

Lecture Notes in Computer Science 3454
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jean-Marie Jacquet Gian Pietro Picco (Eds.)

Coordination
Models
and Languages

7th International Conference, COORDINATION 2005
Namur, Belgium, April 20-23, 2005
Proceedings

13

Volume Editors

Jean-Marie Jacquet
University of Namur
Institute of Informatics
Rue Grandgagnage 21, 5000 Namur, Belgium
E-mail: jmj@info.fundp.ac.be

Gian Pietro Picco
Politecnico di Milano
Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
E-mail: picco@elet.polimi.it

Library of Congress Control Number: 2005923585

CR Subject Classification (1998): D.2.4, D.2, C.2.4, D.1.3, F.1.2, I.2.11

ISSN 0302-9743
ISBN-10 3-540-25630-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25630-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11417019 06/3142 5 4 3 2 1 0

Preface

Modern information systems rely increasingly on combining concurrent, dis-
tributed, mobile, reconfigurable and heterogenous components. New models,
architectures, languages, and verification techniques are therefore necessary to
cope with the complexity induced by the demands of today’s software develop-
ment. Coordination languages have emerged as a successful approach, providing
abstractions that cleanly separate behavior from communication and therefore
increasing modularity, simplifying reasoning, and ultimately enhancing software
development.

This volume contains the proceedings of the 7th International Conference
on Coordination Models and Languages (Coordination 2005), held at the Insti-
tute of Informatics of the University of Namur, Belgium, on April 20–23, 2005.
The previous conferences in this series took place in Cesena (Italy), Berlin (Ger-
many), Amsterdam (The Netherlands), Limassol (Cyprus), York (UK), and Pisa
(Italy). Building upon the success of these events, Coordination 2005 provided
a forum for the community of researchers interested in models, languages, and
implementation techniques for coordination and component-based software, as
well as applications that exploit them.

The conference attracted 88 submissions from authors all over the world.
The Program Committee, consisting of 20 of the most distinguished researchers
in the coordination research area, selected 19 papers for presentation on the
basis of originality, quality, and relevance to the topics of the conference. Each
submission was refereed by three reviewers — four in the case of papers written
by a member of the Program Committee. As with previous editions, the paper
submission and selection processes were managed entirely electronically. This was
accomplished using ConfMan (www.ifi.uni.no/confman/ABOUT-ConfMan/), a
free Web-based conference management system, and with the invaluable help
of Paolo Costa, who installed and customized the system, ensuring its smooth
operation.

We are grateful to all the Program Committee members who devoted much
effort and time to read and discuss the papers. Moreover, we gratefully ac-
knowledge the help of additional external reviewers, listed later, who reviewed
submissions in their areas of expertise.

Finally, we would like to thank the authors of all the submitted papers and the
conference attendees, for keeping this research community lively and interactive,
and ultimately ensuring the success of this conference series.

February 2005 Jean-Marie Jacquet
Gian Pietro Picco

Organization

Program Co-chairs

Jean-Marie Jacquet University of Namur, Belgium
Gian Pietro Picco Politecnico di Milano, Italy

Program Committee

Farhad Arbab CWI, Amsterdam, The Netherlands
Luca Cardelli Microsoft Research, Cambridge, UK
Gianluigi Ferrari University of Pisa, Italy
Paola Inverardi University of L’Aquila, Italy
Toby Lehman IBM Almaden Research Center, USA
Ronaldo Menezes Florida Institute of Technology, USA
Amy L. Murphy University of Lugano, Switzerland
Andrea Omicini University of Bologna, Italy
George Papadopoulos University of Cyprus, Cyprus
Ernesto Pimentel University of Malaga, Spain
Rosario Pugliese University of Florence, Italy
Antonio Porto New University of Lisbon, Portugal
Carolyn Talcott SRI International, USA
Sebastian Uchitel Imperial College London, UK
Jan Vitek Purdue University, USA
Michel Wermelinger New University of Lisbon, Portugal and

The Open University, UK
Herbert Wiklicky Imperial College London, UK
Alexander Wolf University of Lugano, Switzerland and

University of Colorado, Boulder, USA
Alan Wood University of York, UK
Gianluigi Zavattaro University of Bologna, Italy

Steering Committee

Farhad Arbab CWI, Amsterdam, The Netherlands
Paolo Ciancarini University of Bologna, Italy
Rocco De Nicola University of Florence, Italy
Chris Hankin Imperial College London, UK

VIII Organization

George Papadopoulos University of Cyprus, Cyprus
Antonio Porto New University of Lisbon, Portugal
Gruia-Catalin Roman Washington University in Saint Louis, USA
Robert Tolksdorf Free University of Berlin, Germany
Alexander Wolf University of Colorado, Boulder, USA

Referees

Marco Aldinucci
Silvia Amaro
Paolo Bellavista
Michele Boreale
Roberto Bruni
Marzia Buscemi
Nadia Busi
Sonia Campa
Carlos Canal
Phil Chan
David G. Clarke
Giovanni Conforti
Maria del Mar Gallardo
Enrico Denti
David F. de Oliveira Costa
Nikolay Diakov
Manuel Diaz
Alessandra Di Pierro
Davide Di Ruscio
Daniele Falassi
Richard Ford
Luca Gardelli
Mauro Gaspari
Stefania Gnesi
Daniele Gorla
Claudio Guidi
Chris Hankin
Dan Hirsch
Jeremy Jacob
Ivan Lanese

Ruggero Lanotte
Alessandro Lapadula
Alberto Lluch-Lafuente
Michele Loreti
Roberto Lucchi
Fabio Mancinelli
Hernan Melgratti
Nicola Mezzetti
Michela Milano
Alberto Montresor
Gianluca Moro
Henry Muccini
Patrizio Pellicione
Alfonso Pierantonio
Cees Pierik
Alessandro Ricci
Bartolome Rubio
Juan Guillen Scholten
Laura Semini
Marius Silaghi
Igor Siveroni
Giuseppe Sollazzo
Ryan Stansifer
Emilio Tuosto
Izura Udzir
Leon W.N. van der Torre
Mirko Viroli
Andrew Wilkinson
Peter Zoeteweij

Table of Contents

A Case Study of Web Services Orchestration
Manuel Mazzara, Sergio Govoni . 1

A Correct Abstract Machine for Safe Ambients
Daniel Hirschkoff, Damien Pous, Davide Sangiorgi 17

A Process Calculus for QoS-Aware Applications
Rocco De Nicola, Gianluigi Ferrari, Ugo Montanari,
Rosario Pugliese, Emilio Tuosto . 33

Abstract Interpretation-Based Verification of Non-functional
Requirements

Agostino Cortesi, Francesco Logozzo . 49

Coordination Systems in Role-Based Adaptive Software
Alan Colman, Jun Han . 63

Coordination with Multicapabilities
Nur Izura Udzir, Alan M. Wood, Jeremy L. Jacob 79

Delegation Modeling with Paradigm
Luuk Groenewegen, Niels van Kampenhout, Erik de Vink 94

Dynamically Adapting Tuple Replication for Managing Availability
in a Shared Data Space

Giovanni Russello, Michel Chaudron, Maarten van Steen 109

Enforcing Distributed Information Flow Policies Architecturally:
The SAID Approach

Arnab Ray . 125

Experience Using a Coordination-Based Architecture for
Adaptive Web Content Provision

Lindsay Bradford, Stephen Milliner, Marlon Dumas 140

Global Computing in a Dynamic Network of Tuple Spaces
Rocco De Nicola, Daniele Gorla, Rosario Pugliese 157

Mobile Agent Based Fault-Tolerance Support for
the Reliable Mobile Computing Systems

Taesoon Park . 173

X Table of Contents

Preserving Architectural Properties in Multithreaded
Code Generation

Marco Bernardo, Edoardo Bontà . 188

Prioritized and Parallel Reactions in Shared Data Space Coordination
Languages

Nadia Busi, Gianluigi Zavattaro . 204

Synchronized Hyperedge Replacement for Heterogeneous Systems
Ivan Lanese, Emilio Tuosto . 220

Synthesis of Reo Circuits for Implementation of Component-Connector
Automata Specifications

Farhad Arbab, Christel Baier, Frank de Boer, Jan Rutten,
Marjan Sirjani . 236

Tagged Sets: A Secure and Transparent Coordination Medium
Manuel Oriol, Michael Hicks . 252

Time-Aware Coordination in ReSpecT
Andrea Omicini, Alessandro Ricci, Mirko Viroli 268

Transactional Aspects in Semantic Based Discovery of Services
Laura Bocchi, Paolo Ciancarini, Davide Rossi . 283

Author Index . 299

A Case Study of Web Services Orchestration

Manuel Mazzara1 and Sergio Govoni2

1 Department of Computer Science, University of Bologna, Italy
mazzara@cs.unibo.it

2 Imaging Science and Information Systems Center, Georgetown University,
Washington, DC, USA

govoni@isis.imac.georgetown.edu

Abstract. Recently the term Web Services Orchestration has been in-
troduced to address composition and coordination of Web Services. Sev-
eral languages to describe orchestration for business processes have been
presented and many of them use concepts such as long-running trans-
actions and compensations to cope with error handling. WS-BPEL is
currently the best suited in this field. However, its complexity hinders
rigorous treatment. In this paper we address the notion of orchestration
from a formal point of view, with particular attention to transactions
and compensations. In particular, we discuss webπ∞, an untimed sub-
calculus of webπ [15] which is a simple and conservative extension of
the π-calculus. We introduce it as a theoretical and foundational model
for Web Services coordination. We simplify some semantical and prag-
matical aspects, in particular regarding temporization, gaining a better
understanding of the fundamental issues. To discuss the usefulness of the
language we consider a case study: we formalize an e-commerce transac-
tional scenario drawing on a case presented in our previous work [12].

1 Introduction

The aim of Web Services is to ease and to automate business process collabora-
tions across enterprise boundaries. The core Web Services standards, WSDL [11]
and UDDI [26], cover calling services over the Internet and finding them, but
they are not enough. Creating collaborative processes requires an additional
layer on top of the Web Services protocol stack: this way we can achieve Web
Services composition and orchestration. In particular, orchestration is the de-
scription of interactions and messages flow between services in the context of a
business process [23]. Orchestration is not a new concept; in the past it has been
called workflow [28].

1.1 The State of the Art in Orchestration

Three specifications have been introduced to cover orchestration: Web Services
Business Process Execution Language (WS-BPEL or BPEL for short) [1] which
is the successor of Microsoft XLANG [25, 5] and IBM WSFL [16], together

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 M. Mazzara and S. Govoni

with WS-Coordination (WS-C) [29] and WS-Transaction (WS-T) [30]. BPEL
is a workflow-like definition language that allows to describe sophisticated busi-
ness processes; WS-Coordination and WS-Transaction complement it to pro-
vide mechanisms for defining specific standard protocols to be used by trans-
action processing systems, workflow systems, or other applications that wish
to coordinate multiple services. Together, these specifications address connec-
tivity issues that arise when Web Services run on several platforms across
organizations.

1.2 Transactions in Web Services

A common business scenario involves multiple parties and different organizations
over a time frame. Negotiations, commitments, shipments and errors happen. A
business transaction between a manufacturer and its suppliers ends successfully
only when parts are delivered to their final destination, and this could be days
or weeks after the initial placement of the order.

A transaction completes successfully (commits) or it fails (aborts) undoing
(roll-backing) all its past actions. Web services transactions [17] are long-running
transactions. As such, they pose several problems. It is not feasible to turn an
entire long-running transaction into an ACID transaction, since maintaining
isolation for a long time poses performance issues [31]. Roll-backing is also an
issue. Undoing many actions after a long time from the start of a transaction
entails trashing what could be a vast amount of work.

Since in our scenario a traditional roll-back is not feasible, Web Services
orchestration environments provide a compensation mechanism which can be
executed when the effects of a transaction must be cancelled. What a compen-
sation policy does depends on the application. For example, a customer orders
a book from an on-line retailer. The following day, that customer gets a copy of
the book elsewhere, then requests the store to withdraw the order. As a com-
pensation, the store can cancel the order, or charge a fee. In any case, in the end
the application has reached a state that it considers equivalent to what it was
before the transaction started.

The notions of orchestration and compensation require a formal definition.
In this paper, we address orchestration with particular attention to web transac-
tions. We introduce webπ∞, a subcalculus of webπ [15] that does not model time,
as a simple extension of the π-calculus. As a case study, we discuss and formal-
ize an e-commerce transactional scenario building on a previous one, which we
presented in an earlier work [12] using a different algebra, the Event Calculus,
which we introduced in [18]. The Event Calculus needed some improvement to
make it more readable and easier to use for modelling real-world scenarios. This
paper is a step in that direction.

1.3 Related Work

In this paper we mainly refer to BPEL, the most likely candidate to become a
standard among workflow-based composition languages. Other languages have

A Case Study of Web Services Orchestration 3

been introduced, among them WS-CDL [14], which claims to be in some relation
with the fusion calculus [22].

Other papers discuss formal semantics of compensable activities in this con-
text. [13] is mainly inspired by XLANG; the calculus in [9] is inspired by BP-
Beans [10]; the πt-calculus [8] focuses on BizTalk; [6] deals with short-lived
transactions in BizTalk; [7] also presents the formal semantics for a hierarchy of
transactional calculi with increasing expressiveness.

Some authors believe that time should be introduced both at the model level
and at the protocols and implementation levels [15, 3, 2, 4]. XLANG, for instance,
provides a notion of timed transaction as a special case of long running activity.
BPEL uses timers to achieve a similar behavior. This is a very appropriate
feature when programming business services which cannot wait forever for the
other parties reply.

1.4 Outline

This work is organized as follows. In Section 2 we explain our formal approach
to orchestration: extending the π-calculus to include transactions. In Section
3 we discuss this extension with its syntax and semantics, while in Section 4
we discuss an e-commerce transactional scenario to show the strength of the
language. Section 5 draws a conclusion.

2 A Formal Approach to Web Services Orchestration

Business process orchestration has to meet several requirements, including pro-
viding a way to manage exceptions and transactional integrity [23]. Orchestration
languages for Web Services should have the following interesting operations: se-
quence, parallel, conditional, send to/receive from other Web Services on typed
WSDL ports, invocation of Web Services, error handling.

BPEL covers all these aspects. Its current specification, however, is rather
involved. A major issue is error handling. BPEL provides three different mecha-
nisms for coping with abnormal situations: fault handling, compensation handling
and event handling. 1 Documentation shows ambiguities, in particular when in-
teractions between these mechanisms are required. Therefore it is difficult to use
the language, and we want to address this issue.

Our goal is to define a clear model with the smallest set of operators which
implement the operations discussed above, and simple to use for application de-
signers. We build on the π-calculus [21, 20, 24], a well known process algebra. It
is simple and appropriate for orchestration purposes. It includes: a parallel oper-
ator allowing explicit concurrency; a restriction operator allowing composition-
ality and explicit resource creation; a recursion or a process definition operator
allowing Turing completeness; a sequence operator allowing causal relationship

1 The BPEL event handling mechanism was not designed for error handling only.
However, here we use it for this purpose.

4 M. Mazzara and S. Govoni

between activities; an inaction operator which is just a ground term for induc-
tive definition on sequencing; message passing and in particular name passing
operators allowing communication and link mobility.

There is an open debate on the use of π-calculus versus Petri nets in the
context of Web Services composition [27]. The main reason here for using the
π-calculus for formalization is that the so called Web Services composition lan-
guages, like XLANG, BPEL and WS-CDL claim to be based on it, and they
should therefore allow rigorous mathematical treatment. However, no interest-
ing relation with process algebras has really been proved for any of them, nor an
effective tool for analysis and reasoning, either theoretical or software based, has
been released. Therefore, we see a gap that needs to be filled, and we want to
address the problem of composing services starting directly from the π-calculus.

By itself the π-calculus does not support any transactional mechanism. Pro-
gramming complex business processes with failure handling in term of message
passing only is not reasonable; also, the Web Services environment requires that
several operations have transactional properties and be treated as a single logi-
cal unit of work when performed within a single business transaction. Below we
consider a simple extension of the π-calculus that covers transactions.

3 The Orchestration Calculus webπ∞

The syntax of webπ∞ processes relies on countable sets of names, ranged over
by x, y, z, u, · · ·. Tuples of names are written ũ.

P ::=
0 (nil)
| x 〈ũ〉 (output)
| x(ũ).P (input)
| (x)P (restriction)
| P |P (parallel composition)
| A(ũ) (process invocation)
| 〈|P ; P |〉x (transaction)

We are assuming a set of process constants, ranged over by A, in order to
support process definition. A defining equation for a process identifier A is of
the form

A(ũ)
def
= P

where each occurrence of A in P has to be guarded, i.e. it is underneath an input
prefix. It holds fn(P) ⊆ {ũ} and ũ is composed by pairwise distinct names.

A process can be the inert process 0, an output x 〈ũ〉 sent on a name x that
carries a tuple of names ũ, an input x(ũ).P that consumes a message x 〈w̃〉 and
behaves like P{w̃/ũ}, a restriction (x)P that behaves as P except that inputs
and messages on x are prohibited, a parallel composition of processes, a process
invocation A(ũ) or a transaction 〈|P ; R|〉x that behaves as the body P until a
transaction abort message x 〈〉 is received, then it behaves as the compensation Q.

A Case Study of Web Services Orchestration 5

Names x in outputs and inputs are called subjects of outputs and inputs
respectively. It is worth noticing that the syntax of webπ∞ processes simply
extends the asynchronous π-calculus with the transaction process.

The input x(ũ).P and restriction (x)P are binders of names ũ and x re-
spectively. The scope of these binders is the processes P . We use the standard
notions of α-equivalence, free and bound names of processes, noted fn(P), bn(P)
respectively. In particular

fn(〈|P ; R|〉x) = fn(P) ∪ fn(R) ∪ {x} and α-equivalence equates (x)(〈|P ; Q|〉x)
with (z)(〈|P{z/x} ; Q{z/x}|〉z);

In the following we let τ.P be the process (z)(z 〈〉 | z().P) where z �∈ fn(P).
webπ∞ processes considered in this paper are always well-formed according to
the following:

Definition 1 (Well-formedness). Received names cannot be used as subjects
of inputs. Formally, in x(ũ).P free subjects of inputs in P do not belong to
names ũ.

This property avoids a situation where different services receive information on
the same channel, which is a nonsense in the service oriented paradigm.

3.1 Semantics of the Language

We give the semantics for the language in two steps, following the approach of
Milner [19], separating the laws which govern the static relations between pro-
cesses from the laws which rule their interactions. The first step is defining a
static structural congruence relation over syntactic processes. A structural con-
gruence relation for processes equates all agents we do not want to distinguish.
It is introduced as a small collection of axioms that allow minor manipulation
on the processes’ structure. This relation is intended to express some intrinsic
meanings of the operators, for example the fact that parallel is commutative. The
second step is defining the way in which processes evolve dynamically by means
of an operational semantics. This way we simplify the statement of the seman-
tics just closing with respect to ≡, i.e. closing under process order manipulation
induced by structural congruence.

Definition 2. The structural congruence ≡ is the least congruence closed with
respect to α-renaming, satisfying the abelian monoid laws for parallel (associa-
tivity, commutativity and 0 as identity), and the following axioms:

1. The scope laws:

(u)0 ≡ 0, (u)(v)P ≡ (v)(u)P,
P | (u)Q ≡ (u)(P |Q) , if u �∈ fn(P)

〈|(z)P ; Q|〉x ≡ (z)〈|P ; Q|〉x , if z �∈ {x} ∪ fn(Q)

6 M. Mazzara and S. Govoni

2. The invocation law:

A(ṽ) ≡ P{ṽ/ũ} if A(ũ)
def
= P

3. The transaction laws:

〈|0 ; Q|〉x ≡ 0
〈|〈|P ; Q|〉y |R ; R′|〉x ≡ 〈|P ; Q|〉y | 〈|R ; R′|〉x

4. The floating law:

〈|z 〈ũ〉 |P ; Q|〉x ≡ z 〈ũ〉 | 〈|P ; Q|〉x
The scope and invocation laws are standard. Let us discuss transaction and
floating laws, which are unusual. The law 〈|0 ; Q|〉x ≡ 0 defines committed
transactions, namely transactions with 0 as body. These transactions, being
committed, are equivalent to 0 and, therefore, cannot fail anymore. The law
〈|〈|P ; Q|〉y |R ; R′|〉x ≡ 〈|P ; Q|〉y | 〈|R ; R′|〉x moves transactions outside parent
transactions, thus flattening the nesting of transactions. Notwithstanding this
flattening, parent transactions may still affect children transactions by means of
transaction names. The law 〈|z 〈ũ〉 |P ; R|〉x ≡ z 〈ũ〉 | 〈|P ; R|〉x floats messages
outside transactions; it models that messages are particles that independently
move towards their inputs. The intended semantics is the following: if a process
emits a message, this message traverses the surrounding transaction boundaries,
until it reaches the corresponding input. In case an outer transaction fails, recov-
ery actions for this message may be detailed inside the compensation processes.
The dynamic behavior of processes is defined by the reduction relation.

Definition 3. The reduction relation → is the least relation satisfying the fol-
lowing axioms and closed with respect to ≡, (x) , | and 〈| ; Q|〉x:

(com)

x 〈ṽ〉 |x(ũ).P → P{ṽ/ũ}
(fail)

x | 〈|
∏

i∈I xi(ũi).Pi ; Q|〉x → Q (I �= ∅)

Rule (com) is standard in process calculi and models input-output interaction.
Rule (fail) models transaction failures: when a transaction abort (a message on
a transaction name) is emitted, the corresponding transaction is terminated by
garbage collecting the threads (the input processes) in its body and activating
the compensation. On the contrary, aborts are not possible if the transaction is
already terminated, namely every thread in the body has completed its job.

4 A Case Study

In this section, we discuss an implementation in webπ∞ of a classical e-business
scenario: a customer attempts to buy a set of items from some providers, using a
coordination service exposed by a web portal. Actors involved in this e-business
scenario are a customer, a web portal and a set of item providers.

A Case Study of Web Services Orchestration 7

4.1 Participants

The roles who take part in the purchase scenario are the following:

1. a customer sends a request to a shopping portal, and waits for a response.
The customer can express some constraints: for example, “I want to buy
either all items or no one at all”. The web portal takes care of implementing
policies like this one;

2. a web portal tries to fulfill customers’ requests and their constraints about
the purchase policy. It acts as a coordinator;

3. an item provider accepts two kinds of requests from the web portal: a
simple browsing of the price-list (read-only), and a purchase request of an
item.

The web portal, on behalf of a customer, tries to buy an item from a provider.
This could be a failure or success. In case of failure, the web portal is informed,
and the item provider forgets everything about the transaction. In case of suc-
cess, if the request can be fulfilled, the item provider declares that the sale is
complete, and it begins the execution of an internal process which simulates the
delivery of the item. Meanwhile, the customer can change her mind and tell the
item provider, which will compensate the relative transaction, i.e. take some ac-
tions to establish a safe state. An example of compensation may be charging a
fee. This mechanism will be explained more in detail below within the webπ∞
specification.

4.2 Constraints

When sending a purchase request, a customer can also specify the behavior that
the complete transaction must follow. For example, a customer wants to buy
formal attire: a suit, a pair of shoes, a shirt and a tie. A reasonable constraint
to impose is that either the shirt and the tie should come together, or none
of them, while the suit and the shoes are optional. In our specification, we
describe a simplified policy called all or nothing. This means that the purchase
transaction will be successful only if all sub-transactions will commit, otherwise
the purchase will fail. To implement this constraint, the web portal uses the
compensation service that the item providers provide.

Buy requests are emitted simultaneously to each item provider, and the web
portal gets their outcomes. If each sub-transaction is successful, the web portal
informs the customer that its request has been satisfied, otherwise, it compen-
sates any committed sub-transaction.

In our implementation we simplify this scenario. Instead of asking the cus-
tomer for constraints over an order, we apply a built-in policy. This is fair to
pose, because constraints are contained in the coordinator process, and this does
not affect the behavior of item providers. It is also very easy to specify different
purchase policies, because they are clearly separated from the mechanisms which
control them. Further, we also assume that a customer wants to buy two items
only from two different sellers.

8 M. Mazzara and S. Govoni

4.3 Formal Description

We now present a formal description of all participants and how they can be
composed in an e-business scenario.

World
WORLD() := (ac)(ap)(c1)(p1)(c2)(p2)

(CUSTOMER(ac, ap)
| WEB PORTAL(ac, ap, c1, p1, c2, p2)
| IP1(c1, p1)
| IP2(c2, p2))

The process WORLD() composes the various participants to the scenario; first of
all, it creates some global channels, used by the processes to interact together:
the channels ac and ap are the web portal interfaces exposed to the customers.
So, they are passed as arguments both to the CUSTOMER(ac, ap) and to the
WEB PORTAL(ac, ap, c1, p1, c2, p2) processes. The first one is used to require a
price list, while the second one to emit a purchase order.

The other global channels are the set of pairs ci and pi, which are respectively
the query and the purchase interface of the ith item provider. Those names
are passed as arguments to the WEB PORTAL(ac, ap, c1, p1, c2, p2) and IPi(ci, pi)
processes.

We do not model message loss, because we suppose that reliable protocols are
used, which would take care of any transmission error, and we ignore the issue
of site crashes. We also assume the world as a closed system, in the sense that
fn(()WORLD()) = ∅. Because of the dynamic nature of the scenario, this could
be regarded as a rather strong assumption. All these aspects could be taken into
account in a future evolution of the specification.

Customer

CUSTOMER(ac, ap) := (q̃1)(q̃2)(ar)(as)(af)
(ac 〈q̃1, q̃2, ar〉 | ar(l̃1, l̃2).ap 〈q̃1, q̃2, as, af 〉 |
as().S() | af ().F())

The customer process first browses a price list. When it receives an answer, it
emits a purchase request, and waits for the outcome. To do this it creates these
names: q̃1 and q̃2, which contain the two item preferences, the channel ar, which is
the restricted reply channel used by the Web Portal to inform the customer about
the price list consultation, and the two channels as (success) and af (failure),
which signal respectively the outcome of the purchase transaction. Then the
customer process sends the message ac 〈q̃1, q̃2, ar〉 to the web portal consultation
interface. This message carries the items description and the reply channel. This
first phase ends with the receipt of the reply message ar(l̃1, l̃2), which carries
two names, l̃1 and l̃2, encoding the features of the requested items, like their
availability, the selling price and many others. Basing on this information, the
customer process elaborates its orders — which are encoded in q̃1 and q̃2 — and
sends a purchase order ap 〈q̃1, q̃2, as, af 〉 containing the item specifications and

A Case Study of Web Services Orchestration 9

the outcome channels, as and af . When the customer process receives one of
this message, the purchase transaction has completed and it goes on with the
appropriate task identified by S() or F(). Moreover, it is guaranteed that either
all the items have been bought, or the appropriate compensations have been
emitted.

Web Portal

WEB PORTAL(ac, ap, c1, p1, c2, p2) := ac(q̃1, q̃2, ar).
(ENGINE(ap, c1, p1, c2, p2, q̃1, q̃2, ar) |
WEB PORTAL(ac, ap, c1, p1, c2, p2))

ENGINE(ap, c1, p1, c2, p2, q̃1, q̃2, ar) := QUERY(c1, c2, q̃1, q̃2, ar) |
PURCHASE(ap, p1, p2)

QUERY(c1, c2, q̃1, q̃2, ar) := (r1)(r2)(c1 〈q̃1, r1〉 | c2 〈q̃2, r2〉 |
r1(q̃1, l̃1).r2(q̃2, l̃2).ar 〈l̃1, l̃2〉)

PURCHASE(ap, p1, p2) := ap(q̃1, q̃2, as, af).(r1
s)(r1

f)(r2
s)(r2

f)
(p1 〈q̃1, r

1
s , r1

f 〉 | p2 〈q̃2, r
2
s , r2

f 〉 |
WAIT(r1

s , r1
f , r2

s , r2
f , as, af))

The web portal process exposes a service which can be used by a customer
to query some distributed price lists, and subsequently to purchase the items.
When it receives a request ac(q̃1, q̃2, ar), it executes a managing process —
ENGINE(ap, c1, p1, c2, p2, q̃1, q̃2, ar) — and it creates a duplicate, to wait for fur-
ther requests.

The ENGINE(ap, c1, p1, c2, p2, q̃1, q̃2, ar) process executes two sub-processes
QUERY(c1, c2, q̃1, q̃2, ar) and PURCHASE(ap, p1, p2). The first of these subtasks,
QUERY(c1, c2, q̃1, q̃2, ar), receives the consulting channels c1 and c2, the customer
preferences q̃1 and q̃2 and the reply channel ar. It emits in parallel the various
price list consultations with the messages c1 〈q̃1, r1〉 and c2 〈q̃2, r2〉, which contain
the customer preferences and the private channels r1 and r2 on which it will wait
for a reply. Those replies contain the outcomes of the queries executed on the
item provider’s databases — encoded with names l̃1 and l̃2. When the web portal
receives them, it forwards them to the customer application with the message
ar 〈l̃1, l̃2〉, and it waits for a purchase order on the channel ap(q̃1, q̃2, as, af).

The process PURCHASE(ap, p1, p2) is called with the channel ap, on which
it will wait for the customer’s order, and the item providers’ channels p1 and
p2. First, it receives the customer’s request ap(q̃1, q̃2, as, af), which contains the
item specifications and the pair of success/failure channels. At this point, it cre-
ates a pair of success/failure reply channels rs and rf for each item provider,
and emits the purchase requests p1 〈q̃1, r

1
s , r1

f 〉 and p2 〈q̃2, r
2
s , r2

f 〉. When the re-
quests have been emitted, the process PURCHASE(ap, p1, p2) executes the pro-
cess WAIT(r1

s , r1
f , r2

s , r2
f , as, af), which will manage the purchase transactions’

outcomes.

Waiting Process. The process WAIT(r1
s , r1

f , r2
s , r2

f , as, af) waits for the out-
come of the item provider 1 in this way:

10 M. Mazzara and S. Govoni

WAIT(r1
s , r1

f , r2
s , r2

f , as, af) := r1
s(q̃1, l̃1, t1).WAITS,�(t1, r2

s , r2
f , as, af)

| r1
f (q̃1, l̃1).WAITF,�(r2

s , r2
f , as, af)

WAITS,�(t1, r2
s , r2

f , as, af) := r2
s(q̃2, l̃2, t2).POLICYS,S(t1, t2, as, af)
| r2

f (q̃2, l̃2).POLICYS,F(t1, as, af)
WAITF,�(r2

s , r2
f , as, af) := r2

s(q̃2, l̃2, t2).POLICYF,S(t2, as, af)
| r2

f (q̃2, l̃2).POLICYF,F(as, af)

If the item provider 1 is able to fulfill the order, it emits a message on the input
channel r1

s(q̃1, l̃1, t1). When the web portal receives this message, the process
WAITS,�(t1, r2

s , r2
f , as, af) can start. This process manages all the cases in which

the item provider 1 is successful. On the other hand, if the item provider 1
is not able to fulfill the order, the web portal receives a failure message on the
input channel r1

f (q̃1, l̃1), and the process WAITF,�(r2
s , r2

f , as, af) is executed. This
process manages all the cases in which the item provider 1 fails.

The behavior of WAITS,�(t1, r2
s , r2

f , as, af) and WAITF,�(r2
s , r2

f , as, af) is quite
clear: each one waits for the outcome of the item provider 2. When the web
portal receives the message, it will be alternatively in one of four possible states,
as shown in figure 1.

Policy Process. When all outcome messages have been collected, the web por-
tal is able to take the appropriate actions: this is done by the following processes:

POLICYS,S(t1, t2, as, af) := as 〈〉
POLICYS,F(t1, as, af) := af 〈〉 | t1 〈〉
POLICYF,S(t2, as, af) := af 〈〉 | t2 〈〉
POLICYF,F(as, af) := af 〈〉

The first process manages the case in which both of the item providers are
successful; in this case, the customer is informed that its purchase order can

Fig. 1. Tree of Possible Executions

A Case Study of Web Services Orchestration 11

be fulfilled. This process receives the compensation handlers t1 and t2 also if it
does not use them. This is because, in general, the web portal could implement
a policy different from all or nothing.

The process POLICYS,F(t1, as, af) manages the case where the item provider
1 is successful, and the item provider 2 is faulty: to fulfill the constraints imposed
by the customer, the transaction is cancelled with the emission of the compen-
sation request t1 〈〉. This way, the web portal implements the all or nothing
behavior required by the customer. The case where the item provider 1 is faulty
while the item provider 2 is successful is simply the dual case. The case where
both the item providers are faulty is managed simply by emitting a message on
the reply channel af , and no compensation is required.

It would be easy to generalize the algorithm to an at least one policy. In such a
scenario, the web portal would send a success message in all the first three cases,
while in the fourth one, it would send a failure message. No compensations would
be required.

Item Provider

IPi(ci, pi) := (dbc)(dbp)(CPi(ci, dbc) | PPi(pi, dbp) | DBPi(dbc, dbp))

The generic ith item provider receives two names as arguments, ci and pi. These
names are global, i.e. they have been created by the WORLD() process. The
former represent the item provider interface for the consulting service, while the
latter is used to receive a buying order. When the item provider process begins
its execution, it creates a pair of channels, which are used to interact with a
database process. The channel dbc is used to invoke a price list consultation
service exposed by the database; the channel dbp is used to emit a purchase order
to the same database. After the creation of these channels, the item provider
creates three sub-processes, CPi(ci, dbc), PPi(pi, dbp) and DBPi(dbc, dbp). The
first two processes manage the consultation and the purchase orders emitted by
the customer, while the third one represents a database process.

Consulting Process

CPi(ci, dbc) := ci(q̃i, ri).((odbc)(dbc 〈q̃i, odbc〉 | odbc(q̃i, l̃i).ri 〈q̃i, l̃i〉)
| CPi(ci, dbc))

CPi(ci, dbc) is a server process which receives price list read requests. It receives
two names, ci and dbc. The first name is the input channel it will listen to
for a request, while the second one is the access point for the database querying
service. The process CPi(ci, dbc) behaves as follows: when it receives a price check
request ci(q̃i, ri), containing the customer preferences q̃i and a reply channel ri,
it duplicates itself and begins the price list reading operations. It creates a fresh
name, odbc, and sends it to the database consulting service with the message
dbc 〈q̃i, odbc〉, which contains also the customer preferences q̃i. Then it waits
for an outcome (odbc(q̃i, l̃i)) and forwards it to the web portal, using the reply
channel ri 〈q̃i, l̃i〉.

12 M. Mazzara and S. Govoni

Purchase Process

PPi(pi, dbp) := pi(q̃i, rs, rf).((odbcs)(odbcf)(s)(f)(ti)(dbp 〈q̃i, odbcs, odbcf , s〉
| 〈|odbcs(q̃i, l̃i, t).(f 〈〉 | rs 〈q̃i, l̃i, ti〉 | ti().t 〈〉) ; 0|〉s

| 〈|odbcf (q̃i, l̃i).(s 〈〉 | rf 〈q̃i, l̃i〉) ; 0|〉f) | PPi(pi, dbp))

The second sub-process created by the item provider PPi(pi, dbp) manages the
purchase orders emitted by the web portal on behalf of the customer. When this
process runs, it receives two names, pi and dbp. The first name is the access point
for the purchase service exposed by the item provider. The second name repre-
sents a private channel shared between the purchase manager and the database
process that is used to invoke the purchase service exposed by the database.

The process PPi(pi, dbp) waits for a purchase request on the global channel pi.
The request contains the customer’s preferences q̃i and a pair of success/failure
reply channels, rs and rf . When the process receives this message, it makes a
copy of itself and waits for further requests, and begins the purchase managing
operations. First it creates two fresh names, odbcs and odbcf , which are a pair of
success/failure reply channels. Then it creates two transactions, s and f , which
manage the cases of success and failure of the purchase process. Those names
are restricted, together with the name ti, which will be used by the web portal
to compensate a successful purchase transaction. The purchase process emits a
request message dbp 〈q̃i, odbcs, odbcf , s〉, which contains the customer preferences
q̃i, a pair of success/failure reply channels odbcs and odbcf and the name of
successful transaction manager, s. Its usefulness is shown below.

After the emission of the purchase request, the process activates the success
and the failure transactions. Those transactions share a very similar behavior.
Each one listens to the appropriate channel for the database outcome. This
means that the transaction s waits for a success message on the odbcs channel,
while the transaction f waits on the odbcf channel. In both cases, the outcome
message brings the customer preferences q̃i and the query result l̃i. Moreover, in
case of success, the message contains also the name of the database transaction
which manages the delivery of the requested item. This name can be used to
compensate this activity, as we show below.

When one of the two specular transaction receives the purchase outcome, it
triggers the other one. As the two compensation processes are the 0 process,
this mechanism acts like an explicit garbage collector.2 After receiving of the
outcome, the appropriate transaction forwards it to the web portal. In case of a
success, moreover, the reply message contains also a transaction name that can
be used to activate the database delivery compensation. Instead of the original
name received by the database process, t, a placeholder, ti, is sent. This forbids
a direct access to an internal process — the database — by an external process.
In case of success, indeed, the item provider acts as a wrapper for the database

2 This feature is not really necessary, because the other transaction remains deadlocked
on a restricted name, but is useful to show how it is possible to implement a garbage
collector with the compensation mechanism provided by the transactions.

A Case Study of Web Services Orchestration 13

compensation mechanism. When the item provider receives a compensation re-
quest, it emits the correct signal. The execution of this wrapper process lasts
until the delivery operations end. When this happens the clearing signal s is
emitted by the database process.

Database Process

DBPi(dbc, dbp) := DBPc
i (dbc) | DBPp

i (dbp)
DBPc

i (dbc) := dbc(q̃i, odbc).((l̃i)(odbc 〈q̃i, l̃i〉) | DBPc
i (dbc))

DBPp
i (dbp) := dbp(q̃i, odbcs, odbcf , s).(

(l̃i)(t)(odbcs 〈q̃i, l̃i, t〉 | (〈|dlv() ; cmp()|〉t.s 〈〉)
⊕odbcf 〈q̃i, l̃i〉) |
DBPp

i (dbp))

The third sub-process created by the item provider is DBPi(dbc, dbp). This pro-
cess simulates the behavior of a DBMS. In particular, it exposes two kinds of
services: the price list consultation and the purchase order. It receives a pair
of private channels dbc and dbp and shares them with the item provider. The
former is the access point on which it will wait for a price list consultation, while
the latter is used to listen for purchase orders.

Two distinct sub-processes manage the two activities mentioned above. The
process DBPc

i (dbc) manages the price list consultation. When it receives a re-
quest message, it creates a duplicate. The request message carries the customer’s
preferences q̃i and a reply channel odbc. Now, the database simply creates a new
name, l̃i, which represents the outcome of the query executed on the DBMS,
and sends it back to the item provider. This operation simulates a database
query, and can never fail; if a query produces no results, its outcome is correctly
encoded on the fresh name l̃i.

The process DBPp
i (dbp) deals with purchase orders, delivery of goods and

any compensation requested by the web portal. At first, the process receives a
purchase order from the item provider. This request contains the item preferences
q̃i, a pair of success/failure reply channels odbcs and odbcf and a transaction
name s. When it receives the request, the process makes a copy of itself, creates
a new name l̃i, which represents the query outcome, and decides if the customer’s
request can be fulfilled or it must be rejected. To do so, it uses a constructor
called internal choice, which is represented with the symbol ⊕. This means that
only one process is chosen, while the other is simply discharged. This behavior is
easily encodable in terms of parallel composition, message passing and restriction
only. We introduce this notation just for brevity.

If the database purchase process is not able to fulfill the order, it simply emits
a message odbcf 〈q̃i, l̃i〉 on the failure reply channel odbcf , and forgets everything
about the transaction. The message contains the customer’s preferences q̃i and
the outcome of the query, represented by l̃i. In case of item availability, the
behavior of the database process is more complex. On the successful channel
odbcs, it emits a reply message, which contains the customer preferences q̃i,
the outcome of the query l̃i and the compensation handler t. In parallel with
the reply message emission, the database process begins to execute the delivery

14 M. Mazzara and S. Govoni

operations. From this moment on, the web portal can emit the compensation
request while the delivery action is being performed.

5 Conclusion

In this paper we introduced webπ∞, a simple extension of the π-calculus with
untimed long running transactions. We discussed the notion of orchestration
without considering time constraints. This way we focused on information flow,
message passing, concurrency and resource mobility, keeping the model small and
simple. We motivated the underlying theory we rely on, the π-calculus, in terms
of expressiveness and suitability to composition and orchestration purposes. To
show the strength of the language we also proposed a formalization of an e-
commerce transactional scenario.

This work contributes a simple, concise yet powerful and expressive language,
with a solid semantics that allows formal reasoning. The language shows a clear
relation with the π-calculus, and the actual encoding of it with the π-calculus
is a feasible task, while it would be quite harder to to get such an encoding for
XLANG and other Web Services composition languages.

A possible extension of this work could be generalizing the transaction pol-
icy and proving constraints satisfaction. Other future developments building on
the results achieved in this paper include software tools for static analysis of
programs using composition and orchestration. A useful result that could stem
from this work could be streamlined definitions of syntax and semantics of web
services composition languages, to get a simpler way to model involved trans-
action behaviors. On a more theoretical side, another research direction could
be extending the calculus with a notion of time while keeping it simple. The
overall goal we have is to allow for improvement of quality and applicability of
real orchestration languages.

Acknowledgments. The authors would like to acknowledge Cosimo Laneve,
Enrico Tosi and Andrea Carpineti for their comments and contributions to the
paper.

References

1. T. Andrews, F. Curbera et al. Web Service Business Process Execution Language,
Working Draft, Version 2.0, 1 December 2004.

2. M. Berger. Basic Theory of Reduction Congruence for Two Timed Asynchronous
π-calculi. In CONCUR’04: Proceedings of the 15th International Conference on
Concurrency Theory, LNCS 3170, pages 115-130, Springer-Verlag, 2004.

3. M. Berger. Towards Abstractions for Distributed Systems. PhD Thesis, Imperial
College, London, 2002.

4. M. Berger, K. Honda, The Two-Phase Commit Protocol in an Extended π-
Calculus. In EXPRESS ’00: Proceedings of the 7th International Workshop on
Expressiveness in Concurrency, ENTCS 39.1, Elsevier, 2000.

A Case Study of Web Services Orchestration 15

5. Microsoft BizTalk Server. [http://www.microsoft.com/biztalk/default.asp], Mi-
crosoft Corporation.

6. R. Bruni, C. Laneve, U. Montanari. Orchestrating Transactions in Join Calculus.
In CONCUR’02: Proceedings of the 13th International Conference on Concurrency
Theory, LNCS 2421, pages 321-337, Springer-Verlag, 2003.

7. R. Bruni, H. Melgratti, U. Montanari. Theoretical Foundations for Compensations
in Flow Composition Languages. To appear in POPL2005.

8. L. Bocchi, C. Laneve, G. Zavattaro. A Calculus for Long-running Transactions.
In FMOODS’03: Proceedings of th 6th IFIP International Conference on Formal
Methods for Open-Object Based Distributed Systems, LNCS 2884, pages 124-138,
Springer-Verlag, 2003.

9. M. Butler, C. Ferreira. An Operational Semantics for StAC, a Language for Mod-
elling Long-running Business Transactions. In COORDINATION’04: Proceedings
of the 6th International Conference on Coordination Models and Languages, LNCS
2949, pages 87-104. Springer-Verlag, 2004.

10. M. Chessel, D. Vines, C. Griffin, V. Green, K. Warr. Business Process Beans: Sys-
tem Design and Architecture Document. Technical report.IBM UK Laboratories.
January 2001.

11. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana. Web Services Descrip-
tion Language (WSDL 1.1). [www.w3.org/TR/wdsl], W3C, Note 15, 2001.

12. C. Guidi, R. Lucchi, M.Mazzara. A Formal Framework for Web Services Coordina-
tion. 3rd International Workshop on Foundations of Coordination Languages and
Software Architectures, London 2004.

13. T. Hoare. Long-Running Transactions. Powerpoint presentation [re-
search.microsoft.com/]

14. N. Kavantzas, G. Olsson, J. Mischkinsky, M. Chapman. Web Services
Choreography Description Languages. [otn.oracle.com/tech/webservices/ ht-
docs/spec/cdl v1.0.pdf]

15. C. Laneve, G. Zavattaro. Foundations of Web Transactions. To appear in FOS-
SACS 2005.

16. F. Leymann. Web Services Flow Language (WSFL 1.0). [http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf], Member IBM
Academy of Technology, IBM Software Group, 2001.

17. M. Little. Web Services Transactions: Past, Present and Future.
[www.idealliance.org/papers/dx xml03/ html/abstract/05-02-02.html]

18. M.Mazzara, R.Lucchi. A Framework for Generic Error Handling in Business Pro-
cesses. First International Workshop on Web Services and Formal Methods (WS-
FM), Pisa 2004.

19. R. Milner. Function as Processes. Mathematical Structures in Computer Science,
2(2):119-141, 1992.

20. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

21. R. Milner, J. Parrow, D. Walker. A calculus of mobile processes. Journal of
Information and Computation, 100:1–77. Academic Press, 1992.

22. J. Parrow, B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes. In LICS’98: Proceedings of the 13th Symposium on Logic in Computer
Science, IEEE Computer Society Press.

23. C. Peltz. Web Services Orchestration and Choreography. IEEE Computer, October
2003 (Vol.36, No 10), pages 46-52.

24. D. Sangiorgi, D. Walker. The π-calculus: a Theory of Mobile Processes, Cambridge
University Press, 2001.

16 M. Mazzara and S. Govoni

25. S. Thatte. XLANG: Web Services for Business Process Design. [http://
www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm], Microsoft Corpora-
tion, 2001.

26. Universal Description, Discovery and Integration for Web Services (UDDI) V3
Specification. [http://uddi.org/pubs/uddiv3.htm]

27. W.M.P. van der Aalst. Pi calculus versus Petri nets: Let us eat “hum-
ble pie” rather than further inflate the “Pi hype”. [mitwww.tm.tue.nl/staff/
wvdaalst/publications/pi-hype.pdf]

28. Workflow Management Coalition - http://www.wfmc.org/
29. WS-Coordination Specification [www-106.ibm.com/developerworks/library/ws-

coor/]
30. WS-Transaction Specification [www-106.ibm.com/developerworks/webservices/

library/ws-transpec/]
31. B. Weikum, G. Vossen. Transactional Information Systems. Morgan Kaufmann,

2002.

A Correct Abstract Machine for Safe Ambients�

Daniel Hirschkoff1, Damien Pous1, and Davide Sangiorgi2

1 ENS Lyon, France
2 Università di Bologna, Italy

Abstract. We describe an abstract machine, called GcPan, for the dis-
tributed execution of Safe Ambients (SA), a variant of the Ambient Cal-
culus (AC).

Our machine improves over previous proposals for executing AC, or
variants of it, mainly through a better management of special agents
(forwarders), created upon code migration to transmit messages to the
target location of the migration.

We establish the correctness of our machine by proving a weak bisimi-
larity result with a previous abstract machine for SA, and then appealing
to the correctness of the latter machine.

More broadly, this study is a contribution towards understanding
issues of correctness and optimisations in implementations of distributed
languages encompassing mobility.

Introduction

In recent years there has been a growing interest for core calculi encompassing
distribution and mobility. In particular, these calculi have been studied as a
basis for programming languages. Examples include Join [9], Nomadic Pict [19],
Kells [2], Ambients [6], Klaim [16].

In this paper we study issues of correctness and optimisations in implementa-
tions of such languages. Although our technical work focuses on Ambient-based
calculi, we believe that the techniques can be of interest for the study of other
languages: those mentioned above, and more broadly, distributed languages with
mobility.

The underlying model of the Ambient calculus is based on the notion of
location, called ambient. Terms in Ambient-based calculi describe configurations
of locations and sub-locations, and computation happens as a consequence of
movement of locations. The three primitives for movement allow: an ambient to
enter another ambient (In), an ambient to exit another ambient (Out), a process
to dissolve an ambient boundary and obtain access to its content (Open).

A few distributed implementations of Ambient-like calculi have appeared [10,
11, 17]. The study of implementations is important to understand the usefulness
of the model from a programming language point of view. Such studies have

� Work supported by european FET - Global Computing project Profundis.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 17–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 D. Hirschkoff, D. Pous, and D. Sangiorgi

shown that the open primitive, the most original one in the Ambient model, is
also the most difficult to implement.

Another major difficulty for a distributed implementation of an ambient-like
language is that each movement operation involves ambients on different hier-
archical levels. For instance, the ambients affected by an out operation are the
moving ambient and its initial and final parents; before the movement is trig-
gered, they reside on three different levels. In [4, 5] locks are used to synchronise
all ambients affected by a move. In a distributed setting, however, this lock-based
policy can be expensive. For instance, the serialisations introduced diminish the
parallelism of the whole system. In [10] the synchronisations are simulated by
means of protocols of asynchronous messages. The abstract machine Pan [11]
has two main differences. The first is that the machine executes typed Safe Am-
bients [13] (SA) rather than untyped Ambients. Typed SA is a variant of the
original calculus that eliminates certain forms of interference in ambients, called
grave interferences. These arise when an ambient tries to perform two different
movement operations at the same time, as for instance n[in h.P | out n.Q | R].
The second reason for the differences in Pan is the separation

between the logical structure of an ambient system and its physical distri-
bution. Exploiting this, the interpretation of the movement associated to the
capabilities is reversed: the movement of the open capability is physical, that
is, the location of some processes changes, whereas that of in and out is only
logical, that is, some hierarchical dependencies among ambients may change, but
not their physical location. Intuitively, In and Out reductions are acquisition of
access rights, and Open is exercise of them.

In Pan, the implementation of Open exploits forwarders – a common tech-
nique in distributed systems – to retransmit messages coming from the inside of
an ambient that has been opened. These lead to two major problems:

– persistence: along the execution of the Pan, some forwarders may become
useless, because they will never receive messages. However, these are never
removed, and thus keep occupying resources (very often in examples, the am-
bients opened are leaves, and opening them introduces useless forwarders).

– long communication paths: as a consequence of the opening of several ambi-
ents, forwarder chains may be generated, which induce a loss of performance
by increasing the number of network messages.

In this paper, we introduce GcPan, an abstract machine for SA that is
more efficient than Pan. The main improvements are achieved through a better
management of forwarders, which in the GcPan enjoy the following properties:

– finite lifetime: we are able to predict the number of messages that will be
transmitted by a forwarder, so that we can remove the latter once these
messages have all been treated;

– contraction of forwarder chains: we enrich the machine with a mechanism
that allows us to implement a union-find algorithm to keep forwarder chains
short, so as to decrease the number of messages exchanged.

A Correct Abstract Machine for Safe Ambients 19

The basis of the algorithms we use (e.g., Tarjan’s union-find algorithm [18])
are well-known. However, adapting them to Ambient-like calculi requires some
care, due to the specific operations proposed by these languages.

We provide a formal description of our machine, and we establish a weak
bisimilarity result between Pan and GcPan. We then rely on the correctness
of the Pan w.r.t. the operational semantics of SA, proved in [11], to deduce
correctness w.r.t. SA.

An original aspect of our analysis w.r.t. the proof in [11] is that we compare
two abstract machines, rather than an abstract machine and a calculus. This
involves reasoning modulo ‘administrative reduction steps’ on both sides of the
comparison to establish the bisimulation results. However, the fact that, in the
GcPan, chains of forwarders are contracted using the union-find algorithm pre-
vents us from setting up a tight correspondence between the two machines. This
moreover entails that standard techniques for simplifying proofs of weak bisim-
ilarity results (such as those based on the expansion preorder and up-to tech-
niques) are not applicable. As a consequence, the bisimulation proof in which
the two machines are compared is rather long and complex. Still, deriving the
correctness w.r.t. SA through a comparison with Pan is simpler than directly
proving the correctness of our machine w.r.t. SA. This holds because Pan and
GcPan are both abstract machines, with a number of common features.

We believe that our study can also be of interest outside Ambient-based
formalisms. For instance, the use of forwarders is common in distributed pro-
gramming (see e.g. [7, 9]). However, little attention has been given to formal
specification and correctness proofs of the algorithms being applied. The formal-
isation of the management and optimisations of forwarders that we provide and,
especially, the corresponding correctness proof should be relevant elsewhere.

Outline of the paper. We present the design principles of the GcPan in Sect. 2.
We then give the formal definition of the machine in Sect. 3, and describe the
correctness proof in Sect. 4. Sect. 5 gives concluding remarks.

The Machine: Design Principles

We introduce the Safe Ambients (SA) calculus [14] and the Pan abstract ma-
chine [11]. We then present our ideas to remedy to some inefficiencies of Pan.

.1 Safe Ambients

The SA calculus is an extension of the Mobile Ambients calculus [6] in which a
tighter control of movements is achieved though co-capabilities. The four main
reduction rules are:

a[in b.P | Q] | b[in b.R | S] �−→ b[a[P | Q] | R | S] (IN)
b[a[out b.P | Q] | out b.R | S] �−→ a[P | Q] | b[R | S] (OUT)

open b.P | b[open b.Q | R] �−→ P | Q | R (OPEN)
〈M〉 | (x)P �−→ P{M/x} (COM)

1

1

20 D. Hirschkoff, D. Pous, and D. Sangiorgi

Co-capabilities and the use of types (notably those for single-threadedness)
make it possible to exclude grave interferences, that is, interferences among pro-
cesses that can be regarded as programming errors (as opposed to an expected
form of non-determinism). A single-threaded (ST) ambient can engage in at most
one external interaction, at any time its local process has only one thread (or
active capability). In the sequel, when mentioning well-typed processes, this will
be a reference to the type system of [14]. One of the benefits of the absence of
grave interferences is that it is possible to define simpler abstract machines and
implementations for ambient-based calculi: some of the synchronisation mecha-
nisms needed to support grave interferences in a distributed setting [10] are not
necessary (other possible benefits of SA, concerning types and algebraic theory,
are discussed in [14]).

The modifications that yield typed SA have also computational significance.
In the Mobile Ambient interaction rules, an ambient may enter, exit, or open
another ambient. The latter ambient undergoes the action; it has no control on
when the action takes place. In SA this is rectified: a movement is triggered only
if both participants agree. Further, the modifications do not seem to exclude
useful programming examples. In some cases the SA programs can actually be
simpler, due to the tighter control over interferences. We refer to [14] for details.

.2 The Pan

The Pan [11] separates the logical distribution of ambients (the tree structure
given by the syntax) from their physical distribution (the actual sites they are
running on). An ambient named n is represented as as a located agent h: n[P]k,
where h is the physical location, k the location of the parent of the ambient, and
P is its local process. There can be several ambients named n, but a location h
uniquely identifies an ambient. The physical distribution is flat, so that the SA
process a[b[c[] | P] | d[Q]] is represented by the parallel composition (also called
net) h1: a[]root ‖ h2: b[P]h1 ‖ h3: c[]h2 ‖ h4: d[Q]h1 . For the sake of simplicity,
and when this does not lead to confusion, we sometimes use a to refer to the
location of an ambient named a.

In the Pan, an ambient has only access to its parent location and to its
local process: it does not know its sub-ambients. This simplifies the treatment
of ambient interactions: communication between locations boils down to the
exchange of asynchronous messages (while manipulating lists of child locations
would mean setting many synchronisation points along computation).

In the Pan an ambient interaction is decomposed into three steps: an ambient
that wants to move first sends a request message to its parent and enters in wait
state. The father ambient then looks for a valid match to this request, and, upon
success, sends appropriate completion messages back, using the location names
contained in the request messages. The scenarios corresponding to the three kinds
of movement are depicted in Fig. 1, where white squares (resp. grey squares) rep-
resent locations (resp. locations in wait state), and arrows indicate messages.

We remark that, for In and Out moves, the decision is taken by the parent
of the moving ambient. Also note that in the Out move, the grandparent, that

1

A Correct Abstract Machine for Safe Ambients 21

Fig. 1. Simulation of the SA reductions by the Pan

actually receives a new child, does not take part in any interaction: this follows
the design of Pan, in which the relation between parent and child ‘goes upwards’.
Moreover, performing an In or Out movement does not trigger any physical
migration in the Pan, only the logical distribution of ambients is affected.

On the other hand, in an Open move, the code of the process that is local
to the ambient being opened (a in Fig. 1) is sent to the parent ambient (via a
reg message). Indeed, b has no access to its children, and hence it cannot inform
them to send their requests to b instead of a. The solution adopted in the Pan
is to use forwarders: any message reaching a will be routed to b by an agent
represented by a triangle in Fig. 1, and denoted by ‘h � k’ in the following (h
and k being the locations associated respectively to a and b).

The logical structure of the Pan is hence a tree whose nodes are either located
ambients or forwarders. Request (resp. completion) messages are transmitted
upwards (resp. downwards) along the tree.

The design ideas that we have exposed entail two major drawbacks in the
execution of the Pan: persistence of forwarders (even when there are no sub-
ambients and therefore no message can reach the forwarder), and long forwarder
chains which generate an overload in terms of network traffic.

.3 The GcPan

We now explain how we address the problems exposed above, and what influence
our choices have on the design of the Pan.

Counters. A forwarder can be thought of as a service provided to the children
of an opened ambient. Our aim is to be able to bring this service to an end
once there are no more children using it. At the same time, we wish to preserve
asynchrony in the exchange. For this, GcPan agents are enriched with a kind
of reference counter. Forwarders have a finite lifetime, at the end of which they
are garbage collected. The lifetime of a forwarder intuitively corresponds to the
number of locations that point to it. A counter is decremented each time a

1

22 D. Hirschkoff, D. Pous, and D. Sangiorgi

Fig. 2. Depth and local counting Fig. 3. Problem with depth counting

message is forwarded. If the counter is zero, then the forwarder is a leaf in the
logical structure of the net and can safely be removed.

We can think of two ways of associating a lifetime to a forwarder (Fig. 2):

– (depth counting) The most natural idea is probably to decorate each located
ambient with the number of immediate sub-ambients it has. In doing this, we
ignore forwarders, because request messages that are routed via forwarders
can only be emitted by located ambients. This solution seems however dif-
ficult to implement, due to the asynchrony in the model. This is illustrated
by Fig. 3: if the ambient marked ‘*’ is opened, the counters along the whole
forwarders chain should be updated before any of the children can send a
message.

– (local counting) In our approach, we only consider the immediate children of
a location (hence the name local), including forwarders. As a consequence, we
may well have the situation where several sub-ambients are ‘hidden’ under a
forwarder, so that the counter at a given location has no direct relationship
with the number of sub-ambients. The difficulty described above does not
arise in this setting: the forwarders chain remains unaffected by the opening,
a located ambient becomes a forwarder, and this does not affect the counting.

Synchronisation Problems and Blocked Forwarders. In the local ap-
proach, one has to be careful in transmitting request messages. Consider for
instance the forwarder marked ‘*’ on the right of Fig. 2: each ambient marked
with a circle can send a request message. The intermediate forwarder cannot
forward directly these two requests, since the ‘*-forwarder’ is willing to handle
only one message. In the GcPan, an agent can send only one message to a given
forwarder, and whenever this message is sent, the agent commits to relocate
itself if the agent it was talking to turns out to be a forwarder.

Implementing this policy is easy for located ambients, that enter a wait state
just after emitting a request message. We only have to decorate completion mes-
sages with the appropriate information for relocation. For forwarders, we need
to devise a similar blocking mechanism: once a forwarder has transmitted a re-
quest message, it enters a blocked state and waits for a go� completion message,
which contains the name of the location to which the next request should be for-
warded. Fig. 4 illustrates this (blocked forwarders are represented by reversed,
grey triangles): message {N} is emitted by the grey ambient, and then routed
towards the parent location, which has the effect of blocking forwarders along

A Correct Abstract Machine for Safe Ambients 23

Fig. 4. Relocation of forwarders

the way. When {N} reaches the parent ambient, go� messages are generated so
that forwarders can resume execution, just below the parent ambient. This way,
short communication paths between locations are maintained: at the end of the
scenario, message {M} is closer to its destination, without having been routed
yet. The technique we use is based on Tarjan’s union-find algorithm [18].

Remark 1 (Communication protocols). We comment on the way messages are
transmitted in the GcPan:

– (race situations) Having blocked forwarders leads to race situations: consider
the scenario of Fig. 4, where messages {M} and {N} are sent at the bottom
of a chain of forwarders. When {N} goes through the lowest forwarder, {M}
has to wait for the arrival of the former at the top of the chain, so that
a go� message is emitted to rearrange forwarders (following the union-find
algorithm). The loss, from {M}’s point of view, is limited: once {N} has
entered the parent location, {M} can reach the latter in three steps (the
go� message plus two routing steps).

– (relocation strategy) In the GcPan, the ambient that sits at the end of a
forwarder chain broadcasts a relocation message (go�) to all blocked for-
warders in the chain. In a previous version of our machine, this message was
propagated back along the chain, unblocking the forwarders in a sequential
fashion. We prefer the current solution because it brings more asynchrony
(race situations introduced a delay of n + 2 because the relocation message
had to go trough the whole chain in order to unblock all forwarders). On
the other hand, request messages carry more information in our approach
(we need to record the set of forwarders that have been crossed). However,
in practise, we observe that long chains of forwarders are very unlikely to be
produced in our machine, thanks to the contraction mechanism we adopt.
Consequently, such messages have in most cases a rather limited size.

Updating Counters Along SA Movements. Going back to the GcPan tran-
sitions corresponding to the basic SA moves (the match transitions of Fig. 1), we
need to be able to maintain coherent counters along the three kinds of movement.
This is achieved as follows (the names we use correspond to Fig. 1):

In: The overall result of the transition will be that c decrements its counter, and
b increments its counter upon reception of the OKin completion.

Open: counters do not need to be modified.
Out: in the Pan, the match between the capability and the co-capability is

done at b, and the grandparent c is not aware of the movement. In the

24 D. Hirschkoff, D. Pous, and D. Sangiorgi

Fig. 5. Counters along an Out move: first approach

Fig. 6. Counters along an Out move: our approach

GcPan, b decrements its counter, a is unaffected, but, a priori, c has to
increment its counter, since it receives a new child, a.

A possibility would be to let b pass the control on the move along to c, that is
then in charge of sending the completion messages: this solution is represented
in Fig. 5. Adopting this protocol means introducing a new kind of message in
the machine (message DoOut in Fig. 5, from parent to grandparent), and having
two agents in wait state (the child and the parent) while the control is at the
grandparent location.

We chose a different solution, that does not use an additional kind of message
and in which interaction is more local and asynchronous. It is depicted in Fig. 6:
at b, we create a new forwarder that collects the parent (b) and the child (a)
under a unique agent, so that the grandparent counter does not need to be
updated. It may seem rather counterproductive to add a new form of forwarder
creation this way, considering that our goal in designing the GcPan is precisely
to erase as many forwarders as possible. We can however observe that:

– the created forwarder has a lifetime of 2, which is short;
– from the point of view of the implementation, the forwarder is created on

the parent site, so that the extra communication between the parent and the
forwarder will be local.

Formal Definition of the Machine

.1 GcPan Nets

The syntax of the terms of the GcPan (referred to as GcPan nets, or simply
nets) is presented on Table 1. Agents in the GcPan are either located ambients
(hi: n[P]k is the ambient n[P] running at h, whose parent is located at k),
blocked or running forwarders (h�i is a blocked forwarder at h, while h �i k is

2

2

A Correct Abstract Machine for Safe Ambients 25

Table 1. GcPan Syntax

a, b, m, n, .. ∈ Names h, k, .. ∈ Locations p, q, .. ∈ Names ∪ Locations
i, j, .. ∈ N x, y, .. ∈ V ariables

Networks:

A := 0 (empty net)
| Agent (agent)
| h{Msg} (emission)
| A1 ‖ A2 (composition)
| (νp)A (restriction)

Agent := h �i k (forwarder)
| h�i (blocked forwarder)
| hi: n[P]k (located ambient)

Msg := req/E (request)
| compl (completion)

req := in n, h (agent at h wants to enter n)
| in n, h (agent at h, named n, accepts entrance)
| out n, h (agent at h wants to leave n)
| open n, h (agent at h, named n, accepts opening)

compl := go h (request completed, go to h)
| go� h (relocate forwarder to h)
| OKin h (request in completed, go to h)
| mig h (request open completed, migrate to h)
| regs P (add P to the local processes)

Processes:

P := 0
∣∣ P1 | P2

∣∣ (x)P
∣∣ (νn)P

∣∣ X
∣∣ M.P

∣∣ rec X.P
∣∣ M [P]

∣∣ wait.P
∣∣ 〈M〉

∣∣ {req}
M := x

∣∣ n
∣∣ out M

∣∣ in M
∣∣ open M

∣∣ in M
∣∣ open M

∣∣ out M

willing to transmit messages from h to k). In the three cases, the superscript
i ∈ N represents the value of the agent counter.

E denotes a list of locations. A message of the form k{req/E} denotes the
request req, located at k, and having been transmitted through the locations
contained in E. k{req} is an abbreviation for k{req/[]}, and we write h ::E to
denote the list obtained by adding h to E. Reception ((x)P) and restriction
((νx)P) are binders. Given a process P , we let FL(P) stand for the set of free
locations of P . An occurrence in a process P is guarded if it appears under a
prefix or a reception. We suppose that in every process of the form rec X.P , all
occurrences of X in P are guarded.

Other aspects of the syntax of messages are explained in Subsection 3.2.
The definition of structural congruence, ≡, is mostly standard, and omitted.

The only peculiarity is that ≡ does not allow a name restriction to be extruded
out of a located ambient in a transparent way: the net h: n[(νm)(in m)]k is
not equivalent to (νm)h: n[in m]k. Such a transformation is handled using
reduction, and not as a structural congruence rule, because at the level of im-
plementation, generating names that are fresh even for possibly distant agents
involves a nontrivial distributed protocol.

The GcPan (resp. Pan) encoding of a SA process P is written �P �gc (resp.
�P �). �P � is defined in [11], and �P �gc is defined as follows:

26 D. Hirschkoff, D. Pous, and D. Sangiorgi

Definition 1 (Translation from SA to GcPan). Given an SA process P ,
we define: �P �gc � root0: rootname[P]rootparent.

.2 Reduction Rules

Fig. 7 presents the operational semantics of GcPan nets. The following expla-
nations should help in reading the rules and understanding how they implement
the ideas we have discussed above.

Form of the Rules: Rules for emission of request messages and for local re-
ductions have the shape P

k−−→
h:n

P ′ �i M , to denote the fact that process

P , running in ambient n at location h, may liberate message M and evolve into
process P ′, k being the parent location of h. Integer i decorating � records the
increment that has to be brought to h’s counter (cf. rule Proc-Agent below).
� is an abbreviation of �0. When n, h or k are unimportant, we replace them
with ‘-’. We do the same in the rules for consumption of completion messages,
when the parent location of a located ambient is not important.

In rule Local-Com, P{x\M} denotes process P in which x is substituted
with M . In rule Loc-Rcv, we use the following notations, for E = [e1; . . . ; ei]:
E{M} stands for e1{M} ‖ . . . ‖ ei{M}, and #E is i.

Six Kinds of Rules govern the behaviour of a GcPan net, according to the
way SA transitions are implemented in our model.

– Before being able to start interacting, a process might have to allocate new
resources for the creation of new names and for the spawning of new ambi-
ents: this is handled by the rules for creation.

– The translation of a prefixed SA process starts with emitting a request for
interaction, which is expressed by the corresponding four rules for emission
of request messages.

– Request messages are transmitted through forwarders and reach their desti-
nation location via the rules for transmission of request messages.

– Local reductions describe the steps that correspond to SA transitions. Such
reductions do the matching between a capability and the corresponding co-
capability, and generate completion messages.
Notation ≫ is introduced similarly to �, in order to handle the Out move-
ment, that is achieved using rule Proc-Agent’. The subscript k′ denotes
the source location of the created forwarder (we have to adopt a special
treatment for this case because the newly created forwarder is outside the
‘active location’).

– Some rather standard inference rules are used to transform a local reduction
into a transition of the whole GcPan net.
The premises about unguarded ambients insure that all sub-ambients of an
ambient are activated as soon as possible (rule New-Locamb), before any
local reduction takes place — here we exploit the fact that recursions are
guarded, otherwise there could be an infinite number of ambients to create.

2

A Correct Abstract Machine for Safe Ambients 27

Creation
[New-Locamb] hi: m[n[P] | Q]h′ �−→ hi+1: m[Q]h′ ‖ (νk)(k0: n[P]h) k /∈ FL(P)

[New-Res] hi: m[(νn)P]k �−→ (νn)(hi: m[P]k)

Emission of request messages

[Req-In] in m.P
k−−→

h:−
wait.P
 k{in m, h}

[Req-Coin] in n.P
k−−→

h:n
wait.P
 k{in n, h}

[Req-Out] out m.P
k−−→

h:−
wait.P
 k{out m, h}

[Req-Coopen] open n.P
k−−→

h:n
wait.P
 k{open n, h}

Transmission of request messages

[Fw-Send] h �i+1 k ‖ h{req/E} �−→ h �i ‖ k{req/h::E}
[Fw-SendGC] h �1 k ‖ h{req/E} �−→ k{req/E}
[Fw-Reloc] h �i ‖ h{go� k} �−→ h �i k

[Loc-Rcv] hi+1: n[P]k ‖ h{req/E} �−→ hi+#E : n[P | {req}]k ‖ E{go� h}

Local reductions

[Local-Com] 〈M〉 | (x).P −−−−→
−:−

P{x\M}
 0

[Local-In] {in n, h} | {in n, k} −−−−→
h′:−

0
1 h{go k} ‖ k{OKin h′}

[Local-Out] {out n, h} | out n.P
−−−→

−:n
P ≫k′ h{go k′}

[Local-Open] open n.P | {open n, h} −−−−→
h′:−

wait.P
1 h{mig h′}

Inference rules

[Proc-Agent]
P

k−−→
h:n

P ′
s M Q has no unguarded ambient

hi: n[P | Q]k �−→ hi+s: n[P ′ | Q]k ‖ M

[Proc-Agent’]
P

k−−→
h:n

P ′ ≫k′ M Q has no unguarded ambient, k′ /∈ FL(P |Q)

hi: n[P | Q]k �−→ (νk)′(k′ �2 k ‖ hi: n[P ′ | Q]k′ ‖ M)

[Par-Agent]
A �−→ A′

A ‖ B �−→ A′ ‖ B

A �−→ A′

(νp)A �−→ (νp)A′ [Res-Agent]

[Struct-Cong]
A ≡ A′ A′ �−→ A′′ A′′ ≡ A′′′

A �−→ A′′′

Consumption of completion messages

[Compl-Parent] h{go k} ‖ hi: n[P | wait.Q]− �−→ hi: n[P | Q]k

[Compl-Coin] h{OKin k} ‖ hi: n[P | wait.Q]− �−→ hi+1: n[P | Q]k

[Compl-Migr] h{mig k} ‖ hi+1: n[P | wait.Q]− �−→ h �i+1 k ‖ k{reg0 P | Q}
[Compl-Migr’] h{mig k} ‖ h0: n[P | wait.Q]− �−→ k{reg1 P | Q}
[Compl-Reg] h{regs R} ‖ hi+s: n[P | wait.Q]k �−→ hi: n[P | Q | R]k

Fig. 7. Reduction rules

28 D. Hirschkoff, D. Pous, and D. Sangiorgi

– The rules for consumption of completion messages describe how agents re-
sume computation when they are informed that a movement has occurred.

Counting: Counters have to be kept coherent along the transitions of a net.
Intuitively, to understand the counting for an agent located at h, in a given
GcPan configuration, we have to consider:

– the number of non waiting ambient locations that are immediate children of
h (of the form ki: n[P]h);

– the number of child forwarders (k �i h);
– the number of request messages emitted to h (h{req/E});
– the number of completion or relocation messages whose effect will be to

increment the number of immediate children of h (k{go h}, k{go�h}, . . .).

We explain below how our accounting is preserved along the moves:

In: The two brother ambients taking part in an In move (h and k) are
in wait state at the moment when the parent ambient (h′) matches the
corresponding requests. Ambients in wait state are pending, and hence are
not taken into account by the counter of h′. As a consequence, h′ has to
increment its counter in rule Local-In. The role of the completion message
k{OKin h′} is to bring k under h′ (which was its original father in case there
was no forwarder between h and h′). Similarly, h, that will receive h′ as a
new child (message h′{go h} and rule Compl-Parent), also increments its
counter, upon reception of message OKin (rule Compl-Coin).
Out: As previously, the intuition is that the parent (h′) loses a child (h),
and has to decrement its counter, but since this child is in wait state, there
is nothing to do. The freshly created forwarder allows us to keep the grand-
parent counter unaffected: the forwarder hides both parent and child (and
hence the value of its counter is set to two).
Open: The opening location (h′) increments its counter to take into account
the creation of the forwarder (rule Compl-Migr, that lets h, the opened
location, react to a mig completion message). In the case where the counter
of h is null, h has no child: there is no need for such a forwarder, and we
avoid creating it (rule Compl-MigrGC). We must be careful, though, to let
h′ know that it has to undo the increment of its counter, which is achieved
using the flag s decorating the reg message (rule Compl-Reg).

Forwarders Behaviour is defined by the rules for transmission of request mes-
sages. We illustrate these by the following reductions, that show the behaviour
of a message carrying request R traversing three forwarders h1, h2 and h3 to
reach its real target :

h1{R/[]} ‖ h1 �3 h2 ‖ h2 �1 h3 ‖ h3 �4 k ‖ k2: n[P]
�−→ h1 �2 ‖ h2{R/[h1]} ‖ h2 �1 h3 ‖ h3 �4 k ‖ k2: n[P] [Fw-Send]
�−→ h1 �2 ‖ h3{R/[h1]} ‖ h3 �4 k ‖ k2: n[P] [Fw-SendGC]
�−→ h1 �2 ‖ h3 �3 ‖ k{R/[h3::h1]} ‖ k2: n[P] [Fw-Send]
�−→ h1 �2 ‖ h3 �3 ‖ h3{go�k} ‖h1{go�k} ‖ k3: n[P | {R}] [Loc-Rcv]
�−→ h1 �2 ‖ h1{go�k} ‖ h3 �3 k ‖ k3: n[P | {R}] [Fw-Reloc]
�−→ h1 �2 k ‖ h3 �3 k ‖ k3: n[P | {R}] [Fw-Reloc]

A Correct Abstract Machine for Safe Ambients 29

First, the message gets transmitted by forwarder h1, which decrements its
counter, adds its name to the list decorating the message before transmission to
h2, and blocks. In the second step of transmission, since h2’s counter is equal to
one, h2 gets garbage collected, and the message is passed to h3, which transmits
it to k (along the lines of the first step). Then the target location k receives the
message, and reacts by broadcasting a go�k relocation message to each agent
that has been registered in the list decorating the message. k’s counter is incre-
mented by the size of this list minus one: all forwarders except the uppermost
one will become new direct children of the parent location (note that in the
case of an empty chain of forwarders, we decrement the counter because the
direct child is in wait state, and hence pending). Finally, the blocked forwarders
react to the relocation messages by moving to their new location, and resume
computation.

Correctness of the Machine

We establish the correctness of our machine by showing a weak barbed bisimi-
larity result with the Pan. Although the overall structure of the proof has sim-
ilarities with [11], there are important differences. First of all, we compare two
abstract machines, rather than a machine and a calculus as in [11]. The corre-
spondence we can make between two configurations of the Pan and the GcPan
is fairly coarse (barbed bisimilarity), because the machines route messages and
manage forwarders differently.

Also, a few results, that are crucial in the proof for Pan [11] do not hold for
GcPan. For instance in Pan, we have

(νh)(h � k ‖ A) � A{k\h} ,

where � stands for expansion, a behavioural preorder that guarantees that, intu-
itively, if P � Q, P exhibits the same behaviour as Q modulo some extra internal
computation (expansion is not explicitly mentioned in [11], but the technique
is essentially equivalent). This makes it possible, using weak bisimulation up to
expansion, to factorise reasoning about forwarders and to considerably reduce
the size of the relations needed to establish bisimilarity results.

Unfortunately the corresponding expansion law does not hold in our setting.
This is due to the way the union-find algorithm works: rearranging forwarders
entails an initial cost, and generates race situations. This cost is later compen-
sated by the fact that messages are transmitted on shorter chains. This kind of
delayed improvement cannot be captured using expansion because P � Q if Q
is ‘better than P ’ at every step (see [12] for a proof of the non-expansion result).

The notion of equivalence we adopt is barbed bisimulation [15], that we de-
note ≈. Here we use it to compare states belonging to different transition sys-
tems.

In GcPan the observability predicates ⇓n (where n is any name) are defined
as follows. A is observable at n means, intuitively, that A contains an agent n
that accepts interactions with the external environment. Formally: A ↓n if A ≡
(νp)

(
root: rootname[{M,h} | P]rootparent ‖ A′) where M ∈ {in n, open n}

3

30 D. Hirschkoff, D. Pous, and D. Sangiorgi

and n /∈ p (here p stands for a set of names or localities). Then, using �=⇒ for
the reflexive and transitive closure of �−→, we write A ⇓n if A �=⇒↓n. In SA and
Pan, observability is defined similarly (see [11]). Our main results are:

Theorem 1. For any well-typed SA process P , we have �P � ≈ �P �gc.

Corollary 1. Let P be a well-typed SA process, then �P �gc ≈ P .

Proof: By [11], we have �P � ≈ P . Theorem 1 allows us to conclude. ♦
The above corollary implies, for instance, that for all n, P ⇓n iff �P �gc ⇓n.
For lack of space, we only give the main intuitions behind the proof of The-

orem 1 (the reader is referred to [12] for details). The first step is to introduce a
notion of well-formed net, and to show that it is preserved by reduction. Well-
formedness allows us to express which nets are ‘reasonable’, in particular w.r.t.
the destination of messages and the value of counters.

In Pan and GcPan, the routing of messages is deterministic and does not
change the bisimilarity class of a net. Therefore, the main idea in introducing
the candidate bisimulation relation to establish Theorem 1 is to define a kind
of normal form for nets, in which all messages are routed to their destination
and the nets in both machines can be compared directly. Based on this, we
derive some preliminary lemmas to show that whenever a message is routed
to its destination in a given configuration of one of the machines, the other
machine can do the same (this might involve some additional transitions in
the GcPan, because, as seen above, race conditions may prevent a message
from being ‘directly routable’). These lemmas are then used in a modular way
to construct the bisimulation proof, that amounts to show that by definition,
processes related by the candidate bisimulation exhibit the same observables
and preserve this property.

Final Remarks

Developments of our machine. Besides ST ambients, the other main type for
SA processes [14] is that of immobile ambients (IM). An immobile ambient is
an ambient that can neither move (in or out other ambients), nor be opened
(open co-capability). Such an ambient is not necessarily single-threaded. We
have designed an extension of the GcPan [12] to handle immobile ambients as
well.

We have also developed a prototype OCaml implementation of the (extended)
GcPan, that is described at [1]. We plan to exploit it to further evaluate the
improvements in terms of efficiency brought by our machine.

Related Work. Cardelli [4, 5] has produced the first implementation, called Am-
bit, of an ambient-like language; it is a single-machine implementation of the
untyped Ambient calculus, written in Java. The algorithms are based on locks:
all the ambients involved in a movement (three ambients for an In or Out
movement, two for an Open) have to be locked for the movement to take place.

4

A Correct Abstract Machine for Safe Ambients 31

In [10], a JoCaml implementation of an abstract machine for Mobile Ambi-
ents, named AtJ, is presented. In Mobile Ambients, there are no co-capabilities,
movements are triggered using only capabilities, and grave interferences arise.
These differences enable considerable simplifications in abstract machines for SA
(Pan, GcPan) and in their correctness proof — see [11] for a detailed compari-
son. Other differences are related to the distinction between logical and physical
movements: in AtJ physical movements are triggered by the execution of in and
out capabilities, whereas in GcPan only open induces physical movement.

[17] presents a distributed abstract machine for the Channel Ambients calcu-
lus, a variant of Boxed Ambients [3]. In Channel Ambients the open primitive –
one of the most challenging primitives for the implementation of Ambient calculi
– does not exist (open is dropped in favour of a form of inter-ambient commu-
nication). Although in the implementation [17] actual movement of code arises
as a consequence of movement of ambients, the phenomenon is not reflected in
the definition of the Channel Ambient calculus. Therefore, the main problems
we have been focusing on do not appear in that setting.

In the Distributed Join calculus [8], migrating join definitions are replaced in
the source space with a forwarder, to route local messages to the join definition
at its new location. This phenomenon is reminiscent of the execution of Open
reductions in our machine.

References

1. GcPan webpage. http://perso.ens-lyon.fr/damien.pous/gcpan.
2. P. Bidinger and J.-B. Stefani. The Kell Calculus: Operational Semantics and Type

System. In Proc. of FMOODS’03, volume 2884 of LNCS, pages 109–123. Springer
Verlag, 2003.

3. M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Proc. TACS 2001,
LNCS 2215, pages 38–63. Springer Verlag, 2001.

4. L. Cardelli. Ambit, 1997. http://www.luca.demon.co.uk/Ambit/Ambit.html.
5. L. Cardelli. Mobile ambient synchronisation. Technical Report 1997-013, Digital

SRC, 1997.
6. L. Cardelli and A. Gordon. Mobile Ambients. In Proc. of FOSSACS’98, volume

1378 of LNCS, pages 140–155. Springer Verlag, 1998.
7. F. Le Fessant, I. Piumarta, and M. Shapiro. An Implementation for Complete,

Asynchronous, Distributed Garbage Collection. In Proc. of PLDI’98, ACM Sigplan
Notices, pages 152–161, 1998.

8. C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, 1998.

9. C. Fournet, F. Le Fessant, L. Maranget, and A. Schmitt. JoCaml: A Language for
Concurrent Distributed and Mobile Programming. In Proc. of Advanced Functional
Programming 2002, volume 2638 of LNCS, pages 129–158. Springer Verlag, 2002.

10. C. Fournet, J.-J. Lévy, and A. Schmitt. An asynchronous, distributed implemen-
tation of mobile ambients. In Proc. of IFIP TCS’00, volume 1872 of LNCS, pages
348–364. Springer Verlag, 2000.

32 D. Hirschkoff, D. Pous, and D. Sangiorgi

11. P. Giannini, D. Sangiorgi, and A. Valente. Safe Ambients: abstract machine and
distributed implementation, 2004. submitted; an extended abstract appeared in
Proc. ICALP’01, volume 2076 of LNCS, pages 408–420, Springer Verlag.

12. D. Hirschkoff, D. Pous, and D. Sangiorgi. An Efficient Abstract Machine for Safe
Ambients. Technical Report 2004–63, LIP – ENS Lyon, 2004.

13. F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proc. 27th
POPL. ACM Press, 2000.

14. F. Levi and D. Sangiorgi. Mobile Safe Ambients. Transactions on Programming
Languages and Systems, 25(1):1–69, 2003. ACM Press.

15. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. 19th ICALP, volume
623 of Lecture Notes in Computer Science, pages 685–695. Springer Verlag, 1992.

16. R. De Nicola, G.L. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans. Software Eng., 24(5):315–330, 1998.

17. A. Phillips, N. Yoshida, and S. Eisenbach. A Distributed Abstract Machine for
Boxed Ambient Calculi. In Proc. of ESOP’04, LNCS, pages 155–170. Springer
Verlag, 2004.

18. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
ACM, 22(2):215–225, 1975.

19. A. Unyapoth and P. Sewell. Nomadic Pict: Correct Communication Infrastructure
for Mobile Computation. In Proc. of 28th POPL, pages 116–127. ACM Press, 2001.

A Process Calculus for QoS-Aware Applications�

Rocco De Nicola1, Gianluigi Ferrari2, Ugo Montanari2,
Rosario Pugliese1, and Emilio Tuosto2

1 Dipartimento di Sistemi e Informatica,
Università di Firenze, Via C. Lombroso 6/17, 50134 Firenze – Italy

{denicola, pugliese}@dsi.unifi.it
2 Dipartimento di Informatica,

Largo Pontecorvo 1, 56127 Pisa – Italy
{giangi, ugo, etuosto}@di.unipi.it

Abstract. The definition of suitable abstractions and models for identifying, un-
derstanding and managing Quality of Service (QoS) constraints is a challenging
issue of the Service Oriented Computing paradigm. In this paper we introduce a
process calculus where QoS attributes are first class objects. We identify a mini-
mal set of primitives that allow capturing in an abstract way the ability to control
and coordinate services in presence of QoS constraints.

1 Introduction

Service Oriented Computing (SOC) [14] has been proposed as an evolutionary paradigm
to build wide area distributed systems and applications. In this paradigm, services are
the basic building blocks of applications. Services are heterogeneous software compo-
nents which encapsulate resources and deliver functionalities. Services can be dynami-
cally composed to provide new services, and their interaction is governed in accordance
with programmable coordination policies. Examples of SOC architectures are provided
by WEB services and GRID services.

The SOC paradigm has to face several challenges like service composition and adap-
tation, negotiation and agreement, monitoring and security. A key issue of the paradigm
is that services must be delivered in accordance with contracts that specify both client
requirements and service properties. These contracts are usually called Service Level
Agreements (SLA). SLA contracts put special emphasis on Quality of Service (QoS)
described as a set of non functional properties concerning issues like response time,
availability, security, and so on.

The actual metric used for evaluating QoS parameters is heavily dependent on the
chosen level of abstraction. For instance, when designing network infrastructures, per-
formance (with some probabilistic guarantees) is the main QoS metric. When describ-
ing multimedia applications, visual and audible qualities would be the crucial param-
eters. Instead, for final users, the perceived QoS is not just a matter of performance

� Work partially supported by EU-FET Project AGILE, EU-FET Project MIKADO, EU-FET
Project PROFUNDIS, and MIUR project SP4 Architetture Software ad Alta Qualità di
Servizio per Global Computing su Cooperative Wide Area Networks.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 33–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 R. De Nicola et al.

but also involves availability, security, usability of the required services. Moreover, the
user would like to have a certain control on QoS parameters in order to customize
the invoked services, while network providers would like to have a strict control over
services. The resolution of this tension will be inherently dynamic depending on the
run-time context.

In our view, it is of fundamental importance to develop formal machineries to de-
scribe, compose and relate the variety of QoS parameters. Indeed, the formal treat-
ment of QoS parameters would contribute to the goal of devising robust programming
mechanisms and the corresponding reasoning techniques that naturally support the SOC
paradigm. In this paper we face this issue by introducing a process calculus where QoS
parameters are used to control behaviours, i.e. QoS parameters are first class objects.

The goal of the present paper is to identify a minimal set of constructs that provide
an abstract model to control and coordinate services in presence of QoS constraints.
This differentiates our proposal from other approaches. In particular, process calculi
have been designed to model QoS in terms of performance issues (e.g., the probabilistic
π-calculus [15]). Other process calculi have addressed the issues of failures and failure
detection [13]. Process calculi equipped with powerful type systems have also been put
forward to describe the behavioral aspects of contracts [11, 10, 9].

Some preliminary results towards the direction of this paper can be found in [3, 4].
Cardelli and Davies [3] introduced a calculus which incorporates a notion of communi-
cation rate (bandwidth) together with some programming constructs. In [17, 8, 4] a (hy-
per)graph model to control explicitly QoS attributes has been introduced. The graphical
semantics allows us to describe interactions in accordance with the agreed QoS level
as optimal paths in the model thus creating a bridge between formal models and the
protocols used in practice. Here, we elaborate on [4] with the aim of bridging further
the gap between formal theories and the pragmatics of software development.

Fundamental to our approach is the notion of QoS values; a QoS value is a tuple of
values and each component of the tuple indicates a QoS dimension. The values of the
fields can be of different kind, for instance, the value along the latency dimension could
be a numerical value but the security values could have the form of sets of capabilities
indicating the permissions to perform some operations on given resources, e.g. read or
write a file. Compositionality of QoS values is therefore a key element of our approach:
the composition of QoS values will be a QoS value as well. Indeed, one might want to
build a QoS value based on latency, availability and access rights of a service.

To guarantee compositionality of QoS parameters, we shall require QoS values to be
elements of suitable algebraic structures, called constraint semirings (c-semirings, for
short), consisting of a domain and two operations, the additive (+) and the multiplica-
tive (·) operations, satisfying some properties. The basic idea is that the former is used to
select among values and the latter to combine values. C-semirings were originally pro-
posed to describe and program constraints problems [2]. Several semirings have been
proposed to model QoS issues. For instance, general algorithms for computing shortest
paths in a weighted directed graph are based on the structure of semirings [12]. The
modelling of trustness in an ad hoc networks exploits the semiring structure [16]. C-
semiring based methods have a unique advantage when problems with multiple QoS

A Process Calculus for QoS-Aware Applications 35

dimensions must be tackled. In fact, it turns out that cartesian products, exponentials
and power constructions of c-semirings are c-semirings as well.

Our process calculus, KoS , builds on Klaim (Kernel Language for Agent Interac-
tion and Mobility) [5]. Klaim is an experimental kernel programming language specifi-
cally designed to model and program wide area network applications with located ser-
vices and mobility. Klaim naturally supports a peer-to-peer programming model where
interacting peers (nodes in Klaim terminology) cooperate to provide common sets of
services. KoS primitives handle QoS values as first class entities. For instance, an
overlay network is specified by creating nodes (nodeκ〈t〉) and new links (s

κ
� t) and

indexing them with the QoS value κ of the operation. Thus, for instance the expression
s
κ
� t states that s and t are connected by a link whose QoS parameters are given by κ.

The operational semantics of KoS ensures that the QoS values are respected dur-
ing system evolution. Suppose for example that node s would interact by an operation
whose QoS value is κ′ with node t along the link s

κ
� t. This interaction will be allowed

provided that the SLA contract of the link is satisfied, namely, κ′ ≤ κ.
We shall illustrate the expressiveness of the calculus through several examples. This

can appear as an exercise in coding a series of linguistic primitives into our calculus
notation, but it yields much more because the encodings offer a practical illustration
of how to give a precise semantic interpretation of QoS management. Indeed, the main
contribution of this paper is the careful investigation of a minimal conceptual model
which provides the basis to design programming constructs for SOC. We focus on the
precise semantic definition of the calculus because it is a fundamental step to design
programming primitives together with methods supporting the correct usages of the
primitives and the formal verification of the resulting applications.

The rest of the paper is organized as follows. In the next section we illustrate a
motivating example and, in Section 3, we introduce syntax and semantic of KoS . In
Section 4, we deal with expressivity issues and in the subsequent one we present a
more complex scenario and show how it can be tackled by following our approach.

2 A Motivating Example

Before introducing the formal definition of KoS , we prefer to show its usefulness by
modelling a realistic, but simplified, example. Our purpose here is to give a flavour of
the underlying programming paradigm. We consider a scenario where n servers provide
services to m clients and we focus on balancing the load of the servers. Clients and
servers are located on different nodes; a generic client node has address ci while a
generic server node has address s j. Clients issue requests to servers by spawning process
R from their node to a server node. For simplicity, we abstract from the actual structures
of QoS values, and we assume that clients and servers “knows” each other and cannot
be created dynamically. Adding dynamicity is straightforward.

A generic client node Mi, for i ∈ {1, . . . ,m}, is described by the following term:

Mi
def
= ci :: 〈s1, κ1〉 | . . . | 〈sn, κn〉 | !Cδ.

Intuitively, Mi represents a network component with address ci, containing tuples of the
form 〈s j, κ j〉, for j ∈ {1, . . . , n}, and running process !Cδ. Each tuple 〈s j, κ j〉 represents

36 R. De Nicola et al.

the load κ j of the server s j that the client perceives, thus the whole set of tuples repre-
sents a sort of directory service containing the SLA contract with the available servers.
Operator ! is the replication operator: !Cδ represents an unbounded number of concur-
rent copies of process Cδ. Finally, process Cδ specifies the behaviour of the client and
is defined as follows:

Cδ
def
= (?u, ?v).εv[R]@u.conv·δ〈u〉.〈u, v · δ〉.

Initially, the client selects a server by non-deterministically inputting a tuple by means
of the operation (?u, ?v). Once the input is executed, variables u and v are instantiated
with the server name and its load, respectively. Afterward, the client tries to spawn
process R to the selected server u. Execution of εv[R]@u takes place only if a “suitable”
link toward u exists. What here is meant for “suitable” is that the load v of the client
must not exceed the value on the link. Then, since remote spawning consumes the links
traversed during the migration, the client attempts to re-establish a connection with
u by executing conv·δ〈u〉. Notice that the operation conv·δ〈u〉 is used by the client to
ask for a link with a QoS value increased of a quantity δ. Once the connection has
been established, the client updates its SLA view of the servers load by inserting tuple
〈u, v · δ〉 into its local directory service.

A generic server Nj, for j ∈ {1, . . . , n}, is described as follows:

Nj
def
= s j :: 〈h〉 | 〈c1, κ

′
1〉 | . . . | 〈cm, κ

′
m〉 |

!(S c1 s j) | . . . | !(S cm s j).

Similarly to clients, Nj encapsulates a directory service containing SLA data about the
clients. This directory service is formed by tuples of the form 〈ci, κ

′
i 〉, for i ∈ {1, . . . ,m},

each recording the QoS value κ′i assigned to the link towards node ci, and by the current
load of the server, represented by a tuple containing a natural number 〈h〉. For any
client ci there is a load manager S ci s j which decides whether a link with ci can be
re-established or not. Process S c s is written as follows:

S c s
def
= (?l).〈l〉.If s l < max

then (c, ?v).acc f (v,l)〈c〉.〈c, f (v, l)〉.

The load manager repeatedly acquires the tuple 〈h〉 (current load) and compares it with
the maximum admissible load (max). Then, the process decides whether to accept re-
quests for new connections coming from the client: the link is created only when h is
less than max. The QoS value of the new link is computed by a function f and depends
on both the old QoS value and the current load.

Finally, we assume that process R representing clients service requests is a sequen-
tial process of the form

R
def
= (?x).〈x + 1〉 . . . actual request . . . (?y).〈y − 1〉,

Namely, R has a prologue and an epilogue which respectively increments and decre-
ments the counter that measures the server load.

A Process Calculus for QoS-Aware Applications 37

3 The Calculus

This section introduces KoS a calculus that provides a set of basic primitives for
modelling and managing QoS values. A KoS term represents a net made of nodes
which model places where computations take place or where services can be allo-
cated/accessed. We assume as given a set of nodes S (ranged over by s, t, . . .) that
are connected by links representing the middleware infrastructure, i.e., the interactions
between two nodes can take place only if they are connected by a sequence of links.
Links are weighted by “measures” that represent the QoS value of the connections.

3.1 QoS Values as Constraint Semirings

We assume existence of a set of QoS values C, ranged over by κ, that forms a constraint
semiring [2] (c-semiring).

Definition 1 (C-semiring). An algebraic structure 〈A,+, ·, 0, 1〉 is a c-semiring if A is
a set (0, 1 ∈ A), and + and · are binary operations on A that satisfy the following
properties:

– + (additive operation) is commutative, associative, idempotent, 0 is its unit element
and 1 is its absorbing element;

– · (multiplicative operation) is commutative, associative, distributes over +, 1 is its
unit element, and 0 is its absorbing element.

Operation + induces a partial order on A defined as a ≤A b ⇐⇒ a + b = b. The
minimal element is thus 0 and the maximal 1. a ≤A b means that a is more constrained
than b.

An example of c-semiring is 〈ω,min,+,+∞, 0〉, where ω is the set of natural num-
bers, the minimum between natural numbers is the additive operation and the sum over
natural numbers is the multiplicative operation. Notice that in this case the partial order
induced by the additive operations is the inverse of the ordinary total order on natu-
ral numbers. Another example of c-semiring is 〈℘({A}),∪,∩, ∅, A}〉, where ℘(A) is the
powerset of a set A, and ∪ and ∩ are the usual set union and intersection operations.
KoS does not take a definite standing on which of the many c-semiring structures

to use. The appropriate c-semiring to work with should be chosen, from time to time,
depending on the kind of QoS dimensions one intends to model. Below, we introduce
some c-semiring structures together with the QoS dimension they handle:

– 〈{true, false},∨,∧, false, true〉 (boolean): Network and service availability.
– 〈Real+,min,+,+∞, 0〉 (optimization): Price, propagation delay.
– 〈Real+,max,min, 0,+∞〉 (max/min): Bandwidth.
– 〈[0, 1],max, ·, 0, 1〉 (probabilistic): Performance and rates.
– 〈[0, 1],max,min, 0, 1〉 (fuzzy): Performance and rates.
– 〈2N ,∪,∩, ∅,N〉 (set-based, where N is a set): Capabilities and access rights.

C-semiring based methods have a unique advantage when problems with multiple
QoS criteria must be tackled. In fact, it turns out that cartesian products, exponentials
and power constructions of c-semirings are c-semirings as well.

38 R. De Nicola et al.

Table 1. KoS Syntax

N,M ::= Nets
0 Empty net

| s :: P Located Process
| s

κ
� t Link

| (ν s)N Node restriction
| N ‖ M Net composition

P,Q ::= Processes
0 Null process

| γ.P Action prefixing
| (ν s)P Restriction
| P | Q Parallel process
| !P Iteration

γ ::= Prefixes
nodeκ〈t〉 Node creation

| conκ〈t〉 Connection request
| accκ〈t〉 Connection acceptance
| (T) Input
| 〈v1, . . . , vn〉 Output
| εκ[P]@t Remote process spawning

T ::= ε | v | ?x | ¬v | T,T Input templates

3.2 Syntax

The syntax of KoS is presented in Table 1. Other than the existence of C, existence of
a set of namesN (ranged over by r, s and t) is assumed. First-class values, ranged over
by u and v, can be either QoS values or names.

The syntax for nets permits the (possibly empty) parallel composition of located
processes and links. A located process s :: P consists of a name s, called the address
of P, and the process P running at s. A link s

κ
� t states that s and t are connected by

a link whose QoS value is κ. The net (ν s)N is a net that declares s as restricted in N,
which is the scope of the restriction.

The syntax for processes is standard. The symbol 0 overloads the symbol for empty
nets; however, the contexts will clarify whether it refers to processes or nets. Prefixes γ
encompass actions for

– creating a node (nodeκ〈t〉) or a connection to/from another node (conκ〈t〉, accκ〈t〉),
– exchanging tuples of values ((T) and 〈v1, . . . , vn〉),
– remotely spawning a process (εκ[P]@t).

Links are oriented, indeed s
κ
� t allows a process to be spawned from s to t but not the

viceversa. The creation of new links is obtained by synchronising actions conκ〈t〉 and
accκ′ 〈s〉 performed at s and t, respectively.

Communication involves exchange of tuples (i.e. finite sequences) of values that are
retrieved via pattern matching. Input prefixes use templates T , namely finite sequences
of values or placeholders (written as ?x). Execution of an output prefix causes gener-

A Process Calculus for QoS-Aware Applications 39

ation of a tuple of values v1, . . . , vn. Both the empty template and the empty tuple are
denoted by ε. Hereafter, we let t range over tuples of values and, given a template T
and a tuple t, we let Ti and ti denote the i-th element of T and t, respectively.

The placeholder ?x binds the occurrences of x in the rest of the template, namely,
in ?x,T , the scope of ?x is T . The set bn(T) collects the names bound in T while
fn(T) denotes the names having free occurrences in T ; their definitions are standard.
We consider as equivalent those templates that differ only for renaming of bound names.
The template ¬v tests for inequality, namely, it requires the matching tuple to contain
a value different from v (see Definition 7). The only binders of the calculus are the
placeholder ?x and the node restriction ν s. Note that node names might be QoS values
(e.g., for specifying access rights), hence, we write fn(κ) to denote the names appearing
in κ. Moreover, we require that QoS values do not bind node names, therefore, bn(κ)
is empty, for any QoS value κ. We formally define free and bound names of nets and
processes as follows. In the following we write fn(,) (resp. bn(,)) as an abbreviation
for fn() ∪ fn() (bn() ∪ bn(), respectively).

Definition 2 (Free and bound names). The free names of prefix actions are defined
as expected: fn(γ) = fn(κ) ∪ {s}, if γ ∈ {nodeκ〈s〉, conκ〈s〉, accκ〈s〉}, fn((T)) = fn(T),
fn(〈v1, . . . , vn〉) = fn(v1) ∪ . . . ∪ fn(vn) and fn(εκ[P]@s) = fn(κ, P) ∪ {s}. Bound names
of γ are defined similarly, e.g., bn((T)) = bn(T) and bn(εκ[P]@s) = bn(P) (while in the
remaining cases is the empty set).

The sets fn() and bn() of free and bound names of processes and nets are defined
accordingly. The only non-standard case is that for links where we let fn(r

κ
� s) =

fn(κ) ∪ {s, r} and bn(r
κ
� s) = ∅.

As usual, processes or nets obtained by α-converting bound names are considered
equivalent. Moreover, we assume the following structural congruence laws.

Definition 3 (Structural congruence). The relation ≡P⊆ P×P is the least equivalence
relation on processes (containing α-conversion and) satisfying the following axioms:

– (P, | , 0) is a commutative monoid;
– !P ≡P P | !P.

The relation ≡⊆ N×N is the least equivalence relation on nets (containing α-conversion
and) satisfying the following axioms:

– (N, ‖ , 0) is a commutative monoid;
– if P ≡P Q then s :: P ≡ s :: Q;
– s :: P | Q ≡ s :: P ‖ s :: Q;
– s :: (ν t)P ≡ (ν t)(s :: P), if t � s;
– (ν s)(N ‖ M) ≡ N ‖ (ν s)M, if s � fn(N);
– (ν s)(ν t)N ≡ (ν t)(ν s)N.

The last axiom of Definition 3 states that the order of the restrictions is irrelevant, hence
we can write (ν s1, . . . , sn)N instead of (ν s1) . . . (ν sn)N.

40 R. De Nicola et al.

3.3 Semantics

We define the operational semantics of KoS by means of a labelled transition system
that describes the evolution of nets. In the semantic clauses, it is useful to define a
function that, given a net N, yields the names that are used as node addresses in the net.

Definition 4 (Addresses). Let addr be the function given by:

addr(N) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∅, N = 0 ∨ N = s

κ
� t

{s}, M = s :: P
addr(M) \ {s}, N = (ν s)M
addr(N1) ∪ addr(N2), N = N1 ‖ N2.

Notice that addr(N) ⊆ fn(N), but not necessarily addr(N) = fn(N), for instance if
N = s :: 〈t〉.0 then fn(N) = {s, t} while addr(N) = {s}. Basically, addr(N) collects
those free names of N that effectively occur in N as address of some node.

Definition 5 (Localized Actions). Let γ be a prefix, then the localized prefix γ@s is
defined as follows:

γ@s =

{
s εs
κ〈P〉@t if γ = εκ〈P〉@t

s γ otherwise

The syntax of localized actions α is given below:

α ::= γ@s | s link t | τ
We let fn(γ@s) = fn(γ) ∪ {s} and bn(γ@s) = bn(γ).

Definition 6 (Nets semantics). The operational semantics of nets is given by the rela-
tion −→> ⊆ N × (α × C) × N. Relation −→> is defined by the rules in Table 2 and the

following standard rules:

(res)
N
τ−−→
κ
> M

(ν s)N
τ−−→
κ
> (ν s)M

(str)
N ≡ N′

α−−→
κ
> M′ ≡ M

N
α−−→
κ
> M

(par)
N
α−−→
κ
> N′

if

{
bn(α) ∩ fn(M) = ∅ ∧
(addr(N′) \ addr(N)) ∩ addr(M) = ∅N ‖ M

α−−→
κ
> N′ ‖ M

Intuitively, N
α−−→
κ
> M states that the net N can perform the transition α to M by exposing

the QoS value κ. Clearly, all local transitions (communications, node or link creations)
have unitary QoS value, while the only non-trivial QoS values appear on the transitions
that spawn processes or show the presence of links. Let us give more detailed comments
on the rules in Table 2.

Rule (link) states that a link within a net disappears once it has been used. These
transitions are used in the premises of rules (route) and (land) for establishing a path
between two nodes such that a remote evaluation can take place.

A Process Calculus for QoS-Aware Applications 41

Table 2. Network semantics

(link) s
κ
� t

s link t−−−−−−→
κ
> 0

(pref) s :: γ.P
γ@s−−−−→

1
> s :: P, γ � {nodeκ〈t〉, conκ〈s〉, accκ〈s〉}

(node) s :: nodeκ〈t〉.P
node〈t〉−−−−−−→

1
> s :: P ‖ s

κ
� t ‖ t :: 0, s � t

(con)
N

s conκ〈t〉−−−−−−−→
1
> N′ M

t accκ′ 〈s〉−−−−−−−−→
1
> M′

κ ≤ κ′
N ‖ M

τ−−→
1
> N′ ‖ M′ ‖ s

κ
� t

(leval) s :: εκ[Q]@s.P
τ−−→
1
> s :: P ‖ s :: Q

(route)
N

r εs
κ〈P〉@t−−−−−−−−→
κ′
> N′ M

r link r′−−−−−−−→
κ′′
> M′ κ′ · κ′′ ≤ κ

N ‖ M
r′ εs

κ〈P〉@t−−−−−−−−−→
κ′ · κ′′

> N′ ‖ M′
, t � r′

(land)
N

r εs
κ〈P〉@t−−−−−−−−→
κ′
> N′ M

r link t−−−−−−→
κ′′
> M′ κ′ · κ′′ ≤ κ

N ‖ M
τ−−−−→

κ′ · κ′′
> N′ ‖ M′ ‖ t :: P

(comm)
N

s (T)−−−−→
1
> N′ M

s t−−−→
1
> M′ �� (T, t) = σ

N ‖ M
τ−−→
1
> N′σ ‖ M′

Rule (pref) accounts for action prefixing; node creation, however, deserves a specific
treatment that is defined in rule (node). The side condition of (pref) also states that no
link from s to itself can be created. Indeed, we assume that transitions that involve only
the local node have unitary QoS value and are always enabled.

Rule (node) allows a process allocated at s to use a name t as the address of a new
node and to create a new link from s to t exposing the QoS value κ. The side condition
of (par) prevents that new nodes (and links) are created by using addresses of existing
nodes.

Rule (con) adds a new link between two existing addresses s and t; the link is created
only if the processes at s and t satisfy the SLA contract. More precisely, the accepting

42 R. De Nicola et al.

node t is willing to connect only to those nodes that declare a QoS value lower than κ′. If
this condition holds, a new link is added to the net, such link has the QoS value exposed
by s. One can think of s as asking for the connection with at least some characteristics
expressed by κ and t establishes the connection only when it can enforce the requirement
of s, namely κ ≤ κ′.

Rule (leval) states that the local spawning of a process is always enabled while rules
(route) and (land) control process migration and require more detailed explanations. A
remote spawning action εκ[P]@t consists of the migrating process P, the arrival node t
and a QoS value κ expressing that P must be routed on a path exposing a QoS value1 at
most κ. Differently from the local spawning of processes, remote spawning is not always
possible, it is indeed mandatory that the net contains a path of links from the starting
node s to the arrival node t. Moreover, the SLA contract of the path between s and t
must not exceed the value κ that the spawner has declared. Notice that this semantically
describes the SLA agreement on the mobility of processes. This is formally achieved
by rules (route) and (land). More specifically, rule (route) states that, if the migrating
process can go through an intermediate node r and a link from r to a node r′ � t exists,
the QoS value κ′ of the partial path from s to r composed with the value κ′′ of the link
from r to r′ must be lower than κ. If this is the case, a transition can be inferred stating
that P, spawned from s, can go through r′ exposing the QoS value κ′ · κ′′. Rule (land)
is similar to (route) but describes the last hop of P, namely when the target node t is
reached. In this case, P is spawned at t, provided that the QoS value of the whole path
that has been found is lower than κ.

Rule (comm) establishes that a synchronization takes place provided that sender and
receiver are allocated at the same node and that the template and the tuple match accord-
ing to the definition below. Hereafter, we use σ to denote a substitution, i.e. a map from
names to names and QoS values, and σ[σ′] to denote the composition of substitutions,
i.e. the substitution σ′′ defined as follows: σ′′(x) = σ′(x) if x ∈ dom(σ′), σ′′(x) = σ(x)
if x ∈ dom(σ) − dom(σ′).

Definition 7 (Pattern matching). A template T and a tuple t match when the following
function is defined

�� (T, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ε if (T = ε ∧ t = ε) ∨ (T = v ∧ t = v)
ε if T = ¬v ∧ t = v′ ∧ v � v′
{v/x} if T =?x ∧ t = v
σ[σ′] if T = F,T ′ ∧ t = v, t′ ∧ �� (F, v) = σ ∧ �� (T ′σ, t′) = σ′

where the application of a substitution to a template, Tσ, is defined as follows:

Tσ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ε if T = ε
v,T ′σ if T = x,T ′ ∧ σ(x) = v
x,T ′σ if T = x,T ′ ∧ x � dom(σ)
?x,T ′σ{x/x} if T =?x,T ′.

Under the conditions of (comm), the substitution �� (T, t) is applied to the receiver. Note
that �� may not be defined, for instance �� (¬s, s) does not yield any substitution and,
therefore, the match in such a case does not hold.

1 The QoS value of a path s0
κ1
� s1 . . . sn−1

κn
� sn is defined as κ1 · . . . · κn.

A Process Calculus for QoS-Aware Applications 43

4 Examples

In this section we present some specification examples. To make the presentation more
readable let us introduce some notational conventions. First, we avoid writing trailing
0 processes, second, we write ε[P]@r instead of ε1[P]@r and similarly for node1〈t〉,
con1〈t〉 and acc1〈t〉.

Boolean expressions Booleans are encoded as processes that allocate a pair of names
to a node:

True r
def
= (ν t)ε[〈t, t〉]@r

False r
def
= (ν f , f ′)ε[〈 f , f ′〉]@r.

The truth and the falsity are tested by checking that the names in a pair are equal or
different, respectively. The following process tests for the equality of two names:

Test x y r
def
= (ν t)(node〈t〉.ε[Eval y r | 〈x〉]@t),

where Eval y r
def
= (y).True r | (¬y).False r. Process Test spawns the tuple 〈x〉 and the

Eval process onto a newly generated node so that the first or the second component of
Eval have exclusive access to 〈x〉. Notice that only one of the components can consume
the tuple, indeed, either x = y (and only the pattern (y) matches 〈x〉) or x � y (and
only the pattern (¬y) matches 〈x〉). Finally, True or False allocates on node r the truth
value corresponding to evaluation of x = y. Assuming the encoding of booleans, we can
represent standard control structures such as if-then-else and while.

The encoding of boolean values is indeed an example of a standard programming
metaphor for finding and handling services. Assume that we want to describe a look-up
mechanism for discovering distributed services. For instance, the web services technol-
ogy allows deploying new services by gluing together those that have been published.
Web service composition, however, requires a look-up phase where the available service
must be discovered. In the boolean example, processes True and False are the services
that have been published and composed together to provide the Test service. Notice that
the look-up phase does not require the knowledge of the service name but only that of
the “schema” of the service. For instance, whenever a new “true” service is published it
suffice to generate a new name and use it for building the “schema” for the true service
(i.e., a pair of two equal names).

Public, private, permanent and stable links. Links in KoS are public entities: when
available they can be exploited by all processes. Consider the following KoS net:

N
def
= s :: ε3[P]@t ‖ s

1
� r ‖ r :: con2〈t〉.ε2[Q]@t ‖ t :: acc2〈r〉,

where QoS values are the c-semiring of natural numbers. Net N has three nodes s, r
and t and, initially, only s and r are connected by a link with QoS value 1. Node s is
trying to spawn P on t which is not possible because there is no path from s to t. Node
r is willing to spawn a process Q on t, as well; however, r is aware that a link must be

44 R. De Nicola et al.

first created. Node t simply accepts requests for establishing a link from r. Initially, it is
only possible to synchronize con2〈t〉 and acc2〈r〉 which, by applying rule (con) leads to

N′ def
= s :: ε3[P]@t ‖ s

1
� r ‖ r :: ε2[Q]@t ‖ r

2
� t ‖ t :: 0.

Now, applying rules (pref), (link) and (land) we derive

N′
τ−→
2
> s :: ε3[P]@t ‖ s

1
� r ‖ r :: 0 ‖ t :: Q.

Notice that the link between r and t is consumed by the migration of Q hence P cannot
reach t. However, N′ can also evolve differently, in fact, both the two spawning actions
are enabled, because the creation of the link between r and t has also provided a path
from s to t exposing the QoS value 3. Hence, by rules (pref), (link), (route) and (land)
we can also derive

N′
τ−→
3
> s :: 0 ‖ r :: ε2[Q]@t ‖ t :: P.

Noteworthy, the migration of P prevents Q to be spawned because the link created by r
has been used by P.

In general, this kind of interference should be avoided and this can be done in KoS
by expressing private links which can be specified by exploiting the properties of c-
semirings. The intuition is that the use of a link is allowed only whether the traversing
process has the appropriate “rights”. If we represent access rights as sets of names,
then a process must “know” all the names needed for traversing the link. For instance,
consider the following net:

s :: ε{r,s}[P]@t ‖ s
{r}
� s′,

process P can traverse the link s
{r}
� s′ because it “knows” r, that is the only name

required to traverse the link. Noteworthy, P could not traverse s
{r,u}
� s′ because it does

not expose name u.
We consider the c-semiring R = 〈℘fin(S) ∪ {S}, glb,∪,S, ∅〉 to represent access

rights (recall that S is the set of sites). It is straightforward to prove that R is a c-
semiring; moreover, the order induced by the additive operation of R is the inverse of
the set inclusion (i.e., X ≤ Y ⇐⇒ Y ⊆ X).

Therefore, a private link between the nodes s and t can be specified as

(ν p)(s :: P ‖ s
{p}
� t ‖ t :: Q),

indeed, in order to pass through link s
{p}
� t, a process must exhibit the “password” p.

The knowledge of p is handled by enlarging the scope of the restriction and communi-
cating it.

We conclude by illustrating how one could implement permanent links, i.e. links
that are always available, by exploiting replication:

s :: !conκ〈t〉 ‖ t :: !accκ′ 〈s〉
A slight variation are stable links, which are links existing until a given condition is
satisfied.

Stables G t
def
= !conκ〈t〉 | ε[While G do accκ〈s〉 od 0]@t

A Process Calculus for QoS-Aware Applications 45

Cryptography. By exploiting private links, KoS can encode standard encryption/
decryption mechanisms usually adopted for expressing security protocols in process
calculi (see e.g. [1]). Consider the following net:

(ν k, sk)(i :: P ‖ i
{k}
� sk ‖ sk :: M ‖ sk

{k}
� r ‖ r :: Q), (1)

and assume that the only links from/to sk are those appearing in (1). Net (1) aims at
representing the initiator i and the responder r of a protocol that share a key k. According
to (1) a key is modelled by means of a pair made of a name and a node which roughly
speaking contains those messages that are encrypted with k.

The intuition is that encrypting corresponds to allocating a message on sk while
decrypting corresponds to the possibility of “jumping” on sk and reading a message or,

in other words, to the knowledge of k for traversing links i
{k}
� sk or sk

{k}
� r.

5 Composing Overlay Networks

We consider a scenario where a service is replicated over the nodes of an overlay net-
work and can be invoked trough a unique handler H that manages the requests of the
clients. This kind of architectures is adopted from Internet Service Providers (ISP) that
offer dial-up connection to end-users (EU). In this case a telecommunication company
(TC) handles the phone overlay networks. The EU connects to the “nearest” ISP server
by dialing a single (country-wide) number. The TC takes care of dispatching the call
to the closest ISP server on the overlay network. There are (at least) two possible way
of connecting the EU and the ISP server. Either the TC establishes a direct connection
between the EU and the ISP, or the TC act as a gateway between the phone overline net-
work and the ISP overlay network. Both solutions can be easily expressed inKoS in the
logical architecture of the system: the handler H manages the requests (e.g., controls the
access rights of the client), looks for a suitable server, and forwards the request, while
trying to balance the load of any replica of the server. Hence, the request of a client C
might not be forwarded to the “best” server from the client’s point of view. In this case,
H provides another server to C, however, the client may or may not commit to use it.

The simplest way to model this composed overlay network is to assume that the link
between C and H have QoS values expressing the access rights of C. When a server s
meeting both the request of C and the load constraints is found, H replies to C and tells
s to accept a (private) link from C. Hereafter, we assume that h is the node address of
H. We detail the client first:

C κ pr c
def
= (ν r)(εκ[〈“connect”, c, r〉]@h.

(r, ?s, ?pr′, ?p).
If c pr′ < pr

then con{r,p}〈s〉.ε{p,r}[R]@s
else con{r,p}〈s〉.ε{p,r}[〈r, “to-much”〉]@s).

Process C requests H to find a server and waits for the response. The request contains
c, the node address of C, and a private name r. Name r can be thought of as the unique

46 R. De Nicola et al.

marker of the request so that only C will acquire data corresponding to request r. Pos-
sibly, H returns a response (marked with r) containing the server address s, the price
pr′, and the password p for the private link. Finally, C establishes a private link with s
and, depending on the price pr′ required by the server, either raises its request R (’then’
branch) or notifies s that the service is too expensive (’else’ branch).

The definition of H requires the following auxiliary processes.

Rd(T)
def
= (T).〈tT 〉

Lts r i
def
= Rd(r, ? j).If s j ≤ i then True else False

Process Rd(T) looks for a tuple matching T and immediately re-generates the consumed
tuple; this is denoted by tT which is obtained from T by removing all the ’?’ occurring
in its placeholders. Then, process Lts r i, interpreting 〈r, v〉 as a “cell” having address r
and containing value v, reads the value in r and establishes if it is less than/equal to i.

H
def
= !((“connect”, ?x, ?r).〈r, 1〉

Whileh Lth r nserv
do

(r, ?i).Rd (pref (x, i), ?l, ?pr.)
If h l ≥ max

then 〈r, i + 1〉
else

(ν p)(ε[〈“newlink”, x, r, p〉]@pref (x, i).
ε[〈r, pref (x, i), pr, p〉]@x.
(x, ?v).acc f (v,l)〈x〉.〈x, f (v, l)〉.
(pref (x, i), ?l, ?pr).〈pref (x, i), l + 1, pr〉)

od ε[〈r, “no-server-available”〉]@x).

Process H is continuously listening for a connection request. Once such a request is is-
sued from a client at x, H starts scanning the server list (nserv is the number of servers).
For each server s, node h contains a tuple 〈s, l, pr〉 where l is an estimation of the load
of s and pr is the price for using s. Also, for each client x, h maintains a tuple 〈x, κ〉
that reports the connection between H and x (as done in Section 2). Moreover, H uses
a function pref that, given the client address x and the index i, yields the i-th server
“preferred” by the client. At the i-th iteration of the while loop, H reads the information
of the i-th server preferred by x and, if the load of such a server is too high, the cycle
is repeated provided that more servers are left (’then’ branch); otherwise, a password
p for a private link is generated and communicated to both x and the selected server.
The server will accept a private link creation from x so that the client owning the pass-
word p can perform a request at s. Finally, H re-establish a link with x according to
the new load of the servers by exploiting function f and reflecting this changes in the
tuple corresponding to x (i.e., 〈x, f (v, l)〉), as in Section 2. Indeed, the mechanism of
load balancing is the one defined in Section 2, the only difference being that now H is
the unique handler that manages the connections with the clients.

A Process Calculus for QoS-Aware Applications 47

Given H and C, the servers must simply wait for a connection request (issued from
H) and establish the private connection with the client:

S s
def
= !((”newlink”, ?x, ?r, ?p).acc{r,p}〈x〉....wait & execute....
ε[(s, ?l, ?pr).〈s, l − 1, pr〉)]@h)).

Once the request has been served, S simply updates the load of s.
A net where C, H and S work can be defined as follows.

‖ i=1,...,m xi :: C κi pri xi | !acc〈h〉 | conκ′i 〈h〉‖ i=1,...,m h :: !con〈xi〉 ‖ h :: H ‖
‖ (ν s1, . . . , sn)(‖ j=1,...,n h :: !con〈s j〉 | 〈s j, l j, pr j〉 ‖ s j :: S)

where ‖ i=1,...,mNi shortens N1 ‖ . . . ‖ Nn.

The other solution touched upon at the beginning of this section can be achieved by
exploiting the possibility offered by KoS of “connecting” links to form paths between
nodes. More precisely, instead of connecting directly the client’s node x and (the node
of) the selected server s, we can connect h and s so that the client’s request at s is routed
through h.

6 Conclusion

We have formally defined KoS a process calculus that provides basic primitives to de-
scribe QoS requirements of distributed applications. We demonstrated the applicability
of the approach by specifying some expressive case studies.

Our research program is to provide a solid foundation to drive the design of lan-
guages and middleware having application-oriented QoS mechanisms. The work re-
ported here is a preliminary step in this direction. In terms of calculus design, the current
definition ofKoS assumes that links are the basic construct to manage QoS interactions
and cooperation. This is a reasonable assumption for several cases. For instance, in this
paper we handled the QoS composition between different overlay networks by suitable
links. However, one could interpret QoS composition of overlay networks in a more
general sense than adding suitable links. An interesting challenge for future research is
to extend KoS with more general mechanisms for composing overlay networks than
simple parallel composition via links.

There are a number of ways in which our setting can be extended. For instance,
it would be interesting to develop type systems which would allow determining QoS
properties of processes. We plan to extend types for access control of [7, 6] to deal with
QoS attributes. In particular, it would be interesting to exploit such types to capture
the notion of contract. Another direction for future research is developing observational
semantics for KoS based on the idea of observing QoS values. These abstract theories
could permit reasoning on KoS nets and comparing them on the basis of the perceived
QoS values.

48 R. De Nicola et al.

References

1. M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. Infor-
mation and Computation, 148(1):1–70, January 1999.

2. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and opti-
mization. Journal of the ACM, 44(2):201–236, March 1997.

3. L. Cardelli and D. Rowan. Service combinators for web computing. Software Engineering,
25(3):309–316, 1999.

4. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A Formal Basis for
Reasoning on Programmable QoS. In N. Dershowitz, editor, International Symposium on
Verification – Theory and Practice – Honoring Zohar Manna’s 64th Birthday, volume 2772
of Lecture Notes in Computer Science, pages 436 – 479. Springer-Verlag, 2003.

5. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents interaction
and mobility. IEEE/ACM Transactions on Networking, 24(5):315–330, 1998.

6. R. De Nicola, G. Ferrari, and R. Pugliese. Programming access control: The KLAIM ex-
perience. In International Conference in Concurrency Theory, Lecture Notes in Computer
Science. Springer-Verlag, 2000.

7. R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for access control. Theoretical
Computer Science, 240(1):215–254, June 2000.

8. G. Ferrari, U. Montanari, and E. Tuosto. Graph-based Models of Internetworking Systems.
In T. Aichernig, Bernhard K. Maibaum, editor, Formal Methods at the Crossroads: from
Panaces to Foundational Support, volume 2757 of Lecture Notes in Computer Science, pages
242 – 266. Springer-Verlag, 2003.

9. A. Igarashi and N. Kobayashi. A generic type system for the Pi-calculus. Theoretical Com-
puter Science, 311(1–3):121–163, Jan. 2004.

10. N. Kobayashi. Type Systems for Concurrent Processes: From Deadlock-Freedom to
Livelock-Freedom, Time-Boundedness. In J. van Leeuwen, O. Watanabe, M. Hagiya, P. D.
Mosses, and T. Ito, editors, Theoretical Computer Science: Exploring New Frontiers of The-
oretical Informatics, Proceedings of the International IFIP Conference TCS 2000 (Sendai,
Japan), volume 1872 of Lecture Notes in Computer Science, pages 365–389. IFIP, Springer-
Verlag, Aug. 2000.

11. G. Meredith and S. Bjorg. Service-Oriented Computing: Contracts and Types. Communica-
tions of the ACM, 46(10):41 – 47, October 2003.

12. M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of
Automata Languages and Combinatorics, 7(3):321–350, 2002.

13. U. Nestmann and R. Fuzzati. Unreliable failure detectors with operational semantics. In
Proc.ASIAN 2003, Lecture Notes in Computer Science. Springer-Verlag, 2003.

14. M. Papazouglou and D. Georgakopoulos. Special issue on service oriented computing. Com-
munications of the ACM, 46(10), 2003.

15. C. Priami. Stochatic π-calculus. The Computer Journal, 38(6):578–589, 1995.
16. G. Theodorakopoulos and J. Baras. Trust Evaluation in AdHoc Networks. In WiSe ’04:

Proceedings of the 2004 ACM workshop on Wireless security, pages 1–10. ACM Press, 2004.
17. E. Tuosto. Non-Functional Aspects of Wide Area Network Programming. PhD thesis, Dipar-

timento di Informatica, Università di Pisa, May 2003. TD-8/03.

Abstract Interpretation-Based Verification of
Non-functional Requirements

Agostino Cortesi1,� and Francesco Logozzo2,��

1 Università Ca’ Foscari di Venezia, I-30170 Venezia (Italy)
cortesi@dsi.unive.it

2 École Polytechnique, F-91128 Palaiseau cedex (France)
Francesco.Logozzo@Polytechnique.fr

Abstract. The paper investigates a formal approach to the verification
of non functional software requirements, e.g. portability, time and space
efficiency, dependability/robustness. The key-idea is the notion of ob-
servable, i.e., an abstraction of the concrete semantics when focusing on
a behavioral property of interest. By applying an abstract interpretation-
based static analysis of the source program, and by a suitable choice of
abstract domains, it is possible to design formal and effective tools for
non-functional requirements validation.

1 Introduction

Abstract interpretation [10] is a theory of semantics approximation for com-
puting conservative over-approximations of dynamic properties of programs. It
has been successfully applied to infer run-time properties useful for debugging
(e.g., type inference [7, 28]), code optimization (e.g., compile-time garbage col-
lection [22]), program transformation (e.g., partial evaluation [25], paralleliza-
tion [36]), and program correctness proofs (e.g., safety [20], termination [5], cryp-
tographic protocol analysis [33], proof of absence of run-time errors [3], semantic
tattooing/watermarking [13]).

As pointed out in [30], there is still a large variety of tasks in the software
engineering process that could greatly benefit from techniques akin to static
program analysis, because of their firm theoretical foundations and mechanical
nature.

In particular, as observed by [26], during the development of large-scale soft-
ware systems, effective and efficient management of customer and user require-
ments is one of the most crucial, but unfortunately also least understood issues.
Problems in the requirements are typically not recognized until late in the devel-
opment process, where negative impacts are substantial and cost for correction
has grown large. Even worse, problems in the requirements may go undetected

� Partially supported by MIUR FIRB grant n.RBAU018RCZ and by MIUR PRIN’04
grant n.2004013015.

�� This work was conceived when the author was visiting Ca’ Foscari.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 49–62, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 A. Cortesi and F. Logozzo

through the development process, resulting in software systems not meeting
customers and users expectations, especially when the coordination with other
components is an issue. Therefore, methods and frameworks helping software
developers to better manage software requirements are of great interest for com-
ponent based software.

In this paper, we are interested to investigate the impact of Abstract Interpre-
tation theory in the formalization and automatic verification of Non-Functional
Software Requirements, as they seem not adequately covered by most require-
ments engineering methods ([27], pag. 194). Non functional requirements can be
defined as restrictions or constraints on the behavior of a system service [35]. Dif-
ferent classifications have been proposed in the literature [4, 16, 15], though their
specification may give rise to troubles both in their elicitation and management,
and in the validation process.

In fact, this work originated from a quite naive question: “what do we mean
when we say that a program is portable on a different architecture?”. In [17] a
software is said portable if it can run in different environments. It is clear that it
is assumed not only that it runs, but that it runs the same way. And it is also clear
that if we require that the behavior is exactly the same, portability to different
systems (e.g., from a PC to a PDA, or from an OS to another) can almost never
be reached. This means that implicit assumptions are obviously made about the
properties to be preserved, and about the ones that might be simply disregarded.
In other words, portability needs to be parameterized on some specific properties
of interest, i.e. it assumes a suitable abstraction of the software behavior. The
same holds also for other product non-functional requirements, like space and
time efficiency, dependability, robustness, usability, etc. It is clear that, in this
context, the main features of abstract interpretation theory, namely modularity,
modulability, and effectiveness may then become very valuable.

The main contributions of the paper can be summarized as follows:
– We extend the usual abstract interpretation notions to the deal with systems,

i.e. programs + architectures.
– We show that a significant set of product qualities (non functional require-

ments) can be formally expressed in terms of abstraction of the concrete
semantics when focusing on a behavioral property of interest. This yields an
unifying view of product non-functional requirements.

– We show how existing tools for automatic verification can be re-used in
this setting to support requirements validation; their practicality directly
depends on the complexity of the abstract domains.

The advantage of this approach with respect to previous attempts of mod-
elling software requirements, e.g. by using Milner’s Calculus of Communicating
Systems [19] or formal methods like Z [24] or B [1, 2] is twofold: (i) the soundness
of the approach is guaranteed by the general abstract interpretation theory, and
(ii) the automatic validation process can be easily tuned according to the desired
granularity of the abstraction.

As far as we know, this is the first attempt to apply Abstract Interpretation
theory to the treatment of non-functional software requirements. These semi-

Abstract Interpretation-Based Verification of Non-functional Requirements 51

nal results can be seen as a partial contribution towards the achievement of a
more challenging objective: to integrate formal analysis by abstract interpreta-
tion in the full software development process, from the initial specifications to
the ultimate program development [9].

Paper Structure. In Section 2, the concrete semantics of a simple imperative
language is introduced to instantiate our framework. In Section 3, the core ab-
stract interpretation theory is extended to deal with program and architecture
abstractions. In Section 4 we show how to instantiate our framework on a suite
of non-functional product requirements. Section 5 concludes the paper.

2 Operational Semantics of a Core Imperative Language
with Exceptions

In order to illustrate the results of this paper, we instantiate our framework
with a core imperative language with exceptions and a core architecture. The
results can be easily generalized to more complex languages and architectures.
We give the syntax, the transition relations and the trace semantics of systems,
composed by architectures and a programs.

2.1 Syntax

In this paper setting an architecture is a tuple 〈bits,Op, stdio, stdout〉, where
bits is the number of bits used to store integer numbers, Op is a set of functions
implementing basic arithmetic operations, stdio is the input stream (e.g., the
keyboard) and stdout is the output stream (e.g., the screen). The input stream
has a method next that returns immediately the next value in the stream, and
the output stream has a method add to put a pair 〈v, c〉, i.e., a value v with a
color c. We assume that if an arithmetic error occurs in the application of an
operation op ∈ Op (e.g., an overflow or a division by zero), then the exception
ExcMath is raised.

The syntax of programs is specified by the following grammar:

C ::= skip | x = E | C1; C2 | if(E != 0) C1 else C2 | while (E != 0) C
write(x, col) | throw Exc | try C1 catch(Exc) C2

E ::= k | read | E1 + E2 | E1 − E2 | E1 ∗ E2 | E1/E2

where x and col belong to a given set Var of variables, Exc belongs to a given set
Exceptions of exceptions (including the arithmetic ones) and k is (the syntactic
representation of) an integer number.

A system is a pair 〈A, C〉, where A is an architecture and C is a program.

2.2 Semantics

The semantics of a system is described in operational style. We assume that
the only available type is that of architecture-representable natural numbers:

52 A. Cortesi and F. Logozzo

k∈Nbits

〈k,σ〉 E−→k

k �∈Nbits

〈k,σ〉 E−→〈ExcMath,σ〉
A.stdio.next=v

〈read,σ〉 E−→〈v,σ〉

〈E1,σ〉 E−→〈v1,σ〉 〈E2,σ〉 E−→〈v2,σ〉 v1,v2 �=ExcMath A.op(v1,v2)=v �=ExcMath

〈E1opE2,σ〉 E−→〈v,σ〉

〈E1,σ〉 E−→〈v1,σ〉 〈E2,σ〉 E−→〈v2,σ〉 v1,v2 �=ExcMath A.op(v1,v2)=ExcMath

〈E1opE2,σ〉 E−→〈ExcMath,σ〉

〈E1,σ〉 E−→〈v1,σ〉 〈E2,σ〉 E−→〈v2,σ〉 (v1=ExcMath) or (v2=ExcMath)

〈E1op E2,σ〉 E−→〈ExcMath,σ〉

Fig. 1. The transition relation for expressions

Nbits = {0, , . . . 2bits − 1}. Given the syntactic representation k of a number, k
is the semantic correspondent. For instance, 0xFFFF = 65535 so that 0xFFFF �∈
N8 . An environment is a partial map from variables to representable integers:
Env = [Var → Nbits]. If a variable x is not defined in a state σ, we denote that
by σ(x) = Ω. A state is either a command to execute in a given environment,
or an environment, or an exception raised within an environment. Formally:
Σ = C× Env ∪ Env ∪ Exceptions× Env.

The transition relations for expressions and programs are defined by struc-
tural induction, and they are depicted in Fig. 1 and Fig. 2. It is worth noting
that the transition rules are parameterized by the underlying architecture (e.g.,
the raising of an overflow exception depends on Nbits).

Let Σ∗ denote the set of finite traces on Σ, and let S0 ⊆ Σ be a set of initial
states. With a slight abuse of notation, we refer to a state as a trace of unitary
length. The partial-traces semantics [12] of a system is then expressed as a least
fixpoint over the complete boolean lattice 〈P(Σ∗),⊆〉 as follows:

�〈A, C〉�(S0) = lfp⊆
∅ λX. S0 ∪ {σ0 . . . σnσn+1 | σ0 . . . σn ∈ X, σn −→ σn+1}.

3 Abstracting Systems = Programs + Architectures

Abstract interpretation [10] is a general theory of approximation which formal-
izes the idea that the semantics of a program can be more or less precise de-
pending on the considered observation level. In this section we revise some basic
concepts, and we extend them to deal with composed systems.

In the abstract interpretation terminology, 〈P(Σ∗),⊆〉 is the concrete domain,
its elements are semantic properties, and the order ⊆ stands for the logical
implication. As a consequence, the most precise property about the behavior
of a system is the semantics �〈A, C〉�, called the concrete semantics [10]. Set
of traces are approximated are represented by suitable abstract elements, which
capture interesting properties while disregarding other execution properties that

Abstract Interpretation-Based Verification of Non-functional Requirements 53

〈skip,σ〉−→σ
〈E,σ〉 E−→〈v,σ〉 v �=ExcMath

〈x=E,σ〉−→σ[x�→v]
〈E,σ〉 E−→〈ExcMath,σ〉

〈x=E,σ〉−→〈ExcMath,σ〉

〈C1,σ〉−→σ′

〈C1;C2,σ〉−→〈C2,σ′〉
〈C1,σ〉−→〈Exc,σ〉

〈C1;C2,σ〉−→〈Exc,σ〉

〈E,σ〉 E−→〈k,σ〉 k �=0
〈if(E!=0)C1 else C2,σ〉−→〈C1,σ〉

〈E,σ〉 E−→〈0,σ〉
〈if(E!=0)C1 else C2,σ〉−→〈C2,σ〉

〈E,σ〉 E−→〈ExcMath,σ〉
〈if(E!=0)C1 else C2,σ〉−→〈ExcMath,σ〉

〈E,σ〉 E−→〈k,σ〉 k �=0
〈while(E!=0) C,σ〉−→〈C;while(E!=0) C,σ〉

〈E,σ〉 E−→〈0,σ〉
〈while(E!=0) C,σ〉−→σ

〈E,σ〉 E−→〈ExcMath,σ〉
〈while(E!=0) C,σ〉−→〈ExcMath,σ〉

A.stdout .add(σ(x),σ(col))
〈write(x,col),σ〉−→σ

Exc∈Exceptions
〈throw Exc,σ〉−→〈Exc,σ〉

〈C1,σ〉−→σ′

〈try C1 catch(Exc) C2,σ〉−→σ′
〈C1,σ〉−→〈Exc,σ′〉

〈try C1 catch(Exc) C2,σ〉−→〈C2,σ′〉
〈C1,σ〉−→〈Exc′,σ′〉 Exc′ �=Exc

〈try C1 catch(Exc) C2,σ〉−→〈Exc′,σ′〉

Fig. 2. The transition relations for programs

are out of the scope of interest. Abstract properties (or elements) belong to an
abstract domain of observables, D̄, and they are ordered according to �̄, the
abstract counterpart for logical implication. In this work we assume that 〈D̄, �̄〉
is a complete lattice.

The correspondence between the concrete and the abstract semantic domains
is given by a pair of monotonic functions 〈α, γ〉. The function α ∈ [P(Σ∗) → D̄],
called the abstraction function, formalizes the notion of the abstraction, and
α(T) represents the best approximation in D̄ of the set of traces T (wrt the
order in D̄). If α(T)�̄p̄ then p̄ is also a correct, although less precise, abstract
approximation of T . On the other hand, the function γ ∈ [D̄ → P(Σ∗)], called
the concretization function, returns the set of traces that are captured by an
abstract property p̄. The abstraction and concretization functions must satisfy
the following property:

∀T ∈ P(Σ∗).∀d̄ ∈ D̄. α(T) �̄ d̄ ⇐⇒ T ⊆ γ(d̄),

in such a case, we say that 〈α, γ〉 form a Galois connection between the concrete
and the abstract domains. We write is as

54 A. Cortesi and F. Logozzo

〈P(Σ∗),⊆〉 −−−→←−−−
α

γ
〈D̄, �̄〉. (1)

The abstract semantics of a system, ¯�〈A, C〉�, is defined over an abstract
domain that is linked to the concrete domain by a Galois connection. It must
satisfy the soundness criterion, [10]:

∀S0 ⊆ Σ. α(�〈A, C〉�(S0)) �̄ ¯�〈A, C〉�(α(S0)).

The soundness criterion above imposes that, when the properties encoded by
a given abstract domain are considered, the abstract semantics ¯�〈A, C〉� cap-
tures all the behaviors of 〈A, C〉. As a consequence, given a specification of a
system 〈A, C〉 expressed as an abstract property p̄, if ¯�〈A, C〉�(α(S0))�̄p̄, by the
soundness criterion and by the transitivity of �̄, we have that

α(�〈A, C〉�(S0))�̄p̄.

This means that 〈A, C〉 respects the specification p̄.
In the following, we instantiate the abstract domain and p̄ in order to re-

flect non-functional requirements of systems and we show how well-known static
analyses can be re-used in this enhanced context for the automatic verification
of such properties.

4 Application: Non-functional Requirement Analysis

Non-functional software requirements are requirements which are not directly
concerned with the specific functions delivered by the system [35]. They may
relate to emergent system properties such as reliability, response time and store
occupancy. Alternatively, they may define constraints on the system like the data
representation used in system interfaces.

The ‘IEEE-Std 830 - 1993’ [23] presents a comprehensive list of non-functional
requirements. In the following we will focus on a few of such requirements, namely
portability, efficiency, robustness and usability. The approach can be extended
to cope with other non-functional requirements.

In this section, we show (i) how such requirements admit a rigorous formal-
ization, unlike, e.g., what stated in [27–§8.2], (ii) how, by a suitable choice of
abstract domains, existing tools can be re-used to verify such requirements, and
(iii) the effectiveness of the approach on a public-domain static analyzer [8].

4.1 Portability

Informal Definition. According to [17], a software “is portable if it can run on
different environments”. The term environment may refer to a hardware plat-
form or a software environment. Analogously, another widespread textbook, [31],
defines portability as “the ease of transferring software products to various hard-
ware and software environments”. The first observation is that the two definitions
implicitly link the requirement to unspecified software metrics. Furthermore, as

Abstract Interpretation-Based Verification of Non-functional Requirements 55

any natural-based language specifications, they are intrinsically ambiguous. For
instance, the word “run” can be read as just the possibility of recompiling and
executing the software on different system, but also as the request that some
behavioral properties of the software are preserved in different platforms.

Formal Definition. We specify portability as a property of the execution of a
program that is preserved when it is ported on different architectures. This
means that up to a certain property of interest, the behavior of a software is the
same on a different architecture.

Definition 1 (Portability). Let us consider a program C, an architecture A

and a Galois connection 〈P(Σ∗),⊆〉 −−−→←−−−
α

γ
〈D̄, �̄〉. We say that C, developed on

A, is portable on the architecture B w.r.t. the observable domain D̄, if

∀S0 ⊆ Σ. α(�〈B, C〉�(S0)) �̄ α(�〈A, C〉�(S0)).

Abstraction. A class property one is interested to keep unchanged among dif-
ferent porting of the software is the behavior w.r.t. arithmetic overflow. For
instance, the violation of such a property in porting the control software on a
different architecture was at the origin of the Arianne V crash [29].

Arithmetic overflow can be checked by using numerical abstract domains,
e.g., [10, 14, 32]. In such domains the range of the values assumed by a variable
can be constrained so that it can be checked against the largest representable
number in a given architecture.

Example 1 (Portability). Let us consider the program C in Fig. 3(a), and let
us consider an architecture A such that A.bits = 32. We can use the Inter-
vals abstract domain [10], and the public-domain static analyzer [8] to infer
that ¯�〈A, C〉�(i �→ [−∞,+∞]) = [1, 216], and as 216 is representable on a 32
bit architecture, then program C does not cause any arithmetic overflow. As a
consequence, by the soundness of the static analysis (guaranteed by abstract
interpretation theory), we can safely infer that the program is portable to any
architecture in which 216 is representable (this is not the case in a 16 bits archi-
tecture).

4.2 Efficiency

Informal Definition. In the existing literature, efficiency “refers to how econom-
ically the software utilizes the resources of the computer” [17], or it is “the ability
of a software system to place as few demands as possible on hardware resources,
such as processor time or space occupied” [31]. Once again, such definitions suffer
from the ambiguity of the natural language,e.g., it is not clear if when verifying
efficiency requirements the underlying architecture must be considered or not,
or if space and time requirements must be considered independently or not.

56 A. Cortesi and F. Logozzo

C � i = 1;
while (216-i != 0)

i = i*4

(a) C, a program not
portable on 16 bits ar-
chitectures

C’ � i = 1;
while (216-i != 0)

i = i+2

(b) C’, a non-efficient
program

D � try
i = ?;
if(i !=0) c = i / 0
else throw Err

catch(Err)
c = 0;

write(c,255)

(c) D, a robust program

E � x = ?; r = ?; g = ?; b = ?
if(r+g-1!=0)
col = 2r + 2g + 2b

else col = 0;
write(x,col)

(d) E, a program usable by dal-
tonians

Fig. 3. Four programs on which we verify non-functional prequirements

Formal Definition. Efficiency can be formally defined as an abstraction of the
execution traces of a program. As such behavior depends on the underlying archi-
tecture, our definition explicitly mentions the architecture in which the program
is executed. Efficiency requirements can be specified by natural numbers, stand-
ing, for instance, for the number of processor cycles or the size of the heap. As a
consequence our abstract domain will be set of natural numbers with the usual
total order, 〈N,≤〉.

We distinguish between efficiency in time and space. The first one corresponds
to the length of a trace, i.e. the number of transitions for executing the system,
and the second one to the size of the environment, i.e. the maximum quantity of
memory allocated during program execution. It is worth noting that the following
definitions are well-formed as we consider partial execution traces, i.e., (possible
infinite) sets of finite traces. Recall that Ω denotes an uninitialized variable.

Definition 2 (Time Efficiency). Let C be a program, A an architecture, length
∈ [P(Σ∗) → N] be the length of a trace, and 〈P(Σ∗),⊆〉 −−−→←−−−

αt

γt 〈N,≤〉 a Galois
connection where

αt = λT. sup({length(τ) | τ ∈ T})
γt = λn. {τ ∈ P(Σ∗) | length(τ) ≤ n}.

We say that the system 〈A, C〉 respects the time requirement k if

∀S0 ⊆ Σ. αt(�〈A, C〉�(S0)) ≤ k.

Abstract Interpretation-Based Verification of Non-functional Requirements 57

Definition 3 (Space Efficiency). Let C be a program, A an architecture, size ∈
[P(Σ) → N] be the function defined as

size = λσ. #{x ∈ Vars | σ(x) �= Ω},

and 〈P(Σ∗),⊆〉 −−−→←−−−
αs

γs 〈N,≤〉 a Galois connection where

αs = λT. max
τ∈T

{size(σ) | σ ∈ τ}

γs = λn. {τ ∈ P(Σ∗) | ∀σ ∈ τ. size(σ) ≤ n}

We say that the system 〈A, C〉 respects the space requirement k if

∀S0 ⊆ Σ. αs(�〈A, C〉�(S0)) ≤ k.

Abstractions. In order to automatically verify time requirements, we must find
an upper bound to the number of transitions performed during the execution
of a system. Once again, we can do it by using a numerical abstract domain.
In fact, we can endow a concrete state σ with a (hidden) variable time, to be
incremented at each transition [18]. Then, the values taken by time will be upper-
approximated in the numerical domain, say by time, so that the verification boils
to check that time ≤ k. In the same way, the verification of space requirements
can be obtained by abstracting a state with the number of variables different from
Ω it contains. The approach can be generalized to more complex languages, e.g.,
a language with recursive functions. In this case, the stack will be approximated
by its height.

In our approach, verification of time and space efficiency requirements can
be easily combined by considering the reduced product of the two abstract do-
mains [10].

Example 2 (Efficiency). Let us consider the programs C and C′ in Fig. 3, an
architecture A, where the multiplication is a primitive operation, and an archi-
tecture A′ where the multiplication is implemented as a sequence of additions,
e.g., i = i ∗ 4 becomes i = i + i; i = i + i. Using the analyzer described in [8],
we can infer:

¯�〈A, C〉�(〈i �→ [−∞,+∞], time �→ 0〉) = 〈i �→ [1, 216], time �→ [0, 9]〉
¯�〈A′, C〉�(〈i �→ [−∞,+∞], time �→ 0〉) = 〈i �→ [1, 216], time �→ [0, 25]〉,
¯�〈A, C′〉�(〈i �→ [−∞,+∞], time �→ 0〉) = 〈i �→ [0, 216], time �→ [0, 32769]〉.

Observe that the results above can be used for comparing different programs on
different architectures.

4.3 Robustness

Informal Definition. Robustness, or dependability, for [17] is “the ability of a
program to behave reasonably, even in circumstances that were not anticipated

58 A. Cortesi and F. Logozzo

in the specifications”, for [31] is “the ability of software systems to react appropri-
ately to abnormal conditions”, and for [27] is “the time to restart after failure”.
Once again, the three definitions are not rigorous enough: the first definition
does not specify what is a reasonable behavior, the second one does not specify
what is an abnormal condition, and the latter has implicit the strong assumption
that all possible failures are considered.

Formal Definition. A software is robust, if any exception raised during its execu-
tion, in any architecture and with any initial state, is caught by some exception
handler. We recall that exceptions can be raised either by the architecture, e.g.,
division-by-zero, or by the software itself. As a consequence, a robust program
never terminates in an exceptional state.

Definition 4 (Robustness). Let C be a program, and let 〈P(Σ∗),⊆〉 −−−→←−−−
αd

γd

〈P(Σ),⊆〉 be a Galois connection where

αd = λT. {σn | σ0 . . . σn ∈ T}
γd = λS. {σ0 . . . σn−1σn | ∀i ∈ [0, n− 1].σ ∈ Σ ∧ σn ∈ S}.

We say that a system is robust if for all the architectures A,

∀S0 ∈ P(Σ). αd(�〈A, C〉�(S0)) ∩ Exceptions× Env = ∅.

Abstraction. Robustness can be checked either by considering an abstract do-
main for inferring the uncaught exceptions [34], or by considering an abstract
domain for reachability analysis [8]. In the first case, a program is robust if the
analysis reports that no exception can be raised; in the latter, a program is ro-
bust if the analysis reports that the lines of code that may raise an exception
(e.g., with a throw statement) are never reached.

Example 3 (Robustness). Let us consider the program D of Fig. 3(c). An interval
analysis determines that when the true-branch of the if statement is taken, i is
different from zero, so that the MathErr exception cannot be raised. In the other
case, the exception Err is raised and then it is also caught. As a consequence, D
is robust w.r.t. the chosen abstraction.

4.4 Usability

Informal Definition. The definition of usability is probably the most contrived
one. The definition in [17] says that “software system is usable [. . .] if its hu-
man users find it easy to use”, whereas [31] talks about ease of use as “the
ease with which people of various backgrounds [. . .] can learn to use software”
and [27] defines it in function of other, undefined, basic concepts as “learnability,
satisfaction, memorability”.

Abstract Interpretation-Based Verification of Non-functional Requirements 59

Formal Definition. In our setting, usability is a abstraction of the output stream
that is preserved when a given property, depending on the particular user, is
considered. For instance, an abstraction that considers the colors of the output
characters can be used to verify if a system is usable for daltonians. We need
some auxiliary definitions. Output streams belong to the set Stdout. Given a
state σ ∈ Σ, the function out ∈ [Σ → Stdout] is such that out(σ) is the output
stream in the state σ.

Definition 5 (Usability). Let C be a program, A an architecture, let 〈P(Σ∗),
⊆〉 −−−−→←−−−−

αΣ

γΣ 〈P(Stdout),⊆〉 be a Galois connection where

αΣ = λT. {out(σ) ∈ Σ | ∃τ ∈ T. σ ∈ T}
γΣ = λO. {τ ∈ Σ∗ | ∀σ ∈ τ. ∃o ∈ O. out(σ) = o},

let 〈P(Stdout),⊆〉 −−−→←−−−
α

γ
〈D̄, �̄〉 be a Galois connection, and let p̄ ∈ D̄. We say

that the system 〈A, C〉 is usable w.r.t. the observable p̄ if

∀S0. α(αΣ(�〈A, C〉�)(S0)) �̄ p̄.

Abstract Domains. The definition above can be instantiated to consider the us-
ability of a system for daltonians, i.e., people afflicted by red/green color blind-
ness. In fact, the colors of the output stream can be abstracted in order to col-
lapse together colors indistinguishable by daltonians. As colors are represented
by integers in the RGB color system, numerical abstract domains can be used
to automatically check properties on colors.

Example 4 (Usability). Let us consider the program E in Fig. 3(d), an architec-
ture where the input stream is a sequence of 0/1 digits, and colors are represented
as in RGB schema using 3 bits, i.e. colors range between 0 (black) and 7 (white).
Using the static analyzer of [8] instantiated with the Intervals abstract domain,
and refined with trace partitioning [21], one infers that

¯�〈A, E〉�(〈x �→ [0, 1], r, g, b �→ [0, 1]〉)
= (〈x �→ [0, 1], r, g, b �→ [0, 1], col �→ [0, 1] ∪ [6, 7]〉),

so that as col is always in the set of the colors distinguishable by daltonians
(i.e. { black, blue, yellow, white}), E respects the usability specification.

4.5 Other Non-functional Requirements

We showed how four typical non-functional requirements can be encapsulated
in our framework. This approach based on preservation of a property up to
a given observation, can be easily generalized to other product non-functional
requirements. For instance, upgrade means that when a new program N, replaces
a program O on a given architecture A, then the observed behavior is preserved:
α(�〈A, N〉�)�̄α(�〈A, O〉�). Similarly, if compatibility is a property specified by
an abstract element c̄, then we say that two programs P and P′ are compatible
w.r.t. c̄ if α(�〈A, P〉�)�̄c̄ and α(�〈A, P′〉�)�̄c̄.

60 A. Cortesi and F. Logozzo

5 Conclusions and Future Work

In this paper, we faced the issue of applying Abstract Interpretation theory
in order to model non functional software requirements and to support their
automatic validation.

Recent very encouraging experiences show that abstract interpretation-based
static program analysis can be made efficient and precise enough to formally
verify a class of properties for a family of large programs with few or no false
alarms, also in case of critical embedded systems [3]. We strongly believe that
also the treatment of non functional requirements can well fit in this picture.

Two research directions seem particularly promising, in this respect: (i) the
design of a library of sophisticated abstract domains for non functional require-
ments validation, and (ii) the automatic derivation of metrics associated to the
domain of observables. In the first case, as observed in Example 2, the preci-
sion of the analysis can be greatly improved by a suitable choice of operators
on domains (e.g., reduced product [11], and open product [6]). In the second
case, it would be interesting to study abstract metrics, i.e. metrics tunable with
respect to a given observable. In fact, any (even infinite) finite-height domain
of observables can be associated with at least two metrics, by considering as
distance between two abstract properties

ρ1(d1, d2) = min{length(di, d1 � d2) | i ∈ {1, 2}}
ρ2(d1, d2) = min{length(di, d1 d2) | i ∈ {1, 2}}

where length returns the length of the path in the domain D̄. ρ1 computes the
lack of precision with respect to the element that represents the union of the
information the two elements contain, while ρ2 does the same with respect to
the element that keeps the common information.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. J.-R. Abrial. B# : Toward a synthesis between Z and B. In Didier Bert, Jonathan P.
Bowen, S. King, and M. Waldn, editors, ZB’2003 – Formal Specification and Devel-
opment in Z and B, volume 2651 of Lecture Notes in Computer Science (Springer-
Verlag), pages 168–177, Turku, Finland, June 2003. Springer.

3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proceedings of
the 2003 ACM Conference on Programming Language Design and Implementation
(PLDI’03), pages 196–207. ACM Press, June 2003.

4. B. W. Boehm. Software engineering. IEEE Transactions on Computers, pages
1266–41, December 1976.

5. J. Brauburger. Automatic termination analysis for partial functions using polyno-
mial orderings. Lecture Notes in Computer Science, 1302:330–344, 1997. In P. Van
Hentenryck, editor, Proc.4 th Int. Symp.SAS 97, Paris.

Abstract Interpretation-Based Verification of Non-functional Requirements 61

6. A. Cortesi, B. Le Charlier, and P. van Hentenryck. Combinations of abstract do-
mains for logic programming. In 21th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages POPL’94, ACM-Press, New York,
pages 227–239, 1994.

7. P. Cousot. Types as abstract interpretations, invited paper. In 24th ACM Sympo-
sium on Principles of Programming Languages (POPL ’97), pages 316–331. ACM
Press, January 1997.

8. P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy
and R. Steinbrüggen, editors, Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

9. P. Cousot. Abstract interpretation based formal methods and future challenges, in-
vited paper. In R. Wilhelm, editor, Informatics — 10 Years Back, 10 Years Ahead,
volume 2000 of Lecture Notes in Computer Science, pages 138–156. Springer-
Verlag, 2001.

10. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th ACM
Symposium on Principles of Programming Languages (POPL ’77), pages 238–252.
ACM Press, January 1977.

11. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’79), pages 269–282. ACM Press, 1979.

12. P. Cousot and R. Cousot. Systematic design of program transformation frame-
works by abstract interpretation. In 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’02), pages 178–190. ACM Press,
New York, NY, January 2002.

13. P. Cousot and R. Cousot. An abstract interpretation-based framework for software
watermarking. In Conference Record of the Thirtyfirst Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 173–185,
Venice, Italy, January 14-16 2004. ACM Press, New York, NY.

14. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’78), pages 84–97. ACM Press, 1978.

15. A. Davis. Software Requirements: Objects, Functions and States. Prentice Hall,
1992.

16. M. S. Deutsch and R. R. Willis. Software Quality Engineering. Prentice-Hall, 1988.
17. C. Ghezzi, Jazayeri M., and D. Mandrioli. Foundamentals of Software Engineering.

Prentice Hall, 2nd edition, 2003.
18. N. Halbwachs. Determination automatique de relations lineaires verifees par les

variables d’un programme. These de 3eme cycle d’informatique, Universite scien-
tifique et medicale de Grenoble, March 1979.

19. N. Halbwachs. Non-functional requirements in the software development process.
Software Quality, 5(4):285–294, 1995.

20. N. Halbwachs. About synchronous programming and abstract interpretation. Sci-
ence of Computer Programming, 31(1):75–89, May 1998.

21. M. Handjieva and S. Tzolovski. Refining static analyses by trace-based partitioning
using control flow. In Proceedings of the Static Analysis Symposium (SAS ’98),
volume 1503 of Lectures Notes in Computer Science, pages 200–215. Springer-
Verlag, 1998.

22. S. Hughes. Compile-time garbage collection for higher-order functional languages.
Journal of Logic and Computation, 2(4):483–509, 1992.

62 A. Cortesi and F. Logozzo

23. IEEE. IEEE Recommended Practice for Software Requirement Specification, 1988.
24. J.M.Spivey. The Z notation. Prentice Hall, 1992.
25. N. D. Jones. Combining abstract interpretation and partial evaluation. In Pas-

cal Van Hentenryck, editor, Static Analysis, volume 1302 of Lecture Notes in Com-
puter Science, pages 396–405. Springer-Verlag, 1997. In P. Van Hentenryck, editor,
Proc.4 th Int. Symp.SAS 97, Paris.

26. J. Karlsson. Managing software requirements using quality function deployment.
Software Quality Control, 6(4):311–326, 1997.

27. G. Kotonya and I. Sommerville. Requirements Engineering - Processes and Tech-
niques. Wiley, 1998.

28. D. Kozen, J. Palsberg, and M. I. Schwartzbach. Efficient inference of partial types.
Journal of Computer and System Sciences, 49(2):306–324, October 1994.

29. P. Lacan, J. N. Monfort, L.V.Q. Ribal, A. Deutsch, and A. Gonthier. The software
reliability verification process: The ariane 5 example. In Proceedings DASIA 98
DAta Systems In Aerospace, Athens, GR. ESA Publications, 1998.

30. D. Le Métayer. Program analysis for software engineering: New applications, new
requirements, new tools. ACM Computing Surveys, 28(4es):167, December 1996.

31. B. Meyer. Object-Oriented Software Construction. Professional Technical Refer-
ence. Prentice Hall, 2nd edition, 1997.

32. A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE,
pages 310–319. IEEE CS Press, October 2001. http://www.di.ens.fr/~mine/
publi/article-mine-ast01.pdf.

33. D. Monniaux. Abstracting cryptographic protocols with tree automata. Science
of Computer Programming, 47(2–3):177–202, May/June 2003.

34. F. Pessaux and X. Leroy. Type-based analysis of uncaught exceptions. ACM
Transactions on Programming Languages and Systems, 22(2):340–377, bo 2000.

35. I. Sommerville. Software Engineering. Addison Wesley, 6th edition, 2000.
36. K. R. Traub, D. E. Culler, and K. E. Schauser. Global analysis for partitioning non-

strict programs into sequential threads. ACM LISP Pointers, 5(1):324–334, 1992.
Proceedings of the 1992 ACM Conference on LISP and Functional Programming.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 63–78, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Coordination Systems in Role-Based Adaptive Software

Alan Colman and Jun Han

Faculty of Information and Communication Technologies,
Swinburne University of Technology,

Melbourne, Victoria, Australia
{acolman, jhan}@swin.edu.au

Abstract. Software systems are becoming more open, distributed, pervasive,
and connected. In such systems, the relationships between loosely-coupled
application elements become non-deterministic. Coordination can be viewed as
a way of making such loosely coupled systems more adaptable. In this paper we
show how coordination-systems, which are analogous to nervous systems, can
be defined independently from the functional systems they regulate. Such
coordination systems are a network of organisers and contracts. We show how
the contracts that make up the coordination-system can be used to monitor,
regulate and configure the interactions between clusters of software entities
called roles. Management and functional levels of contracts are defined.
Management contracts regulate the flow of control through the roles. Functional
contracts allow the specification of performance conditions. These contracts
bind clusters of roles into self-managed composites — each composite with its
own organiser role. The organiser roles can control, create, abrogate and
reassign contracts. Adaptive systems are built from a recursive structure of such
self-managed composites. The network of organiser roles and the contracts they
control constitute a coordination-system that is a separate concern to the
functional system. Association aspects are suggested as a mechanism to
implement such coordination-systems.

1 Introduction

As software systems become more open, distributed, pervasive, and connected, such
systems need to be able to adapt to their dynamic environments. One approach to
building adaptable and adaptive systems is to construct them of loosely coupled
elements. These elements are dynamically coordinated to meet changing goals and
environmental demands. This paper proposes that coordination functions be
implemented as a separate sub-system. This coordination-system can be described and
controlled independently from the sub-systems that interact directly with the application
domain. This approach is analogous to the coordination-systems that exist both in living
things and in man-made organisations. In the realm of biology, the nervous system can
be viewed as a system that, in part, coordinates the respiratory, circulatory, and
digestive systems. Similarly, the management structure or financial system in a
manufacturing business can also be described at a separate level of abstraction from the
functional processes that transform labour and material into products.

64 A. Colman and J. Han

The aim of this paper is to show how such coordination/control systems can be
imposed on top of functional software, to better monitor, regulate, and coordinate
those systems in dynamic environments. The structure of these coordination-systems
can be defined as a separate concern from the functional systems they coordinate.

Coordination-systems have a mapping to the state of the underlying functional
system. The type(s) of abstraction on which the coordination-system is built will
depend on the variables that need to be controlled in order to maintain the system’s
viability in its environment. In terms of a biological analogy, a controlled variable is
the level of oxygen supply to the cells. In a management system, the variable might be
the amount of funds in the bank. In computerised systems, such control variables
could be computational or communication resources; or environmental variables.

This paper is structured as follows: Section 2 gives an overview of a schema for
coordination systems based on roles, along with a motivating example. Section 3
examines contracts between roles, and the organiser-roles that create, monitor and
control contracts. In Section 4 we introduce the concept of adaptive coordination
systems built from these organiser roles and contracts. Coordination systems enable
the functional systems to maintain their viability in dynamic environments and to
respond to changes in non-functional requirements (NFRs). Section 5 discusses the
implementation of coordination systems using association aspects. Section 6 briefly
looks at related work and Section 7 concludes.

2 Coordination as the Control of Interactions Between Roles

The ROAD (Role-oriented adaptive design) framework presented in this paper
extends work on object-oriented role and associative modelling in [1-4]. In this
framework, the elements that are being coordinated are roles played by objects. A role
satisfies responsibilities to the system as a whole. Roles are first-class entities that can
be added to, and removed from, objects. Kristensen [3] provides a definition of roles
that is based on the distinction between intrinsic and extrinsic members (methods and
data) of an object. Intrinsic members provide the core functionality of the object,
while extrinsic members contain the functionality of the role. In our view, this ‘core
functionality’ is the situated computational and communication capabilities of the
object.

The ROAD approach to creating adaptive software systems is based on the
distinction between two types of role – functional roles and management roles.
Functional roles (or more properly domain-function roles) are focused on first-order
goals — on achieving the desired application-domain output. Functional roles
constitute the process as opposed to the control of the system. In ROAD these funct-
ional roles are decoupled; they do not directly reference each other. Functional roles
are associated by contracts that mediate the interactions between them. The creation
and monitoring of these contracts is the responsibility of a type of management role
— organiser-roles.

To help us discuss the coordination of roles we will consider an example of a
highly simplified business department that makes Widgets and employs Employees
with different skills to make them. In such a business organisation an employee can

 Coordination Systems in Role-Based Adaptive Software 65

perform a number of roles, sometimes simultaneously. Employees (objects) can
perform the roles of Foreman, ThingyMaker, DooverMaker and Assembler (who
assembles thingies and doovers into widgets). The Foreman’s role is to supervise
ThingyMakers, DooverMakers, and Assemblers and to allocate work to them. The
WidgetDept Organiser role is responsible for creating the bindings between roles and
the objects that play them, and for creating the associations between the various
functional roles.

Fig. 1. Roles and objects in a Widget Department

In a purely object-oriented analysis only the domain function is modelled. For
example, in the above department the various roles might be modelled as sub-class
specialisations of the Employee class. However, in an open system we cannot assume
that all objects of type Employee have the same capabilities. In a real-world
manufacturing department some ThingyMakers would be more capable than others
(e.g. faster, more accurate, more adaptable etc.). In the ROAD schema, we identify
this difference by separating roles from objects, where the situated objects provide the
performance capability to the purely domain-function roles. Object-role pairs may be
running in different computational and communication contexts. These contexts affect
the relative performance of roles (e.g. they may be faster, more reliable, better
connected, more costly etc.). As well as the variation in computational contexts, the
relationship between the Widget department and its environment may also vary. For
example, orders flowing into the department to make new widgets might exceed the
capacity of the department to manufacture them. The organiser role may have to
reconfigure the relationships between the functional roles, or else create extra object-
roles in order to meet the increased demand.

In the Fig. 2 below, an organiser-role (CR) creates, monitors and controls the
contracts (C1, C2) between functional roles (F1, F2, F3). The domain of organiser-
roles is the system itself rather than the problem-domain. Each organiser role is
responsible for a cluster of functional roles. We will call these regulated clusters of
roles “self-managed composites” because each composite attempts to maintain a
homeostatic relationship with its environment and other composites. We use the word
composite rather than component because the roles in the composite are not
necessarily encapsulated in a single package (although they may be). In terms of a
management analogy, a self-managed composite in a business organisation would be

e:Employee

WidgetDept
Organiser

Foreman

Assembler

ThingyMaker

Class/Object

Functional Role

DooverMaker

Organiser Role

Object can adopt role

Widget

Doover Thingy

66 A. Colman and J. Han

a department (e.g. manufacturing department). Such managed composites perform a
definable domain function, and can themselves be part of higher-level composites. A
role-based organisation is built from a recursive structure of self-managed
composites. This structure is coordinated through a network that connects the
organiser roles of each of the composites. The network of organiser roles and the
contracts they control constitute the coordination-system. An example schema of a
coordination-system’s topology is illustrated in Fig. 2 below.

Fig. 2. Self-managed Composite with a Coordination-system

In following sections we show how a coordination-system, built from contracts and
organisers, can be imposed on a cluster of functional roles to enable the system to
better cope with uncertain environments and changing NFRs.

3 Controlling Interactions Using Contracts

In the first part of this section we summarise our previous work [5] on using contracts
to manage interactions between roles. This approach distinguishes contracts at the
functional and management level. In the latter part of this section, we extend this
work by introducing the concept of management-level protocols that control
interaction between roles, and then discuss what is needed to specify contracts at the
functional level.

ROAD contracts [5] are association classes that express the obligations of the
contract parties to each other. The form (type) of a contract sets out the mutual
obligations and interactions between classes of party (e.g. vendor and purchaser). A
contract is instantiated when values are put against the variables in the contract
schedule (e.g. the vendor and purchaser are named, the date of commencement is
agreed etc.) and the contract is signed. Contracts also have an execution state that
indicates the level of fulfilment of the various clauses of the contract. This dynamic
information is needed to ensure that the terms of the contract are being met. It
includes information on the state of the relationship between the parties, and the state
of any interaction defined by the protocols. ROAD contracts store this dynamic state

CR2

F1

F2

F3

C1

C2

Organiser role

Functional
role

Contract

Self-managed
composite

Schema of coordination-system

 Coordination Systems in Role-Based Adaptive Software 67

information in the contract itself. The contract itself can enforce the terms of the
contract by controlling the interactions between the parties.

 Contracts between functional roles often share common characteristics. In
particular, the control aspects of the contract can be abstracted. Using our example of
a WidgetMaking department, the control-management relationship between a
Foreman and an Assembler could be characterised as a Supervisor-Subordinate
relationship. Similarly, a Foreman-ThingyMaker relationship would also be
characterised a Supervisor-Subordinate relationship. Rules control the interactions
between operational-management roles such as a supervisor and a subordinate. For
example a supervisor can tell a subordinate to do a work related task but a subordinate
cannot tell a supervisor what to do. Other types of management contract include
auditor – auditee; peer – peer; and predecessor – successor in supply-chain and
production-lines.

 In ROAD, these abstracted control aspects of the relationships between roles are
encapsulated in a management contract. Domain-function-level contracts (“functional
contracts” for short) inherit control relationships from these management contracts.
The conceptual relationships between functional and management contracts, and the
respective roles they associate, are illustrated in Fig. 3 below.

Fig. 3. Functional and management contracts

As can been seen from Fig. 3 above, fac is an instance of a Foreman-

AssemblerContract. The contract is an association class between the Foreman
and the Assembler roles. The ForemanAssemblerContract inherits the form of its
control relationships from the SupervisorSubordinateContract by virtue of the
fact that the Foreman plays a Supervisor role in relation to the Assembler’s
Subordinate role.

Fig. 4 below illustrates an organisational structure for our Widget department,
based on the Bureaucracy pattern [6] and built using contracts. In order to simplify the
diagram, functional contracts have been drawn as diamonds. The structure, which is
similar to a business organisation chart, is still abstract because objects have not yet
been assigned to roles. Note that the Foreman plays both Supervisor and Subordinate
roles in the organisational structure.

In the next two sections we look at management and functional contracts in more
detail. Management contracts specify the type of communication acts and protocols
that are permissible between the two parties. Functional contracts specify the
performance obligations of each party to the other.

Foreman

Assembler

e1:
Employee

e2:
Employee

fac: Foreman-
AssemblerContract

Supervisor

Subordinate

Supervisor-
SubordinateContract

Functional level Control level

68 A. Colman and J. Han

Fig. 4. Domain specific abstract organisation bound by contracts

3.1 Contracts at the Management Level

Contracts at the management level of abstraction restrict the types of method that
roles can invoke in each other. From our example above, the Supervisor-Subordinate
operational-management role association restricts interactions between the objects
playing the ThingyMaker and the Foreman to certain types of interaction. For
example, a ThingyMaker cannot tell its Foreman Supervisor what to do. Furthermore,
these contracts only allow interactions between particular instances of object-roles.
For example, the method ThingyMaker.setProductionTarget() can only be
invoked by the ThingyMaker’s own Foreman.

Control-Communication Acts. The control communication in management contracts
can be defined in terms of control-communication act (CCA) primitives. These
performatives abstract the control aspects of the communication from the functional
aspects. In [5], we defined a simple set of CCAs for direct and indirect control and for
information passing. As an example, Table 1 below defines a set of primitives suitable
to a hierarchical organisatiop. Unlike the communication act primitives in agent
communication languages such as FIPA-ACL [7], CCAs express only control
relationships between the two parties bound in a contract, rather than the types of
communication between two independent agents. Note that indirect CCAs carry a
reference to a resource r. The set below is not logically complete. For instance, it
does not capture a referential command relationship (A tells B to tell C to do
something), but it is sufficient to allow us to define a number of contracts between

Table 1. Example of Control-Communication Act Primitives

Type of
communication Communication control acts

Direct Control DO, SET_GOAL

Indirect Control RESOURCE_ALLOCATE(r), RESOURCE_REQUEST(r)

Information ACCEPT, REJECT, INFORM, QUERY, ACKNOWLEDGE

Production manager

Thingy
Maker

Foreman

Supervisor

Subordinate

Doover
Maker

Peer

Assembler

Peer

Subordinate Subordinate

Supervisor-
SubordinateContract

Peer-Peer
Contract

Supervisor

Management contract

Functional contract

 Coordination Systems in Role-Based Adaptive Software 69

operational-management roles. From these contracts we can create organisational
structures.

In terms of the primitives we defined above, Supervisors can initiate some types of
interaction and Subordinates others. Initial CCAs for these roles are:

Supervisor initiated: DO, SET_GOAL, INFORM, QUERY, RESOURCE_ALLOCATE
Subordinate initiated: INFORM, QUERY, RES_REQUEST

Other forms of management contract such as Peer-Peer would have different sets of
valid initial CCAs for each party.

CCA Protocols. Protocols can be defined from CCA primitives. These Control
Protocols (CPs) are sequence patterns of CCAs that terminate when the task is
achieved. They are at the same level of abstraction as CCAs. Only the form of
communication between the parties is represented. There is no information about the
content of the task.

There are a limited number of protocols that form sensible interactions. It is poss-
ible to represent these protocols as strings of CCAs between initiator and respondent.
To do this we will encode the CCAs as single letters so that complete protocols can be
represented as individual strings. The codes for the above CCAs (plus “no response”)
are defined as follows:

 Table 2. CCA short hand codes

D DO I INFORM X NO RESPONSE
G SETGOAL Q QUERY K ACKNOWLEDGE
L RESOURCE_ALLOCATE A ACCEPT
S RESOURCE_REQUEST R REJECT

For further clarity we can apply the convention that initiator CCAs are capitalised,
and respondent CCAs are in lower case. For example, the string “Da” indicates that
the initiating party asks the respondent to do something, and that the respondent
subsequently accepts. Control protocol clauses can also be represented by finite state
machines (FSMs). These FSMs keep track of the conversation between two
contracted parties. Clauses can have as a goal the maintenance of a state or the
achievement of a state. In the case of maintenance clauses, successful transactions of
the protocol will result in a return to a ‘ready’ state. The successful completion of
achievement clauses will result in a ‘completed’ state for that clause. Where an
interaction is following a protocol in which a response is expected but not
forthcoming after a specified time, the protocol may specify that n retires are
permitted before the clause is violated. The nodes in Fig. 5 below represent CCAs
issued by either the initiator or the respondent in the transaction of a particular clause
in the contract. The letters in the nodes are a short hand for CCAs, as defined in Table
2 above (initiator CCAs in capitals, respondent CCAs in lower case). The FSM for the
Supervisor-Subordinate contract valid protocols starting with a Supervisor D is
illustrated below.

70 A. Colman and J. Han

Fig. 5. Valid CCA protocol initiated with a Supervisor DO CCA

The form of our Supervisor-Subordinate management contract has been
summarised in Table 3 below. The valid protocol sequences are expressed as strings
as defined above. The management contract clause will be violated if the sequence of
interactions does not follow one of these strings. For each protocol clause where a
response is expected, values for the response timeout and the number of permissible
retires would need to be specified (this is done at the functional level of the contract).
Other types of management contract will have different sets of permissible protocols.
For example, the protocol “DaR” is presumably acceptable in a Peer-Peer
management contract where the “a” is a conditional accept. If management contracts
are to enforce CCA protocols, they need to keep track of the state of communication
between the roles that are party to the contract. This implies that there must be an
instance of a contract for every association between roles.

Table 3. Example form of an operational-management contract

Management Contract
Name Supervisor-Subordinate
Party A Supervisor
Party B Subordinate
A initiated clauses D; Da; Di; I; Ik; Qi; G; Ga; Gi; L; La; ...
B initiated clauses I; Ik; Qi; Sa; Sr; Si ; ...

Management contracts are very limited in that they only monitor or enforce the
form of the communication between the parties — there is no domain content
apparent at the management control level of abstraction. Values for timeouts (in the
event of no response), and values for the number of retries that are permitted, only
make practical sense in relation to a domain specific function. Such values, along with
the identity of the parties to the contract and other performance requirements for
clauses and the contract as a whole, are provided by functional contracts. Functional
contracts specialise abstract management contracts. It is the functional contract rather
than the management contract that is instantiated. When a functional role in an
organisational structure is bound to an operational-management role using such a
contact, all functional role method invocations and responses between the parties are
associated with CCA primitives.

D

timeout

a

V

i

n>retries

V

Start

Clause violation

Clause completion

 Coordination Systems in Role-Based Adaptive Software 71

3.2 Contracts at the Functional Level

Contracts, at the abstraction level of domain function (functional contracts), add
schedule details to the form of contract defined by its management contract. They also
define extra clauses that are needed to govern the domain-specific interactions
between the functional roles. Instances of functional contracts, such as a Foreman-
ThingyMaker contract, include a completed contract schedule as well as clauses
relating to protocols, performance conditions and contract breach. They are specified
as follows:

Schedule details such as the names of the parties to the contract and any temporal
constraints on the contract – commencement date, duration etc – are specified. The
operational-management roles in the management contract are specialised with
functional roles. For example, the supervisor party is specialised as a foreman.

The rules for communication that are defined in the management contract protocols
are made concrete. CCAs are mapped to the method signatures in the functional roles
(see the section below on implementation). For example, the method do_make-
Thingy() of the ThingyMaker tm would be matched to the DO CCA. This means a
supervisor, contracted to tm, can invoke this method. If a control protocol is to be
enforced for an interaction, a valid protocol string is assigned to the interaction, and
values are specified for retries and timeouts. As long as the protocol is followed
during the interaction, the contract clause will not be violated. Protocol sequences of
particular domain-function interactions which need to be followed by the parties
[8]might also be specified, as in [9]. For example, a foreman might be required to
allocate the resources (thingy parts) to a thingyMaker, before it can ask the thingyMaker
to make a thingy.

Clauses relating to any preconditions, post-conditions and invariants for the
interactions are specified. These conditions are similar to those defined in the design-
by-contract (DBC) approach [10], where such conditions are aimed at ensuring the
correct functioning of the software. Consequently, these DBC conditions themselves
cannot be changed. In functional-level contracts these conditions can be varied
(provided the variation does not contravene correctness constraints). This allows
variable NFRs to be expressed as conditions of the contract. For example, if there are
costs associated with the performance of a function such as making a thingy, then the
contract might specify the acceptable limit of those costs. Any performance
conditions also are specified. For example, a foreman might specify the maximum time
allowed for a contracted thingyMaker to produce a thingy. These NFRs reside in, and are
enforced by, the contract rather than the component itself.

Finally, clauses relating to clause violation and what constitutes a breach of
contract are specified. Some clause violations “go to the heart” of the contract and
violation of the critical clause leads to automatic breach of the contract — the contract
throws an exception. Other clauses may not be as critical to the contract and will be
monitored. The contract contains metrics to measure the performance of the clauses:
for example ‘average time to make a widget’. Such metrics are monitored by the
organiser role, which may then choose to abrogate the contract if the performance is
unacceptable – and, for example, if another role-object is available to perform the

72 A. Colman and J. Han

function. There may also be remedies for clause violation. If a clause is violated it
may be permissible to renegotiate the contract e.g. to a different service level.

During execution, a contract itself monitors the interactions between the roles. The
contract will prevent unauthorised or invalid interactions and monitor all interactions
in order to maintain the state of execution of its clauses. The contract also keeps the
state of any performance metrics updated. If a clause is violated, the contract informs
the organiser role that controls it. Contracts may also be actively monitored by their
organiser roles. We examine the interactions between contracts and organiser roles in
the next section.

4 The Coordination-System

A coordination-system is constructed of contracts and the organisers that control
them. Every organiser role is responsible for a cluster of roles and contracts.
Organisers have three main functions: Firstly, organisers control and monitor their
contracts. An organiser can instantiate, change, abrogate and reassign its contracts.
Organisers monitor the contracts in their self-managed composite for under-
performance. Secondly, organisers can reconfigure the contracts to try to remediate
any underperformance that results from perturbations or changing requirements. Any
such reorganisation must maintain the composite’s viability. For example, if the
structure is based on a Bureaucracy pattern [6], the organiser must ensure proper
chains-of-responsibility (i.e. supervisor-subordinate chains) are maintained to
preserve the functional flow-of-control. The organiser also creates role-object
bindings [11] (the discussion of such bindings is beyond the scope of this paper).

Thirdly, organisers are the nodes of the coordination-system network. They
interpret regulatory control messages that flow through this network and translate
these messages into contract clauses. The coordination-system is a hierarchy in which
non-functional performance requirements flow down, and information on the
performance of the managed composites flow up. We will call these two regulatory
control-message flows, respectively, performance/constraint-propagation and
performance-monitoring.

The structure and adaptive behaviour of a coordination-system will be illustrated
by looking at a ThingyMaking team within our Widget making department (WMD).
The relationship between functional requirements and NFRs is illustrated with a
production scheduling problem. We need to keep in mind that in an open system, the
time taken to execute a function may vary or come at a cost.

Performance and Constraint Propagation. Performance requirements pass down
the hierarchy of organiser roles to alter the performance requirements of the contracts.
In our Manufacturing department the Production Manager receives (from above)
orders for Widgets. It determines the priority of the orders, and passes these on to the
Foreman (as determined by the contract C1). To fulfil its obligations under the C1
contract, the foreman must organise the production of thingy orders within a specified
timeframe. For example, the management level of contract C1 allows the Production-
Manager pm to invoke the Foreman do_thingyOrder(…)method. The contract C1,

 Coordination Systems in Role-Based Adaptive Software 73

with additional advice it receives from the organiser role (pm), can add performance
requirements and constraints. For example, the contract may require that thingies be
made within certain time constraints, or that certain resource costs not be exceeded.

Fig. 6. Role-instance diagram of self-managed composites

The Foreman f in turn allocates work to, among others, the thingyMakers (tm1
and tm2). The Foreman can do this under the terms of the Foreman-ThingyMaker
contract (instances C2 and C3) by invoking ThingyMaker’s do_makeThingy()
method. While the contracts C2 and C3 have the same form, these instances of the
Foreman-ThingyMaker contract have different performance characteristics written
into their respective contract schedules. Suppose the role-player object attached to
tm1 can make 10 thingies per hour while the role-player object attached to tm2 can
only make 5 thingies per hour. Because the Foreman f is party to contracts C2 and
C3, it can use the performance capacity information in the schedule in deciding to
whom the work should be allocated.

Performance and constraint information can be about either the actual capacity or
the required capacity. The actual-performance and constraint information is held by
the contracts themselves. For example, contracts C2 and C3 contain information on
the respective thingy-making-abilities of their contracted thingyMaker role-objects.
The source of this actual-performance information could be from a specification
provided by the builder of the component/system, or it could be derived from the
organiser role (e.g. the WidgetDeptOrganiser wc) monitoring the situated
performance of the role-objects (see the next section).

Required-performance information on goals and constraints is transmitted through
the organiser roles. The organiser role (e.g. wc) receives NFRs from the organiser
above it in the coordination hierarchy (e.g. pc), then interprets these into performance
requirements for the contracts it controls.

Performance Monitoring and Breach Escalation. In addition to its responsibility
for characterising the actual-performance of role-objects mentioned above, the

pc: ProductionDept
Organiser

wc: Widget
Dept Organiser

pm: Production
Manager

f:Foreman

tm1:
ThingyMaker

C1

…

…

C2

C3

Organiser
role instance

Functional
role instance

Contract
instance

Self-managed
composite

tm2:
ThingyMaker Widget Making

Department

Manufacturing
Department

Regulatory
control
messages

Management
interface

Functional interface

74 A. Colman and J. Han

organiser role can monitor the contracts to see if they are meeting their performance
requirements. Changing requirements, environment or computational contexts can
lead to the violation of performance clauses in the contract. If the actual capacity (as
expressed in the contracts) falls below the required capacity, then the organiser must
attempt to reconfigure the composite by altering the existing contracts, reassigning
roles to more capable objects or creating new contracts and roles.

If this reconfiguration is beyond the capability of the composite organiser, the
organiser must inform the role above it in the coordination system hierarchy. Contract
breach can occur if the violation(s) is severe enough. If a breach occurs (or if the
organiser has the intelligence to predict a breach from the actual and required
performance information), the composite organiser needs to reconfigure the contracts
and roles. In the figure above, if wc detects the thingyMakers it controls are, or will
be, over-loaded, it may ask pc for resources to get more thingyMakers.

Such escalation can be viewed as an organised form of exception-handling where
control-messages flow up through the coordination-system, before error-messages
flow back up the functional-system’s flow of control. Just as an animal detecting a
threat will increase its adrenaline levels to stimulate the heart rate for flight or fight,
so the coordination- system detects stress on the system then changes the parameters
of contracts (or reorganises them) in an attempt to avert system failure.

The performance parameters that an organiser could monitor include the rate of the
flow of data resources through the system, the state of communication networks or the
computational loads on the objects performing the various roles. The organiser’s
ability to successfully reconfigure the composite will depend on its ability to sense the
performance parameters from either the contracts or the environment, its ability to
reason about the causes of underperformance, and its ability to implement effective
re-organisations. The discussion of such adaptive feedback loops is beyond the scope
of this paper.

5 Implementing Coordination-Systems Using Association Aspects

If a coordination-system is to be implemented as a separate concern, the contracts and
organiser roles that constitute the system must be able to be defined separately both at
conceptual and code levels. A coordination-system cross-cuts the program structure
defined by the functional-roles and classes. This section briefly describes how we
have implemented contracts using association aspects. A more comprehensive
description can be found in [5] and [12].

Aspect-oriented methods and languages seek to maintain the modularity of
separate cross-cutting concerns in the design and program structures. The AspectJ
[13] extension to Java allows the programmer to define pointcuts that pick out certain
join points (well-defined points in the program flow). An advice is code that is
executed when a join point that matches a pointcut is reached. Aspects encapsulate
such pointcuts and advices. These units of modularity can model various cross-cutting
concerns.

 Coordination Systems in Role-Based Adaptive Software 75

Implementing contracts as aspects enables interactions to be monitored and
controlled. As implemented in [5], method signatures follow an arbitrary naming con-
vention that indicate their CCA type (e.g DO CAA method names start with do_). At
compile time, CCA pointcuts are pattern matched against methods so that contract
advice can be woven into the functional code. Such advice can prohibit or permit
interaction. Advice can be inserted before and after method invocations, allowing the
state of the contract to be updated and the performance of the contract to be measured.
Pointcuts also allow the execution context of the invoking and target objects to be
exposed. Thus the state of the objects that participate in the contracts can also be
accessed. This enables pre and post conditions to be monitored and enforced.

Aspects, as currently implemented in AspectJ, do not easily represent the
behavioural associations between objects [14]. Current implementations of AspectJ
provide per-object aspects. These can be used to associate a unique aspect instance to
either the executing object (perthis) or the target object (pertarget). When an advice
execution is triggered in an object, the system looks up the aspect instance associated
with that object and executes that instance. This allows the aspect to maintain a
unique state for each object, but not for associations of objects.

 Sakurai et al. [15] have implemented an extension to the AspectJ compiler to
handle association-aspects. Association-aspects are declared with a perobjects
modifier that takes, as an argument, a tuple of objects. Instances of these association-
aspects are suitable for implementing management and functional contracts. A
contract can be created as an aspect instance that associates a group of objects. In
previous work [5], we have demonstrated the implementation of contracts that control
the communication between roles. Due to space constraints here, our notated Java
code that demonstrates the creation, revocation, and reassignment of contracts is
available at [12]. The example code at [12] also shows how to intercept various CCA-
type method-calls between various authorised and unauthorised parties; how to
permit, modify or prohibit the execution of the interaction; and how to keep a contract
FSM updated.

The use of aspects to implement contracts allows functional code to be developed
independently from the contracts that associate them. The only dependency in the
functional code is that method signatures need to follow a CCA naming convention.
However, there is a limitation in using AspectJ to create contracts: both the
coordination code and the functional code must be compiled together in order for
weaving to occur. This means new classes cannot be added dynamically without
recompilation. Other approaches, such as load-time weaving of byte-code, might
prove effective in addressing this limitation.

6 Related Work

ROAD extends work on role and associative modelling in [1-4,16]. Kendall [2] has
shown how aspect-oriented approaches can be used to introduce role-behaviour to
objects. Roles are encapsulated in aspects that are woven into the class structure.
While these role-oriented approaches decouple the class structure, they do not

76 A. Colman and J. Han

explicitly define a coordination-system using management contracts. They are
primarily concerned with role-object bindings rather than role associations.

The coordination model outlined here adopts a control-oriented [17] architectural
approach, primarily focused on adaptivity rather than synchronisation. It has many
similarities and some major differences with work by Andrade, Wermelinger and
colleagues [18-20]. Both approaches represent contracts as first-class entities, and
both use a layered architecture. In [19,20] the layers are Computation, Coordination
and Configuration (‘3C’). This is broadly similar to ROAD’s four layer architecture
(Computational-object, Functional-role, Management-contract, Organisation) with
3C’s Computation layer similar to ROAD’s Object and Functional role layers. 3C’s
contracts are method-centric rather than role-association-centric. They define a single
interaction sequence that might involve many parties, whereas ROAD contracts are
currently limited to two roles and many involve many types of interaction. Both
approaches use contracts to model unstable aspects of the system, but 3C’s focus is on
business rules whereas ROAD focuses on performance variability. In 3C, there is no
concept of a coordination network through which regulatory control messages pass.

The concept of a CCA in this paper is derived from the concept of a
communication act in agent communication languages such as FIPA-ACL [7]. CCAs,
as defined here, are much more restricted in their extent. CCAs deal only with control
communication, and do not have to take intentionality of the other parties into account
[21]. Work on roles has also been undertaken in multi-agent systems (MAS) [22-24].
In particular, [21] extends the concept of a role model to an organisational model.
MAS systems, however, rely on components that have deliberative capability and
more autonomy than the objects and roles discussed here. These agents negotiate
interactions with other agents to achieve system level goals. These negotiations occur
within a more amorphous structure than is defined here.

Like our approach, control-theoretic architectures separate control from functional
processes [21]. Such systems are designed to maintain system viability during anti-
cipated environmental perturbation, but they cannot be considered adaptive. Recent
work on intelligent control [25] adds an adaptive loop on top of the operational
control loop. This is similar to our concept of organiser roles that control the structure
of the organization through manipulating contracts. In control-theoretic approaches
there is no concept of role or object-role binding. Such systems are not structurally
adaptive.

7 Conclusion

Separating management concerns from functional concerns can make systems more
adaptive. In this paper we have introduced a framework for creating coordination-
systems that control the interactions between functional roles. These coordination
systems can be developed independently and the imposed on functional systems.
They are built from a hierarchy of organiser roles that control the contracts between
functional roles. ROAD contracts have management and domain function levels.
Management contracts specify the type of communication acts and protocols that are
permissible between the two parties. Functional contracts specify, among other things,

 Coordination Systems in Role-Based Adaptive Software 77

the performance obligations. Abstracting management-contract aspects makes
possible, through contract inheritance, the reuse of their communication-control
capability in many types of organisational structure.

There are a number of aspects of this framework that need further development.
The set of CCAs that defined our example protocol is not complete and somewhat
arbitrarily defined. This informality may suffice if operational-management contracts
are only application or domain specific. However, if CCAs are to be generalised, a
more rigorous approach may be needed. The UML 2.0 Superstructure Specification
[26] provides a list of primitive actions which may provide the basis for a more
formal definition of CCAs. Alternatively, agent communication languages such as [7]
may provide the basis of a more rigorous definition. In this paper we have only briefly
addressed the nature of organiser roles. While many features of such roles will be
domain-specific, there are general principles of organisational viability that need to be
elaborated for organiser roles. The discussion of indirect control is also under-
developed. In our example, the resource allocation clause gave permission to the
Superordinate to access any subtype of Resource. In practice, different roles are likely
to have access to different resources. It follows that we need to develop some scheme
of resource ownership or access rights. We also assume that the interfaces of the
functional roles are compatible if they are to enter into contracts. Issues of functional
compatibility and component composition need to be addressed.

References

[1] Bäumer, D., Riehle, D., Siberski, W., and Wulf, M. "Role Object" in Pattern languages
of program design 4, eds. Harrison, Foote, and Rohnert, H. Addison-Wesley, 2000, pp.
15-32.

[2] Kendall, E. A., "Role Modelling for Agents System Analysis, Design and
Implementation" First International Symposium on Agent Systems and Applications
IEEE CS Press, 1999

[3] Kristensen, B. B. and Osterbye, K., "Roles: Conceptual Abstraction Theory & Practical
Language Issues" Special Issue of TAPOS on Subjectivity in Object-Oriented Systems,
1996

[4] Lee, J. S. and Bae, D. H., "An enhanced role model for alleviating the role-binding
anomaly" Software: practice and experience, vol.32, 2002, pp. 1317-1344.

[5] Colman, A. and Han, J., "Operational management contracts for adaptive software
organisation," Proc. Australian Software Engineering Conference (ASWEC 2005), 2005.

[6] Riehle, D. "Bureaucracy" in Pattern Languages of Program Design 3, eds. Martin,
Riehle, and Buschmann. Reading, Massachusetts: Addison-Wesley, 1998, pp. 163-186.

[7] The Foundation for Physical Intelligent Agents, FIPA Communicative Act Library
Specification http://www.fipa.org/specs/fipa00037/, 2002, last accessed 27 Aug 2004

[8] Bracciali, A., Brogi, A., and Canal, C., "Dynamically Adapting the Behaviour of
Software Components," Proc. Coordination'02 LNCS 2315, York, UK, 2002.

[9] Han, J. and Ker, K. K., "Ensuring Compatible Interactions within Component-based
Software Systems" Proc.10th Asia-Pacific Software Engineering Conference(APSEC)
2003.

[10] Meyer, B. Object-oriented software construction, New York: Prentice-Hall, 1988.

78 A. Colman and J. Han

[11] Colman, A. and Han, J., "Organizational abstractions for adaptive systems," Proceedings
of the 38th Hawaii International Conference of System Sciences, Hawaii, USA, 2005.

[12] Colman, A. and Han, J., “Implementation of Contracts using Association Aspects”, SUT
Report, SUTICT-TR2005.04/SUT.CeCSES-TR007 www.it.swin.edu.au/centres/CeCSES,
2005.

[13] Eclipse Foundation, AspectJ http://eclipse.org/aspectj/, 2004, last accessed 7 Oct 2004
[14] Sullivan, K., Gu, L., and Cai, Y., "Non-modularity in aspect-oriented languages:

integration as a crosscutting concern for AspectJ," Proc. of the 1st international
conference on Aspect-oriented software development, AOSD 02, Enschede, The
Netherlands, 2002.

[15] Sakurai, K., Masuharat, H., Ubayashi, N., Matsuura, S., and Komiya, S., "Association
Aspects," Proc. of the Aspect-Oriented Software Development '04, Lancaster U.K, 2004.

[16] Kendall, E. A., "Role model designs and implementations with aspect-oriented
programming." Proc. Object-Oriented Systems, Languages, and Applications, 1999.

[17] Arbab, F., "What Do You Mean, Coordination? " Bulletin of the Dutch Association for
Theoretical Computer Science (NVTI), vol.March, 1998

[18] Andrade, L., Fiadeiro, J. L., Gouveia, J., Koutsoukos, G., Lopes, A., and Wermelinger,
M., "Patterns for coordination ," Coordination '00 LNCS 1906, pp. 317-322, 2000.

[19] Wermelinger, M., Fiadeiro, J. L., Andrade, L., Koutsoukos, G., and Gouveia, J.,
"Separation of Core Concerns: Computation, Coordination, and Configuration,"
Workshop on Advanced Separation of Concerns in Object-Oriented Systems, OOPSLA,
2001.

[20] Andrade, L., Fiadeiro, J. L., Gouveia, J., and Koutsoukos, G., "Separating computation,
coordination aand configuration" Journal of Software Maintenance and Evolution:
Research and Practice , vol.14(5) , 2002, pp. 353-369 .

[21] Zambonelli, F., Jennings, N. R., and Wooldridge, M., "Developing multiagent systems:
The Gaia methodology" ACM Transactions on Software Engineering and Methodology
(TOSEM), vol.12(3) , 2003, pp. 317-370 .

[22] Juan, T., Pearce, A., and Sterling, L., "ROADMAP: extending the Gaia methodology for
complex open systems" Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, Bologna, Italy, ACM, 2002, pp. 3-10.

[23] Odell, J., Parunak, H. V. D., Brueckner, S., and Sauter, J., "Changing Roles: Dynamic
Role Assignment" Journal of Object Technology, ETH Zurich, vol.2(5) , 2003, pp. 77-86.

[24] Zambonelli, F., Jennings, N. R., and Wooldridge, M. J., "Organisational Abstractions for
the Analysis and Design of Multi-Agent Systems," Workshop on Agent-oriented
Software Engineering ICSE 2000, 2000.

[25] Herring, S. and Kaplan, C., "Viable Systems: The Control Paradigm for Software
Architecture Revisited" Australian Software Engineering Conference, 2000, pp. 97-105.

[26] Object Management Group, UML 2.0 Superstructure (Final Adopted specification)
http://www.uml.org/#UML2.0, 2004, last accessed 13 Oct 2004

Coordination with Multicapabilities

Nur Izura Udzir1,2, Alan M. Wood1, and Jeremy L. Jacob1

1 Department of Computer Science, University of York, UK
{izura, wood, Jeremy.Jacob}@cs.york.ac.uk

2 Department of Computer Science,
Universiti Putra Malaysia, Malaysia

Abstract. In the context of open distributed systems, the ability to co-
ordinate the agents coupled with the possibility to control the actions
they perform is important. As open systems need to be scalable, capabi-
lities may provide the best-fit solution to overcome the problems caused
by the loosely controlled coordination of Linda-like systems. Acting as a
‘ticket’, capabilities can be given to the chosen agents, granting them dif-
ferent privileges over different kinds of data—thus providing the system
with a finer control on objects’ visibility to agents. One drawback of ca-
pabilities is that they can only be applied to named objects—something
that is not universally applicable in Linda since, in contrast to tuple-
spaces, tuples are nameless. This paper demonstrates how the advantages
of capabilities can be extended to tuples, with the introduction of mul-
ticapabilities, which generalise capabilities to collections of objects.

1 Introduction

Coordination is essential in open systems, where agents and active objects are
free to join and leave the system at any time, i.e. they need not be defined prior to
starting the infrastructure (‘middleware’). The discussion in this paper is based
on the tuple-space (TS), or Linda model [9, 3, 8] as an open distributed system.
The shared data space coordination paradigm is a popular alternative to the
conventional point-to-point communication approaches. Linda is distinguished
by its temporal and spatial separation properties, as well as its independence
from any computation language or machine architecture—essential properties
for coordination in open systems. Now a mature technology, research in TS-
based coordination is providing general-purpose data spaces to create efficient
large-scale implementations of open distributed multi-component systems.

There is no doubt of Linda’s power for coordination in an open, heteroge-
neous environment. However, in order to profit from the advantages of open and
flexible coordination mechanisms, a number of challenging practical problems
need to be addressed. These have been noted by many authors in the past, and
several solutions have been proposed, all imposing varying degrees of additional
control by the system. Unfortunately, getting the optimum balance betweenflex-
ibility and tighter control is difficult, and many of the proposed solutions lose
the principal advantages that Linda-like systems have over many other models.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 79–93, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

80 N.I. Udzir, A.M. Wood, and J.L. Jacob

It is useful, however, to provide a finer control over the agents’ interac-
tions and coordination, than is available in the ‘classic’ Linda model. This is
particularly challenging in a decentralised, and distributed environment, while
at the same time maintaining the flexibility inherent in open systems. One
aspect of having a finer control is to be able to restrict what methods an
agent is allowed to invoke on an object. Earlier work on coordination using
object attributes [17] demonstrated a simple solution to control agents’ access
on objects in the system without resorting to any complex cryptographic se-
curity approach. Together with access control lists (ACLs), this earlier paper
also discussed the advantages of capability-based control [6, 12] in distributed
environment.

The concept of capabilities is not new. Although various capability systems
have been developed over the years, and is still an active research in some ar-
eas such as in object-based systems, it does not enjoy the same popularity in
the TS-based systems.1 It seems that capability-based coordination has yet to
demonstrate a significant impact to improve Linda-like coordination in the open
distributed environment.

It has been established that capabilities offer more flexibility than ACLs,
thus making them more attractive for open systems. However, unlike ACLs,
capabilities must refer to single named objects. In the Linda context, TSs are
uniquely identifiable—therefore, they can be referenced by capabilities—whereas
tuples are anonymous: they can only be referred to using associative matching.
We propose a solution to this problem by using multicapabilities, as will be
elaborated later in the paper.

1.1 The TS Coordination Model

The Linda coordination model [9] used as the platform for discussion in this
paper promotes generative communication where agents interact by ‘generating’
data (an ordered collection of typed values called a tuple) into a shared data
space known as a tuple-space (TS). A tuple can be retrieved, destructively or
otherwise, from the TS by specifying a template whose pattern matches the tuple.
The associative matching retrieval is non-deterministic: a retrieving agent may
get any tuple that matches its template; and a tuple may be given to any agent
specifying a matching template.

The basic primitives to enable agent interactions defined in the model are:
out (to write a tuple into a TS), rd (to read a copy of the tuple that matches
the template), and in (a destructive version of rd). Both rd and in block if no
matching tuple is available. Non-blocking versions of these primitives, inp and
rdp were originally introduced. However, the definition of these primitives was
ill-formed, until the proposal of a principled semantics of inp [11].

1 At least, none have been proposed as a ‘pure’ capability system, as capabilities are
combined with other security techniques.

Coordination with Multicapabilities 81

1.2 Capability

A capability [14] is an unforgeable ‘ticket’ given to an agent that specifies which
kind of actions on a certain object are permitted to the holder of the capability.
We can define capabilities in a more general way: as ‘visibility’ filters to create
a more refined control over agents’ actions on objects in the system.

It is well-known that capabilities are more suitable for open distributed sys-
tems as they themselves are distributed in the sense that:

– the controlling attributes are held by the agents, rather than being attached
to objects, thus putting no storage overhead on the objects.

– verification is made by the kernel upon the presentation of the capability by
the agent, without the need to search any list. Therefore, verification time
is constant in capability-based systems.

– the decision to grant a capability to an agent is the responsibility of some
holder of the capability, not the kernel2. The kernel only generates and checks
the capabilities.

– capabilities can be transferred from one agent to another. This is a form of
‘distribution’ as, subject to certain constraints, any agent (not necessarily
the object creator) possessing the capability can pass a copy of it to another
agent.

In addition, a capability mechanism also supports the flexibility inherent in dis-
tributed systems: it accommodates user-defined rights, not restricted to those
fixed by the system, thus allowing them to be dynamically changed; and its
‘domain flexibility’ feature allows agents to join and leave the system simply
by requesting (and possessing) appropriate capabilities to access the objects, as
opposed to having to modify numerous lists attached to each object relevant
to the agents’ execution. Despite the advantages of implementing capabilities,
this approach, however, is more complicated compared to ACLs. Nevertheless,
due to its suitability for open distributed systems, and partly inspired by this
challenge, we pursue this area of research to obtain a more refined control in
such an environment.

2 Multicapabilities

Multicapabilities extend capabilities for a collection (multiset) of ‘things’, rather
than the traditional notion of a (uni)capability referring to a single named object.
Whereas a permission in a uni-capability allows its holder to operate in a certain
way on the object it refers to, a permission in a multicapability allows the oper-
ation on an element within the group, not on the entire group referred to by the
multicapability. In the Linda context, multicapabilities extend capabilities to

2 The term ‘kernel’ in this paper refers to the underlying distributed mechanism that
controls all operations in the system. It represents the totality of the Linda ‘middle-
ware’.

82 N.I. Udzir, A.M. Wood, and J.L. Jacob

apply to nameless tuples without jeopardising the associative matching and the
non-deterministic properties of the TS model. This enables various operations
to be performed on the tuples as they can now be referenced.

Tuples are classified by their multicapabilities. Two tuples with the same
pattern (possibly having the same, or different values) may be referred to by
two different multicapabilities, while the same multicapability can refer to (a
collection of) many different tuples (with any value). To illustrate this, let us
consider a simple example where an agent, A, wishes to out a tuple of an integer
and a character, 〈?int,?char〉. Before referring to a class of tuples, either for
output or retrieval, it must first request an appropriate multicapability from the
kernel. It will be given a multicapability3 for the template (with full rights), to
which the kernel will assign a unique multicapability name, e.g. α:

c1 = [α, 〈?int, ?char〉, P]

where P is the set of all permissions, granting the agent full rights to perform
all operations on the template (i.e. group) of tuples. For the purpose of this
discussion, let us assume that P = {i, r, o}, where i, r and o represent permissions
to perform the operations in, rd, and out, respectively.

If A requests another multicapability for a similar template from the kernel,
it will receive a new multicapability, different from c1:

c2 = [β, 〈?int, ?char〉, P].

Now assume another agent, B, requests a multicapability for a similar tem-
plate from the kernel, and receives a multicapability which it stores in c3:

c3 = [γ, 〈?int, ?char〉, P].

Using the multicapabilities they possess, the agents can perform operations
(within those permitted by P), e.g. writing tuples into a TS (Fig. 1).

A

B

c1 =

c2 =

c3 =

<?int, ?char>

<?int, ?char>

<?int, ?char>

ts.out(c1<1, ‘a’>)

ts.out(c2<10, ‘x’>)

ts.out(c1<2, ‘b’>)

ts.out(c3<10, ‘x’>)

<1, ‘a’>

ts

<2, ‘b’>

<10, ‘x’>

�

�

P

P

P

�

�

�

<10, ‘x’> �

Fig. 1. TS operations using multicapabilities

Even though the templates are similar in pattern—a sequence of an inte-
ger followed by a character—they are essentially different, distinguished by the

3 A more formal definition of the multicapability structure will be given in Section 2.1.

Coordination with Multicapabilities 83

multicapabilities used to create (out) them. The result of any input operation
performed by the agents will be limited to only the tuple(s) within the specified
multicapability group. For example, a rd operation for 〈?int,?char〉 performed
by A using c1 will retrieve tuple 〈1,‘a’〉 or 〈2,‘b’〉, but not any of those in
other regions.

Likewise, if B performs an input operation

ts.in(c3〈?int,‘a’〉);

the operation will block—the template 〈?int,‘a’〉 of multicapability c3 does not
match tuple 〈1,‘a’〉 of multicapability c1, even though 〈?int,‘a’〉 and 〈1,‘a’〉
are of the same pattern.

Therefore, multicapabilities can provide a template-based partitioning facil-
ity, thus enabling certain operations to be performed on a tuple of a specific
group, but not on one of another group, even though both groups have the same
template.

2.1 Basic Structure

A multicapability refers to a group of objects of a certain template, or pattern.
In the Linda context, a template is defined as sequence of types and/or scalars.
A type can be modelled as the set of values it contains, and so Template ∈
P(V alue). We define a multicapability as a structure consisting of three parts:
u, a unique tag or identifier which acts as a reference to a collection of objects;
t, a template of the objects; and p which denotes the set of actions permitted on
the collection. In object-oriented terms, this set corresponds to a sub-interface
of the methods in the objects’ class. Hence, a multicapability c can be written
as [u, t, p]. In the case of (uni)capabilities, the capability for a single object o is
also the ‘handle’ to the object, with permission p attached, [o, p].

A capability represents the permission given to the holder of the capability
to perform some action on an object, and the capability must be presented to
the kernel for verification before the attempted action is allowed to be carried
out. Having that permission would mean that the action is valid for the target
object. If an agent attempts to perform an action, a on object o, using capability
c = [o, p], it will be allowed to take place (succeed) if a ∈ p, otherwise an error
will be thrown (fails). Likewise, in the case of multicapability, e.g. c = [u, t, p]:
an action a with a value v is allowed to take place if a is within the permission
set p of c, and v matches the template t of the multicapability region identified
by u. Therefore, we define a function allowed where

allowed([u, t, p]) = {a.v|a ∈ p ∧ v match 〈u, t〉}

In Linda, there are four possibilities if the agent does not possess a valid right
for a: the action either blocks, throws an exception, or fails. In the case of an out
action, there is an additional possibility: the action may simply return, as in the
original semantic of out. If the implementation supports exception, then an ex-
ception is raised (by the host computational language) and the agent can resume

84 N.I. Udzir, A.M. Wood, and J.L. Jacob

its execution. Unfortunately, the implication of this is that the orthogonality of
the coordination and computational language is broken [4].

Blocked input/output operations affect the system differently. Superficially,
the agent cannot detect whether an input operation is blocked because of either
(1) the unavailability of a matching tuple, or (2) the permission being denied
due to invalid (multi)capability. Thus, from the user’s point of view, there is no
difference in the behaviour of the system. A blocked output operation, however,
would be noticeable as a fundamental alteration in the semantics of out has been
forced [17]—out never blocks in the standard Linda model. In both input and
output operations, if the operation blocks due to an invalid capability—which
essentially means that it “blocks until the agent possesses the required capabi-
lity”, and it is obvious that it cannot ‘possess’ the capability simply by waiting
there—it will block forever. In order to obtain the capability, the operation must
first return to the agent, who will send a request (and wait) for the appropriate
capability before retrying the operation.

There has to be a mechanism to handle exceptions or failure in both input
and output operations. The practical solution to this is to use the deadlock
breaking inp/rdp [11], or some other exception handling mechanism to inform
the agent that the given operation is not allowed.

It should be reiterated that we view the permissions in a (multi)capability as
a set of names of methods that the holder is allowed to invoke, and so are not
limited to access control, but represent a more general concept: visibility—an
agent cannot see a method that is not listed in the (multi)capability it holds.
As the term ‘object’ can refer to anything that is appropriate to the system, the
set of rights may well include any appropriate, even user-defined, operations.

The basic structure of our model is based on the following rules:

1. Every TS and tuple operation requires a (multi)capability. Our model re-
quires that each agent performing an operation on a tuple must obtain a
capability to access the TS where the tuple resides (or to be written to),
as well as the multicapability to operate on the tuple. Therefore, prior to
performing an operation, all agents must first request:
– a (uni)capability for the target TS, and
– a multicapability for a specified template.

2. Every request for a new (multi)capability returns a new, unique (multi)capabi-
lity (even for identical patterns), with full rights.

3. All agents have the full capability (with full rights) for the universal TS
(UTS), i.e. a default space that exists throughout the life-span of the sys-
tem, and that is (publicly) accessible by all agents in the system. This uni-
capability only represents the permission to perform operations on the con-
tents of UTS in general, but multicapabilities for tuples are required in order
to operate on these tuples (See Rule 1).

4. Each agent has a default universal capability for (multi)capabilities, cc[〈?cap〉]
with full rights, where cap is a (multi)capability type, to enable capabilities
and multicapabilities to be passed among the agents. For brevity, the set
of rights for cc is not shown as it has been established that cc represents
full-rights.

Coordination with Multicapabilities 85

The capability data (unique id, reference/template, and permissions) are as-
sumed to be securely encapsulated in the (multi)capability and only interpretable
by the kernel when the multicapability is presented for verification. To avoid con-
fusion, it is important not to see multicapabilities as ‘tagging’ tuples—this leads
to an ACL-like view. Rather, it is better to view tuples being ‘grouped’ into
regions specified by the multicapabilities referring to them. Each region then
(virtually) exists in every TS.

2.2 Operations on Multicapabilities

A multicapability may be copied in order to be given to other agents. Each copy
would have the same unique tag of the original’s, thus referring to the same group
of objects. However, the template and permissions in a (copy of a) multicapability
can be reduced to allow agents more control over the visibility of the objects
they created to other agents. Reducing permissions in a multicapability is a
fairly straightforward operation: the permissions p2 in the reduced copy of a
multicapability should not exceed those in the original multicapability (p1), i.e.
p2 ⊆ p1. The template of a copy of a multicapability can be the exact copy of
the original template, or specialised to a sub-type of the same pattern.

We define two operators for this purpose: − and @, where c− s is capability
c without the permissions in s, and c@s is c with only the permissions in s that
c also possesses. Even though the two operators serve similar purposes, they are
separately defined for convenience, for instance, it is easier to express a sub-
multicapability with only two (out of ten) permissions granted using @, rather
than using −.

Let c = [u, t, p] be a multicapability, and s a set of permissions where s ⊆ p,
then

− ∈ Mulc× P(P) −→ Mulc @ ∈ Mulc× P(P) −→ Mulc
[u, t, p]− s = [u, t, p\s] [u, t, p]@s = [u, t, p ∩ s]

For example, consider a multicapability for a template of an integer and a
character, c = [α, 〈?int, ?char〉, {i, r, o}]. The expression c - {i} creates a sub-
multicapability of c with all the permissions of c except {i}. This expression is
equivalent to c @ {r,o} which has all the permissions of c restricted to {r, o}.
Another dimension of ‘reduction’ is to specialise the template by fixing the val-
ues of its element(s). For example, the template in a copy of c, c′ say, may be
〈?int, ?char〉, or the value of the first element is fixed to a certain integer
value, and/or a fixed character value for the second element. For example, the
expression c′〈?int,‘y’〉 will limit the number of possible matches to only those
tuples with the character ‘y’ as its second element.

It should be emphasised that there is no way of adding permissions to a mul-
ticapability, nor to expand the scope of the template in the multicapability. For
instance, if the template in the original multicapability is 〈?int,‘x’〉, then a
copy of it can never have a template with the second element set to ?char as
this will generalise the template, and would defeat the purpose of the use of ca-
pabilities, which is to obtain a finely controlled environment in open distributed

86 N.I. Udzir, A.M. Wood, and J.L. Jacob

systems by incorporating capabilities to limit objects’ visibility to agents in the
system. Therefore, the derived-from relation is:

[u, t, p] ! [v, s, q] ≡ u = v

∧ t ≤ s

∧ p ⊆ q

where t ≤ s have the meaning of ∀i ∈ 1..n • ti ∈ si ∨ ti = si, and i is the index
of an element in a template; n is the length of the template, i.e. the maximum
number of fields in a template allowed by the system.4

Derivation contributes to finer control over the objects in the system as it
provides a means to have different versions of a multicapability (with different
restrictions) referring to tuples of the same template.

Example: Suppose that an agent A wishes to out a tuple 〈1,2〉. Before doing
so, it has to request an appropriate multicapability from the kernel, and is given
a multicapability for two integers with full rights, to be stored in variable c1:
[α1, 〈?int, ?int〉, {i, r, o}]. A may then make a modified copy of the multicapabi-
lity if necessary, by ‘reducing’ the template and the list of rights, before writing
the tuple (in the form of the newly derived multicapability) into a TS.

Agent B wants to read a tuple that matches the template 〈?int,2〉. If it
requests a new multicapability for the template, it will receive a unique multica-
pability, different from the one given to A. This means that it can never retrieve
any tuple produced by A (or any other producer, for that matter) with its newly
acquired multicapability. If B wishes to read the tuple out’ed by A, it must use
the same multicapability (or a derivation) as the tuple’s. One way of doing so
is to obtain it from A: since every agent automatically gets a default cc, A can
pass the tuple containing the said multicapability to B via ts.

The following code excerpts illustrate the agents’ operations where A outs
the tuple 〈1,2〉 and the restricted multicapability [α2, 〈?int, ?int〉, {r, o}]; and B
retrieves the necessary multicapability before reading a two-integer tuple using
the multicapability.

Agent A:
// Request new multicapability
c1 = cc.newcap(<?int,?int>);
// c1 now is [α1,<?int,?int>,{i,r,o}]
c1 1 = c1 - {i}; // reduce permission
// c1 1 holds [α2,<?int,?int>, {r,o}]
ts.out(c1<1,2>); // write tuple into ts
ts.out(cc<c1 1>); // write capability for the tuple

4 Note that a more general and expressive condition based on sub-typing is possible.
However, for simplicity we only consider the relation based on templates here.

Coordination with Multicapabilities 87

Agent B :
// Retrieve the multicapability
cap1 = ts.in(cc<?cap>);
// Assuming cap1 now holds [α2,<?int,?int>,{r,o}]
data = ts.rd(cap1<?int,2>);

Prior to performing an action, the kernel will verify that the intended action is
valid based on the multicapability presented by the agent. To out a tuple, A has
to present the multicapability c1 for verification, and since the out permission in
its set of rights verifies that the action is valid, the action is allowed to proceed.
Note that A can out a tuple of c1 or c1 1: both multicapabilities refer to the
same collection of tuples.

After obtaining c1 1, B can specialise the values (in the template) to suit its
need. As c1 1 is a sub-capability of c1, it still refers to the same object(s) as c1,
but with restricted permissions.

2.3 Combining Multicapabilities

In this paper, we also present preliminary work on combining multicapabilities:
operations which take one or two multicapabilities and produce a new multica-
pability. We are developing a calculus of multicapabilities by investigating what
operations may be sensibly defined for combining them. For example, three obvi-
ous operations that might be performed on two multicapabilities are the union,
intersection, and relative negation.

Naturally it is sensible to only allow the combination of those multicapabili-
ties with a similar pattern that belong to the same agent. The multicapability
produced as a result of these operations may be stored in another capability
variable.

Union. Assuming the function allowed given in section 2.1, the union of two
multicapabilities c and d can be defined by

allowed(c ∪ d) = allowed(c) ∪ allowed(d).

The expression produces a multicapability referring to the templates of either c
or d, and represents permissions if either c or d (or both) grants that permission.
If both multicapabilities refer to the same collection of tuples, i.e. cu = du,5 then

c ∪ d = [cu, ct, (cp ∪ dp)].

To further elaborate on these operations, let us consider the following multi-
capabilities:

c1 = [α, 〈?int, ?char〉, {i, r, o}]
c2 = [β, 〈3, ?char〉, {r, o}]

5 We shall use cu, ct, and cp hereafter to refer to the unique tag u, the template t,
and the permission set p of multicapability c.

88 N.I. Udzir, A.M. Wood, and J.L. Jacob

If c1 and c2 refer to the same group, writing a combined tuple of these
multicapabilities, e.g.

ts.out((c1 ∪ c2)〈1,‘a’〉);

produces the tuple into the group referred to by both multicapabilities. It should
be emphasised that the semantics allow the tuple to be of either of the two
templates—which is reasonable as the agent does possess these multicapabili-
ties. The union operation merely gives it an added advantage. The produced
tuple can be retrieved by any agent possessing (copies of) either c1 or c2, and
not necessarily both multicapabilities. However, as the tuples are written using
multicapabilities of different rights, then any agent who has c1 (or both multi-
capabilities) can in or rd the tuple, while those with c2 can only rd it.

A read operation using the union of c1 and c2, would operate on the tuples
that match the templates 〈3,‘a’〉 or 〈?int,?char〉 from the region of c1 or c2.

If the multicapabilities refer to different collections of objects, then the op-
eration should be a disjoint union. Uniting (conjoining) the templates and the
permission sets would be semantically incorrect, as the permission sets cannot
be merged—even though they contain method(s) with the same name, these
methods are of different signatures, e.g. method m in (signature) c is not the
same as method m in d: they are applicable to different collections of objects.
Therefore, a disjoint union of multicapabilities referring to two different groups
is defined as

c ∪ d = [cu, ct, cp] [du, dt, dp].

This means that the intended action will be performed on either group non-
deterministically chosen by the kernel.

Let g and h be two different groups of objects referred to by c and d, respec-
tively. To perform the disjoint union of c and d, would mean that the system
will (non-deterministically) choose one of the groups, before performing the ac-
tion a on an object in the said group. Assuming the group selected is g, the
action succeeds if a ∈ cp, and fails otherwise. In Linda, there is another richer
possibility: if a /∈ cp, instead of failing, the action blocks (on g), but the system
may allow the action to be performed on the other group, i.e. h. If the action
succeeds this time around, upon completion, the previously blocked action will
be broken.

The union operation allows actions permitted by any of the two multicapa-
bilities to be performed on either of the two templates for the same collection
of tuples. However, if the union involves different collections of tuples, the ac-
tion will only be permitted if it is allowed by the permission set of the group
non-deterministically selected by the kernel.

Intersection. Generally, an intersection of two multicapabilities c and d is de-
fined by

allowed(c ∩ d) = allowed(c) ∩ allowed(d)

Coordination with Multicapabilities 89

which is a multicapability referring to the ‘lesser’ (i.e. the less generic) template
of the two, and represents permissions only if both c and d grants that permission.
If c and d refer to the same group of objects, then

c ∩ d = [cu, (ct ∩ dt), (cp ∩ dp)].

Otherwise, if c and d refer to different groups, then

c ∩ d = [(cu, du), (ct ∩ dt), (cp ∩ dp)]

where (cu, du) implies that the action will be performed on both regions simul-
taneously. As the permission sets are intersected,

An out operation using (c1 ∩ c2) will write a tuple which can only be of the
template 〈3,?char〉 which is ‘less’ than 〈?int,?char〉. The tuple is written into
the region referred to by both multicapabilities, if c1u = c2u; otherwise, if the
multicapabilities refer to different regions, then it is written into the ‘shared’ (i.e.
intersecting) section of the two multicapabilities, which is tagged with (c1u, c2u).
This tuple can only be retrieved by an agent that possesses both multicapabili-
ties. In the previous example of c1 and c2, the kernel will only allow the tuple
to be rd—the only permission granted by both multicapabilities.

A read operation using (c1∩ c2) will operate on tuples of the more restricted
version of the two templates that exist in both groups, which can be regarded
as the shared region of c1 and c2.

Therefore, intersecting two multicapabilities allows actions limited to only
those permitted by both multicapabilities to be performed on the less generic of
the two templates.

Negation. Another conceivable operation is the relative negation of multicapa-
bilities, which is defined by

allowed(c− d) = allowed(c)− allowed(d).

The produced multicapability has a permission only if c grants that permission,
but d does not, and operates on tuples of the template of c, except those of the
d template.

c− d = [cu, (ct ∩ ¬dt), (cp\dp)]

For example, let c3 be another multicapability as an addition to the previously
defined c1 and c2,

c3 = [γ, 〈3, ?char〉, {i}].
An output operation using the negation expression (c1 − c3) will write a

tuple of template 〈?int,?char〉, excluding any tuple whose first element is 3.
This tuple will be written in the c1 region, and can only be retrieved by agents
holding a copy of c1; it is not accessible with c3.

Similarly, an input operation using the expression (c1 − c3) will operate on
tuples in the c1 region, while selectively disregarding any tuple that matches the
template of c3.

90 N.I. Udzir, A.M. Wood, and J.L. Jacob

If we allow negated permissions, then

c− d = c ∩ ¬d

∀ t, p • ct ≥ dt ∧ cp ⊇ dp

The constraint is to avoid such cases where a completely empty multicapability
being negated to get a universal multicapability.

The relative negation allows actions permitted by the multicapability on the
left-hand side of the operator, except those in the right-side multicapability to be
performed on any of tuple that matches the left-side template, but not the other.

The above operations are the most obviously applicable given the fundamen-
tal properties of a multicapability. There are certainly others that might usefully
be defined, and so part of the further development is to identify a sufficient set
of operations. However, a minimal set, if one can be defined, may not be the
most practical since no account has yet been taken of the implementability of
the operations. For instance, the union of two capabilities is trivially imple-
mented, whereas the intersection is much more intricate—consider the result of
an arbitrary sequence of unions and intersections of such expressions.

This paper focuses on identifying conceivably useful operations which can
be performed on multicapabilities (and capabilities), and work on the feasible
implementation is ongoing.

3 Related Work

Although Linda has become a well known coordination model, as an alterna-
tive to the conventional communication paradigms, it is sometimes considered
as ‘too open and too flexible’, leaving it vulnerable to accidental, or even ma-
licious, manipulation. Much work has been carried out to impose more con-
trol, at the expense of its most attractive feature—flexibility. Capabilities, on
the other hand, provide the mechanism to finely control a system without los-
ing the flexibility essential in open environment. Examples of early (and some-
what limited) attempts at improving Linda using a capability-like mechanism
is Pinakis’s Joyce-Linda [15], which uses public-key encryption to support ca-
pabilities, and Law-Governed Linda (LGL) [13]. Unfortunately, the capability
values in Joyce-Linda cannot be matched by formals in templates, thus hinder-
ing its pass through TS. Introducing an additional special data type to enable
the matching process only complicates things. The notion of capability-based
control in LGL is somewhat restricted: capabilities are required in order to send
a message to another agent, but none is necessary to receive one. This means
that a message can only be sent if the sender has the capability for the target
agent. Therefore, there is a possibility of indefinite waiting, since these agents
might not be aware of the sender’s need to acquire the necessary capability.

SecOS [1] provides a facility to define ‘views’, using a rather complex, two-
level cryptographic scheme: all tuple fields are locked with a key, and each field
must be locked with a different key. Unfortunately, the problem with using a

Coordination with Multicapabilities 91

key-related control is that it is not possible to discriminate the rights for certain
operations: if an agent possesses a key to a tuple, there is no way of restricting the
permission, e.g. for a read-only, but not remove, operation. Indeed, their can-
match-anything ‘empty’ template, which can be useful for garbage collection,
for example, may be exploited by any agent to remove any tuple. Regarding
the distribution of capabilities, unlike our model that allows (subject to the
transitivity rights) the capabilities distribution by any agent holding a copy of
the capability, the key distribution in the SecOS’s scheme is the responsibility
of the tuple’s originator, which, though more controlled, can become an onerous
task, especially in a large open system.

Another system that uses a capability-based security policy with keys is Lana
[2]. The messages (i.e. tuples) on their (TS-based) associative ‘message boards’
are locked with keys, not capabilities—capabilities are used for remote method
invocations. Locked with a key, the reference to (the capability for) the object
being called is placed on the message board.

An interesting example of more recent work is VLOS [5], a distributed op-
erating system based on tuple-spaces. Capabilities are required to create new
TSs, new field types, as well as type signatures, i.e. unique groupings of field
types which are unique to a particular TS, to make up a tuple type. A capa-
bility for an object in VLOS consists of a unique id and the type of the object
(i.e. whether it is a TS, a field type, a type signature, or other objects), the
name of the TS (of which the object is a member), a set of rights, and a cryp-
tographic hash function to minimise forgery. Like ours, a capability in VLOS
acts as a ‘handle’ to the object it is associated with. Our multicapabilities,
however, are more flexible in the sense that they are not associated with a
TS—they can be used with any TS as long as the user possesses the (uni)capability
for the target TS. Furthermore, the combination calculus of (multi)
capabilities gives an added advantage for our model to maintain control while
being flexible.

The work closest to ours is μKlaim [10]. Based on the Klaim language [7],
μKlaim uses its type system to enforce access control. Unlike our capability
model that uses dynamic checking, μKlaim relies on both static and dynamic
checking. A μKlaim capability is a pair that represents the operation allowed
on a pattern of the matching (target) tuple. Our multicapability, on the other
hand, is a triple that provides extra features of partitioning via tags, to limit
and control agents’ access, as well as the combination calculus to further enrich
the model.

In the systems mentioned above, capabilities are mainly discussed as an access
control mechanism for security purposes, some with the assistance of cryptog-
raphy, as in [15, 1, 2]. μKlaim for instance, emphasises on security policies: an
agent may have ‘knowledge’ of a location name even though it does not have a
capability to it. We are concentrating on the functional properties of capabilities
as ‘visibility’ filters—agents can only know about objects for which they hold a
capability, and the capability makes visible a sub-set of the operations available
for that object’s type. This scheme enables a refined control over agents’ actions

92 N.I. Udzir, A.M. Wood, and J.L. Jacob

(not limited to access control only) on objects in the system, and facilitates
certain aspects of coordination, such as resource management [16].

4 Conclusions and Future Work

Capabilities represent the information on ‘who knows about what operation on a
certain object’. The more the kernel knows of the system’s behaviour, the better,
more optimised coordination can be achieved, thus increasing the system’s effi-
ciency. The extra information, supplied by the capabilities given to the agents,
can provide the facility to create a finer level of control in distributed systems.

As capabilities can only be applied to uniquely identifiable objects, such as
TSs, we have proposed the new concept of multicapabilities which extends ca-
pabilities to apply to a group of un-named objects to accommodate tuples. A
multicapability consists of a unique tag to differentiate between different capa-
bilities for the same template (and which in addition aids in its unforgeability),
a reference to a group of tuples, and a set of rights to control the actions permit-
ted to be performed on an object in the said group. The set of rights need not
be limited to input and output operations, but may include any sensible, even
user-defined, operations that are appropriate to the system.

Somecapability combinationoperationshavebeen introduced—namely the set-
like union, intersection, and negation operations—to provide further mechanisms
towards achieving a finely controlled system. We are still investigating the sensible
‘combining’ operations, and currently developing proper relevant semantics.

It is known that one of the disadvantages of capabilities (and multicapa-
bilities) is that they are difficult to revoke. A solution to this problem is to
incorporate indirect (multi)capability objects: the (multi)capability held by an
agent do not directly ‘point’ to an object, but instead refers to the indirection
object, which in turn points to the object. Deleting an indirection object enables
a (multi)capability to be permanently revoked. As an option to deletion, we are
studying the idea of selective temporary revocation using indirection objects in
which the corresponding sub-interfaces can be ‘turned off and on’ to provide a
finer control in the system. When an indirection object is turned off, any access
(including out) to the object will block until it is switched back on.

Indirection objects can become a filter for a group of multicapability and
its derivations: a derived multicapability with identical or restricted rights will
point to the same indirection object as its super-multicapability; whereas cre-
ating (requesting for) a new multicapability (even of the same template) will
automatically create a different indirection object. Deleting the former will re-
voke the said multicapability along with its sub-multicapabilities.

On a final note, we view a capability as not merely access control, but in more
general terms as visibility control. Visibility can represent security. Although this
paper does not address the issue of security, it is indeed a crucial problem when
dealing with agents with intelligence and autonomy, particularly those involved
in some sort of confidential and sensitive business transactions or other critical
applications.

Coordination with Multicapabilities 93

Acknowledgements. The authors are grateful to the anonymous reviewers for
the helpful comments on the previous version of this paper. Nur Izura Udzir is
supported by the Public Services Department of Malaysia. Presentation of this
paper is partly funded by Microsoft Research Ltd, UK.

References

1. C. Bryce and M. Oriol and J. Vitek: A Coordination Model for Agents Based
on Secure Spaces. In Proc. 3rd International Conference on Coordination Models
and Languages (Coordination’99), LNCS 1594. Springer-Verlag, Berlin Hiedelberg
(1999) 4–20

2. C. Bryce, C. Razafimahefa, M. Pawlak: Lana: An Approach to Programming Au-
tonomous Systems. In ECOOP 2002, LNCS 2374. Springer-Verlag, Berlin Hiedel-
berg (2002) 281–308

3. N. Carriero, D. Gelernter: How to Write a Parallel Program: A Guide to the Per-
plexed. ACM Computing Surveys, 21(3):323–357 (1989)

4. N. Carriero, D. Gelernter: Coordination Languages and Their Significance. Com-
munication of the ACM, 35(2):97–107 (1992)

5. V-L. Chung, C. S. McDonald: The Development of a Distributed Capability System
for VLOS. Australian Computer Science Communications, 24(3):57–64 (2002)

6. J. B. Dennis, E. C. van Horn: Programming Semantics for Multiprogrammed Com-
putations. Communication of the ACM, 9(3):143–154 (1966)

7. R. de Nicola, G. L. Ferrari, R. Pugliese: Klaim: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans. on Software Engineering, 24(5):315–330
(1998)

8. E. Freeman, S. Hupfer, K. Arnold: JavaSpaces: Principles, Patterns, and Practice.
The Jini Technology Series. Addison-Wesley (1999)

9. D. Gelernter: Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112 (1985)

10. D. Gorla, R. Pugliese: Enforcing Security Policies via Types. In Proc. 1st Int. Conf.
on Security in Pervasive Computing (SPC’03), LNCS 2802. Springer-Verlag, Berlin
Hiedelberg (2003) 88–103

11. J. L. Jacob, A. Wood: A Principled Semantics for inp. In Coordination Models
and Languages, LNCS 1906. Springer-Verlag, Berlin Hiedelberg (2000) 51–66

12. H. M. Levy: Capability-Based Computer Systems. Digital Press (1984)
13. N. H. Minsky, J. Leichter: Law Governed Linda as a Coordination Model. In

Object-Based Models and Languages for Concurrent Systems, LNCS 924. Springer-
Verlag, Berlin Hiedelberg (1995) 125–146

14. G. Nutt: Operating System: A Modern Perspective (2nd). Addison-Wesley (2002)
15. J. Pinakis: Providing Directed Communication in Linda. In Proc. 15th Australian

Computer Science Conference (1995) 731–743
16. N. I. Udzir, A. Wood: Multicapabilities for Distributed Resource Management

in Open Systems. In Proc. IASTED Int. Conference on Parallel and Distributed
Computing and Systems (PDCS 2004). ACTA Press (2004)

17. A. Wood: Coordination with Attributes. In Coordination Languages and Models,
LNCS 1594. Springer-Verlag, Berlin Hiedelberg (1999) 21–36

Delegation Modeling with Paradigm

Luuk Groenewegen1, Niels van Kampenhout1 and Erik de Vink1,2

1 LIACS, Leiden University
2 Dept of Math. and Comp. Sc., Technische Universiteit Eindhoven

luuk@liacs.nl
nielsvankampenhout@wanadoo.nl

evink@win.tue.nl

Abstract. Within one model, behavioural consistency of its constituents
is often problematic. Within UML such horizontal behavioural consis-
tency between the objects of a concrete model, is particularly needed in
the context of dynamic patterns. Here, we investigate delegation, which is
fundamental to patterns that separate the locality of receiving a request,
and one or more localities actually handling it. We specify delegation by
means of the coordination language Paradigm. In particular, we present
some variants of delegation in the context of a broker pattern and clarify
how the Paradigm notions are the basis for understanding a solution as
well as for adapting it to deal with other dynamic features.

1 Introduction

Software architectures are the major instrument to handle the size and com-
plexity of today’s software systems. Moreover, within the context of a business
architecture, they pinpoint the software system’s embedding in the non-digital
world. Typically, an architecture consists of a number of components related
via specific links. Components express certain aspects that contribute to the
functionality of the system or the organization as a whole. Interaction among
components is directed via their interfaces. To stress this even more, components
are usually considered stateless. In the architectural description one abstracts
away from the internal dynamics of a component in order not to clutter up
the overall view. See, e.g., [19, 8]. Nevertheless, some dynamics survive in ar-
chitectural descriptions, e.g. via protocols and protocol roles and other global
dynamics, as these are relevant for dynamic consistency between components.

The problem of dynamic consistency between components constituting an
architecture is, as yet, far from being solved. Even within the UML [3, 9], where
the underlying, detailed dynamics of objects constituting a model contribute
additional information to base dynamic consistency on, the problem of dynamic
consistency is comparably far from being solved. Clarification of this problem
situation is the more pressing, as increasingly often patterns are being used (both
as means of design [10] and for business processes [5]) for consistently organizing
and reorganizing the dynamics of the model’s constituents.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 94–108, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

,

Delegation Modeling with Paradigm 95

Often, when modeling a software system with the UML, the use-cases act as
‘glue logic’ for the information carried by the respective description methods.
Similarly, sequence diagrams restricting the dynamics to interactive steps only,
concentrate on ‘gluing’. This is not only a matter of style: the concrete behaviour,
as captured by the use-case or the sequence diagrams, has its consequences for the
interaction of the components involved. More frequently rule than exception, the
relevant information goes beyond the interface. Some of the internal dynamics
of the component must be revealed in order to assess the correctness of the
cooperation of a component and its software or non-software environment.

In order to judge the global behaviour of the system, the local behaviour of
components is pivotal. For example, the interaction of a component should not be
in conflict with its internal dynamics. This is consistency between different levels
of description, more or less similar to Küster’s vertical consistency (cf. [7, 16]).
Also, the component should act in compatibility with the components from its
surroundings. This is consistency between different model constituents, on the
same level of description, suitably chosen to reflect the relevant collaboration;
here, Küster’s notion of horizontal consistency is more appropriate. Typically,
such questions of consistency arise when components play multiple roles in mul-
tiple protocols that overlap in time. See, e.g., [17, 18].

The modeling technique that we propose for aligning global and local be-
haviour is Paradigm [6, 20, 12]. In Paradigm the coordination among a manager
and its employees is the prime concern. It does so by relating the local behaviour
of the manager to the global behaviour of the employees, the latter being deco-
rated with just that little information that is necessary to maintain consistency
of the system. In this way, via a manager, Paradigm addresses horizontal con-
sistency between the manager’s employees. Furthermore, via its special notions
of subprocess and trap, Paradigm guarantees vertical consistency within an em-
ployee between its detailed and global behaviour. In the present paper we report
on an application of Paradigm in business process modeling for a non-hierarchical
organization. The example deals with delegation. Delegation, i.e. separating the
components for starting behaviour and the component(s) continuing it, is behind
many patterns [10, 5], thus requiring horizontal consistency between them.

Below, Section 2 introduces, informally, the key ingredients of Paradigm. A
first description of the delegation example is covered in Section 3. An alternative
model is presented in Section 4. Some other variants are discussed in Section 5.
Finally, Section 6 wraps up with some concluding remarks.

2 Paradigm

Paradigm is a coordination specification language, concentrating on expressing
behaviour and behaviour influencing. In this section we present Paradigm briefly
and informally. Operational semantics of Paradigm have been presented in [12]
and [11]. It is stressed that in the present paper Paradigm models do not require
that coordination is organized in a strictly hierarchical manner.

96 L. Groenewegen, N. van Kampenhout, and E. de Vink

Paradigm uses the notion of a process, together with a state-transition-
diagram-like visualization for it. Usually, a process expresses a constituent’s be-
haviour on the detailed level, corresponding to its inner, hidden behaviour. See,
e.g., Figure 1 for an example visualization as a directed graph: nodes are states
and directed edges are transitions between two states.

For the behavioural description of a constituent on a more global level,
Paradigm uses two additional notions: subprocess and trap. Whereas a process
specifies all possible behaviours of a constituent —in Figure 1 called Client(i)—
a subprocess (of a process) expresses a phase of that behaviour: a (temporary)
restriction of that behaviour, relevant in the context of some collaboration be-
tween constituents. A trap of a subprocess, being a subset of the subprocess
states, reflects a final, irrevocable stage of the subprocess: within a subprocess,
a trap of it cannot be left once entered. So, a trap can serve as a kind of commit
or acknowledge within the collaboration, e.g. declaring the subprocess behaviour
has proceeded far enough to be changed from the (current) behaviour restriction
into a suitable next one.

A partition then divides the full process behaviour into a set of subprocesses
with their traps. Figure 4 gives a visualization of a partition of Client(i) into
3 subprocesses. The relevant traps are drawn as polygons surrounding the states
a trap consists of. We formalize these notions in the next definition.

Definition 2.1

(a) A process or STD S is a pair 〈ST, TS〉. Here ST is called the set of states, or
also the state space; TS ⊆ ST× ST is the set of transitions. We write x → x′

in case (x, x′) ∈ TS.
(b) A subprocess of S is a process 〈st, ts〉 such that st ⊆ ST and ts ⊆ {(x, x′) ∈

TS | x, x′ ∈ st }. A trap t of a subprocess s = 〈st, ts〉 is a nonempty set of
states t ⊆ st such that x ∈ t and x → x′ ∈ ts imply that x′ ∈ t. If t = st,
the trap is called trivial.

(c) Let s = 〈st, ts〉 and s′ = 〈st′, ts′〉 be two subprocesses of the same process.
A trap t of s is called a connecting trap from s to s′ if the states belonging
to the trap t are states in s′ as well, i.e., t ⊆ st′.

(d) A partition {(si, ti) | i ∈ I } of a process S = 〈ST, TS〉 is a set of subprocesses
si = 〈sti, tsi〉 with traps ti such that ST =

⋃
i∈I sti and TS =

⋃
i∈I tsi.

Although not explicitly defined, a global behaviour for a constituent, see, e.g.,
Figure 5, can be formulated in terms of a sequence of subprocesses glued together
by means of a connecting trap. All phases occurring in such a sequence come from
the same partition; we therefore say about such a global behaviour, it occurs on
the level of that partition. Note that for a connecting trap all states in it belong
to both subprocesses involved. For this paper we restrict ourselves to a single
trap of any subprocess connecting it to a next subprocess.

The formal structure on which these semantics are defined (cf. [11]) are tuples
of configurations, one per process. A configuration looks as follows:

[si, 〈Sij〉m(i)
j=1]ni=1

Delegation Modeling with Paradigm 97

It consists of the local state si of the process Pi and a sequence of m(i) subpro-
cesses Sij , one for each partition πij of the process. The local state belongs to
the detailed behaviour of the process whereas a subprocess belongs to the global
behaviour of the process on the level of one of its partitions. Thus, for each pro-
cess and its partitions the configuration gives the current state and the current
subprocesses. Transitions in the various coordinates are governed by so-called
consistency rules. The general format of a consistency rule is

ProcP : state a→ state b ∗
ProcQ1[PART1] : SubProc1 → SubProc′

1,
. . .

ProcQn[PARTn] : SubProcn → SubProc′
n

(2.1)

Here state a → state b is a ProcP transition, PARTi is a partition of process
ProcQi and SubProci → SubProc′

i is a transition in the global behaviour or
transfer on the level of partition PARTi, requiring the various connecting traps
have been entered. Via a consistency rule, a combined transition occurs consist-
ing of a state transition and zero or more subprocess changes. In the presence of
the consistency rule (2.1) the process ProcP is called manager of the processes
ProcQ1, . . . , ProcQn. The latter processes are called employees of ProcP. So, an
employee has at least one partition and, therefore, global behaviour.

If a process has one or more partitions, the semantics guarantee, a state
change in the process only happens if that transition belongs to each current
subprocess of the process. In other words, for an employee process the detailed
transitions are consistent in all partitions with the current subprocesses for that
process. The global transitions correspond to a detailed state transition in some
manager process. Such a global transition can only happen if the traps of the
relevant subprocesses have been reached. Informally, a manager prescribes new
subprocesses to some of its employees by making a suitable state transition;
similarly, an employee, by entering a suitable trap, allows a manager to prescribe
a new subprocess to it. In other words, a global transition is consistent with the
connecting trap that has actually been entered.

In the present setting based on the operational model of [11], in contrast to
the operational semantics given in [12], we allow an employee to have more than
one manager, even with respect to the same partition. This forms the basis for
delegation. Even more extremely, an employee can be its own manager. This is
self-management, which can be very useful in combination with delegation.

3 Delegation I

In this section, we consider a delegation example where n clients are served by
m servers. For simplicity, all clients behave the same; similarly, all servers behave
the same. A broker selects a client in round-robin order and assigns a server to
it when necessary. This server is subsequently responsible for handling the needs
of the client.

98 L. Groenewegen, N. van Kampenhout, and E. de Vink

A client can state its interest in a service by ‘approaching the desk’. When the
needs of the client are clear –possibly after some interaction with the broker, not
modeled here– a server is selected by the broker to handle the client’s request.
After this delegation, the broker continues its activities. The server takes care
of the clients it has been assigned to in a round-robin fashion. Once the client
is being served, it releases the service by getting satisfied. The server does not
inform the broker that it has become available for serving client i, but the broker
will conclude so, if needed, when it sees this client at its desk again.

A formal description of the above in Paradigm involves three process types:
client, broker, server. A client process is given by the state-transition diagram of
Figure 1. It consists of a cycle of 5 states, viz. no needs, at desk, need clear,
service and satisfied, that are subsequently visited. The state no needs is
considered to be the starting state of the process. We distinguish n client pro-
cesses named Client(1), . . . , Client(n). For presentational reasons we assume
in the pictures below the number n to be equal to 5.

Each client process has a partition named STATUS that has the three subpro-
cesses WithoutService, Orienting and UnderService given in Figure 4. The
three subprocesses together describe the global or coarse-grained behaviour of
the client process as pictured in Figure 5. It simply cycles through its three
subprocesses.

The trap asking of the subprocess WithoutService comprises the local
states at desk and need clear. If a client process has entered this trap, i.e. has
control in one of the two local states mentioned, it signals that it is ready for mov-
ing to a next phase. The traps of the subprocesses Orienting and UnderService
are likewise. When residing in state need clear or in either of the two states
satisfied and no needs, respectively, the corresponding phase has reached its
final stage and the client process is ready to be transferred (in its single STATUS
partition).

The state-transition diagram of the broker process is given in Figure 2. The
broker process checks all the client processes and mediates service on their desire.
The broker process has no partition.

The state-transition diagram of the m server processes have a similar shape
as the broker process. We assume that a server will check in a round-robin
fashion whether a client has been assigned to it, see Figure 3. A server process
has n partitions called CLIENT(i), one per client. Each CLIENT(i) partition has
two subprocesses, Assigned and NotAssigned., see Figure 6. Thus, the current
subprocesses of a server process together indicate, out of 2n possibilities, the
server’s status: for each client whether it is to be served or not. See Figure 7 for
the global behaviour of a server process in one of its n partitions.

Next, we have to describe the coordination of the n client processes, the
broker process and the m server processes. This is done via the so-called con-
sistency rules in Table 1. For the concrete case here, we explain the mechanism
of a consistency rule as described abstractly in the previous section. E.g., the
consistency rule (B2) of the broker process

Delegation Modeling with Paradigm 99

Table 1. Consistency rules I

(B1) Broker : check(i) → mediate(i) ∗
Client(i)[STATUS] : WithoutService → Orienting

(B2) Broker : mediate(i) → check(i + 1) ∗
Client(i)[STATUS] : Orienting → Orienting,
Server(j)[CLIENT(i)] : NotAssigned → Assigned

(B3) Broker : check(i) → check(i + 1) ∗
Client(i)[STATUS] : WithoutService �→

(C1) Client(i) : no needs → at desk
(C2) Client(i) : at desk → need clear
(C3) Client(i) : need clear → service
(C4) Client(i) : service → satisfied
(C5) Client(i) : satisfied → no needs

(S1) Server(j) : check(i) → serve(i) ∗
Client(i)[STATUS] : Orienting → UnderService,
Server(j)[CLIENT(i)] : Assigned → NotAssigned

(S2) Server(j) : serve(i) → check(i + 1) ∗
Client(i)[STATUS] : UnderService → WithoutService

(S3) Server(j) : check(i) → check(i + 1)

Broker : mediate(i) → check(i + 1) ∗
Client(i)[STATUS] : Orienting→ Orienting,
Server(j)[CLIENT(i)] : NotAssigned→ Assigned

expresses a transfer dependent on three conditions: (i) the broker resides in its
local state mediate(i); (ii) the i-th client process, in its single partition STATUS,
has reached the trap of subprocess Orienting; (iii) the j-th server processes
has reached in its partition CLIENT(i) the trap of subprocess NotAssigned. The
effect of the transfer is also threefold: (i) the broker process will move to its
local state check(i + 1); (ii) the i-th client processes will continue adhering to
the subprocess Orienting in its partition STATUS (though in fact it cannot do
anything); (iii) the j-th server will adhere to the subprocess Assigned in its
partition CLIENT(i).

From the point of view of designing the coordination for the client-broker-
server system the consistency rules of Table 1 can be interpreted as follows: The
rule (B1) allows for a local transition of the broker process in the local state
check(i) provided that the i-th client process has reached the trap asking of its
subprocess WithoutService. So, the current state of client i is either at desk or
need clear. The broker will move to the local state mediate(i) to see what are
the needs of the client; the client changes, on the level of the partition STATUS,
from subprocess WithoutService to subprocess Orienting.

The rule (B2) illustrates the coordination of three processes. If the broker is
mediating service for the i-th client, i.e. it resides in the local state mediate(i),
and the needs of this client have become clear, i.e. client i has reached the
trap serverClear of the Orienting subprocess that consists of the local state

100 L. Groenewegen, N. van Kampenhout, and E. de Vink

need clear, and the j-th server has not been assigned to this client, i.e. it is
prescribed the subprocess NotAssigned in the partition for the i-th client, then
the (B2) rule can fire. The choice of the particular server is non-deterministic.
The broker moves to the local state client(i+1) as it considers its involvement
with the i-th client to be finished for the moment. This has been delegated to the
j-th server. The ith client is left in the subprocess Orienting waiting for service.
The j-th server is notified to take care, at the appropriate time, of client i as it
now follows the subprocess Assigned for this client.

The consistency rule (B3) is an instance of the negative rule format. It
expresses that the broker can make a local transition from state check(i) to
check(i+1) in case the i-th client does not reside in the trap asking of the sub-
process WithoutService. Note that the non-determinacy of moving either to
state mediate(i) or to state check(i+1) for the broker process in state check(i)
is resolved by the i-th client (and, strictly speaking, also involving the server
processes). We claim, an equivalent Paradigm model without negative rules can
be constructed as well, an issue not treated here.

The consistency rules of the client processes are rather simple. As the clients
have not been assigned coordination tasks, their local transitions are uncondi-
tional, but for the overall requirement that the transitions belong to the current
subprocess of the partition STATUS.

The consistency rule (S1) of the server is similar to the rule (B1) of the broker
process. The rule covers the case where the server j has been delegated coordi-
nation of client i by the broker. Here, we also see a case of self-management: the
server process will transfer itself from its subprocess Assigned to the subprocess
NotAssigned. This way, the server will be available for the broker for assign-
ment to client i again, when this client returns to the desk asking for brokerage
of another service. By the delegation, the broker is leviated from keeping track
of the precise stage of the clients and of the availability of the servers. Based
on rule (S2), server j will only move from state serve(i) to state check(i + 1)
when client i has reached the trap ready of its subprocess UnderService. The
server then transfers the client to the subprocess WithoutService. The local
transition of the j-th server from state client(i) to state client(i + 1) has
no side-conditions in rule (S3). However, the transition is only possible if, on
the level of partition CLIENT(i), the server’s current subprocess is NotAssigned.
Thus, the broker resolves the non-determinacy of server j in state client(i). If
the server is assigned, it will only have the transition to its state serve(i) based

service

satisfied

at_desk

no_needs
Client(i):

Client(i):
need_clear

Fig. 1. Client STD

Delegation Modeling with Paradigm 101

mediate(1) mediate(2) mediate(3) mediate(4) mediate(5)

Broker:

check(1) check(2) check(3) check(4) check(5)

Fig. 2. Broker STD

serve(1) serve(2) serve(3) serve(4) serve(5)

check(1) check(2) check(3) check(4) check(5)Server(j):

Fig. 3. Server STD

service

UnderService:

no_needs

satisfied
ready

need_clear

serverClear

Orienting:

at_desk

WithoutService:

no_needs

at_deskneed_clear need_clear

satisfied

asking

Fig. 4. Subprocesses of the Client process for partition STATUS

asking
WithoutService

ready serverClear

Orienting

UnderService

Fig. 5. Global behaviour of the Client process on the level of partition STATUS

check(1) check(2) check(3) check(4) check(5)

serve(1) serve(2) serve(3) serve(4) serve(5)

check(1) check(2)

serve(1) serve(2) serve(3) serve(4) serve(5)

Assigned: Running:

triv

NotAssigned: OutOfService:check(4) check(5)check(3)

triv

Fig. 6. Subprocesses of a Server process for partition CLIENT(3)

on rule (S2) as an option; if the server is not assigned, it can only move to state
client(i + 1) by rule (S3).

102 L. Groenewegen, N. van Kampenhout, and E. de Vink

triv
NotAssigned Assigned

triv

Fig. 7. Global behaviour of a Server process on the level of partition CLIENT(i)

4 Delegation II

As in the previous section, we have three process types: client, broker, server.
Only the broker is slightly different, see Figure 8, as it has additional loops in
its states check(i). Furthermore, we consider the same configuration of n client
processes, 1 broker process and m server processes. See Figure 1 and Figure 3
for the other two process types.

The small difference of the broker has to do with the different details of the
delegation. In the previous section, the broker delegated the actual service of a
client to a server, without being informed explicitly about the precise beginning
of such service. In the current section we let the broker be informed about such a
beginning to serve Client(i) by Server(j). This enables the broker to withdraw
the assignment of Server(j) to Client(i). So now it is the broker who changes
subprocess Assigned into NotAssigned, instead of Server(j) doing it. So the
(partial) delegation of coordinating Server(j)’s global behaviour on the level of
partition CLIENT(i) does no longer exist: the broker does the complete coordina-
tion of this and similar global behaviours. This has the following consequences
for the Paradigm model. Partition STATUS and the global behavior for it remain
unchanged, see Figure 4 and 5. The servers remain unchanged, see Figure 3, but
their partitions CLIENT(1), . . . , CLIENT(n) are rather different, see Figure 9.

Their traps idle and busy are apparently nontrivial. Trap idle, being very
large, expresses that the server can do anything but starting to serve client(i).
So, a new assignment of this very client can happen when needed. Trap busy
is a small one, expressing that service can be started and completely given, but
it cannot be terminated, so the client is not really released - although it can
continue as far as state no needs. The slightly adapted global behaviour is given
in Figure 10. The coordination of the various detailed and global behaviours
is described by the consistency rules in Table 2 (rules for Broker and Server
processes only).

The differences between the rule set from Table 2 compared to those from
Table 1 exactly reflect, on the basis of the new Paradigm model, the new co-
ordination details. The delegation by the broker towards the individual servers
of controlling a part of their global behaviour on the level of their partition
CLIENT(i), is no longer there. Moreover, the delegation by the broker towards
the individual servers of controlling a part of the global behaviours of the various
clients on the level of partition STATUS is changed such that in the new situation
any server explicitly informs the broker when it starts or finishes such a dele-
gated task. The consistency rules changed to this aim, are as follows. Rule (B4)
is added to guarantee the transition from partition Assigned to NotAssigned,
which is no longer the responsibility of a server. Note that only after such a
global transition, the corresponding server can release the particular client it is

Delegation Modeling with Paradigm 103

Table 2. Consistency rules II

(B1) Broker : check(i) → mediate(i) ∗
Client(i)[STATUS] : WithoutService → Orienting

(B2) Broker : mediate(i) → check(i + 1) ∗
Client(i)[STATUS] : Orienting → Orienting,
Server(j)[CLIENT(i)] : NotAssigned → Assigned

(B3) Broker : check(i) → check(i + 1) ∗
Client(i)[STATUS] : WithoutService �→

(B4) Broker : check(i) → check(i) ∗
Server(j)[CLIENT(k)] : Assigned → NotAssigned

(S1) Server(j) : check(i) → serve(i) ∗
Client(i)[STATUS] : Orienting → UnderService

(S2) Server(j) : serve(i) → check(i + 1) ∗
Client(i)[STATUS] : UnderService → WithoutService

(S3) Server(j) : check(i) → check(i + 1)

serving. Rule (S1) has been simplified, as the global transition from a subprocess
Assigned to NotAssigned is taken care of by the broker. The explicit informing
by a server to the broker when it starts or finishes its delegated task, occurs with
the (detailed) transition in rules (S1) and (S2). Thus, a server enters its trap
busy by rule (S1) or its trap idle by rule (S2). It is on the basis of a server
having entered such a trap, the broker applies rule (B2) or (B4). The other rules
do not change.

check(1) check(3)check(2) check(4) check(5)

mediate(1) mediate(2) mediate(3) mediate(4) mediate(5)

Broker:

Fig. 8. Broker STD II

5 Variations

In this section we illustrate some more flexibility of Paradigm. We discuss three
variations on the delegation example of Sections 3 and 4. We describe how one
can add other processes in a clean way. First, by addition of a tool that is
coordinated by the servers as manager; second, by extension of the configuration
with a maintainer that coordinates the servers as its employees. As a third
variation, we consider a refinement of the broker in its assignment of servers
based on a parameter mechanism.

5.1 Adding an Employee Process

We consider the case where the servers share some resources that are needed
for the servicing of clients. We add two tools, Tool(1) and Tool(2): the one

104 L. Groenewegen, N. van Kampenhout, and E. de Vink

check(1) check(2) check(3) check(4) check(5)

serve(1) serve(2) serve(3) serve(4) serve(5)

serve(1) serve(2) serve(3) serve(4) serve(5)

check(1) check(2) check(3) check(4) check(5)

NotAssigned:

Assigned:

idle:

busy

Fig. 9. Subprocesses of a Server for partition CLIENT(3)

idle

busy
NotAssigned Assigned

Fig. 10. Global behaviour of a Server on the level of partition CLIENT(i)

shared amongst the odd-numbered servers, the other shared amongst the even-
numbered servers. Each tool will have one partition named AVAILABILITY rep-
resenting its availability, being either Released or Taken. The state-transition
diagram and subprocesses are pictured in Figure 11.

The tool alternates between its two states. Servers of the same parity are all
managing the corresponding tool in the same partition. When a tool has been re-
leased, as signaled by reaching the trap toBeTaken of subprocess Released, the
server can take the tool. The tool is then transferred to its subprocess Taken.
When the tool has reached its state occupied, i.e. the trap toBeReleased of
subprocess Taken, the server can use the tool at its leisure. The server then re-
leases the tool by transferring it to the subprocess Released, so that it can
move to its local state free, where it can be taken again. The transfer of
tool subprocesses thus maps 1-1 on the transitions check(i) → serve(i) and
serve(i) → check(i + 1).

In order to mix the coordination of the tools by the server and the exist-
ing client-broker-server dynamics, we add the signaling of traps and transfer
of subprocesses of the tools to the consistency rules of Table 1 of the servers.
The rules for the broker and client remain the same. The new rules for the
two tool processes are simple as the tool processes have no manager role. See
Table 3.

5.2 Adding a Manager Process

In the previous subsection the management of a tool was done by a collection of
servers. Therefore, the consistency rules of the servers were adapted to cope with
the new situation. Next, we show how to extend the system by the addition of a

Delegation Modeling with Paradigm 105

Table 3. Consistency rules for the Server and Tool processes

(S1) Server(j) : check(i) → serve(i) ∗
Client(i)[STATUS] : Orienting → UnderService,
Server(j)[CLIENT(i)] : Assigned → NotAssigned,
Tool(j mod 2)[AVAILABILITY] : Released → Taken

(S2) Server(j) : serve(i) → check(i + 1) ∗
Client(i)[STATUS] : UnderService → WithoutService,
Tool(j mod 2)[AVAILABILITY] : Taken → Released

(S3) Server(j) : check(i) → check(i + 1)
(T1) Tool(k) : free → occupied
(T2) Tool(k) : occupied → free

process that manages some existing ones. We introduce a maintenance process
that influences the dynamics of the servers. The state-transition diagram of the
Maintainer process is given in Figure 12. (Again, for reasons of presentation,
we choose in the figure the number of servers equal to 5 too.) The maintainer
in its starting state no maint selects non-deterministically one of the servers.
If the selected server is servicing a client, it can finish this. Then the server
is brought under maintenance; it resumes servicing as soon as the maintainer
process returns to its initial position.

As, with respect to the design choices made here, the maintenance issues
are orthogonal to the original dynamics, we simply add a new partition for
the servers. This is partition MAINTENANCE with subprocesses as in Figure 13:
subprocess OutOfService with trap stalled only allows to finish the current
service (a graceful interrupt) and the subprocess Running with the trivial trap
allows all behaviour.

The consistency rules for the Maintainer process are not surprising, see
Table 4. Note, as the trap used is trivial, rule (M1) is not biased to any of the
servers. Any server process can be interrupted for maintenance, based on the
maintainer’s decision only.

Table 4. Consistency rules for the Maintainer process

(M1) Maintainer : no maint → maint(j) ∗
Server(j)[MAINTENANCE] : Running → OutOfService

(M2) Maintainer : maint(j) → no maint ∗
Server(j)[MAINTENANCE] : OutOfService → Running

5.3 Parameter-Based Refinement

Our last variation shows how load balancing or history-based allocation can
be handled in Paradigm. A process can be decorated with a parameter repre-
senting the local variables or data of the process. The parameter mechanism

106 L. Groenewegen, N. van Kampenhout, and E. de Vink

Table 5. Consistency rules for the Broker process with parameter

(B1) Broker{H} : check(i) → mediate(i) ∗
Client(i)[STATUS] : WithoutService → Orienting

(B2a) Broker{H} : mediate(i) → check(i + 1) ∗ if (i, j) ∈ H
Client(i)[STATUS] : Orienting → Orienting,
Server(j)[CLIENT(i)] : NotAssigned → Assigned

(B2b) Broker{H} : mediate(i) → check(i + 1) ∗ if �k: (i, k) ∈ H
Client(i)[STATUS] : Orienting → Orienting,
Server(j)[CLIENT(i)] : NotAssigned → Assigned
Broker{H} =⇒ Broker{H + (i, j)}

(B3) Broker{H} : check(i) → check(i + 1) ∗
Client(i)[STATUS] : WithoutService �→

Tool(k):

free

occupied

free

occupied

Released:

free

occupied

Taken:

toBeTaken

toBeReleased

Fig. 11. Tool STD and subprocesses of the Tool process

maint(3)
maint(2)

maint(1)

maint(4)

maint(5)

no_maint

Maintainer:

Maintainer:

Fig. 12. Maintainer STD

is reminiscent to process languages as CCS or CSP. For a process with some
parameter, Proc(X) say, occurring at the left-hand side of a consistency rule, a
so-called change clause is added to the right-hand side of a consistency rule of
the format Proc(X) =⇒ Proc(X ′). The idea is that the rule can only be fired if
the data of Proc has value X. As an immediate consequence of firing the rule,
the data X of Proc will be changed into the data X ′ on behalf of the relevant
manager.

Consider, e.g., in the setting of Section 3, the case where the broker gives
a client the same server as before. If the client has not been brokered yet, the
broker simply selects one non-deterministically. We introduce the variable H
(for history) containing a pair (i, j) if client i was served by server j before. The
consistency rules are then augmented with the parameters and change clauses.
See Table 5. Now there are two consistency rules in place corresponding to
the local transition mediate(i) → check(i + 1) of the broker: If there exists a

Delegation Modeling with Paradigm 107

check(1) check(2) check(3) check(4) check(5)

serve(1) serve(2) serve(3) serve(4) serve(5)

check(1) check(2)

serve(1) serve(2) serve(3) serve(4) serve(5)

OutOfService: OutOfService:check(4) check(5)check(3)

stalled

Running: Running:

triv

Fig. 13. Subprocesses of the Server process in MAINTENANCE partition

pair (i, j) in H than the server j is allocated for client i by rule (B2a); if no such
pair (i, k) exists in H, any of the servers can be appointed to deal with client i
by rule (B2b). The other consistency rules remain the same.

6 Concluding Remarks

In this paper we showed how delegation can be modeled with Paradigm. For two
basic cases and variations we indicated what the Paradigm model looks like and
how the consistency rules capture the coordination of the processes involved. The
main point is that local or detailed behaviour of a process that is manager of part
of the system, is consistent with the global behaviour of its employee processes,
thus assuring horizontal consistency in that part of the system. Manager role and
employee role can change dynamically. Paradigm does not only allow for multiple
employees of one manager, but also for multiple managers of one employee, thus
allowing delegation and even self-management. The advantage of being able to
relate local and global behaviour is that of abstraction. Modeling or reasoning
about the behaviour of one process does not require to have knowledge in full
detail of the other processes that are involved. Here it is vertical consistency
between the local behaviour and the global behaviour that matters, as illustrated
above for delegation.

In the master’s thesis of Van Kampenhout [15], related to work of [1], some
initial work has been performed on verification of Paradigm models. In a case-
study concerning an insurance company typical properties such as allocation and
fairness have been checked. This was done using SMV. It is plausible, that the
software architecture arising from a Paradigm model by ‘cutting along parti-
tions’ is amendable to architecture slicing as proposed in [4] in the context of
the Charmy framework. It would be interesting to see how Paradigm and Spin
can be exploited, e.g., for the case study reported in [13], where also the issue
of coordination and UML is addressed. More generally, with the increased ex-
pressiveness and flexibility of Paradigm, the pattern trail is a promising line of
research. Currently, in joint work with Andries Stam, we are adapting Paradigm
models for the ToolBus machinery [2, 14] for prototyping purposes.

108 L. Groenewegen, N. van Kampenhout, and E. de Vink

References

1. J.C. Augusto and R.S. Gómez. A temporal logic view of Paradigm models. In
Proc. SEKE 2002, Ischia, pages 497–503. ACM, 2002.

2. J.A. Bergstra and P. Klint. The ToolBus coordination architecture. In P. Ciancarini
and C. Hankin, editors, Proc. Coordination ’96, pages 75–88. LNCS 1061, 1996.

3. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language user
guide. Addison Wesley, 1999.

4. M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal analysis of architectural
patterns. In Proc. ESWA, pages 10–24. LNCS 3047, 2004.

5. J.O. Coplien and N.B. Harrison. Organizational Patterns of Agile Software Devel-
opment. Prentice Hall, 2004.

6. G. Engels and L.P.J. Groenewegen. Software Process Modelling and Technology,
chapter SOCCA: Specifications of Coordinated and Cooperative Activities, pages
71–102. Research Studies Press, 1994.

7. G. Engels, R. Heckel, and J.M. Küster. The consistency workbench: A tool for
consistency management in UML-based development. In P. Stevens, J. Whittle,
and G. Booch, editors, UML 2003, pages 356–359. LNCS 2863, 2003.

8. P. Clements et al. Documenting Software Architectures: Views and Beyond. SEI
Series in Software Engineering. Pearson Education, 2002.

9. M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage (3rd edition). Addison Wesley, 2003.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley, 1995.

11. L.P.J. Groenewegen, N. van Kampenhout, and E.P. de Vink. Coordination in
networked organizations: the Paradigm approach. Technical Report CSR 03/13,
Technische Universiteit Eindhoven, 2003.

12. L.P.J. Groenewegen and E.P. de Vink. Operational semantics for coordination in
paradigm. In F. Arbab and C. Talcott, editors, Proceedings Coordination 2002,
pages 191–206. LNCS 2315, 2002.

13. P. Inverardi and H. Muccini. A coordination process based on UML and a software
architectural description. In H.R. Arabnia, editor, Proc. PDPTA, 2000. 7pp.

14. H. de Jong and P. Klint. Toolbus: The next generation. In F.S. de Boer et al.,
editor, FMCO 2002, Revised Lectures, pages 220–241. LNCS 2852, 2003.

15. N. van Kampenhout. Systematic specification and verification of coordination:
towards patterns for Paradigm models. Master’s thesis, Leiden University, 2003.

16. J.M. Küster. Consistency Management of Object-Oriented Behavioral Models. PhD
thesis, University of Paderborn, 2004.

17. B. Nuseibeh, S.M. Easterbrook, and A. Russo. Leveraging inconsistency in software
development. IEEE Computer, 33:24–29, 2000.

18. B. Nuseibeh, J. Kramer, and A. Finkelstein. Viewpoints: meaningful relationships
are difficult! In Proc. ICSE 2003, Portland, Oregon, pages 676–683. IEEE, 2003.

19. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

20. P.J. Toussaint. Integration of information systems: a study in requirements engi-
neering. PhD thesis, Leiden University, 1998.

Dynamically Adapting Tuple Replication for Managing
Availability in a Shared Data Space

Giovanni Russello1, Michel Chaudron1, and Maarten van Steen2

1 Eindhoven University of Technology
2 Vrije Universiteit Amsterdam

Abstract. With its decoupling of processes in space and time, the shared data
space model has proven to be a well-suited solution for developing distributed
component-based systems. However, as in many distributed applications, func-
tional and extra-functional aspects are still interwoven in components. In this
paper, we address how shared data spaces can support separation of concerns. In
particular, we present a solution that allows developers to merely specify perfor-
mance and availability requirements for data tuples, while the underlying middle-
ware evaluates various distribution and replication policies in order to select the
one that meets these requirements best. Moreover, in our approach, the middleware
continuously monitors the behavior of application and system components, and
switches to different policies if this would lead to better results. We describe our
approach, along with the design of a prototype implementation and its quantitative
evaluation.

1 Introduction

The shared data space model has proven to be a useful abstraction for the development
of distributed applications. Notably its support for decoupling processes in space and
time makes it attractive for distributed systems that require dynamic configuration of
applications by the insertion and removal of components at runtime. This dynamic con-
figuration is possible when components encapsulate functionality that has been coded
independent of any runtime environment. When extra-functional requirements have been
addressed (such as those for performance), widespread component deployment becomes
more difficult. In essence, we are facing the problem of separating various concerns when
developing and deploying components in distributed systems.

One solution to address this separation is exploiting the underlying middleware. In
particular, we believe that the middleware should provide the mechanisms for specify-
ing and enforcing extra-functional concerns. For example, if replication is required, the
middleware should ideally offer mechanisms that would allow the application developer
to select from different replication policies that can be subsequently enforced at runtime.
If necessary, new policies can be developed and deployed as well, independent of the
basic functionality implemented by legacy components.

Somewhat surprisingly, research on shared data spaces has been largely ignoring the
support for this separation of concerns. A plethora of solutions have been proposed to

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 109–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

110 G. Russello, M. Chaudron, and M. van Steen

distribute data items, without giving the application developer a choice on how, where,
and when data should be distributed or replicated. To solve this problem, we have pro-
posed an extension of the shared data space model with a mechanism for separating the
distribution (and replication) of data items from their strict functional usage by appli-
cation components. Moreover, by monitoring the behavior of application components,
we have been able to dynamically adapt data distribution to the needs of an application.
We have thus effectively created a closed feedback-control system, now often popularly
coined as a self-managing or autonomic system.

So far, we have considered adaptation for performance, focusing on metrics such
as application-perceived latency and consumed network bandwidth. For this paper, we
concentrate on data availability. Assuming that components may unpredictably fail, par-
ticular care has to be taken for shared data items to remain available to other components.
Similar issues arise when an application is deployed on mobile nodes. In such an envi-
ronment, a node’s connectivity may be highly unpredictable and a set of data items may
unexpectedly disappear when a node disconnects.

A well-know solution to this problem is data replication. By replicating data on
several nodes, the system can statistically guarantee that a data item is available even
if the node where the item was inserted is no longer connected (or has failed). How-
ever, replicating for availability may conflict with replicating for performance. For ex-
ample, high performance requirements may dictate that only weak data consistency
can be supported, whereas high availability requires updating all replicas simultane-
ously.

Such tradeoffs generally require application-specific solutions. However, instead of
imposing a single solution, we propose a framework that offers to the application de-
veloper a suite of replication policies. Each policy incurs costs with respect to perfor-
mance, availability, consistency, etc. In our approach, a developer is offered a simple
means to weigh these different costs such that the system can automatically choose
the policy that meets the various (and often conflicting) objectives best. Moreover,
through continuos monitoring of the environment the system can dynamically and
automatically switch to another policy if it turns out that this would reduce overall
costs.

We make the following contributions. First, we provide a simple mechanism that
allows for separating concerns regarding performance and availability in shared data
space systems. Second, we demonstrate how possibly conflicting objectives can be
dealt with in these systems, such that the selection of a best policy can be done dy-
namically and in a fully automated fashion. Third, we show that the input needed
from an application developer to support these optimal adaptations can be kept to a
minimum, allowing the developer to concentrate on the design and implementation of
functionality.

This paper is organized as follows. In Section 2 we present our proof-of-concept
called GSpace, and mechanisms that drive GSpace decisions. To prove the soundness of
our framework we conducted some experiments, of which the outcomes are discussed
in Section 3. Section 4 focuses on related work. We conclude in Section 5 and give
directions for future research.

Dynamically Adapting Tuple Replication for Managing Availability 111

2 GSpace

In this section, we first provide some background information on the shared data space
model. Thereafter, we concentrate on our implementation of a shared data space, called
GSpace. We describe the internal modules that compose GSpace.

Fig. 1. Internal structure of a GSpace kernel deployed on a node

2.1 Architectural Design

The data space concept was introduced in the coordination language Linda [3]. In Linda,
applications communicate by inserting and retrieving data through a data space. The unit
of data in the data space is called tuple. Tuples are retrieved from the data space by means
of templates, using an associative method. Multiple instances of the same tuple item can
co-exist An application interacts with the data space using three simple operations: put,
read and take.

GSpace is an implementation of a distributed shared data space. A typical setup of
GSpace consists of several GSpace kernels instantiated on several networked nodes.
Each kernel provides facilities for storing tuples locally, and for discovering and com-
municating with other kernels. GSpace kernels collaborate with each other to provide to
the application components a unified view of the shared data space. Thus the physical
distribution of the shared data space across several nodes is transparent to the application
components, preserving its simple coordination model. In GSpace tuples are typed. This
allows the system to associate different replication policies with different tuple types.

Figure 1 shows a GSpace kernel deployed on a networked node. A GSpace kernel
consists of two subsystems: the Operation Processing Subsystem (OPS) and the Adap-
tation Subsystem (AS).

The OPS provides the core functionality necessary for a node to participate in a
distributed GSpace: handling application component operations; providing mechanisms
for communication with kernels on other nodes; and monitoring connectivity of other
GSpace nodes that join and leave the system; and maintaining the information about
other kernels. Finally, the OPS provides the infrastructure to differentiate distribution
strategies per tuple type. The internal structure of the OPS is described in [10].

112 G. Russello, M. Chaudron, and M. van Steen

The adaptation subsystem is an optional addition to GSpace that provides the func-
tionality needed for dynamic adaptation of policies. The AS communicates with the
co-deployed OPS for obtaining information about the status and actual usage of the sys-
tem. In particular the Logger is responsible for logging all the space operations executed
on the local kernel. When the number of operations for a particular type reaches a thresh-
old, the logger notifies its local Adaptation Module (AM). The AM is the core of each
AS. The AM coordinates the different phases of the adaptation mechanism. The code of
the AMs on all nodes is identical. However, for each tuple type in the system one AM
operates as a master and all the others as slaves. The master AM takes decisions con-
cerned which replication policy should be applied to a tuple type. The slaves AM follow
the master’s decisions. The Cost Computation Module (CCM) and Replication Policy
Cost Models (RPCM) are responsible for computing the costs incurred by the replication
policies for a given set of operation logs. The Transition Policy prescribes how to han-
dle legacy tuples in order for them to be placed at locations where the new replication
policy expects to find them. The Adapt-Comm Module (ACM) provides communication
channels between the ASes on different nodes in the system.

The new modules that we added for dealing with availability are the following:

Availability Sensor: This module is responsible for measuring the availability of the
node in which it is deployed. This is done by periodically writing timestamps in a file.
When a failure occurs, this time-stamp is used to compute the duration that the node was
not available.

Group Generator: Generating groups of nodes is the task of this module. Once the avail-
ability values for all the nodes have been collected the masterAM passes this information
to its local Group Generator. The Group Generator will aggregate nodes following some
given strategy. For instance, in the experiments that we discuss in section 3 the Group
Generator selects the best 3 nodes in term of availability. The generated group is then
passed to the replication policies.

In the following section we describe in more detail how the different modules in the
AS contribute to the mechanism that allows GSpace to select the replication policy that
best suits the application behavior.

2.2 Autonomic Behavior in GSpace

This section describes the mechanism that allows GSpace to dynamically evaluate and
select the replication policy that fits best the needs of the application.

In a distributed system such as GSpace, tuples are often stored and accessed remotely.
Since nodes may fail or get disconnected, part of the shared data space could not be
reachable. A common solution to this problem is the use of replication. By replicating
tuples across several nodes we increase the probability of accessing a tuple even if some
nodes are down. However, replication requires consumption of extra resources, such
as extra memory for storing tuple replicas and bandwidth for exchanging information
needed for keeping the replicas in a consistent state. Also, keeping replicas consistent
comes at the price of global synchronization when updates occur.

Instead of proposing a one-size-fits-all solution, our approach sets flexibility as its
primary goal. We included in GSpace a suite of replication policies each with its own

Dynamically Adapting Tuple Replication for Managing Availability 113

tradeoff between provided availability, resource consumption, and performance. In this
paper, we ignore performance issues, allowing the application developer to specify only
the availability requirements for the tuple types used by the application. The problem is
now shifted to finding the replication policy that (a) minimizes resource consumption
while (b) fulfilling the availability requirements. These conditions are generally in con-
flict with each other. As we will show, our simple mechanism is able to deal with such
conflicting situations in a fully automated fashion.

As the environment’s conditions change over time, a static assignment of replication
policy to tuple type could eventually fail to provide the required performance of the
system. As a solution to this issue, we monitor the environment. Application patterns are
detected by logging each data space operation. Moreover, to guarantee that availability
requirements are fulfilled, sensors are placed in each node to measure node availablity
in real-time. By combining these data, our mechanism can automatically detect when
to switch to another replication policy if it turns out that availability is at risk, or when
resource consumption can be improved.

We identify three phases in our mechanism, that we explain in turn.

– monitoring phase
– evaluation phase
– adaptation phase

Monitoring Phase. During the first phase GSpace collects statistical data regarding its
environment. This data consists of information about the availability of nodes and the
usage profile of application components.

For collecting information on node availability, the GSpace kernel is instrumented
with a sensor that monitors the availability of the node where it is running. Before diving
into implementation details, we introduce the basic math behind the measurements that
our system performs. The formula for calculating the availability of a single node is:

Availability =
Mean Time To Failure

Mean Time To Failure + Mean Time To Recover
(1)

It is important to understand what exactly Mean Time To Failure (MTTF) and Mean
Time To Recover (MTTR) mean. With MTTF we indicate the average time that the node
is continuously operating, i.e. the average time between the end of one failure and the
beginning of the next. With MTTR we address the average time necessary for the node
to recover from an experienced failure.

Figure 2 sketches the time line of a node that experiences some failures.When a failure
i occurs we indicate with sfi and efi respectively the time when the failure i starts and

Fig. 2. The time line of a node that experiences some failures

114 G. Russello, M. Chaudron, and M. van Steen

Fig. 3. The MSC of operation logging

ends. We assume that the starting time of the node (the very first time that the node
is activated) is equivalent to ef0 (end of failure 0). Figure 2 also provides a graphical
representation of MTTF and MTTR to understand how to compute those values. For
instance, the availability value after the n-th failure is obtained by the following formula:

Availability =
∑n

i=1(sfi−efi−1)∑n
i=1(sfi−efi−1)+

∑n
i=1(efi−sfi)

(2)

For computing (2) we need to collect the starting and ending times of a failure.
When the system is started for the first time, the sensor writes into a file the starting
time of the system. Periodically, the sensor is actived and writes timestamps into the
same file. Actually, a timestamp is just the time at which the sensor is active. After a
node experiences a failure, at re-booting time the sensor detects that the system was
down (since the timestamp file is stored persistently). The starting time of a failure then
is considered as the time at which the last timestamp was written whereas the time at
which the system is up again is considered as the end-of-failure time. GSpace simply
calculates the down time as the difference between the new starting time and the time
of the last executed timestamp.

For collecting information about the application behavior, we employ the same
method as described in our previous work [12]. Each data-space operation that ap-
plication components execute is logged and stored per tuple type. Figure 3 shows the
message sequence chart during the operation logging. The data that is logged contains:

– Operation type: the space operation executed (either a read, take or put)
– Tuple type: the type of the tuple or template passed as argument with the operation
– Location: the address of the GSpace kernel (i.e., node) where the operation is exe-

cuted
– Tuple ID: a unique id provided to each tuple that enters the shared data space
– Tuple size: the size of the tuple inserted through a put operation or returned by a

read or take operation
– Template size: the size of the template passed as argument of a read or a take

operation
– Timestamp: the time when the operation is executed

When the number of executed operations on a node reaches a given threshold the
system starts the next phase.

Dynamically Adapting Tuple Replication for Managing Availability 115

Fig. 4. The MSC of the evaluation phase

Fig. 5. The MSC of the policy adaptation phase

Evaluation Phase. The evaluation phase consists of collecting data from all nodes and
comparing the cost of different replication policies.

Figure 4 shows the message sequence chart of the evaluation phase. The master AM
requests all slave AMs to send their local data (logs and node availability). This data is
combined and the costs for each policy are calculated by means of simulation.

For capturing the performance of the different distribution policies we use a cost
function. Our cost function is a linear combination of various parameters. The values of
these parameters are combined in an abstract value that quantifies the tradeoff between
performance versus resource usage for a given replication policy. The parameters are
defined in such a way that a lower value indicates lower costs (and thus better behavior).
The replication policy that leads to the lowest costs is the best policy for the application.

In this work, we apply the same method as described in [12] but with the focus on
data availability. Therefore, we use a different cost function: bu represents the bandwidth
usage; mu represents the accumulative memory usage; and da represents the derived
availability. The latter is calculated as follows:

116 G. Russello, M. Chaudron, and M. van Steen

da(p) =
{

100−availability(p) if availability(p)≥ required availability,
MaxV alue if availability(p) < required availability

In this way, if the availability provided by a replication policy p does not satisfy the
user’s requirements then the value for da is set to MaxV alue so that the calculated
costs will become very high and the system will automatically reject this policy. The
cost function is defined as follows:

CFp = w1 ∗ bu(p)+w2 ∗mu(p)+w3 ∗da(p) (3)

The weights wi tune the relative contribution of each parameter to the overall cost.
Once the costs are calculated for each replication policy, they are passed to the AM

that selects the best replication policy. The AM checks whether the current policy is still
the best one. If this is the case, no further actions are undertaken. Otherwise, the AM
starts the phase described next.

Adaptation Phase. In this phase the system switches replication policy and adapts the
data space content. In Figure 5 the actions executed during this phase are presented
in a message sequence chart. The master AM freezes application operations for the
given tuple type in all nodes. Afterwards, each kernel updates its own data structure and
redistributes the tuples still in the space according to the new replication policy. When
this transition period ends the master AM resumes the operations in all nodes.

3 Implementation and Experiments

This section describes the experiments that we performed using a simulator of GSpace.
The experiments model a distributed system with 10 nodes connected via a LAN.

Our previous experiments focused on distributed systems in which application com-
ponents dynamically join and leave a system during execution (but in which the nodes
were always available). In [11] we showed that there is no single distribution policy that
is best for this dynamic type of application behavior. Furthermore, in [12] we showed
that dynamically adapting the distribution policy outperforms any static policy.

In this paper we do not only consider changes in the application behavior, but also
in the underlying hardware infrastructure. In particular, we consider that the availability
characteristic of nodes in the network may change. This occurs, for instance, in ad-hoc
networks where devices join and leave a network.

We show the impact of changing infrastructure on sustaining a level of availability:
without adaptation, no single static policy is able to sustain a given level of availability.
Moreover, we show that the dynamic adaptation of the policy provides a better level
of availability in the case of changing infrastructure. Furthermore, we show that the
adaptation mechanism can handle situations where both the infrastructure as well as the
application behavior change dynamically.

The goal of the experiments is to show that our system can adapt the policy it uses
to changes in the availability characteristics of the nodes in the network. As a result, it
can maintain a level of availability of tuples while the availability of nodes varies.

Dynamically Adapting Tuple Replication for Managing Availability 117

The results of this simulation are now being incorporated in an our distributed im-
plementation of GSpace. Previous experience with the simulation [12] shows that the
accuracy of the simulation is in the order of 5 percent. Hence the simulation provides
fairly accurate predications about actual system behavior.

Next, we first describe the set-up of the experiments. Thereafter, we describe the
used replication policies. We conclude discussing two interesting cases.

3.1 Set-Up of the Experiments

The experiments are based on the simulation of the deployment of GSpace in a network
of 10 nodes connected via a LAN. We control the simulation experiment through the
following parameters:

– Application behavior: the operations that the application components execute using
GSpace. The simulation contains a library of different application usage patterns. A
pattern consists of a series of read, put and take operations. A run of an experiment
consists of the concatenation of a number of patterns. The patterns in a run may be
of the same type, or they may be of different types. The approach we follow for the
synthesis of application behavior is described in [12].

– Node availability behavior: the availability characteristics of the physical nodes
where GSpace is deployed; including its change over time. The availability behavior
of nodes during execution can be set to one of the following:
• constant
• increasing from a given value to a max value by increments of a given δ
• decreasing from a given value to a min value by increments of a given δ
• alternating between a min and max value by increments of a given δ

During the simulation, data about performance parameters is collected and passed
to the Adaptation Manager. Using this data the Adaptation Manager evaluates the cost
function, and determines which replication policy to use in the next phase.

3.2 Replication Policies

The set of replication policies for GSpace is extensible. For the experiments in this paper,
we use the following set of replication policies:

– Full Replication. This policy puts a copy of every tuple on every node in the system
(as soon as a tuple is inserted)

– Fixed Replication. This policy replicates tuples to a fixed number of nodes (as soon
as the tuple is inserted). When awareness of node availability is enabled, the Group
Generator provides the nodes where tuples should be replicated.

– Dynamic Consumer Replication. This policy replicates tuples to all nodes that
host an application component that is a consumer of this type of tuple. In case
the availability of the consumer group can not provide the required availability the
policy includes in the group nodes provided by the Group Generator.

– Dynamic Producer Replication. This policy replicates tuples to all nodes that host
an application component that is a produced of this type of tuple. Nodes provided
by the Group Generator might be included in the group of producer nodes whenever
this group can not sustain the required availability.

118 G. Russello, M. Chaudron, and M. van Steen

Fig. 6. Memory Usage measured for the different replication policies

For maintaining consistency among the nodes where replicas are stored, the repli-
cation policies collaborate using a Group Communication Protocol [5]. The nodes on
which tuples are replicated are joined in a group where the operations are executed atom-
ically. Moreover, the Group Communication Protocol takes care of consistency issues
that could arise from the failure of some of the nodes in the group.

The availability of a given replication policy is determined by the availability of
the group of nodes that is used for replicating tuples to. In particular, a group of nodes
is considered available if at least one node of the group is available. Then, the group
availability, GA, equals 1 minus the probability that all nodes within the group fail:

GA = 1−Pall nodes down (4)

We assume that failures of nodes are independent. Then the probability that all nodes
fail is equal to the product of the probabilities of failure fi of the individual nodes:

Pall nodes down =
n∏

i=1

fi (5)

3.3 Adding Awareness of Node Availability to Policies

In this section we introduce replication policies that base their decisions on the avail-
ability of nodes. The experiments in this section show that by constantly monitoring the
underlaying infrastructure, the GSpace system improves sustainability of the required
availability requirements despite the unpredictable behavior of the nodes.

In these experiments, we assume the application behavior is fixed. All the application
components act both as consumers and producers.

For this application behavior, both Dynamic-Consumer and Dynamic-Producer poli-
cies replicate the tuples in all nodes. This means that the memory usage is the same as
that for the Full Replication policy, as Figure 6 shows. Instead, the memory footprint of
the Fixed Replication policy is smaller than that of the other policies since this policy
replicates tuples on a smaller number of nodes.

First we consider the case when the availability monitoring is disabled. The required
availability for the tuple type used in the experiments is 70%. The Fixed Replication

Dynamically Adapting Tuple Replication for Managing Availability 119

Fig. 7. Availability and Cost Function values for the replication policies when availability aware-
ness is disabled

policy is defined to use the three nodes that provide the highest availability at the moment
the system is started. However, the availability behavior of these nodes is programmed
to decrease from 90 to 10 in steps of 5 (percent).

Using these three nodes the Fixed Replication policy initially satisfies the availability
threshold. However, during execution, the nodes that are used by the Fixed Replication
policy experience an increasing number of failures. Hence, the availability of the nodes
decreases and as a result, the availability that the Fixed Replication policy provides
decreases. Figure 7(a) clearly shows this decreasing behavior. The other replication
policies provide a fairly stable availability with minor fluctuations. This becasue the
changing availability of 3 nodes out of 10 impacts less the overall availability.

The previous graphs were concerned with availability. Next, we look at the effect of
the replication policies on the cost function.

From Figure 8(b), we can conclude that as long as the availability requirements
are met, Fixed Replication is the best policy since it uses the least memory. However,
around the 10th evaluation cycle this policy can no longer sustain the required level of
availability. As a result, the cost function value increases dramatically.

Next, we re-execute the same sequence of operations enabling the availability moni-
toring. The Fixed Replication policy still makes only a fixed number of copies, but now
it selects the three nodes with the highest availability at the time of evaluation1.

The memory usage graph is the same as the one shown in Figure 6 since the appli-
cation behavior is the same. However, now the system is able to select nodes based on
the measured availability of the nodes. At each evaluation, the system selects the three
nodes that have highest availability. Now, Figure 8(a) shows that Fixed Replication is
able to provide the required availability. Moreover, since the memory footprint is lower
than that of the other policies, Fixed Replication is always the best policy. This is shown
in the cost function graph on Figure 8(b).

3.4 Combining Dynamic Application Behavior and Dynamic Node Behavior

In this section we analyze when both the application components change their behavior
and the availability of nodes changes during execution. The results will show that our

1 These nodes are provided by the Group Generator module.

120 G. Russello, M. Chaudron, and M. van Steen

Fig. 8. Availability and Cost Function values for the replication policies when availability aware-
ness is enabled

Fig. 9. Cost Function values when the application behavior changes

mechanism not only is able to select the replication policy that satisfies the availability
requirements but also it selects the policy that best suits the components’ behavior.

During these experiments the availability characteristics of nodes are measured from
the system and made available to GSpace. The application component behavior is pro-
grammed to change during execution according to the following phases:

– Phase 1 (cycles 0–32): all application components are consumers and producers;
– Phase 2 (cycle 32–64): only the application components deployed on nodes n9 and

n10 act as consumers, all the other components act as producers;
– Phase 3 (cycle 64–95): only application components on nodes n9 and n10 act as

producers, the other components act as consumers.

Moreover, the availability of nodes n9 and n10 is programmed to oscillate between
10% and 90%. Therefore, the group formed by these two nodes is not always able to
sustain the required level of availability, which is fixed to 70%.

Let us begin analyzing the cost function values on Figure 9. During the first phase
of the execution, the best policy that can guarantee the availability requirements with
minimal memory usage is Fixed Replication.

During the second phase of execution, Dynamic Consumer Replication is the best
policy. This is due to two factors. Firstly, only two nodes host application components
that act as consumers. Therefore, Dynamic-Consumer Replication uses a group of nodes
that is at most as large as the group used by Fixed Replication. This has a major im-

Dynamically Adapting Tuple Replication for Managing Availability 121

Fig. 10. Measured Memory and Bandwidth Usage when the application behavior changes

Fig. 11. Availability values when the application behavior changes

pact on the memory usage, as Figure 10(a) shows between evaluation cycles 32 and
64. In fact, when the combined availability of node n9 and n10 is above the required
availability, Dynamic Consumer Replication has a smaller memory usage footprint than
Fixed Replication. However, sometimes those two nodes are not enough to guarantee the
required availability. Thus, Dynamic Consumer Replication has to include other nodes
to sustain the required availability. This is done by adding a node that is selected by
the Group Generator module. The second factor is the reduced bandwidth usage that
Dynamic Consumer Replication incurs. This is shown in Figure 10(b).

The last phase of execution witnesses another change. Application components
switch behavior. In particular, after evaluation cycle 64, the application components
on nodes n9 and n10 start acting as producers. All the other components start to act as
consumers. After a transition phase between cycles 64 and 70, where the components’
behavior stabilizes, the Dynamic Producer Replication becomes the best policy, as Fig-
ure 9 shows. This is mainly due to the same factors that we discussed for Dynamic
Consumer Replication. This is confirmed also by the graphs in Figure 10.

To conclude, we want to show that in all cases the availability sustained by the policies
used in the different phases is always greater than the required value (Figure 11). This is
an improvement over the behavior that is oblivious to changes in availability of nodes,
yet the adaptation happens transparently to the application.

122 G. Russello, M. Chaudron, and M. van Steen

4 Related Work

This section describes other approaches for shared data space resilient to failures.
PLinda [4] is a variant of Linda that addresses fault-tolerant applications. In PLinda

both data and processes are resilient to failures. In particular, by using a transaction
mechanism extended with a process checkpoint scheme, PLinda ensures that a compu-
tation is carried out despite node failures. Compared to our approach, PLinda offers more
functionality since it is resilient against process failures. On the other hand, in PLinda
application developers have to explicitly declare which part of their application code
should be executed in a fault-tolerant fashion. Threfoer, application code is interwoven
with extra-funtional concerns not relevant to the application functionality.

Another fault tolerance implementation of Linda is FT-Linda [1]. As for PLinda, FT-
Linda supports a transaction mechanism that allows the recovery of data and processes
after a failure. However, FT-Linda requires the application developers to put extra effort
in making their application resilient to failures. For instance, the application developer
has to program the application to take care of removing intermediate results after a fail-
ure. Again, this is clearly against separating different concerns in the application design.

Although it was designed for taking advantage of idle time of workstations for running
parallel applications, Piranha [6] could be used for addressing fault-tolerant applications
as well. In Piranha, worker processes execute tasks on idle workstations. As soon as a
workstation becomes busy, a worker process has to stop its current computation. The task
has to be carried out by another Piranha worker on another idle workstation. Therefore, a
retreat as the same effect as a failure. The Piranha model assumes that the execution of the
task is carried out atomically despite the retreat. As for the FT-Linda, the Piranha system
requires the application developer to program the application to clean-up intermediate
results when a task has to retreat. Again, we see that application code is interwoven with
fault-tolerant concerns.

An alternative approach to transaction mechanism for building shared tuple space
resilient to fault tolerance is proposed in [9]. In this work, the author proposes exploiting
code mobility as a mechanism for fault tolerance. By using code mobility, the system
can guarantee an operational semantics in which either all operations are executed or
none. The approach uses a run-time system that contains a checkpointing mechanism. In
this way, the application developer does not need to interweave fault-tolerance code in
her/his application since the run-time system will deal with this. To address the removal
of legacy data left by mobile agent that is no longer alive, the author introduces the
notion of agent wills. The agent will is a small piece of code embedded with the run-
time system that describes what to do with data after the agent ceases activity. This
will-code is executed by the run-time system whenever it detects that the respective
agent crashed.

An evaluation of fault-tolerance methods for large scale distributed shared data spaces
is described in [14].

Worthwhile to mention for the significance of their contributions, although not for
fault tolerance, are the following implementations of shared data space. JavaSpaces [2]
and TSpace [15] are commercial systems that have shown how the shared data space
paradigm can be successfully used for building distributed applications.WCL [8] extends
the basic primitives of the shared data space with some new ones. These new primitives

Dynamically Adapting Tuple Replication for Managing Availability 123

allow the execution of operations that are impossible to achieve by the standard ones.
For instance, the multiple read primitive returns copies of all tuples that match with a
given template. Finally, Lime [7] addresses the issues of coordination in a distributed
environment.

5 Conclusions and Future Work

In this paper we made the following contributions. First, we provide a simple mechanism
that allows for addressing availability concerns in shared data space systems separately
from the functionality of applications. As a result, different policies can be employed
for achieving different availability characteristics without affecting the functionality of
the application.

Second, we demonstrate how possibly conflicting objectives (such as high availability
and low resource use) can be dealt with in a fully automated fashion through the use of
a cost-function.

Third, we show that the input needed from an application developer to support these
optimal adaptations can be kept to a minimum, allowing the developer to concentrate on
the design and implementation of functionality.

Finally, we showed the superior performance of dynamically adapting the replication
policy that is used. The experiments showed that our mechanism is able to dynamically
adapt the replication policy to the availability characteristics of the infrastructure. More-
over, the mechanism takes in consideration the application behavior and selects the
policy that suits best the application needs.

This work is an extension of earlier work where we studies separation of extra-
functional concerns in shared dataspaces. In [12] we showed how resource use could
be treated as a separate policy and in [13] we studied the separation of real-time and
exception handling concerns. The next challenge is combining multiple concerns in one
architecture. Some of these concerns are inherently coupled, yet the challenge is to find a
way of combining these concerns in a single architecture that enables ease of engineering
and adaptability to changes in the usage profile.

References

1. D. E. Bakken and R. D. Schlichting. “Supporting Fault Tolerant Parallel Programming in
Linda.” IEEE Trans. on Parallel and Distributed System,1994.

2. E. Freeman, S. Hupfer, and K.Arnold. JavaSpaces principles, patterns, and practice. Addison-
Wesley, Reading, MA, USA, 1999.

3. D. Gelernter. “Generative Communication in Linda.” ACM Trans. Prog. Lang. Syst., 7(1):80–
112, 1985.

4. K. Jeong, D. Shasha. “PLinda 2.0: A Transactional/Checkpointing Approach to Fault Tolerant
Linda.” Proc. 13th Symp. on Reliable Distributed Systems, 96–105, Dana Point, CA, 1994.

5. M. F. Kaashoek andA. S. Tanenbaum. “Efficient reliable group communication for distributed
systems.” Internal Report IR-295 IR-295, Department of Computer Science,Vrije Universiteit
of Amsterdam, 1992.

6. D. Kaminski. “Adaptive Parallelism in Piranha.” PhD Thesis, Yale University, Department
of Computer Science, 1994.

124 G. Russello, M. Chaudron, and M. van Steen

7. G. P. Picco, A. L. Murphy, and G.-C. Roman. “Lime: Linda Meets Mobility.” In Proc. 21st
International Conference on Software Engineering (ICSE’99), ACM Press, ISBN 1-58113-
074-0, pp. 368-377, Los Angeles (USA), D. Garlan and J. Kramer, eds., May 1999.

8. A. Rowstron. “WCL: a Co-ordination Language for Geographically Distributed Agent.” In
Worl Wide Web Journal, Vol. 1, Issue 3, pp. 167–179, 1998.

9. A. Rowstron. “Using mobile code to provide fault tolerance in tuple space based coordination
languages.” In Science of Computer Programming, Vol. 46, Number 1-2, 137-162, Jan. 2003.

10. G. Russello, M. Chaudron, and M. van Steen. “Customizable Data Distribution for Shared
Data Spaces.” In Proc. Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2003), June 2003.

11. G. Russello, M. Chaudron, M. van Steen. “Exploiting Differentiated Tuple Distribution in
Shared Data Spaces.” Proc. Int’l Conference on Parallel and Distributed Computing (Euro-
Par), 3149:579–586, Springer-Verlag, Berlin, 2004.

12. G. Russello, M. Chaudron, M. van Steen. “Dynamic Adaptation of Data Distribution Policies
in a Shared Data Space System.” Proc. Int’l Symp. On Distributed Objects and Applications
(DOA), 3291:1225–1242, Springer-Verlag, Berlin, 2004.

13. R. Spoor. “Design and Implementation of a Real-Time Distributed Shared Data Space.”
Master’s Thesis, Eindhoven University of Thechnology, Department of Computing Science,
2004.

14. R. Tolksdorf, A. Rowstron. “Evaluating Fault Tolerance Methods for Large-scale Linda-
like systems.” In Proc. Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2000), Vol. 2, pages 793-800, June 2000.

15. P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. “T Spaces.” IBM System Journal,
37(3):454-474, 1998.

Enforcing Distributed Information Flow Policies
Architecturally: The SAID Approach

Arnab Ray

Department of Computer Science SUNY at Stony Brook, Stony Brook,
NY 11794-4400, USA

arnabray@cs.sunysb.edu

Abstract. Architectural security of a distributed system is best considered at de-
sign time rather than further down the software life cycle where it may become
very expensive to make even minor modifications to the software architecture.
In this paper we take Architectural Interaction Diagrams (AID) [9, 8], an archi-
tecture description framework with an unique ability to encode communication
efficiently and augment actions of AID components with security levels to pro-
duce SAID. This new architecture description language enables the designer to
impose information flow restriction policies on system communications at design
time which in turn allows a reduction of the information flow analysis problem
for distributed systems to the simpler problem of information flow analysis of
individual components of the distributed system.

1 Introduction

Model-driven architecture (MDA) [14] is an increasingly-popular paradigm of software
development which looks upon models as first class entities in the development life-cycle.

There are two parts to any model-driven distributed system development process:
specifying intra-model behavior (how a model does computation) and inter-model be-
havior (how different models communicate and coordinate). Architecture Description
Languages (ADLs) try to make the development of the coordination infrastructure and
the component models (ie users of the coordination infrastructure) as orthogonal to each
other as possible in order to facilitate independent development and reuse.

Architectural Interaction Diagrams (AID) [9, 8] constitute an architecture description
language with the following desirable properties:

– It supports abstract definitions of coordination that are separate from component
models.

– It provides a parameterized notion of coordination (a coordination system generated
for n component models does not need to be recoded for n+1 component models—
unlike in CSP [3], CCS [12] based notations where it would need to be rewritten).

– It provides a coordination framework into which heterogenous models (models
written in different modeling notation) can be plugged in and made to interoperate
seamlessly.

– It allows for a variety of analysis routines (execution simulation, pre-order and
equivalence checking, model-checking/counterexample generation) by virtue of the

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 125–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

126 A. Ray

base formalism for AID being Labelled Transition Systems (LTS)s for which such
algorithms have been extensively developed.

AID as described above are primarily used for certifying that the models satisfy prop-
erties related to the proper operation of the system (nothing bad can happen, something
good will eventually happen etc). However the way coordination is encoded in AID
makes it easily extensible for writing down security policies for information-flow be-
tween components plugged into the framework. Distributed information-flow policies
are used to enforce security in a distributed system and adapting an unified framework
for encoding coordination policies and information flow policies helps the designer deal
with these two related issues at the same time. In this paper we propose an extension of
AID called SAID (Secure Architectural Interaction Diagrams) which does exactly this.

An important aspect of distributed information flow security [4] is to ensure two kinds
of security: security of computations of the components/processes (intra-component) and
security in the flow of information between components (inter-component). SAID con-
cerns itself with the latter problem. By providing the user the concept of buses (analogous
to connectors in WRIGHT [7]) to encode interprocess communication, SAID allows for
the specification of information flow policies on the distribution of information across
components. The utility of this is twofold: firstly it confines the distributed information
flow problem to a non-distributed context where there are several techniques [11] for
dealing with it. Secondly it allows the designer to play with different information flow
security policies (by encoding different buses) so as to consider different aspects of the
functionality-security tradeoff before a design decision is committed to.

The contributions of the paper are as follows:

– Extending an existing coordination framework to encompass a wider domain of
applicability: from purely safety certification to safety-and-security co-design.

– Providing correct-by-construction coordination rules that guarantee information-
flow-safety during component composition.

While traditional approaches [4] first construct the entire system model (component
models + coordination infrastructure) and then perform information flow analysis on it,
SAID approaches the problem by providing correct-by-construction coordination rules
that guarantee information-flow-safety during component composition (ie the composi-
tion operation does not introduce spurious information flow) and thus obviates the need
for analyzing the entire composed system. In other words, it reduces the distributed infor-
mation flow security problem to the more tractable single component information flow
security problem where we can apply several well-studied methodologies for check-
ing information flow of single components and then use the coordination framework
assembly rules to guarantee global security properties.

1.1 Related Work

SAID extends the Architecture Interaction Diagrams paradigm [9, 8] by providing an
enhanced methodology of writing down security-aware buses (Buses being the interpro-
cess communication (IPC) entity used in AID). There are other architecture description
languages s like WRIGHT [7], and coordination languages like Linda [5] that support
some of the specification features used by SAID. However to our knowledge none of

Enforcing Distributed Information Flow Policies Architecturally: The SAID Approach 127

the standard formal ADLs available have been used as a framework for distributed in-
formation flow analysis.

Security wrappers [13] are expressed as terms in a boxed π calculus and are used to
compose untrusted components to form a secure system. Like the communication encod-
ings in SAID, they too impose information flow policies on communication by filtering
communications through the wrapper and in turn provide a correct-by-construction com-
position formalism. The aim of SAID is different from security wrappers: over here we
are interested in extending a fully developed architecture description language so that it
may support the expression of information-flow policies with the broad aim of having an
unified method of dealing with coordination and information flow. Since SAID builds
on AID, it inherits its beneficial features: state-space-efficient communication semantics
and a more expressive communication vocabulary: as an example, in our formalism,
a sophisticated event-coordination system used in an ubiquitious computing environ-
ment [10] can be efficiently encoded as a bus wheras it would be quite cumbersome
to write a security wrapper that would encapsulate such a complicated communication
discipline.

With respect to information flow analysis, our work is motivated by the distributed
information flow analysis framework detailed by Mantel and Sabelfeld in [4]. In this
work they motivate the need for distributed information flow which is defined to be the
ability to check for spurious information flows not only when the process is performing
its computation steps but also when messages are in transit via the communication
infrastructure of the system. However our approach is different from the approach of
Mantel and Sabelfield in the sense that while they analyze security properties globally, our
approach is to localize the analysis to the components/processes by enforcing information
flow safety across processes in a correct-by-construction fashion. The work in [4]
proceeds by requiring a translation from their input formalism to an event-based system
where an inherent limitation is introduced by the fact that the event-based system, by
virtue of being a single-IPC-system, is merely able to simulate the richer modes of IPC
that their input formalism uses (rather than support it natively). SAID on the other hand
by virtue of its ability to provide different forms of IPC as a language-supported facility
(rather than artificial simulation) provides a richer event-based mechanism for analysis
with the result that systems may be directly defined and analyzed in SAID without the
need of an explicit translation step.

The rest of the paper is arranged as follows. Section 2 provides a brief background
to the theory of AID and distributed information flow which in turn lays the foundation
for Section 3 which deals with SAID and examples that illustrate our approach. Section
4 contains discussions while Section 5 talks about future work and conclusions.

2 Background

2.1 Architectural Interaction Diagrams

Architectural Interaction Diagrams (AID) [8] is an Architecture Description Language
for specifying systems, especially communication-intensive ones. Since SAID is derived
from AID by augmenting transitions of its components, an understanding of the theory
behind AID becomes imperative for understanding SAID.

128 A. Ray

The base formalism for AID is IOLTS (Input-Output Labeled Transition System),
which are FSMs, consisting of states, transitions, a transition relation, a start state and a
set of ports (the set being called an interface). A AID component has output transitions
(writing data to a port), input transitions (reading data from a port) and another composite
transition called remote procedure-call which consists of a single transition that denotes
an output and an input action in sequence. This is analogous to a traditional remote
procedure call in a programming language, with the output part signifying the supplying
of actual parameters by the AID agent and the input part denoting the return value
supplied back to the AID agent.

An AID component (agent) can take one of two forms: either it can be an IOLTS
or it maybe a network containing other AID components embedded in interfaces and
connected together in a communication topology as shown in Figure 1. The entities that
actually perform the mechanism of communication and synchronization are called buses
which like AIDs are also provided ports. The ports of a AID component and a bus are
connected by links. It is also possible to export ports on an interface to an embedee
interface through gates

The AID theory imposes no restrictions on how an IOLTS AID is described con-
cretely: it could be a Statechart, or a term in process algebra, or a program. The only
basic requirement is that the modeling formalism can be converted to IOLTSs ie for each
input language there has to be translation to an IOLTS. We do not intend to provide a
full semantic description of AID but the interested reader is requested to refer to [8]
for the entire description including the Structural Operation Semantics (SOS) [6] rules
that enable us to provide AID its uniqueness. What we do provide is the intuition behind
buses ie the communication abstraction mechanism of AID.

InAID buses handle interactions between subsystems.As such, they have two respon-
sibilities: the transfer of data between senders and receivers, and the synchronization of
sender/receiver transitions, depending on the semantics of the interaction mechanism.
For example, consider a synchronous binary handshaking interaction mechanism. Not
only must a bus implementing this mechanism deliver a data value from a sender to a
receiver, but it must also ensure that senders and receivers block until a communication
partner is ready to execute. In the case of bounded-buffer non-lossy communication, on

,

put, get : Gates i,r,o,rd,i’,r’,o’,bp,bp’,qp,qp’ : Ports

qp’qp
bp bp’

Consumer : AID ,C Cb,q: Buses 21

1 2

o i’ o’

r

b
C C

reset

getput
rd
Consumer

q

r’

i

Fig. 1. A nested AID

Enforcing Distributed Information Flow Policies Architecturally: The SAID Approach 129

the other hand, senders should be blocked when the buffer is full, while receivers should
be blocked when the buffer is empty. In shared memory neither senders (“writers”) nor
receivers (“readers”) ever block. Providing a common framework for explicating these
subtleties is a central goal of the AID theory.

In particular, we wish to view buses as “devices” that combine transitions of subsys-
tems connected to the bus into system-level transitions, according to the synchronization
discipline the bus is intended to capture. This is where AID differ from conventional ap-
proaches . Normally the combining of subsystem transitions to form system-level transi-
tions is done through the || (parallel) operator and the native handshaking discipline that
is “hard-coded” into the semantics of the language. What we want however is to have a
more general mechanism by which it would be possible for the user to define her own
systems of communication and this newly created communication discipline can then
be plugged seamlessly into the native semantics of the language. Buses are the means
by which this goal is achieved.

Definition 1. A bus is a tuple of form 〈I, B, T, b0〉, where I is an interface ie a pair of
set of ports (the first set representing write and the second set the read ports), B is a set
of bus states, T is a transition relation and and b0 ∈ B is the start state

Intuitively, a bus contains a read and write interface, a set of states reflecting the internal
status of the bus, a transition relation, and an initial state. Buses are similar to IOLTSs,
but the transition relation is significantly different and requires more comment.A bus can
be looked upon as an action transducer that takes as its input a bus state, a set of enabled
write transitions (WV)represented by a set of tuples of the form (writeport,value), a
set of enabled read transitions (R) represented by a set of read ports and provides as
its outputs another bus state, a set of fired write transitions (W) represented by a set of
write ports and a set of tuples (RV) of form (readport,value) that represents the set of
fired read transitions.

A bus transition is of the form

b
W RV

W V R

−→Mb′

is intended to be read as: “if the bus is in state b, and subsystems connected to the bus
enable write transitions as indicated in WV and read transitions as enabled in R, then the
bus fires read transitions as indicated in RV and write transitions as indicated in W and
goes to state b′.” This firing of selected read and write transitions in systems connected to
the bus is also done atomically: thus one bus transition may “consume” several transitions
from the components connected to it. Also, “writing” to a bus is interpreted with respect
to components connected to a bus: so write ports on a subsystem are connected to write
ports on a bus, and similarly for read ports.

A bus transition may be thought of as consisting of an “enabling condition” and a
“firing condition”. The former requires that certain transitions be enabled on component
ports that are connected to different bus ports. The latter then indicates which of the
enabled transitions actually fire when the bus transition fires, thus causing state changes
in the components as well as the bus.

In order to provide bus transitions, we have two obligations.The first is to define a tran-
sition predicate TP involving free variables WV , R, RV and W with the property that

130 A. Ray

b
W RV

W V R

−→Mb′

holds exactly when TP (WV, R, W, RV) is true. The second is to show how the target
of the transition ie b′ is related to b

A Simple Example. The Calculus of Communicating Systems (CCS) [12] supports syn-
chronous message passing as its only form of communication. This form of communi-
cation is common in other process algebras like CCS and CSP as well, and we show how
it may be encoded as a bus. Buses in GCCS place no limit on how many subsystems
are allowed to use them. They require all senders and receivers to block until at least
one sender and receiver are enabled; then an exchange of data occurs, with the selected
sender and receiver free to continue executing.

T contains all transitions for which TP is true:

∃〈w, v〉 ∈ WV. r ∈ R.W = {w} ∧RV = {〈r, v〉}.

Since the bus does not need to store the data and merely needs to pass it on, there is only
a single state in the bus. Hence the target of the transition b′ is always equal to b

A bus MS = 〈I, B, T, b0〉 encapsulating synchronous binary handshaking may be
defined as follows.

-I = a tuple consisting of two finite set of ports (read and write).
-B = {b} consists of a single state.
- T is defined above.
- b0 = b.

In other words, a bus transition is enabled any time there is at least one reader and writer,
and the result of firing the transition is to cause exactly one writer and one reader to
execute, with the value output by the writer being shifted to the reader. Note that the bus
never changes state; the only role of MS’s transitions is to synchronize the transitions
of users of the bus.

2.2 Information Flow Analysis

Information flow analysis is concerned with studying and characterizing flow of in-
formation within a system with the aim of enforcing confidentiality of system data.
Access-control mechanisms restrict resources to certain class of users or allow only cer-
tain operations on a controlled resource for a particular class of users. Information flow
is traditionally considered to be more fine-grained than access control: over here the
untrusted users are allowed access to the resource (unlike in access control where the
access itself is restricted) but the information that the untrusted observers can obtain by
using the resource would be regulated by the design of the communication/coordination
framework so that the untrusted observer may not deduce anything that it is not supposed
to know.

Let us consider the following pseudo-code fragment:

If (salary ≥ 10, 000) then public = 0 else public = 1;

Enforcing Distributed Information Flow Policies Architecturally: The SAID Approach 131

Here if salary is a protected variable (with a HI security level) and public be a public
variable (with a LO security level) then an untrusted user by observing the value of
public can deduce some infromation about the value of salary (even if he does not get
the exact value).

Information flow policies are rules that are checked to see that such leaks are not
present. For instance, a possible information flow policy to prevent the above information
flow might be that if the guard of a command (the if statement) contains a reference to
a HI variable and if there is any LO variable in its body (the then part) then that code
fragment is insecure.

Distributed information flow analysis studies the information flow analysis in a dis-
tributed domain taking into account the flow of information between components. Let
us consider another simple example as before:

If (salary ≥ 10, 000) then put(private = 0);

Here private is a HI security level variable and put is a network operation which puts
the variable private on the network (after setting it to 0). Here the guard and body of
the if statement are both HI-level and so it passes the policy of the previous case. Now if
there are untrusted agents listening on the network, then they are able to observe the fact
that a variable was put onto the bus (they are still not able to read the value of private)
and from that deduce some information about salary. (the problem here is that while
private is HI-level the coordination operation put is not).While in the previous example,
we could impose information safety by simply looking at the isolated component, here
the policy will have to be more subtle.

The insecurity in the above example arises from the fact that the put operation
happens for one branch of a conditional statement (the if-then part and not the if-else
part). A non-distributed policy might be to stipulate that regardless of the outcome of the
guarding if condition, the network operation put will take place (with different values
of course) so that an untrusted observer cannot deduce which part of the conditional
statement got executed. However this would neccesiate modifying the design of the
component which we want to avoid (for the sake of re-use). So instead of the above
component-specific policy, we attempt to restrict the coordination inherent in the put
operation so it becomes invisible to any untrusted observer. Consequent examples in this
paper show how this coordination invisibilty is encoded in terms of a specific distributed
policy and how our framework handles it.

One way to go about enforcing this policy at the model level would be to assign a HI
security level to any put operation, and following the CCS [12] and CSP [3] paradigm
of synchronous handshaking, stipulate that any reader that wishes to coordinate with
put would have to do so on a label with a HI security level. While this would work on
simple handshake type of communication, it is rare that real-world systems use such a
simple method of inter-process communication/coordination—-multicast, asynchronous
communication and other sophisticated forms of communication are more realistic IPC
mechanisms. These are not supported natively by CCS/CSP-based ADLs and so in such
frameworks, any such communication would have to be simulated by a sequence of
biparty handshakes. Now there is no simple way to write down a policy that works
on the labels of the transitions which are simulating a single co-ordination operation:
what instead is needed is a way of encoding coordination abstraction entities which

132 A. Ray

encapsulate the semantics of the specific IPC faithfully but are actually single transitions.
This is where SAID steps in by enabling us to obtain single-transition coordination
abstractors on which we may impose information flow policies in an atomic fashion.

3 SAID

In SAID, there are three kinds of component transitions that use ports (Twrite, Tread and
Trpc):

– An output transition 〈q, w!v, q′〉 ∈ Twrite indicates a state change from q to q′ when
value v is written out to the environment on write port w.

– In input transition 〈q, r?, f〉 ∈ Tread, f is a function mapping values (of variables)
to states. This transition indicates a state change from q to f(v) if the system’s
environment supplies value v on read port r.

– A remote procedure call transition (rpc) 〈q, w!v, r?, f〉 ∈ Trpc, where the input
parameters are supplied by v onto port w and the output result is obtained in r.

In SAID each transition is associated with a security level ={H, L}with the function
sec level(t) returning the security level of a particular transition t. (Multiple levels of
security are also possible in the SAID setting but we do not consider them in this paper)
These security levels are user-supplied while defining the base Input Output Labeled
Transition Systems. Another place where security levels need to be supplied by the user
are in the bus data structures (whose snapshots form the bus states). As an example
for a shared variable or a message queue bus the data structure that implements the
communication must be provided a security level. A subsequent example will make
clear this intuition.

The role of the bus is now to look at the security levels of all the transitions that
want to write to it or read from it and then based on the security policy the bus enforces,
decide which of these transitions will be given the chance to write and which of these
transitions will be given a chance to read.

3.1 Examples

Synchronous Broadcast. Let us first consider synchronous broadcast without any se-
curity labels. In this communication discipline, there is one writer and multiple readers.
It is analogous to the example in the previous section which had multiple writers and
readers blocking till the communication fired. The only difference between synchronous
broadcast and the synchronous biparty handshake in the previous example was that while
in the previous example we chose one writer and one reader non-deterministically and
made them “handshake" by passing a value between them, over here all the readers who
want to read will be supplied the data value (in contrast to just one). Another difference
is that we do not require the presence of at least one reader. The choice of a single
writer however is non-deterministic as before. The definition of the transition predicate
encapsulates this intuition.

T contains all transitions for which TP is true:

∃〈w, v〉 ∈ WV.W = {w} ∧RV = {〈r, v〉 | r ∈ R}.

Enforcing Distributed Information Flow Policies Architecturally: The SAID Approach 133

Since the bus does not need to store the data and merely needs to pass it on, there is only
a single state in the bus. Hence the target of the transition b′ is always equal to b.

A bus Mbroadcast = 〈I, B, T, b0〉 encapsulating synchronous binary handshaking
may be defined as follows.

-I = a tuple consisting of two finite set of ports (read and write).
-B = {b} consists of a single state.
- T is defined above.
- b0 = b.

Now by the communication discipline imposed by the above bus any of the writers
who want to write (denoted by their membership in WV) can be allowed to write. This
means if there is a maximum of n writers who may want to use the bus at a single
point of execution there will be n different non-deterministic choices. Among the n
non-deterministic choices, some of them may be considered insecure due to particular
information flow policies and may be omitted from the global state space. SAID allows
us to impose these policies in a natural fashion.

Let us assume the following information flow policy:

“Only those readers that have security level greater than or equal to the writer
will be allowed to read; all the rest of the readers shall be blocked." (P1).

T contains all transitions for which TP is true:

∃〈w, v〉 ∈ WV.W = {w} ∧RV = {〈r, v〉 | r ∈ R ∧ sec level(r) ≥ sec level(w)}.

This rule encapsulates the policy that if a writer has a security level of L (in other
words the transition contributed by the writer to the bus has level L) then anyone will
be allowed to read what it has written. If the writer’s security level is H then only those
readers that have a level of H will be allowed to read the value and the readers who have
security level L will be blocked. Let us consider another security policy:

“Only those writers with a security level lesser than or equal to all the readers
will be given a chance to write" (P2)

T contains all transitions for which TP is true:

∃〈w, v〉 ∈ WV.(∀r ∈ R.sec level(w) ≤ sec level(r)) ∧W = {w} ∧RV = {〈r, v〉 |
r ∈ R}.

Over here we apply the restriction at the writer’s end (whereas in P1 the restriction
was at the reader’s end) in that rather than having an unrestricted non-determinstic choice
among all writers as in the previous policy we restrict our choice of writers from among
those writers whose transitions have security level lesser than or equal to all readers.

It should be clear now how subtle changes in the way TP is constructed can lead
to the definition of different kind of security policies: some constraining the choice of
writer and some the readers. The convenience afforded by this methodology of defining
communication discipline and access constraints at the same time is quite signficant

134 A. Ray

to the designer; she may now at very insignificant incremental effort construct these
different buses and play around with them in the software architecture.

For instance it may be interesting to consider the security-functionality tradeoff in a
particular coordination architecture between the application of P1 and P2:in one sense
P2 may be deemed to be more secure than P1 because in P2 a writer with a transition
of level H cannot write if there is even one reader with a security level of L listening
in on the bus interaction. However in P1 the write takes place even if there are insecure
readers; its just that they do not receive the data value.

In terms of information flow, P1 can still be considered secure because the low-
privileged readers will not know if the broadcast took place at all because they will
always remain blocked. In other words, a low-privileged reader will not be able to
distinguish whether it is waiting because there has been no write by the high privileged
process or whether the write operation has already been completed. (the communication
here is silent with respect to the untrusted/low-privilege reader. Contrast this with the
following policy P3 which is closely similar to P1.

“Only those readers that have security level greater than or equal to the writer
will be allowed to read; all the rest of the readers shall be denied access." (P3)

T contains all transitions for which TP is true:

∃〈w, v〉 ∈ WV.W = {w} ∧RV = {〈r, v〉 | r ∈ R ∧ sec level(r) ≥ sec level(w)} ∪
{〈r,DENIED〉 | r ∈ R ∧ sec level(r) < sec level(w)}.

Over here the low-privileged readers are no longer blocked and get an explicit
DENIED message. Despite the fact that the low-privileged readers do not know the
value of the secure data passed through the bus, they could still obtain the information
that a secure communication took place by checking for the DENIED message. Thus
for P3 there is information leak which is not present in the closely related policy P1

In terms of functionality however the reverse is true: P3 is more functional than
P1 because P1 works by blocking lower privileged components while P3 allows lower
privileged components to continue with their operation even if they are not allowed to
participate in an interaction.

Another point to consider: P2 leaves the door open for a denial of service attack
on the communication whereas a low privileged reader can keep on entering into a
secure group communication and prevent any kind of high privileged data from being
transmitted. This attack would fail on P1 and P3 because transmission of any kind of
data can go in even in the presence of low privileged readers.

Summarizing the lessons from the above discussion, it is very important for the
designer to play around with different policies at design time and study their effects on
her design decisions. SAID provides her with an efficient framework for doing so.

Asynchronous Communication. So far we have been considering synchronous com-
munication where the bus state does not change. This simplifies the definition of security
policies as we only need to be considered with the security labels of the transitions partic-
ipating in an interaction. But once we enter the domain of asynchronous communication,

Enforcing Distributed Information Flow Policies Architecturally: The SAID Approach 135

buses are no longer stateless and we need to supply security labels on bus data structures
also and incorporate them into the information flow policies.

One may find many different forms of asynchronous communication used in model-
ing distributed systems: bounded / unbounded buffer, shared variables, etc. All involve
a shared data structure into which writers deposit data and from which readers extract
data. In what follows we give a general scheme for defining non-lossy asynchronous
communication primitives in AID and show how it may be specialized to implement
asynchronous mechanisms.

We begin by defining a generalized “storage structure”.

Definition 2. A storage structure is a tuple 〈B, put, get〉, where B is the set of states,
put ∈ V×B → B is a partial function, and get ∈ B → (V×B) is a partial function.

Intuitively, the states of a storage structure indicate “what’s stored”, while put and get
insert and extract, respectively, data stored in a state. As an example, consider how a
storage structure corresponding to a five-place FIFO buffer might be defined, where V

∗

is the set of sequences of values, || is the length of sequence , and · is the sequence
concatenation operator.

– BFIFO = { ∈ V
∗ | || ≤ 5}.

– putFIFO(v,) = · v if || < 5, and is undefined otherwise.
– getFIFO(v ·) = (v,); getFIFO() is undefined if is empty.

A storage structure may also be given for a shared variable. In this case, the states of the
variable correspond to the values that the variable can hold.

– BSV = V.
– putSV (v′, v) = v′.
– getSV (v) = (v, v).

Both putSV and getSV are total functions. Note that getSV does not change the state
of a variable, reflecting the fact that read operations on a shared variable do not change
the state of the variable.

Given a storage structure D = 〈BD, putD, getD〉 and distinguished storage state
bD ∈ BD, we may define an asynchronous D-bus 〈I, B, T, b0〉 as follows.

– I is a tuple consiting of two finite sets of ports (read and write).
– B = BD.
– T is defined below.
– b0 = bD.

T contains all bus transitions of the form

b
W RV

W V R

−→b′

such that WV �= ∅ or R �= ∅, and: either RV = ∅ and

∃〈w, v〉 ∈ WV. W = {w} ∧ b′ = putD(v, b),

or W = ∅ and

∃r ∈ R, v ∈ V. getD(b) = 〈v, b′〉 ∧RV = {〈r, v〉}.

136 A. Ray

In other words, MD does not limit the connections coming into it, and its transitions are
candidates for firing if at least one writer or reader wants access and the relevant putD
or getD operations are defined in the current storage state. If e.g. getD(b) is undefined,
then no reads can be performed because the condition “getD(b) = ...” is untrue.

Adapting this into the SAID setting we can now modify the getD(b) and the putD(b)
to be security aware. For instance we could have the policy that:

If the security level of the storage structure is l then it can be written to/read
from by a write/read transition with a security level higher than l.

Let us look at how we would implement the sub-policy that

If the security level of the storage structure is l then it can be written to by a
write transition with a security level higher than l.

In order to do that we need to first assign a security level to the storage structure under
consideration. Then we would need to modify the definition of putD(b) such that a put
operation is completed if and only if the security label of the transition contributing the
data value to be added to the storage structure is greater than or equal to the security
level of the storage structure.

The way asynchronous communication is defined above, the writing transition will
be blocked in case the shared structure is full (ie it has reached its capacity) or the
write transition does not have the privilege to write to the shared structure. If the writing
transition is sure that the shared structure is not full or that it can never be full (for instance
a shared variable can always be written upon) then it can deduce some information from
the write operation (the information being that it does not have access privilege on
the shared structure). Even this information leak can be plugged by redefining the put
operation so that it is always defined even if the write operation failed. In that case the
writer will not know if his write went “through" and thus will not be able to deduce any
information. However this comes at the cost of usability as even a component executing
a write transition that has the proper security level will not know if the data it sent got
written onto the shared data-space or not.

The other subpolicy (relating to read) can be implemented in an analogous manner.

Transitive Security Policies. Some security policies cannot be expressed as a policy
on a single interaction but instead needs to be defined on relationships between multiple
interactions. As an example, let us consider a transitive security policy (a policy actually
used in X-Windows [1])

Information displayed by an Xclient X can be copied by Xclient Y but not by
Xclient Z

In order to enforce this policy globally, we need to impose information flow restrictions
on interactions between X and Y as well as between Y and Z. This is to prevent Z from
indirectly obtaining X’s information through the indirection of reading from Y .

We define a storage structure BTB which is a table. A table is represented as a set of
values with operations for insertion into table and a boolean match(v, TB) operation
which takes a value and returns true if it is present inside the table and false otherwise.

Enforcing Distributed Information Flow Policies Architecturally: The SAID Approach 137

– BTB = a set of values
– putTB(v) = BTB

⋃
{v}

– match(v, TB) = true if v ∈ BTB else false.

T contains all bus transitions of the form

b
W RV

W V R

−→b′

∃〈w, v〉 ∈ WV, r ∈ R.w ∈ I(X) ∧ r ∈ I(Y) ∧W = {w} ∧ b′ = putTB(v) ∧ RV =
{〈r, v〉}
or ∃〈w, v〉 ∈ WV, r ∈ R.w ∈ I(Y) ∧ r ∈ I(Z) ∧ match(v, TB) = false ∧ W =
{w} ∧RV = {〈r, v〉}
This policy states that 1) if Xclient X wants to write and if a Xclient Y wants to read
then transfer the value between X and Y and record the data in the table 2) if Xclient Y
wants to write to Z then allow it to write only if the data is not in the table i.e. was not
part of a privileged communication between X and Y .

Here the entire security is being enforced at the communication layer without altering
the components in any way. Y may be a insecure component which may want to transmit
its value to Z but the communication policy will prevent it from doing so (thus we obtain
a secure composition of untrusted components).

4 Discussion

In distributed information flow analysis, designers are interested in checking to see if
the global pattern of information flow through the system satisfies certain policies. The
way this is accomplished is by looking at the system in its totality and then checking for
policy violations.

In our approach we follow the general AID paradigm of separating communication
definition from component definition and apply it to information flow analysis. Buses
in AID are abstractions of the communications being used in a distributed system which
by virtue of SOS rules stich together component transitions to form global system-
level transitions . Looking at it another way, rather than telling us exactly how the
communication is being accomplished (its implementation) buses define the abstract
behavior of the particular communication it encodes . In the final analysis this is all that
we need in order to study the behavior of the components.

Similarly in SAID we abstract away details of how exactly the information flow
policy is enforced. Instead we represent the behavior of communication under the im-
posed security policy by SAID buses with the aim of obtaining a precise description of
component behavior in the particular coordination framework of the distributed system
without considering the details of how the policy is enforced. Once this is achieved, we
can then do information flow analysis on the components themselves independent of the
communication.

A relevant question that may be asked is how can we guarantee that our assumptions
on the information policies imposed on inter-component communication are actually sat-
isfied by the actual implementation of the communication. Revisiting our synchronous

138 A. Ray

broadcast example from the previous section: how can we be sure that the actual com-
munication infrastructure that performs the message broadcast satisfies the policies P1,
P2 or P3. After all, it can be argued that all we are doing is that we are asserting that a
particular policy holds for the communication and based on that assertion we are then
looking inside each component and analyzing information flow inside each of them.

The answer to this question lies in understanding the hierarchical way we build up
complex safety and security critical systems. In general the synchronous communication
“bus" used in the example may in turn be built up from multiple interacting components
with their own communication disciplines and policies. In that case we need to break
down the global policy of the bus into sub-policies on the simpler communications
used by the distributed system implementing the broadcast. Then we need to encode the
broadcast system as a SAID system and iteratively go down the hierarchy to simpler
systems where the policies may be shown to be trivially true. For now this decomposi-
tion of complex policies into simpler policies is manually done but future work lies in
automatically generating these sub-policies from the policies as we go down the analysis
hierarchy.

Continuing the synchronous broadcast example let us assume that it is implemented
as a reliable broadcast protocol on the lines of the protocol in [2] . Then in order to validate
our assumptions on the information flow we need to construct a SAID description of the
broadcast protocol and validate the sub-policies on the system in the same way as we
did for the higher level system that uses the broadcast bus.

Our correct-by-construction approach (where correctness is defined as adherence to
an information flow policy) for composing components makes it unnecessary for us to
apply post-construction information flow based analysis routines for the entire system.
Our policy-enforcement method is very similar to the way we enforce the semantics of
coordination–which is what enables us to reuse the entireAID framework with minimum
modifications (addition of security levels on transitions). As a result, the state-space
benefits (due to the one-transition-per-communication principle of AID) and the ability
to plug in heterogenous components (as long as they can be translated to a LTS) are
features SAID inherits from AID making it a robust environment for safety-and-security
codesign. (The advantages of AID alluded to here are not discussed in this paper; the
interested reader is asked to refer to [8, 9] for details.)

5 Future Work and Conclusions

Future work consists of equipping SAID with an explicit notion of time so as to enable the
expression of policies which depend on the temporal ordering of messages. Other future
work lies in finding automated ways of taking a security policy imposed on the abstraction
and breaking it down to sub-policies that can be checked on the implementation.

In conclusion the utility of SAID lies in its ability to reduce the global information
flow problem to local information flow by a form of assume-guarantee reasoning (where
the assumptions are restrictions on the flow of information between components and the
guarantee part is the information flow analysis on the local components) and its reuse of
the coordination infrastructure provided by an ADL to perform unified communication
and information flow specifications on a software architecture.

Enforcing Distributed Information Flow Policies Architecturally: The SAID Approach 139

Acknowledgments. I wish to thank Rance Cleaveland for his detailed comments and
suggestions on this paper. I would also wish to acknowledge the comments of the anony-
mous reviewers.

References

1. Sun solaris documentation. Solaris X Windows Developers Guide: SUN Microsystems, 1999.
2. Jo-Mei Chang and N. F. Maxemchuk. Reliable broadcast protocols. ACM Trans. Comput.

Syst., 2(3):251–273, 1984.
3. C.A.R. Hoare. Communicating sequential processes. 1985.
4. H. Mantel and A. Sabelfeld. A unifying approach to the security of distributed and multi-

threaded programs. J. Computer Security, 11(4):615–676, 2003.
5. N.Carriero and D.Gelertner. Linda in context. Communications of the ACM, 32(4):445–458,

1989.
6. G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI-FN-

19, Computer Science Department, Aarhus University, Aarhus, Denmark, 1981.
7. R.Allen and D.Garlan. Formalizing architectural connection. 16th International Conference

on Software Engineering, 1994.
8. Arnab Ray. Compositional modeling of interaction centric concurrent systems. Ph.D thesis,

State University of New York at Stonybrook, 2004.
9. Arnab Ray and Rance Cleaveland. Architectural interaction diagrams: Aids for system mod-

eling. Proceedings of the International Conference on Software Engineeri ng,(ICSE), pages
396–406, 2003.

10. Arnab Ray and Rance Cleaveland. Formal modeling of middleware-based distributed systems.
Workshop on Formal Foundations of Embedded Software and Component-Based Architec-
ture, Barcelona, Spain, April 2004. Satellite workshop of the European Joint Symposia on
Theory and Practice of Software, To appear in Electronic Notes in Theoretical Computer
Science,2004.

11. R.Focardi, R.Gorrieri, and F.Martinelli. Information flow analysis in a discrete-time process
algebra. IEEE Computer Security Foundations Workshop, pages 170–184, 2000.

12. R.Milner. A calculus of communicating systems. Lecture Notes in Computer Science, 1980.
13. Sewell and Vitek. Secure composition of insecure components. In PCSFW: Proceedings of

The 12th Computer Security Foundations Workshop. IEEE Computer Society Press, 1999.
14. Richard Soley and the OMG Staff Strategy Group. Model driven architecture.

Experience Using a Coordination-Based
Architecture for Adaptive Web Content

Provision�

Lindsay Bradford, Stephen Milliner, and Marlon Dumas

Centre for Information Technology Innovation,
Queensland University of Technology, Australia

{l.bradford, s.milliner, m.dumas}@qut.edu.au

Abstract. There are many ways of achieving scalable dynamic web con-
tent. In previous work we have focused on dynamic content degradation
using a standard architecture and a design-time “Just In Case” method-
ology. In this paper, we address certain shortcomings witnessed in our
previous work by using an alternate coordination-based architecture,
which has interesting applicability to run-time web server adaptation.
We first establish the viability of using this architecture for high-volume
dynamic web content generation. In doing so, we establish its ability
to maintain high throughput in overload conditions. We go on to show
how we used the architecture to achieve a “Just In Time” adaptation to
achieve dynamic web content degradation in a running web application
server.

1 Introduction

Researchers have recently discussed the need for adaptable web-provision tech-
nologies, particularly in terms of architectures that cater to varying degree of
adaptability [1]. This focus on architectures is perhaps due to a growing realisa-
tion that the architecture chosen is one of the key factors to successful system
deployment [2]. If we want an adaptable system, its architecture must first sup-
port adaptation.

Architectures that offer a coordinated model of interaction (for example,
JavaSpaces [3]) provide certain characteristics that are attractive to achieving
adaptation. These architectures separate components from how the components
interact via some form of coordination, and should thus make run-time compo-
nent replacement and changes to component interaction easier to accomplish.
Such architectures introduce decoupling across space (allowing distributed be-
haviour), time (allowing asynchronous communications) and interface (allowing
easier replacement and interaction of components), which in turn, allows a wide
range of choice in the types of adaptation that can be implemented.

� This research is funded in part by SAP Research Centre, Brisbane and Queensland
Government.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 140–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Experience Using a Coordination-Based Architecture 141

Many modern web-centric architectures take a somewhat coarse-grained/
static approach where components and their interactions are fixed at design
time. As a result, developers can be locked into limited types of adaptability,
and, at worst, could be forced to construct adaptation techniques at design time
along with the core deliverables and in ways that may not be appropriate. Adap-
tive systems that take this “Just In Case” (JIC) approach run the risk of not
being able to adapt key components to environmental changes. Even if the com-
ponents to adapt are correctly identified and alterable, the system designer needs
to also successfully guess the right type and amount of adaptation to apply when
designing their systems. That is, they must have complete a priori knowledge of
all possible situations.

JIC adaptation techniques are highly predictive, whereas “Just In Time”
(JIT) adaptation techniques are highly reactive, even to the point of being man-
ually constructed for specific short-lived circumstances. More formally, we de-
scribe JIT adaptation as the introduction of behavioural change into a system
once some event has occurred that requires such change, and that the adapta-
tion made is targeted specifically to this event. By breaking the HTTP content
delivery of a web application server into a number of components interacting
via architectural coordination, the degree of predictiveness required for adapta-
tion can be minimised, or even removed, by altering just those components and
interactions that need changing at run-time.

In this paper, we aim to establish whether our coordination architecture, with
its optimisations for localised coordination of network deliverable components,
is capable of web content delivery with sufficient latency and throughput make
it viable for use as a web application server. We also aim to establish whether
the architecture can significantly and rapidly adapt via a JIT delivery of new
behaviour, even under extreme load conditions.

Our focus in web application adaptation is on achieving scalability at a sin-
gle web application server via behavioural change. In contrast, other popular
techniques for supplying adequate web scalability involve the over-provision of a
service-provider’s computing resources, typically by supplying several duplicate
machines that share requests through some load balancer. This solution is not
only costly, but also requires increased configuration and administration effort.

In previous work [4], we constructed a dynamic web content degradation
system based on elapsed-time measured at the server. Elapsed-time is a critical
factor of user-perceived quality of service on the Web [5] [6] [7], and in human–
computer interactions more generally [8]. Aspects such as layout, graphics and
such are far less likely to effect user-perceived quality of service, suggesting
that degrading such aspects for better elapsed-time responses is an area of web
adaptability deserving further investigation.

We used a mainstream web application server, namely Tomcat1, to supply
several approaches to generating web content for a given URI. An elapsed-time-
based algorithm was used to decide when to degrade the web content delivered

1 http://jakarta.apache.org/tomcat/

142 L. Bradford, S. Milliner, and M. Dumas

by choosing between these approaches. For example, a baseline approach might
be a complete web-page portal collating results from several other web-pages.
Under load, the base approach generating this complete portal might be replaced
by a lightweight approach that returns only those portlet images that the server
has cached. The algorithm and alternate approaches required are an example of
JIC web adaptation, and is typical of the extra pre-emptive overhead inherent
in such schemes.

There are uncertainties in using our coordination architectures for web con-
tent delivery that we wish to explore. Firstly, how does it behave under load
conditions, and secondly, how should it be used to achieve high-performance
web content delivery. To that end, we offer two contributions in this paper,
being i) we establish that our coordination architecture can be used to serve
high-demand dynamic web content fast enough to be considered viable and show
that it exhibits good throughput characteristics under load, and ii) we present
a method for exploiting our architecture to seamlessly adapt to very different
behavioural patterns in a JIT fashion. To illustrate our second contribution, we
introduce automated content degradation into an overloaded web application
server at run-time.

Section 2 discusses the design of the system by first describing the base
architecture (Sect. 2.1), then the adaptation of the base architecture into a web
application server at run-time (SecT. 2.2), and finally the adaptation this web
application server into one capable of automated content degradation (Sec. 2.3).
Section 2.4 discusses some of the lessons learned with early attempts. Section 3
establishes the viability of our design via experiments. Section 4 discusses related
work and Section 5 concludes the paper.

2 Design

In Section 2.1, we discuss our coordination architecture and the localised op-
timisations that make this architecture a viable candidate for delivering both
a) high load web service provision and b) flexible service adaptation. In Sec-
tion 2.2, we discuss how we used this architecture to deliver our JIT adaptable
web application server.

2.1 Service Provision with ActiveObjectSpaces

ActiveObjectSpaces (AOS) is a distributed coordination middleware drawing on
three main predecessors: Blackboard Architectures (for example, Hearsay [9]),
Linda [10] and Sun’s JavaSpaces [3]. The AOS supports four main primitives
read, take, write and notify. Respectively, these primitives copy objects from
the AOS to clients, move objects from the AOS to clients, copy objects from
clients to the AOS, and instruct the AOS to notifty clients of template matching
objects the AOS holds. The AOS has an extended notification API to JavaSpaces
(notification can trigger on arrival, on existence and on deletion). Like JavaS-

Experience Using a Coordination-Based Architecture 143

paces, coordination is achieved via notification templates describing essential
aspects of objects on the AOS that clients wish to interact with.

Perhaps the most novel aspect of the AOS is the notion of Active Objects.
Active Objects are AOS-aware objects that execute in their own thread of con-
trol within the AOS itself. The AOS runs with a thread pool that it allocates to
execute active object behaviour upon template matching events. Thus, a num-
ber of threads (to the AOS server limit) could be executing in a single active
object instance concurrently. By sending appropriate active objects2 to a run-
ning AOS, and incorporating a coordination protocol for their interaction, we
can dynamically deploy the components of a stand-alone server. Having con-
structed a service via a collection of loosely coupled coordinated components we
can achieve fine-grained intra-server adaptability.

An AOS server initially knows nothing about receiving HTTP requests or
delivering web content. Our HTTP module (Sect. 2.2) is delivered to the AOS
which the AOS then executes. Once the module is running, the AOS has dy-
namically been converted into a web application server. Later, when the server
exhibits poor response times, a content degradation module (Sect. 2.3) is deliv-
ered to the AOS, converting the AOS into a server capable of selecting degraded
content based on elapsed server response-times.

2.2 Dynamic Web Content Delivery via ActiveObjectSpaces

A number of active objects and object class definitions are delivered to the
AOS via the HTTP module (see Fig. 1). The class definitions and active objects
are removed from the object space and installed for use by the AOS. For most
of the active objects, this simply means telling the server to execute a callback
method on them when data objects matching the notification templates specified

Fig. 1. Turning the AOS into a HTTP Server

2 In this paper, we send one instance of each type of active object to the AOS.

144 L. Bradford, S. Milliner, and M. Dumas

are delivered to the object space. Later, when the AOS starts accepting client
requests, the class definitions delivered via the module will allow the active
objects to create and manipulate objects needed for HTTP content delivery.

Most of the content delivered in the HTTP module is generic HTTP handling
code, and much like ‘out of the box’ application servers, is expected to remain
unchanged over time. However, we do have the option of making quite radical
changes even at the HTTP layer if required. The content degradation module
(discussed later), alters behaviour, and is roughly analogous to delivering a new
WAR file to a running Tomcat application server. What makes our approach
novel with respect to more contemporary application servers is that both the
HTTP generic behaviour and the content delivery behaviour can be adapted,
and at a fine level of granularity. By using the space as our core state repository,
we can also draw on looser, more interactive ways of generating web content that
are not possible with call and return style architectures.

Figure 2 gives an overview of the design principles employed when building
our server, supporting a subset of the HTTP/1.1 standard3. The active object
that communicates with HTTP clients first asks the object space to deliver it any
completed responses that may be deposited there. It then establishes a server
socket and falls into a continuous loop, accepting client HTTP requests that
it converts into request objects and delivers to the object space. Whenever a
completed response is placed on the object space, the response is delivered back
to this active object and the object transmits the response back to the client.
Response delivery is managed via notification template processing.

Fig. 2. HTTP Server Design

In early experiments, we discovered that the active object responsible for
communicating with the HTTP clients needed to contain a mapping of open

3 http://www.ietf.org/rfc/rfc2616.txt

Experience Using a Coordination-Based Architecture 145

client sockets to requests as part of its internal state. Java socket objects rep-
resent underlying operating system resources, a class of object that cannot be
sensibly copied into the object space. It was therefore necessary to have this
active object retain socket objects to support the HTTP/1.1 requirement for
using the same socket for request receipt and response delivery.

With careful usage of notification templates, the active objects cooperate to
produce HTTP responses in a way reminiscent of a “Pipes and Filters” architec-
ture [11], where each active object acts as a filter and enacts some self-contained
transformation of the HTTP content. However, there are some important adap-
tations our architecture allows that are not available to more rigidy coordinated
architectures.

Firstly, the object space allows decoupling of response generation across time.
A response in a partially complete state could be left that way for an indefinite
period, and service other requests instead in a manner reminiscent of Floyd and
Jacobson’s link-sharing [12]. We see this desirable for certain classes of HTTP
client, such as search bots that adversely effect response times and, in turn,
displease human clients who are more judgmental of poor web response times
than computers [6].

Secondly, active objects are loosely decoupled across their interfaces, using
template matching to move data through its lifecycle. Though we have not taken
full advantage of this loose coupling, we could (as an example) have certain active
objects with the same template effectively “compete” for processing a HTTP
request at some point in its lifecycle. As active objects are just a special type
of client for the object board, certain behaviour and its partially complete state
could be relocated to a remote location if it made sense to do so.

To make behaviour replacement easier, we deliberately minimise the state
each active object holds by making as much use of the object space as is ap-
propriate. Data objects represent the core state of a HTTP response at various
points in its lifecycle from request receipt through to response delivery.

We separate active objects loosely into a “fixed” layer and a “variable” layer.
The fixed layer typically focuses on communication with the object space. It
delegates behaviour that manipulates the content retrieved from the object space
to its variable layer component(s). The notification template that this layer
establishes with the object space describes the nature of objects it desires from
the object space. The fixed layer is also responsible for spotting and refreshing
variable layer components when they are delivered to the object space, again via
notification templates. The variable layer consists of one or more objects that
work together to process data handed to it by the fixed layer. There is nothing
stopping a variable layer object from talking directly to the object space or even
containing a nested fixed/variable layering itself.

We considered an alternative to behaviour update, where active objects di-
rect the object space to inform them of the delivery of a replacement for them.
A notification signaling that a replacement had arrived would trigger their ter-
mination. A drawback we saw to this is that a great deal of code (especially for
marshalling data to and from the object space) would be shared the same across

146 L. Bradford, S. Milliner, and M. Dumas

new and old active objects. We opted for an active object design that expects
more frequent changes in component behaviour than changes to coordination.

2.3 Dynamic Web Content Degradation via ActiveObjectSpaces

Figure 3 shows what happens generally when we vary our HTTP Server be-
haviour. A number of new active objects, class definitions and variable-layer
objects are delivered to the object space. The server then installs the active ob-
jects and class definitions. Finally, active objects that are informed of matching
variable-layer objects will retrieve and install these new variable-layer objects.

Fig. 3. Content-Degrading HTTP Server via AOS

In our specific case for web content degradation, a second client module
connects to the server and delivers a single active object and a number of support
objects and their class definitions. As this active object is being installed in the
server, it asks the server to deliver ResponseTime objects (a new type of data
object the server was initially unaware of) to the active object. The active object
then delivers a variable-layer object to the server space capable of generating
these new data objects.

The active object responsible for HTTP request/response communications
objects is informed of the existence of the new variable-layer object, and installs
it as a new piece of functionality to be run each time a response is successfully
delivered back to a client.

This newly delivered active object implements the algorithm for elapsed-time
web content degradation that we described in [4]. We leave a more detailed dis-
cussion of the algorithm to Section 3.4. Here, we will simply state that if this
active object decides a new approach to generating web content is needed to
ensure adequate response times, it delivers a new variable-layer object to the
object space which will be picked up and installed by the appropriate active

Experience Using a Coordination-Based Architecture 147

object, for use in content generation from then on. To revert to a HTTP server
that does not degrade content, we would replace the variable-layer object creat-
ing ResponseTime objects with a “do nothing” equivalent, and the variable-layer
object of our new decision-making active object to one that always delivers a
baseline variable-layer object.

2.4 Pitfalls Discovered

In building the base server module, we learned several important lessons in
ensuring high throughput and low latency using the AOS to serve web content.

One lesson learned was to minimise the number of objects on the space grow-
ing over time. An early attempt at building the server had tried to place nearly
all state on the object space. Some information, however, needed mutual exclu-
sion (mutex) sections to ensure the correct history was being generated. As the
state requiring mutex was in the object space, the mutex behaviour was coded
using AOS primitive methods. The application-level implementation of mutual
exclusion was enough to ensure that ResponseTime objects started backing up
on the object space, which slowed down template matching on take() opera-
tions, establishing a systemic collapse of response times as more and more new
request messages mixed in with the steadily growing number of ResponseTime
objects.

In a related theme, the object space requires a great deal more object cre-
ation and destruction than a traditional call and return architecture. We learned
through profiling that garbage collection on our single CPU server machine
tended to contribute to poor response times when large amounts of memory
were being reclaimed. Through careful configuration of the garbage collector,
we were able to minimise its impact, though a more attractive proposition for
future work is having a machine where garbage collection can run in parallel
with service provision.

Finally, without centralised control, it became difficult to determine whether
we would achieve intended behaviour until run-time. Run-time diagnostic tools
such as server logs and profilers, giving real-time views into the running system
became our primary method for debugging and system validation. Unit testing
tended to be trivial, involving testing highly specialised, mostly stateless active
objects. We couldn’t verify intended overall behaviour had been achieved un-
til actually seeing the AOS successfully marshalling request state between the
loosely coupled active objects in a running environment.

3 Experiments

3.1 Experimental Setup

Experiments were carried out on a set of eight dedicated Sun boxes running
Debian Linux, and a single target web server machine. The target web server
machine was an 804MHz Pentium 3, with 256MB of memory, running Fedora

148 L. Bradford, S. Milliner, and M. Dumas

Core 14. The AOS was run on a Sun 1.4.2-b28 JVM. The machines were con-
nected on an isolated 100 megabit per second LAN.

One of the Sun boxes acted as a traffic synchroniser by broadcasting UDP
messages to synchronise the activity of the other client machines. The remaining
seven Sun boxes were used as test clients and would listen on heartbeat signals
from the traffic synchroniser. For the tests we describe here, the traffic synchro-
niser was used only to ensure that all client machines started requesting content
from the server at the same moment.

One of the test client machines was used to generate a sufficient request rate
to ensure response times for the baseline approach were above one second. This
client machine sent a request and, once the request was received, would imme-
diately disconnect without informing the server, generating the equivalent of a
denial-of-service attack. Both architectural styles (Tomcat and AOS) continue
to process requests and fail only when attempting to transmit responses back to
the non-sampling client on a defunct client socket. The remaining six machines
sent requests and waited for responses before sending new requests. The figures
reported in our third experiment have been sourced from the data collected off
these six machines.

We simulated memory-intensive web content provision by generating HTML
responses that ran a number of loops, accessing a random element of a 2K block of
memory in each loop as they processed output. We considered four approaches
for supplying a reply to a given URI that we wanted to automatically vary
content generation on. Given the capacity of the target machine running the
web server, we settled on four approaches doing 1,000,000, 500,000, 250,000 and
125,000 loops respectively. The 1,000,000 loop approach we name our “baseline”
approach, which represents the original content being delivered before content
degradation becomes necessary.

There is compelling human/computer interface research suggesting that we
should try returning responses to web requests within one second for human
clients if we want them to remain unaware of having waited for those responses
[6]. When we present our results, we label responses adequate if they took under
one second to return to the sampling clients. The aim we set out to achieve
with our content degradation module is to maximise the number of adequate
responses returned by trying to get response times back under one second once
a server fails to do so for some type of web content.

3.2 Experiment 1: Sustainable Throughput per Approach

We used the tool httperf [13] to establish the sustainable throughput each ap-
proach can deliver, and used that figure to establish the number of client ma-
chines required to significantly tax the server past this rate for our baseline
approach. We did this by sequentially requesting 10,000 results per approach,
and recording the output from httperf. The average response time we get from

4 http://fedora.redhat.com/

Experience Using a Coordination-Based Architecture 149

this is around where a server starts degrading performance if requests arrive at
rates faster than this. The key results are displayed in Figure 4(a).

Resp. Time (ms) Std.
Loops Avg. Med. Min. Max. Dev.

125,000 51 50.5 50 162.5 2.4
250,000 84.1 83.5 83 105.8 2.1
500,000 149.7 148.5 148.6 477.8 4.4

1,000,000 280.5 279.5 278.3 696.3 6.8

(a) AOS HTTP Module

Resp. Time (ms) Std.
Loops Avg. Med. Min. Max. Dev.

125,000 47.4 47.5 47.1 58.4 0.5
250,000 91.6 91.5 91.1 104.0 0.6
500,000 179.9 179.5 179.3 192.2 0.9

1,000,000 356.5 356.5 355.5 413.3 1.6

(b) Tomcat Application Server

Fig. 4. Sequential approach response times across architectures

Using the same hardware, we ran httperf against a Tomcat 5.0.28 imple-
mentation [14] configured as closely as possible to our HTTP module with the
approaches embedded in servlets. Our aim was simply to establish whether AOS
could handle a similar amount of throughput for the same workloads as a con-
temporary web application server. The results are displayed in Figure 4(b).

Minimum, average and median response times were similar in both the AOS
and Tomcat. As the AOS implements a subset of the HTTP protocol, we argue
only that the architectural overhead of the AOS makes it a viable candidate for
delivering HTTP content. We note the large difference in maximum response
times and thus standard deviation between AOS and Tomcat. A small minority
of AOS responses reported much longer response times. The remainder, like
Tomcat, returned much closer to their minimum response times.

Via profiling, we saw two contributors to this variability in AOS response
times. Firstly, AOS requires significantly more short-lived objects than Tomcat in
response processing, and is thus more prone to the excessive dynamic allocation
anti-pattern [15]. Secondly, how the AOS uses threading has introduced extra
non-determinism. There is a single thread per request for Tomcat, meaning no
extra threading overhead whilst requests were being fed to it sequentially. In
the AOS, each active object notification is executed in a separate thread. Even
when sending requests sequentially, the AOS still invokes threading overhead as
requests moves through its lifecycle.

We conclude that in non-overload conditions, the overheads of the AOS archi-
tecture do not exclude it from being used as a viable HTTP application server.
We can expect occasionally longer response times than a single-thread per re-
quest architecture, but for the most part, responses will be returned with little
extra evident latency.

3.3 Experiment 2: Understanding Overload Behaviour

As the architectures handle request processing very differently, we were inter-
ested in what to expect in worsening overload conditions on each server. In this

150 L. Bradford, S. Milliner, and M. Dumas

Requests Response Time (ms) Std. Resp. per Sec.
per Sec. Avg. Median Min. Max. Dev. Avg. Std. Dev.

2 279.1 278.5 277.8 338.6 3.2 2 0
3 287.4 286.5 277.9 301.5 2.5 3 0.1
5 9358.9 12635.5 298.9 13341.3 4986.1 2.8 0.4
10 10854.5 12722.5 319.7 13382.6 4009.8 3.3 0.3

(a) AOS HTTP Module

Requests Response Time (ms) Std. Resp. per Sec.
per Sec. Avg. Median Min. Max. Dev. Avg. Std. Dev

2 357.4 357.5 356.0 467.4 2.7 2 0
3 2382.9 1048.5 381.9 9804.4 2602.3 0.4 0.9
5 3597.3 1782.5 536.1 9680.8 3288.7 0.1 0.3
10 1475.3 1606.5 1475.3 1746.9 135.8 0 0.1

(b) Tomcat Application Server

Fig. 5. Request Rates on Baseline across architectures

experiment, we used httperf to request the baseline approach at varied request
rates: from below, at around, and above the sustainable request rates derived
from Experiment 1.

From Figure 5 we see that as we increase our request rates past the sustainable
point, Tomcat rapidly degraded in terms of responses per second, but the AOS
settled on an average response rate at around its sustainable request rate. We also
see worsening AOS response times as request rates increases beyond sustainable
rates. Either way, past the sustainable request rate, both architectures rapidly
reached the point of poor adequacy.

The reason behind this difference in throughput between architectures is de-
scribed by Welsh et al. [16]. Architectures that combine threading (primarily
for IO and network blocking) with event-driven task scheduling offer excellent
throughput characteristics for overload situations, though latency increases as
request rates exceed a sustainable limit. Because of our globally shared object
space amongst active objects with no inherent queuing per thread, we suspect
that the AOS lies somewhere between Tomcat and SEDA [17] (the architec-
ture Welsh et al. built from the principles described in [16]) in its ability to
maintaining high throughput in overload conditions.

We conclude that the AOS will maintain high throughput rates that should
slowly degrade (as a function of number of objects in the object space) in over-
loaded server conditions, but that latency will continue to increase until such
time as we make content cheaper to generate in terms of CPU consumption or
we offload requests elsewhere.

Experience Using a Coordination-Based Architecture 151

3.4 Experiment 3: Validating JIT Content Degradation

Our web content degradation module uses an “elapsed-time of response gen-
eration” based algorithm to choose faster or slower approaches to generating
content for a given URI [4] 5. Other content degradation algorithms could have
been attempted, but are outside the scope of this research. Instead, our aim is
to use the algorithm to verify that the AOS is capable of handling quite radical
adaptation of both its coordination and bottleneck components in an already
overloaded web application server.

We chose not to compare AOS content degradation against Tomcat. The
difference between the two architectures seen in Experiments 1 and 2 lead us to
suspect that the behaviour of our algorithm was not readily comparable across
architectures given their very different behaviours in overload conditions. Here
we concentrate on the AOS architecture only.

We used the results from Figure 4(a) to guide us in configuring the request-
rate of our denial of service client. Our aim was to find a request rate that,
combined with requests from the sampling clients, would ensure that response-
times for the AOS baseline approach would be above one second. We settled on
a request rate of one request every 10 milliseconds from this client.

Experiment 3 was run for 20 minutes. The first 10 minutes used the base-
line approach delivered with the first module, and the second 10 used content
degradation, delivered via the second module.

Fig. 6. AOS Responses Times

5 We pessimistically configure the algorithm’s parameters to 300ms for our upper-time
limit, and 200ms for our lower-time limit in these experiments.

152 L. Bradford, S. Milliner, and M. Dumas

Fig. 7. Measured AOS Adequacy pre- and post-adaptation

Figure 6 shows a scatter-plot diagram of response times recorded from our
sampling clients. At the 600 second (10 minute) mark, the content degradation
module’s delivery radically altered the response-times being reported by our tar-
get server. Where most responses were definitely taking longer than one second
to deliver pre-adaptation, most responses delivered post-adaptation fell below
our one-second target.

Figure 7 shows the number of adequate responses returned pre- and post-
adaptation. We achieved very high adequacy. What we draw from this result is
that the AOS allows relatively complex adaptation to occur under load condi-
tions, not only in terms of a one-off change in active-object coordination, but
also in terms of automated, rapid, fine-grained changes to content-generation
behaviour. We have establish that the AOS is a viable candidate for further
exploration in JIT adaptation of web-service architectures, even under taxing
conditions.

Of secondary importance, no special effort was made here to better match
the content degradation algorithm to the AOS. Because of the very different
way in which the AOS behaves in overload conditions, there is some argument
for making the algorithm less reactive to severe, short-lived changes in response
times, and for it to take more consideration of how object space numbers might
influence overall response latency.

4 Related Work

There are many ways to scale dynamic web content at a single server, such as
caching ([18] lists several strategies), resource management (see [19] as an exam-
ple), and content degradation. Caching dynamic web content is limited both in
terms of when it can be applied, and how much benefit it can deliver [20]. Re-

Experience Using a Coordination-Based Architecture 153

source management policies often also have the undesirable “denial of service”
characteristic that breaks a web user’s expectations of “service on demand” from
web service offerings [6].

As users seem less judgemental of content makeup (and several other qual-
ity of service measures [21]) than response times [5] [6], we see web content
degradation as an area deserving further exploration. Web content degradation
techniques (also called transcoding, see [22], [23] and [24]) rely on the idea that
web content can be degraded to a user-tolerable degree when servers are over-
loaded. The degraded content should require less resources to deliver and, in
turn, allow more clients to consume the desired content.

Until recently, very little has been discussed in terms of degrading dynamic
web content. New adaptive architectures are being introduced that support dy-
namic web content degradation, but they do not explore specific degradation
techniques [1]. Chen and Iyengar described a dynamic web content degradation
system involving a number of tiered servers, offering content at decreasing de-
grees of fidelity the further from the core server a support server is in the tier
[25]. We are currently unaware of any other dynamic web content degradation
techniques targeting a single server besides our own [4].

Our early work has led us to the conclusion that the architecture is the key to
the degree of adaptability we can achieve. Our longer-term goal is being able to
apply adaptations to suit changing situations. Maximising the range of run-time
adaptability we can achieve has been a driving force in this more recent work.

To that end, space-based architectures look particularly promising to us.
Early blackboard architectures such as Hearsay [9] introduced the concept of
expert software components watching a blackboard, and working on parts of a
problem they understood. These experts were basically self-contained compo-
nents with minimal state and were loosely coupled via the blackboard. As a
consequence they were easier to replace with equivalent components. Later, Gel-
ertner’s Linda project [10] on generative communication discussed the greater
flexibility available across both time and space by storing and manipulating
generic tuples via a tuple space.

JavaSpaces replaces tuples with Java objects, which supports the movement
of behaviour in addition to state [3]. JavaSpaces, however, focuses on distributed
behaviour over a network. In contrast, our own interest in these architectures is
in how we might take advantage of such loose coupling to introduce localised,
fine-grained behaviour alterations whilst the server we are altering continues to
operate. This is where the notion of active objects plays a crucial role. To the best
of our knowledge, there has been no previous attempt at applying coordination
architectures to the problem of highly adaptable web application servers.

5 Concluding Remarks

We show in this paper that our coordination architecture ActiveObjectSpaces
(AOS), can serve as a viable base for adaptive web application servers. The
active object primitives offered by our architecture allow us to easily deliver and

154 L. Bradford, S. Milliner, and M. Dumas

execute new components to a running AOS, and have them interact via localised
coordination.

We described a way of using the strengths of this architecture to construct a
simple HTTP server on top of the architecture, and then, to deliver significant
alterations to the behaviour of the running HTTP server under load. Along the
way, we learned that achieving good latency from the architecture required us
to minimise the number of objects stored in the object space at any one time.
We also discovered that mutual exclusion behaviour is best encapsulated inside
active objects; building mutual exclusion via AOS primitives proves too costly
in a busy server.

We have established that we can achieve our desired adaptability at the
cost of some extra variability in server response times when compared against a
more traditional web application architecture in unloaded conditions. The AOS
matches the throughput and latency results of this traditional architecture close
enough to make deployment viable. Overloading the architectures showed the
AOS capable of maintaining high throughput, whereas the throughput of the tra-
ditional architecture rapidly degraded as request frequency was increased. Previ-
ous research has shown that a mix of threading and event-driven task scheduling
(as implemented in the AOS) is the reason for the continued throughput under
load witnessed in the AOS.

We used an automated web content degrading adaptation based on elapsed-
time as a non-trivial example of the type of run-time adaptations we desire from
the AOS. The adaptation involved the delivery of behaviour and new class defi-
nitions from a remote location as the server was suffering overloaded conditions.
We have shown the AOS is capable of automated, rapid, and fine-grained changes
to content-generation behaviour. Given the radically different behaviours of the
architectures used under load, we’ve also seen that automated content degrada-
tion via elapsed-time measures should be handled differently to better suit each
architecture.

From here we aim to better understand the AOS and how to best use it
for adaptive, high volume HTTP service provision. Firstly, we wish to look at
the granularity of work each active object performs and its impact on overall
throughput and latency. We have seen in other research [16] that thread queuing
mechanisms (including the joining of two tasks into a single queue) can be of
benefit and we are interested in how these concepts might carry across into our
own work.

Secondly, there is still much to understand in elapsed-time based automated
content degradation. With a better understanding of what elements matter in
such adaptations, we might be able to supply at least partial automation. For
example, we could deliver the framework for content degradation from a library
of standard adaptation modules to a running application server, and allow de-
velopers to insert new versions of degraded content as they become available.

Thirdly, our content degrading adaptation adds an extra step to the end of
a pipeline of coordinated tasks. This extra step supplies replacement behaviour
at run-time to the bottleneck in the process. We are interested in other types of

Experience Using a Coordination-Based Architecture 155

adaptation that benefit response times. Some examples might include i) altering
the flow of objects by changing notification templates at run-time, ii) introduc-
ing active objects to compete with others for certain steps, or iii) automated
migration of active objects and partially complete state to less loaded AOS en-
vironments.

References

1. Colajanni, M., Lancellotti, R.: System Architectures for Web Content Adap-
tation Services. Distributed Systems Online, Web Systems Topic (2004)
http://dsonline.computer.org/was/adaptation.htm.

2. Garlan, D.: Software Architecture: a Roadmap. In Finkelstein, A., ed.: The Future
of Software Engineering. ACM Press (2000)

3. Doberkat, E.E.: E. Doberkat, E. Freeman, S. Hüpfer, K. Arnold: JavaSpaces Prin-
ciples, Patterns and Practice. Softwaretechnik-Trends 20 (2000)

4. Bradford, L., Milliner, S., Dumas, M.: Scaling Dynamic Web Content Provision
Using Elapsed-time-based Content Degradation. In: Proceedings of the 5th In-
ternational Conference on Web Information Systems Engineering (WISE 2004),
Brisbane, Australia, Springer Verlag (2004) 559–571

5. Ramsay, J., Barbesi, A., Peerce, J.: A psychological investigation of long retrieval
times on the World Wide Web. In: Interacting with Computers. Volume 10.,
Elsevier (1998) 77–86

6. Bhatti, N., Bouch, A., Kuchinsky, A.: Integrating user-perceived quality into Web
server design. Computer Networks (Amsterdam, Netherlands: 1999) 33 (2000)
1–16

7. Bouch, A., Kuchinsky, A., Bhatti, N.: Quality is in the Eye of the Beholder:
Meeting Users’ Requirements for Internet Quality of Service. In: Proceedings of
the CHI 2000 Conference on Human Factors in Computing Systems, ACM (2000)
297–304

8. Miller, R.: Response Time in Man–Computer Conversational Transactions. In:
Proc. AFIPS Fall Joint Computer Conference. Volume 33. (1968) 267–277

9. Reddy, D.R., Erman, L., Neely, R.: A model and a system for machine recognition
of speech. In: IEEE Transactions on Audio and Electroacoustics. Volume 21. (1973)
229–238

10. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7 (1985) 80–112

11. Shaw, M., Garlan, D.: Software Architecture. Prentice Hall, Upper Saddle River,
New Jersey (1996)

12. Floyd, S., Jacobson, V.: Link-sharing and resource management models for packet
networks. IEEE/ACM Transactions on Networking 3 (1995) 365–386

13. Mosberger, D., Jin, T.: httperf-A Tool for Measuring Web Server Performance.
SIGMETRICS Perform. Eval. Rev. 26 (1998) 31–37

14. The Apache Group: Tomcat web application server (2004) http://jakarta.apache.
org/tomcat/.

15. Williams, L.G., Smith, C.U.: PASASM: A Method for the Performance Assess-
ment of Software Architectures. In: WOSP 2002: Third International Workshop
on Software and Performance, Rome, Italy, ACM Press New York, NY, USA (2002)

156 L. Bradford, S. Milliner, and M. Dumas

16. Welsh, M., Gribble, S.D., Brewer, E.A., Culler, D.: A Design Framework for Highly
Concurrent Systems. Technical Report UCB/CSD-00-1108, UC Berkeley (2000)

17. Welsh, M., Culler, D.: Adaptive Overload Control for Busy Internet Servers. In:
USENIX Symposium on Internet Technologies and Systems. (2003)

18. Shi, W., Collins, E., Karamcheti, V.: Modeling Object Characteristics of Dynamic
Web Content. Technical Report TR2001-822, New York University (2001)

19. Chen, X., Heidemann, J.: Flash Crowd Mitigation via Adaptive Admission
Control based on Application-level Observations. Technical Report ISI-TR-557,
USC/Information Science Institute (2002)

20. Thomas M. Kroeger, Darrell D. E. Long, J.C.M.: Exploring the Bounds of Web
Latency Reduction from Caching and Prefetching. In: 1st USENIX Symposium on
Internet Technologies and Systems, Monterey, California, USA (1997)

21. Sahai, A., Durante, A., Machiraju, V.: Towards Automated SLA Management for
Web Services. Technical Report HPL-2001-310R1, HP Labs (2001)

22. Amir, E., McCanne, S., Katz, R.H.: An Active Service Framework and Its Appli-
cation to Real-Time Multimedia Transcoding. In: SIGCOMM. (1998) 178–189

23. Chandra, S., Ellis, C.S., Vahdat, A.: Differentiated Multimedia Web Services using
Quality Aware Transcoding. In: INFOCOM 2000. Proceedings of the Nineteenth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Volume 2., IEEE (2000) 961–969

24. Tarek F. Abdelzaher and Nina Bhatti: Web Server QoS Management by Adap-
tive Content Delivery. In: Proceedings of the 8th International World Wide Web
Conference, Toronto, Canada (1999)

25. Chen, H., Iyengar, A.: A Tiered System for Serving Differentiated Content. In:
World Wide Web: Internet and Web Information Systems. Volume 6., Netherlands,
Kluwer Academic Publishers (2003) 331–352

Global Computing in a Dynamic Network
of Tuple Spaces�

Rocco De Nicola1, Daniele Gorla2,��, and Rosario Pugliese1

1 Dipartimento di Sistemi e Informatica, Università di Firenze
2 Dipartimento di Informatica, Università di Roma “La Sapienza”

{denicola, pugliese}@dsi.unifi.it
gorla@di.uniroma1.it

Abstract. We present a calculus inspired by Klaim whose main features are: ex-
plicit process distribution and node interconnections, remote operations, process
mobility and asynchronous communication through distributed tuple spaces. We
first introduce a basic language where connections are reliable and immutable;
then, we enrich it with two more advanced features for global computing, i.e.
failures and dynamically evolving connections. In each setting, we use our for-
malisms to specify some non-trivial global computing applications and exploit
the semantic theory based on an observational equivalence to equationally estab-
lish properties of the considered case-studies.

1 Introduction

Programming computational infrastructures available globally for offering uniform ser-
vices has become one of the main issues in Computer Science. The challenges come
from the necessity of dealing at once with issues like communication, co-operation,
mobility, resource usage, security, privacy, failures, etc. in a setting where demands and
guarantees can be very different for the many different components. A key issue is the
definition of innovative theories, computational paradigms, linguistic mechanisms and
implementation techniques for the design, realization, deployment and management of
global computational environments and their application.

On the linguistic side, we believe that a language for global computing should be
equipped with primitives that support network awareness (i.e. locations can be explic-
itly referenced and operations can be remotely invoked), disconnected operations (i.e.
code can be moved from one location to the other and remotely executed), flexible
communication mechanisms (like distributed repositories [11, 8, 15] storing content ad-
dressable data), and remote operations (like asynchronous remote communications).
On the foundational side, the demand is on the development of tools and techniques to

� This work has been partially supported by EU FET - Global Computing initiative project
MIKADO IST-2001-32222. The funding bodies are not responsible for any use that might be
made of the results presented here.

�� Most of this work was carried on while the second author was a PhD student at the University
of Florence.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 157–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

158 R. De Nicola, D. Gorla, and R. Pugliese

build safer and trustworthy global systems, to analyse their behaviour, and to demon-
strate their conformance to given specifications. Clearly, such semantic theories should
reflect all the above listed distinctive features of global systems.

In this paper, we introduce a foundational language that retains the main features of
Klaim [12] (explicit distribution, remote operations, process mobility and asynchronous
communication through distributed data spaces), but extends it with new constructs
(somehow inspired by [4]) to flexibly model the interconnection structure underlying
a network. The resulting formalism, called tKlaim (topological Klaim), permits to ex-
plicitly model inter-node connections and to establish and remove them dynamically.
Connections are then essential to enable tKlaim remote operations: such an operation
can be performed only if the node where it is executed and that on which it acts upon
are directly connected. Routing algorithms are then needed to enable remote operations
between nodes that are not directly connected.
tKlaim takes its origin from two formalisms with opposite objectives. On one hand,

we have the programming language X-Klaim [3], a full fledged programming language
for global computers based on Klaim; on the other hand, we have the π-calculus [22],
the generally recognised minimal common denominator of calculi for mobility. By fol-
lowing well-established techniques for the π-calculus, in a companion paper [13] we
formally develop the semantic theory of tKlaim. Here, we use such a theory to state and
prove properties of some meaningful global computing applications. Given the direct
correspondence of tKlaim with X-Klaim, we believe that the behavioural study carried
on at the level of the calculus can be faithfully transposed at the level of the program-
ming language to let programs run in a controlled way on an actual global computer,
like the Internet.

To softly introduce the reader to our language, we start in Section 2 by presenting a
very basic model where inter-node connections are explicitly programmable but fixed
at the outset. This scenario is very close to LANs, where physical connections are re-
liable and immutable (or change very rarely). We then present two variations of this
basic formalism. In Section 3, we enrich the language with different forms of failures,
another key feature of global computers. We start with a scenario where only nodes and
node components (i.e., data or processes) can fail and use it to establish soundness of
a distributed fault-tolerant protocol, the ‘k-set agreement’ [10]; then, we briefly present
a way to also encompass link failures. The second variation of the basic framework is
in Section 4, where links can be dynamically changed by processes. The use of the lan-
guage with both link failures and dynamic connections is exemplified by programming
two routing scenarios and by establishing their soundness.

Section 5 concludes the paper with a discussion on related work. In all the exam-
ples, properties of the proposed case-studies are formulated and proved by exploiting
may testing [14], an intuitive observational equivalence. Our proofs rely on a tractable
(bisimulation-based) proof technique whose definition has been omitted from this paper
for the sake of space and can be found in [13].

2 The Language

Syntax. The syntax of tKlaim, given in Table 1, is parameterised with respect to the
following syntactic sets, which we assume to be countable and pairwise disjoint: L, of

Global Computing in a Dynamic Network of Tuple Spaces 159

Table 1. Syntax of tKlaim

Nets: Components:
N ::= 0

∣∣∣ l :: C
∣∣∣ {l1 ↔ l2}

∣∣∣ (νl)N
∣∣∣ N1‖N2 C ::= P

∣∣∣ 〈t〉 ∣∣∣ C1|C2

Processes: Tuples:
P ::= nil

∣∣∣ a.P
∣∣∣ P1|P2

∣∣∣ X
∣∣∣ rec X.P t ::= e

∣∣∣ � ∣∣∣ t1, t2

Actions:
a ::= in(T)@�

∣∣∣ read(T)@�
∣∣∣ out(t)@�

∣∣∣ eval(P)@�
∣∣∣ new(l)

Templates: Expressions:
T ::= e

∣∣∣ ! x
∣∣∣ � ∣∣∣ ! u

∣∣∣ T1,T2 e ::= V
∣∣∣ x
∣∣∣ . . .

localities, ranged over by l;U, of locality variables, ranged over by u;V, of basic val-
ues, ranged over by V;Z, of basic variables, ranged over by x; X, of process variables,
ranged over by X. Finally, � is used to denote elements of L ∪U.

The exact syntax of expressions, e, is deliberately omitted; we just assume that ex-
pressions contain, at least, basic values and variables. Localities, l, are the addresses
(i.e. network references) of nodes. Tuples, t, are sequences of expressions, localities or
locality variables. Templates, T , are used to select tuples: in particular, ! x and ! u, that
we call formal fields, are used to bind variables to values.

Processes, ranged over by P,Q,R, . . ., are the tKlaim active computational units and
may be executed concurrently either at the same locality or at different localities. They
are built up from the terminated process nil and from the basic actions by using pre-
fixing, parallel composition and recursion. Actions permit removing/accessing/adding
tuples from/to tuple spaces (actions in/read/out, resp.), activating new threads of exe-
cution (action eval) and creating new nodes (action new). Action new is not indexed
with an address because it always acts locally; all the other actions explicitly indicate
the (possibly remote) locality where they will take effect.

Nets, ranged over by N,M, . . ., are finite collections of nodes and inter-node con-
nections. A node is a pair l :: C, where locality l is the address of the node and C is the
(parallel) component located at l. Components, ranged over by C,D, . . ., can be either
processes or data, denoted by 〈t〉. Connections, or links, are pairs of node addresses
{l1 ↔ l2} stating that the nodes with address l1 and l2 are directly (and bidirectionally1)
linked. In (νl)N, name l is private to N; the intended effect is that, if one considers the
term M ‖ (νl)N, then locality l of N cannot be referred from within M.

Names (i.e. localities and variables) occurring in tKlaim processes and nets can be
bound. More precisely, prefixes in(T)@�.P and read(T)@�.P bind T ’s formal fields in
P; prefix new(l).P binds l in P, and, similarly, net restriction (νl)N binds l in N; finally,
rec X.P binds X in P. A name that is not bound is called free. The sets fn(·) and bn(·)
(respectively, of free and bound names of a term) are defined accordingly. The set n(·)
of names of a term is the union of its sets of free and bound names. We say that two

1 For the sake of simplicity, we assumed bidirectional links; nevertheless, all the theory and the
examples we develop here could be tailored to the framework where links are directed.

160 R. De Nicola, D. Gorla, and R. Pugliese

terms are alpha-equivalent if one can be obtained from the other by renaming bound
names. In the sequel, we shall work with terms whose bound names are all distinct and
different from the free ones. Moreover, as usual, we shall only consider closed terms,
i.e. processes and nets without free variables.

Notation 1. We write A � W to mean that A is of the form W; this notation is used to
assign a symbolic name A to the term W. We shall use notation ·̃ to denote sets of
objects (e.g. l̃ is a set of names). We shall sometimes write in()@l, out()@l and 〈〉 to
mean that the argument of the actions or the datum are irrelevant. Finally, we shall omit
trailing occurrences of process nil and write Π j∈J Wj for the parallel composition (both
‘|’ and ‘‖’) of terms (components or nets, resp.) Wj.

Operational Semantics. tKlaim operational semantics is given in terms of a structural
congruence and a reduction relation. The structural congruence, ≡, identifies nets which
intuitively represent the same net. It is inspired to π-calculus’s structural congruence
(see, e.g., [25]) and includes laws stating that ‘‖’ is commutative, associative and has 0
as identity element, laws equating alpha-equivalent nets, laws regulating commutativity
of restrictions, and laws allowing to freely fold/unfold recursive processes. Moreover,
the following laws are crucial to our setting:

(Clone) (Self) (BiDir)
l :: C1|C2 l :: C1 ‖ l :: C2 l :: nil ≡ {l↔ l} {l1 ↔ l2} ≡ {l2 ↔ l1}
(RNode) (Ext)
(νl)N ≡ (νl)(N ‖ l :: nil) N ‖ (νl)M ≡ (νl)(N ‖ M) if l � fn(N)

Law (Clone) turns a parallel between co-located components into a parallel between
nodes; law (Self) states that nodes are self-connected; law (BiDir) states that links are
bidirectional; law (Ext) is the standard π-calculus’ rule for scope extension. Finally, law
(RNode) states that any restricted name can be used as the address of a node; indeed,
we consider restricted names as private network addresses, whose corresponding nodes
can be activated and deactivated when needed. By relying on rule (RNode), we shall
only consider nets where each bound name is associated to a node.

The reduction relation is given in Table 2 and relies on two auxiliary functions:
E[[]] and match(;). The tuple/template evaluation function, E[[]], evaluates com-
ponentwise the expressions occurring within the tuple/template ; its definition is sim-
ple and, thus, omitted. The pattern matching function, match(;), verifies the compli-
ance of a tuple w.r.t. a template and associates values to variables bound in the template.
Intuitively, a tuple matches a template if they have the same number of fields, and cor-
responding fields match. Formally, function match is defined as

match(l; l) = ε match(!u; l) = [l/u]

match(V; V) = ε match(!x; V) = [V/x]

match(T1; t1) = σ1 match(T2; t2) = σ2

match(T1,T2; t1, t2) = σ1 ◦ σ2

where we let ‘ε’ be the empty substitution and ‘◦’ denote substitutions composition.
Here, a substitution σ is a mapping of localities and basic values for variables; Pσ
denotes the (capture avoiding) application of σ to P.

Global Computing in a Dynamic Network of Tuple Spaces 161

Table 2. tKlaim Reduction Relation

(R-Out)
E[[t]] = t′

l :: out(t)@l′.P ‖ {l↔ l′} �−→ l :: P ‖ {l↔ l′} ‖ l′ :: 〈t′〉

(R-Eval) l :: eval(P2)@l′.P1 ‖ {l↔ l′} �−→ l :: P1 ‖ {l↔ l′} ‖ l′ :: P2

(R-In)
match(E[[T]]; t) = σ

l :: in(T)@l′.P ‖ {l↔ l′} ‖ l′ :: 〈t〉 �−→ l :: Pσ ‖ {l↔ l′}

(R-Read)
match(E[[T]]; t) = σ

l :: read(T)@l′.P ‖ {l↔ l′} ‖ l′ :: 〈t〉 �−→ l :: Pσ ‖ {l↔ l′} ‖ l′ :: 〈t〉

(R-New) l :: new(l′).P �−→ (νl′)(l :: P ‖ {l↔ l′})

(R-Par)
N1 �−→ N′1

N1 ‖ N2 �−→ N′1 ‖ N2

(R-Res)
N �−→ N′

(νl)N �−→ (νl)N′

(R-Struct)
N ≡ M M �−→ M′ M′ ≡ N′

N �−→ N′

The operational rules of tKlaim can be briefly motivated as follows. Rule (R-Out)
evaluates the expressions within the argument tuple and sends the resulting tuple to the
target node. However, this is possible only if the source and the target nodes are directly
connected. Rule (R-Eval) is similar: a process can be spawned at l′ by a process running
at l only if l and l′ are directly connected. Rules (R-In) and (R-Read) require existence
of a matching datum in the target node and of a connection between the source and the
target node. The tuple is then used to replace the free occurrences of the variables bound
by the template in the continuation of the process performing the actions. With action
in the matched datum is consumed while with action read it is not. Rule (R-New) says
that execution of action new(l′) adds a restriction over l′ to the net and a link between
the creating node l and the created node l′; from then on, a new node with locality l′ can
be activated/deactivated by using law (RNode). Rules (R-Par), (R-Res) and (R-Struct)
are standard.
tKlaim adopts a Linda-like [18] communication mechanism: data are anonymous

and associatively accessed via pattern matching, and communication is asynchronous.
Indeed, even if there exist prefixes for placing data to (possibly remote) nodes, no syn-
chronization takes place between (sending and receiving) processes, because their in-
teractions are mediated by nodes, that act as data repositories.

To conclude the presentation of tKlaim operational semantics, we want to stress that
interactions between directly linked nodes can be used to permit interactions between
nodes that are not directly linked. However, as it happens in practice, this feature must
be explicitly programmed. If a process running at l wants to send a tuple t to l′ and there

162 R. De Nicola, D. Gorla, and R. Pugliese

exists a path of links from l to l′ in the underlying connection graph, the one needs a
mobile process be spawned by l ‘towards’ l′ that delivers tuple t. The main challenges of
such a process is to discover the shortest (or, at least, a possible) path connecting l and l′.
This functionality can be accomplished by relying on routing tables, i.e. distributed data
structures that record information on routing paths. We leave the formal specification
of this process, together with a proof of its soundness, for a forthcoming full paper.

Observational Semantics. We now present a preorder on tKlaim nets yielding sensible
semantic theories. We follow the approach put forward in [14] and use may testing
preorder and the associated equivalence. Intuitively, two nets are may testing equivalent
if they cannot be distinguished by any external observer taking note of the data offered
by the observed net. More precisely, an observer O is a net containing a node whose
address is a reserved locality name test. A computation reports success if, along its

execution, a datum at node test appears; this is written
OK
===⇒ .

Definition 2 (May Testing Preorder and Equivalence). May testing preorder, �, is

the least preorder on tKlaim nets such that, for every N � M, it holds that N ‖ O
OK
===⇒

implies M ‖ O
OK
===⇒ , for any observer O.

May testing equivalence, �, is defined as the intersection of � and �.

To conclude, we give a simple Proposition collecting a few equational laws that
will simplify the proofs of the case-studies considered in this paper. Soundness of such
laws can be easily established by exploiting the co-inductive (bisimulation-based) proof
technique provided in [13]. Indeed, directly establishing may-testing may be very hard
because of the universal quantification over contexts.

Proposition 1.
1. l :: out(t)@l′.P ‖ {l↔ l′} � l :: P ‖ {l↔ l′} ‖ l′ :: 〈t〉
2. l :: eval(Q)@l′.P ‖ {l↔ l′} � l :: P ‖ {l↔ l′} ‖ l′ :: Q
3. (νl′)(l :: in(T)@l′.P ‖ l′ :: 〈t〉) � (νl′)(l :: Pσ) if match(E[[T]]; t) = σ
4. (νl)(l :: C) � 0 whenever C is a datum 〈t〉, a stuck process nil or the parallel

composition of such components
5. l :: new(l′).P � (νl′)(l :: P ‖ {l↔ l′})
6. (νl′){l↔ l′} � l :: nil

3 Modelling Failures

We now enrich the basic framework with a mechanism for modelling various forms of
failures, a key feature of global computers. We start by modelling failure of nodes and of
node components; then, we use the new setting to prove some properties of a distributed
fault-tolerant protocol. Finally, we sketch a minor modification of our framework to take
into account link failures.

3.1 Failure of Nodes and Node Components

We start by modelling a framework where only nodes and node components fail. This
can be achieved by adding the operational rule

Global Computing in a Dynamic Network of Tuple Spaces 163

(R-FailN) l :: C �−→ 0

that models corruption of data (message omission) if C � 〈t1〉| . . . |〈tn〉, node (fail-
silent) failure if l :: C collects all the clones of l, and abnormal termination of some
processes running at l otherwise. Modelling failures as disappearance of a resource
(a datum, a process or a whole node) is a simple, but realistic, way of representing
failures in a global computing scenario [6]. Indeed, while the presence of data/nodes
can be ascertained, their absence cannot because there is no practical upper bound to
communication delays. Thus, failures cannot be distinguished from long delays and
should be modelled as totally asynchronous and undetectable events.

For the sake of clarity, we shall denote with � f and � f the may testing preorder
and equivalence obtained when adding rule (R-FailN) to the rules in Table 2.

A Distributed Fault-tolerant Protocol: k–set Agreement. We now use may testing to
verify the correctness of k–set agreement [10], a simple distributed fault-tolerant pro-
tocol. Let us consider a totally-connected distributed system with n principals relying
on an asynchronous message-passing communication paradigm. Moreover, we also as-
sume that principals can fail according to a fail-silent model of failures; however, the
communication medium is reliable, i.e. messages sent will surely be received although
the order and the moment in which messages will arrive are unpredictable because of
asynchrony.

Each principal has an input value (taken from a totally ordered set) and must produce
an output value. The agreement problem requires to find a protocol that satisfies three
properties: termination (i.e. the non-faulty principals eventually produce an output),
agreement (i.e. the non-faulty principals produce the same output value) and validity
(i.e. the output value must be one of the input values). It is well-known (see, e.g. [2])
that a solution for this problem does not exists even if a single failure occurs.

The k–set agreement problem relaxes the agreement property to enable the existence
of a solution. Indeed, for each 1 ≤ k ≤ n, it requires that, assuming at most k − 1 faulty
principals, the non-failed principals successfully complete their execution by producing
outputs taken from a set whose size is at most k. Notice that for k = 1 we get the
agreement problem without failures.

A possible solution for the k-set agreement problem is given by the following pro-
tocol, taken from [2], executed by each principal:

(i) send your input value to all principals (including yourself)
(ii) wait to receive n − k + 1 values

(iii) output the minimum value received

In this way, if we call I the set of the input values, the set of output values O is formed
by the k smallest values in I. For the sake of simplicity, we assume that the elements in
I are pairwise distinct; however, the protocol works also if input values are duplicated
(in this case I and O are multisets).

We use integers as input/output values, while principals are represented as distinct
nodes, whose addresses are taken from the set L = l̃ � { l1, . . . , ln}; moreover, we use
di ∈ I to denote the input value of the principal associated to the node whose address
is li. Once we fix the value for k, node li hosts the process

Pk
i � out(di)@l1.out(di)@ln.in(!zi

1)@li.in(!zi
n−k+1)@li.out(mi)@l

164 R. De Nicola, D. Gorla, and R. Pugliese

with mi � min{zi
j : j = 1, . . . , n− k+ 1} and l be a distinct locality used to collect output

values. The net implementing the whole protocol is

Nk
n � (ν̃l)(n

Π
i=1

li :: Pk
i ‖ Γ)

where
Γ � Π

i� j
{li ↔ l j}

We restricted the localities associated to the principals because no external context is
allowed to interfere with the execution of the protocol. Notice that, having restricted
the l̃, all the principals are connected and no out prefix will ever block Pk

i (because of
law (RNode)). However, this does not prevent failures: the failure of (a reduct of) Pk

i is
indeed the failure of principal i.

A formulation of the three properties for the k-set agreement problem is given by
Equations (1) and (2) below. The formalisation of k-set agreement and validity proper-
ties is given by the Equation

Nk
n � f Mk

n (1)

There, we exploit the auxiliary net

Mk
n � (ν̃l, l̃′)(n

Π
i=1

li :: new(l′i).(Q
k
i | Π

w∈O
out(w)@l′i) ‖ Γ)

where

Qk
i � out(di)@l1. · · · .out(di)@ln.in(!zi

1)@li. · · · .in(!zi
n−k+1)@li.in(mi)@l′i .out(mi)@l

We assume that nodes whose addresses are in l̃′ cannot fail; this is reasonable because
they are only auxiliary nodes and hence their failure is irrelevant for the original for-
mulation of the problem. Intuitively, node l′i acts as a repository for li and contains the
possible output values (i.e. the elements of O), while the last in action of Qk

i is a test for
checking that the output value produced by the principal i is in O. The net Mk

n obviously
satisfies the wanted properties since its principals output only values present in O. The
fact that |O| = k then implies the k-set agreement property, while the fact that O ⊆ I
implies validity.

In order to prove the termination property, it suffices to prove that

l ::
n−k+1
Π
j=1
〈〉 � f N̂k

n (2)

where N̂k
n � (ν̃l)(n

Π
i=1

(li :: P̂k
i ‖ {li ↔ l}) ‖ Γ) and processes P̂k

i is defined like Pk
i

with action out()@l in place of out(mi)@l. Clearly, if we only consider termination,
Nk

n and N̂k
n are equivalent, in the sense that a non-faulty principal produces an output

value in the first net if and only if its counterpart produces an output in the second net.
Equation (2) implies termination of the protocol, since it requires that at least n − k + 1
tuples are produced at l; by definition of the protocol, this is possible only if n − k + 1
principals terminate successfully.

Global Computing in a Dynamic Network of Tuple Spaces 165

Before proving the equations stating the soundness of the protocol, we want to re-
mark that other solutions to the agreement problem in presence of failures have been
given in literature. Some of these solutions use failure detectors [9, 2]. Recently, one
such solution has been formalised and proved sound by using a process algebraic ap-
proach [17]. The solution in loc.cit. is, however, heavier than ours and exploits proper-
ties of the operational semantics, instead of working in a (simpler) equational setting.
Moreover, it exploits failure detectors which are hardly implementable in a global com-
puting scenario.

Proof of Equations (1) and (2). To prove the properties formulated above, we first need
a new equality

l :: I1| . . . |In � f l :: I1| . . . |Im if n ≤ m (†)
Second, we need to smoothly adapt some of the equalities put forward by Proposition 1:
the first equality holds only under the hypothesis that l′ is restricted, while the third
equality holds only under the further hypothesis that 〈t〉 is not corruptible at l′ (with “〈t〉
is not corruptible at l′ ”, we mean that l′ :: 〈t〉 does never fail). Then, we prove Equation
(1) as follows:

Nk
n � f (ν̃l)(n

Π
i=1

li :: in(!zi
1)@li.in(!zi

n−k+1)@li.out(mi)@l | 〈d1〉 | . . . | 〈dn〉 ‖ Γ)
� f (ν̃l)(n

Π
i=1

li :: out(m′i)@l | 〈di1〉 | . . . | 〈dik−1〉 ‖ Γ)
� f (ν̃l, l̃′)(n

Π
i=1

(li :: in(m′i)@l′i .out(m′i)@l | 〈di1〉 | . . . | 〈dik−1〉
‖ l′i :: Π

w∈O
〈w〉 ‖ {li ↔ l′i }) ‖ Γ)

� f (ν̃l, l̃′)(n
Π
i=1

(li :: in(!zi
1)@li.in(!zi

n−k+1)@li.in(mi)@l′i .out(mi)@l

| 〈d1〉 | . . . | 〈dn〉 ‖ l′i :: Π
w∈O
〈w〉 ‖ {li ↔ l′i }) ‖ Γ)

� f Mk
n

where m′i denotes mi[d̃/̃z], with d̃ � {d1, . . . , dn} − {di1 , . . . , dik−1 } and z̃ � {z1, . . . , zn−k+1}.
The first and the last steps have been inferred by applying several times (the revised
formulation of) Proposition 1.1 . The second and the fourth steps have been inferred by
applying several times (the revised formulation of) Proposition 1.3; notice that, since
the number of failures is at most k − 1, the number of non-corruptible data present in
each li is at least n − k + 1. The third step relies on Proposition 1.3, .4 and .6 . It is
worth to notice that m′i ∈ O because, since |O| = k, at least one principal whose input
value, say d′, is in O has not failed; hence d′ has been received by all the (non-failed)
principals. Moreover, we assumed that the l̃′ cannot fail and hence the data they host
are uncorruptable.

To conclude, we are left with proving Equation (2). This can be done very similarly
as follows:

N̂k
n � f (ν̃l)(n

Π
i=1

li :: in(!zi
1)@li.in(!zi

n−k+1)@li.out()@l | 〈d1〉 | . . . | 〈dn〉 ‖ {li ↔ l})
� f (ν̃l)(n

Π
i=1

li :: out()@l | 〈di1〉 | . . . | 〈dik−1〉 ‖ {li ↔ l})

166 R. De Nicola, D. Gorla, and R. Pugliese

� f l ::
n
Π
j=1
〈〉

� f l ::
n−k+1
Π
j=1
〈〉

The first two steps are derived in the same way. The third step is derived using (the
revised version of) Proposition 1.1/.4 and Proposition 1.6 . The fourth step derives from
law (†).
3.2 Failure of Inter-node Connections

The philosophy underlying our failure model can be easily adapted to deal with link
failures too. To this aim, we only need to add the operational rule

(R-FailC) {l1 ↔ l2} �−→ 0

that models the (asynchronous and undetectable) failure of the link between nodes l1
and l2.

Discovering Neighbours. When the (multi)set of links in a net can change during com-
putations, routing tables must be dynamic, because the original topology can change at
runtime. This task is usually carried on by the so-called adaptive (or dynamic) routing
algorithms. Several proposals have been presented in literature and different standards
use different solutions. However, in general, routing algorithms are repeated at regular
time intervals and consist in two main phases: first, each node discovers its neighbours;
then, it calculates its routing table by usually sharing local information with its neigh-
bours. We present here a simple way to implement in tKlaim the first phase; the (more
challenging) study of the second phase is left for future work.

Neighbours can be discovered in a simple way. Each node l can try to send a “hello”
message to another node l′; if this action succeeds, then a connection between l and
l′ does exist; otherwise, nothing can be said (e.g., the message could get lost or the
link could be congested and this caused a delay to the message). In our framework, no
explicit message is needed: a simple action eval(nil)@l′ performed at l can be used as
test for existence of link {l↔ l′} in the net.

By letting � f still denote the may testing preorder in this refined framework, sound-
ness of our solution follows by proving that

l :: eval(nil)@l′.out(“CONN”, l, l′)@l � f {l↔ l′} ‖ l :: 〈“CONN”, l, l′〉
The equation above states that if the left hand side successfully passes the test of an
observer looking for a tuple 〈“CONN”, l, l′〉 at l, then the link {l ↔ l′} must exist. Its
soundness can be easily proved by exploiting the co-inductive proof technique in [13].

4 Modelling Dynamic Connections

Finally, we present another variation of the basic language that let connections dynam-
ically evolve. To this aim, we add two actions to create and destroy a link, respectively.
Formally, we add the productions

Global Computing in a Dynamic Network of Tuple Spaces 167

a ::= . . .
∣∣∣ conn(�)

∣∣∣ disc(�)

to the syntax of Table 1. Intuitively, the first action, when executed at node l, creates a
new link between l and �, if the latter name is associated to a network node. Conversely,
the second action, when executed at node l, removes a link between l and �, if such a
link exists. These intuitions are formalised by the following operational rules, that must
be added to those in Table 2:

(R-Conn) l :: conn(l′).P ‖ l′ :: nil �−→ l :: P ‖ {l↔ l′}

(R-Disc) l :: disc(l′).P ‖ {l↔ l′} �−→ l :: P ‖ l′ :: nil

Again, for the sake of clarity, we denote with �d the may testing equivalence in the
calculus with dynamic connections.

Message Delivering in a Dynamic Net. To conclude, we now give an application of our
theory in a setting where node links change dynamically. To this aim, we use a simpli-
fied scenario inspired by the handover protocol, proposed by the European Telecommu-
nication Standards Institute (ETSI) for the GSM Public Land Mobile Network (PLMN).
The formal specification of the protocol and its service specification are in [24]; we use
here an adaption of their approach.

The PLMN is a cellular system which consists of Mobile Stations (MSs), Base Sta-
tions (BSs) and Mobile Switching Centres (MSCs). MSs are mobile devices that provide
services to end users. BSs manage the interface between the MSs and a stationary net;
they control the communications within a geographical area (a cell). Any MSC handles
a set of BSs; it communicates with them and with other MSCs using a stationary net.

A new user can enter the system by connecting its MS with a MSC that, in turn, will
decide the proper BS responsible for such a MS. Then, messages sent from the user
are routed to their destinations by the BS, passing through the MSC handling the BS.
However, it may happen that the BS responsible for a MS should be changed during
the computation (e.g., because the MS left the area associated to the BS and entered
in the area associated to a different BS). In this case, the MSC should carry on the
rearrangements needed to cope with the new situation, without affecting the end-to-end
communication.

We now model the key features of a PLMN in tKlaim; however, for the sake of
simplicity, several aspects will be omitted, like, e.g., the criterion to choose a proper
BS for a given MS, or the event originating an handover. Both MSs, BSs and MSCs are
modelled as nodes. For the sake of simplicity, we consider a very simple PLMN, with
one MSC (whose address is M) and two BSs (whose addresses are B1 and B2, resp.).

Let us start with the process that performs the connecting formalities in M.

ENT ER � < gather a new connection f rom l > .read(!B)@BSlist.
eval(conn(l))@B.disc(l).out(l, B)@Table

When a new user want to enter the PLMN, it has to perform a conn(M) from his MS,
whose address is l; this generates an interrupt in M (that we do not model here) by
which the MSC can gather the address of the MS. This address, together with other
information (like the geographical area of the user or its credentials), are used by the

168 R. De Nicola, D. Gorla, and R. Pugliese

MSC to choose a proper BS; in our simplified framework, we let M take a BS’s address
from a private repository BSlist. Then, the MSC creates a new link from the chosen
BS to the MS and destroys the link from itself to the MS. Finally, it records in a private
repository Table the fact that the new MS is under the control of the chosen BS.

Once entered the PLMN, the new user can send some data d to (the MS of) a remote
user (whose address is l′); this is achieved by letting his MS (whose address is l) perform
an action of the form out(‘send’, l′, d)@l. Then, the BSs associated to l and l′ come into
the picture to properly deliver the message. In particular, let Bi be the BS associated to l
and B j be the BS associated to l′ (for i, j ∈ {1, 2}). Then, the message is forwarded from
Bi to B j by the process

FWDi � read(!x, Bi)@Table.in(‘send’, !y, !z)@x.in(y, !B)@Table.out(y, z)@B

This process first retrieves the address of a MS associated to Bi (in particular, l); then,
it collects the message and forwards it to the BS associated to the destination MS.
Notice that, in doing this, it ‘locks’ the link between l′ and B j until the message will
be delivered to l′ (see below); this is necessary to avoid that a handover may interfere
with the message delivering. Then, the message is collected by B j and passed to l′ by
the process

CLT j � in(!dest, !mess)@B j.out(mess)@dest.out(dest, B j)@Table

This process retrieves the message sent by Bi and passes it to the final MS; then, it
releases the ‘lock’ on the link {B j ↔ l′} acquired by Bi by putting back in Table the
tuple 〈l′, B j〉. Clearly, there are also processes FWDj and CLTi running in B j and Bi

respectively, but they do not play any role here.
Finally, the handover is handled by the MSC via the following process:

HNDVR � in(!x, !B)@Table.read(!B′)@BSlist.
eval(disc(x))@B.eval(conn(x))@B′.out(x, B′)@Table

This process first selects a MS-to-BS association to be changed (the reason why this
is needed is not modelled here); then, it chooses a new BS, properly changes the links
between the MS and the BSs, and updates the repository Table.

The overall resulting system is

S YS � (νTable, BSlist, B1, B2)(M :: ∗ENT ER | ∗ HNDVR
‖ BSlist :: 〈B1〉 | 〈B2〉 ‖ Table :: nil
‖ B1 :: ∗FWD1 | ∗CLT1 ‖ B2 :: ∗FWD2 | ∗CLT2)

where ∗P denotes the replication of P and stands for an unbounded number of copies
of P running in parallel. Replication can be easily encoded through recursion by letting
∗P be a shortcut for rec X.(P|X). Soundness of the system can be formulated as:

(νl)(l :: conn(M).out(‘send’, l′, ‘HI’)@l ‖ l′ :: conn(M) ‖ S YS)
�d (νl)(l′ :: 〈‘HI’〉 ‖ S YS)

(3)

Global Computing in a Dynamic Network of Tuple Spaces 169

Notice that l is restricted only to simplify proofs: soundness of the protocol is not af-
fected by the fact that the MSs are public or not.

Proof of Equation (3). To prove the equation above, we first need two laws for the
primitives conn and disc, that are quite expectable.

l :: conn(l′).P ‖ l′ :: nil �d l :: P ‖ {l↔ l′} (�)

(νl′)(l :: disc(l′).P ‖ {l↔ l′}) �d (νl′)(l :: P ‖ l′ :: nil) (��)

Moreover, we also need an adapted version of Proposition 1.3 to deal with action read.
It is defined as follows:

(νl′)(l :: read(T)@l′.P ‖ l′ :: 〈t〉) �d (νl′)(l :: Pσ ‖ l′ :: 〈t〉)
if match(E[[T]], t) = σ.

(‡)

We are ready to prove Equation (3), yielding the soundness of the protocol for the
PLMN. It is easy to prove that

(νl)(l :: conn(M).out(‘send’, l′, ‘HI’)@l ‖ l′ :: conn(M) ‖ S YS)

�d (νl, Table, BSlist, B1, B2)(l :: 〈‘send’, l′, ‘HI’〉 ‖ l′ :: nil
‖ M :: ∗ENT ER | ∗ HNDVR ‖ BSlist :: 〈B1〉 | 〈B2〉
‖ Table :: 〈l, Bi〉 | 〈l′, B j〉 ‖ {l↔ Bi} ‖ {l′ ↔ B j}
‖ B1 :: ∗FWD1 | ∗CLT1 ‖ B2 :: ∗FWD2 | ∗CLT2)

�d (nul, Table, BSlist, B1, B2)(l :: nil ‖ l′ :: nil
‖ M :: ∗ENT ER | ∗ HNDVR ‖ BSlist :: 〈B1〉 | 〈B2〉
‖ Table :: 〈l, Bi〉 | 〈l′, B j〉 ‖ {l↔ Bi} ‖ {l′ ↔ B j}
‖ B1 :: ∗FWD1 | ∗CLT1 ‖ B2 :: ∗FWD2 | ∗CLT2

‖ Bi :: in(l′, !B)@Table.out(l′, ‘HI’)@B)
� K

The first equality can be inferred using laws (�) and (‡), Proposition 1.2, laws (�)
and (��), and Proposition 1.1; the second equality can be inferred using law (‡) and
Proposition 1.3. Now we cannot proceed equationally: indeed, there are two paral-
lel components that may want to retrieve the tuple 〈l′, B j〉 at Table, i.e. the process
in(l′, !B)@Table.out(l′, ‘HI’)@B running at Bi and the process HNDVR running at M.
This fact makes Proposition 1.3 not applicable here.

To overcome this problem, we observe that there are only three possible evolutions
for K: make a handover for l, make a handover for l′, or complete the delivering of the
message that l sent to l′. The first evolution is compatible with the latter two ones that, in
turn, are mutually exclusive. Thus, letH be the set of pairs (N, (νl)(l′ :: 〈‘HI’〉 ‖ S YS)),
where N is any reduct of K obtained by giving the precedence to the handover of l′ w.r.t.
the message delivering. Symmetrically, let D be the set of pairs (N, (νl)(l′ :: 〈‘HI’〉 ‖
S YS)), where N is any reduct of K obtained by giving the precedence to the message
delivering w.r.t. the handover of l′. Now, it can be easily proved that

{ (K, (νl)(l′ :: 〈‘HI’〉 ‖ S YS)) } ∪ H ∪ D
is a bisimulation. By the fact that ≈d ⊂ �d and by transitivity of �d, this suffices to
prove Equation (3).

170 R. De Nicola, D. Gorla, and R. Pugliese

5 Conclusions and Related Work

We have presented a calculus inspired by Klaim whose main feature is the handling of
inter-node connections. We have first presented a basic setting where connections are
reliable and immutable; then, we have enriched the basic framework with failures and
dynamically evolving connections, two more advanced features for global computing.
In each setting, we have used our formalisms to specify and verify some non-trivial
global computing applications, by exploiting a may-testing equivalence.
Related work. In the last decade, several languages for modelling and programming
distributed and global computing systems have been proposed in literature; we mention
here only the most strictly related ones.

In DJoin [16], located mobile processes are hierarchically structured and form a
tree-like structure evolving during the computation. Entire subtrees, not just single pro-
cesses, can move and fail. Communication takes place in two steps: first, the sending
process sends a message on a channel; then, the ether (i.e. the environment contain-
ing all the nodes) delivers the message to the (unique) process that can receive on that
channel. Failures are programmed (i.e., they result from the execution of some process
actions) and can be detected by processes. We believe that the setting presented in this
paper is more realistic than DJoin because the considered interconnection topology is
more general than trees and also because we do not assume any implicit engine for dis-
tant communications. Finally, we model failures in a way that is closer to actual global
computers.

The Ambient calculus [7] is an elegant notation to model hierarchically structured
distributed applications. Like in our work, the calculus is centered around the notion of
connections between ambients, that are containers of processes and data. Each language
primitive can be executed only if the ambient hierarchy is structured in a precise way;
e.g., an ambient n can enter an ambient m only if n and m are sibling, i.e. they are
both contained in the same ambient. However, like DJoin, Ambient strongly relies on
a tree-like structure for the ambient hierarchy. Moreover, to the best of our knowledge,
no explicit notion of failures, close to actual global computing requirements, has been
ever given for Ambient.

[27] presents Nomadic Pict, a distributed and agent-based language based on the π-
calculus. It relies on a flat net where named agents can roam. Communication between
two agents can take place only if they are located at the same node (thus no low-level
remote communication is allowed). However, the language also provides a (high-level)
primitive for remote communication, that transparently delivers a message to an agent
even if the latter is not co-located with the sender. This primitive is then encoded in
the low-level calculus by a central forwarding server, implemented by only using the
low-level primitives. The assumption that only co-located agents can communicate is,
in our opinion, too demanding. Moreover, it is not clear to us how the theory can be
adapted to consider failures.

Another distributed version of the π-calculus is presented in [21]; the resulting cal-
culus contains primitives for code movement and creation of new localities/channels in
a net with a flat architecture. The main feature of the language is the possibility of con-
trolling process activities via (sophisticated and non-standard) type systems. No notion
of explicit connections and of failures have been integrated in the framework yet.

Global Computing in a Dynamic Network of Tuple Spaces 171

We now touch upon some formalisms for distributed computing relying on the
powerful paradigm put forward by Linda [18]. In TuCSoN [23], tuple spaces are en-
hanced with the capability of programming their behaviour in response to communi-
cation events; moreover, the computational model relies on a hierarchical collection of
(possibly) distributed tuple spaces. MARS [5] is a coordination tool for Java-based mo-
bile agents that defines Linda-like tuple spaces programmable to react when accessed
by agents. Such mechanisms can be used to control accesses to specific tuples. In tK-
laim, this can be obtained either by using dynamically created (private) nodes or by
tailoring the capability-based type systems presented in [19, 20]. Lime [26] exploits
multiple tuple spaces to coordinate mobile agents and adds mobility to tuple spaces: it
allows processes to have private tuple spaces and to transparently and transiently share
them. In tKlaim, sharing of resources can be somehow achieved via dynamic handling
of links; however, tuple spaces are bound to nodes and nodes cannot move.

Finally, we want to remark that the use of observational equivalences to state and
proof soundness of protocols is a well-established technique in the field of process
calculi; some notable examples are [1, 22, 24, 28]. In particular, in the last paper, an
automatic verification tool to prove equivalences in the π-calculus is described. As an
application, the authors automatically verify an equality, similar to ours, stating the
soundness of the PLMN example.

Acknowledgements. We would like to thank the anonymous referees for some sugges-
tions that helped in improving the paper.

References

1. M. Abadi and A. D. Gordon. Reasoning about cryptographic protocols in the Spi calculus.
In Proc. of CONCUR’97, volume 1243 of LNCS, pages 59–73. Springer, 1997.

2. H. Attiya and J. Welch. Distributed Computing. McGraw Hill, 1998.
3. L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-Klaim.

In Proc. of the 7th WETICE, pages 110–115. IEEE, 1998.
4. L. Bettini, M. Loreti, R. Pugliese. An Infrastructure Language for Open Nets. In Proc. of

the 2000 ACM Symposium on Applied Computing, pages 373–377, ACM Press, 2002.
5. G. Cabri, L. Leonardi and F. Zambonelli. Reactive Tuple Spaces for Mobile Agent Coordi-

nation. In Proc. of the 2nd Int. Workshop on Mobile Agents, volume 1477 of LNCS, pages
237–248. Springer, 1998.

6. L. Cardelli. Abstractions for mobile computation. In Secure Internet Programming: Security
Issues for Mobile and Distributed Objects, number 1603 in LNCS, pages 51–94. Springer,
1999.

7. L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–
213, 2000.

8. S. Castellani, P. Ciancarini, and D. Rossi. The ShaPE of ShaDE: a coordination system.
Tech. Rep. UBLCS 96-5, Dip. di Scienze dell’Informazione, Univ. di Bologna, Italy, 1996.

9. T. Chandra and S.Toueg. Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of the ACM, 43(2):225–267, 1996.

10. S. Chaudhuri. More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation, 105(1):132–158, 1993.

172 R. De Nicola, D. Gorla, and R. Pugliese

11. N. Davies, S. Wade, A. Friday, and G. Blair. L2imbo: a tuple space based platform for
adaptive mobile applications. In Int. Conference on Open Distributed Processing/Distributed
Platforms (ICODP/ICDP’97), 1997.

12. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

13. R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for global comput-
ing. Technical Report 07/2004, Dip. di Informatica, Univ. di Roma “La Sapienza”. Available
at http://www.dsi.uniroma1.it/˜gorla/papers/bo4k-full.pdf.

14. R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical Computer
Science, 34:83–133, 1984.

15. D. Deugo. Choosing a Mobile Agent Messaging Model. In Proc. of ISADS 2001, pages
278–286. IEEE, 2001.

16. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile agents.
In Proc. of CONCUR ’96, volume 1119 of LNCS, pages 406–421. Springer, 1996.

17. R. Fuzzati, M. Merro, and U. Nestmann. Modelling Consensus in a Process Calculus. In
Proc. of CONCUR’03, volume 2761 of LNCS. Springer-Verlag, 2003.

18. D. Gelernter. Generative communication in linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

19. D. Gorla and R. Pugliese. Resource Access and Mobility Control with Dynamic Privileges
Acquisition. In Proc. of ICALP’03, volume 2719 of LNCS, pages 119-132. Springer, 2003.

20. D. Gorla and R. Pugliese. Enforcing Security Policies via Types. In Proc. of Security in
Pervasive Computing (SPC’03), volume 2802 of LNCS, pages 88-103. Springer, 2003.

21. M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents. Informa-
tion and Computation, 173:82–120, 2002.

22. R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Specification,
volume 94 of Series F. NATO ASI, Springer, 1993.

23. A. Omicini and F. Zambonelli. Coordination of Mobile Information Agents in Tucson. Jour-
nal of Internet Research, 8(5):400-413, 1998.

24. F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal Aspects of
Computing, 4:497–543, 1992.

25. J. Parrow. An introduction to the pi-calculus. In Handbook of Process Algebra, pages 479–
543. Elsevier Science, 2001.

26. G.P. Picco, A.L. Murphy and G.-C. Roman. Lime: Linda Meets Mobility. In Proc. of the 21st

Int. Conference on Software Engineering (ICSE’99), pages 368–377. IEEE, 1999.
27. A. Unyapoth and P. Sewell. Nomadic Pict: Correct Communication Infrastructures for Mo-

bile Computation. In Proc. of POPL’01, pages 116–127. ACM Press, 2001.
28. B. Victor and F. Moller. The Mobility Workbench — a tool for the π-calculus. In Proc. of

CAV ’94, volume 818 of LNCS, pages 428–440. Springer, 1994.

Mobile Agent Based Fault-Tolerance Support
for the Reliable Mobile Computing Systems

Taesoon Park

Department of Computer Engineering, Sejong University,
Seoul 143-747, Korea
tspark@sejong.ac.kr

Abstract. To support the fault tolerance of mobile computing systems,
many checkpointing coordination and message logging schemes have been
proposed. However, due to the mobility of mobile hosts, coordination and
control of these schemes are quite complicate and have the possibility
of inefficiency. In this paper, a fault-tolerance scheme based on mobile
agents is proposed. In the proposed scheme, a set of mobile and sta-
tionary agents are used to trace and maintain the recovery information
for the mobile host. The mobile agents properly trace the mobile host
and manage the suitable distance between the recovery information and
the mobile host. Also, the migration of the recovery information of the
mobile host can be performed asynchronously with the hand-off of the
mobile host and hence the fault-tolerance service by mobile agents dose
not incur any unnecessary hand-off delay.

1 Introduction

Fault-tolerance is one of most important design issues to build a reliable comput-
ing system. Especially for the mobile computing systems in which the mobility
of mobile hosts complicates the design of many system components, the design
of fault-tolerant services may also be very complex and costly, unless it is care-
fully designed. Many fault-tolerant schemes have been proposed to deal with
the mobility of mobile hosts and to reduce the recovery cost of the mobile com-
puting system. The proposed schemes can be categorized into the checkpointing
coordination schemes and the message logging schemes.

For the checkpointing coordination of mobile hosts, some coordination algo-
rithms used for the distributed computing system consisting of static hosts have
been extended [1, 3, 7, 8, 12]. The extension of these algorithms mainly focused
on the reduction of the network bandwidth usage, since the cost of wireless net-
works is very high. As a result, algorithms with the less frequent synchronization,
the less number of coordination messages and the fewer number of processes par-
ticipating in the coordination have been suggested. However, when the recovery
is concerned, checkpointing-coordination schemes in the literature have a com-
mon problem for rollback. Because of the live-lock problem[6], which causes the
recursive rollbacks during the recovery, either the rollback of the related mobile

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 173–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

174 T. Park

hosts has to be synchronized or the centralized rollback coordination is required,
which is undesirable for mobile hosts using the wireless network.

One way to avoid the rollback coordination and to guarantee the asyn-
chronous recovery is to use pessimistic or optimistic message logging with the
independent checkpointing [5, 9, 14]. These logging schemes do not require inten-
sive message communication for checkpointing coordination. Instead, the appli-
cation messages between mobile hosts should be logged in the stable storages.
Asynchronous recovery without checkpointing coordination can be a great ad-
vantage for the mobile computing systems. However, the checkpoint and the
message log may cause another problem in the mobile computing environment,
since a mobile host may be far away from the stable storage carrying its check-
point or message log in the event of recovery. Hence, for the mobile computing
systems, distributed recovery information management has been another impor-
tant design issue and the migration of recovery information should be considered
during the fail-free operation, balancing the migration cost and the recovery cost.

The distributed recovery information management schemes [10, 11, 15], how-
ever, have common problems as follows: First, the information migration decision
is made during the hand-off procedure of the mobile host and hence the hand-off
should be delayed until the migration of the checkpoint and the message log is
completed. Another problem is that the migration frequency of the checkpoint
and the message log is decided without considering their weights. The check-
point is usually required in the early stage of the recovery of a mobile host while
the logged messages are consumed gradually. Therefore, it is desirable to use
separate migration frequencies for the checkpoint and the message log. The con-
trol information regarding the checkpoint and the message log can also be a big
burdon on the system, since one mobile support station supports a large number
of mobile hosts. The garbage collection of the distributed recovery information
and their control information can be another problem.

To solve the problems of existing solutions, we propose a mobile agent based
scheme to build a fault-tolerant mobile computing system. In the proposed scheme,
a stationary agent residing in each mobile support station site takes care of the re-
covery information of mobile hosts so that the mobile support station can concen-
trate on its own tasks, suchas the locationmanagement and the call queryhandling.
Also, a set of two mobile agents for each mobile host make a suitable decision on
the checkpoint migration and take care of the distributed log information, sepa-
rately. Therefore, the migration of the recovery information of a mobile host can
be performed asynchronously with the hand-off procedure and the fault-tolerance
service does not cause any unnecessary delay on the hand-off procedure. Moreover,
two different weights can be put on the checkpoint migration and the log migration
since two mobile agents separately manages the checkpoint and the message log.

The rest of this paper is organized as follows: Section 2 briefly describes the
mobile computing system model and the fault-tolerant system model. Section 3
presents the proposed system architecture for mobile agent based fault-tolerant
services and also the coordination model for the stationary agents and the mobile
agents. In Section 4, the performance of the proposed scheme is briefly discussed
and Section 5 concludes the paper.

Mobile Agent Based Fault-Tolerance Support 175

2 Background

2.1 Mobile Computing System Model

The mobile computing system [1, 2] considered in this paper consists of a number
of mobile hosts (MHs) and mobile support stations (MSSs). The MSSs are static
and between any two MSSs, a high speed wired communication link is assumed.
The MSS provides various services to support the mobility of the MHs, such
as the location management and the call query handling. The physical service
region of an MSS is restricted and the service region covered by an MSS is called
a cell. The communication between an MSS and the MHs in its service region is
done by the wireless link supporting FIFO communication in both directions.

An MH may traverse a number of cells while communicating with another
MH or performing some computation. To provide continuous services throughout
the system, a hand-off process is performed between two MSSs servicing the
corresponding cells as the MH crosses the boundary between two cells. For the
hand-off, the MH first ends its previous connection by sending a leave(r) message
to the local MSS when the MH leaves a cell, where r is the sequence number of the
last message received from the MSS. The MH then establishes a new connection
by sending a join(MH-id, previous MSS-id) message to the new MSS, when it
enters another cell. Then the MSS servicing the new cell begins the hand-off
process with the previous MSS to update the location information of the MH
and retrieve the undelivered messages from the previous MSS.

A list of identifiers of MHs, called an Active MH List, is maintained by
each MSS and in this list, the identifiers of the MHs that are currently sup-
ported by the MSS are included. For the location management of the MHs, the
scheme based on the two-level data hierarchy, consisting of the home location
register(HLR) and visitor location register(VLR), is assumed.

2.2 Distributed Computation Model

A distributed computation performed by a set of N processes running concur-
rently on MHs in the system is assumed. Each process experiences a sequence
of state transitions during its execution and an atomic action which causes the
state transition is called an event. The event is said to be internal if it causes
no interaction with another process. Otherwise, the event is called an external
event. Message-sending and message-receiving events are the external events. A
sequence of events within a process is called a computation. The computation
in this paper is assumed to follow a piece-wise deterministic model, in which a
process can always produce the same sequence of states for the same sequence
of message-receiving events.

Let R(i,α) denote the α-th message-receiving event of a process Pi and the state
interval, I(i,α), denote the sequence of states generatedbetweenR(i,α−1) andR(i,α),
where α > 0 and R(i,0) denotes the initial event. Then, the inter-process depen-
dency [9] caused by the message communication can be defined as follows:

176 T. Park

Definition 1: A state interval I(i,α) is said to be dependent on another state
interval I(j,β) if one of the following conditions is satisfied; and the dependency
relation is denoted I(j,β) → I(i,α):

(1) i = j and α = β + 1, or
(2) For an event R(i,α−1), the corresponding message-sending event has happened
in I(j,β), or
(3) For any I(k,γ), I(j,β) → I(k,γ) and I(k,γ) → I(i,α).

2.3 Checkpointing, Message Logging and Consistent Recovery

The failure model considered in the paper follows the fail-stop [13] model, in
which a process stops the execution and does not perform any malicious action
in case of a failure. When an MH fails and loses the contents of the volatile mem-
ory, the processes running on the MH should restart and checkpoints are used to
prevent the restart from the initial states. Checkpointing is an operation to save
the intermediate state of a process in a stable storage so that the process can
resume the execution from the restored state, called a checkpoint, after a failure.
The resumption of the computation from the checkpoint is called the rollback.

Pi

Pj

X
failure

rollback

checkpoint recovery line

Ci

Cj

Fig. 1. An Example of Inconsistent Recovery

When a process fails and rolls back, the set of processes participating in the
same distributed computation may result in the inconsistent state caused by the
dependency relation. Figure 1 shows a typical example of the inconsistent system
recovery. After the rollback of the process Pi followed by a failure, Pi resumes the
computation from its previous checkpoint, Ci. Then, the states of two processes,
Pi and Pj , denoted by the recovery line in the figure, are inconsistent because the
current state of Pj is dependent on the states of Pi which have been discarded
by the rollback of Pi. A state interval dependent on any discarded interval is
called an orphan and any orphan interval also has to be discarded by another
rollback. The recovery from a failure is said to be consistent, if no orphan state
interval exists after the rollback-recovery.

Let D be a set of processes participating in a distributed computation, F f
i be

the f -th failure of Pi in D and Lf
i be the set of state intervals discarded by the

Mobile Agent Based Fault-Tolerance Support 177

rollbacks of the processes in D, after the failure, F f
i . Then, the consistent recovery

can be defined as follows:

Definition 2: The recovery from a failure, F f
i , is said to be consistent, if for

any I(i,α) ∈ Lf
i , the relation, I(i,α) → I(j,β), holds, then I(j,β) is also in Lf

i .

One way to avoid the inconsistent recovery is to use the pessimistic message
logging, in which every message delivered to a process is logged into the stable
storage so that the process, Pi, can reconstruct the exactly same interval, I(i,α),
with the recomputation of R(i,α−1) using the logged message. Since every interval
after the latest checkpoint can fully be recovered even after a failure, the recovery
of a process with the pessimistic message logging can be consistent.

2.4 Distributed Recovery Information Management

For the efficient recovery of an MH, each MH has to manage its checkpoint and
message log. However, because of the storage limitation of an MH, checkpoints
and message logs of MHs are usually managed by the MSSs. Hence, the storage
for checkpoints and message logs of an MH becomes dispersed over a number of
MSSs as an MH moves around the cells. When the MH fails, it has to retrieve
the latest checkpoint and the sequence of logged messages, which may cause the
delay in recovery and increase the recovery cost.

Considering relatively high failure rates of MHs, instant recovery from a fail-
ure must be very important. However, checkpoints and logs distributed over the
network may cause the severe message traffic and the delay during the recovery.
For the efficient implementation, the mobility of MHs must be carefully traced
and a proper mechanism for gathering distributed recovery information must
be prepared. Also, since the size of a stable storage managed by each MSS is
limited, checkpoints and logs no longer required for any recovery must be dis-
carded for the reuse of the space. Such garbage collection may have to put extra
communication overhead if the logs are dispersed over a large number of MSSs.

Some works related to the distributed storage management have been pro-
posed in [11, 15]. For the fast recovery, it is desirable for checkpoints and message
logs to be near the MH on recovery, and hence, checkpoints and logs of a MH
in [11] keep moving as the MH performs the hand-off between two cells. As a
result, instant recovery can be possible, however, the failure-free communication
overhead cannot be negligible, considering the size of a checkpoint and logged
messages. One suggestion made in [15] utilizes the home of each MH to maintain
the recovery information. As an MH moves, it transfers checkpoints or logs to
the home, and in case of a failure, it can find the recovery information at home.
However, if the MH is far from home, the transfer cost can also be a problem.

3 Mobile Agent Based Fault-Tolerance Service
3.1 Overview

Mobile agent based fault-tolerance service has two main goals: One is to min-
imize the burden of fault-tolerance services on the MSS so that the MSS can

178 T. Park

concentrate on its original tasks, such as the location management and the com-
munication support for MHs. The other is to provide the efficient and also the
most appropriate fault-tolerance service for each MH.

To achieve these two goals, the proposed system employs three types of
agents: One is the stationary agent, called a Recovery Agent (RA), which is
designed to relieve the burden of the MSS and hence one RA is employed for
each MSS. The RA takes care of the recovery information, such as the check-
point, the logged messages and the related information, for the MHs covered by
the MSS. In case that one of those MHs fails, the RA takes the responsibility
of the recovery of the MH. To make efficient and proper recovery information
migration decision for each MH, two mobile agents are employed for each MH.
One is the checkpointing agent (CPA) and the other is the log agent (LGA). The
CPA takes care of the checkpoint of the MH and makes a decision on the check-
point migration. The LGA manages the location information of the distributed
message log and takes care of the garbage collection for the unnecessary logs.

One thing notable in the proposed model is that the checkpoint of an MH
and its logged messages are separately managed, unlike the existing schemes.
For an MH to recover from a failure, it should restore its previous state from
a checkpoint and then redo the computation using the logged messages. Hence,
the checkpoint near the MH can help the early start of the recovery. However,
the logged messages would be used gradually as the recomputation proceeds. In
other words, the slight delay in the collection of logged messages may not cause
the severe delay in the recovery. Therefore, in the proposed scheme, two different
weights are put on the checkpoint migration and the log migration. This is the
reason why two mobile agents are used for the checkpoint and the message log
management.

3.2 Recovery Agent

The recovery agent is a stationary agent residing in an MSS site and its main
task is to manage recovery information of the MHs which have been in the
cell covered by the corresponding MSS. Three types of recovery information are
maintained by the recovery agent: One is the MH’s location information. To
trace the location of an MH, the recovery agent records the previous location
and the next location of every MH which has visited and these information
can be obtained from the MSS during the hand-off procedure. The recovery
agent also temporarily manages checkpoints and message logs of those MHs.
Since checkpoints and message logs would be migrated on the decision of the
checkpointing agent or the log agent, the recovery agent holds them until their
migration is decided or their deletion is decided for the garbage collection.

The recovery agent, RAp, working for MSSp, maintains the following infor-
mation:

• INF (i, k) : The k-th recovery information entry of MHi, where k denotes
the k-th visit of MHi. INF (i, k) contains the following six fields.

Mobile Agent Based Fault-Tolerance Support 179

Event: Checkpointing_Timer Expiration:
Action: cp_seq++;
 Take a Checkpoint, C;
 Send [C,(i,cp_seq,msg_seq)]
 to MSS;

(1)

Event: Receipt of [C,(i,cp_seq,msg_seq)]:
Action: Forward [C,(i,cp_seq,msg_seq)]
 to RA;

(3)

Event: Receipt of [C,(i,cp_seq,msg_seq)]:
Action: Save [C,(i,cp_seq,msg_seq)] into
 Checkpnt_Space;
 INF(i,k).cp_seq=cp_seq;
 INF(i,k).msg_seq=msg_seq;
 Update INF(i,k).cp_ptr;

(5)

(a) Checkpointing

Site_p

(2) [C, (i, cp_seq, msg_seq)]

(4) [C, (i, cp_seq, msg_seq)]

MHi

MSSpRAp

MHi

Event: Delivery of a Message M to MHi:
Action: msg_seqi++;
 Send [M,(i,msg_seqi)] to RA;

MSSpRAp

(1)

Event: Receipt of [M,(i,msg_seqi)]:
Action: Insert [M,(i,msg_seqi)]
 into Log_Space;
 Update INF(i,k).log_ptr;

(3)

(b) Logging

Site_p

(2) [M,(i,msg_seqi)]

(2) [M,(i,msg_seqi)]

MHi

Event: Receipt of join(i,MSSo)
 from MHi:
Action: Forward join(i, MSSo) to RA;

(3)MSSpRAp

Event: Receipt of join(i,MSSo):
Action: INF(i,k).locp=MSSo;

(5)

Event: Receipt of leave(i,MSSn):
Action: INF(i,k).locn=MSSn;

(10)
Event: Receipt of hand-off(i) from MSSn:
Action: Send leave(i, MSSn) to RA;

(8)

MSSn

MHi(6) Movement

(c) Location Management

Site_p

(1) Movement

(2) join(i,MSSo)

(4) join(i,MSSo)

(7) hand-off(i)
(9) leave(i,MSSn) Site_n

Fig. 2. Task Description of the Recovery Agent

• locP , locN : Identifiers of the previous and the next MSSs visited by MHi.
locP is filled when MHi sends the join message to MSSp and locN is
filled when MSSp performs the hand-off of MHi with the next MSS.

• cp seq, msg seq, cp ptr : When MHi takes a new checkpoint, RAp tem-
porarily saves the checkpoint in the secure storage and holds the pointer
to the new checkpoint until the checkpointing agent takes care of it. The
checkpoint sequence number, cp seq, and the sequence number of the last
message which has been received before the checkpointing, msg seq, are
also recorded. msg seq is recorded to indicate the recomputation point.

• log ptr : When MSSp delivers a message for MHi, the message is also
sent to RAp and logged by RAp. RAp maintains the list of message log
and log ptr is the pointer to the header of the message log list.

180 T. Park

• statusCPA, statusLGA : Status fields to indicate whether the checkpoint-
ing agent and the log agent of MHi are currently residing in RAp. Since
the hand-off of MHi and the migration of the two mobile agents are asyn-
chronously processed, the existence of MHi does not necessarily indicate the
presence of CPAi and LGAi.

Figure 2 describes the task of the recovery agent, RAp, and its cooperation
model with the corresponding MSSp. As shown in the figure, the recovery agent
performs three main tasks as follows:

• Checkpointing: When MHi takes a new checkpoint, it sends the check-
point with its sequence number to the current MSS, which then forwards the
checkpoint to the recovery agent, RAp. RAp saves the checkpoint in the stable
storage and maintains the checkpoint related information.

• Message Logging: Whenever MSSp delivers a message to MHi, it sends
a copy of the message to RAp. RAp adds the message into the list of logged
messages for MHi, which is stored in INF (i, k), and updates log ptr.

• Location Management: When MHi enters a new cell or leaves the cell,
a hand-off procedure is performed with the adjacent MSS. After a hand-off for
MHi, the MSS sends the join(i, MSSo) or leave(i, MSSn) message to the re-
covery agent, where the join(i, MSSo) message includes the identifier of the pre-
vious MSS, say MSSo in the example, and the leave(i, MSSn) message includes
the identifier of the next MSS, say MSSn in the example. The recovery agent,
RAp, then properly updates the location information of MHi in INF (i, k).locP

and INF (i, k).locN .

3.3 Checkpointing Agent

The checkpointing agent is a mobile agent and one agent is created for an MH.
One main task of the checkpointing agent is to manage the latest checkpoint
of the MH. The checkpoint taken by an MH is temporarily managed by the
recovery agent and on the request of the checkpointing agent, it is transferred
to the checkpointing agent. Another important task of the checkpointing agent
is to make a migration decision of the checkpoint. For the early start of the
recovery, the checkpoint is necessary to be near the MH. However, considering
the migration cost of the checkpoint, frequent checkpoint migration should be
a burden on the system. Hence, the checkpointing agent considers both the
migration cost and the recovery cost to make an efficient decision.

One notable point of the proposed migration model is that the migration
of the checkpointing agent is asynchronously processed with the migration of
the MH. As a result, the checkpoint migration causes no delay for the hand-
off process. The checkpointing agent, CPAi, working for MHi, maintains the
following information:

• CP INF : The information of the latest checkpoint for MHi, which includes
the following three fields.

Mobile Agent Based Fault-Tolerance Support 181

Fig. 3. Task Description of the Checkpointing Agent

• cp seq, msg seq : The sequence number of the latest checkpoint and the
sequence number of the last message which has been received before the
checkpointing.

• checkpoint : The latest checkpoint of MHi.

Figure 3 describes the task of the checkpointing agent, CPAi, and its cooper-
ation model with the recovery agents. As shown in the figure, the checkpointing
agent performs two main tasks as follows:

• Checkpoint Tracking: When an MH takes a new checkpoint, the re-
covery agent of the current cell temporarily takes care of the checkpoint. The
checkpointing agent, CPAi, retrieves the latest checkpoint of MHi, when the
current recovery agent, RA1, forwards the leave(i, MSS2) message with the lat-
est checkpoint information. On the receipt of this message, CPAi replaces the old
checkpoint with the new one, knowing that MHi has taken a new checkpoint in
MSS1 and then left for the next cell covered by MSS2. Since MHi periodically
takes a new checkpoint, CPAi does not necessarily retrieve the new checkpoint
from every recovery agent. When the MH does not take any new checkpoint
before leaving the cell, the recovery agent just sends the leave message with the
null checkpoint information.

Also, the hand-off of MHi and the migration of CPAi are not synchronized.
Hence, when CPAi arrives in a new MSS site, MHi may already have left the
corresponding cell. In this case, the recovery agent sends the leave message with
any checkpoint information as the response of the registration message from
CPAi. Otherwise, if MHi is still active in the current cell, the response from
the recovery agent is delayed until MHi leaves the cell.

• Migration: On the receipt of the leave message from the recovery agent,
the checkpointing agent should decide its migration with the latest checkpoint.
For the checkpoint to be near the MHi, CPAi should migrate to the next site.
However, considering the migration cost, CPAi should stay in the current site if

182 T. Park

the checkpoint is not that far away from MHi. Hence, the checkpointing agent
usually decides its migration balancing the migration cost and the recovery cost.
Two migration strategies can be used as follows:

• Pessimistic Migration: The checkpointing agent migrates every time when
the migration of the MH is notified. Hence, there is a high probability that
the checkpointing agent and the MH are in the same site when a failure
occurs. As a result, the recovery cost can be minimized.

• Time-based Migration: This scheme tries to reduce the migration cost by
the checkpointing agent staying in one site for a pre-determined time period.
After CPAi receives a leave(i, MSSn1) message from RAp, it stays in the
current site for the time period, T , where T should be the time long enough
for MHi to perform a number of migration. CPAi then directly migrates
to the site currently supporting MHi, which reduces the frequency of the
migration and the migration cost.
To search the site currently supporting MHi, CPAi first sends the query
message to RAn1 and RAn1 responses with leave(i, MSSn2) message and
any new checkpoint information if MHi has already left the site. Otherwise,
if MHi is still active in the current site, RAn1 sends the in active(i) mes-
sage to CPAi. If CPAi receives a leave(i, MSSn2) message, it sends another
query to RAn2 and so on, until CPAi finally receives the in active(i) mes-
sage. After finding out the site currently supporting MHi, CPAi migrates
to the target site with the latest checkpoint. If CPAi receives a new check-
point information as the response of the query, it replaces the checkpoint
information before migration.

3.4 Log Agent

The log agent is also a mobile agent and one agent is created for an MH. The main
task of the log agent is to manage the distributed log information. One principle
of our fault-tolerance service model is to put less weight on the log migration,
since collection of logged messages for the failure-recovery is less important to
the early start of the recovery. Also, considering the high migration cost of the
logged messages, the log migration may not be desirable in many cases. Hence,
the log agent manages only the distributed log information, such as the identifier
of the recovery agent which manages the message log and the sequence number
to sort the logged messages for the recomputation. Another task of the log agent
is the garbage collection of the unnecessary log entries. When the log agent
is informed of new checkpointing from the recovery agent, it should send the
garbage collection messages to the recovery agent so that the unnecessary log
entries can be deleted.

For these tasks, the log agent, LGAi, working for MHi, maintains the fol-
lowing information:

• LOG INF : The list of message log entries for MHi. Each entry includes the
following two fields.

Mobile Agent Based Fault-Tolerance Support 183

Fig. 4. Task Description of the Log Agent

• RA id : The identifier of the recovery agent which holds the message logs.
• INF num : The entry number k of the INF (i, k) structure in which the

recovery agent, RA id, records the corresponding message log.

Figure 4 describes the task of the log agent, LGAi, and its cooperation model
with the recovery agents. The migration of LGAi basically follows the pessimistic
migration scheme. As shown in the figure, the log agent performs two main tasks
as follows:

• Distributed Log Management: When LGAi migrates to a site in the travel-
ing path of MHi, it first sends the registration(i) message to the recovery agent,
RAp. When MHi leaves the corresponding cell, RAp sends the leave message
with the k value for the latest entry of INF (i, k) which records the message log
of MHi. LGAi then inserts a new entry into LOG INF , where RA id is set to

184 T. Park

Fig. 5. Failure-Recovery Process

p and INF num is set to k. As a result, LOG INF of LGAi contains a list of
the recovery agents which hold the message logs for MHi.

• Garbage Collection: RAp also sends any new checkpointing information
with the leave message. In the pessimistic message logging approach, the mes-
sage logs taken before any checkpointing are not necessary any more. Hence,
LGAi performs the garbage collection of the message logs in its LOG INF
by sending the garbage collection message to each recovery agent indicated by
LOG INF .RA id.

3.5 Failure-Recovery

Figure 5 describes the failure-recovery process for MHi. The recovery agent, RA,
takes the prime responsibility of the recovery of an MH. Hence, on the receipt of
the recovery(i) message from MHi, the current recovery agent, RAp, contacts
with CPAi and LGAi to collect the checkpoint and the logged messages for
MHi. On the request from RAp, CPAi replies with the latest checkpoint and
LGAi sends the log collection(i) messages to the recovery agent in its LOG INF
list. After collecting the logged messages from other recovery agents, LGAi,
forwards the log list pointer to RAp. For the early start of the recovery process,
RAp starts the recovery of MHi as soon as it receives the latest checkpoint from
CPi, without waiting for the completion of log collection. Then, RAp sorts the
logged messages in the message sequence order and sends them to MHi.

4 Performance

Table 1 briefly compares the performance of the proposed scheme with the ex-
isting schemes suggested in [10, 11, 15]. To denote the migration frequency, the
notations found in [4] are used: FM denotes the full migration in which the

Mobile Agent Based Fault-Tolerance Support 185

Table 1. Performance Comparison

Migration Frequency
Checkpoint Message Log Synchronization
Migration Migration

Pessimistic Scheme in [11] FM FM YES
Lazy Scheme in [11] NM NM YES

Home-based Scheme in [15] FM FM YES
Mobility-based Scheme in [10] JM JM YES

Pessimistic CPM FM NM NO
+ Lazy LGM

Pessimistic CPM FM FM+NM NO
+ Partial LGM

Time-based CPM JM NM NO
+ Lazy LGM

Time-based CPM JM FM+NM NO
+ Partial LGM

recovery information is migrated for each hand-off of the mobile host. NM indi-
cates no migration of any information. JM denotes the jump migration in which
the migration frequency can be controlled so that the recovery information is
migrated for a number of hand-offs of the mobile host.

One notable point of our proposed scheme is that the checkpointing agent
and the log agent separately decide the migration frequencies of the checkpoint
and the message log based on their importance. Compared to this, the existing
schemes make one migration decision for both of the checkpoint and the mes-
sage log. The pessimistic scheme suggested in [11] and the home-based scheme
suggested in [15] require the full migration for both of the checkpoint and the
message log while the lazy scheme in [11] requires no migration of the check-
point and the message log. The mobility-based scheme proposed in [10] allows
the jump migration however the same migration frequency is used for both of
the checkpoint and the message log.

Compared to this, the mobile-agent based scheme can use different frequency
for the checkpoint migration and the log migration. For the checkpoint migration,
the pessimistic or time-based checkpoint migration(CPM) scheme can be chosen.
For the log migration, the basic scheme is the lazy log migration(LGM) scheme.
However, a slightly modified scheme, called a partial log migration scheme, can
be used. In this scheme, early parts of the message log are migrated with the
log agent so that a part of the message log can follow the full migration while
the rest follows no migration. Another notable point of the proposed scheme is
that the migration of the recovery information is not necessarily synchronized
with the hand-off process of the mobile host as indicated in the Synchronization
column of the table.

186 T. Park

5 Conclusions

In this paper, we have proposed an agent based fault-tolerance service for the mo-
bile computing systems. In the proposed scheme, one stationary agent is used to
relieve the burden of the mobile support station and takes the prime responsibility
of the recovery. Two mobile agents are employed to make an efficient migration
decision of the checkpoint and to manage the distributed message log information,
respectively. This paper have described the tasks of three main components of the
fault-tolerance service and also presents the interaction model of three cooperat-
ing agents. In the proposed scheme, the migration of the recovery information of
a mobile host can asynchronously be performed with the hand-off procedure and
the fault-tolerance service does not cause any unnecessary delay on the hand-off
procedure. Another notable point of the proposed scheme is that mobile agents
which have the mobility take care of the recovery information and garbage collec-
tion of those information; and make a decision suitable for each mobile host.

Acknowledgments

This work was supported by grant No. 04-Kicho-051 from the University Fun-
damental Research Program of Ministry of Information & Communication in
Republic of Korea.

References

1. Acharya, A., Badrinath, B.R.: Checkpointing Distributed Applications on Mobile
Computers. Proc. of the 3rd Int’l Conf. on Parallel and Distributed Information
Systems (1994) 73–80

2. Ayildiz, I.F., Ho, J.S.M.: On Location Management for Personal Communications
Networks. IEEE Communications Magazine (1996) 138–145

3. Cao, G., Singhal, M.: Low-Cost Checkpointing with Mutable Checkpoints in Mo-
bile Computing Systems. Proc. of the 18th Int’l Conf. on Distributed Computing
Systems (1998) 464–471

4. Cao, J., Feng, X., Das, S.K.: Mailbox-Based Scheme for Mobile Agent Communi-
cations. IEEE Computer (2002) 54–60

5. Damani, O.P., Garg, V.K.: How to Recover Efficiently and Asynchronously When
Optimism Fails. Proc. of the 16th Int’l Conf. on Distributed Computing Systems
(1996) 108–115

6. Koo, R., Toueg, S.: Checkpointing and Rollback-Recovery for Distributed Systems.
IEEE Transactions on Software Engineering, Vol. SE-13, No. 1 (1987) 23–31

7. Manivannan, D., Singhal, M.: Failure Recovery Based on Quasi-Synchronous
Checkpointing in Mobile Computing Systems. OSU-CISRC-796-TR36, Dept. of
Computer and Information Science, The Ohio State University (1996)

8. Neves, N., Fuchs, W.K.: Adaptive Recovery for Mobile Environments. Communi-
cations of the ACM, Vol. 40, No. 1 (1997) 68–74

9. Park, T., Woo, N., Yeom, H.Y.: An Efficient Optimistic Message Logging Scheme
for Recoverable Mobile Computing Systems. IEEE Transactions on Mobile Com-
puting, Vol. 1, No. 4 (2002) 265–277

Mobile Agent Based Fault-Tolerance Support 187

10. Park, T., Woo, N., Yeom, H.Y.: An Efficient Recovery Scheme for Fault-Tolerant
Mobile Computing Systems. Future Generation Computer Systems, Vol. 19, No. 1
(2003) 37–53

11. Pradhan, D.K., Krishna, P., Vaiday, N.H.: Recoverable Mobile Environment : De-
sign and Trade-Off Analysis. Proc. of the 26th Int’l Symp. on Fault Tolerant Com-
puting Systems (1996) 16–25

12. Prakash, R., Singhal, M.: Low-Cost Checkpointing and Failure Recovery in Mobile
Computing. IEEE Transactions on Parallel and Distributed Computing Systems,
Vol. 7, No. 2 (1996) 1035–1048

13. Schlichting, R.D., Schneider, F.B.: Fail-Stop Processors: An Approach to Designing
Fault tolerant Computing Systems. ACM Transactions on Computer Systems, Vol.
1, No. 3 (1983) 222–238

14. Smith, S.W., Tygar, J.D., Johnson, D.B.: Completely Asynchronous Optimistic
Recovery with Minimal Rollbacks. Proc. of the 25th Int’l Symp. on Fault Tolerant
Computing Systems (1995) 361–370

15. Yao, B., Ssu, K., Fuchs, W.K.: Message Logging in Mobile Computing. Proc. of
the 29th Symp. on Fault Tolerant Computing Systems (1999) 294–301

Preserving Architectural Properties in
Multithreaded Code Generation

Marco Bernardo and Edoardo Bontà

Università di Urbino “Carlo Bo”
Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy

{bernardo, bonta}@sti.uniurb.it

Abstract. Architectural descriptions can provide support for a formal
representation of the structure and the overall behavior of software sys-
tems, which is suitable for an early assessment of the system properties
as well as for the automated generation of code. The problem addressed
in this paper is to what extent the properties verified at the architec-
tural level can be preserved during the code generation process for mul-
tithreaded programs. In order to limit the human intervention, we pro-
pose to separate the thread synchronization management from the thread
behavior translation. While a completely automated and architecture-
driven approach can guarantee the correct thread coordination, we show
that only a partial translation based on stubs is possible for the behav-
ior of the threads, with the preservation of the architectural properties
depending on the way in which the stubs are filled in.

1 Introduction

One of the major objectives of the software architecture level of design [14, 15]
is that of producing a reference document – shared by all the people involved in
the development process – which describes the structure of the software system
as well as the main functional and non-functional aspects of its overall behav-
ior. Whenever such a document is made formal through the use of a suitable
architectural description language (ADL), an early assessment of the gross sys-
tem properties can be carried out. This is the case with process algebraic ADLs,
for which several techniques based on equivalence checking have been developed
for the component-oriented verification and diagnosis of architectural mismatch
freedom [3, 11, 10, 9, 6, 5, 1].

As observed in [7], one of the big issues in the software engineering field
is guaranteeing that the implementation of a software system conforms to its
architectural description. In other words, a way has to be found to check whether
the properties verified at the architectural level are preserved at the code level.
In this respect, it may be helpful to generate code directly from the architectural
description, as the latter represents an abstract model of the final system. Indeed,
the purpose of automatic code generation should be not only to speed up the
system implementation, but also to ensure conformance by construction.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 188–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Preserving Architectural Properties in Multithreaded Code Generation 189

In order to reconcile the (architecture-based) early property assessment and
the (architecture-driven) automated code generation, in this paper we investi-
gate to what extent the architectural properties can be preserved during the
translation of architectural descriptions into code. On the upstream side we
shall concentrate on process algebraic architectural descriptions, while on the
downstream side we shall focus on multithreaded Java programs.

−p −aprogram () / applet ()

Architecture−derived class

...

...

ThreadElem−derived classes

automatically
derived
classes

...T1

Sync package

IBT2 IBTn

ET 2ET1 nET

automatically
generated
stubs

IBT1

T T2 n

Fig. 1. File structure of the generated code

As discussed in [4] and recalled in Sect. 2, a completely automated and
architecture-driven approach can guarantee the correct thread coordination.
Given an architectural description in PADL [1], the approach of [4] is based on
the use of a translator, called PADL2Java, and a Java package, called Sync. The
package is structured around four conceptual layers: Architecture, ThreadElem,
Port, and Connector. As shown in the upper part of Fig. 1, the translator syn-
thesizes a class derived from Architecture plus as many classes derived from
ThreadElem as there are architectural element types in the PADL description.
The instances generated for the ThreadElem-derived classes, i.e. the threads, are
guaranteed to interact as expected thanks to the generation of the appropriate
instances of Port and Connector. On top of the previous classes, there may be
another class with the main() method or an Applet-derived class, depending on
the option with which PADL2Java is invoked.

In order to limit the human intervention, in this paper we propose to sepa-
rate the thread synchronization management from the thread behavior handling,
then we complete the approach of [4] by taking care of the thread behavior trans-
lation. In the process algebraic framework of PADL, the behavior of an architec-
tural element – to be implemented as a thread – is given through a sequence of
equations based on a restricted number of operators: action prefix, choice, and
behavior invocation. In Sect. 3 we show how such process algebraic operators
can be translated into the Java framework. In particular, for the action prefix we
shall see that a different treatment is needed depending on whether the action
– which corresponds to a sequence of thread statements – is an internal action

190 M. Bernardo and E. Bontà

or an interaction. In fact, while the latter is involved in the communications,
hence it is managed as explained in [4], the former can only be rendered as a
stub during the translation of the thread behavior. More precisely, we shall have
stubs for the actions internal to the behavior of the threads (IBT), together with
stubs for the handling of the exceptions raised by the interactions of the threads
(ET), as shown in the lower part of Fig. 1. This means that the translation of
the thread behavior cannot be completely automatic, as should be expected due
to the different levels of abstraction of an ADL and a programming language.

On the theoretical side, we show in Sect. 4 that the preservation of the archi-
tectural properties during the translation process critically depends on the way
in which the IBT and ET stubs are filled in. We shall provide to this purpose a
set of guidelines that guarantee the property preservation along the translation.

In Sect. 5 some remarks are finally reported about related and future work.

2 Thread Coordination

In this section we recall the approach proposed in [4] to ensure a correct thread
coordination for Java programs generated from PADL descriptions.

2.1 The Language PADL

Every PADL description comprises two sections. In the first section, the types
of architectural elements of the software system are defined by specifying their
behavior and their interfaces. The behavior of an architectural element type is
described through a sequence of behavioral equations of the form B(x) = P .
The process algebraic term P has the following syntax:

P ::= stop | a.P ′ | choice{P, . . . , P}
P ′ ::= B(e) | P

where stop is the terminated process, a.P is an application of the action prefix
operator, choice{P1, ..., Pn} is an application of the choice operator, and B(e)
is a behavioral equation invocation.

The interfaces are actions occurring in the behavioral equations, which are
used to interact with other architectural elements in the system. Each interac-
tion has three qualifiers associated with it. The first qualifier establishes whether
the interaction is an input (receiver side) or an output (sender side). The second
qualifier determines the multiplicity of the communications in which the inter-
action can be involved: one-to-one (uni-interaction), conjunctive one-to-many
(and-interaction – e.g. broadcast), and disjunctive one-to-many (or-interaction
– e.g. client-server). The third qualifier establishes whether the interaction par-
ticipates in a communication in a synchronous or asynchronous way.

In the second section of a PADL description, the topology of the system is
defined by declaring the instances of the previously defined types of architectural
elements, the interactions that act as interfaces for the whole system (useful for
hierarchical modeling), and the attachments among the other interactions of the
architectural element instances.

Preserving Architectural Properties in Multithreaded Code Generation 191

We conclude by exemplifying PADL through the description of a simple ar-
chitectural element type, which will be reused in Sect. 3.6 to illustrate the thread
generation. The architectural element Checker Type that we consider gets val-
ues from another architectural element until a value is received that coincides
with an expected one, then forwards the value to another architectural element
and terminates. The values that are different from the expected one are printed
out as long as they are received. Here is the PADL description of Checker Type:

ELEM_TYPE Checker_Type(const integer expected_value)
BEHAVIOR
Getting_Value(void; local integer received_value) =
<get_value?(received_value), _> . Checking_Value(received_value);

Checking_Value(integer received_value; void) =
choice {
cond(received_value = expected_value) ->
<prepare_to_forward, _> .
<forward_value!(received_value), _> . stop,

cond(received_value != expected_value) ->
<prepare_to_print, _> . Printing_Value(received_value)

};
Printing_Value(integer received_value; void) =
<print_value!(received_value), _> . Getting_Value()

INPUT_INTERACTIONS UNI SYNC get_value
OUTPUT_INTERACTIONS UNI SYNC forward_value

Checker Type has three behavioral equations: Getting Value, Checking Value,
and Printing Value. Within the equations, every action is represented through
its name – possibly followed by a parameter that is separated from the action
name by “?” (resp. “!”) in the case of an input (resp. output) action – and the
information about its priority level and its weight – “ ” is used to denote the
default values. Unlike the other actions, the two actions prepare to forward
and prepare to print are preceded by a boolean guard, which establishes the
condition under which these actions can be executed based on the compari-
son of the received value with the expected one. These two actions together
with print value are internal, whereas get value is an input synchronous uni-
interaction and forward value is an output synchronous uni-interaction.

2.2 The Java Package Sync

The package Sync offers a set of facilities to support the development of multi-
threaded Java programs by handling the details of the thread synchronization in
a way that is transparent to the software developer. This package is organized
into four conceptual layers: Architecture, ThreadElem, Port, and Connector.
Each layer corresponds to a different architectural abstraction and comprises a
set of components realized through Java classes and interfaces.

The first layer, Architecture, is an abstract class containing components
belonging to lower layers. On the implementation side, Architecture is derived

192 M. Bernardo and E. Bontà

from the class ThreadElem. This means that an arbitrarily complex architecture
is a thread, which is useful for systems modeled in PADL in a hierarchical way.

The second layer, ThreadElem, is a class that inherits from the Java class
Thread. The reason why a derived class has been defined instead of directly using
the class Thread is related to the translation of the behavior of the architectural
elements of a PADL description into the corresponding Java threads. As we shall
see in Sect. 3, this is accomplished through additional methods made available
in the class ThreadElem.

The third layer, Port, realizes the abstraction corresponding to a set of state-
ments through which a thread interacts with other threads. Based on the syn-
chronization model adopted in PADL, there are twelve types of Port: six are syn-
chronous and six are asynchronous. If a Port is synchronous, it waits – and the
thread that contains it passivates – until the communication has been established.
If a Port is asynchronous, it communicates if the other connected Port is willing
to communicate with it, otherwise an exception is raised and no communication
takes place. Both in the synchronous and in the asynchronous mode, three types
of Port are on the sender side and the other three are on the receiver side. A send-
ing Port can transfer to one or more receiving Ports an array of generic Objects
using the method send(). Similarly, a receiving Port can receive from one or more
sending Ports an array of generic Objects using the method receive(). A null
array represents a pure synchronization signal. Both on the sender and on the re-
ceiver side, the three types are termed “uni”, “and”, and “or”. A uni-Port inter-
acts with only one Port of another thread. An and-Port, instead, interacts with
several Ports of other threads in a broadcast fashion. Finally, an or-Port interacts
with only one Port of a thread selected out of a set of other threads.

The fourth layer, Connector, sets up a communication link between a send-
ing Port and a receiving Port of two different threads. There are four types
of Connector in order to cover all the possible combinations of the types (syn-
chronous vs. asynchronous) of the two connected Ports. The package contains
an internal mechanism – through the method attach() defined in the layer
Architecture – that, given two Ports, creates a Connector of the right type.

2.3 The Translator PADL2Java

Once the PADL description of a multithreaded Java program has been provided,
the software developer can use the translator PADL2Java to generate a skeleton
of the program itself. As illustrated in the upper part of Fig. 1, the automati-
cally generated Java code imports the package Sync and is composed of several
classes derived from ThreadElem, each representing the corresponding architec-
tural element type defined in the PADL description, as well as a class derived
from Architecture, which corresponds to the overall PADL description.

The Architecture-derived class has five completely specified sections: declar-
ing threads, declaring architectural interactions, defining constructor, building
architecture, and running architecture.

Each ThreadElem-derived class has instead the following four sections: defin-
ing constructor, defining behavior, instantiating input interactions, and instan-

Preserving Architectural Properties in Multithreaded Code Generation 193

tiating output interactions. All of these sections are completely specified, except
for defining behavior, whose generation is the focus of this paper and will be
discussed in Sect. 3.

Finally, in the automatically generated code there is in addition a class with
the main() method or an Applet-derived class, whenever PADL2Java is invoked
with option -p (for program) or -a (for applet), respectively. If option -c (for
class) is used, then no wrapper class is added to the generated code.

3 Thread Behavior

The approach of [4] only deals with thread coordination. The contribution of this
section is to show how to translate the PADL description of an architectural ele-
ment type into a thread. The resulting code will fill in the defining behavior section
of the corresponding ThreadElem-derived class, as anticipated in Sect. 2.3.

The basic idea is that, besides the method run() already defined as abstract
in the Java base class Thread, within the defining behavior section we need to
generate some additional methods that are the Java translation of the PADL
behavioral equations. The generation of these behavioral methods must then be
complemented by the generation of some stubs, as depicted in the lower part of
Fig. 1. Each such stub is a class containing either a method for every internal
action occurring in the PADL description of the behavior of the thread (IBT), or
a method for every interaction occurring in the PADL description of the behavior
of the thread that can result in an exception to be handled (ET).

Thus, for every architectural element type contained in a PADL descrip-
tion, PADL2Java will have to generate not only a ThreadElem-derived class, but
also two classes for the internal action translation and the interaction-related
exception handling, respectively. The ThreadElem-derived class will declare as
protected members two objects of class IBT and ET, respectively, and will in-
stantiate these objects within the method run().

Unlike the method run() and the behavioral methods, which are completely
generated in an automatic way, the methods contained in the IBT and ET stubs
have to be manually filled in by the developer. The reason is that, in the case
of the IBT stubs, the methods are associated with the execution of the inter-
nal actions. An internal action describes at a high level of abstraction a set
of operations to be carried out by the thread, so in general it will correspond
to a sequence of Java statements to be defined by the developer. Likewise, the
way in which an exception raised by an interaction has to be handled must be
established by the developer.

In this section, we first analyze the execution flow of a thread and show how
to generate the method run() avoiding recursion (Sect. 3.1). Then we show how
to generate the code for the behavioral methods by proceeding by induction on
the syntactical structure of the process algebraic terms occurring in the right-
hand side of the corresponding behavioral equations (Sect. 3.2 to 3.5). Finally,
we show an example of Java thread code generated from the PADL description
of a specific architectural element type (Sect. 3.6).

194 M. Bernardo and E. Bontà

3.1 The Execution Flow and the Method run()

The execution flow of a Java thread generated with PADL2Java is determined
by the behavioral equations – translated into as many behavioral methods – of
the corresponding architectural element type of the PADL description. In order
to generate efficient Java code, in the translation process we have to get rid of
the frequently occurring recursive behavioral invocations. In the process algebraic
syntax only tail recursion comes into play, which is easy to transform into iteration.

Following [8], one possibility is to generate a while statement containing
an if-elseif statement – or equivalently a switch-case statement – through
which the next behavioral method to be executed is selected based on a label
variable. Instead of invoking the next method, before returning each method
properly sets the label variable.

Unfortunately this approach is not efficient when several method calls are
contained within the conditional statement, because several checks must be done
for different cases in every cycle. We therefore propose a variant of this approach,
in which the address of the method to be executed is used, instead of a label
variable. Since pointers are not available in Java, we exploit Java reflection in a
transparent way to accomplish this task.

In order to implement our proposal, three protected methods are added to
the class ThreadElem. The first method, behavEqList(), accepts as input an
array of elements of class BehavEqId, each of which is an object containing in-
formation – name and formal parameters – about a behavioral method belonging
to a ThreadElem-derived class. The method behavEqList() builds a map of the
behavioral methods that translate the behavioral equations in the architectural
element type for the ThreadElem-derived class. This static map is then used to
retrieve a behavioral method, given its index (indices start from 0).

The second method, behavEqNext(), requires to specify the index and the
actual parameters of the next behavioral method to be executed. The method
behavEqNext() returns false if the index is equal to or greater than the number
of behavioral methods, or if the actual parameters do not match the formal
parameters previously specified with behavEqList(). Otherwise, the method
behavEqNext() returns true and the method retrieved from the map is placed
into a private ThreadElem member variable. The value of this variable is set to
null if the next behavior of the thread is described by process term stop.

The third method, behavEqCall(), invokes the behavioral method previ-
ously placed in the private ThreadElem member variable by behavEqNext(). The
method behavEqCall() returns true if the last invocation of behavEqNext()
has been successful and the value of the private ThreadElem member variable is
not null. The returned value determines whether the body of the while state-
ment has to be repeated or not.

In the automatically generated code, behavEqList() with the appropriate
parameters is invoked by the constructor of the ThreadElem-derived class. The

Preserving Architectural Properties in Multithreaded Code Generation 195

methods behavEqNext() and behavEqCall(), instead, are invoked by run().
The latter is redefined in the defining behavior section of the ThreadElem-derived
class, just before the definition of the behavioral methods:

public void run() {
<IBT instantiation>
<ET instantiation>
behavEqNext(0, <actual parameters of the first equation>);
while (behavEqCall());

}

The call to the method behavEqNext() specifies the first behavioral method to
be executed, which has index 0 in the map, together with its actual parameters.

3.2 Behavioral Invocations

The behavioral invocation B(e) represents a process term that behaves as the
behavioral equation whose identifier is B, when passing the possibly empty se-
quence of actual parameters e. A behavioral invocation, which can occur only
within the scope of an action prefix operator, is not translated into a behavioral
method call, as this may result in the generation of inefficient code in case of
recursion. Instead, a behavioral invocation is translated into an invocation of
behavEqNext(), to which the index and the actual parameters of the behavioral
method associated with the invoked behavioral equation are passed.

3.3 Stop

Process term stop represents the situation in which no further action can be
executed. The process term stop is translated into an invocation of the method
behavStop() defined in the class ThreadElem. The method behavStop() is sim-
ilar to the method behavEqNext(), but it does not return any value, it has no
input parameters, and causes the method run() to terminate because the next
invocation of behavEqCall() returns false.

3.4 Action Prefix

The action prefix operator is used to represent a process term that can execute an
action and then behaves as described by another process term. Every action has
three pieces of information associated with it: (i) a boolean guard, expressing the
possible constraint under which the action can be enabled (default value true),
(ii) a positive integer number representing a priority level, which is used when
resolving choices among several enabled actions (default value 1), and (iii) a
positive real number representing a weight, which is used when resolving choices
among several enabled actions with the same priority (default value 1.0).

In PADL an action can be an interaction or an internal action. In the Sync-
based thread coordination, the output/input interactions are translated into
invocations of the methods send()/receive() within the instances of the classes
of layer Port, as described in Sect. 2.2. However, since send() and receive()

196 M. Bernardo and E. Bontà

can be subject to the following two exceptions, the translation of the interactions
must be completed by filling in the corresponding ET stubs.

The first exception, UnattachedPortException, is raised when an architec-
tural interaction is executed, which is not attached to any other interaction.
In this case, the architectural interaction is like an internal action, hence the
sequence of Java statements translating it has to be manually provided.

The second one, AsyncPortNotReadyException, is raised when an asyn-
chronous interaction is executed, but the other party is not ready to commu-
nicate with it. In this case, the thread containing the asynchronous interaction
goes on, but the developer may want to add some Java statements to deal with
this event.

Unlike the interactions, which are completely translated in an automatic way
up to the handling of the exceptions that they may rise, the internal actions
cannot be treated automatically at all. A method for each of them is placed in
an IBT stub, which has to be filled in by the developer with the corresponding
Java statements. As a consequence, every occurrence of an internal action is
translated into an invocation of the related method in an IBT stub.

3.5 Choice

The choice operator expresses a selection among a certain number of alternative
behaviors described through process terms. A choice-based process term is trans-
lated into a switch-case statement, whose condition is given by an invocation
of the method choice() defined in the class ThreadElem.

There are two cases that must be addressed in order to translate the choice
operator. The first one is the case where every process term involved in the
choice starts with an action prefix operator. In this case the method choice()
is directly employed, which accepts as input an array of objects of class ChAct,
each of which contains the three pieces of information mentioned in Sect. 3.4
about one of the starting actions. Should one of the starting actions be an in-
teraction, an additional piece of information is contained in the corresponding
object, which is a reference to the object Port associated with the interaction.
The method choice() returns the index (within the array) of the starting action
selected for execution.

A starting action can be selected if: (i) its guard evaluates to true, (ii) the
corresponding Port object is ready to send or receive, whenever the starting
action is an interaction, and (iii) its priority is not less than the priority of the
other enabled starting actions, with its weight being used to probabilistically
solve the choice among the enabled starting actions with the highest priority. If
all the enabled starting actions are interactions, the method choice() waits –
and the thread that contains it passivates – until one of the associated Ports is
ready to communicate. If the array that contains the objects of class ChAct is
empty or all the guards of the starting actions evaluate to false, the method
choice() returns a negative value.

Based on the index returned by choice(), the switch-case statement in-
vokes the method associated with the execution of the selected starting action.

Preserving Architectural Properties in Multithreaded Code Generation 197

This method is send() or receive() in the case of an interaction, whereas for
an internal action it is the corresponding method in an IBT stub. The invoca-
tion of this method is followed in turn within the switch-case statement by the
translation of the process term prefixed by the selected action. In the default
clause, which comes into play when a negative value is returned by choice(),
the method behavStop() is invoked.

The second case is the one in which some of the process terms involved in
the choice do not start with an action prefix operator. If one of these process
terms is stop, then nothing has to be added for it in the ChAct array and the
switch-case statement, because the method behavStop() is selected by default
whenever the other involved process terms cannot be selected. If instead one of
these process terms is a nested choice, then a flattening of the nested choice
takes place during the translation. This means that the ChAct array and the
switch-case statement for the outer choice are extended in order to include all
the alternative starting actions that are contained in the inner choice. The event
in which one of the process terms involved in the choice is a behavioral invocation
cannot happen, because a behavioral invocation can only occur within an action
prefix operator.

3.6 Example of Thread Behavior Generation

In order to illustrate all the features of the proposed approach, we conclude
by showing the translation into a Java thread of the architectural element type
described with PADL in Sect. 2.1. A more complex and realistic example can be
found at http://www.sti.uniurb.it/bonta/java_audio_proc/.

Below we exhibit the defining behavior section automatically generated for
the ThreadElem-derived class Checker Type, which comprises the method run()
along with the three behavioral methods associated with the three behavioral
equations of the considered architectural element type:

public void run() {
act_Checker_Type = new IBT_Checker_Type();
// no ET instantiation as there are
// no architectural interactions and no asynchronous interactions
behavEqNext(0, null);
while (behavEqCall());

}
public void Getting_Value() {
Integer received_value;
try {
Object obj[] = get_value.receive();
received_value = (Integer)obj[0];

} catch (SyncException e) {}
behavEqNext(1, new Object[] {received_value});

}

198 M. Bernardo and E. Bontà

public void Checking_Value(Integer received_value) {
switch(
choice(new ChAct[] {
new ChAct(received_value.intValue() == expected_value, 1, 1.0),
new ChAct(received_value.intValue() != expected_value, 1, 1.0)

})
)
{
case 0:
act_Checker_Type.prepare_to_forward();
try {
forward_value.send(new Object[] {received_value})

} catch (SyncException e) {}
behavStop();
break;

case 1:
act_Checker_Type.prepare_to_print();
behavEqNext(2, new Object[] {received_value});
break;

default:
behavStop();
break;

}
}
public void Printing_Value(Integer received_value) {
act_Checker_Type.print_value(received_value);
behavEqNext(0, null);

}

The three behavioral methods are numbered 0, 1, and 2 in the array built by
the method behavEqList() invoked from within the constructor of the Java
class Checker Type. Therefore, these are the indices that occur above in the
invocations of method behavEqNext().

The interactions get value and forward value are translated into invoca-
tions of the methods receive() and send(), respectively, which are defined
in the corresponding Ports. Since such methods can throw exceptions of class
SyncException defined in the package Sync, their invocation must be controlled
using a try-catch statement. The class SyncException is the superclass of
UnattachedPortException and AsyncPortNotReadyException mentioned in
Sect. 3.4, which need to be handled with suitable methods to be manually defined
in the ET stub. Since none of get value and forward value is architectural or
asynchronous, no exception handler is needed for them, which explains why no
ET stub is instantiated by the method run().

The three methods prepare to forward(), prepare to print(), and
print value() related to the internal actions are invoked on the object
act Checker Type, which is of class IBT Checker Type. This object is declared as
a protected member within the class Checker Type and is then instantiated within
the method run() above. The class IBT Checker Type is defined as follows:

Preserving Architectural Properties in Multithreaded Code Generation 199

class IBT_Checker_Type {
// ADD CLASS MEMBER DECLARATIONS IF NEEDED
IBT_Checker_Type() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}
void prepare_to_forward() {
// FILL IN THE METHOD BODY

}
void prepare_to_print() {
// FILL IN THE METHOD BODY

}
void print_value(Integer received_value) {
// FILL IN THE METHOD BODY

}
}

The methods associated with the three internal actions will have to be manually
filled in by the developer based on the semantics of the internal actions them-
selves. The developer is also allowed to fill in the body of the constructor of the
class IBT Checker Type and to add member declarations whenever needed.

4 Preservation of Architectural Properties

PADL is equipped with a component-oriented technique based on equivalence
checking for verifying the freedom from architectural mismatches [1]. These are
the malfunctionings that arise when assembling together several components
that are correct if considered in isolation. More precisely, the class of properties
dealt with by the technique – which includes for instance deadlock freedom – is
characterized by three constraints. First, the properties can only be concerned
with the interactions, as they are the actions through which the components
communicate. Second, for each property P in the class, there must exist a weak
equivalence ≈P coarser than ≈B (weak bisimulation [13]) that preserves P –
it never equates two process terms such that one of them satisfies P while the
other does not – and is a congruence with respect to the static process algebraic
operators. Third, the (action-based) temporal logic in which the properties of
the class are expressed cannot allow the negation to be freely used.

An important issue is to guarantee that the properties proved at the architec-
tural level are then preserved at the code level. Since we have taken an approach
based on automatic code generation, property preservation should be achieved
by construction. In other words, the translation from PADL to Java illustrated
before should have been defined in a way that ensures the property preservation.
This is what we are going to investigate in this section.

4.1 Code Generated for the Thread Management

The code for handling the threads is completely generated in an automatic way
by means of the package Sync. As far as the system topology is concerned, this

200 M. Bernardo and E. Bontà

is built in the Architecture-derived class in the same way as prescribed by the
second section of the PADL specification.

As far as the thread coordination is concerned, both PADL and Sync ad-
here to the same synchronization model. On the PADL side, each interaction is
given three qualifiers: output vs. input, uni vs. and vs. or, synchronous vs. asyn-
chronous. Each interaction is then translated into an invocation of the method
send() or receive() defined in the corresponding Port, depending on whether
it is an output or an input interaction, respectively. Additionally, the kind of
this Port (uni vs. and vs. or, synchronous vs. asynchronous) is the same as that
of the interaction.

As a consequence, the code generated for managing the threads cannot in-
fringe the preservation of the architectural properties, up to the methods for
handling the exceptions raised by architectural and asynchronous interactions.

4.2 Code Generated for the Behavioral Equations

Each behavioral equation occurring in the PADL description of an architec-
tural element type is translated into a behavioral method of the corresponding
ThreadElem-derived class. The translation proceeds by induction on the syn-
tactical structure of the process term on the right-hand side of the behavioral
equation, based on the operators that occur in such a process term. The way in
which the translation is carried out, together with the way in which the thread
execution flow proceeds according to the order established by the invocations
of the behavioral equations, ensures the preservation of the process algebraic
semantics, up to the methods related to the internal actions.

4.3 Code Provided for Filling in the Stubs

In conclusion, the preservation of the architectural properties critically depends
on the way in which the developer manually fills in the IBT and ET stubs. Here
we shall consider only the IBT stubs, as the ET stubs can be treated similarly.

1

2

1

2

m m

stat

stat

abstraction
a

a

stat a

a

refinement

Fig. 2. Internal action refinement and related statement abstraction

In order to be able to reason about the architectural property preservation,
we have to compare the internal actions and the corresponding sequences of
Java statements on the same process algebraic ground. As shown in Fig. 2, the
Java statements into which an internal action is refined during the translation
process can be abstractly viewed as fresh actions. The following theorem provides

Preserving Architectural Properties in Multithreaded Code Generation 201

a sufficient condition for ensuring the preservation of an architectural property
of the considered class. Below, we denote by / the hiding operator and by %B
the observational congruence of [13].

Theorem 1. Let T be the process algebraic description of the behavior of a thread
and let a be an internal action occurring in T. Let a1, a2, ..., am be the fresh
actions abstracting the statements into which a is translated and let T’ be the
process algebraic description of the behavior of the thread obtained from T by
replacing every occurrence of a. with a1.a2.am. . Let H be the set of
internal actions occurring in T or T’. Whenever T satisfies P and a.stop / H
%B a1.a2.am.stop / H, then T’ satisfies P as well.

Proof. Since %B is a congruence with respect to all the process algebraic oper-
ators, from a.stop / H %B a1.a2.am.stop / H it follows that T / H
%B T’ / H, hence T / H ≈B T’ / H. Since P must be equipped with a weak
equivalence ≈P coarser than ≈B, it follows that T / H ≈P T’ / H. Since T sat-
isfies P, ≈P preserves P, and P can only make assertions about the interactions
(which do not belong to H), it follows that T’ satisfies P as well.

Note that in the theorem above it is not necessarily the case that all of
the actions a1, a2, ..., am associated with the Java statements provided by
the software developer belong to H. As an example, one of such actions may
correspond to an invocation of send()/receive() or of a behavioral method.
Fortunately, both cases are prevented from occurring by the fact that the Port in-
stances – which contain methods send() and receive() – and the ThreadElem-
derived class instances – which contain the behavioral methods – are not visible
within the stubs.

We conclude by providing some guidelines that the developer should follow
when filling in the stubs in order to preserve the architectural properties:

– No synchronized methods should be defined within the stubs, so that meth-
ods like wait() and notify() – which could not be abstracted through
internal actions – cannot occur within the stubs.

– No further thread should be created within the stubs, as this would have an
observable impact on the system topology and the thread coordination.

– There should be no variables/objects that are visible from several stub
classes. This means that all the data shared by several threads should be
exchanged only through suitable components of the package Sync.

– In the stub method associated with the first internal action following an
invocation of the method send() (resp. receive()), every object that has
been passed in that invocation should be copied, with all the stub methods
associated with the subsequent internal actions working on that copy of the
object. This avoids interferences among threads stemming from the fact that
the method send() always keeps a reference to the passed objects – so that
it can be defined in the package Sync in a way that supports arbitrarily
many parameters of arbitrary types – and such objects may be modified by
the stub method associated with some internal action.

202 M. Bernardo and E. Bontà

– All the exceptions that can be raised when executing a stub method should
be caught or prevented from being raised inside the stub method itself.

– Non-terminating statements should be avoided within the stub methods.

5 Conclusion

In this paper we have addressed the problem of automatically generating multi-
threaded programs from formal architectural descriptions, in a way that builds
on [4] and preserves the properties proved at the architectural design level. Since
the preservation of the architectural properties critically depends on the way in
which certain methods are manually filled in by the developer, we have provided
some guidelines that should be followed when completing such methods.

Concerning related work that addresses both architecture-driven code gener-
ation and architectural property preservation, we have ArchJava and C2SADEL.
ArchJava [2] is an extension of Java aiming at the unification of software archi-
tecture with implementation, in order to ensure that the implementation con-
forms to the architectural description with respect to communication integrity.
According to this property, each component in the implementation may only
communicate directly with the components to which it is connected in the ar-
chitecture. Our approach differs from ArchJava in several ways. First, it does
not extend Java, but generates Java code from process algebraic architectural
descriptions. In our approach the developer is then required to fill in some stubs
to complete the code for the behavior of the threads, thus giving a certain degree
of flexibility. The price to be paid is that the guidelines may be violated, whereas
a similar situation is not possible in ArchJava. Second, our approach focuses on
the issue of correct thread coordination with respect to a rich synchronization
model implemented in Sync. This guarantees a property that is even stronger
than communication integrity: Implementation threads directly communicate
only with the threads they are connected to in the architectural description, in
the way prescribed by the architectural description itself with respect to the
communication mode (synchronous, asynchronous, asymmetric) and the com-
munication multiplicity (uni-uni, and-uni, or-uni). Third, our approach is more
general in the sense that it considers the preservation of a class of architectural
properties related to the system behavior, rather than a specific static property.
This is formalized through a theorem and a set of guidelines that the developer
should follow when filling in the stubs.

C2SADEL [12] is an ADL tied to the C2 style, which combines the usual
architectural concepts with type theory. Type checking is used to analyze the
architectural descriptions for consistency by unifying corresponding operations
required and provided by different components. Moreover, Java code can be
automatically generated from C2SADEL descriptions. Since type checking is a
static analysis technique, while the architectural properties on which we focus
are dynamic and concerned with a rich synchronization model, the differences
between our approach and C2SADEL are similar to those above between our
approach and ArchJava.

Preserving Architectural Properties in Multithreaded Code Generation 203

For the future we plan to make some experiments to assess on the field the
effectiveness of the proposed framework as well as the performance of the gen-
erated code. We also would like to investigate the applicability of our approach
to C2SADEL, in order to take advantage of both type checking and behavioral
analysis from the architectural level to the code level. Moreover, it would be
interesting to combine our approach with ArchJava – by generating ArchJava
code instead of Java code – in order to exploit their complementary strengths.

References

1. A. Aldini and M. Bernardo, “On the Usability of Process Algebra: An Architectural
View”, to appear in Theoretical Computer Science.

2. J. Aldrich, C. Chambers, and D. Notkin, “ArchJava: Connecting Software Archi-
tecture to Implementation”, in Proc. of the 24th Int. Conf. on Software Engineering
(ICSE 2002), IEEE-CS Press, pp. 187-197, Orlando (FL), 2002.

3. R. Allen and D. Garlan, “A Formal Basis for Architectural Connection”, in ACM
Trans. on Software Engineering and Methodology 6:213-249, 1997.

4. M. Bernardo and E. Bontà, “Generating Well-Synchronized Multithreaded Pro-
grams from Software Architecture Descriptions”, in Proc. of the 4th Working
IEEE/IFIP Conf. on Software Architecture (WICSA 2004), IEEE-CS Press,
pp. 167-176, Oslo (Norway), 2004.

5. M. Bernardo, P. Ciancarini, and L. Donatiello, “Architecting Families of Soft-
ware Systems with Process Algebras”, in ACM Trans. on Software Engineering and
Methodology 11:386-426, 2002.

6. C. Canal, E. Pimentel, and J.M. Troya, “Compatibility and Inheritance in Software
Architectures”, in Science of Computer Programming 41:105-138, 2001.

7. D. Garlan, “Formal Modeling and Analysis of Software Architectures: Compo-
nents, Connectors, and Events”, in Formal Methods for Software Architectures,
LNCS 2804:1-24, 2003.

8. R. Guimarães and W. Borelli, “An Automatic Java Code Generation Tool for
Telecom Distributed Systems”, in Proc. of the Int. Conf. on Software, Telecommu-
nications and Computer Networks (SOFTCOM 2002), Split (Croatia), 2002.

9. P. Inverardi and S. Uchitel, “Proving Deadlock Freedom in Component-Based Pro-
gramming”, in Proc. of the 4th Int. Conf. on Fundamental Approaches to Software
Engineering (FASE 2001), LNCS 2029:60-75, Genova (Italy), 2001.

10. P. Inverardi, A.L. Wolf, and D. Yankelevich, “Static Checking of System Behaviors
Using Derived Component Assumptions”, in ACM Trans. on Software Engineering
and Methodology 9:239-272, 2000.

11. J. Magee and J. Kramer, “Concurrency: State Models & Java Programs”, Wiley,
1999.

12. N. Medvidovic, D.S. Rosenblum, and R.N. Taylor, “A Language and Environment
for Architecture-Based Software Development and Evolution”, in Proc. of the 21st
Int. Conf. on Software Engineering (ICSE 1999), IEEE-CS Press, pp. 44-53, Los
Angeles (CA), 1999.

13. R. Milner, “Communication and Concurrency”, Prentice Hall, 1989.
14. D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture”,

in ACM SIGSOFT Software Engineering Notes 17:40-52, 1992.
15. M. Shaw and D. Garlan, “Software Architecture: Perspectives on an Emerging

Discipline”, Prentice Hall, 1996.

Prioritized and Parallel Reactions
in Shared Data Space Coordination Languages

Nadia Busi and Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Università di Bologna,
Piazza di Porta S. Donato 5, I-40127 Bologna, Italy

{ busi, zavattar}@cs.unibo.it

Abstract. Reactive programming has been added to the traditional
Linda programming style in order to deal with the dynamic aspects of
those applications in which it is important to observe modifications of
the environment which occur quickly. Reactive programming is embed-
ded in shared data spaces by defining the observable entities and the
corresponding reactions that usually are processes possibly executing co-
ordination primitives. Typical observable entities are the presence in the
space of a datum (state-based) or the execution of a particular primi-
tive (event-based). In this paper we consider different models of reaction
execution adopted in the coordination literature so far, namely the prior-
itized model (used e.g. in MARS [3], TuCSoN [8] and LIME [9]) and the
parallel execution model (considered e.g. in JavaSpaces [13], TSpaces
[14] and WCL [11]). Prioritized reactions are usually implemented at
server-side as during their execution no other coordination primitives
can take place; parallel reactions, more suited when reactions are exe-
cuted at client-side, are executed in parallel with the other processes in
the system (thus other coordination primitives can interleave with the
reactions). Using a process algebraic setting we perform a rigorous inves-
tigation of the relative advantages and disadvantages of these two models
for reaction execution.

1 Introduction

The development of Linda-like coordination languages [4] for use over wide-area
or mobile networks has driven the consideration of new primitives being added
to allow new styles of coordination. One set of such primitives are those that
allow reactive-programming, essentially allowing a program to be notified on
the availability of a tuple or the execution of a particular primitive. Examples
of Linda-like coordination languages including such reactive mechanisms are
MARS [3], TuCSoN [8], LIME [9], JavaSpaces [13], TSpaces [14] and WCL [11].

Similarly, in all these languages reactions are processes that possibly execute
coordination primitives; the difference is in what can activate the reactions and
how the reactions are executed. We call observable entities those entities that
can activate a reaction; we call reaction execution model the rules governing the
execution of the activated reactions.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 204–219, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Prioritized and Parallel Reactions 205

In this paper we focus on the two different reaction execution models consid-
ered in the coordination literature so far. In the prioritized model the reactions
are executed (activated and completed) immediately after the observation oc-
curs. While reactions are under execution, the other processes in the system
cannot access the data space. This model is usually adopted when reactions are
executed on server-side, that is within the implementation of the shared data
space. On the contrary, in the parallel execution model, the reactions are only
activated immediately after the observation, and they are executed in parallel
with the other processes in the system; in this way, reactions do not block the
execution of the other processes in the system. This model is particularly suited
when the reactions are executed on client-side, i.e. when the shared data space
implementation simply invokes the reactions that are actually executed by the
devices hosting the processes accessing the data space. The prioritized model
is adopted in MARS [3] and TuCSoN [8]. LIME [9] supports both the reaction
execution models. JavaSpaces [13], TSpaces [14] and WCL [11] adhere to the
parallel model.

In order to compare these two approaches, we consider two Linda-like process
calculi extended with reactive mechanisms that differ for the reaction execution
model. As far as the parallel execution model is concerned, we consider the calcu-
lus and the results proved in a previous paper [1] where a calculus modeling the
notify primitive of JavaSpaces has been introduced. More precisely, the primi-
tive notify(a, R) is analysed that installs a listener responsible for activating the
execution of the reaction R everytime a new instance of a datum a is introduced
in the shared data space. As far as the prioritized execution model is concerned,
we introduce a new calculus named ReactLinda which is essentially the adapta-
tion of the calculus in [1] to the prioritized model. The new calculus has only two
differences with respect to the previous one; the first difference is the name of
the reactive coordination primitive (reactsTo(a, R) instead of notify(a, R)); the
second difference is in the operational semantics: in ReactLinda the presence of
uncompleted reactions disables the other processes in the system from executing
coordination primitives.

We use the two process calculi in order to investigate the possibility to encode
one mechanism into the other one. Intuitively, we have that the parallel execution
model can be encoded in the prioritized one. The idea is to delegate the execution
of the reactions to parallel processes that are blocked willing to consume some
activation data that are produced by the prioritized reactions. More formally,
we can consider an encoding function [[]] such that

[[notify(a, R)]] = reactsTo(a, out(aR)) | !in(aR).R

where aR is the name used for the activation datum, and !in(aR).R is the par-
allel composition of an unbonded amount of processes willing to consume the
activation datum and subsequently execute the reaction R.

On the contrary, the modeling of reactsTo in terms of notify is clearly more
complex because it is necessary to block the execution of the processes while
reactions are in execution. This can be realized exploiting locks that forbid the

206 N. Busi and G. Zavattaro

processes from accessing the data space. Following this approach, the problem
is how to detect the termination of the reactions in order to remove the lock;
indeed, the number of listeners that observe a specific event is unpredictable
(it depends on the run time behaviour of the system) thus also the number of
reactions that are triggered by that event.

This informal discussion shows (some of) the difficulties that are encoutered
while trying to encode the prioritized into the parallel reaction execution model.
Using the process calculi we are able to formally prove an interesting impossibil-
ity result. This result is based on the decidability of properties such as process
termination (i.e. existence of a finite completed computation) and process di-
vergence (i.e. existence of an infinite computation). In [1] we proved that in the
calculus with notify termination is undecidable while divergence is decidable. In
ReactLinda, on the contrary, both termination and divergence are undecidable.

As a consequence we have the following impossibility result: there exists no
computable encoding of the prioritized reaction execution model into the parallel
model that preserves divergence. From a theoretical point of view, this proves
that the prioritized model is strictly more expressive than the parallel model. On
the other hand, from a practical point of view, the undecidability of divergence
(and termination) is a rather negative result. In fact, in the prioritized reaction
execution model, reactions are expected to complete with neither deadlock nor
divergence otherwise the rest of the system is blocked indefinitely.

In light of this observation about the practical usage of prioritized reactions,
we continue our investigation trying to point out a significant decidable fragment
for ReactLinda. In this perspective, we eliminate the unique explicit infinite
operator, i.e. the replication operator, from ReactLinda and we investigate the
decidability of termination and divergence in the obtained fragment, that we call
ReactLinda-!.

The elimination of the replication operator does not necessarily brings to a
finite calculus as reactive programming permits to simulate replication. For in-
stance, the process reactsTo(a, out(a).P).out(a) activates an unbounded amount
of copies of process P , simply by permitting to a reaction to perform an out op-
eration that triggers another instance of the reaction itself.

Even if the replication operator can be simulated following this approach,
ReactLinda-! is more decidable than ReactLinda. Indeed, in ReactLinda-!both
termination and divergence turn out to be decidable (while they are both unde-
cidable in ReactLinda). This result is proved resorting to a Petri net semantics.

This theoretical result is of interest also from a practical viewpoint. Indeed,
ReactLinda-! canbeused as a referencemodel for prioritized reactionswhere both
termination and divergence can be decided. In languages such as MARS and LIME
restrictions are imposed to the reactive model in order to guarantee the comple-
tion of reactions. For instance, in MARS reactions cannot trigger other reactions,
while in LIME blocking operations cannot be used inside reactions. Our decidabil-
ity results open an alternative approach which can be based on the verification of
the reactive programs before their actual execution. In the case the reactions can
deadlock or diverge the run time system can decide to avoid their execution.

Prioritized and Parallel Reactions 207

The paper is structured as follows. In Section 2 we present the syntax and
the operational semantics of the considered calculi. In Section 3 we prove the
undecidability results while in Section 4 the decidability results are discussed.
Finally, Section 5 reports some conclusive remarks. Due to space limitation the
formal proofs of theorems are not reported, but the proof techniques are carefully
detailed.

2 The Process Calculi

In this Section, we introduce the process calculus ReactLinda based on the pri-
oritized reaction execution model discussed in the Introduction. It is obtained as
the adaptation to the prioritized model of the calculus introduced in [1] based on
the parallel model. Syntactically, the main difference is that in the new calculus
we separate processes, data, listeners and reactions in four different syntactic
cathegories while in [1] they are all treated as parallel processes.

By borrowing typical techniques from the tradition of process calculi for
concurrency (e.g., Milner’s CCS [6]), a process (as well as a reaction) is described
as a term of an algebra where the basic actions are the Linda coordination
primitives in, rd and out, or the reactive operation reactsTo. The data space
is represented by the multiset of the data actually available. The listeners are
modeled with pairs (a, R) where a is the datum whose production is observed,
and R is the corresponding reaction.

Formally, we consider a denumerable set of names for data, called Data,
ranged over by a, b, A data space is a multiset of Data; formally the possible
data spaces, ranged over by DS, DS′, ⊕ are taken from DataSpace = M(Data).
In the following we use ⊕ to denote multiset union,

⊕
i Mi to denote the multiset

union of the indexed multisets Mi, and we use a to denote also the singleton
{a}.

Reactions are finite programs that can only execute input, read and output
operations. We follow the LIME assumption according to which reactions cannot
contain reactive statements. The set Reac of reactions, ranged over by R, R′,
. . ., is the set of terms generated by the following grammar:

R ::= 0 | μ.R | R|R μ ::= out(a) | in(a) | rd(a)

where μ denotes an instance of one of the (non-reactive) coordination primitives.
In the following we use

∏
i Ri to denote the parallel composition of the indexed

reactions Ri or 0 if the set of index is empty.
The reaction 0 represents the empty program; μ.R is a reaction that starts

executing the primitive μ then becomes R; R|R′ is the parallel composition of
the two reactions R and R′.

Listeners are formally modeled as follows. Let Lst, ranged over by L, L′,
. . ., be the set of multisets on the cartesian product between Data and Reac,
namely Lst = M(Data×Reac). The listener (a, R) is responsible for activating
the reaction R on production of datum a.

208 N. Busi and G. Zavattaro

Table 1. The operational semantics of ReactLinda

(inP) [in(a).P |Q, a ⊕ DS, L,0] → [P |Q, DS, L,0]

(rdP) [rd(a).P |Q, a ⊕ DS, L,0] → [P |Q, a ⊕ DS, L,0]

(inR) [P, a ⊕ DS, L, in(a).R|R′] → [P, DS, L, R|R′]

(rdR) [P, a ⊕ DS, L, rd(a).R|R′] → [P, a ⊕ DS, L, R|R′]

(rct) [reactsTo(a, R′).P |Q, DS, L,0] → [P |Q, DS, L ⊕ (a, R′),0]

(outP)

(b, R) ∈ L implies b �= a

[out(a).P |Q, DS,
⊕

i
(a, Ri) ⊕ L,0] →

[P |Q, a ⊕ DS,
⊕

i
(a, Ri) ⊕ L,

∏
i
Ri]

(outR)

(b, R) ∈ L implies b �= a

[P, DS,
⊕

i
(a, Ri) ⊕ L, out(a).R|R′] →

[P, a ⊕ DS,
⊕

i
(a, Ri) ⊕ L,

∏
i
Ri|R|R′]

(cong)
P ≡ P ′′ P ′ ≡ P ′′′ R ≡ R′′ R′ ≡ R′′′ [P, DS, L, R] → [P ′, DS′, L′, R′]

[P ′′, DS, L, R′′] → [P ′′′, DS′, L′, R′′′]

The set Proc of processes, ranged over by P , P ′, . . . is defined by the following
grammar:

P ::= 0 | μ.P | reactsTo(a, R).P | P |P | !P

where μ is defined as above for reactions. Processes extend reactions with the
reactsTo(a, R) prefix and the replication operator !P . In the following we use∏

i Pi to denote the parallel composition of the indexed processes Pi or the
process 0 if the set of index is empty.

We will reason upto a structural congruence relation used for rearranging
parallel composed processes (as well as reactions), for abstracting away from the
empty program and for (un)folding the replicated processes. Formally, let ≡ be
the least congruence on processes and reactions such that

P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R P |0 ≡ 0 !P ≡ P |!P

The set of configurations Conf = Proc×DataSpace×Lst×Reac is ranged
over by [P, DS, L, R] where P denotes the active processes, DS the current

Prioritized and Parallel Reactions 209

data space, L the set of actually installed listeners, and R represents the active
reactions. We assume that initially the configurations start with an empty data
space, without listeners installed, and without active reactions.

The semantics is defined in terms of a reduction relation [P, DS, L, R] →
[P ′, DS′, L′, R′] used to denote that the configuration on the left hand side can
evolve, performing one step, to the configuration on the right hand side. The
reduction semantics is defined as the least relation on configurations satisfying
the axioms and rules in the Table 1.

The axioms (inP) and (rdP) model the execution of the in and rd operations
performed by processes: the former removes a datum from the space, while the
latter simply checks the presence of a datum leaving the data space unchanged.
It is important to note that in both the axioms the reactions are assumed to
be 0; in this way processes can perform in and rd operations only if there
are no active reactions. The same assumption is made in the rules rct and
outP modeling the other two operations that processes can perform. The axioms
(inR) and (rdR) are the corresponding ones for reactions. The axiom (rct)
models the execution of a reactsTo(a, R) primitive; its effect is the addition of
a listener.

The rule (outP) define the semantics of the out(a) operation. The premise
of the rule guarantees that all the interested listeners are taken into account.
The rule (outR) is the corresponding one for output operations performed by
reactions. Finally, rule (cong) is used to ensure that structurally congruent
terms have the same operational semantics.

We denote with ReactLinda-! the fragment of ReactLinda obtained by re-
moving the replication operator.

As described in the Introduction, we will focus on the decidability of two
typical properties, termination (i.e. the existence of a finite completed com-
putation) and divergence (i.e. the existence of an infinite computation). For-
mally, let [P, DS, L, R] →/ denote that there exists no [P ′, DS′, L′, R′] such
that [P, DS, L, R] → [P ′, DS′, L′, R′]. We say that P terminates, denoted with
P ↓, if there exist [P1, DS1, L1, R1], . . . , [Pn, DSn, Ln, Rn] such that [P, ∅, ∅,0] →
[P1, DS1, L1, R1] → . . . → [Pn, DSn, Ln, Rn] →/ . On the other hand, we say
that P diverges, denoted with P ↑, if for any natural number i there exists
[Pi, DSi, Li, Ri] such that [P, ∅, ∅,0] = [P0, DS0, L0, R0] and [Pi, DSi, Li, Ri] →
[Pi+1, DSi+1, Li+1, Ri+1].

3 The Undecidability Results

In this Section we discuss the undecidability of termination and divergence for
ReactLinda.

We adopt the following technique: we reduce the decidability of termina-
tion (resp. divergence) to the decidability of termination (resp. divergence) on
Random Access Machines, a well known Turing powerful formalism.

A Random Access Machines (RAM) [12] is composed of a finite set of regis-
ters, that can hold arbitrary large natural numbers, and by a program, that is a

210 N. Busi and G. Zavattaro

sequence of simple numbered instructions, like arithmetical operations (on the
contents of registers) or conditional jumps.

It is not restrictive to assume that the registers r1, . . . , rn are initially empty.
The execution of the program begins with the first instruction and continues
by executing the other instructions in sequence, unless a jump instruction is
encountered. The execution stops when an instruction number higher than the
length of the program is reached. If the program terminates, the result of the
computation is the contents of the registers.

In [7] it is shown that the following two instructions are sufficient to model
every recursive function:

– Succ(rj): adds 1 to the content of register rj ;
– DecJump(rj , s): if the content of register rj is not zero, then decreases it by

1 and go to the next instruction, otherwise jumps to instruction s.

We start presenting an encoding of RAMs in ReactLinda. This encoding
is inspired by a previous encoding described in [1] based on the notify(a, R)
primitive; the main difference is that the reactions do not perform blocking
operations. Indeed, under the prioritized model a blocked reaction blocks also
the rest of the system.

The encoding is nondeterministic as it introduces some extra infinite com-
putations; nevertheless, it is ensured that a RAM terminates if and only if the
corresponding encoding has a terminating computation. As termination cannot
be decided in Turing equivalent formalisms, the same holds also for ReactLinda.

The encoding implements nondeterministically DecJump operations: two
possible behaviours can be chosen, the first is valid if the tested register is not
zero, the second otherwise. If the wrong choice is made, the computation is
ensured to be infinite; in this case, we cannot say anything about the corre-
sponding RAM. Nevertheless, if the computation terminates, it is ensured that
it corresponds to the computation of the corresponding RAM. Conversely, any
computation of the RAM is simulated by the computation of the corresponding
encoding in which no wrong choice is performed.

Given the RAM with program PRG (composed by the instructions I1 . . . Ik)
and registers r1 . . . rn, the corresponding encoding [[PRG]] is defined in Table 2.
The basic idea underlying this encoding is to represent instructions with repli-
cated processes, the program counter with a datum that activate the correspond-
ing instruction, and the content of each register rj with a corresponding number
of rj data. Namely, the instruction Ii is modeled with the process !in(pi).[[Ii]]
where pi is the program counter tuple and [[Ii]] is a process responsible for up-
dating the register and the program counter. Before starting the computation, a
listener is installed executing reactsTo(div, out(div)); this listener has the abil-
ity to activate an infinite computation. More precisely, the infinite computa-
tion is started in case a loop datum is consumed by the initially spawn process
in(loop).out(div). Finally, the actual computation is started emitting the pro-
gram counter tuple p1.

Prioritized and Parallel Reactions 211

Table 2. Termination preserving encoding of RAMs in ReactLinda

[[PRG]] =
∏

i∈1...k
!in(pi).[[Ii]] | reactsTo(div, out(div)).out(p1)

| !in(inc).INC | !in(dec).DEC | in(loop).out(div)

[[i : Succ(rj)]] = out(rj).reactsTo(zeroj , out(inc)).out(pi+1)

[[i : DecJump(rj , s)]] = out(ci)

| in(ci).out(loop).in(rj).in(loop).

reactsTo(zeroj , out(dec)).out(pi+1)

| in(ci).out(zeroj).in(zeroj).out(ps)

where:

INC = out(loop).in(match).in(loop)

DEC = out(match)

Every time an increment (resp. a decrement) on the register rj is performed,
a new listener (zeroj , out(inc)) (resp. (zeroj , out(dec))) is spawn. The pres-
ence of these listeners permits to check if the actual content of a register rj

is zero by verifying if the occurrences of (zeroj , out(inc)) corresponds to those
of (zeroj , out(dec)).

An increment instruction on rj simply increments the number of the oc-
currences of the datum rj and install a new listener (zeroj , out(inc)). When a
DecJump instruction is executed, a nondeterministic choice between the two
possible branches of the instruction occurs. The choice is modeled putting in
parallel the two branches that compete for consuming the datum ci. We now
analyse the computation in case the wrong choice is done. There are two cases
to analyse: (i) a decrement on a register containing zero, (ii) a jump for zero on
a non-empty register.

In the case (i), out(loop).in(rj).in(loop).reactsTo(zeroj , out(dec)).out(pi+1)
is activated with no rj data available. Thus, the program produces the datum
loop and blocks trying to execute in(rj). The produced datum loop will be con-
sumed by the process in(loop).out(div) thus an infinite computation is started.

In the case (ii), the process out(zeroj).in(zeroj).out(ps) is activated when
there are more occurrences of the listener (zeroj , out(inc)) than those of the
listener (zeroj , out(dec)). When the datum zeroj is emitted, its production is
notified to the listeners; then the corresponding data inc and dec are produced.
These data activates corresponding processes INC and DEC. Each DEC emits
a datum match while each INC produces a datum loop, and requires a match
datum to be consumed before removing the emitted loop. As there are more
INC processes than DEC, one of the processes INC will block waiting for an
unavailable match datum; thus it will not consume its corresponding loop. As
before, an infinite computation will be activated.

212 N. Busi and G. Zavattaro

The correspondence between the RAMs and their modeling in ReactLinda
is stated by the following Theorem. The undecidability of termination in the
calculus ReactLinda is a trivial corollary of this Theorem.

Theorem 1. Let us consider a RAM with program PRG (composed by the
instructions I1 . . . Ik) and registers r1 . . . rn, and the corresponding encoding
[[PRG]] in ReactLinda defined in Table 2. We have that the RAM terminates
its computation if and only if [[PRG]] ↓.

Now, we prove that also divergence is undecidable in ReactLinda. In order
to prove this result we present how to encode RAMs preserving divergence, i.e.
a RAM does not terminate if and only if the corresponding encoding has an
infinite computation.

The new encoding is similar to the encoding above because it is nondeter-
ministic: the branch of DecJump is selected nondeterministically independently
of the actual contents of the registers. The difference is that in case the wrong
branch is selected the computation is guaranteed to block. Thus, the encoding
has an infinite computation if and only if the RAM does not terminate.

Table 3. Divergence preserving encoding of RAMs in ReactLinda

[[PRG]] =
∏

i∈1...k
!in(pi).[[Ii]] | out(p1)

[[i : Succ(rj)]] = out(rj).reactsTo(zeroj , INC).out(pi+1)

[[i : DecJump(rj , s)]] = out(ci)

| in(ci).in(rj).reactsTo(zeroj , DEC).out(pi+1)

| in(ci).out(zeroj).in(zeroj).out(ps)

where:

INC = in(match)

DEC = out(match)

We overload the notation [[PRG]] used also for the new encoding reported in
Table 3. If the decrement branch is wrongly selected all the computation blocks
because the input operation in(rj) cannot be executed; in case a wrong jump
is selected, the computation blocks because one of the INC reactions will not
terminate due to the impossibility to execute the in(match) operation.

The following theorem states that the new RAM encoding preserves diver-
gence, thus divergence is undecidable in the calculus ReactLinda.

Theorem 2. Let us consider a RAM with program PRG (composed by the
instructions I1 . . . Ik) and registers r1 . . . rn, and the corresponding encoding
[[PRG]] in ReactLinda defined in Table 3. We have that the RAM does not
terminate its computation if and only if [[PRG]] ↑.

Prioritized and Parallel Reactions 213

4 The Decidability Results

In this Section we show that both termination and divergence are decidable
in ReactLinda-!. We reduce termination on ReactLinda-! to termination on
Place/Transition Petri nets. As termination is decidable on such class of Petri
nets [2], we get the decidability result for termination on ReactLinda-!. Diver-
gence on ReactLinda-! is reduced to a property similar to divergence on the
class of nets corresponding to ReactLinda-! processes.

4.1 P/T Nets

We recall Place/Transition nets with unweigthed flow arcs (see, e.g., [10]). Here
we provide a characterization of this model which is convenient for our aims.

Definition 1. Given a set S, a finite multiset over S is a function m : S → IN
such that the set dom(m) = {s ∈ S |m(s) �= 0} is finite. The multiplicity of
an element s in m is given by the natural number m(s). The set of all finite
multisets over S, denoted by Mfin(S), is ranged over by m. A multiset m such
that dom(m) = ∅ is called empty. The set of all finite sets over S is denoted by
℘fin(S).

Given the multiset m and m′, we write m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S
while ⊕ denotes their multiset union: m⊕m′(s) = m(s) + m′(s). The operator
\ denotes multiset difference: (m \m′)(s) = if m(s) ≥ m′(s) then m(s)−m′(s)
else 0. The scalar product, j ·m, of a number j with m is (j ·m)(s) = j · (m(s)).

To lighten the notation, we sometimes use the following abbreviation. If m is a
multiset containing only one occurrence of an element s (i.e., dom(m) = {s} and
m(s) = 1) we denote m by only s. Multiset union is represented also by comma,
i.e., m, m′ = m⊕m′. Let m be a multiset over S and m′ a multiset over S′ ⊇ S,
such that (m′(s′) = 0) for each s′ ∈ S′ \S; with abuse of notation, we sometimes
use m in place of m′, and vice versa.

Definition 2. A P/T net is a pair (S, T) where S is the set of places and
T ⊆Mfin(S)×Mfin(S) is the set of transitions.

Finite multisets over the set S of places are called markings. Given a marking
m and a place s, we say that the place s contains m(s) tokens.

A P/T net is finite if both S and T are finite.
A P/T system is a triple N = (S, T, m0) where (S, T) is a P/T net and m0

is the initial marking.
A transition t = (c, p) is usually written in the form c −→ p. The marking

c, usually denoted by •t, is called the preset of t and represents the tokens to be
consumed; the marking p, usually denoted by t•, is called the postset of t and
represents the tokens to be produced.

A transition t is enabled at m if •t ⊆ m. The execution of a transition
t enabled at m produces the marking m′ = (m \ •t) ⊕ t•. This is written as
m

t−→ m′ or simply m −→ m′ when the transition t is not relevant. We use
σ, τ to range over sequences of transitions; the empty sequence is denoted by ε;

214 N. Busi and G. Zavattaro

let σ = t1, . . . , tn, we write m
σ−→ m′ to mean the firing sequence m

t1−→
· · · tn−→ m′.

A marking m is dead if m �−→ . We say that the P/T system N terminates if
there exists a dead marking reachable from the intial marking m0, i.e., m0 −→
∗m �−→ . We say that the P/T system N is divergent if there exists an infinite
sequence of markings m1, . . . , mi, . . . such that mi −→ mi+1 for i ≤ 0.

4.2 Reducing Termination on ReactLinda-! to Termination on Nets

The basic idea underlying the definition of a net semantics is to decompose a
process P in the (finite) multiset of its sequential subprocesses that appear at
top-level (i.e., occur unguarded in P); this multiset is then considered as the
marking of a P/T Petri net.

Besides processes, a ReactLinda-! configuration also contains data and lis-
teners, that will be represented as places in the net as well. The execution of a
computational step of the process will correspond to the firing of a transition in
the corresponding net.

The main problems to face with in the costruction of a P/T net with the
same behaviour of a process w.r.t. termination are the following:

– when a new datum is produced, all the reactions of the currently installed
listeners are spawn,

– the execution of the process is blocked until the execution of all the reactions
is terminated.

A faithful representation of the above described features in a Petri net requires
to consider nets extended with transfer and inhibitor arcs; unfortunately, termi-
nation becomes undecidable on such an extended class of nets.

However, a closer look to the ReactLinda-! calculus permits to note that
the sets of reactsTo and out operations that an initial process can perform are
finite.1 Hence, for a given process P ,

– the number of occurrences of the reactsTo primitive is an upper bound to
the number of occurrences of a given listener,

– the number of occurrences of the out primitive occurring in the initial process
is an upper bound to the number of times that the reactions start executing.

The upper limit to the number of occurrences of a given listener permits to
faithfully model the activation of a reaction for each active listener when an
output of a datum is performed. Instead of representing n active occurrences of
listener (a, R) as n tokens in place (a, R), we adopt the following representation:
each pair (a, R) of potential listeners is represented by the following set of places
in the net: {0�(a, R), 1�(a, R), . . . , k�(a, R)}, where k is the number of reactsTo

1 Note that this finiteness property holds because the calculus does contain neither
replication nor the possibility to install new listeners during the execution of reac-
tions.

Prioritized and Parallel Reactions 215

primitives occurring in the initial process; a token in place h � (a, R) models the
situation where exactly h active occurrences of listener (a, R) appear in the net.

The prioritized execution of reactions cannot be faithfully modeled by a Petri
net; however, the upper limit to the number of times that the reactions set can be
activated permits to construct a net with the same behaviour of a ReactLinda-!
process w.r.t. termination. The basic idea is to consider k + 1 copies of the
subnets that model the behaviour of processes, where k is the number of out
primitives occurring in the initial process. One of the subnets represents the
“main” process, whereas the remaining subnets are used to model the execution
of reactions: each time an output of datum a is performed by the main process,
a yet unused subnet is filled with the marking corresponding to the reactions of
the listeners waiting for the emission of a.

After activation, the computation is carried out by the subnet. According to
the operational semantics of Section 2, if an out(b) operation is performed the
reactions of the installed listeners (b, Ri) are activated by producing tokens in
those places of the subnet that correspond to the Ri.

In any moment, exactly one subnet is active. A distinct label is associated to
the places of each subnet: label m is associated to the places of the subnet rep-
resenting the main process, while labels r1, . . . , rk decorate places of the subnets
used for reactions. Each subnet is equipped with three control places, decorated
with the same label of the subnet. A token in place l : running represents the
fact that the subnet corresponding to label l is active. Places l : unused and
l : finished are used only for subnets that represent reactions. A token in place
l : unused represents the fact that the subnet labelled by l has not been used
yet, and can be used to execute a reaction; a token in place l : finished denotes
the fact that the subnet labelled by l is supposed to have successfully terminated
its execution.

The behaviour of reactions is modeled in the following way: a subnet repre-
senting a reaction, and labelled with r, may choose to terminate its execution
and to pass the control to the main process. If the execution was not terminated,
the behaviour of the net does not correspond to the behaviour of a configuration.
However, some tokens remain in some place of the subnet, corresponding to a
sequential subprocess; the presence of a token in such places, together with the
presence of a token in the finished place, enables a transition that produces a
token in a place loop; place loop has a self-loop on itself, hence a token in loop
forbids termination of the net.

To define the net corresponding to a process, we introduce some auxiliary
definitions:

Definition 3. The set of sequential subprocesses of a process is defined induc-
tively as follows:

sub(0) = ∅ sub(μ.P) = {μ.P} ∪ sub(P)
sub(reactsTo(a, R).P) = {sub(R)} ∪ sub(P) sub(P |Q) = sub(P) ∪ sub(Q)

The decomposition of a process in the set of top-level subprocesses is defined
as follows:

216 N. Busi and G. Zavattaro

Table 4. The transitions schemata

(in) l : running, l : in(a).P, a −→ l : running, l : dec(P)

(rd) l : running, l : rd(a).P, a −→ l : running, l : dec(P), a

(react) m : running, m : reactsTo(a, R).P, k � (a, R) −→
m : running, m : dec(P), (k + 1) � (a, R)

(out − M) m : running, m : out(a), P, r : unused,
⊕

i:ai=a
ki � (ai, Ri) −→

m : dec(P), r : running, r :
⊕

i:ai=a
ki · Ri,

⊕
i:ai=a

ki � (ai, Ri)

(out − R) r : running, r : out(a).P,
⊕

i:ai=a
ki � (ai, Ri) −→

m : dec(P), r : running, r :
⊕

i:ai=a
ki · Ri,

⊕
i:ai=a

ki � (ai, Ri)

(end − R) r : running −→ r : finished, m : running

(startloop) r : finished, r : P −→ loop

(loop) loop −→ loop

dec(0) = ∅ dec(μ.P) = {μ.P}
dec(reactsTo(a, R).P) = {reactsTo(a, R).P} dec(P |Q) = dec(P) ∪ dec(Q)

The set of names occurring in a process is defined as follows:

names(0) = ∅ names(P |Q) = names(P) ∪ names(Q)
names(in(a).P) = names(rd(a).P) = names(out(a).P) = {a} ∪ names(P)
names(reactsTo(a, R).P) = {a} ∪ names(R) ∪ names(P)

The set of potential listeners of a process is defined as follows:

listeners(0) = ∅
listeners(μ.P) = listeners(P)
listeners(reactsTo(a, R).P) = {(a, R)} ∪ listeners(P)
listeners(P |Q) = listeners(P) ∪ listeners(Q)

With #rct(P) we denote the number of occurrences of reactsTo primitives
in P , with #out(P) the number of occurrences of out operations in P .

Given a process P , the set of labels for subnets is L = {m, r1, . . . , r#out(P)},
ranged over by l, l′. The set Trans contains all the instances of the transitions
schemata reported in Table 4. With l : m we denote the multiset obtained by
decorating each element in m with label l, i.e., for all s ∈ S, l : m(s) = m(s).
Axioms (in) and (rd) deal with the execution of an in and a read operation,
respectively, in one of the subnets. Axiom (react), corresponds to the produc-
tion of a new listener of kind (a, R): if there are k active occurrences of listener

Prioritized and Parallel Reactions 217

(a, R), after the execution of the notify operation there are k + 1 active occur-
rences of listener (a, R); hence, a token is moved from place k � (a, R) to place
(k + 1) � (a, R). Axiom (out-M) models the effect of an output operation of
datum a in the main process: a not yet used subnet is chosen and marked with
the tokens corresponding to the decomposition of all the reactions correspond-
ing to listeners on datum a, and the control is passed to the chosen subnet. On
the other hand, if the output operation is performed in a reaction, according to
axiom (out-R) the tokens corresponding to the decomposition of reactions of
active listeners on the datum are produced in the active subnet. Axiom (end-R)
permits to end the execution of a (possibly not terminated) subnet correspond-
ing to a reaction and to return the control to the main program. If the execution
of a subnet corresponding to a reaction has been stopped before all reaction pro-
cesses are terminated, by axiom (startloop) a token in place loop is produced;
by axiom (loop), this token prevents the whole net to terminate.

Definition 4. Let P be a ReactLinda-! process. We define the system Net(P)=
(S, T, m0), where

S = L× sub(P) ∪ names(P) ∪
{k � (a, R) | (a, R) ∈ listeners(P) ∧ 0 ≤ k ≤ #rct(P)}∪
L× {running, unused, finished} ∪ {loop}

T = {(c, p) ∈ Trans | c, p ⊆ S}
m0 = dec(P)

Note that Net(P) is a finite P/T net.
The following lemma permits to reduce the decidabiliy of termination for

process P to the decidabiliy of termination for the P/T system Net(P).

Lemma 1. Let P be a ReactLinda-! process. P terminates if and only if
Net(P) terminates.

Theorem 3. Let P be a ReactLinda-! process. The termination problem P ↓
is decidable.

4.3 Deciding Divergence on ReactLinda-!

The decidability of divergence is obtained by removing from the net constructed
in the previous subsection the (startloop) and (loop) transition, and by us-
ing an adaptation of the procedure to check divergence of a P/T system. The
basic technique consists in the construction of the so-called coverability tree [5];
the system diverges if a marking m is found that covers (i.e., is bigger than)
another marking m′ appearing in the path from the root of the tree (i.e., the
initial marking m0) to m. The net system used to check divergence may exhibit
some wrong behaviour in the case the control is returned to the main program
when some process in the reactions set is not terminated. For example, con-
sider reactsTo(a, in(b)).out(a).reactsTo(loop, out(loop)).out(loop). This process
reaches a deadlock during the execution of the reaction in(b), as no datum b will

218 N. Busi and G. Zavattaro

be produced. However, in the net system corresponding to the process it may
happen that the control is returned to the continuation of the main program,
i.e., reactsTo(loop, out(loop)).out(loop) even if the reaction in(b) has not been
executed. Hence, the net may exhibit a divergent computation. However, all the
markings in such a divergent computation are “erroneous”, and can be recog-
nized by the following feature: there exist two places, r : finished and r : P ′

(for some process P ′), such that both places contain at least one token. This
means that the subnet r has stopped its execution when there is at least one
reaction that has not finished its execution. Hence, the existence of a divergent
computation of such a net system can be decided by a slight variation of the
basic procedure: the system diverges if a marking m is found that covers another
marking m′ appearing in the path from the root of the tree to m, and moreover
m is not an erroneous marking.

The set Trans′ contains all the instances of the transitions schemata reported
in Table 4, but axioms (startloop) and (loop). The P/T net used to decide
divergence of P is constructed as follows:

Definition 5. Let P be a ReactLinda-! process. We define the system Net′(P) =
(S′, T ′, m′

0), where

S′ = L× sub(P) ∪ names(P) ∪
{k � (a, R) | (a, R) ∈ listeners(P) ∧ 0 ≤ k ≤ #rct(P)}∪
L× {running, unused, finished}

T ′ = {(c, p) ∈ Trans′ | c, p ⊆ S}
m′

0 = dec(P)

Note that Net′(P) is a finite P/T net.

Definition 6. A marking m of Net′(P) is erroneous is there exist i and P ′ s.t.
the following holds: m(ri : finished) = 1 and m(ri : P ′) > 0.

Note that if a marking m is erroneous then any marking reachable from m is
erroneous. The following lemmata permit to reduce decidability of divergence
for the calculus ReactLinda-! processes to decidability of a similar property on
the class of net systems constructed in Definition 4.3.

Lemma 2. Let P be a ReactLinda-! process. The existence of a divergent com-
putation not containing erroneous markings is a decidable property of the net
system Net′(P).

Lemma 3. A ReactLinda-! process P diverges if and only if there exists a
divergent computation in Net′(P) that does not contain erroneous markings.

Theorem 4. Let P be a ReactLinda-! process. The divergence problem P ↑ is
decidable.

5 Conclusion

The contribution and the theoretical results proved in this paper have been
already discussed in the Introduction. A relevant result, that has some relevance

Prioritized and Parallel Reactions 219

also from a practival viewpoint, is the decidability of both termination and
divergence in ReactLinda-!, the replication free calculus based on the prioritized
reaction execution model. It is worth to notice that a similar result does not hold
for the calculus in [1] based on the parallel execution model. Indeed, if we remove
replication from that calculus termination is still undecidable. This result follows
from the possibility to install new listeners during the execution of reactions. This
is natural under the parallel model due to the interleaving between processes and
reactions. For instance, the notify operation of JavaSpaces [13] can be freely
executed within reactions. On the contrary, under the prioritized model, the
set of the installed listeners is usually leaved unchanged during the reactions
execution. This holds, e.g., in LIME [9] where the reactsTo operation cannot be
performed within reactions.

References

1. N. Busi and G. Zavattaro. On the Expressivenes of Event Notification in Data-
Driven Coordination Languages. In Proc. of ESOP 2000, volume 1782 of Lecture
Notes in Computer Science, pages 41–55. Springer-Verlag, Berlin, 2000.

2. A. Cheng, J. Esparza, and J. Palsberg, Complexity results for 1-safe nets. Theo-
retical Computer Science, 147:117–136, 1995.

3. G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile Agent
Coordination. In Proc. 2nd Int. Workshop on Mobile Agents, volume 1477 of
Lecture Notes in Computer Science, pages 237–248. Springer-Verlag, Berlin, 1998.

4. D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, 1985.

5. R. M. Karp and R. E. Miller, Parallel Program Schemata. Journal of Computer
and System Sciences 3: 147-195, 1969.

6. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
7. M.L. Minsky. Computation: finite and infinite machines. Prentice-Hall, 1967.
8. A. Omicini and F. Zambonelli. Coordination of mobile information agents in TuC-

SoN. Journal of Internet Research, 8(5), 1998.
9. G.P. Picco, A.L. Murphy, and G.-C. Roman. Lime: Linda meets mobility. In Proc.

of the 21st ICSE, 1999.
10. W. Reisig. Petri nets: An Introduction. EATCS Monographs in Computer Science,

Springer, 1985.
11. A. Rowstron. WCL: A web co-ordination language. World Wide Web Journal,

1(3):167–179, 1998.
12. J.C. Shepherdson and J.E. Sturgis. Computability of recursive functions. Journal

of the ACM, 10:217–255, 1963.
13. J. Waldo et al. Javaspace specification. Technical report, Sun Microsystems, 1998.
14. P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. T spaces. IBM Systems

Journal, 37(3):454–474, 1998.

Synchronized Hyperedge Replacement for
Heterogeneous Systems�

Ivan Lanese and Emilio Tuosto

Dipartimento di Informatica, Largo Bruno Pontecorvo 3,
56127 Pisa – Italy

Abstract. We present a framework for modelling heterogeneous dis-
tributed systems using graph transformations in the Synchronized Hy-
peredge Replacement approach, which describes complex evolutions by
synchronizing local rules. In order to deal with heterogeneity, we consider
different synchronization algebras for different communication channels.
The main technical point is the interaction between synchronization al-
gebras and name mobility in the π-calculus style. The power of our ap-
proach is shown through a few examples.

1 Introduction

Nowadays, Internet is becoming more and more integrated with non IP-based
networks and the so-called overlay networks, which combine different kinds of
networks (e.g., ATM, wireless etc.), are beginning to appear in the scene. Overlay
networks are changing the nature of Internet, indeed new protocols and commu-
nication policies are required in order to allow applications (such as web services)
to interact across different kinds of networks.

Doubtless, applications should consider these changes of perspective in or-
der to take advantage of the new technological possibilities offered by overlay
networks. Indeed, not only this evolution of Internet has impact on the commu-
nication infrastructure, but it also influences the level of the applications and the
middlewares they rely on. For instance, in some cases it would help to have point-
to-point communications while in others broadcast is preferable. Of course, this
kind of situation may be present also in the usual practice of concurrent pro-
gramming. A typical example is when a server first acquires data over which
it computes and then must send the results to several waiting clients. Classi-
cal languages for concurrent/distributed programming offer a limited number of
communication policies while models usually restrict on a single synchronization
mechanism. For example, the π-calculus [13, 15] adopts point-to-point communi-
cation, hence, broadcast communications, if desired, must be encoded. Classical
formalisms, however, cannot uniformly deal with dynamical/unpredictable vari-
ations of the synchronization policies.

� I. Lanese has been supported by EU-FET project AGILE IST-2001-32747. E. Tu-
osto has been supported by EU-FET project PROFUNDIS IST-2001-33100.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 220–235, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Synchronized Hyperedge Replacement for Heterogeneous Systems 221

The Synchronized Hyperedge Replacement approach [1, 3] (SHR, for short)
is a uniform graph transformation framework for dealing with many facets of
wide area network applications [7, 16, 8, 2, 6, 11, 5]. Systems are hypergraphs,
namely graphs where each hyperedge connects an arbitrary number of nodes,
computations correspond to rewrite hypergraphs by applying productions which
are rules of the form p : L(x) −→ G where L(x) is an hyperedge and G an
hypergraph. Informally, applying production p to a graph means to replace
an instance of L with G in the graph. The replacements are coordinated in
SHR through the requirements that p imposes to the attachment nodes of L,
namely, in order to replace L with G, it is necessary that the components
connected to the attachment nodes of L in the graph synchronize (according
to a given synchronization policy) with the requirements imposed by p. Intu-
itively, this implies that synchronizing corresponds to resolving a distributed
constraint satisfaction problem as pointed out in [14]. The SHR approach has
the advantage, w.r.t. other graphical frameworks, such as double push-out [4]
and bigraphs [10], of allowing a distributed implementation since productions
have a local effect and synchronization can be performed using a distributed
algorithm.

A first abstraction w.r.t. synchronization mechanisms has been done in [12],
where SHR has been equipped with a general notion of synchronization alge-
bra with mobility (SAM, for short). Synchronization algebras [17] abstractly
define the basic properties of synchronization policies by distilling the axioms
capturing them. Therefore, the programmer can define his own synchronization
mechanism and exploit SHR for representing systems and their computations.
However, the proposal of [12] lacks the possibility of representing different SAMs
in a single rewriting system. The main contribution of this work is to solve this
problem.

Following [9], the SHR mechanism used here, allows mobility by means of
node fusions. Our extension adds to fusion the peculiarity of changing the syn-
chronization policy of a given node. In particular, SAMs form a commutative
monoid which is programmer-defined. Moreover, whenever x is the node result-
ing from merging y and z, the SAM associated to x is obtained by composing
the SAMs associated to y and z via the monoidal operation. Even though this
might have no counterpart at the level of the communication infrastructure,
this mechanism may result extremely useful at the level of the applications.
For instance, the synchronization policy of a new channel can be dynamically
determined as the composition of different constraints imposed by interacting
components.

Structure of the Paper. §2 gives some background on graphs. §3 discusses syn-
chronization algebras with mobility and labelled graphs. The following sections
§4 and §5 present productions and transitions for SHR, respectively via an in-
formal example and with rigorous mathematical definitions. Another example is
presented in §6. Finally, §7 presents conclusions and traces for future work.

222 I. Lanese and E. Tuosto

2 Background

Before describing hypergraphs, some notations are given.
Given a vector v, |v| is its length and v[i] is its i-th element.
We denote with mgu(E) an idempotent substitution resulting from comput-

ing the most general unifier on the set of equations E. The transitive closure of
E is E+.

We use ' for disjoint set-union and, in A'B, [1, n] (resp. [2, n]) is the element
that corresponds to n ∈ A (resp. n ∈ B). We denote with Intn the set {1, . . . , n}
(where Int0

def= ∅) while idn is the identity function on it. Given two functions
f : A → C and g : B → D we denote with [f, g] : A'B → C'D the function that
applies f to the elements of A and g to the ones of B. The standard composition
of functions is denoted by ◦. Given a function f , f |S (resp. f |\S) is the function
obtained by restricting f to S (resp. to dom(f) \ S) while merge(f) yields the
set of equalities {x = y|f(x) = f(y)}. Finally, when set operations (e.g., ∪) are
used on functions, it is implicitly assumed that these are represented as sets of
pairs.

We want to model systems using hypergraphs, a generalization of graphs
where hyperedges may connect any number of nodes. For simplicity, we use
graph (resp. edge) instead of hypergraph (resp. hyperedge). We assume a set
LE of labels and a function rank : LE → ω that assigns a rank to each L ∈ LE.
An edge labelled by L is an atomic item with rank(L) ordered tentacles. A set of
nodes, together with a set of edges, forms a graph if each edge is connected, by its
tentacles, to its attachment nodes. A graph is connected to its environment by
an interface which is a subset of its nodes. Nodes in the interface are called free
nodes, while other nodes are said bound. We consider graphs up to isomorphisms
that preserve free nodes, labels of edges, and connections between edges and
nodes.

We use a textual representation for graphs as (syntactic) judgements which
is more suitable for defining transformations [9]. In this representation nodes
correspond to names, free nodes to free names and edges to basic terms of the
form L(x1, . . . , xn), where xi are arbitrary names and L ∈ LE has rank n. The
constant nil represents a graph without edges, the parallel composition operator
| builds large graphs from smaller ones and the ν operator binds nodes.

Definition 1 (Graphs as judgements). Let N be a fixed infinite set of names.
A judgement is a pair of the form Γ) G where:

1. Γ ⊆ N is a finite set of names (the free nodes of the graph);
2. G is a term generated by the grammar

G ::= L(x) | G|G | ν y G | nil
where x is a vector of names, L is an edge label with rank(L) = |x| and y is
a name.

The restriction operator ν is a binder (similar to the binder of λ-calculus).
We denote with fn(−) the function that yields the set fn(G) of free names in a
term G. We demand that fn(G) ⊆ Γ .

Synchronized Hyperedge Replacement for Heterogeneous Systems 223

Graph terms are considered up to the axioms of structural congruence in Ta-
ble 1: (ax1), (ax2) and (ax3) define respectively the associativity, commutativity
and identity over nil for operation |. Axioms (ax4) and (ax5) state that nodes
of a graph can be hidden only once and in any order. Thanks to axiom (ax4)
we can write ν Z where Z = {x1, . . . , xn} instead of ν x1 . . . ν xn. Axiom (ax6)
defines α-conversion of bound names in a graph. Axiom (ax7) defines the inter-
action between restriction and parallel composition. Note that function fn(−)
is well-defined on equivalence classes. As far as judgements are concerned, we
define Γ) G ≡ Γ ′) G′ iff Γ = Γ ′ and G ≡ G′.

Theorem 1 (Soundness of the Representation [7]). Judgements up to
structural congruence are isomorphic to graphs up to isomorphisms.

In order to explain the formal definitions, we describe here a sample scenario
from the Internet realm: it will also be exploited later as a running example.

Some clients C1, . . . , Cm can invoke a service offered by a remote server S
provided that they are authorized. A possible solution might be to interpose an
authority Au between S and the clients. Both S and the clients trust Au, and
clients get access to S only after they have been authenticated by Au.

Au ◦
u

S

•x

C1 · · · Ci · · · Cm

x) (ν u)
(

Au(x, u) | S(u) |
C1(x) | · · · | Ci(x) | · · · | Cm(x)

)
.

The picture and the judgement above represent clients connected to Au on a
“public” node x. The server S is also connected to the authority Au, but this
time on a “private” (i.e., restricted) node, graphically represented as an empty
bullet. Notice that Au has an arrowed tentacle. In general, hypergraphs are not
oriented, here this graphical convention is only used for representing the order
of the tentacles in edges having rank h > 1. Namely, the arrowed tentacle is the
first one while the others are numbered clock-wise.

Table 1. Structural congruence for graph terms

(ax1) G1|(G2|G3) ≡ (G1|G2)|G3 (ax2) G1|G2 ≡ G2|G1 (ax3) G|nil ≡ G

(ax4) ν x ν y G ≡ ν y ν x G (ax5) ν x G ≡ G if x /∈ fn(G)

(ax6) ν x G ≡ ν y G{y/x} if y /∈ fn(G)

(ax7) ν x (G1|G2) ≡ (ν x G1)|G2 if x /∈ fn(G2)

224 I. Lanese and E. Tuosto

3 Synchronization Algebras with Mobility

In this section we introduce synchronization algebras with mobility (SAM, for
short), an extension of synchronization algebras [17] able to deal with name
mobility in the style of name-passing calculi. We extend graphs by labelling
nodes with SAMs that will be exploited to choose the policies for synchronizing
rewriting rules.

Definition 2 (Synchronization Algebra with Mobility). Let Act be a set
of actions containing a distinguished element ε and at least an action a �= ε.
A SAM on Act, < N,Act, ar, ε, F in,ActCmp >, is identified by its name N
and it includes a function ar : Act → ω such that ar(ε) = 0, a subset Fin
of final actions containing ε and a relation ActCmp for action composition. In
particular, ActCmp is a set of triples of the form (a, b, (c,Mb)) where a, b, c ∈ Act
and Mb is a partial function from Intar(a) ' Intar(b) to {1, 2, . . . } such that:

1. c = ε ⇔ a = b = ε;
2. Mb is surjective on Intar(c);
3. (b, a, (c,Mb′)) ∈ ActCmp, with Mb′([1, n]) = Mb([2, n]) and Mb′([2, n]) =

Mb([1, n]) for each n;
4. (c, d, (e,Mb′)) ∈ ActCmp ⇒ ∃(b, d, (f,Mb′′)) ∈ ActCmp, (a, f, (e,Mb′′′)) ∈

ActCmp and in that case the composition of Mb and Mb′ gives the same
mapping and the same fusions of the composition of Mb′′ and Mb′′′.

The requirements for condition 4 can be written as:

Mb1 |Intar(e) = Mb2 |Intar(e)

(merge(Mb) ∪merge(Mb1))+ = (merge(Mb′′) ∪merge(Mb2))+.

where Mb1 = Mb′ ◦[Mb |Intar(c) , idar(d)] and Mb2 = Mb′′′ ◦[idar(a),Mb′′ |Intar(f)].
We define the functions factset, factfin and factcmp that given a SAM A

compute respectively its set of actions Act, its set of final actions Fin and its
composition relation ActCmp.

Intuitively, ar(a) is the number of nodes that are communicated with a, ε
stands for “no-action”, Fin contains the set of actions that represent complete
synchronizations and thus can be executed also on restricted nodes. Notice that
ε is always considered complete. Finally, ActCmp defines action synchronization
and name communication. More precisely, the triples of the form (a, b, (c,Mb))
define the allowed synchronizations when actions a and b interact: each triple is
an allowed behaviour, and if no such triple exists the actions are not compatible,
i.e. they cannot synchronize. In particular c is the result of the synchronization
and Mb describes how the parameters of a and b are mapped to the parameters of
c. If many parameters are mapped to the same position, the corresponding nodes
are merged and the resulting node is attached to action c. Only the parameters up
to ar(c) are actually communicated, the others are used for performing additional
fusions without showing the result in the final action.

Synchronized Hyperedge Replacement for Heterogeneous Systems 225

Condition 1, present in normal synchronization algebras, amounts to say
that the effect of a synchronization cannot be “no action”. Condition 2 guar-
antees that each node attached to the composed action can be computed, that
is it corresponds to a non empty set of nodes from component actions. Finally,
conditions 3 and 4 state that action synchronization and mobility patterns are
commutative and associative.

We inherit the characterization of mobility from [12] so that general mobility
patterns can be modelled. Since this work aims at formalizing heterogeneous
systems, we tailor the examples to show the use of multiple SAMs, while main-
taining them as simple as possible. For an application of the full generality of the
mobility patterns, we refer to [12]. The main difference w.r.t. the SAMs in [12]
is that we allow nondeterminism, namely, instead of being fixed, the result of
synchronizing two actions is nondeterministically chosen from a set of allowed be-
haviours specified by the synchronization relation ActCmp. This allows to model
some more policies, for instance, in a SAM with priorities, when two messages
with the same priority interact, one of them is nondeterministically discarded.
Also, SAMs are named so that we can distinguish among those describing the
same interactions. This can be useful when SAM composition does not depend
only on their synchronization policy.

We present here two simple examples of SAMs, namely the one for Milner
synchronization and the one for broadcast. Both of them rely on a mobility
pattern that implements message passing, i.e. it merges the corresponding pa-
rameters. We define the function message passing MPn,m from Intn ' Intm to
Intmax(n,m) as follows: the element i of both the starting sets (when it exists) is
mapped to the element i in the codomain.

When defining SAMs we suppose that ActCmp contains just the tuples given
explicitly, plus the ones derivable from commutativity.

Example 1 (Milner SAM). Given the set of actions Act = {τ, ε} ∪
⋃

i∈I{ai, ai}
where ar(ai) = ar(ai) and ar(τ) = 0, the Milner SAM over Act is as follows:

- (a, ε, (a,MPar(a),0)) ∈ ActCmp for each a ∈ Act,
(a, a, (τ,MPar(a),ar(a))) ∈ ActCmp for each a ∈

⋃
i∈I{ai};

- Fin = {τ, ε}.

Milner synchronization represents message passing à la π-calculus, with one
process executing input a and the other one executing output a.

Example 2 (Broadcast SAM). Given the set of actions Act = {ε} ∪
⋃

i∈I{ai, ai}
where ar(ai) = ar(ai), the broadcast SAM over Act is as follows:

- (a, a, (a,MPar(a),ar(a))) ∈ ActCmp for each a ∈
⋃

i∈I{ai},
(a, a, (a,MPar(a),ar(a))) ∈ ActCmp for each a ∈

⋃
i∈I{ai},

(ε, ε, (ε,MP0,0)) ∈ ActCmp;
- Fin = {ε} ∪

⋃
i∈I{ai}.

This SAM implements broadcast, where one process performs an output a
and all the others have to perform an input a. Notice that, if one wants to have

226 I. Lanese and E. Tuosto

weak broadcast, where some process may not synchronize with the output, it is
enough to add the triples (a, ε, (a,MPar(a),0)) for each a ∈ Act to ActCmp.

We always consider a set Alg containing all the SAMs of interest. This set is
assumed to be a commutative monoid w.r.t. an operator + of algebra composi-
tion. Names of SAMs are assumed to be unique in Alg.

We can now extend graphs by labelling nodes with SAMs. We concentrate
on the representation as syntactic judgements.

Definition 3 (Labelled Graphs). Assuming A ∈ Alg, we define a labelled
graph as a pair of the form Γ) G where:

1. Γ is a finite function mapping nodes to SAMs, written as sequence of pairs
n : A where n ∈ N ;

2. G is a term generated by the grammar
G ::= L(x) | G|G | ν y : A.G | nil
where x is a vector of names, L is an edge label with rank(L) = |x| and y is
a name.

In ν y : A.G, ν binds y in G while recording the label A.
When defining the interfaces, Γ, x : A denotes the set obtained by adding

x : A to Γ , assuming x /∈ dom(Γ) and Γ1,Γ2 denotes the union of Γ1 and Γ2,
assuming dom(Γ1) ∩ dom(Γ2) = ∅.

The relation of structural congruence on graphs is the same that we defined in
§2, with α-conversion preserving the labelling SAMs. Now graph isomorphisms
also preserve SAMs that label nodes. Theorem 1 holds also with the new defini-
tions.

4 SHR via an Example

Productions are the basic rules of SHR describing how edges can be rewritten.
This section gives a flavour of productions and synchronization before the formal
definitions which are in the following section. In particular, it highlights how
multiple SAMs can model issues of distributed applications in a simpler way
w.r.t. previous approaches.

A production takes the form x : A) L(x) Λ−→ Γ) G where

– x : A abbreviates x1 : A1, . . . , x|x| : A|x| and x : A) L(x) is an edge such
that all its attachment nodes are distinct,

– Γ) G is a labelled graph and
– Λ is a synchronization function mapping nodes in x to pairs (a,y) where

a ∈ Act is the performed action and y contains the communicated nodes.

Roughly, such a production states that, in a given graph, an edge labelled L can
be replaced by G provided that its attachment nodes x are labelled by A and
it can synchronize through actions specified by Λ with the productions of the
edges sharing the attachment nodes in x.

Synchronized Hyperedge Replacement for Heterogeneous Systems 227

We present the productions for our running example, i.e., the ones expressing
the behaviours of Au, S and a generic client Ci. For the sake of simplicity, we
consider the Milner SAM on actions {req} ∪

⋃
i∈Intm

{authi} (see Example 1)
and call it Mil .

First consider a generic client Ci:

x : Mil) Ci(x)
(x,authi,〈y〉)−−−−−−−−→ x : Mil , y : Mil) C ′

i(y) (1)

y : Mil) C ′
i(y)

(y,req,〈〉)−−−−−−→ y : Mil) C ′
i(y). (2)

Production 1 models the authentication phase where Ci is attached to a Mil node
and asks Au for the access to the service S. If the authentication takes place,
Ci connects to the server through y, the name which will be instantiated with
the server “address” during the synchronization with Au. The right-hand-side of
production 1 expresses that the client is connected to the server and can make
its requests. Notice that the synchronization between Au and Ci takes place only
if Ci is able to provide some information that allows Au to “recognize” Ci as
a legal user, which is abstracted with authi. Production 2 simply states that a
request is sent to the server. For simplicity, we assume that the server does not
give back any answer.

Productions for Au simply have to accept authorized clients and give them
the server address:

x : Mil , u : Mil) Au(x, u)
(x,authi,〈u〉)−−−−−−−−→ x : Mil , u : Mil) Au(x, u), (3)

where i ranges over the indexes of valid clients.
Finally, the server simply accepts requests from clients:

u : Mil) S(u)
(u,req,〈〉)−−−−−−→ u : Mil) S′(u),

where S′ is used to model the server when it is busy. It becomes again available
via the production

u : Mil) S′(u)
(u,ε,〈〉)−−−−→ u : Mil) S(u),

which does not require any synchronization since it corresponds to an internal
transition of the server.

Consider that we want to extend our example by making each request to be
served by many servers at once. For instance, assume that the request is a search
query on the web that clients want to submit to different search engines. This
extension can be easily obtained by interposing an edge Bn between Au and the
n servers. This system can be represented by the following figure:

228 I. Lanese and E. Tuosto

◦z1 S1

Au ◦
u

Bn ◦

...

Si

...

•x ◦

...
zn Sn

...

C1 · · · Ci · · · Cm

Bn will simply acquire the requests from clients and forward them to each

server. This behaviour is formally stated by the following production:

u : Mil , z : Mil � Bn(u, z)

(u, req, 〈〉),
(z, req, 〈〉)

−−−−−−−−−→ u : Mil , z : Mil � Bn(u, z).

where z : Mil shortens z1 : Mil , . . . , zn : Mil while with (z, req, 〈〉) we denote
(z1, req, 〈〉), . . . , (zn, req, 〈〉).

This solution has a number of advantages:

– the introduction of Bn is completely transparent to the other components,
hence we do not have to change the productions for Au, C or S,

– Bn triggers all the servers in parallel.

Nevertheless, there also are some drawbacks:

– if one of the servers crashes or autonomously disconnects from Bn, then Bn

is blocked,
– if Bn crashes then all the servers are isolated,
– adding (resp. removing) a server implies to replace Bn with Bn+1 (resp.

Bn−1),
– the request is dangling if one of the servers does not accept it.

All these drawbacks are resolved by using weak broadcast synchronizations be-
tween the clients and the servers. Instead of introducing edges Bn, we can simply
modify productions (1) and (3) as follows:

x : Mil) Ci(x)
(x,authi,〈y〉)−−−−−−−−→ x : Mil , y : Bdc) C ′

i(y) (4)

x : Mil , u : Bdc) Au(x, u)
(x,authi,〈u〉)−−−−−−−−→ x : Mil , u : Bdc) Au(x, u),

where Bdc is the weak broadcast SAM on the action {req} (see Example 2).
Notice that Au and Ci must accord on the label of the second attachment node
of Au. Notice also that now only request actions can be executed on node u.

Synchronized Hyperedge Replacement for Heterogeneous Systems 229

5 The Mathematics of Heterogeneous SHR

We present now the formal definitions of productions and transitions. In addi-
tion to what shown in Section 4, now the label of a transition also contains an
idempotent substitution π that allows to merge nodes in the interface by map-
ping each of them into a standard representative of its equivalence class. Even
though not used in this work, we include π since we extend the SHR approach
from [5] where it has been exploited.

Definition 4 (SHR Transition). A SHR transition is a relation of the form:

Γ) G
Λ,π−−→ Φ) G′

where Γ) G and Φ) G′ are labelled graphs, Λ : dom(Γ) → (Act × N ∗) is
a total function and π : dom(Γ) → dom(Γ) is an idempotent substitution. If
Λ(x) = (a,y) then |y| = ar(a). We define actΛ(x) = a, nΛ(x) = y and

– n(Λ) = {z|∃x.z ∈ nΛ(x)} set of exposed names;
– ΓΛ = n(Λ) \ dom(Γ) set of exposed fresh names.

We require dom(Φ) = π(dom(Γ)) ∪ ΓΛ, namely free nodes are never erased (⊇)
and new nodes are bound unless exposed (⊆). The SAMs associated to new nodes
in Φ (nodes in ΓΛ) can be freely chosen. Instead, for each x ∈ π(dom(Γ)), the
associated algebra A is A1 + . . . +An where {A1, . . . , An} are the labels of the
nodes in Γ mapped to x by π. Notice that A is well-defined since SAMs form a
commutative monoid.

We want to be able to specify productions that can be applied to nodes with
different labels, while keeping some control on them. Hence, we introduce types:

Definition 5 (Types). A type t is any non empty set of SAMs.

Definition 6 (Productions). A production is an SHR transition of the form

x1 : A1, . . . , xn : An) L(x1, . . . , xn)
Λ,π−−→ Φ) G where x1, . . . , xn are all distinct

and A1, . . . , An are SAMs.
A production schema is a generalized production that has types instead of

SAMs as labels for nodes.

Productions can be derived from production schemas by α-converting the nodes
in {x1, . . . , xn} ∪ dom(Φ) and/or by specializing each type ti into a particular
SAM Ai ∈ ti, provided that for any xi, actΛ(xi) ∈ factset(Ai) and that the
result is a correct transition (namely, nodes in Φ that are the result of a fusion
have the label computed by composing the labels of the merged nodes). We
suppose to have for each edge label L of arity n a special idle production schema
x : Alg) L(x)

Λε,id−−−→ x : Alg) L(x) where Λε(xi) = (ε, 〈〉) for each i ∈ Int|x|.
Transitions for SHR are derived by composing productions using the inference

rules in the following definition.

230 I. Lanese and E. Tuosto

Definition 7 (Heterogeneous SHR). A heterogeneous SHR rewriting sys-
tem consists of a triple (Alg,P,Γ) G), where Alg is the set of SAMs, P is a
set of productions and Γ) G is the initial labelled graph.

The set of transitions of (Alg,P,Γ) G) is the smallest set obtained by apply-
ing the inference rules below starting from the productions in P. The computa-
tions of (Alg,P,Γ) G) are sequences of transitions Γi) Gi

Λi,πi−−−→ Φi) G′
i, for

i ∈ ω, such that Γ0) G0 = Γ) G and, for each i > 0, Γi) Gi is Φi−1) G′
i−1.

(res)
Γ, x : A � G

Λ,π−−→ Φ � G′ actΛ(x) ∈ factfin(A) (xπ = yπ ∧ x �= y) ⇒ xπ �= x

Γ � ν x : A.G
Λ|\{x},π|\{x}−−−−−−−−−→ Φ′ � ν Z G′

where Z = Φ \ Φ′.

(new)
Γ � G

Λ,π−−→ Φ � G′ x /∈ dom(Γ) ∪ dom(Φ) A ∈ Alg

Γ, x : A � G
Λ∪{(x,ε,〈〉)},π−−−−−−−−−→ Φ, x : A � G′

(par)

Γ1 � G1
Λ1,π1−−−−→ Φ1 � G′

1 Γ2 � G2
Λ2,π2−−−−→ Φ2 � G′

2

(dom(Γ1) ∪ n(Λ1)) ∩ (dom(Γ2) ∪ n(Λ2)) = ∅

Γ1, Γ2 � G1|G2
Λ1∪Λ2,π1∪π2−−−−−−−−−→ Φ1, Φ2 � G′

1|G′
2

(merge)

Γ, x : A, y : A) G
Λ∪{(x,a1,v1),(y,a2,v2)},π−−−−−−−−−−−−−−−−−→ Φ) G′

(a1, a2, (c,Mb)) ∈ factcmp(A)

Γ, x : A) Gσ
Λ′,π′
−−−→ Φ′) ν Z G′σρ

where:

– σ = {x/y};
– E = {vi1 [j1] = vi2 [j2]|Mb([i1, j1]) = Mb([i2, j2])};
– ρ = mgu({(E ∪merge(π))σ}) where we choose node names in dom(Γ)∪{x}

as representatives whenever possible;
– w[i] = (vj [k])σρ if Mb([j, k]) = i, i ∈ Intar(c);

– Λ′(z) =
{

(c,w) if z = x
(actΛ(z), (nΛ(z))σρ) for each z ∈ dom(Γ)

– π′ = ρ|dom(Γ)∪{x};
– dom(Z) = dom(Φ)σρ \ dom(Φ′);
– the label of each node x ∈ dom(Z)∪dom(Φ′) is computed as follows: x is the

representative according to ρ of an equivalence class {x1, . . . , xn} of nodes
which have in Φ labels A1, . . . , An. Then the label of x is A1 + . . . +An.

Rule (res) binds nodes, allowing only complete actions (w.r.t. their SAMs)
to take place on them. According to the last condition of (res), the bound node
must not be the representative of the equivalence class induced by π when the
class is not trivial. Nodes extruded just on the bound node must be bound after
the transition, and thus they are in Z (the labels are preserved).

Synchronized Hyperedge Replacement for Heterogeneous Systems 231

Rule (new) allows to add an isolated node x to the interface; initially, on x
only the trivial action ε can be done.

Rule (par) performs the union of two transitions provided that they have
disjoint sets of free names (accounting also for newly generated names).

Rule (merge) is the rule for synchronization. It allows to compute the effect
of merging two nodes x and y with synchronizations (a1,v1) and (a2,v2) respec-
tively on them, provided that they are labelled with the same SAM A, which
will label also the resulting node. The synchronization is allowed iff there exists
a triple (a1, a2, (c,Mb)) ∈ factcmp(A). In this case set E is computed, which
accounts for merging names that are mapped to the same position by Mb (note
that merges are performed even if the resulting representative is not attached to
action c). We then compute ρ by means of an mgu on E ∪merge(π) after having
fused nodes according to σ. Notice that merge(π) accounts for the node fusions
due to π and that ρ also chooses a representative for each equivalence class. If at
least one of the members of the class is in dom(Γ)∪{x}, then one of them must
be chosen (otherwise undesired renamings of nodes may happen). After that, the
new vector w is generated by choosing for each position the representative of the
corresponding equivalence class. We can then compute the new synchronization
function Λ′, which takes into account the performed merges. Merges on nodes in
the interface are traced by π′. Nodes that are no longer extruded (because the
synchronization discards them) are bound. The SAMs associated to nodes are
preserved from the premise for nodes that are not merged, and are computed us-
ing the operator of composition of SAMs otherwise. The result does not depend
on the structure of the derivation, as witnessed by the following proposition:

Proposition 1. Given a transition Γ) G
Λ,π−−→ Φ) G′, the labels in Φ of nodes

in dom(Φ) ∩ dom(Γ) depend only on Γ and π.

Proof. By induction on the structure of the derivation.

Example 3 (Dynamically computing SAMs). Consider the example of § 4. Us-
ing weak broadcast communications between clients and servers is “statically”
determined by the productions of A and Ci which also couple the behaviour of
these components. Indeed, if Mil +Bdc = Bdc, then rule (merge) ensures that the
synchronization of productions (4) and (3) yields the expected result, namely,
the attachment node of servers uses a weak broadcast SAM, since Ci requests it
to do so.

6 A Further Example

We consider a scenario where multiple processes/hosts are connected through
links with different features. Mainly, we consider two characteristics: the maxi-
mum packet size, which can be either 4kb or 16kb, and the presence/lack of some
error-detecting mechanism e.g., the CRC algorithm. Before starting the real com-
munication, two processes create a logical communication channel between them.

232 I. Lanese and E. Tuosto

This channel supports 16kb packets and/or error-detecting capabilities only if
all the underlying channels do.

We model this scenario using eight SAMs obtained by mixing three distinct
features, namely:

– packet sizes (4kb/16kb),
– error-detecting mechanism (yes/no),
– control or communication link.

The first two items correspond to the aforementioned characteristics of links,
while the last one specifies whether the link is used for exchanging control mes-
sages or for data. For simplicity we suppose that control messages are short and
thus can be encoded using some error-correcting code. Hence, control messages
are always correctly delivered. Since all the combinations of the three features
are possible, we conventionally name the SAMs by means of expressions like
CTR4 or COM

√
16 that respectively denote a control link without error-detecting

mechanism and with 4kb maximum packet size and a communication link with
error-detecting mechanism and 16kb maximum packet size.

The control SAMs provide essentially normal Milner communication (where
we drop the distinction between action and coaction) for control messages. The
SAMs for communication without error-detecting mechanism provide faulty Mil-
ner synchronization, i.e., the result of a synchronization can be either τ or err. In
the former case, name passing is performed while no name passing is performed
in the latter. Note that, in these SAMs, the processes cannot detect the result of
synchronizations (unless they perform additional interactions). Communication
actions can be of two kinds, in4 for packets of 4kb and in16 for packets of 16kb.
Corresponding output actions are provided. The same τ and err actions are used
in both the cases. Both the kinds of synchronization are allowed by the SAM
16kb, while just the 4kb-size packets are allowed for SAMs 4kb. Finally, error-
detecting SAMs allow two different kinds of input, in

√
s which synchronizes giving

τ and ins which synchronizes giving a detected error, where s ∈ {4kb, 16kb}.
To clarify all that we will now formally define the SAM COM

√
16:

– N = COM
√
16;

– Act = {in
√
4 , in4, out4, in

√
16, in16, out16, τ, err, ε};

– for simplicity we suppose that all actions but τ , err and ε have arity 1 while
these three have arity 0;

– Fin = {τ, err, ε};
– (in

√
4 , out4, (τ,MP1,1)) ∈ ActCmp,

(in4, out4, (err,MP0,0)) ∈ ActCmp,
(in

√
16, out16, (τ,MP1,1)) ∈ ActCmp,

(in16, out16, (err,MP0,0)) ∈ ActCmp,
(ε, ε, (ε,MP0,0)) ∈ ActCmp.

We can now define the function of algebra composition. We will define a
partial order on our SAMs, and the greatest lower bound will be our composition

Synchronized Hyperedge Replacement for Heterogeneous Systems 233

operator. The order is defined component-wise on the three features of SAMs
over which the following orders are considered: 16kb > 4kb, the presence of an
error-detecting mechanism is greater than its absence and CTR > COM . Note
that the set of SAMs with the resulting operation forms a commutative monoid.

We consider as types all the singletons, the universal type Alg and the type
CT that contains the four control SAMs.

For simplicity we consider that our system contains two kinds of subsystems:
end systems x) Idle(x) and routers x, y, z) R(x, y, z). End systems can start a
communication with the production schema:

x : CT) Idle(x)
(x,connect,〈y〉)−−−−−−−−−−→ x : CT, y : COM

√
16) Active(x, y) (5)

After connecting to another system, an Idle process becomes Active, i.e. able to
send/receive data over the links built toward other systems. For lack of space,
we do not formally model their behaviour.

We now show the productions for routers. We write just a meta-rule, with
type meta-variables t1 and t2 to be instantiated with each singleton containing a
control SAM. Furthermore the production must be written for each permutation
of attachment nodes.

x : t1, y : t2, z : CT) R(x, y, z)
(x,connect,〈w〉),(y,connect,〈w〉)−−−−−−−−−−−−−−−−−−−−→

x : t1, y : t2, z : CT,w : (COM
√
16 + t1 + t2)) R(x, y, z)

(6)

We can now show some examples. Let us consider as starting graph:

) (ν x1 : CTR
√
16, x2, x3 : CTR16, x4 : CTR4, x5, x6 : CTR

√
4).

(Idle(x1)|R(x1, x2, x4)|R(x2, x3, x5)|Idle(x3)|R(x4, x5, x6)|Idle(x6)),

where x1, . . . , xn : A shortens x1 : A, . . . , xn : A.
For instance, we can build a communication channel between Idle(x1) and

Idle(x3) using productions (5) and (6). The algebra for the resulting connection
is COM16, obtained via COM

√
16 +COM16 +COM16. In that case we obtain the

graph:

) (ν x1 : CTR
√
16, x2, x3 : CTR16, x4 : CTR4, x5, x6 : CTR

√
4 , y : COM16)

(Active(x1, y)|R(x1, x2, x4)|R(x2, x3, x5)|Active(x3, y)|R(x4, x5, x6)|Idle(x6))

Similarly we can build a connection between Idle(x1) and Idle(x6), but this
time the resulting channel will use the algebra COM4. When either of these
connections has been established, communication can happen using that channel.
Notice that the label of the channel is computed from the constraints imposed
by interacting routers.

7 Conclusions

We have presented a framework for modelling heterogeneous distributed systems
using SHR. In addition to standard SHR properties, namely the ability to build

234 I. Lanese and E. Tuosto

a compositional description of system behaviour, our extension allows to deal
with systems where different kinds of communication/synchronization policies
coexist, as usually happens in WANs and overlay networks. From the technical
point of view the main points are the labelling of nodes with SAMs and the
management of these labels when nodes are communicated and merged, which
is obtained by requiring a commutative monoid structure on the set of SAMs.

As future work we plan to analyze the behavioural properties of SHR systems
by defining a suitable bisimulation which is a congruence w.r.t. composition of
graphs. We also want to develop a framework that merges the advantages of
SHR and bigraphs, thus allowing a compositional description of systems with
both a communication and a location structure. Another important point is to
build an implementation of SHR systems, both for modelling system evolution
(and also performing behavioural analysis using model-checking) and for pro-
gramming real systems. In this second case SHR must be integrated with a
standard programming language such as Java or C++, thus enabling to write
normal code for computation and using some flavour of SHR (probably in a more
process-calculi like style) for coordination.

References

1. I. Castellani and U. Montanari. Graph Grammars for Distributed Systems. In
H. Ehrig, M. Nagl, and G. Rozenberg, editors, Proc. 2nd Int. Workshop on Graph-
Grammars and Their Application to Computer Science, volume 153 of LNCS, pages
20–38. Springer, 1983.

2. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A Formal
Basis for Reasoning on Programmable QoS. In N. Dershowitz, editor, International
Symposium on Verification – Theory and Practice – Honoring Zohar Manna’s 64th
Birthday, volume 2772 of LNCS, pages 436 – 479. Springer, 2003.

3. P. Degano and U. Montanari. A model of distributed systems based on graph
rewriting. JACM, 34:411–449, 1987.

4. H. Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: an algebraic ap-
proach. In Proceedings IEEE Conference on Automata and Switching Theory,
pages 167–180, 1973.

5. G. Ferrari, U. Montanari, and E. Tuosto. A LTS Semantics of Ambients via Graph
Synchronization with Mobility. In ICTCS, volume 2202 of LNCS. Springer, 2001.

6. G. Ferrari, U. Montanari, and E. Tuosto. Graph-based Models of Internetworking
Systems. In T. Aichernig, Bernhard K. Maibaum, editor, Formal Methods at the
Crossroads: from Panaces to Foundational Support, volume 2757 of LNCS, pages
242 – 266. Springer, 2003.

7. D. Hirsch. Graph Transformation Models for Software Architec-
ture Styles. PhD thesis, Departamento de Computación, UBA, 2003.
http://www.di.unipi.it/̃ dhirsch.

8. D. Hirsch, P. Inverardi, and U. Montanari. Reconfiguration of Software Architec-
ture Styles with Name Mobility. In A. Porto and G.-C. Roman, editors, Coordi-
nation 2000, volume 1906 of LNCS, pages 148–163. Springer, 2000.

9. D. Hirsch and U. Montanari. Synchronized hyperedge replacement with name
mobility: A graphical calculus for name mobility. In CONCUR, volume 2154 of
LNCS, pages 121–136, Aalborg, Denmark, 2001. Springer.

Synchronized Hyperedge Replacement for Heterogeneous Systems 235

10. O. Jensen and R. Milner. Bigraphs and transitions. SIGPLAN Not., 38(1):38–49,
2003.

11. I. Lanese and U. Montanari. Software architectures, global computing and graph
transformation via logic programming. In L. Ribeiro, editor, Proc SBES’2002 -
16th Brazilian Symposium on Software Engineering, pages 11–35. Anais, 2002.

12. I. Lanese and U. Montanari. Synchronization algebras with mobility for graph
transformations. In Proc. FGUC’04 – Foundations of Global Ubiquitous Comput-
ing, ENTCS, 2004. To appear.

13. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II.
Inf. and Comp., 100(1):1–40,41–77, September 1992.

14. U. Montanari and F. Rossi. Graph rewriting and constraint solving for modelling
distributed systems with synchronization. In P. Ciancarini and C. Hankin, editors,
Proceedings of the First International Conference COORDINATION ’96, Cesena,
Italy, volume 1061 of LNCS. Springer, April 1996.

15. D. Sangiorgi and D. Walker. The π-Calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2002.

16. E. Tuosto. Non-Functional Aspects of Wide Area Network Programming. PhD
thesis, Dipartimento di Informatica, Università di Pisa, May 2003. TD-8/03.

17. G. Winskel. Synchronization trees. TCS, 34:33–82, May 1985.

Synthesis of Reo Circuits for Implementation of
Component-Connector Automata Specifications

Farhad Arbaba,c, Christel Baierb, Frank de Boera,c, Jan Ruttena,d, and Marjan Sirjanie

a CWI, Amsterdam, The Netherlands
{farhad, janr, frb}@cwi.nl

b Universität Bonn, Institut für Informatik I, Germany
baier@cs.uni-bonn.de

c Universiteit Leiden, The Netherlands
d Vrije Universiteit, Amsterdam, The Netherlands

e Sharif University of Technology, Tehran, Iran

Abstract. Composition of a concurrent system out of components involves coor-
dination of their mutual interactions. In component-based construction, this coor-
dination becomes the responsibility of the glue-code language and its underlying
run-time middle-ware. Reo offers an expressive glue-language for construction
of coordinating component connectors out of primitive channels. In this paper we
consider the problem of synthesizing Reo coordination code from a specification
of a behavior as a relation on scheduled-data streams. The specification is given
as a constraint automaton that describes the desired input/output behavior at the
ports of the components. The main contribution in this paper is an algorithm that
generates Reo code from a given constraint automaton.

1 Introduction

Composing components into a concurrent system involves coordination of their mutual
interactions. The internals of black-box components cannot be modified to implement
such coordinated interactions. Coordination, therefore, becomes the responsibility of
the “glue-code” that inter-connects the constituent components of a composite system,
and of its underlying run-time middle-ware. Reo [2] offers a powerful glue language
for implementation of coordinating component connectors that resemble electronic cir-
cuits and are based on a calculus of mobile channels. Reo is being used, for instance, in
the context of the Cybernetic Incident Management project [9] for composition of web
services, which constitute the black-box components of dynamically configured dis-
tributed applications [11]; to model business processes, such as electronic auctions [20];
and for modeling coordination in biological systems [10].

This paper addresses the synthesis problem of component connectors with Reo as
our target implementation language. The input for this problem is a specification of
a coordination protocol and its output is a Reo connector circuit that implements this
protocol. Synthesis problems address the issue of the (algorithmic) generation of an im-
plementation from a given specification and have a long tradition in computer science.
In the context of switching circuits, the synthesis problem was first raised by Church [8]

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 236–251, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Synthesis of Reo Circuits 237

and is nowadays well-understood. For temporal logical specifications, several synthesis
algorithms have been suggested that rely on the close relationship between the synthesis
and satisfiability problem or on a game-theoretic view, see e.g. [12, 15, 6, 16, 19, 18, 13].
The output of these synthesis algorithms are some kind of automata or state-transition
graphs. Our goal is a step further toward an implementation by generating Reo code
from a given automaton specification. Thus, our contribution is more in the spirit of
gate-level hardware synthesis from given automata specifications. Our starting point is
a specification of a component connector as a relation over timed data streams [7, 5],
represented by a constraint automaton [4]. Constraint automata are variants of labeled
transition systems that operationally describe the maximally parallel data-flow activity
through the nodes in a Reo circuit. In [4], constraint automata are used to provide an
operational semantics for coordination mechanisms formalized by composition of Reo
connector graphs. In a constraint automaton, the states of the automaton represent the
possible configurations (e.g., the contents of the FIFO-channels of the Reo-connector);
transitions going out of a state represent data-flow at that state and its effect on the
configuration.

In this paper we are not primarily concerned with the derivation of (constraint) au-
tomata representations from higher-level behavior specifications, such as in temporal
logic or relations on timed data streams. Similar derivations, for instance, in the field
of digital circuit design, are well-known. The main contribution of this paper is an al-
gorithm that takes as input a constraint automaton A and produces a Reo connector
graph that implements the relation on timed data streams specified by A . This is tan-
tamount to compiling an automaton down to actual concurrent executable code for a
distributed implementation of the coordination behavior specified by that automaton.
Superficially, compiling constraint automata specifications to Reo circuits seems sim-
ple. By analogy, derivation of digital circuits from Mealy automata specifications are
well understood. However, constraint automata (and Reo circuits) can exhibit far more
complex behavior than digital circuits, including combinations of synchrony and asyn-
chrony, and relational, as well as simple (input/output) functional, interdependencies.
In the light of this fact, it is far from obvious if synthesis of Reo circuits from constraint
automata is possible at all, and if so, whether it can be done efficiently.

The rough idea of our synthesis algorithm is as follows. We first transform the au-
tomaton A into an equivalent scheduled-data expression which is a slight variant of an
ordinary ω-regular expression. We then construct circuits for the atomic expressions
and composition operators on Reo circuits that capture the semantics of concatena-
tion, union, and infinity-closures. The major difficulty is the treatment of the atomic
expressions that describe a complex “one-step” coordination scenario with possibly
data-dependent synchronous and asynchronous behavior.

The rest of this paper is organized as follows. Section 2 contains a summary of
the main features of Reo. Section 3 recalls the definition of constraint automata and
their accepted TDS-languages. In Section 4, we show the equivalence of scheduled-
data expressions and constraint automata. The construction of a Reo circuit from a
given expression is explained in Section 5. Section 6 concludes the paper.

238 F. Arbab et al.

2 A Reo Primer

Reo [2] is a channel-based exogenous coordination model wherein complex coordi-
nators, called connectors, are compositionally built out of simpler ones. The simplest
connectors in Reo are a set of channels with well-defined behavior supplied by users.
Components can instantiate, compose, connect to, and perform I/O operations through
connectors. Here, as in [5, 4], we do not consider the dynamic creation, composition,
and reconfiguration of connectors by components. We restrict our attention to connec-
tors that have a static graphical representation as a Reo circuit which coordinates the
data-flow through the channels connecting the input/output ports of components.

Reo’s notion of channel is far more general than its common interpretation and
allows for any primitive communication medium with exactly two ends. The channel
ends are classified as source ends through which data enters and sink ends through
which data leaves a channel. Although Reo allows for an open-ended set of channel-
types with user-defined semantics, for our purposes in this paper, we restrict ourselves
to the channel-types shown in Fig. 1.

fifo channel
(1-bounded) channel

synchr.

channel
lossy

channelfilter spout
synchr.

drain spout
asynchr.

drain

P

P-producer

P

synchr.
synchr. asynchr.

Fig. 1. Basic channel-types in Reo

The simplest form of an asynchronous channel is a FIFO channel with one buffer
cell (called a 1-bounded FIFO channel or simply a FIFO1 channel). We graphically
represent a FIFO1 channel by a small box in the middle of an arrow. In the example in
Fig. 1, the left channel-end is a source, and the right end is a sink. The buffer is assumed
to be initially empty if no data item is shown in the box (this is the case in Fig. 1).
The graphical representation of a FIFO1-channel whose buffer initially contains a data
element d shows d inside the box. FIFO channels with two or more buffer cells can be
produced by composing several FIFO1 channels, as for instance, explained in [5, 4].

A synchronous channel (depicted as a simple solid arrow) has a source and a sink
end, and no buffer. It accepts a data item through its source end iff it can simultaneously
dispense it through its sink. A lossy synchronous channel (depicted as a dashed arrow)
is similar to a synchronous channel, except that it always accepts all data items through
its source end. If it is possible for it to simultaneously dispense the data item through
its sink (e.g., there is a take operation pending on its sink) the channel transfers the data
item; otherwise the data item is lost. For a synchronous filter channel, its “pattern” P
(for our purposes here, formalized as a set P ⊆ Data) specifies the type of data items
that can be transmitted through the channel. Any value d ∈ P is accepted through its
source end iff its sink end can simultaneously dispense d; all data items d /∈ P are
always accepted through the source end but are immediately lost. The P-producer is a
variant of a synchronous channel whose source end accepts any data item d ∈Data, but
the value dispensed through its sink end is always a data element d ∈ P.

Synthesis of Reo Circuits 239

More exotic channels permitted in Reo are (a)synchronous drains that have two
source ends. Because a drain has no sink end, no data value can ever be obtained from
these channels. Thus, a synchronous drain accepts a data item through one of its ends
iff a data item is also available for it to simultaneously accept through its other end as
well. All data accepted by this channel are lost. An asynchronous drain accepts and
loses data items through its two source ends, but never simultaneously. Synchronous
and asynchronous spouts are duals of their corresponding drain channel types, as they
have two sink ends.

A complex connector has a graphical representation, called a Reo circuit, which
can be produced by applying certain composition operators to channels. In our setting,
where we do not consider dynamic aspects of the Reo language, a Reo-circuit is a finite
graph where the nodes are labeled with pair-wise disjoint, non-empty sets of channel
ends, and where the edges represent their connecting channels. The set of channel ends
coincident on a node A is disjointly partitioned into the sets Src(A) and Snk(A), denot-
ing the sets of source and sink channel ends that coincide on A, respectively. A node is
called a source node if Src(A) �= /0∧Snk(A) = /0. Analogously, A is called a sink node
if Src(A) = /0∧Snk(A) �= /0. Node A is called a mixed node if Src(A) �= /0∧Snk(A) �= /0.
In this paper, it suffices to assume that all mixed nodes are hidden. In other words, we
abstract away from their names and formalize the behavior of a Reo circuit by means
of the data-flow at its sink and source nodes. Intuitively, source nodes of a circuit are
analogous to the input ports, and sink nodes to the output ports of a component, while
mixed nodes are its hidden internal details. Components cannot connect to, read from,
or write to mixed nodes. Instead, data-flow through mixed nodes is totally specified by
the circuits they belong to.

A component can write data items to a source node of a Reo circuit that it is con-
nected to. A write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently written to
every source end coincident on the node. A source node, thus, acts as a replicator. A
component can obtain data items from a sink node of a Reo circuit that it is connected
to through input operations.1 A take operation succeeds only if at least one of the (sink)
channel ends coincident on the node offers a suitable data item; if more than one co-
incident channel end offers suitable data items, one is selected nondeterministically. A
sink node, thus, acts as a nondeterministic merger. A mixed node is a self-contained
“pumping station” that combines the behavior of a sink node (merger) and a source
node (replicator) in an atomic iteration of an endless loop: in every iteration a mixed
node nondeterministically selects and takes a suitable data item offered by one of its
coincident sink channel ends and replicates it into all of its coincident source channel
ends. A data item is suitable for selection in an iteration only if it can be accepted by all
source channel ends that coincide on the mixed node.

Example 1 (Exclusive Router and Shift-Lossy FIFO1 Channel). Fig. 2 a. shows an im-
plementation of an exclusive router built by composing five synchronous channels, two
lossy synchronous channels and a synchronous drain. The intuitive behavior of this cir-

1 We consider only the destructive take operation here which, e.g., on a FIFO channel, reads and
removes the first data item in its buffer.

240 F. Arbab et al.

ba

A

B C

A

Bo

FIFO2
EXR

Fig. 2. Exclusive router and shift-lossy FIFO1 channel

cuit is that through its source node A, it obtains a data item d from its environment
and delivers d to one of its sink nodes B or C. If both B and C are willing to accept
d then (the merger in the mixed node in the middle of) the exclusive router nondeter-
ministically decides to deliver d to either B or C. No data that passes through A can be
lost because of the synchronous drain and the two synchronous channels in the middle
of the circuit. The synchronous drain ensures that data flow at A is synchronized with
data flow through the node at its opposite end. The merger inherent in this mixed node
guarantees that at most one of its two coincident synchronous channels transfer data,
synchronized with the data flow at either B or C.

The circuit in Fig. 2.b shows an implementation of a shift-lossy FIFO1 channel with
source node A and sink node B. This implementation uses four synchronous channels, a
synchronous drain, a FIFO1 channel whose buffer initially contains a token data item,
o, an empty FIFO2 channel, and an instance of the exclusive router of Fig. 2.a shown
as the box labeled EXR. A shift-lossy FIFO1 channel behaves the same as a FIFO1
channel, except that writing to its source end is never blocked. If at the time of a write
operation its buffer is full, the stored data item in the buffer is lost and the new data
item replaces it in the buffer. The observable behavior of each of these Reo circuits is
represented by a constraint automaton in Fig. 3. Derivation of these constraint automata
as compositions of the constraint automata representing the behavior of the individual
primitives used in their respective Reo circuits appears in [4]. �

In spite of its simplicity, the semantics of Reo is indeed very rich, yielding a sur-
prisingly expressive language [2]. For instance, the relational (as opposed to functional)
dependencies that result in “propagation of synchrony” as well as the way in which the
local behavior of, e.g., lossy synchronous channels imposes non-local constraints on
a circuit, are already evident in the exclusive router of Fig. 2.a. (We use this exclusive
router later in this paper in our synthesis of Reo circuits.) Examples of Reo circuits with
more interesting behavior can be found elsewhere [1], and the reader is encouraged to
see [17] and [5] for the simple, rich, and expressive formal semantics of Reo.

In the remainder of the paper, we discuss the synthesis problem of Reo circuits
where the input specification of the desired coordination is given as a constraint au-
tomaton, as defined in the next section.

Synthesis of Reo Circuits 241

synchronous channel synchronous drain asynchronous drain lossy synchronous

dA = dB
{A,B}

{A,B} {A}

{A}dA = dB
{A,B}

{B}

dA = dB ∈ P
{A,B}

with filter
synchronous channel

{A} dA /∈ P

dB ∈ P
{A,B}

P-producer or spout or spout channel

{A,B}

exrouter

dA = dB
{A,C}
dA = dC

{A}

{A}
{B}

shift-lossy fifo1 channel
(data abstract)

Fig. 3. Constraint automata for some basic channels in Reo

3 Constraint Automata

Constraint automata can serve as an operational model for Reo circuits [4]. The states of
an automaton represent the configurations of its corresponding circuit (e.g., the contents
of the FIFO channels), while the transitions encode its maximally-parallel stepwise
behavior. The transitions are labeled with the maximal sets of nodes on which data-flow
occurs simultaneously, and a data constraint (i.e., boolean condition for the observed
data values). We start with a simple example for a constraint automaton that models a
component with input port A and two output ports B and C which is modeled by a Reo
circuit as shown in the left of the picture below.

{A}
dA = 0 dC = dB = 0

{A} dA = 1

dB = dC = 1{B,C}

{B,C}

A
B

C

The picture on the right shows the corresponding constraint automaton where we
assume that only bits 0 and 1 can be transmitted through the channels. The initial state
stands for the configuration where the buffer is empty, while the two other states repre-
sent the configurations where the buffer is filled with one of the data items. The outgoing
transitions from the initial state are labeled with the singleton set {A} which reflects the
fact that in the initial configuration only data-flow at A is possible. If the buffer is filled
then data-flow at A is impossible and only B and C can take the value from the buffer.

In the sequel, we specify constraint automata using a nonempty and finite set Data
consisting of data items that can be sent (and received) via channels and a nonempty
and finite set N = {A1, . . . ,An} of names. Intuitively, we may think of the Ai’s to be
the source or sink nodes of a Reo circuit. We refer to the subsets of N as node-sets.
A data assignment for /0 �= N ⊆ N is a function δ : N → Data. DA(N) denotes the set
of all data assignments for N, and DA the set of all data assignments (on any N). Data
constraints, which can be viewed as a symbolic representation of sets of data assign-
ments, are formally defined as propositional formulas built from the atoms “dA ∈ P”

242 F. Arbab et al.

Bstop

asynchronous
drain

synchronous
spout

0

Component “Init”

Ainit

Component “Stop”

{Ainit},dAinit
= 0 {Bstop}

Fig. 4. Reo circuits and automata for an initializer and a terminator

and “dA = dB”, where A,B ∈ N , dA,dB ∈ Data, and P ⊆ Data. DC(N) denotes the set
of data constraints using only names from N, and DC is a shorthand for DC(N). We
simply write “dA = d” rather than “dA ∈ {d}”. The symbol |= stands for the obvious
satisfaction relation which results from interpreting data constraints over data assign-
ments. Satisfiability and logical equivalence ≡ of data constraints are defined as usual.

Definition 1 (Constraint automata, [4]). A constraint automaton (over Data) is a tu-
ple A = (Q,N ,−→,Q0) where Q is a finite set of states, N a finite set of nodes, −→
is a finite subset of Q× (2N ×DC) ×Q, called the transition relation, and Q0 ⊆ Q a

nonempty set of initial states. We write q
N,g−→ p instead of (q,N,g, p) ∈−→ and require

that (1) N �= /0 and (2) g ∈ DC(N) is satisfiable. We call N the node-set and g the guard
of the transition. States without any outgoing transition are called terminal. �

The intuitive meaning of a constraint automaton as an operational model for Reo con-
nectors is similar to the interpretation of labeled transition systems as formal models
for reactive systems. The sink and source nodes of a Reo connector circuit play the role
of the nodes in its corresponding constraint automaton. The states represent the config-

urations of the connector. The meaning of a transition q
N,g−→ p is that in configuration

q all the nodes Ai ∈ N perform (synchronously) I/O-operations that meet the guard g,
resulting in a new configuration p, while at the same moment there is no data-flow at
the other nodes Ai ∈N \N.

Example 2 (Constraint automata). Constraint automata for the various basic channels
types, the exclusive router and shift-lossy FIFO1 channel are shown in Figure 3 (where
valid guards have been omitted). The automaton for a FIFO1 channel with source A
and sink B is the same as the one for the example in the beginning of the section,
except that C has to be removed. These automata do not have terminal states as in
any configuration data flow at some nodes is possible. The left part of Fig. 4 shows
the Reo circuit for an initializer, i.e., a component without input ports (source nodes)
and a single output port Ainit where data-flow at Ainit happens exactly once.2 Thus,
if we connect Ainit with an input port A of another component C via a synchronous
channel with source Ainit and sink A then data-flow at Ainit activates the data-flow at

2 Data-flow at the node on the left, where the two sink ends of a synchronous spout coincide,
is never possible because on the one hand, the sink ends of the spout are obligated to produce
their respective data items simultaneously, while on the other hand the merge semantics of
sink/mixed nodes does not allows for simultaneous data-flow at both sink ends.

Synthesis of Reo Circuits 243

C but prevents any “restart” of C . The situation is similar for the component “Stop”
on the right of the picture where the source node Bstop can put a value into the buffer
exactly once, because afterward the buffer is filled forever as no data-flow is possible
for an asynchronous drain with both source ends coincident on the same node. Thus, if
an output port B of a component C is connected via a synchronous channel with Bstop

then output at B is possible exactly once. In this sense, component “Stop” can serve to
terminate data-flow in other components. �
In [4], we formalized the semantics of a constraint automaton as a relation on timed
data streams. For the purposes of this paper, an equivalent, but simpler concept suffices
which abstracts away from time and describes the “traces” of a constraint automaton by
scheduled-data streams: finite or infinite sequences of pairs 〈N,δ〉, consisting of a set
N of all the nodes that are scheduled to be synchronously (i.e., atomically) active in the
next step, together with a data assignment δ ∈ DA(N) describing the data values that
are input and output.

Definition 2 (Scheduled-data streams, generated language). A scheduled-data
stream Θ = Θ(0);Θ(1); . . . is a finite or infinite sequence of pairs Θ(i) ∈ 2N ×DC,
denoted by

Θ(i) = 〈Θ.N(i)︸ ︷︷ ︸
node-set

, Θ.δ(i)︸ ︷︷ ︸
data assignment

〉,

such that Θ.N(i) is a non-empty node-set and Θ.δ(i) a data assignment for Θ.N(i). We
write |Θ| to denote the length of Θ (which can be ω). The empty scheduled-data stream
is denoted by ε. SDSN or briefly SDS denotes the set of all scheduled-data streams.
Let A = (Q,N ,−→,Q0) be a constraint automaton, Θ ∈ SDS and q a state in A . A
q-run for Θ in A is a path in A

q = q0
N0,g0−−→ q1

N1,g1−−→ q2
N2,g2−−→ . . .

such that (1) q0 = q and (2) either q and Θ are infinite or q consists of |Θ| transitions
and ends in a terminal state and (3) Ni = Θ.N(i), Θ.δ(i) |= gi for all 0 ≤ i < |Θ|. The
generated language L(A) of A is the set of all scheduled-data streams Θ ∈ SDS which
have a q0-run in A for some initial state q0 ∈ Q0. �
For instance, the SDS-language generated by the automaton for a synchronous channel
consists of all infinite scheduled-data streams Θ with Θ.N(i) = {A,B} and where data
assignment Θ.δ(i) assigns the same data item to A and B.

Although the formal definition of scheduled-data streams does not impose a relation
between the data assignments Θ.δ(i), for a given constraint automaton, there can be a
link between the data constraints Θ.δ(i) and Θ.δ(i + 1). For instance, the automaton
for a FIFO1 channel with source node A and sink node B generates the SDS-language
consisting of all infinite scheduled-data streams Θ with Θ.N(2i) = {A}, Θ.N(2i+1) =
{B}, and with Θ.δ(2i) = [A �→ d] and Θ.δ(2i+1) = [B �→ d], for some d ∈ Data.

In [4], we explain how an automaton for a Reo circuit can be constructed in a compo-
sitional way. (For the purpose of this paper, the details of that construction do not matter.
The only thing that we use later, in Section 5, is that by applying the above definition to
the automaton for a Reo circuit R, we obtain an SDS-language L(R) for R.) In what fol-
lows we show, conversely, how to construct a Reo circuit from a constraint automaton.

244 F. Arbab et al.

4 Scheduled-Data Expressions

The first step of our construction of a Reo circuit from a given automaton is to trans-
form the automaton into an equivalent ω-regular expression, a so-called scheduled-
data expression. These are built by ε representing the singleton SDS-language {ε} and
the atoms 〈N,g〉 where /0 �= N ⊆ N and g is a satisfiable data constraint for N. The
SDS-language L(〈N,g〉) consists of all scheduled-data streams Θ of length 1 such that
Θ.N(0) = N and Θ.δ(0) |= g. Moreover, we use the standard composition operators;

(concatenation), ∪ (union) and the closure operators αω (infinitely many repetitions)
and α∞ (finite or infinite repetitions). The formal definition of L(α) for composite ex-
pressions is defined as for ordinary ω-regular expressions and is omitted here.

Similar to the construction of a finite automaton from ordinary regular expressions
(see e.g. [14]), we can assign a constraint automaton to any scheduled-data expression
that generates the same SDS-language and which is linear in the size of the expression.
Since this construction does not play a role in the present paper, its description is omit-
ted. Instead, we use the reverse construction, i.e., of a scheduled-data expression for
a constraint automaton. Although to do so, we may apply the standard algorithms for
generating (ω-)regular expressions from automata (see e.g. [14]), we suggest here an
alternative algorithm. Rather than describing the construction in general, we treat a typ-
ical example. Consider the constraint automaton as shown on the left of the following
picture where a,b,c are pairs of node-sets with corresponding data constraints.

q0 q1 q2

a

b

c
α0 = a;α1

α1 = (b;α0)∪ (c;α2)
α2 = ε

Let αi denote the scheduled-data expression corresponding to (the SDS-language gen-
erated by) state qi, for i = 0,1,2. The three transitions of this automaton give rise to
three equations for the expressions as shown above. Together, they imply the following
equation: α0 = (a;b;α0)∪ (a;c). This equation can be solved, using the following gen-
eral laws for scheduled-data expressions: “if α = (β;α)∪ γ and ε �∈ β then α = β∞;γ”
and “if α = β;α and ε �∈ β then α = βω”. Applying the first law to the equation above
yields the expression α0 = (a;b)∞;a;c for the state q0.

5 From Scheduled-Data Expressions to Reo

We now address the issue of constructing a Reo circuit for a scheduled-data expression
α0. Because the source and the sink nodes of a Reo circuit play different roles with
respect to its environment, and this distinction is abstracted away in scheduled-data
expressions (and constraint automata), we first need to identify the “input” and “output”
of a circuit by partitioning its node set N . That is, our starting point is a description of
a component connector by its input ports C1, . . . ,Cn and its output ports D1, . . . ,Dm and
by (the scheduled-data expression α0 of) a given constraint automaton that specifies the
observable data flow at the Ci’s and D j’s.

In the sequel, let N = {C1, . . . ,Cn}∪ {D1, . . . ,Dm} contain all nodes occurring in
the node-sets N of the atoms 〈N,g〉 in α0, where we assume that the Ci’s are source

Synthesis of Reo Circuits 245

...

...

...

Aα Ãα B̃α Bα

DC ...

Fig. 5. Structure of the Reo-circuit Rα

nodes and the D j’s are sink nodes. Our goal is the construction of a Reo circuit R with
source nodes C1, . . . ,Cn and sink nodes D1, . . . ,Dm such that L(α0) = L(R).

For the construction of R, we use a compositional approach that builds a Reo circuit
Rα for each subexpression α of α0. Fig. 5 shows the general structure of Rα: if the
source node Aα is fed from outside with some data element, then it is put into the buffer
between Aα and Ãα. As soon as Ãα takes the data element from the buffer, the sub-
circuit in the middle is “activated”. Similarly, data-flow inside this sub-circuit stops as
soon as a data element arrives at B̃α, which puts it into the buffer between B̃α and Bα.
Thus, data-flow at the sink node B̃α can be viewed as a signal that Rα has “terminated”.

The nodes C, D in Fig. 5 are there to indicate that there will be some channels
connecting the sub-circuit in the middle of Rα with (some of) the source nodes C and
(some of) the sink nodes D in N . The construction of a circuit R for an expression α0

will be completed by a last step, in which “Init” and “Stop” components, defined in
Example 2, are added to begin and end the data-flow of in the circuit Rα0 , as shown in
Fig. 6. The construction of the circuit will be such that at any moment, exactly one of
the leftmost and rightmost buffers or buffers inside Rα0 will be filled. Thus, we may
consider data-flow through R as a token game, where the token is passed on from left to
right. The reason why we put Rα0 in the context of an initializer and a terminator is that

...

...

...

Aα0 Ãα0 B̃α0 Bα0

Cn
...

StopInit

C1 ... D1 Dm

Fig. 6. The final Reo-circuit R

the circuit Rα0 allows a “restart” of data flow at node Aα0 whenever Ãα0 has consumed
the data item in the buffer between Aα0 and Ãα0 . In fact, the initializer ensures that data
flow at Aα0 occurs exactly once. The reason for using the stop-component is similar.

Concatenation, union and closure. We first explain how to construct a circuit Rα, as-
suming we have already constructed the circuits for α’s subexpressions. (If a subex-
pression α occurs more than once in α0, e.g. if α0 = α;α, then we need a copy of the

246 F. Arbab et al.

circuits Rα for every syntactic occurrence of α as a subexpression in α0.) For α = γ;β
the Reo circuit Rα results from combining Rγ and Rβ as follows:

Aα Ãα B̃α BαRγ
BγAγ

Rβ
Aβ Bβ

Note that the internal FIFO-channels “at the end” of Rγ and “at the beginning” of Rβ
(not drawn in the picture) ensure that in the concatenation γ;β data-flow inside Rβ cannot
start before data-flow in Rγ has finished.

For α = γ∪ β, the Reo circuit Rα is obtained by combining Rγ and Rβ with an
exclusive router that nondeterministically chooses to “activate” the data-flow in either
Rγ or Rβ:

Aα Ãα B̃α Bα

Rγ
BγAγ

RβAβ Bβ

EXR

The Reo circuit Rα where α = β∞ is obtained from Rβ as follows:3

Aα Ãα B̃αRβ
BβAβ

EXR
Bα

For α = βω, the Reo circuit has the following structure.

Aα Ãα Rβ
BβAβ Bα

Init
empty

Here, “empty Init” is a variant of the initializer in Ex. 2, where the buffer is initially
empty. Thus, data-flow never occurs in “empty Init” or at node Bα. Being non-reachable,
it may be omitted; we keep it here so that the circuit retains the general shape of Fig. 5.

The empty expression. For α = ε, we simply use a FIFO1 channel with its source end
on node Aε and its sink end on node Bε. (Using just a single channel departs from
the general schema sketched in Fig. 5, but the nodes Ãα and B̃α are not needed in our
compositional approach.)

Atomic expressions. So far the construction of Reo circuits for composite expressions
has followed patterns that are familiar from automata theory. Next we come to the most

3 The syntax of scheduled-data expressions does not include the Kleene closure α = β∗. How-
ever, it could be treated by simply replacing the exclusive router with a fair exclusive router.

Synthesis of Reo Circuits 247

A〈N,h〉 Ã〈N,h〉 B̃〈N,h〉 B〈N,h〉E〈N,h〉

C〈N,h〉 C̄

C
D

PD

PC
for all D ∈ Nsnk for all C ∈ Nsrc

D〈N,h〉

C̃〈N,h〉

Fig. 7. Reo-circuit R〈N,h〉

complicated and most interesting step in our construction, namely the construction of
a Reo circuit for atomic expressions 〈N,g〉. The difficulty lies in the fact that such
expressions model a computation step of a corresponding Reo circuit, in which certain
channel ends are active and others are not. Moreover, we must ensure that at every
active channel end, the right data value is input or output.

Let Atoms denote the set of all atomic expressions 〈N,g〉 of α0. Recall that N is a
nonempty subset of N = {C1, . . . ,Cn}∪ {D1, . . . ,Dm} and g is a satisfiable data con-
straint for the nodes in N. We first describe a general technique to design a Reo circuit
for the atoms 〈N,g〉 ∈ Atoms. (Later we explain how this technique can be made more
efficient in various ways.) We first transform g into its canonical disjunctive normal
form, which replaces it with an equivalent data constraint h1 ∨ . . .∨ hr where each of
the h’s is a formula of the form

h =
∧

C∈Nsrc

(dC ∈ PC)∧ ∧
D∈Nsnk

(dD ∈ PD)

with Nsrc = N ∩{C1, . . . ,Cn}, Nsnk = N∩{D1, . . . ,Dm} and PC, PD ⊆ Data. E.g., if g is
“dC = dD” then we replace g with

∨
d∈Data hd where hd is (dC = d)∧ (dD = d). Next,

we replace 〈N,g〉 with the equivalent expression 〈N,h1〉 ∪ . . .∪ 〈N,hr〉, construct the
circuits R〈N,hk〉 (see below) and combine them with the union-operator described above.
With the formula h as above, a circuit R〈N,h〉 for 〈N,h〉 is presented in Fig. 7, which we
now explain. For the Reo circuit R〈N,h〉 of a given 〈N,h〉, we need a pair of nodes C〈N,h〉
and C̃〈N,h〉 for every source node C ∈ Nsrc, and similarly, one node D〈N,h〉 for every sink
node D∈Nsnk, plus one other node E〈N,h〉. The same node C̄ must be used for all circuits
R〈M, f 〉 where C ∈ M and 〈M, f 〉 ∈ Atoms, while the nodes C〈N,h〉 and C̃〈N,h〉 are unique
for every atomic data expression 〈N,h〉 ∈ Atoms where C ∈ N.

We can think of the node E〈N,h〉 as a switch that synchronizes the data-flow in the
upper sub-circuit with the nodes D〈N,h〉, D, and C〈N,h〉, C̃〈N,h〉, C̄, and C for all source
nodes C ∈ Nsrc and all sink nodes D ∈ Nsnk. The synchronous channel from E〈N,h〉 to
D〈N,h〉 and the PD-producer connecting D〈N,h〉 with D ensure that any data-flow at E〈N,h〉
is synchronized with the receipt of a value d ∈ PD at sink node D.

248 F. Arbab et al.

A〈N,h〉 Ã〈N,h〉 B̃〈N,h〉 B〈N,h〉E〈N,h〉

C〈N,h〉

C̄ C
PC

A〈M, f 〉 Ã〈M, f 〉 B̃〈M, f 〉 B〈M, f 〉E〈M, f 〉

TC

C〈M, f 〉

EXR
Aα Ãα

B̃α Bα

D〈N,h〉

D

PD

Fig. 8. Reo circuit Rα for α = 〈N,h〉∪ 〈M, f 〉 where N = {C,D}, M = {C}

For the source nodes C, the situation is a bit more complicated because we must
ensure that C accepts an input value iff C synchronizes with exactly one of the nodes
E〈M, f 〉 where 〈M, f 〉 is a subexpression of α0 with C ∈ M. The use of perfect syn-
chronous channels is not appropriate because of the replicator semantics of the source
nodes. If C were connected with E〈N,h〉 via perfect synchronous channels only, then
data-flow would block when C appears in two or more atomic subexpressions of α0.
(Note that simultaneous data-flow at different nodes E〈N,h〉, E〈M, f 〉 is not possible.) For
this reason, we connect C with E〈N,h〉 via a filter channel, a lossy synchronous channel
and a synchronous drain through the nodes C〈N,h〉 and C̃〈N,h〉. These three channels (1)
allow C to pass values even when E〈N,h〉 is not available to synchronize with C, and (2)
force C to pass a value d ∈ PC when it synchronizes with E〈N,h〉. To prevent C from pass-
ing a value without synchronizing with one of the nodes E〈M, f 〉 where C ∈M, we use a
synchronous channel connecting E〈N,h〉 with C̄ and a synchronous drain between C̄ and
C. These channels ensure that for C ∈ M, C is active exactly when data-flow occurs at
C̄ and exactly one of the nodes E〈M, f 〉.

A concrete example for the Reo-circuit which is constructed from the scheduled-
data expression α = 〈N,h〉 ∪ 〈M, f 〉 is shown in Fig. 8. Here, we assume that N =
{C,D}, M = {C} and h is (dC ∈ PC)∧ (dD ∈ PD) while f is dC ∈ TC. The proof for the
correctness of our synthesis algorithm is quite technical and omitted here.

Size of the constructed circuit. In the worst case, the treatment of the atoms 〈N,g〉
leads to an exponential blow-up (because every disjunctive normal form for g may be
exponentially longer than g). However, when we assume that all data constraints in α0

are given in canonical disjunctive normal form and when we measure the length of α0

Synthesis of Reo Circuits 249

as the total length of all data constraints occurring in (one of the atoms in) α0 then the
total number of channels in the constructed circuit is linear in the length of α0.

Preprocessing. We now explain how a preprocessing phase of the set Atoms can sim-
plify the construction of the circuits for the atomic subexpressions of α0. We first look
for pairs 〈C,D〉 with C ∈ {C1, . . . ,Cn}, D ∈ {D1, . . . ,Dm} such that for all 〈N,g〉 ∈
Atoms either {C,D}∩N = /0 or {C,D} ⊆ N and g ≤ dC = dD. (≤ denotes logical im-
plication.) Then, we establish a synchronous channel with its source end on node C, its
sink end on node D and remove D in the sense that any 〈N,g〉 ∈ Atoms is replaced with
〈N \{D},g[dD/dC]〉 where g[dD/dC] means the data constraint resulting from g by the
syntactic replacement of any occurrence of dD with dC. Second, for any pair (Ci,Cj) of
source nodes such that for all 〈N,g〉 ∈ Atoms either {Ci,Cj}∩N = /0 or {Ci,Cj} ⊆ N
and dCj does not occur in g, we establish a synchronous drain connecting Ci and Cj

and remove Cj from Atoms. The same technique can be applied to sink nodes Di, D j

such that for all 〈N,g〉 ∈ Atoms either {Di,D j}∩N = /0 or {Di,D j} ⊆ N and dD j does
not occur in g, where we generate a synchronous spout with its sink ends Di and D j

and remove D j. Finally, we look for sink nodes Di,D j such that 〈N,g〉 ∈ Atoms im-
plies {Di,D j}∩N = /0 or {Di,D j} ⊆ N and g ≤ dDi = dD j and insert a new sink node
Di j with synchronous channels from Di j to Di and D j. We then remove Di, D j from
Atoms and treat Di j as a sink node. A similar transformation 〈Ci,Cj〉� Ci j applies to
source nodes such that for all 〈N,g〉 ∈ Atoms either {Ci,Cj}∩N = /0 or {Ci,Cj} ⊆ N
and g ≤ dCi = dCj . However, here we need a Reo connector that checks the equality of
two (synchronously) arriving input values.

Optimization. As in other algorithmic constructions, our resulting Reo circuits contain
certain redundancies which can be optimized away. We can detect and remove them by
applying circuit transformation rules that look for recognizable patterns of subcircuits
and replace them with their simpler equivalents. For instance, every occurrence of a
synchronous channel preceding or following any other channel X can be simplified to
only X . In Fig. 8, there are multiple candidates that qualify for the application of various
circuit transformation rule. For example, we know that in Fig. 8, data-flow can occur
through only one of the top or bottom branches of the circuit (because there is only one
token at a time that passes through the entire circuit; the exclusive router; and because
the two branches are isolated from one another by drains). This makes the right-hand-
side FIFO1 channels on both top and bottom branches redundant.

6 Conclusion

The main contribution of the present paper is a general construction of a Reo circuit
from a constraint automaton. Although similar constructions exist in the classical area
of automata and digital circuits, the situation here is far more complicated because of
two major differences: (1) The behavior specified by constrained automata is generally
not functional (from input to output) but relational. (2) In a digital circuit and the Mealy
automaton describing it, behavior is always synchronous. In contrast, in Reo, behavior
can be synchronous, asynchronous, or (at different steps) a combination of the two. Be-
cause of in particular point 2, the classical construction of a circuit from an automaton

250 F. Arbab et al.

breaks down, and at forehand, it was by no means obvious how to tackle the problem
for Reo. We, therefore, see the algorithm described in the present paper as a major step
forward in the automatic synthesis of Reo component connector circuits.

From the theoretical point of view, the results established here and in [4] yield that
Reo connector circuits, constraint automata, and scheduled-data streams have the same
expressiveness and can be transformed into each other via algorithmic transformations.
This result can also be useful in practice as it allows to switch between these three
formalisms. For instance, it enables one to use automata-models within the Reo frame-
work to describe (and finally to synthesize) the interfaces of black-box components.
On the other hand, our algorithm also illustrates the expressive power of the channel
types presented in Fig. 1. (Note that our construction uses all of them, except for the
asynchronous spout.)

To some extent, our construction can also be modified to treat real-time constraints,
e.g., those formalized by timed scheduled-data expressions of the form α = β≤t stating
that data flow described by β must be completed within t time units. (See [3] for a
formal treatment of real-time within the Reo framework.). For this, we just connect the
node Ãα to the node B̃α via a synchronous drain and a timer channel with off-option,
i.e., a timer channel that allows the timer to be stopped at any point in time before the
expiration of its delay. In the picture below, this timer channel is depicted by an arrow
with a circle labeled with the delay t in its middle.

Aα Ãα B̃αRβ
BβAβ Bα

t

A compositional approach similar to the one we suggest here can also be used to provide
“Reo-implementations” for processes specified in terms of CCS- or CSP-like process al-
gebras. In fact, some of the typical operators are already included in regular expressions
(CCS-like nondeterminism corresponds to union, sequential composition to concatena-
tion, and ε to, e.g., the CCS-process nil). Parallel composition with CCS- or CSP-like
synchronization can be realized by establishing appropriate synchronous channels and
Reo’s join operator. A LOTOS-like disrupt operator P[>Q can be obtained using a Reo
component that realizes a switch; this switch is initially “on” and synchronizes with P
as long as it is “on” but is turned “off” by Q’s first activity (the inhibitor circuit in [2]
can be used to construct this switch from our set of primitive channels).

Although the construction presented here is not overly complicated, it can and
should still be simplified further and made more efficient. Parts of such considerations
have already been sketched in the present paper. In our future work, we will inves-
tigate further optimizations and the design of an alternative synthesis algorithm that
goes directly from automata to Reo circuits without having the regular expressions as
an intermediate step. Furthermore, dynamic reconfiguration of connector circuits is an
inherent aspect of Reo that we plan to cover in our future work.

Synthesis of Reo Circuits 251

References

1. F. Arbab. Abstract behavior types: A foundation model for components and their composi-
tion. In [11], pages 33–70, 2003.

2. F. Arbab. Reo: A channel-based coordination model for component composition. Mathe-
matical Structures in Computer Science, 14(3):1–38, 2004.

3. F. Arbab, C. Baier, F. de Boer, and J. Rutten. Models and temporal logics for timed compo-
nent connectors. In Proc. SEFM’04. IEEE CS Press, 2004.

4. F. Arbab, C. Baier, J.J.M.M. Rutten, and M. Sirjani. Modeling component connectors in reo
by constraint automata. In FOCLASA’03, volume 97 of ENTCS, pages 25–41, 2004. Full
version see http://web.informatik.uni-bonn.de/I/baier/publikationen.html.

5. F. Arbab and J.J.M.M. Rutten. A coinductive calculus of component connectors. In Re-
cent Trends in Algebraic Development Techniques, Proc. 16th Int. Workshop on Algebraic
Development Techniques (WADT 2002), volume 2755 of LNCS, pages 35–56, 2003.

6. P.C. Attie and E.A. Emerson. Synthesis of concurrent systems with many similar sequential
processes. In Proc. POPL, ACM Press, pages 191–201, 1989.

7. M. Broy and K. Stolen. Specification and Development of Interactive Systems: Focus on
Streams, Interfaces and Refinement. Springer-Verlag, 2000.

8. A. Church. Logic, arithmetic and automata. In Proc. Int. Congress of Mathematicians, pages
23–35. Institut Mittag-Leffler, 1962.

9. CIM. http://www.almende.com/cim/.
10. D. Clarke, D. Costa, and F. Arbab. Modeling coordination in biological systems. In Proc. of

the Int. Symposium on Leveraging Applications of Formal Methods (ISoLA 2004), 2004.
11. N. Diakov and F. Arbab. Compositional construction of web services using Reo. In Proc.

International Workshop on Web Services: Modeling, Architecture and Infrastructure (ICEIS
2004), Porto, Portugal, April 13-14, 2004.

12. E.A. Emerson and E.M. Clarke. Using branching time logic to synthesize synchronous skele-
ton. Science of Programming, 2:241–266, 1982.

13. T. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In Proc. 30th Int.
Colloquium on Automata, Languages, and Programming (ICALP), volume 2719 of LNCS,
pages 886–902, 2003.

14. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Language,
and Computation. Addison–Wesley, 2nd edition edition, 2001.

15. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic speci-
fications. ACM Transactions on Programming Languages and Systems, 6:68–93, 1984.

16. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th Symposium
on Principles of Programming Languages, pages 179–190. ACM Press, 1989.

17. J.J.M.M. Rutten. Component connectors. In [?], chapter 5, pages 73–87. 2004.
18. W. Thomas. On the synthesis of strategies in infinite games. In Proc. of the 12th Annual

Symp. on Theoretical Aspects of Computer Science, volume 900 of LNCS, pages 1–13, 1995.
19. M. Vardi. An automata-theoretic approach to fair realizability and synthesis. In Proc. CAV,

volume 939 of LNCS, pages 267–278, 1995.
20. Z. Zlatev, N. Diakov, and S. Pokraev. Construction of negotiation protocols for E-Commerce

applications. ACM SIGecom Exchanges, 5(2):11–22, November 2004.

Tagged Sets: A Secure and Transparent
Coordination Medium

Manuel Oriol and Michael Hicks

University of Maryland, College Park MD 20742, USA
{oriol, mwh}@cs.umd.edu

http://www.cs.umd.edu/~{oriol, mwh}

Abstract. A simple and effective way of coordinating distributed, mo-
bile, and parallel applications is to use a virtual shared memory (VSM),
such as a Linda tuple-space. In this paper, we propose a new kind of
VSM, called a tagged set. Each element in the VSM is a value with an
associated tag, and values are read or removed from the VSM by match-
ing the tag. Tagged sets exhibit three properties useful for VSMs:

1. Ease of use. A tagged value naturally corresponds to the notion that
data has certain attributes, expressed by the tag, which can be used
for later retrieval.

2. Flexibility. Tags are implemented as propositional logic formulae,
and selection as logical implication, so the resulting system is quite
powerful. Tagged sets naturally support a variety of applications,
such as shared data repositories (e.g., for media or e-mail), message
passing, and publish/subscribe algorithms; they are powerful enough
to encode existing VSMs, such as Linda spaces.

3. Security. Our notion of tags naturally corresponds to keys, or capa-
bilities: a user may not select data in the set unless she presents a
legal key or keys. Normal tags correspond to symmetric keys, and we
introduce asymmetric tags that correspond to public and private key
pairs. Treating tags as keys permits users to easily specify protection
criteria for data at a fine granularity.

This paper motivates our approach, sketches its basic theory, and places
it in the context of other data management strategies.

1 Introduction

Computer users require means to store, share, retrieve, and compute data to
perform a myriad of tasks. Currently, these means are provided in different ways
in different settings, ranging from relational databases to file systems to indi-
vidual applications. To be useful, any data management approach must answer
basic questions concerning organization and security:

1. Is the data organized so that relevant information can be easily found? Is
the organizational model easy to use and understand?

2. Is the data protected from malicious tampering? Are the policies for doing
so flexible and easy to use?

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 252–267, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Tagged Sets: A Secure and Transparent Coordination Medium 253

Relational databases are extremely flexible and optimized for concurrency,
fault-tolerance, and throughput. However, they can be difficult to use, particu-
larly in setting up and managing schemas. File systems are easy to understand,
and support flexible and intuitive security policies, but have a limited organiza-
tional capacity. Linda-style tuple spaces [4], and more generally virtual shared
memories (VSMs), have a simple and effective organizational strategy, but typ-
ical Linda spaces have limited support for security.

In this paper, we propose to manage data as tagged values forming part
of a tagged set. Our approach is inspired by the simplicity and power of the
many applications that use tagging as their organizational mechanism, including
Google Mail (GMail)1 and the iLife suite (iTunes, iPhoto, etc.).2

A tagged value is merely some data with attached meta-information specified
as a tag. Tags are typically used to organize data. For example, iTunes uses the
notion of a playlist to organize songs. A playlist is essentially a kind of tag, with
each song tagged with the playlist (or playlists) it belongs to, and perhaps the
order in which it should played for a given list. A photo album in iPhoto is a
similar idea. A file system can also be viewed as tagging system by considering
each directory name as a tag; a file “stored” in some directory d is tagged with d.
The richer the language for tags, the more organizational traits one can express.
In our approach, we encode tags as propositional logic formulae; selecting tagged
data from a set is done by logical implication. This approach is powerful enough
to easily construct the above examples, as well as to encode more structured
repositories, like Linda-style tuple spaces.

In our system, tags serve not only to organize data, but also to protect it
from unauthorized access. A tag corresponds naturally to the idea of a key (or
capability). A user may not select data in a tagged set unless she presents the
keys that protect it. Normal tags correspond to symmetric keys, and we intro-
duce asymmetric tags that correspond to public and private key pairs. Treating
tags as keys permits users to easily specify protection criteria for data at a fine
granularity. Like a file system, individual tagged values can have widely differing
access policies. We illustrate this idea by encoding a secure GMail, and extending
the Linda-space encoding to incorporate security tags.

Treating tags as keys naturally lends itself to a distributed setting, which
is important if tagged sets are to be used as a coordination medium between
cooperating applications. By literally using tags as cryptographic keys, we can
encrypt data to ensure it can only be read by the appropriate key holder. (As
expected, with asymmetric tags we can do this without requiring the host of the
tagged set know a user’s private tag/key.)

The contributions of this paper are as follows:

– We present a simple formalism for tagged sets (Section 2). The key novelty
of our approach is the use of propositional logic as the language of tags, and
logical implication as the means to select tagged data.

1 http://www.gmail.com
2 http://www.apple.com/ilife/

254 M. Oriol and M. Hicks

– We show how tags can be treated as keys in order to protect data at a
fine granularity (Section 3). We prove a confidentiality theorem that loosely
states that one cannot select data protected by some tag t unless he is
in possession of that tag. Tags can be used as cryptographic keys, both
symmetric and asymmetric, for secure sharing over a distributed medium.

– We show how tagged sets compare to related approaches in terms of security,
flexibility, and performance (Section 4).

2 Tagged Sets

At the most basic level, data stored within a repository can be tagged with
attributes that describe the data. More formally, a repository is a multi-set of
pairs 〈τ, v〉, where each pair consists of a tag τ and a value v. We use the {| · |}
notation to clarify our use of multi-sets (which can contain more than one copy
of the same element).

As an example, consider an audio repository S containing 3 clips (clip1, clip2,
and clip3), each of which is tagged to indicate its genre, drawing from topics Jazz,
Classical, and Blues. If each clip falls squarely under one genre, we can tag them
as such:

S0 = {|〈Jazz, clip1〉, 〈Classical, clip2〉, 〈Blues, clip3〉|}
Naturally, a clip could be described by more than one genre. For example, if clip
clip1 is in genres Jazz and Blues, we could set up the repository as:

S = {|〈Jazz ∨ Blues, clip1〉, 〈Classical, clip2〉, 〈Blues, clip3〉|}

To select the clips belonging to a particular genre, we perform a selection
operation (designated ↓) on the repository. For example, to select the clips in
genre Blues, we would have:

S ↓ Blues = {|〈Jazz ∨ Blues, clip1〉, 〈Blues, clip3〉|} (1)

2.1 Selection as Logical Implication

We naturally think of selection as a kind of matching: to select with tag Jazz
yields those elements whose tags contain Jazz. However, by considering the selec-
tion tag and the data tags as propositions, we can view selection more generally
as a kind of implication: selecting tag t in set S yields those elements in S whose
tags τ are implied by t.

This notion is made precise in Figure 1, which gives the syntax and semantics
of tagged sets. A tagged set S represents a multi-set of tagged values. Sets are
defined by set literals {|〈τ, v〉|}, possibly modified by operators ∪, ↓, ↓n, −, and
−n, discussed below. Values v in these sets are drawn from the countably-infinite
set V ; their exact makeup is not important for our purposes. Tags are constructed
from tag literals t (drawn from the countably-infinite set T), - (representing “all
tags”), and standard operators ∨ (“or”) and ∧ (“and”). (We do not have ¬ or ⊥

Tagged Sets: A Secure and Transparent Coordination Medium 255

Syntax:
tag literals t ∈ T
values v ∈ V
tags τ ::= t | τ ∨ τ | τ ∧ τ | �
tagged set S ::= ∅ | {|〈τ, v〉|} | S ∪ S | S ↓ τ | S − τ | S ↓n τ | S −n τ

Semantics:
D[[·]] : S → P(prop × V)
D[[∅]] = ∅
D[[{|〈τ, v〉|}]] = {|〈τ, v〉|}
D[[S1 ∪ S2]] = D[[S1]] ∪ D[[S2]]
D[[S ↓ τ]] = {|〈τ ′, v〉 ∈ D[[S]] | τ � τ ′|}
D[[S − τ]] = D[[S]] − D[[S ↓ τ]]
D[[S ↓n τ]] = s iff s ⊆ D[[S ↓ τ]] and |s| = n
D[[S −n τ]] = s iff s ⊆ D[[S]] and |D[[S]] − s| = n

Fig. 1. Syntax and denotational semantics of Tagged Sets

as they would allow selections to violate a useful notion of confidentiality that
we introduce in the next section.)

The semantics is given as a semantic function D[[·]] which maps the syntactic
notion of tagged set S to a mathematical multi-set containing pairs of proposi-
tions and values. As described above, S ↓ τ denotes the set whose elements are
contained in S, but whose tags are implied by the selection tag τ , following the
rules of propositional logic. For example, in (1) above we have

S ↓ Blues = {|〈Jazz ∨ Blues, clip1〉, 〈Blues, clip3〉|}
since Blues) Jazz ∨ Blues,

Blues �) Classical and
Blues) Blues

The inference rules for deriving judgments τ) τ ′ are standard; they are pre-
sented with one extension in Figure 4 in the next section.

The syntax S1∪S2 denotes the tagged set that results from the combination of
tagged sets S1 and S2 (using multi-set union). S−τ denotes those tagged values
not implied by the selection tag. Finally, one can limit the results of a selection
or subtraction to n elements using the ↓n and −n operators, respectively. The
actual contents of the defined set are non-deterministically chosen.

We can illustrate ∪ and − with some additional examples. To define a refine-
ment of S that covers genres Jazz or Classical could be done with two selections,
and taking the union of the results:

(S ↓ Jazz) ∪ (S ↓ Classical) = {|〈Jazz ∨ Blues, clip1〉, 〈Classical, clip2〉|}

To select those documents that cover both genres Jazz and Blues, we can do one
of two things:

(S ↓ Jazz) ↓ Blues = {|〈Jazz ∨ Blues, clip1〉|}
S ↓ Jazz ∨ Blues = {|〈Jazz ∨ Blues, clip1〉|}

256 M. Oriol and M. Hicks

To select those documents that cover genre Blues but not topic Jazz, we perform
a selection followed by a subtraction:

(S ↓ Blues)− Jazz = {|〈Blues, clip3〉|}

2.2 Playlists as Ordered Tuples

So far, we have not considered tags defined with ∧. These are interesting because
they effectively restrict selections: if a value has tag t1 ∧ t2, then it cannot be
selected with either t1 or t2 alone: t1 �) t1 ∧ t2 and t2 �) t1 ∧ t2.

We can use ∧ tags to extend our audio repository with playlists. A playlist
is essentially a tuple whose first element designates the first clip to be played,
whose second element designates the second clip, etc. Clips can belong to more
than one playlist. With tagged sets, we can designate clips clip1, clip2, and
clip3 as tracks one, two, and three, respectively, of playlist Favorites by defining
repository Sp as follows:

Sp = {|〈Favorites ∧ 1, clip1〉, 〈Favorites ∧ 2, clip2〉, 〈Favorites ∧ 3, clip3〉|}

To play the first track of Favorites, we select it with Favorites ∧ 1; to play the
second we select with Favorites ∧ 2, and so on:

Sp ↓ Favorites ∧ 1 = {|〈Favorites ∧ 1, clip1〉|}
Sp ↓ Favorites ∧ 2 = {|〈Favorites ∧ 2, clip2〉|}

(2)

To permit selecting all songs in a playlist, we can store the clips using a special
tag Any:

S′
p = {| 〈Favorites ∧ (1 ∨ Any), clip1〉, 〈Favorites ∧ (2 ∨ Any), clip2〉,

〈Favorites ∧ (3 ∨ Any), clip3〉|}

To select all of the songs in playlist Favorites, we simply do S′
p ↓ Favorites∧Any.

Of course, we can continue to organize songs by genre as well as by playlist:

S′
p = {| 〈(Favorites ∧ (1 ∨ Any)) ∨ (Jazz ∨ Blues), clip1〉,

〈(Favorites ∧ (2 ∨ Any)) ∨ Classical, clip2〉,
〈(Favorites ∧ (3 ∨ Any)) ∨ Blues, clip3〉|}

2.3 Tuple Sets with Linda-Style Matching

We can formalize this basic encoding of tuples to include matching as in Linda-
style tuple spaces [4]. Consider the syntax of a simple language of tuple sets
shown in Figure 2. The basic operations on tuple sets T are similar to those
on tagged sets, but rather than performing selections based on a tag, the user
provides a pattern p. This pattern consists of either a value v or a wildcard ?
which matches any value. Subtraction with T−p is as with tagged sets: it defines
the set T ′ with all elements in T removed that match p.

Tagged Sets: A Secure and Transparent Coordination Medium 257

Syntax:
tuple u ::= (v) | (v, v) | (v, v, v) | . . .
pattern var a ::= v | ?
pattern p ::= (a) | (a, a) | (a, a, a) | . . .
tuple set T ::= ∅ | {|u|} | T ∪ T | T ↓ p | T − p | T ↓n p | T −n p

Semantics:
L[[∅]] = ∅
L[[{|(v1, . . . , vn)|}]] = {|〈n ∧

∨
1≤i≤n(i ∧ vi), (v1, ..., vn)〉|}

L[[T1 ∪ T2]] = L[[T1]] ∪ L[[T2]]
L[[T ↓ p]] = L[[T]] ↓ T [[p]]
L[[T − p]] = L[[T]] − T [[p]]
L[[T ↓n p]] = L[[T]] ↓n T [[p]]
L[[T −n p]] = L[[T]] −n T [[p]]

T [[(a1, . . . , an)]] = n ∧
∨

1≤i≤n(i ∧ ai) where ai �= ?

Fig. 2. Syntax of Linda-style tuples, semantics via Tagged Sets

As an example, say we have the following tuple set which mentions the birth-
days of Alice and Bob:

T = {|(“birthday”, “alice”, 10, 29, 1991), (“birthday”, “bob”, 10, 4, 1993)|}

If we wanted to select all birthday records, we could do:

T ↓ (“birthday”, ?, ?, ?, ?) = {| (“birthday”, “alice”, 10, 29, 1991),
(“birthday”, “bob”, 10, 4, 1993)|} (3)

If we wanted only Alice’s birthday, we could do

T ↓ (“birthday”, “alice”, ?, ?, ?) = {|(“birthday”, “alice”, 10, 29, 1991)|} (4)

Conversely, we could define the set with an arbitrary birthday element removed:

T −1 (“birthday”, ?, ?, ?, ?) = {|(“birthday”, “bob”, 10, 4, 1993)|}
or {|(“birthday”, “alice”, 10, 29, 1991)|} (5)

The selections in Examples (3) and (4) are similar to what is possible with the
read(-) operator for Linda-spaces. Example (5) is like the Linda-space in(-),
which removes a single tuple from the space (as our language is declarative, we
actually define a new tuple set which lacks an element present in the original).
Section 3.1 presents communication commands which when combined with these
operators can be used to build traditional Linda spaces.

Tuple sets and their operations can be encoded using tagged sets. Shown
in Figure 2, the translation function L[[·]] maps tuple sets T to tagged sets S,
employing auxiliary function T [[·]] to map patterns p to tags τ . In the tagged
set, the tuple is stored as the value part of the tagged value (i.e., it is in V),

258 M. Oriol and M. Hicks

and the tag encodes its structure. The first part of the tag is the tuple length n;
to select a tuple of length n one must provide this length as a tag. The second
part is a union of tags, one for each element in the tuple. As with playlists, these
tags encode the position of the element i as tag i. In addition, we include the
element v itself as tag, so that we can match literal values present in patterns.
The resulting element tag is thus i∧ v. Selection patterns are encoded similarly,
except that when a ? appears in a pattern, it does not appear in the tag. This
way, it has no bearing on the selection (thus encoding its meaning as a “wild
card”). Note that we ignore the possible collision between the tags of indices (i),
the tag for indicating size (n), and integer values used as tags. Addressing this
problem would be straightforward.

Here are some examples that illustrate the translation:

Tuple sets Tagged sets
L[[{|(v)|}]] = {|〈1 ∧ (1 ∧ v), v〉|}
L[[{|(v1, v2)|}]] = {|〈2 ∧ ((1 ∧ v1) ∨ (2 ∧ v2)), (v1, v2)〉|}
L[[T − (v1, v2)]] = L[[T]]− 2 ∧ ((1 ∧ v1) ∨ (2 ∧ v2))
L[[T ↓ (?, v2)]] = L[[T]] ↓ 2 ∧ (2 ∧ v2)

Tagged sets are not rich enough to encode SQL-style or publish/subscribe
service queries, mainly because tags can only be used to match set elements;
it is not possible to, for example, treat a tag as an integer and then return all
tagged values whose tag is “greater than 1.” We are compare our approach more
closely to these systems in Section 4.

3 Secure Tags

If a tagged set is to be used in a secure, multi-user setting, it should allow users
to only reveal their data to others whom they trust. For example, a typical file
system labels a file with an access control list, specifying an effective list of users
and the operations they can perform on the file (e.g., read, write, delete).

A useful feature of tagged sets is that “user lists,” or more properly operation
system-style capabilities, can be encoded using tags. That is, a tag can be viewed
as a key, which means that to select a value, one must produce the key with
which it is locked. A value can be locked multiple times (using ∧) requiring the
selector produce multiple keys to unlock it. A value may have alternate access
points (using ∨) which permits unlocking with different key sets. This is similar
to Gifford’s sealed objects [6].

In the remainder of this section, we show how tags can form the foundation
of secure access control of shared data. We present a simple interface for shared
tagged sets that ensures confidentiality. Then we show how asymmetric tags
can be used to support public key-style encryption in tagged sets. Finally, we
consider how to provide secure, distributed access to a shared tagged set.

Tagged Sets: A Secure and Transparent Coordination Medium 259

3.1 A Shared Repository

Imagine we wish to define tagged sets that may be shared by processes within
an operating system. We extend our presentation so far in two ways. First, we
need a way to name a shared tagged set. Second, we must specify a list of
commands for manipulating named tagged sets that respects the confidentiality
policies of data stored in them; these policies are specified by tags. The syntax
and semantics of these changes is shown in Figure 3.

Shared tagged sets STS are tagged sets S extended to include variable names
x, whose semantics is simply to look up the tagged set named by x from a
global store. We designate this in the semantics D[[x]] as the function lookup(x);
elsewhere we use the function update(x, s) to designate updating the name x in
the global store to refer to multi-set s.

Commands cmd can be used by processes to manipulate shared tagged sets:
readτ (STS) reads (selects) data from a tagged set STS; addτ (x, STS) adds the
set STS to the named tagged set x (using multi-set union ∪), and removeτ (x, STS)
removes data in set STS from the named tagged set x (using multi-set subtrac-
tion). Both add and remove operate by side-effect only, “returning” the empty
set ∅. We assume the implementation of commands is atomic. Linda tuple spaces
are essentially the combination of these commands with the tuple encoding pre-
sented in Section 2.3.

STS ::= x | ∅ | {|〈τ, v〉|} | STS ∪ STS | STS ↓ τ | STS − τ
| STS ↓n τ | STS −n τ

cmd ::= readτ (STS) | addτ (x, STS) | removeτ (x, STS)

D[[·]] : STS → P(prop × V)
D[[x]] = lookup(x)
D[[STS]] = as in Figure 1 otherwise

C[[·]] : cmd → P(prop × V)
C[[readτ (STS)]] = D[[STS ↓ τ]]
C[[addτ (x, STS)]] = let s = D[[STS ↓ τ]] in

let = update(x, lookup(x) ∪ s) in ∅
C[[removeτ (x, STS)]] = let s = D[[STS ↓ τ]] in

let = update(x, lookup(x) − s) in ∅

Fig. 3. Commands for manipulating shared Tagged Sets

The security of these commands is based on implication: to read, add, or
remove data having tag t from a shared set, the user must hold a “credential”
τ that implies t; the credential τ is presented as a subscript on each operation.3

Without requiring a credential, a user could use subtraction to extract elements
from a shared set for which she did not hold the tags. For example, say that x

3 While τ can be any tag, it is most useful as a capability list, having the form t1∧. . .∧tn.

260 M. Oriol and M. Hicks

is bound to {|〈Jazz ∨ Blues, clip1〉, 〈Classical, clip2〉, 〈Blues, clip3〉|}, and the user
knows about the tag Classical. The user should thus only be allowed to read
the tagged value 〈Classical, clip2〉, since she does not know the names of the
tags on the other values. Indeed, readClassical(x − Classical) is ∅, whereas not
requiring a credential and just permitting the subtraction would have yielded
{|〈Jazz ∨ Blues, clip1〉, 〈Blues, clip3〉|}, violating confidentiality. Tag implication
has been defined so that only when a tag t appears in credential τ can t be
selected. Thus a user must “know about” a tag, and place it in her credential,
to be able to unlock values locked with that tag. We formally state and prove
this notion of confidentiality in the next subsection.

In this scheme, if the tag t is implied by the credential τ , then any data 〈t, v〉
can be added, removed, or read from the tagged set. We could encode richer
access rights for better control over these operations. For example, to provide
separate read and removal permissions, we could define special tags Read and
Remove; a value’s tag would be (Read∧τread)∨(Remove∧τremove). The semantics
of readτ (STS) would become D[[STS ↓ τ∧Read]], so as to verify against the τread
part of the tag, and removal would be similar. We would also have to ensure that
these special tags neither appear in credentials τ nor clash with normal tags.

3.2 Asymmetric Tags

Tags defined so far essentially correspond to symmetric keys: if the user can
produce the key, he can acquire the value. We can also easily extend our notion
of tag to model asymmetric keys, as are provided in public key cryptography.

Asymmetric tags are defined in pairs (k, k). As shown in the top right of
Figure 4, asymmetric tags are drawn from the countably-infinite set Keys and
extend our notion of tags τ . Tagging a value using an asymmetric tag k is equiva-
lent to locking it with an asymmetric key. To select this value requires producing
the opposite tag k. We do not consider how asymmetric tags are generated; we
only assume that if a tagged set contains data locked by some tag k, then it
has some way of knowing when the complement tag k is provided during selec-
tion. We consider how to do this securely in a distributed setting in the next
subsection. By convention, we say k is the private tag and k is the public tag.

The left side of Figure 4 shows the (slightly modified) inference rules for the
fragment of propositional logic that we use in our tagging system. As usual, Γ is
simply an ordered list of assumptions τ1, . . . , τn. The rules employ an additional
operator [·] that is the identity on symmetric tags, but the complement for
asymmetric ones. The operator is used in the assumptions of the (∨ELIM) and
(HYP) rules to enforce that k can only be implied by its complement k and vice
versa. This relationship is not transitive: having proven k, there is no way to
include it in the assumptions to prove k. If there were, it would allow the holder
of a public tag k to access data tagged with that tag, rather than only allowing
the holder of k to access it.

We can now make our notion of confidentiality precise. We wish to ensure
that cmd operations do not provide or revoke access to data tagged with keys
not contained in the credential τ . This is ensured by the following theorem:

Tagged Sets: A Secure and Transparent Coordination Medium 261

∧INTRO
Γ � τ1 Γ � τ2

Γ � τ1 ∧ τ2

∧ELIM1

Γ � τ1 ∧ τ2

Γ � τ1

∧ELIM2

Γ � τ1 ∧ τ2

Γ � τ2

∨ELIM
Γ � τ1 ∨ τ2

Γ, [τ1] � τ3 Γ, [τ2] � τ3

Γ � τ3

∨INTRO1

Γ � τ1

Γ � τ1 ∨ τ2

∨INTRO2

Γ � τ2

Γ � τ1 ∨ τ2

�ELIM

Γ � �
HYP

Γ, [τ], Γ ′ � τ

k, k ∈ Keys
τ ::= . . . | k | k

[t] = t
[k] = k
[k] = k
[τ1 ∨ τ2] = [τ1] ∨ [τ2]
[τ1 ∧ τ2] = [τ1] ∧ [τ2]
[�] = �

Fig. 4. Proof system extended with asymmetric tags

Theorem 1 (Confidentiality). If τ) t, then t ∈ [τ].

In a logical sense, this theorem simply states that to prove t, we have to know
about t in the first place; intuitively it “appears” in our assumption τ . In the
simplest case, if τ has the form t1 ∧ . . . ∧ tn, then exactly t1, . . . , tn appear in τ ;
only these tags can be proved by τ . Since all operations on shared tagged sets
must ultimately be filtered against the credential τ , we ensure that only data
whose tags appear in the credential can be manipulated. This theorem is proven
by structural induction on derivations τ) t, aided by some simple lemmas on
the ∈ relation. A full definition of “appears in” (∈) is presented in Figure 5.

t ∈ t t ∈ τ1 ∨ τ2 iff t ∈ τ1 and t ∈ τ2

k ∈ k t ∈ τ1 ∧ τ2 iff t ∈ τ1 or t ∈ τ2

k ∈ k τ1 ∨ τ2 ∈ t iff τ1 ∈ t or τ2 ∈ t
� ∈ t τ1 ∧ τ2 ∈ t iff τ1 ∈ t and τ2 ∈ t

Fig. 5. Definition of t ∈ t′

A Secure Mail System. As a simple example of the use of asymmetric tags,
consider a secure e-mail system that supports tagging for categorization, as in
GMail. When a mail is received for a particular user, it is tagged with her public
key. For example, if Daniel sends a private message to Bridget, it is locked with
her public key Bridget:

S = {|..., 〈Bridget, ”Y ou appear to have forgotten ...”〉, ...|}
To retrieve her messages, Bridget selects using her private key:

S ↓ Bridget = {|〈Bridget, ”Y ou appear to have forgotten ...”〉|}
A message addressed to many users is simply tagged with their public keys:

S = {|..., 〈Bridget ∨Mark, ”Come home, I have jumpers for you two.”〉, ...|}

Either Mark or Bridget can be used to select the message.

262 M. Oriol and M. Hicks

Users can use the normal tagging system to organize their mail. For example,
Bridget could annotate the message from Daniel as a love letter:

S′ = {|..., 〈Bridget ∧ Loveletter, ”Y ou appear to have forgotten...”〉, ...|}

Multiple categories are of course possible, by annotating with tags of the form
(e.g.) Bridget ∧ (t1 ∨ t2 ∨ ... ∨ tn).

Encoding Encrypted Tuples. With asymmetric tags, we can support a simple
extension to our tuple language: tagging each tuple with a public key. We can
modify the syntax of tuples u and patterns p in Figure 2 to be as follows:

tuple u ::= k : (v1, v2, . . . , vn)
pattern p ::= k : (a1, a2, . . . , an)

Tuples now include the public key, and patterns must now specify the private
key to select the desired tuple. We modify our semantic functions to take these
changes into account:

L[[{|(k : (v1, v2, . . . , vn))|}]] = {|〈k ∧ (
∨

1≤i≤n(vi)), (v1, ..., vn)〉|}
T [[k : (a1, a2, . . . , an)]] = (k ∧ (

∨
1≤i≤n,ai �=? ai))

While this is a simple extension of the tuple space encoding, we can encode
more complex systems, such as SecOS [15] or CryptoKlava [2].

3.3 Distributed Tagged Sets

To use shared tagged sets as a distributed coordination mechanism, we have
to protect the repository and the data it contains from malicious tampering.
We have two goals. First, tags/keys and the data they protect should not be
transmitted in clear text, to prevent snooping. Second, users should not have to
present their private tag/key to the database to retrieve data stored with the
public key. Here we briefly sketch how these goals might be achieved.

A client can communicate with a server hosting a shared tagged set using a
secure channel, in the style of the Secure Socket Layer (SSL)4. The client begins
by presenting the server with a credential τ of the form t1 ∧ . . . ∧ tn, but rather
than sending the actual tags ti, the client sends a public name for each tag. The
mapping between the public name and the key must be known by both the client
and server; for example, the tag Red could have the name “Red.” This credential
is sent along with a random integer nu, both encrypted with the server’s public
key (to ensure that commands are not redirected to the wrong server). The server
maps the names to tags, and then challenges the user to prove he actually holds
tags t1 . . . tn by sending a message containing integers encrypted with each tag,
along with a nonce (to prevent replay attacks). The user decrypts these values,

4 http://wp.netscape.com/eng/ssl3/

Tagged Sets: A Secure and Transparent Coordination Medium 263

and from them derives the value ns. The user sends the decrypted values back
to the server, which verifies they are correct.

At this point, both sides have a shared secret (nu,ns), and the server is satis-
fied that the user holds the keys in the claimed credential. Users send commands
encrypted with the shared secret, and the server evaluates the commands using
the verified credential τ .

Because we are treating tags as keys, the server should be careful about the
tags it returns with values selected by a read command. For example, if a shared
tagged set contains the value 〈Bridget∨Mark, ”Y ou appear to have forgotten ...”〉,
then Bridget can read this value using her public key Bridget. However, if the
server includes the tag Bridget∨Mark in the result, then Bridget can see Mark’s
private key! The simplest solution is to simply strip the tags at the server, re-
turning only a set of values (encypted by the shared secret), or else to use the
public names of the tags, rather than the tags themselves.

We can avoid the need for a secure channel for read commands by having
the server encrypt returned values using their tags. For each tagged value 〈τ, v〉
in the returned set, we return the value as the tuple (clear(τ), E[〈τ, v〉]), where
clear(τ) is a translation of τ with the keys replaced by their names, and where
E[.] performs encryption as defined below (similar to Gifford’s schema [6]):

E[〈-, v〉] → v
E[〈t, v〉] → {v}t

E[〈k, v〉] → {v}k

E[〈τ1 ∧ τ2, v〉] → (E[〈τ1, E[〈τ2, v〉]〉])
E[〈τ1 ∨ τ2, v〉] → (E[〈τ1, v〉], E[〈τ2, v〉])

The notation {v}t denotes encrypting v with key t. The user then maps back-
wards from the provided tag names to the actual tags to decrypt the returned
values.

4 Discussion

Tagged sets aim to organize and share data simply and securely. They bear re-
semblance to coordination spaces [4], relational databases [13, 7], semi-structured
documents [3], and publish/subscribe services [5, 14, 1], but differ chiefly in how
data is organized, selected, and secured.

Data Organization and Selection. Coordination spaces (e.g., Linda-spaces) orga-
nize data as tuples, which are essentially a fixed-length, ordered list of simple val-
ues. Relational databases and publish/subscribe (hereafter pub/sub) systems or-
ganize data as (unordered) labeled records; an example might be (what=alarm)
∨ (level=5). For databases, records are stored in tables, while for pub/sub they
are periodically published as events. Compared to these, tagged sets are rela-
tively semi-structured : while events and records typically adhere to a schema,
we place no restrictions on the form of tags.

264 M. Oriol and M. Hicks

Table 1. Comparison of data selection and locking mechanisms

System k Data d ::= Queries q ::=
Linda v k | d ∨ d k | q ∨ q

Siena/Gryphon t op v k | d ∨ d k | q ∨ q

Elvin t op v k | d ∨ d k | q ∨ q | q ∧ q | ¬q

Tagged Sets t, k k | d ∨ d | d ∧ d k | q ∨ q | q ∧ q

Sealed Objects k k | d ∨ d | d ∧ d k | q ∧ q

As with tagged sets, these systems permit certain records/events/tuples to
be selected based on user queries. Linda-based queries were described in sub-
section 2.3. For pub/sub systems, queries are in the form of subscriptions, de-
fined as patterns meant to match subsequently published events. Subscriptions
in Siena [5] and Gryphon [1] mimic the structure of events where = can be re-
placed by a more general operator. For example, the subscription (what=alarm)
∨ (level < 7) matches the event presented earlier. Elvin [14] extends these sorts
of queries with other logical operators, approximating SQL-style queries used
in databases. Compared with tagged sets, coordination spaces are strictly less
powerful. Pub/sub systems have both more and less powerful selections: they
are more powerful in that they can select based on data, whereas tagged sets
only select on tags, but Siena and Gryphon are less powerful in that subscrip-
tions can only be specified as a list of attributes, like a record, whereas tagged
sets permit more general logical formulae.5 Elvin and typical databases allow
subscriptions/queries to include the ¬ (not) operator, which we have avoided for
security reasons, but can model using subtraction.

These results are summarized in Table 1 (along with a row for Sealed Objects,
described below). Selectable data d and queries over that data q are defined as
a combination of elements k. The systems are ordered by expressiveness: Linda-
spaces are the most simple, and Elvin (also representing databases) is the most
expressive. We have made notation uniform so that in all cases selection is defined
by logical entailment: query q selects data d iff q) d (adjusted to take data and
relational operators into account for pub/sub systems).6

Generally speaking, the more expressive the system, the more expensive the
selection algorithm. For example, given a record and a subscription each with
m attributes, selection in Siena takes time O(m) (assuming set membership
can be implemented in O(1) time); this approach can be further optimized
[1, 14]. By contrast, selection in Linda-spaces is cheaper, and selection in Elvin
is more expensive. The performance of tagged sets in part depends on how data
is encoded. For example, a simple approach (implemented in our current Java

5 To select on data in a tagged set, we could duplicate the data as part of the tag.
6 This may be unintuitive at first: a query that says “select those records having both

the t1 and t2 tags” would be expressed as t1∨t2 since t1∨t2 � t1∨t2 but t1∨t2 �� t1;
conversely, if we expressed the query as t1 ∧ t2, then we would have the undesirable
result t1 ∧ t2 � t1. See Section 2.1.

Tagged Sets: A Secure and Transparent Coordination Medium 265

prototype) is to store each tagged value in a collection, with each tag τ stored
in Conjunctive Normal Form (CNF):7

τCNF ::= c1 ∧ c2 ∧ . . . ∧ cn c ::= l1 ∨ l2 ∨ . . . ∨ lm l ::= t | k

Given selection tag q and a data tag d, both having the form τCNF , the impli-
cation q) d holds whenever each literal li in each of the n conjuncts of d appears
in all of the n′ conjuncts of q. This can be decided in time O(n′nm), where m
is the maximum number of literals in each conjunct of d (again assume O(1)
set memberships). Pub/sub events and Siena-style subscriptions are degenerate
cases in which n and n′ are 1, yielding identical performance. A DNF-oriented
encoding would be more expensive in this degenerate case (essentially O(m2)),
but would perform better on a complementary set of queries (ones that use ∧
more heavily). A hybrid or adaptive encoding would be useful.

Security. Our notion of tags as keys for symmetric and asymmetric cryptog-
raphy is similar to Gifford’s Sealed Objects [6]. Sealed Objects are values en-
crypted/locked using a set of keys, which can be either combined with KeyAnd
and KeyOr, analogous to our ∧ and ∨. Like us, he supports asymmetric keys
(not shown in the Table). Unsealing an encrypted value requires presenting the
necessary held keys, specified as a conjunction.

In the original Linda model, security is implied by knowledge of the tuple
structure: only a correctly-specified pattern (in particular knowing the arity of
the tuple) can select the data [4]. A number of researchers have aimed to provide
stronger security guarantees, e.g., to prevent untrusted mobile applications from
illegally removing data from a Linda-space [10, 9, 17, 11]. These systems use a
variety of access control policies (applying to the entire repository or the actions
that might be performed) and verification strategies.

Several Linda-based approaches have similarly proposed to provide both se-
curity and easy selection. SecOS [15] provides the ability to match encrypted
tuples. SecOS values can only be encrypted by one key, whereas our use of
logical formulas provides many possible combinations of keys per value, with-
out inhibiting selection. CryptoKlava [2] encrypts tuple elements. Selection
requires an agent to select the tuple to decrypt it, and relies on the “good be-
havior” of the agents to put back the tuples that they cannot decrypt. The key
itself does not play any role in the initial selection. It is similar to the example
of encrypted tuples we showed in section 3. Finally, SecSpaces [8] extends the
operations allowed on Linda spaces to include partitioning the tuple space based
on keys (possibly asymmetric) attached to tuples. These keys are treated as with
our ∨. After the partitioning, no entry is still encrypted when read, similarly to
proposal for distributed selection via secure channels.

Databases often provide fine-grained access control, to the granularity of
individual table elements (e.g. Oracle 10g [13]). Tagged values need not adhere

7 As tags are simply propositional formulae, an arbitrary tag can always be converted
to CNF before it is stored in a tagged set.

266 M. Oriol and M. Hicks

to a schema, so users can specify policies per object, rather than per relation.
Treating tags as keys also naturally supports storing or communicating data in
encrypted form [7].

In general, security in pub/sub systems is challenging and largely unexplored.
Our approach tackles one aspect of the problem: publication security [16]. In
particular, interpreting tags as cryptographic keys permits fine-grained control
over what parts of an event should be encrypted, without requiring point-to-point
communication. However, it reduces some “content queries” (e.g., is this event’s
alarm < 7) to “existence queries” (e.g., does this event have an alarm attribute),
placing more work on subscribers to perform filtering. Opyrchal and Prakash [12]
describe a means to implement dynamic access control lists within a pub/sub
system. Our approach embeds policy with the data, treating tags as capabilities.
Compared to access control lists, capabilities support more decentralized policies,
but make revocation more challenging.

5 Conclusions

This article presented tagged sets: a data management approach that relies on
tags based on propositional logic to lock and select values. The model is flexible,
intuitive, and supports fine-grained access control for individual data, as we have
shown with many examples. We believe it is a promising approach to organizing
and securing data, and for supporting distributed coordination.

For future work, we plan to explore data encodings and selection strategies,
drawing on results from pub/sub systems [1] and database systems. We are in-
terested further clarifying the relationship between tagged sets and databases
and pub/sub systems, with the hope of finding a useful and efficient encoding
in both directions, to support various applications. We are interested in under-
standing how tagged sets with cryptographic operations could be implemented
by peer-to-peer networks.

Acknowledgements. Oriol is funded by the Swiss National Science Foundation
under grant PBGE2-104794, and Hicks under National Science Foundation grant
#0346989. The authors thank Jeff Foster and the anonymous referees for helpful
comments on drafts of this paper.

References

1. M. K. Aguilera, R. E. Strom, S. Sturman, M. Astley, and T. D. Chandra. Matching
events in a content-based subscription system. In Proc. of ACM Symposium on
Principles of Distributed Computing (PODC), pages 53–62, May 1999.

2. L. Bettini and R. D. Nicola. A Java middleware for guaranteeing privacy of dis-
tributed tuple spaces. In Proc. International Workshop on Scientific Engineering
for Distributed Java Applications, pages 175–184, 2003.

3. P. Buneman, A. Deutsch, and W. C. Tan. A deterministic model for semi-
structured data. In Proc. of the 1999 Intl. Workshop on Query Processing for
Semi-Structured Data and Non-Standard Data Formats, Jan. 1999.

Tagged Sets: A Secure and Transparent Coordination Medium 267

4. N. Carriero and D. Gelernter. Applications experience with Linda. ACM SIGPLAN
Notices, 23(9):173–187, Sept. 1988.

5. A. Carzaniga, D. S. Rosenblum, and W. Wolf. Achieving scalability and expres-
siveness in an internet-scale event notification service. In Proc. of ACM Symposium
on Principles of Distributed Computing (PODC), pages 219–227, July 2000.

6. D. K. Gifford and A. K. Jones. Cryptographic sealing for information security and
authentication. Communications of the ACM, 25(4):274–286, Apr. 1982.

7. J. He and M. Wang. Cryptography and relational database management systems.
In International Database Engineering and Application Symposium, pages 273–284,
2001.

8. R. Lucchi and G. Zavattaro. WSSecSpaces: a secure data-driven coordination
service for web services applications. In Proc. of ACM symposium on Applied
Computing (SAC), pages 487–491, 2004.

9. N. H. Minsky, Y. M. Minksy, and U. Ungureanu. Making tuple space safe for
heterogeneous distributed systems. In Proceedings of SAC ’2000, pages 218–226,
2000.

10. R. D. Nicola, G. Ferrari, and P. Pugliese. Programming access control: The KLAIM
Experience. Lecture Notes in Computer Science, 1877:48–??, 2000.

11. A. Omicini and F. Zambonelli. Tuple centres for the coordination of Inter-
net agents. In Proceedings of the 1999 ACM Symposium on Applied Computing
(SAC’99), pages 183–190, San Antonio (TX), Feb. 28 - Mar. 2 1999. ACM Press.
Track on Coordination Models, Languages and Applications.

12. L. Opyrchal and A. Prakash. Secure distribution of events in content-based publish
subscribe systems. In Proc. of USENIX Security Symposium, 2001.

13. Oracle. Oracle database 10g security and identity management. Technical report,
Dec. 2003.

14. B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe noti-
fication service with quenching. In Proceedings of AUUG97, Brisbane, Australia,
September 1997.

15. J. Vitek, C. Bryce, and M. Oriol. Coordinating processes with secure spaces.
Science of Computer Programming, 46:163–193, January-February 2003.

16. C. Wang, A. Carzaniga, D. Evans, and A. Wolf. Security issues and requirements
for internet-scale publish-subscribe systems. In HICSS ’02: Proceedings of the 35th
Annual Hawaii International Conference on System Sciences (HICSS’02)-Volume
9, page 303. IEEE Computer Society, 2002.

17. A. Wood. Coordination with Attributes. In P. Ciancarini and A. Wolf, editors,
Proc. 3rd Int. Conf. on Coordination Models and Languages, volume 1594 of Lec-
ture Notes in Computer Science, pages 21–36, Amsterdam, Netherland, Apr. 1999.
Springer-Verlag, Berlin.

Time-Aware Coordination in ReSpecT

Andrea Omicini, Alessandro Ricci, and Mirko Viroli

DEIS, Alma Mater Studiorum, Università di Bologna,
via Venezia 52, 47023 Cesena, Italy

{andrea.omicini, a.ricci}@unibo.it, mviroli@deis.unibo.it

Abstract. Tuple centres allow for dynamic programming of the coor-
dination media: coordination laws are expressed and enforced as the be-
haviour specification of tuple centres, and can change over time. Since
time is essential in a large number of coordination problems and pat-
terns (involving timeouts, obligations, commitments), coordination laws
should be expressive enough to capture and govern time-related issues.

Along this line, in this paper we discuss how tuple centres and the
ReSpecT language for programming logic tuple centres can be extended
to catch with time, and to support the definition and enforcement of time-
aware coordination policies. Some examples are provided to demonstrate
the expressiveness of the ReSpecT language to model timed coordination
primitives and laws.

1 Introduction

Coordination artifacts are general-purpose run-time abstractions embedded in
a MAS (multi-agent system) coordination infrastructure [1, 2], and meant to
provide agents with coordination as a service [3]. In particular, coordination
artifacts aim at automating specific coordination tasks, encapsulated outside
the agents, and featuring relevant engineering properties such as predictability,
inspectability and malleability of behaviour [1].

The reference coordination model supporting the notion of coordination arti-
fact is TuCSoN [4, 5]. TuCSoN tuple centres populate network nodes and play the
role of coordination artifacts. Tuple centres are Linda-like tuple spaces [6], whose
reactive behaviour can be programmed using the logic-based, Turing-complete
language ReSpecT [7]. By this language, tuple centres can encapsulate any co-
ordination task, from simple synchronisation policies up to complex workflows
[8, 9].

However, in most application scenarios characterised by a high degree of open-
ness and dynamism, coordination tasks need to be time dependent. On the one
hand, handling time is necessary to specify (and enforce) given levels of liveness
and quality of service: for instance, an agent could be required to interact with
a coordination artifact at a given minimum / maximum frequency. On the other
hand, temporal properties are also fundamental in the agent-artifact contract: for
instance, an agent could commit to accomplish a task before a given timeout ex-
pires, or could require the artifact to provide a response within a given time.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 268–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Time-Aware Coordination in ReSpecT 269

The expressive need for timed coordination policies already emerged in the
field of distributed systems as well. For instance, in JavaSpaces [10] primitives
read and take — looking for tuples in the same way as rd and in in Linda —
come with a timeout value: when the timeout expires without a matching tuple
is found, a failure result is returned. Similarly, tuples can be equipped with a
lease time when they are inserted in the space: as soon as the lease expires, the
tuple is automatically removed. All these primitives, and others based on time,
can actually be used as the basis for structuring more complex coordination
scenarios, such as e.g. auctions and negotiations protocols including time-based
guarantees and constraints. However, they are typically too specific solutions
to capture all the time-related coordination problems, which instead require a
general and comprehensive model for time in coordination.

Along this line, in this paper we discuss how the basic ReSpecT tuple-centre
model has been extended to support the definition and enaction of time-aware
coordination policies. Section 2 discusses the general concept of time-aware coor-
dination artifacts, and describes how tuple centres and ReSpecT can be extended
accordingly to deal with time. Section 3 exemplifies the approach by showing
how the dining-philosopher problem can be modelled in ReSpecT, and then ex-
tended with time constraints. Section 4 briefly discusses the expressiveness of
the extended ReSpecT tuple-centre model, by showing how it can be used to
express some well-known temporal features as found in a number of well-known
coordination models (such as tuple leasing and timed requests). Section 5 gives
some clues of the model implementation. Finally, Section 6 considers related
works, and Section 7 provides for conclusions.

2 Timed Coordination Artifacts

In order to represent and enforce timed coordination laws within a coordination
artifacts, some conceptual and practical pre-conditions have to be satisfied, and
some issues need to be properly addressed.

First of all, time has to be an integral part of the ontology of a coordination
artifact. Generally speaking, time can be local or global (if it refers to the global
system time, or to the local artifact time), relative or absolute (if it assumes as
zero the starting time of the artifact, or uses a standard time convention like
date-time), continuous or discrete. Typically, local and relative time are the most
natural reference for coordination artifacts in distributed systems, since it can be
always be defined and used with no conceptual difficulties. Global and absolute
time can be defined conventionally / pragmatically from there — for instance,
global system time is the time of a specific artifact (along with some practical
methods to extract time from there, and define some notion of simultaneity),
absolute time is obtained by properly labelling time 0 of the artifact, and then
using relative time as a delta. Finally, discrete time is the obvious choice for any
computational machine. As a result, a coordination artifact can label any event
(either incoming or outgoing) with its own (local, relative and discrete) time,
which is then amenable to be used as a unique label within the coordination

270 A. Omicini, A. Ricci, and M. Viroli

artifact, under the simple hypotheses that it works with a single flow of control,
and has a fine-enough-grained time scale.

Correspondingly, a coordination artifact should allow coordination laws to
talk about time. A range of predicates / functions has then to be provided as
the syntactic sugar to access the time information (label) featured by any event
to be handled (the time when the action that produced the event has affected
the artifact, and the current time of the computation within the artifact), and
to perform simple computations over time (comparing time points and / or
intervals).

Of course, time has to be embedded into the coordination-artifact working
cycle. So, some notion of time event has to be introduced, which triggers some
time-related computation within the artifact. In fact, it is not enough to allow the
time of an event to be accessed: time-related laws like “the answer should come
within 3 minutes after the question, otherwise some penalty will be inflicted”
cannot be expressed only referring to actions actually performed — since they
contemplate the case of no action performed, the corresponding law cannot refer
to a reaction to no action. So, time events (as events triggering some behaviour
of the coordination artifact, conceptually corresponding to the passage of time)
have to be autonomously generated by the coordination artifact in order to suit-
ably handle time-related laws, within the normal working cycle of the artifact.
Quite obviously, attention should be paid on the one hand not to overload the
cycle, on the other hand not to be too coarse in time intervals.

Along this line, the ability to capture time events and to react appropriately
is another obvious capability required to a timed coordination artifact. Time-
aware coordination laws can then be enforced, that can specify / constraint
behaviours that depend on time, and can suitably relate time with the evolution
of the coordination (artifact) state.

Finally, talking about time naturally recalls the dynamics that is typically
featured by the coordination laws encapsulated within coordination artifacts.
So, a fundamental complement to the ability of the artifact to specify and en-
act time-related coordination policies is the ability to modify the coordination
specification over time, during the “active life” of the artifact, and possibly de-
pending on some time-aware behaviour of the artifact itself. Correspondingly, it
should be possible to express how to add a new coordination law, and how to
remove an old one, so as to adapt the artifact behaviour (and the coordination
altogether) to the passage of time — or to the change, more generally.

2.1 Timed Tuple Centres

Tuple centres are introduced in [7] as coordination artifacts meant at engineering
coordination activities in MASs. Technically, a tuple centre is a programmable
tuple space, i.e. a tuple space whose reactive behaviour to communication events
can be programmed so as to specify and enact any coordination policy [7]. Tuple
centres can be thought then as general purpose coordination artifacts, which can
be suitably forged in order to provide specific coordination services. The tuple
centre model is not bound to any specific model / language for behaviour spec-

Time-Aware Coordination in ReSpecT 271

ification or to a specific communication language: these aspects are defined by
specific instances of the model. An example, discussed in next subsection, is given
by ReSpecT tuple centres [11], which adopt logic tuples as the communication
language, and the ReSpecT language for tuple centre behaviour specification.
Independently of the specific language adopted, the tuple centre behaviour is
meant to be specified in terms of reactions to (communication) events occurring
in the artifact. So, the core idea behind tuple centres (and coordination artifacts,
more generally) is to have first-class coordination abstractions which are power-
ful enough to encapsulate and enforce at execution time the coordination laws
required to support MAS activities. This does not happen, for instance, in basic
Linda-like models, where complex coordination activities surpassing the limited
expressive power of tuple space coordination force the global logic of coordina-
tion to be spread among individual agents [7]. As coordination artifacts, tuple
centres have a usage interface, composed by the basic Linda primitives, plus
two primitives — set spec and get spec — for setting and reading the tuple
centre behaviour specification. As coordination artifacts, tuple centres also fea-
ture inspectability and malleability properties, i.e. their coordinating behaviour
can be inspected and changed dynamically, at execution time.

Timed tuple centres extend tuple centres with the temporal framework de-
picted above for timed coordination artifacts. First, the notion of current time
for a tuple centre is introduced as a local, relative and discrete time. Conceptu-
ally, tuple-centre time is generated by an inner clock owned by the tuple centre:
no relationships can be established in principle between the current time of two
different tuple centres. The current time of a timed tuple centre is zero when the
tuple centre is actually created by the infrastructure at run time. Absolute time
is available, conventionally computed by suitably adding the (absolute) tuple-
centre creation time (as provided by the infrastructure) to the current time.

With respect to the formal model defined in [7], a time transition is intro-
duced in the basic tuple centre working cycle, in addition to the existing listening,
speaking, and reacting transitions. The time transition is meant to have priority
with respect to all the other transitions, including the reacting one. Conceptu-
ally, the time transition is executed at each tick of the tuple centre clock — as
reacting to the generation of a time event for each tick.1

Then, similarly to communication events, it is possible to specify reactions
triggered by time events (timed reactions). Timed reactions follow the same
semantics of other reactions: once triggered, they are placed in the triggered-
reaction set and then executed, atomically, in a non-deterministic order. Since
at a given time, only one time event can occur, each timed reaction is executed
only once.

As a result, a timed tuple centre can be programmed to react to the passing
of time, so as to enforce time-aware coordination policies.

1 In practice, then, the time transition needs to be executed only when the tuple
centre specification actually contains triggerable timed reactions, according to a
simple mechanism sketched in Section 5.

272 A. Omicini, A. Ricci, and M. Viroli

2.2 Timed ReSpecT

ReSpecT tuple centres are tuple centres based on first-order logic, adopted both
for the communication language (logic tuples), and for the behaviour specifi-
cation language (ReSpecT) [11]. Basically, reactions in ReSpecT are defined as
Prolog-like relations of the form

reaction(Head, Body).

which specify the list of the operations to be executed (the Body of the reaction)
when a certain communication event occurs (represented by the reaction Head).
Such operations make it possible to inspect and change current communication
and coordination state, for instance by inserting / reading / removing tuples
from the tuple set (see [11] for details). Operations can trigger new reactions.
If just only one of the operations invoked in the body of the reaction fails, the
entire reaction fails atomically, rolling back any change possibly done by previous
operations successfully executed by the same reaction.

According to the timed-tuple-centre model described in Subsection 2.1, the
ReSpecT language is extended with time (i) by introducing some temporal pred-
icates to get information about both tuple-centre and event time, and (ii) by
making it possible to specify reactions on the occurrence of time events. The
temporal predicates introduced are the following:2

– current time(?Time) This predicate succeeds if Time (typically a vari-
able) unifies with the current tuple-centre time. As an example, the reaction
specification tuple
reaction(in(p(X)),(current time(Time),out r(request log(Time,p(X))))).

inserts a new tuple (request log) with timing information each time a re-
quest to retrieve a tuple p(X) is executed, thus implementing the temporal
log of a specific sort of request.

– event time(?Time) This predicate succeeds if Time unifies with the tuple-
centre time when the original communication event triggering the reaction
occurred.

– before(@Time), after(@Time), between(@MinTime,@MaxTime) These
predicates succeeds if the current tuple-centre time is respectively less than,
greater than, and between the specified temporal arguments.

Reactions to time events are specified analogously to ordinary reactions:
reaction(time(Time), Body).

where Time is a ground term. The intended semantics is the following: as soon as
the tuple-centre time reaches the Time value — so, the time event time(Time)
is conceptually generated — all the reactions whose head matches the event
time can be triggered, and their Body inserted in the triggered-reaction set. As
a simple example, consider the following specification:

2 A Prolog-like notation is adopted for describing the modality of arguments: + is
used for specifying input argument, - output argument, ? input/output argument,
@ input argument which must be fully instantiated.

Time-Aware Coordination in ReSpecT 273

reaction(time(TimeAlarm),(out r(alarm(TimeAlarm)))).

When the tuple-centre current time reaches the TimeAlarm value (which must
be instantiated to some numeric value), the reaction can be triggered, and its
subsequent execution causes the insertion of the tuple alarm in the tuple centre.

Given that a timed reaction is conceptually triggered when the tuple-centre
current time exactly matches the time specification in its head, each timed re-
action is executed at most once: correspondingly, any triggered timed-reaction
is automatically consumed after its execution, and so removed from the spec-
ification. Then, timed-reaction execution follows the same atomic semantics of
normal reactions [11].

In ReSpecT tuple centres, it is possible to add and remove time reactions
dynamically by exploiting the self-modifying specification predicates defined in
ReSpecT: out r spec, in r spec and rd r spec predicates, which are used in
to add, remove, and read reactions in general. In particular, the effect of an
out r spec(H,B) is to add a reaction reaction(H,B) to the current specifica-
tion, while in r spec(H,B) / rd r spec(H,B) removes / reads a reaction whose
head and body match with H and B , respectively. This makes it possible to add
and remove also timed-reaction specifications dynamically, by need.

For instance, the following specification

(1) reaction(out(clockStart), (in_r(clockStart),
current_time(StartTime), out_r(tick(StartTime)))).

(2) reaction(out_r(tick(ClockTime)),(
in_r(tick(ClockTime)), rd_r(delta_time(DeltaTime)),
NewClockTime is ClockTime + DeltaTime,
// any activity to be done at each clock goes here
out_r_spec(time(NewClockTime), out_r(tick(NewClockTime))))).

(3) reaction(out(clockStop), (in_r(clockStop),
in_r_spec(time(ClockTime), out_r(tick(ClockTime))))).

defines a clock that starts when the tuple clockStart is first inserted in the
timed tuple centre (reaction 1), cycles every delta_time(@DeltaTime) millisec-
onds (reaction 2), and stops when the tuple clockStop is finally inserted in the
tuple centre (reaction 3).

3 An Example: Dining with Time Constraints

As a main example to show the effectiveness of the approach, we consider here an
extension to the well-known dining philosopher problem, tackling the time issue.
The dining philosopher is a classical problem used for evaluating the expressive-
ness of coordination languages in the context of concurrent systems [12]. In this
problem, a number of philosophers eat at the same round table, using shared
chopsticks. Philosophers alternate thinking with eating: two chopsticks are re-
quired to eat, no chopstick to think. Each philosopher shares the two chopsticks

274 A. Omicini, A. Ricci, and M. Viroli

on his left and right sides, respectively with the philosophers on his left and right
sides. Coordination here is mostly needed to avoid deadlock, which can happen
if each philosopher has taken a chopstick and is waiting for the other one, which
is in turn taken by another waiting philosopher. In spite of its almost trivial
formulation, the dining philosophers problem is generally used as an archetype
for non-trivial resource-access policies.

The solution to the problem via ReSpecT consists in using a tuple
centre — we call it table — for encapsulating the coordination policy required
to decouple agent requests from the actual requests of resources — specifically,
to encapsulate the management of chopsticks (for details refer to [7]). From the
agent viewpoint, each philosopher (i) gets the two chopsticks needed by retriev-
ing a tuple chops(C1,C2), (ii) eats for a certain amount of time, (iii) provides
back the chopsticks by inserting the tuple chops(C1,C2) in the tuple centre, and
(iv) finally starts thinking until the next dining cycle. A process-algebraic-like
description of this interactive behaviour is the following:

PHILO(C1,C2)::=
THINK.table?in(chops(C1,C2)).EAT.table?out(chops(C1,C2)).PHILO(C1,C2)

The main point here is that philosophers do not need to worry about how to
coordinate themselves, or how the resources are represented: they simply need
to know which specific chopstick pair to ask for, and then they can focus on their
main tasks (thinking and eating).

The tuple centre table is used as a coordination artifact to help their col-
lective activity. Chopsticks are represented by chop(N) tuples, with N between
1 and the number of philosophers. Philosophers directly deal with couples of
chopsticks (chops/2 tuples). The tuple centre is programmed with the ReSpecT
specification shown in Table 1 (top). Generally speaking, the coordinating be-
haviour accounts for mediating the representation of the resources (chops/2 vs.
chop/1 tuples), and most importantly for avoiding deadlocks among the agents.
In particular, if a philosopher requests a couple of available chopsticks, the re-
quest is reified by inserting a tuple required in the tuple centre (reaction 1). As
this tuple is inserted, and if both the chopsticks are available, they are removed
and a chops tuple is released to the agent (reaction 2). When the agent request is
satisfied, the tuple required representing the pending agent request is removed
(reaction 3). Then, when a philosopher inserts back the tuple representing the
couple of chopsticks, the artifact reacts in order to mediate between the differ-
ent chopsticks representations, by removing the chops(C1,C2) tuple (reaction
5) and inserting two separated chopsticks chop(C1) and chop(C2) (reaction 4).
As a single chopstick is inserted, a control is made to check if such a chopstick is
required by a pending agent request (required tuple) and — at the same time
— if the other chopstick that appears in the pending agent request is available
(reactions 6 and 7). In case, both chopsticks are removed, and the pending agent
request is satisfied by producing a suitable chops tuple.

The basic formulation of the dining philosopher problem focuses on the dead-
lock issue. However, another relevant aspect for a correct collective behaviour of
a MAS is fairness in the use of resources: once acquired the chopsticks, philoso-
phers are meant to release them back, sooner or later. If a philosopher inciden-

Time-Aware Coordination in ReSpecT 275

Table 1. Timed ReSpecT specification for coordinating dining philosophers: (top) with-
out maximum eating time constraints, (bottom) adaptation / extension to deal with
timing constraints. In particular, reaction 8 is added to the specification, and reaction
4 is replaced by a new version (reaction 4’)

1 reaction(in(chops(C1,C2)), (
pre, out r(required(C1,C2)))).

2 reaction(out r(required(C1,C2)),(
in r(chop(C1)),in r(chop(C2)),out r(chops(C1,C2)))).

3 reaction(in(chops(C1,C2)), (
post, in r(required(C1,C2)))).

4 reaction(out(chops(C1,C2)), (
out r(chop(C1)),out r(chop(C2)))).

5 reaction(out(chops(C1,C2)), (
in r(chops(C1,C2)))).

6 reaction(out r(chop(C1)), (
rd r(required(C1,C)),in r(chop(C1)),in r(chop(C)),out r(chops(C1,C)))).

7 reaction(out r(chop(C2)), (
rd r(required(C,C2)), in r(chop(C)),inr(chop(C2)),out r(chops(C,C2)))).

4’ reaction(out(chops(C1,C2)), (
in r(used(C1,C2,T)),
out r(chop(C1)),out r(chop(C2)))).

8 reaction(in(chops(C1,C2)), (
post, current time(T), rd r(max eating time(Max)), T1 is T + Max,
out r(used(C1,C2,T)),
out r spec(time(T1),(

in r(used(C1,C2,T)), out r(chop(C1)),out r(chop(C2)))))).

tally dies or refuses to release back the chopsticks, some philosophers can die by
starvation and the coordination activity is compromised. So, a further issue that
the coordination policy should capture is how to impose a constraint over the
maximum time which philosophers can take to eat (i.e., to use the resources).
Whenever such a constraint is violated, chopsticks released to philosophers are
considered no more valid (no more usable), and new valid copies are re-created
in the tuple centre, so as to allow the other philosophers to use them. If the

276 A. Omicini, A. Ricci, and M. Viroli

agent autonomy is to be preserved, such a coordinating behaviour should be
obtained without forcing any individual agent behaviour: instead, this should
be achieved by instrumenting the coordination artifact with suitable time-aware
coordination laws.

Such a behaviour can straightforwardly be implemented with the ReSpecT
model extended with time. By exhibiting the typical incremental nature of
ReSpecT specifications, the previous (non-timed) specification is almost entirely
reused, with only one minor change and one extension (reactions 4’ and 8, respec-
tively), as described in the bottom part of Table 1: the logic of the previous solu-
tion is mostly kept, and only the time-related aspects are specifically addressed
by the two new reactions. Precisely, the behaviour is obtained by installing a
timed reaction implementing a timeout every time a couple of chopsticks is re-
trieved by a philosopher (reaction 8), and keeping track of the chopstick currently
in use by means of tuple used. The timed reaction is triggered after Max time
units, where Max is the maximum eating time, stored in the max eating time
tuple. When a philosopher inserts back the couple of chopsticks on time, the
used tuple is successfully removed, along with the corresponding timed reac-
tion, and the individual chopsticks are inserted back as in the non-timed case
(compare reaction 4’ with 4). If an installed timed reaction is triggered, it means
that eating time for a philosopher has expired: then, tuple used is removed and
the corresponding individual chopsticks (chop tuples) are re-created. When (if)
a philosopher inserts back the couple of chopstick out of time, the related used
tuple is no longer found, and the individual chopsticks are not inserted back
(reaction 4’ fails).

It is worth noting that keeping track of the maximum eating time as a tuple
(max eating time in the example) makes it possible to easily change it dy-
namically, while the activity is running. This can be very useful for instance in
scenarios where this time need to be adapted (at run time) according to the
workload and, more generally, to environmental changes affecting the system.

4 Other Examples

In this section we describe how the extended model can be used to realise some
other well-known coordination patterns based on the notion of time, namely
timed requests and tuple leasing.

It is worth noting, however, that our point here is not to show that timed
requests, or tuple leasing, can be expressed better by Timed ReSpecT than by the
specific timed-primitives provided by JavaSpaces [10] and TSpaces [13]: those,
in fact, are not general-purpose approaches, and can then address only a limited
range of time-related coordination problems. Instead, the most relevant point
here is the generality of our approach: here, in fact, the same simple model
is shown to be capable to express time-based coordination policies of different
kinds.

So, even the simple dining-philosophers problem extended with time con-
straints discussed in Section 3 can not be solved (at least, not straightfor-

Time-Aware Coordination in ReSpecT 277

wardly) with the timed primitives of JavaSpaces and TSpaces. Instead, the
Timed ReSpecT model discussed above proves to be general enough to easily ex-
press timed requests and tuple leasing, as well as the timed dining-philosophers
example.

4.1 Timed Requests

In this first example we model a timed in primitive, i.e. an in request that
blocks only for an a-priori limited amount of time. An agent issues a timed in by

Table 2. Timed requests modelled using Timed ReSpecT

1 reaction(in(timed(MaxTime,Tuple,)),(
pre, out r(required(MaxTime,Tuple)))).

2 reaction(out r(required(MaxTime,Tuple)),(
in r(Tuple),
in r(required(MaxTime,Tuple)),out r(timed(MaxTime,Tuple,yes))
;
current time(Time), Timeout is MaxTime + Time,
out r spec(time(Timeout),(

in r(required(MaxTime,Tuple)),
out r(timed(MaxTime,Tuple,no)))))).

3 reaction(out(Tuple),(
in r(required(MaxTime,Tuple)),out r(timed(MaxTime,Tuple,yes)))).

executing primitive in(timed(@Time,?Template,-Res)). If a tuple matching
Template is inserted within Time units of time, the requested tuple is removed
and returned to the agent via unification with Template , with Res bound to
the yes atom. Conversely, if no matching tuples are inserted within the spec-
ified Time , the request is unblocked by producing a suitable timed tuple with
Template untouched and Res bound to no, which is then returned to the agent.
Table 2 reports the Timed ReSpecT specification that implements the behaviour
of this new primitive. When a timed in operation is issued, the request is rei-
fied by inserting a required tuple in the tuple centre (reaction 1). If a tuple
matching the request is found, then the agent request is immediately satisfied
by inserting back a timed tuple reporting a successful result (first part of reac-
tion 2). Conversely, if no tuples are found, a timed reaction is installed, to be
triggered after the amount of time specified by the agent request (second part
of reaction 2)3. If a tuple matching the request is inserted on time (reaction 3),

3 The ; operator in ReSpecT has a meaning similar to the Prolog one: (G1;G2) succeeds
if either G1 or G2 succeeds. More precisely, first G1 is executed: if it fails, G2 is then
executed.

278 A. Omicini, A. Ricci, and M. Viroli

a timed tuple reporting a successful result is generated. Otherwise, if the timed
reaction is triggered with the request still pending (tuple required is still in the
tuple centre), a timed tuple reporting a negative result is generated, unblocking
the agent request.

4.2 Tuples in Leasing

Finally, in this last example we model the notion of lease, analogously to the
lease notion in models such as JavaSpaces [10] and TSpaces [13]. Tuples can be
inserted in the tuple set specifying a lease time, i.e. the maximum amount of
time for which they can reside in the tuple centre before automatic removal. The
ReSpecT code implementing a simple form of leasing is:

reaction(out(leased(Tuple,LeaseTime)),(

out r(Tuple),

current time(Time), ExpireTime is Time + LeaseTime,

out r spec(time(ExpireTime), in r(Tuple)))).

An agent inserts a tuple with a lease time by issuing an
out(leased(@Time,@Tuple))

According to the reaction described above, when a tuple with a lease time is
inserted in the tuple centre, a timed reaction is inserted to be triggered when the
leasing time has expired. The timed reaction simply removes the tuple in leasing.
If the tuple is not found anymore (because it has been removed by some other
agent request), the timed-reaction execution has no effect, for it simply fails.

5 Implementation Overview

The basic ReSpecT virtual machine has been designed and realised as a finite
state automaton, with transitions through the basic stages (listening, speak-
ing, reacting) as defined in the operational semantics described in [7, 11]. The
tuple set, the pending query set, the triggered-reaction set and input/output
event queues defined in [7] constitute the main data structures of the virtual
machine. A Prolog engine is used for reaction triggering and execution; in par-
ticular ReSpecT primitives are implemented as Prolog built-in predicates defined
in a library extending the basic engine. The technology is fully Java-based, and
has been developed exploiting tuProlog, a Java-based Prolog engine, which is
available as an open-source project at the tuProlog web site [14].

In the time-extended model, some new data structures are added:

– a clock, realised as a long-integer counter, holding current tuple-centre time
expressed in milliseconds;

– a timed-reaction specification list, which is the list of timed reactions cur-
rently defined in the specification. The list is ordered by the time specified
in the heads. The list is updated by the out r spec and in r spec, when
inserting and removing timed reactions, and by the set spec coordination
primitive, when setting a specification which includes also time reactions;

Time-Aware Coordination in ReSpecT 279

– a timer service, triggering a tuple centre virtual machine in idle state at
specific time points.

The Prolog library defining ReSpecT predicates has been extended with new pred-
icates implementing the behaviour of the new temporal primitives (predicates).

The basic virtual-machine working-cycle has been extended so as to imple-
ment the time transition: at each cycle (that is, after any listening, speaking and
reacting transition), current time is updated and the head timed-reaction spec-
ification list is checked: if there are timed-reaction specifications whose reaction
time is less or equals than current tuple-centre time, they are removed from the
list, and their bodies are added to the triggered-reaction set.

Also, to avoid problems due to idleness — when the timed-reaction list is not
empty but no timed reaction have to be triggered yet, and there are no exter-
nal requests to be served, no pending satisfiable pending requests, no triggered
reactions to execute — the tuple-centre virtual machine properly configures the
timer service, before going idle. In particular, the timer service is programmed
so as to trigger the machine at the time point specified by the reaction time of
the first timed reaction of the list.

6 Related Works

Outside the specific context of coordination models and languages, the issue of
defining suitable languages for specifying the communication and coordination
in timed systems have been extensively studied. Examples of such languages are
Esterel [15] and LUSTRE [16], both modelling synchronous systems, the former
with an imperative style, and the latter based on dataflow. In the coordination
literature several approaches have been proposed for extending basic coordina-
tion languages with timing capabilities. [17] introduces two notions of time for
Linda-style coordination models, relative time and absolute time, providing for
a number of time-related features. Time-outs have been introduced in JavaS-
paces [10] and in TSpaces [13], and have been generally formalised by Timed
Linda [18].

The Timed ReSpecT approach described in this work differs from these ap-
proaches for at least two main reasons. First of all, Timed tuple centres extend
the tuple-centre model without altering the basic Linda model: Linda prim-
itives are kept unchanged (no change to their semantics, no timed primitives
added), and the extension focuses instead on the expressiveness and behaviour
of the coordination medium. Also, Timed ReSpecT does not provide agents with
specific time capabilities, but — following the philosophy of programmable coor-
dination media [19] — aims instead at instrumenting the model with the general
expressiveness required to capture any time-based coordination pattern.

7 Conclusions

The first attempt to enhance ReSpecT with time is reported in [20]. There,
however, the syntax and the semantics of the extension (based on the notion

280 A. Omicini, A. Ricci, and M. Viroli

of trap) are quite ad hoc, and do not fit well the original ReSpecT model: the
examples reported there can be easily compared with the ones in this article
to clearly appreciate the differences between the two approaches. Moreover, the
contribution provided by this work is meant to be broader, since it generalises
over the notion of tuple centre, and extends to the design and development of
general-purpose time-aware coordination artifacts in MASs [1].

Our approach aims to be general and expressive enough to allow for the de-
scription of a wide range of coordination patterns based on the notion of time,
by exploiting medium programmability and the basic time-based mechanisms.
An important feature exhibited by our approach is the encapsulation of coordi-
nation: embedding (specifying, enacting) time-aware policy directly inside the
coordination medium promotes modularity of the coordination programs, and
then reusability and extensibility. Temporal features have been added with no
changes to the usage interface of tuple centres, which is still based on the basic
set of Linda-like coordination primitives. Also, the extension has been realised
while preserving all the essential properties of the ReSpecT model: in particular,
reaction execution is still atomic (both at the system and at the agent levels
[7]), and reactions are executed sequentially. Even more, the declarative nature
of the reactions, along with the execution model, makes (Timed-)ReSpecT mostly
incremental in its specifications, as shown by the example discussed in Section 3.

In the implementation of the model, the issue of the centralised vs. dis-
tributed implementation of tuple centres arises. The basic tuple centre model
does not necessarily require a centralised implementation per se: however, the ex-
tension provided in this work — devising out a notion of time for each individual
medium — leads quite inevitably to realise tuple centres with a specific spatial
location. This is what already happens in the TuCSoN coordination infrastruc-
ture, where there can be multiple tuple centres spread over the network, collected
and localised in infrastructure nodes. It is worth mentioning that this problem
is not caused by our framework, but is somehow inherent in any approach aim-
ing at adding temporal aspects to a coordination model. However, according to
our experience in agent-based distributed system design and development, the
need for a distributed implementation of an individual coordination medium is
an issue of some relevance only for very specific application domains. For most
applications, the bottleneck and single point of failure arguments against the
use of centralised coordination media can be answered by a suitable design of
the MAS and an effective use of the coordination infrastructure. At this level,
it is fundamental that a software engineer would know the scale of the coordi-
nation artifacts he/she is going to use, and the quality of service (robustness in
particular) ensured by the infrastructure.

Even though the model of time used here is not meant to deal with real-time
issues in any way, we understand that this work could provide us with a solid
grounding for soft and hard real-time agent coordination. In the future, we mean
to explore real-time issues by suitably extending (for instance, with time-labelled
triggered reactions) the time model presented here.

Time-Aware Coordination in ReSpecT 281

References

1. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M., eds.: 3rd international Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004). Volume 1., New
York, USA, ACM (2004) 286–293

2. Viroli, M., Ricci, A.: Instructions-based semantics of agent mediated interaction.
In Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M., eds.: 3rd international
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004).
Volume 1., New York, USA, ACM (2004) 102–110

3. Viroli, M., Omicini, A.: Coordination as a service: Ontological and formal founda-
tion. Electronic Notes in Theoretical Computer Science 68 (2003) 1st International
Workshop “Foundations of Coordination Languages and Software Architecture”
(FOCLASA 2002), Brno, Czech Republic, 24 August 2002. Proceedings.

4. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2 (1999) 251–269 Special Issue:
Coordination Mechanisms for Web Agents.

5. TuCSoN: Home page. http://lia.deis.unibo.it/research/TuCSoN/ (2001)
6. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS) 7 (1985) 80–112
7. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer

Programming 41 (2001) 277–294
8. Denti, E., Natali, A., Omicini, A.: On the expressive power of a language for pro-

gramming coordination media. In: 1998 ACM Symposium on Applied Computing
(SAC’98), Atlanta, GA, USA, ACM (1998) 169–177 Special Track on Coordination
Models, Languages and Applications.

9. Ricci, A., Omicini, A., Viroli, M.: Extending ReSpecT for multiple coordination
flows. In Arabnia, H.R., ed.: International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’02). Volume III., Las Vegas, NV,
USA, CSREA Press (2002) 1407–1413

10. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces: Principles, Patterns, and Prac-
tice. The Jini Technology Series. Addison-Wesley (1999)

11. Omicini, A., Denti, E.: Formal ReSpecT. Electronic Notes in Theoretical Computer
Science 48 (2001) 179–196 Declarative Programming – Selected Papers from AGP
2000, La Habana, Cuba, 4–6 December 2000.

12. Dijkstra, E.: Co-operating Sequential Processes. Academic Press, London (1965)
13. Wyckoff, P., McLaughry, S.W., Lehman, T.J., Ford, D.A.: T Spaces. IBM Journal

of Research and Development 37 (1998) 454–474
14. tuProlog: Home page. http://lia.deis.unibo.it/research/tuProlog/ (2001)
15. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design,

semantics, implementation. Science of Computer Programming 19 (1992) 87–152
16. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language

for real-time programming. In: 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, ACM Press (1987) 178–188

17. Jacquet, J.M., De Bosschere, K., Brogi, A.: On timed coordination languages. In
Porto, A., Roman, G.C., eds.: Coordination Languages and Models. Volume 1906
of LNCS., Springer-Verlag (2000) 81–98 4th International Conference (COORDI-
NATION 2000), Limassol, Cyprus, 11–13 September 2000. Proceedings.

18. de Boer, F., Gabbrielli, M., Meo, M.C.: A Timed Linda language and its denota-
tional semantics. Fundamenta Informaticae 63 (2004) 309–330

282 A. Omicini, A. Ricci, and M. Viroli

19. Denti, E., Natali, A., Omicini, A.: Programmable coordination media. In Garlan,
D., Le Métayer, D., eds.: Coordination Languages and Models. Volume 1282 of
LNCS., Springer-Verlag (1997) 274–288 2nd International Conference (COORDI-
NATION’97), Berlin, Germany, 1–3 September 1997. Proceedings.

20. Ricci, A., Viroli, M.: A timed extension of ReSpecT. In: 2005 ACM Symposium
on Applied Computing (SAC 2005), Santa Fe, NM, USA, ACM (2005) 420–427
Special Track on Coordination Models, Languages and Applications.

Transactional Aspects in Semantic Based
Discovery of Services

Laura Bocchi, Paolo Ciancarini, and Davide Rossi

Dipartimento di Science dell’Informazione, University of Bologna,
Mura Anteo Zamboni 7, 40127 Bologna, Italy

{bocchi, cianca, rossi}@cs.unibo.it

Abstract. In a Service Oriented Architecture (SOA), services may need
to dynamically discover non-functional properties of possible other ser-
vices to cooperate with. Among these non-functional properties, trans-
actional support is particularly relevant to enable coordination. In this
paper we model the transactional support of Web services in a machine
readable format (using OWL-S); in our model transactional support can
be defined as negotiable thus requiring a run time multi step interaction
among services to agree on the supported transaction type. We use the
Business Transaction Protocol (BTP), a distributed transaction proto-
col, to carry out this negotiation. Specifically, we use an implementation
of the bidding negotiation in BTP with the asynchronous pi calculus in
order to provide a formal framework for these coordination issues.

1 Introduction

A Service Oriented Architecture (SOA) is ‘a set of components which can be
invoked, and whose interface descriptions can be published and discovered ’ [1].
In this context, components are network addressable services with a well defined
interface that have stateless connections and use standards communication pro-
tocols. However when complex coordination patterns involve multiple services,
just like in many real world scenarios, stateful collaboration is often required.
For example, in the e-business context it might be crucial to specify a precise
order and causality of the service invocation (e.g., a purchase should happen
after a payment).

In the Web Service scenario a number of standards have been proposed to
coordinate correlated interactions among services, thus providing statefulness.
Some of them extend the base Web Service properties by means of informa-
tion inside the SOAP message headers. The additional features mainly concern
Quality of Service issues (e.g., distributed transaction protocols as the Busi-
ness Transaction Protocol [2] and WS-BusinessActivity [3]). Other standards
regard the coordination of different services with workflow related technologies
through the definition and management of business processes (e.g., orchestra-
tion/choreography languages such as BPEL4WS [4]).

In the context of Service Oriented Architectures (SOAs), components can be
statically bound or they can dynamically search for other components to coop-

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 283–297, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

284 L. Bocchi, P. Ciancarini, and D. Rossi

erate with. In some cases the aspects that characterize a service can be known
just at run time (e.g., the load of a system) or they are critical for the client
service. This requires a multi-step interaction among the stakeholders in order to
achieve an agreement on the provided features. This coordination issue is typi-
cally referred to as negotiation [5]. Negotiation is a topic of particular interest in
the field of Multi Agent Systems (MAS) [6, 7, 8, 9]. Bidding protocols are a type
of negotiation protocols that is suitable to represent this scenario. The intuition
of bidding protocols is that a single coordinator asks for an offer to a number of
participants, each makes an offer and the coordinator chooses one of the requests.
A classic protocol is the Contract Net Protocol (CNP)[10], proposed in the sce-
nario of distributed problem solving, where some loosely coupled distributed
knowledge-sources (KS) have to find a cooperative solution to a problem, in a
decentralized way. Some efforts are addressing the definition of standard tech-
nologies for negotiation in the Web Service scenario. In [11], a declarative XML
language (WS-Negotiation) for Web Services providers and requestors, and a
Service Level Agreement (SLA) template model are proposed. Negotiation is a
issue of interest also in the Grid community: the Grid Resource Allocation Agree-
ment Protocol (GRAAP) Working Group of the Grid Global Forum (GGF) [12]
is currently working on a proposal, WS-Agreement [13], addressing message for-
mat in a negotiation being neutral with respect to the underlying negotiation
protocol.

A key issue to enable automated service composition is to make the service
descriptions machine readable. It is important to suitably define which aspects
of a service are captured by the description and which kind of language is used
to express them. In [14] three approaches are discussed: text based (searching
is typically done by pattern matching), frame based (properties of a service are
expressed as couples attribute-value), and ontology based. An ontology expresses
a range of concepts and the relationship among them; it can be represented by a
XML file and it is typically used to describe semantic aspects of a resource in a
machine readable way. In [14] the advantages of using ontologies are remarked,
basing on a comparison of the different approaches that consider the provided
recall (i.e., absence of false negative) and precision (i.e., absence of false positive)
in the search process. The World Wide Web Consortium (W3C) recommends the
Web Ontology Language (OWL) [15] definition of ontologies on the Web. OWL-
S [16] is an OWL based ontology for the description of services that has been
created as a part of the DARPA Agent Markup Language Program (DAML) [17].

In the last years the challenges of e-science and e-business have been both ad-
dressed with the use of SOA instances: the Web Service Architecture [18] (WSA)
and the Open Grid Service Architecture (OGSA) [19] respectively. Both WSA
and OGSA present a link to Web Service technologies; this allows Grid related
research to benefit from research in the generic scenario of service discovery in
loosely coupled environment using Web Service technologies. The ongoing con-
vergence between Grid and Web technologies has been represented in [20] within
the same OWL-S ontology that has been extended with some Grid concepts.

Transactional Aspects in Semantic Based Discovery of Services 285

In this paper, we put the focus on the problem of dynamic automated service
discovery: a resource broker has to choose the most suitable service on the basis
of a service request and a set of service descriptions. Service descriptions can
be achieved from an information repository, for example an implementation of
UDDI [21].

Our first contribution is a categorization for types of transactional support in
loosely coupled environments that we express within the OWL-S ontology. In the
last few years a considerable interest has been provoked by the adaptation of the
classic concepts related with transactions to loosely coupled environments. The
need of clarifying the exact meaning of the emerging concepts about transactions
in the Web Service scenario triggered many efforts, mainly in the context of
formal methods [22, 23, 24]. We propose an extension of OWL-S that includes the
characterization of transaction types within service descriptions, and expresses
the possibility of nesting one transaction type inside another. The principal
benefit is to enable a resource broker to search for a service on the basis of that
particular type of non-functional preference.

The second contribution of this paper, is to consider a negotiation scenario
involving the proposed OWL-S extension. The service description we propose
considers the possibility that a piece of information is statically undefined (i.e.,
declared as negotiable) and that a run time negotiation is required to determine
it. We present a motivating scenario where a simple instance of negotiation is
enacted using a distributed transaction protocol: an implementation of BTP
with the asynchronous pi calculus [25], that was presented in [26]. Some consid-
erations rise form this exercise about the suitability of BTP and the considered
implementation of BTP to represent bidding.

In Section 2 we describe the evolution of concepts related to transactions to-
ward their adaptation to loosely coupled environments. In Section 3 we present
a classification of transaction types that we represent as a non-functional pa-
rameter in OWL-S. Section 4 describes a possible use of the extended ontology
by a resource broker and a simple negotiation using BTP. Section 5 outlines
conclusions and future works.

2 Transactions: An Overview of Emerging Concepts

A transaction, in its classic definition [27], is a transformation of state that pos-
sibly comprehends more simple actions satisfying three properties: Atomicity,
Consistency and Durability. In literature it is often recalled a fourth property,
Isolation. Atomicity is the ‘all or nothing’ property, Consistency assures the cor-
rectness of state transformation, Isolation requires the non interference between
the executions of multiple simultaneous transactions, and Durability states that
a transaction can not be abrogated once committed. Classic transactions are also
referred to as ACID transactions to recall the four properties they satisfy. In 2.1
we discuss how ACID transactions, as they have been defined for tightly coupled
environments, are not suitable for loosely coupled environments (i.e., SOAs). In
2.2 we describe the emerging concepts of transaction in the Web Service scenario.

286 L. Bocchi, P. Ciancarini, and D. Rossi

2.1 Limits of ACID Transactions in Loosely Coupled
Environments: The Notion of Compensation

Within a SOA where services are loosely coupled and not always trusted, stan-
dard ACID transactions can turn out to be too strict. We refer specifically to
the properties of Isolation and Atomicity. Isolation is usually enforced locking
the resources used by each activity until the transaction commits. Atomicity is
typically assured by the fact that each participant makes temporary changes to
the system till a global outcome is achieved among all the participants. Tem-
porary changes have the effect of blocking the access of the involved resources
until the end of the protocol (i.e., the achievement of an agreement). In case of
negative outcome each part can undo all the temporary changes to the system
(rollback) assuring that eventually all the actions enclosed in a transaction are
done, or none is.

Sagas. The evidence that in some scenarios it is important to model transac-
tions composed by sub-transactions underlined the need of weakening the no-
tion of rollback. This idea has been introduced in the context of data processing
applications [28, 29] with the Sagas concept. A Saga is composed by a set of
transactions that have to be executed as an overall transaction. In a nested
transaction the sub-transactions would have to block their resources until the
overall outcome is decided. The overall outcome is decided only when all the en-
closed transactions have performed the temporary changes and communicated a
vote, that can take long time.

The Notion of Compensation. These considerations led to the definition of
compensation. The compensation C of a transaction T is itself a transaction
that can be executed after T ’s completion. This implies that T neither blocks its
resources nor performs temporary changes to the system: the actions executed by
T are immediately visible and actual. If an abort occurs in an outer environment,
then C is executed to possibly undo the effects of T . It is important to notice
that, while the rollback is an integrant part of the transaction execution, the
compensation is an independent transaction executed afterwards and externally
to the scope of T . The capability of C to undo all the previously performed
actions is relative to the particular context: in some cases the compensation is
not able to undo all the effects of T , as for instance in the case of data deletion
or e-mail sending.

2.2 Long Running Transactions: Local and Global Perspectives

Web Services led to a renewed interest in that notion of weaker transaction, that
is typically referred to as long running transaction.

In the Web Service scenario, a transaction might enclose resources belonging
to different companies, it might be nested and lasts long periods of time. This
could make resources block unfeasible. Also, the concept of compensation is par-
ticularly suitable to model typical e-business scenarios. For example a provider

Transactional Aspects in Semantic Based Discovery of Services 287

might decide that rollback will not cancel all the operations carried out. To
cancel an airplane booking, for instance, may lead to the payment of a fee.

Long running transactions are supported, in a mainly local perspective, by
the languages for service orchestration/choreograohy such as BPEL4WS [4]. Dis-
tributed transaction protocols, such as BTP [2] and WS-BusinessActivity [3],
also support the notion of compensation.

In some of these protocols transaction managers present a even more flexible
behavior. In particular, BTP introduces two possible types of long running trans-
actions, categorized by the respective transaction manager behavior: atoms and
cohesions. An atom is a transaction that commits if and only if all its sub-entities

Fig. 1. An example of cohesion: travel booking tries to book different alternative flights
(the same path with two different airlines) and to rent a car. Travel booking succeeds if
at least one of the airlines has available flights. Car rental is not necessary. In that case
both airlines have available flights, travel booking commits but rejects the reservation
of the most expensive flight

commit: it commits only if all its sub-entities are able to commit, and in case
of commit all its sub-entities commit. A cohesion can decide to commit even if
some of its sub-entities are unable to commit. Furthermore in case of commit, a
cohesion can decide to reject the commitment of some of its sub-entities, causing
their failure. Figure 1 illustrates a travel booking service implemented by a co-
hesion that encloses multiple distributed and multi-organizational transactions.

3 Expressing a Classification of Transactional Types
with OWL-S

In this section transactions are represented in OWL-S. The aim is to enable a
requester to consider this information when performing the automated choice of
the service to bind with. In 3.1 we introduce a classification for types of trans-
actions and we express it as a non-functional feature inside OWL-S. In 3.2 we
include transactions as a construct to define the business processes. This enables
the requester to perform a more fine grained reasoning about the behavior of
the service.

288 L. Bocchi, P. Ciancarini, and D. Rossi

3.1 Transactions as Quality of Service Parameters

In the OWL-S ontology the generic features of services are described in the
class ServiceProfile illustrated in Fig. 2. ServiceProfile provides an overview of
the service characteristics and describes both its functional and non-functional
aspects. The functional description consists mainly in the enumeration of its
input/output parameters and its pre/post conditions. Non-functional aspects

Fig. 2. Main classes of the OWL-based Web Service ontology [16]

refer to preference attributes that are used for evaluating the services, such as the
Quality of Service. We represent transactions as a non-functional parameter that
can be expressed in a subclass of ServiceProfile, nominally ServiceParameter. We
extend ServiceParameter with the subclass TransactionalSupport, as illustrated
in Fig. 3.

Fig. 3. The class ServiceParameter enables to express non-functional aspects of a ser-
vice. We represent transactional support in the OWL-S ontology as a subclass Trans-
actionalSupport of ServiceParameter

TransactionType represents a categorization of transactions in the Web Ser-
vice scenario. In [27] the types of action enclosed within a transaction are clas-
sified as:
Unprotected actions need not to be undone. An example is an operation on
temporary files. Its effects do not affect the system externally to the scope of the
transaction that encloses it.

Transactional Aspects in Semantic Based Discovery of Services 289

Protected actions can and must be undone. Conventional database operations
are an example of protected actions. It need to be undone with an absolute
rollback in case of failure of the overall transaction.
Real actions cannot be undone. An example is an action performed on a real
device such as a cash dispenser.

A transaction, in its more general significance can enclose simple actions and
other transactions (considered as higher level actions). Also transactions can be
classified up to the list defined above (unprotected, protected or real). In the rest
of the paper we refer to both as transactions if not specified otherwise. We gen-
eralize the classification above, keeping into account long running transactions,
here defined semi-protected transactions, and negotiable transactions.

A semi-protected transaction tries to undo (i.e., compensates) its sub-
transactions; it does not grant an absolute rollback. We introduce semi-protected
transactions in the classification to distinguish in a more fine grained way be-
tween protected and real actions. An action corresponding to a compensating
transaction is not classifiable as protected since it does not provide an absolute
rollback. At the same time, classifying it as real could also be too restrictive.

The notion of negotiable transaction is crucial when a service is not able to
statically describe the provided type of transactional support. This could happen
because the transactional support depends on characteristics that change with
time. For example a service might rely on a number of sub-services that are
searched, discovered and bound at run time. Also, the nature of a transaction
depends in part on the nature of its enclosed transactions (e.g., a transaction that
encloses real transactions can not be categorized as protected). As a consequence,
the transactional support of a service may depend on those of the sub-services
that it discovers to bind with.

Table 1. Transaction types in the WSA and their relations. The cell aij represents the
possibility of nesting the transaction type j within the transaction type i

out\in unprotected protected semi-protected real negotiable
unprotected yes no no no yes
protected yes yes no no yes

semi-protected yes yes yes yes yes
real yes yes yes yes yes

negotiable yes yes yes yes yes

In Table 1 we present the categorization of transactions in the Web scenario
together with the less restrictive relation representing the possible nesting re-
lations between them. For instance, the first line represents the possibility of
nesting other types of transaction within an unprotected transaction: only un-
protected and negotiable transactions can be nested within an unprotected one.
A requester can define a more restrictive relation up to its internal policies (e.g.,
not allowing protected transactions to enclose negotiable transactions).

290 L. Bocchi, P. Ciancarini, and D. Rossi

In Fig. 4 we illustrate how we include the table presented above in the OWL-S
ontology. The class TransactionType is extended by the subclasses Unprotected,
Protected, SemiProtected, Real ad Negotiable. The subclasses represent a par-
tition of TransactionType. The relation of possible nesting described in Fig. 1
can be described with the relations (ObjectProperty) CanEnclose and Canno-
tEnclose.

Fig. 4. Classification of transaction types and their possible nesting. For simplicity
only the CannotEnclose property is illustrated here

3.2 Transactions in the OWL-S Process

Introducing semi-protected transactions does not add, per se, much information.
Further interaction could be required between a resource broker and a service in
order to establish up to witch degree the transaction is real and protected (e.g.,
to find an agreement on the compensation provided by the service). Possibly
information about the abstract process of the service can be considered to this
aim. We introduce an orthogonal characterization that describes transaction
types from the point of view of a process. In fact we describe what relation has
a transaction manger with its sub-transactions in the computation/coordination
process perform to achieve the global outcome.
Atom it commits if and only if all the enclosed entities commit.
Cohesion it can commit also if some of its subparts are not ready to commit
and in case of commit it can reject some of its subparts.
Atomic Transaction an Atom satisfying the ACID properties.

The process of a service is described in the subclass Process of ServiceModel (see
Fig. 2 and Fig. 5). There are three classes that represent a process: SimplePro-
cess, AtomicProcess and CompositeProcess. SimpleProcess introduces a level of
abstraction to refer to the less general concepts (i.e., AtomicProcess and Com-
positeProcess), and it is not directly callable. AtomicProcess is the basic unit of
implementation. With the class CompositeProcess, OWL-S enables the descrip-
tion of processes that are composite by a set of other processes by means of a

Transactional Aspects in Semantic Based Discovery of Services 291

number of constructs (sequence, split, split-join, parallel and choice) represented
by the class ControlConstruct. We introduce Transaction as a control construct,
as illustrated in Fig. 5.

Fig. 5. The class Process is a subclass of ServiceModel (see Fig. 2). A CompositePro-
cess is composed by other (composite or non-composite) processes by using control
constructs as sequence, parallel execution, etc. Transaction is introduced as Control-
Construct

A further discussion about negotiation protocols and reasoning on the process
of a service, in order to have a more fine grained idea on the compensation
policy, is out of the scope of this work. We limit ourself to introduce the base
classification; a future work will expand such a base.

4 A Motivating Scenario Involving Negotiation

Let r be a resource broker searching for a service that grants a transactional
support t. The required transactional features are expressed by the type t ∈
{Unprotected, Protected, SemiProtected, Real, Negotiable}. We limit our focus
to the search for a single service. The problem of searching for a set of n indepen-
dent services would be reducible to n instances of the problem with one service.
Complexity would be added if searching for n services cooperating within a
workflow schedule. The resource broker evaluates a range of available services
descriptions s1

1, . . . , s
n
1 that are ontologies stored in a Information Service. Their

supported transaction types t11, . . . , t
n
1 are expressed in their respective ontology

(precisely by a particular subclass of TransactionType).
We suppose that a part of the services under evaluation have transaction

types t11, . . . , t
m
1 for some m < n statically defined (that is not Negotiable). This

information can be directly used in the internal choice algorithms of the resource
broker, in particular we suppose that r eliminates from the evaluation process
all the services si

1 such that it exists a relation CannotEnclose from t to ti1. We
remark that r can define its personal relations as a restriction of those expressed
in Fig. 4 between the subclasses of TransactionType.

On the other hand sm+1
1 , . . . , sn

1 have Negotiable transaction types. An agree-
ment between r and sm+1

1 , . . . , sn
1 is required, involving a multi-step interaction.

292 L. Bocchi, P. Ciancarini, and D. Rossi

The piece of information achieved by the interaction consists in the transactional
types that can be supported by sm+1

1 , . . . , sn
1 in the contingency.

In 4.1 we briefly describe an implementation of BTP with the asynchronous
pi calculus. The reader can refer to [26] for a deeper treatment. In 4.2 we use
the implementation described in 4.1 to define the interaction pattern between r
and sm+1

1 , . . . , sn
1 .

4.1 A BTP Implementation with the Asynchronous Pi Calculus

In [26] we studied the problem of coordinating distributed business transac-
tions and we formally modeled the behavior of atom and cohesion. We recall
from section 2.2 that a cohesion is a transaction that needs only some of its
sub-transactions to succeed, while an atom requires them all to succeed. A set

Table 2. The asynchronous pi calculus

Terms P and contexts C in the asynchronous pi calculus are as follows. In u(x̃) the
names x̃ are bound, as is x in νx.P . We identify terms up to alpha-renaming of bound
names.

P ::= 0
∣∣ u x̃

∣∣ u(x̃).P
∣∣ P |P

∣∣ νx.P
∣∣ !P

C ::=
∣∣ u(x̃).C

∣∣ P |C
∣∣ C|P

∣∣ νx.C
∣∣ !C

Labeled transitions are as follows, where labels μ range over u(x̃), νz̃.u x̃ and τ .

u x̃
u x̃−→ 0 (out) u(x̃).P

u(x̃)−→ P (in)
P |!P μ−→ P ′

!P
μ−→ P ′

(rep)

P
μ−→ P ′ x �∈ μ

νx.P
μ−→ νx.P ′

(res)
P

νz̃.u ỹ−→ P ′ x �= u, x ∈ ỹ\z̃

νx.P
νz̃x.u ỹ−→ P ′

(open)

P
μ−→ P ′ bn(μ) ∩ fn(Q) = ∅

P | Q
μ−→ P ′ | Q

(par)
P

νz̃.u ỹ−→ P ′ Q
u(x̃)−→ Q′ z̃ ∩ fn(Q) = ∅

P | Q
τ−→ νz̃.(P ′ | Q′{ỹ/x̃})

(com)

Notation We write x̃C for an arbitrary sequence x1, . . . , xn of the elements in set C.
We also use these syntactic sugars:

x.P = x().P (empty input)

x̃.P = x1.xn.P (sequence input)

νx̃.P = νx1.νxn.P (sequence restriction)

P ⊕ Q = νc.(c |c.P |c.Q), c fresh (nondeterministic choice)

x[P, Q] = νu, v.(x u, v|u.P |v.Q), u, v fresh (selection)

x left = x(u, v).u

x right = x(u, v).v

Transactional Aspects in Semantic Based Discovery of Services 293

of transactions that compose a complex activity, with an arbitrary number of
nesting levels, can be coordinated by means of precise message patterns. Each
transaction has a transaction manager associated, to manage the message pat-
tern. [26] provides a distributed implementation of a transaction manager with
the asynchronous pi calculus [25]. The asynchronous pi calculus and particular
notation used in [26] have been summarized in Table 2 for reader convenience.

Cohesion is modeled here as an entity able to flexibly specify the relationship
with its children. To model a cohesion, the transaction manager creates two
partitions of the set of all its sub-transactions. Let C(r) be the set of the children
of the cohesion r.

– necessary/unnecessary: C(r) is partitioned into N(i) and U(i) with the
meaning that success of all N(r) is necessary for r to succeed, while U(r)
are unnecessary.

– accept/reject: C(r) is partitioned into A(r) and R(r) where all of A(r) are
accepted, while all of R(r) are rejected (undone) in the case r succeeds.

A cohesion with C(i) = N(i) and A(i) = C(i) is a special case that behaves as an
atom. A two phase commit protocol is used first to assemble the ‘votes’ of nested
transactions (i.e., whether or not they succeeded), and second to inform them all
of the consensus decision. An implementation of the two phase commit protocol
with the asynchronous pi calculus is presented in [30] where unreliability is taken
into account (message loss and node failure).

Table 3. The implementation of the transaction manager [26]

Ti = νai, msi, vsi, m̃C(i), ṽC(i), d̃C(i).(Ti.sv | Ti.m | Ti.col |
∏

c∈C(i)

Tc)

Ti.sv = vs ileft ⊕ vs iright

Ti.m = vsi[ms i, a i] |
∏

c∈N(i)

vc[m c, a i] |
∏

c∈U(i)

vc[m c, m c]

Ti.col = ai.(v iright | Ti.fail) | m̃C(i).msi.(v ileft | di[Ti.ok, Ti.fail])

Ti.ok = ok i |
∏

c∈A(i)

d cleft|
∏

c∈R(i)

d cright

Ti.fail = abort i |
∏

c∈C(i)

d cright

294 L. Bocchi, P. Ciancarini, and D. Rossi

vsi

msiai

(1) (5)

(2)

(3) (4)

vc dc

vi

oki

faili

di

mc

Fig. 6. Message exchange from the perspective of the transaction manager Ti [26]

In [26] the two phase commit protocol is modeled considering an arbitrary
number of level nesting: any transaction manager has to manage the interactions
with both its top level and its bottom level in the nesting hierarchy. Also, the
modeled transaction manager captures both cohesion and atom behavior. Table 3
describes the implementation of the transaction manager presented in [26]. Fig. 6
illustrates the behavior of the transaction manager.

Referring to Fig. 6: (1) the transaction i itself makes a non-deterministic
‘self’ vote vsi. Also, all of the children c make their votes vc. (2) Each vote
is transformed into an ‘internal message’ m. The purpose of this translation
is to separate necessary child votes N(i) from unnecessary votes U(i). Each
internal message mc means that the child either voted success (left), or it was
unnecessary. But if a child should vote failure (right) and was necessary, it will
make an ‘abort’ signal ai instead. (3) If all internal messages msi/mc arrive,
then the transaction i as a whole can succeed, and so indicates success (left) to its
parent over the channel vi. But if even one abort message ai was received, then
the transaction as a whole fails, and so it indicates failure (right). (4) Eventually
the parent p will know whether to accept i, or to abort/undo it. This decision
is communicated to i via the ‘decision’ channel di, and so determines i’s final
state. The transaction i can indicate its final state via the messages oki/aborti.
(5) Finally, the decision is propagated down to all the children c. The accepted
children, those in A(i), will be told the same decision as i received. The rejected
children, those in R(i), will be told to abort/undo regardless.

Correctness of the protocol has been proved in [26] up to the notions of
Durability, Eventuality (eventually each node reaches an outcome) and Local
Atomicity. Of particular interest is the property of local atomicity: it is a weaker,
more general version of atomicity granted by cohesions: if one transaction fails,
then all its children fail.

4.2 Enabling Dynamic Properties Discovery with BTP

We suppose that the resource broker performs a ranking of the services s1
1, . . . , s

n
1

based on other already known preference parameters. Ranking is expressed by

Transactional Aspects in Semantic Based Discovery of Services 295

the permutation function f of {1, . . . , n}. Let us assume that all the s1
1, . . . , s

m
1

(i.e., the services whose transaction type is not negotiable) provide a suitable
transactional support. To complete the ranking, an interaction has to be per-
formed with services in order to delete those of the sm+1

1 , . . . , sn
1 that do not

provide enough transactional support.
Let us build a table with n rows: one for each evaluated service. The im-

plementation of BTP that we considered does not take into account run time
decisions (that is why we use the table). Virtually we think n versions of the
protocol to be run in parallel. This simulates the fact that r can partition C(r)
in necessary/unnecessary at run time depending on information obtained in the
first phase of the protocol. Each row of the table below represents an instance of
the protocol. In each instance of the protocol we consider only one service, say sj

1.

– ∀j : j > m we model that if sj
1 can provide suitable transactional support

than is chosen, independently from the behavior of the other services. This
is expressed by the partitions of C(r): N(r) = {sj

1} and A(r) = {sj
1} (all the

other services are unnecessary and rejected).
– ∀j : j ≤ m, sj

1 is not involved in the negotiation. In this case we consider
the trivial instance of the protocol where partition C(r) as follows: N(r) =
A(r) = ∅ (all the services involved in the negotiation are rejected).

row If all of these succeed... then accept these... and undo these
1 . . . m ∅ ∅ C(r)
m + 1 {sm+1

1 } {sm+1
1 } {C(r) \ {sm+1

1 }}
.
n {sn

1} {sn
1} {C(r) \ {sn

1}}
Finally we order rows up to the ranking function f . The protocol described
in [26] considers a single row of the table, rather than multiple rows in each
protocol specification. To handle multiple rows, something like Join patterns [31]
might be used. Here we simply illustrate a possible use of the protocol to handle
complex choices: in fact n− (m+1) instances of the protocol are run in parallel,
when all the information (tm+1

1 , . . . , tn1) is available to r then a choice is made
depending on the ranking function. The rows of the table are considered in the
order expressed by f . It is chosen the service relative to the first row in the
ranking order with successful outcome.

5 Conclusion and Future Works

In a bidding protocol the evaluation of the participants proposals has to be
done at run time. BTP allows a run time evaluation: ‘The determination of the
Confirm-set is made by the controlling application, but is affected by events
from the Inferiors themselves’[2]. The protocol we considered defines the sets
of necessary and accepted sub-transactions statically. We modeled this using
multiple entries of a table. Including run time decision in the protocol imple-
mentation would not allow to separate the protocol level and the application
level information, but would possibly lead to a more elegant representation.

296 L. Bocchi, P. Ciancarini, and D. Rossi

As future work, we are extending [26] with the management of unreliability,
in particular managing message loss with the use of timers as those described in
[30]. In a general bidding scenario a coordinator does not necessarily wait that
all the participants send a feedback: it can decide a deadline and evaluate the
participants that answered before the expiration. In [26] the coordinator waits
the votes from all the participants. The use of timers would possibly enable the
representation of this behavior.

References

1. Booth D., Haas H., and Brown A. Web Services Glossary. Technical report, World
Wide Web Consortium (W3C), 2004. http://www.w3.org/TR/ws-gloss/.

2. OASIS. Business Transaction Protocol. http://www.oasis-open.org/committees/
download.php/1184/20020603.BTP cttee spec 1.0.pdf, 2002.

3. Cabrera L. F., Copeland G., Freund T., Klein J., Langworthy D., Leymann F.,
Orchard D., Robinson I., Storey T., and Thatte S. Web Services Business Activity
Framework (WS-BusinessActivity). http://eu-datagrid.web.cern.ch/eu-datagrid/.

4. Curbera F., Goland Y., Klein J., Leymann F., Roller D., Thatte S., and Weer-
awarana S. Business Process Execution Language for Web Services (BPEL4WS
1.0). Technical report.

5. R. Davis and R. G. Smith. Negotiation as a Metaphor for Distributed Problem
Solving. In Readings in Distributed Artificial Intelligence, pages 333–356. Morgan
Kaufmann Publishers Inc., 1988.

6. S. Kraus. Strategic Negotiation in Multi-Agent Environments. MIT Press, Cam-
bridge, MA, 2000.

7. B. Laasri, H. Laasri, S. Lander, and V. Lesser. A Generic Model for Intelligent
Negotiating Agents. International Journal on Intelligent Cooperative Information
Systems, 1(2):291–317, January 1992.

8. N. Maudet. Negotiating dialogue games. Journal of autonoumous agents and
multi-agent systems, 7(2):229–233, November 2003.

9. S. Kraus, J. Wilkenfeld, and G. Zlotkin. Multiagent negotiation under time con-
straints. Artificial Intelligence, 75(2):297–345, 1995.

10. R. G. Smith. The Contract Net Protocol: High-Level Communication and Control
in a Distributed Problem Solver. In Readings in Distributed Artificial Intelligence,
pages 357–366. Morgan Kaufmann Publishers Inc., 1988.

11. Hung C. K., Li H., and Jeng J. WS-Negotiation: An overview of research issues.
In Proceedings of the 37th Hawaii International Conference on System Sciences
(HICSS’04). IEEE Computer, 2004.

12. Global Grid Forum. http://www.ggf.org/.
13. Andrieux A., Czajkowski K., Dan A., Keahey K., Ludwig H., Pruyne J.,

Rofrano J., Tuecke S., and Xu M. Web Services Agreement Specification
(WS-Agreement). https://forge.gridforum.org/projects/graap-wg/document/WS-
AgreementSpecification/en/6.

14. Klein M. and Bernstein A. Searching for Services on the Semantic Web Using
Process Ontologies. In Isabel Cruz, Stefan Decker, Jerome Euzenat, and Deborah
McGuinness, editors, The Emerging Semantic Web - Selected papers from the first
Semantic Web Working Symposium, pages 159–172. IOS press, Amsterdam, 2002.

Transactional Aspects in Semantic Based Discovery of Services 297

15. Bechhofer S., Harmelen F., Hendler J., Horrocks D., McGuinnes I., Patel-Schneider
P., and Stein L.A. OWL Web ontology language reference. Technical report, W3C,
2004.

16. OWL-S 1.0 rel. 1.0. http://www.daml.org/services/owl-s/1.0/.
17. The DARPA Agent Markup Language. http://www.daml.org.
18. Booth D., Haas H., McCabe F., Newcomer E., Champion M., Ferris C., and Or-

chard D. Web Service Architecture. Technical report, World Wide Web Consor-
tium (W3C), 2004. http://www.w3.org/TR/ws-arch/.

19. Foster I., Kesselman C., and Tuecke S. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of Supercomputer Applications, 15(3),
2001.

20. Bocchi L., Ciancarini P., Moretti R., Presutti V., and Rossi D. An OWL-S Based
Approach to Express Grid Services Coordination. In Proceedings of the 2005 ACM
Symposium on Applied Computing (SAC 2005). ACM, 2005. To appear.

21. UDDI. http://www.uddi.org.
22. Bocchi L., Laneve C., and Zavattaro G. A calculus for long running transactions.

In Elie Najm, Uwe Nestmann, and Perdita Stevens, editors, Proceedings of the 6th
IFIP WG 6.1 International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS 2003), volume 2884 of Lecture Notes in Computer
Science, pages 124–138. Springer, 2003.

23. Bruni R., Melgratti H., and Montanari U. Nested commits for mobile calculi:
extending join. In Proceedings of 3rd IFIP International Conference on Theoretical
Computer Science: Exploring New Frontiers of Theoretical Informatics (IFIP TCS
2004), pages 563–576, 2004.

24. Laneve C. and Zavattaro G. Foundations of Web Transactions. In Proceedings of
Foundations of Software Science and Computation Structures (FOSSACS 2005),
Lecture Notes in Computer Science, 2005. To appear.

25. Milner R. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, 1989.

26. Bocchi L. Compositional Nested Long Running Transactions. In Michel Wer-
melinger and Tiziana Margaria, editors, Proceedings of the 7th International Con-
ference on Fundamental Approaches to Software Engineering (FASE 2004), volume
2984 of Lecture Notes in Computer Science, pages 195–208. Springer, 2004.

27. Gray J. The Transaction Concept: Virtues and Limitations. In Proceedings of Very
Large Data Bases, pages 179–201, 1981.

28. Garcia-Molina H. and Salem K. Sagas. In Proceedings of the 1987 ACM SIGMOD
international conference on Management of data, pages 249–259. ACM Press, 1987.

29. Garcia-Molina H., Gawlick D., Klein J., Kleissner K., and Salem K. Modeling
Long-Running Activities as Nested Sagas. Data Eng., 14(1):14–18, 1991.

30. Berger M. and Honda K. The Two-Phase Commitment Protocol in an Extended Pi-
calculus. Electronic Notes in Theoretical Computer Science, 39(1):105–130, 2003.

31. Le Fessant F. and Maranget L. Compiling Join-Patterns. In Proceedings of High-
Level Concurrent Languages (HLCL ’98), volume 16 of Electronic Notes in Theo-
retical Computer Science. Elsevier Science Publishers.

Author Index

Arbab, Farhad 236

Baier, Christel 236
Bernardo, Marco 188
Bocchi, Laura 283
Bontà, Edoardo 188
Bradford, Lindsay 140
Busi, Nadia 204

Chaudron, Michel 109
Ciancarini, Paolo 283
Colman, Alan 63
Cortesi, Agostino 49

de Boer, Frank 236
De Nicola, Rocco 33, 157
de Vink, Erik 94
Dumas, Marlon 140

Ferrari, Gianluigi 33

Gorla, Daniele 157
Govoni, Sergio 1
Groenewegen, Luuk 94

Han, Jun 63
Hicks, Michael 252
Hirschkoff, Daniel 17

Jacob, Jeremy L. 79

Lanese, Ivan 220
Logozzo, Francesco 49

Mazzara, Manuel 1
Milliner, Stephen 140
Montanari, Ugo 33

Omicini, Andrea 268
Oriol, Manuel 252

Park, Taesoon 173
Pous, Damien 17
Pugliese, Rosario 33, 157

Ray, Arnab 125
Ricci, Alessandro 268
Rossi, Davide 283
Russello, Giovanni 109
Rutten, Jan 236

Sangiorgi, Davide 17
Sirjani, Marjan 236

Tuosto, Emilio 33, 220

Udzir, Nur Izura 79

van Kampenhout, Niels 94
van Steen, Maarten 109
Viroli, Mirko 268

Wood, Alan M. 79

Zavattaro, Gianluigi 204

	Frontmatter
	A Case Study of Web Services Orchestration
	A Correct Abstract Machine for Safe Ambients
	A Process Calculus for QoS-Aware Applications
	Abstract Interpretation-Based Verification of Non-functional Requirements
	Coordination Systems in Role-Based Adaptive Software
	Coordination with Multicapabilities
	Delegation Modeling with Paradigm
	Dynamically Adapting Tuple Replication for Managing Availability in a Shared Data Space
	Enforcing Distributed Information Flow Policies Architecturally: The SAID Approach
	Experience Using a Coordination-Based Architecture for Adaptive Web Content Provision
	Global Computing in a Dynamic Network of Tuple Spaces
	Mobile Agent Based Fault-Tolerance Support for the Reliable Mobile Computing Systems
	Preserving Architectural Properties in Multithreaded Code Generation
	Prioritized and Parallel Reactions in Shared Data Space Coordination Languages
	Synchronized Hyperedge Replacement for Heterogeneous Systems
	Synthesis of Reo Circuits for Implementation of Component-Connector Automata Specifications
	Tagged Sets: A Secure and Transparent Coordination Medium
	Time-Aware Coordination in {\sf ReSpecT}
	Transactional Aspects in Semantic Based Discovery of Services
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

