on dispatch.

channel resume,dispatch : ThreadId.ConnId
Ready(t,c) = dispatch.t.c -> Ready(t,c)
 [] suspend.t -> Suspended(t)
 [] resume.t?c -> Resumed(t,c)
Suspended(t) = resume.t?c -> Ready(t,c)
 [] suspend.t -> DIV
Resumed(t,c) = suspend.t -> Ready(t,c)
 [] resume.t?_ -> DIV

A state transition diagram illustrating the Ready process for a thread is given below.

Ready(c)Suspended Resumed(c)

suspend

DIV

suspend

dispatch!c

suspendresume?c

resume

resume?c

The complete Dispatcher function for all threads is simply the interleaving of each
individual thread’s dispatcher, initialized with a null connection.

Dispatcher = ||| t : ThreadId @ Ready(t,nil)

As with Control it is convenient to define the set of all events in the interface of
Dispatcher.

DispatchInterface = {|suspend,resume,dispatch|}

Threads
We now model the actions of a client thread interacting with Control, Dispatcher
and Connections. We call this Client(t), labelled by ThreadId. Essentially this

164 J. Lawrence

is a CSP model of the algorithm to be followed by a thread invoking the call function
of the connection pool. There are 3 stages to the processing:

1. Obtain a connection from the pool if possible, or wait for one to become
available (if neither of these is possible then the request is rejected).

2. Use the connection obtained in stage 1 to link to the target system.
3. Release the connection to the pool and return to the caller.

As in the specification, each thread is modelled as a separate copy of identical
processes with events labelled with a ThreadId.

Client(t) = call.t -> -- caller initiates process

(reject -> return.t!full -> Client(t)

[] wait.t -> suspend.t -> dispatch.t?c -> -- suspend

 (if c != nil then Execute(t,c) -- valid

 else create?d -> Execute(t,d)) -- need new

[] allocate -> create?d -> Execute(t,d) –- need new

[] reuse?c -> Execute(t,c)) -- connection from pool

The process Execute(t,c) represents thread t once it has obtained a valid
connection c. It initiates a link to the target system via start_link using the
connection, and then waits to engage in the corresponding end_link event.

Execute(t,c) = -- thread has valid connection c to use

start_link.c.t -> end_link.c.t?r -> -- link to target

if r == ok then Release(t,c,r) -- retain connection

else close.c -> Release(t,nil,r) -- close due to error

Finally the thread must release the connection back to Control and return to its
caller. As when obtaining a connection, the thread must offer an external choice over
the Control channels used for release, and take appropriate action depending on the
channel chosen by Control. In all cases, the last event is to return the response from
the link, before reverting to the initial state to await the next call on that thread.

Release(t,c,r) =

 (repool!c -> SKIP -– c is back in pool, no more to do

[] release -> (if c==nil then SKIP –- already closed

 else close.c -> SKIP) -- must close c

[] pass?u -> resume.u!c -> SKIP); -- pass c to thread u

 return.t!r -> Client(t) -– return response to caller

Threads do not communicate except indirectly through their interactions with the
shared components, so the combined behaviour of all the client threads is simply the
interleaving of the individual threads.

Clients = ||| t : ThreadId @ Client(t)

 Practical Application of CSP and FDR to Software Design 165

Assembly
The following diagram illustrates how the complete CSP model of the implementation
is assembled from its component parts.

Starting with Clients, we add the other components one at a time, synchronizing on
the shared interface events and then hiding them at each stage. DispatchClients is
the combination of Clients with Dispatcher.

DispatchClients = (Clients

 [|DispatchInterface|]

 Dispatcher) \

 DispatchInterface

Control
(count,pool,queue)

Dispatcher

PoolSystem

C
lie

nt
s

create, close

end_link
start_link

link

return

call

dispatch
resume

suspend

allocate
close

release

C
on

ne
ct

io
ns

Next, we add the Control component. Note that because close is not in
ControlInterface, close events from Clients and from Control are
interleaved rather than synchronized and so may occur independently.

ControlClients = (DispatchClients
 [|ControlInterface|]
 Control(0,<>,<>)) \
 ControlInterface

Next, the Connections are added in a similar way. The end_link channel remains
exposed at this stage as it will become the link channel from the specification.

ConnClients = (ControlClients
 [|ConnInterface|]
 Connections) \
 {|create,close,start_link|}

Finally, all end_link events are renamed to link for compatibility with the
specification. This involves removing the ConnId labels from the events as they are
no longer relevant.

166 J. Lawrence

PoolSystem = ConnClients [[end_link.c <- link |
 c <- ConnSet]]

Verification
The required refinement relationship between the specification and design is
expressed as an FDR assertion using the most general semantic model.
assert PoolSpec [FD= PoolSystem

We are now ready to perform the verification using FDR. The structure of the system
means that any check of the above assertion implicitly subsumes the corresponding
checks for any subset of ThreadId; however it is still useful to start with one thread
and work up as this will detect errors which become apparent only when a certain
number of threads access the system concurrently, as well as ensuring that we begin
well within the capacity of the tool.

For all combinations of system parameters which have been tried and for which the
check completed, the assertion holds. Typical output from the end of a check is given
below, in this case for four threads, three available connections, a poolsize of 2 and
a queuesize of 1.

. . .
+.41,850,000 *
+.*
+.*
+.... 41,855,808
Refine checked 41,855,808 states
With 198584320 transitions
Took 7166(6791+57) seconds

The following table gives the corresponding number of states and transitions for a few
different checks, which are of interest if only to show how the size of the check
depends on the number of threads and other parameters.

#t #c
pool
size

queue
size States transitions

3 1 0 0 1,847 5,916
3 1 1 1 48,392 146,032
3 2 0 1 87,708 278,538
3 2 1 1 110,712 376,926
4 2 2 1 54,781,182 241,887,276
4 3 2 1 41,855,808 198,584,320

2.4 Implementation

This section illustrates how a CSP design such as our connection pool can be recast
into an executable procedural program, in this case in the Java language. The
translation process is manual, and involves not only a change of language, but also the
removal of abstractions present in the design and some minor enhancements not
reflected in the CSP model.

 Practical Application of CSP and FDR to Software Design 167

The Java code presented here is a simplified version of the actual implementation
from the project, intended to make the relationship to the CSP design clearer.

Dispatcher
The Dispatcher class implements the Ready process for a thread, so there will be a
separate instance of this class for each thread in the queue. The methods of this class,
suspend() and resume(), are both synchronized (in the Java sense), so that their
actions are effectively atomic as in the CSP model, as well as being necessary in order
to use the Java wait()/notify() mechanism.

constants
Three constants are defined corresponding to the possible states of the dispatcher as
follows.
private static final int ready = 1; -- Ready(c)
private static final int suspended = 2; -- Suspended
private static final int resumed = 3; -- Resumed(c)

variables
Each Dispatcher instance has two variables; state, which takes one of the three
constant values defined above, and conn, which is the Connection passed to the
thread by resume(). The initial values of the variables correspond to the process
Ready(t,nil) as in the CSP definition of the Dispatcher component.

private int state = ready;
private Connection conn = null;

suspend()
The action of suspend() depends on the state at the time it is invoked. If ready, it
is moved to the suspended state and caused to wait for the corresponding call to
resume(). If already resumed, there is no need to wait and the thread can proceed
immediately. The connection stored on resume() is returned to the caller.

synchronized Connection suspend() { // suspend.t ->
 switch (state) {
 case ready :
 state = suspended;
 try { wait(); }
 catch (InterruptedException e) {}
 break;
 case suspended :
 exception("Already suspended");
 case resumed :
 state = ready;
 break;
 } // switch()
 return conn; // -> dispatch.t!conn
} // suspend() // -> Ready(conn)

168 J. Lawrence

resume()
The resume() method stores the connection being passed to the target thread in the
instance and then modifies the state depending on its initial value in accordance with the
CSP. If a thread is already suspended, then it is notified to allow its wait() to complete.

synchronized void resume(Connection c) {
 conn = c;
 switch (state) {
 case ready :
 state = resumed;
 break;
 case suspended :
 state = ready;
 notify();
 break;
 case resumed :
 exception("Already resumed");
 } // switch()
} // resume()

Pool
The Java class Pool combines the implementations of two components of the design:
Control and Client(t). Roughly speaking, the instance variables together with
the synchronized() blocks within the allocate() and release() methods
correspond to Control; whilst call() and the remaining code from the other
methods together implement Client(t). The melding of the two CSP processes is
an implementation convenience partly due to the fact that Java allows only a single
return parameter on a method call. Note that the thread executing this code is never
identified explicitly as it is in the CSP but is always present by implication.

constants
Three constants are defined corresponding to the CSP datatype Response.
public static final int ok = 1;
public static final int error = 2;
public static final int full = 3;

variables
The instance variables of Pool have an obvious correspondence with the state
variables of the CSP Control process in the design. count is a simple integer, whilst
the two sequences pool and queue are each implemented by a Java Vector object.
The initial values of these variables correspond to the initial state of Control in the
assembled PoolSystem, i.e. Control(0,<>,<>).

private int count = 0;
private Vector pool = new Vector();
private Vector queue = new Vector();

 Practical Application of CSP and FDR to Software Design 169

allocate()
The synchronized() block in this method implements the CSP choice between the
possible connection allocation events of Control. The choice which is made is
communicated to the subsequent code (part of Client(t)) by different combinations
of local variables.

private Connection allocate() {
 Dispatcher thread = null;
 Connection conn = null; // allocate
 boolean queue = false;
 synchronized (this) {
 if (count >= maxconn) {
 if (queue.size() < queuesize) {
 thread = new Dispatcher();
 queue.add(thread);
 queue = true; // wait
 }
 else return null; // reject
 }
 else {
 if (!pool.isEmpty()) // reuse
 conn = pool.remove(pool.size()-1);
 count++;
 }
 } // synchronized()
 if (queue) conn = thread.suspend();
 if (conn == null) conn = create();
 return conn;
} // allocate()

release()
As with allocate(), the synchronized() block here implements the CSP choice between
the possible connection release events of Control. The choice is communicated to the
subsequent code by different combinations of the local variables waiter and conn,
which then behaves according to the corresponding path of the Client(t) CSP process.

private void release(Connection conn) {
 Dispatcher waiter = null;
 synchronized (this) {
 if (queue.isEmpty()) {
 count--;
 if (conn != null) pool.add(conn); // repool
 if (pool.size() > poolsize)
 conn = pool.remove(0); // release
 else conn = null;
 }

170 J. Lawrence

 else waiter = queue.remove(0); // pass
 } // synchronized()
 if (waiter != null) waiter.resume(conn);
 else if (conn != null) conn.close();
} // release()

call()
This is the only public method of Pool, and implements those sections of the
Client(t) process not included within the allocate() or release() methods,
including the top-level call and return events. Note the introduction here of data
to be exchanged with the target system on link(). The omission of this data from
the CSP model is one of the abstractions employed in the design.

public int call(byte[] data) {
 Connection conn = allocate();
 if (conn==null) return full; // return.t!full -> …
 else { // Execute(t,conn)
 boolean success = conn.link(data); // ok | error
 if (!success) { // r != ok
 conn.close; // close.conn ->
 conn = null; // Release(t,nil,r)
 }
 release(conn); // Release(t,conn,r)
 if (success) return ok; // return.t!r -> Client(t)
 else return error;
 } // else()
} // call()

3 Summary

The original design and implementation of the connection pooling component
described in this paper was completed in three days, from the preliminary CSP
specification to initial testing of the Java code, including verification of the design
using FDR. This time was split approximately equally between developing and
verifying the CSP design, and recasting it as executable Java. Following delivery of
the system containing the connection pooling mechanism to the client shortly
thereafter, no errors have been detected in the implementation in spite of thorough
testing and heavy usage of the system by the client.

The implementation was subsequently enhanced with some functions not included
in the CSP model, notably the ability to cause threads which have been queueing for
more than a certain interval to time out. These modifications were not added to the
CSP model (although it would have been perfectly feasible to do so), because it was
thought that the effort involved would not be justified by the likely benefit in

 Practical Application of CSP and FDR to Software Design 171

verifying the enhancements. Rather it was considered that the clear structure and
design intent engendered by the original use of CSP meant that the necessary
modifications could be made without risk to the integrity of the core design; and this
appears to have been borne out in practice.

Other Techniques
The example in this paper has illustrated some techniques for modelling procedural,
and in particular multi-threaded, designs in CSP such that they may be checked by the
FDR tool. For example:

 Abstraction.
 Specification; and validation of specification properties.
 Modelling multiple threads including non-interleaving properties.
 Design – decomposition into data / synchronization / processing elements.
 Resource allocation and deallocation.
 Specifying and checking state invariants of processes.
 Design verification with FDR refinement assertions.
 Implementation by translation of CSP to procedural code.

A single example, however, can only exemplify a small cross-section of the
techniques which might need to be applied to model and verify a wider range of
problems. In particular the example used in the paper is sufficiently simple that one
stage of refinement is sufficient to reach an (almost) directly implementable level of
design. This is by no means always the case and several techniques may need to be
applied to deal with larger problems. Some of these are summarized below.

 Stepwise refinement. A crucial property of CSP semantics is that all CSP
operators are monotonic with respect to refinement. This allows an abstract or
not directly implementable process to appear at one level of a design, and for it
to be refined and checked separately. An unmanageably large design may
thereby be broken down into several more manageable design steps, each
independently verifiable by FDR.

 Interface wrapping. Often, where stepwise refinement is used, the intermediate
abstract component may not be directly refineable because its interface refers
directly to events which will not exist or will not be exposed in the design. In
such cases an additional call-return interface layer may be inserted to
encapsulate the component and the wrapped version then refined. The validity
of the introduction of this additional interface layer may itself be checked, often
at a single thread level.

 Interface protocols and rely-guarantee contracts. A ‘correct’ design may not be
a true CSP refinement of the specification because of some reliance on the way
the system will be used. It is usually possible to deal with such cases by
formalizing the permissible usage scenarios as a CSP process and including this
in parallel with the specification to be refined.

 Avoidance of unbounded state. The FDR tool is not able to check systems with
unbounded or even very large state spaces and there are several ways of
reducing or avoiding such problems; for example:

172 J. Lawrence

o Factor out unbounded state components from the system.
o Use modulo arithmetic to reduce state space of numeric types.
o Place bounds on counts by introducing artificial deadlock or divergence

in a specification.
 Data independence. This idea has already been mentioned elsewhere and

involves replacing a large datatype with a much smaller one for the purpose of
the model.

Even for the example in the paper, the step from the CSP Control component of the
design to the implementation of the allocate() and release() methods of the
Java Pool class is not entirely obvious, and an additional stage employing interface
wrapping and stepwise refinement might have been added.

A couple of other techniques which can be useful for certain special classes of
problem are:

 Discrete time modelling. FDR does not include support for the semantics of
Timed CSP, however some timing aspects can be modelled and checked by
FDR using a technique of ‘untimed time’, in which the ‘tocks’ of a clock are
represented as CSP events in the untimed language.

 Fairness modelling. CSP does not have any built-in notion of fairness, in other
words there is nothing in the language to prevent infinite overtaking from
occurring. However, it is perfectly feasible to construct an explicit
representation of a concept of fairness for any given system. The form of this
representation is typically system dependent but can be similar to the way that
lossy channels are sometimes represented in communication protocols.

4 Conclusion

This paper has presented one example of the application of an approach to software
development involving the CSP notation for modelling combined with the use of the
FDR model-checking tool for validation and verification of the specification and
design respectively.

Benefits
Apart from the obvious benefit of the capability for automated verification of designs
from their specifications, the use of CSP in software engineering has other advantages.

 Discipline for structuring designs. The use of CSP naturally encourages the
decomposition of a design into clearly defined logical units, resulting in a more
understandable and maintainable implementation structure.

 Elegance and efficiency. In the author’s opinion, the use of CSP tends to result
in designs which are more elegant and economical, both in terms of the amount
of code required and its runtime efficiency.

 Design documentation. In common with other design methodologies, the CSP
approach inevitably results in the production of design documentation at a
higher level of abstraction than the eventual code. Where connection diagrams

 Practical Application of CSP and FDR to Software Design 173

are used, the diagrams record the overall structure, whereas the details of the
behaviour of individual components are in the CSP.

 Hierarchical decomposition. In larger systems, a natural consequence of
stepwise refinement is that the design is split up into manageable chunks which
can be understood and implemented largely independently of each other.

Limitations
Probably the main limitation of the approach discussed in the paper is the restriction
on the size of system which can be checked by the tool. For example, the example in
this paper can be checked with up to four threads and any given combination of the
other parameters in the space of a few hours on a modern workstation. However, the
state space which needs to be explored increases approximately exponentially with
the number of threads and when an additional thread is defined the check can only be
completed for a small subset of combinations of the other parameters.

Consequently, verification of such a design by FDR for certain specific cases can
provide a considerable level of confidence in the correctness of a design, but cannot
prove it to be correct as the system is scaled up. An exception is where data-
independence is exploited, as this is known to scale up without affecting the validity
of checks performed with small datatypes. For certain very restricted classes of
problem the scalability limitation can be overcome by an inductive technique but this
is not applicable to designs such as that presented in this paper.

Other Examples
Some other recent examples of the use of the combined CSP and FDR approach from
the author’s consultancy work include:

 A design for a concurrent twin-buffering logger.
 A transport protocol for transmitting ‘unbounded’ data in finite segments.
 A design for the Web-enablement of a CICS 3270 application.
 A mechanism to ensure once-only initialization under race conditions.
 A model of a bimodal locking algorithm for Java objects.

These have mostly been of a similar size and complexity to the example in this paper
and the results, in terms of the benefit from the application of the approach have also
been comparable. A few other examples where adapted connection diagrams only
have been applied to formulate and document a design are:

 A CICS TCP/IP socket listener-server.
 A framework to demonstrate tightly-coupled transactional interoperation

between independent Java and C applications.
 Control flow in an XML reformatting tool.

In these and other cases not mentioned, the diagrams have proved beneficial in
imposing a discipline of decomposing a system into logically organized components,
defining the possible interactions between them, and subsequently providing a record
of the design to aid in the construction of the system.

It is also worth mentioning that the part-time MSc in software engineering run by
Oxford University Computing Laboratory has proved extremely popular with Hursley
employees, several of whom have chosen to undertake projects using CSP and FDR

174 J. Lawrence

for the dissertation element of their studies. These projects are normally based on an
aspect of the student’s work responsibilities.

Future Outlook
The software engineering community would undoubtedly benefit from a wider
knowledge and application of CSP and CSP-based model-checking tools, such as
FDR, even in areas where safety and reliability are not overriding priorities.
Developments which might help to facilitate this would be:

1. Free availability of FDR, preferably as an open-source project.
2. Availability of a practical manual on the use of CSP and associated tools

for software modelling, design and verification.
3. Inclusion of CSP connection diagrams in UML, perhaps with some

extensions such as those employed in this paper.

CSP is an extremely powerful language for specification and modelling the design of
software, especially system components in which communication or concurrency are
central issues. Used in conjunction with a model-checking tool such as FDR, the
notation provides unparalleled capability for the automated checking of designs which
would otherwise be extremely difficult to verify.

Bibliography

 Communicating Sequential Processes, C.A.R. Hoare, Prentice-Hall
International, 1985.

 The Theory and Practice of Concurrency, A.W. Roscoe, Prentice Hall, 1998.
 Failures-Divergences Refinement, FDR2 User Manual, Formal Systems

(Europe) Ltd., 1998. (www.fsel.com).

Trademarks

 The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both: IBM, CICS.

 Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Communicating Mobile Processes
Introducing occam-pi

Peter H. Welch and Frederick R.M. Barnes

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England

{P.H.Welch, F.R.M.Barnes}@kent.ac.uk

Abstract. This paper introduces occam-π, an efficient and safe binding
of key elements from Hoare’s CSP and Milner’s π-calculus into a pro-
gramming language of industrial strength. A brief overview of classical
occam is presented, before focussing on the extensions providing data,
channel and process mobility. Some implementation details are given,
along with current benchmark results. Application techniques exploiting
mobile processes for the direct modelling of large-scale natural systems
are outlined, including the modelling of locality (so that free-ranging pro-
cesses can locate each other). Run-time overheads are sufficiently low so
that systems comprising millions of dynamically assembling and commu-
nicating processes are practical on modest processor resources. The ideas
and technology will scale further to address larger systems of arbitrary
complexity, distributed over multiple processors with no semantic discon-
tinuity. Semantic design, comprehension and analysis are made possible
through a natural structuring of systems into multiple levels of network
and the compositionality of the underlying algebra.

1 Introduction

1.1 Mobile Processes in occam-π

A process, embedded anywhere in a dynamically evolving network, may suspend
itself mid-execution, be safely disconnected from its local environment, moved
(by communication along a channel), reconnected to a new environment and
reactivated. Upon reactivation, the process resumes execution from the same
state (i.e. data values and code positions) it held when it suspended. Its view
of its environment is unchanged, since that is abstracted by its synchronisation
(e.g. channel and barrier) interface and that remains constant. The actual envi-
ronment bound to that interface will usually be different at each activation. The
mobile process itself may contain any number of levels of dynamically evolving
sub-network.

1.2 Structure of this Paper

The rest of this section describes the background to this work, along with some
of the forces motivating it. Section 2 provides an overview of process and net-
work construction in the occam-π language, with specific details on mobile data,

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, pp. 175–210, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

176 P.H. Welch and F.R.M. Barnes

mobile channels and dynamic process creation. The main work presented in this
paper concerns mobile processes, covered in section 3. Performance benchmarks
and figures for the various occam-π mechanisms are given in section 4. A notion
of duality between mobile channel and mobile process mechanisms, arising from
two of the benchmarks, is considered in section 4.6. Some application areas are
explored in section 5. Finally, section 6 draws some conclusions and discusses
the scope for future work.

1.3 Background

Twenty years ago, improved understanding and architecture independence were
the goals of the design by Inmos of the occam [1, 2] multiprocessing language
and the Transputer. The goals were achieved by implementation of the abstract
ideas of process algebra (primarily CSP) and with an efficiency that is today
almost unimaginable and certainly unmatchable.

We have been extending the classical occam language with ideas of mobility
and dynamic network reconfiguration [3, 4, 5, 6, 7] which are taken from the π-
calculus [8]. We have found ways of implementing these extensions that involve
significantly less resource overhead than that imposed by the rather less struc-
tured concurrency primitives of existing languages (such as Java) or libraries
(such as Posix threads). As a result, we can run applications with the order of
millions of processes on modestly powered PCs. We have plans to extend the sys-
tem, without sacrifice of too much efficiency and none of logic, to simple clusters
of workstations, wider networks such as the Grid and small embedded devices.

We are calling this new language, for the time being at least, occam-π. Clas-
sical occam built CSP primitives and operators into the language as first-class
entities with a semantics that directly reflected those of CSP. occam-π extends
this by judicious inclusion of the mobility features of the π-calculus. In the in-
terests of provability, we have been careful to preserve the distinction between
the original static point-to-point synchronised communication of occam and the
dynamic asynchronous multiplexed communication of the π-calculus; in this, we
have been prepared to sacrifice the elegant sparsity of the π-calculus. We con-
jecture that the extra complexity and discipline introduced will make the task
of developing and proving concurrent and distributed programs easier.

A further, minor, difference between occam-π and the underlying process al-
gebra is its focussing on channel-ends in some places, rather than channels; this
is to constrain the direction of data-flow over any particular channel to one-way
only. More significant differences are apparent because of the direct language sup-
port for state information and transformation (such as variables, block structure
and assignment). These are orthogonal to concurrency considerations — thanks
largely to the strict control of aliasing inherited from the classical occam— and
greatly simplify its application to industrial scale problems.

We view occam-π as an experiment in language design and implementation. It
is sufficiently small to allow modification and extension, whilst being sufficiently
powerful to build significant applications. The abstractions and semantics cap-
tured are not settled and may change in the light of future experience and theory

Communicating Mobile Processes 177

(for example, into its formal semantics). However, it is sufficiently stable and ef-
ficient to invite others to play. The semantics will be denotational, retaining
properties of compositionality derived from CSP and a calculus of refinement.
This mathematics is built into the language design, its compiler, run-time system
and tools, so that users benefit automatically from that foundation — without
themselves needing to be experts in the theory. The new dynamics broadens its
area of direct application to a wide field of industrial, commercial and scientific
practice. The key safety properties of classical occam are retained by occam-π,
giving strong guarantees against a range of common programming errors (such
as aliasing accidents and race hazards). The language also provides high visibility
of other classic problems of concurrency (such as deadlock, livelock and process
starvation) and is supported by a range of formally verified design guidelines for
combating them. Its close relationship with the process algebra allows, of course,
these problems to be eliminated formally before implementation coding.

1.4 Natural Process Metaphors for Computing

The natural world exhibits concurrency at all levels of scale — from atomic,
through human, to astronomic. This concurrency is endemic: a central point of
control never remains stable for long, ultimately working against the logic and
efficiency of whatever is supposed to be under that control. Natural systems are
very resilient, efficient, long-lived and evolving.

Natural mechanisms should map on to simple engineering principles that
offer high benefits with low costs, but the mapping has first to be accurate.
In this case, the underlying mechanisms seem to be processes, communication
and networks — precisely those addressed by our process algebra. Our belief,
therefore, is that the basis for a good mapping exists, so that concurrency can
and should be viewed as a core design mechanism for computer systems — not
as something that is advanced and difficult, and only to be used as a last resort
to boost performance. Concurrency should simplify the design, construction,
commissioning and maintenance of systems.

This is not the current state of practice. Standard concurrency technologies
are based on multiple threads of execution plus various kinds of locks to control
the sharing of resources. Too little locking and systems mysteriously corrupt
themselves — too much and they deadlock. Received wisdom from decades of
practice is that concurrency is very hard, that we are faced with a barrage of
new hazards, that our intuition derived from experience in serial computing is
not valid in this context and that our solutions will be fragile. We are advised
to steer well clear if at all possible [9].

On top of these logical problems, there are also problems for performance.
Standard thread management imposes significant overheads in the form of ad-
ditional memory demands (to maintain thread state) and run time (to allocate
and garbage-collect thread state, switch processor context between states, re-
cover from cache misses resulting from switched contexts and execute the pro-
tocols necessary for the correct and safe operation of locks). Even when using
‘lightweight’ threads, applications need to limit implementations to only a few

178 P.H. Welch and F.R.M. Barnes

hundred threads per processor — beyond which performance catastrophically col-
lapses (usually because of memory thrashing).

Threads are an engineering artifact derived from our successes in serial com-
puting. Threads do not correspond well with nature. They support only a tran-
sient concept of ownership (as they lock resources for temporary use), an indirect
form of communication (through their side-effects on shared data) and no notion
of structure (to reflect natural layering of process networks).

Processes, however, have strong ownership of their internal resources (other
processes cannot see or change them), communication (synchronous or asyn-
chronous) as fundamental primitives and structure (a network of processes is
itself a process, available for use as a component of a higher-level network).

We do claim performance wins from this process-oriented model of comput-
ing, but they are not the primary concern. The primary concern is a model of
concurrency that is mathematically clean, yields no engineering surprises and
scales well with complexity. We must be careful not to damage any of this as we
extend the classical occam/CSP model with the dynamics of mobility from the
π-calculus (and learn to exploit a few more tricks from nature).

2 An Overview of occam-π

The occam-π language is an extension of classical occam, incorporating: mobile
data, channels and processes; dynamic process creation; recursion; extended ren-
dezvous; process priority; protocol inheritance; and numerous other less language-
centric enhancements. For instance, a (generally) faster ALT implementation, a
fix to a long-standing bug with tagged-protocol communication, and greatly en-
hanced support for interacting with the system environment outside of occam-π.
A more concise list of new features can be found on the KRoC web-page [3].

An example of an ‘integrator’ component is used throughout this and the
following section. This particular component is a well-used teaching example,
due to its simplicity and range of implementations. The basic interface to the
process is two channels, one input and one output. Given the input sequence
x , y , z , the integrator will output running sums: x , (x +y), (x +y + z) and so on.

2.1 Defining Processes

Figure 1 shows the design and implementation of a serial integrator. The code
is largely classical occam, with the exceptions of the removal of the ‘OF’ keyword
in channel declarations, the introduction of channel direction specifiers (‘?’, ‘!’)
on channel variables, and the use of an ‘INITIAL’ declaration [10, 11] (with the
obvious behaviour).

Channel direction specifiers declare channels as either being for input or
output, as shown by the arrows in the diagrams. In fact, the classical occam
compiler always deduced this information. This extension just makes that in-
formation explicit, bringing design and representation closer and enabling more
accurate compiler error messages if the programmer contradicts herself.

Communicating Mobile Processes 179

integrate
in? out!

PROC integrate (CHAN INT in?, out!)
INITIAL INT total IS 0:
WHILE TRUE
INT x:
SEQ
in ? x
total := total + x
out ! total

:

Fig. 1. Serial integrate design and implementation

Note that this process never terminates — evident from its ‘WHILE’ loop
condition. Neither occam nor occam-π provide mechanisms for forcefully, and
externally, terminating a process — this is dangerous. If we wish the process to
be ‘killable’, that behaviour must be engineered into it. Adding such support to
this serial integrator is trivial, as shown in figure 2.

out!
integrate.kill

in?

kill?

PROC integrate.kill (CHAN INT in?, out!,
CHAN INT kill?)

INITIAL INT total IS 0:
INITIAL BOOL ok IS TRUE:
WHILE ok
INT x:
PRI ALT
kill ? x
ok := FALSE

in ? x
SEQ
total := total + x
out ! total

:

Fig. 2. A killable serial integrator

The process alternates between its two input channels, giving priority to the
‘kill?’ channel. Ordinary input data values are added to the running total and
output as before. A communication on the ‘kill?’ channel causes the process
to stop looping and terminate normally.

It should be noted that certain behaviours by the environment can cause
deadlock with these processes. It would help to declare a “contract” [12] that
formally specifies how a process is prepared to interact with its environment. For
integrate.kill, the contract might specify that each communication on ‘in?’
will only be followed by a communication on ‘out!’, before any other commu-
nication (either on ‘in?’ or ‘kill?’) is accepted. Further, that a communication
on the ‘kill?’ channel will only be followed by termination. Such a contract

180 P.H. Welch and F.R.M. Barnes

guides both the implementation of the process and its safe positioning in an
environment. This becomes even more of an issue for mobile processes, whose
position with respect to its environment may change! Contracts are discussed
further in section 3.5.

2.2 Process Networks

Static process networks in occam-π are no different from occam. Figure 3 shows
a parallel version of the integrator process. It is a network of stateless compo-
nents: an adder (that waits, in parallel, for a number on each input channel and
then outputs their sum), a stream splitter (that outputs each input number, in
parallel, on each output channel) and a prefixer (that initially generates a zero
and, then copies input to output). State (the running-sum) emerges from the
feedback loop in the network.

0

integrate

out!in?

c

a

b

+
PROC integrate (CHAN INT in?, out!)
CHAN INT a, b, c:
PAR
plus (in?, c?, a!)
delta (a?, out!, b!)
prefix (0, b?, c!)

:

Fig. 3. Parallel integrator design and implementation

Figure 3 implements a slightly relaxed version of the contract honoured by
the process in figure 1. Internal buffering allows two ‘in?’ events to occur before
there must be an ‘out!’. Formally, figure 1 is a refinement of figure 3.

A killable parallel version requires some careful engineering to avoid internal
deadlock. The “graceful termination” protocol described in [13] can be used to
this effect. Figure 4 shows the modified process network.

0

+
out!

integrate.kill

in? a b

c
d

kill?

PROC integrate.kill (CHAN INT in?,
CHAN INT out!, kill?)

CHAN TAGGED.INT a, b, c, d:
PAR
kill (in?, kill?, a!)
plus (a?, d?, b!)
delta (b?, out!, c!)
prefix (0, c?, d!)

:

Fig. 4. A killable parallel integrator

Communicating Mobile Processes 181

In order for the ‘integrate.kill’ process to terminate, all its parallel sub-
components must terminate. This requires some changes to those components.
The internal channels now carry a ‘TAGGED.INT’ protocol consisting of a boolean
and an integer, where the boolean indicates whether the integer data is ‘good’ or
this is a ‘kill’ signal. The implementation of each component must forward a ‘kill’
and then terminate. Care must be taken to do this in the right order or deadlock
(not termination) will result! Further discussion of this protocol is postponed to
section 3.4, where it is considered in the context of (mobile) process suspension
(which is a little more delicate than termination, since network state must also
be preserved).

2.3 Mobile Data

occam-π adds the concept of mobility to classical occam, incorporating mobile
data, mobile channels and mobile processes. Mobile processes are discussed in
section 3.

Communication and assignment in classical occam have a copying semantics.
That is, the ‘source’ in output or assignment remains safely usable after the
operation — the ‘target’ has received a copy. Clearly this precludes the creation
of aliases, but has implications for performance if the data size is large (on
shared-memory systems).

Mobile data types on the other hand have a movement semantics. That is,
the ‘source’ in output or assignment is not available after the operation — it
has moved to the target. This also precludes the creation of aliases. On shared-
memory systems, this is a constant-time operation (effectively a pointer copy).
If the communication is between memory spaces, copying has to happen — but
the semantics remain that of movement (i.e. the ‘source’ always loses the data).

Mobile data types are declared simply by adding the ‘MOBILE’ keyword. For
example:

DATA TYPE FOO
RECORD
... data fields

:

declares a classical occam data type; whereas:

DATA TYPE FOO
MOBILE RECORD
... data fields

:

declares the mobile version. No changes are required to process codes operating
on the type, but the semantics of communication and assignment on its variables
become those of movement.

Figure 5 illustrates the difference between copying and movement semantics.
Picture (a) shows the state of the system just before its communication — with
the ‘x’ variable in process ‘A’ initialised and the ‘y’ variable in ‘B’ undefined.

182 P.H. Welch and F.R.M. Barnes

If ‘FOO’ were a classical (non-mobile) type, picture (b) shows system state just
after communication — where ‘x’ still has its data and ‘y’ has a copy. If ‘FOO’
were a mobile type, picture (c) shows a different state following communication
— where the data has moved to ‘y’ and ‘x’ has no data (i.e. is undefined).

x

A

y

B

x

A

y

B

y

B

c

c

cx

A

(a)

(b)

(c)

PROC A (CHAN FOO out!)
FOO x:
SEQ
... initialise ‘x’
out ! x
... continue

:

PROC B (CHAN FOO in?)
FOO y:
SEQ
in ? y
... use ‘y’

:

CHAN FOO c:
PAR
A (c!)
B (c?)

Fig. 5. Copying and movement semantics

The movement semantics leaves the ‘x’ variable undefined after the output —
picture (c). Any subsequent attempt by process ‘A’ to use the value of ‘x’, before
‘x’ is reset, will result in a compile-time ‘undefined’ error. This undefinedness-
check is an addition to the occam-π compiler, that now (pessimistically) tracks
the defined status for all variables and channels — not just the mobile ones.
There is also a ‘DEFINED’ prefix operator, applicable to any mobile variable,
that may be used to resolve ambiguity in the defined status at run-time. It is
impossible to write code that causes a null-pointer to be followed.

A copying semantics can be enforced on mobile data by use of the ‘CLONE’
operator. This creates a temporary mobile containing a copy of the data and it
is this copy that is moved. For example:

PROC A.copy (CHAN FOO out!)
FOO x:
SEQ
... initialise ‘x’
out ! CLONE x
... ‘x’ still defined

:

Communicating Mobile Processes 183

Dynamic Mobile Arrays. The mobile data described above has fixed-size
memory requirements, allowing the compiler to pre-allocate space statically —
despite their dynamic semantics.

occam-π has run-time sized arrays, whose allocation and deallocation must be
performed dynamically. Such arrays are always mobile. Non-mobile dynamic ar-
rays are currently not permitted — they are not strictly necessary, since ‘CLONE’
can be used to enforce copying semantics where necessary.

Dynamic mobile arrays are declared in a similar way to fixed-size mobile
arrays. For example:

MOBILE []REAL64 data:
SEQ
... process using ‘data’

Unlike a fixed-size array, this ‘data’ initially has no elements. Any attempt
to assign one of its elements would result in a run-time (array-bound) error.
Before the elements can be accessed, the array must be sized and allocated. This
is done using a special form of assignment:

data := MOBILE [n]REAL64

where ‘n’ is an integer expression, computable at run-time. Once allocated, the
elements may be accessed, but they must be written (defined) before they can be
read. The current occam-π compiler does not fully track this nested ‘definedness’
state, treating all elements as a single block — they are either all defined or all
undefined.

The semantics for assignment and communication of these dynamic mo-
biles arrays are the same as for the static sized mobiles. Note that, because
of the single-reference rule maintained by the semantics of mobility, no garbage-
collection is needed to manage these dynamic types. The compiler always knows
when that single reference is lost and automatically generates deallocation code.

The memory-allocation mechanism for these dynamic mobile arrays is based
on Brinch-Hansen’s allocator for parallel recursion [14], which is also used to
provide memory for the other occam-π dynamic mechanisms that require it.

2.4 Mobile Channel Types

Mobile channels types in occam-π provide a mechanism for moving channel-ends
— either by assignment or communication. This behaviour is not described in
standard CSP, where processes (or parallel operators) are bound to fixed event
alphabets. Moving channel-ends around means those alphabets are changing
as the system evolves. The π-calculus [8] however is centered on this concept
of channel mobility, allowing only channels to be communicated over channels
in its purest form. We have an operational semantics for mobile channel-end
communication, but do not yet have a denotational semantics.1

1 It is important for this to be addressed in the future — see section 6.

184 P.H. Welch and F.R.M. Barnes

The mobile channels of occam-π are defined by means of a structured channel-
type (an idea partly taken from occam3 [10]). These define a group of one or more
channels, accessed individually using a record subscript syntax. For example:

CHAN TYPE IO.KILL
MOBILE RECORD
CHAN INT in?:
CHAN INT out!:
CHAN INT kill?:

:

Variables of the channel-type hold its ends and must indicate which end
explicitly. The terms ‘server’ and ‘client’ are used informally to refer to the two
ends, with ‘?’ and ‘!’ as respective formal symbols. The server-end uses the
component channels in the directions indicated by the channel-type declaration;
the client-end uses them in the opposite directions. The usage pattern need not
be ‘client-server’, however. For the above example, the channel-end types are
written ‘IO.KILL?’ and ‘IO.KILL!’, for ‘server’ and ‘client’ ends respectively.

Mobile channels are created dynamically, by means of an assignment similar
to that for mobile data, but where the right-hand side of the assignment produces
the two ends of newly created channel ‘bundle’. For example:

IO.KILL? io.svr:
IO.KILL! io.cli:
SEQ
io.svr, io.cli := MOBILE IO.KILL
... continue

Once allocated, the channel-ends ‘io.svr’ and ‘io.cli’ may be used for com-
munication or be themselves communicated (or assigned) to other processes (or
variables). The semantics of the latter operations are the same as those for mobile
data — the channel-end moves and the source variable becomes undefined.

Figure 6 shows a simple network consisting of three processes ‘P’, ‘Q’ and ‘R’,
that communicate an ‘IO.KILL’ client channel-end (which is, of course, a bundle
of three scaler channel-ends). The server-end of the mobile channel-bundle is
marked with an arrow pointing from the client-end — even though communica-
tion over the bundle will probably be in both directions.

Initially, processes ‘P’ and ‘R’ have no direct means of communication. ‘P’
creates a channel-bundle and passes its client-end, via ‘Q’, to ‘R’. ‘P’ and ‘R’ may
now communicate directly over the channel bundle, observing some agreed usage
pattern. For example:

INT x:
SEQ
svr[in] ? x
svr[out] ! f(x)

INT v:
SEQ
cli[in] ! 42
cli[out] ? v

where the code on the left is in process ‘P’ and the right is in ‘R’.

Communicating Mobile Processes 185

Pcli svr

Pcli svr

Qcli

cli R

Qcli

cli R

PROC P (CHAN IO.KILL! out!)
IO.KILL! cli:
IO.KILL? svr:
SEQ
cli, svr := MOBILE IO.KILL
out ! cli
... use ‘svr’ (‘cli’ undefined)

:

PROC Q (CHAN IO.KILL! in?, out!)
WHILE TRUE
IO.KILL! cli:
SEQ
in ? cli
out ! cli

:

PROC R (CHAN IO.KILL! in?)
IO.KILL! cli:
SEQ
in ? cli
... use ‘cli’

:

Fig. 6. Mobile channel-end communication

Currently, there are no restrictions on the communication of mobile channel-
ends, enabling process networks to re-wire themselves arbitrarily. Some discipline
will need to be enforced to render deadlock analysis, for example, manageable.

They also break another principle of occam that we hold dear, which is that
that there should be no hidden ties between processes — all the plumbing should
be visible (WYSIWYG) or their reusability as system components is compro-
mised. We have plans to restore this principle through the explicit declaration
of (typed) ‘HOLE’s in process interfaces, through which dynamically acquired
channel-ends must be wired before they can be used for communication [15].
This will assist the behavioural specification of processes using mobile channels
and maintain the compositionality of their semantics.

2.5 Shared Mobile Channel Types

In addition to the point-to-point mobile channels described above, occam-π sup-
ports ‘shared’ channel-ends. These allow channel-ends (server or client) to be
connected to any number of processes, although only one may be conducting
business over it at a time.

A shared channel-end is communicated and assigned in the same way as a
non-shared one, except that output and assignment automatically ‘CLONE’ that
end — leaving it defined locally. Before a process may use any of the compo-
nent channels within a shared end, it must ‘CLAIM’ exclusive access. Whilst so

186 P.H. Welch and F.R.M. Barnes

‘CLAIM’ed, the channel-end loses its mobility, preventing its communication or
assignment.

Figure 7 shows a network of client and server processes connected using a
shared channel-bundle.

server

client client client

PROC client (SHARED IO.KILL! cli)
... local state
WHILE TRUE
INT v:
SEQ
CLAIM cli
SEQ
cli[in] ! 42
cli[out] ? v

... update local state
:

PROC server (IO.KILL? svr)
... local state
WHILE TRUE
INT x:
SEQ
svr[in] ? x
svr[out] ! f(x)
... update local state

:

Fig. 7. Shared mobile channel bundles

The code to create this network is:

SHARED IO.KILL! cli:
IO.KILL? svr:
SEQ
cli, svr := MOBILE IO.KILL
PAR
server (svr)
PAR i = 0 FOR n.clients
client (cli)

In this example the mobile channel-ends are “hard-wired” into the processes
as they are created, but they could be communicated dynamically, if desired. An
earlier paper describing mobile channels [4] shows this in detail.

Simple request-answer patterns of use across a channel-bundle correspond to
simple CSP interleaving of the clients with respect to the shared channel-end.
Richer patterns require semaphore processes to manage the locking. Locking of
a resource, of course, opens new opportunities for deadlock. To reduce this risk,
the occam-π compiler disallows any ‘CLAIM’ inside the ‘CLAIM’ of a client-end,
but allows ‘CLAIM’s inside the ‘CLAIM’ of a server-end. This prevents the deadlock
of “partially acquired resource”, if multiple clients try to acquire the same set
of channel-ends.

Communicating Mobile Processes 187

2.6 Dynamic Process Creation

Shared channel-ends are useful in their own right, but particularly so when
combined with dynamic process creation.

In classical occam, networks are statically organised, with all potential con-
figurations of all processes known in advance. occam-π enables dynamic net-
work creation, in response to run-time decisions. Four mechanisms are provided
for this: mobile processes (covered in section 3); (self-)recursive processes; run-
time specified replicated ‘PAR’ counts (as in the network code from the previous
section); and the run-time “forking” of a parallel process. The last of these is
examined here.

Forking a process is expressed in a similar way to an ordinary procedure call,
but with an additional ‘FORK’ keyword. Classical occam (and occam-π) use a
renaming semantics for normal parameter-passing. Forked processes use a com-
munication semantics for their parameters, since the forked process may out-live
its given arguments — and that would break renaming. The use of communi-
cation semantics places restrictions on the parameter types that may be used:
specifically, the parameters must be communicable — e.g. no reference param-
eters. Mobile parameters (data, channel-ends and processes) are allowed, since
they have a well-defined communication semantics.

A common use of dynamic process creation is for setting up process ‘farms’[4].
The network creation code for figure 7, for example, could also be written as:

SHARED IO.KILL! cli:
IO.KILL? svr:
SEQ
cli, svr := MOBILE IO.KILL
FORK server (svr)
SEQ i = 0 FOR n.clients
FORK client (cli)

... do other things

The “other things”, in the above code, may include waiting for events that
trigger the forking of more clients — or, maybe, shutting some down. The code
uses just forking to create its parallel process network. The parallelism is derived
from the semantic model of the ‘FORK’, described in [16]. This involves an external
parallel process that receives, from the forking process, arguments for the forked
one and constructs an instance of the requested process, with those arguments,
in parallel with a recursive instance of itself. Forking offers no semantic power
over that available from parallel recursion, but for many applications it is more
convenient to program and has important implementation benefits (such as no
memory leakage and faster setup).

3 Mobile Processes

The main subject of this paper, mobile processes, combines aspects of both
mobility and dynamic process creation. The model for mobile processes, used by
occam-π, is summarised at the start of this paper (section 1.1).

188 P.H. Welch and F.R.M. Barnes

Note that mobile processes, encapsulating data and code, exist in one of two
meta-states: active and passive — see figure 8. The internal (computational)
state of a mobile process is only relevant when the process is active and inter-
acting with the rest of the system. Initially, a mobile process is passive. In its
passive state, a mobile process may be activated or moved. Once active, a mobile
process only becomes passive either by suspending or terminating — these are
voluntary internal events, not imposed (though may be requested) by its envi-
ronment. The internal computational state (of data values and code positions)
is retained between suspension and reactivation, and moves with the process.
When reactivated, a mobile process sees exactly the same computational state
that it did when it suspended. Once terminated, the mobile process may not be
reactivated. Any attempt to do so behaves as Stop.

destroy

create

move

suspend

activate

terminate

activepassive

Fig. 8. Mobile process meta-state transitions

3.1 Process Types

The interface to a mobile process is defined through process types. For example,
the integrator.kill processes (sections 2.1 and 2.2) match the type:

PROC TYPE IO.SUSPEND IS (CHAN INT in?, out!, suspend?):

where we have renamed the ‘kill’ property to ‘suspend’ for this context.
Activation arguments must conform to the parameter template defined by

the mobile’s process type — the activator process does not usually know, or
care about, the actual process lying beneath that type. The activator sleeps
while its activated process runs. The environment of the activator becomes the
environment of the active mobile, interfaced through, and only through, the
arguments supplied to the mobile.

Process types serve two purposes: the definition of the connection interface
to a mobile process (section 3.2) and the declaration of mobile process variables
(section 3.3).

Note that the process type is not itself explicitly mobile. This allows process
types to be used for non-mobile mechanisms in the future (such as making clas-
sical, as well as mobile, processes first-class types so they may be passed through
parameter lists — similar to ‘function pointers’ in C).

Communicating Mobile Processes 189

3.2 Defining Mobile Processes

Mobile processes are defined in a similar way to ordinary occam-π procedures,
except that they must be explicitly declared ‘MOBILE’ and must indicate which
process-type is implemented.

Different mobile processes may implement the same process-type, assuming
that the code conforms to any contract (section 3.5) that may, in future, be
specified for the process type. For this example, a contract may be that an ‘in?’
event triggers an ‘out!’, and that a ‘suspend?’ signal triggers suspension of the
mobile. However, suspension must not occur until the number of ‘in?’ and ‘out!’
events are equal.

Figure 9 shows the design and implementation of a ‘suspendable’ serial inte-
grator that honours such a contract. To suspend itself, a mobile process invokes
the new ‘SUSPEND’ primitive process. This suspends the mobile process and re-
turns control to the activator. When next activated, the ‘SUSPEND’ terminates
and control resumes (on the line indicated) with its local state (in this case,
total and s) unchanged. The environment on the other side of its interface will
probably be different. Activation of a mobile is covered in the next section.

integrate.suspend
out!

in?

suspend?

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)
IMPLEMENTS IO.SUSPEND
INITIAL INT total IS 0: -- local state
WHILE TRUE
PRI ALT
INT s:
suspend ? s
SUSPEND -- return control to activator
-- control returns here when next activated

INT x:
in ? x
SEQ
total := total + x
out ! total

:

Fig. 9. A suspendable serial mobile integrator

The above mobile has a purely serial implementation. Suspending a mobile
with a parallel implementation is presented in section 3.4.

190 P.H. Welch and F.R.M. Barnes

3.3 Declaring, Allocating, Moving and Activating Mobile
Processes

Mobile process variables are declared with reference to a process type. They hold
instances of mobile processes, possibly many different ones during their lifetime.

Allocation of a mobile process is similar to the allocation of other mobiles —
via a special assignment. For example, an instance of the ‘integrate.suspend’
mobile process (defined in the previous section) is allocated by:

MOBILE IO.SUSPEND x:
SEQ
x := MOBILE integrate.suspend
... use ‘x’

After allocation, the process in ‘x’ may be communicated, assigned or acti-
vated. Communication and assignment follow the semantics of other mobiles —
which is that the mobile process moves, leaving the source undefined.

The ‘CLONE’ operator may be used to copy a mobile process, with a restriction
that the mobile must not contain any state that cannot itself be cloned. For
example, a mobile process containing an unshared mobile channel-end cannot be
cloned. Any attempt to do so results in a compiler (or run-time) error.

Activation of a mobile process connects its interface to a local environment
and transfers control to it. Control is returned when the mobile process either
terminates or suspends.

Figure 10 shows a network of two processes, ‘A’ and ‘B’. The ‘A’ process
simply creates a new mobile process then outputs it. ‘B’ inputs a mobile process,
activates it using channels from its own environment, waits for the activation to
suspend (or terminate), before passing on the mobile.

B
p.in? p.out!

in? out!

suspend?

out!
A

c

Fig. 10. A communicating mobile process network

The implementation of these examples are trivial:

PROC A (CHAN MOBILE IO.SUSPEND out!)
MOBILE IO.SUSPEND x:
SEQ
x := MOBILE integrate.suspend
out ! x
-- ‘x’ is no longer defined

:

Communicating Mobile Processes 191

PROC B (CHAN MOBILE IO.SUSPEND p.in?, p.out!,
CHAN INT in?, out!, suspend?)

MOBILE IO.SUSPEND v:
SEQ
p.in ? v
v (in?, out!, suspend?)
-- control returns here when ‘v’ terminates or suspends
p.out ! v

:

Note that the ‘B’ process is unaware what mobile process it is activating —
only that it carries the ‘IO.SUSPEND’ interface. Note also the strong synchroni-
sation between an activated mobile and its host. There is no way the host can
operate on the mobile while it is active — it has to wait for the mobile to suspend
or terminate. The parallel usage checker (implemented by the occam-π compiler)
views an activated process variable as writable — i.e. it may change state. This
means that that variable may not be observed in parallel with that activation —
i.e. it may not be activated, moved, cloned or overwritten. Any attempt to do
so is a language violation and will not be compiled.

The code implementing the portion of the network shown in figure 10 is:

CHAN MOBILE IO.SUSPEND c:
PAR
A (c!)
B (c?, p.out!, in?, out!, suspend?)

3.4 Suspending Mobile Networks

So far we have shown how a serial mobile process may be activated, suspended
and moved. We are grateful to Tony Hoare for providing insight into how a
mobile process, that has gone parallel internally, may be safely suspended and
efficiently re-activated. An earlier proposal for mobile processes in occam-π [4]
required the mobile to terminate before it could be moved. For parallel mobiles,
such termination is just the multi-way synchronisation of all sub-processes on the
termination event. So for each mobile process, introduce a hidden ‘suspension’
event for all its sub-processes to synchronise upon — this, then, is the meaning
of the new ‘SUSPEND’ primitive.

The suspension event barrier on which processes synchronise when executing
‘SUSPEND’ is internal to the mobile process and follows a similar implementation
to that described in [17] for multiway events. The main difference being that
whichever process completes the synchronisation must then arrange for control
to be returned to the activator. Barrier completion may also be triggered when
processes internally resign from the event (e.g. when terminating). The use of
this barrier synchronisation enables very efficient re-activation — since all sus-
pended sub-processes are on the queue (implemented by the barrier), they can
be instantly located and rescheduled together in a constant-time operation (by
appending the barrier queue to the kernel run-queue).

192 P.H. Welch and F.R.M. Barnes

Parallel Suspension. As an example we consider a suspendable version of the
parallel integrator. The design of this integrator is similar to the earlier ‘killable’
parallel integrator and is shown in figure 11. As with the suspendable serial
integrator, the process is declared as implementing the ‘IO.SUSPEND’ interface.

0

+
a b

c
d

integrate.suspendsuspend?

in? out!

Fig. 11. A suspendable mobile parallel integrator

The top-level implementation of this mobile network is:

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)
IMPLEMENTS IO.SUSPEND
CHAN TAGGED.INT a, b, c, d:
PAR
freeze (in?, suspend?, a!)
plus.suspend (a?, d?, b!)
delta.suspend (b?, c!, out!)
prefix.suspend (0, c?, d!)

:

Note that the internal channels carry a boolean tag:

PROTOCOL TAGGED.INT IS BOOL; INT:

where a ‘TRUE’ tag means that the INT part carried ‘live’ data (compute as
normal) and a ‘FALSE’ tag indicates ‘suspended’ data (forward and suspend).
The ‘freeze’ process is implemented:

PROC freeze (CHAN INT in?, suspend?, CHAN TAGGED.INT out!)
WHILE TRUE
INT x:
PRI ALT
suspend ? x
SEQ
out ! FALSE; 0 -- suspend signal
SUSPEND

in ? x
out ! TRUE; x -- live data

:

in? out!

suspend?

Communicating Mobile Processes 193

For structuring reasons and general reusability, we allow mobile processes to
invoke ‘ordinary’ PROCs (which is what is happening between integrate.suspend
and freeze). There is, therefore, the possibility some other application may in-
voke freeze by a chain of calls from a top-level process that is not itself mobile!
If that happens, ‘SUSPEND’ behaves as ‘STOP’.

The ‘graceful’ protocol safely distributes the suspend signal to all processes
that need it. The implementation of ‘plus.suspend’ and ‘delta.suspend’, there-
for, become:

PROC plus.suspend
(CHAN TAGGED.INT in.0?,
in.1?, out!)

WHILE TRUE
BOOL b.0, b.1:
INT x.0, x.1:
SEQ
PAR
in.0 ? b.0; x.0
in.1 ? b.1; x.1

IF
b.0 -- live data
out ! TRUE; x.0 + x.1

TRUE -- suspend signal
SEQ
out ! FALSE; x.1
SUSPEND

:

PROC delta.suspend
(CHAN TAGGED.INT in?,
out.0!, CHAN INT out.1!)

WHILE TRUE
BOOL b:
INT x:
SEQ
in ? b; x
IF
b -- live data
PAR
out.0 ! TRUE; x
out.1 ! x

TRUE -- suspend signal
SEQ
out.0 ! FALSE; x
SUSPEND

:

Unlike the other two ‘.suspend’ components, ‘prefix.suspend’ executes its
‘SUSPEND’ between input and output. It is the last process in the network that
receives the suspend signal and someone has to hold the suspended data. The
implementation is:

PROC prefix.suspend (VAL INT n, CHAN TAGGED.INT in?, out!)
SEQ
out ! FALSE; n
WHILE TRUE
BOOL b:
INT x:
SEQ
in ? b; x
IF
b -- input was live data
SKIP

TRUE -- input was a suspend signal
SUSPEND

out ! TRUE; x -- output is always live data
:

194 P.H. Welch and F.R.M. Barnes

The way in which the ‘integrate.suspend’ network suspends is as follows.
A communication made on the external ‘suspend?’ channel is intercepted by
the ‘freeze’ process, which reacts by outputting a suspend signal before sus-
pending itself. The ‘plus.suspend’ component inputs this, in parallel with the
current running-sum, and outputs a suspend carrying the current running-sum
before suspending itself. ‘delta.suspend’ reacts to the suspend by forwarding
the suspend (and associated running-sum) on the feedback channel only, and
then suspending itself — no output is made to the external (integer) channel.
‘prefix.suspend’ is the final process to receive the suspend signal and reacts
by immediately suspending. At this point, all sub-processes have suspended and
the network, therefore, suspends, returning control to its activator.

When the network is reactivated (elsewhere), the sub-processes resume execu-
tion from their respective ‘SUSPENDs. The ‘prefix.suspend’ component returns
the saved running-sum to ‘plus.suspend’ and the network state is restored (as
though the suspend never happened).

So, this parallel mobile ‘integrate.suspend’ promptly suspends when its en-
vironment offers the ‘suspend?’ signal. It does this without deadlocking, without
accepting any further data from ‘in?’ and flushing on ‘out!’ any data owed to
its environment — i.e. it honours the contract that we intend to associate with
the ‘IO.SUSPEND’ process-type (section 3.5).

Care must be taken to implement this “graceful suspension” protocol cor-
rectly to avoid deadlock. If the sequence of output and suspension were re-
versed in any of the internal components, deadlock would occur. In fact, the
output and suspension could be run in parallel by all components except for
‘prefix.suspend’ (where deadlock would result, since its output would never
be accepted). For the moment, responsibility for getting this right lies with the
application engineer.

Note that the request for a suspend need not come from the environment
— it could be a unilateral decision taken by the mobile process itself, provided
that it conforms to any specified behavioural contract for the process (e.g. that
the number of ‘in?’s equals the number of ‘out!’s. In general, the decision to
trigger suspension in a mobile process network may happen in several places
independently. The protocol for managing safely the deadlock-free distribution
of the multiple suspend signals so generated is described in [13].

Finally, although the ‘integrate.suspend’ mobile behaves as a ‘server’, re-
sponding only to (‘in?’ and ‘suspend?’) communications from its environment,
this need not be the case. A mobile could behave as a ‘client’, gathering data
from its various environments (which behave as ‘servers’). Indeed, the relation-
ship between mobile and its environment could follow any pattern — but it
would help to formalise that into a contract.

3.5 Mobile Contracts

A “PROC TYPE” only defines a connection interface — a set of abstract events
that are bound to actual events each time its implementing mobile is activated.

Communicating Mobile Processes 195

Such an interface is necessary. It prevents arriving mobiles from accessing
resources the host is unwilling to provide. Activation is entirely under the control
of the accepting host, who must set up all connections to the mobile (as well
as actually activate it). An occam-π process cannot simply make “system calls”
(e.g. to access a file), unless it has been given the means to make them (e.g. the
file server channels). So, the host is in charge. If suspicious, the host may still
provide resource access channels, but route them via a monitoring “fire-wall”
process with whatever level of security it chooses. This is in marked contrast
to conventional mobile platforms (e.g. web browsers and common office tools),
which execute arriving code with the authority and permissions granted to the
platform. Various “sand-boxing” techniques are available to counter the worst
behaviour the mobile might throw, but these are foreign to the normal execution
model. For the process-oriented model around which occam-π is centered, such
“sand-boxing” is the way things are arranged anyway — and the security is
automatic2.

However, process type interfaces are not sufficient to guarantee safety. The
host environment needs further assurance of good behaviour from an arriving
mobile that it will use its given channels properly — e.g. that it will not cause
deadlock or livelock, and will not starve processes in the host environment of
attention (including a request to suspend). Conversely, a mobile process requires
similar guarantees of good behaviour from whatever environment activates it.

We are currently investigating ways to augment process-types with a contract
that makes some level of CSP specification about process behaviour. Initially
we are considering methods of specifying traces for a mobile process, that the
compiler can verify against an implementing mobile and any (potential) host
environment. Such contracts would be burnt into an extended definition of the
process type. We have not yet made proposals for a syntax for these contracts.

For the ‘IO.SUSPEND’ process type, a contract might specify that implementing
mobiles are a ‘server’ on the ‘in?’ and ‘suspend?’ channels, responding to an ‘in?’
with an ‘out!’, and to ‘suspend?’ with suspension. This could be strengthened to
indicate priorities for service, or weakened to allow some level of internal buffering.

A particular behaviour that a contract may wish to prohibit (for the example
considered here) is that of suspension with an output outstanding on ‘out!’ —
i.e. that suspension may only occur when the number of ‘in?’ and ‘out!’ events
are equal. Without such a contract, a mobile could arrive that activates with an
‘out!’ to an environment that offers only an ‘in?’.

4 Performance

4.1 Basics

The implementation of the various concurrency mechanisms in occam-π are very
lightweight compared with other software technologies (e.g. threads in Java or

2 Like any software system, it is ultimately possible to circumvent guarantees such as
this — but not if all codes are compiled from source by a certified occam-π compiler.

196 P.H. Welch and F.R.M. Barnes

C), while providing substantial guarantees about the integrity of concurrent
systems (an attribute preserved from classical occam and CSP).

The memory overhead for a parallel process is less-than or equal to 32
bytes, depending on what kinds of synchronisation it may choose to perform
(e.g. ALTing and/or timeouts). The memory overhead for setting up a network
of parallel process is approximately 16 bytes.

Table 1 shows the times for a number of “micro-benchmarks”, measured on
an 800 MHz Pentium-3 and a 3.4 GHz Pentium-4. These measure the minimum
time to perform an operation, where the code and data required by a process is
in the processor cache. Both machines have 512 Kbytes of fast cache. All times
derive from multiple runs on an otherwise quiet Linux machine and are rounded
to the nearest 10 nanoseconds.

Table 1. occam-π micro-benchmarks

Benchmark Time (nanoseconds)
P3 (0.8) P4 (3.4)

process startup + shutdown (no priorities) 30 0
process startup + shutdown (priorities) 70 50
priority change (up and down) 160 140
channel communication (INTs, no priorities) 60 50
channel communication (INTs, priorities) 60 40
channel communication (mobile fixed-size data, priorities) 120 150
channel communication (mobile runtime-sized data, priorities) 120 110
channel communication (mobile channel-ends, priorities) 120 110

The time for starting up and shutting down a process on the P4 running
the occam-π kernel, with no support for priorities, was too small to measure
accurately. The P4 (integer) channel communication costs were lower using the
kernel with priorities than without. This shows the problems of relying too much
on micro-benchmarks and we present them only as a guide.

4.2 Missing the Cache

A separate benchmark measures the penalty resulting from cache misses. This
communicates integer messages between pairs of processes, with the number of
pairs ranging from 1 to 1 million, increasing in factors of 10. The results from
this benchmark are shown in figure 12. Graphs are drawn showing the effect of
setting (and not setting) relevant optimisation flags to the compiler that in-line
certain kernel operations.

Up to 1000 pairs of processes, the total memory footprint for the benchmark
fits into cache. For 10,000 pairs and above, it does not. (In the case of a million
pairs, the footprint is around 100 Mbytes.) Each cycle of the benchmark exer-
cises all the data. Between each communication by any one process, all other
(20,000+) processes will have been scheduled once and cached state will have

Communicating Mobile Processes 197

been lost. There are ways of managing scheduling that attempt to minimise
cache displacement that might work for this benchmark. However, the KRoC
runtime for occam-π simply uses round-robin scheduling on each priority queue
of runnable processes. This benchmark uses no priorities, but it was run on the
standard KRoC system build supporting them.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1 10 100 1000 10000 100000 1e+06

tim
e

pe
r

co
m

m
un

ic
at

io
n

(n
s)

process pairs

3.4 GHz (opt)
800 MHz (opt)

3.4 GHz (unopt)
800 MHz (unopt)

Fig. 12. Results for the communicating process pairs benchmark

As can be seen, the difference between optimised and unoptimised compiled
codes is minor and consistent (except where very small numbers of processes are
concerned). For the 800 MHz Pentium-3, the channel communication costs ceiling
out at (a still respectable) 520ns for 10,000 pairs (20,000 processes) and above
— measured up to 2M processes. The extra cost (over the minimum 80ns, when
all process state is permanently cached) results from the relatively slow memory
bus on that machine. The 3.4 GHz Pentium-4 machine has a more modern and
much faster memory — even so, the results are remarkable! The costs start
around 40ns and ceiling out at 70ns. Cache behaviour is not always what we
expect; but whatever it is that the P4 is doing (and it may involve parallel
operations from its Hyperthreading mechanism [18]), it is very well-suited to the
operation of our occam-π kernel. The figures for large numbers of processes do
reflect the worst-case memory behaviour that a large application might exhibit.

4.3 Mobile Process Basics

Table 2 shows micro-benchmark results for mobile process operations. All are
well under 1 micro-second. Even so, they are still slightly higher than we even-

198 P.H. Welch and F.R.M. Barnes

tually hope to achieve, due to the relative immaturity of the implementation.
The figures given for suspension and re-activation only apply to a serial mobile
process (i.e. just one process synchronising on the hidden implementation bar-
rier). Note that mobile process activation and termination costs are similar to
those for ordinary procedure call and return.

Table 2. Micro-benchmarks for mobile process operations

Benchmark Time per visit (nanoseconds)
P3 (0.8 GHz) P4 (3.4 GHz)

Mobile process allocation and deallocation 450 210
Mobile process activation and termination 100 20
Mobile process suspend and re-activate 630 260

For a more application-oriented scenario, two further benchmarks have been
created that stress the memory cache and exercise mechanisms for mobility that
are relevant for large-scale modelling. The first, “tarzan”, provides mobility using
mobile channels; the second, “mole”, provides mobility using mobile processes.
Both do similar work and show a sense of duality between mobile channels and
mobile processes. This duality is considered further in section 4.6.

4.4 The Tarzan Benchmark

This benchmark measures the time taken to “swing” a process down a chain of a
million ‘server’ processes, using mobile channels. The process network is shown
in figure 13.

server server server server

Fig. 13. Process network for the ‘tarzan’ benchmark

Starting with a connection to the first process in the pipeline, the tarzan
process does some ‘business’ with the server and, then, receives from it the
shared mobile channel-end of the next server. tarzan overwrites its connection
to the current server (a shared mobile channel-end variable) with the connection
to the next server, and loops. In this way, tarzan ‘moves’ (swings) down the
chain. In fact, tarzan is actually fixed in memory and continuously running —
only its connection to the individual servers changes as it swings down the line.

Note that if each server had connections to both its neighbours, it would be
trivial for tarzan to move in both directions along the chain — in response to

Communicating Mobile Processes 199

run-time decisions based on his communications with the chain nodes. Step this
up one or two dimensions, add millions of other tarzans (and, maybe, some
janes) and we are into serious application modelling — see section 5.

The channel type that defines the service channels in this benchmark is:

RECURSIVE CHAN TYPE SERVE
MOBILE RECORD
... business channels
CHAN SHARED SERVE! next!:

:

The ‘RECURSIVE’ keyword causes the name ‘SERVE’ to be brought into scope
early, instead of at the end of the declaration. This allows a channel-type to
contain channels that communicate ends of its own channel-type (they may be
‘client’ or ‘server’ ends, shared or unshared). This is useful for many situations —
e.g. having some client give up its (typically unshared) connection to a server, by
communicating the client-end back to the server (for distribution to, and reuse
by, some other client not known to the original one). For this benchmark, the
feature enables a server to communicate (to its visiting tarzan) a ‘client’-end
connection to the next server in the pipeline.

The main loop of the tarzan process, for example, is implemented:

SEQ i = 0 FOR 1000000
SHARED SERVE! next.server:
SEQ
CLAIM current.server
SEQ
... do business using ‘current.server’ channels
current.server[next] ? next.server

current.server := next.server

The tarzan client measures the time it takes to swing through 1 million
server processes, and then reports. Table 3 shows the results for a client that
just swings through the servers, doing no business (other than getting the link
to the next server); and a client that asks each server a question (represented
by an integer) and receives a reply (another integer), which it uses on the next
server. Each visit by the tarzan client causes a cache miss as the service channel
is accessed and the corresponding server is scheduled. tarzan’s own state will
remain in cache (since it is repeatedly scheduled for each visit).

Table 3. Results for the ‘tarzan’ benchmark

Time per visit (nanoseconds)
Benchmark P3 (0.8 GHz) P4 (3.4 GHz)

‘just visiting’ client 450 120
‘question and answer’ client 770 280

These results show over 3.5 million interacting visits per second are possible
with this mechanism.

200 P.H. Welch and F.R.M. Barnes

4.5 The Mole Benchmark

This benchmark is similar to the above in its basic operation (a visitor pro-
cess interacting with and moving down a chain of servers), but is implemented
using mobile processes rather than mobile channel-ends. Instead of moving a
server connection to the visitor, the visitor suspends itself and is moved by its
environment to the next server.

Figure 14 shows the process network for this ‘mole’ benchmark, with an
activated visitor, our mole, connected to one of the servers. When a visitor
arrives at the butler process, the latter forks a host platform and passes to it
the visitor, the local server connection and the connection to the next butler.
This host activates the mole, giving it the server connection. When the mole
suspends, the host sends it on its way to the next butler and terminates.

This protocol is complicated by the fact that we wish to allow multiple visitors
to connect to any single server at the same time. Our benchmark runs only
one such visitor, so the butler could have done the work of the host platform
itself without any extra concurrency (the forked host) — but then it could only
service one visitor at a time. This would reduce the overheads measured by the
benchmark, but also the realism of the scenario.

server serverserver

butler butler butler

Fig. 14. Process network for the ‘mole’ benchmark

The channel-types servicing, respectively, the server and butler processes are:

CHAN TYPE SERVE.2 CHAN TYPE BUTLER.2
MOBILE RECORD MOBILE RECORD
... business channels CHAN MOBILE VISITOR c?:

: :

where the process type of the mobile visitors is:

PROC TYPE VISITOR (SHARED SERVE.2! client, CHAN INT in?, out!):

The extra ‘in?’ and ‘out!’ channels in the ‘VISITOR’ type allow initial state
to be loaded into the mobile and results to be downloaded upon completion of
the benchmark. This is not an happy situation since those channels are not used
during server visits (and, therefore, dummies must be supplied by the activating
host platform). Our previous model for mobile processes, [4], allowed them to

Communicating Mobile Processes 201

implement many process types. That would let us activate our visitor with one
interface for initialisation, another for server visits and a third for debriefing. We
are considering ways to combine the two models robustly.

The host and butler processes are rather trivial, apart from the current awk-
wardness with the dummy channels:

PROC host (MOBILE VISITOR mole,
SHARED SERVE.2! my.server,
SHARED BUTLER.2! next.butler)

CHAN INT dummy.in, dummy.out:
SEQ
mole (my.server, dummy.in, dummy.out!) -- dummy chans not used
CLAIM next.butler
next.butler[c] ! mole

:

PROC butler (CHAN MOBILE VISITOR in?,
SHARED SERVE.2! my.server,
SHARED BUTLER.2! next.butler)

WHILE TRUE
MOBILE VISITOR mole:
SEQ
in ? mole
FORK host (mole, my.server, next.butler)

:

The main loop of the mole process is very similar to that for tarzan, except
that it suspends and lets its environment move it to the next server:

SEQ i = 0 FOR 1000000
SEQ
CLAIM current.server
... do business using ‘current.server’ channels

SUSPEND

Table 4 shows the results for a mole that does no business with servers (other
than claim their service channels) and one that does the same ‘question and
answer’ interaction described for tarzan.

Table 4. Results for the ‘mole’ benchmark

Time per visit (nanoseconds)
Benchmark P3 (0.8 GHz) P4 (3.4 GHz)

‘just visiting’ client 1340 470
‘question and answer’ client 1590 620

The results show that the time per visit for this ‘mole’ benchmark is more
than double the time per visit for the ‘tarzan’ benchmark. Some of the extra

202 P.H. Welch and F.R.M. Barnes

overhead comes from the mobile process suspension and re-activation in between
visits — tarzan never stopped running! The rest comes from the forking of a
new host platform to activate the mobile process. Nevertheless, more than 1.5
interacting visits per second are achieved with this mechanism.

4.6 Mobile Channels and Mobile Processes — a Duality

The two benchmark programs show how similar functionality can be imple-
mented either using mobile channels or mobile processes. In both cases, a ‘client’
process moves down a line of ‘server’ processes, interacting with each in turn.

The main difference between the benchmarks involves the locality of processes.
In the ‘tarzan’ benchmark, the visitor remains ‘alive’ throughout: channels are
moved, ‘stretching’ across the network to provide mobility to the visitor (that
sees itself serially connected to different servers). In the ‘mole’ benchmark, the
visitor suspends its execution and is moved to the locality of the server — before
being plugged in, re-activated and interacting over local channels. Putting aside
the mechanism-specific code (for communicating a mobile channel-end in one
and suspending in the other), the visitors and servers have identical logic.

On individual shared-memory systems (e.g. a typical workstation), the cost
of communicating a mobile channel-end and the cost of communicating a passive
mobile process are approximately the same — in the order of tens of nanoseconds.
As we have seen, however, the mobile process cost has to be supplemented with
the cost of suspension, forking and re-activation. Once connected, however, the
costs of doing business in the new environment are the same, regardless of the
mechanism used to achieve mobility.

server server

node A node B

server server server server

node A node B node A node B

(initial system)

(mobile channel communication)(mobile process communication)

Fig. 15. Communicating mobile channels and processes between nodes in a network

If the system is distributed over a network of processors operating in separate
memory spaces, the costs of doing business if a network link is involved differ

Communicating Mobile Processes 203

significantly. Communicating a mobile process between nodes in a network has a
relatively constant cost. Communicating mobile channel-ends between nodes in a
network has a similar constant cost, but the ‘stretching’ of that channel between
the nodes incurs a network overhead for each subsequent communication on the
channel. Figure 15 illustrates this difference.

For optimal performance on distributed systems, the two techniques can be
combined. Mobile processes are moved only when they need to connect to a new
environment across the network. Otherwise, only channel-ends are moved. This
reduces the level of transparency, however, since processes will need to be aware
of where they are currently placed in the physical distribution of the system.

5 Application Outlines

5.1 Grand Challenges

“in Vivo ⇔ in Silico” (iViS) is one of the UK ‘Grand Challenges in Computer
Science’ project areas [19, 20, 21]. Its aims are to move the application of com-
puting in the life sciences beyond cataloguing and pattern discovery and into
modelling and prediction. An exemplar challenge is to model the development
of a Nematode worm, one of the simplest multicellular forms of animal life, from
fertilised cell to adult — allowing virtual experiments to be performed on its
reactions to various stimuli, physical or chemical, and on interactions between
organisms. It is hoped that success will lead to better understanding of the basic
science and the processes involved, followed by improved treatment of disease
and environmental dangers. One particular dream is the conduction of drug trials
within the computer (in silico) that are trustable in real life (in vivo).

For the necessary modelling technologies, dynamic communicating process
networks are a good fit. The fundamental ideas of process, communication, con-
currency and mobility are uniformly applicable at any level of granularity and
those levels build on each other seamlessly. They enable the expression of con-
trolled, but not specifically planned, self-evolving topologies reflecting natural
growth and decay. This uniformity of concept could contribute to simplicity of
structure and understanding of multi-level simulation programs applied in bi-
ology. Furthermore, the semantics are independent of the actual distribution of
systems on to different computer architectures and network configurations, al-
lowing them to take quick advantage of all technological improvements to the
hardware.

The mechanisms and implementation of occam-π, described in this paper,
offer one way to make a start in these experiments. They are lightweight and ro-
bust and have good theoretical foundations — though we are aware that there is
a lot more work to be done. To investigate emergent properties of such networks,
self-constructed from low level processes with explicitly programmed behaviour,
will require very large numbers of mobiles. Fortunately, current low cost archi-
tectures (e.g. PC networks) let us build systems with millions of processes per
processor, yielding useful work in useful run-times.

204 P.H. Welch and F.R.M. Barnes

5.2 Locality, Environment and the Matrix

Our models need to capture a sense of location, so that free-ranging processes
become aware of who else is in their neighbourhood and do business with them
(or, maybe, run away!). Processes may also be influenced by pervasive forces in
their environment — these may be widely dispersed (e.g. gravitational) or highly
localised (e.g. chemical).

Figure 16 illustrates some ideas for meeting these requirements. Space is
modelled by the ‘Matrix’ — a network of (usually passive and non-mobile)
server processes representing locations. The figure shows a portion of a regu-
lar 2-dimensional grid. Other spaces may have higher dimensions, or distortions
(e.g. wormholes), or the ability to change shape (reflecting dramatic changes in
the modelled world, such as physical damage).

Fig. 16. Process matrix with mobile agents

Each matrix node services a channel bundle, shown in the figure as a vertical
downward pointing arrow ending at the node. The ‘server-end’ of each bundle is
exclusive to the node. The ‘client-end’, however, is SHARED and MOBILE (i.e. freely
useable by, and communicable to, any number of clients).

Locality is realised by each node having access to the ‘client-ends’ of each of
its neighbours’ service channels, where we have free choice in deciding who are
those neighbours. (In figure 16, only two sets of these connections are shown, but
all nodes have them.) Once the connections are established, there are no run-
time costs associated with locating neighbourhoods — even in the most twisted
of topologies.

Organisms, or parts of organisms, living in this space are modelled by mobile
processes — ‘Agents’. (These are shown by the shaded circles and triangles
in figure 16.) An agent attaches to one matrix node (location) at a time, by
acquiring the ‘client-end’ of its service channel bundle. It interacts with the server
node, first to register its arrival and any connections to itself it cares to share
with the locality. Then, it enquires about the local environment (e.g. electrostatic
or chemical forces) and connections to other agents currently present. It may
pick up compatible connections and transact business directly with those other

Communicating Mobile Processes 205

agents. This may include combining with them to form larger agent structures
or to reproduce. It may also pick up connections to neighbouring locations and
decide to move.

Agent-matrix interactions must follow matrix-defined protocols (‘contracts’,
section 3.5) for the avoidance of deadlock. Agent-agent communication protocols
will be specific to the types of agent involved. The extent of these interactions
will vary, along with the computations provoked by them. Model simulation time
may need to be maintained by global (or, maybe, local) event barriers.

occam-π provides all the mechanisms needed to express such designs directly
and execute them. Its overheads are sufficiently low so that the very large num-
bers of processes required for modelling realism will not be a show stopper.
Formal verification of the systems, at least for the absence of deadlock and race
hazards, also becomes possible.

Serial implementations of these designs, that iterate through collections of
passive objects representing the locations and agents, may run (a little) faster.
Unfortunately, the logic expressing object behaviour has to be inverted to the
point of view of the (single) thread executing them all — there can be no direct
expression. This introduces complexity, making formal and informal reasoning
much harder. It will be necessary to experiment with many rules of behaviour,
changing them quickly and often. The direct reflection of behaviour in the pro-
gramming of active processes, together with the compositional semantics of the
underlying algebra, simplifies this.

Finally, we note that the ‘tarzan’ and ‘mole’ benchmarks (sections 4.4 and 4.5)
are stripped down versions of this scheme — where the matrix has one dimension,
neighbourhoods are connected one-way only and there is just one agent. The
discussion of duality between the use of mobile channels and mobile processes
in these benchmarks (section 4.6) is directly relevant to this grander vision,
especially for large scale models that need to be distributed over many machines.

5.3 Agents in Distributed Systems — and Security

The most commonly understood meaning of the term “mobile agent” is that
of code and data mobility, as described by White in [22]. The main focus is
on mobility between nodes in a distributed system. Agents are stateful mobile
units of execution and agent platforms are the environments in which those
agents operate. Supporting infrastructure is provided by the applications and by
libraries, not by the programming model or language.

occam-π provides a simple model and language for agents: agents are mobile
processes and agent platforms are processes that activate a mobile. Mobile pro-
cesses may also activate other mobiles, becoming agent platforms themselves —
i.e. nested hierarchies of agent are naturally expressed.

Agent platforms exist for two purposes: to allow agents to interact with the host
system providing the platform; and to allow agents to interact with each other.
occam-π supports both types of interaction, as outlined in the previous section.

Within the wider mobile-agent community, there is a good deal of concern for
the security of mobile agents and agent based systems, as discussed in [23, 24, 25].

206 P.H. Welch and F.R.M. Barnes

Broadly, these security considerations fall into two categories: those affecting the
integrity of the overall system; and those affecting the integrity of individual
agents and agent-platforms.

Integrity of the overall system is outside the scope of this paper. Here, we
assume that arriving mobile agents are valid — because that agent was either
created locally or came from another part of the system that we trust over
secure links. Correspondingly, an agent may assume that whatever activates it
was meant to do so.

In an insecure networked environment (such as the Internet), the part of
the system that manages network connections would need to be responsible for
ensuring the integrity of data communicated over networked channels (where
that data may be ‘serialised’ mobile processes). This may involve proper (pub-
lic/private key) authentication and encryption.

Of course, we could create a system that freely admits mobile processes from
open network connections. Such a system would be open to many of the potential
abuses that afflict mobile-agent systems in general. The use of occam-π in the
construction of agents allows some of this threat to be eliminated. Instead of
communicating serialised agent object code, source (or byte) code could be sent,
along with the saved state of the agent, and used to re-create the agent locally.
The occam-π compiler makes certain guarantees about the systems it compiles.
For example, agents (processes) cannot access resources without being given
specific connections (channels) to those resources and that giving is entirely at
the discretion of the activating host — see section 3.5.

The mandated use of a synchronisation-only interface to mobile processes
further limits the threats associated with existing agent systems. It separates
the activation of an agent from its interaction with the local resources granted
to it, by safely modelling the concurrency between the agent and those resources
(which existed before the agent arrived and will continue to exist after it de-
parts). There can be no unsynchronised actions between the agent and its host
environment that can lead to race hazards.

Further, the concept of ‘contract’ (also described in section 3.5) would enforce
safe patterns of synchronisation, eliminating the dangers of the agent deadlocking
its host — or vice-versa. Such contracts are not yet defined for occam-π, although
some preliminary investigations have been completed (see the ‘TRACES’ extension
described in [16]).

6 Conclusions and Future Research

This paper has given an introduction to the occam-π language, concentrating on
mobile processes and channels. occam-π combines process and channel mobility
(from the π-calculus) with the disciplines of classical occam (whose semantics fol-
low CSP). Mobile processes complement mobile channels to provide the occam-π
programmer with powerful new tools for directly, safely and efficiently capturing
the dynamic aspects of complex large-scale systems. Applications for the multi-
layer modelling of micro-organisms and their environments (the ‘in Vivo ⇔ in

Communicating Mobile Processes 207

Silico’ Grand Challenge [20, 21]) and process migration (agents) in distributed
systems have been outlined. Performance benchmarks have been reported.

The occam-π language is implemented by recent releases of KRoC (the Kent
Retargetable occam Compiler) [3]. Current versions of the system support all as-
pects of mobility described here, with the exception of support for ‘serialisation’
(and de-serialisation) of mobile processes — needed for their movement between
distinct memory spaces.

At this time of writing, no distributed version of occam-π has been released
(although library processes providing non-blocking low-level support for socket
communication have long been included in the release). The distributed version,
KRoC.net, will provide for the stretching of channels across network fabric (with
no change in semantics), automatic multiplexing and de-multiplexing of chan-
nels over limited network resource (with no change in semantics), brokers for
the discovery and run-time connection of processes between network nodes and
full support for the networked communication of mobile data, channel-ends and
processes [15].

Also under investigation are ways of formally specifying behaviours for pro-
cess types (‘contracts’), in ways that allow the compiler to verify that a mobile
process conforms. In cases where this is too complex, the compiler may generate
information suitable for use with a separate model checker (e.g. FDR [26]).

We emphasise that this work is still an experiment in language design and
implementation. The abstractions and semantics captured are not settled and
may change — especially in the light of new theory and experience with (large)
applications. Certain elements of the language are incomplete. For example, we
need static channel-bundle types as well as the mobile ones implemented so far;
we need arrays of shared classical channels as well as the scalar ones currently
available. However, such developments are largely routine and are a matter of
(finding the) time.

occam-π is built upon classical occam and very little has been discarded.
Classical occam was very compact, powerful and elegant. A key principle un-
derlying the extensions is that the original semantics are not disturbed, so that
the ultra-low overheads for process management and all the safety guarantees
are preserved — despite the introduction of the new dynamics. For example,
although there is now plenty of dynamic memory allocation (for run-time sized
arrays, parallel process replication, recursion, forking, mobile channels and mo-
bile processes), there is no need for any garbage collection — the system deallo-
cates immediately when final references are lost (thanks to the strong policing
of aliases, carried over from classical occam). Such properties are crucial for its
continued relevance to real-time applications.

Nevertheless, perhaps Ockham’s razor needs to be wielded a little more ag-
gressively — the removal of the ‘OF’ keyword is not very radical! For example,
the syntax for declaring channel-bundle variables is not aligned with that for
classical channels — maybe one of these versions should go? Could the compiler
decide whether elements should be implemented as mobile or shared so that the
programmer does not have to make this explicit — or would that require extra

208 P.H. Welch and F.R.M. Barnes

run-time cost and reduce system clarity? The duality noted between mobile pro-
cesses and (some ways of working with) mobile channels may indicate that there
is some simpler abstraction out there, from which these are special projections.

A formal denotational semantics, supporting refinement, needs completing.
This is necessary both as a sanity check on the new ideas and to enable formal
design and development. Such a semantics, based on Hoare and Jifeng’s Unified
Theories of Programming [27] has been built by Woodcock and Tang [28] for our
earlier proposal for mobile processes [4]. That model allowed multiple interfaces
for mobile processes but did not support suspension — they had to terminate
before they could be moved and that required extra syntax to define persistent
state (that moved with them). However, suspension should not be a major prob-
lem for that semantics to capture. In any case, it seems possible (and may be
necessary) to merge that proposal with the one reported in this paper — the
awkwardness of only having a single interface for mobile processes, discussed in
section 4.5, needs addressing. It is also important for the semantics to address
the issues raised by mobile channels, since the events bound to a process (mobile
or static) will change as channel-ends are moved — section 2.4.

We welcome all feedback on this work. We shall be working towards the
applications outlined in section 5, plus a few others — including RMoX [29],
which is experimenting with occam-π for the design and implementation of real-
time operating/embedded systems with low memory footprint, very fast reaction
times and high-level (occam-π) programmability. The latest occam-π release,
supported by the KRoC system, may be downloaded from [3].

Acknowledgements

We are grateful to Tony Hoare for his insights and advice, especially on how
to suspend parallel process networks safely and efficiently [30]. We also wish to
thank colleagues and other members of the concurrency research group at Kent
— in particular David Wood, Christian Jacobsen and Mario Schweigler for their
advice and associated work; and Jim Woodcock and Xinbei Tang, who produced
the denotational semantics for our earlier model of mobile processes [4, 28].

References

1. May, D.: . ACM SIGPLAN Notices 18 (1983) 69–79
2. Inmos Limited: occam2 Reference Manual. Prentice Hall (1988) ISBN: 0-13-629312-

3.
3. Welch, P., Moores, J., Barnes, F., Wood, D.: The KRoC Home Page (2000) Avail-

able at: http://www.cs.kent.ac.uk/projects/ofa/kroc/.
4. Barnes, F., Welch, P.: Prioritised dynamic communicating and mobile processes.

IEE Proceedings – Software 150 (2003) 121–136
5. Barnes, F., Welch, P.: Mobile Data Types for Communicating Processes. In: Pro-

ceedings of the 2001 International Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’2001). Volume 1., CSREA press (2001)
20–26 ISBN: 1-892512-66-1.

occam

Communicating Mobile Processes 209

6. Schweigler, M., Barnes, F., Welch, P.: Flexible, Transparent and Dynamic oc-
cam Networking with KRoC.net. In Broenink, J., Hilderink, G., eds.: Communi-
cating Process Architectures 2003. WoTUG-26, Concurrent Systems Engineering,
ISSN 1383-7575, Amsterdam, The Netherlands, IOS Press (2003) 199–224 ISBN:
1-58603-381-6.

7. Barnes, F., Welch, P.: Communicating Mobile Processes. In East, I., Martin,
J., Welch, P., Duce, D., Green, M., eds.: Communicating Process Architectures
2004. Volume 62 of WoTUG-27, Concurrent Systems Engineering, ISSN 1383-
7575., Amsterdam, The Netherlands, IOS Press (2004) 201–218 ISBN: 1-58603-
458-8.

8. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes – parts I and II.
Journal of Information and Computation 100 (1992) 1–77 Available as technical
report: ECS-LFCS-89-85/86, University of Edinburgh, UK.

9. Muller, H., Walrath, K.: Threads and Swing (2000) Available from: http://java.
sun.com/products/jfc/tsc/articles/threads/threads1.html.

10. Barrett, G.: occam 3 Reference Manual. Technical report, Inmos Limited (1992)
Available at: http://wotug.org/parallel/occam/documentation/.

11. Moores, J.: The Design and Implementation of occam/CSP Support for a Range
of Languages and Platforms. PhD thesis, The University of Kent at Canterbury,
Canterbury, Kent. CT2 7NF (2000)

12. Boosten, M.: Formal Contracts: Enabling Component Composition. In Broenink,
J., Hilderink, G., eds.: Communicating Process Architectures 2003. WoTUG-26,
Concurrent Systems Engineering, ISSN 1383-7575, Amsterdam, The Netherlands,
IOS Press (2003) 185–197 ISBN: 1-58603-381-6.

13. Welch, P.: Graceful Termination – Graceful Resetting. In: Applying Transputer-
Based Parallel Machines, Proceedings of OUG 10, Enschede, Netherlands,
User Group, IOS Press, Netherlands (1989) 310–317 ISBN 90 5199 007 3.

14. Brinch Hansen, P.: Efficient Parallel Recursion. ACM SIGPLAN Notices 30 (1995)
9–16 Reprinted in: The Origin of Concurrent Programming, edited by Per Brinch
Hansen, pp. 525-534, Springer, ISBN 0-387-95401-5. 2002.

15. Schweigler, M.: Adding Mobility to Networked Channel-Types. In East, I., Martin,
J., Welch, P., Duce, D., Green, M., eds.: Communicating Process Architectures
2004. Volume 62 of WoTUG-27, Concurrent Systems Engineering, ISSN 1383-
7575., Amsterdam, The Netherlands, IOS Press (2004) 107–126 ISBN: 1-58603-
458-8.

16. Barnes, F.R.: Dynamics and Pragmatics for High Performance Concurrency. PhD
thesis, University of Kent (2003)

17. Welch, P.H., Wood, D.C.: Higher Levels of Process Synchronisation. In Bakkers,
A., ed.: Parallel Programming and Java, Proceedings of WoTUG 20. Volume 50
of Concurrent Systems Engineering., Amsterdam, The Netherlands, World occam
and Transputer User Group (WoTUG), IOS Press (1997) 104–129 ISBN: 90-5199-
336-6.

18. Lin Chao et al.: Hyper-Threading Technology. Intel Technology Journal 6 (2002)
ISSN: 1535-766X.

19. UKCRC: Grand Challenges for Computing Research (2004) http://www.nesc.
ac.uk/esi/events/Grand_Challenges/.

20. Sleep, R.: In Vivo ⇔ In Silico: High fidelity reactive modelling of develop-
ment and behaviour in plants and animals (2003) Available from: http://www.
nesc.ac.uk/esi/events/Grand_Challenges/proposals/ViSoGCWebv2.pdf.

occam

210 P.H. Welch and F.R.M. Barnes

21. Welch, P.: Infrastructure for Multi-Level Simulation of Organisms (2004) Avail-
able from: http://www.nesc.ac.uk/esi/events/Grand_Challenges/gcconf04/
submissions/42.pdf.

22. White, J.: Mobile agents white paper (1996) General Magic. http://citeseer.
ist.psu.edu/white96mobile.html.

23. Jansen, W., Karygiannis, T.: NIST special publication 800-19 – mobile agent secu-
rity. Technical report, National Institute of Standards and Technology, Computer
Security Division, Gaithersburg, MD 20899. U.S. (2000) http://citeseer.ist.
psu.edu/jansen00nist.html.

24. Jansen, W.A.: Countermeasures for Mobile Agent Security. Computer Communi-
cations, Special Issue on Advances in Research and Application of Network Security
(2000)

25. Chess, D., Harrison, C., Kershenbaum, A.: Mobile agents: Are they a good idea? In
Vitek, J., Tschudin, C., eds.: Mobile Object Systems: Towards the Programmable
Internet. Volume 1222 of Lecture Notes in Computer Science., Springer-Verlag
(1997) 25–45

26. Formal Systems (Europe) Ltd. 3, Alfred Street, Oxford. OX1 4EH, UK.: FDR2
User Manual. (2000)

27. Hoare, T., Jifeng, H.: Unified Theories of Programming. Prentice Hall (1998)
ISBN: 0-134-58761-8.

28. Tang, X., Woodcock, J.: Travelling processes. In Kozen, D., ed.: The 7the Inter-
national Conference on Mathematics of Program Construction. Lecture Notes in
Computer Science, Stirling, Scotland, UK, Springer-Verlag (2004) To Appear.

29. Barnes, F., Jacobsen, C., Vinter, B.: RMoX: a Raw Metal occam Experiment.
In Broenink, J., Hilderink, G., eds.: Communicating Process Architectures 2003.
WoTUG-26, Concurrent Systems Engineering, ISSN 1383-7575, Amsterdam, The
Netherlands, IOS Press (2003) 269–288 ISBN: 1-58603-381-6.

30. Welch, P.: UKC-CRG-01-04-2004: Suspending Networks of Parallel Processes.
Technical report, Computing Laboratory, University of Kent at Canterbury, UK
(2004)

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): CSP LNCS 3525, pp. 211 – 219, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Model-Based Design of Concurrent Programs

Jeff Magee and Jeff Kramer

Department of Computing, Imperial College London,
South Kensington campus, London SW7 2AZ, UK
{j.magee, j.kramer}@imperial.ac.uk

Abstract. A model is a simplified representation of the real world and, as such,
includes only those aspects of the real-world system relevant to the problem at
hand. The paper reviews a modelling approach to the design of concurrent
programs in which models represent the behaviour of concurrent Java
programs. A notation based on CSP is used to model behaviour. Tool support
enables both interactive model exploration and the mechanical verification of
required safety and liveness properties. Models are systematically translated
into Java programs. The approach, supported by a textbook, forms the basis of a
course at the authors' institution and has also been widely adopted elsewhere.
With the benefit of five years hindsight, we examine the strengths and
weaknesses of the approach and look at some of the subsequent remedies and
directions.

1 Introduction

A model is a simplified representation of the real world. Engineers use models to
focus on some aspects of a problem while deferring the consideration of others.
For example, the models of aircraft used in wind-tunnels are used to focus on
aerodynamic properties while ignoring considerations such as the power of the
engines and the number of seats. In the book [1], we presented a modelling
approach to the design of concurrent programs. We used Labelled Transition
Systems (LTSs) to model the interaction behaviour of real concurrent programs
written in Java and model-checking to mechanically verify safety and liveness
properties. We quickly discovered that LTSs described in graphical form can be
used only to model small programs and as a result used a process algebra notation
Finite State Processes (FSP) which owes much to CSP[2]. This short paper is an
attempt to review the strengths and weaknesses of the approach from the benefit of
five years of hindsight. Along the way, we look at some of the differences with
CSP.

In the following, section 2 describes our approach to model-based design of
concurrent programs through the medium of a small example – the Single-lane
Bridge. Section 3 present some observations and assessment of the approach while
section 4 concludes.

25,

212 J. Magee and J. Kramer

2 Single-Lane Bridge

The problem is depicted in Figure 1. A bridge over a river is only wide enough to
permit a single lane of traffic. Consequently, cars can only move concurrently if they
are moving in the same direction. A safety violation occurs if two cars moving in
different directions enter the bridge at the same time.

To clarify discussion, we will refer to cars moving from left to right as red cars and
cars moving from right to left as blue cars. In our concurrent programming model,
each car is a process and the problem is to ensure that cars moving in different
directions cannot concurrently access the shared resource that is the bridge. To be
more precise, the safety property we require of the bridge is that blue cars and red cars
must not be on the bridge at the same time, and the liveness property we require is
that all cars eventually get to cross the bridge. To make the model realistic, we must
also ensure that cars moving in the same direction cannot pass each other.

Fig. 1. Single-lane Bridge

2.1 FSP Model

The model of interaction for the Single-lane bridge consists of a set of CAR processes
and a BRIDGE process that constrains the access of cars to the bridge. In addition, the
processes NOPASS1 and NOPASS2 prohibit cars moving in the same direction from
passing each other. Essentially, NOPASS1 preserves entry order and NOPASS2
preserves exit order. A CONVOY of cars is formed from the parallel composition of a
set of cars and the no passing constraints. The entire model is formed from the
parallel composition of a convoy of red cars, a convoy of blue cars and the process
controlling access to the bridge. The syntax of FSP is nearly exactly that presented for
CSP in [2]:- “->” is action prefix, “|” action choice and “||” parallel composition.
The only extension here is the addition of Boolean guards on actions denoted by the
keyword when and used here in the definition of the BRIDGE process. As we will see
in the following, these facilitate the translation of models into Java programs. The full
model is listed in Figure 2 below and should be understandable with little effort by
those familiar with CSP. More explanation may of course be found in[1].

 Model-Based Design of Concurrent Programs 213

const N = 3
range Id = 1..N
range Int = 0..N

CAR = (enter -> exit -> CAR).

NOPASS1 = C[1], //preserves entry order
C[i:Id] = ([i].enter-> C[i%N+1]).

NOPASS2 = C[1], //preserves exit order
C[i:Id] = ([i].exit-> C[i%N+1]).

||CONVOY = ([Id]:CAR||NOPASS1||NOPASS2).

BRIDGE = BRIDGE[0][0],
BRIDGE[nr:Int][nb:Int]
 = (when nr==0
 blue[Id].enter -> BRIDGE[nr][nb+1]
 |blue[Id].exit -> BRIDGE[nr][nb-1]
 |when nb==0
 red[Id].enter -> BRIDGE[nr+1][nb]
 |red[Id].exit -> BRIDGE[nr-1][nb]
).

||SingleLane = (red:CONVOY || blue:CONVOY || BRIDGE).

Fig. 2. FSP Model of Single-lane Bridge

Fig. 3. Model Exploration using LTSA

2.2 Model Exploration and Analysis

A screenshot of the Labelled Transition System Analyser tool is depicted in Figure 3.
This tool is fundamentally a model checker; however, it also graphically depicts the

214 J. Magee and J. Kramer

LTSs for the constituent processes of a model and in addition, permits the user to step
through the model by selecting which enabled actions to execute. The figure depicts
the animation of part of the single-lane bridge model – the CONVOY composition.
Two of the CAR processes and the NOPASS processes are drawn as LTSs. The
popup Animator window shows the actions enabled in the current state; these are
1.exit and 3.enter. The LTSA depicts the current state of a process by darker shading
of one of its LTS states.

Graphical depiction of LTSs is satisfactory only for small processes. However, it
serves an extremely useful pedagogic purpose in depicting precisely the meaning of
FSP process definitions for small examples. The ability to step through a model and
produce an example execution trace has proved useful for both small and large
models. It is very much in the spirit of the LISP implementations described in [2]
which supported the execution of CSP programs. CSP programs can of course now be
exercised using the Probe tool [3].

In addition to exploring a model as described above, we also need to demonstrate
that it exhibits the required safety and liveness properties. Here we use what is
fundamentally a check for trace refinement; however, as outlined below, this check is
implemented somewhat differently from the check found in FDR. Safety properties
are specified in FSP by processes. The example asserts that either the red car
numbered R is on the bridge or the blue car numbered B is on the bridge, but not both
i.e. these cars have mutually exclusive access. Figure 4 depicts the property and the
LTS generated for it.

property SAFE(R=1,B=1)
 = (red[R].enter -> red[R].exit -> SAFE
 |blue[B].enter -> blue[B].exit -> SAFE
).

SAFE(1,1)

red[1].enter

red[1].exit

blue[1].enter

blue[1].exit

red[1].enter

red[1].exit
blue[1].enter

blue[1].exit

red[1].enter

red.1.exit

blue[1].enter

blue[1].exit

-1 0 1 2

SAFE(1,1)

red[1].enter

red[1].exit

blue[1].enter

blue[1].exit

red[1].enter

red[1].exit
blue[1].enter

blue[1].exit

red[1].enter

red.1.exit

blue[1].enter

blue[1].exit

-1 0 1 2

Fig. 4. Safety property LTS for SAFE(1,1)

It can be seen that any trace in which red car 1 and blue car 1 try to enter the bridge
simultaneously leads to a transition to the ERROR state – labelled -1. In addition, it
can be seen that each state of the LTS has outgoing actions for all actions in the
alphabet of the property. This means that a safety property can be composed with a
set of processes without affecting their correct behaviour (see [4]) for further details).

 Model-Based Design of Concurrent Programs 215

The property that no blue car can be on the bridge at the same time as any read car
and vice-versa, is specified:

||SafeCheck = (forall[r:Id][b:Id] SAFE(r,b)
 || SingleLane
).

The advantages of checking safety in this way are twofold. Firstly, it is
compositional in that property automata can be combined hierarchically with the
components to which they apply. Secondly, multiple properties can be checked at the
same time. The check is implemented as a search for reachability of the ERROR state.

Liveness or progress properties, as described more fully in [5], assert that is always
eventually the case that an action occurs. In checking liveness properties, we assume
fair choice and then specify adverse scheduling conditions using action priority. In the
bridge example, this means building a system in which exit actions have lower
priority than enter actions. This creates a congested or high load situation since, if
given the choice between a car entering and leaving the bridge, the model will always
choose an enter action. For the example model, the required liveness properties and
the congested bridge are specified by:

progress LIVE_RED[r:Id] = {red[r].enter}
progress LIVE_BLUE[b:Id] = {blue[b].enter}

||LiveCheck = SingleLane >> {{red,blue}[Id].exit}.

This gives rise to the following counter-example in which a continuous stream of blue
cars leads to red car starvation:

Progress violation: LIVE_RED.1 LIVE_RED.2
Trace to terminal set of states:
 blue.1.enter
Cycle in terminal set:
 blue.2.enter
 blue.1.exit
 blue.1.enter
 blue.2.exit
Actions in terminal set:
 blue[1..2].{enter, exit}
Progress Check in: 10ms

The book[1] goes on to describe how the model may be modified to remedy the
problem. Instead, we will illustrate how the model can be systematically transformed
into a Java program, which will of course also exhibit the liveness problem. Indeed
we have found that the ability to exhibit the same problems in models as in
implementations is a great motivator for studying formal approaches to modelling
concurrent systems.

2.3 Translation to Java

Since models by their nature capture only some aspects of a program, we do not
attempt to automatically generate entire concurrent programs from FSP models.
Instead we adopt a systematic translation of the FSP model into Java. The first step is
to identify which of the processes in the model will be active entities in the Java
program i.e. Java threads, and which will be passive entities i.e. Java monitors. In our

216 J. Magee and J. Kramer

example, cars are clearly active entities and the bridge a passive entity. We will focus
here on translating the BRIDGE process, since the CAR processes simply become
threads that repetitively call bridge enter followed by bridge exit methods. The key
step is the translation of guarded actions in the model of the form:

when condition action -> NEWSTATE

into Java synchronized methods of the form:

public synchronized void action() throws InterruptedException
{
 while (!condition) wait();
 // modify monitor data
 notifyAll();
}

Using this on the BRIDGE process of Figure 2 yields the Java Bridge class of
Figure 5 below.

class Bridge {
 private int nr = 0; //number of red cars on bridge
 private int nb = 0; //number of blue cars on bridge

 //when nb==0 red[Id].enter -> BRIDGE[nr+1][nb]
 synchronized void redEnter()throws InterruptedException {
 while (nb>0) wait();
 ++nr;
 }

 //red[Id].exit -> BRIDGE[nr-1][nb]
 synchronized void redExit(){
 --nr;
 notifyAll();
 }

 // blueEnter & blueExit are as above with nb & nr transpose
}

Fig. 5. Java monitor – class Bridge

Figure 1 is the applet display for the Single-lane bridge program. When the “Three
Cars” button is pressed a convoy of three cars circulates in each direction. However,
since with three cars, there is always a car from one colour on the bridge, starvation of
the other coloured cars results. This is the liveness violation that was predicted by the
model.

3 Evaluation

The book includes twenty-nine complete programs. With the help of our readers, we
have discovered four bugs. Two of these bugs resulted from optimizing notifyAll() to
notify() and ignoring our own systematic translation rules for doing so! One bug
resulted from an ad-hoc translation from a model and the last bug is a liveness bug in
a bounded allocator program for which we did not build a model. This last bug has
since been corrected by producing the model and performing the translation.

 Model-Based Design of Concurrent Programs 217

Interestingly, none of the above bugs are exhibited by the Java implementations using
the standard JVM and all four of them can be found using the modelling approach we
advocate. In mitigation for publishing these erroneous programs, we have also found
bugs in programs published in existing textbooks on concurrent programming.

3.1 Finite State Processes (FSP)

FSP is really a subset of CSP designed to facilitate tool support. In this section, we
discuss some of the differences from CSP and the machine readable version of CSP
used in FDR [3].

As mentioned, the main design influence on FSP was the need to facilitate tool
support. For example, to simplify the display of the meaning of FSP processes as
LTSs, there is a strict separation between basic processes defined using action prefix
and choice, and composite processes defined using parallel composition, relabelling
and hiding. In practice, we have not found this limiting when applying FSP to either
educational or industrial examples.

For FSP we adopted the approach to alphabets outlined in [2] rather than [3]. Each
process P has an alphabet P as in[2, 3]. However, alphabets are not explicitly declared
but may be explicitly extended as in:

P = STOP + {never}.

The advantage is a simple parallel composition operator. FSP does not have an
interleaving operator, so we can always associate an action in a trace with a specific
process or a set of processes that share that action. This has considerable advantages
in exploring and debugging models. Regrettably, alphabets are the biggest source of
both student confusion and errors in models.

FSP does not include the signature output (!) and input (?) operators of CSP. This
was motivated by a desire to avoid the preconception that the modelling notation is
best suited to specifying message passing systems. Our main use of action
synchronization is to model method invocation. The benefit is a more flexible
interpretation of the domain significance of action labels. In practice, the omission of
! and ? does not seem to cause a problem for users even when models are of message
passing systems.

3.2 Properties

Our approach to dealing with safety and liveness properties has proved limiting in a
number of respects. Firstly, for simple models, the safety property is sometimes very
similar to the model. Secondly, we cannot specify some common liveness properties
such as the response property i.e. [](request <> reply). Consequently, we have
augmented the LTSA tool with a Linear Temporal Logic model checking facility. The
particular form of LTL we use is termed FLTL for Fluent LTL[6]. Fluents are used to
describe the abstract states of a model and simplify the specification of logical
properties. A fluent is defined by stating the (set of) events that make it true, and the
(set of) events that make it false. For example, the following fluent RED_ON[r] is
true when car r is on the bridge and is otherwise false.

218 J. Magee and J. Kramer

fluent RED_ON[r:Id] = <red[r].enter, red[r].exit>
fluent BLUE_ON[b:Id] = <blue[b].enter, blue[b].exit>

The safety property for the bridge is now:

assert NOCOLLISION
 = []!(exists[r:Id] RED_ON[r]
 && exists[b:Id] BLUE_ON[b])

which asserts that its is always not the case that there exists a red car on the bridge
and a blue car on the bridge. A further major advantage of this sort of property
specification is that we can easily generate witness executions by asserting the
negation of the property. This is non-trivial with properties specified as processes or
automata.

The liveness properties that are exactly equivalent to the progress properties we
defined earlier are:

assert RED_ACCESS = forall[r:Id] []<>red[r].enter
assert BLUE_ACCESS = forall[b:Id] []<>blue[b].enter

4 Conclusion

The approach we have briefly outlined in the foregoing combines clear models in a
notation based on CSP with tool support and a systematic path to implementation. It
has proved attractive to students and practitioners. We sincerely hope that, as
intended, it has played a part in overcoming resistance to formal development
methods by providing some real benefits in building correct and robust concurrent
programs.

In addition, the LTSA tool has proved a flexible platform for both our research and
that of others. Its plugin architecture [7] has enabled a range of experimental tools to
be added. Examples of these are tools to support model synthesis from scenarios [8],
graphic animation of models [9] and verification of Web services
implementations[10].

In conclusion, it remains only to acknowledge the huge debt that this work owes to
that of Tony Hoare. We can do this best by reiterating the words of Edsger Dijksta in
his preface to [2] in expressing our gratitude for “the scientific wisdom, the notational
intrepidity, and the manipulative agility of Charles Antony Richard Hoare.” Nowhere
is this more in evidence than in Communicating Sequential Processes.

References

1. Magee, J. and Kramer, J., Concurrency: State Models & Java Programs: John Wiley &
Sons, 1999.

2. Hoare, C.A.R., Communicating Sequential Processes: Prentice-Hall, 1985.
3. Roscoe, A.W., The Theory and Practice of Concurrency: Prentice Hall, 1998.
4. Cheung, S.C. and Kramer, J., Checking Safety Properties Using Compositional

Reachability Analysis. ACM Transactions on Software Engineering and Methodology,
Vol. 8(1), January 1999: pp. 49-78.

Model-Based Design of Concurrent Programs 219

Is it Fair?" in Proc. of the 7th European Software Engineering Conference held jointly
with the 7th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE'99). September 1999, Toulouse, France. Springer, Lecture Notes in Computer
Science 1687, pp. 511-527. O. Nierstrasz and M. Lemoine, Eds.

6. Giannakopoulou, D. and Magee, J. "Fluent Model Checking for Event-Based Systems", in
Proc. of the 4th joint meeting of the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2003),
Helsinki.

7. Chatley, R., Eisenbach, S., Kramer, J., Magee, J., and Uchitel, S. "Predictable Dynamic
Plugin Systems", in Proc. of the Fundamental Approaches to Software Engineering, Joint
Conferences on Theory and Practice of Software, Barcelona. Springer, Lecture Notes in
Computer Science 2984.

8. Uchitel, S., Kramer, J., and Magee, J., Incremental Elaboration of Scenario-Based
Specifications and Behaviour Models using Implied Scenarios. Transactions on Software
Engineering and Methodology (TOSEM), Vol. 13(1), Association of Computing
Machinery Press: pp. 37-85.

9. Magee, J., Kramer, J., Giannakopoulou, D., and Pryce, N. "Graphical Animation of
Behavior Models", in Proc. of the 22nd International Conference on Software Engineering
(ICSE'00). June 2000, Limerick, pp. 499-508.

10. Foster, H., Kramer, J., Magee, J., and Uchitel, S. "Model-based Verification of Web
Service Compositions", in Proc. of the Automated Software Engineering, Montreal. IEEE
CS Press.

5. Giannakopoulou, D., Magee, J., and Kramer, J. "Checking Progress with Action Priority:

Of Probabilistic wp and CSP
—and Compositionality �

Carroll Morgan��

Dept. Comp. Sci. & Eng., University of New South Wales,
NSW 2052 Australia

carrollm@cse.unsw.edu.au

Abstract. We connect probabilistic Action Systems and probabilistic
CSP, inducing healthiness conditions for the probabilistic traces, fail-
ures and divergences of the latter.

A probabilistic sequential semantics for pGCL [31] is “inserted un-
derneath” an existing but non-probabilistic link between action systems
and CSP. Thus the link, which earlier yielded the classic CSP healthi-
ness conditions [34], is induced to produce probabilistic versions of them
“for free”.

Although probabilistic concurrency has enjoyed the attentions of
a very large number of researchers over many years—including our-
selves [37]—we nevertheless hope to gain new insights by combining the
two approaches CSP and pGCL. In the meantime, however, we prob-
ably raise more questions than we answer: in particular, the issue of
compositionality—for the moment—remains as delicate as ever.

1 Introduction

A typical state-based approach to concurrency is the Action System formalism
of Back and Kurki-Suonio [3], in which the effects of transitions are described in
some simple programming language such as Dijkstra’s Guarded-Command Lan-
guage GCL [10]; the transitions’ enabling conditions are given by the commands’
guards, which are predicates over the variables of some state space. By labelling
the transitions we determine a labelled transition system.

That is, a state space is shared between a number of actions, each of which
is enabled or not depending on the current state. The execution of an (enabled)
action changes the state, which consequentially changes the set of enabled actions
available for the very next step. UNITY [7] and Event-B [1] have essentially the
same structure (although the former makes assumptions of scheduling fairness).

In contrast, a typical event-based formalisation of concurrency is the Com-
municating Sequential Processes approach due to C.A.R. Hoare [17]. There the

� We retrace the path of an earlier work [34].
�� The author is supported by a Fellowship from the Australian Research Council under

its Discovery Grant DP0345457.

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): CSP 2004, LNCS 3525, pp. 220–241, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Of probabilistic wp and CSP—and Compositionality 221

actions are called events, have no internal structure, and affect no explicit state.
The behaviour of a process is understood in terms of the sequences of events in
which it might engage, called traces and, for finer distinctions, in terms of its
failures (modelling deadlock) and its divergences (for livelock and other chaotic
misbehaviour).

Linking state- and event-based approaches is attractive because there are so
many real systems whose behaviour is partly controlled by state changes and
partly by sequencing, and for that reason a great number of researchers have
brought them together before.1 For example, the contents of a buffer is probably
best described by a state, i.e. the value(s) it contains; but the exchange of
request- and confirm messages necessary to set up the communication channel,
which the buffer serves, could well be best described by explicit sequencing.

In our earlier work [34] we linked standard, that is non-probabilistic, GCL-
style action systems and CSP by giving three simple formulae for the traces,
failures, and divergences of any action system; our approach differed from e.g.
He’s [12] and Josephs’ [22] in its use of predicate transformers [10] rather than
relations; we felt that the benefit of the predicate transformers was firstly a
simpler formulation that included divergence naturally and automatically, and
secondly the access to source-level reasoning afforded by predicate-transformer
based (i.e. wp-style) programming logic. That wp-approach has led to further
research [45, 4, 6].

In our work here we replace standard predicate transformers by the proba-
bilistic predicate transformers [24, 36] that have been developed and extended
since our earlier visit to this topic [37]: we (re-)construct and then explore a
link between “probabilistic action systems” and what will be, in effect, part of
a synthesised “probabilistic CSP”.2

We present probabilistic Action Systems first—they will be action systems
written in the probabilistic version pGCL of Dijkstra’s guarded-command lan-
guage [35, 31, 10]; the “p” in the name indicates that we have extended GCL
with an explicit operator “p⊕” for the probabilistic choice between two com-
mands.

Then we recall the details of CSP very briefly.
Finally, we use pGCL’s probabilistic relational model [23, 13] to make a link

between probabilistic Action Systems and probabilistic CSP, resulting in a syn-
thesis of probabilistic traces, failures and divergences. In the appendix we go
on to show how the probabilistic program logic [36, 35, 31], accompanying that
model, facilitates algebraic reasoning.

We conclude by discussing compositionality, which we regard as the key issue
in any exercise of this kind.

1 They have used both CSP and other styles of concurrency.
2 It differs significantly from the probabilistic CSP we constructed via the probabilis-

tic powerdomains of Jones and Plotkin [37, 19, 20, 32], and from other probabilistic
CSP ’s as well [25, 44, 32].

222 C. Morgan

System H:

initially n: = 0 1/2⊕ ± 1
hic =̂ n �= 0 → n: = 0

haec =̂ n = 0 → n: = −1 1/3⊕ 0
hoc =̂ n < 0 → n: = ±1

The program variable is just n of type integer (i.e. Z).

The initial state is chosen by flipping an unbiased coin: if it comes up heads, then n is
set to 0; if it is tails, then a demonic choice is made between setting n to +1 or to −1.

When n is +1, only hic is enabled; if it is 0, only haec is enabled; if it is −1, both hic
and hoc are enabled and an external choice is offered between them.

Action hic is neither probabilistic nor demonic; the haec action is purely probabilistic,
without demonic choice; and hoc is purely demonic, without probabilistic choice.

Note we are using the given names (e.g. hic) both to refer to actions, which can
have internal structure (e.g. can be demonic or probabilistic, and can include a guard),
and to refer to events which are simply the labels of actions and have no structure in
themselves.

Fig. 1. A probabilistic action system H

2 Probabilistic Action Systems: pAS

A probabilistic action system—or pAS—is a set of labelled actions and an ini-
tialisation; an action is a guard and a command; a guard is a predicate; and a
command is a program fragment in the probabilistic extension pGCL of Dijk-
stra’s language of guarded commands [35, 31]. An initialisation is a command
with no guard. We assume all of the above are given in the context of a collection
of program variables over which the meanings of the commands and predicates
are defined. Figure 1 is an example of a probabilistic action system in which the
actions have been labelled hic, haec and hoc.

Execution of a probabilistic action system proceeds as follows:

1. First, the initialisation is executed; then
2. Repeatedly an enabled action is selected then executed.

An action is enabled if its guard is true; it is executed by carrying out its com-
mand as determined by the semantics of pGCL; at the same time, its associated
event is deemed to have occurred.

If the repetition in Step 2 fails—because no action is enabled—then the sys-
tem is deadlocked.

One of the possible behaviours of the probabilistic action system in Fig. 1
is to execute hic,haec,hoc repeatedly and forever. But—thankfully—there are
many other possibilities: which one actually occurs depends on the outcomes of
probabilistic and demonic choices made as the pAS evolves.

Of probabilistic wp and CSP—and Compositionality 223

H =̂ H0 1/2⊕ (H−1 � H1)

H1 =̂ hic → H0

H0 =̂ haec → (H−1 1/3⊕ H0)
H−1 =̂ hic → H0 � hoc → (H−1 � H1)

Process H is the entire system of Fig. 1 initially. Process H1 is then the system as
it would behave when n is +1; and the processes H0, H−1 correspond to values 0, −1
respectively.

Fig. 2. A “plausible” pCSP-style encoding of the system H from Fig. 1

3 Probabilistic Communicating Sequential Processes:
pCSP

Probabilistic CSP is standard CSP extended with a p⊕ operator between pro-
cesses: there are many versions, distinguished usually by the way in which in-
ternal choice, probabilistic choice and external choice interact, and by whether
other features (e.g. priorities [25]) are included. When we say “pCSP” we mean
“as defined here”.3

Written in pCSP, the pAS in Fig. 1 would probably be as in Fig. 2: a set of
mutually recursive process equations in which we have “coded up” the pAS by
inventing one process term for each possible state.

The semantics of CSP–in its simplest form—includes a set of traces in which
processes can engage, where a trace is a finite sequence of events and an event
(as for a pAS) is the name of some action; we will see, however, that for pCSP
we must also consider the probability that those traces can occur. Some of the
possible traces for the pAS of Fig. 1, or equivalently (but informally) the pCSP
process of Fig. 2, are set out in Fig. 3.

After the next section we will give a formula for the traces of a pAS, and
for their associated probabilities. Subsequent sections introduce probabilistic
failures and divergences.

4 Relational Semantics of pGCL

The pGCL we use for probabilistic action systems has both a relational seman-
tics [23, 13] and a transformer semantics [24, 36]; they are consistent with each
other [36, 31] in the same way that conventional relational semantics is con-
sistent with Dijkstra’s original predicate-transformer semantics [14, 10]. In this
section we concentrate on relational semantics, because it is more intuitive (than
transformer semantics, at least at first); we develop the associated probabilistic
predicate transformers in the appendix.

3 We do not mean “the” probabilistic CSP, since there are many.

224 C. Morgan

{ 〈〉,

〈hic〉, 〈haec〉, 〈hoc〉,

〈hic, haec〉,
〈haec, hic〉,
〈haec, haec〉,
〈haec, hoc〉,
〈hoc, hic〉,
〈hoc, hoc〉,
〈hic, haec, hic〉,
〈hic, haec, haec〉,
〈hic, haec, hoc〉,

...
}

If the left alternative n: = 0 is taken in the pAS initialisation of H–with probability
1/2—then only haec is offered initially in the associated pCSP process. If the right
alternative n: = ±1 is taken—also probability 1/2—then the choice between setting n
to −1 or to +1 is made demonically. If n is set to −1, then an external choice between
hic and hoc is offered initially. In this case we thus have probabilistic, then internal
(demonic), then finally external (angelic) choice in succession. If n is set to +1, then
only hic is offered.

After hic, only haec can be offered.

After haec, with probability 1/3 an external choice hic/hoc is offered; with probability
2/3, only haec is offered (again).

After hoc, the choice between the offers hic and hic/hoc is demonic.

Fig. 3. A partial pCSP view of H from Figs. 1 and 2: its set of traces

Let the state space be S; we assume it is countable. A sub-distribution over S
is a function Δ from S into the unit interval [0, 1] such that (

∑
s:S Δ.s) ≤ 1, that

is such that the total probability over all states s of the individual probabilities
Δ.s is no more than one.4 A sub-distribution that sums to one may be called a
distribution (i.e. dropping the “sub-”).

The set of all sub-distributions over S is written S, and as a special case we
write s for the element of S that is one at s and zero elsewhere, i.e. is the point
distribution on s. We say that a distribution is standard if it is s for some s.

Non-demonic—but possibly probabilistic—programs are functions from S
to S, so that program f takes initial state s to the final sub-distribution f.s.

4 In general for function f and argument x we write f.x for the application of f to x,
and the operator associates to the left: thus f.g.x is (f(g))(x).

Of probabilistic wp and CSP—and Compositionality 225

Equivalently, the probability that f takes s to s′ is just f.s.s′. If some program
f is such that f.s.s′ is either zero or one for all s, s′, then we say that f itself
is standard ; clearly such f ’s are the representatives of traditional deterministic
programs.

Demonic probabilistic programs are functions from S to subsets rather than
to simple elements of S, that is they are of type S → PS, so that program r can
take initial state s to final sub-distribution Δ′ just when Δ′ ∈ r.s. (In this multi-
valued case we are writing “r”—instead of “f ”—as a mnemonic for “relation”.)
Thus for example the possible probabilities that program r can take initial s to
some final s′ ranges (demonically) between the minimum and the maximum of
Δ′.s′ over all Δ′ in r.s.

4.1 Examples of Simple Programs

Let the state space again be Z, and for pGCL program prog (i.e., given syntac-
tically), let [[prog]] be its relational interpretation as described above. We use n
for the program variable and n for the whole state.

We begin with atomic programs, and then introduce simple compounds.

identity — [[skip]].n = {n}
The “do-nothing” program skip takes any state to itself. Because of
our demonic/probabilistic type for programs, however, the result is
not just n again, nor even the set {n}, but rather is the singleton set
containing just the point distribution on n.

assignment — [[n: = n + 1]].n = {n + 1}
Non-demonic and non-probabilistic assignments deliver singleton sets
of point distributions: singleton sets because there is no demonic
choice; point distributions because there is no (non-trivial) proba-
bilistic choice.

probabilistic choice — [[n: = n + 1 1/3⊕ n: = n + 2]].n
= {Δ′}

where Δ′.(n + 1) = 1/3
Δ′.(n + 2) = 2/3
Δ′.n′ = 0 for other values n′

Non-demonic but probabilistic assignments deliver singleton sets of
non-trivial sub-distributions: again the sets are singleton because
there is no demonic choice; but the single element of the set is a
proper sub-distribution.

demonic choice — [[n: = n + 1 � n: = n + 2]].n
= {n + 1, n + 2}

A purely demonic (and non-probabilistic) binary choice delivers the
sub-distributions contributed by each of its operands.

226 C. Morgan

demonic probabilistic choice — [[n: = n + 1 1/3⊕1/3 n: = n + 2]].n

= {Δ′
1/3, Δ′

2/3}
where Δ′

p.(n + 1) = p
Δ′

p.(n + 2) = 1− p
Δ′

p.n
′ = 0 for other values n′

The notation p⊕q, for p + q ≤ 1, abbreviates the demonic choice
between the two probabilistic choices p⊕ and 1−q⊕: it executes the
left branch with probability at least p, the right with probability at
least q and—in any case—it is certain to execute one or the other.

4.2 “Naked” Guarded Commands and Miracles

The pGCL commands in probabilistic action systems are equipped with a guard
that controls whether or not they are enabled in the current state. We build
that in to the relational semantics of pGCL by “erasing” the parts of transitions
that the guard does not enable: if a state does not make the guard true, then its
result set is empty from that state. That is, for predicate gd we define

Δ′ ∈ [[gd → prog]].s =̂ s ∈ [[gd]] ∧ Δ′ ∈ [[prog]].s ,

where by [[gd]] we mean the subset of S denoted by the guard gd.
This is of course the “normal” way of dealing with miracles when considered

relationally: because a miraculous command has no final states at all, every
final state it produces satisfies false–and therefore we imagine that its execution
cannot even be started [41, 33, 40, 18].

The enabling/disabling property of a guard is very convenient when moving
between action systems and CSP [34, 45, 22] —whether probabilistic or not—
since it automatically excludes the traces which the action system cannot pro-
duce.

4.3 Sequential Composition in pGCL

As an action system executes, it carries out one (guarded) command after an-
other; the overall effect is the sequential composition of all the (finitely many)
commands concerned. Given two commands prog1 and prog2, we therefore want
to construct the relational semantics of their composition.

We begin with non-demonic programs f (i.e. with their meanings). If we are
given some sub-distribution Δ of initial states from which f will repeatedly be
run, the overall effect can be obtained by averaging f ’s output sub-distributions
for each initial state over the known “incoming” sub-distribution Δ for them:
thus we define

f∗.Δ.s′ =̂

(∑
s:S

Δ.s ∗ f.s.s′

)
, (1)

Of probabilistic wp and CSP—and Compositionality 227

where we distinguish the f -over-sub-distributions from the original f by writing
f∗ for the former. Note that the original can be recovered, since f.s = f∗.s.

Now to determine the effect of a possibly demonic r on an initial sub-
distribution Δ, we construct the collection of its non-demonic “refinements”
f and then refer to (1) above: that is, we say that “r is refined by f ” just when
f satisfies (∀s:S · r.s (f.s), and we write it r � f . Then we define

r∗.Δ =̂ {f :S → S | r+ � f · f∗.Δ} , 5

where again we use (·)∗ to indicate “lifting” a function to act over sub-distributions
rather than individual states, and where the relation r+ is the “down closure” of
r obtained by adding the everywhere-zero sub-distribution to r.s whenever r.s
is empty.

Finally, we describe sequential composition simply by applying the “lifted”
semantics of the second component to every final sub-distribution the first com-
ponent could produce: that is, for initial state s we define

[[prog1; prog2]].s =̂ {Δ: [[prog1]].s · [[prog2]]
∗.Δ} . 6

5 Traces of a pAS

We now use the sequential composition of Sec. 4.3 to determine the traces of a
pAS. Let its initialisation be command ini and let its events be e1, e2, · · ·. The
alphabet of the action system pAS is the set of all its events (whether or not
they actually can be executed).

We write subsets of the state space in three different ways, as convenient:
as sets of states directly (whether enumerated or given as a comprehension); as
predicates over program variables, denoting sets whose variables’ values satisfy
the predicate; and as sets of events, in which case we will mean the set of states
corresponding to the disjunction of the events’ guards. Note that the empty set
∅, whether of states or of events, corresponds to the predicate false.

When we write events or sequences of events between semantic brackets [[·]],
we mean the relational semantics of the corresponding actions, with their guards,
sequentially composed if appropriate.

In standard CSP, a trace is a finite sequence of events drawn from the alphabet;
and the traces model of a process is the set of all the traces it could carry out [17].
Because a particular trace is included in the trace-semantics of a processes if it can
occur, ourprobabilisticviewwillbe thatwe are interested in themaximumprobabil-
ity of that occurrence. For example, the sets of traces for the two standard processes

5 This set comprehension is read “vary bound variable f over its type S → S; select
those values satisfying the condition r+ � f ; form set elements from them according
to the expression f∗.Δ.”

6 In this comprehension the omitted condition defaults to true; refer Footnote 5 im-
mediately above.

228 C. Morgan

System A: initially n: = 0 hic =̂ n ≥ 0 → n: = +1
hoc =̂ n ≤ 0 → n: = −1

System D: initially n: = ±1 hic =̂ n ≥ 0 → n: = +1
hoc =̂ n ≤ 0 → n: = −1

System P: initially n: = −1 1/2⊕ +1 hic =̂ n ≥ 0 → n: = +1
hoc =̂ n ≤ 0 → n: = −1

All three systems exhibit the same potential traces, i.e. any trace comprising either
all hic’s or all hoc’s; but in System P the associated probabilities can be included by
giving a set of trace-probability pairs

{ (〈〉, 1), (〈hic〉, 1/2), (〈hic, hic〉, 1/2), (〈hic, hic, hic〉, 1/2), · · ·
(〈hoc〉, 1/2), (〈hoc, hoc〉, 1/2), (〈hoc, hoc, hoc〉, 1/2), · · · } ,

where the second element of each pair is the (maximum) probability with which the
first element can occur.

In Systems A and D the “trace-probability” would be just one when a trace can occur,
and zero when it cannot. The standard trace semantics in those cases is obtained by
removing the probability-zero pairs, and then “projecting away” the probability-one
information from those that remain.

Fig. 4. Three action systems: angelic, demonic, probabilistic

hic → STOP � hoc → STOP —external choice
and hic → STOP � hoc → STOP —internal choice

are the same, being just {〈〉, 〈hic〉, 〈hoc〉} in each case and not taking account of
the fact that the second process—with its “demon” � representing the internal
choice—cannot be forced to produce either of the non-empty traces separately.

Accordingly, in our probabilistic view, we will associate probability one with
all three traces, for both processes, with the same caveat about ignoring the
demon (for now).

Action systems for two similar processes A (for angelic) and D (for demonic)
are given in Fig. 4, together with a third system P which chooses probabilistically
between the two events. As we are about to see, it exhibits proper probabilities.

We begin by considering System P. By (informal) inspection, the probability
that hic will occur is just the probability that the initialisation ini establishes
the guard n ≥ 0 of that event. From our relational semantics of Sec. 4 we know
that the initialisation produces the single distribution

Δini =̂ {−1 �→ 1/2, +1 �→ 1/2} (2)

Of probabilistic wp and CSP—and Compositionality 229

which assigns probability 1/2 to the subset {0, 1, · · ·} of Z in which hic is en-
abled.7 We could also write that as the singleton set of guards “{hic}”.

That probability is in fact the expected value of the characteristic function of
the set concerned, taken over the distribution (2) above that the initialisation
produces. However that set is written, whether explicitly or as a predicate or
as a set of events (i.e. as the disjunction of their guards, in the last case), we
use the notation [·] to form the associated characteristic function: thus we would
write [0, 1, · · ·] or [n ≥ 0] or [hic] here, meaning in each case the function over
the integers that takes non-negative arguments to one and negative arguments
to zero.

In general, for the expected value over a sub-distribution Δ of some random
variable B (itself a function from the state space into the reals), we write∫

Δ

B =̂

(∑
s:S

Δ.s ∗B.s

)
, (3)

so that the probability 1/2 we calculated above is just
∫

Δini
[hic] .

We now form a combined notation for all the above operations, that is of
determining the relational semantics of a non-demonic command, applying it to
an initial state, and then taking the expected value of some function: we define

Exp.[[prog]].B.s =̂
∫

Δ′
B given that [[prog]].s = {Δ′} .

As a result, we know that when B is some standard [Q] for predicate Q, the
expression Exp.[[prog]].[Q].s is the probability that the non-demonic prog will
reach Q from s.8

If we now look at the action associated with hic, we see that its relational
semantics is given by

[[n ≥ 0 → n: = +1]] = {n: Z | n ≥ 0 · {n �→ {+1 }} } ,

the partial function defined only on non-negative arguments which produces the
singleton result set of sub-distributions {+1 } for each one of them. If we ask
“what is the maximum possible expected value of random variable [true] after
executing hic? ” from initial state n—for which we could invent the notation

Exp.[[n ≥ 0 → n: = +1]].[true].n 9 (4)

by incorporating the “maximum” as an overbar— we find it is just the random
variable [hic] itself, since whenever n does not satisfy hic’s guard n ≥ 0 we

7 In the usual terminology of probability theory we would speak of the probabilistic
event {0, 1, · · ·} rather than subset; but we must avoid confusion with the “events”
of CSP.

8 We will deal with the demonic-prog case shortly.
9 We are defining Exp.[[prog]].B.s =̂ (�Δ′: [[prog]].s · ∫

Δ′ B) .

230 C. Morgan

are taking the maximum over an empty set of non-negative reals, yielding zero.
When n does satisfy hic’s guard, the expression (4) gives one, the probability
assigned by the distribution +1 to the whole state space (of which [true] is the
characteristic function). That is, we find that

[hic] = Exp.[[hic]].[true] , (5)

where we recall that “hic” between semantic brackets refers to the corresponding
action, including its guard.

We can now put our two experiments with hic together: since the initiali-
sation is unguarded, terminating and purely probabilistic, it produces a single
distribution from every initial state and so is unaffected if we use Exp.[[·]] rather
than Exp.[[·]]. Thus we have that the (maximum) probability of the occurrence
of the trace 〈hic〉 in System P can be written

Exp.[[ini]].[hic].n , that is Exp.[[ini]].(Exp.[[hic]].[true]).n , (6)

where on the right we have appealed to (5). But, as we prove later in Fig. 7 of
App. A, the “cascaded” use of expectations at (6) on the right can be simplified
to just

Exp.[[ini ; hic]].[true].n (7)
because Exp.[[·]] distributes over sequential composition, becoming functional
composition.

From our operational intuition, we believe that the expression (7) will equal
1/2 for any initial n, as will the further extended Exp.[[ini ; hic; hic]].[true].n,
and so on.

Now to give the “trace semantics” of a probabilistic action system we can
use the above to map every potential trace (finite sequence of events) to the
maximum probability of its occurrence.

Let the pAS be S over a state space S. As before, for a given finite trace
say es = 〈e1, e2, · · · , en〉 of events from S we mean the sequential composition
e1; e2; · · · ; en of the events’ corresponding actions whenever es appears within
semantic brackets [[·]]. Also, we continue to use [·] to form characteristic functions,
and we let ini be the initialisation of S. Then for any predicate Q over the state
space S we define

S.〈〈es〉〉.Q =̂ (�s:S · Exp.[[ini; es]].[Q].s) , (8)

where on the right the terms S, ini, es, Q are to be interpreted within the system
S mentioned on the left. When S is clear from context, however, we omit it and
write just 〈〈es〉〉.Q on the left.

Thus Eqns. (6) and (7)—the maximum probability that trace 〈hic〉 can occur
in P—would be written simply P.〈〈hic〉〉.true. What the notation of (8) has done is
simply to bundle up the choice of action system, the inclusion of the initialisation,
and the maximising over all initial states.10

10 Maximising over initial states is usually unnecessary: since the initialisation rarely
depends on its initial state, the effect of the quantification is merely to replace some
constant function (of the initial s) by the constant itself.

Of probabilistic wp and CSP—and Compositionality 231

We can now give the probabilistic trace-semantics of S: it is a function from
finite sequences of the events of S into the real interval [0, 1], giving for each
sequence es the maximum probability of its occurrence. We call the function
pTrS , and define

pTrS .es =̂ S.〈〈es〉〉.true . (9)

Again, we omit the S when it is obvious, so that pTr.es = 〈〈es〉〉.true.

6 Failures

The traces of CSP are sufficient only for describing deterministic behaviour:
when describing (internal) nondeterminism as well, CSP makes more detailed
observations. A failure is a pair comprising a trace and a refusal; a refusal is a
set of events in which the system can “refuse” to engage.

Let es be a trace and E a refusal. The behaviour (es,E) is observed whenever
the process first engages in all the events in es and then refuses to extend the
trace with any event in E.

Systems A, D and P from Fig. 4 have the same standard traces, as we
have already seen; and the first two agree even for probabilistic traces, mapping
each possible trace to probability one and all others to zero. But A and D are
distinguished by their failures, since for example (〈〉, {hic}) is a failure of D but
not of A. Operationally we see this by noting that after initialisation of A the
event hic cannot fail to be enabled; but if the initialisation of D sets n to −1,
then hic will be disabled, and so can be refused.

In the previous section we considered expressions Exp.[[prog]].[true].s, for trace
semantics; but we know more generally that for standard [Q] (i.e. for predicate Q
not necessarily true), the expression Exp.[[prog]].[Q].s is the maximum probability
that prog will reach Q from s; and again that maximum is zero whenever the
guard of prog is false, since in that case prog cannot reach anything.

Now the “failure semantics” of an action system should give for each potential
failure (es,E) the maximum probability that it will be observed. Since this is the
maximum probability that the system can engage in es and reach a state not
enabling any event in E, we define

pFail.(es,E) =̂ 〈〈es〉〉.(¬E) , (10)

where ¬E is the complement of E, that is the subset of S in which no event of E
is enabled. Thus, as in standard CSP, we have

pTr.es = pFail.(es, ∅) .

7 Divergences

A divergence of a CSP process is a trace after which the process behaves chaot-
ically. In a pAS that behaviour is deemed to result from a potentially “abort-
ing” command, one which we will model by adding a special element ⊥ to our

232 C. Morgan

state space, to represent non-termination. Sub-distributions are now taken over
S⊥ = S ∪ {⊥}, with the value they assign to ⊥ itself being the probability that
the command fails to terminate normally.

Sequential composition is handled (in the usual way) by insisting that every
command preserves “having failed to terminate”; that is, in extending our rela-
tional semantics we insist that for all programs prog we have [[prog]].⊥ = {⊥}.
And we add to our earlier list of relational semantics examples (Sec. 4.1) the
item

abort — [[abort]].n = {⊥}
The diverging program abort takes every state to the special “bot-
tom” state ⊥.

We need not extend our random variables, however, which remain functions
of S alone; instead, we adjust the definition of Exp.[[·]] (from (4) and its Footnote
9), which becomes

Exp.[[prog]].B.s =̂ (�Δ′: [[prog]].s · Δ′.⊥+
∫

Δ′
B) , (11)

where the
∫

notation continues to denote a summation over proper (i.e. non-⊥)
values of S only, as at (3). This reflects our interest in the traces and failures a
process might do (as opposed to “can be forced to do”): the maximum probability
of any behaviour, after divergence, is one; and that is why we introduce the extra
additive term Δ′.⊥, which assigns a value of one to a command’s reaching ⊥.
(Recall that B itself is not defined for ⊥.)

With this new apparatus, we now define

pDiv.es =̂ 〈〈es〉〉.false ,

giving for any sequence of events es the maximum probability that executing the
corresponding actions can achieve the predicate false–because the only way an
action can “achieve” false is to diverge, and that is precisely the behaviour we
are trying to quantify.

In Fig. 5 we give several examples of potentially diverging probabilistic action
systems, all with alphabet {hic, hoc}. System X1 aborts immediately, and is
equivalent to the CSP process CHAOS ; for example (writing the X1 explicitly)
we have pDivX1

.es = 1 for all traces es, including the empty trace.11

System X2 literally (but informally) translated into CSP appears to be the
process that can execute (and indeed can be forced to execute) any number
of hic’s; but as soon as it does a hoc, it diverges. As in System X1, all traces
have probability one; but we have pDivX2

.〈〉 = 0 whereas we have seen that
pDivX1

.〈〉 = 1. The shortest nonzero-probability divergence for X2 is 〈hoc〉; it
and all its extensions have (maximum) probability one of divergence.

11 Divergence has implications for the failures of a system as well, as we see in Sec. 7
below: any trace or failure extending a divergence has probability at least as great
as the divergence.

Of probabilistic wp and CSP—and Compositionality 233

System X1 initially abort hic =̂ false → skip 12

hoc =̂ false → skip

System X2 initially n: = 0 hic =̂ n ≥ 0 → skip
hoc =̂ n ≤ 0 → abort

System X3 initially n: = ±1 hic =̂ n ≥ 0 → skip
hoc =̂ n ≤ 0 → abort

System X4 initially n: = −1 1/2⊕ +1 hic =̂ n ≥ 0 → skip
hoc =̂ n ≤ 0 → abort

Fig. 5. Action systems that can diverge

System X3 contains demonic choice in its initialisation, and so the process
decides internally whether to begin with hic or with hoc. If the former, it must
continue with hic’s forever (and cannot diverge); if the latter, it can execute hoc
and then diverge, continuing after that with hic’s, hoc’s or deadlock ad lib.

System X4 is like X3 except that the initial choice —still not accessible
externally—is at least predictable to the extent that it is made with the proba-
bility shown; after that, it behaves like X3. We give the complete traces, failures
and divergences of X4 in App. B.

8 Healthiness Conditions for Probabilistic Action
Systems

The failures and divergences of standard CSP satisfy the conditions listed in
Fig. 6. We discuss the probabilistic version for each one in turn; they all have
straightforward proofs in the program logic of pGCL, and as an example of that
the proof of pC3 below is given in App. A.1. Throughout, by “probability” we
mean “maximum probability”.

pC0 — pFail.(〈〉, ∅) = 1
It is always possible for a system to start, since its initialisation is
unguarded.

pC1 — pFail.(es ++ es′,E) ≤ pFail.(es, ∅)
The probability of continuing a trace is no more than the probability
of achieving the trace itself.

12 Events with guard false are in the alphabet of the system but can never be explicitly
enabled.

234 C. Morgan

C0 (〈〉, ∅) ∈ F
C1 (es ++ es′, E) ∈ F ⇒ (es, ∅) ∈ F 13

C2 (es, E) ∈ F ∧ E′ ⊆ E ⇒ (es, E′) ∈ F
C3 (es, E) ∈ F ⇒ (es ++ 〈e〉, ∅) ∈ F ∨ (es, E ∪ {e}) ∈ F
C4 es ∈ D ⇒ es ++ es′ ∈ D
C5 es ∈ D ⇒ (es, E) ∈ F

For any set of failures F and divergences D of a standard CSP process, the above
conditions hold for any event e, traces es, es′ and sets of events E, E′ over the alphabet
of the process.

Fig. 6. Healthiness conditions for standard CSP over a finite alphabet

pC2 — pFail.(es,E) ≥ pFail.(es,E ∪ E′)
The probability of refusing a set of events is no less than the proba-
bility of refusing a superset of it.

pC3 — pFail.(es,E) ≤ pFail.(es ++ 〈e〉, ∅)
+ pFail.(es,E ∪ {e})

If an event cannot be refused, then it must be accepted.

pC4 — pDiv.es ≤ pDiv.(es ++ es′)
Any event is possible after divergence.

pC5 — pDiv.es ≤ pFail.(es,E)
Any refusal is possible after divergence.

Recall that pC3 is proved in App. A.1.

9 What Now?

In fact almost everything still remains to be done.

– The refinement order for pCSP–when one process can be said to be imple-
mented by another—is suggested by the refinement order for pGCL that we
describe briefly in App. A, provided care is taken with the guards of the gen-
erating pAS. This has been shown already by a number of authors for the
standard case [22, 11, 12, 45, 4], and it should be checked for the probabilistic
case.

13 We use ++ for concatenation of traces.

Of probabilistic wp and CSP—and Compositionality 235

– Because there is a pGCL construction [36, 31] taking transformer semantics
(as in App. A) back to relational semantics (as in Sec. 4), we should expect
that there is a canonical mapping from pCSP back to a pAS in what we
would consider a “normal form”, using the technique earlier employed in the
standard case [22, 11] where the normal-form state space is the set of CSP -
style refusals over the alphabet of the process. This induces an equivalence
relation on the pAS ’s directly, and it should be verified that it is intuitively
reasonable.

– The combining operations between pAS, especially their parallel composition
but also prefixing, internal and external choice, probabilistic choice, hiding. . .
are suggested by the corresponding operations defined for standard action
systems [4, 5]: it must be checked that they respect the normal-form equiva-
lence. But parallel composition raises interesting problems, since it must in
turn be based on the parallel composition of commands (e.g. [2]), which op-
eration requires great care when those commands include both probabilistic
and demonic choice. (In fact parallel composition of initialisation commands
is necessary for external choice also.)

– Most important of all—and subsuming much of the above—is that once
the pAS operations have been defined, there should be pCSP operations
corresponding to them that are expressed only in terms of our semantic
observations pFail and pDiv. This would be compositionality.

9.1 Compositionality

Unfortunately, it has been known for some time that compositionality is not pos-
sible in terms of observations like pFail and pDiv alone [26]; indeed, we know that
“probability-of-attaining-a-postcondition” -style semantics is not compositional
even for sequential demonic/probabilistic programs [29].

The expectation-transformer semantics of pGCL however uses a generalised
form of postcondition in which states are associated with non-negative reals (the
states’ “value”) rather than simply with a Boolean (whether the state is “ac-
ceptable” or not); and pGCL semantics is compositional for sequential programs,
even when demonic- and probabilistic choice appear together [36, 35, 31].

The corresponding extension which that suggests for pCSP is that a refusal
should be a function from event to R≥ (the “cost” of refusing the event?) rather
than simply a function from event to Boolean (whether it can or cannot be
refused). A failure pFail.(es,E) would then be the (maximum possible) expected
value of the real-valued function E after observations of the trace es.

Unfortunately (again), it has already been shown that this does not offer an
easy road to compositionality [21, 15]: and so there probably will be even further
extensions required, for example a form of “may/must” testing but with respect to
testing trees (rather than the simpler “broom-like” shapes offered by failures [42]),
together with delivering quantitive rewards rather than only “yes” or “no” [9, 21].

Compositionality of course is the key to a successful abstraction. We take our
favourite example—and it is probabilistic—from genetics.

236 C. Morgan

Knowing parents’ eye colour, on its own, cannot be used to predict distribu-
tion of eye colour among their children: some brown-eyed parents are virtually
certain to produce brown-eyed children, i.e. with probability one; other brown-
eyed parents may produce blue-eyed children with a predictable probability of
one in four. Since the distribution of children’s eye colour cannot be predicted
from their parents’ eye colour alone, the eye-colour abstraction (of a person) is
not compositional for the binary operation “having children” between people: it
is too severe. This is in effect where we find ourselves with pFail and pDiv.

At the other extreme, we have the full genetic profile of both parents; though
still an abstraction, since it ignores phenotype, it may be sufficient in principle
to predict the distribution of genotype in their children: as such it would be
compositional. But it is far too costly a method if eye colour is all that interests
us. This is where we might be if we worked with pAS directly, or (equivalently)
probabilistic labelled transition systems or even probabilistic nondeterministic
automata.

Thus “eye colour” alone is economical but not reliable; and “full genetic
profile” is reliable but not economical. The right level of abstraction—the crucial
breakthrough of Mendel—came from understanding the role of dominant and
recessive characteristics (alleles), and led to a method of analysis which is both
accurate and cheap to perform. Although very difficult to find, once discovered
the abstraction “eye colour together with its dominant/recessive characteristic”
turned out to be economical, reliable and easy to understand. Most importantly,
it is compositional.

This is what we seek: the “alleles” for probabilistic, nondeterministic concur-
rent systems.

10 Conclusion

We are aware that many CSP -researchers—not to mention the even more numer-
ous membership of the CCS -based community—have “thought long and hard”
about how to introduce probability and nondeterminism together into a concur-
rent setting.

Clearly that has not stopped us from trying again, even using a very sim-
ple approach. In the ten years since our earlier encounter with “ pCSP ” [37],
we have learned a great deal about the subtleties of probabilistic vs. demonic
choice from having worked extensively on probabilistic semantics [36, 31]—both
for sequential programs (and abstraction/nondeterminism), and for two-player
games with probabilistic, demonic and angelic choice treated together [27, 28].

Treating concurrency in the “behavioural” style seems to be an inescapable
point of view for anyone who has ever seriously been exposed to “the CSP
effect” [43]. Its astonishing conceptual power and beauty—that it can express
such subtle concepts with such simple means—is undiminished, even twenty-five
years later. Nothing less elegant can ever suffice.

Of probabilistic wp and CSP—and Compositionality 237

Acknowledgements

We thank the Australian Research Council for their support under their Dis-
covery Grants Programme, and Christine Paulin-Mohring and the Laboratoire
de Recherche en Informatique (LRI) at Orsay for their hospitality during the
period March–June 2004.

We are grateful also to the organisers of the 25 Years of CSP Meeting at
which this work was first presented, and to the referee who advised us on the
preparation of the final version of the article.

References

1. J.-R. Abrial. Extending B without changing it (for developing distributed systems).
In H. Habrias, editor, First Conference on the B Method, pages 169–190. Labora-
toire LIANA, L’Institut Universitaire de Technologie (IUT) de Nantes, November
1996.

2. R.-J.R. Back and M.J. Butler. Fusion and simultaneous execution in the refinement
calculus. Acta Informatica, 35(11):921–949, 1998.

3. R.-J.R. Back and R. Kurki-Suonio. Decentralisation of process nets with cen-
tralised control. In 2nd ACM SIGACT-SIGOPS Symp. Principles of Distributed
Computing, pages 131–142, 1983.

4. M.J. Butler. A CSP approach to action systems. Technical report, Oxford Uni-
versity, 1992. (DPhil Thesis).

5. M.J. Butler. csp2B : A practical approach to combining CSP and B. Formal Aspects
of Computing, pages 182–196, 2000.

6. M.J. Butler and C.C. Morgan. Action systems, unbounded nondeterminism and
infinite traces. Formal Aspects of Computing, 7(1):37–53, 1995.

7. K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, Reading, Mass., 1988.

8. J.W. Davies, A.W. Roscoe, and J.C.P. Woodcock, editors. Millennial Perspectives
in Computer Science. Cornerstones of Computing. Palgrave, 2000.

9. M. de Nicola and M. Hennessy. Testing equivalence for processes. Theoretical
Computer Science, 34, 1984.

10. E.W. Dijkstra. A Discipline of Programming. Prentice Hall International, Engle-
wood Cliffs, N.J., 1976.

11. Jifeng He. Process refinement. In J. McDermid, editor, The Theory and Practice
of Refinement. Butterworths, 1989.

12. Jifeng He. Process simulation and refinement. Formal Aspects of Computing,
1(3):229–241, 1989.

13. Jifeng He, K. Seidel, and A.K. McIver. Probabilistic models for the guarded com-
mand language. Science of Computer Programming, 28:171–192, 1997. Available
at [30–key HSM95].

14. Wim H. Hesselink. Programs, Recursion and Unbounded Choice. Number 27 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, U.K., 1992.

15. Chris Ho-Stuart. Private communication. 1996.
16. C.A.R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576–580, 583, October 1969.

238 C. Morgan

17. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

18. C.A.R. Hoare and Jifeng He. Unifying Theories of Programming. Prentice-Hall,
1998.

19. C. Jones. Probabilistic nondeterminism. Monograph ECS-LFCS-90-105, Edin-
burgh University, 1990. (Ph.D. Thesis).

20. C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Pro-
ceedings of the IEEE 4th Annual Symposium on Logic in Computer Science, pages
186–195, Los Alamitos, Calif., 1989. Computer Society Press.

21. B. Jonsson, C. Ho-Stuart, and W. Yi. Testing and refinement for nondeterministic
and probabilistic processes. In Langmaack, de Roever, and Vytopil, editors, Formal
Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of LNCS, pages
418–430. Springer Verlag, 1994.

22. M.B. Josephs. A state-based approach to communicating processes. Distributed
Computing, 3(1):9–18, December 1988.

23. D. Kozen. Semantics of probabilistic programs. Jnl. Comp. Sys. Sciences, 22:328–
350, 1981.

24. D. Kozen. A probabilistic PDL. Jnl. Comp. Sys. Sciences, 30(2):162–178, 1985.
25. G. Lowe. Probabilities and priorities in timed CSP. Technical Monograph PRG-

111, Oxford University Computing Laboratory, 1993. (DPhil Thesis).
26. G. Lowe. Representing nondeterministic and probabilistic behaviour in reactive

processes.
web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Papers/prob.html, 1993.

27. A.K McIver and C.C. Morgan. Games, probability and the quantitative μ-calculus
qMu. In Proc. LPAR, volume 2514 of LNAI, pages 292–310. Springer-Verlag, 2002.
Revised and expanded at [28].

28. A.K. McIver and C.C. Morgan. Results on the quantitative μ-calculus qMμ. ACM
Trans. Comp. Logic, provisionally accepted, 2004.

29. A.K. McIver, C.C. Morgan, and J.W. Sanders. Probably Hoare? Hoare probably!
In Davies et al. [8], pages 271–282.

30. A.K. McIver, C.C. Morgan, J.W. Sanders, and K. Seidel. Probabilistic Systems
Group: Collected reports.
web.comlab.ox.ac.uk/oucl/research/areas/probs/bibliography.html.

31. Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Technical Monographs in Computer Science. Springer Ver-
lag, 2004.

32. M. Mislove. Nondeterminism and probabilistic choice: Obeying the laws.
math.tulane.edu/~mwm/.

33. C.C. Morgan. The specification statement. ACM Transactions on Programming
Languages and Systems, 10(3):403–419, July 1988. Reprinted in [39].

34. C.C. Morgan. Of wp and CSP. In W.H.G. Feijen, A.J.M. van Gasteren, D. Gries,
and J. Misra, editors, Beauty is Our Business. Springer Verlag, 1990.

35. C.C. Morgan and A.K. McIver. pGCL: Formal reasoning for random algorithms.
South African Computer Journal, 22, March 1999. Available at [30–key pGCL].

36. C.C. Morgan, A.K. McIver, and K. Seidel. Probabilistic predicate transformers.
ACM Transactions on Programming Languages and Systems, 18(3):325–353, May
1996. doi.acm.org/10.1145/229542.229547.

37. C.C. Morgan, A.K. McIver, K. Seidel, and J.W. Sanders. Refinement-oriented
probability for CSP. Formal Aspects of Computing, 8(6):617–647, 1996.

Of probabilistic wp and CSP—and Compositionality 239

38. C.C. Morgan and A.K. McIver. Cost analysis of games using program logic. Proc.
8th Asia-Pacific Software Engineering Conference (APSEC 2001), December 2001.
Abstract only: full text available at [30–key MDP01].

39. C.C. Morgan and T.N. Vickers, editors. On the Refinement Calculus. FACIT Series
in Computer Science. Springer Verlag, Berlin, 1994.

40. J.M. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming, 9(3):287–306, December 1987.

41. G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517–561, October 1989.

42. Amir Pnueli. Linear and branching structures in the semantics and logics of reactive
systems. In Proc. 12th Colloq. on Automata, Languages and Programming, pages
15–32. Springer Verlag, 1985.

43. A.W. Roscoe, G.M. Reed, and R. Forster. The successes and failures of behavioural
models. In Davies et al. [8].

44. K. Seidel. Probabilistic communicating processes. Technical Monograph PRG-102,
Oxford University, 1992. (DPhil Thesis).

45. J.C.P. Woodcock and C.C. Morgan. Refinement of state-based concurrent systems.
In Proc. VDM-90, volume 428 of LNCS, 1990.

A Probabilistic Program Logic for pAS

The sequential probabilistic/demonic relational semantics for pAS that we gave
in Sec. 4 is based on the work of Jifeng He and his colleagues [13]—however
we have simplified the presentation here by omitting the closure conditions they
defined for their relations and, for reasons we explained in Sec. 5, we have taken
an angelic (maximum) rather than their demonic (minimum) view.

Noting that our explicitly given random variables are all standard (i.e. they
are characteristic functions of some enabling predicate of an action), we restrict
all the random variables we use to the real interval [0, 1] throughout. This is
possible due to the probabilistic feasibility [31–Def. 1.6.2] that is the quantitative
version of Dijkstra’s Law of the Excluded Miracle [10–Property 1 p. 18]. In our
case, it says that the random variables we generate via Exp.[[·]] are pointwise
dominated by the characteristic functions we started with.

Then we define the dual

Exp.[[prog]].B.s = 1− Exp.[[prog]].(1−B).s , (12)

made possible by the fact that, by the remarks above, we can assume B ≤ 1. The
1-bounded demonic behaviour defined by Exp.[[·]], including miracle-producing
guards, is isomorphic to our Lamington model [38], obtained by extending our
original demonic/probabilistic but miracle-free model [36] with a miraculous
command magic satisfying Exp.[[magic]].B.s = 1 for all B and s.

From the Lamington semantics for pGCL we can induce a sequential Exp.[[·]]-
style semantics for the commands of our pAS, as in Fig. 7, and we note crucially
that it includes the sequential-composition property appealed to at (6) in Sec. 5
above. That is, it need not be proved from the relational semantics directly—
duality has given it to us for free.

240 C. Morgan

Exp.[[abort]].B =̂ 1
Exp.[[skip]].B =̂ B

Exp.[[n: = expr]].B =̂ B
expr
n

14

Exp.[[G → prog]].B =̂ [G] ∗ Exp.[[prog]].B
Exp.[[prog ; prog ′]].B =̂ Exp.[[prog]].(Exp.[[prog ′]].B)

Exp.[[prog � prog ′]].B =̂ Exp.[[prog]].B max Exp.[[prog ′]].B
Exp.[[prog p⊕ prog ′]].B =̂ p ∗ Exp.[[prog]].B + (1 − p) ∗ Exp.[[prog ′]].B .

Fig. 7. Structurally inductive definition of Exp.[[·]] for pAS

A.1 Super-Disjunctivity for Exp.[[·]]
A second spinoff of duality relates to the algebra of Exp.[[·]].

The Lamington transformers, with their magic, do not satisfy the sublin-
earity property of our original demonic/probabilistic transformers—for example,
magic itself is clearly not scaling. Nevertheless they do satisfy sub-conjunctivity,
that is that for all programs prog and [0, 1]-valued random variables B,B′ we
have

Exp.[[prog]].B & Exp.[[prog]].B′ ≤ Exp.[[prog]].(B & B′) , (13)

where for 0 ≤ x, y ≤ 1 we define x & y =̂ (x + y − 1) max 0. From the duality
(12) we then have immediately that

Exp.[[prog]].B [] Exp.[[prog]].B′ ≥ Exp.[[prog]].(B [] B′) , (14)

where the duality has induced a definition x[]y =̂ (x+y)min1 of a “probabilistic
disjunction”. We call this super-disjunctivity.

This important inequality—which is fully general, applying even when prog
is both probabilistic and angelic15—can be used for example to prove the health-
iness condition pC3 for probabilistic action systems that we gave in Sec. 8. Thus
we have for trace es, event e and set of events E the calculation

pFail.(es ++ 〈e〉, ∅) + pFail.(es,E ∪ {e})
≥ pFail.(es ++ 〈e〉, ∅) [] pFail.(es,E ∪ {e}) arithmetic
= 〈〈es ++ 〈e〉〉〉.(¬∅) [] 〈〈es〉〉.(¬(E ∪ {e})) definition pFail at (10)
= 〈〈es〉〉.{e} [] 〈〈es〉〉.(¬(E ∪ {e})) sequential composition
≥ 〈〈es〉〉.({e} [] (¬E ∪ {e})) definition 〈〈es〉〉. at (8); Property (14)
= 〈〈es〉〉.(¬(E− {e})) set algebra

14 By B
expr
n we mean syntactic replacement of n by expr in B, respecting bound vari-

ables.
15 Neither sub-conjunctivity nor super-disjunctivity applies however if the probabilistic

programs are both demonic and angelic.

= pFail.(es, E− {e}) definition pFail
≥ pFail.(es, E) . Condition pC2

Of probabilistic wp and CSP—and Compositionality 241

B Complete Traces etc. for System X4 of Fig. 5

Trace Associated maximum probability

〈〉 1 Empty trace always gives 1.

〈hic〉 1/2 Initialisation sets n to +1.
〈hoc〉 1/2 Initialisation sets n to −1.

〈hic, hic〉 1/2 Variable n remains +1 . . .
〈hic, hoc〉 0 . . . so that hoc is never enabled;
〈hoc, hic〉 1/2 but divergence after hoc . . .
〈hoc, hoc〉 1/2 . . . allows anything.

Any non-empty trace comprising only hic’s : Probability 1/2.
Any trace beginning hic but containing a hoc : Probability 0.
Any trace beginning hoc : Probability 1/2.

Fig. 8. Complete traces for System X4 of Fig. 5

Failure Associated maximum probability

(〈〉, {}) 1 Empty offer is always refused.
(〈〉, {hoc}) 1/2 Initialisation sets n to +1.
(〈〉, {hic}) 1/2 Initialisation sets n to −1.
(〈〉, {hic, hoc}) 0 Initialisation does not diverge or deadlock.

(〈hic〉, {}) 1/2 Empty offer refused. . . if we get this far.
(〈hic〉, {hic}) 0 Event hic must follow hic . . .
(〈hic〉, {hoc}) 1/2 . . . but hoc cannot.
(〈hic〉, {hic, hoc}) 0 Action hic does not diverge or deadlock.

(〈hoc〉, E) 1/2 Anything can be refused after divergence,
including the entire alphabet.

Any failure whose non-empty trace comprises only hic’s : As for trace 〈hic 〉.
Any failure whose trace begins hic but contains a hoc : Probability 0.
Any failure whose trace begins hoc, no matter what refusal : Probability 1/2.

Fig. 9. Complete failures for System X4 of Fig. 5

Divergence Associated maximum probability

Any trace beginning hoc Probability 1/2.
Any other trace Probability 0.

Fig. 10. Complete divergences for System X4 of Fig. 5

Order, Topology, and Recursion
Induction in CSP

Mike Reed

Oxford University Computing Laboratory

Abstract. Recursion induction is a method for proving that CSP
processes which are defined as the least fixed points of some Scott-
continuous function from a complete partial order on the set of all pro-
cesses to itself meet a given behavioural specification. The Scott (order
version) requires that (1) the specification S is closed via the least up-
per bound of directed sets in the complete partial order, (2) S(bottom),
and (3) if S(P then S(F (P). It is then concluded that S(f ix(F)), where
f ix(F) is the least fixed point of F . This version uses the Tarski fixed
point theorem. The Roscoe (topology version) assumes not only the com-
plete partial order on the set of all processes, but also a complete metric
on the set of all processes. This version requires that the recursive func-
tion F be a contraction function with respect to the complete metric.
It requires (1) S is closed with respect to limits in the complete met-
ric, (2) there exists a P such that S(P), and (3) if S(P) then S(F (P).
Again, it is then concluded that S(f ix(F)), where f ix(F) is the unique
fixed point of F . This version uses the Banach fixed point theorem.
The Scott version is sufficient in the traces model for CSP, since most
useful predicates are satisfied by (bottom = STOP). However in the
failures-divergences model, the Roscoe version is required, since few use-
ful predicates are satisfied by (bottom = CHAOS). The usual model
for the failures-divergences model is a Scott domain (i.e., an algebraic,
bounded-complete, complete partial order), where the maximal elements
are exactly the non-deterministic processes. The complete metric used
for the Roscoe fixed point version agrees with the Scott topology on the
set of maximal elements. In this talk we develop a general theory for re-
cursion induction based on the Scott topology of the maximal elements
in a domain. The theory assumes no other information, hence it is only
applicable for functions which have their least fixed point as a maximal
element. It includes all complete metric spaces. It covers spaces which
are not metrizable. It covers the existing examples for recursion induc-
tion in CSP. As a result of our topological analysis, we answer several
open questions in the literature about the topology of the set of maxi-
mal elements in a domain. One interesting example is showing that one
proposition is independent and consistent with ZFC.

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, p. 242, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

Verifying Security Protocols:
An Application of CSP

Steve Schneider and Rob Delicata

Department of Computing, University of Surrey

Abstract. The field of protocol analysis is one area in which CSP has
proven particularly successful, and several techniques have been proposed
that use CSP to reason about security properties such as confidentiality
and authentication. In this paper we describe one such approach, based
on theorem-proving, that uses the idea of a rank function to establish
the correctness of protocols. This description is motivated by the consid-
eration of a simple, but flawed, authentication protocol. We show how a
rank function analysis can be used to locate this flaw and prove that a
modified version of the protocol is correct.

1 Introduction

In their seminal paper [NS78], Needham and Schroeder proposed a way of us-
ing cryptographic mechanisms, such as public-key and shared-key encryption,
in order to establish authentication guarantees across networks. Such mecha-
nisms typically involve an exchange of messages between participants, and are
known as authentication protocols. Participants carry out cryptographic opera-
tions particular to them (such as encrypting with a specific secret key) which are
intended to provide guarantees as to their identity. Such protocols are designed
to provide authentication even in insecure environments, where other parties can
potentially interfere with messages over the network in various ways. For exam-
ple, messages can be overheard, copied, blocked, replayed, diverted, duplicated,
and spoofed.

As a motivating and running example, we will consider the following exchange
of messages, which appears as a simple (flawed) authentication protocol in the
Handbook of Applied Cryptography [MVV96]:

A→ B : nA
B → A : {nA,nB}KAB

A→ B : nB

The aim of this protocol is for each of the participants to authenticate themselves
to the other. In other words, each participant should know, by the end of the
protocol, the identity of the other participant.

This protocol involves two participants, A and B , who share a symmetric
cryptographic key KAB (which can also be written KBA) which is used by each

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, pp. 243–263, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

244 S. Schneider and R. Delicata

of A and B to encrypt and decrypt messages to and from the other. The protocol
relies on the assumption that no party other than A or B knows this key. The
protocol begins with A, acting as initiator, who invents a new random number (or
nonce), nA, and transmits it to B . This nonce is sent unencrypted, so any other
agent could potentially eavesdrop and learn its value, or spoof some arbitrary
nonce nI to B as if it came from A. (As a result, B ’s receipt of the nonce does
not carry any assurance that it originated from A.)

On receipt of the nonce nA, B , as responder, performs a cryptographic op-
eration that no other party can perform: by encrypting the nonce with KAB .
This message is then sent to A, who decrypts it using KAB . If this decryption
contains the nonce nA then this provides a guarantee that nA must have been
received and encrypted by B , since B is the only other party that knows KAB .
This results in the authentication of B to A: A knows that she has been commu-
nicating with B , and not some malicious party pretending to be B . In order to
achieve authentication in the other direction (A to B), B also includes a freshly
generated nonce nB in the encryption of the second message. A is able to de-
crypt this nonce and send it back, unencrypted, to B . On receipt of nB , B has
an assurance that it was A who received and returned the nonce, and hence was
the other party involved in the protocol run.

The assurances are obtained by virtue of the fact that KAB is known only to A
and B , and hence evidence of its use provides evidence that A or B were involved
in carrying out the encryption or decryption. Indeed, if A and B are only ever
involved in one protocol run, then the protocol does provide the authentication
required of it: A cannot reach the end of the run unless B is involved; and B
cannot reach the end of the run unless A is involved.

However, agents can generally be involved in multiple protocol runs, possibly
simultaneously, potentially with a variety of other participants, and in each case
may assume the role of either initiator or responder (or, indeed, both). Under
such circumstances, the protocol is susceptible to an attack: an exchange of
messages after which one agent has reached a state where authentication appears
to have been established, and yet where the party supposedly authenticated has
not in fact been involved.

The attack (also given in [MVV96]) involves two runs, where A assumes the
role of initiator in one run and responder in the other. In both runs A intends
B to be the other party, but in fact the messages are being processed by some
other agent E (B), who A considers to be B . The runs, labelled α and β, are
interspersed as follows:

α : A→ E (B) : nA
β : E (B)→ A : nA
β : A→ E (B) : {nA,n ′

A}KAB

α : E (B)→ A : {nA,nA}KAB

α : A→ E (B) : nA

Verifying Security Protocols: An Application of CSP 245

The steps of the attack are as follows:

1. A initiates a run using nonce nA, apparently with B ; but the nonce is inter-
cepted by E (B).

2. E (B) initiates a separate run with A (who thus takes the role of responder),
apparently with B , using the same nonce nA.

3. On receipt of the nonce nA, A invents a responder’s nonce n ′
A and then

returns it, together with nA, encrypted under KAB .
4. E (B) intercepts this message and sends back exactly the same message to A

as the response to the original nonce challenge nA of the first run. A accepts
the nonce n ′

A as the nonce nB provided by B .
5. A responds with the nonce nA just received.

After this exchange of messages, A has reached the end of the protocol run,
apparently with B , and hence the protocol is intended to provide an assurance
that B was indeed the other participant. However, B has not been involved at
all. Hence the protocol does not provide the assurances required of it.

Having identified the attack, it is possible to suggest corrections which will
prevent it. In this example the attack was possible because the second message
is symmetric in terms of initiator and responder, and contains no information
about which participant created it. This allowed a situation in which A generated
such a message and was later persuaded to accept it as if it came from the other
party. Introducing the name of the participant who encrypted the message would
prevent the attack above. This results in the revised protocol:

A→ B : nA
B → A : {B ,nA,nB}KAB

A→ B : nB

However, can we be confident that no other attacks are possible on the corrected
protocol?

In order to obtain such confidence, it is necessary first to clarify several issues
around the protocol:

– What kind of environment is the protocol designed for? In other words, what
are the kinds of attacks that the protocol is designed to be resistant to? For
example, on a broadcast network an attacker may be able to overhear and
spoof messages, but be unable to block them.

– What level of authentication is the protocol designed to provide? For exam-
ple, is it simply intended to establish that the authenticated agent is present
(e.g. that a server is up), or that the authenticated agent knows who he is
communicating with.

– Are the other participants assumed to be honest (i.e. attacks can only orig-
inate from outside the collection of protocol participants) or can they be
dishonest?

– Can participants run arbitrarily many concurrent protocol sessions, or are
there restrictions?

246 S. Schneider and R. Delicata

This kind of information should be included with any protocol description:
the correctness of a protocol consists not only in the sequence of messages it
describes, but also the environment it is designed for.

There have been a variety of approaches proposed for analysing and veri-
fying security protocols [Mea92, Mil95, THG99, Low98, Pau98, CDL+99b, AG98,
DFG00]. Such approaches do indeed incorporate such information into the mod-
els that they describe and analyse.

This paper is concerned with the application of CSP [Hoa85, Ros97, Sch99]
to the verification of security protocols, and in particular with the rank function
approach. There has already been significant experience of the application of
CSP to communications protocols, and that experience provides a framework
for the application of CSP to authentication protocols. Broadly speaking, there
are three components of the approach:

– The requirements on the protocol are expressed either as a CSP process (to
be refined by the implementation), or as sat specifications on the observable
behaviours of the overall system: traces, failures, divergences. Such specifi-
cations describe the appropriate behaviour, and provide a basis for judging
whether protocols exhibit correct behaviour or not.

– A protocol, although initially described in terms of message exchanges, is
captured in CSP in terms of the behaviour of each participating agent, lead-
ing to an agent-oriented rather than a message-oriented viewpoint. Each par-
ticipant in the protocol is described as a CSP process. This shift in viewpoint,
away from message transmission and reception, and towards the individual
agents considered in terms of their interactions with the rest of the system, is
a key feature in the success of the approach when applied to authentication
protocols, since it naturally focuses on where attacks might come from and
hence how they should be prevented.

– Finally, the environment is also described as a CSP process. In communi-
cations protocols, this is generally an unreliable medium which might lose,
reorder, or duplicate messages. The particular behaviour captured within
the medium is precisely that behaviour that the protocol has been designed
to overcome. For example, the traditional alternating bit protocol (see e.g.
[Sch99]) is designed to provide reliable communication over a medium which
can lose messages, and so the analysis of the protocol includes a CSP descrip-
tion of exactly such a medium (which non-deterministically either reliably
communicates a message or else loses it). In the case of security protocols,
we need to include the capabilities of possible attackers.

When all three components are in place: specification, environment, and protocol
description, then the mature tools and techniques that CSP has to offer can
be brought to bear on particular protocols, and whether or not they meet a
particular specification.

This paper assumes a knowledge of CSP and, in particular, the notations of
[Sch99].

The next section elaborates a theory for verifying authentication protocols
based on this approach.

Verifying Security Protocols: An Application of CSP 247

2 Verifying Authentication Protocols in CSP

Any authentication protocol is intended to run over a network which can be
subject to particular kinds of attack. We take the approach of considering an
attacker (synonymous terms include ‘intruder’, ‘enemy’, ‘spy’, and ‘penetrator’)
in terms of capabilities, such as being able to intercept messages on the network,
create new messages for passing on the network, redirecting messages, and so
on. We will assume a single attacker, though in fact the attacker we will describe
has the ability to behave as a collection of attackers.

2.1 The Attacker

Since the aim is to prove that protocols are correct, we take a pessimistic point
of view and assume an attacker with maximal capabilities. In the worst case, the
attacker has complete control over all the messages in the network. If a protocol is
secure even in such an environment, then it will be secure in any weaker, perhaps
more realistic, environment. The only capabilities the attacker should not have
are the ability to encrypt or decrypt messages without the appropriate keys. As
a consequence, we assume there is enough redundancy in the cryptosystem so
that each ciphertext can be produced in exactly one way. This restriction has
become known as the perfect encryption assumption [PQ00].

We use the Dolev-Yao model, first proposed in [DY83], in which the attacker
has complete control of the network and, to all intents and purposes, replaces
the network. Thus, messages that are sent are automatically intercepted and
held by the attacker. Messages that are received from the network must have
come from the attacker. This simple model allows for the kinds of attacker be-
haviour described earlier. It allows for messages to be delivered normally, since
one action the attacker can take is to deliver messages to the intended recipi-
ent unaltered. However, it also allows for messages to be misdirected, blocked,
spoofed, reordered, and duplicated. Furthermore, the attacker can himself be in
possession of some agent identities (names and associated cryptographic keys)
and so appear to other agents on the network as a potential communication
partner. In this way, dishonest agents are encapsulated within the model. Any
message that can be generated by the attacker, from what he has already ob-
served and what he originally knows, can potentially be delivered to any other
agent on the network, as if it came from any other agent.

The details of the CSP description of the attacker model will reflect the kind
of environment the protocol is designed for. For example, if the protocol is in-
tended to operate between two known honest participants, then the attacker
might not itself control any agent identities. Furthermore, the precise crypto-
graphic capabilities of the attacker will also be incorporated into the model, and
this might be protocol-specific.

The overall network consists of a number of users connected to the commu-
nications medium, which is under the control of the attacker. The users will be
modelled as CSP processes USERi , where i is the agent’s name. We will use a
channel trans.i for agent i to transmit messages intended for other users onto

248 S. Schneider and R. Delicata

Pairing
S � m1 S � m2

S � m1 · m2

Unpairing
S � m1 · m2

S � m1 S � m2

Member

S � m
[m ∈ S]

Subset
S ′ � m

S � m
[S ′ ⊆ S]

Transitive closure
∀ s ′ ∈ S ′.S � s ′ S ′ � m

S � m

Encryption
S � m S � k

S � {m}k

Decryption
S � {m}k S � k

S � m

Fig. 1. Attacker inference rules

the network. An event trans.i .j .m will correspond to agent i sending message m,
intended for agent j . We will use a channel rec.j for agent j to receive messages
from the network. An event rec.j .i .m corresponds to agent j receiving message
m from the network, apparently from i . All message exchanges between protocol
participants will use channels and events of this form.

We also need to define the kind of messages that can be passed around the
network. This will depend on the protocol under analysis, since different pro-
tocols use different message constructions. For the example protocol introduced
earlier, we will have three pairwise disjoint sets, USER, NONCE , KEY , which
give the agent identities, nonces, and keys respectively. Furthermore, for each
pair of distinct users i and j , there will be a shared key kij = kji such that
different pairs of agents have different shared keys. We will use the following
space of messages, defined using BNF as the set MESSAGE :

M1,M2 ::= messages
I (∈ USER) agent identities
N (∈ NONCE) nonces
K (∈ KEY) keys
M1.M2 concatenation of messages
{M }K encryption of message M by key K

For this space of messages, we can define the attacker’s capabilities in terms of
the generation of new messages from those already possessed. We introduce a
‘generates’ relation), which relates a set of messages S to a message m that
can be generated from S . It is defined to be the least relation closed under the
inference rules of Figure 1. We are now in a position to describe the CSP model
of the Dolev-Yao style attacker. It is given as the process ENEMY , defined as
follows:

ENEMY (S) = trans?i?j ?m → ENEMY (S ∪ {m})
�

� i∈USER
j∈USER
m|S�m

rec!i !j !m → ENEMY (S)

Verifying Security Protocols: An Application of CSP 249

The process ENEMY (S) describes the possibilities available to an attacker in
possession of the set of messages S . The first branch of the choice models the
situation that a new message m can always be transmitted from any user to
any other user, and this will be intercepted and added to the set of messages
possessed by the attacker. The second branch of the choice describes that the
attacker can provide any message m that can be generated from S to any user
i , as if it came from any other user j . In this case the attacker’s store of known
messages S does not change.

The enemy will have some initial knowledge, including some nonces he can
use, agents’ identities, and cryptographic keys of agents that he controls. If the
initial knowledge is given as the set IK , then ENEMY — the environment that
the protocol runs over — is given by

ENEMY = ENEMY (IK)

2.2 Specifying Authentication

When two parties engage in a protocol run aimed at authenticating one to the
other, the intention is that completion of the run by the authenticating party
provides a guarantee that the other party had also participated in the run. Since
specifications in CSP are defined in terms of events, we will introduce special
signal events into the protocol runs at the points we wish to mark: completion of a
protocol run, and participation in a run. The approach of introducing matching
signals to specify authentication was introduced (not in the CSP context) by
Woo and Lam [WL93]. These signals are introduced purely for the purposes
of specification, to describe stages that protocol participants have reached, and
they are used in the analysis and verification of the protocol. They are not events
that the attacker can engage in.

In our example, we will introduce only two signals. Generally, others could
be introduced depending on the authentication properties of interest.

Here we consider the property of the initiator authenticating the responder.
This can be specified by introducing the following signals:

– initdone.i .j .n, which i performs after a protocol run as initiator involving j ,
and using n as the nonce.

– respgo.j .i .n, which j performs during a protocol run as responder apparently
initiated by i with nonce n.

The set of all possible signals for this protocol and property is defined as follows:

SIGNAL = {initdone.i .j .n | i ∈ USER ∧ j ∈ USER ∧ n ∈ NONCE}
∪ {respgo.i .j .n | i ∈ USER ∧ j ∈ USER ∧ n ∈ NONCE}

These signals will be inserted into the protocol runs. The intention is that
an occurrence of the signal initdone.A.B .nA guarantees that (elsewhere in the
network, at B ’s location) the event respgo.B .A.nA has previously occurred, at
least once. Thus the respgo signal must be inserted before the responder trans-
mits his response to the first message, since it must be placed causally prior to

250 S. Schneider and R. Delicata

initdone.A.B .nA

respgo.B .A.nA

{B , nA, nB}KAB

nB

nA

A B

Fig. 2. Introducing matching signals

the initdone message. The placing of the signals into the protocol is illustrated
in Figure 2.

The inclusion of a specific nonce with the signal means that the agents must
agree on the particular protocol run: A does not only authenticate B ’s presence,
but also that B was engaged in the same protocol run.

The use of signals enables authentication to be expressed as a trace specifica-
tion: that any occurrence of initdone.A.B .nA in any trace of the overall network
must be preceded by some occurrence of respgo.B .A.nA. This can be defined
formally on traces, as:

respgo.B .A.nA precedes initdone.A.B .nA

where

a precedes b =̂ tr � a = 〈〉 ⇒ tr � b = 〈〉
Observe that this specification allows arbitrarily many b events in response to a
single a event. This has been termed non-injective agreement [Low97].

The inclusion of different information in the signals can give rise to different
authentication requirements. For example, the removal of the nonce from the
signals would allow interactions in which A’s run could correspond to a different
run from B (i.e. one with a different nonce). However, there would still be a
guarantee that B has been involved in some run apparently with A. An even
weaker authentication would simply allow the signal respgo.B , not even requiring
that B is engaged in a run apparently with A. This form of authentication might

Verifying Security Protocols: An Application of CSP 251

be appropriate if A simply requires some guarantee that B is alive. In practice
different notions of authentication are appropriate to different situations, and the
use of signals containing appropriate levels of detail allow these differences to be
expressed. The various flavours of authentication are discussed in [Sch98, Low97].

2.3 Protocol Participants

The protocol participants are also described as CSP processes. Here we will
consider the modified version of the protocol where the responder’s identity is
included in the encryption of the second message. There are two possible roles
in the protocol, and each of these will be described as a process.

An initiator run is parameterised by the identity of the initiating agent, the
identity of the agent she wishes to authenticate, and the nonce used in the run.
Thus we define INITi(j ,n) as a run of agent i using nonce n to authenticate j :

INITi(j ,n) = trans.i .j .n →
rec.j .i?{j .n.y}kij →
trans.i .j .y →
initdone.i .j .n → Stop

Observe the use of pattern matching in the input of the second message: n, j ,
and kij are already fixed, and the input message must match these. However,
any value for y can be accepted.

Similarly, RESPj (n ′) is a responder run for agent j , using nonce n ′ for the
nonce that he generates. This is defined as follows:

RESPj (n ′) = rec.j ?i?x →
respgo.j .i .x →
trans.j .i .{j .x .n ′}kij →
rec.j .i .n ′ → Stop

Observe that RESPj (n ′) is ready to run the protocol with anyone who requests.
In the most general case, an agent will be prepared to participate in any

number of concurrent protocol runs in either role, which is expressible as an
interleaving of runs. Our model must incorporate the fact that each run uses a
different nonce, so we will use a collection of pairwise disjoint sets of nonces: N I

j

will be an infinite set of nonces that j can use on initiator runs; and N R
j will

be an infinite set of nonces that j can use on responder runs. A general agent is
then given as:

USERj = (|||n∈NI
j
�i

INITj (i ,n))

|||
(|||n∈NR

j

RESPj (n))

252 S. Schneider and R. Delicata

USERA

USERC

USERBtrans.A

rec.A

trans.B

rec.B

initdone.A respgo.B

USERE

ENEMY

Fig. 3. The Dolev-Yao model in CSP

The resulting system is given by

SYSTEM = (|||i USERi) |[{| trans, rec |}]|ENEMY

This architecture is pictured in Figure 3.
To show that the protocol ensures that A authenticates B , we aim to establish

that the following specification holds:

SYSTEM sat respgo.B .A.nA precedes initdone.A.B .nA

3 A Theorem for Verifying Authentication

We will now introduce the rank function approach to verifying authentication
protocols. In this approach we consider a restriction to the process SYSTEM
which prevents the occurrence of respgo.B .A.nA, and then aim to establish that
initdone.A.B .nA cannot occur. This approach is valid because

SYSTEM sat respgo.B .A.nA precedes initdone.A.B .nA

⇔ SYSTEM |[respgo.B .A.nA]|Stop sat tr � {initdone.A.B .nA} = 〈〉

We will associate a value, or rank, with each message that might occur in
the restricted system, and aim to establish an invariant based on the message
values: that only those with positive ranks can circulate in the restricted system.
We aim to define a rank function ρ : MESSAGE ∪SIGNAL→ Z with properties
that enable us to do this.

Our required result will follow if we can establish the following properties for
the rank function:

Verifying Security Protocols: An Application of CSP 253

1. The attacker should not initially possess any messages of non-positive rank;
2. If the attacker only possesses messages of positive rank, then any messages

he can generate should also be of positive rank;
3. The signal initdone.A.B .nA has non-positive rank;
4. Any agent, when restricted on respgo.B .A.nA, does not introduce messages

or signals of non-positive rank if it has not previously received any such
messages.

The first two conditions between them ensure that the attacker cannot intro-
duce any non-positive rank messages; and the fourth condition ensures that the
protocol agents cannot do this either. Together these conditions ensure that no
message or signal of non-positive rank can occur in the restricted system. Since
the third condition requires that the signal we are concerned about should have
non-positive rank, we can conclude that this signal indeed cannot occur.

These conditions are formalised in the rank function theorem, which is the
heart of the approach:

Theorem 1. If ρ : MESSAGE ∪ SIGNAL→ Z is such that:

1. ∀m ∈ IK .ρ(m) > 0
2. ∀S ⊆ MESSAGE .(ρ(S) > 0 ∧ S) m)⇒ ρ(m) > 0
3. ρ(b) � 0
4. ∀ i .(USERi |[a]|Stop) sat ρ(tr � rec) > 0⇒ ρ(tr) > 0

then (|||i USERi) |[trans, rec]|ENEMY sat a precedes b.

Here we have abused notation, and extended ρ to apply not only to messages
and signals, but also to events, traces, and sets:

– ρ(c.m) = ρ(m)
– ρ(tr) = min{ρ(s) | s in tr}
– ρ(S) = min{ρ(s) | s ∈ S}

Thus, if we can find a rank function ρ which meets the four conditions above,
then we will have established that the system as described meets the correspond-
ing authentication property expressed as a precedes b.

3.1 Preserving Rank

The first three conditions of the rank function theorem can be checked indepen-
dently of any CSP protocol description. However, the fourth condition requires
verification of CSP processes against a specification. The benefits of using the
CSP traces model is that a number of application-specific rules can be identi-
fied, and applied in this particular kind of verification. We are interested in the
property maintains ρ:

maintains ρ =̂ ρ(tr � rec) > 0⇒ ρ(tr) > 0

Figure 4 identifies some compositional rules which are useful for establishing this
property.

254 S. Schneider and R. Delicata

Interleaving
∀ i .(Pi sat maintains ρ)

|||
i
Pi sat maintains ρ

External choice
∀ i .(Pi sat maintains ρ)

�
i
Pi sat maintains ρ

Prefixing
P sat maintains ρ ρ(e) > 0

e → P sat maintains ρ

Stop
Stop sat maintains ρ

Input
∀ x .(ρ(f (x)) > 0 ⇒ P(x) sat maintains ρ)

rec.i?j?f (x) → P(x) sat maintains ρ

Fig. 4. Composition rules for maintains ρ

The last rule in this figure requires some explanation. It concerns input of
a message which matches a particular pattern f (x), with subsequent behaviour
P(x). If we can show that P(x) sat maintains ρ whenever the input has positive
rank, then we can conclude that the inputting process rec.i .j ?f (x)→ P(x) also
maintains positive rank. We are not concerned with P(x) for which ρ(f (x)) � 0,
since in such cases the non-positive-rank message must have been introduced
externally to the process, and so we do not need to consider whether P(x)
maintains positive rank.

3.2 Verifying the Modified Protocol

We aim to identify a rank function which meets the four conditions of the rank
function theorem. In devising a rank function it is helpful to consider the sorts of
messages that can legitimately pass on the network. Furthermore, the nature of
the generates relation), and the CSP protocol descriptions, impose constraints
on any putative function ρ.

For the fourth condition, we are required to show, for an arbitrary user C ,
that:

USERC |[respgo.B .A.nA]|Stop sat maintains ρ

We have that:

USERC |[respgo.B .A.nA]|Stop

= |||n �i
(INITC (i ,n) |[respgo.B .A.nA]|Stop)

||| |||n(RESPC (n) |[respgo.B .A.nA]|Stop)

In order to show that this combination satisfies maintains ρ, the inference rules
for interleaving and choice in Figure 4 mean that we have only to establish that

Verifying Security Protocols: An Application of CSP 255

each component separately maintains ρ. In other words, for each C , i , and n,
we have to establish:

INITC (i ,n) |[respgo.B .A.nA]|Stop sat maintains ρ

RESPC (n) |[respgo.B .A.nA]|Stop sat maintains ρ

There are a number of cases to consider:

Case INITC , C = A, i = B , n = nA In this case we have

INITA(B ,nA) |[respgo.B .A.nA]|Stop =
trans.A.B .nA → rec.A.B?{B .nA.y}KAB

→ trans.A.B .y → initdone.A.B .nA → Stop

We know from condition 3 that initdone.A.B .nA must have non-positive rank,
since this is the signal whose non-occurrence we wish to establish. If we are to
apply the rules for prefixing to establish that this process satisfies maintains ρ,
then we require that the message input in step 2 of the protocol must have non-
positive rank. This follows because the behaviour following a positive rank input
must itself satisfy maintains ρ—and this is not possible because initdone.A.B .nA
(necessarily non-positive rank) is performed.

Thus we obtain a constraint on the rank function we are searching for to
establish correctness: that any message of the form {B .nA.y}KAB must have
non-positive rank.

Case RESPB A second case which is of interest is that of agent B as responder.
In this case we have that

RESPB (y) |[respgo.B .A.nA]|Stop =
rec.B?i?x →⎧⎨⎩

respgo.B .i .x → trans.B .i .{B .x .y}KBi

→ rec.B .i .y → Stop if i �= A or x �= nA
Stop if i = A and x = nA

The particular run with A and nonce nA is blocked, but all other runs are
allowed.

If the input message x has positive rank, and the first branch of the condition
is followed, then we have that either i �= A, or x �= nA. In this case the trans-
mitted message {B .x .y}KBi should also have positive rank, since this protocol
run should not introduce non-positive-rank messages.

A Candidate Rank Function. The constraints arising from the two cases
above give rise to the first attempt at a rank function. This is given in Figure 5.
In this rank function, we give a rank of 0 to those messages and signals identi-
fied above as requiring non-positive rank, and also the shared key KAB , which

256 S. Schneider and R. Delicata

ρ(i) = 1

ρ(n) = 1

ρ(k) =

{
0 if k = kAB

1 otherwise

ρ(m1.m2) = min{ρ(m1).ρ(m2)}

ρ({m}k) =

{
0 if m = B .nA.y and k = kAB

ρ(m) otherwise

ρ(sig) =

{
0 if sig = initdone.A.B .nA

1 otherwise

Fig. 5. A rank function for authentication

must remain out of the hands of the attacker to prevent him from constructing
messages that should not circulate. Other atomic messages (nonces, agent iden-
tities, other keys) can have rank 1. Other compound messages essentially have
the ranks dictated by their components: if a message’s content has rank 0, then
any encryption or concatenation of that message will likewise have a rank of 0.

It is straightforward to check that condition 2 holds for this rank function,
and it is entirely reasonable to state that in the model the attacker does not
start with any message of rank 0, as required by condition 1.

Lastly, we are required to show that condition 4 holds for all other cases. How-
ever, since these cases do not involve the important signals or protocol messages
their proofs are all straightforward:

– RESPA: only generates messages {A.x .n}KAi , which are of positive rank;
– INITA(i ,n), where i �= B or n �= nA. In this case, the signal provided at the

end of the run will have rank 1, so no message or signal of non-positive rank
is produced;

– INITB (i ,n): only produces messages and signals of positive rank;
– INITC , RESPC (C �= A,B): only produce messages and signals of positive

rank.

Thus the rank function is sufficient to establish that the corrected protocol indeed
provides authentication of B to A.

It is instructive to see where this approach fails on the original flawed pro-
tocol. In that protocol there is no agent name included in the second message.
When considering the case INITC ,C = A, i = B ,n = nA, we will obtain the
requirement that {nA.y}KAB must have non-positive rank for any y , since it is
the input of such a message that leads to the performance of the non-positive-
rank signal initdone.A.B .nA

1. However, consideration of the case RESPA(n)
finds that messages of the form {x .n}KAi are output, and so these will need to

1 In the proof of the correct protocol, the corresponding requirement was that
{B .nA.y}KAB must have non-positive rank.

Verifying Security Protocols: An Application of CSP 257

have positive rank, for any x and i2. But now there is a conflict on the message
{nA.n}KAB , which from the first case must have non-positive rank, but from the
second case must have positive rank. Hence there can be no rank function for this
version of the protocol: the constraints on any rank function are contradictory.
The contradiction is avoided by introducing the name of the agent generating
the message.

4 Discussion

4.1 Theorem-Proving

In practice, of course, protocols tend to be more complicated than our running
example, in a variety of ways. For example: the messages used in the protocol
might be more complex, or simply much larger; there may be more messages
involved in the protocol; the protocol could involve additional protocol agents,
such as trusted third parties, or even entire groups of communicating agents;
more complex combinations of cryptographic mechanisms might be used. All
of these possibilities make the CSP modelling of the protocol a more difficult
task, and the verification of candidate rank functions becomes more intricate and
error-prone. Tool support is of great benefit in keeping track of the housekeeping
involved in consideration of numerous cases, and in assisting in the construction
of rank functions.

The constraints introduced by the rank function theorem can generally be
used to derive a candidate rank function. Firstly, every message in IK must have
positive rank. Secondly, any message derivable from a set of positive rank mes-
sages must also have positive rank. Thirdly, any output (message or signal) from
a protocol step which follows only positive rank inputs must also be of positive
rank. These three conditions allow the identification of a set S of messages and
signals which must have positive rank. However, the signal required in condi-
tion 3 of the rank function theorem is required to have non-positive rank. If that
signal is in the set S then no rank function can exist. Otherwise the function
ρ which gives a rank of 1 to all messages in S , and a rank of 0 to all other
messages, will be a suitable rank function.

The RankAnalyser tool [HS00, Hea00, HS04] provides a way of computing this
rank function automatically for standard cases (where the protocol uses public-
key or shared-key cryptography, nonces, agent names, and concatenation). The
(infinite) message space is partitioned to a finite set of equivalence classes, and
the set of messages and signals of positive rank is obtained by repeatedly applying
protocol steps and generates rules (on the equivalence classes), starting from the
attacker’s initial knowledge IK .

More generally, the PVS theorem prover [OSR93] has also been used to sup-
port rank function proofs of protocol correctness. Theorem provers such as PVS
are well-suited to keeping track of all the unavoidable detailed housekeeping in-
volved in the nuts and bolts of a protocol correctness proof. The traces model for

2 Previously, it was required that {A.x .n}KAB had positive rank.

258 S. Schneider and R. Delicata

CSP has been embedded in PVS, together with much of the consequent theory,
including proof rules such as those of Figure 4 and the rank function theorem has
been proved for this embedding [DS97]. Specific protocols can be modelled and
verified, for example the recursive authentication protocol analysed in [BS97],
demonstrating that this approach supports the full generality of an infinite mes-
sage space, and arbitrary numbers of runs and protocol agents. More recently
the CSP hierarchy of theories within PVS has been restructured [Eva03, ES04]
to more easily allow extensions within the rank function framework, such as the
introduction of (discrete) time [ES00], as well as consideration of other properties
such as non-repudiation [Eva03].

The rank function approach has also been extended in other ways. It is able to
incorporate algebraic properties of the cryptographic mechanisms into the anal-
ysis, provided they can be expressed appropriately within the model [Sch02]. For
example, if Vernam encryption (exclusive-or) is used explicitly within a protocol,
then the algebraic properties of exclusive-or should be taken into account in the
analysis. This can be achieved by giving the algebraic identities that encapsulate
exclusive-or on the message space, and checking that whenever two messages are
equivalent then they should have the same rank. This approach is clearly limited
since only known algebraic properties can be included in the model. Nonetheless
their inclusion allows the protocol analyser to reason about the properties which
a cryptosystem must satisfy if the protocol is to be implemented correctly.

Another extension concerns the verification of secrecy properties of protocols,
particularly in situations where keys can be leaked to an attacker without com-
promising the security of past protocol runs. Such keys are temporary secrets:
components of messages that are required to be unknown to the attacker at a
particular point of the protocol, but can be disclosed later. The standard rank
function approach cannot handle temporary secrets, because their rank should
be non-positive at the point they are used, but positive because of the fact that
the attacker learns them during the protocol run [DS04]. Temporal rank func-
tions are a generalisation that take into account the time at which a message can
first be learned by the attacker, enabling a finer way of analysing the relation-
ships between messages. Use of temporal rank functions requires a generalisation
of the rank function theorem, but they allow analysis of an additional class of
secrecy properties not covered by the standard approach.

4.2 Model-Checking

The use of CSP to describe and specify protocols naturally enables the use of
model-checking for verification, and there has been a significant body of work
using FDR [For03] in this area which began a decade ago [Low95, Ros95, LR96].
The approach constructs a CSP description of the protocol agents interacting
over a Dolev-Yao style attacker as described earlier, and refinement-checks it
against authentication and secrecy properties expressed as CSP trace specifica-
tions in terms of the signal events which are inserted judiciously into the protocol
runs. If the refinement check fails then FDR produces a (minimal-length) coun-
terexample trace which corresponds to an attack on the protocol: a sequence of

Verifying Security Protocols: An Application of CSP 259

messages which lead to a failure of the authentication or secrecy property under
consideration.

Since the construction of the model of the protocol is routine from the
message-passing protocol description, Lowe has developed a tool, Casper [Low98],
which translates a high-level protocol description into the corresponding CSP
model, ready for FDR to analyse. The ease of use of this tool, together with
the speed of the FDR analysis, means that the model-checking analysis should
generally be the first to be carried out when considering a new protocol: simple
flaws can be identified and corrected quickly, before too much effort is put into
carrying out a rank function proof.

Of course, any CSP model which can be completely checked by FDR must
have a finite number of states. This means that the number of protocol runs in the
model, the number of agents, and the size of the message space, must necessarily
be finite. Refinement failures will always correspond to attacks, but a successful
refinement check on a finite model does not guarantee correctness in the presence
of arbitrary concurrent runs—it may be that an attack requires more possibilities
than have been included in the analysis. However, a collection of sophisticated
techniques have been developed for enabling more general conclusions to be
drawn from finite model-checking. For example, Lowe [Low99] has presented,
for secrecy specifications, a list of conditions under which the correctness of
just a single run of a protocol is sufficient to conclude the correctness of an
unbounded number of runs of the same protocol. Hui and Lowe have shown
how protocol messages in CSP models can be simplified without losing attacks
(fault-preserving transformations) [HL01], thus enabling complex protocols to be
reduced to a point where they can be analysed by FDR. Broadfoot and Roscoe
have applied data independence techniques [BR99, BR02] which allow results
about a finite number of runs to be lifted to arbitrary runs.

An extensive coverage of the use of CSP for modelling protocols, and both
the model-checking and the rank function approaches to protocol analysis, is
provided in [RSG+00].

4.3 Related Approaches

In addition to the CSP approaches discussed above, a wide variety of formal
techniques have been developed for protocol specification and analysis. These
include approaches based on graph theory, induction, multiset rewriting, type-
checking, and non-interference. Here we give a flavour of each.

In the strand space approach [THG99], a strand is a trace that represents
either the execution of a legitimate protocol participant (an ‘honest’ strand) or
the action of an attacker (a ‘penetrator’ strand). A strand space is a collection
of strands equipped with a graph structure that represents both consecutive
operations on the same strand (the behaviour of a single user) and the interaction
between strands (communication between users). Theorems have been developed
on strand spaces which enable proofs that a protocol is correct, and tool support
for the approach has been provided by Athena [SBP01], a program that is part
model-checker and part theorem-prover. Some relationships have been identified

260 S. Schneider and R. Delicata

[Hea02] between the rank functions used to verify protocols, and the structures
(ideals) used in the strand spaces approach, and there are some similarities in
the philosophies of the two approaches.

The inductive approach [Pau98] uses the theorem-prover Isabelle/HOL to
support a theorem-proving approach to protocol verification. Protocols are coded
directly in terms of event traces and rules that participants apply to ‘received’
messages in order to produce new messages. The possible actions of a ‘Spy’ are
also specified by rules. A theory concerning the possible traces of the overall
system is developed and the protocol is verified by establishing inductively that
no trace violating the specification can ever occur. A particular achievement of
this approach is its use in the verification of SET [Pau02], an electronic commerce
protocol whose description runs to nearly 1000 pages.

Cervesato et al. [CDL+99a] have developed a way of specifying protocols us-
ing first-order multiset rewriting. This has become known as the MSR approach.
Using MSR, protocols are specified by roles which represent the behaviour of
protocol participants. Each role constitutes a series of rewrite rules which rep-
resent the actions of that particular user. The attacker, typically in the style of
Dolev and Yao, is also defined via rewrite rules. Each rewrite rule that an at-
tacker can apply corresponds to a deduction of the form) in the rank function
approach. Recent work has sought to establish a correspondence between MSR
and the strand space [CDM+00] and process algebraic approaches [BCLM03].

Abadi and Gordon have proposed the spi-calculus [AG98] as an extension
to the π-calculus which includes cryptographic primitives. Protocols in the spi-
calculus are modelled as processes—but the similarity with CSP ends here. The
fundamental differences between CSP and nominal calculi mean that, in the
spi-calculus, communication of secrets between parties is achieved via restric-
tion and scope extrusion, and the nature of testing equivalence removes the
need for an explicit attacker process. However, proving correctness via equiv-
alence can be difficult. Abadi [Aba97] and, more recently, Gordon and Jeffrey
[GJ01, GJ04] have therefore developed type-systems that enable authentication
properties—expressed using signals—to be statically checked for a spi-calculus
protocol model. The use of correspondence assertions (in the spirit of the initdone
and respgo events) suggests a similarity between this approach and the rank
function approach, and it is also interesting to consider that the ‘trusted’ and
‘untrusted’ secrecy types may be interpreted as non-positive and positive ranks,
respectively.

The concept of non-interference has also formed the basis of protocol analysis
techniques. These approaches generally impose a partition on protocol agents,
with a group of ‘high-level’ privileged users distinguished from other ‘low-level’
users. Non-interference is achieved if the behaviour of a high-level user has no
effect on what a low-level user can observe. For the purposes of protocol analysis
this corresponds to the inability of an attacker (a high-level user) to induce
bad behaviour in the legitimate participants (the low-level users). A suite of
tools have been developed that enable protocols to be reasoned about using
non-interference. A high-level protocol description can be translated into the
notation of the Security Process Algebra (SPA) using the CVS compiler [DFG00].

Verifying Security Protocols: An Application of CSP 261

This SPA script is then amenable for analysis using the CoSec tool [FG97] which
checks for the presence of non-interference. Similarities between non-interference
and the concept of process equivalence in CSP have been established [RS00].

The above techniques, along with the CSP-based approaches, have much
in common, most notably their basic assumption about the capabilities of the
attacker. Indeed, in many cases it will be feasible to reason about a protocol using
any one of these methods, and the results obtained from each will be broadly
similar. As alluded to above, there is a growing body of research which aims
to demonstrate fundamental similarities between these different approaches. In
the end the choice of which technique to use will be guided by the previous
experience of the protocol analyser. The advantage of applying CSP in this
domain lies in the simplicity of the notation and the transparency with which
protocols can be modelled. This transparency is essential for a model to be shown
as an appropriate abstraction of a real protocol. Furthermore, the maturity of
the language backs this up by allowing well-understood and powerful techniques
to be brought to bear on the problem of verifying whether a given protocol model
meets its intended goal.

References

[Aba97] M. Abadi. Secrecy by typing in security protocols. In Proceedings of
the Third International Symposium on Theortical Aspects on Computer
Software, number 1281 in Lecture Notes in Computer Science, pages 611–
638, September 1997.

[AG98] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: the
spi calculus. Information and Computation, 1998. also DEC Research
Report 149, 1998.

[BCLM03] S. Bistarelli, I. Cervesato, G. Lenzini, and F. Martinelli. Relating process
algebras and multiset rewriting for security protocol analysis. In WITS
’03: Workshop on Issues in the Theory of Security, 2003.

[BR99] P.J. Broadfoot and A.W. Roscoe. Proving security protocols with model
checkers by data independence techniques. Journal of Computer Security,
7(2/3), 1999.

[BR02] P.J. Broadfoot and A.W. Roscoe. Capturing parallel attacks within the
data independence framework. In Proceedings of the 15th Computer Secu-
rity Foundations Workshop. IEEE Computer Society Press, 2002.

[BS97] J.W. Bryans and S.A. Schneider. CSP, PVS, and a recursive authentica-
tion protocol. In DIMACS Workshop on Design and Formal Verification
of Crypto Protocols, 1997.

[CDL+99a] I. Cervesato, N.A. Durgin, P. Lincoln, J.C. Mitchell, and A. Scedrov. A
meta-notation for protocol analysis. In Proceedings of the 12th Computer
Security Foundations Workshop. IEEE Computer Society Press, 1999.

[CDL+99b] I. Cervesato, N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and A. Scedrov.
A meta-notation for protocol analysis. In 12th IEEE Computer Security
Foundations Workshop, 1999.

[CDM+00] I. Cervesato, N. Durgin, J.C. Mitchell, P. Lincoln, and A. Scedrov. Relating
strands and multiset rewriting for security protocol analysis. In Proceedings

of The 13th Computer Security Foundations Workshop. IEEE Computer
Society Press, 2000.

262 S. Schneider and R. Delicata

[DFG00] A. Durante, R. Focardi, , and R. Gorrieri. A compiler for analyzing crypto-
graphic protocols using non-interference. ACM Transactions on Software
Engineering and Methodology, 9(4), 2000.

[DS97] B. Dutertre and S.A. Schneider. Embedding CSP in PVS: an application
to authentication protocols. In tpHOL, 1997.

[DS04] R. Delicata and S.A. Schneider. Towards the rank function verification of
protocols with temporary secrets. In WITS ’04: Workshop on Issues in
the Theory of Security, 2004.

[DY83] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2), 1983.

[ES00] N. Evans and S.A. Schneider. Analysing time dependent security proper-
ties in CSP using PVS. In ESORICS, volume 1895 of LNCS, 2000.

[ES04] N. Evans and S.A. Schneider. Verifying security protocols with PVS:
Widening the rank function approach. Journal of Logic and Algebraic
Programming, in press

[Eva03] N. Evans. Investigating Security Through proof. PhD thesis, Royal Hol-
loway, University of London, 2003.

[FG97] R. Focardi, , and R. Gorrieri. The compositional security checker: A tool
for the verification of information flow security properties. IEEE Trans-
actions on Software Engineering, 23(9), 1997.

[For03] Formal Systems (Europe) Ltd. FDR2 user manual, 2003.
[GJ01] A.D. Gordon and A. Jeffrey. Authenticity by typing for security proto-

cols. In Proceedings of the 14th Computer Security Foundations Workshop.
IEEE Computer Society Press, 2001.

[GJ04] A.D. Gordon and A. Jeffrey. Types and effects for asymmetric crypto-
graphic protocols. Journal of Computer Security, 12(3/4), 2004. Also in
Proceedings of the 15th Computer Security Foundations Workshop. IEEE
Computer Society Press, 2002.

[Hea00] J.A. Heather. “Oh! Is it really you?”—Using rank functions to verify au-
thentication protocols. PhD thesis, Royal Holloway, University of London,
2000.

[Hea02] J.A. Heather. Strand spaces and rank functions: More than distant cousins.
In Proceedings of The 15th Computer Security Foundations Workshop.
IEEE Computer Society Press, 2002.

[HL01] M.L. Hui and G. Lowe. Fault-preserving simplifying transformations for
security protocols. Journal of Computer Security, 9(1/2), 2001.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[HS00] J.A. Heather and S.A. Schneider. Towards automatic verification of au-

thentication protocols on unbounded networks. In Proceedings of the 13th
Computer Security Foundations Workshop. IEEE Computer Society Press,
2000.

[HS04] J.A. Heather and S.A. Schneider. A decision procedure for the existence
of a rank function. Journal of Computer Security, in press.

[Low95] G. Lowe. An attack on the Needham-Schroeder public-key authentication
protocol. Information Processing Letters, 56,, 56, 1995.

[Low97] G. Lowe. A hierarchy of authentication specifications. In Proceedings of the
10th Computer Security Foundations Workshop. IEEE Computer Society
Press, 1997.

[Low98] G. Lowe. Casper: A compiler for the analysis of security protocols. Journal
of Computer Security, 6(1/2), 1998.

Verifying Security Protocols: An Application of CSP 263

[Low99] G. Lowe. Towards a completeness result for model checking of security
protocols. Journal of Computer Security, 7(2/3), 1999.

[LR96] G. Lowe and A.W. Roscoe. Using CSP to detect errors in the TMN
protocol. IEEE Transactions on Software Engineering, 1996.

[Mea92] C. Meadows. Applying formal methods to the analysis of a key manage-
ment protocol. Journal of Computer Security, 1(1), 1992.

[Mil95] J. Millen. The interrogator model. In IEEE Computer Society Symposium
on Research in Security and Privacy, 1995.

[MVV96] A.J. Menezes, P.C. Van Oorschott, and S.A. Vanstone. Handbook of Ap-
plied Cryptography. CRC Press, 1996.

[NS78] R. Needham and M. Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12), 1978.

[OSR93] S. Owre, N. Shankar, and J. Rushby. The PVS specification language.
Technical report, Computer Science Lab, SRI International, 1993.

[Pau98] L.C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6(1/2), 1998.

[Pau02] L. Paulson. Verifying the SET protocol: Overview. In FASec 2002: Formal
Aspects of Security, 2002.

[PQ00] O. Pereira and J-J. Quisquater. On the perfect encryption assumption. In
WITS ’00: Workshop on Issues in the Theory of Security, 2000.

[Ros95] A.W. Roscoe. Modeling and verifying key-exchange protocols using CSP
and FDR. In Proceedings of the 8th Computer Security Foundations Work-
shop. IEEE Computer Society Press, 1995.

[Ros97] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1997.

[RS00] P.Y.A. Ryan and S.A. Schneider. Process algebra and non-interference.
Journal of Computer Security, 9(1/2), 2000. Also in Proceedings of the
12th Computer Security Foundations Workshop. IEEE Computer Society
Press, 1999.

[RSG+00] P.Y.A. Ryan, S.A. Schneider, M.H. Goldsmith, G. Lowe, and A.W. Roscoe.
Modelling and Analysis of Security Protocols. Addison-Wesley, 2000.

[SBP01] D.X. Song, S. Berezin, and A. Perrig. Athena: A novel approach to effi-
cient automatic security protocol analysis. Journal of Computer Security,
9(1/2), 2001.

[Sch98] S.A. Schneider. Verifying authentication protocols in CSP. IEEE Trans-
actions on Software Engineering, 1998.

[Sch99] S.A. Schneider. Concurrent and Real-time Systems: the CSP Approach.
Addison-Wesley, 1999.

[Sch02] S.A. Schneider. Verifying security protocol implementations. In
FMOODS’02: Formal Methods for Open Object-based Distributed Systems,
2002.

[THG99] F.J. Thayer Fábrega, J.C. Herzog, and J.D. Guttman. Strand spaces:
proving security protocols correct. Journal of Computer Security, 7(1),
1999.

[WL93] T. Woo and S. Lam. A semantic model for authentication protocols. In
IEEE Computer Society Symposium on Research in Security and Privacy,
1993.

Shedding Light on Haunted Corners of
Information Security

Peter Ryan

University of Newcastle, UK

Abstract. Characterising the fundamental concepts of information se-
curity, such as confidentiality and authentication, has proved problematic
from the outset and remains controversial to this day. Non-interference
was proposed some 25 years ago to give a precise, formal characterisation
of the absence of information flows through a system, motivated in large
part by the discovery of covert channels in access control models such
as Bell-LaPadula. Intuitively, it asserts that altering Highs interactions
with a system should not result in any observable difference in Lows
interactions with the system. Superficially it appears to be a very nat-
ural and compelling concept but it turns out to harbor some surprising
subtleties.

Over the years various models of computation have been used to for-
malise non-interference. Typically these floundered on non-determinism,
”input/output” distinctions, input totality and so forth. In the late 80’s
and early 90’s, process algebras, in particular CSP, were applied to in-
formation security. In this talk I will briefly overview this approach
and discuss how the concepts and results from process algebra shed
light on these haunted corners of non-interference, including the role
of non-determinism, unwinding results, composition, refinement and in-
put/output distinctions. In particular, we argue that the absence of in-
formation flow can be characterised in terms of process equivalence, itself
a delicate and fundamental concept.

References

1. J. A. Goguen and J. Meseguer: Security policies and security models, IEEE Sym-
posium on Security and Privacy (1982).

2. Goguen, J., Meseguer, J: Inference Control and Unwinding, Proceedings of the
IEEE Symposium on Research in Security and Privacy (1984)

3. Lowe, G.: Defining Information Flow University of Leicester tech report (1999).
4. A. W. Roscoe and J. Woodcock and L. Wulf: Non-interference through determinism,

Proceedings of ESORICS (1994).
5. P. Y. A. Ryan: A CSP formulation of non-interference and unwinding, Presented

at CSFW 1990 and published in Cipher, Winter 1990/2000
6. P.Y.A. Ryan and S.A. Schneider: Process Algebra and Non-interference, JCS 2001.
7. S. A. Schneider and A. Sidiropoulos: CSP and anonymity, Proceedings of ESORICS

(2000)

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, p. 264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

Operational Semantics for Fun and Profit

Michael Goldsmith1,2

1 Formal Systems (Europe) Ltd
michael@fsel.com

http://www.fsel.com
2 Worcester College, University of Oxford

Abstract. The FDR refinement-checking tool1 [5] relies fundamentally
upon the congruences between operational and denotational semantics
for CSP, in order to determine a denotational property by exploring
an operationally presented system. But the calculation of the standard
structured operational semantics of complex systems proves a bottleneck
in the performance of the tool, and so we compile a custom inference
system for each case, optimised for facilitating execution of the relevant
queries. Recent developments have revealed how these calculations can
be re-used in restructuring systems to maximise the potential for hierar-
chical compression and for export to a related probabilistic formalism.

1 Introduction: FDR – Refinement Checking CSP

The essential function of the FDR tool is to compare two CSP processes to
determine whether refinement holds. This may be a useful fact to know in a
variety of situations, whether the refinement be:

– between an ideal system and a more complex implementation
– between an encoding of some property and a process meant to satisfy it
– between a denial of solubility and a model of a game or problem – in this

situation a counterexample gives a solution, which is typically optimal due
to the broadly breadth-first exploration strategy

Refinement is strictly a denotational property: it holds iff every behaviour of the
candidate implementation process is a possible behaviour of the specification
process, where a ‘behaviour’ is an element of one of the semantic models:

– traces: T [[P]]
– traces and stable failures: T [[P]] and S[[P]]
– failures/divergences: F [[P]] and D[[P]]

But denotational values are infinite sets rather ill-suited to direct mechanical
manipulation.

1 FDR is a commercial product of Formal Systems (Europe) Ltd, available free for
academic purposes.

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, pp. 265–274, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

266 M. Goldsmith

FDR works by exhaustive state enumeration, so it is not unreasonable to insist
that the processes involved must be finite-state! Denotationally, ‘finite-state’
means that the set

{P/s | s ∈ T [[P]]}
is finite, but recognising this requires in general the identification of infinite
numbers of infinite values as being equal.

Fortunately this property is implied by being operationally finite-state: that
the process always eventually evolves to a syntax (or more generally a closure)
that has been seen before, so that the labelled transition system (LTS) yielded
by the operational semantics is a finite graph. In practice we encounter few
processes which are denotationally but not operationally finite-state, and it is
usually straightforward to recode one that is in order to bring it within the more
restrictive class.

But how can we check refinement from an operational presentation?

2 The Operational-Denotational Congruence and FDR

The full operational semantics for CSP did not see the light of day until relatively
late [2], although much of the research dates back to the time when Roscoe and
Brookes were students of Hoare [8]. Its congruence with each of the standard
denotational models is established through the medium of synchronisation trees,
but boils down to the two equations:

F [[P]] = {〈s,X 〉 | ∃Q • P s⇒ Q ∧Q ref X }
∪
{〈s 	 t ,X 〉 | ∃Q • P s⇒ Q ∧Q↑}

D[[P]] = {s 	 t | ∃Q • P s⇒ Q ∧Q↑}
where an operational state Q ref uses X iff it cannot perform an internal action
τ nor any of the events in X

∀ x ∈ X ∪ {τ} • Q � x→
and where Q↑ means that Q is operationally divergent, in that there exists an
infinite τ -path from Q :

〈Qn | n ∈ ω〉 such that Q0 = Q ∧ ∀n ∈ ω • Qn
τ→ Qn+1

The closure under divergence is a feature of the ‘improved’ failures-divergences
model [1], and does not apply to the (later) stable-failures model [9] or the
simpler traces model. Here the equations reduce to one or both of:

T [[P]] = {s | ∃Q • P s⇒ Q}

S[[P]] = {〈s,X 〉 | ∃Q • P s⇒ Q ∧Q ref X }

Operational Semantics for Fun and Profit 267

But, in all these cases, the existential form of the right-hand side

{. . . s . . . | ∃Q • P s⇒ Q ∧ . . .}

means that the denotational behaviour of a process relating to a trace is the
union of the corresponding operational behaviours from all operational states
reachable on that trace. For example, it can be extended by any event in the
initials of any such state:

{a | s 	 〈a〉 ∈ T [[P]]} =
⋃

P s⇒Q

{a | Q a→ }

and it can form a stable refusal with a set of events iff some stable operational
state is unable to perform every element of it:

s ∈ T [[P]]⇒ {X | (s,X) ∈ S[[P]]} =
⋃

P s⇒Q � τ→

P {a | Q � a→ }

Refinement in any of the models is simply (pointwise) reverse inclusion of the
appropriate semantic components. But

V ⊇
⋃
U iff ∀U ∈ U • V ⊇ U

If we are trying to check refinement, as we do in FDR, then this is incredibly con-
venient. We need to check that the behaviours of the purported implementation
process are a subset of those of the specification, but this observation means that
we can check this piecemeal, at least as far as the implementation is concerned:
if the implementation has an unacceptable denotational behaviour, then that
will manifest as an unacceptable operational behaviour of one of its states. (The
situation with the specification is more problematic: we need to know if any of
its states admits some behaviour, all at once, since there is no corresponding
decomposition for V =

⋃V on the left-hand side of the inequation; the solution
is normalisation [9, 11].)

The final ingredient of the theoretical cocktail underpinning FDR is a little
recursion induction: if we fail to find a counterexample exploring the relation
between a particular specification normal-form state and a given implementa-
tion state along some path that leads back to the same pair, then we can be
certain that there is no point in exploring any further around the loop. So given
finite-state representations of the two processes, we can guarantee to determine
whether refinement holds after exploring at most the product of their sizes. In
practice it is relatively rare for an implementation state to correspond to more
than one state of the normalised specification, and we only visit the parts of
the product that are reachable by performing the same trace in both processes,
so the number of state-pairs visited is typically few more than the number of
implementation states.

268 M. Goldsmith

3 Leaping to Conclusions – Supercompilation

The modern style of presenting operational semantics is as ‘Plotkin-style’ infer-
ence rules. Thus the semantics of the ‘communicating’-parallel operator can be
captured by:

P x→ P ′

[x �∈ A]
P ‖

A
Q x→ P ′ ‖

A
Q

P α→ P ′ Q α→ Q ′

[α ∈ A]
P ‖

A
Q α→ P ′ ‖

A
Q

together with a symmetric variant of the first (where x may include τ).
In the same way, FDR-style relational renaming2 is captured by:

P x→ P ′

[x (1⊕ R) y]
P [[R]]

y→ P ′[[R]]

In order to calculate the operational semantics of a more complex process term,
for example

T =̂ (P [[a ← a, a ← b]] ‖
{b}

Q)[[c ← b]],

repeated applications of these rules will be required.
FDR implements a compromise between completely precalculating the tran-

sition systems that correspond to the processes in a refinement check, and a
fully ‘on-the-fly’ approach: some components (essentially those which are purely
sequential or recursive) are compiled down to a labelled transition system, while
the overall structure of the process syntax is retained as an operator tree, and
its operational semantics is calculated according to such rules. The repeated ap-
plication of the canonical rules proved a significant bottleneck in the execution
speed, however, in large part due to the expense (and memory turnover) of gen-
erating the intermediate results, the conclusions of lower rules that feed in as
antecedents to ones higher in the tree.

One may remark (and Roscoe did) that the pattern of inference is repeated
for every query to such a process, and thus a significant optimisation can be
achieved by collapsing the possible inference trees to leave only their conclusion
and their leaves as antecedents. This can be calculated by considering each way
that each top-level event can arise as a result of the operational semantics of
the outermost operator in terms of the actions of its argument processes, and
recursively investigating how each of these can arise, until we reach a leaf LTS,

2 Here the relationship is given by ‘maplets’ x ← y : an event x in the argument relates
to any y on the right-hand side of such a term where it is the left-hand side, or to
itself if there is none such. Channels can be renamed wholesale, corresponding to
the pointwise pairing of events arising from their respective extension by any valid
common suffix.

Operational Semantics for Fun and Profit 269

which can produce an event in at most one way: by being able to perform it.
This supercompilation procedure thus identifies zero or more derived rules for
each event, which collectively capture the operational semantics of the process.

Thus for our example process T , above, supposing we know (as a result of
the compilation) that P can perform only a, while Q is limited to {b, c}, then
(writing Rab for [a ← a, a ← b]) the semantics are fully captured by five rules.
First, there are two deriving from single leaf actions:

P a→ P ′

T a→ (P ′[[Rab]] ‖
{b}

Q)[[c ← b]]

Q c→ Q ′

T b→ (P [[Rab]] ‖
{b}

Q ′)[[c ← b]]

each arising through one application of the first rule for communicating parallel
and two or one (respectively) of the renaming rule, thus:

P a→ P ′

[a (1⊕ Rab) a]
P [Rab]

a→ P ′[Rab]
[a �∈ {b}]

P [Rab] ‖
{b}

Q a→ P ′[Rab] ‖
{b}

Q

[a (1⊕ [c ← b]) a]
(P [Rab] ‖

{b}
Q)[[c ← b]] a→ (P ′[Rab] ‖

{b}
Q)[[c ← b]]

Q c→ Q ′

[c �∈ {b}]
P ‖

{b}
Q c→ P ‖

{b}
Q ′

[c (1⊕ [c ← b]) b]
(P [Rab] ‖

{b}
Q)[[c ← b]] b→ (P [Rab] ‖

{b}
Q ′)[[c ← b]]

Similarly, we may calculate a derived rule:

P a→ P ′ Q b→ Q ′

T b→ (P ′[[Rab]] ‖
{b}

Q ′)[[c ← b]]

arising from the second rule for parallel, and two appeals to renaming:

P a→ P ′

[a (1⊕ Rab) b]
P [Rab]

b→ P ′[Rab] Q b→ Q ′

[b ∈ {b}]
P [Rab] ‖

{b}
Q b→ P ′[Rab] ‖

{b}
Q ′

[b (1⊕ [c ← b]) b]
(P [Rab] ‖

{b}
Q)[[c ← b]] b→ (P ′[Rab] ‖

{b}
Q ′)[[c ← b]]

270 M. Goldsmith

and finally two more, both involving τ :

P τ→ P ′

T τ→ (P ′[[Rab]] ‖
{b}

Q)[[c ← b]]

Q τ→ Q ′

T τ→ (P [[Rab]] ‖
{b}

Q ′)[[c ← b]]

which again come from the first rule for parallel, passing through the renamings
unchanged, since a renaming relation such as R cannot mention τ . (In fact, every
CSP operator has the property that it allows its (currently active3) components
to perform τ without modification or hindrance, and such rules are dealt with
implicitly as a special case in FDR.)

Now we can tabulate the effect of each state of each leaf process on each rule:

– either the leaf is not involved, in which case we record true
– or else we record whether the given state is able to perform the event listed

in the relevant antecedent4.

Then to determine the initial events of a state of the system, represented as a
vector of states of its leaves, we look up a vector of booleans for each leaf, and
form the pointwise conjunction5 to determine which rules can fire; the initials
are simply the set of resultant events of those rules.

FDR works with the complements of refusals, partly because empirically
minimal acceptances tend to be smaller (and so faster to compare) than maximal
refusals; but mostly because exactly the same inference system serves to calculate
the composition of leaf acceptances into those of the process as a whole. Thus
the benefits of the supercompilation procedure are also felt in the calculations
of whether local liveness constraints are satisfied.

The one remaining wrinkle is how to calculate the successor states for each
event. Here we may usefully separate the CSP operators into two classes: the
communicating and the sequential!

What we may call the communicating operators, all forms of parallel, renam-
ing and hiding, have the property that every rule in their operational semantics
has an application of the operator on both sides of its resultant transition. That
is, transitions do not change the ‘shape’ of the process6. In this case, it is quite
straightforward to calculate the successor states arising from each rule which
fires: we know the successor states of each leaf after performing the relevant
event, and it is simply a matter of multiplying these possibilities together in

3 The exception being the right-hand argument of P ;Q .
4 Each leaf can occur at most once among the antecedents.
5 There is a τ due to an autonomous leaf transition iff any leaf can perform τ , so we

need rather a disjunction here; so inverted logic is used to encode this eventuality in
an additional bit in each vector.

6 This would not be the case if we implemented Roscoe’s Ω-semantics for termination
directly; we don’t.

Operational Semantics for Fun and Profit 271

place to form a new set of vectors; the set of all successors after an event is
simply the union of these sets over all enabled rules which generate it.
The other operators all have the property that at least one of their rules has
no mention of the operator in the destination state of its resultant transition:
perhaps the canonical example being

P �→ P ′

P ;Q τ→ Q

So the ‘shape’ of the process changes after such a transition, and different sets
of rules must apply, before and after.

Often such operators will occur only in the parts of the process which are
compiled down to labelled transition systems, but we do not want to insist
that this always be the case. To cater for the possibility, we need to perform
the same supercompilation for each ‘shape’, and provide each with its own set
of supercombinator-style derived rules. Now the state of the system includes a
format number, indicating which set is active, and some transitions are dynamic,
changing format. In such circumstances the components of the successor state
fall into one of three categories:

– they are leaves from the old configuration which were not involved in the
transition, whose state is simply copied across;

– they are leaves which were involved, whose own successor states need to be
multiplied in; or

– they are previously inactive leaves, which start in their initial state.

Thus the calculation of the resultant states is unpleasantly complicated, but
perfectly well defined.

4 By-products of Supercompilation

The algorithm to calculate the supercompiled rule-base is coded quite efficiently,
although a result of Valmari and Kervinen [12] taken together with Theorem 1
below implies that its worst-case performance must be quite poor. Nonetheless,
the information about the system that is calculated in the process of supercom-
pilation proves to have value in a rather unexpected facet of the tool.

4.1 Watchdog Transformations for Compression

It has long been known [10] that the hierarchical compression operators pro-
vided by FDR tend to work best when there is a lot of hidden activity that
can be compressed away. One evident possible route towards maximising this is
somehow to move the specification over to the right-hand-side of the refinement,
in such a way that the resulting check is invariant under hiding; and then hide
everything!

We have shown [13, 4] that this is indeed possible, and we have addressed
the issue that it is not just hidden activity, but rather localised hidden activity,

272 M. Goldsmith

which is necessary in order to get real benefit from hierarchical compression.
Unfortunately the simple execution of the watchdog transformation, where the
specification is transformed into a monitor process which signals a failure of
refinement either through an error-flag event or by deadlocking the system (in
the traces and failures models respectively), yields a system where the hidden
events are nearly all shared immediately below the outermost hiding, so that
virtually no extra compression is obtained. We explain in the cited works how
the syntax tree can be rebalanced to solve this problem, but CSP operators are
generally not precisely associative and do not commute with one another, so the
transformation is often quite intricate.

More recently, we have been able to take advantage of the supercompiler:

Theorem 1. Any CSP communicating-operator tree can be transformed, leaving
the leaf processes untouched, into an equivalent one (unique up to reordering and
choice of new event names) that uses only outward (inverse-functional) renaming
at the leaves, ’natural’ alphabetised parallel, and functional renaming and hiding
at the outermost level.

Proof: We sketch the algorithm. Simply use the (identifiers of the) supercombi-
nator rules as the intermediate events: include a rule as a target of the outward
renaming of an event at a leaf iff that leaf’s engaging in that event is one of the
antecedents of the rule; and rename each rule back to the event in its conclusion
at the outermost level (or hide those giving rise to τ). �

In the general case, a similar strategy applies, complicated by the need for a
monitor process that switches between which sets of rules are active as the
formats change. That is all that is necessary, if the operator tree is actually a
tree; if it is a graph, then further mechanisms are required to allow leaf processes
to be re-initialised, where appropriate, in their new incarnation.

Using this transformation allows the system to be expressed in a form which
can be reordered and rebracketed at relatively little cost in either CPU cycles
or, more importantly, intellectual effort.

4.2 Watchdogs for Analysis Elsewhere

In the interests of code re-use, as much as anything else, exactly the same ap-
proach has been followed in performing a watchdog transformation on the specifi-
cation in order to export assertions in an experimental probabilistically-enhanced
version of CSPM [3] to the Birmingham University tool PRISM [6].

The only real difference is that the global visibility of PRISM variables and
the fact that the actual specification property in the PRISM analysis is a PCTL
formula which is expressed in terms of them together allow a slight simplifica-
tion in detecting failure of refinement. In particular, the use of the interrupt
operator in [4–§4] can be avoided. Some quite neat encodings have been found
of, for instance, the slices through the minimal acceptances in the failures-model
watchdog, and the resulting PRISM code is quite compact (if not much more
readable than most autogenerated code). The reader is referred to [3] for details.

Operational Semantics for Fun and Profit 273

Acknowledgements

As in so many other areas of the work on CSP, much of the inspiration of this
work, including the original concept of applying a supercombinator approach to
the calculation of operational semantics within FDR, is due to Bill Roscoe. Many
other talented individuals on the Formal Systems’ staff have also contributed
to the development of the algorithms and data-structures involved: (in purely
chronological order) David Jackson, Paul Gardiner, Bryan Scattergood, Jason
Hulance, Philip Armstrong, Paul Whittaker and Tim Whitworth.

Much of the work in Section 4 was carried out as part of the DTI Next
Wave Technologies and Markets project FORWARD [7], building upon research
undertaken for QinetiQ Trusted Information Management System Assurance
Group. The assistance of the PRISM design team at Birmingham University, in
particular Dave Parker, is gratefully acknowledged.

References

1. S.D. Brookes and A.W. Roscoe. An improved failures model for communicating
processes. In Proceedings of the Pittsburgh seminar on concurrency LNCS 197,
pages 281–305. Springer-Verlag, 1985.

2. Steve Brookes, Bill Roscoe, and David Walker. An operational semantics for CSP.
Technical report, Oxford University Programming Resarch Group, 1986.

3. Michael Goldsmith. CSP: The best concurrent-system description language in the
world – probably! (extended abstract). In Ian East, Jeremy Martin, Peter Welch,
David Duce, and Mark Green, editors, Communicating Process Architectures 2004.
IOS Press, 2004.

4. Michael Goldsmith, Nick Moffat, Bill Roscoe, Tim Whitworth, and Irfan Zakiud-
din. Watchdog transformations for property-oriented model-checking. In Keijiro
Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
pages 600–616, Pisa, September 2003. Formal Methods Europe.

5. Formal Systems (Europe) Ltd. FDR2 manual, 1998.
http://www.formal.demon.co.uk/fdr2manual/.

6. PRobabilistIc Symbolic Model checker. http://www.cs.bham.ac.uk/∼dxp/prism/.
7. QinetiQ, Birmingham University, Formal Systems, and Oxford University. FOR-

WARD: A Future of Reliable Wireless Ad-hoc networks of Roaming Devices.
http://www.forward-project.org.uk.

8. A.W. Roscoe. A mathematical theory of communicating processes. DPhil, Oxford
University Programming Research Group, 1982.

9. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998. ISBN
0-13-6774409-5, pp. xv+565.

10. A.W. Roscoe, P.H.B. Gardiner, M.H. Goldsmith, J.R. Hulance, D.M. Jackson,
and J.B. Scattergood. Hierarchical compression for model-checking CSP or How to
check 1020 dining philosophers for deadlock. In Proceedings of TACAS Symposium,
Aarhus, Denmark, 1995.

11. P.Y.A. Ryan, S.A.Schneider with M.H. Goldsmith, G. Lowe, and A.W. Roscoe. The
Modelling and Analysis of Security Protocols: the CSP Approach. Addison-Wesley,
2000.

274 M. Goldsmith

12. Antti Valmari and Antti Kervinen. Alphabet-based synchronisation is exponen-
tially cheaper. In L. Brim, P. Janar, M. Ket́inský, and A. Kuera, editors, CONCUR

2002 – Concurrency Theory: 13th International Conference, volume 2421 of LNCS,
pages 161–176, Brno, Czech Republic, August 2002. Springer-Verlag Heidelberg.

13. Irfan Zakiuddin, Nick Moffat, Michael Goldsmith, and Tim Whitworth. Property
based compression strategies. In Proceedings of Second Workshop on Automated
Verification of Critical Systems (AVoCS 2002). University of Birmingham, April
2002.

On Model Checking Data-Independent Systems
with Arrays with Whole-Array Operations�

Ranko Lazić1,��, Tom Newcomb2, and A.W. Roscoe2

1 Department of Computer Science, University of Warwick, UK
2 Computing Laboratory, University of Oxford, UK

Abstract. We consider programs which are data independent with re-
spect to two type variables X and Y , and can in addition use arrays
indexed by X and storing values from Y . We are interested in whether
a program satisfies its control-state unreachability specification for all
non-empty finite instances of X and Y . The decidability of this problem
without whole-array operations is a corollary to earlier results.
We address the possible addition of two whole-array operations: an

array reset instruction, which sets every element of an array to a partic-
ular value, and an array assignment or copy instruction. For programs
with reset, we obtain decidability if there is only one array or if Y is
fixed to be the boolean type, and we obtain undecidability otherwise.
For programs with array assignment, we show that they are more ex-
pressive than programs with reset, which yields undecidability if there
are at least three arrays. We also obtain undecidability for two arrays
directly.

Keywords: Model checking, infinite-state systems, data independence,
arrays.

1 Introduction

A system is data independent (DI) [17, 12] with respect to a type if it can only
input, output, move values of that type around within its store, and test whether
pairs of such values are equal. This has been exploited for the verification of
communication networks [4], processors [14], and security protocols [2].
We consider programs DI with respect to two distinct types X and Y , which

can in addition use arrays (or memories), indexed by X and storing values from
Y . We have already shown that a particular class of programs that do not use
whole-array operations (i.e. ones that can only read and write to individual

� We acknowledge support from the EPSRC grant GR/M32900. The first au-
thor was also supported by grants from the Intel Corporation and the EPSRC
(GR/S52759/01), the second author by QinetiQ Malvern, and the third author by
the US ONR.

�� Also affiliated to the Mathematical Institute, Serbian Academy of Sciences and Arts,
Belgrade.

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): CSP 2004, LNCS 3525, pp. 275–291, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

276 R. Lazić, T. Newcomb, and A.W. Roscoe

locations in the array) are amenable to model checking [11]. In this paper, we
study what happens to these decidability results on the addition of whole-array
operations.
One motivation for considering DI programs with arrays is cache and cache-

coherence protocols [1]. Such protocols are DI with respect to the types of mem-
ory addresses and data values. Another application area is parameterised verifi-
cation of network protocols by induction, where each node of the network is DI
with respect to the type of node identities [4]. Arrays arise when each node is
DI with respect to another type, and it stores values of that type.
The techniques which we used to establish decidability of parameterised

model checking for DI programs with arrays cannot be used when whole-array
operations are introduced. The partial-functions semantics used there relied on
the fact that there could always be parts of the array that were ‘untouched’ by
the program, and can therefore be assumed to hold any required value.
In order to investigate data independence with arrays, we introduce a pro-

gramming framework inspired by UNITY [3], where programs have state and
execute in discrete steps depending only on the current state. Although data in-
dependence has been characterised in many other languages, e.g. [17, 8, 10], our
language is designed to be a simple framework for the study of data independence
without the clutter of distracting language features.
Given a DI program with arrays and a specification for the program, the

main question of interest is whether the program satisfies the specification for
all non-empty finite instances of X and Y . The class of specifications we will
be considering here is control-state unreachability, which can express any safety
property. For such specifications, we observe that the answer to the above pa-
rameterised model-checking problem for finite instances reduces to a single check
with X and Y instantiated to infinite sets.
We consider the reset (or initialiser) instruction, which sets every location in

an array to a given value. This is useful for modelling distributed databases and
protocols with broadcasts. We prove that such systems with exactly one array
are well-structured [7], showing that unreachability model checking is decidable
for them. However, we also show that for programs with just two arrays with
reset, unreachability is not decidable: this result is acquired using an emulation
by such systems of universal register machines (e.g. [5]). We further show that
unreachability is decidable for programs with arbitrarily many arrays with reset
when Y is not a type variable, but is fixed to be the boolean type. In such
programs, any boolean operation can be used, since it can be expressed in terms
of equality tests.
The study of cache protocols motivates an array assignment (or array copy)

instruction, for moving blocks of data between memory and cache or setting
up the initial condition that the contents of the cache accurately reflects the
contents of the memory. For programs with array assignment, we show that
they are more expressive than programs with reset, which yields undecidability
if there are at least three arrays. We also obtain undecidability for two arrays
by direct emulation of universal register machines.

Data-Independent Systems with Whole-Array Operations 277

Programs with arrays with reset are comparable to broadcast protocols [6].
The arrays can be used to map process identifiers to control states or data values,
and the broadcasting of a message, which may put all processes into a particular
state, might be mimicked by a reset instruction. In [6], it is shown that the model
checking of safety properties is decidable for broadcast protocols. This result has
technical similarities to the decidability results in this paper. However, arrays
can contain data whose type is a parameter (i.e. an unboundedly large set),
whereas the set of states of a process in a broadcast protocol is fixed.
Our decidability results are also related to decidability results for Petri Nets.

The result for arrays storing booleans is related to the decidability of the Cover-
ing Problem for Petri Nets with transfer arcs [7]: the differences in formalisms,
especially that we have state variables which can index the arrays, make our re-
sult interesting. Programs with an array storing data whose type is a parameter
are related to Nested Petri Nets [13] with transfer arcs: in addition to formal-
ism differences, decidability of the Covering Problem for Nested Petri Nets with
transfer arcs has not been studied.
Another related technique is symbolic indexing [15], which is applicable to

circuit designs with large memories. However, the procedure relies on a case
split which must be specified manually, and only fixed (although large) sizes of
arrays can be considered.
Some of the results in this paper were announced by the authors at the VCL

2001 workshop, whose proceedings were not formally published. This paper can
be considered an abridged version of Chapters 3, 8 and 9 of [16], and readers are
advised to consult this reference for further details and full proofs.

2 Preliminaries

A well-quasi-ordering � is a reflexive and transitive relation on a set Q which
has the property that for any infinite sequence q0, q1, . . . ∈ Q, there exist i < j
such that qi � qj .
A transition system is a structure (Q,Q0,→, P,
·�) where:

– Q is the state space,
– Q0 ⊆ Q is the set of initial states,
– → ⊆ Q×Q is the successor relation, relating states with their possible next
states,

– P is a finite set of observables,
–
·� : P → P(Q) is the extensions function, so that
p� is the set of states in
Q that have some observable property p.

Given two transition systems S1 = (Q1, Q01,→1, P,
·�1) and S2 =(Q2, Q02,→2
, P,
·�2) over the same observables P , a relation ≈ ⊆ Q1 ×Q2 is a bisimulation
between S1 and S2 when the following five conditions hold:

1. If s ≈ t, then for every p ∈ P , we have that s ∈
p�1 iff t ∈
p�2.
2. For all s ∈ Q01, there exists t ∈ Q

0
2 such that s ≈ t.

278 R. Lazić, T. Newcomb, and A.W. Roscoe

3. If s ≈ t and s→1 s′ then there exists t′ ∈ Q2 such that s′ ≈ t′ and t→2 t′.
4. For all t ∈ Q02, there exists s ∈ Q

0
1 such that s ≈ t.

5. If s ≈ t and t→2 t′ then there exists s′ ∈ Q1 such that s′ ≈ t′ and s→1 s′.

In this case, we can say that the transition systems S1 and S2 are bisimilar.
A state s is reachable in a transition system S = (Q,Q0,→, P,
·�) if there

exists a sequence of states s0 → s1 → · · · → sn such that s0 ∈ Q0 and sn = s.

3 Language

A type is one of the following: the booleans Bool, the natural numbers Nat,
either of the type variables X or Y , and the array types T2[T1] where T1 and T2
are non-array types.
A type context is a mapping from variables (which are just mathematical

symbols) to types. For a type context Γ we will write Γ � x : T if Γ maps the
variable x to the type T , and say that x has type or is of type T in Γ . We may
omit Γ in these notations if the type context we are referring to is obvious or
unambiguous.
A type instance for a type context Γ (or for a program with type context Γ)

gives two countable non-empty sets as instances for X and Y . We may also talk
of (in)finite type instances, which map only to (in)finite sets.
A state s of a type context Γ (or of a program with type context Γ) together

with a type instance I for Γ is a function mapping each variable used in Γ to a
concrete value in its type. The set of all states of a type context (or of a program)
is called the state space. We may write s(a[x]) as a shorthand for s(a)(s(x)).
The instructions associated with a type context Γ are as displayed in Table

1, where T1 and T2 range over the non-array types.
The ? operator represents the selection (or input) of a value into a variable

or location. There are also guarding (or blocking) instructions such as equality
testing x = x′, that do not update the state but which can only proceed if true.
The instructions b and b can proceed only if b is respectively true or false.
The instruction reset(a, y) will implement an array reset or initialiser oper-

ation, setting every location in an array a to a particular value y. There is also
an array copy or assignment operation a[] := a′[].

Table 1. Instructions

Instruction Type constraints on Γ

Boolean ?b, b, b b : Bool

Data ?x, x = x′, x �= x′ x, x′ : X or Y

Array
?a[x], a[x] = y
reset(a, y), a[] := a′[]

a, a′ : T2[T1],
x : T1, y : T2

Counter inc(r),dec(r), isZero(r) r : Nat

Data-Independent Systems with Whole-Array Operations 279

Variables of type Nat can be increased by one, decreased if not zero, and
compared to zero.
The operations of a type context Γ are generated by the grammar:

Op ::= Op;Op | Op +Op | Op∗ | I

where I is any Γ -permitted instruction. The operator combinators are sequential
composition (;), choice or selection (+), and finite repetition (∗).
We may use syntactic abbreviations such as x := x′ for ?x;x = x′ or

while Op1 do Op2 od for (Op1;Op2)
∗;¬Op1. We may use brackets (· · ·) or

indentations in programs to show precedence.
A program with type context Γ is syntax of the form init OpI repeat OpT ,

where the initial operation OpI and the transitional operation OpT are both
Γ -operations.
Given a program P = init OpI repeat OpT and a type instance I for

the program, the semantics of the program under I is the transition system
〈〈P〉〉I = (Q,Q0,→, P,
·�), where
– Q (states) is the state space of the program P with the type instance I,
– Q0 (initial states) is the set of all states that can result from the execution
of OpI from any state in Q (i.e. the variables and all locations in the arrays
can be considered arbitrarily initialised before the execution of OpI),

– → is the relation induced by the operation OpT ,
– P (observables) is the set of boolean variables used in P.
–
·� is a mapping from P to sets in Q such that
b� = {s | s(b) = true}.

P can be thought of as executing OpI once from any state to form the set of
initial states of the transition system. Given any state, executing the transitional
operation OpT once from that state yields all its successors, i.e. all states which
P can reach by one transition.

Note 1. A UNITY program over a set of variables consists of an initial condi-
tion, followed by a set of guarded multiple assignments [3]. A UNITY program
can be expressed in our language quite naturally, although extra temporary
variables may be needed to reproduce multiple simultaneous assignment. Con-
versely, any program in our language can be converted to a UNITY program
which would have equivalent observational behaviour whenever a boolean signal
is true.
Further discussion of motivation and application of the language, and exam-

ple programs, can be found in [16].

�

4 Model-Checking Problems

The control-state unreachability problem CU for a class of programs C is: ‘Given
any program P from the class C, any boolean b from the program P, and any
particular type instance I for P, are all states which map b to true unreachable

280 R. Lazić, T. Newcomb, and A.W. Roscoe

in 〈〈P〉〉I?’ We will write FinCU and InfCU to restrict the problem to just
finite and infinite type instances respectively.
The parameterised control-state unreachability problem PCU for a class of

programs C is: ‘Given any program P from the class C and any boolean b from
the program P, are all states which map b to true unreachable in 〈〈P〉〉I for all
possible type instances I for P?’ We will write FinPCU to restrict the problem
to just finite type instances.
The data independence of the data types means that systems with equinu-

merous type instances are isomorphic. Therefore, InfPCU is in fact the same
problem as InfCU.
We can use the following theorem to deduce results about the parameterised

model-checking problem for all finite types from checks using just one particular
infinite type instance.

Theorem 1. Suppose we have a program P without variables of type Nat, a
boolean variable b of P, and an infinite type instance I∗ for P. Then,

b reachable in 〈〈P〉〉I∗ ⇐⇒ ∃I · b reachable in 〈〈P〉〉I .

where ∃I existentially quantifies only over finite type instances for P.
�

Corollary 1. For any class of programs without variables of type Nat, InfCU
is decidable if and only if FinPCU is decidable.
�

A DI system with arrays with reset is a program with no variables of type
Nat, which does not use array assignment, and which is of the form

init (;a?y; reset(a, y));OpI
repeat OpT ,

where y is any variable with type Y . It is sensible to assume that the program
has such a variable, otherwise it would be unable to read from or write to its
arrays. The notation (;a · · ·) means repetition of syntax, as a ranges over all
arrays.
In the above definition of DI systems with arrays with reset, the prefix of

instructions ensures that all arrays are initialised (i.e. reset) to arbitrary values.
This simplifies proofs a little.
A universal register machine (URM) is a program that may only use variables

of type Bool or Nat. The program must be of the form

init (;risZero(r));OpI
repeat OpT .

where the operation before OpI repeats isZero(r); for some complete enumera-
tion of the variables of type Nat.

Data-Independent Systems with Whole-Array Operations 281

5 Reset

5.1 One Array Storing Data from a Variable Type

In this section we will prove that parameterised model checking of control-state
unreachability properties for systems with one array of type Y [X] with reset is
decidable. We begin with the following crucial observation.

Note 2. Arrays are initialised at the beginning of the program, and at any reach-
able state there has been a finite number of instructions since the last reset on a
particular array. Therefore every possible reachable state will have only a finite
number of locations in each array that are different from the last reset value.
�

Let P be a DI program with only one (resettable) array, and let I∗ be an
infinite type instance for P. Let 〈〈P〉〉I∗ = (Q,Q0,→, P,
·�). To aid the follow-
ing proof, we restrict Q to contain only states that conform to the observation
made in Note 2—that there are only finitely many different values in the array
at any time and only one of them occurs infinitely often—as other states can
never be reachable. This simplifies the presentation, although it would be pos-
sible not to restrict Q and to just mention this at the required places in the
proof.
We define some notation before giving the well-quasi-ordering on the states.

Definition 1. For a state s, a subset V of I∗(X), and a value w ∈ I∗(Y), we
will denote the number of occurrences of w in locations V in the array s(a) as
Cs(V,w), which can be formally defined as follows:

Cs(V,w) = |{v ∈ V | s(a)(v) = w}|.

Note that the answer will be ∞ if V is an infinite set and w is the value of the
last reset, else it will be a natural number.
�

We write y :: Y to mean y is a term of type Y—that is, y is either a variable
y : Y or y is syntax of the form a[x] where x : X. We will also use:

s(: X) = {s(x) | x : X} and s(:: Y) = {s(y) | y :: Y }.

For ease of presentation, we may also write X and Y to mean I∗(X) and I∗(Y)
when it is clear that a set is required rather than a type symbol.

Definition 2. The relation � ⊆ Q×Q is defined as s � t iff there exist bijec-
tions:

α : s(:X)→ t(:X) and β : s(::Y)→ t(::Y)

such that all of the following hold:

1. s(b) = t(b) for all b : Bool.
2. α(s(x)) = t(x) for all x : X.
3. β(s(y)) = t(y) for all y :: Y .

282 R. Lazić, T. Newcomb, and A.W. Roscoe

4. For all w ∈ s(:: Y), there are at least the same number of β(w)’s in the
array t(a) as there are w’s in s(a), excluding locations which are the terms.
Formally:

Cs(X \ s(:X), w) ≤ Ct(X \ t(:X), β(w)).

5. There exists an injection γ : Y \ s(:: Y) → Y \ t(:: Y) such that all other
values from the type Y not dealt with above can be matched up from s(a) to
t(a) in the manner of Condition 4 above, but with the injection γ instead of
the bijection β. Formally: for all w ∈ Y \ s(::Y),

Cs(X \ s(:X), w) ≤ Ct(X \ t(:X), γ(w)).
�

Example 1. We illustrate the definition of � on an example pair of states s and
t. The first three conditions say that boolean variables must be equal and the
terms must have the same equality relationship on them. We will focus of the
final two conditions, which are used to compare the parts of the array that are
not referenced by the current values of X-variables (i.e. locations that are not
immediately accessible in the current state before doing a ?x instruction).
Condition 4 says that, for each term y :: Y , there must be at least as many

t(y)’s in the rest of the array t(a) (i.e. locations not referenced by X-variables)
than there are s(y)’s in the rest of the array s(a).
Suppose s has no other location in the array holding a value equal to the

value of term y0; similarly, suppose there are four, one, and three other locations
containing the values s(y1), s(y2) and s(y3) respectively. This is represented pic-
torially as a histogram: see Figure 1 (a). Condition 4 of s �′ t holds for any t
whose corresponding histogram ‘covers’ the histogram of s.
Condition 5 says that the same relationship holds for all the other Y -values

(i.e. values not held in terms), except that we are allowed to arrange the columns
of the histogram in any way we wish. In this example we use the fact that it
is sufficient to consider the arrangement where they are sorted in reverse order,
instead of having to consider every possible permutation.

Fig. 1. Histogram representation of array with reset

Data-Independent Systems with Whole-Array Operations 283

Suppose the state s was last reset to a value v0 which is not equal to a
value held in any term: the array will therefore hold an infinite number of these
values. The array may also hold a finite number of other values: suppose s(a)
also holds distinct values v1, . . . , v5 (which are different from v0 and the values
of any terms) in cardinalities five, four, four, two, and one respectively. This can
be represented as a histogram: see Figure 1 (b). Condition 5 requires that t’s
corresponding histogram covers that of s.
�

The following two propositions tell us that 〈〈P〉〉I∗ is a well-structured tran-
sition system [7].

Proposition 1. The relation � is a well-quasi-ordering on the state set Q.
�

Proposition 2. The relation � is strongly upward compatible with →, i.e. for
all s � t and s→ s′ there exists t′ ∈ Q such that t→ t′ and s′ � t′.
�

Any state s can be represented finitely by a tuple with the following compo-
nents:

– the values of the boolean variables;
– the equivalence relations on the variables of type X and on terms of type Y
induced by the equality of values stored in them;

– for each y :: Y , the value Cs(X \ s(:X), s(y));
– a bag (i.e. multiset) consisting of, for each w ∈ Y \ s(::Y), the value

Cs(X \ s(:X), w)

if it is non-zero.3

This representation yields a quotient 〈̂〈P〉〉I∗ of the transition system 〈〈P〉〉I∗ ,
which is a well-structured transition system with respect to the quotient �̂ of
the quasi ordering �. Moreover, for any state representation ŝ, a finite set of
state representations whose upward closure is ↑ Pred(↑ ŝ) is computable, and
�̂ is decidable. Therefore, control-state unreachability can be decided by the
backward set-saturation algorithm in [7].

Theorem 2. The problems InfCU and FinPCU are decidable for the class of
DI programs with reset with just one array of type Y [X].
�

5.2 Multiple Arrays Storing Boolean Data

Here we consider DI programs that use multiple arrays all indexed by a type vari-
able X and storing boolean values. Decidability of parameterised model checking
of control-state unreachability properties for these systems follows similarly as
for systems in Section 5.1.

3 There are only finitely many w’s for which this value is non-zero—see Note 2.

284 R. Lazić, T. Newcomb, and A.W. Roscoe

The following are the main differences in defining the quasi ordering:

– As the type Y used there is now the booleans, the program is no longer DI
with respect to it. Therefore, the function β must be removed (i.e. replaced
with the identity relation) from Definition 2.

– In Definition 1, redefine the Cs operator to take a vector of boolean values
w = (w1, . . . , wn) rather than a single value:

Cs(V, (w1, . . . , wn)) = |{v ∈ V | ∀i · s(ai)(v) = wi}|.

The finite representation of states is now as follows:

– the values of the boolean variables;
– the equivalence relation on the variables of type X induced by the equality
of values stored in them;

– for each w ∈ Bn, the value Cs(X \ s(:X),w).

Theorem 3. The problems InfCU and FinPCU are decidable for the class of
DI programs with arbitrarily many arrays only of type Bool[X] with reset.
�

5.3 Multiple Arrays Storing Data from a Variable Type

We now show that unreachability model checking is undecidable with more than
one array of type Y [X]. We demonstrate that for any URM P there is a DI
program P� with just two type variables X and Y and only two arrays with
reset which has the same observable behaviour as P. We can encode the values
of the variables r : Nat as the length of a linked list in the arrays in P�.

Definition 3. The type context Γ � of P� is defined as follows, where P has type
context Γ . Γ � has the same variables of type Bool as Γ and has two arrays
Γ � � S, I : Y [X] to hold the linked lists. It also has variables Γ � � hr : X for the
heads of the linked lists representing each Γ � r : Nat, and a variable Γ � � e : X
which marks the end of all the lists. A variable Γ � � y0 : Y is used to hold
a special value which marks a location in I as being unused. The program also
makes use of temporary variables Γ � � x : X and Γ � � y, n : Y .
�

Example 2. Figure 2 shows an example state of the arrays S and I, representing
a state in the URM where its counter variables are set as follows: r0 = 0, r1 = 2
and r2 = 3.
The array I is used to give unique identifiers in Y to all of the finitely many

locations in X that are currently being used to model the linked lists. It is set to
y0 (which happens to be the value 0 in this example) at all the unused locations.
Where I is non-zero, the array S gives the identifier of that location’s successor.
Checking a register r is zero becomes a simple matter of checking whether

hr = e. We can decrease a register r by updating hr to the value x, where I[x]
is equal to S[hr], remembering to mark the old location as being now unused by
doing I[hr] := y0.

Data-Independent Systems with Whole-Array Operations 285

Fig. 2. Building a linked list using arrays with reset

To increase r by one, we must find a brand new identifier as well as an
unused location for hr and make it link to the old location. To ensure that a
chosen identifier is new we must go through all the lists and check that it is not
being used already. We can check whether a location is being used by testing if
it is zero in I.
Notice that there are important invariants our emulator must maintain in

addition to the requirement that the linked lists must have length equal to the
appropriate URM register.

– The identifiers should be unique so that each head has exactly one list from it.
– Aside from the end marker e, the locations in any pair of lists are disjoint.
– I must have unused locations set to y0, of which there must always be in-
finitely many.
�

Definition 4. An instruction translator � from instructions in P to operations
in P� is shown in Table 2. The syntax (;r′ · · ·) means the repetition of syntax,
replacing r′ with a different variable of type Nat each time, all conjoined with
the ; operator.
�

Definition 5. Given a URM P = init oI repeat oT , the corresponding DI
program with arrays is

P� = init reset(I, y0); y �= y0; I[e] := y; o
�
I

repeat o�T .
�

Let 〈〈P〉〉 = (Q,Q0,→, P,
·�) and 〈〈P�〉〉 = (Q�, Q0�,→�, P,
·��). We will
show there exists a bisimulation between 〈〈P〉〉 and 〈〈P�〉〉I∗ for any infinite type
instance I∗ for P�.
First, some shorthands. Given a state t, we will say that the inverse function

t(I)−1 : I∗(Y) → I∗(X) is defined at a value w ∈ I∗(Y) and is equal to the
value v when there is exactly one value v in I∗(X) such that t(I)(v) = w. We
will use notation to compose arrays as follows: t(I)−1(t(S)(v)) may be written
t(I−1 ◦ S)(v).
We now define our correspondence relationship between the two transition

systems.

286 R. Lazić, T. Newcomb, and A.W. Roscoe

Table 2. Translating URM instructions to instructions on arrays with reset

I I�

isZero(r) hr = e

dec(r)
hr �= e; I[hr] := y0; y := S[hr];
?hr; I[hr] = y

inc(r)

?n;n �= y0;n �= I[e];
(;
r′
x := hr′ ;
while x �= e do
n �= I[x]; y := S[x];
?x; I[x] = y

od);
?x; I[x] = y0;
I[x] := n; y := I[hr];S[x] := y;
hr := x

other no change

Definition 6. Define a relation ≈ ⊆ Q×Q� as s ≈ t iff

– s(b) = t(b) for b : Bool.
– For every r : Nat there exists a finite sequence vr0 · · · v

r
s(r) such that:

• For each r : Nat:
∗ vrs(r) = t(hr),

∗ vri−1 = t(I
−1 ◦ S)(vri) for i = 1, . . . , s(r),

∗ vr0 = t(e).
• The values of each t(I)(vri) for r : Nat and i = 1, . . . , s(r) together with
t(e) are pairwise unequal. (‘Uniqueness Invariant.’)

• For all v ∈ I∗(X), we have that vri �= v for every r : Nat and i =
0, . . . , s(r) if and only if t(I)(v) = t(y0). (‘Unused Invariant.’)
�

Proposition 3. The relation ≈ is a bisimulation between 〈〈P〉〉 and 〈〈P�〉〉I∗ for
any infinite type instance I∗ for P�.
�

The following can be deduced from the undecidability of the Halting Problem
for URM’s and Corollary 1.

Theorem 4. The problems InfCU and FinPCU for the class of DI programs
with two arrays of type Y [X] with reset are undecidable.
�

6 Array Assignment

6.1 Simulation of Arrays with Reset

We show that for any program P using arrays with reset, there exists a program
P� using arrays with assignment which has bisimilar semantics. This shows that,
in some sense, array assignment is at least as expressive as array reset.

Data-Independent Systems with Whole-Array Operations 287

Fig. 3. Emulating array reset with array assignment

Definition 7. The type context Γ � of the program P� is defined as follows. If we
assume the arrays used in P are r0, . . . , rn−1, we have arrays Γ

� � a0, . . . , an−1 :
Y [X] in P�. We also have another array Γ � � A : Y [X] which we will use to
check whether locations have changed since the last reset of that array. The type
context Γ � has all the same non-array variables as Γ except that it also has extra
variables Γ � � Y0, . . . , Yn−1 : Y to store the last reset value to the corresponding
array. There are also temporary variables Γ � � ya, yA, n : Y .
�

Example 3. Here is an example state of a system using arrays with reset, together
with an emulating state from the system using array assignment.
On the left of the figure, the arrays r0 and r1 from the system with the reset

operation available are shown. It can be seen that r0 was last reset to 5 and r1
was last reset to 0. The locations where these arrays have been changed since
their last update are emphasised with vertical bars.
On the right, the arrays a0 and a1 from the system with array assignment are

shown to be identical to r0 and r1 respectively at these locations that have been
changed (also shown within vertical bars). Places which have not been changed
since the last reset of the array are instead equal to whatever is in the array A
at those locations—the variables Y0 and Y1 can be used to find the value of the
last resets. Now the instructions translate as follows:

– When we wish to read a location ri[x] in the abstract program P, we return
ai[x] when ai[x] �= A[x], and Yi when ai[x] = A[x].

– Resetting an array can be emulated by the array assignment ai[] := A[],
while setting Yi to the value of the reset.

– When writing to an abstract location ri[x], we write instead to ai[x]. Fur-
thermore we should make sure that A[x] is not equal to ai[x]; if it is not,
we must change A[x] and any other aj [x] which is marked as unchanged by
being equal to A[x].
�

288 R. Lazić, T. Newcomb, and A.W. Roscoe

Table 3. Translating instructions for arrays with reset to instructions for arrays with

assignment

I I�

y = ri[x]

yA := A[x]; ya := ai[x];
if yA = ya
then y = Yi
else y = ya

fi

reset(ri, y) ai[] := A[];Yi := y

?ri[x]

?ai[x]; yA := A[x]; ?n; ai[x] �= n;
(;
j �=i

ya := aj [x];

if ya �= yA
then ya �= n
else aj [x] := n

fi);
A[x] := n

other no change

Definition 8. An instruction translator � from instructions in P to operations
in P� is shown in Table 3. The notation (;j �=i · · ·) means repetition of syntax for
every j from 0 to n− 1 except i, all conjoined with ; in any order.
�

Definition 9. Given a DI program with arrays with reset P = init oI repeat oT ,
we can form a corresponding DI program with arrays with assignment P� =
init o�I repeat o

�
T as described above.
�

Theorem 5. Given a DI program P with n arrays of type Y [X] with reset and
a type instance I for P, there exists a DI program P� with n + 1 arrays of
type Y [X] with assignment such that there is a bisimulation between 〈〈P〉〉I and
〈〈P�〉〉I .
�

6.2 Simulation of universal register machines

By Theorem 5, any program with two arrays with reset is bisimilar to a pro-
gram with three arrays with assignment. Theorem 4 states that unreachability
is undecidable for the former class, and so it also is for the latter.
It turns out that a stronger negative result is possible. We adapt the results

from Section 5.3 about array reset to work instead with array assignment. We
show that, for any universal register machine P, there exists a DI program
P� with only two arrays with array assignment which has the same observable
behaviour as P. The proof runs very similarly, so we present only the differences.

– The variable Γ � � y0 : Y from Definition 3 is unnecessary.
– Figure 2 could be replaced by Figure 4.

Data-Independent Systems with Whole-Array Operations 289

Fig. 4. Building a linked list using arrays with assignment

– The corresponding explanation from Example 2 would be altered as follows:
Instead of I[x] being set to y0 at unused locations x, we have I[x] = S[x] to
mark a location as unused. Conversely, a location x must have I[x] �= S[x] if
it is in use to prevent it being overwritten. This had to be the case anyway
otherwise the successor of that location would be itself, and hence would be
an infinite list—except at e, whose successor is never used, so we must be
sure to have I[e] �= S[e].

– Table 2 is updated as follows:

• Remove the instruction n �= y0 in (inc(r))�. The role of y0 has been
replaced.
• Replace I[hr] := y0 with I[hr] := S[hr] in (dec(r))�. This is the new way
of marking a location as unused.
• Replace ?hr with ?hr; I[hr] �= S[hr] in (dec(r))�, and replace the first
occurrence of ?x (i.e. within the while-loop) with ?x; I[x] �= S[x] in
(inc(r))�. This is the new check for a used location.
• Replace I[x] = y0 with I[x] = S[x] in (inc(r))�. This tests for an unused
location.

– In Definition 5, the piece of code reset(I, y0); ?y; y �= y0; I[e] := y is used to
mark every location as unused, and to pick a non-y0 value as the identifier
for location e so it is marked as being used. This should be replaced by
I[] := S[]; ?y; y �= S[e]; I[e] := y to mark every location as unused (because
I[x] = S[x] at every location x), and then to make I[e] �= S[e] so this location
is marked as being used.

– We require a modification to the inverse function implied by an array as
used in Section 5.3. We now say that t(I)−1 is defined at a value w and
is equal to v when there is exactly one v such that both t(I)(v) = w and
t(I)(v) �= t(S)(v).

– In the definition of ≈ (Definition 6), the last condition should be that t(I)(v)
is equal to t(S)(v) instead of t(y0).

We can now state the following theorems.

290 R. Lazić, T. Newcomb, and A.W. Roscoe

Theorem 6. Given a universal register machine P there exists a DI program
P�, and two arrays of type Y [X] with array assignment, such that there is a
bisimulation between 〈〈P〉〉 and 〈〈P�〉〉I∗ for any infinite type instances I∗.
�

Theorem 7. The problems InfCU and FinPCU for the class of DI programs
with just two arrays of type Y [X] with array assignment is undecidable.
�

Note that a program with only one array with array assignment is unable to
make any use of the array assignment instruction: it can therefore be considered
not to have this instruction.

7 Conclusions

This paper has extended previous work on DI systems with arrays without whole-
array operations [9, 14, 11] by considering array reset and array assignment.
For programs with array reset, we showed that parameterised model checking

of control-state unreachability properties is decidable when there is only one ar-
ray, but undecidable if two arrays are allowed. If the arrays store booleans rather
than values whose type is a parameter, we showed decidability for programs with
any number of arrays. The decidability results are based on the theory of well-
structured transition systems [7], whereas undecidability followed by reducing
the Halting Problem for universal register machines.
Programs with array assignment were shown to be at least as expressive as

programs with array reset. However, this yields a weaker undecidability result
than for programs with reset, but undecidability for two arrays was obtainable
directly.
Future work includes considering programs with array assignment in which

the arrays store booleans. More generally, programs with more than two data-
type parameters, multi-dimensional arrays, and array operations other than reset
and assignment should be considered, as well as classes of correctness properties
other than control-state unreachability.
We would like to thank Zhe Dang, Alain Finkel, and Kedar Namjoshi for

useful discussions.

References

1. S. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial.
Computer, 29(12):66–76, December 1996.

2. P. J. Broadfoot, G. Lowe, and A. W. Roscoe. Automating data independence. In
Proceedings of the 6th European Symposium on Research on Computer Security,
pages 75–190, 2000.

3. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison
Wesley Publishing Company, Inc., Reading, Massachusetts, 1988.

4. S. J. Creese and A. W. Roscoe. Data independent induction over structured net-
works. In International Conference on Parallel and Distributed Processing Tech-
niques and Applications. CSREA Press, June 2000.

Data-Independent Systems with Whole-Array Operations 291

5. N. Cutland. Computability: An Introduction to Recursive Function Theory. Cam-
bridge University Press, 1980.

6. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols.
In Proceedings of the 14th IEEE Symposium on Logic in Computer Science, pages
352–359. IEEE Comp. Soc. Press, 1999.

7. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1–2):63–92, 2001.

8. R. Hojati and R. K. Brayton. Automatic datapath abstraction in hardware sys-
tems. In Proceedings of the 7th International Conference on Computer Aided Veri-
fication, volume 939 of Lecture Notes in Computer Science, pages 98–113. Springer-
Verlag, 1995.

9. R. Hojati, A. J. Isles, and R. K. Brayton. Automatic state reduction techniques
for hardware systems modelled using uninterpreted functions and infinite memory.
In Proceedings of the IEEE International High Level Design Validation and Test
Workshop, November 1997.

10. R. S. Lazić. A Semantic Study of Data Independence with Applications to Model
Checking. PhD thesis, Oxford University Computing Laboratory, 1999.

11. R. S. Lazić, T. C. Newcomb, and A. W. Roscoe. On model checking data-
independent systems with arrays without reset. Theory and Practice of Logic
Programming, 4(5–6):659–693, 2004.

12. R. S. Lazić and D. Nowak. A unifying approach to data independence. In Proceed-
ings of the 11th International Conference on Concurrency Theory, volume 1877 of
Lecture Notes in Computer Science, pages 581–595. Springer-Verlag, August 2000.

13. I. A. Lomazova. Nested petri nets: Multi-level and recursive systems. Fundamenta
Informaticae, 47:283–294, 2001.

14. K. L. McMillan. Verification of infinite state systems by compositional model
checking. In Conference on Correct Hardware Design and Verification Methods,
pages 219–234, 1999.

15. T. Melham and R. Jones. Abstraction by symbolic indexing transformations.
In Proceedings of the Fourth International Conference on Formal Methods in
Computer-Aided Design, volume 2517 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

16. T. C. Newcomb. Model Checking Data-Independent Systems With Arrays. PhD
thesis, Oxford University Computing Laboratory, 2003.

17. P. Wolper. Expressing interesting properties of programs in propositional temporal
logic. In Proceedings of the 13th ACM Symposium on Principles of Programming
Languages, pages 184–193, 1986.

Industrial Strength CSP: Opportunities and
Challenges in Model-Checking

Sadie Creese

Qinetiq, UK

Abstract. The Systems Assurance Group within QinetiQ Trusted In-
formation Management is concerned with the development of high in-
tegrity systems. Historically these have been military safety or security
critical applications, more recently our focus includes customers with
dependability concerns from the civil and commercial sectors. CSP has
become a core capability of the group, and is widely applied throughout
our work. Central to our use of CSP is the ability to verify automati-
cally refinements using the FDR model checker. This talk will present
an overview of our application of model-checking to industrial systems
assurance, the technical challenges we face, the methods we employ to
overcome them, the future technology landscape that we will be facing
and the associated opportunities and challanges for application of CSP.

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, p. 292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

-

Applied Formal Methods From CSP to
Executable Hybrid Specifications

Jan Peleska

University of Bremen, P.O. Box 330 440,
28334 Bremen, Germany and Verified Systems International GmbH

jp@verified.de

Abstract. Since 1985, CSP has been applied by the author, his research
team at Bremen University and verification engineers at Verified Systems
International to a variety of “real-world” projects. These include the veri-
fication of high-availability database servers, of fault-tolerant computers
now operable in the International Space Station, hardware-in-the-loop
tests for the novel Airbus A380 aircraft controller family and confor-
mance tests for the European Train Control System. Illustrated by ex-
amples from these projects, we highlight important aspects of the CSP
language design, its semantics and tool support, and describe the impact
of these features on the quality and efficiency of verification and test-
ing. New requirements with regard to the test of hybrid control systems,
the demand for executable formal specifications, as well as the ongoing
discussion about the practical applicability of formal methods have led
to the development of new specification formalisms. We sketch some key
decisions in the formalism design and indicate how some of the funda-
mental properties of CSP have been adopted, while others have been
deliberately discarded in these new developments.

1 Introduction

Motivation. The objectives of this contribution are twofold. First, we wish to
illustrate the usability of Communicating Sequential Processes CSP for speci-
fication, verification and testing in an industrial “real-world” context. Second,
we are convinced that further research work on CSP and similar formalisms
will benefit from the challenges which are posed by problems occurring in daily
industrial verification practice.

Overview. In Section 2, an overview of industrial verification projects managed
by the author is given. In each of these projects, CSP served as the underly-
ing formalism for specification, verification and testing. We sketch how existing
methods and theories contributed to the solution of each problem, and how the
“feed-back loop” between research and industrial projects was closed by practi-
cal problems leading to novel research challenges. In the two sections to follow,
more recent related research activities are described: Section 3 outlines recent
results and ongoing research work in the field of automated testdata generation

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, pp. 293–320, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

–

294 J. Peleska

from Timed CSP (TCSP) specifications. In Section 4 we introduce a framework
for generating run-time environments for real-time execution of specifications
written in “high-level” formalisms, such as TCSP, Statecharts, further diagram
types of the Unified Modeling Language and Hybrid systems extensions thereof.
The latter allow to describe both time-discrete changes and analog evolutions of
physical observables. The framework, which is currently used for specification-
based testing against various formalisms – TCSP is one of them – has been
developed for the purpose of model-based development, test data generation
and on-the-fly checking of system behaviour. Section 5 contains the conclusion.

Further Reading. Some basic knowledge about CSP in its untimed and timed
variants is assumed in this article. For a detailed introduction readers are re-
ferred to [Hoa85, Ros98, Sch00]. References to further research results which are
of interest within the scope of this paper are given in the sections below.

2 Practice Stimulates Theory – Applied CSP and
Related Research Activities

2.1 Specification and Verification of Fault-Tolerant Systems

The Dual Computer System DCP. In 1985 the author and his team at Philips
started the design and development of a fault-tolerant dual computer system
DCP for a high-availability data base server. A design novelty at that time
consisted in using a more symmetric concept than the usual master-standby
technique: Both computers CPi , i = 0, 1 of the DCP were active during nor-
mal operation without being strictly synchronised on instruction level. They
both executed read-write transactions on their local data bases, but read-only
transactions were executed by just one of them, while the other only stored the
inputs from the client until the associated transaction had been completed. This
strategy could be exploited for higher performance in comparison to a server
consisting of only one computer. To minimise the number of synchronisation
messages to be exchanged and processed between them, the two computers only
synchronised their serialisation for conflicting read-write transactions1, so that
a consistent database state was maintained. As long as both computers were
active only one of them returned transaction results back to the client. If CPi
failed, computer CP(1−i) only had to redo the open read-only transactions per-
formed by CPi – this was possible because CP(1−i) still kept the associated input
data – and to transmit the results of all transactions which had not yet been
sent to the client when failure occurred. This strategy avoided loss of transac-
tions or messages from server to client, but it could lead to duplicate messages.
These could be filtered by implementing an alternating bit protocol for client-
server communication. After delivering the results of all open transactions to

1 Two transactions Ti , i = 0, 1 are called conflicting if the write set of Ti has a non-
empty intersection with the union of T(1−i)’s read and write sets.

Applied Formal Methods 295

app_tx app_rc

CLIENT

Target System

SYS

NET0

DCP

CP0 CP0

NET1

APP0 APP1

a1

b02 a12

b0
b1

b12a02

DCP CONTROL

off0 off1 on1

d1

c1

c0

d0

ABFTX ABFRC

on0

Fig. 1. Architecture of the dual computer system DCP

the clients, the remaining computer CP(1−i) could provide all database services
since its local database was up-to-date. The only degradation visible to clients
consisted in slower response time, since now all read-only transactions had to
be performed on a single computer. Figure 1 sketches the DCP architecture;
the fault-tolerance mechanisms are encapsulated in a separate layer denoted by
NETi , i = 0, 1. Specification details are available in [Pel97–pp. 59].

Verification Strategy for the DCP. The complexity of the fault-tolerance ser-
vices which were needed to implement this type of behaviour suggested that a
rigorous verification approach should complement the conventional testing ac-
tivities planned for the DCP . At that time, Tony Hoare’s book [Hoa85] on CSP
became available, and later a joint publication with He Jifeng [JH87] described
an elegant verification technique for fault-tolerant systems: Using purely alge-
braic reasoning within the CSP process algebra, the authors showed that the
fault-tolerant implementation process and the associated requirements specifi-
cation process both satisfied the same set of mutually recursive equations. Now
equivalence between the two followed simply from fixed-point theory.

During initial formal verification attempts, however, it was realised that –
rather than applying a single verification technique for all tasks – it would be
more efficient to use a combination of specification and verification “styles”, so

296 J. Peleska

that for each step within the verification suite the most promising technique
could be selected:

1. The top-level requirements were formulated in implicit specification style, as
a proof obligation on traces and refusals: SYS sat S (tr ,R).

2. Following a top-down decomposition of the system design sketched in Fig-
ure 1, each component was first associated with local proof obligations about
its interface behaviour.

3. Using compositional reasoning for the parallel and hiding operators (see,
for example, [Sch00–pp. 197]) it was shown in each decomposition step that
the required behaviour of sub-components would imply the proof obligation
specified for the higher-level component.

4. When the stepwise decomposition reached the level of sub-components to
be implemented as sequential processes Pi , these processes were not only
associated with their implicit specifications Pi sat Si(tr ,R), but also with
explicit representations in terms of the CSP process algebra.

5. If the explicitly defined processes were sufficiently simple to be implemented
in a direct way, their compliance with the associated implicit proof obliga-
tions was shown using the proof rules [Sch00–pp. 197] for the satisfaction
relation. If necessary, term re-writing based on the laws of the CSP process
algebra was performed for the process, in order to reach a representation close
enough to an implementation in the target programming language (Pascal)
and operating system.

6. If the implementation of the sequential process Pi required more complex
sequential algorithms the proof theories for nondeterministic sequential pro-
grams and distributed programs elaborated by Apt and Olderog [AO91] were
applied, in order to show that the communication pattern used in the process,
together with the sequential algorithms executed between communications,
really implied the proof obligations Pi sat Si(tr ,R).

The first five specification and verification techniques are all defined within
the well-known denotational semantics and associated proof theories of “mod-
ern” CSP: Term re-writing based on the algebraic laws preserves failures equiv-
alence, compositional proof rules about the satisfaction relation are defined for
each CSP operator, and failures refinement preserves the satisfaction relation.
The sixth technique, however, requires some explanation:

Verification of CSP With Sequential Imperative Program Parts. As is often the
case in distributed systems design, the communication structure of the dual com-
puter system and the sequential algorithms for queue management, serialisation
of conflicting transactions, fault management and related activities were designed
separately. Since Pascal was used as programming language, it was only natural
to use a conventional operational semantics interpretation and Hoare logic for
reasoning about pre- and postconditions, in order to prove the correctness of
the sequential parts. This left us with the task to prove that the effect of the
sequential algorithms as visible on local process variables also implied the proof

Applied Formal Methods 297

obligations Pi sat S (tr ,R) specified for the visible communication behaviour
of each sequential process Pi . Though Hoare had indicated in [Hoa85–pp. 185]
how to integrate local variables, assignment and control structures of imperative
programming languages into sequential CSP processes, the validity of combining
proofs obtained for sequential program fragments interpreted in an operational
semantics with CSP process behaviour interpreted in the denotational models
did not seem quite as obvious to us to be applied without further consideration.

To this end, the distributed programs introduced by Apt and Olderog [AO91]
proved to be helpful: The authors consider networks X = (S1 ‖ . . . ‖ Sn) of
sequential processes

Si ≡ Si0; do �
mi
j=1gij →Sij od (∗)

In this representation, Si0,Sij are sequential nondeterministic program frag-
ments written in an imperative style, operating on local variables [AO91–
pp. 106]. Each gij is a communication construct of the form gij ≡ Bij&cij !x
or gk	 ≡ Bk	&ck	?x . The communication construct is structured into guards
Bij which are Boolean expressions over local variables and channels cij carrying
messages cij .x . Channel outputs and inputs are denoted in the usual CSP style
as cij !x and ck	?x . Communication between sequential processes Si and Sk can
take place over matching gij , gk	 – that is, gij = Bij&cij !xij , gk	 = Bk	&ck	?xk	

and cij = ck	 = c – whenever both Bij and Bk	 evaluate to true in the actual
process states of Si and Sk . The effect of the communication is equivalent to an
assignment xk	 := xij of the output variable value to the input variable.

The communication structure of the sequential processes Si matched exactly
with the communication pattern applied for the sequential processes of the dual
computer system. Moreover, Apt and Olderog introduced an operational se-
mantics for distributed programs which was identical with (nondeterministic)
sequential program semantics for the sequential process parts Sij . Indeed, it is
shown in [AO91–pp. 334] that distributed programs X can be transformed into
equivalent nondeterministic sequential programs ν(X), so that proofs about dis-
tributed programs can be performed using the rules for nondeterministic sequen-
tial program verification. Program ν(X) is given by

ν(X) ≡ S10; . . . ; Sn0;
do �(i,j ,k ,)∈Γ Bij ∧ Bk	→ xk	 := xij ; Sij ; Sk	; od

where the set Γ contains index quadruples of matching communication con-
structs gij = Bij&cij !xij and gk	 = Bk	&ck	?xk	 with cij = ck	. For a channel cij
let α(cij) (the channel alphabet) denote the set of all pairs cij .x with correctly
typed channel messages x . For distributed program X the alphabet A = α(X) is
the union over all alphabets of channels referenced in X plus event � indicating
termination of X (if X terminates at all). Using abbreviation

rΓ = A− {cij .xij | (i , j , k ,) ∈ Γ ∧ Bij ∧ Bk	}

298 J. Peleska

and augmenting ν(X) by fresh variables trv : A∗ and Rv : P(A) and correspond-
ing assignments, we construct a new nondeterministic sequential program

X ′ ≡ S10; . . . ; Sn0; trv :=<>; Rv := rΓ ;
do

�(i,j ,k ,)∈Γ Bij ∧ Bk	→
xk	 := xij ; trv := trv	 < cij .xij >; Sij ; Sk	; Rv := rΓ ;

od

which still has the same behaviour with respect to the local variables of ν(X)
since the fresh variables trv ,Rv are nowhere referenced within the sequential
fragments Sij . In [Pel97–pp. 87] we have constructed a syntactic mapping from
the set of CSP processes X following the communication pattern (*) into the set
of nondeterministic sequential programs structured like X ′. Furthermore it has
been shown that proof obligation X sat S (tr ,R) holds if and only if

∀U : P(Rv) • S (trv ,U)

is a do . . .od loop invariant of the associated sequential program X ′ and
holds in case of termination. Intuitively speaking, the pair (trv ,Rv) represents a
failure of X , when interpreted in the denotational model, and Rv is a maximal
refusal applicable in the current process state X /trv .

With this correspondence between CSP processes and nondeterministic se-
quential programs at hand, proof obligations X sat S (tr ,R) can be derived for
the process by reasoning about its sequential program parts and local variables,
using the operational semantics and Hoare logic.

Remarks and Related Publications. In [Pel91, Pel97, BCOP98] it is illustrated
how this combination of sequential reasoning with algebraic, assertional and
refinement verification methods can be applied, so that also projects of a larger
scale, where a single verification technique would not suffice to discharge every
type of proof obligation, can be effectively handled.

Observe that the necessity to embed description techniques for sequential al-
gorithms into CSP has been realised by several authors, so that a variety of solu-
tions is now available, allowing to pick the ones which are most appropriate for
the description of each verification problem or for transformation of specifications
into executable code: When using machine-readable CSP with the FDR tool, al-
gorithms are specified using a functional programming language [Ros98–pp. 495].
The combined use of the functional programming paradigm and CSP has been
investigated extensively by several authors; we name Abdallah’s work [Abd94]
on the development of parallel algorithms based on functional specifications as
an example. As an alternative to imperative and functional descriptions, the im-
plicit specification of data manipulations has been made available by embedding
Z or one of its object-oriented variants into CSP. For this combination, we refer
to Fischer and Smith [FG97] and the literature cited there.

Applied Formal Methods 299

2.2 Formal Methods for the International Space Station

The International Space Station. The International Space Station ISS, launched
in July 2000 and today still in its construction phase in orbit, is a joint ven-
ture between the United States, Russia, Japan, Canada and Europe. Managed
through the European Space Agency ESA, Europe contributes to this huge in-
ternational project by

– The Colombus Orbital Facility, a research laboratory to specialise in research
into fluid physics, materials science and life sciences,

– The Automated Transfer Vehicle (ATV) to be used for carrying cargo from
the earth to the ISS and – once docked at the ISS – for boosting the station
higher in its orbit.

Moreover, Europe has developed and delivered several smaller sub-systems for
the ISS. One of these is the Data Management System DMS-R for the Rus-
sian segment of the ISS. The main responsibilities of the DMS-R are guidance,
navigation and control for the entire ISS, on-board system control, failure man-
agement and recovery, data acquisition and control for on-board systems and
experiments. The DMS-R has been developed by ESA with an industrial team
led by EADS ASTRIUM in Bremen, Germany.

The Fault-Tolerant Computer. The computing platform for the DMS-R is the
FTC, a fault-tolerant computer system. Various fault-tolerant configurations can
be selected for the FTC; the most reliable and at the same time the most complex
one consists of a four-times redundant setting, where the four computer nodes
cooperate according to Lamport’s Byzantine Agreement Protocol [LSP82]. The
corresponding FTC architecture is sketched in Figure 2.

The FTC communicates with other components in the ISS using a strictly
synchronised frame protocol over redundant MIL-STD 1553 busses. Each FTC

MIL-BUS

FML FML FML FML

AVI AVI AVI AVI

ASS ASS ASS ASS

Application Application Application Application

Fig. 2. FTC architecture

300 J. Peleska

node has a layered hardware and software architecture: Applications are pro-
grammed in C and run on a ruggedised variant of the SUN Sparc CPU board
developed by Matra in France. The application layer makes use of the Applica-
tion Service Layer ASS for communication, time management and other services.
The fault-tolerant mechanisms are encapsulated in the fault management layer
FML. On each node, the FML is implemented on a separate hardware board
equipped with transputer technology, with software programmed in .
Transputer links connect all FTC nodes with each other, in order to provide the
communication infrastructure for the Byzantine Agreement Protocol. Data bus
access is managed through the avionics interface layer AVI, which again resides
on a transputer board of its own and is also driven by software.

Between 1995 and 1998 the author and his research team at the University
of Bremen performed a variety of verification and testing activities for the FTC.
Two major objectives from a wider list of correctness goals consisted in proving
the absence of potential deadlocks or livelocks in the code of the FML
and AVI.

Verification Strategy for the FTC. The close relationship between and
CSP and the availability of the FDR model checker [For01], [Ros98–pp. 517]
suggested an abstract interpretation approach for these tasks: code P
was mapped to a CSP abstraction A(P), thereby dropping all coding details
of P without impact on communication behaviour. Then deadlock or livelock
freedom was verified for A(P) by means of model checking with FDR. It soon
became clear that model checking on CSP abstractions could only be used to
verify small portions of code; it would have been infeasible to map
the approximately 24,000 lines of code as “one chunk” to CSP and then per-
form model checking on the complete system abstraction. Instead, a verification
strategy combining several techniques had to be designed:

1. Abstraction methods were only used on small portions P1, . . . , Pn of
code, resulting in a collection of CSP abstractionsA(P1), . . . ,A(Pn).

2. Verification sub-goals were specified for the A(Pi) as refinement relations
SPECi � A(Pi) and verified via model checking for trace-, failures- or
failures-divergence refinement. The choice of the semantic model depended
on the sub-goal to be proved.

3. Compositional reasoning was used to derive the global verification goals from
sub-goals verified for the A(P1), . . . ,A(Pn).

4. Generic theories were applied to re-use correctness results which only depend
on generic characteristics of (sub-)systems: By showing that a CSP process
A(Pi) complied with a specific communication design pattern (this proof was
again performed by model checking) it was possible to use an instance of the
generic theory, in order to prove that A(Pi) satisfied a desired property.

While the techniques 2. and 3. were just routine tasks, the abstraction tech-
niques and the elaboration and application of generic theories required additional
investigations.

occam

occam

occam

occam

occam

occam

occam

Applied Formal Methods 301

Abstraction Techniques. The verification strategy sketched above implied that a
variety of verification sub-goals would be investigated for code portions
P1, . . . ,Pn . Furthermore, taking into account that verification goals on
level were expressed on a different syntactic level than the associated goals for
CSP abstractions, a more formal definition of abstractions was required:

Definition 1. Let P be an or CSP process and p a property of P to be
verified. Let A(P) denote a CSP process and A∗(p) a property defined on CSP
level. Then the pair (A(P),A∗(p)) is called a valid abstraction for (P , p), if

A(P) satisfies A∗(p) implies P satisfies p. ��
The most important abstraction technique applied was abstraction through

data independence. Using this technique, the data ranges T of all
channel protocols and local process variables are partitioned into the minimal
number of subsets T1 ∪ . . . ∪ Tk = T which have to be distinguished in order
to prove a given property p for an process P . The CSP abstraction
A(P) then operates on channels whose alphabet contains as many elements as
partitions for T have to be distinguished; these can always be encoded as integral
numbers { 1, . . . , k }. Control commands in P which are relevant for p and involve
variables of type T are then abstracted to decisions on CSP level, where only
the membership in a partition Ti is distinguished, but not the actual variable
values itself.

Example 1. Suppose that channels c, d range over the natural numbers. We wish
to prove that process system

channel c, d : N
SYSTEM = (P ‖

{|c|}
Q)

P = c!0→STOP � c!1→STOP
Q = c?x→ (if (x < 10) then (d !0→STOP) else (d !10→STOP))

is free of livelocks and always produces event d .0 before blocking. Formally, this
property p can be expressed as p ≡ ((d .0→STOP) �FD SYSTEM \ {| c |}),
�FD denoting the failures-divergence refinement relation. Since the condition in
Q only depends on the two situations x < 10 and x ≥ 10, it suffices to analyse
the abstracted process system

channel c′, d ′ : { 1, 2 }
A(SYSTEM) = (P ′ ‖

{|c′|}
Q ′)

P ′ = c′!1→STOP
Q ′ = c′?x→ (if (x == 1) then (d ′!1→STOP) else (d ′!2→STOP))

where channels c′, d ′ are defined with the finite alphabet { 1, 2 } instead of the
infinite set N; value 1 representing the partition { x < 10 }, value 2 partition
{ 10 ≤ x } of the original channels c, d . The abstracted property A∗(p) to be
verified for A(SYSTEM) is

occam
occam

occam

occam

occam

302 J. Peleska

A∗(p) ≡ ((d ′.1→STOP) �FD A(SYSTEM) \ {| c′ |})
referring to abstracted channels c′, d ′. ��

With a CSP process A(P) generated from the original process P by
abstraction through data independence at hand, further simplifications could be
made by constructing even more abstract CSP processes P ′ satisfying a refine-
ment relation P ′ � A(P) such that the desired property A∗(p) was preserved by
this type of refinement. Then it sufficed to establish A∗(p) for P ′. This technique
is called abstraction through refinement and is less powerful, but considerably
simpler than the abstraction through data independence, since it does not allow
to further reduce the alphabet of the abstraction process P ′.

Generic Theories. The local properties established for processes
P1, . . . ,Pn via abstraction and model checking had to be combined by com-
positional reasoning, in order to establish overall verification goals like deadlock
and livelock freedom over given sets of input and output channels. In order to
simplify this compositional reasoning process, generic theories were elaborated
and applied in various situations, where different process sub-systems followed
the same communication pattern, as required by the generic theory. For FTC
verification, the generic parameters of each theory were

– number of processes involved,
– number and names of channels involved,
– specific parameters referring to re-occurring patterns in the communication

behaviour.

ASS

Interface

Distributor

Output

Distributor

Input

Voter

Control

Mode

Interfaces

Link

Transputer Links

Transputer Links

ToInDist[4]

InDist2OutDist

FromOutDist[4]

ToInDist[0..3]

ToInDist[6]

FromOutDist[0..3]

ToInDist[5]

Context.recovery

Context.control

ASS

Context

Manager

FromOutDist[5]

InDist2Voter output

Fig. 3. Top-level processes of the fault management layer FML

occam

occam

Applied Formal Methods 303

Example 2. In the compositional reasoning process performed to prove deadlock
freedom of the FML, it could be shown by model checking that each of the
process sub-systems depicted in Figure 3 is a refinement of a process instance of
type “multiplexer/concentrator” specified as MUXCON below. The definition
of MUXCON is generic in the number N specifying how many outputs must
be produced before the next input can be accepted and the number, names and
alphabet of input channels {in1, . . . , inn} and output channels {out1, . . . , outm}.
Observe that an instance of MUXCON defined with N = 0 never refuses an
input.

MUXCON [N , {in1, . . . , inn}, {out1, . . . , outm}] =
MC [N , {in1, . . . , in	}, {out1, . . . , outm}](0)

MC [N , {in1, . . . , in	}, {out1, . . . , outm}](n) =
if (n = 0)
then (GET [N , {in1, . . . , in	}, {out1, . . . , outm}]

� (STOP �PUT [N , {in1, . . . , in	}, {out1, . . . , outm}](1)))
else PUT [N , {in1, . . . , in	}, {out1, . . . , outm}](n)

GET [N , {in1, . . . , in	}, {out1, . . . , outm}] =
(� e : {| in1, . . . , in	 |} •

e→MC [N , {in1, . . . , in	}, {out1, . . . , outm}](N))

PUT [N , {in1, . . . , in	}, {out1, . . . , outm}](n) =
(� e : {| out1, . . . , outm |} •

e→MC [N , {in1, . . . , in	}, {out1, . . . , outm}](n − 1))

The following generic theory is associated with the above process class:

Theorem 1. A network of process instances P1, . . . ,Pq from class
MUXCON [N , {in1, . . . , inn}, {out1, . . . , outm}] is free of deadlocks, if every com-
munication cycle

Pj1
cj1−→ Pj2

cj2−→ . . .
cjk −1−→ Pjk

cjk−→ Pj1

contains at least one process instance Pj� defined with N = 0.

It could be shown by model checking that for each communication cycle in the
network of sub-systems shown in Figure 3, at least one sub-system is a refine-
ment of a MUXCON instance with N = 0. Since deadlock freedom is preserved
under refinement and refinement distributes through the parallel operator, this
established deadlock freedom for the full FML layer. ��

Remarks and Related Publications. The operation of the DMS-R system and its
fault-tolerant computing platform has started with the launch of the Russian
Service Module in July 2000 and is working nominally since then.

304 J. Peleska

For more details about the ISS, the reader is referred to the web
sites of the European Space Agency (http://www.esa.int) and of EADS
(http://www.eads.net).A more comprehensive description of the verification ac-
tivities2 performed by the author and his research team for the International
Space Station is given in [PB99]. Details about the fault-tolerant computer sys-
tem FTC have been published in [UKP98]. The technical aspects of the FTC
deadlock and livelock analysis are described in [BKPS97, BPS98]. The system-
atic application of generic theories and their mechanised verification with the
HOL theorem prover has been sketched in [BCOP98]. Roscoe presents a de-
tailed introduction and analysis of CSP abstraction concepts in [Ros98].

It should be noted that the abstractions from to CSP which were
required to prove absence of deadlocks or livelocks by model checking have been
constructed in a manual way, relying on the verification engineers’ expertise with
respect to the decision whether an code detail was relevant for com-
munication behaviour or could be removed in the abstraction. Of course, this
approach introduced the risk of inadvertently “losing” relevant code during the
abstraction process. However, the activity of code abstraction differs consider-
ably from the activity of code development itself. Moreover, the verification team
was completely independent from the development team. Therefore we consider
it as justified to assume that the probability of producing an abstraction error
which exactly masks a programmed deadlock or livelock situation is low enough
to be neglected. Observe finally, that the undecidability results presented by
[LNR05] indicate that a mechanised abstraction may be generally infeasible, as
soon as more complex data structures are involved.

2.3 Embedded Systems Testing for Airbus Avionic Systems

Testautomation Requirements Defined by Airbus. When Verified Systems Inter-
national GmbH was founded as a spin-off company of the University of Bremen in
1998, the company received the first contract from Airbus for testing an avionics
controller of the Airbus A340 aircraft.

The crucial requirements defined by Airbus in 1998 for the testing environ-
ment and its automation capabilities were

– Test data generation should be highly automated with respect to choices of
data on individual interfaces, combinational patterns of input/output traces
and their timing.

– All output interfaces of the system under test (SUT) should be continuously
monitored, so that also transient output errors could be detected.

– Automated test oracles, that is, checkers of SUT responses against expected
(i. e., specified) SUT behaviour should be simple to program and capable
of detecting behavioural discrepancies with respect to interface data, causal
chains of inputs and outputs, as well as timing.

– Regression testing should be fully automated.

2 These activities also included hardware-in-the-loop tests and statistical throughput
analysis which have not been mentioned in the present contribution.

occam

occam

Applied Formal Methods 305

Conventional Testing, as of 1998. At the time when Airbus defined the test au-
tomation requirements listed above, most conventional testing approaches used
sequential test scripts: Each test execution consisted of an alternating sequence of

– inputs to the SUT,
– explicitly programmed checks of SUT responses against expected results.

This technique had considerable disadvantages with respect to the above men-
tioned test automation goals defined by Airbus: First, the simulation of com-
ponents in the operational environment which interacted in parallel with the
SUT were hard to express in sequential scripts, since all relevant interleavings
of the parallel systems had to be programmed explicitly. This often led to over-
simplified test scripts where SUT failures occurring only for special input/output
sequences were overlooked. Second, illegal SUT outputs at event-based interfaces
or illegal state changes at state-based interfaces were not detected if they oc-
curred during the phase were the testing environment sent new inputs to the
SUT: Checking was only performed at specific points in time, and often only at
a subset of SUT output interfaces. Third, regression tests often failed though the
SUT behaved correctly: This was caused by not considering all legal SUT output
sequences in the test scripts. Instead, only one sequence was accepted as correct,
which corresponded to the observed SUT behaviour in a certain revision. After
changes in the SUT software, this output order changed slightly, but still legally.
However, since the test script could only handle one sequence, the regression tests
failed. Last, but not least, the effort for developing programmed test scripts was
somewhat proportional to the length of the test execution: If different behaviours
should be exercised on the SUT over a long period, all behavioural patterns had
to be explicitly programmed, leading either to long and complex scripts or to
over-simplified ones where the same pattern was executed over and over.

Specification-Based Testing With CSP and RT-Tester. Based on the experiences
with embedded systems testing for the International Space Station, Verified Sys-

CCL

AML
AM−n

IFM−1 IFM−kIFM−2

IFML

System Under Test

AM−1

Communication Control Layer

Interface
Module Layer

Abstract
Machine Layer

. . .

. . . AM−2

Fig. 4. Generic architecture of the RT-Tester test automation system

306 J. Peleska

tems’ test automation tool RT-Tester had matured to a commercial product in
1998. In contrast to other approaches, test configurations were always designed
as distributed systems, as indicated in Figure 4: The test automation tool offers
the possibility to run an arbitrary number of concurrent abstract machines (AM)
on the test engine, each machine performing one or more testing tasks like

– simulation of components in the operational environment of the SUT,
– stimulation of specific input sequences, in order to test a special test objective

which can only be checked in a certain pre-state, that is, after a specific input
trace starting with SUT initialisation,

– checking SUT outputs against expected results specifications.

The execution of abstract machines in hard real-time and the efficient com-
munication between them is supported by multi threading mechanisms and a
communication control layer (CCL) allowing to exchange data within a multi
CPU/multi node cluster architecture for test engines (see Section 4). The CCL
implements an abstract notion of communication channels. In the RT-Tester
version available in 1998, this notion corresponded to the CSP channel concept
implemented by the FDR tool, [Sch00–pp. 469]. Channels were used as the only
means of communication between abstract machines3. In order to map the chan-
nel abstraction onto concrete SUT interfaces, interface modules (IFM) refined
data from abstract channel events to concrete hardware driver calls or software
interfaces and abstracted SUT outputs back to channel events. This abstraction
concept allowed to re-use test specifications implemented as networks of AMs
on different integration levels: If a software integration test accessed software
interfaces s1, . . . , sn of the SUT software, and these mapped directly to hard-
ware interfaces h1, . . . , hn in the integrated HW/SW system, then the abstract
machines used in software the integration test could be re-used on HW/SW
integration level, just by exchanging the interface modules.

The behaviour of abstract machines could either be programmed in C or – and
this was considered as a major advantage when compared to other testing tools –
specified in Timed CSP (TCSP). In order to use the syntax which is accepted by
FDR, TCSP timing constructs had to be expressed as special events expressing
the setting of a timer – that is, a clock counting from a given value δ > 0 down
to 0 – and indicating that the timer has elapsed: As shown by Meyer in his
dissertation [Mey01], each network P of TCSP processes may be decomposed
into parallel processes

P ′ = (PU ‖
{|s0,...,sk ,e0,...,ek |}

TIM) \ {| s0, . . . , sk , e0, . . . , ek |} (∗∗)

such that

3 The current version of RT-Tester supports a broader variety of communication mech-
anisms: Test designers may combine the CSP channel concept described here with
channels transporting structured C/C++ data and with shared memory data ex-
change.

Applied Formal Methods 307

TIM

SUT

inputs to SUT

outputs from SUT

TG(PU)

for check of
interpreter
AM

s0.t

s1.u

e0.t

e0.u

out1

out2

out3

in1

in2

Fig. 5. Abstract machine acting as on-the-fly checker during a test execution

– PU does not contain any timing operator like WAIT t or
t
� ,

– TIM = i : { 0, . . . , k } • Ti with timer processes

Ti = si?t→ ((WAIT t ; ei .t→Ti) �Ti)

– P and P ′ are equivalent in the Timed Failures Model of TCSP.

Example 3. Consider the TCSP process network SYS with alphabet A =
{ in, out , a },

SYS = (P ‖
{ a }

Q) \ { a }
P = WAIT t ; a→ in→P

Q = (a→Q)
u
� (out→Q)

This can be equivalently tranformed into

SYS ′ = (((P ′ ‖
{ a }

Q ′) \ { a }) ‖
{|s0,s1,e0,e1|}

(T0 T1)) \ {| s0, s1, e0, e1 |}
P ′ = s0!t→ e0.t→ a→ in→P ′

Q ′ = s1!u→ ((a→Q ′) � (e1.u→ out→Q ′))

with T0,T1 as defined above. ��
With this equivalence transformation at hand, the FDR tool can be used

to translate TCSP specifications written with timer events si , ei into transition
graphs. In fact, only the PU component of equation (**) has to be transformed:
A transition graph interpreter which is part of RT-Tester and controls the AM
execution handles the si , ei events in real-time by setting timers of duration
si .t when this event is generated by the abstract machine and simulating an
ei .t-event as soon as time interval t has elapsed (Figure 5). This approach im-
mediately solves the automated checking problem for timed traces by using an

308 J. Peleska

s0.1

e0.1

a

in

s1.2

e1.2

out

a

TG(P’) TG(Q’)

1

2

3

4

1

2

3

Fig. 6. Transition graphs of processes P ′,Q ′ from Example 3

abstract machine performing a back-to-back test in parallel with the SUT during
the test execution: The AM tracks every SUT input and output by navigating
through the transition graph TG representing the CSP specification of the re-
quired SUT behaviour. Whenever an outgoing transition of the current state is
labelled by a timer event si .t , the AM sets the corresponding timer for duration
t . Whenever the timer signals an ei .t-event and such a transition exists in the
current state, it is taken by the AM. If the SUT produces an output out for
which no transition exists in the TG-state marked by the AM as current, an
output failure has been produced. The failure may be caused by a erroneous
calculation of output data within the SUT or by generating an output too early.
Since TCSP specification semantics assumes maximal progress, outputs which
cannot be refused by the SUT must occur immediately, if not blocked by the
environment.

Example 4. Suppose the requirements for an SUT are expressed by TCSP pro-
cess SYS as given in Example 3, with t = 1 and u = 2. Suppose further that
in is an input to the SUT and out an SUT output, while a cannot be observed
during the test execution. The checking abstract machine interprets the transi-
tion graph depicted in Figure 7, which is the product graph generated from the
representations for P ′ and Q ′ shown in Figure 6. Suppose the checker observes
trace

< (3, in), (3, out), (4, out) >

Then a failure is detected at timed event (4, out) because the checking AM
assumes transition graph state 42 in Figure 7, after internally tracing

< (0, s0.1), (0, s1.2), (1, e0.1), (1, τ), (1, s1.2), (3, e1.2),
(3, in), (3, s0.1), (3, out), (3, s1.2), (4, e0.1), (4, τ), (4, s1.2) >

and the out-event is not legal in this state. ��

Applied Formal Methods 309

Observe that the checking technique sketched above only requires to spec-
ify SUT behaviour. If such a formal TCSP specification exists, no additional
comparisons of observed test executions against expected results have to be pro-
grammed: Every SUT discrepancy is revealed by events for which no transitions
exist in the current state of the checking AM.

On-the-fly checking has the further advantage that legal but nondeterministic
SUT behaviour is not rejected by the checker, if the transition graph corresponds
to a complete specification of legal SUT behaviour. If unnormalised transition
graphs are used as in Figure 7, the checker has to mark several possible states
as current. The SUT behaviour is accepted as long as at least one possible
state exists. This procedure only allows checking in soft real-time, since the
decision whether SUT behaviour is legal now not only depends on the maximal
number of outgoing transitions to be compared against the observed behaviour
but also on the number of possible states. Therefore, if hard real-time checking
is required, normalised transition graphs should be used. These can also be
generated by FDR.

The transition graph interpretation technique sketched above is obviously also
suitable for real-time simulation: Abstract machines now operate on transition
graphs representing environment specifications and generate events which are
inputs to other AMs or to the SUT and choose different paths through the

11 12 13

21 22

31 32 33

41 42 43

23

s0.1

s1.2

s1.2

s0.1

e0.1

tau(a)

e1.2

e1.2

s0.1

e0.1

s1.2 e1.2

e0.1

s1.2 e1.2

out

out

out

out

in in in

TG((P’ [| { a } |] Q’) \ { a })

Fig. 7. Transition graph for parallel composition of P ′,Q ′ from Example 3

310 J. Peleska

transition graph in places where several events are possible. This technique is
also the starting point for systematic test data generation which will be discussed
in more detail in Section 3.

Remarks and Related Publications. The testing activities performed by Verified
Systems for Airbus could be extended since the first contract in 1998, so that
today our testing projects comprise the A318, A340-500/600 and A380 aircrafts.
The tested controllers are

– the Cabin Communication Data System CIDS developed by Airbus KID-
Systeme,

– the Smoke Detection Controller SDF, also developed by Airbus KID-
Systeme,

– the Integrated Modular Avionics (IMA) Modules, a new type of controllers
which is first used for the Airbus A380 and has been developed by Diehl
Avionics (Germany) in cooperation with Thales (France).

The testing activities comprise

– hardware/software integration tests for one or more controllers with inte-
grated system and application software,

– so-called bare-module tests, where controller hardware, firmware, operating
system and configuration data are tested before integration of the application
software,

– software integration tests performed both on PC host simulation environ-
ments and on target hardware,

– module tests.

The same CSP-based testing technology has been applied by the author, his
research group at Bremen University and by Verified Systems in several other
projects: (1) Tests for a tramway crossing control system developed by EL-
PRO in Berlin, (2) Tests for an aerospace satellite controller developed by OHB
in Bremen [SMH99], (3) tests for interlocking system components developed
by Siemens Transportation Systems in Braunschweig, (4) UNISIG conformance
tests for radio-based train control systems developed by Siemens Transportation
Systems in Berlin4 and (5) tests of automotive controllers for DaimlerChrysler
in Sindelfingen.

For untimed process algebras, the relationship between semantic equivalence
(or refinement) and testing has first been observed by Hennessy and De
Nicola [DNH84], within the context of Hennessy’s Acceptance Tree semantics
which corresponds to the failures model of CSP. Brinksma observed that
these theoretic results could be applied in practice and developed techniques
for automated conformance testing based on LOTOS specifications; an extensive

4 The UNISIG standard has been defined for train control and communication within
the European Train Control Systems (ETCS) initiative. The test automation concept
has been published in [Ken04].

Applied Formal Methods 311

bibliography is given in [BT00]. The analogous concepts and further improve-
ments have been elaborated for the untimed CSP world by the author in collab-
oration with Michael Siegel in [PS96, Pel96, PS97, Pel97].

During the period 2000—2004, our research activities related to real-time
testing of avionics systems have been performed within the European research
project VICTORIA5 which focused on novel architectures, development and
verification technologies for aircraft electronic systems. The test concepts devel-
oped for tests of integrated modular avionics have been described in more detail
in [Pel03, MTB+04]. The advantages of interface abstraction and the resulting
possibility to re-use test specifications on different integration levels have been
discussed in more detail in [PT02]. The algorithm implemented in the RT-Tester
system for automated checking of timed traces observed during test executions
against SUT specifications has been published in [Pel02]. Further details about
automated testing against Timed CSP specifications, in particular automated
test data generation, are described below in Section 3.

3 Specification-Based Hard Real-Time Testing – Test
Automation for Timed CSP

Solved Problems. It has already been sketched in Section 2.3 how the test oracle
problem – that is, automated checking of SUT behaviour against expected re-
sults – and the simulation problem are solved for specification-based testing in
a TCSP context: Using Meyer’s structural decomposition of TCSP process net-
works, checking can be performed in back-to-back manner on transition graphs
as the one depicted in Figure 7, and simulation can be performed by abstract
machines deriving their behaviour from paths through these graphs.

Test Data Generation. For automated test data generation, that is, generation
of timed traces containing inputs to the SUT, the evaluation of transition graphs
has to be further refined. The reason for this is that graphs like the one depicted
in Figure 7 do not encode information about the relative durations when several
active timers will elapse. As a consequence, the graph suggests elapsed-timer
transitions ei .ti which cannot occur in a certain state, because another timer
ek .tk will elapse before.

Example 5. When initially entering state 22 in Figure 7, transition e1.2 cannot
occur, since timer e0.1 will elapse before.

To solve this problem, we analyse an extended class of transition graphs,
where each state is also annotated by the vector (u0, . . . , uk) ∈ (R+

0)k of time
durations left for each timer until it elapses.

5 Detailed project descriptions are available under web links http://www.informatik.
uni-bremen.de/agbs/projects/victoria/ and http://www.euproject-victoria.org/.

312 J. Peleska

42,(0,0.5)

11, (0,0)

s0.1

1

tau

21,(1,0)

41,(0,0)

32,(0,0)

in

s1.2
42,(0,2)

1 0.5 0.5
42,(0,1)

in

s0.1

1

12,(0,1)

22,(1,1)

32,(0,0)

tau

tau

in out

43,(0,0)

.

in

s0.1

0.5

12,(0,0.5)

22,(1,0.5)

23,(0.5,0)

33,(0,0)

out
in

out

.

Fig. 8. Partial structure of graph GA transformed from Figure 7

Example 6. When initially entering state 22 in Figure 7, the extended transition
graph has encoding (22, (1, 2)) for the corresponding state, since the e0.1 event
will occur after 1 time unit, and it would take 2 time units to elapse, before the
e1.2 event could occur.

The transition system represented by these extended transition graphs has un-
countably many states, but – adapting the concept of regions which has been
introduced for Timed Automata [SVD01] – it can be abstracted to another graph
GA which only shows the finitely many different timer constellations which influ-
ence whether visible transitions are enabled or not. Graph GA is generated from
the original graph as the one shown in Figure 7 by repeated transformations
with the goal to identify all nodes which are equivalent in this sense.

Example 7. To illustrate this process Figure 8 shows the initial part of GA, as
it results from this transformation applied to the graph from Figure 7.

In Figure 8, states like (22, (1, 2)) are identified with (21, (1, 0)), because in
any case timer e0.1 will elapse first. Original state 42 is now partitioned into 4
regions, each determining a different class of future behaviour: In (42, (0, 2)) only
an in event can occur and after that, the future behaviour is determined by node
(11, (0, 0))6. This behaviour does not change until 1 time unit has passed after
entering (42, (0, 2)), which is marked by the transition 1 to state (42, (0, 1)): If
an in event occurs exactly in this state, both timers will elapse simultaneously in

6 Note that in our notation (42, (0, 2)) identifies all nodes (42, (0, 2−d)) with 0 ≤ d <
1. The analogous applies to (42, (0, 1)) and (42, (0, 0.5)).

Applied Formal Methods 313

state (32, (0, 0)), leading to a new type of behaviour, because a nondeterministic
decision to engage into out instead of the hidden a event is possible. When
state (42, (0, 0.5)) is reached, the hidden a transition can never occur in the next
execution round, because the e1.2 timer always elapses before e0.1. Finally, when
state (43, (0, 0)) is reached, both in and out become enabled.

For the resulting region graphs GA it is possible to adapt a result by
Chow [Cho78] which was established for testing untimed automata: Using a
specific strategy to cover the graph by test traces and by checking that the SUT
really reaches the intended target states in each test it is possible to prove (or
disprove) a failures refinement relation between TCSP specification and SUT by
executing a finite number of test traces. To this end, a finite variability assump-
tion has to be stated for the SUT, saying that transient error states must be
stable for at least a minimal time duration δ > 0. This assumption is realistic
from a practical point of view, since controllers cannot act arbitrarily fast.

Remarks and Related Publications. The simpler nature of the TCSP test data
generation problem, when compared to the solution for Timed Automata has
an important practical implication: In [SVD01] the authors emphasise that the
number of traces to be generated for exhaustive testing of Timed Automata
will be so large for non-trivial problems, that a complete execution of the corre-
sponding tests would be infeasible. Moreover, this also indicates that a heuristic
selection of “useful” test cases from the complete set might be equally infeasible,
or at least extremely complicated, since there are too few known criteria for
distinguishing “important” test traces from “less important” ones. We expect
that for the TCSP approach a much smaller number of test traces will be re-
quired for exhaustive testing of non-trivial systems whose behaviour is required
to be a timed trace refinement of a TCSP specification. The main reason for
this assumption lies in the fact that TCSP does not allow to refer to clock val-
ues and durations in an explicit way within boolean expressions: Time is only
“experienced” by observing that certain events occur before or after timers have
elapsed.

It is interesting to note that Schneider has introduced a new operator
in [Sch00–p. 272], the timed event prefix a@u→Q(u). This operator allows
to measure the time u which has passed between offering an event a to its
environment and the actual occurrence of the event. The measurement u may
be used as free variable in CSP process terms, in particular, it may appear in
communication guards. This operator is not allowed in our solution, where the

timeout
t
� and related syntactic abbreviations like WAIT t are the only ad-

missible time-related operators. Since the timed prefix offers the possibility to
access duration values explicitly within a TCSP specification, we expect that
the TCSP test data generation problem will become as complex as the one for
Timed Automata, if this operator is also admitted.

Further references related to specification-based testing have already been
given in Section 2.3.

314 J. Peleska

4 Executable Formal Specifications: The Hybrid
Low-Level Language Framework

From Timed CSP to Specification Formalisms for Hybrid Systems. The applica-
tion domains where most of our verification activities described in Section 2 were
performed typically evaluated and acted on physical parameters of discrete (e. g.,
states of signals and points) and time-continuous (e. g., temperature, speed,
thrust) nature. This led to the investigation of hybrid specification formalisms,
where not only time-discrete changes of variables, but also time-continuous evo-
lutions of “analog” parameters could be described.

After the successful applications of TCSP a natural candidate for such a for-
malism was He Jifeng’s Hybrid CSP (HCSP) extension [Jif94]. Therefore its ap-
plicability was investigated by Amthor [Amt99] with respect to test automation
problems. However, it turned out that the restriction of time-continuous evolu-
tions to local CSP process variables was too severe to be used above software
design level: In physicals, global time-continuous observables occur naturally as
variables of physical laws and models. In contrast to this, HCSP already operates
on a discretised level: The actual state of time-continuous evolutions specified in
for local HCSP process variables can only be communicated to other observers
by using CSP channels at discrete points in time. Therefore, according to our
assessment, HCSP is well-suited for the software design of hybrid systems, but
less usable for physical modelling.

As an alternative to HCSP, Henzinger’s Hybrid Automata [Hen96] combine
synchronous CSP-style communication with global time-continuous variables.
Each sequential automaton concurrently acts on these analog parameters ac-
cording to flow equations, that is, differential equations describing the contin-
uous evolution of global parameters. Discrete changes can be triggered during
transitions between control states. While offering the basic tools for physical
modelling, Hybrid Automata are designed as flat networks, so that their practi-
cal application for large systems leads to specifications which are not sufficiently
structured and therefore unmanageable. The hierarchic extension of Hybrid Au-
tomata developed by Alur et. al. [ADE+01] does not incorporate events in their
semantic model; communication between parallel components is only performed
via shared variables. Moreover, the syntactic representation is rather specialised,
so that the chance for wider acceptance in an industrial application context seems
rather low.

Inspired by Hierarchical Hybrid Automata and with the intention to reach a
wider industrial community, we therefore decided to design a hybrid extension of
the UML. To this end, the UML2.0 profile mechanism offers a rather well-defined
means to extend the existing UML formalisms by new features and assign mean-
ing to them. The resulting HybridUML profile has been published in [BBHP03],
further description of its semantics can be found in [BBHP04]. HybridUML ex-
tends UML Statecharts [RJB99] by description mechanisms for invariants and
flow conditions which hold for the complete hierarchy of states subordinate to
the one where they have been defined (Figure 9). Additionally, class diagrams

Applied Formal Methods 315

Fig. 9. HybridUML Statechart with invariants and flow conditions

are used to model state and sequential operations, and architectural aspects can
be specified using the structure diagrams.

The Hybrid Low-Level Language Framework. Apart from formal verification of
HybridUML specifications, a major research objective is to provide the means
to execute the specifications in hard real-time, for the purpose of application
development, simulation and testing. To this end, the HL3 framework developed
within our research group in cooperation with Verified Systems consists of a re-
usable hard real-time runtime environment R and a design pattern P for compi-
lation targets of arbitrary hybrid specifications. Given a high-level formalism H –
such as HybridUML – for the description of hybrid systems, transformations ΦH
from high-level specifications S into instances ΦH (S) of the HL3 pattern P can
be developed. For (ΦH (S),R), a formal semantics S(ΦH (S),R) based on timed
state-transition systems is defined so that the transformation both provides a
semantic definition of S and an executable program whose behavior will be con-
sistent with S(ΦH (S),R). Similar to machine code, HL3 should not be used for
manual programming, but as a target language for automated transformations.
In contrast to machine code, the real-time semantics of HL3 program can be
determined in a direct way, thereby assigning formal meaning to the high-level
specification used as the transformation source. This is achieved by using a very
limited range of instructions for multi-threading, timing control, and consistent
handling of global state in presence of concurrency.

Remarks and Related Publications. The transition from CSP-based formalisms
to hybrid systems has been performed since 1999 within the research project

316 J. Peleska

HYBRIS7 Currently, our main research focus lies on the elaboration of a testing
theory for HybridUML. An instance of the HL3 framework is already used in the
latest version of the RT-Tester tool, and test support for specification-based test-
ing against HybridUML is currently developed. On a more application-oriented
level, the HL3 framework is instantiated for novel application domains, in par-
ticular for railway control systems [HP03].

The importance of semantically well-defined real-time execution environ-
ments has also been noted by other authors: For the Duration Calculus [ZRH93],
implementable subsets have been investigated by several authors, see
Ravn [Rav95] and further references given there. Our HL3 framework competes
with Henzinger’s Giotto [HHK03] which can be used for implementing executable
Hybrid Automata and similar high-level formalisms. Giotto and HL3 are similar
with respect to the time-triggered scheduling of discretised time-continuous con-
trol functions. Our approach is slightly broader than Giotto, since it aims at cre-
ating both executable target applications and/or the corresponding testing envi-
ronments, allows to distinguish between discretised time-continuous and discrete
control functions in an explicit way and offers the mechanisms for implementing
both CSP-style interleaving semantics and synchronous “true parallelism”
semantics as required for executable Statecharts and synchronous languages.

5 Conclusion

In this article, the application of CSP in industrial projects has been described.
The projects focused on verification and test of embedded real-time systems
in the avionics and space application domains. References to further projects
from these and other domains were given. The challenge of large-scale project
verification and test led to numerous research activities – some of which have
been sketched in this article – which were motivated by the need to combine
various methods in order to cope with the size and complexity of the problems
involved.

Since 1998, more than twenty verification engineers from Verified Systems
International GmbH, the University of Bremen and from our customers have
been involved in the CSP-based verification activities mentioned in this article.
From our point of view this is a sufficient proof for the applicability of Formal
Methods in general and, in particular, CSP. The other, even more important,
benchmark for the success of verification efforts is certainly the number of prob-
lems identified in the analysed systems. Readers will understand that an explicit
mentioning of “interesting” errors and their severity is not in the interest of our
cooperation partners. However, it can be said that the databases managed by
Verified Systems to document discrepancies uncovered during verification and

7 Efficient Analysis of Hybrid Systems HYBRIS. Research project within the priority
programme Software Specification – Integration of Software Specification Techniques
for Applications in Engineering initiated by the Deutsche Forschungsgemeinschaft
DFG. Information available under http://tfs.cs.tu-berlin.de/projekte/indspec/SPP.

Applied Formal Methods 317

testing projects since 1998 contain about 2000 entries. About one third of these
findings are a direct consequence of Formal Methods applications in verifications
or automated tests.

On the other hand, the search for novel formal description techniques which
might appeal to a wider group of software or system developers is certainly not
completed and still sub-divided into many competing and sometimes incompat-
ible approaches.

According to our experience, the acceptance of a formal specification tech-
nique is considerably increased when specifications can be executed at least on
simulation or prototyping level. The return of investment gained by uncovered
bugs and discrepancies during verification, validation and testing does not seem
to be a sufficient motivation to learn and use a formal description technique
and associated methods and techniques in addition to the programming lan-
guages used to implement the executable system. We are therefore convinced
that the most promising strategies for formal methods in industry are based on
model-based development, where specifications can be directly transformed into
efficient executable code. These observations have led to the research work on
low-level formalisms which are suitable compilation targets for various more ab-
stract specification languages and can be executed in hard real-time, as described
in Section 4.

Finally, we would like to emphasise that the application of Formal Methods –
in particular in the field of safety-critical systems – should always be considered
as one means in a collection of several others which together ensure the quality
and dependability of the products we develop. This collection also comprises
techniques, tools and skills which are far less challenging from a scientific per-
spective (think of reliable configuration management, error reporting, project
budget management, . . .) but contribute to the overall product quality, just as
our latest advances in formal verification.

Acknowledgements. I would like to express my gratitude to the organisers and
speakers of the 25 Years of CSP event at the London South Bank University, for
creating a stimulating conference with numerous interesting – sometimes even
exciting – contributions and discussions. My special thanks go to Ali Abdallah
for organising this outstanding event and for expertly compiling the conference
proceedings.

References

[Abd94] A.E. Abdallah. Derivation of Parallel Algorithms: From Functional Speci-
fications to csp Processes. In B. Moller, editor, Proceedings of Mathematics
of Program Construction, volume 947 of Lecture Notes in Computer Sci-
ence, pages 67–96. Springer-Verlag, August 1994.

[ADE+01] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivančić, V. Kumar,
I. Lee, P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical hybrid modeling
of embedded systems. Lecture Notes in Computer Science, 2211:14–31,
2001.

318 J. Peleska

[Amt99] P. Amthor. Structural Decomposition of Hybrid Systems – Test Automation
for Hybrid Reactive Systems. Monographs of the Bremen Institute of Safe
Systems (BISS) No. 13, University of Bremen, October 1999.

[AO91] K. R. Apt and E.-R. Olderog. Verification of sequential and concurrent
programs. Texts and monographs in computer science. Springer, 1991.

[BBHP03] Kirsten Berkenkötter, Stefan Bisanz, Ulrich Hannemann, and Jan Pe-
leska. HybridUML Profile for UML 2.0. SVERTS Workshop at
the 〈〈 UML 〉〉 2003 Conference, October 2003.
http://www verimag.imag.fr/EVENTS/2003/SVERTS/.

[BBHP04] K. Berkenkötter, S. Bisanz, U. Hannemann, and J. Peleska. Executable
HybridUML and its application to train control systems. In H. Ehrig,
W. Damm, J. Desel, M. Große-Rhode, W. Reif, E. Schnieder, and
E. Westkämper, editors, Integration of Software Specification Techniques
for Applications in Engineering, volume 3147 of LNCS, pages 145–173.
German Research Foundation DFG, Springer, 2004.

[BCOP98] B. Buth, R. Cardell-Oliver, and J. Peleska. Combining tools for the verifica-
tion of fault-tolerant systems. In B. Buth, R. Berghammer, and J. Peleska,
editors, Tools for System Development and Verification, volume 1 of Mono-
graphs of the Bremen Institute of Safe Systems, pages 41–69. Shaker, 1998.

[BKPS97] B. Buth, M. Kouvaras, J. Peleska, and H. Shi. Deadlock analysis for a fault-
tolerant system. In M. Johnson, editor, Algebraic Methodology and Software
Technology. Proceedings of the AMAST’97, Sidney, Australia, December
1997, volume 1349 of LNCS, pages 60–75. Springer, December 1997.

[BPS98] B. Buth, J. Peleska, and H. Shi. Combining methods for the livelock
analysis of a fault-tolerant system. In A. M. Haeberer, editor, Algebraic
Methodology and Software Technology. Proceedings of the 7th International
Conference, AMAST 98, Amazonia, Brazil, January 1999, volume 1548 of
LNCS, pages 124–139. Springer, January 1998.

[BT00] E. Brinksma and J. Tretmans. Testing transition systems: An annotated
bibliography. In F. Cassez, C. Jard, B. Rozoy, and M. Ryan, editors, Pro-
ceedings of Summer School MOVEP’2k Modelling and Verification of Par-
allel Processes, pages 44–50, Nantes, July 2000.

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state machines.
IEEE Transactions on Software Engineering, SE-4(3):178–186, March 1978.

[DNH84] R. De Nicola and M. Hennessy. Testing Equivalences for Processes. Theo-
retical Computer Science, 34:83–133, 1984.

[FG97] C. Fischer and Smith G. Combining CSP and Object-Z: Finite trace or infi-
nite trace semantics? In T. Mizuno, N. Shiratori, T. Higashino, and A. To-
gashi, editors, Formal Description Techniques and Protocol Specification,
Verification, and Testing (FORTE/PSTV’97), pages 503–518. Chapman &
Hall, 1997.

[For01] Formal Systems (Europe) Ltd. Failures–Divergence Refinement – FDR2
User Manual, 2001. http://www.formal.demon.co.uk/FDR2.html.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of
the 11th Annual Symposium on Logic in Computer Science (LICS), pages
278–292. IEEE Computer Society Press, 1996.

[HHK03] Th. A. Henzinger, B. Horowitz, and Chr. M. Kirsch. Giotto: A time-
triggered language for embedded programming. Proceedings of the IEEE,
91:84–99, 2003.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. International Series
in Computer Science. Prentice Hall, 1985.

.

Applied Formal Methods 319

[HP03] A. E. Haxthausen and J. Peleska. Generation of executable railway con-
trol components from domain-specific descriptions. In G. Tarnai and
E. Schnieder, editors, Formal Methods for Railway Operation and Con-
trol Systems: Proceedings of Symposium FORMS, pages 83–90, Budapest,
May 2003. L’Harmattan Hongrie.

[JH87] He Jifeng and C. A. R. Hoare. Algebraic specification and proof of a
distributed recovery algorithm. Distributed Computing, 2:1–12, 1987.

[Jif94] He Jifeng. From CSP to hybrid systems. In A.W. Roscoe, editor, A Classical
Mind, Essays in Honour of C.A.R. Hoare, International Series in Computer
Science, pages 171–189. Prentice Hall, 1994.

[Ken04] D. Kendelbacher. Architekturkonzept und Designaspekte einer signal-
technisch nichtsicheren Kommunikationsplattform für sicherheitsrele-
vante Bahnanwendungen. PhD thesis, University of Bremen, De-
partment of Mathematics and Computer Science, 2004. Avail-
able under http://elib.suub.uni-bremen.de/publications/dissertations/
E Diss835 dis 50b.pdf.

[LNR05] R. Lazic, T. Newcomb, and B. Roscoe. On model checking data-
independent systems with arrays with whole-array operations. In A. Ab-
dallah, C. B. Jones, and J. W. Sanders, editors, Twenty-five Years of Com-
municating Sequential Processes, LNCS. To appear, Springer, 2005.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3), 1982.

[Mey01] O. Meyer. Structural Decomposition of Timed-CSP and its Application in
Real-Time Testing. PhD thesis, TZI Center for Computing Technologies,
University of Bremen, Germany, 2001.

[MTB+04] O. Meyer, A. Tsiolakis, S.-O. Berkhahn, J. Kruse, and D. Marti-
nen. Automated testing of aircraft controller modules. In Proceeding
s of the 5th International Conference on Software Testing ICSTEST,
Düsseldorf, April 2004. SQS. Extended abstract and slides available under
http://www.informatik.uni-bremen.de/∼tsio/papers/.

[PB99] J. Peleska and B. Buth. Formal Methods for the International Space Sta-
tion ISS. In E.-R. Olderog and B. Steffen, editors, Correct System Design
– Recent Insights and Avances, number 1710 in LNCS State–of–the–Art
Survey, pages 363–389. Springer, 1999.

[Pel91] Jan Peleska. Design and verification of fault tolerant systems with csp.
Distributed Computing, 5(1):95–106, 1991.

[Pel96] J. Peleska. Test automation for safety-critical systems: Industrial applica-
tion and future developments. In M.-C. Gaudel and J. Woodcock, editors,
FME ’96: Industrial Benefit and Advances in Formal Methods, volume 1051
of LNCS, pages 39–59, Berlin, Heidelberg, New York, 1996. Springer-Verlag.

[Pel97] J. Peleska. Formal Methods and the Development of Dependable Systems.
Bericht Nr. 9612. Christian-Albrechts-Universität Kiel, Institut für Infor-
matik und praktische Mathematik, 1997. Habilitation thesis, available un-
der http://www.informatik.uni-bremen.de/agbs/jp.

[Pel02] Jan Peleska. Formal methods for test automation - hard real-time test-
ing of controllers for the airbus aircraft family. In Proc. of the Sixth
Biennial World Conference on Integrated Design & Process Technology
(IDPT2002). Society for Design and Process Science, June 2002. Avail-
able under http://www.informatik.uni-bremen.de/agbs/jp/papers.

320 J. Peleska

[Pel03] J. Peleska. Automated testsuites for modern aircraft controllers. In
R. Drechsler, editor, Methoden und Beschreibungssprachen zur Model-
lierung und Verifikation von Schaltungen und Systemen, pages 1–10,
Aachen, 2003. Shaker.

[PS96] J. Peleska and M. Siegel. From Testing Theory to Test Driver Implemen-
tation. In M.-C. Gaudel and J. Woodcock, editors, FME ’96: Industrial
Benefit and Advances in Formal Methods, volume 1051 of LNCS, pages
538–556, Berlin, Heidelberg, New York, 1996. Springer-Verlag.

[PS97] J. Peleska and M. Siegel. Test automation of safety-critical reactive systems.
South African Computer Jounal, 19:53–77, 1997.

[PT02] J. Peleska and A. Tsiolakis. Automated Integration Testing for Avionics
Systems. In Proceedings of the 3rd ICSTEST – International Conference
on Software Testing, April 2002. Extended abstract and slides available
under http://www.informatik.uni-bremen.de/agbs/jp/papers/ftrtft98.ps.

[Rav95] A. P. Ravn. Design of embedded real-time computing systems. Technical
Report ID-TR 1995-170, ID/DTU, Lyngby, Denmark, October 1995. dr.
techn. dissertation.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language – Reference Manual. Addison-Wesley, 1999.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1998.

[Sch00] S. Schneider. Concurrent and Real-time Systems – The CSP Approach.
Wiley and Sons Ltd., 2000.

[SMH99] H. Schlingloff, O. Meyer, and Th. Hülsing. Correctness Analysis of an Em-
bedded Controller. In Proceedings of DASIA (Data Systems in Aerospace)
’99 Conference, volume ESA SP-447, Lisbon, Portugal, 1999.

[SVD01] Jan Springintveld, Frits W. Vaandrager, and Pedro R. D’Argenio. Testing
timed automata. Theoretical Computer Science, 254(1-2):225–257, 2001.

[UKP98] G. Urban, H.-J. Kolinowitz, and J. Peleska. A survivable avionics system for
space applications. In The Twenty-Eighth Annual International Symposium
on Fault-Tolerant Computing, FTCS-28, Munich, Germany, June 23-25,
1998, pages 372–379. IEEE Computer Society, June 1998.

[ZRH93] Chaochen Zhou, A. P. Ravn, and M. R. Hansen. An extended duration
calculus for hybrid real-time systems. In Hybrid Systems, pages 36–59. The
Computer Society of the IEEE, 1993. Extended abstract.

Author Index

Barnes, Frederick R.M. 175
Brookes, Stephen 1
Butler, Michael 133

Creese, Sadie 292

Delicata, Rob 243

Ferreira, Carla 133

Goldsmith, Michael 265

Hoare, Tony 36, 133
Jifeng,H 61

Josephs, Mark B. 85

Kramer, Jeff 211

Lawrence, Jonathan 151
Lazić, Ranko 275

Magee, Jeff 211
May, David 75
Morgan, Carroll 220

Newcomb, Tom 275

Peeters, Ad 98
Peleska, Jan 293

Reed, Mike 242
Roscoe, A.W. 15, 275
Ryan, Peter 264

Schneider, Steve 243

Welch, Peter H. 175

e

	Frontmatter
	Semantic Foundations
	Retracing the Semantics of CSP
	Seeing Beyond Divergence

	Refinement and Simulation
	Process Algebra: A Unifying Approach
	Linking Theories of Concurrency

	Hardware Synthesis
	CSP, {\sf occam} and Transputers
	Models for Data-Flow Sequential Processes
	Implementation of Handshake Components

	Transactions
	A Trace Semantics for Long-Running Transactions
	Practical Application of CSP and FDR to Software Design

	Concurrent Programming
	Communicating Mobile Processes
	Model-Based Design of Concurrent Programs

	Linking Theories
	Of Probabilistic {\itshape wp} and {\itshape CSP}---and Compositionality
	Order, Topology, and Recursion Induction in {\itshape CSP}

	Security
	Verifying Security Protocols: An Application of CSP
	Shedding Light on Haunted Corners of Information Security

	Automated Development and Model Checking
	Operational Semantics for Fun and Profit
	On Model Checking Data-Independent Systems with Arrays with Whole-Array Operations

	Industrial Strength CSP
	Industrial Strength CSP: Opportunities and Challenges in Model-Checking
	Applied Formal Methods -- From CSP to Executable Hybrid Specifications

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

