
2

Dynamic linear models

In this chapter we discuss the basic notions about state space models and their
use in time series analysis. The dynamic linear model is presented as a special
case of a general state space model, being linear and Gaussian. For dynamic
linear models, estimation and forecasting can be obtained recursively by the
well-known Kalman filter.

2.1 Introduction

In recent years there has been an increasing interest in the application of state
space models in time series analysis; see, for example, Harvey (1989), West
and Harrison (1997), Durbin and Koopman (2001), the recent overviews by
Künsch (2001) and Migon et al. (2005), and the references therein. State space
models consider a time series as the output of a dynamic system perturbed by
random disturbances. They allow a natural interpretation of a time series as
the combination of several components, such as trend, seasonal or regressive
components. At the same time, they have an elegant and powerful probabilistic
structure, offering a flexible framework for a very wide range of applications.
Computations can be implemented by recursive algorithms. The problems of
estimation and forecasting are solved by recursively computing the conditional
distribution of the quantities of interest, given the available information. In
this sense, they are quite naturally treated within a Bayesian framework.

State space models can be used to model univariate or multivariate time
series, also in the presence of non-stationarity, structural changes, and irregu-
lar patterns. In order to develop a feeling for the possible applications of state
space models in time series analysis, consider for example the data plotted in
Figure 2.1. This time series appears fairly predictable, since it repeats quite
regularly its behavior over time: we see a trend and a rather regular seasonal
component, with a slightly increasing variability. For data of this kind, we
would probably be happy with a fairly simple time series model, with a trend

© Springer Science + Business Media, LLC 2009
31G. Petris et al., Dynamic Linear Models with R, Use R, DOI: 10.1007/b135794_2,

32 2 Dynamic linear models

Time

ex
pe

nd
itu

re

1996 1998 2000 2002 2004 2006

24
00

0
28

00
0

32
00

0

Fig. 2.1. Family food expenditure, quarterly data (1996Q1 to 2005Q4). Data avail-
able from http://con.istat.it

and a seasonal component. In fact, basic time series analysis relies on the pos-
sibility of finding a reasonable regularity in the behavior of the phenomenon
under study: forecasting future behavior is clearly easier if the series tends to
repeat a regular pattern over time. Things get more complex for time series

Time

U
Kg

as

1960 1965 1970 1975 1980 1985

20
0

40
0

60
0

80
0

10
00

Fig. 2.2. Quarterly UK gas consumption from 1960Q1 to 1986Q4, in millions of
therms

such as the ones plotted in Figures 2.2-2.4. Figure 2.2 shows the quarterly UK
gas consumption from 1960 to 1986 (the data are available in R as UKgas). We
clearly see a change in the seasonal component. Figure 2.3 shows a well-studied

2.1 Introduction 33

Time

N
ile

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

Fig. 2.3. Measurements of the annual flow of the river Nile at Ashwan, 1871-1970

10
0

20
0

30
0

40
0

time

G
O

O
G

 (C
lo

se
 p

ric
es

)

2005 2006

Fig. 2.4. Daily prices for Google Inc. (GOOG)

data set: the measurements of the annual flow of the river Nile at Ashwan from
1871 to 1970. The series shows level shifts. We know that the construction of
the first dam of Ashwan started in 1898; the second big dam was completed
in 1971: if you have ever seen these huge dams, you can easily understand the
enormous changes that they caused on the Nile flow and in the vast surround-
ing area. Thus, we begin to feel the need for more flexible time series models,
which do not assume a regular pattern and stability of the underlying system,
but can include change points or structural breaks. Possibly more irregular is

34 2 Dynamic linear models

the series plotted in Figure 2.4, showing daily prices of Google1(close prices,
2004-08-19 to 2006-03-31). This series looks clearly nonstationary and in fact
quite irregular: indeed, we know how unstable the market for the new econ-
omy has been in those years. The analysis of nonstationary time series with
ARMA models requires at least a preliminary transformation of the data to
get stationarity; but we might feel more natural to have models that allow us
to analyze more directly data that show instability in the mean level and in
the variance, structural breaks, and sudden jumps. State space models include
ARMA models as a special case, but can be applied to nonstationary time
series without requiring a preliminary transformation of the data. But there
is a further basic issue. When dealing with economic or financial data, for
example, a univariate time series model is often quite limited. An economist
might want to gain a deeper understanding of the economic system, looking
for example at relevant macroeconomic variables that influence the variable
of specific interest. For the financial example of Figure 2.4, a univariate series
model might be satisfying for high frequency data (the data in Figure 2.4 are
daily prices), quickly adapting to irregularities, structural breaks or jumps;
however, it will be hardly capable of predicting sudden changes without a fur-
ther effort in a deeper and broader study of the economic and socio-political
variables that influence the markets. Even then, forecasting sudden changes
is clearly not at all an easy task! But we do feel that it is desirable to include
regression terms in our model or use multivariate time series models. Includ-
ing regression terms is quite natural in state space time series models. And
state space models can in general be formulated for multivariate time series.

State space models originated in engineering in the early sixties, although
the problem of forecasting has always been a fundamental and fascinating
issue in the theory of stochastic processes and time series. Kolmogorov (1941)
studied this problem for discrete time stationary stochastic processes, using
a representation proposed by Wold (1938). Wiener (1949) studied continuous
time stochastic processes, reducing the problem of forecasting to the solution
of the so-called Wiener–Hopf integral equation. However, the methods for
solving the Wiener problem were subject to several theoretical and practical
limitations. A new look at the problem was given by Kalman (1960), using the
Bode–Shannon representation of random processes and the “state transition”
method of analsyis of dynamical systems. Kalman’s solution, known as the
Kalman filter (Kalman; 1960; Kalman and Bucy; 1963), applies to stationary
and nonstationary random processes. These methods quickly gained popular-
ity in other fields and were applied to a wide array of problems, from the
determination of the orbits of the Voyager spacecraft to oceanographic prob-
lems, from agriculture to economics and speech recognition (see for instance
the special issue of the IEEE Transactions on Automatic Control (1983) dedi-
cated to applications of the Kalman filter). The importance of these methods

1 Financial data can be easily downloaded in R using the function get.hist.quote

in package tseries, or the function priceIts in package its.

2.2 A simple example 35

was recognized by statisticians only later, although the idea of latent variables
and recursive estimation can be found in the statistical literature at least as
early as Thiele (1880) and Plackett (1950); see Lauritzen (1981). One reason
for this delay is that the work on the Kalman filter was mostly published in the
engineering literature. This means not only that the language of these works
was not familiar to statisticians, but also that some issues that are crucial in
applications in statistics and time series analysis were not sufficiently under-
stood yet. Kalman himself, in his 1960 paper, underlines that the problem of
obtaining the transition model, which is crucial in practical applications, was
treated as a separate question and not solved. In the engineering literature,
it was common practice to assume the structure of the dynamic system as
known, except for the effects of random disturbances, the main problem be-
ing to find an optimal estimate of the state of the system, given the model.
In time series analysis, the emphasis is somehow different. The physical inter-
pretation of the underlying states of the dynamic system is often less evident
than in engineering applications. What we have is the observable process, and
even if it may be convenient to think of it as the output of a dynamic system,
the problem of forecasting is often the most relevant. In this context, model
building can be more difficult, and even when a state space representation
is obtained, there are usually quantities or parameters in the model that are
unknown and need to be estimated.

State space models appeared in the time series literature in the seventies
(Akaike; 1974a; Harrison and Stevens; 1976) and became established during
the eighties (Harvey; 1989; West and Harrison; 1997; Aoki; 1987). In the last
decades they have become a focus of interest. This is due on one hand to the
development of models well suited to time series analysis, but also to a wider
range of applications, including, for instance, molecular biology or genetics,
and on the other hand to the development of computational tools, such as
modern Monte Carlo methods, for dealing with more complex nonlinear and
non-Gaussian situations.

In the next sections we discuss the basic formulation of state space models
and the structure of the recursive computations for estimation. Then, as a
special case, we present the Kalman filter for Gaussian linear dynamic models.

2.2 A simple example

Before presenting the general formulation of state space models, it is useful to
give an intuition of the basic ideas and of the recursive computations through
a simple, introductory example. Let’s think of the problem of determining
the position θ of an object, based on some measurements (Yt : t = 1, 2, . . .)
affected by random errors. This problem is fairly intuitive, and dynamics can
be incorporated into it quite naturally: in the static problem, the object does
not move over time, but it is natural to extend the discussion to the case of a
moving target. If you prefer, you may think of some economic problem, such as

36 2 Dynamic linear models

forecasting the sales of a good; in short-term forecasting, the observed sales
are often modeled as measurements of the unobservable average sales level
plus a random error; in turn, the average sales are supposed to be constant
or randomly evolving over time (this is the so-called random walk plus noise
model, see page 42).

We have already discussed Bayesian inference in the static problem in
Chapter 1 (page 7). There, you were lost at sea, on a small island, and θ
was your unknown position (univariate: distance from the coast, say). The
observations were modeled as

Yt = θ + ǫt, ǫt
iid∼ N (0, σ2);

that is, given θ, the Yt’s are conditionally independent and identically dis-
tributed with a N (θ, σ2) distribution; in turn, θ has a Normal prior N (m0, C0).
As we have seen in Chapter 1, the posterior for θ is still Gaussian, with up-
dated parameters given by (1.2), or by (1.3) if we compute them sequentially,
as new data become available.

To be concrete, let us suppose that your prior guess about the position θ
is m0 = 1, with variance C0 = 2; the prior density is plotted in the first panel
of Figure 2.5. Note that m0 is also your point forecast for the observation:
E(Y1) = E(θ + ǫ1) = E(θ) = m0 = 1.

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

position

de
ns

ity
 a

t t
=0

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

position

co
nd

. d
en

sit
y a

t t
=2

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

position

sta
te

 p
re

dic
tiv

e
de

ns
ity

 a
t t

=2

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

position

filt
er

ed
 d

en
sit

y a
t t

=3

Fig. 2.5. Recursive updating of the density of θt

At time t = 1, we take a measurement, Y1 = 1.3, say; from (1.3), the
parameters of the posterior Normal density of θ are

m1 = m0 +
C0

C0 + σ2
(Y1 −m0) = 1.24,

2.2 A simple example 37

with precision C−1
1 = σ−2 +C−1

0 = 0.4−1. We see that m1 is obtained as our
best guess at time zero, m0, corrected by the forecast error (Y1−m0), weighted
by a factor K1 = C0/(C0 + σ2). The more precise the observation is, or the
more vague our initial information was, the more we “trust the data”: in the
above formula, the smaller σ2 is with respect to C0, the bigger is the weight
K1 of the data-correction term in m1. When a new observation, Y2 = 1.2 say,
becomes available at time t = 2, we can compute the density of θ|Y1:2, which
is N (m2, C2), with m2 = 1.222 and C2 = 0.222, using again (1.3). The second
panel in Figure 2.5 shows the updating from the prior density to the posterior
density of θ, given y1:2. We can proceed recursively in this manner as new
data become available.

Let us introduce now a dynamic component to the problem. Suppose we
know that at time t = 2 the object starts to move, so that its position changes
between two consecutive measurements. Let us assume a motion of a simple
form, say2

θt = θt−1 + ν + wt, wt ∼ N (0, σ2
w). (2.1)

where ν is a known nominal speed and wt is a Gaussian random error with
mean zero and known variance σ2

w. Let, for example, ν = 4.5 and σ2
w = 0.9.

Thus, we have a process (θt : t = 1, 2, . . .), which describes the unknown
position of the target at successive time points. The observation equation is
now

Yt = θt + ǫt, ǫt
iid∼ N (0, σ2), (2.2)

and we assume that the sequences (θt) and (ǫt) are independent. To make
inference about the unknown position θt, we proceed along the following steps.

Initial step. By the previous results, at time t = 2 we have

θ2|y1:2 ∼ N (m2 = 1.222, C2 = 0.222).

Prediction step. At time t = 2, we can predict where the object will be at
time t = 3, based on the dynamics (2.1). We easily find that

2 Equation (2.1) can be thought of as a discretization of a motion law in continuous
time, such as

dθt = νdt+ dWt

where ν is the nominal speed and dWt is an error term. For simplicity, we consider
a discretization in small intervals of time (ti−1, ti), as follows:

θti − θti−1

ti − ti−1
= ν + wti ,

that is
θti = θti−1 + ν(ti − ti−1) + wti(ti − ti−1),

where we assume that the random error wti has density N (0, σ2
w). With a further

simplification, we take unitary time intervals, (ti − ti−1) = 1, so that the above
expression is rewritten as (2.1).

38 2 Dynamic linear models

θ3|y1:2 ∼ N (a3, R3),

with
a3 = E(θ2 + ν + w3|y1:2) = m2 + ν = 5.722

and variance

R3 = Var(θ2 + ν + w3|y1:2) = C2 + σ2
w = 1.122.

The third plot in Figure 2.5 illustrates the prediction step, from the condi-
tional distribution of θ2|y1:2 to the “predictive” distribution of θ3|y1:2. Note
that even if we were fairly confident about the position of the target at time
t = 2, we become more uncertain about its position at time t = 3. This is the
effect of the random error wt in the dynamics of θt: the larger σ2

w is, the more
uncertain we are about the position at the time of the next measurement. We
can also predict the next observation Y3, given y1:2. Based on the observation
equation (2.2), we easily find that

Y3|y1:2 ∼ N (f3, Q3),

where
f3 = E(θ3 + ǫ3|y1:2) = a3 = 5.722

and
Q3 = Var(θ3 + ǫ3|y1:2) = R3 + σ2 = 1.622.

The uncertainty about Y3 depends on the measurement error (the term σ2 in
Q3) as well as the uncertainty about the position at time t = 3 (expressed by
R3).

Estimation step (filtering). At time t = 3, the new observation Y3 = 5
becomes available. Our point forecast of Y3 was f3 = a3 = 5.722, so we have a
forecast error et = yt−ft = −0.722. Intuitively, we have overestimated θ3 and
consequently Y3; thus, our new estimate E(θ3|y1:3) of θ3 will be smaller than
a3 = E(θ3|y1:2). For computing the posterior density of θ3|y1:3, we use the
Bayes formula, where the role of the prior is played by the density N (a3, R3)
of θ3 given y1:2, and the likelihood is the density of Y3 given (θ3, y1, y2). Note
that (2.2) implies that Y3 is independent from the past observations given θ3
(assuming independence among the error sequences), with

Y3|θ3 ∼ N (θ3, σ
2).

Thus, by the Bayes formula (see (1.3)), we obtain

θ3|y1, y2, y3 ∼ N (m3, C3),

where

m3 = a3 +
R3

R3 + σ2
(y3 − f3) = 5.568

and

2.3 State space models 39

C3 =
σ2R3

σ2 +R3
= R3 −

R3

R3 + σ2
R3 = 0.346.

We see again the estimation-correction structure of the updating mechanism in
action. Our best estimate of θ3 given the data y1:3 is computed as our previous
best estimate a3, corrected by a fraction of the forecast error e3 = y3 − f3,
having weight K3 = R3/(R3 + σ2). This weight is bigger the more uncertain
we are about our forecast a3 of θ3 (that is, the larger R3 is, which in turn
depends on C2 and σ2

w) and the more precise the observation Y3 is (i.e., the
smaller σ2 is). From these results we see that a crucial role in determining the
effect of the data on estimation and forecasting is played by the magnitude of
the system variance σ2

w relative to the observation variance σ2, the so-called
signal-to-noise ratio. The last plot in Figure 2.5 illustrates this estimation
step. We can proceed repeating recursively the previous steps for updating
our estimates and forecasts as new observations become available.

The previous simple example illustrates the basic aspects of dynamic linear
models, which can be summarized as follows.

• The observable process (Yt : t = 1, 2, . . .) is thought of as determined by a
latent process (θt : t = 1, 2, . . .), up to Gaussian random errors. If we knew
the position of the object at successive time points, the Yt’s would be
independent: what remains are only unpredictable measurement errors.
Furthermore, the observation Yt depends only on the position θt of the
target at time t.

• The latent process (θt) has a fairly simple dynamics: θt does not depend on
the entire past trajectory but only on the previous position θt−1, through
a linear relationship, up to Gaussian random errors.

• Estimation and forecasting can be obtained sequentially, as new data be-
come available.

The assumption of linearity and Gaussianity is specific to dynamic linear
models, but the dependence structure of the processes (Yt) and (θt) is part of
the definition of a general state space model.

2.3 State space models

Consider a time series (Yt)t≥1. Specifying the joint finite-dimensional distri-
butions of (Y1, . . . , Yt), for any t ≥ 1, is not an easy task. In particular, in
time series applications the assumptions of independence or exchangeability
are seldom justified, since they would essentially make time irrelevant. Marko-
vian dependence is arguably the simplest form of dependence among the Yt’s
in which time has a definite role. We say that (Yt)t≥1 is a Markov chain if,
for any t > 1,

π(yt|y1:t−1) = π(yt|yt−1).

40 2 Dynamic linear models

This means that the information about Yt carried by all the observations up
to time t − 1 is exactly the same as the information carried by yt−1 alone.
Another way of saying the same thing is that Yt and Y1:t−2 are condition-
ally independent given yt−1. For a Markov chain the finite-dimensional joint
distributions can be written in the fairly simple form

π(y1:t) = π(y1) ·
t∏

j=2

π(yj |yj−1).

Assuming a Markovian structure for the observations is, however, not appro-
priate in many applications. State space models build on the relatively simple
dependence structure of a Markov chain to define more complex models for
the observations. In a state space model we assume that there is an unobserv-
able Markov chain (θt), called the state process, and that Yt is an imprecise
measurement of θt. In engineering applications θt usually describes the state
of a physically observable system that produced the output Yt. On the other
hand, in econometric applications θt is often a latent construct, which may,
however, have a useful interpretation. In any case, one can think of (θt) as
an auxiliary time series that facilitates the task of specifying the probability
distribution of the observable time series (Yt).

Formally, a state space model consists of an R
p-valued time series (θt :

t = 0, 1 . . .) and an R
m-valued time series (Yt : t = 1, 2 . . .), satisfying the

following assumptions.

(A.1) (θt) is a Markov chain.
(A.2) Conditionally on (θt), the Yt’s are independent and Yt depends on θt

only.

The consequence of (A.1)-(A.2) is that a state space model is com-
pletely specified by the initial distribution π(θ0) and the conditional densities
π(θt|θt−1) and π(yt|θt), t ≥ 1. In fact, for any t > 0,

π(θ0:t, y1:t) = π(θ0) ·
t∏

j=1

π(θj |θj−1)π(yj |θj). (2.3)

From (2.3) one can derive, by conditioning or marginalization, any other dis-
tribution of interest. For example, the joint density of the observations Y1:t

can be obtained by integrating out the θj ’s in (2.3); note however that in this
way the simple product form of (2.3) is lost.

The information flow assumed by a state space model is represented in
Figure 2.6. The graph in the figure is a special case of a directed acyclic graph
(see Cowell et al.; 1999). The graphical representation of the model can be
used to deduce conditional independence properties of the random variables
occurring in a state space model. In fact, two sets of random variables, A
and B, can be shown to be conditionally independent given a third set of
variables, C, if and only if C separates A and B, i.e., if any path connecting

2.4 Dynamic linear models. 41

θ0 −→ θ1 −→ θ2 −→ · · · −→ θt−1 −→ θt −→ θt+1 −→ · · ·
↓ ↓ ↓ ↓ ↓
Y1 Y2 Yt−1 Yt Yt+1

Fig. 2.6. Dependence structure for a state space model

one variable in A to one in B passes through C. Note that in the previous
statement the arrows in Figure 2.6 have to be considered as undirected edges
of the graph that can be transversed in both directions. For a proof, see Cowell
et al. (1999, Section 5.3). As an example, we will use Figure 2.6 to show that Yt
and (θ0:t−1, Y1:t−1) are conditionally independent given θt. The proof simply
consists in observing that any path connecting Yt with one of the previous Ys
(s < t) or with one of the states θs, s < t, has to go through θt; hence, {θt}
separates {θ0:t−1, Y1:t−1} and {Yt}. It follows that

π(yt|θ0:t−1, y1:t−1) = π(yt|θt).

In a similar way, one can show that θt and (θ0:t−2, Y1:t−1) are conditionally
independent given θt−1, which can be expressed in terms of conditional dis-
tributions as

π(θt|θ0:t−1, y1:t−1) = π(θt|θt−1).

State space models in which the states are discrete-valued random vari-
ables are often called hidden Markov models.

2.4 Dynamic linear models.

The first, important class of state space models is given by Gaussian linear
state space models, also called dynamic linear models. A dynamic linear model
(DLM) is specified by a Normal prior distribution for the p-dimensional state
vector at time t = 0,

θ0 ∼ Np(m0, C0), (2.4a)

together with a pair of equations for each time t ≥ 1,

Yt = Ftθt + vt, vt ∼ Nm(0, Vt), (2.4b)

θt = Gtθt−1 + wt, wt ∼ Np(0,Wt), (2.4c)

whereGt and Ft are known matrices (of order p×p andm×p respectively) and
(vt)t≥1 and (wt)t≥1 are two independent sequences of independent Gaussian
random vectors with mean zero and known variance matrices (Vt)t≥1 and
(Wt)t≥1, respectively. Equation (2.4b) is called the observation equation, while
(2.4c) is the state equation or system equation. Furthermore, it is assumed that
θ0 is independent of (vt) and (wt). One can show that a DLM satisfies the

42 2 Dynamic linear models

assumptions (A.1) and (A.2) of the previous section, with Yt|θt ∼ N (Ftθt, Vt)
and θt|θt−1 ∼ N (Gtθt−1,Wt) (see Problems 2.1 and 2.2).

In contrast to (2.4), a general state space model can be specified by a prior
distribution for θ0, together with the observation and evolution equations

Yt = ht(θt, vt),

θt = gt(θt−1, wt)

for arbitrary functions gt and ht. Linear state space models specify gt and ht as
linear functions, and Gaussian linear models add the assumptions of Gaussian
distributions. The assumption of Normality is sensible in many applications,
and it can be justified by central limit theorem arguments. However, there are
many important extensions, such as heavy tailed errors for modeling outliers,
or the dynamic generalized linear model for treating discrete time series. The
price to be paid when removing the assumption of Normality is additional
computational difficulties.

We introduce here some examples of DLMs for time series analysis, which
will be treated more extensively in Chapter 3. The simplest model for a uni-
variate time series (Yt : t = 1, 2, . . .) is the so-called random walk plus noise
model, defined by

Yt = µt + vt, vt ∼ N (0, V)

µt = µt−1 + wt, wt ∼ N (0,W),
(2.5)

where the error sequences (vt) and (wt) are independent, both within them
and between them. This is a DLM with m = p = 1, θt = µt and Ft = Gt = 1.
It is the model used in the introductory example in Section 2.2, when there
is no speed in the dynamics (ν = 0 in the state equation (2.1)). Intuitively,
it is appropriate for time series showing no clear trend or seasonal variation:
the observations (Yt) are modeled as noisy observations of a level µt which,
in turn, is subject to random changes over time, described by a random walk.
This is why the model is also called local level model. If W = 0, we are back to
the constant mean model. Note that the random walk (µt) is nonstationary.
Indeed, DLMs can be used for modeling nonstationary time series. On the
contrary, the usual ARMA models require a preliminary transformation of
the data to achieve stationarity.

A slightly more elaborated model is the linear growth model, or local linear
trend, which has the same observation equation as the local level model, but
includes a time-varying slope in the dynamics for µt:

Yt = µt + vt, vt ∼ N (0, V),

µt = µt−1 + βt−1 + wt,1, wt,1 ∼ N (0, σ2
µ),

βt = βt−1 + wt,2, wt,2 ∼ N (0, σ2
β),

(2.6)

with uncorrelated errors vt, wt,1 and wt,2. This is a DLM with

2.5 Dynamic linear models in package dlm 43

θt =

[
µt
βt

]
, G =

[
1 1
0 1

]
, W =

[
σ2
µ 0
0 σ2

β

]
, F =

[
1 0
]
.

The system variances σ2
µ and σ2

β are allowed to be zero. We have used this
model in the introductory example of Section 2.2; there, we had a constant
nominal speed in the dynamics, that is σ2

β = 0.
Note that in these examples the matrices Gt and Ft and the covariance

matrices Vt and Wt are constant; in this case the model is said to be time
invariant. We will see other examples in Chapter 3. In particular, the popular
Gaussian ARMA models can be obtained as special cases of DLM; in fact, it
can be shown that Gaussian ARMA and DLM models are equivalent in the
time-invariant case (see Hannan and Deistler; 1988).

DLMs can be regarded as a generalization of the linear regression model,
allowing for time varying regression coefficients. The simple, static linear re-
gression model describes the relationship between a variable Y and a nonran-
dom explanatory variable x as

Yt = θ1 + θ2xt + ǫt, ǫt
iid∼ N (0, σ2).

Here we think of (Yt, xt), t = 1, 2, . . . as observed over time. Allowing for time
varying regression parameters, one can model nonlinearity of the functional
relationship between x and y, structural changes in the process under study,
omission of some variables. A simple dynamic linear regression model assumes

Yt = θt,1 + θt,2xt + ǫt, ǫt ∼ N (0, σ2
t),

with a further equation for describing the system evolution

θt = Gtθt−1 + wt, wt ∼ N2(0,Wt).

This is a DLM with Ft = [1, xt] and states θt = (θt,1, θt,2)
′. As a particuar

case, if Gt = I, the identity matrix, σ2
t = σ2 and wt = 0 for every t, we are

back to the simple static linear regression model.

2.5 Dynamic linear models in package dlm

DLMs are represented in package dlm as named lists with a class attribute,
which makes them into objects of class “dlm”. Objects of class dlm can repre-
sent constant or time-varying DLMs. A constant DLM is completely specified
once the matrices F , V , G, W , C0, and the vector m0 are given. In R, these
components are stored in a dlm object as elements FF, V, GG, W, C0, and m0,
respectively. Extractor and replacement functions are available to access and
modify specific parts of the model in a user-friendly way. The package also
provides several functions that create particular classes of DLMs from minimal

44 2 Dynamic linear models

input; we will illustrate those functions in Chapter 3, where we discuss model
specification. A general univariate or multivariate DLM can be specified us-
ing the function dlm. This function creates a dlm object from its components,
performing some sanity checks on the input, such as testing the dimensions
of the matrices for consistency. The input may be given as a list with named
arguments or as individual arguments. Here is how to use dlm to create a dlm

object corresponding to the random walk plus noise model and to the linear
growth model introduced on page 42. We assume that V = 1.4 and σ2 = 0.2.
Note that 1×1 matrices can safely be passed to dlm as scalars, i.e., numerical
vectors of length one.

R code

> rw <- dlm(m0 = 0, C0 = 10, FF = 1, V = 1.4, GG = 1, W = 0.2)

2 > unlist(rw)

m0 C0 FF V GG W

4 0.0 10.0 1.0 1.4 1.0 0.2

> lg <- dlm(FF = matrix(c(1, 0), nr = 1),

6 + V = 1.4,

+ GG = matrix(c(1, 0, 1, 1), nr = 2),

8 + W = diag(c(0, 0.2)),

+ m0 = rep(0, 2),

10 + C0 = 10 * diag(2))

> lg

12 $FF

[,1] [,2]

14 [1,] 1 0

16 $V

[,1]

18 [1,] 1.4

20 $GG

[,1] [,2]

22 [1,] 1 1

[2,] 0 1

24

$W

26 [,1] [,2]

[1,] 0 0.0

28 [2,] 0 0.2

30 $m0

[1] 0 0

32

$C0

2.5 Dynamic linear models in package dlm 45

34 [,1] [,2]

[1,] 10 0

36 [2,] 0 10

38 > is.dlm(lg)

[1] TRUE

Suppose now that one wants to change the observation variance in the linear
growth model lg to V = 0.8 and the system varianceW so as to have σ2 = 0.5.
This can be easily achieved as illustrated in the following code.

R code

> V(lg) <- 0.8

2 > W(lg)[2,2] <- 0.5

> V(lg)

4 [1] 0.8

> W(lg)

6 [,1] [,2]

[1,] 0 0.0

8 [2,] 0 0.5

In a similar way we can modify or view the other components of the model,
including the mean and variance of the state at time zero, m0 and C0.

Let us turn now on time-varying DLMs and how they are represented in
R. Most often, in a time-invariant DLM, only a few entries (possibly none) of
each matrix change over time, while the remaining are constant. Therefore,
instead of storing the entire matrices Ft, Vt, Gt, Wt for all values of t that one
wishes to consider, we opted to store a template of each of them, and save
the time-varying entries in a separate matrix. This matrix is the component
X of a dlm object. Taking this approach, one also needs to know to which
entry of which matrix each column of X corresponds. To this aim one has to
specify one or more of the components JFF, JV, JGG, and JW. Let us focus
on the first one, JFF. This should be a matrix of the same dimension of FF,
with integer entries: if JFF[i,j] is k, a positive integer, that means that the
value of FF[i,j] at time s is X[s,k]. If, on the other hand, JFF[i,j] is zero
then FF[i,j] is taken to be constant in time. JV, JGG, and JW are used in the
same way, for V, GG, and W, respectively. Consider, for example, the dynamic
regression model introduced on page 43. The only time-varying element is
the (1, 2)-entry of Ft; therefore, X will be a one-column matrix (although X

is allowed to have extra, unused, columns). The following code shows how a
dynamic regression model can be defined in R.

46 2 Dynamic linear models

R code

> x <- rnorm(100) # covariates
2 > dlr <- dlm(FF = matrix(c(1, 0), nr = 1),

+ V = 1.3,
4 + GG = diag(2),

+ W = diag(c(0.4, 0.2)),
6 + m0 = rep(0, 2), C0 = 10 * diag(2),

+ JFF = matrix(c(0, 1), nr = 1),
8 + X = x)

> dlr
10 $FF

[,1] [,2]
12 [1,] 1 0

14 $V
[,1]

16 [1,] 1.3

18 $GG
[,1] [,2]

20 [1,] 1 0
[2,] 0 1

22

$W
24 [,1] [,2]

[1,] 0.4 0.0
26 [2,] 0.0 0.2

28 $JFF
[,1] [,2]

30 [1,] 0 1

32 $X
[,1]

34 [1,] 0.4779
[2,] 0.5414

36 [3,] ...

38 $m0
[1] 0 0

40

$C0
42 [,1] [,2]

[1,] 10 0
44 [2,] 0 10

2.5 Dynamic linear models in package dlm 47

Note that the dots on line 36 of the display above were produced by the print
method function for objects of class dlm. If you want the entire X component
to be printed, you need to extract it as X(dlr), or use print.default. When
modifying individual components of a dlm object, the user must ensure that
the new components are compatible with the rest of the dlm object, as the
replacement functions do not perform any check. This is a precise design
choice, reflecting the fact that one may want to modify a dlm object one
component at a time in such a way that, while the intermediate steps result
in an invalid specification, the final result is a well-defined dlm object. For
example, suppose one wants to use rw with a time series of length 30, and one
wants to specify a time-varying observation variance as

Vt =

{
0.75 if t = 1, . . . , 10,

1.25 if t = 11, . . . , 30.

Assuming the researcher is satisfied with the constant system variance previ-
ously specified, she has to add to rw the two components JV and X. Adding
JV first temporarily produces an invalid dlm object, which is then made into
a valid one by the further addition of the X component. To stay on the safe
side, one can make sure that a model obtained from another one by changing,
adding, or removing components “by hand” is a valid dlm object by calling
the function dlm on the modified model. In this case is.dlm is not useful, as
it only looks at the class attribute of the object. The original value of V is
still present in the new model but will never be used. For this reason V(rw)

gives back the old value of V, at the same time warning the user that in rw

the component V is now time-varying. The code below illustrates the previous
discussion.

R code

> JV(rw) <- 1

2 > is.dlm(rw)

[1] TRUE

4 > dlm(rw)

Error in dlm(rw) : Component X must be provided for time-varying

6 models

> X(rw) <- rep(c(0.75, 1.25), c(10, 20))

8 > rw <- dlm(rw)

> V(rw)

10 [,1]

[1,] 1.4

12 Warning message:

In V.dlm(rw) : Time varying V

48 2 Dynamic linear models

2.6 Examples of nonlinear and non-Gaussian state space

models

Specification and estimation of DLMs for time series analysis will be treated in
Chapters 3 and 4. Here we briefly present some important classes of nonlinear
and non-Gaussian state space models. Although in this book we will limit
ourself to the linear Gaussian case, this section should give the reader an idea
of the extensions that are possible in state space modeling when dropping
those assumptions.

Exponential family state space models

Dynamic linear models can be generalized by removing the assumption of
Gaussian distributions. This generalization is required for modeling discrete
time series; for example, if Yt represents the presence/absence of a character-
istic in the problem under study over time, we would use a Bernoulli distribu-
tion; if Yt are counts, we might use a Poisson model, etc. Dynamic Generalized
Linear Models (West et al.; 1985) assume that the conditional distribution
π(yt|θt) of Yt given θt is a member of the exponential family, with natural
parameter ηt = Ftθt. The state equation is as for Gaussian linear models,
θt = Gtθt−1 + wt. Inference for generalized DLMs presents computational
difficulties, which can, however, be solved by MCMC techniques.

Hidden Markov models

State space models in which the state θt is discrete are usually referred to as
hidden Markov models. Hidden Markov models are used extensively in speech
recognition (see for example Rabiner and Juang; 1993). In economics and
finance, they are often used to model a time series with structural breaks.
The dynamics of the series and the change points are thought as determined
by a latent Markov chain (θt), with state space {θ∗1 , . . . , θ∗k} and transition
probabilities

π(i|j) = P (θt = θ∗i |θt−1 = θ∗j).

Consequently, Yt can come from a different distribution depending on the
state of the chain at time t, in the sense that

Yt|{θt = θ∗j } ∼ π(yt|θ∗j), j = 1, . . . , k.

Although state space models and hidden Markov models have evolved as sep-
arate subjects, their basic assumptions and recursive computations are closely
related. MCMC methods for hidden Markov models have been developed, see
for example Rydén and Titterington (1998), Kim and Nelson (1999), Cappé
et al. (2005), and the references therein.

2.7 State estimation and forecasting 49

Stochastic volatility models

Stochastic volatility models are widely used in financial applications. Let Yt be
the log-return of an asset at time t (i.e., Yt = logPt/Pt−1, where Pt is the as-
set price at time t). Under the assumption of efficient markets, the log-returns
have null conditional mean: E(Yt+1|y1:t) = 0. However, the conditional vari-
ance, called volatility, varies over time. There are two main classes of models
for analyzing volatility of returns. The popular ARCH and GARCH mod-
els (Engle; 1982; Bollerslev; 1986) describe the volatility as a function of the
past values of the returns. Stochastic volatility models, instead, consider the
volatility as an exogenous random process. This leads to a state space model
where the volatility is (part of) the state vector, see for example Shephard
(1996). The simplest stochastic volatility model has the following form:

Yt = exp

{
1

2
θt

}
wt, wt ∼ N (0, 1),

θt = η + φθt−1 + vt, vt ∼ N (0, σ2),

that is, θt follows an autoregressive model of order one. These models are
nonlinear and non-Gaussian, and computations are usually more demanding
than for ARCH and GARCH models; however, MCMC approximations are
available (Jacquier et al.; 1994). On the other hand, stochastic volatility mod-
els seem easier to generalize to the case of returns of a collection of assets,
while for multivariate ARCH and GARCH models the number of parameters
quickly becomes too large. Let Yt = (Yt,1, . . . , Yt,m) be the log-returns for m
assets. A simple multivariate stochastic volatility model might assume that

Yt,i = exp (zt + xt,i) vt,i, i = 1, . . . ,m,

where zt describes a common market volatility factor and the xt,i’s are indi-
vidual volatilities. The state vector is θt = (zt, xt,1, . . . , xt,m)′, and a simple
state equation might assume that the components of θt are independent AR(1)
processes.

2.7 State estimation and forecasting

The great flexibility of state space models is one reason for their extensive
application in an enormous range of applied problems. Of course, as in any
statistical application, a crucial and often difficult step is a careful model
specification. In many problems, the statistician and the experts together can
build a state space model where the states have an intuitive meaning, and ex-
pert knowledge can be used to specify the transition probabilities in the state
equation, determine the dimension of the state space, etc. However, often the
model building can be a major difficulty: there might be no clear identifica-
tion of physically interpretable states, or the state space representation could

50 2 Dynamic linear models

be non unique, or the state space is too big and poorly identifiable, or the
model is too complicated. We will discuss some issues about model building
for time series analysis with DLMs in Chapter 3. Here, to get started, we
consider the model as given; that is, we assume that the densities π(yt|θt)
and π(θt|θt−1) have been specified, and we present the basic recursions for
estimation and forecasting. In Chapter 4, we will let these densities depend
on unknown parameters ψ and discuss their estimation.

For a given state space model, the main tasks are to make inference on
the unobserved states or predict future observations based on a part of the
observation sequence. Estimation and forecasting are solved by computing
the conditional distributions of the quantities of interest, given the available
information.

To estimate the state vector we compute the conditional densities π(θs|y1:t).
We distinguish between problems of filtering (when s = t), state prediction
(s > t) and smoothing (s < t). It is worth underlining the difference between
filtering and smoothing. In the filtering problem, the data are supposed to
arrive sequentially in time. This is the case in many applied problems: think
for example of the problem of tracking a moving object, or of financial appli-
cations where one has to estimate, day by day, the term structure of interest
rates, updating the current estimates as new data are observed on the markets
the following day. In these cases, we want a procedure to estimate the current
value of the state vector, based on the observations up to time t (“now”),
and to update our estimates and forecasts as new data become available at
time t+1. To solve the filtering problem, we compute the conditional density
π(θt|y1:t). In a DLM, the Kalman filter provides the formulae for updating
our current inference on the state vector as new data become available, that
is for passing from the filtering density π(θt|y1:t) to π(θt+1|y1:t+1).

The problem of smoothing, or retrospective analysis, consists instead in
estimating the state sequence at times 1, . . . , t, given the data y1, . . . , yt. In
many applications, one has observations on a time series for a certain period,
and wants to retrospectively study the behavior of the system underlying the
observations. For example, in economic studies, the researcher might have the
time series of consumption, or of the gross domestic product of a country, for a
certain number of years, and she might be interested in retrospectively under-
standing the socio-economic behavior of the system. The smoothing problem
is solved by computing the conditional distribution of θ1:t given y1:t. As for
filtering, smoothing can be implemented as a recursive algorithm.

As a matter of fact, in time series analysis forecasting is often the main
task; the state estimation is then just a step for predicting the value of future
observations. For one-step-ahead forecasting, that is, predicting the next ob-
servation Yt+1 based on the data y1:t, one first estimates the next value θt+1 of
the state vector, and then, based on this estimate, one computes the forecast
for Yt+1. The one-step-ahead state predictive density is π(θt+1|y1:t) and it is
based on the filtering density of θt. From this, one obtains the one-step-ahead
predictive density π(yt+1|y1:t).

2.7 State estimation and forecasting 51

One might be interested in looking a bit further ahead, estimating the
evolution of the system, represented by the state vector θt+k for some k ≥ 1,
and making k-steps-ahead forecasts for Yt+k. The state prediction is solved by
computing the k-steps-ahead state predictive density π(θt+k|y1:t). Based on
this density, one can compute the k-steps-ahead predictive density π(yt+k|y1:t)
for the future observation at time t+k. Of course, forecasts become more and
more uncertain as the time horizon t+ k gets farther away in the future, but
note that we can anyway quantify the uncertainty through a probability den-
sity, namely the predictive density of Yt+1 given y1:t. We will show how to
compute the predictive densities in a recursive fashion. In particular, the con-
ditional mean E(Yt+1|y1:t) provides an optimal one-step-ahead point forecast
of the value of Yt+1, minimizing the conditional expected square prediction
error. As a function of k, E(Yt+k|y1:t) is usually called the forecast function.

2.7.1 Filtering

We first describe the recursive steps needed to compute the filtering densities
π(θt|y1:t) in general state space models. Even if we will not make extensive
use of these formulae, it is useful to look now at the general recursions to
better understand the role of the conditional independence assumptions that
have been introduced. Then we move to the DLM case, for which the filtering
problem is solved by the well-known Kalman filter.

One of the advantages of state space models is that, due to the Markovian
structure of the state dynamics (A.1) and the assumptions on the conditional
independence for the observables (A.2), the filtered and predictive densities
can be computed using a recursive algorithm. As we have seen in the intro-
ductory example of Section 2.2, starting from θ0 ∼ π(θ0) one can recursively
compute, for t = 1, 2, . . .:

(i) the one-step-ahead predictive distribution for θt given y1:t−1, based on
the filtering density π(θt−1|y1:t−1) and the conditional distribution of θt given
θt−1 specified by the model;

(ii) the one-step-ahead predictive distribution for the next observation;
(iii) the filtering distribution π(θt|y1:t t 1:t−1)

as the prior distribution and likelihood π(yt|θt).
The following proposition contains a formal presentation of the filtering

recursions for a general state space model.

Proposition 2.1 (Filtering recursions). For a general state space model
defined by (A.1)-(A.2) (p.40), the following statements hold.

(i) The one-step-ahead predictive density for the states can be computed from
the filtered density π(θt−1|y1:t−1) according to

π(θt|y1:t−1) =

∫
π(θt|θt−1)π(θt−1|y1:t−1) dθt−1. (2.7a)

), using the Bayes rule with π(θ |y

52 2 Dynamic linear models

(ii) The one-step-ahead predictive density for the observations can be computed
from the predictive density for the states as

π(yt|y1:t−1) =

∫
π(yt|θt)π(θt|y1:t−1) dθt. (2.7b)

(iii) The filtering density can be computed from the above densities as

π(θt|y1:t) =
π(yt|θt)π(θt|y1:t−1)

π(yt|y1:t−1)
. (2.7c)

Proof. The proof relies heavily on the conditional independence properties of
the model, which can be deduced from the graph in Figure 2.6.

To prove (i), note that θt is conditionally independent of Y1:t−1, given θt−1.
Therefore,

π(θt|y1:t−1) =

∫
π(θt−1, θt|y1:t−1) dθt−1

=

∫
π(θt|θt−1, y1:t−1)π(θt−1|y1:t−1) dθt−1

=

∫
π(θt|θt−1)π(θt−1|y1:t−1) dθt−1.

To prove (ii), note that Yt is conditionally independent of Y1:t−1 given θt.
Therefore,

π(yt|y1:t−1) =

∫
π(yt, θt|y1:t−1) dθt

=

∫
π(yt|θt, y1:t−1)π(θt|y1:t−1) dθt

=

∫
π(yt|θt)π(θt|y1:t−1) dθt.

Part (iii) follows from Bayes’ rule and the conditional independence of Yt
and Y1:t−1 given θt:

π(θt|y1:t) =
π(θt|y1:t−1)π(yt|θt, y1:t−1)

π(yt|y1:t−1)
=
π(θt|y1:t−1)π(yt|θt)

π(yt|y1:t−1)
.

⊓⊔

From the one-step-ahead predictive distribution provided by the previous
proposition, k-steps ahead predictive distributions for the state and for the
observation can be computed recursively according to the formulae

π(θt+k|y1:t) =

∫
π(θt+k|θt+k−1)π(θt+k−1|y1:t) dθt+k−1

2.7 State estimation and forecasting 53

and

π(yt+k|y1:t) =

∫
π(yt+k|θt+k)π(θt+k|y1:t) dθt+k.

Incidentally, these recursions also show that π(θt|y1:t) summarizes the infor-
mation contained in the past observations y1:t, which is sufficient for predicting
Yt+k, for any k > 0.

2.7.2 Kalman filter for dynamic linear models

The previous results solve in principle the filtering and the forecasting prob-
lems; however, in general the actual computation of the relevant conditional
distributions is not at all an easy task. DLMs are one important case where
the general recursions simplify considerably. In this case, using standard re-
sults about the multivariate Gaussian distribution, it is easily proved that
the random vector (θ0, θ1, . . . , θt, Y1, . . . , Yt) has a Gaussian distribution for
any t ≥ 1. It follows that the marginal and conditional distributions are also
Gaussian. Since all the relevant distributions are Gaussian, they are com-
pletely determined by their means and variances. The solution of the filtering
problem for DLMs is given by the celebrated Kalman filter.

Proposition 2.2 (Kalman filter). Consider the DLM specified by (2.4)
(p.41). Let

θt−1|y1:t−1 ∼ N (mt−1, Ct−1).

Then the following statements hold.

(i) The one-step-ahead predictive distribution of θt given y1:t−1 is Gaussian,
with parameters

at = E(θt|y1:t−1) = Gtmt−1,

Rt = Var(θt|y1:t−1) = GtCt−1G
′
t +Wt.

(2.8a)

(ii) The one-step-ahead predictive distribution of Yt given y1:t−1 is Gaussian,
with parameters

ft = E(Yt|y1:t−1) = Ftat,

Qt = Var(Yt|y1:t−1) = FtRtF
′
t + Vt.

(2.8b)

(iii) The filtering distribution of θt given y1:t is Gaussian, with parameters

mt = E(θt|y1:t) = at +RtF
′
tQ

−1
t et,

Ct = Var(θt|y1:t) = Rt −RtF
′
tQ

−1
t FtRt,

(2.8c)

where et = Yt − ft is the forecast error.

54 2 Dynamic linear models

Proof. The random vector (θ0, θ1, . . . , θt, Y1, . . . , Yt) has joint distribution
given by (2.3), where the marginal and conditional distributions involved are
Gaussian. From standard results on the multivariate Normal distribution (see
Appendix A), it follows that the joint distribution of (θ0, θ1, . . . , θt, Y1, . . . , Yt)
is Gaussian, for any t ≥ 1. Consequently, the distribution of any subvector
is also Gaussian, as is the conditional distribution of some components given
some other components. Therefore the predictive distributions and the filter-
ing distributions are Gaussian, and it suffices to compute their means and
variances.

To prove (i), let θt|y1:t−1 ∼ N (at, Rt). Using (2.4c), at and Rt can be
obtained as follows:

at = E(θt|y1:t−1) = E(E(θt|θt−1, y1:t−1)|y1:t−1)

= E(Gtθt−1|y1:t) = Gtmt−1

and

Rt = Var(θt|y1:t−1)

= E(Var(θt|θt−1, y1:t−1)|y1:t−1) + Var(E(θt|θt−1, y1:t−1)|y1:t−1)

= Wt +GtCt−1G
′
t.

To prove (ii), let Yt|y1:t−1 ∼ N (ft, Qt). Using (2.4b), ft and Qt can be
obtained as follows:

ft = E(Yt|y1:t−1) = E(E(Yt|θt, y1:t−1)|y1:t−1) = E(Ftθt|y1:t−1) = Ftat

and

Qt = Var(Yt|y1:t−1)

= E(Var(Yt|θt, y1:t−1)|y1:t−1) + Var(E(Yt|θt, y1:t−1)|y1:t−1)

= Vt + FtRtF
′
t .

Let us prove (iii) next. We can adapt Proposition 2.1(iii) to the present
special case. There, we showed that, in order to compute the filtering distri-
bution at time t, we have to apply the Bayes formula to combine the prior
π(θt|y1:t−1) and the likelihood π(yt|θt). In the DLM case all the distributions
are Gaussian and the problem is the same as the Bayesian inference problem
for the linear model

Yt = Ftθt + vt, vt ∼ N (0, Vt),

with a regression parameter θt following a conjugate Gaussian prior N (at, Rt).
(Here Vt is known.) From the results in Section 1.5 we have that

θt|y1:t ∼ N (mt, Ct),

2.7 State estimation and forecasting 55

where, by (1.10),

mt = at +RtF
′
tQ

−1
t (Yt − Ftat)

and, by (1.9),

Ct = Rt −RtF
′
tQ

−1
t FtRt.

⊓⊔

The Kalman filter allows us to compute the predictive and filtering distri-
butions recursively, starting from θ0 ∼ N (m0, C0), then computing π(θ1|y1),
and proceeding recursively as new data become available.

The conditional distribution of θt|y1:t solves the filtering problem. How-
ever, in many cases one is interested in a point estimate. As we have discussed
in Section 1.3, the Bayesian point estimate of θt given the information y1:t,
with respect to the quadratic loss function L(θt, a) = (θt − a)′H(θt − a), is
the conditional expected value mt = E(θt|y1:t). This is the optimal estimate
since it minimizes the conditional expected loss E((θt − a)′H(θt − a)|y1:t−1)
with respect to a. If H = Ip, the minimum expected loss is the conditional
variance matrix Var(θt|y1:t).

As we noted in the introductory example in Section 2.2, the expression of
mt has the intuitive estimation-correction form “filter mean equals the predic-
tion mean at plus a correction depending on how much the new observation
differs from its prediction”. The weight of the correction term is given by the
gain matrix

Kt = RtF
′
tQ

−1
t .

Thus, the weight of current data point Yt depends on the observation vari-
ance Vt (through Qt) and on Rt = Var(θt|y1:t−1) = GtCt−1G

′
t +Wt.

As an example, consider the local level model (2.5). The Kalman filter
gives

µt|y1:t−1 ∼ N (mt−1, Rt = Ct−1 +W),

Yt|y1:t−1 ∼ N (ft = mt−1, Qt = Rt + V),

µt|y1:t ∼ N (mt = mt−1 +Ktet, Ct = KtV),

where Kt = Rt/Qt and et = Yt− ft. It is worth underlining that the behavior
of the process (Yt) is greatly influenced by the ratio between the two error
variances, r = W/V , which is usually called the signal-to-noise ratio (a good
exercise for seeing this is to simulate some trajectories of (Yt), for different
values of V and W). This is reflected in the structure of the estimation and
forecasting mechanism. Note that mt = Ktyt + (1 − Kt)mt−1, a weighted
average of yt andmt−1. The weightKt = Rt/Qt = (Ct−1+W)/(Ct−1+W+V)
of the current observation yt is also called adaptive coefficient, and it satisfies

56 2 Dynamic linear models

0 < Kt < 1. For any given C0, if the signal-to-noise r is small, Kt is small and
yt receives little weight. If, at the opposite extreme, V = 0, we have Kt = 1
and mt = yt, that is, the one-step-ahead forecast is given by the most recent
data point. A practical illustration of how different relative magnitudes of
W and V affect the mean of the filtered distribution and the one-step-ahead
forecasts is given on pages 57 and 67.

The evaluation of the posterior variances Ct (and consequently also of Rt
and Qt) using the iterative updating formulae contained in Proposition 2.2,
as simple as it may appear, suffers from numerical instability that may lead to
nonsymmetric and even negative definite calculated variance matrices. Alter-
native, stabler, algorithms have been developed to overcome this issue. Appar-
ently, the most widely used, at least in the Statistics literature, is the square
root filter, which provides formulae for the sequential update of a square root3

of Ct. References for the square root filter are Morf and Kailath (1975) and
Anderson and Moore (1979, Ch. 6)

In our work we have found that occasionally, in particular when the obser-
vational noise has a small variance, even the square root filter incurs numerical
stability problems, leading to negative definite calculated variances. A more
robust algorithm is the one based on sequentially updating the singular value
decomposition4 (SVD) of Ct. The details of the algorithm can be found in
Oshman and Bar-Itzhack (1986) and Wang et al. (1992). Strictly speaking,
the SVD-based filter can be seen as a square root filter: in fact if A = UD2U ′

is the SVD of a variance matrix, then DU ′ is a square root of A. However,
compared to the standard square root filtering algorithms, the SVD-based one
is typically more stable (see the references for further discussion).

The Kalman filter is performed in package dlm by the function dlmFilter.
The arguments are the data, y, in the form of a numerical vector, matrix, or
time series, and the model, mod, an object of class dlm or a list that can
be coerced to a dlm object. For the reasons of numerical stability mentioned
above, the calculations are performed on the SVD of the variance matrices Ct
and Rt. Accordingly, the output provides, for each t, an orthogonal matrix
UC,t and a vector DC,t such that Ct = UC,t diag(D2

C,t)U
′
C,t, and similarly for

Rt.
The output produced by dlmFilter, a list with class attribute

“dlmFiltered,” includes, in addition to the original data and the model (com-
ponents y and mod), the means of the predictive and filtered distributions
(components a and m) and the SVD of the variances of the predictive and
filtered distributions (components U.R, D.R, U.C, and D.C). For convenience,
the component f of the output list provides the user with one-step-ahead
forecasts. The component U.C is a list of matrices, the UC,t above, while D.C

3 We define a square root of variance matrix A to be any square matrix N such
that A = N ′N .

4 See Appendix B for a definition.

2.7 State estimation and forecasting 57

is a matrix containing, stored by row, the vectors DC,t of the SVD of the
Ct’s. Similarly for U.R and D.R. The utility function dlmSvd2var can be used
to reconstruct the variances from their SVD. In the display below we use a
random walk plus noise model with the Nile data (Figure 2.3). The variances
V = 15100 and W = 1468 are maximum likelihood estimates. To set up the
model we use, instead of dlm, the more convenient dlmModPoly, which will be
discussed in Chapter 3.

R code

> NilePoly <- dlmModPoly(order = 1, dV = 15100, dW = 1468)

2 > unlist(NilePoly)

m0 C0 FF V GG W

4 0 10000000 1 15100 1 1468

> NileFilt <- dlmFilter(Nile, NilePoly)

6 > str(NileFilt, 1)

List of 9

8 $ y : Time-Series [1:100] from 1871 to 1970: 1120 1160 ...

$ mod:List of 10

10 ..- attr(*, "class")= chr "dlm"

$ m : Time-Series [1:101] from 1870 to 1970: 0 1118 ...

12 $ U.C:List of 101

$ D.C: num [1:101, 1] 3162 123 ...

14 $ a : Time-Series [1:100] from 1871 to 1970: 0 1118 ...

$ U.R:List of 100

16 $ D.R: num [1:100, 1] 3163 129 ...

$ f : Time-Series [1:100] from 1871 to 1970: 0 1118 ...

18 - attr(*, "class")= chr "dlmFiltered"

> n <- length(Nile)

20 > attach(NileFilt)

> dlmSvd2var(U.C[[n + 1]], D.C[n + 1,])

22 [,1]

[1,] 4031.035

The last number in the display is the variance of the filtering distribution
of the 100-th state vector. Note that m0 and C0 are included in the output,
which is the reason why U.C has one element more than U.R, and m and U.D

one row more than a and D.R.
As we already noted on page 55, the relative magnitude of W and V is an

important factor that enters the gain matrix, which, in turn, determines how
sensitive the state prior-to-posterior updating is to unexpected observations.
To illustrate the role of the signal-to-noise ratio W/V in the local level model,
we use two models, with a significantly different signal-to-noise ratio, to esti-
mate the true level of the Nile River. The filtered values for the two models
can then be compared.

58 2 Dynamic linear models

L
e
v
e
l

1880 1900 1920 1940 1960

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

data

filtered, W/V = 0.05

filtered, W/V = 0.50

Fig. 2.7. Filtered values of the Nile River level for two different signal-to-noise
ratios

R code

> plot(Nile, type=’o’, col = c("darkgrey"),

2 + xlab = "", ylab = "Level")

> mod1 <- dlmModPoly(order = 1, dV = 15100, dW = 755)

4 > NileFilt1 <- dlmFilter(Nile, mod1)

> lines(dropFirst(NileFilt1$m), lty = "longdash")

6 > mod2 <- dlmModPoly(order = 1, dV = 15100, dW = 7550)

> NileFilt2 <- dlmFilter(Nile, mod2)

8 > lines(dropFirst(NileFilt2$m), lty = "dotdash")

> leg <- c("data", paste("filtered, W/V =",

10 + format(c(W(mod1) / V(mod1),

+ W(mod2) / V(mod2)))))

12 > legend("bottomright", legend = leg,

+ col=c("darkgrey", "black", "black"),

14 + lty = c("solid", "longdash", "dotdash"),

+ pch = c(1, NA, NA), bty = "n")

Figure 2.7 displays the filtered levels resulting from the two models. It is
appearent that for model 2, which has a signal-to-noise ratio ten times larger
than model 1, the filtered values tend to follow more closely the data.

2.7 State estimation and forecasting 59

2.7.3 Filtering with missing observations

In applied data analysis it is not infrequent to have to deal with a time series
containing one or more missing observations. In multivariate time series, miss-
ing observations can be of two different types: totally missing and partially
missing observations. The first type is the one that occurs when the observa-
tion vector at some time t is not available. In the second case only some of
the components of the observation vector are not available. This may happen
for example when considering a daily time series of closing prices of a set of
stock indices in several countries: if day t is a holiday in country A but not
country B, then for that day the closing price for the index of country A is not
even defined, i.e., it is missing, while the closing price of the index of country
B is normally recorded. Clearly, for a univariate time series an observation
is either missing or not missing. Luckily, the structure of state space models
is such that missing observations can be easily accomodated in the filtering
recursion. We will first consider the case of totally missing observations. Fol-
lowing R convention, we will consider a missing observation as one having the
special value NA. If the observation at time t is missing, then yt = NA and yt
does not carry any information, so that

π(θt|y1:t) = π(θt|y1:t−1). (2.9)

This means that in this case the filtering distribution at time t is just the one-
step-ahead predictive distribution at time t−1. Operationally, in the filtering
recursion (Proposition 2.1) one has to replace (2.7c) with (2.9). In particular,
for a DLM, since θt|y1:t−1 ∼ N (at, Rt), all one needs to do is to set mt = at
and Ct = Rt. From time t+1 the standard filtering recursion resumes as usual,
provided yt+1 is nonmissing. Note that formally, in a DLM, having yt = NA

is the same as setting Ft = 0 or Vt = ∞. In the first case yt is not linked
to θt in any way, in the second the observation is so noisy as to be totally
unreliable in providing meaningful information about θt. Either way leads to
a gain matrix Kt = 0 and consequently mt = at and Ct = Rt.

Consider now a state space model with m-dimensional observation vec-
tors, m > 1. Suppose that some, but not all, of the components of yt are
missing. The vector yt in this case provides some information about θt, but
all this information is contained in the nonmissing components. Let ỹt be the
vector comprising only the nonmissing components of yt. Then in the filtering
recursion (2.7), π(yt|θt) should be replaced by π(ỹt|θt) and π(yt|y1:t−1) by
π(ỹt|y1:t−1). Let us take a closer look at the DLM case. Denote by m̃t the
dimension of ỹt and consider the m̃t by m matrix Mt obtained by removing
from an m by m identity matrix the rows corresponding to the missing com-
ponents of yt, so that ỹt = Mtyt. The fact that we observed ỹt instead of yt
implies that in updating the prior N (at, Rt) to the posterior N (mt, Ct), the
correct observation equation to consider is

ỹt = F̃tθt + ṽt ṽt ∼ N (0, Ṽt),

60 2 Dynamic linear models

with F̃t = MtFt and Ṽt = MtVtM
′
t . In practice, this implies that when com-

puting the Kalman filter (Proposition 2.2), one has simply to replace Ft and
Vt with F̃t and Ṽt in (2.8b) and (2.8c).

The function dlmFilter accepts data containing NA’s, computing the mo-
ments of the correct filtering distributions.

2.7.4 Smoothing

One of the attractive features of state space models is that estimation and
forecasting can be applied sequentially, as new data become available. How-
ever, in time series analysis one often has observations on Yt for a certain
period, t = 1, . . . , T , and wants to retrospectively reconstruct the behavior of
the system, to study the socio-economic construct or physical phenomenon
underlying the observations. In this case, one can use a backward-recursive
algorithm to compute the conditional distributions of θt given y1:T , for any
t < T , starting from the filtering distribution π(θT |y1:T) and estimating back-
ward all the states’ history. The result for general state space models is con-
tained in the following proposition.

Proposition 2.3 (Smoothing recursion). For a general state space model
defined by (A.1)-(A.2) (p. 40), the following statements hold.

(i) Conditional on y1:T , the state sequence (θ0, . . . , θT) has backward transi-
tion probabilities given by

π(θt|θt+1, y1:T) =
π(θt+1|θt)π(θt|y1:t)

π(θt+1|y1:t)
.

(ii) The smoothing distributions of θt given y1:T can be computed according to
the following backward recursion in t, starting from π(θT |y1:T):

π(θt|y1:T) = π(θt|y1:t)
∫

π(θt+1|θt)
π(θt+1|y1:t)

π(θt+1|y1:T) dθt+1.

Proof. To prove (i), note that θt and Yt+1:T are conditionally independent
given θt+1; moreover, θt+1 and Y1:T are conditionally independent given θt.
(Use the DAG in Figure 2.6 to show this.) Using the Bayes formula, one has

π(θt|θt+1, y1:T) = π(θt|θt+1, y1:t)

=
π(θt|y1:t)π(θt+1|θt, y1:t)

π(θt+1|y1:t)

=
π(θt|y1:t)π(θt+1|θt)

π(θt+1|y1:t)
.

To prove (ii), marginalize π(θt, θt+1|y1:T) with respect to θt+1:

2.7 State estimation and forecasting 61

π(θt|y1:T) =

∫
π(θt, θt+1|y1:T) dθt+1

=

∫
π(θt+1|y1:T)π(θt|θt+1, y1:T) dθt+1

=

∫
π(θt+1|y1:T)

π(θt+1|θt)π(θt|y1:t)
π(θt+1|y1:t)

dθt+1

= π(θt|y1:t)
∫
π(θt+1|θt)

π(θt+1|y1:T)

π(θt+1|y1:t)
dθt+1.

⊓⊔

For a DLM, the smoothing recursion can be stated more explicitely in terms
of means and variances of the smoothing distributions.

Proposition 2.4 (Kalman smoother). For a DLM defined by (2.4), if
θt+1|y1:T ∼ N (st+1, St+1), then θt|y1:T ∼ N (st, St), where

st = mt + CtG
′
t+1R

−1
t+1(st+1 − at+1)

St = Ct − CtG
′
t+1R

−1
t+1(Rt+1 − St+1)R

−1
t+1Gt+1Ct.

Proof. It follows from the properties of the multivariate Gaussian distribution
that the conditional distribution of θt given y1:T is Gaussian; thus, it suffices
to compute its mean and variance. We have

st = E(θt|y1:T) = E(E(θt|θt+1, y1:T)|y1:T)

and

St = Var(θt|y1:T) = Var(E(θt|θt+1, y1:T)|y1:T) + E(Var(θt|θt+1, y1:T)|y1:T).

As shown in the proof of Proposition 2.3, θt and Yt+1:T are conditionally
independent given θt+1, so that π(θt|θt+1, y1:T) = π(θt|θt+1, y1:t). We can
use the Bayes formula to compute this distribution. Note that the likelihood
π(θt+1|θt, y1:t) = π(θt+1|θt) is expressed by the state equation (2.4c), that is,

θt+1|θt ∼ N (Gt+1θt,Wt+1).

The prior is π(θt|y1:t), which is N (mt, Ct). Using (1.10) and (1.9), we find
that

E(θt|θt+1, y1:t) = mt + CtG
′
t+1(Gt+1CtG

′
t+1 +Wt+1)

−1(θt+1 −Gt+1mt)

= mt + CtG
′
t+1R

−1
t+1(θt+1 − at+1)

Var(θt|θt+1, y1:t) = Ct − CtG
′
t+1R

−1
t+1Gt+1Ct,

from which it follows that

62 2 Dynamic linear models

st = E(E(θt|θt+1, y1:t)|y1:T) = mt + CtG
′
t+1R

−1
t+1(st+1 − at+1)

St = Var(E(θt|θt+1, y1:t)|y1:T) + E(Var(θt|θt+1, y1:t)|y1:T)

= Ct − CtG
′
t+1R

−1
t+1Gt+1Ct + CtG

′
t+1R

−1
t+1St+1R

−1
t+1Gt+1Ct

= Ct − CtG
′
t+1R

−1
t+1(Rt+1 − St+1)R

−1
t+1Gt+1Ct,

being E(θt+1|y1:T) = st+1 and Var(θt+1|y1:T) = St+1 by assumption. ⊓⊔

The Kalman smoother allows us to compute the distributions of θt|y1:T , start-
ing from t = T − 1, in which case θT |y1:T ∼ N (sT = mT , ST = CT), and then
proceeding backward to compute the distributions of θt|y1:T for t = T − 2,
t = T − 3, etc. Note that the smoothing recursion depends on the data only
through the filtering and one-step-ahead predictive moments obtained using
the Kalman filter. Therefore, if a time series contains missing observations,
this should be accounted for when performing the filtering recursion, but no
additional adjustment is required in the smoothing recursion.

About the numerical stability of the smoothing algorithm, the same caveat
holds as for the filtering recursions. The formulae of Proposition 2.4 are sub-
ject to numerical instability, and more robust square root and SVD-based
smoothers are available (see Zhang and Li; 1996). The function dlmSmooth

performs the calculations in R, starting from an object of class dlmFiltered,
typically the output produced by dlmFilter. Alternatively, the user can pro-
vide the data and the model, in which case dlmFilter is called internally.
dlmSmooth returns a list with components s, the means of the smoothing dis-
tributions, and U.S, D.S, their variances, given in terms of their SVD. The
following display illustrates the use of dlmSmooth on the Nile data.

R code

> NileSmooth <- dlmSmooth(NileFilt)

2 > str(NileSmooth, 1)

List of 3

4 $ s : Time-Series [1:101] from 1870 to 1970: 1111 1111 ...

$ U.S:List of 101

6 $ D.S: num [1:101, 1] 74.1 63.5 ...

> attach(NileSmooth)

8 > drop(dlmSvd2var(U.S[[n + 1]], D.S[n + 1,]))

[1] 4031.035

10 > drop(dlmSvd2var(U.C[[n + 1]], D.C[n + 1,]))

[1] 4031.035

12 > drop(dlmSvd2var(U.S[[n / 2 + 1]], D.S[n / 2 + 1,]))

[1] 2325.985

14 > drop(dlmSvd2var(U.C[[n / 2 + 1]], D.C[n / 2 + 1,]))

[1] 4031.035

2.7 State estimation and forecasting 63

In the display above, n is 100, the number of observations, so, accounting
for time t = 0, n/2 + 1 corresponds to time 50. Observe that the smoothing
and filtering variances are equal at the end of the observation period – time
T (lines 9 and 11); but the smoothing variance at time 50 (line 13) is much
smaller than the filtering variance at the same time (line 15). This is due
to the fact that in the filtering distribution at time 50 we are conditioning
on the first fifty observations only, while in the smoothing distribution the
conditioning is with respect to all the one hundred observations available.
Note also, incidentally, that the filtering variance at time 50 is the same as the
filtering variance at time 100. It is the case for many constant models that the
filtering variance, Ct, tends to a limiting value as t increases. In very informal
terms, the explanation of this behavior is the following. In DLMs the learning
process about the state of the system occurs in a dynamic environment, that
is, one in which the state changes as one gains information about it. Therefore,
in the updating of the filtering variance from time t − 1 to time t, there are
two conflicting processes going on: on one hand, the observation yt brings
new information about θt−1, but in the meanwhile the state of the system has
changed to θt, with the additional uncertainty carried by wt. This additional
uncertainty is represented by the variance Wt = W , say. If C0 is large –
typically one does not have much confidence in his prior guess about the state
– then the first observations are very informative and their impact on Ct is
much more important than that of the dynamics of the state, resulting in an
overall decrease of the filtering variance. However, as more data are collected,
the impact of one additional observation on the information about the state
of the system decreases and, at some point, it will be exactly balanced by the
loss of information represented by the additional variance W . From that time
on, Ct will essentially stay constant.

The display below illustrates how the variance of the smoothing distri-
bution can be used to construct pointwise probability intervals for the state
components – only one in this example. The plot produced by the code below
is shown in Figure 2.8

R code

> hwid <- qnorm(0.025, lower = FALSE) *

2 + sqrt(unlist(dlmSvd2var(U.S, D.S)))

> smooth <- cbind(s, as.vector(s) + hwid %o% c(-1, 1))

4 > plot(dropFirst(smooth), plot.type = "s", type = "l",

+ lty = c(1, 5, 5), ylab = "Level", xlab = "",

6 + ylim = range(Nile))

> lines(Nile, type = "o", col = "darkgrey")

8 > legend("bottomleft", col = c("darkgrey", rep("black", 2)),

+ lty = c(1, 1, 5), pch = c(1, NA, NA), bty = "n",

10 + legend = c("data", "smoothed level",

+ "95% probability limits"))

64 2 Dynamic linear models

L
e
v
e
l

1880 1900 1920 1940 1960

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

data

smoothed level

95% probability limits

Fig. 2.8. Smoothed values of the Nile River level, with 95% probability limits

As an additional example, we consider a quarterly time series of consumer
expenditure on durable goods in the UK, in 1958£, from the first quarter
of 1957 to the last quarter of 19675. A DLM including a local level plus
a quarterly seasonal component was fitted to the data. This kind of model
will be discussed in Chapter 3; here we focus on filtering and smoothing.
In the model the state vector is 4-dimensional. Two of its components have a
particularly relevant interpretation: the first one can be thought of as the true,
deseasonalized, level of the series; the second is a dynamic seasonal component.
According to the model, the observations are obtained by adding observational
noise to the sum of the first and second component of the state vector, as can
be deduced from the matrix FF. Figure 2.9 shows the data, together with
the deseasonalized filtered and smoothed level. These values are just the first
components of the series of filtered and smoothed state vectors. In addition to
the level of the series, one can also estimate the seasonal component, which is
just the second component of the smoothed or filtered state vector. Figure 2.10
shows the smoothed seasonal component. It is worth stressing that the model
is dynamic, hence the seasonal component is allowed to vary as time goes by.
This is clearly the case in the present example: from an alternating of positive
and negative values at the beginning of the observation period, the series
moves to a two-positive two-negative pattern in the second half. The display
below shows how filtered and smoothed values have been obtained in R, as

5 Source: Hyndman (n.d.).

2.7 State estimation and forecasting 65

E
x
p
e
n
d
it
u
re

s

1958 1960 1962 1964 1966 1968

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

data

filtered level

smoothed level

Fig. 2.9. Quarterly expenditure on durable goods, with filtered and smoothed level

E
x
p
e
n
d
it
u
re

 −
 S

e
a
s
o
n
a
l
c
o
m

p
o
n
e
n
t

1958 1960 1962 1964 1966 1968

−
6
0

−
4
0

−
2
0

0
2
0

4
0

6
0

Fig. 2.10. Quarterly expenditure on durable goods: smoothed seasonal component

66 2 Dynamic linear models

well as how the plots were created. The function bdiag is a utility function in
package dlm that creates a block diagonal matrix from the individual blocks,
or from a list containing the blocks.

R code

> expd <- ts(read.table("Datasets/qconsum.dat", skip = 4,

2 + colClasses = "numeric")[, 1],

+ start = c(1957, 1), frequency = 4)

4 > expd.dlm <- dlm(m0 = rep(0,4), C0 = 1e8 * diag(4),

+ FF = matrix(c(1, 1, 0, 0), nr = 1),

6 + V = 1e-3,

+ GG = bdiag(matrix(1),

8 + matrix(c(-1, -1, -1, 1, 0, 0, 0, 1, 0),

+ nr = 3, byrow = TRUE)),

10 + W = diag(c(771.35, 86.48, 0, 0), nr = 4))

> plot(expd, xlab = "", ylab = "Expenditures", type = ’o’,

12 + col = "darkgrey")

> ### Filter

14 > expdFilt <- dlmFilter(expd, expd.dlm)

> lines(dropFirst(expdFilt$m[, 1]), lty = "dotdash")

16 > ### Smooth

> expdSmooth <- dlmSmooth(expdFilt)

18 > lines(dropFirst(expdSmooth$s[,1]), lty = "longdash")

> legend("bottomright", col = c("darkgrey", rep("black", 2)),

20 + lty = c("solid", "dotdash", "longdash"),

+ pch = c(1, NA, NA), bty = "n",

22 + legend = c("data", "filtered level", "smoothed level"))

> ### Seasonal component

24 > plot(dropFirst(expdSmooth$s[, 3]), type = ’o’, xlab = "",

+ ylab = "Expenditure - Seasonal component")

26 > abline(h = 0)

2.8 Forecasting

With y1:t at hand, one can be interested in forecasting future values of the
observations, Yt+k, or of the state vectors, θt+k. For state space models, the
recursive form of the computations makes it natural to compute the one-step-
ahead forecasts and to update them sequentially as new data become available.
This is clearly of interest in applied problems where the data do arrive sequen-
tially, such as in day-by-day forecasting stock prices, or in tracking a moving
target; but one-step-ahead forecasts are often also computed “in-sample”, as
a tool for checking the performance of the model.

2.8 Forecasting 67

For a DLM, the one-step-ahead predictive distributions, for states and
observations, are obtained as a byproduct of the Kalman filter, as presented
in Proposition 2.2.

In R, the one-step-ahead forecasts ft = E(Yt|y1:t−1) are provided in the
output of the function dlmFilter. Since for each t the one-step-ahead forecast
of the observation, ft, is a linear function of the filtering mean mt−1, the
magnitude of the gain matrix plays the same role in determining how sensitive
ft is to an unexpected observation yt−1 as it did for mt−1. In the case of the
random walk plus noise model this is particularly evident, since in this case
ft = mt−1. Figure 2.11, produced with the code below, contains the one-
step-ahead forecasts obtained from the local level models with the different
signal-to-noise ratios defined in the display on page 57.

L
e
v
e
l

1880 1890 1900 1910 1920

6
0
0

8
0
0

1
0
0
0

1
2
0
0

data

one−step−ahead forecast, W/V = 0.05

one−step−ahead forecast, W/V = 0.50

Fig. 2.11. One-step-ahead forecasts for the Nile level using different signal-to-noise
ratios

R code

> a <- window(cbind(Nile, NileFilt1$f, NileFilt2$f),

2 + start = 1880, end = 1920)

> plot(a[, 1], type = ’o’, col = "darkgrey",

4 + xlab = "", ylab = "Level")

> lines(a[, 2], lty = "longdash")

6 > lines(a[, 3], lty = "dotdash")

> leg <- c("data", paste("one-step-ahead forecast, W/V =",

68 2 Dynamic linear models

8 + format(c(W(mod1) / V(mod1),

+ W(mod2) / V(mod2)))))

10 > legend("bottomleft", legend = leg,

+ col = c("darkgrey", "black", "black"),

12 + lty = c("solid", "longdash", "dotdash"),

+ pch = c(1, NA, NA), bty = "n")

To further elaborate on the same example, we note that the signal-to-noise
ratio need not be constant in time. The construction of the Ashwan dam in
1898, for instance, can be expected to produce a major change in the level of
the Nile River. A simple way to incorporate this expected level shift in the
model is to assume a system evolution variance Wt larger than usual (12 times
larger in the display below) for that year and the following one. In this way
the estimated true level of the river will quickly recognize the new regime,
leading in turn to more accurate one-step-ahead forecasts. The code below
illustrates this idea.

R code

> mod0 <- dlmModPoly(order = 1, dV = 15100, dW = 1468)

2 > X <- ts(matrix(mod0$W, nc = 1, nr = length(Nile)),

+ start = start(Nile))

4 > window(X, 1898, 1899) <- 12 * mod0$W

> modDam <- mod0

6 > modDam$X <- X

> modDam$JW <- matrix(1, 1, 1)

8 > damFilt <- dlmFilter(Nile, modDam)

> mod0Filt <- dlmFilter(Nile, mod0)

10 > a <- window(cbind(Nile, mod0Filt$f, damFilt$f),

+ start = 1880, end = 1920)

12 > plot(a[, 1], type = ’o’, col = "darkgrey",

+ xlab="", ylab="Level")

14 > lines(a[, 2], lty = "longdash")

> lines(a[, 3], lty = "dotdash")

16 > abline(v=1898, lty=2)

> leg <- c("data", paste("one-step-ahead forecast -",

18 + c("mod0", "modDam")))

> legend("bottomleft", legend = leg,

20 + col = c("darkgrey", "black", "black"),

+ lty = c("solid", "longdash", "dotdash"),

22 + pch = c(1, NA, NA), bty = "n")

Note (see Figure 2.12) how, using the modified model modDam, the forecast
for the level of the river in 1900 is already around what the new river level
actually is, while for the other model this happens only around 1907. On a

2.8 Forecasting 69

L
e
v
e
l

1880 1890 1900 1910 1920

6
0
0

8
0
0

1
0
0
0

1
2
0
0

data

one−step−ahead forecast − mod0

one−step−ahead forecast − modDam

Fig. 2.12. One-step-ahead forecasts of Nile River level with and without change
point

more technical note, it is instructive to note how we define the time varying
model modDam by adding the components X and JW (lines 6 and 7) to the
constant model mod0.

In many applications one is interested in looking a bit further in the future,
and provide possible scenarios of the behavior of the series for k steps ahead.
We present here the recursive formulae for the means and variances of the
conditional distributions of states and observations at a future time t + k,
given the data up to time t. In view of the Markovian nature of the model,
the filtering distribution at time t acts like an initial distribution for the
future evolution of the model. To be more precise, the joint distribution of
present and future states (θt+k)k≥0, and future observations (Yt+k)k≥1 is that
of a state space model having conditional distributions π(θt+k|θt+k−1) and
π(yt+k|θt+k), and initial distribution π(θt|y1:t). The information about the
future provided by the data is all contained in this distribution. For a DLM, in
particular, since the data are only used to obtain mt, the mean of π(θt|y1:t), it
follows that mt provides a summary of the data that is sufficient for predictive
purposes. You can have a further intuition about that by looking at the DAG
representing the dependence structure among the variables (Figure 2.6). We
see that the path from Y1:t to Yt+k is as in Figure 2.13, showing that the data
Y1:t provide information about θt, which in turn gives information about the
future state evolution up to θt+k and consequently on Yt+k. Of course, as k

70 2 Dynamic linear models

θt −→ θt+1 −→ · · · −→ θt+k
| |
Y1:t Yt+k

Fig. 2.13. Flow of information from Y1:t to Yt+k

gets larger, more uncertainty enters in the system, and the forecasts will be
less and less precise.

Proposition 2.5 provides recursive formulae to compute the forecast dis-
tributions for states and observations for a general state space model.

Proposition 2.5 (Forecasting recursion). For a general state space model
defined by (A.1)-(A.2) (p.40), the following statements hold for any k > 0.

(i) The k-steps-ahead forecast distribution of the state is

π(θt+k|y1:t) =

∫
π(θt+k|θt+k−1)π(θt+k−1|y1:t) dθt+k−1.

(ii) The k-steps-ahead forecast distribution of the observation is

π(yt+k|y1:t) =

∫
π(yt+k|θt+k)π(θt+k|y1:t) dθt+k.

Proof. Using the conditional independence properties of the model, we have:

π(θt+k|y1:t) =

∫
π(θt+k, θt+k−1|y1:t) dθt+k−1

=

∫
π(θt+k|θt+k−1, y1:t)π(θt+k−1|y1:t) dθt+k−1

=

∫
π(θt+k|θt+k−1)π(θt+k−1|y1:t) dθt+k−1,

which is (i). The proof of (ii) is again based on the conditional independence
properties of the models. We have that

π(yt+k|y1:t) =

∫
π(yt+k, θt+k|y1:t) dθt+k

=

∫
π(yt+k|θt+k, y1:t)π(θt+k|y1:t) dθt+k

=

∫
π(yt+k|θt+k)π(θt+k|y1:t) dθt+k,

which is (ii). ⊓⊔

For DLMs, Proposition 2.5 takes a more specific form, since all the integrals
can be computed explicitly. However, as is the case for filtering and smoothing,

2.8 Forecasting 71

since all the forecast distributions are Gaussian, it is enough to compute their
means and variances. Proposition 2.6 provides recursive formulae to compute
them. We need to introduce some notation first. For k ≥ 1, define

at(k) = E(θt+k|y1:t), (2.10a)

Rt(k) = Var(θt+k|y1:t), (2.10b)

ft(k) = E(Yt+k|y1:t), (2.10c)

Qt(k) = Var(Yt+k|y1:t). (2.10d)

Proposition 2.6. For a DLM defined by (2.4), let at(0) = mt and Rt(0) =
Ct. Then, for k ≥ 1, the following statements hold.

(i) The distribution of θt+k given y1:t is Gaussian, with

at(k) = Gt+kat,k−1,

Rt(k) = Gt+kRt,k−1G
′
t+k +Wt+k;

(ii) The distribution of Yt+k given y1:t is Gaussian, with

ft(k) = Ft+kat(k),

Qt(k) = Ft+kRt(k)F
′
t+k + Vt.

Proof. As we have already noted, all conditional distributions are Gaussian.
Therefore, we only need to prove the formulae giving the means and variances.
We proceed by induction. The result holds for k = 1 in view of Proposition 2.2.
For k > 1,

at(k) = E(θt+k|y1:t) = E(E(θt+k|y1:t, θt+k−1)|y1:t)
= E(Gt+kθt+k−1|y1:t) = Gt+kat,k−1,

Rt(k) = Var(θt+k|y1:t) = Var(E(θt+k|y1:t, θt+k−1)|y1:t)
+ E(Var(θt+k|y1:t, θt+k−1)|y1:t)

= Gt+kRt,k−1G
′
t+k +Wt+k,

ft(k) = E(Yt+k|y1:t) = E(E(Yt+k|y1:t, θt+k)|y1:t)
= E(Ft+kθt+k|y1:t) = Ft+kat(k),

Qt(k) = Var(Yt+k|y1:t) = Var(E(Yt+k|y1:t, θt+k)|y1:t)
+ E(Var(Yt+k|y1:t, θt+k)|y1:t)

= Ft+kRt(k)F
′
t+k + Vt+k,

⊓⊔

72 2 Dynamic linear models

Note that the data only enter the predictive distributions through the
mean of the filtering distribution at the time the last observation was taken.
The function dlmForecast computes the means and variances of the predic-
tive distributions of the observations and the states. Optionally, it can be used
to draw a sample of future states and observations. The principal argument
of dlmForecast is an object of class dlmFiltered. Alternatively, it can be a
object of class dlm (or a list with the appropriate named components), where
the components m0 and C0 are interpreted as being the mean and variance of
the state vector at the end of the observation period, given the data, i.e., they
are the mean and variance of the last (most recent) filtering distribution. The
code below shows how to obtain predicted values of the expenditure series
(Figure 2.9, p.65) for the three years following the last observation, together
with a sample from their distribution. Figure 2.14 shows the forecasted and
simulated future values of the series.

E
x
p
e
n
d
it
u
re

s

1964 1965 1966 1967 1968 1969 1970 1971

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

Fig. 2.14. Quarterly expenditure on durable goods: forecasts

R code

> set.seed(1)

2 > expdFore <- dlmForecast(expdFilt, nAhead = 12, sampleNew = 10)

> plot(window(expd, start = c(1964,1)), type = ’o’,

4 + xlim = c(1964,1971), ylim = c(350, 850),

+ xlab = "", ylab = "Expenditures")

6 > names(expdFore)

2.9 The innovation process and model checking 73

[1] "a" "R" "f" "Q"

8 [5] "newStates" "newObs"

> attach(expdFore)

10 > invisible(lapply(newObs, function(x)

+ lines(x, col = "darkgrey",

12 + type = ’o’, pch = 4)))

> lines(f, type = ’o’, lwd = 2, pch = 16)

14 > abline(v = mean(c(time(f)[1], time(expd)[length(expd)])),

+ lty = "dashed")

16 > detach()

2.9 The innovation process and model checking

As we have seen, for DLMs we can compute the one-step-ahead forecasts
ft = E(Yy|y1:t−1), and we defined the forecast error as

et = Yt − E(Yt|y1:t−1) = Yt − ft.

The forecast errors can alternatively be written in terms of the one-step-ahead
estimation errors as follows:

et = Yt − Ftat = Ftθt + vt − Ftat

= Ft(θt − at) + vt.

The sequence (et)t≥1 of forecast errors enjoys some interesting properties, the
most important of which are collected in the following proposition.

Proposition 2.7. Let (et)t≥1 be the sequence of forecast errors of a DLM.
Then the following properties hold.

(i) The expected value of et is zero.
(ii) The random vector et is uncorrelated with any function of Y1, . . . , Yt−1.
(iii) For any s < t, et and Ys are uncorrelated.
(iv) For any s < t, et and es are uncorrelated.
(v) et is a linear function of Y1, . . . , Yt.
(vi) (et)t≥1 is a Gaussian process.

Proof. (i) By taking iterated expected values,

E(et) = E(E(Yt − ft|Y1:t−1)) = 0.

(ii) Let Z = g(Y1, . . . , Yt−1). Then

Cov(et, Z) = E(etZ) = E(E(etZ|Y1:t−1))

= E(E(et|Y1:t−1)Z) = 0.

74 2 Dynamic linear models

(iii) If the observations are univariate, this follows from (ii), taking Z = Ys.
Otherwise, apply (ii) to each component of Ys.

(iv) This follows again from (ii), taking Z = es if the observations are uni-
variate. Otherwise, apply (ii) componentwise.

(v) Since Y1, . . . , Yt have a joint Gaussian distribution, ft = E(Yt|Y1:t−1) is a
linear function of Y1, . . . , Yt−1. Hence, et is a linear function of Y1, . . . , Yt.

(vi) For any t, in view of (v), (e1, . . . , et) is a linear transformation of
(Y1, . . . , Yt), which has a joint Normal distribution. It follows that also
(e1, . . . , et) has a joint Normal distribution. Hence, since all finite-
dimensional distributions are Gaussian, the process (et)t≥1 is Gaussian.

⊓⊔

The forecast errors et are also called innovations. The representation Yt =
ft + et justifies this terminology, since one can think of Yt as the sum of
a component, ft, which is predictable from past observations, and another
component, et, which is independent of the past and therefore contains the
really new information provided by the observation Yt.

Sometimes it may be convenient to work with the so-called innovation
form of a DLM. This is obtained by choosing as new state variables the vectors
at = E(θt|y1:t−1). Then the observation equation is derived from et = Yt−ft =
Yt − Ftat:

Yt = Ftat + et (2.11a)

and, being at = Gtmt−1, where mt−1 is given by the Kalman filter:

at = Gtmt−1 = Gtat−1 +GtRt−1F
′
t−1Q

−1
t−1et;

so, the new state equation is

at = Gtat−1 + w∗
t , (2.11b)

with w∗
t = GtRt−1F

′
t−1Q

−1
t−1et. The system (2.11) is the innovation form of

the DLM. Note that, in this form, the observation errors and the system
errors are no longer independent, that is, the dynamics of the states is no
longer independent of the observations. The main advantage is that in the
innovation form all components of the state vector on which we cannot obtain
any information from the observations are automatically removed. It is thus
in some sense a minimal model.

When the observations are univariate, the sequence of standardized inno-
vations, defined by ẽt = et/

√
Qt, is a Gaussian white noise, i.e., a sequence

of independent identically distributed zero-mean normal random variables.
This property can be exploited to check model assumptions: if the model is
correct, the sequence ẽ1, . . . , ẽt computed from the data should look like a
sample of size t from a standard normal distribution. Many statistical tests,
several of them readily available in R, can be carried out on the standardized
innovations. Such tests fall into two broad categories: those aimed at checking

2.9 The innovation process and model checking 75

−2 −1 0 1 2

−
2

−
1

0
1

2

Normal Q−Q Plot

S
a
m

p
le

 Q
u
a
n
ti
le

s

Fig. 2.15. Nile River: QQ-plot of standardized innovations

if the distribution of the ẽt’s is standard normal, and those aimed at check-
ing whether the ẽt’s are uncorrelated. We will illustrate the use of some of
these tests in Chapter 3. However, most of the time we take a more informal
approach to model checking, based on the subjective assessment of selected
diagnostic plots. The most useful are, in the opinion of the authors, a QQ-
plot and a plot of the empirical autocorrelation function of the standardized
innovations. The former can be used to assess normality, while the latter re-
veals departures from uncorrelatedness. A time series plot of the standardized
innovations may prove useful in detecting outliers, change points, and other
unexpected patterns.

In R, the standardized innovations can be extracted from an object of
class dlmFiltered using the function residuals. Package dlm also provides
a method function for tsdiag for objects of class dlmFiltered. This function,
modeled after tsdiag.Arima, exctracts the standardized innovations and plots
them, together with their empirical autocorrelation function and the p-values
for Ljung-Box test statistics up to a specific lag (the default is 10). For the
DLM modDam (p.68) used to model Nile River level data, Figure 2.9 shows a
QQ-plot of the standardized innovations, while Figure 2.9 displays the plots
produced by a call to tsdiag. The two figures were obtained with the code
below.

76 2 Dynamic linear models

R code

> qqnorm(residuals(damFilt, sd = FALSE))

2 > qqline(residuals(damFilt, sd = FALSE))

> tsdiag(damFilt)

Standardized Residuals

1880 1900 1920 1940 1960

−
2

1

0 5 10 15 20

−
0

.2
0

.6

A
C

F

2 4 6 8 10

0
.0

0
.6

p values for Ljung−Box statistic

p
 v

a
lu

e

Fig. 2.16. Nile River: diagnostic plots produced by tsdiag

For multivariate observations we usually apply the same univariate graph-
ical diagnostic tools component-wise to the innovation sequence. A further
step would be to adopt the vector standardization ẽt = Btet, where Bt is a
p×p matrix such that BtQtB

′
t = I. This makes the components of ẽt indepen-

dent and identically distributed according to a standard normal distribution.
Using this standardization, the sequence ẽ1,1, ẽ1,2 . . . , ẽ1,p, . . . , ẽt,p should look
like a sample of size tp from a univariate standard normal distribution. This
approach, however, is not very popular in applied work and we will not employ
it in this book.

2.10 Controllability and observability of time-invariant DLMs 77

2.10 Controllability and observability of time-invariant

DLMs

In the engineering literature, DLMs are widely used in control problems; in-
deed, optimal control was one main objective in Kalman’s contributions. See,
for example, Kalman (1961), Kalman et al. (1963), and Kalman (1968). Here,
the interest is in the state of the system, θt, which one wants to regulate by
means of so-called control variables ut. Problems of this nature are clearly
of great relevance in many applied fields, besides engineering; for example, in
economics, the monetary authority might want to regulate the state of macroe-
conomic variables, for example the inflation and the unemployment rates, by
means of monetary instruments ut under its control. A DLM including control
variables will be referred to as a controlled DLM and will be written in the
form

yt = Ftθt + vt,

θt = Gtθt−1 +Htut + wt

where ut is an r-dimensional vector of control variables, i.e., variables whose
value can be regulated by the researcher, in order to obtain a desired level
of the state θt, and Ht is a known p × r matrix; the usual assumptions are
made for the stochastic errors vt and wt. Control problems have been first
studied for deterministic systems (i.e., systems with no stochastic terms vt
and wt); in most applications, however, a further difficulty is the presence
of stochastic errors in the relationship between θt and yt and in the state
evolution. A comprehensive treatment of control problems is beyond the scope
of this book; in this section we will only briefly recall some basic notions,
limiting our attention to the case of a time-invariant controlled DLM, i.e., a
controlled DLM where the matrices Ft, Gt, Vt,Wt, and Ht, are constant over
time:

yt = Fθt + vt,

θt = Gθt−1 +Hut + wt.

Good references are Anderson and Moore (1979), Harvey (1989), Maybeck
(1979), and Jazwinski (1970).

At a basic level, the goal of a control problem is to drive the state of a
DLM from the initial value θ0 to a target value θ∗ in a finite time T , setting
appropriately the control variables u1, . . . , uT . Two issues immediately arise:
the first is that the states of a DLM are not observed directly, so, in particular,
θ0 is not known exactly in general; the second is that, even if θ0 were known,
there is no guarantee that one can drive the system to the desired state θ∗.
Let us take a closer look at the second problem first, considering the ideal
case of a deterministic system equation, i.e., one in which wt = 0 for every t.
The system equation reduces in this case to

78 2 Dynamic linear models

θt = Gθt−1 +Hut (2.12)

Starting at θ0 at time zero and applying (2.12) repeatedly, we have

θ1 = Gθ0 +Hu1,

θ2 = Gθ1 +Hu2 = G2θ0 +GHu1 +Hu2,

...

θT = GT θ0 +

T−1∑

j=0

GjHuT−j .

Therefore, if we want the system to be in state θ∗ at time T , we need to solve
the equation θT = θ∗ with respect to the control variables u1, . . . , uT . More
explicitely, let CT be the p× rT matrix defined by

CT =
[
GT−1H | · · · | GH | H

]
.

Stacking the vectors u1, . . . , uT , we obtain the following system of linear equa-
tions:

CT




u1

...
uT



 = θ∗ −GT θ0. (2.13)

If (2.13) has to have a solution for any arbitrary θ∗ and θ0, then CT must be
of rank p, and vice versa. In other words, a DLM with system equation (2.12)
can be driven from an arbitrary initial state θ0 to another arbitrary state
θ∗ in a finite time T through an appropriate choice of the control variables
u1, . . . , uT if and only if CT has full rank p. Moreover, using elementary linear
algebra arguments, it can be shown that if CT has rank p for some T , then Cp
has rank p. For this reason the matrix Cp is called the controllability matrix
of the DLM, and we will denote it C, without subscript. A DLM is said to be
controllable if its controllability matrix C has full rank p.

The definition of controllability given above can be transported to a stan-
dard time-invariant DLM with system equation

θt = Gθt−1 + wt, wt ∼ N (0,W). (2.14)

After all, the only difference between (2.12) and (2.14) is that the control
term Hut in the former is replaced by the system noise wt in the latter. To
carry the analogy one step further, we can write the noise as wt = Bηt, where
ηt is an r-dimensional random vector having independent standard normal
components, and B is a full-rank p × r matrix. Note that W = BB′. When
r < p, the rank of W is r and the possible values of wt lie on an r-dimensional
linear subspace of R

p – in this sense we can think of wt as being essentially
r-dimensional, and we can represent it via ηt. We define the controllability
matrix of a DLM with system equation (2.14) to be

2.10 Controllability and observability of time-invariant DLMs 79

C =
[
Gp−1B | · · · | GB | B

]
,

and the DLM to be controllable if its controllability matrix has full rank p.
Note that the decomposition W = BB′ does not identify B uniquely,

since for any orthogonal matrix O of order r, the matrix B̃ = BO provides
the representation W = B̃B̃′. However, the particular choice of B does not
matter. In fact, one can also avoid computing the decomposition W = BB′

altogether. Note that the linear subspace of R
p spanned by the columns of B

is the same as the one spanned by the columns of W . Hence, C and the matrix

CW =
[
Gp−1W | · · · | GW |W

]

have the same rank, although CW has p2 columns instead of rp.
As an example, consider an integrated random walk of order 2 (cf. p. 100),

which is a DLM whose system equation is defined by the two matrices

G =

[
1 1
0 1

]
,

W =

[
0 0
0 σ2

β

]
,

(2.15)

with σ2
β > 0. Here p = 2 and

CW = [GW |W] =

[
0 σ2

β 0 0

0 σ2
β 0 σ2

β

]
.

Since CW has rank 2, the DLM is controllable.
Clearly for a standard DLM, since the noise (wt) cannot be set by the

observer, the notion of controllability has a different interpretation than in
the case of a controlled DLM. A controllable DLM with system equation
(2.14) is one for which, by effect of the noise sequence (wt), the state vector θt
can reach any point in R

p, no matter what the initial value of the state vector
is. In other words, there are no inaccessible regions for the state of the system.
In the general theory of Markov chains, this property is called irreducibility
of the Markov chain (θt).

Let us turn now to the first issue raised at the beginning of the discussion,
related to the observability of the states. Clearly, if the system or observation
noises are nonzero, there is little hope of determining exactly the value of θt
based solely on the observation yt, or even on a finite number T of observations
yt:t+T−1. Therefore we will focus on the idealized situation of a time-invariant
DLM in which we can set V = 0 and W = 0. The observation and system
equation reduce to

yt = Fθt,

θt = Gθt−1.
(2.16)

80 2 Dynamic linear models

Applying repeatedly (2.16) we obtain

yt = Fθt,

yt+1 = Fθt+1 = FGθt,

...

yt+T−1 = FGT−1θt.

Defining the matrix

OT =





F
FG
...

FGT−1





and stacking the observation vectors, the system above can be written as




yt
...

yt+T−1



 = OT θt.

Therefore, the state θt can be determined from the data yt:t+T−1 if and only
if the previous system of linear equations has a unique solution (in θt). This
is the case if and only if the mT × p matrix OT has rank p. Also in this
case, it can be shown that, if OT has rank p for some T , then Op has rank
p. The matrix Op is called the observability matrix of the given DLM and it
will be denoted by O, without subscript. A time-invariant DLM is said to be
observable if its observability matrix O has full rank p.

Consider again, for example, the 2nd-order integrated random walk whose
system equation is defined by (2.15). The observation matrix for this DLM is

F =
[
1 0
]
.

Therefore the observability matrix is

O =

[
F
FG

]
=

[
1 0
1 1

]
.

This matrix has rank 2, hence the DLM is observable.
In the next section we will link controllability and observability to the

asymptotic behavior of the Kalman filter.

2.11 Filter stability

Consider a time-invariant DLM. As shown in Section 2.7, for any t we have
that

2.11 Filter stability 81

θt|y1:t−1 ∼ Np(at, Rt),

where at and Rt are given by Proposition 2.2. Note that, if the matrices
F,G, V and W are known, then the covariance matrix Rt = Var(θt|y1:t−1)
does not depend on the data, but only on the initial conditions m0, C0, on
the system matrices F and G, and on the covariance matrices V and W . In
this sense, the asymptotic behavior of Rt is intrinsic to the model, and it can
be studied on the basis of the properties of the matrices F,G, V and W . In
particular, one can study whether the conditional variance of θt given y1:t−1

or y1:t, tends to become stable for t increasing to infinity, forgetting the initial
conditions m0 and C0.

Note that, by substituting the expressions of mt−1, Ct−1, ft−1 in the for-
mulae given by (i) of Proposition 2.2 for at and Rt, the latter can be written
in the form

at = (G−At−1F)at−1 +At−1yt−1,

where we denoted by At−1 = GKt−1 = GRt−1F
′[V + FRt−1F

′]−1 the gain
matrix for the state forecast, and

Rt = GRt−1G
′ −At−1FRt−1G

′ +W. (2.17)

The previous expression, when seen as an equation in the unknown matrix
Rt, is called Riccati equation. Note that in (2.17), At = At(Rt−1). If there
exists a constant positive semi-definite matrix R that satisfies

R = GRG′ −GRF ′[V + FRF ′]−1FRG′ +W (2.18)

(which is called the steady-state (or algebric) Riccati equation), we say that
the DLM has a steady state solution.

In the steady state,
θt|y1:t−1 ∼ Np(at, R),

where
at = (G−AF)at−1 +Ayt, (2.19)

while R = Var(θt|y1:t−1) is time-invariant. In this sense, R represents a bound,
intrinsic to the system, to the information one can get in the state forecast. A
sufficient condition for Rt to approach R as t increases can be given in terms
of the eigenvalues of the matrix G−AF : the Kalman filter is asymptotically
stable if all the eigenvalues of G−AF are in modulus less than one.

Similarly, the filtering distribution is

θt|y1:t ∼ Np(mt, C),

where mt = at + K(yt − Fat−1) is recursively updated, while C = R −
KFR, where K = RF ′[V +FRF ′]−1, is time-invariant, giving a bound to the
information one can get in filtering.

Note that a solution of (2.18) – i.e., a steady state – does not always exist;
and even when a solution is known to exist, it is not simple to show that it

82 2 Dynamic linear models

is unique nor that it is a positive semi-definite matrix. However, it can be
proved (see Anderson and Moore; 1979) that, if the DLM is observable and
controllable, then:

1. For any initial conditions m0, C0, we have Rt → R for t → ∞, and R
satisfies the algebraic Riccati equation (2.18);

2. All the eigenvalues of G − AF are smaller than one in modulus, so the
Kalman filter is asymptotically stable.

2.11 Filter stability 83

Problems

2.1. Show that

(i) wt and (Y1, . . . , Yt−1) are independent;
(ii) wt and (θ1, . . . , θt−1) are independent;
(iii) vt and (Y1, . . . , Yt−1) are independent;
(iv) vt and (θ1, . . . , θt) are independent.

2.2. Show that a DLM satisfies the conditional independence assumptions A.1
and A.2 of state space models.

2.3. Give an alternative proof of Proposition 2.2, exploiting the independence
properties of the error sequences (see Problem 2.1) and using the state equa-
tion directly:

E(θt|y1:t−1) = E(Gtθt−1 + wt|y1:t−1) = Gtmt−1

Var(θt|y1:t−1) = Var(Gtθt−1 + wt|y1:t−1) = GtCt−1G
′
t +Wt.

Analogously for (ii).

2.4. Give an alternative proof of Proposition 2.6 exploiting the independence
properties of the error sequences (see Problem 2.1) and using the state equa-
tion directly:

at(k) = E(θt+k|y1:t) = E(Gt+kθt+k−1 + wt+k|y1:t) = Gt+kat,k−1,

Rt(k) = Var(θt+k|y1:t) = Var(Gt+kθt+k−1 + wt+k|y1:t)
= Gt+kRt,k−1G

′
t+k +Wt+k

and analogously, from the observation equation:

ft(k) = E(Yt+k|y1:t) = E(Ft+kθt+k + vt+k|y1:t) = Ft+kat(k),

Qt(k) = Var(Yt+k|y1:t) = Var(Ft+kθt+k + vt+k|y1:t)
= Ft+kRt(k)F

′
t+k + Vt+k.

2.5. Plot the following data:

(Yt, t = 1, . . . , 10) = (17, 16.6, 16.3, 16.1, 17.1, 16.9, 16.8, 17.4, 17.1, 17).

Consider the random walk plus noise model

Yt = µt + vt, vt ∼ N(0, 0.25),

µt = µt−1 + wt, wt ∼ N(0, 25),

with V = 0.25, W = 25, and µ0 ∼ N(17, 1).
(a) Compute the filtering states estimates.
(b) Compute the one-step ahead forecasts ft, t = 1, . . . , 10 and plot them,

84 2 Dynamic linear models

together with the observations. Comment briefly.
(c) What is the effect of the observation variance V and of the system variance
W on the forecasts? Repeat the exercise with different choices of V and W .
(d) Discuss the choice of the initial distribution.
(e) Compute the smoothing state estimates and plot them.

2.6. This requires maximum likelihood estimates (see Chapter 4). For the data
and model of Problem 2.5, compute the maximum likelihood estimates of the
variances V and W (since these must be positive, write them as V = exp(u1),
W = exp(u2) and compute the MLE of the parameters (u1, u2)). Then repeat
Problem 2.5, using the MLE of V and W .

2.7. Let Rt,h,k = Cov(θt+h, θt+k|y1:t) and Qt,h,k = Cov(Yt+h, Yt+k|y1:t) for
h, k > 0, so that Rt,k,k = Rt(k) and Qt,k,k = Qt(k), according to definition
(2.10b) and (2.10d).

(i) Show that Rt,h,k can be computed recursively via the formula:

Rt,h,k = Gt+hRt,h−1,k, h > k.

(ii) Show that Qt,h,k is equal to Ft+hRt,h,kF
′
t+k.

(iii) Find explicit formulae for Rt,h,k and Qt,h,k for the random walk plus noise
model.

2.8. Derive the filter formulae for the DLM with intercepts:

vt ∼ N (δt, Vt), wt ∼ N (λt,Wt).

