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Preface

This volume contains the proceedings of the 16th International Conference on
Rewriting Techniques and Applications (RTA 2005), which was held on April 19–
21, 2005, at the Nara-Ken New Public Hall in the center of the Nara National
Park in Nara, Japan.

RTA is the major forum for the presentation of research on all aspects of
rewriting. Previous RTA conferences were held in Dijon (1985), Bordeaux (1987),
Chapel Hill (1989), Como (1991), Montreal (1993), Kaiserslautern (1995),
Rutgers (1996), Sitges (1997), Tsukuba (1998), Trento (1999), Norwich (2000),
Utrecht (2001), Copenhagen (2002), Valencia (2003), and Aachen (2004).

This year, there were 79 submissions from 20 countries, of which 31 papers
were accepted for publication (29 regular papers and 2 system descriptions).
The submissions came from France (10 accepted papers of the 23.1 submitted
papers), USA (5.6 of 11.7), Japan (4 of 9), Spain (2.7 of 6.5), UK (2.7 of 4.7),
The Netherlands (1.7 of 3.8), Germany (1.3 of 2.3), Austria (1 of 1), Poland
(1 of 1), Israel (0.5 of 0.8), Denmark (0.5 of 0.5), China (0 of 4), Korea (0 of 4),
Taiwan (0 of 1.3), Australia (0 of 1), Brazil (0 of 1), Russia (0 of 1), Switzerland
(0 of 1), Sweden (0 of 1), and Italy (0 of 0.3).

Each submission was assigned to at least three Program Committee mem-
bers, who carefully reviewed the papers, with the help of 111 external referees.
Afterwards, the submissions were discussed by the Program Committee during
one week through the Internet by means of Andrei Voronkov’s EasyChair sys-
tem. I want to thank Andrei very much for providing his system which was very
helpful for the management of the submissions and reviews and for the discussion
of the Program Committee.

The Program Committee decided to award a prize of 100,000 Yen for the
best paper to the article Extending the Explicit Substitution Paradigm by Delia
Kesner and Stéphane Lengrand. Moreover, student travel grants were awarded
to Jérôme Rocheteau (author of the paper λμ-Calculus and Duality: Call-by-
Name and Call-by-Value) and Wojciech Moczyd�lowski (co-author of the paper
Termination of Single-Threaded One-Rule Semi-Thue Systems).

RTA 2005 had three invited talks, by Yoshihito Toyama (Confluent Term
Rewriting Systems), Philip Wadler (Call-by-Value is Dual to Call-by-Name –
Reloaded), and Amy Felty (A Tutorial Example of the Semantic Approach to
Foundational Proof-Carrying Code). The talk by Amy Felty was a joint invited
talk of RTA and the collocating 7th International Conference on Typed Lambda
Calculi and Applications (TLCA 2005).

Since RTA 2005 marked the 20th anniversary of RTA, this anniversary was
celebrated with a special session of invited talks on the history and future of
RTA and rewriting. For this session, we invited Gérard Huet (Before RTA: Early
Days in Rewriting Research), Jean-Pierre Jouannaud (Twenty Years Later), and
Nachum Dershowitz (Open. Closed. Open.). I want to thank both the invited
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speakers of RTA and of the anniversary session for their interesting and inspiring
talks.

RTA 2005 was held as part of the Federated Conference on Rewriting, De-
duction, and Programming (RDP), together with the following events. I wish
to thank the organizers of these events for making the conference even more
attractive:

– 7th International Conference on Typed Lambda Calculi and Applications,
TLCA 2005 (Program Chair: Pawe�l Urzyczyn, Conference Chair: Masahito
Hasegawa)

– 6th International Workshop on Rule-Based Programming, RULE 2005
(Horatiu Cirstea, Narciso Mart́ı-Oliet)

– 19th International Workshop on Unification, UNIF 2005 (Laurent Vigneron)
– 5th International Workshop on Reduction Strategies in Rewriting and Pro-

gramming, WRS 2005 (Roberto Di Cosmo, Yoshihito Toyama)
– IFIP Working Group 1.6 on Term Rewriting (Claude Kirchner)

Many people helped to make RTA 2005 a success. In particular, I want to
thank Hitoshi Ohsaki, the conference chair of RTA 2005, and the other members
of the Organizing Committee, who organized the conference in a very careful
and completely perfect way. I am also very grateful to the members of the Pro-
gram Committee, to the external reviewers, to the former and current publicity
chairs of RTA (Femke van Raamsdonk and Ralf Treinen), to the sponsors of the
conference, and to René Thiemann and Peter Schneider-Kamp for helping with
many technical problems.

February 2005 Jürgen Giesl
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Jérôme Rocheteau

Reduction in a Linear Lambda-Calculus
with Applications to Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Alex Simpson

Higher-Order Matching in the Linear Lambda Calculus
in the Absence of Constants Is NP-Complete . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Ryo Yoshinaka

Localized Fairness: A Rewriting Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
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Intruder Deduction for AC-Like Equational Theories
with Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Pascal Lafourcade, Denis Lugiez, and Ralf Treinen

Proving Positive Almost-Sure Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Olivier Bournez and Florent Garnier

Termination of Single-Threaded One-Rule Semi-Thue Systems . . . . . . . . . . . 338
Wojciech Moczyd�lowski and Alfons Geser

On Tree Automata that Certify Termination
of Left-Linear Term Rewriting Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Alfons Geser, Dieter Hofbauer, Johannes Waldmann,
and Hans Zantema

Twenty Years Later . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Jean-Pierre Jouannaud

Open. Closed. Open. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Nachum Dershowitz

A Tutorial Example of the Semantic Approach
to Foundational Proof-Carrying Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Amy P. Felty



Table of Contents XIII

Extending the Explicit Substitution Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . 407
Delia Kesner and Stéphane Lengrand
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Confluent Term Rewriting Systems

Yoshihito Toyama

RIEC, Tohoku University,
Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan

toyama@nue.riec.tohoku.ac.jp

Abstract. The confluence property is one of the most important prop-
erties of term rewriting systems, and various sufficient criteria for proving
this property have been widely investigated. A necessary and sufficient
criterion for confluence of terminating term rewriting systems, in which
every reduction must terminate, was demonstrated by Knuth and Bendix
(1970). For non-terminating term rewriting systems, Rosen (1973) proved
that left-linear and non-overlapping term rewriting systems (i.e., no vari-
able occurs twice or more in the left-hand side of a rewriting rule and two
left-hand sides of rewriting rules must not overlap) are confluent, and
the non-overlapping limitation was somewhat relaxed by Huet (1980),
Toyama (1988), and van Oostrom (1997). However, few criteria have
been proposed for confluence of term rewriting systems that are non-
left-linear and non-terminating. Thus, it is still worth while extending
criteria for these systems.
A powerful technique for showing confluence of a non-left-linear non-
terminating term rewriting system is a divide-and-conquer method based
on modularity by Toyama (1987) or persistency by Zantema (1994), Aoto
and Toyama (1997). The method guarantees that if the system is de-
composed into small subsystems and each of them is confluent then this
system has the confluence property. Another useful technique is a trans-
formational method based on conditional-linearization by Klop and de
Vrijer (1991), Toyama and Oyamaguchi (1994), or a labelling technique.
In this method we apply a non-confluence preserving transformation on
a term rewriting system. Then the term rewriting system is confluent
if the transformed system is confluent, because of non-confluence pre-
serving. In this talk we will illustrate these techniques through various
examples and discuss the relation among them.

J. Giesl (Ed.): RTA 2005, LNCS 3467, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Generalized Innermost Rewriting

Jaco van de Pol1,2 and Hans Zantema2

1 Department of Software Engineering, CWI, P.O. Box 94.079,
1090 GB Amsterdam, The Netherlands

Jaco.van.de.Pol@cwi.nl
2 Department of Computer Science, TU Eindhoven, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
H.Zantema@tue.nl

Abstract. We propose two generalizations of innermost rewriting for
which we prove that termination of innermost rewriting is equivalent
to termination of generalized innermost rewriting. As a consequence,
by rewriting in an arbitrary TRS certain non-innermost steps may be
allowed by which the termination behavior and efficiency is often much
better, but never worse than by only doing innermost rewriting.

1 Introduction

In term rewriting one can rewrite according various reduction strategies, for
instance innermost or outermost. It may occur that by one strategy a normal
form is reached while rewriting according another strategy may go on forever.
For instance, innermost rewriting of f(a) by the TRS consisting of the two rules
a → b, f(a) → f(a) yields a normal form in one step while outermost rewrit-
ing goes on forever. By the TRS consisting of the two rules a → a, f(x) → b
the behavior of f(a) is opposite: now innermost rewriting goes on forever while
outermost rewriting yields a normal form in one step. We say that a particular
strategy is not worse than another strategy if for every term for which the lat-
ter yields a normal form, the same holds for the former. The above examples
show that innermost and outermost are incomparable. For orthogonal TRSs it
is known that no strategy is worse than innermost ([8]); later it was proved that
the same result holds more generally for non-overlapping TRSs ([5]). In prac-
tice, many implementations use innermost rewriting since it is easy to implement
and often efficient. On the other hand, for implementing lazy evaluation for func-
tional programming it is essential to do non-innermost rewriting since otherwise
computations will not terminate. The main idea of lazy rewriting ([3]) is that
doing a computation is postponed until the result is required for continuation.

In this paper we consider strategies for arbitrary TRSs allowing overlaps
and even non-confluence, as often occurs in applications in theorem proving. For
instance, the natural rules to obtain conjunctive normal forms are not confluent.
We present two generalizations of innermost rewriting that are always provably
not worse than innermost, and allow non-innermost steps as they are preferred
in lazy rewriting. In the usual definition of innermost rewriting it is required that
all proper subterms of a redex are in normal form; in our definition of generalized
innermost rewriting we require this only for particular proper subterms.

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 2–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Generalized Innermost Rewriting 3

As an example, consider the following TRS for computation of factorials:

fac(x) → if(eq(x, 0), succ(0), x ∗ fac(pred(x)))
if(true, x, y) → x
if(false, x, y) → y

completed by standard rules for eq, pred and ∗. Now fac(succn(0)) is not weakly
innermost normalizing, for any n ≥ 0, but it is weakly generalized innermost
normalizing. Moreover, straightforward implementations of generalized inner-
most rewriting easily find the corresponding normal form.

In case of constructor systems that are either right-linear or non-root-overlap-
ping, our generalization corresponds to arbitrary rewriting. But our results also
apply for TRSs not being constructor systems or having overlaps. For instance,
in the above example we may have rules like (x ∗ y) ∗ z → x ∗ (y ∗ z).

Apart from only considering whether a reduction will terminate or not, also
lengths of reductions to normal form may be considered. Then it is natural for
calling one strategy not worse than another strategy to require additionally that
if both strategies yield a normal form then the former strategy does not take
more steps. For this extra requirement it is obvious that duplicating rules should
be avoided. By doing so we prove that indeed this stronger result of being not
worse than innermost is obtained for generalized innermost rewriting.

Many implementations of rewriting including OBJ ([4, 7]) make use of similar
modifications of the innermost strategy to achieve better termination behavior
or efficiency. The basis of our work was in [10, 11], where JITty strategy anno-
tations and a corresponding implementation was proposed to postpone compu-
tation steps in a slightly more general way than eager annotations in OBJ. All
these implementations are essentially deterministic and apply particular cases of
generalized innermost rewriting, while often non-innermost steps are done. Typ-
ically, the termination behavior and efficiency of these implementations is much
better, but by our results never worse than by only doing innermost rewriting.

The outline of the paper is as follows. After recalling some standard notation
in Section 2, we introduce our basic generalization of innermost rewriting in
Section 3. Unfortunately, some further restrictions have to be given in order to
have the desired properties, as we show by an example. This is done in two
ways. In Section 4 this is done by avoiding duplication, by which also results
are obtained involving the number of rewrite steps. In Section 5 this is done
by avoiding root overlaps and applying priority of rules. In particular an open
problem from [10] is solved.

2 Basic Notation

As usual, for binary relations →,→′ on a set T we define relation composition
by → · →′ := {(t, t′) | ∃t′′ : t → t′′ ∧ t′′ →′ t′ }. With →n we denote
the n-fold relation composition, and →+ and →∗ denote the transitive, and the
transitive reflexive closure of →, respectively. Finally, ← denotes the inverse of
→. Using these notations many properties can be expressed shortly, for instance,
local confluence of → is expressed by ← · → ⊆ →∗ · ←∗.
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An object t is in normal form in →, if no s exists satisfying t → s. The
set NF(→) denotes the set of all →-normal forms. An object t ∈ T is weakly
normalizing in →, denoted by WN(t,→), if there exists a reduction t→∗ s and
s ∈ NF(→). An object t ∈ T is terminating in →, denoted by SN(t,→), if there
is no infinite →-reduction sequence starting in t.

In the sequel, we consider a fixed set of function symbols and a fixed set
of variables V , from which terms are built as usual. By arity(f) we denote the
number of arguments expected by f . The set of variables occurring in a term
t is denoted by Var(t); we will use LinVar(t) to denote the set of variables that
occur exactly once in t. A substitution is a mapping from variables to terms,
and application of substitution σ to a term t is denoted by tσ, or by tσ when σ
is complex expression.

A position is defined to be a list of positive integers, as in [1]; ε denotes the
empty list, corresponding to the root position. The set of valid positions in a
term t is denoted by Pos(t); the subterm at position p in a term t is denoted by
t|p; its root symbol is denoted by (t)p. Replacing the subterm at position p in C
by s is denoted by C[s]p, or simply C[s], where C[] is called the context. Two
positions that are not comparable in the prefix order are called disjoint.

We consider rewriting w.r.t. a fixed TRS, consisting of a set of rules of the
form �→ r, such that � 
∈ V and Var(r) ⊆ Var(�). Rules �1 → r1 and �2 → r2 are
root overlapping if for some σ and τ , �1σ = �2τ .

Let Def denote the set of defined symbols, that is, symbols that occur as the
root symbol of the left hand side of a rule. A TRS is called a constructor system if
for all left hand sides � the root symbol is the only occurrence of a symbol in Def.

3 Generalized Innermost Rewriting

Recall that we consider a fixed TRS.

Definition 1. A term t rewrites to a term u, written t→ u, if

– t = C[�σ] and u = C[rσ] for a rule �→ r, context C and substitution σ.

The subterm �σ of t is called the corresponding redex. In the sequel, the set NF
always denotes the set of normal forms NF(→).

Definition 2. A term t rewrites innermost to a term u, notation t→i u, if

– t = C[�σ] and u = C[rσ] for a rule �→ r, context C and substitution σ; and
– �σ|p ∈ NF for all p ∈ Pos(�) \ {ε}.

It is easy to see that this corresponds to the usual notion of innermost rewrit-
ing. It is also easy to see that NF(→i) = NF(→). We now introduce a generaliza-
tion of innermost rewriting in which the second condition is slightly weakened.

Definition 3. A term t rewrites generalized innermost to a term u, notation
t→g u, if

– t = C[�σ] and u = C[rσ] for a rule �→ r, context C and substitution σ; and
– �σ|p ∈ NF, for all p ∈ Pos(�) \ {ε}, such that (�)p ∈ Def.
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Clearly, →i ⊆ →g ⊆ →, hence NF(→g) = NF(→). Note that for constructor
systems, →g = →, i.e. generalized innermost rewriting corresponds to general
rewriting.

We hope that generalized innermost rewriting has better normalization prop-
erties than innermost rewriting. This means first of all that if a term t is →i-
terminating, then it should be →g-terminating. However, this is not always the
case, as is witnessed by the following example inspired by [9]:

Example 4. Consider the TRS consisting of the three rules

f(a, b, x)→ f(x, x, x), c→ a, c→ b

→i is terminating on f(a, b, c), while →g is not terminating on f(a, b, c).

We see in this example that redexes can be copied by the first rule, and that
the copies can behave differently, because the last rules are root-overlapping.
Both ingredients are essential for this counter example. In Section 4, we restrict
the generalized innermost strategy to avoid duplication of redexes. In Section 5
we restrict the generalized innermost strategy to avoid root-overlaps by assum-
ing a priority on the rules. In both cases we prove that innermost termination
coincides with termination of the restricted generalized innermost reduction re-
lation. The proofs of these results are quite different, and the sections can be
read independently.

Moreover, if redex duplication is avoided, the number of generalized inner-
most steps is bounded by the number of innermost steps. In case the TRS is non-
root-overlapping, we prove equivalence of →i-termination and →g-termination.
The latter section also solves an open problem in [10].

4 Avoiding Duplication

In case one wants short reductions to normal form it is clear that duplicating
rules should be avoided. For instance, in rewriting the term f(a) by the TRS
consisting of the two rules f(x) → g(x, x), a → b we prefer innermost reduction
since otherwise a will be duplicated before it is rewritten, requiring one more
rewrite step afterward. Therefore we now adjust our definition of generalized
innermost rewriting to a non-duplicating variant as follows.

Definition 5. A term t rewrites non-dup-generalized innermost to a term u,
notation t→ndg u, if

– t = C[�σ] and u = C[rσ] for a rule �→ r, context C and substitution σ; and
– �σ|p ∈ NF for all p ∈ Pos(�) \ {ε} for which either

• (�)p ∈ Def, or
• (�)p is a variable occurring more than once in r.

Clearly, →i ⊆ →ndg ⊆ →g ⊆ →, hence NF(→ndg) = NF(→). Compared to
generalized innermost rewriting the extra condition is that subterms on variable
positions with multiple occurrences in r should be in normal form. One can
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argue this is more related to non-right-linearity than to duplication, but since
the intension is to avoid duplicating steps we chose to call this ’non-dup’. The
desired theorem (Theorem 9) does not hold if we weaken the extra condition to
non-duplication in the sense that the variable occurs not more often in r than
in �: in the TRS

f(x, x) → g(x, x), a→ b, a→ c, g(b, c)→ g(b, c)

the term f(a, a) is innermost terminating while it admits an infinite generalized
innermost reduction.

Note that non-dup-generalized innermost rewriting applies to all TRSs, the
only extra restriction is that a subterm in a particular position in a redex should
be in normal form. For non-dup-generalized innermost rewriting we will show
that it is not worse than innermost without any restriction on the order of the
rules, and moreover, the lengths of reductions to normal form by this strategy
are not worse than by the innermost strategy. First we need some lemmas.

Lemma 6. Let t′ be an innermost redex of t = C[t′], and t→n
i u for some term

u and n ≥ 0. Then either

– u = C′[t′] for some context C′ and C[t′′]→n
i C′[t′′] for any term t′′, or

– there exists v such that t′ →i v and C[t′]→i C[v]→n−1
i u.

Proof. Induction on n. For n = 0 we choose C′ = C and we are in the first case.
If n > 0 and t′ is rewritten in the first step then we are in the second case. In
the remaining case another redex is rewritten in the first step of t →n

i u, say
t1 rewriting to t2. Assume t′ is left from t1 in t; if it is right the argument is
similar. So we have

t = D[t′, t1] →i D[t′, t2] →n−1
i u.

We apply the induction hypothesis to D[t′, t2] →n−1
i u. If the first case holds

then we obtain u = C′[t′] and D[t′′, t2] →n−1
i C′[t′′], hence C[t′′] = D[t′′, t1] →i

D[t′′, t2] →n−1
i C′[t′′], and we are in the first case. If the second case holds for

D[t′, t2]→n−1
i u then we have v satisfying t′ →i v and D[t′, t2] →i D[v, t2]→n−2

i

u, yielding C[t′] = D[t′, t1] →i D[v, t1] →i D[v, t2] →n−2
i u by which we

are in the second case, concluding the proof. ��

Lemma 7. Let t→ndg u→n
i w for terms t, u, w and n ≥ 0, and t 
→i u. Then

t→+
i · →ndg · →k

i · ←m
i w

for some k ≥ n− 1 and m being either 0 or 1.

Proof. Write t = C[�σ] and u = C[rσ] for a rule � → r and a substitution σ,
satisfying �σ →ndg rσ and �σ 
→i rσ. Hence �σ admits a non-root reduction step,
say on position q 
= ε. If q ∈ Pos(�) and �|q is not a variable then �|q ∈ Def since
�σ admits a reduction step on position q, but then �σ|q ∈ NF by the definition
of →ndg, contradiction. Hence either �|q is a variable or q 
∈ Pos(�). In the latter
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case there is a position p ∈ Pos(�) such that �|p is a variable and �σ|p admits
a reduction step. So in both cases we have such a variable x = �|p for which
xσ 
∈ NF. Since �σ →ndg rσ and xσ 
∈ NF we conclude that x occurs at most
once in r. Write � = C[x, . . . , x] where x does not occur in C. Choose u′ such
that xσ →i u

′. Define τ by xτ = u′ and yτ = yσ for y 
= x. Then

t = C[�σ] = C[C[xσ, . . . , xσ]] →+
i C[C[u′, . . . , u′]] = C[�τ ]→ndg C[rτ ].

In case x does not occur in r we have C[rτ ] = C[rσ] = u and we are done,
choosing m = 0, k = n.

In the remaining case x occurs exactly once in r, so r = D[x] where x does
not occur in D. Let t′ be the redex corresponding to xσ →i u

′, so xσ = E[t′]→i

E[t′′] = u′ for some context E and some term t′′. Now we apply Lemma 6 to
u = C[rσ] = C[Dσ[E[t′]]]→n

i w, yielding two cases.
In the first case we obtain C′ satisfying w = C′[t′] and Dσ[E[t′′]] →n

i C′[t′′].
Now we obtain k = n and m = 1 in w = C′[t′]→i C

′[t′′] and

C[rτ ] = C[Dσ[xτ ]] = C[Dσ[u′]] = C[Dσ[E[t′′]]→n
i C′[t′′]

and we are done.
In the remaining second case of applying Lemma 6 we obtain a term v sat-

isfying t′ →i v and u = C[Dσ[E[t′]]]→i C[Dσ[E[v]]] →n−1
i w. Note that it may

be the case that v 
= t′′. Define ρ by xρ = E[v] and yρ = yσ for y 
= x. Then

t = C[�σ] →+
i C[�ρ]→ndg C[rρ] = C[Dρ[xρ]] = C[Dσ[E[v]]] →n−1

i w,

by which we are done choosing m = 0, k = n− 1. ��

Lemma 7 is the key lemma for our Theorems 9 and 12; the rest of the proofs
of these theorems and corresponding lemmas hold for arbitrary finitely branching
ARSs →i and →ndg satisfying the property of Lemma 7.

Lemma 8. Let t be a term and n ≥ 0. Assume t→n
ndg u for some term u. Then

there is a term v satisfying t→n
i v.

Proof. Induction on n. For n = 0 it is trivial, for n > 0 assume t→ndg t′ →n−1
ndg u.

Applying the induction hypothesis on t′ →n−1
ndg u yields a term u′ satisfying

t′ →n−1
i u′. If t→i t

′ we are done; in the remaining case we apply Lemma 7 on
t →ndg t′ →n−1

i u′ yielding t →+
i t′′ →ndg · →k

i u′′ for some u′′ and k ≥ n − 2.
For n = 1 we are done. For n > 1 we apply the induction hypothesis on the first
n− 1 steps of t′′ →ndg · →k

i u′′, note that all →i steps are →ndg steps too. This
yields a term v′ satisfying t→+

i t′′ →n−1
i v′; now we can choose v to be the term

obtained after n steps in this reduction. ��

Theorem 9. Let the given TRS be finite, and let t be a term. Then →i is
terminating on t if and only if →ndg is terminating on t.
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Proof. The ‘if’-part trivially holds since every →i step is a →ndg step. For the
‘only if’-part assume t admits an infinite→ndg-reduction while→i is terminating
on t. So the reduction graph of t with respect to →i does not contain infinite
paths. Since the TRS is finite, this graph is finitely branching. Hence by König’s
lemma this graph is finite and acyclic. Hence a number N exists such that all
→i reductions of t have length ≤ N . Since t admits an infinite →ndg-reduction
there is a term u satisfying t→N+1

ndg u, contradicting Lemma 8. ��

Theorem 9 does not hold if→ndg is replaced by→g, as witnessed by the TRS
of Example 4. Hence the restriction in the definition of →ndg that �σ|p ∈ NF if
�|p is a variable occurring more than once in r, is essential for Theorem 9.

Next we consider lengths of reductions: we will show that if t reduces by
→ndg in n steps to a normal form, then t admits either an infinite innermost
reduction or an innermost reduction of at least n steps to the same normal form.

Lemma 10. Let t, w be terms, let→i be terminating on t and let t→ndg · →n
i w

for n ≥ 0. Then t→n′
i · ←∗

i w for some n′ > n.

Proof. We apply induction on →i, i.e., in proving that t →ndg · →n
i w implies

t →n′
i · ←∗

i w we assume the induction hypothesis that a similar property
replacing t by t′ holds for all n and all t′ satisfying t →+

i t′. So assume t →ndg

u →n
i w. If t →i u we are done, otherwise we apply Lemma 7 yielding t′, t′′

satisfying t →+
i t′ →ndg · →k

i t′′ ←∗
i w for k ≥ n − 1. Now applying the

induction hypothesis on t′ →ndg · →k
i t′′ yields t →+

i t′ →k′
i · ←∗

i t′′ ←∗
i w for

k′ > k. Since 1 + k′ > k + 1 ≥ n we are done. ��

Lemma 11. Let→ndg be terminating on a term t and t→n
ndg v for some n ≥ 0.

Then t→k
i · ←∗

i v for some k ≥ n.

Proof. Induction on n. For n = 0 it is trivial, for n > 0 assume t→ndg u→n−1
ndg v.

Observe that →ndg is terminating on u. Applying the induction hypothesis on
u →n−1

ndg v yields k′ ≥ n − 1 and w satisfying u →k′
i w and v →∗

i w. Applying
Lemma 10 on t→ndg u→k′

i w yields t→k
i · ←∗

i w for k > k′. Since v →∗
i w and

k ≥ k′ + 1 ≥ n we are done. ��

Theorem 12. Let the given TRS be finite, let t be a term and let u be a normal
form such that t →n

ndg u. Then either t admits an infinite →i-reduction, or
t→k

i u for k ≥ n.

Proof. Assume t does not admit an infinite →i-reduction. Then →i terminates
on t, and by Theorem 9 also →ndg terminates on t. Then by Lemma 11 we have
t→k

i · ←∗
i u for some k ≥ n. Since u is a normal form we have t→k

i u. ��

Hence a →ndg-reduction to normal form is never worse (counted in number
of steps) than an innermost reduction to the same normal form.

Theorem 12 does not hold if →ndg is replaced by →g: in the TRS consisting
of the two rules

f(x) → g(x, x), a→ b,
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the term f(a) admits a three step →g-reduction

f(a)→g g(a, a)→g g(b, a)→g g(b, b),

while the only innermost reduction f(a) →i f(b) →i g(b, b) of f(a) contains
only two steps. Clearly for obtaining short reduction sequences in duplicating
positions in left hand sides the argument first should be in normal form, as is
required by the restriction in the definition of →ndg that �σ|p ∈ NF if �|p is a
variable occurring more than once in r.

On can wonder whether the finiteness condition in Theorems 9 and 12 are
essential. It is claimed by Vincent van Oostrom that it is not. However, for
proving so a different approach will be required: the abstract reduction property
described in Lemma 7 is not sufficient to conclude the properties claimed in
Theorems 9 and 12 in case of infinite branching. For instance, by defining the
abstract reduction systems on natural numbers

→i = {(0, n) | n > 0} ∪ {(n + 1, n) | n > 0}, →ndg = →i ∪{(0, 0)}

the property described in Lemma 7 holds but the properties claimed in Theorems
9 and 12 do not. This example is due to Vincent van Oostrom.

5 Avoiding Root Overlaps

In this section we will deal with the case that top rewrite steps are deterministic.
This holds if the TRS is non-root-overlapping. For general TRSs this can be
forced by fixing a priority on the rules. In this case, we can show that generalized
innermost reduction steps commute in a proper way with parallel innermost
reduction steps. We will first identify the required commutation diagram in an
abstract setting (Lemma 13).

In many cases, the non-root overlapping criterion is too restrictive. In order
to apply our theory to any TRS, we will assume that overlapping rules will be
applied in a fixed order. For implementations, this is a natural restriction. This
idea is implemented by a partial order on the rules, following priority rewrite
systems [2]. For a fixed TRS, any partial order gives a particular strategy →g>

(Definition 15). Finally, we show that the commutation diagram holds for these
strategies (Lemma 20). As a conclusion, we obtain that if innermost rewriting
is terminating, then generalized innermost rewriting with ordered rules is termi-
nating, Theorem 21.

The following lemma holds for all ARSs. One can think of → and �→ as
innermost rewriting and parallel innermost rewriting, respectively, and ⇒ as
an extension of it, such as generalized innermost rewriting. Later we will use
another instance.

Lemma 13. Let binary relations ⇒, → and �→n (n ≥ 0) be given. We write �→
for

⋃
n≥0 �→n. Assume → ⊆⇒, → ⊆ �→ and �←n · ⇒ ⊆ (→∗ · ⇒ · �←)∪ �←n−1.

1. Assume that x �→ y and SN(y,⇒). Then SN(x,⇒).
2. Assume that WN(x,→), and for all y, if y ∈ NF(→) then SN(y,⇒). Then

SN(x,⇒).
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Proof. Part 1. Assume SN(y,⇒). Then ⇒+ is well-founded on successors of y.
By induction on y0 (for all y0 with y ⇒∗ y0) ordered by ⇒+, we will prove:
∀n∀x0 : x0 �→n y0 ⇒ SN(x0,⇒). The latter is proved by induction on n (inner
induction). So assume x0 �→n y0. It suffices to prove SN(z,⇒) for all z with
x0 ⇒ z. The main assumption gives two cases. In the first case, y0 →∗ · ⇒ · �← z.
In particular, as → ⊆ ⇒, we find y1, such that y0 ⇒+ y1 and z �→ y1. By the
outer induction hypothesis, SN(z,⇒). In the second case, z �→n−1 y0. Then, by
the inner induction hypothesis, SN(z,⇒).

Part 2. By WN(x,→), we find a reduction x →∗ y, for some y ∈ NF(→).
Hence by using the assumptions, x �→∗ y and SN(y,⇒). By induction on the
length of this reduction sequence and by Part 1, we obtain SN(x,⇒). ��

From now on, we assume a fixed TRS with a partial-order > on rules, such
that at least any two root-overlapping rules are comparable. Note in particular
that for non-root-overlapping systems, taking the empty partial order is allowed.
We now first define innermost rewriting with priority, which in case of overlaps
gives priority to the smallest rule.

Definition 14. A term t rewrites innermost with priority to a term u, notation
t→i> u, if

– t = C[�σ] and u = C[rσ] for a rule �→ r, context C and substitution σ; and
– �σ|p ∈ NF for all p ∈ Pos(�) \ {ε}; and
– there is no rule (�′ → r′) with (�′ → r′) < (� → r) and substitution τ , such

that �′τ = �σ.

Innermost reductions with priority in which C[] is the empty context are called
top innermost reductions, notation t �→i> u.

The first two conditions ensure innermost behavior and the third condition en-
forces the priority restrictions. Next, we define the generalized innermost rewrit-
ing with priority:

Definition 15. A term t rewrites generalized innermost with priority to a term
u, notation t→g> u, if

– t = C[�σ] and u = C[rσ] for a rule �→ r, context C and substitution σ; and
– �σ|p ∈ NF for all p ∈ Pos(�) \ {ε} such that (�)p ∈ Def; and
– there is no rule (�′ → r′) with (�′ → r′) < (� → r) and substitution τ , such

that �′τ = �σ; and
– for all rules (�′ → r′) with (�′ → r′) < (�→ r) with the same top symbol f ,

and for all 1 ≤ i ≤ arity(f) if �σ|i 
∈ NF then �′|i ∈ LinVar(�′).

Top generalized innermost reductions with priority in which C[] is the empty
context are denoted by t �→g> u.

The first two clauses ensure generalized innermost behavior, the third clause
enforces priority restrictions, and the last technical clause ensures that doing
some (innermost) steps doesn’t influence which rule is chosen. (Adding a similar
last clause to the definition of →i> would not give a different relation.)



Generalized Innermost Rewriting 11

Note that→i> ⊆ →g> ⊆ →. Moreover, if > is well-founded, then NF(→i>) =
NF(→g>) = NF(→). Note that for non-root-overlapping systems, by choosing
>= ∅, the last two conditions can be removed. So in this case, →g> =→g.

Top generalized innermost reduction with priority is deterministic in the
following sense:

Lemma 16. Assume that root-overlapping rules are comparable. If t �→g> u and
t �→g> v, then u = v.

Proof. By definition of �→g>, we find rules �1 → r1 and �2 → r2 and substitutions
σ and ρ, such that t = �1σ and t = �2ρ. Then these rules have root-overlap, so
they are comparable. By the third condition of Definition 15, (�1 → r1) 
> (�2 →
r2) and (�2 → r2) 
> (�1 → r2), so �1 = �2 and r1 = r2. So σ and τ coincide on
the variables in �1, so in particular on variables in r1, so u = r1σ = r2τ = v. ��

Note that �→i> ⊆ �→g>, so the lemma also holds when one or both reduction
steps are replaced by �→i>. One can prove that →i> is confluent, because it
satisfies the diamond property, and →g> is weakly confluent, but not confluent,
due to possible non-left-linearity.

We will also need parallel →i>-reduction:

Definition 17. t rewrites to u with n-step parallel innermost reduction with
priority (notation t �→n

i> u) if t = C[t1, . . . , tn] and u = C[t′1, . . . , t′n] and for
each j with 1 ≤ j ≤ n, tj �→i> t′j. With �→i> we denote

⋃
n≥0 �→n

i>.

Note that �→n
i> doesn’t coincide with the n-fold composition of �→i>, as in

( �→i>)n.
Next we need an operation for simultaneous replacement of subterms.

Definition 18. Let t1, . . . , tn, t
′
1, . . . , t

′
n be given, such that tj �→i> t′j (for all

1 ≤ j ≤ n). We define the operation α on terms and extend it to substitutions
as follows:

– for a term t the term α(t) is obtained from t by simultaneously replacing all
occurrences of tj by t′j (for all j);

– α(σ)(x) = α(xσ) for all variables x and all substitutions σ.

Note that this is uniquely defined due to Lemma 16

We use the following facts on α and �→i>:

Lemma 19. Let t1, . . . , tn, t′1, . . . , t
′
n be given, such that tj �→i> t′j (for 1≤j≤n).

1. tσ �→i> tα(σ); in particular, if tσ ∈ NF then tα(σ) = tσ.
2. Assume that for all p ∈ Pos(�) with (�)|p 
∈ V, we have �σ|p 
∈ {t1, . . . , tn}.

Then α(�σ) = �α(σ).

Proof. 1: All tj are innermost redexes, so they occur at disjoint positions.
2: Induction on �. ��
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We now prove the key lemma of this section:

Lemma 20. Assume that any root-overlapping rules in the TRS are comparable
in the partial order >. Then

�←n
i> · →g> ⊆ (→∗

i> · →g> · �←i>)∪ �←n−1
i> .

Proof. Let x �→n
i> y and x →g> z. Then x|p = �σ and z = x[rσ]p for certain

�→ r, σ, and p; and �σ �→g> rσ, so, writing f for the top symbol of �, we have
the conditions of Definition 15:

C2 �σ|q ∈ NF for all q ∈ Pos(�) \ {ε} such that (�)q ∈ Def; and
C3 there is no rule (�′ → r′) with (�′ → r′) < (�→ r) and substitution τ , such

that �′τ = �σ; and
C4 for all rules (�′ → r′) with (�′ → r′) < (�→ r) with the same top symbol f ,

and for all 1 ≤ i ≤ arity(f), either �′|i ∈ LinVar(�′), or �σ|i ∈ NF.

Moreover, we find pairwise disjoint positions p1, . . . ,pn, terms t1, . . . ,tn,t′1, . . . ,t′n,
such that x|pj = tj and tj �→i> t′j , for all 1 ≤ j ≤ n. Note that p cannot be
strictly below any pj, because tj are innermost redexes.

We distinguish cases. Case 1: �σ = tj for some 1 ≤ j ≤ n. By Lemma 16,
rσ = t′j. Now if p = pj , for some 1 ≤ j ≤ n, we can write x as C[t1, . . . , tn], and
prove the lemma as follows:

z = x[rσ]p = C[t1, . . . , t′j , . . . , tn] �→n−1
i> C[t′1, . . . , t

′
n] = y

Otherwise, p is disjoint from all pj , so we can write x as C[lσ, t1, . . . , tn], and
prove the lemma as follows:

y = C[lσ, t′1, . . . , t
′
n]→g> C[rσ , t′1, . . . , t

′
n] �←n

i> C′[rσ , t1, . . . , tn] = z

Case 2: for all j, �σ 
= tj . Then all pj are either disjoint from p, or strictly
below p. Assume (w.l.o.g.) that positions p1, . . . , pk are strictly below p, and
pk+1, . . . , pn are disjoint from p (for some 0 ≤ k ≤ n+1). So we find context C[]
and D[] such that x = C[lσ, tk+1, . . . , tn] and �σ = D[t1, . . . , tk]. We can write
y = C[D[t′1, . . . , t

′
k], t′k+1, . . . , t

′
n] and z = C[rσ , tk+1, . . . , tn]. In order to apply

� → r to y, we first have to reduce any remaining copies of tj in D[t′1, . . . , t
′
k]

(in case � is non-left-linear). This is done by the simultaneous replacement α,
defined in Definition 18 for terms t1, . . . , tk.

Define v := C[α(�σ), t′k+1, . . . , t
′
n]. We next show that α(�σ) is an instance of

�, using Lemma 19.2. So let q ∈ Pos(�), (�)|q 
∈ V , and assume �σ|q = tj (for some
0 ≤ j ≤ k). Then (�σ)q ∈ Def, so (�)q ∈ Def (it is not in V by assumption). Note
that q 
= ε (by assumption of Case 2). Hence, by C2, �σ|q ∈ NF, in contradiction
with tj being an innermost redex. So by Lemma 19.2, we indeed get that α(�σ) =
�α(σ).

So we proved v = C[lα(σ), t′k+1, . . . , t
′
n]. Define w := C[rα(σ), t′k+1, . . . , t

′
n].

Then by Lemma 19.1, �σ �→i> �α(σ) = α(�σ). Then also D[t′1, . . . , t
′
k] �→i> α(�σ)

(this contracts a subset of the redexes from �σ). Then also y �→i> v, as �→i> is
closed under context. Similarly, rσ �→i r

α(σ) by Lemma 19.1, so z �→i w, because
pk+1, . . . , pn are all disjoint from p.
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Finally, we must check that �α(σ) �→g> rα(σ), in order to conclude that v →g>

w. This boils down to checking conditions 2–4 of Definition 15, assuming that
these conditions (called C2–C4) hold for �σ �→g> rσ .

Cond 2) Let q ∈ Pos(�) \ {ε} with (l)q ∈ Def. Then (using equations of
Lemma 19.1, 19.2 and usual commutation of substitutions and positions), we
have �α(σ)|q = α(�σ|q) = �σ|q ∈ NF by C2.

Cond 3) Let (�′ → r′) < (� → r) and τ be given, such that �′τ = lα(σ). We
will construct τ ′, such that �′τ ′ = lσ, contradicting C3, as follows: τ ′(x) := if
x = �′|i ∈ LinVar(�′) for some 0 ≤ i ≤ arity(f), then �|iσ; else τ(x). Then for
each 0 ≤ i ≤ arity(f), by C4, either �′|i ∈ LinVar(�′), so �′|iτ ′ = �|iσ by definition
of τ ′, or �σ|i ∈ NF, so �|iσ = �|α(σ)

i = �′|iτ = �′|iτ ′. This holds for all arguments
i, hence �′τ ′ = lσ, contradicting C3.

Cond 4) Let (�′ → r′) < (� → r). By C4, either �σ|i ∈ NF, hence also
�α(σ)|i = �σ|i ∈ NF, or �′|i ∈ LinVar(�′).

Summarizing, we obtain:

y = C[D[t′1, . . . , t
′
k], t′k+1, . . . , t

′
n]

�→i> v = C[α(lσ), t′k+1, . . . , t
′
n]

= C[lα(σ), t′k+1, . . . , t
′
n]

→g> w = C[rα(σ), t′k+1, . . . , t
′
n]

�←i> z = C[rσ , tk+1, . . . , tn]

which proves the lemma, by observing that �→i> ⊆ →∗
i>. ��

Theorem 21. Assume that any root-overlapping rules in the TRS are compara-
ble by the partial order >. Then for any term t, if WN(t,→i>), then SN(t,→g>).

Proof. Assume WN(t,→i>). We check the conditions of Lemma 13.2, with ⇒ =
→g>,→ = →i> and �→n = �→n

i>. Clearly,→i> ⊆ →g> and→i> = �→1
i> ⊆ �→i>.

The next condition is obtained from Lemma 20. Finally, →i>-normal forms
are →g>-normal forms, so in particular →g>-terminating. Hence we can apply
Lemma 13.2, and obtain SN(t,→g>) ��

Note that if we drop the third condition of Definition 15, the previous theorem
would not hold. This is witnessed by Example 4. Also the fourth condition is
essential, as witnessed by the following example. Consider the TRS consisting of
the rules

e→ a, d→ d, α : f(x, x) → c, β : f(a, y)→ d

with α < β. Then f(a, e) →i> f(a, a) →i> c is the only →i>-reduction from
f(a, e), so SN(f(a, e),→i>). However, without the fourth condition of Defini-
tion 15 we would have f(a, e)→g> d→g> d, leading to an infinite reduction. A
similar left-linear example exists:

e→ b, d→ d, α : f(x, b)→ c, β : f(a, y)→ d

with again α < β. Now SN(f(a, e),→i>), but without the fourth condition of
Definition 15, we would obtain f(a, e) →g> d →g> d, leading to an infinite
reduction. The following corollary shows that generalized innermost rewriting
with priority is not worse than usual innermost rewriting.



14 Jaco van de Pol and Hans Zantema

Corollary 22. Assume that any root-overlapping rules in the TRS are compa-
rable by the partial order >. Let t be a term.

– SN(t,→i>) if and only if SN(t,→g>).
– If SN(t,→i), then SN(t,→g>).

Proof. This follows from Theorem 21 using →i> ⊆ →i and →i> ⊆ →g>. ��

The reverse of the second doesn’t hold, as witnessed by the two rules (a→ b) <
(a → a). The infinite reduction a →i a is disabled in →g> by the terminating
smaller rule.

Corollary 23. Let the TRS be non-root-overlapping and let t be a term. Then
WN(t,→i) ⇔ SN(t,→g) ⇔ SN(t,→i).

Proof. Assume WN(t,→i). The TRS is non-root overlapping, so we can take
>= ∅, then →i = →i> and →g = →g>. By Theorem 21, we obtain SN(t,→g).
The implication SN(t,→g) ⇒ SN(t,→i) follows from →i ⊆ →g; the implication
SN(t,→i)⇒WN(t,→i) is universal. ��

In [10] the conjecture was stated that if a TRS is innermost terminating, then
any in-time JITty annotation induces a terminating strategy. A JITty annotation
for a function symbol is a list consisting of argument positions and rules for
that symbol, which deterministically describes in which order to evaluate the
arguments or apply the rules. An annotation induces a rewrite relation →strat.
E.g., given rules α : if(true, x, y) → x and β : if(false, x, y) → y, the annotation
if : [1, α, β, 2, 3] denotes that if(s, t, u) is evaluated by first evaluating s, then
trying rule α, then β, and if this failed, normalize t and u, respectively. A strategy
annotation is in-time if for every rule � → r in it, all argument positions in �
distinct from LinVar(�) occur before it. We can now solve this conjecture.

Corollary 24. Let the TRS be finite, and let strat be an in-time strategy an-
notation in the sense of [10]. For all terms t, if SN(t,→i) then SN(t,→strat).

Proof. Define (� → r) < (�′ → r′) if and only if � and �′ have the same top
symbol, and � → r occurs before (�′ → r′) in the strategy annotation. Then
→strat ⊆ →g>; conditions 2 and 4 of Definition 15 are enforced by the in-time
requirement, and condition 3 is enforced because the order coincides with the
order in the annotation. Assume SN(t,→i). Note that →i> ⊆ →i and they have
the same normal forms, so WN(t,→i>). By Theorem 21, SN(t,→g>), hence
SN(t,→strat). ��

The last result doesn’t hold for all (eager) OBJ annotations, in which 0 is used
to denote application of any rule. Consider again the example TRS consisting
of the following three rules α : f(a, b, x) → f(x, x, x), β : c → a, γ : c→ b. The
system is innermost terminating, so any JITty annotation gives a terminating
strategy, including f : [1, 2, α, 3], and either c : [β, γ] or c : [γ, β]. However, the
OBJ-annotation f : [1, 2, 0, 3] and c : [0] (where 0 stands for the application of
any rule) admits an infinite sequence.
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6 Conclusions

We introduced two generalizations →ndg and →g> of innermost rewriting →i

and →i>, respectively, for which we proved that for every term t the properties
SN(t,→i) and SN(t,→ndg) are equivalent, and the properties SN(t,→i>) and
SN(t,→g>) are equivalent. As a main application of these results we see that
for particular strategies as they are applied in implementations ([4, 11]) we may
conclude that they are not worse than innermost rewriting as long as they are
contained in →ndg or →g>. This comparison describes worst case behavior; in
typical applications we observe that the particular strategies terminate where
innermost rewriting does not. Roughly speaking we can say that these strategies
allow a kind of lazy rewriting without loss of efficiency or termination behavior.

We want to emphasize that these strategies apply for all TRSs without any
restriction, and have the same set of normal forms as the full general rewrite
relation, in contrast to other approaches like context-sensitive rewriting ([6]).
Moreover, our strategies do not depend on user-defined options, except for the
order of root-overlapping rules in Section 5.

In implementations typically strategies are deterministic. For a proper order
> on the rules and→∈ {→i,→i>,→g>,→ndg} let d→ be a deterministic instance

of →, i.e., d→ ⊆→ and for every term t not being a normal form there is exactly
one u satisfying t

d→ u. Then for every term t we have the following properties:

SN(t,→ndg) ⇔ SN(t,→i) ⇒ SN(t,→i>) ⇔ SN(t,→g>)
⇓ ⇓ � ⇓

SN(t, d→ndg) SN(t, d→i) SN(t, d→i>) SN(t, d→g>)
� � � �

WN(t, d→ndg) WN(t, d→i) WN(t, d→i>) WN(t, d→g>)
⇓ ⇓ � ⇓

WN(t,→ndg) ⇐WN(t,→i)⇐ WN(t,→i>)⇒WN(t,→g>)

In this diagram the equivalences in the first line are Theorem 9 and Corollary
22; the vertical equivalences involving →i> follow from Theorem 21. All other
implications and equivalences are immediate from the definitions. For none of
the implications the converse holds as is easily checked by considering the term
a w.r.t. the two rules a → a, a → b and the term f(a) w.r.t. the two rules
a → a, f(x) → b, for various orders of the rules and deterministic instances. A
remaining question is whether WN(t,→ndg) and WN(t,→g>) are comparable.
They are not, as follows from the following examples. Let the TRS consist of the
rules a→ a, f(x) → g(x, x) and g(x, y) → b and let > be empty. Then we have
WN(f(a),→g>) but not WN(f(a),→ndg). Conversely, let the TRS consist of the
rules f(x) → g(x), f(x) → h(x), g(g(x)) → g(g(x)) and h(h(x)) → h(h(x)).
Then f(f(x)) →+

i g(h(x)) and f(f(x)) 
→+
g> g(h(x)) for any order >. Hence

both WN(f(f(x)),→i) and WN(f(f(x)),→ndg) hold, while for no order > on
the rules WN(f(f(x)),→g>) holds.
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For non-root-overlapping TRSs we proved that termination of →g and →i

are equivalent. As an open question we leave whether in this claim the condition
of being non-root-overlapping can be weakened to confluence.
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Abstract. This paper shows that the suitable orderings for proving in-
nermost termination are characterized by the innermost parallel mono-
tonicity , IP-monotonicity for short. This property may lead to several
innermost-specific orderings. Here, an IP-monotonic version of the Re-
cursive Path Ordering is presented. This variant can be used (directly
or as ingredient of the Dependency Pairs method) for proving innermost
termination of non-terminating term rewrite systems.

1 Introduction

Rewrite systems are sets of rules used to compute by replacing an instance of
the left-hand side of a rule (redex ) by the corresponding instance of the right-
hand side. The replacements are repeated until a term with no redex (normal
form) is eventually reached. Every replacement (rewriting step) involves a non-
deterministic choice of both, the redex and the rewriting rule to be applied.
Hence, in general one can produce an infinite number of rewriting step sequences
started on the same term. A term rewrite system (TRS) is terminating if it has
no infinite rewriting sequence.

A common way of restricting the number of rewriting sequences to be in-
spected when searching for a normal form is to use a rewriting strategy. A TRS
can be terminating under a specific strategy whereas not in general. The termi-
nation proof for a strategy may be easier and weaker conditions for modularity
can be applied. Moreover, for some classes of TRS, proving termination under a
particular rewriting strategy suffices for ensuring general termination. Therefore,
it turns out to be very important to develop techniques for proving termination
of rewriting under strategies.

One of the most commonly used rewriting strategies is the innermost one, in
which only innermost redexes are reduced. This strategy corresponds to the “call
by value” computation rule of programming languages and enjoys all the afore-
mentioned advantages. Therefore, studies on properties of innermost rewriting
are useful for program verification.
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The first and most successful technique for proving innermost termination of
rewriting was the Dependency Pairs method (DP) [1]. In [20], the size-change
principle for functional programming [14] was adapted in order to prove inner-
most termination of rewriting. Moreover, it was combined with DP, obtaining
the best of both methods. Other approaches are described in [4, 8, 19]. All these
methods are used with general purpose orderings as ingredient, like the Recur-
sive Path Ordering (RPO) [6, 12], the Knuth-Bendix Ordering and polynomial
interpretations over the reals [3, 15].

In this paper, we study the relationship between innermost termination and
well-founded orderings. Stability and monotonicity (which are always required
for termination proofs) can be relaxed for termination of this strategy. In in-
nermost rewriting only normalized substitutions are considered. Moreover, very
recently it was shown that for innermost termination some monotonicity require-
ments can be discarded for some function symbols [7]. Here we provide a different
approach for relaxing the monotonicity. Our approach was obtained by noting
that innermost normalization and termination of the innermost parallel rewrit-
ing strategy are equivalent [18]. The latter strategy reduces all innermost redexes
of a term at the same time. Therefore, for innermost termination we need to de-
mand monotonicity only after each maximal parallel innermost rewriting step.
We call this property IP-monotonicity and we show that the suitable orderings
for direct innermost termination proofs are IP-monotonic. Another characteriza-
tion for innermost termination is obtained by combining the innermost parallel
relation and DP. As consequence, an innermost termination criterion relying on
IP-monotonic quasi-orderings instead of IP-monotonic orderings is also obtained.

IP-monotonicity may lead to new, practical and innermost-specific orderings.
In particular, we present an IP-monotonic version of the RPO, called the inner-
most RPO (iRPO). Its practical application is shown by means of examples.
We also show that, for non-overlaying TRSs, the non-strict version of iRPO is
an IP-monotonic quasi-ordering. Thus, it can be used as ingredient of DP and
effectively combined with the argument filtering method [1, 13].

The rest of the paper is organized as follows. In Section 2 we introduce basic
notions and notations. In Section 3 we characterize innermost termination in
terms of IP-monotonic (quasi-) orderings. Section 4 is devoted to iRPO and the
stability issue.

2 Preliminaries

We assume familiarity with the basics of term rewriting termination (see e.g. [2]).
The set of terms over a signature F is denoted as T (F ,X ), where X repre-

sents a set of variables. Variables are denoted with the letters x, y, z while s, t, u
(possibly with subscripts and apostrophes) denote terms. The arity of a func-
tion symbol f is denoted as ar(f). The symbol labelling the root of a term t is
denoted as root(t). The notation t̄ will be ambiguously used to denote either the
tuple (t1, . . . , tn) or the multiset {t1, . . . , tn}.

We assume positions within terms represented by sequences of positive inte-
gers, ordered by the prefix ordering. Positions are denoted with the letters p, q
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(possibly with apostrophes) while for integers we use i, j, k. The root position is
denoted by λ and p.q denotes the concatenation of p and q. The set of positions
of a term t is Pos(t). The subterm of t at position p is denoted as t|p. The sub-
term relation denoted as t� t|p in case of p > λ. The term t with the subterm at
position p replaced by s is denoted as t[s]p. Occasionally, we use t[s] to indicate
that s is subterm of t.

We say that binary relation � is compatible with another binary relation �
if e1 � e′1 � e′2 � e2 implies e1 � e2. We call (�,�) a compatible pair if �
is well-founded and � ◦ � ⊆ � or � ◦ � ⊆ � [13]. The syntactic equality is
denoted as ≡.

Let� be an ordering on terms and let≈ be an equivalence relation compatible
with �. The lexicographic extension �lex of � wrt. ≈ for n-tuples is defined as
(s1, . . . , sn) �lex (t1, . . . , tn) iff s1 ≈ t1, . . . , sk−1 ≈ tk−1 and sk � tk for some
k ∈ {1 . . . n}. The extension of ≈ to multisets, denoted as ≈mul, is the smallest
relation s.t. ∅ ≈mul ∅ and S ∪ {s} ≈mul S′ ∪ {t} if s ≈ t ∧ S ≈mul S′. The
extension of � to multisets w.r.t. ≈ is defined as the smallest ordering �mul s.t.
M ∪ {s} �mul N ∪ {t1, . . . , tn} if M ≈mul N and s � ti for all i ∈ {1 . . . n}.

A TRS over F is denoted as R. The defined symbols of R are D = {root(l) |
l → r ∈ R}. A rewriting step with R is written as s→R t. The notation →R,>λ

is used for a rewriting step at position p 
= λ. We omit the subscript R whenever
is clear from the context.

A TRS R is terminating if→ is well-founded, i.e. there is no infinite sequence
s1 → s2 → . . . (sometimes denoted as s1 →∞). Alternatively, R is terminating
iff all its rules are included in a reduction ordering [16]. One of the most popular
reduction orderings for proving termination is the Recursive Path Ordering [6]
which is defined below. RPO uses a precedence and can be adapted for dealing
with statuses as proposed in [12].

Definition 1. A precedence �F is an ordering on F compatible with an equiv-
alence relation ≈F . Let {Lex,Mul} be a partition of F called statuses of F .
The precedence �F is compatible with the statuses of F if f ≈F g implies that
both f and g belong to the same part, either Lex or Mul.

Definition 2. Let �F be a precedence over F compatible with the statuses
{Lex,Mul}. Then s = f(s̄) �rpo t if one of the following conditions holds:

1. s′ �rpo t or s′ ≈rpo t, for some s′ ∈ s̄

2. t = g(t̄), f �F g and s �rpo t′ for all t′ ∈ t̄

3. t = g(t̄), f ≈F g, f ∈ FLex, s̄ (�rpo)lex t̄ and s � t′, for all t′ ∈ t̄,
4. t = g(t̄), f ≈F g, f ∈ FMul and s̄ (�rpo)mul t̄,

where s ≈rpo t iff s ≡ t or one of the following conditions holds:

(a) root(s) ≈F root(t), root(s) ∈ FLex and s1 ≈rpo t1, . . . , sn ≈rpo tn,
(b) root(s) ≈F root(t), root(s) ∈ FMul and s̄(≈rpo)mul t̄,

Theorem 1. [12] �rpo is a reduction ordering compatible with the congruence
relation ≈rpo.
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Given a TRS R, f(t, . . . , tn) is said to be argument normalized w.r.t. R if for
all k = 1 . . . n, tk is in normal form w.r.t. R. A pair (s, t) is said to be argument
normalized if s is so. A normalized substitution σ is s.t. xσ is in normal form w.r.t.
R for all x ∈ Dom(σ). An innermost redex is an argument normalized redex. A
term s rewrites innermost to t w.r.t. R, written s →i t, iff s → t at position p
and s|p is an innermost redex. It is said that R is innermost terminating if →i

is well-founded.
Example 1. The system R = {g(x, y) → x, g(x, y) → y, f(0, 1, x) → f(x, x, x)}
was given by Toyama for proving that termination is not modular for disjoint
unions of TRS [21]. This illustrative example has the infinite rewriting sequence:
f(0, 1, g(0, 1)) → f(g(0, 1), g(0, 1), g(0, 1)) +→ f(0, 1, g(0, 1)) . . . However, every
innermost rewriting sequence is terminating.

A TRS R is innermost confluent if →i is confluent. We say that R is non-
overlaying if there are no two different rules (after renaming variables so that
both rules have distinct variables) having unifiable left-hand sides. If R is non-
overlaying, then it is innermost confluent.

3 Characterizing Innermost Termination of Rewriting

In this section we focus on innermost termination, trying to characterize it by
means of orderings. The basic idea to achieve this is the fact that all innermost
redexes of a term t are in pairwise disjoint positions and moreover, all must be
rewritten before reaching a normal form. Hence, if t can be normalized using the
innermost strategy, all its innermost redexes can be reduced simultaneously by
the parallel innermost strategy [17].
Definition 3. A term s is reduced innermost in parallel to t w.r.t. R, written
s ‖−→i t, iff s

+→i t and either s→i t at position λ or s = f(s̄), t = f(t̄) and for
all k = 1 . . . |s̄| either sk ‖−→i tk or sk = tk is a normal form.

It is easy to see that when s ‖−→i t, t can be obtained by consecutive one-
step reductions of all innermost redexes in s. For instance, using the TRS of
Example 1 we have f(g(0, 1), g(0, 1), g(0, 1)) ‖−→i f(0, 1, 0). The innermost par-
allel rewrite relation is not only included in the transitive-closure of the inner-
most rewrite relation but it also characterizes innermost termination. The latter
follows from Krishna Rao’s contribution concerning the selection invariance for
innermost normalization [18]. That is, the choice of innermost redex to be re-
duced at any step is irrelevant for innermost termination. Thereby, if a TRS
is innermost normalizing under a particular strategy then it is innermost nor-
malizing under any other strategy. In order to prove this fact, an oracle based
reasoning was used. The following theorem provides a simpler proof for the same
result.
Theorem 2. A TRS R is innermost terminating iff ‖−→i is terminating.

Proof. The left-to-right implication is trivial. For the other direction, it is enough
to prove that, for any infinite rewriting sequence s→∞

i there exists an alternate
derivation s ‖−→i s

′ →∞
i .
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First, we show that given a derivation s
+→i t where t is argument normalized

there exists an alternate derivation s ‖−→i s
′ ∗→i t, and we do it by structural

induction. If the first rewrite step in s
+→i t is at position λ, then this derivation

is already of the form s ‖−→i s
′ ∗→i t. Otherwise, either there is no rewrite step

at λ or the first step at λ is on an argument normalized term obtained from
s by at least one rewriting step. In any case, the original derivation is of the
form s = f(s̄) +→i,>λ f(t̄) ∗→i t, where f(t̄) is argument normalized and every
sk ∈ s̄ is either a normal form and we call s′k = sk, or sk

+→i tk and by induction
hypothesis sk ‖−→i s

′
k

∗→i tk. Therefore, s = f(s̄) ‖−→i f(s̄′) ∗→i t, as desired.
Now, given a derivation s→∞

i , we show that there exists an alternate deriva-
tion s ‖−→i s

′ →∞
i by structural induction. If the first rewrite step is at λ position,

the result trivially holds. Otherwise, if there is some rewrite step at λ, then this
derivation is of the form s

+→i t→∞
i where t is argument normalized, and by our

previous statement, there exists an alternate derivation s ‖−→i s
′ →∗

i t→∞
i , and

the result holds. If there is no rewrite step at λ in s→∞
i , then s is of the form f(s̄)

and for some sk ∈ s̄, say s1, there exists an infinite rewriting sequence s1 →∞
i .

By induction hypothesis, there exists an alternate derivation s1 ‖−→i s
′
1 →∞

i .
For the rest of sk’s, either sk is a normal form and we call s′k = sk, or a par-
allel innermost rewriting step can be applied on sk, i.e. sk ‖−→i s

′
k for some s′k.

Therefore, there exists an alternate derivation s = f(s̄) ‖−→i f(s̄′)→∞
i , and the

result follows. ��

This theorem leads us to define the innermost parallel monotonicity, IP-
monotonicity for short, directly from ‖−→i .

Definition 4. Abinary relation� is IP-monotonic w.r.t. a TRS R iff ‖−→i ⊆�.

The IP-monotonicity hides a weak kind of stability and monotonicity. This
can be seen in the next lemma, which is a straightforward conclusion from Def-
inition 4.

Lemma 1. A binary relation � is IP-monotonic w.r.t. R iff

– lσ � rσ for all l → r ∈ R and substitution σ s.t. lσ is argument normalized
and

– s̄ ‖−→i t̄ implies f(s̄) � f(t̄) for all f ∈ F .

Using this lemma is easy to see that any transitive, monotonic and stable
binary relation including R is also in-monotonic w.r.t. R. Therefore, reduction
orderings suffices for innermost termination. However, termination of this strat-
egy is indeed characterized by IP-monotonic and well-founded orderings.

Theorem 3. A TRS R is innermost terminating iff there is a well-founded
relation � which is IP-monotonic w.r.t. R.

Proof. The left-to-right implication can be easily shown by taking
+

‖−→i . For
the converse, if R is not innermost terminating, by Theorem 2, there exists an
infinite rewriting sequence s1 ‖−→i s2 ‖−→i . . .. By IP-monotonicity of � w.r.t.
R, s1 � s2 � . . ., contradicting the well-foundedness of �. ��
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In the context of DP, innermost termination was characterized through the
use of chains. Given a TRS R, 〈f(s̄), g(t̄)〉 is a dependency pair of R if f(s̄) →
u[g(t̄)] ∈ R and g ∈ D.1 The set of all dependency pairs of R is denoted as
DP(R). A sequence of dependency pairs S = 〈s1, t1〉 〈s2, t2〉 〈s3, t3〉 . . . of R is
an innermostR-chain if there is a substitution σ s.t. for all j > 0, sjσ is argument
normalized and tjσ

∗→i sj+1σ holds. A TRS R is innermost terminating iff there
is no infinite innermost R-chain [1].

Since in every innermost R-chain sjσ is argument normalized , by the proof

of Theorem 2, we have tjσ
∗
‖−→i sj+1σ, for all j > 0. Therefore, the parallel

innermost relation can also be used for characterizing innermost termination by
means of chains. Furthermore, we can use a compatible pair (�,�) s.t. � is
IP-monotonic w.r.t. R.

Theorem 4. A TRS R is innermost terminating iff there is a compatible pair
(�,�) s.t. � is IP-monotonic w.r.t. R and sσ � rtσ for all 〈s, t〉 ∈ DP(R) and
substitution σ s.t. sσ is argument normalized.

Proof. For the right-to-left direction suppose R is not innermost terminating.
Then, there is an infinite innermost R-chain 〈s1, t1〉 〈s2, t2〉 〈s3, t3〉 . . . and a
substitution σ s.t. for all j > 0, sjσ is argument normalized and tjσ

∗→i sj+1σ.

Since tjσ
∗
‖−→i sj+1σ and � is IP-monotonic, we have tjσ (� ∪ ≡) sj+1σ.

Besides sjσ � tjσ holds by assumption. Hence, seeing that � ◦ � ⊆ � or
� ◦ � ⊆ �, we obtain the infinite sequence s1σ � s2σ � s3σ � . . . which
contradicts the well-foundedness of �.

For the left-to-right direction we take � = � = (→i ∪ �)+. Clearly, �
◦ � ⊆ �, � is IP-monotonic w.r.t. R and orients DP(R). Finally, when R is
innermost terminating, +→i is a monotonic and well-founded ordering and thereby
(→i ∪ �)+ is also well-founded. ��

4 An Example of IP-Monotonic Ordering

Multiset extensions have been used for defining successful reduction orderings
like RPO and MSPO [5]. This is because they preserve suitable properties like
irreflexivity, transitivity, stability and well-foundedness. Besides, every ordering
� is monotonic on �mul in the sense that s � t implies {s1, . . . , s, . . . , sn} �mul

{s1, . . . , t, . . . , sn}. Once the terms of a multiset are rewritten with ‖−→i w.r.t.
a TRS R, all reducible terms decrease w.r.t. every IP-monotonic ordering �
whereas normal forms remain untouched. Therefore, the original multiset also
decreases w.r.t. �mul. Even more, the comparison with �mul still holds if we
remove all multiple occurrences from the original and the reduced multisets.
1 The original notion of dependency pair is 〈f̂(s̄), ĝ(t̄)〉 where f̂ and ĝ are marked (or

tuple) symbols associated to f and g resp. This renaming allows to apply a different
treatment to function symbols when they appear on top of dependency pairs. We
have chosen the unmarked version for simplicity but using the marked version does
not affect our results.



Orderings for Innermost Termination 23

Based on this fact we adapt (actually extend) RPO for proving innermost ter-
mination. This is achieved just by adding a new status FSet which allows certain
terms to be compared using the set (instead of the multiset) of their arguments.
The new ordering is the first which is innermost-specific; therefore we call it the
innermost Recursive Path Ordering. Its definition can be formulated either by
cases like RPO or by transformation, i.e. first we eliminate repetitions and then
compare with RPO. The latter alternative provides an elegant definition and
straightforward proofs for iRPO’s properties.

Definition 5. Given FSet ⊆ F , the transformation φ over T (F ,X ) is defined as

– φ(x) = x, if x ∈ X
– φ(f(s1, . . . , sn)) = f(φ(s1), . . . , φ(sn)), if f /∈ FSet

– otherwise φ(f(s1, . . . , sn)) = f(φ(sj1), . . . , φ(sjm )) where j1 < . . . < jm are
the j’s in {1 . . . n} s.t. sk 
≡ sj for all k < j. In other words, the tuple
(sj1 . . . sjm) is just (s1 . . . sn) after removing repetitions from left to right.

Given an RPO ordering �rpo and FSet ⊆ FMul, the corresponding �irpo order-
ing is defined as s �irpo t iff φ(s) �rpo φ(t). If ≈rpo is the equivalence relation
corresponding to �rpo, then ≈irpo is defined as s ≈irpo t iff φ(s) ≈rpo φ(t). The
union of �irpo and ≈irpo is denoted as �irpo.

Note that after applying φ, some symbols in FSet may become varyadic. Be-
sides, repetitions are removed before applying φ, not later. For example, if FSet =
{h, g}, φ(h(g(a, b, b, a), g(a, b, c, b), g(a, b, b, c))) = h(g(a, b), g(a, b, c), g(a, b, c)).
Although φ removes repetitions from left to right, any other fixed order would
give the same definition of �irpo and ≈rpo above. Clearly, the transformed terms
might be different (for instance, choosing the right-to-left order φ(g(a, b, c, b)) =
g(a, c, b)). But this is irrelevant since the multiset comparison is used for com-
paring the affected arguments.

The following proposition is a direct consequence of the definition of ≈irpo,
�irpo and Theorem 1.

Proposition 1. �irpo is a well-founded ordering compatible with the equivalence
relation ≈irpo.

Now, we show that if the set of argument normalized instances of a TRS R
can be oriented using iRPO then the ordering is IP-monotonic w.r.t. R. There-
fore, by Theorem 3 and Proposition 1, it can be used for proving innermost
termination.

Theorem 5. �irpo is IP-monotonic w.r.t. a TRS R iff lσ �irpo rσ, for every
rule l→ r ∈ R and substitution σ s.t. lσ is argument normalized.

Proof. The left-to-right implication follows by definition of IP-monotonicity. For
the other direction we need to show that s ‖−→i t implies s �irpo t. By assump-
tion, s �irpo t whenever s ‖−→i t at position λ. Otherwise s = f(s̄), t = f(t̄) and
for all k ∈ {1 . . . |s̄|} either sk = tk is a normal form, or sk ‖−→i tk and using
structural induction we have sj �irpo tj , and hence φ(sj) �rpo φ(tj). Moreover,
for some k ∈ {1 . . . |s̄|}, sk is not a normal form, and consequently sk �irpo tk
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and φ(sk) �rpo φ(tk). Now, if f /∈ FSet, then s �irpo t by monotonicity and
transitivity of �rpo. Otherwise, let φ(s) = f(s′1, . . . , s

′
m), φ(t) = f(t′1, . . . , t

′
n).

Moreover, let S, T and S′ be the multisets {s′1, . . . , s′m}, {t′1, . . . , t′n} and S′ =
{φ(sk) | k ∈ {1 . . . |s̄|}, sk is a normal form w.r.t R}2 respectively. Then S′ ⊂ S,
S′ ⊆ T and for all v ∈ T − S′ there is some u ∈ S − S′ s.t. u �rpo v holds by
induction. Therefore, {s′1, . . . , s′m} �mul

rpo {t′1, . . . , t′n} by definition of the multiset
extension, and φ(s) �rpo φ(t) holds. ��

Example 2. Toyama’s TRS (see Example 1) can be shown innermost terminating
using iRPO. For the first two rules, g(x, y)σ �rpo xσ and g(x, y)σ �rpo yσ hold
by case 1 for every substitution σ. Moreover, every instance of the last rule can
be oriented by defining FSet = FMul = {f}. Note that depending on the value
of xσ we have the following situations, all of them holding by case 3.

1. if xσ = 0 then φ(f(0, 1, x)σ) = f(0, 1) �rpo f(0) = φ(f(x, x, x)σ),
2. if xσ = 1 then φ(f(0, 1, x)σ) = f(0, 1) �rpo f(1) = φ(f(x, x, x)σ),
3. otherwise φ(f(0, 1, x)σ) = f(0, 1, xσ) �rpo f(xσ) = φ(f(x, x, x)σ).

Since the transformation φ unites duplicated arguments, other Toyama-like
examples can be included in iRPO (e.g. [1, Examples 5.2.3,5.2.13,5.2.14]). When
such multiple occurrences appear at top level, the techniques for cancelling cycles
in the estimated innermost dependency graph [1, 4, 9] also handle many of these
systems. However, as the next example shows, the latter does not hold in general.

Example 3. The next TRS is a more complex variant of Toyama’s example.

R1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f(x, x, y)→ h(y)

h(x) → x
h(f(x, y, z))→ f(z, z, y)
h(f(x, y, z))→ f(y, y, x)

c(f(0, 1, x), x)→ c(f(x, x, x), h(x))

This system has the following infinite sequence (the redex used in each rewrit-
ing step appears underlined):

c(f(0, 1, h(f(0, 1, 0))), h(f(0, 1, 0))) →
c(f(h(f(0, 1, 0)), h(f(0, 1, 0)), h(f(0, 1, 0))), h(h(f(0, 1, 0)))) →
c(f(f(1, 1, 0), h(f(0, 1, 0)), h(f(0, 1, 0))), h(h(f(0, 1, 0)))) →
c(f(f(1, 1, 0), f(0, 0, 1), h(f(0, 1, 0))), h(h(f(0, 1, 0)))) →
c(f(f(1, 1, 0), f(0, 0, 1), h(f(0, 1, 0))), h(f(0, 1, 0))) →
c(f(h(0), f(0, 0, 1), h(f(0, 1, 0))), h(f(0, 1, 0))) →
c(f(0, f(0, 0, 1), h(f(0, 1, 0))), h(f(0, 1, 0))) →
c(f(0, h(1), h(f(0, 1, 0))), h(f(0, 1, 0))) →
c(f(0, 1, h(f(0, 1, 0))), h(f(0, 1, 0))) → . . .

2 We construct S′ by selecting just one occurrence of every normal form in s̄. Note
that S, T and even S′ may have repeated elements, because φ is not injective.
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However, R1 is indeed innermost terminating. Proving this fact automatically
is hard to obtain with the existing methods. Obviously, no termination tech-
nique can be used in this case. Furthermore, the estimations for the innermost
dependency graph do not cancel the problematic cycle corresponding to the last
rule. The use of polynomials with negative coefficients has been proposed for
innermost termination proofs [1, 7]. But the practical results concerning the
automated generation of such polynomials are still few, and for instance the
method described in [11] cannot be applied to this system.

Nevertheless, innermost termination of R1 can be proved using iRPO with
FSet = FMul = {f}, FLex = {c} and the precedence c �F h and f �F h. Every
instance of the first rule decreases by case 2. For the next three rules, lσ �irpo rσ
holds by case 1, for every substitution σ (note that f(x, y, z)σ �irpo f(z, z, y)σ).
Finally, considering the situations of the previous example the last rule is easily
oriented using case 4.

4.1 Innermost Stability for iRPO

Theorem 5 is not suitable for automation since one has to check infinitely many
instantiation of the rules. Hence, though stability is not necessary for innermost
termination, it is always a desirable property when proving termination.

Unlike RPO, iRPO is not stable. The problem comes from the fact that two
different terms can be equal after applying a substitution. Thereby, in general
φ(sσ) 
= φ(s)σ when s � t and root(t) ∈ FSet. For example, for FSet = {f}
and σ = {y �→ x} we have φ(f(c(x), c(y))σ) = f(c(x)) 
= φ(f(c(x), c(y)))σ
f(c(x), c(x)). Due to this �irpo is not stable. For example, f(c(x), c(y)) �irpo

f(c(x), c(x)) and f(c(x), c(y)) �irpo f(x, c(x)) hold but do not after applying the
former substitution. Note that φ(f(c(x), c(y))σ) = f(c(x)) = φ(f(c(x), c(x))σ)
and φ(f(c(x), c(y))σ) = f(c(x)) �rpo f(x, c(x)) = φ(x, f(c(x))σ).

Definition 6. The problem of iRPO stability is defined as follows.

Instance: two terms s and t, a term rewrite system R, and an iRPO ordering
�irpo.

Question: Is sσ �irpo tσ for any substitution σ such that sσ is argument nor-
malized?

As we will see, this problem is co-NP-complete. The following algorithm non-
deterministically decides the complement of the iRPO stability problem, i.e., if
there exists a substitution σ such that sσ is argument normalized and sσ 
�irpo tσ
for given terms s and t.

Algorithm 1

1. Let Ep ⊆ {(i, j) | 1 ≤ i < j ≤ ar(root(s|p))} be an selection of pairs for
every position p ∈ PosFSet(s).

2. Let σ be the m.g.u. of the set of equations {s|p.i = s|p.j | p ∈ PosFSet(s), (i, j)
∈ Ep}. Check if sσ is argument normalized w.r.t. R and sσ 
�irpo tσ, and
give this result as output.
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Lemma 2. The Algorithm 1 non-deterministically decides the complement of
the iRPO stability problem.

Before giving the proof of the previous lemma, we will need the following two
technical results.

Lemma 3. Let σ be the m.g.u. of a set of equations S. For every term s occur-
ring in S and for every position p ∈ PosF(sσ), there exists a term s′ occurring
in S and a position p′ ∈ PosF(s′) such that sσ|p ≡ s′σ|p′ .

Proof. This can easily be proved by induction on the number of steps of many
known unification algorithms. In those algorithms, the m.g.u. σ is incrementally
obtained by, first, making σ0 to be the identity substitution. Then, at some step,
it is modified by an assignment of the form σi+1 := σi{x �→ tσi}, where t is a
term occurring in S, xσi = x, and any variable y occurring in tσi satisfies that
x does not occur in yσi. It is not difficult to see that, if σi satisfies the condition
of the lemma, then σi+1 does. ��

Lemma 4. For every term s and substitution σ we have φ(s)φ(σ) �rpo φ(sσ).3

Moreover, if for every pair of positions p.i and p.j of s with p ∈ PosFSet(s) it
holds that (s|p.i ≡ s|p.j) ⇔ (s|p.iσ ≡ s|p.jσ), then φ(s)φ(σ) ≡ φ(sσ)

Proof. Clearly φ(s)φ(σ) �rpo φ(sσ) holds since φ(sσ) can be obtained from
φ(s)φ(σ) by eventually removing some subterms at positions below a symbol with
multiset status. Now, assume that for every pair of positions p.i and p.j of Pos(s),
it holds that (s|p.i ≡ s|p.j) ⇔ (s|p.iσ ≡ s|p.jσ). Proving φ(s)φ(σ) ≡ φ(sσ), is
equivalent to see that any position p.i with p ∈ PosFSet(s) satisfies that for all
j in 1 . . . i− 1, s|p.j ≡ s|p.i if and only if s|p.jσ ≡ s|p.iσ (i.e. the removing action
of φ coincides on s and sσ at positions in Pos(s)). But this is trivial by our
assumption. ��

Now, we are ready to prove Lemma 2.

Proof. (Of Lemma 2) If the algorithm gives a positive answer, then it is clear
that there exists a substitution σ (the one obtained by the algorithm) satisfying
that sσ is argument normalized and sσ 
�irpo tσ.

Hence, it remains to see that, if for some substitution σ, sσ is argument
normalized and sσ 
�irpo tσ, then there is a selection Ep for every p ∈ PosFSet(s)
that produces a positive answer. The selection we need for every of such p’s is
Ep = {(i, j) | sσ|p.i ≡ sσ|p.j}. Let σ′ be the m.g.u. of the corresponding set of
equations S in the algorithm. We have that σ = σ′σ′′ for some σ′′ (since σ is
an unifier of S), and that for all p ∈ PosFSet(s), sσ′|p.i ≡ sσ′|p.j if and only if
sσ′|p.iσ

′′ ≡ sσ′|p.jσ
′′. Moreover, sσ′ is argument normalized since sσ′σ′′ = sσ

is. It remains to see that sσ′ 
�irpo tσ′, or, equivalently, that φ(sσ′) 
�rpo φ(tσ′).
We do it by contradiction, i.e. assume that φ(sσ′) �rpo φ(tσ′). By stability of
�rpo, it holds that φ(sσ′)φ(σ′′) �rpo φ(tσ′)φ(σ′′). By the first part of Lemma 4,
φ(tσ′)φ(σ′′) �rpo φ(tσ′σ′′) ≡ φ(tσ). If we could prove φ(sσ′)φ(σ′′) ≡ φ(sσ′σ′′)

3 Here, φ is adapted to substitutions in a natural way, i.e. xφ(σ) = φ(xσ).
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then we would obtain φ(sσ) �rpo φ(tσ), and hence, sσ �irpo tσ, which is a
contradiction with our assumption.

In order to prove φ(sσ′)φ(σ′′) ≡ φ(sσ′σ′′), we want to apply the second part
of Lemma 4. We already know that for all p ∈ PosFSet(s), sσ′|p.i ≡ sσ′|p.j if and
only if sσ′|p.iσ

′′ ≡ sσ′|p.jσ
′′. It remains to see that this property extends to sσ′,

i.e., for all p ∈ PosFSet(sσ′), sσ′|p.i ≡ sσ′|p.j if and only if sσ′|p.iσ
′′ ≡ sσ′|p.jσ

′′.
For this goal, it is enough to see that for any position p ∈ PosFSet(sσ′), there
exists a position p′ ∈ PosFSet(s) such that sσ′|p ≡ sσ′|p′ . But this is easy by
means of Lemma 3 as follows. First, note that if instead of considering the set of
equations S we consider S ∪ {s = s}, then σ′ continues being the m.g.u. of this
set. Now, let p be a position in PosFSet(sσ′). By Lemma 3, there exists a term
s′ in S ∪ {s = s} and a non-variable position p′ in s′ such that sσ′|p ≡ s′σ′|p′ .
But this term s′ can be considered to be s, since all terms occurring in S are
subterms of s. ��

Theorem 6. The iRPO stability problem is co-NP-complete

Proof. Since we have proved the correctness of the Algorithm 1, for seeing that
the complement of this problem belongs to NP, it only remains to see that
such an algorithm takes polynomial time. The selection Ep for every p and the
corresponding set of equations need polynomial time. A most general unifier σ
can be represented in polynomial space on the given set of equations by means
of DAG’s, and computed in polynomial time. Checking the irreducibility of sσ,
obtaining the DAG’s representing φ(sσ) and φ(tσ), and checking if φ(sσ) 
�rpo

φ(tσ) takes polynomial time as well.
For proving that the complement is an NP-hard problem we give a re-

duction from 3-SAT. Given an instance of 3-SAT with variables x1 . . . xn and
clauses c1 . . . cm, we construct the following terms s and t based on the signature
{h, f, g, g′, 0, 1} where h and f have lexicographic status and arity 2, g and g′

have set status and arities 4 and 5 respectively, and 0 and 1 are constants. In s
and t appear the (term) variables x1, . . . , xn, x1, . . . , xn.

s = h( f(v1, f(v2 . . . , f(vn−1, vn) . . .)) , f(u1, f(u2 . . . , f(um−1, um) . . .)) )
t = h( f(v′1, f(v′2 . . . , f(v′n−1, v

′
n) . . .)) , f(u′

1, f(u′
2 . . . , f(u′

m−1, u
′
m) . . .)) )

where vi = g(xi, xi, 0, 1), v′i = g(xi, xi, xi, xi) and if ci is a clause with literals
lj , lk, lo, then ui = g′(lj , lk, lo, 0, 1) and u′

i = g′(lj , lk, lo, 0, 0).
Regardless the precedence, it is easy to see that there exists σ satisfying

sσ 
�irpo tσ if and only if the original 3-SAT problem is satisfiable. Note that,
since g ∈ FSet, the term g(xi, xi, 0, 1)σ is not greater than g(xi, xi, xi, xi)σ only
if σ assigns 0 and 1, or 1 and 0, to the variables xi and xi, respectively. Besides,
the term g′(lj , lk, lo, 0, 1)σ is not not greater than g′(lj , lk, lo, 0, 0)σ only if σ
satisfies every clause ci with literals lj , lk and lo. By considering an empty R
the result follows. ��
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4.2 Using iRPO for DP

In general, the compatible pair (�irpo,�irpo) cannot be used for proving inner-
most termination with DP. This is because �irpo is not IP-monotonic w.r.t. an
arbitrary TRS R. Unlike iRPO, the latter holds even if �irpo orients every rule
instance whose left-hand side is argument normalized. Note that after an inner-
most parallel step, it may happen that an occurrence of a duplicated argument of
a symbol in FSet decreases w.r.t. �irpo while another occurrence remains equal
w.r.t. ≈irpo. Hence, the corresponding set of arguments may neither decrease
w.r.t (�irpo)mul nor remain equal w.r.t. (≈irpo)mul.

As an alternative, we may combine the argument filtering technique [1, 13]
with �irpo in order to obtain a compatible pair. An argument filtering over
a signature F is a function π s.t. for all f ∈ F , either π(f) ∈ {1 . . . ar(f)} or
π(f) ⊆ {1 . . . ar(f)}. It induces a mapping from T (F ,X ) to T (Fπ,X ) as follows:⎧⎨⎩

π(x) = x if x ∈ X
π(f(t1, . . . , tn)) = π(ti) if π(f) = i,
π(f(t1, . . . , tn)) = f(π(ti1 ), . . . , π(tim)) if π(f) = [i1, . . . , im],

where [i1, . . . , im] denotes an ordered set and Fπ consists of all symbols f s.t.
π(f) is a set (the arity of every f ∈ Fπ is |π(f)|). Given a set of pairs P , π(P)
denotes {(π(s), π(t)) | (s, t) ∈ P}.

Given a binary relation �, the relation �π is defined as s �π t iff π(s) � π(t).
It not difficult to see that when � is monotonic (resp. stable) we have that
s �π t implies u[s] �π u[t] (resp. sσ �π tσ). Therefore, this method has been
used for obtaining a monotonic quasi-ordering from a monotonic ordering while
preserving stability and well-foundedness.

The iRPO ordering is already defined via a transformation: s �irpo t iff
φ(s) �rpo φ(t). Hence, two possibilities seem natural to be considered for com-
bining it with an argument filtering π: we can compare two terms s and t by
either φ(π(s)) �rpo φ(π(t)) or π(φ(s)) �rpo π(φ(t)). Applying π before φ does
not work well. An argument filtering might transform a redex into a filtered nor-
mal form. Hence, since the transformation φ removes duplicated arguments, some
innermost parallel reductions might be lost, i.e. it might happen that s ‖−→i t
but π(s) � π(t). The next example illustrates this situation.

Example 4. The following non-overlapping system is not innermost terminating.

R2 =

⎧⎨⎩
h(0)→ 0
h(1)→ 1

f(0, 1, h(2))→ f(h(0), h(1), h(2))

If we remove the argument of h then we obtain the ordering constraints
h � 0, h � 1, f(0, 1, h) � f(h, h, h). These constraints are satisfied by �irpo with
FSet = {f}, h �F 0 and h �F 1. Therefore, one could falsely prove (innermost)
termination of R2.

Note that f(h(0), h(1), h(2)) = s ‖−→i t = f(0, 1, h(2)) and even s �irpo t but
since {h} �mul

irpo {0, 1, h}, we have f(h, h, h) = π(s) �irpo π(t) = f(0, 1, h).
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Hence, we consider the other possibility, i.e. to apply the transformation φ
before the filtering π. In this case, it is natural to demand that π does not
affect the symbols in FSet (i.e. π(f(t1, . . . , tn)) = f(π(t1), . . . , π(tn)), for all
f ∈ FSet), since some arguments might be previously removed by φ. In general,
this approach does not work either.

Example 5. The TRS R3 = {a→ b, a→ c, g(c)→ d, f(g(b), d) → f(g(a), g(a))}
is not innermost terminating. But taking FSet = {f}, π(g) = ∅ and the prece-
dence a �F b, a �F c, g �F d, we have π(φ(R3)) ⊂ �rpo. Hence, one may
erroneously conclude R3 is innermost terminating.

Nevertheless, for non-overlaying TRSs this approach indeed yields the de-
sired result. Non-overlayingness is not a very restrictive condition for a TRS in
the context of innermost rewriting. This strategy corresponds to the usual be-
havior of programming languages, where arguments are fully evaluated before
applying a function. If a program is deterministic, which is the usual situation,
then it corresponds to a non-overlaying system. Besides, this family of TRSs
includes non-overlapping ones for which termination and innermost termination
coincide [10].

Definition 7. Let �rpo be an RPO ordering with FSet ⊆ FMul and π be an
argument filtering over F −FSet. The corresponding �irpo,π ordering is defined
as s �irpo,π t iff π(φ(s)) �rpo π(φ(t)). If ≈rpo is the equivalence relation corre-
sponding to �rpo, then ≈irpo,π is defined as s ≈irpo,π t iff π(φ(s)) ≈rpo π(φ(t)).
The union of �irpo,π and ≈irpo,π is denoted as �irpo,π.

The next proposition follows directly from Proposition 1 and Definition 7.

Proposition 2. �irpo,π is a well-founded ordering compatible with the equiva-
lence relation ≈irpo,π.

Now, we prove the IP-monotonicity of �irpo,π.

Theorem 7. Let R be a non-overlaying TRS. If lσ �irpo,π rσ, for every rule
l → r ∈ R and substitution σ s.t. lσ is argument normalized then �irpo,π is
IP-monotonic w.r.t. R.

Proof. We need to show that s ‖−→i t implies s �irpo,π t, and we prove it by
induction on the size of s. If this rewrite step is at position λ the result trivially
follows. Otherwise, s = f(s̄), t = f(t̄) and for all k = 1 . . . |s̄|, either sk is a normal
form and tk = sk, or sk ‖−→i tk and by induction hypothesis sk �irpo,π tk. Now,
when f /∈ FSet, if π(f) is either the empty set or a natural number the result is
trivial; otherwise s �irpo,π t is obtained using monotonicity and transitivity of
�rpo. In case of f ∈ FSet, first note that, by non-overlayingness, if si ≡ sj, then
ti ≡ tj . Therefore, if for some ti, all the tj ’s with j < i are different from ti (and
hence ti is not removed by the transformation φ) then, all the sj ’s with j < i are
different from si. As consequence, to every element in φ(t̄) we can associate a
distinct element in φ(s̄) that is greater w.r.t. �irpo,π, and hence, s �irpo,π t. ��

Combining Theorems 4, 7 and Proposition 5 we have that, for non-overlaying
TRSs, the compatible pair (�irpo,π,�irpo,π) can be effectively used for innermost
termination proofs with DP.
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Corollary 1. A non-overlaying TRS R is innermost terminating if

– lσ �irpo,π rσ for all l → r ∈ R and substitution σ s.t. lσ is argument
normalized and

– sσ �irpo,π tσ for all 〈s, t〉 ∈ DP(R) and substitution σ s.t. sσ is argument
normalized.

Finally we point out that Algorithm 1 for the iRPO stability problem can
be easily adapted for checking if lσ �irpo,π rσ, for every substitution σ s.t. lσ is
argument normalized.

5 Conclusions

In this paper we introduce the first syntactical ordering which can be used for
proving innermost termination of non-terminating TRSs. The ordering is a vari-
ant of the most popular reduction ordering, RPO, and we call it the innermost
RPO. The iRPO was obtained by considering, for some function symbols, sets
instead of multisets of arguments. Hence, it is specially recommended for deal-
ing with duplicated arguments in right-hand sides. The use of sets entails non-
stability as drawback. However, for the (quasi-) orderings presented here, the
problem of checking stability is decidable and co-NP-complete. The algorithm
for doing this checking considers those m.g.u. which duplicate arguments in left-
hand sides. But usually there are not many of such arguments. Therefore, we
think that in many practical situations the stability of iRPO can be computed
efficiently.

The iRPO enjoys a property, called IP-monotonicity, which is essential for in-
nermost termination. This property demands monotonicity just after each (max-
imal) parallel innermost rewriting step. We believe that this weaker condition
might be useful for defining other innermost-specific orderings.
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In my poor, lean lank face
nobody has ever seen

that any cabbages were sprouting.

–Abraham Lincoln

Abstract. A convenient method for defining a quasi-ordering, such as
those used for proving termination of rewriting, is to choose the min-
imum of a set of quasi-orderings satisfying some desired traits. Unfor-
tunately, a minimum in terms of set inclusion can be non-existent even
when an intuitive “minimum” exists. We suggest an alternative to set
inclusion, called “leanness”, show that leanness is a partial ordering of
quasi-orderings, and provide sufficient conditions for the existence of a
“leanest” ordering.

1 Introduction

Well-founded partial orderings (admitting no infinite strictly decreasing sequen-
ces) are the standard tool for proving algorithm termination. States of the pro-
gram are assigned values in the underlying set, such that program steps always
result in a decrease in the ordering, thereby establishing termination. Quasi-
orderings (reflexive-transitive binary relations) are often more convenient for
this purpose than partial or total orderings: the ordering on states induced by a
partial ordering of values is in fact a quasi-ordering. In this paper, the unqualified
term “ordering” will always refer to a quasi-ordering.

A non-empty set of quasi-orderings can be defined by a set of conditions (such
as weak-monotonicity and weak-subterm for quasi-simplification orderings); then
we can identify a particular, ideal ordering by choosing the minimum ordering in
the set. Unfortunately, at times, a set of orderings will have no minimum in the
usual set-theoretic sense of minimum. (One example where there is a meaningful
such minimum may be found in [7].) Accordingly, this paper suggests a more
general definition of “minimum” which often leads to a unique ordering that is
intuitively the desired minimum ordering.
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The notion of “leanness” defined here embodies a preference for thinness
of quasi-orderings near their bottom. By “thinness” we mean that equivalence
classes are smaller. Our definition is especially useful when defining orderings by
incrementally adding constraints. Investigations of alternate choices of partial
orderings for rewriting include [3–5], which are regarding multiset orderings. A
classification of some string orderings appears in [6].

We begin with a motivating example. Then, in Section 3, we define the lean-
ness relation. This is followed by a section devoted to conditions guaranteeing
the existence of a leanest ordering. Section 5 illustrates the ideas with an ex-
ample of a leanest (lexicographic-path-ordering-like) tree ordering. We conclude
with a brief discussion.

2 A String Example

As usual, a quasi-ordering A may be viewed as a set of ordered pairs, where each
ordered pair is a comparison. We use x �A y to denote 〈x, y〉 ∈ A, a comparison
according to ordering A. As usual, x ≺A y will denote x �A y but not y �A x. We
will also have recourse to denote comparable, but unequal elements by x ♦A y,
as short for x �A y or y �A x but x 
= y.

Consider a simple example of a set of conditions defining a set of quasi-
orderings. Let Ω denote the set of all quasi-orderings A of strings over Σ =
{a,b, c} that satisfy all three of the following conditions:

1. ε �A a �A b �A c;
2. if v �A w and x �A y, then vx �A wy;
3. if v ≺A w, then vx �A wy,

for all strings v, w ∈ Σ∗ and symbols x, y ∈ Σ.
Intuitively it might seem that there should be a minimum ordering that

satisfies these conditions. In it, the empty string ε would be the smallest element
followed by a, b and c in strictly increasing order. Following this pattern we can
enumerate a total “length-first lexicographic” ordering in the following fashion:

ε ≺ a ≺ b ≺ c ≺ aa ≺ ab ≺ ac ≺ ba ≺ · · ·

Example 1. Let M be the above quasi-ordering, which may be defined as follows:

v �M w := m(v) ≤ m(w),

where m is the homomorphism:

m(ε) = 1 ,

m(wa) = m(w)3 ,

m(wb) = m(w)3 + 1 ,

m(wc) = m(w)3 + 2

for any string w. ��
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A natural definition for the minimum (or, “least defined”) ordering is the
minimum in terms of the subset relation: the ordering that, as a set of compar-
isons, is a subset of all other orderings in Ω. Surprisingly, perhaps, M is not a
minimum of Ω in this sense. Furthermore, no such minimum in terms of subset
exists.

To see this, we consider another ordering which intuitively is greater than
M , but of which M is not a subset.

Example 2. We make an intuitively less minimal ordering N by forcing a and b
to be equivalent. Like M , let ε be strictly less than a and c be strictly greater
than b. The next equivalence classes in N are

{aa,ab,ba,bb}

followed (strictly) by
{ac,bc} .

Like M , we define the entirety of N with a mapping:

v �N w := n(v) ≤ n(w),

where n is the string-homomorphism:

n(ε) = 1 ,

n(wa) = n(w)2 ,

n(wb) = n(w)2 ,

n(wc) = n(w)2 + 1

for any string w.
This ordering N also satisfies all the conditions for bona fide membership

in Ω. ��

With a and b equivalent in N but strictly increasing in M , a more striking
difference between N and M is made possible. In N the string ac is strictly
greater than ba, since n(ac) = 5 and n(ba) = 4. However in M , ac is strictly
less than ba, since m(ac) = 11 and m(ba) = 12.

The following diagram displays comparisons for M , N , and any relation S
that is a subset of both M and N .

M N S

a � b
√ √ √

b � a × √ ×
ac � ba

√ × ×

We see that ac �S ba must not hold even though a ≺S b holds. This means
that any ordering that is a subset of both M and N cannot satisfy the third
condition for membership in Ω. Thus Ω cannot have an ordering that is the
subset-minimum (the minimum in terms of the subset relation).
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Nevertheless, intuitively, M is “more minimal” than N , since it omits the
inequality b � a. So, instead of comparing quasi-orderings in terms of the subset
relation, we propose an alternative: “leanness” of orderings. In this alternative
relation of quasi-orderings, M is in fact the “leaner” of the two. Both M and N
“start off” the same, with ε ≺ a, but then diverge with the comparison of a and
b. Whereas N has an equivalence class of a # b, M has only a. This is why M
is to be preferred.

In the next section, we formalize these observations to obtain a general defi-
nition of a “leanness” relation on quasi-orderings.

3 Leanness

The comparison of ac and ba in examples M and N proved problematic because
viewing comparisons outside the context of the comparisons around it results in
a “subset tie”. By taking into account what happens lower down in an ordering,
such ties can be avoided. The rationale is that the constraints that characterize
the family of orderings in question are typically inductive, for which reason the
ordering imposed on smaller elements ought to be more significant.

Instead of looking at comparisons by themselves, we want to work with a
construct that takes into account the position of the comparisons. For that pur-
pose, we need to extend the notion of an initial segment of a linear order to
quasi-orderings.

Definition 1 (Initial segments and super-segments).

1. A quasi-ordering A is an initial segment of a quasi-ordering B if B extends A
and everything smaller than an element of B that is non-reflexively ordered
in A is also smaller in A. In symbols:

A � B := A � Dom∗ A = B � Dom∗ A ,

where Dom∗ A := {x : ∃y. y ♦A x} and A � D := {〈x, y〉 ∈ A : y ∈ D}.
2. An initial segment of B is a strict initial segment of B if it is not equal to

B, denoted A � B.
3. If A � B, then B is a super-segment of A; it is a strict super-segment if

A 
= B.
4. We use I (B) to denote the set of all initial segments of B, and I (Ω) for all

the initial segments of members of Ω.

Proposition 1. For any quasi-orderings A and B,

1. Dom∗ (A ∪B) = (Dom∗ A) ∪ (Dom∗ B) ,
2. Dom∗ (A ∩B) ⊆ (Dom∗ A) ∩ (Dom∗ B) ,
3. A ⊆ B implies Dom∗ A ⊆ Dom∗ B .

Proposition 2. For any quasi-orderings A and B and sets D and E,

1. (A ∪B) � D = (A � D) ∪ (B � D) ,
2. (A ∩B) � D = (A � D) ∩ (B � D) ,
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3. A � (D ∪ E) = (A � D) ∪ (A � E) ,
4. A � (D ∩ E) = (A � D) ∩ (A � E) ,
5. A ⊆ B implies A � D ⊆ B � D ,
6. D ⊆ E implies A � D ⊆ A � E ,
7. D ⊆ E and A � E = B � E implies A � D = B � D ,
8. A � (Dom∗ B \Dom∗ A) ⊆ B � (Dom∗ B \Dom∗ A) ,
9. I (A) ⊆ I (B) implies A ⊆ B .

Proposition 3. For all orderings A, I (A) is closed under union and intersec-
tion.

Proposition 4. The initial-segment relation � is a partial ordering of quasi-
orderings.

All orderings have the identity relation as a trivial initial segment. In the
case of M and N the first non-trivial initial segments differ: M has an initial
segment ordering ε strictly below a:

ε ≺M a ,

whereas N has an initial segment ordering ε strictly below the equivalence class
{a,b}:

ε ≺N a #N b .

That M ’s initial segment is a subset of N ’s initial segment is the first indication
that M is leaner than N .

In the general case of arbitrary quasi-orderings A and B, there may be no
single “next” initial segment that marks the divergence between orderings A
and B. The key property however is of initial segments that are found in one
ordering but not the other.

We now have the building blocks necessary to define a “leaner” relation for
quasi-orderings in general. In the simple case of examples M and N , there was
one initial segment from M that was a subset of one initial segment from N . In
the general case, any initial segments of N will be considered as long as they are
not initial segments of M . Similarly, more than just one initial segment from M
can be a subset of initial segments from N , just as long as the initial segment
from M is not an initial segment of N .

Definition 2 (Leanness). Quasi-ordering A is leaner than quasi-ordering B,
symbolized A % B, iff for every initial segment B0 of B and not of A there is
an initial segment A0 of A and not of B that is a subset of B0:

∀B0 ∈ I (B) \ I (A). ∃A0 ∈ I (A) \ I (B). (A0 ⊆ B0) .

Leanness is a partial ordering, as we will see below. In the case of M and N ,
we do have M % N . It is also the case that M is the leanest ordering in Ω.

Remark 1. The definition of leanness resembles a Smyth powerdomain construc-
tion [8] on initial segments (but removes common elements from comparison) and
the multiset extension [1] of proper superset (but applies to infinite sets).
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The initial segment relation, � , and the leanness relation, % , play comple-
mentary roles. For any two distinct quasi-orderings (ordering the same set of
elements), � will always leave the two orderings incomparable, whereas % may
make them comparable. When quasi-orderings are partial orderings (i.e. they
are anti-symmetric) the leanness relation does not compare any two distinct
orderings with the same set of non-reflexively ordered elements.

Possibly counter-intuitive at first is the following result.

Lemma 1. For any two quasi-orderings A and B,

A � B implies B % A .

Proof. For any two quasi-orderings A and B with A � B, we have I (A)\I (B) =
∅, so the definition of B % A is vacuously true. ��

The reverse direction is not generally true for quasi-orderings, but is true for
(antisymmetric) well-orderings.

Lemma 2. For any two well-orderings A and B,

A % B implies B � A .

Proof. Suppose B is not an initial segment of A. Then I (B) \ I (A) is non-
empty. Let S be the set Dom∗ B \ Dom∗ (A �B). Since B is well-ordered (and
antisymmetric), there must exist a minimum x ∈ S under the ordering B. Let
B0 be

B � Dom∗ ({x} ∪Dom∗ (A �B)) .

Then B0 ∈ I (B)\I (A). Any A0 ∈ I (A) that includes x must also include some
y /∈ Dom∗ B0, since A0 
= B0. For this reason, any A0 ∈ I (A) \ I (B) cannot be
a subset of B0. Thus A 
 % B. ��

In general, leanness is always a partial ordering (of quasi-orderings). The
proof proceeds as follows:

Lemma 3. For any quasi-orderings A, A0 and B,

A0 � A and A0 ⊆ B ⊆ A implies A0 � B .

In particular, if A0 ⊆ B0 are both initial segments of some ordering, then
A0 � B0.

Proof. Assume A0 � A. By definition, A0 � Dom∗ A0 = A � Dom∗ A0.

A0 ⊆ B ⊆ A implies A0 � Dom∗ A0 ⊆ B � Dom∗ A0 ⊆ A � Dom∗ A0

implies A0 � Dom∗ A0 = B � Dom∗ A0

implies A0 � B . ��
Theorem 1. Leanness is a partial ordering of quasi-orderings.
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Proof. For any quasi-ordering A, A % A is trivially true since I (A) \I (A) = ∅.
Thus leanness is reflexive.

Consider any quasi-orderings A and B, with A % B % A. Suppose there
exists A1 ∈ I (A) \ I (B). Then there exists B0 ∈ I (B) \ I (A) with B0 ⊆ A1

and there must also exist A0 ∈ I (A) \ I (B) with A0 ⊆ B0. By Lemma 3,
A0 must be a member of I (B), a contradiction. Thus I (A) \ I (B) must be
empty. Likewise I (B) \ I (A) must also be empty. Thus I (A) = I (B), and
hence A = B, implying anti-symmetry.

For transitivity, suppose
A % B % C .

Consider any C0 ∈ I (C) \ I (A). We show there must exist A0 ∈ I (A) \ I (C)
such that A0 ⊆ C0.
Case 1: C0 � B. Since A % B, there must be an A0 ∈ I (A) \ I (B) such that

A0 ⊆ C0. If A0 � C then A0 � B since A0 ⊆ C0 � B. Since A0 
� B we
must have A0 
� C. Thus there exists A0 ∈ I (A) \ I (C) with A0 ⊆ C0.

Case 2: C0 
� B. Since B % C, there must exist B0 ∈ I (B) \ I (C) such that
B0 ⊆ C0.
Case 2a: B0 � A. Thus there exists A0 = B0 ∈ I (A) \ I (C) with A0 =

B0 ⊆ C0.
Case 2b: B0 
� A. Since A % B, there must exist A0 ∈ I (A) \ I (B) such

that A0 ⊆ B0. By Lemma 3, if A0 were in I (C) then A0 must be in I (B),
thus A0 
� C. Thus we have A0 ∈ I (A) \ I (C) with A0 ⊆ B0 ⊆ C0.

Thus A % C. ��

4 Leanest

The set Ω from Section 2 provided a good example of orderings that include a
leanest ordering, but have no subset-minimum. In general, for any set of orderings
Ψ, the two properties presented below are sufficient to know that a leanest
ordering exists in Ψ. The structure these properties depend on is not from the
elements ordered or from the way the set of orderings is defined, but rather from
the set of all initial segments of members of Ψ (denoted I (Ψ)).

The first property is a closure property: any sequence of initial segments has
an upper bound. The second property is a kind of “tie breaker”. Intuitively, it
ensures that, for any initial segment in I (Ψ), there is a “winning” minimum
super-segment to follow, which we will call the “successor segment”.
Definition 3 (Successor segment). Given a set of quasi-orderings Ψ and
quasi-ordering A ∈ Ψ, a strict super-segment in Ψ of A is a successor segment
in Ψ of A if it is a subset of all strict super-segments in Ψ of A.

Theorem 2 (Existence). A set of quasi-orderings Ψ has a unique leanest or-
dering if
1. every ascending sequence C0 � C1 � C2 � ... in poset (I (Ψ), � ) has an

upper bound in I (Ψ); and
2. every non-maximal member of (I (Ψ), � ) has a successor segment in I (Ψ).
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If chains in (I (Ψ), � ) can be uncountable, then the term “sequences” in the
first condition needs to be interpreted to mean transfinite sequences, which are
functions from ordinals instead of just non-negative integers. In this paper, se-
quences can mean transfinite sequences or the usual kind of sequences. Typically
the usual kind of sequences suffice.

The proof of existence of leanest orderings requires introducing some funda-
mental constructs and identifying some intermediate results. We start with the
analogues to union and intersection for initial segments.

Definition 4 (Greatest common initial segment). For any two quasi-
orderings A and B, define the greatest common initial segment to be

A �B :=
⋃

(I (A) ∩ I (B)) .

Define the greatest common initial segment of a set of quasi-orderings S to be

�
A∈S

A :=
⋃( ⋂

A∈S

I (A)

)
.

Because I (A) is closed under union, A �B must always be an initial segment
of both A and B.

Proposition 5. The greatest common initial segment operation � is associa-
tive, commutative and idempotent.

Definition 5 (Least common super-segment). For any two quasi-orderings
A and B, let the least common super-segment be the intersection of all quasi-
orderings for which A and B are both initial segments. Symbolically:

A �B :=
⋂
{C : A,B � C} .

With � and � defined, we move on to an alternative definition of leanness
which at times is more convenient to use that the original definition.

Lemma 4. For any quasi-orderings A, B, and B0 ∈ I (B) \ I (A), if A ⊆
B0 � (A �B) then there exists A0 ∈ I (A) \ I (B) such that A0 ⊆ B0.

Proof. Consider any quasi-orderings A and B. We select a set of initial segments
of A that intuitively “have what makes A not an initial segment of B”:

S := {R � A : R � (A �B) = A} .

Each member of S includes all of the comparisons of A that are “above and
beyond” what A and B have in common. The intersection of all members of S
gives us “just what makes A not an initial segment of B”:

A0 :=
⋂

R∈S
R .
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Since all members of S are in I (A), A0 must also be in I (A). Since all members
of S have or lack the same comparisons of A that prevent membership in I (B),
A0 must also not be in I (B). We are left with A0 ∈ I (A) \ I (B).

Consider any B0 ∈ I (B) \ I (A) with A ⊆ B0 � (A �B). With

A0 � (A �B) =
⋂

R∈S
(R � (A �B)) =

⋂
R∈S

A = A

we get

A0 � (A �B) ⊆ B0 � (A �B)

and conclude that for any comparison 〈x, y〉 
∈ A �B, 〈x, y〉 ∈ A0 must imply
〈x, y〉 ∈ B0. If 〈x, y〉 ∈ A �B and 〈x, y〉 ∈ A0, then 〈x, y〉 ∈ B0 must hold for A0

to be the smallest member of S. Thus, A0 ⊆ B0. ��

Theorem 3. For any quasi-orderings A and B, A % B iff for every strict
super-segment B0 of A �B in B there exists a strict super-segment A0 of A �B
in A such that A0 ⊆ B0.

Proof. Assume A % B. Consider any B0 � B with A �B � B0. Since B0 ∈
I (B) \ I (A) there exists A1 ∈ I (A) \ I (B) such that A1 ⊆ B0. Let A0 =
A1 � (A �B). Since B0 is a super-segment of A �B, A0 ⊆ B0.

Assume

∀B0 ∈ B. (A �B � B0 → ∃A0 ∈ A. (A �B � A0 and A0 ⊆ B0)) .

Consider any B1 ∈ I (B) \ I (A). Let B0 = B1 � (A �B). Since B0 � B with
A �B � B0, there must exists A0 � A with A �B � A0 and A0 ⊆ B0. By
Lemma 4, there exists A1 ∈ I (A) \ I (B) with A1 ⊆ B1. Thus A % B. ��

Corollary 1. For any quasi-orderings A and B with A 
� B, if A ⊆ B0 for
every B0 with A �B � B0 � B, then A % B.

Proof. For every B0 � B with A �B � B0, there exists A � A with A �B � A
and A ⊆ B0. ��

Next we introduce constructions and results for working with sequences of
orderings.

Definition 6 (Dual-Chain). For any sequence C with C0 & C1 & C2 & ...
descending in poset (Ψ, % ) let the dual-chain of C be the sequence of common
initial segments

Δα (C) :=
�

β≥α

Cβ .

Let the dual-chain limit be their union:

limΔ C :=
⋃
α

Δα (C) .

Some results about dual-chains follow.
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Proposition 6

1. The dual-chain of a descending sequence in poset (Ψ, % ) is an ascending
sequence in (I (Ψ), � ) and a descending sequence in poset (I (Ψ), % ).

2. The least upper bound of a dual-chain in terms of � is the dual-chain limit.
3. For any descending sequence C in (Ψ, % ),

Cα � limΔ C = Δα (C) .

Lemma 5. For any set of quasi-orderings Ψ and any sequence C with C0 &
C1 & C2 & ... descending in poset (Ψ, % ), such that every non-maximal mem-
ber of (I (Ψ), � ) has a successor segment in I (Ψ), if the dual-chain limit of C
is not in I (C), then it is leaner than all members of C.

Proof. Let L be the dual-chain limit of C. Consider any Cα ∈ C.
Since L 
� Cα, Δα (C) � L and for some β′ > α we have Δα (C) � Δβ (C)

for any β > β′.
Consider any A0 � Cα with L � A0. Since A0 
� L, there must exist some

β > β′ > α and A0 
� Cβ . Since Cβ % Cα and A0 ∈ I (Cα) \ I (Cβ) there must
exist some B0 ∈ I (Cβ) \ I (Cα) such that B0 ⊆ A0.

Both Δβ (C) and Δα (C) �B0 are initial segments of Cβ and strict super-
segments of Δα (C). The intersection of Δβ (C) and Δα (C) �B0 and must also
be an initial segment of B and a strict super-segment of Δα (C). Thus we have

Δα (C) � Δα (C) � (Δα (C) �B0) � L .

By Theorem 3, L % Cα. ��

Lemma 6. For any set of quasi-orderings Ψ and any sequence C with C0 &
C1 & C2 & ... descending in poset (Ψ, % ), I (C) cannot include a successor
segment in I (Ψ) of the dual-chain limit of C.

Proof. Let S be a successor segment in I (Ψ) of limΔ C. Suppose there did exist
α such that S � Cα. Since limΔ C � S there must exist some β > α such that
S is not an initial segment of Cβ . Thus Cβ must be strictly leaner than Cα and
Cα � Cβ = limΔ C and for any B0 with limΔ C � B0 � Cβ it must be the case
that S is a subset of B0. By Corollary 1, Cα % Cβ , a contradiction. ��

Lemma 7. For any set of quasi-orderings Ψ, if every non-maximal member of
(I (Ψ), � ) has a successor segment in I (Ψ), then Ψ is down-directed (for all
A,B ∈ Ψ there must exist a C ∈ Ψ such that C % A,B).

Proof. If either A or B is an initial segment of the other then, by Lemma 1, the
proof is trivial.

Assume neither A nor B is an initial segment of the other. Thus A �B must
be a proper initial segment of both A and B. If every non-maximal member
of (I (Ψ), � ) has a successor segment in I (Ψ), then A �B has a successor
segment S in I (Ψ) where S ⊆ A0 and S ⊆ B0 whenever (A �B) � A0 � A and
(A �B) � B0 � B.
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If S � A then S is not an initial segment of B and A �B = S �B and thus
A % S % B by Lemma 1 and Corollary 1.

Similarly, if S � B then B % A.
If S is not an initial segment of A nor of B then A �B = S �A and A �B =

S �B and thus by Corollary 1, S % A. Since S � Ψ there exists some C ∈ Ψ
with S � C. By Lemma 1, C % A. ��

The proof of the leanest-ordering existence theorem follows next:

Proof (of Existence Theorem). Consider any sequence C with C0 & C1 & C2 &
... descending in poset (Ψ, % ). The dual-chain of C is an ascending sequence in
poset (I (Ψ), % ). By the first condition on I (Ψ), the dual-chain must have an
upper bound U in poset (I (Ψ), � ). Since I (U) is closed under union, the dual-
chain limit V must be in I (U), and thus also in I (Ψ). We seek L � Ψ leaner
than every member of sequence C.

Case 1: The dual-chain limit V is not in I (C). Choose L = V . By Lemma 5,
L % Cα for all α.

Case 2: V ∈ C. Choose L = V . For some α, Cα = L. For every β > α, Cα � Cβ

and Cβ % Cα thus Cβ = Cα by Lemma 1 and Theorem 1. Again, L % Cα

for all α.
Case 3: V ∈ I (C)\C. For some α, limΔ C � Cα. Using the second condition on

I (Ψ), we choose L to be the successor segment in I (Ψ) of limΔ C. Consider
any α′ > α. By Lemma 6, L is not an initial segment of Cα′ and hence
Cα′ � L � L. Since limΔ C is an initial segment of both Cα′ and L, limΔ C �

Cα′ � L. Since L is the successor segment of limΔ C, it must be the case
that limΔ C = Cα′ � L. Thus, for all A0 with Cα′ � L � A0 � Cα′ , we have
L ⊆ A0. By Corollary 1, L % Cα′ . It follows that L % Cα for all α.

In all three cases, we have L � Ψ leaner than every member of C. There
must exist some M ∈ Ψ such that L � M . By Lemma 1, M % L, thus M is a
lower bound to C in poset (Ψ, % ).

If chains can be uncountable, then “sequences” must be interpreted to mean
transfinite sequences. Otherwise, the usual kind of sequences suffices. Since every
descending sequence in (Ψ, % ) has a lower bound, every chain must have a
lower bound, because every chain can be countably enumerated (or well-ordered
if uncountable) and a descending subsequence extracted. By Zorn’s Lemma, Ψ
must have at least one minimally lean member. By Lemma 7, Ψ is directed, so
there can be only one. Thus, there must exist a unique leanest member of Ψ. ��

5 Application to Binary Trees

Earlier, we described a very simple leanest string ordering. With the Existence
Theorem, leanest orderings of greater complexity can be found. In the example
to follow, binary trees serve as elements rather than strings.

The most basic and trivial tree is the empty tree denoted �. This tree has no
nodes or branches. From the empty tree �, more interesting trees can be built
using the operation of (x � y), which places tree x to the left of a root node and
tree y to the right. For instance,
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(� � �) =

(� � (� � �)) =

((� � �) � �) =

((� � �) � (� � �)) =

The following set of conditions for quasi-orderings comes from [2]:

Definition 7 ([2]). Let Ω be the set of all quasi-orderings A of finite binary
trees that satisfy the following three tree-ordering conditions:

– Growth: (x � y) �A x, y;
– Monotonicity: if y �A z then (x � y) �A (x � z) and (y � x) �A (z � x);
– Lexicography: (x1 � x0) �A (y1 � y0) if x1 ≺A y1 and x0 �A (y1 � y0).

We establish that the first condition of the Existence Theorem holds for Ω.

Lemma 8. Every chain in (I (Ω), � ) has an upper bound.

Proof. Consider any chain C in poset (I (Ω), � ). Let L = ∪A∈CA and D be the
set of all trees that are not ordered by L (the complement of Dom∗ L). Let K
be the ordering defined as

x �K y :=

⎧⎨⎩
x �L y, or
x ∈ Dom∗ L and y ∈ D, or
x, y ∈ D

The ordering K places D as an equivalence class ordered strictly above Dom∗ L.
It must satisfy all of the conditions to be a member of Ω and thus L � Ω and is
an upper bound of C. ��

Next we establish that the second condition of the Existence Theorem holds
for Ω.

Lemma 9. For every A � Ω, the set of strict super-segments of A has a subset-
minimum.

Proof. Consider the set S of strict super-segments in I (Ω) of A. Because Ω
consists of total well-founded orderings (see [2]), every super-segment in S must
have an equivalence class ordered as less than all other elements outside of A.
Let T be the set of all these equivalence classes and let B be the intersection of
all these equivalence classes.

No two members of T can be disjoint, since otherwise one could construct
an ordering of trees that satisfies the conditions of membership in Ω, but the
ordering would not be total – a contradiction.
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Furthermore, there can be no subset descending sequence of members of T ,
for otherwise one could construct an ordering of trees that satisfies the conditions
of membership in Ω, but again the ordering would not be well-founded, which is
a contradiction.

Were B empty, then either two members of T would be disjoint or there
would be a subset descending sequence of members of T . Since neither can be
the case, B must be non-empty.

Let C be the ordering of A with B placed as an equivalence class strictly
above A. Let D be the ordering of C with an equivalence class strictly greater
than C consisting of all binary trees not in C. If D is not a member of Ω then
one of the members of S cannot be the initial segment of a member of Ω; one of
the conditions for membership in Ω must be violated.

Thus, C is the subset-minimum of all strict super-segment in I (Ω) of A. ��

It follows from Theorem 2 that Ω has a leanest (lpo-like) ordering.

6 Conclusion

The minimum quasi-ordering satisfying certain conditions is a convenient def-
inition for a well-quasi-ordering used in proving termination of rewriting. A
set of quasi-orderings – rather than partial orderings – is easier to define since
anti-symmetry is not required. But we have seen that this definition technique
comes with a possible snag: There may be no subset-minimum. In particular,
conditions that involve a strict comparison (≺) can preclude the existence of a
subset-minimum.

To compensate for this problem, we described an alternative to a subset-
minimum ordering, namely, the “leanest ordering”, building on fundamental
notions for quasi-orderings. By establishing two properties on a set of quasi-
orderings, a leanest ordering is guaranteed to exist. These properties are defined
independent of what kind of elements are ordered and what conditions define a
set of quasi-orderings, which should help the results of this paper be applicable
in a wide range of situations.
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Abstract. Modular rewriting seeks criteria under which rewrite systems
inherit properties from their smaller subsystems. This divide and con-
quer methodology is particularly useful for reasoning about large systems
where other techniques fail to scale adequately. Research has typically
focused on reasoning about the modularity of specific properties for spe-
cific ways of combining specific forms of rewriting.
This paper is, we believe, the first to ask a much more general question.
Namely, what can be said about modularity independently of the specific
form of rewriting, combination and property at hand. A priori there is
no reason to believe that anything can actually be said about modularity
without reference to the specifics of the particular systems etc. However,
this paper shows that, quite surprisingly, much can indeed be said.

1 Introduction

The key properties of term rewriting systems (TRSs) are confluence and strong
normalisation. One technique for establishing these properties is modularity
which seeks criteria under which TRSs inherit properties from their smaller (and
hence easier to reason about) subsystems. This divide and conquer methodology
is particularly useful for reasoning about large systems where other techniques
fail to scale adequately.

Research originally focused on disjoint unions of term rewrite systems where
the systems do not share any operators. Here, confluence is modular [23] and
strong normalisation is modular for non-collapsing TRSs and for non-duplicating
TRSs [22]. Subsequently, a variety of alternative proof techniques have been
developed [9, 10, 16, 19]. Modularity for conditional term rewriting systems
(CTRSs) was first studied by Middeldorp [17] who showed that confluence is
modular for certain types of CTRS while strong normalisation is again only
modular in the presence of extra syntactic restrictions. Several unions permit-
ting the sharing of term constructors have been proposed but, for each of these,
confluence and strong normalisation are only modular again in the presence of
various syntactic restrictions [18, 20].

These examples demonstrate how modularity is typically studied for spe-
cific combinations of rewrite systems, or specific notions of rewriting, or specific
properties. This paper, we believe, is the first to ask what can be said about
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c© Springer-Verlag Berlin Heidelberg 2005



Abstract Modularity 47

modularity independently of these specifics. That is we do not ask about the
modularity of confluence, or termination, or weak termination, but rather seek
a general modularity theorem applicable to all of these properties. Similarly, we
wish to get away from modularity for specific notions of rewriting such as term
rewriting, or graph rewriting, or equational rewriting and instead prove general
modularity results applicable to as many forms of rewriting as possible. And fi-
nally, we wish to avoid commitment to modularity for specific ways of combining
rewrite systems but rather extract conditions that are uniformly applicable to a
variety of different such mechanisms.

A priori, there is no reason to believe that such an abstract theory of modular-
ity should exist. Certainly it is hard to see how the conditions on the modularity
of confluence, strong normalisation etc. are instances of the same general theme.
This paper demonstrates that such a theory is indeed possible. Of course, it will
not be able to magically prove the most general results for any specific situation.
Rather, its contribution is to provide a platform of general results which can be
instantiated for a specific situation as the need arises. In order to develop such
a theory of abstract modularity, we have to build it upon a theme which unifies
key features of specific modularity results. We believe the key concept in modu-
larity is the notion of layer structure on the terms of the combined TRS which
describes how rewrites in the combined TRS decompose into rewrites from the
component TRSs. If rewrites do not preserve this layer structure (i.e. if there are
collapsing rewrites), then non-trivial interactions between the layers may occur
and modularity may fail.

Our results show that, providing rewrite systems preserve the layer struc-
ture, properties are inherently modular. We were quite surprised to find such
a powerful result by using the techniques we have developed in our previous
work [11–13]. To this end, we generalised our approach by treating not just term
rewriting systems, but all rewrite systems that arise as monads, and by abstract-
ing from specific properties to properties in general, given by a subcategory of
the base.

Our general modularity result requires two conditions: i) that the rewrite
systems do not collapse layers which is reflected in a condition on the monad
representing the rewrite system; and ii) that the semantic and syntactic treat-
ment of properties coincide. The latter condition ought to be automatic in the
sense that it should hold for any reasonable property; it does for all well-known
ones, such as confluence, termination and weak termination. Overall, we believe
that this paper delivers on the promise of clean and simple results in rewriting
based upon the categorical methodology.

The paper is structured as follows: In Sect. 2, we explain our abstract notion
of the data structures we rewrite. In Sect. 3, we show how to model the actual
rewriting by monads. In Sect. 4, we develop our semantic notion of properties of
rewriting systems, and show they coincide with the well-known syntactic prop-
erties. Sect. 5 introduces an abstract notion of combining systems modelled by
monads and shows the general modularity results, the key result being Thm. 27.

For this paper, we assume a very basic knowledge of category theory (com-
prising concepts such as categories, functors, push-outs and adjoints), but will
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explain all more sophisticated concepts as they are needed, and concentrate on
examples and intuition rather than technical categorical proofs. For an introduc-
tion to category theory, see [14].

2 Abstract Data Structures

To enable our modularity results to as many forms of rewriting as possible,
we need to extract their common feature. One possibility are abstract reduction
systems (ARSs) which model a rewrite system by the one step reduction relation
it induces. This semantics therefore throws away the structure of the data being
rewritten, including the key concepts of substitution and layer which are central
to modularity. Thus, it is unlikely that the ARS semantics of rewriting can be
used as the basis of an abstract theory of modularity.

For us, rewriting consists of a data structure where subterms can be replaced
with other terms and, as such, substitution is the fundamental property. Thus,
we propose to use monads as they take as primitive an abstract notion of data
endowed with a well behaved notion of substitution.

Definition 1 (Monad). A monad T = 〈T, η, μ〉 on a category C is given by a
functor T : C → C, called the action, and two natural transformations, η : Id → T ,
called the unit, and μ : TT → T , called the multiplication of the monad, satisfy-
ing the monad laws: μ · Tη = Id = μ · ηT , and μ · Tμ = μ · μT .

Good introductions to the theory of monads in our sense are [2, 15, 21]. The
canonical example of a monad is the one arising from the term algebra over a
signature:

Definition 2 (Signature). A (single-sorted) signature consists of a function
Σ : N → Set. The set of n-ary operators of Σ is defined Σn

def= Σ(n)

Definition 3 (Term Algebra). Given a signature Σ and a set of variables X,
the terms TΣ(X) built over X are defined inductively:

x ∈ X
x ∈ TΣ(X)

f ∈ Σn t1, . . . tn ∈ TΣ(X)
f(t1, . . . , tn) ∈ TΣ(X)

Lemma 4. The map X �→ TΣ(X) defines a monad TΣ on Set.

Proof. Given a function f : X → Y , renaming of variables defines a function
TΣ(f) : TΣ(X)→ TΣ(Y ). Every variable is a term, which gives us a family
ηX : X → TΣ(X) while substitution defines a family μX : TΣTΣ(X)→ TΣ(X).
The monad laws state that substitution behaves correctly, i.e. is associative and
has variables as left and right units, which is easily checked by induction. ��

Our interest in monads is that they describe a number of other computationally
interesting data structures possessing well behaved notions of substitutions, as
the following examples show.
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Example 5 (Strings). The map sending an alphabet X to the set X∗ of words
over X extends to a monad T∗ : Set → Set. Substitution here takes a word con-
sisting of words and flattens it into one word.

Example 6 (Groups and Rings). The map sending X to the free group G(X)
over X extends to a monad. Similarly, the map sending X to the set of free
polynomials over X extends to a monad as well. In both cases, substitution is
defined structurally, as for the term algebra above.

These examples can be generalised to any algebraic theories:

Example 7 (Algebraic theories). Given an algebraic theory 〈Σ,E〉 where Σ is a
signature and E a set of equations, let ∼E be the congruence generated from E,
and T〈Σ,E〉(X) = TΣ(X)/ ∼E be the term algebra quotiented by this congruence,
then the map X �→ T〈Σ,E〉(X) extends to a monad.

Furthermore, monads have another key advantage when applied to modularity,
in that the interleaving of monads models the layer structure, e.g. TΣ(TΩ(X))
consists of terms with a Σ-layer over a Ω-layer with variables built from X .

As a mild technical condition, we require these monads to be finitary which
corresponds to the fact that the data structure under question is built induc-
tively. Formally, a monad is finitary iff it preserves filtered colimits [1] (i.e. T (X)
is built from a finite subset of X). Finitary monads on a category C and monad
morphisms form a category Mon(C). Motivated by all of this, we make our first
definition of a rewrite structure, which is the structure containing the data over
which rewriting takes place.

Definition 8. A rewrite structure is a finitary monad T : Set → Set.

To summarise, this section observed that in order to do rewriting, the funda-
mental properties required were the construction of some form of term calculus
and a notion of substitution for that calculus. These concepts are perfectly cap-
tured by a rewrite structure.

3 Abstract Rewriting

A monad on Set builds a set of terms from a set of variables. Incorporating
rewrites into this framework means that we are actually building a relation of
terms and rewrites between them from a relation consisting of a set of variables
and (what we consider to be) rewrites between these variables, called variable
rewrites. That variables rewrite to other variables may seem odd from a rewriting
perspective but in modularity these variables represent terms from sublayers,
and terms in a sublayer certainly can rewrite to others. Further, as we shall see,
adding variable rewrites does not affect properties such as confluence.

The exact nature of these relations depends upon what we are interested in
studying. If we are interested in one-step reduction or one-step completion, we
take relations, if we are interested in many-step reduction, we take preorders, or
if we are interested in labelled rewriting, graphs or categories. For termination,
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we want to preserve reduction sequence, so we take transitive relations or well-
orders. Here, the base category is the category Pre of preorders and monotone
morphisms between them, but the reader should be aware that our general treat-
ment can, and will be used with other base categories. We could make the fol-
lowing definitions parametric over the choice of Pre, and work with an arbitrary
category V such that there is an adjunction as in Lemma 9 below, but we prefer
a more concrete definition here.

Lemma 9. The functor D : Set → Pre, which maps a set to the discrete preorder
over it, is left adjoint to the functor V : Pre → Set, which maps a preorder to its
underlying set.

Proof. The adjunction is establishedby the isomorphism Pre(DX,P )∼=Set(X,VP )
for any set X and preorder P . ��

In fact, D also has a left adjoint C : Pre → Set, which maps preorder to its set of
connected components, and V has a further left adjoint, which maps a set to the
total order on it. Now, there are a number of different ways of adding rewrites
to a rewrite structure, that is to turn a monad on Set into a monad on Pre:

1. We can define the monad MR : Pre → Pre to send a preorder X to the pre-
order defined as the abstract reduction semantics where there are no vari-
ables, but constants from X with associated variable rewrites. However, we
still need to define the ARS semantics for each form of rewriting.

2. We can define the action of the monad concretely as in our previous work on
term rewriting systems, e.g. [11, 12]. The advantage of this is that it gives a
precise description of the rewrite monad, but at the cost of having to repeat
the exercise every time we change the data structure.

3. We can define a rewrite presentation to be a parallel pair in Mon(Set), lift
to Mon(Pre) and take the coinserter. This was the approach in [3]. The
advantage of this approach is that it gives a precise and abstract formation
of the rewrite system associated to any presentation, but at the cost of the
technical overhead of coinserters.

In this paper, we choose an axiomatic approach which allows us to derive as
many results as possible on a general level, and then instantiate them.

Definition 10. Let M be a rewrite structure. An M -rewrite system is a finitary
monad MR : Pre → Pre such that MR is a lifting of M , i.e. the following diagram
commutes:

Pre
MR � Pre

Set

V
�

M
� Set

V
�

The condition says that the monad MR which calculates terms and rewrites
agrees with the monad M on the terms. Thus one can think of MR as acting as
M on terms, but adding in extra rewrites.
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We have been speaking informally of the ARS semantics for rewrite systems,
but now we make this precise. If R is a rewrite system, one usually fixes a
countable infinite set of variables X , and considers the resulting ARS (which
would be MR(X) here). But we can be more specific, as all countable infinite
sets are isomorphic to the set N of natural numbers, so we take the discrete
preorder DN as the canonical representation of all variables, and call MR(DN)
the representing ARS. Thus, the difference between the monadic semantics and
the ARS semantics is that the monadic semantics builds terms and rewrites over
an arbitrary, not fixed, preorder of variables and variable rewrites. This extra
flexibility is precisely what is required by modular rewriting as we can instantiate
the variables and variable rewrites to be the terms and rewrites from a sublayer.

Given a rewrite structure M , there is always an empty (or discrete) M -rewrite
system M∅ with no rewrite rules.

Lemma 11. For a rewrite structure M , there is a free M -rewrite system M∅.

Proof. The functor V D : Mon(Pre)→ Mon(Set) has a left adjoint, denoted L, as
shown in [3]. This computes the free lifting M∅ = L(M). ��

If MR is an M -rewrite system, then by definition MV = VMR. Precomposing
with D, and noting VD = 1, we get M = VMRD, and hence a canonical em-
bedding κ : M∅ →MR which embeds the empty M -rewrite system in any other
M -rewrite system. Given a M -rewrite system, we will often want to abstractly
use the idea that rewrites created by MR are either created by an underlying
rewrite system or by the variable rewrites. This is captured by asking that the
diagram (1) be a push-out, where ε is the counit of the adjunction of Lemma 9.

M∅(DVX)
M∅ε� M∅X

MR(DVX)

κDVX
�

MRε
� MRX

κX
�

(1)

We say an M -rewrite system MR is cocartesian iff κ : M∅ →MR is a cocartesian
natural transformation, i.e. all components form push-out squares. Most M -
rewrite systems are cocartesian, because MR(X) is the coproduct of the monads
representing R and representing the rewrites of X .

We finish this section with some examples.

Example 12 (Term Rewriting). A term rewriting system 〈Σ,R〉 has as a rewrite
structure the term algebra monad TΣ and as a TΣ-rewrite system the monad
T〈Σ,R〉 which sends a preorder X to the smallest ordered Σ-algebra T〈Σ,R〉(X)
containing X for which R is sound [3]. Cocartesianness follows from the inductive
construction of T〈Σ,R〉(X) [11].

Example 13 (String Rewriting and Gröbner Bases). String rewriting can be re-
garded as rewriting over the free monoid, i.e. words, while Gröbner bases can be
regarded as rewriting over free rings, i.e. polynomials. The rewrite structure here
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is given by Example 5 and 6, with MR adding in a reduction structure between
the words and polynomials respectively.

Thus, for example, Gröbner bases have as a rewrite system the monad that
computes for a preorder X , the smallest preorder on the free ring over X con-
taining X for which the ring operations are monotone and for which R is sound.

Example 14 (Equational Rewriting). The rewrite structure for an equational
term rewriting system 〈Σ,E,R〉 is the monad T〈Σ,E〉 from Example 7, and as
a T〈Σ,E〉-rewrite system the monad T〈Σ,E,R〉 which sends a preorder X to the
smallest preorder on T〈Σ,E〉(X) for which the Σ-constructors are monotone and
for which R is sound. Cocartesianness follows from cocartesianness of T〈Σ,R〉.

Further examples could be developed, e.g. the rational monad suffices as a
rewrite structure to consider rational rewriting. Recent work on abstract syntax
shows that structures with variable binding are monads. This monadic approach
to higher order rewriting has been developed by Hamana [8].

These examples follow the general pattern. Given a rewrite structure M , a
M -rewrite system is given by triples (Y, l, r) where Y is a set and l, r are elements
of MY . The associated M -rewrite system MR maps a preorder X to the smallest
preorder on M(X) for which the operations in M are monotone and for which
the interpretations of l is greater than that of r. When this order relation is
defined inductively, the cocartesianness of κ : M∅ →MR follows.

To summarise, M -rewrite systems provide a model of rewriting covering a
large variety of different forms of rewriting. In fact, given any underlying data
structure for rewriting which forms a monad, i.e. possesses a well behaved notion
of substitution, we can model rewriting over that data structure by a monad
which sends a preorder to the smallest preorder over MV(X) containing X ,
which forms an M -algebra which validates the rewrites.

4 Abstract Properties

Properties of rewrite systems are often given via properties of the associated
abstract reduction system, e.g. a TRS is confluent iff the rewrites built from the
TRS using a countably infinite set of variables form a confluent preorder. If we
are going to reason about rewriting using M -rewrite systems, we need a definition
of properties in terms of the representing monad MR. The direct translation is
that MR satisfies P if the representing ARS M(DN) does. However, given the
need for variable rewrites in modularity, it is only reasonable to ask the relation
MR(X) to satisfy a property if the relation X does, and thus an alternative
definition would be that MR satisfies P iff it preserves P . We say that property
is monadic if these two notions coincide:

Definition 15. Let P be a property of preorders, characterising a subcategory
K of Pre. We say P is monadic if the following holds: M(DN) ∈ K iff whenever
X ∈ K then MR(X) ∈ K.

If this definition is sensible it must be satisfied by the standard properties such as
confluence and strong normalisation, so we first check if these two are monadic.
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4.1 Abstract Confluence

In this section we prove that confluence is monadic according to Def. 15, i.e.
a finitary monad MR : Pre → Pre preserves confluence iff its representing ARS
MR(DN) is confluent. One direction is easy: if MR preserves confluence, then
since DN is discrete and hence trivially confluent, MR(DN) is also confluent.

Note that in the following cocartesianness is not required , and that previous
results [11, 12] restricted to the case where MR is the representing monad for a
TRS and used an explicit inductive construction of this monad.

To prove our result, we use a characterisation of confluence in terms of maps.

Lemma 16. If X is a finite preorder then it is confluent iff the map f :X→DCX
has a right adjoint g : DCX → X, denoted as f ( g.

Proof. Let X be confluent. To each connected component of X assign an upper
bound of the connected component which exists by confluence and finiteness.
This defines a monotone function g : DCX → X which satisfies fg = 1 and
1 → gf , establishing f ( g. Conversely, given such a right adjoint, it is obvious
that each connected component has a minimal element, making X confluent. ��

Adjoints like the above allow us to reflect confluence.

Lemma 17. Let X, Y be preorders, and maps f : X → Y , g : Y → X such that
1 → gf . Then if Y is confluent so is X.

Proof. Let b← a→ c be a span in X with completion fb→ d← fc in Y , which
has an image gfb→ gd← gfc in X . Since b→ gfb, and c → gfc in X , gd is a
completion of b← a→ c, hence X is confluent. ��

Lemma 18. Let M = 〈M,η, μ〉 be a monad such that MDN is confluent, then
MDX is confluent for every finite X.

Proof. We proceed by assuming that MDX is inhabited, e.g. by ∗ ∈MDX . We
can assume this without loss of generality, as given any span b← a→ c in MDX
which needs completing, we can take ∗ = a.

With X finite, we have f : X ↪→ N and hence Df : DX ↪→ DN, and we can
define a map g : DN →MDX by cases so that the following commutes:

DX
Df ��

ηDX ����
��

��
���

DN

g
��

MDX

g(x) =

{
ηDX(x) for x ∈ DX

∗ for x 
∈ DX

Now g� : MDN→MDX (the Kleisli extension of g) is defined as g� = μDX ·Mg,
and hence satisfies g� ·MDf = μDX ·Mg ·MDf = μDX ·MηDX = 1. This allows
us to reflect confluence of MDN along MDf : MDX →MDN using Lemma 17,
making MDX confluent. ��



54 Michael Abbott, Neil Ghani, and Christoph Lüth

Lemma 19. Let M be a functor M : Pre → Pre taking finite discrete preorders
to confluent preorders. Then M also takes finite confluent preorders to confluent
preorders.

Proof. Let X be a finite confluent preorder. By Lemma 16 there are two adjoint
maps f ( g :X→DCX , lifting to two adjoint maps Mf ( Mg :MX→M(DCX).
By Lemma 18, the preorder M(DCX) is confluent and hence by Lemma 17, MX
is confluent. ��

The following lemma uses the finite accessibility of Conf, which is a technical
property and means that all confluent preorders are finitely generated. This
allows us to deduce confluence of infinite preorders from the confluence of their
finite suborders. We can then establish the monadicity of confluence as follows:

Lemma 20. If M is a finitary monad and MDN is confluent then MX is con-
fluent whenever X is.

Proof. By Lemma 18, MDX is confluent for finite X if MDN be confluent.
By Lemma 19, MP is confluent for every finite confluent preorder P . Finally,
use finite accessibility of Conf to write any confluent P as a filtered colimit
P ∼= colimPi of finite confluent preorders. We can now write

MP ∼= M colimPi
∼= colimMPi

concluding that MP can be written as a filtered colimit of confluent preorders
and is therefore confluent. ��

4.2 Abstract Strong Normalisation

Strong normalisation can be treated in a similar way. We do need a different base
category though, as we need to exclude identity rewrites. First a few preliminar-
ies. Let Trans be the category of transitive, but not necessarily reflexive, orders
and monotone functions between them, and let WOf be the full subcategory of
well-founded, finitely branching orders. These are the strongly normalising or-
ders that we are interested in. For any X ∈ Set, we have the discrete order on X
which is transitive but not reflexive (and of course in WOf ), which by abuse of
language we call DX ; and similarly, for the underlying set of a transitive order
Y we use VY . This overloading of notation makes sense, as we are now using a
different instance of Definition 10 (with Trans for Pre).

To characterise WOf algebraically, we use maps into and from ω, the natural
numbers ordered by the strictly-greater relation > (or strict reverse inclusion),
and their dual ωop with the reversed order, as follows.

Lemma 21. If X ∈ Trans, then X ∈ WOf iff there is a map X → ω. If X is
not in WOf then there is a map ωop → X.

Note the finite branching is required to ensure that to each element of a well-
founded order we can assign an element of ω (since each element only reduces
to a finite number of direct successors), and that this assignment is monotone.
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We now show that strong normalisation is monadic. According to Def. 15,
we need to show that given an M -rewriting system MR, MR(DN) is SN iff the
monad MR preserves strong normalisation, or equivalently, restricts to WOf .
One direction is easy: if MR preserves SN, then since DN is discrete and hence
trivially well-founded, MR(DN) is also SN. Our aim is to show the converse, and
as with confluence, we build up to our result systematically. Note that opposed
to confluence, we now need MR to be cocartesian.

The first result shows that we can show strong normalisation by replacing all
variables with a canonical element. For this, let 1 be the one-element set. Then,
there is exactly one map !X : X → D1 in Trans if and only if X is discrete as the
map needs to be monotone and D1 has an empty order structure.

Lemma 22. Let T : Trans→ Trans and TD1 ∈WOf , then TDX ∈WOf for all
sets X.

Proof. By Lemma 21, there is a map TD1 → ω. Since DX is discrete, there is
a map D!X : DX → D1. Applying T and composing with the first map gives a
map TDX → ω, hence by Lemma 21,TDX ∈ WOf . ��

Now observe that the free lifting M∅ of the monad M is strongly normalising
because the only rewrites in M∅ are variable rewrites. The second main step in
showing that normal SN implies monadic SN is to show that adding an order
structure to the variables does not affect SN:

Lemma 23. Let MR be a cocartesian M -rewrite system with κ : M∅ →MR a
cocartesian transformation. If MR(D1) is SN and X is SN, then MRX is SN.

Proof. We know that M∅X and by Lemma 22 MR(DVX) are well-founded and
hence there are maps α1 : MR(DVX) → ω and α2 : M∅X → ω. α1 and α2 do not
form a cone over the square in Diagram (2), i.e. α1 · κ 
= α2 ·M †ε, so we define
new maps β1 : MR(DVX)→ ω and β2 : M∅X → ω by

β1(t) = max{α1(t), α2(t)} β2(t) = max{α1(t), α2(t)}

This can be done as all the orders mentioned above have the same carrier. That
the βi are monotone is easily checked and, since they have the same underlying
function, we have a cone over the square in diagram (2), and since this is a push-
out square (because of the cocartesianness of MR), we have a map MRX → ω
as required.

M †DVX
M †ε ��

κ
��

M †X

κ
��

β2

��

MR(DVX)
MRε

��

β1
��

MR(X)

���
�

�
�

�

ω

(2)

��
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Putting all the pieces together, we get the main result:

Lemma 24. Let MR be a cocartesian M -rewrite system. The ARS MR(DN) is
SN iff the monad MR is SN.

Summing up this section, we have shown that confluence and SN are monadic,
i.e. their usual definition in terms of the representing ARS coincides with them
being preserved by the monad representing an M -rewrite system.

5 Abstract Combinators

Modularity deals with combinations of systems, so we are now going to consider
the combination of M -rewrite systems. We do so by defining combinators for
putting together the representing monads. The appropriate categorical construc-
tion here is the colimit, but computing the colimit of monads in full generality
is a technically involved exercise. Even if we restrict ourselves to the coproduct,
corresponding to the disjoint union M -rewrite systems, the construction is very
unwieldy, and hence much research has recently focused on developing simpler
algorithms which are correct in specific situations. Ideal monads are one such
situation which correspond to the idea of layers being non-collapsing.

5.1 Ideal Monads

Intuitively, ideal monads are monads whose variable part can be separated from
the non-variable part. Formally:

Definition 25 (Ideal Monad). A monad T = 〈T, η, μ〉 is ideal iff there is a
functor T0 such that T = Id + T0, the unit is the left injection and there is a
natural transformation μ0 : T0T → T0 such that

T0T

μ0

��

inrT �� TT

μ
��

T0
inr

�� T

where inr : T0 → Id + T0 is the right injection into the coproduct.

We write ideal monads in the form Id+T0 for simplicity (where Id is the identity
functor) and leave the restricted form of multiplication μ0 implicit. A monad
morphism f : Id + T0 → R whose source is an ideal monad has its action on Id
forced by the monad laws and is hence of the form [ηR, f0] where f0 : T0 → R.
Examples of ideal monads over Set include the term monads TΣ, the string and
ring monads from Examples 5 and 6, and in general any algebraic theory T〈Σ,E〉
where both sides of every equation are either variable terms or non-variable
terms; hence, a counter-example is the group monad from Example 6.

The fundamental observation behind the construction of the coproduct R+S
of two ideal monads R = Id + R0 and S = Id + S0 is that R + S should contain
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R and S as submonads, and further, that R + S should be closed under the
application of R0 and S0. Hence, R + S should consist of alternating sequences
beginning from R0 or S0, and we ask for the least functors satisfying the following
mutually recursive equations:

T1
∼= R0(Id + T2) T2

∼= S0(Id + T1).

The solution is computed as the least fixpoint of a functor Φ on the product
category (Pre → Pre)× (Pre → Pre) (so Φ takes pairs of functors as arguments):

〈T 1, T 2〉 = μΦ Φ〈F,G〉 = 〈R0 · (Id + G), S0 · (Id + F )〉 (3)

To solve the fixpoint equation, note that the functor c0 : Pre → Pre which
constantly returns the initial object is initial in the functor category Pre →
Pre. We can then use the following standard construction: for a finitary functor
F : C → C, the least fixpoint μF is given by the colimit of the following chain (if
it exists and there is an initial object 0, with ! : 0 → X the unique map out of
the initial object):

0
! � F0

F ! � F 20
F 2!� F 30 . . . (4)

Now, intuitively T1 consists of elements in R + S whose top layer is a non-
variable R-layer (captured by the use of R0) and whose next layers are either
variables or a non-variable S layer, etc. In our opinion, this is a very elegant
way of capturing the layer structure in the disjoint union of two systems. The
following result proves our intuition correct and can be found in [7].

Theorem 26. The action of the coproduct of ideal monads Id +R0 and Id + S0

is the functor T = Id + (T1 + T2), where T1 and T2 are defined as in (3).

The central result of this paper is that those rewrite systems whose representing
monad is ideal have good modularity properties and, further, that these are
actually rather easy to derive. Note that Theorem 26 holds for all ideal monads,
i.e. all ideal M -rewrite systems, not only term-generated ones. We now prove the
central theorem from which all our modularity results can be uniformly derived.

Theorem 27. Let P be a monadic property represented by a subcategory K of
Pre. If K has coproducts, an initial object and ω-colimits, then P is modular for
the disjoint union of ideal M -rewriting systems.

Proof. Let R and S be ideal M -rewriting systems satisfying P . To show that
their disjoint union has the property P , we have to show that, given X ∈ K,
R + S(X) = X + T1(X) + T2(X) is in K.

By Theorem 26, T1(X) and T2X are given by the initial fixpoint of Φ in (3)
at X ; i.e. the colimit of the chain (5). We know that both R0 and S0 preserve

〈0, 0〉 !� 〈R0X,S0X〉 � 〈R0(X + S0X), S0(X + R0X)〉 � . . . (5)

K, and since K has coproducts and an initial object, all objects of the chain (5)
are in K, and since K has ω-colimits, so is the fixpoint, i.e. T1(X) and T2(X).
With K having coproducts, we get that X + T1(X) + T2(X) ∈ K. ��
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We finish this section by using Theorem 27 to uniformly derive a number of
modularity results.

Example 28 (Confluence of Non-Collapsing TRSs). Take K to be the full sub-
category Conf of Pre whose objects are confluent orders. A TRS Θ is confluent
iff TΘ(DN) is confluent, where TΘ is its representing monad (Ex. 12). Using
Lemma 20, this is equivalent to TΘ being confluent.

It remains to show that confluence satisfies the preconditions of Theorem 27.
Clearly, the empty preorder (the initial object) is confluent, and the disjoint
union of two confluent preorders is confluent. Further, given an ω-chain of con-
fluent preorders, their colimit (i.e. the least upper bound) will be confluent as
well (this is the finite accessibility of Conf mentioned above), allowing us to
conclude the result.

Example 29 (Strong Normalisation for Non-Collapsing TRS). In this example,
we have to change the base category from Pre to Trans (as in Sect. 4.2), and let
K to be the category WOf of finitely branching well-founded orders. As in the
previous example, we can use Lemma 24 to show that termination of a TRS Θ
and termination of the monad TΘ coincide.

It remains to show that strong normalisation satisfies the preconditions of
Theorem 27. The empty relation is SN. The disjoint union preserves SN. WOf

actually fails to have all filtered colimits, but fortunately it does have colimits of
chains which preserve the normalisation rank, as is the case for the chain in (5).
Thus, Theorem 27 applies.

Example 30 (Adding Equations; Modularity for Equational TRSs). Let R be a
confluent non-collapsing TRS. Assume we want to add to R a fresh associative
operator ⊗ and prove the resulting system remains confluent.

The monad T〈⊗,E〉 given by the algebraic theory with one operation ⊗ and
the equation E stating associativity of ⊗ is confluent (trivially, as it contains
no rewrites); note that the base category of this monad is Pre, not Set (in fact,
we treat the algebraic theory as an equational rewrite system without rewrites).
We have already established that confluent preorders satisfy the preconditions
of Theorem 27. With TR the monad representing the TRS R, can easily deduce
that TR + T〈⊗,E〉 satisfies confluence, hence R + 〈⊗, E〉 is confluent as well.

This can be generalised to two arbitrary, non-collapsing equational term
rewriting systems: if both are confluent or SN, so will be their disjoint union.

6 Conclusion and Future Work

We have demonstrated that there is indeed a theory of modularity which ab-
stracts from the specific notion of rewriting, property and combination under
consideration. Moreover, we believe that our use of monads has helped to estab-
lish these results in an elegant and straightforward way. Underlying this is the
simple representation of the layer structure as the interleaving of monads and
the use of variable rewrites to model rewrites in sublayers. As mentioned in the
introduction, the point about these examples is not that they are the most gen-
eral results for a specific modularity problem, but rather that we have a uniform
principle that works in a variety of different situations.
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In the above, we have used Pre as the base category, and switched to Trans
when considering strong normalisation. The exact way to model this would have
been define a rewrite system as parameterised over a base category C, which
has to satisfy certain properties, but we felt this would make the exposition
more categorical and less rewriting. We have also omitted rewriting of infinite
terms as the corresponding monads are not finitary. Our methodology still works,
but requires us to work at a higher rank (with transfinite constructions), the
technicalities of which we felt would distract from the concrete term rewriting
contribution of the present paper.

The applications to graph rewriting need to be examined more closely. Graph
rewriting has the dual modularity results then normal term rewriting (i.e. con-
fluence is not modular but SN is). We can model term graphs with monads [4, 5],
but the precise relation of the monadic properties to the properties of term graph
rewriting systems is not clear.

We would like to comment on the limitations of this work. Higher-order
systems with variable binding are essentially not covered at all, because although
this can be modelled in the monad framework [6], higher-order systems are not
ideal monads (the reason is that free variables can be captured when building a
new layer).

In future work we wish to make these ideas accessible to a wider audience
by developing many more different examples and applications. We also plan to
extend the methodology to other methods of combining rewrite systems than
the disjoint union, in particular modelling constructor sharing systems, where
first tentative steps have already been taken.
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3. N. Ghani and C. Lüth. Rewriting via coinserters. Nordic Journal of Computing,
10:290– 312, 2004.

4. N. Ghani, C. Lüth, and F. de Marchi. Solving algebraic equations using coalgebra.
Journal of Theoretical Informatics and Applications, 37:301–314, 2003.
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Abstract. We consider the well-known problem of deciding the union of
decidable equational theories. We focus on monadic theories, i.e., theo-
ries over signatures with unary function symbols only. The equivalence of
the category of monadic equational theories and the category of monoids
is used. This equivalence facilitates a translation of the considered de-
cidability problem into the word problem in the pushout of monoids
which themselves have decidable word problems. Using monoids, exist-
ing results on the union of theories are then restated and proved in a
succint way. The idea is then analyzed of first guaranteeing that the
union is a “jointly conservative” extension and then using this property
to show decidability of the union. It is shown that “joint conservativity”
is equivalent to the corresponding monoid amalgam being embeddable;
this allows one to apply results from amalgamation theory to this prob-
lem. Then we prove that using this property to show decidability is a
more difficult matter: it turns out that even if this property and some
additional conditions hold, the problem remains undecidable.

Introduction

Assume two equational theories E1 and E2 are given. If one has procedures for
deciding these theories, then the natural question arises of whether they can be
extended to a procedure deciding the union theory, E1 ∪ E2. This question is
practically important, since in principle it is equivalent to the question whether
theorem provers for E1 and E2 can be joined into a theorem prover for E1 ∪E2.

The general answer is, quite obviously, in the negative. For a long time it
has been known that if the signatures Σ1 and Σ2, over which E1 and E2 are
built, are disjoint, then the answer is in the affirmative [Pig74]. The problem is
usually only discussed in the case of E1 and E2 being conservative extensions
of an “intersection theory” E over the signature Σ = Σ1 ∩ Σ2. Recently it has
been proven that in this case, if one additionally assumes that E1 and E2 are
in a certain sense effectively constructible over Σ, then the answer is positive.
This has been proven by Fiorentini and Ghilardi [FG03] and by Baader and
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Tinelli [BT02]. Both papers are quite complex, which is to a large extent due to
them dealing with signatures in which symbols of arbitrary arity may exist.

In this paper we only deal with monadic theories, i.e., theories in which all
function symbols are unary. The category of such equational theories turns out to
be equivalent to the category of monoids (Theorem 1). Showing this equivalence
and transposing the considered problem from the level of theories to the level of
monoids is the topic of Sections 1 and 2. It should be noted that the approach
of Fiorentini and Ghilardi is, in fact, very similar – however, since they do not
restrict themselves to monadic theories, they have to use the much more complex
notion of category with products and product-preserving functors.

Moving to the category of monoids allows us to define the property of effective
constructability is a concise way (see the definition of base in Section 3). The
proof of the result of Fiorentini/Ghilardi and Baader/Tinelli for the monadic
case also turns out very simple (Theorem 2). The main benefit of Section 3
is thus that known results are presented in such a way that they are easy to
understand; this should facilitate future research on this topic. As an example,
a simple extension of the known result to cobases is proposed (Corollary 1).

We then consider an idea stemming from [BT02], namely of dividing the
considered problem into two stages. In the first stage, two properties are enforced:
first, that the union theory conservatively extends E1 and E2 (conservativity
property); second, that if a Σ1-term t1 is equivalent in the union theory to a
Σ2-term t2, then there exists a Σ-term u such that t1 = u in E1 and u = t2 in E2

(interpolation property). In the second stage, one would use the conservativity
and interpolation properties to decide the union theory (we call this “lifting”).

In Section 4 the above idea is formalized and it is shown that, in the monoid
case, the conservativity and interpolation properties are very useful and natural.
In particular, it is shown that the theories E1 and E2 conservatively extending E
are really equivalent to a monoid amalgam, an object well known in semigroup
theory [How96a, Hig92]. Moreover, the conservativity property is equivalent to
the amalgam being weakly embeddable, while adding the interpolation property
is equivalent to it being embeddable. These equivalences make it possible to use
results from amalgamation theory concerning the embeddability of amalgams
to guarantee or prove that conservativity and interpolation hold. In particular,
we show that if the theory E, or rather the corresponding monoid, is unitary
or quasiunitary in E1 and E2, then both properties hold. We also show that in
certain cases the monoid corresponding to E can, by itself, guarantee that these
poperties hold, in particular if it is a group or inverse semigroup.

Section 5 is concerned with stage two of the program presented above, i.e.,
with lifting the conservativity and interpolation to a solution to our main prob-
lem. The results of this section are negative, showing that conservativity and
interpolation, even if augmented by one of the theories (monoids) having a base,
may still fail to guarantee the decidability of the union theory (Theorem 3).

This negative result suggests that one should search for some additional
condition which would guarantee that the lifting phase is indeed correct. The
result is also interesting even if one abstracts away from the proposed two-stage
program, since it shows that even a very slight weakening of the assumption of
both theories having bases moves the problem into the realm of undecidability.
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Finally, Section 6 contains conclusions and suggestions on directions for fu-
ture work. In particular, the problem of extending the techniques and results of
this paper to arbitrary arities and to multi-sorted logic is considered.

1 Monadic Theories vs Monoids

A signature Σ defines a set of function symbols together with their arities. By
TΣ(X) the set of terms over Σ with variables X is denoted. A Σ-equation has
the form t1 = t2, where t1, t2 ∈ TΣ(X). A Σ-theory is any set of Σ-equations; a
theory is a pair (Σ,E), where E is a Σ-theory. A Σ-model consists of a non-empty
set M and, for any function symbol f with arity n in Σ, of an interpretation of
f , that is, of a function M(f) : Mn → M . If X = {x1, . . . , xn} is an n-element
set and t is a Σ-term over X , then any Σ-model M naturally defines a function
M(t) : Mn →M , called the interpretation of t. An equation t1 = t2 holds in M
if M(t1) = M(t2). A Σ-model M is a model of a Σ-theory E if all equations in
E hold in M . An equation is a consequence of E if it holds in all models of E.

A signature morphism σ : Σ → Δ is a map taking any function symbol f
of arity n in Σ to a Δ-term t over {x1, . . . , xn}. Signature morphisms compose
naturally via term substitution. Moreover, the morphism σ : Σ → Σ taking
any f with arity n to the term f(x1, . . . , xn) is an identity. Thus, signatures
and signature morphisms form a category. Note that any term and, hence, any
equation can be translated via a signature morphism. A theory morphism σ :
(Σ,E) → (Δ,F ) is a signature morphism σ : Σ → Δ such that the translated
equations in σ(E) are all consequences of F . The composition of two theory
morphisms is a theory morphism and identity morphisms are theory morphisms.
Thus, theories and theory morphisms form a category.

The map taking any signature or any theory to the class of its models is,
actually, functorial, since if σ : (Σ,E) → (Δ,F ) is a theory morphism and N is
a Δ-model of F , then one can define the Σ-model M = N |σ, called the σ-reduct
of N , and M will be a model of E; this map is functorial, since the reduct along
identity is identity and since reducts compose (contravariantly).

We focus on monadic theories. A signature is monadic if all its function
symbols are unary. A term is monadic if it is built solely of unary symbols and
uses only the variable “x”. An equation is monadic if it is built of monadic terms.
A theory is monadic if it is a theory over a monadic signature and consists only
of monadic equations.

Let (Σ,E) be a monadic theory. Consider the set of all monadic Σ-terms and
let t1 ≡E t2 hold iff t1 = t2 is a consequence of E. The set of equivalence classes
w.r.t. ≡E forms a monoid if one defines 1 to be the equivalence class of x and
[t1]≡E [t2]≡E = [t2[t1/x]]≡E . This monoid is denoted by α(Σ,E). In fact, this
operation is functorial, since if σ : (Σ,E) → (Δ,F ) is a theory morphism, then
the map defined by α(σ)([t]≡E ) = [σ(t)]≡F is a homomorphism and, moreover,
this correspondence preserves identities and composition. Thus α is a functor
from the category of monadic theories to the category of monoids.

Similarily, any monoid S defines a monadic theory β(S) = (Σ,E), where
function symbols in Σ are all elements of S \ {1} and, for any s1, s2 ∈ S \ {1}
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and s ∈ S with s1s2 = s holding in S, E contains the equation s2(s1(x)) = s(x)
if s 
= 1, or the equation s2(s1(x)) = x if s = 1. This map again extends to a
functor, since any homomorphism h : S → T defines a theory morphism β(h)
taking any function symbol in β(S), i.e., any element s ∈ S \ {1}, to the term x
if h(s) = 1 or to the term consisting of a single function symbol h(s) in β(T ) if
h(s) 
= 1. Thus β is a functor from the category of monoids to the category of
monadic theories.

We now have:

Theorem 1. The functors α and β form an equivalence of the category of
monadic theories and the category of monoids.

Proof. We only define the natural isomorphisms γ : α;β → id and δ : β;α→ id.
For any theory T = (Σ,E), γT takes any function symbol K over β(α(T )),

where K is a term t over Σ, to the term t over Σ. The inverse transformation
γ−1

T takes any function symbol f in Σ to the term K(x) built of a single function
symbol K in β(α(T )), where K is the term f(x) over Σ.

Now take any monoid S and let (Σ,E) = β(S). Then δS takes any element
K of α(β(S)), i.e., any term K = sn(· · · s1(x) · · · ), where s1, . . . , sn ∈ S \ {1},
n ≥ 0, to the element s1 . . . sn of S. The inverse transformation δ−1

S takes any
s ∈ S to an element K of α(β(S)), namely to the term s(x) if s 
= 1 or to the
term x if s = 1.

It is easy to check that γ and δ are indeed natural isomorphisms. ��

This equivalence allows one to translate notions from one category to notions
from the other.

A signature morphism γ : (Σ,E) → (Δ,F ) is said to be conservative, if
γ(t1) = γ(t2) being a consequence of F implies that t1 = t2 is a consequence of
E, for all Σ-terms t1 and t2; the equivalent notion is a homomorphism g : S → T
which is one-one, i.e., a monomorphism.

The notion equivalent to checking that an equation t1 = t2 is a consequence
of E is solving the word problem in S, i.e., checking whether s1 . . . sn = s′1 . . . s′k,
for s1, . . . , sn, s

′
1, . . . , s

′
k ∈ S. Thus the decidability of E is equivalent to the word

problem in S being decidable.
It should be noted that Fiorentini and Ghilardi also use an equivalence similar

to the one defined in this section, but because they cover all, not only monadic,
theories, instead of monoids they use categories with products and product-
preserving functors.

2 Union of Monadic Theories vs Amalgam of Monoids

Let (Σ1, E1) and (Σ2, E2) be decidable monadic theories conservatively extend-
ing a theory (Σ,E), where Σ = Σ1 ∩ Σ2. The equivalence constructed in the
previous section gives us what, in monoid theory, is called an amalgam, namely
monoids S and T with decidable word problems and monomorphisms i : U → S
and j : U → T ; here S corresponds to E1, T to E2 and U to E. Because
monomorphisms in the category of monoids are simply one-to-one homomor-
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phisms, one can without loss of generality assume that i and j are inclusions,
i.e., that U = S ∩ T . In the sequel, an amalgam is written as [U ⊆i,j S, T ] or, if
i and j are inclusions and U = S ∩ T , just as [U ⊆ S, T ].

We are interested in deciding the theory (Σ1 ∪Σ2, E1 ∪ E2). Note that this
theory is, in fact, the pushout of the inclusions of E into E1 and E2 in the
category of monadic theories. Therefore, due to the equivalence of categories,
our problem turns into the problem of solving the word problem in the pushout
P of the span of monomorphisms i : U → S and j : U → T ; this pushout is given
by certain homomorphisms μ : S → P and ν : T → P satisfying i;μ = j; ν. We
call P , μ and ν the pushout of the amalgam.

The above considerations show that deciding the union of decidable monadic
theories is equivalent to the following problem: given a monoid amalgam [U ⊆i,j

S, T ] with S and T having decidable word problems, solve the word problem in
the pushout P of the amalgam.

From now on we therefore assume that we have monoids S and T with
decidable word problems. We write U = S∩T , and i : U → S and j : U → T are
the inclusions. Finally, μ : S → P and ν : T → P form the pushout; note that the
pushout always exists (the category of monoids is cocomplete). We concentrate
on solving the word problem in P . Note that, obviously, μ and ν are jointly
epimorphic; more specifically, P may be seen as built of all sequences of elements
of S and T , quotiented by an appropriate equivalence ∼. This equivalence is
the least congruence satisfying 〈1〉 ∼ 〈〉 and, for all s1, s2 ∈ S and t1, t2 ∈ T ,
〈s1, s2〉 ∼ 〈s1s2〉 and 〈t1, t2〉 ∼ 〈t1t2〉.

3 The Solution via Bases

Solutions to the considered problem have been presented independently by Fio-
rentini/Ghilardi [FG03] and Baader/Tinelli [BT02]. In both solutions, virtually
the same assumptions are made, cf. Prop. 7.10 of [BT02]. The main assumption
is what Fiorentini and Ghilardi call (effective) constructibility of E1 over E and
of E2 over E. An algebraic characterization of this notion may be found in
Prop. 10.4 of [FG03]. The corresponding notion in the world of monoids is the
notion of (computable) base (this terminology is borrowed from [BT02]).

Assume U is a submonoid of a monoid S. A U -base of S is a set G ⊆ S such
that 1 ∈ G and, for any s ∈ S, there exists a unique pair (g, u) ∈ G × U such
that s = gu. The base is computable if the pair (g, u) may be computed by a
recursive function.

It should be noted that, in fact, if S has a decidable word problem and G is
a U -base of S, then the base G is computable; this is because one can simply
enumerate all pairs, knowing that exactly one must have the needed property.

Observe that if G is U -base, then G ∩ U = {1}. For if g ∈ G ∩ U , then the
pairs (g, 1) and (1, g) must be equal and so g = 1.

Note also that any monoid S has a computable {1}-base, where {1} is the
trivial monoid; one has to take G = S. If the original signatures Σ1 and Σ2

were disjoint, then U is indeed the trivial monoid. Hence, in this case both bases
always exist.
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For monadic theories, the results of Fiorentini/Ghilardi and Baader/Tinelli
may thus, in algebraic terms, be expressed as follows:

Theorem 2. Assume [U ⊆ S, T ] is an amalgam and the monoids S and T both
have U -bases and decidable word problems. Then the pushout P of the amalgam
has a decidable word problem.

Proof. Assume GS and GT are the respective bases. Consider the set Q of all
non-empty sequences of elements of GS , GT and U . Let→ be a reduction relation
on these sequences defined by:

– x, g → g′, u′ if g 
= 1, xg = g′u′ and g′ 
= 1, where x ∈ S, g, g′ ∈ GS , u′ ∈ U ,
or symmetrically for T ,

– x, g → u′ if g 
= 1, xg = u′, where x ∈ S, g ∈ GS and u′ ∈ U , or symmetri-
cally for T ,

– u, u′ → uu′ if u, u′ ∈ U ,
– g, 1→ 1 if g 
= 1, g ∈ GS , or symmetrically for T .

It is obvious that→ is terminating. It is also confluent: if two reductions overlap,
then we must have elements x, x′, x′′ such that x, x′ reduces and x′, x′′ reduces.
The following cases thus arise:

1. x, x′, x′′ all come from S or all come from T ; then both reductions may be
performed in any order,

2. otherwise, assume x′ 
= 1; since x, x′ reduces and since it cannot be the case
that x, x′ ∈ U (because we would then be in case 1), we must have that
x′ ∈ GS \ U or symmetrically for T , because if x′ ∈ U \ {1} and x /∈ U ,
then x, x′ is not a redex; but since x′, x′′ reduces, we must then have x′′ ∈ S,
or symmetrically for T , which would mean that we are actually in case 1;
therefore x′ = 1, so both reductions may be performed in any order.

Consider two sequences q, q′ from Q to be equivalent, written q ∼ q′, if they have
the same normal formal form with respect to→. Let P be the quotient Q/∼; then
P with concatenation modulo ∼ and with [1]∼ as identity is a monoid. Define
μ : S → P by μ(s) = [g, u]∼, where gu = s, (g, u) ∈ GS × U ; define ν : T → P
analogically. We claim that μ must then be a homomorphism. Of course, μ(1) =
[1]∼. Also, if s1 = g1u1 and s2 = g2u2, with g1, g2 ∈ GS , u1, u2 ∈ U , and if s1s2 =
gu with g ∈ GS , u ∈ U , then μ(s1)μ(s2) = [g1, u1, g2, u2]∼ = [g, u]∼ = μ(s1s2).
This is due to there existing g0 ∈ GS , u0 ∈ U such that u1g2 = g0u0; then
g1, u1, g2, u2 → g1, g0, u0, u2 (unless g0 = 1); there further exist g′0 ∈ GS and u′

0 ∈
U such that g1g0 = g′0u

′
0; then g1, g0, u0, u2 → g′0, u

′
0, u0, u2 → g′0, u

′
0u0, u2 →

g′0, u
′
0u0u2 (unless g′0 = 1); but since g′0u

′
0u0u2 = g1u1g2u2 = s1s2 = gu, we

must have g = g′0 and u = u′
0u0u2, which completes the proof of the claim. An

analogical argument shows that ν : T → P is a homomorphism as well. Moreover,
it is clear that μ(u) = [1, u]∼ = ν(u) and so i;μ = j; ν. Thus P , μ and ν form a
cocone. Moreover, for any cocone μ′ : S → P ′, ν′ : T → P ′, there exists a unique
factorizing η : P → P ′ given by η([x1, . . . , xn]∼) = h(x1) · h(x2) · · ·h(xn), where
h(xi) = μ′(xi) for xi ∈ S and h(xi) = ν′(xi) for xi ∈ T and where “·” denotes
multiplication in P ′. This proves that P is a pushout.
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What remains to be shown is that P has a decidable word problem. But this
is obvious, since one may simply compute the normal forms of both sides of an
equation and then check whether they are equal. ��

The algorithm for deciding the word problem in the pushout is thus straight-
forward: one simply has to repeatedly apply the relation →, obtaining a normal
form.

In the monadic case, a trivial generalization of this algorithm may be con-
sidered. If U is a submonoid of S, then a U -cobase of S is a set G ⊆ S such that
1 ∈ G and, for any s ∈ S, there exists a unique pair (u, g) ∈ U × G such that
s = ug. It is obvious that the following corollary holds:

Corollary 1. Assume [U ⊆ S, T ] is an amalgam and the monoids S and T
both have U -cobases and decidable word problems. Then the pushout P of the
amalgam has a decidable word problem. ��

It is an interesting question whether the notion of cobase can be generalized
to non-monadic theories, or whether the use of cobases is excluded by function
symbols with arities other than 1.

4 Conservativity and Interpolation
vs Embeddability of Amalgams

In the paper [BT02], before the correctness of the whole proposed procedure
is considered, two important lemmas are proved (Prop. 4.14 and Lemma 4.18).
These lemmas show that under certain assumptions the union theory has the
conservativity and interpolation properties.

The union theory E1 ∪ E2 is said to have the conservativity property if it
is a conservative extension of E1 and a conservative extension of E2. In other
words, this property means that if t1 and t2 are terms over Σ1, then the equality
t1 = t2 is a consequence of E1 ∪ E2 iff it is a consequence of E1 alone, and that
an analogous fact holds for Σ2 and E2.

The union theory is said to have the interpolation property if, for any term
t1 over Σ1 and t2 over Σ2, the equation t1 = t2 is a consequence of E1 ∪ E2 iff
there exists a term t over Σ1 ∩ Σ2, called the interpolant, such that t1 = t is a
consequence of E1 and t = t2 is a consequence of E2.

Together, the conservativity and interpolation properties mean that the equi-
valence relation defining the pushout P is trivial on sequences of length 1.

It is a natural idea to try to find a solution of the word problem in the
pushout P in two stages: first to guarantee the conservativity and interpolation
properties, and then, exploiting them, solve the problem. In this section the first
stage is dealt with. In particular, we show that these properties correspond to
classical notions of monoid amalgamation theory. This gives us many tools for
checking whether these properties hold for a given union of theories. In the next
section, the problem of “lifting” the solution for length 1 sequences to sequences
of arbitrary length is considered, i.e., the problem of whether these properties
can help us solve the word problem in P .



68 Piotr Hoffman

Let μ : S → P and ν : T → P be the pushout of the amalgam [U ⊆i,j S, T ].
The word problem in P for sequences of length one is simply the problem of
checking whether:

– μ(s) = μ(s′), for s, s′ ∈ S,
– μ(s) = ν(t), for s ∈ S, t ∈ T ,
– ν(t) = ν(t′), for t, t′ ∈ T .

It is clear that on the level of terms these problems are equivalent to checking
whether the following equalities are consequences of the union theory E1 ∪ E2:

– s = s′, for Σ1-terms s and s′,
– s = t, for a Σ1-term s and a Σ2-term t,
– t = t′, for Σ2-terms t and t′.

In monoid theory, the problem of an amalgam [U ⊆i,j S, T ] being embeddable
is considered, i.e., the question whether there exists a monoid Z such that S, T ⊆
Z, perhaps with the inclusions replaced by some homomorphisms. It can be easily
shown that an amalgam is embeddable iff it is embeddable in its pushout P . This
leads to the following definition:

– an amalgam is weakly embeddable if μ : S → P and ν : T → P are monomor-
phisms,

– an amalgam is embeddable if it is weakly embeddable and μ(S) ∩ ν(T ) =
μ(i(U)).

Note that, of course, μ(i(U)) = ν(j(U)).
Now, it is clear that an amalgam is weakly embeddable if and only if equalities

of the form μ(s) = μ(s′) or ν(t) = ν(t′) hold in P iff s = s′ in S or t = t′ in T .
On the level of terms this means that to check such an equality with respect to
the theory E1 ∪ E2 it suffices to check it with respect to the theories E1 or E2,
respectively. In other words, the inclusions E1 ⊆ E1 ∪E2 and E2 ⊆ E1 ∪E2 are
conservative. Thus:

Proposition 1. The union theory E1 ∪ E2 has the conservativity property iff
the corresponding monoid amalgam is weakly embeddable. ��

It is also clear that an amalgam is embeddable if and only if it is weakly
embeddable and, additionally, any equality μ(s) = ν(t) holds in P iff s, t ∈ U
and s = t. On the level of terms embeddablity thus means that, in addition to
weak embeddability, for all terms s over Σ1 and t over Σ2, the equation s = t is
a consequence of E1 ∪E2 iff there exists a term u over Σ1 ∩Σ2 such that s = u
is a consequence of E1 and u = t is a consequence of E2. Thus:

Proposition 2. The union theory E1 ∪ E2 has the conservativity and interpo-
lation properties iff the corresponding monoid amalgam is embeddable. ��

The following proposition simplifies checking that the equations considered
at the beginning of this section hold. In particular, it may be used to prove the
embeddability of an amalgam.
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Proposition 3. For any amalgam [U ⊆i,j S, T ], if σ : S → T is a homomor-
phism satisfying i;σ = j, then:

– μ(s) = ν(t) implies σ(s) = t,
– ν(t) = ν(t′) iff t = t′. ��

In particular, if σ : S → T is an isomorphism, then the amalgam is weakly
embeddable. Also, μ(s) = ν(t) then implies that s and t are connected via the
isomorphism, i.e., that σ(s) = t and σ−1(t) = s. It should be noted that in this
case, that is if the pairs U ⊆ S and U ⊆ T are isomorphic, checking μ(s) = ν(t)
may be performed by considering, in the pushout P , only sequences of length 2;
this is a consequence of Isbell’s Zigzag Theorem (see [Isb66, How96b]). In this
case, the object in which equality should be checked is called the tensor and
denoted by S ⊗U T .

One can try to guarantee the embeddability of an amalgam by enforcing
certain restrictions on the pairs U ⊆ S and U ⊆ T . For instance, U ⊆ S is said
to be unitary if, for all u ∈ U and s ∈ S, us ∈ U implies s ∈ U and su ∈ U
implies s ∈ U . On the theory level, this means that composing a “new” term
with an “old” one must give something provably equal to an “old” term. The
connection with bases used in Section 3 is as follows:

Proposition 4. If S has a U -base and a U -cobase, then U ⊆ S is unitary.

Proof. Assume S has a U -base G and su ∈ U , with s ∈ S, u ∈ U . Then s = gu′,
for some g ∈ G, u′ ∈ U . Thus su = (gu′)u = g(u′u) and su = 1(su). Hence, by
the property of the base, g = 1 and so s = u′ ∈ U . The second part of the proof
is analogous. ��
It has been shown that if U ⊆ S and U ⊆ T are unitary, then the amalgam
is embeddable (see [How96b]). This gives one method for guaranteeing that the
amalgam is embeddable.

Actually, even more has been shown (we report these results after [How96b],
where [Ren86a, Ren86b] are cited). The pair U ⊆ S is said to be quasiunitary if
there exists a map φ : S → S such that:

– φ(φ(s)) = φ(s), for all s ∈ S,
– φ(us) = uφ(s) and φ(su) = sφ(u), for all u ∈ U , s ∈ S,
– us ∈ U or su ∈ U implies φ(s) ∈ U , for all u ∈ U , s ∈ S.

It is obvious that if U ⊆ S is unitary, then it is quasiunitary, since then as φ
one may take the identity mapping. It turns out that if U ⊆ S and U ⊆ T are
quasiunitary, then the amalgam is embeddable.

In some cases one can be sure that an amalgam is (weakly) embeddable by
simply inspecting the monoid U (called the “core” of the amalgam). A monoid
U is said to be a (weak) amalgamation base if any amalgam which has it as core
is (weakly) embeddable. For example, if U is a group, then it is unitary in any
S, since us ∈ U implies that s = u−1us ∈ u−1U ⊆ U . Thus, any group is an
amalgamation base. Note that a theory corresponds to a group if, for any term
t, there is a term t∗ such that t(t∗(x)) = x and t∗(t(x)) = x are consequences of
the theory.
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Actually, a much stronger result is know. A monoid U is said to be inverse
if one can define an operation ( )∗ : U → U such that (u∗)∗ = u, uu∗u = u and
(u1u2)∗ = u∗

2u
∗
1 for all u, u1, u2 ∈ U . It can be shown that any inverse monoid is

an amalgamation base (again, see [Hal78]).
The above considerations give us a variety of methods for guaranteeing that

the considered union theory has the conservativity and interpolation properties.
A natural question would be whether it is decidable to check, given decidable
theories E1 and E2 conservatively extending E, whether E1∪E2 has the conserva-
tivity and interpolation properties. It turns out that the answer is negative: this
problem is undecidable. This is an easy consequence of the result of Sapir [Sap00],
who proves (Theorem 1.2) that the problem of whether an amalgam of two finite
semigroups is embeddable in a semigroup is undecidable.

5 Lifting

In the previous sections we have defined the conservativity and interpolation
properties of the union theory E1 ∪ E2, and we showed how to guarantee that
these properties indeed hold. These properties allow us to solve the word problem
in the pushout P for words of length 1 (i.e., on the term level, for so-called pure
terms); what remains to be done is to lift this solution to words of arbitrary
length.

Unfortunately, without additional assumptions this turns out to be impossi-
ble in general. That is, the word problem in the pushout P of an embeddable
amalgam may be undecidable, even if the word problems in S and T are de-
cidable. More precisely, we construct finitely presentable monoids S and T with
decidable word problems and such that the amalgam [U ⊆ S, T ] is embeddable,
but the word problem in its pushout P is undecidable.

Let MT be a deterministic, universal Turing machine. We may assume that
there is exactly one accepting configuration and that in this configuration the
machine is blocked. The problem of checking whether there is a computation in
MT from a given configuration to the accepting configuration is undecidable.
Now consider the problem of checking whether there is a two-way computation
between those configurations, that is, a computation in which the machine may
go in “reverse mode”. Observe that since M is deterministic, if such a compu-
tation exists, then one may assume that it consists of a block of forward moves
followed by a block of reverse moves. But since the last reverse move would have
to end in the (blocked) accepting configuration, there cannot be any reverse
moves. Therefore the two-way computation is actually a usual one-way compu-
tation in MT . Hence, the problem of checking whether a two-way computation
exists is undecidable.

Let M be any Turing machine. Let Q be its set of states and Γ its set of tape
symbols, with the symbol 0 ∈ Γ serving as blank; we assume that Q and Γ are
disjoint. Also, let # be a special, distinct symbol which we will use to mark the
end of the tape. Let U be the free monoid 0∗ and let S be the monoid generated
by 0 and # and satisfying the relation # = 0#. Note that U is a submonoid of
S and that S has a decidable word problem. Also, the submonoid GS = #∗ is a
U -base of S.
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Let T be a monoid generated by Q∪Γ and satisfying the following relations:
if in the state q ∈ Q with the head over a ∈ Γ the machine goes right and
replaces a by b ∈ Γ and changes its state to q′ ∈ Q, then aqx = bxq′ for all
x ∈ Γ ; if it goes left then aq = q′b. Note that U is a submonoid of T , since if
two elements are equal in T , then they must have the same length. Also, T has
a decidable word problem, again because the relations do not change the length
of elements of T .

Now let P be the pushout of the amalgam [U ⊆ S, T ]. A configuration is a
sequence of the form a1 . . . anqb1 . . . bk#, where n > 0, k ≥ 0, a1, . . . , an ∈ Γ ,
b1, . . . , bk ∈ Γ \ {0}, q ∈ Q. The problem of checking whether two configurations
are equal in the pushout is equivalent to checking whether there is a two-way
computation between the corresponding configurations of the Turing machineM .
If M is the previously considered deterministic, universal Turing machine MT ,
then the latter problem is undecidable. Thus, if the machine is appropriately
chosen, the word problem in P is undecidable.

It is easy to see that U ⊆ S is unitary, since there is no way of removing the
symbol # once it has been inserted, and an element of S not containing # at all
must, in fact, be an element of U . Similarily, U ⊆ T is unitary, since if ut ∈ U
for some u ∈ U and t ∈ T , then t cannot possibly contain an element of Q, since
this element could not be disposed of. But if t does not contain any element of
Q, then no relation can be applied to ut, because all relations require at least
one q ∈ Q to appear. Hence, ut ∈ U implies that t is built of 0s only, i.e., t ∈ U .

Thus, by the fact mentioned in the previous section, the amalgam [U ⊆ S, T ]
is embeddable.

The above results may be summarized as follows:

Theorem 3. There exists a monoid amalgam [U ⊆ S, T ] such that:

– S and T have decidable word problems,
– there exists a U -base of S,
– the pairs U ⊆ S and U ⊆ T are unitary and so the amalgam is embeddable,

and such that the pushout P has an undecidable word problem. ��
It may be noted that the monoid U is of course isomorphic to 〈N,+〉, while S
is isomorphic to the monoid 〈N × N, ·〉 with multiplication defined by (n,m) ·
(n′,m′) = (n + n′,m′); finally, the inclusion of U in S takes any number n to
the pair (0, n).

The above theorem lets us state the following corollary for theories:

Corollary 2. There exist decidable theories E1 and E2 conservatively extending
a theory E and such that the union E1 ∪E2 has the conservativity and interpo-
lation properties, but is undecidable. ��

This negative result should not be understood as meaning that the idea of
exploiting conservativity and interpolation is flawed. However, what it means
is that an appropriate property is still to be found that would facilitate the
lifting of the conservativity and interpolation properties to a full solution of our
problem. The fact that the monoid S has a U -base suggests that perhaps this
property should not involve the existence of bases and that a new idea is needed
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here. We believe that, even from a purely algebraic point of view, the following
question is natural and interesting: to what extent is the decidability of the word
problem in the pushout of an embeddable amalgam a property stronger than the
decidability of the word problem in S and T ? That it is a stronger property at
all has been proved above.

6 Conclusions

In the paper we investigate the problem of deciding the union of two decidable
theories, but restricted to the monadic case. This problem is shown, via an
equivalence of categories, to be equivalent to the decidability of the word problem
in the pushout of an amalgam of monoids with decidable word problems.

Moving to the category of monoids leads to a simplified view of the problem,
allowing us to produce a simple and easily comprehensible statement and proof
of the known fact that the existence of bases guarantees decidability of the
union theory. This simple proof should help in the search for yet more general
theorems, in which assumptions are made that are weaker than the, admittedly
rather strong, assumption on the existence of bases.

In the sections which follow, we make use of the equivalence of the con-
sidered problem to problems concerning monoid amalgams. We show that the
conservativity and interpolation properties of the union theory, properties used,
e.g., in [BT02], actually correspond to certain classical properties of amalgams,
namely to weak embeddability and embeddability. This allows one to use the
various ideas stemming from amalgamation theory to guarantee and prove that
the union theory has the conservativity and interpolation properties. In partic-
ular, notions of unitary and quasiunitary extensions may be used here, as well
as the property of the “core” theory E corresponding to an inverse monoid.

We then propose a program of proving decidability of the union theory by
first guaranteeing conservativity and interpolation, and then exploiting these
properties. While, as mentioned above, it turns out that the first part of the
program may indeed be carried out, implementing the second part is shown to
require some new approach. For, as stated in Corollary 2, the decidability of E1

and E2 plus conservativity and interpolation of the union theory E1 ∪E2 do not
guarantee its decidability.

The latter result gives a clear suggestion on possible future work: one should
look at properties of E1 and E2 that would guarantee that an implication of
the above form holds. An additional argument in favor of this idea is that, in
general, it is hardly reasonable to expect that a union theory without the conser-
vativity and interpolation properties will be guaranteed decidable. Therefore we
do not really lose much if we assume that these properties hold. The above task,
in monoid terms, amounts to looking for such properties of embeddable amal-
gams of monoids with decidable word problems that would be strong enough to
guarantee that the word problem in the pushout of the amalgam is decidable.

Another obvious direction of future work is a generalization to non-monadic
theories. Of course, with respect to Theorem 2, this could simply lead back to the
solution found in [FG03] and to categories with products and product-preserving
functors. What is needed, however, is the development of an appropriate amal-
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gamation theory, which would generalize known results for monoids to objects
representing arbitrary equational theories. It remains to be seen whether cate-
gories with products and product-preserving functors turn out to be the ideal
notion of such an object. It could also be fruitful to perform a limited generaliza-
tion, e.g., to use operads instead of monoids: operads correspond to equational
theories which are strongly regular, that is, defined by equations in which, on
either side, the same sequence of variables appears (see [Lei04]).

Finally, a rather natural generalization, and one which should not involve too
much difficulties, is switching from single-sorted to multi-sorted equational logic.
For monadic theories this change simply means that, instead of monoids, one has
to use categories. It seems that results concerning monoids transfer to categories,
in particular, Theorem 2 holds for categories as well; from this an appropriate
theorem on multi-sorted equational theories may be deduced. It may be noted
that using multi-sorted logic and the operad approach proposed above would
lead to the use of yet another categorical idea, namely of multicategories [Lei04],
since it is precisely multicategories that may be used to represent strongly regular
multi-sorted equational theories.
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Equivariant Unification

James Cheney

University of Edinburgh

Abstract. Nominal logic is a variant of first-order logic with special
facilities for reasoning about names and binding based on the underly-
ing concepts of swapping and freshness. It serves as the basis of logic
programming and term rewriting techniques that provide similar advan-
tages to, but remain simpler than, higher-order logic programming or
term rewriting systems. Previous work on nominal rewriting and logic
programming has relied on nominal unification, that is, unification up to
equality in nominal logic. However, because of nominal logic’s equivari-
ance property, these applications require a stronger form of unification,
which we call equivariant unification. Unfortunately, equivariant unifica-
tion and matching are NP-hard decision problems. This paper presents
an algorithm for equivariant unification that produces a complete set of
finitely many solutions, as well as NP decision procedure and a version
that enumerates solutions one at a time. In addition, we present a poly-
nomial time algorithm for swapping-free equivariant matching, that is,
for matching problems in which the swapping operation does not appear.

1 Introduction

Gabbay and Pitts [6] introduced a novel approach to formalizing and reasoning
about abstract syntax involving bound names, based on the fundamental ideas
of name-swapping and freshness. We call this approach nominal abstract syntax
(NAS). Initially, this approach was based on FM-set theory, a variant of stan-
dard ZF-set theory originally developed to prove the independence of the Axiom
of Choice. However, Pitts [7] showed that this radical step can be avoided by
incorporating the ideas of nominal abstract syntax into a logic (called nominal
logic) whose intended semantics is based on FM set theory but rests on standard
mathematical foundations.

The key elements of nominal logic are: a collection of infinitely many term
symbols a, b, . . . ∈ Name called names ; a binary relation # called freshness that
can hold between a name and a value; a swapping function (a b)·t that exchanges
the values of names a and b in t; and an abstraction function 〈a〉x that takes
a name and value. Abstractions are considered equal up to α-equivalence; for
example 〈a〉f(a, c) ≈ 〈b〉f(b, c).

Nominal logic has been used as a basis for logic programming [1, 3] and term
rewriting systems [4]. So far, these techniques have relied upon the (efficiently
implementable) nominal unification algorithm of Urban, Pitts, and Gabbay [11]
as a fundamental tool, just as first-order unification is used in ordinary logic
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programming and term rewriting. However, as shown by Cheney [2, 3], nominal
unification is not the right tool for this job: proof search and term rewriting
using nominal unification is incomplete.

First-order unification is complete for first-order resolution and rewriting
because ground atomic formulas are logically equivalent if and only if they are
equal as terms. But due to nominal logic’s equivariance property, this is not the
case for nominal logic. The equivariance property states that validity is preserved
by applying name-swappings uniformly: that is, p(t̄) ⇐⇒ p((a b)·t̄). As a result,
atomic formulas (such as p(a) and p(b)) may be equivalent without being equal
nominal terms. Similarly, if a collection of rewriting rules t→ u is used to define
a relation → in nominal logic, then t→ u is equivalent to (a b)·t→ (a b)·u.

Consider the following logic program clauses and rewriting rules:

spec(mono(T ), [], T ). spec(all(〈a〉T ), [a|V s], U) :− spec(T, V s, U).
subst(var(a), T, a)→ T subst(var(b), T, a) → var(b)

subst(app(E1, E2), T, a)→ app(subst(E1, T, a), subst(E2, T, a))
b # T * subst(lam(〈b〉E), T, a)→ lam(〈b〉subst(E, T, a))

The spec predicate is taken from an αProlog [1] program that performs ML
type inference. It relates a polymorphic type to a list of bound variables and a
monomorphic type, and can be used in the forward direction to instantiate the
bound variables of a polymorphic type to fresh names, or backwards to quantify
the free type variables of an inferred type. The subst rewriting rules perform
capture-avoiding substitution on λ-terms encoded using nominal abstract syntax.
(Note that nominal rewriting rules can have freshness “guards”, e.g. a # X *
l → r applies only when a # X .)

Nominal unification and matching do not (and should not) take equivariance
into account. As a result, logic programs or rewriting systems may not work as
desired when nominal unification is used for backchaining or nominal matching is
used for term rewriting, respectively. The goal spec(all(〈a〉mono(tvar(a))),[b],U)
has solution [U = tvar(b)] in nominal logic, but this solution cannot be found us-
ing nominal unification. As another example, in nominal logic the first rewriting
rule for subst implies that subst(var(b), var(a), b) rewrites to var(a), but there
is no substitution for T making subst(var(a), T, a) ≈ subst(var(b), var(a), b).

Therefore, it is necessary to unify or match modulo a stronger equational
theory that takes equivariance into account. We call these problems equivari-
ant matching and equivariant unification, respectively. Equivariant unification
is of both practical and theoretical interest. On the theoretical side, Cheney [2]
showed that equivariant unification is NP-hard. On the practical side, there are
some interesting programs (such as spec) that only appear to be expressible us-
ing equivariant unification. In addition, equivariant matching seems desirable in
nominal rewriting systems for clarity and simplicity. For example, in the nomi-
nal rewriting approach advocated by Fernandez et al. [4], the subst rewrite rules
above will not work properly. Instead, the following rewrite system was used for
capture-avoiding substitution:
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subst′(〈a〉var(a), T )→ T a # B * subst′(〈a〉var(B), T ) → var(B)
subst′(〈a〉app(E1, E2), T )→ app(subst′(〈a〉E1, T ), subst′(〈a〉E2, T ))

b # T * subst′(〈a〉lam(〈b〉E), T )→ lam(〈b〉subst′(〈a〉E, T ))

In this paper we make two significant contributions:

– We present a NP algorithm for equivariant unification that produces at most
finitely many different solutions. This is the first (terminating) algorithm to
be developed for general equivariant unification1. Besides taking equivariance
into account, our algorithm solves a more general form of nominal unification
problems than those considered by [11]. This algorithm can be used to run
arbitrary nominal logic programs and rewriting systems and may also be
useful in analyzing such systems.

– We present a polynomial-time algorithm for swapping-free equivariant match-
ing problems, that is, problems in which the swapping function symbol is not
present. This is significant because typical nominal rewriting systems that
require equivariance (including subst) are swapping-free. This algorithm can
be used as the basis of efficient nominal term rewriting for a larger class of
programs than considered by Fernandez, Gabbay, and Mackie [4].

The remainder of this paper is structured as follows. In the next section, we
review nominal equational logic. In Section 3, we introduce permutation graphs,
an important tool for solving basic equivariant unification and matching prob-
lems that is used in the rest of the paper. In Section 4, we present the equivariant
unification algorithm and sketch proofs of its important properties. Likewise, in
Section 5 we present the swapping-free equivariant matching algorithm and prove
its properties. Section 6 discusses additional related work and future directions,
and Section 7 concludes.

2 Background

We first consider the set Term of ground nominal terms, given by the grammar

t ::= 〈〉 | 〈t, u〉 | f(t) | a | 〈a〉t

The first three cases denote units, pairing, and function symbols; we represent
constant symbols c as functions applied to unit f(〈〉) and represent n-ary function
applications f(t1, . . . , tn) using iterated pairing f(〈t1, 〈t2, · · ·〉〉). Names a, a′ are
drawn from a countably infinite set Name, and abstractions 〈a〉t represent terms
with bound names.

Let Perm be the set of (finite) permutations of names. We write π·t for the
action of π ∈ Perm on t, or the result of applying π to rename the names of t.
The permutation action function and equality ≈: Term × Term and freshness
1 Cheney [2] only established that the equivariant matching and unification problems

for terms involving only names, variables, and swappings are NP-complete,
but did not present algorithms or upper bounds for problems involving general nom-
inal terms.
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π·a = π(a) π·〈〉 = 〈〉 π·〈t, u〉 = 〈π·t, π·u〉 π·f(t) = f(π·t) π·〈b〉t = 〈π·b〉π·t
(a �= b)

a # b a # 〈〉
a # t

a # f(t)

a # t a # u

a # 〈t, u〉 a # 〈a〉t
(a �= b) a # t

a # 〈b〉t a ≈ a 〈〉 ≈ 〈〉
t1 ≈ u1 t2 ≈ u2

〈t1, t2〉 ≈ 〈u1, u2〉
t ≈ u

f(t) ≈ f(u)
t ≈ u

〈a〉t ≈ 〈a〉u
(a �= b) a # u t ≈ (a b)·u

〈a〉t ≈ 〈b〉u

Fig. 1. Swapping, equality, and freshness for ground terms.

#: Name×Term relations are defined in Figure 1. Equality is syntactic equality
except for abstractions, which are considered equal modulo renaming of the
bound names to a fresh name. The freshness theory spells out when a name is
fresh for (not free in) a term. In particular, a # 〈a〉t holds unconditionally, while
a # 〈b〉t holds for a 
= b if a # t.

Our definitions freshness and equality are superficially different from those
used by Urban et al., but they are equivalent for ground terms. Urban et al.
unified nominal terms modulo an equational theory axiomatizing equality and
freshness judgments ∇ * A in the presence of some assumptions ∇ of the form
a # X , for names a and variables X . We instead axiomatize equality for ground
terms only. Note that both freshness and equality are equivariant, that is, t ≈
u ⊃ π·t ≈ π·u and a # t ⊃ π·a # π·t for any a, t, u, π.

We now generalize to non-ground nominal terms so that name-variables
A,B, . . . ∈ NV ar and term-variables X,Y, . . . ∈ V ar are permitted. In ad-
dition, we add explicit syntax for permutation terms Π applied to nominal
terms, including swappings, composition, inversion, and permutation variables
Q,R, . . . ∈ PV ar. Consider terms of the form:

v, w ::= a | A Π,Π ′ ::= Q | id | (a b) | Π ◦Π ′ | Π−1

a, b ::= Π ·v t, u ::= Π ·X | a | 〈〉 | 〈t, u〉 | f(t) | 〈a〉t

We write FN(t), FV (t), FNV (t) and FPV (t) for the sets of names, term vari-
ables, name variables, and permutation variables of t. This grammar forbids
permutation terms except immediately around names or variables. We define
Π ·t for arbitrary terms t as follows:

Π ·〈〉 = 〈〉 Π ·〈t, u〉 = 〈Π ·t,Π ·u〉 Π ·f(t) = f(Π ·t)
Π ·〈a〉t = 〈Π ·a〉Π ·t Π ·(Π ′·t) = (Π ◦Π ′)·t

Urban et al. considered a more restrictive language of nominal terms in which
permutation variables were not present, and required a and b to be ground names
in terms of the forms a # t, (a b)·t, and 〈a〉t. These restrictions were crucial for
obtaining an efficient, deterministic unification algorithm. To avoid confusion,
we refer to such terms as grounded terms, and to Urban et al.’s algorithm as
grounded nominal unification. There are several important differences between
our nominal terms and grounded terms. For our nominal terms, permutations
applied to names cannot always be simplified: for example, Q·a cannot be sim-
plified without knowing something about Q. Another difference is that name
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θ(〈〉) = 〈〉 θ(〈t, u〉) = 〈θ(t), θ(u)〉 θ(f(t)) = f(θ(t))

θ(Π ·v) = θ(Π)·θ(v) θ(a) = a θ(〈a〉t) = 〈θ(a)〉θ(t)
θ(id) = id θ(Π ◦ Π ′) = θ(Π) ◦ θ(Π ′) θ(Π−1) = θ(Π)−1 θ((a b)) = (θ(a) θ(b))

Fig. 2. Valuations.

variables are permitted in any place where a name would be permitted. Nom-
inal unification is NP-complete for arbitrary terms [3, Ch. 7], but tractable
for grounded terms [11]. General equivariant unification and matching are NP-
complete even for grounded terms (see [2] and Section 4). However, equivariant
matching is tractable for grounded, swapping-free terms (see Section 5).

We refer to atomic formulas t ≈ u, a # u as constraints C, conjunctions
and ∃-quantifications of constraints as problems S, and disjunctions of problems
as extended problems M =

{
S1;
· · ·
Sn

}
. An arbitrary problem involving terms that

may have permutation variables is called an equivariant unification problem.
A problem involving no permutation variables is called a nominal unification
problem. A problem in which all equations involving permutation variables are of
the form Q·t ≈ u, where u is ground, is called an equivariant matching problem.
Problems are grounded, name–name, or swapping-free if all terms are grounded,
if only names, swappings, and name variables are present, or if the swapping
operation is not present, respectively.

A valuation is a function θ mapping term variables to ground terms, name
variables to ground names, and permutation variables to ground permutations.
Valuations are extended to terms as shown in Figure 2. We say that θ � t ≈ u if
θ(t) ≈ θ(u); similarly, θ � a # t if θ(a) # θ(t). If S is a set of constraints, then
we write θ � S if θ � A for each A ∈ S, and θ � ∃X.S if θ[X := t] � S for some t.

We write Solv(S) for {θ | θ � S} and Solv(M) for
⋃

S∈M Solv(S). A problem
S is a pre-solution to M if Solv(S) ⊆ Solv(M), and a solution if in addition
Solv(S) 
= ∅. A solution S to M is more general than another solution T if
Solv(T ) ⊆ Solv(S), and most general if no strictly more general solution exists.
A set M′ of (pre-)solutions to M is a complete for M if Solv(M) = Solv(M′)
and minimal if each S ∈M′ is a most general solution.
Example 1. A complete minimal set of solutions to the problem (A B)·C ≈ C
is {{C ≈ A,A ≈ B}, {A # C,C # B}}. A complete minimal solution set to
the problem Q·a # 〈b〉C is {{Q·a ≈ b}, {Q·a # b, Q·a # C}}. The equivariant
matching problem Q·(A, (a b)·A,B, (a b)·B) ≈ (a, b, c, d) has no solutions. The
problem f(〈a〉A, b) ≈ f(〈c〉d, d) has a unique most general solution A ≈ b.

3 Permutation Graphs

In this section we consider an important data structure for representing infor-
mation about permutations, names, and freshness, called a permutation graph
(or p-graph).

Definition 1. A p-graph G = (N,V, PV,E≈, E#, EQ, . . .) is a structure such
that N ⊆ Name, V ⊆ V ar and PV ⊆ PV ar are finite, E≈ and E# are undi-
rected graphs on W = N∪V , and EQ is a directed graph on W for each Q ∈ PV .
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Fig. 3. (a) Example p-graphs. (b) Simplified versions. (c) Solved forms.

Note that the vertices v of a p-graph may be either names a, b, . . . or name
variables A,B, . . .. There are three kinds of edges: undirected equality edges
(written using a double line v == w), undirected freshness edges (written as a

broken line v −++− w), and directed permutation edges (written v
Q−→ w). We

consider the edge v == w equivalent to the formula v ≈ w, v −++− w equivalent
to v # w, and v

Q−→ w equivalent to Q·v ≈ w. We write SG for the problem
corresponding to the edges of G and GS for the p-graph corresponding the
problem S.

For example, two small p-graphs are shown in Figure 3(a). Freshness and
permutation edges are sometimes superimposed in these diagrams. These graphs
correspond to the problems

{Q·a ≈ A,Q·A ≈ b, R·a ≈ B,R·B ≈ C,R·A ≈ C,A # B}
{Q·E ≈ A,Q·A ≈ B,A # B,Q·B ≈ a, Q·A ≈ C,Q·C ≈ E,C ≈ D,Q·D ≈ a}

Testing the satisfiability of such problems is not straightforward, because there
are hidden consequences. For example, the first set of constraints implies R·A ≈
R·B, so A ≈ B since R is invertible. Similarly, in the second problem, since
A # B, we know Q·A # Q·B, so C ≈ Q·B # Q·A ≈ a. As a result of such
observations, additional edges can be added to the graph to obtain a “simpler”
graph with fewer hidden consequences. Our example graphs can be simplified in
this way as shown in Figure 3(b).

In addition, when there is a variable equality edge involving a variable, such
as A ≈ v ∈ G, the graph can be simplified by collapsing A and v. This process is
exactly analogous to substituting for A in the corresponding problem SG. The
results of collapsing the simplified example graphs are shown in Figure 3(c). The
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a b

Q Q

QQ

Q Q

QQ

Fig. 4. Simplification rule diagrams for (≈p
r), (#

p
r), (#

p
→), (#p

←), (≈p
→), (≈p

←) (respec-
tively).

resulting graphs are fully simplified, and testing satisfiability is trivial because
there are no remaining hidden consequences. The first graph is clearly unsatis-
fiable since there is a freshness edge corresponding to a formula A # A. On the
other hand, the second graph is satisfiable because there are no such edges. One
satisfying valuation is Q = (a c)(a b), E = a, A = b, B = D = C = c.

In the rest of this section, we present and prove correct an algorithm for
testing satisfiability for p-graphs based on this intuitive approach. We consider
several rules for simplifying graphs, shown in Figure 4. Each diagram consists
of a solid part and an edge formed with dotted lines. Such a diagram indicates
that if G has a subgraph of the form described by the solid part, then the dotted
edge should be added. These rules correspond to the following transformations
on sets of formulas:

(≈p
ref ) S →p S, v ≈ v (Ep

→) S[v E v′, Q·v ≈ w,Q·v′ ≈ w′] →p S,w E w′

(#p
irr) S →p S, a # b (Ep←) S[w E w′, Q·v ≈ w,Q·v′ ≈ w′] →p S, v E v′

where in the (≈p
ref ) and (#p

irr) rules, v or a 
= b must be in S, respectively; in
the (Ep

→) and (Ep
←) rules, E ∈ {≈,#}; and S[S1]→p S, S2 means “If S contains

the formulas S1, then add S2 to S,” .
Once the simplification rules above have been applied we can “collapse”

equality edges involving variables, as outlined in the informal example. We say
that a variable in G is solved if it appears in just one equality edge in G, otherwise
it is unsolved; if A ≈ v ∈ G and A is unsolved then we can solve A in G by
replacing A with v in all the other edges of G. This transformation on the graph
corresponds to a variable elimination step on its corresponding constraint set:

(≈p
var) S,A ≈ v →p S[A := v], A ≈ v (if A ∈ FV (S), A 
= v)

We define G[A := v] as the result of removing A from G and replacing A with v in
all edges of G; a collapsing step on A ≈ v transforms G to G[A := v], A ≈ v. We
write G →p G′ if G can be transformed to G′ via a simplification or collapsing
step.

When considering satisfiability, solved variables can be ignored. The collaps-
ing c(G) of a graph G is the graph formed by eliminating all solved vertices. If
c(G) = G, we say that G is fully collapsed.

Lemma 1. If A ≈ v ∈ G then Solv(G[A := v], A ≈ v) = Solv(G). Moreover,
c(G) is satisfiable if and only if G is.
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Proof. If θ � G, then θ � A ≈ v, hence θ � A[A := v] for each A ∈ G besides
A ≈ v. Conversely, if θ � G[A := v], A ≈ v, then θ � A ≈ v and so θ � A for each
A ∈ G. The second part follows by induction on the number of solved variables
in G.

We say that a p-graph is in normal form if none of the simplification or
collapsing rules apply. A normalized graph is solved if in addition, E≈ and E#

are disjoint. We consider the possible forms of fully collapsed solved forms.

Proposition 1. In a fully collapsed solved form, E≈ = IdW , and each EQ is a
partial injective function on W .

Proof. Clearly IdW ⊆ E≈ since otherwise (≈p
ref ) would apply. Suppose v ≈ w ∈

G. If v is a variable A, then w must also be A because otherwise v and w could
be collapsed. The case in which w is a variable is symmetric. If v and w are
names, then since G is normalized we must have a # b ∈ G and a ≈ b 
∈ G for
any distinct names a 
= b, so it must be the case that v = a = w.

For the second part, let Q ∈ PV be given and consider (v, w), (v, w′) ∈ EQ.
Since G is normalized, we must have v ≈ v ∈ G and w ≈ w′ ∈ G. By the
first part, w = w′. Hence EQ is a function. Moreover, by a similar argument if
(v, w), (v′, w) ∈ EQ then v = v′, so EQ is injective.

Proposition 2. A normalized p-graph is satisfiable if and only if it is solved.

Proof. For the forward direction, we prove the contrapositive. If G is normalized
but not solved, then there exists (v, w) ∈ E# ∩ E≈. No valuation satisfies both
v ≈ w and v # w, so G is unsatisfiable.

For the reverse direction, it suffices to consider only normalized, fully col-
lapsed graphs. By Proposition 1, G must satisfy E≈ = IdW , and EQ must be
an injective function on W for each Q.

Recall that W = V ∪N , where N is the set of names and V = {A1, . . . , Ak}
the set of variables of G. Let b1, . . . , bk be k names fresh for each other and not
appearing in N . Define θ(Ai) = bi for Ai ∈ V . Note that θ is a bijection between
V and B = {b1, . . . , bk}. It extends to a bijection θ : W → B ∪N . If v ≈ w ∈ G
then v = w so clearly θ(v) ≈ θ(w). On the other hand, if v # w ∈ G, we must
have v 
= w, so θ(v) # θ(w) since θ is bijective. This shows that any valuation
based on θ satisfies the edges E≈ and E# of G.

Since each EQ is injective it can be completed to a bijection πQ : W → W .
Define θ(Q) = θ ◦ πQ ◦ θ−1 for each Q. Suppose (v, w) ∈ EQ. By construction,
πQ(v) = w, so

θ(Q·v) = θ(Q)(θ(v)) = θ(πQ(θ−1(θ(v)))) = θ(πQ(v)) = θ(w)

as desired. This completes the proof that the valuation θ satisfies G.

Theorem 1 (Soundness). If G→p G′ then Solv(G′) = Solv(G).

Proof. Suppose G→p G′. For a simplification step, G′ = G∪A where A is either

v ≈ w, v # w, or v
Q−→ w. Trivially, Solv(G′) ⊆ Solv(G) since G ⊆ G′. To show

that Solv(G) ⊆ Solv(G′), we need only verify that G � A in each case.
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For the (≈p
ref ) rule, A = v ≈ v, and G � v ≈ w. For the (#p

irr) rule,
A = a # b for names a 
= b, and clearly G � a # b. For the (Ep

→) rule, we

have A = x′ E y′ and v
Q−→ v′, w

Q−→ w′, v E w ∈ G for E ∈ {≈,#}. Then
θ(v) E θ(w), θ(Q)(θ(w)) = θ(w′) and θ(Q)(θ(v)) = θ(v′), so

θ(v′) = θ(Q)(θ(v)) E θ(Q)θ(w) ≈ θ(w′)

The cases for the (Ep
←) rules are symmetric, since permutations are invertible

and ≈ and # are equivariant. The case for a (≈p
var) step is shown in Lemma 1.

Theorem 2 (Termination). There are no infinite sequences of simplification
steps. Moreover, p-graph normalization can be performed in polynomial time.

Proof. Each reduction step either adds an edge or solves a vertex in G, so the
maximum number of steps is bounded above by (2+ |PV |)· |W |2|V |. Each reduc-
tion step can be identified and performed in polynomial time, and normalized
and solved graphs can be recognized in polynomial time.

Corollary 1 (Completeness). The relation →p reduces any p-graph G to
a normal form G′ which is solved if and only if G is satisfiable; moreover,
Solv(G) = Solv(G′).

4 Equivariant Unification

In the previous section, we considered a very limited case of equivariant unifica-
tion, namely solving systems of formulas of the form v ≈ w, v # w, and Q·v ≈ w.
We showed that this problem can be solved in polynomial time using permutation
graphs. In this section, we give an algorithm for reducing equivariant unification
for arbitrary nominal terms to the problem of testing the satisfiability of a finite
(but possibly exponential) number of permutation graphs. This algorithm can
be easily be modified to obtain a nondeterministic polynomial time procedure
for testing the satisfiability of such a problem, or as a procedure for enumerating
the solutions one at a time.

We break the process into two phases. In the first phase, we simplify all
problems involving subterms of the form 〈〉, 〈t, u〉, 〈a〉t, f(t). After the first phase,
the remaining satisfiable subproblems are of the form a # b, a ≈ b, where a, b
are formed using only names, variables, and permutations. In the second phase,
we convert these subproblems into p-graphs by eliminating permutations. Once
each p-graph is constructed, we can test its satisfiability as shown in the previous
section.

4.1 First Phase

The first phase of the algorithm (defined as a relation →1) is presented as a
collection of multiset rewriting rules in Figure 5. Each rule is of the form S →1

M, and indicates that an extended problem M′;S should be rewritten to the
problem M′;M.

A problem S is in solved form if it consists only of constraints of the form
a # b, a ≈ b, or X ≈ t where X does not appear in t or elsewhere in S; an
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(≈1) S, 〈〉 ≈ 〈〉 →1 S
(≈×) S, 〈t1, t2〉 ≈ 〈u1, u2〉 →1 S, t1 ≈ u1, t2 ≈ u2

(≈f ) S, f(t) ≈ f(u) →1 S, t ≈ u

(≈abs) S, 〈a〉t ≈ 〈b〉u →1

{
S, a ≈ b, t ≈ u;

S, a # u, t ≈ (a b)·u
}

(≈var) S, Π ·X ≈ t →1 S[X := Π−1·t], X ≈ Π−1·t
(where X �∈ FV (t), X ∈ FV (S))

(#1) S, a # 〈〉 →1 S
(#×) S, a # 〈u1, u2〉 →1 S, a # u1, a # u2

(#f ) S, a # f(u) →1 S, a # u

(#abs) S, a # 〈b〉u →1

{
S, a ≈ b;
S, a # u

}
Fig. 5. Equivariant unification: phase one.

extended problem is solved if all its problems are solved. “Stuck” subproblems
S that are unsolved and can take no transition can always be removed from an
extended problem.

Example 2. The problem Q·(〈a〉〈A,B〉) ≈ 〈b〉〈b, c〉 reduces to a solved form as
follows:

〈Q·a〉〈Q·A, Q·B〉 ≈ 〈b〉〈b, c〉 →1

{
Q·a ≈ b, 〈Q·A,Q·B〉 ≈ 〈b, c〉;

Q·a # 〈b, c〉, 〈Q·A, Q·B〉 ≈ 〈(Q·a b)·b, (Q·a b)·c〉
}

→∗
1

{
Q·a ≈ b, Q·A ≈ b, Q·B ≈ c;

Q·a # b, Q·a # c, Q·A ≈ (Q·a b)·b,Q·B ≈ (Q·a b)·c
}

Some constraints in a solved form may be of the form Π ·X ≈ Π ′·X where X
is not a name-variable so cannot be substituted with names. These constraints
are always satisfiable so can be set aside. This leaves name–name constraints
a # b, a ≈ b involving only permutations, names, and name variables.

Theorem 3 (Soundness). If M→1 M′ then Solv(M) = Solv(M′).

Proof. The cases for (≈1), (≈×), (≈f ), and (≈var) are straightforward. For
(≈abs), it suffices to show that Solv(〈a〉t ≈ 〈b〉u) = Solv(a ≈ b, t ≈ u)∪Solv(a #
u, t ≈ (a b)·u). Clearly, if θ � a ≈ b, t ≈ u, or θ � a # u, t ≈ (a b)·u, then
θ � 〈a〉t ≈ 〈b〉u using the rules in Figure 1. If θ � 〈a〉t ≈ 〈b〉u, then there are two
cases. If θ(a) = θ(b), then θ � a ≈ b, t ≈ u, so θ � M-{a ≈ b, t ≈ u}. Otherwise,
we must have θ � a # u, t ≈ (a b)·u, so θ � M- {a # u, t ≈ (a b)·u}.

The cases involving freshness are straightforward, with the reasoning for
(#abs) similar to that for (≈abs).

Theorem 4 (Termination). The relation →1 terminates.

Proof. We define a measure on terms as follows: μ(〈〉) ≈ 1, μ(〈t, u〉) = μ(t) +
μ(u) + 1, μ(f(t)) = μ(f) + 1, μ(〈a〉t) = μ(t) + 1, μ(Π ·X) = μ(Π ·a) = 0. Let
μ(t E u) = μ(t) + μ(u) and μ(S) =

∑
A∈S μ(A). Let μ′(S) be the number of

unsolved variables in S. Define ν(S) = (μ′(S), μ(S)) and ν(M) = {ν(S) | S ∈
M}. It is straightforward to verify that if P →1 P ′ then ν(M) > ν(M′) in the
multiset order generated by the lexicographic order on N× N.
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(id) S[id·v] →2 S[v]
(inv) S[Π−1·v] →2 ∃X.S[X], Π ·X ≈ v
(comp) S[Π ◦ Π ′·v] →2 ∃X.S[Π ·X], Π ′·v ≈ X)

(swap) S[(a a′)·v] →2

⎧⎨⎩
S[a], a′ ≈ v;
S[a′], a ≈ v;

∃X.S[X], v ≈ X, a # X, a′ # X

⎫⎬⎭
(#Q) S, Q·v # w →2 ∃X.S, Q·v ≈ X, X # w

Fig. 6. Equivariant unification: phase two.

Lemma 2. If M is satisfiable and →1-normalized, then M is in solved form.

Proof. We prove that if M is unsolved and satisfiable, it is not normalized.
Suppose M is satisfiable but not solved. Then there must be some constraint in
M which is not of the form a # b, a ≈ b, or X ≈ t where X is solved in M. If
the constraint is of the form Π ·X ≈ t where X is a term variable and t starts
with a term symbol, then we must have θ(Π ·X) ≈ θ(t), which can only be the
case if X does not appear in t, so (≈var) applies. Otherwise, the constraint must
be of the form t ≈ u or a # u, where t, u start with term symbols. For the case
of a # u, a step can be taken no matter which term symbol is at the head of u.
For t ≈ u, since θ � t ≈ u, the head symbols of t and u must match, so that we
can take a step. In any case, M→M′ for some M′.

Corollary 2 (Completeness). The relation →1 reduces any finite equivariant
unification problem to a finite complete set of pre-solutions.

4.2 Second Phase

In the second phase, we reduce name–name constraints to p-graphs whose sat-
isfiability can be checked easily. As a preprocessing step, we assume that all
constraints of the form Π1·v ≈ Π2·w or Π1·v # Π2·w are normalized to (Π−1

2 ◦
Π1)·v ≈ w or (Π−1

2 ◦Π1)·v # w respectively. This is without loss of generality
because # and ≈ are preserved by applying permutations to both sides. The
rules for the second phase of equivariant unification shown in Figure 6 reduce
the results of the first phase to a form suitable for satisfiability checking via
p-graphs. In several rules, we introduce fresh existentially-quantified variables;
these are required not to already appear in the problem.

Example 3. We continue Example 2. The first subproblem, Q·a ≈ b, Q·A ≈
b, Q·B ≈ c, is already in solved form (and is satisfiable provided A ≈ a). The
second problem reduces as follows:

Q·A ≈ (Q·a b)·b, Q·B ≈ (Q·a b)·c, Q·a # b, Q·a # c

→2 (Q·a b) ◦Q·A ≈ b, (Q·a b) ◦Q·B ≈ c, S

→2 (Q·a b)·C1 ≈ b, Q·A ≈ C1, (Q·a b)·C2 ≈ c, Q·B ≈ C2, S

→2

⎧⎨⎩
Q·a ≈ C1, b ≈ b;

(∗) Q·a ≈ b, a ≈ C1;
(∗) Q·a # C1, b # C1, C1 ≈ b

⎫⎬⎭⊗

⎧⎨⎩
(∗) Q·a ≈ C2, b ≈ c;
(∗) a ≈ C2, Q·a ≈ c;

Q·a # C2, b # C2, C2 ≈ c

⎫⎬⎭⊗ {S′}
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where S = Q·a # b, Q·a # c and S′ = Q·A ≈ C1, Q·B ≈ C2, S, and M⊗M′

denotes {T ∧ T ′ | T ∈ M, T ′ ∈ M′}. There are a total of nine cases; however,
the starred subproblems are unsatisfiable, so there is only one solution.

Theorem 5 (Soundness). If M→2 M′ then Solv(M) = Solv(M′).

Proof. There are several cases, one for each rule replacing M, S with M,M′

for S →2 M′. The cases for (id), (inv), (comp), and (#Q) are straightfor-
ward. For the (swap) rule, it suffices to show that Solv(S[(a b)·v]) = T =
Solv(S[b], a ≈ v) ∪ Solv(S[a], b ≈ v) ∪ Solv(∃X.S[X ], v ≈ X, a # X, b # X). If
θ ∈ Solv(S[(a b)·v]), then there are three cases. If θ � a ≈ v, then θ � (a b)·v ≈ b
so θ ∈ Solv(S[b], a ≈ v). The case for θ � b ≈ v is symmetric. If θ � a # v, b # v,
then θ � (a b)·v ≈ v so θ[X := θ(v)] � X ≈ v, a # X, b # X,S[X ], and
θ ∈ Solv(∃X.S[X ], v ≈ X, a # X, b # X). So in any case θ ∈ T . The reverse
direction, T ⊆ Solv(S[(a b)·v]), is straightforward.

Theorem 6 (Termination). The relation →2 terminates.

Proof. We employ a measure μ that measures the complexity of the permutation
terms remaining inM. We define μ(v) ≈ 0, μ(Π ·v) = μ(Π), μ((a b)) = 1+μ(a)+
μ(b), μ(Π ◦Π ′) = μ(Π)+μ(Π ′), μ(Π−1) = μ(Π)+1, and μ(id) = 1. In addition,
μ(a # v) = μ(a ≈ v) = μ(a), μ(S) =

∑
A∈S μ(A), and μ(M) = {μ(S) | S ∈ M}.

If M →2 M′, then μ(M) is decreasing in the multiset ordering generated by
>N.

Lemma 3. If M is →2-normalized problem, then it is in solved form.

Proof. Since M is normalized, it cannot contain any constraints of the form
Π ·v E w where E ∈ {#,≈} and Π is not a variable, since otherwise one of the
rules (id), (comp), (inv), (swap) can be applied. Similarly, M cannot contain
a constraint of the form Q·v # w, since otherwise (#Q) applies. Because only
constraints of the form v ≈ w, v # w, and Q·v ≈ w remain,M is in solved form.

Corollary 3 (Completeness). The relation→2 reduces any finite name–name
problem to a finite complete set of pre-solutions.

Example 4. Consider the query ?− spec(all(〈a〉tvar(a)), [b], U). Equivariant uni-
fication against a suitably renamed/permuted head clause P ·spec(all(〈a′〉T ′),
a′ :: L′, U ′) yields a single unifier P ·a′ ≈ b, T ′ := tvar(P−1 ◦ (a P ·a′)·a), L′ :=
[], U := P ·U ′. The resulting subgoal spec(tvar(P−1 ◦ (a P ·a′)·a), [], U ′) produces
the unique solution U ′ := tvar(P−1 ◦ (a P ·a′)·a). This gives the overall solution
U := tvar(P ◦ P−1 ◦ (a P ·a′)·a), which can be simplified to U := tvar(b) since
P ·a′ ≈ b.

5 Swapping-Free Equivariant Matching

In equivariant unification, only the abstraction and swapping operations cause
branching. This implies (perhaps surprisingly) that equivariant unification is
tractable for problems involving names, term symbols, and freshness but not
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(≤1) S, l.t ≤ l′.〈〉 →m S, t ≈ 〈〉
(≤f ) S, l.t ≤ l′.f(u) →m ∃X.S, l.X ≤ l′.u, t ≈ f(X)
(≤×) S, l.t ≤ l′.〈u1, u2〉 →m ∃X1, X2.S, l.X1 ≤ l′.u1, l.X2 ≤ l′.u2, t ≈ 〈X1, X2〉
(≤abs) S, l.t ≤ l′.〈a〉u →m ∃X.S, lb.X ≤ l′a.u, t ≈ 〈b〉X (b �∈ FN(S))
(≤≈) S, la.v ≤ l′b.b →m S, v ≈ a
(≤#) S, la.v ≤ l′b.c →m S, l.v ≤ l′.c, a # v (b �= c)

Fig. 7. Swapping-free equivariant matching.

abstraction and swapping. If we restrict attention to equivariant matching of
grounded terms, however, we can get a stronger result: swapping-free grounded
terms can be matched efficiently. We consider grounded problems of the form
t ≤ u, where u is ground; a solution is a ground substitution θ and ground
permutation π such that θ(t) ≈ π·u.

When one side of an equation is ground, the structure of the bound names
on that side must be mirrored exactly on the other side. For example, consider
the problem 〈a〉〈b〉X ≤ 〈c〉〈d〉e, where X is a name-variable and e is a ground
name. If e = d, then we must have X = b; if e = c, then we must have X = a;
and if e is some name other than c, d then we must have a, b # X and Q·X = e.

Also, in a problem of the form 〈a1〉· · ·〈an〉X ≤ 〈b1〉· · ·〈bn〉t, if t starts with
unit, pairing, or a function symbol f , then X must also start with unit, pair-
ing, or f , so we can proceed by simulating the head symbol of t by making
an appropriate substitution of X ≈ 〈〉, X ≈ 〈X1, X2〉, or X ≈ f(X ′), where
X1, X2, X

′ are new variables. More generally, if the problem is of the form
〈a1〉· · ·〈an〉t ≤ 〈b1〉· · ·〈bn〉u, then we can proceed by unifying t with 〈〉, 〈X1, X2〉,
or f(X ′), as appropriate.

Based on this intuition, we propose the following algorithm for matching
swapping-free grounded terms with ground nominal terms. We write l, l′ for lists
of names a1 · · · an and consider problems of the form l.t ≤ l′.u where u is ground.
This problem is equivalent to the problem 〈a1〉· · ·〈an〉t ≤ 〈b1〉· · ·〈bn〉u.

The rules in Figure 7 define a relation→m that reduces equivariant matching
problems to the form S≤ ∪ SNP , where S≤ is a collection of inequalities of the
form [].v ≤ [].a, and SNP is a collection of equality and freshness constraints
among grounded terms. The satisfiability of SNP can be tested using grounded
nominal unification; if successful, this results in a unifier 〈∇, σ〉, where ∇ is a
set of freshness constraints and σ is a substitution. Now let Q be a permutation
variable, let SQ = ∇ ∪ {Q·σ(v) ≈ a | [].v ≤ [].a ∈ S≤}, and test the satisfiability
of the p-graph GSQ .

We now state the important properties of →m. The proofs are complicated
without being particularly enlightening so are omitted.

Theorem 7 (Soundness). If S →m S′, then Solv(S) = Solv(S′).

Theorem 8 (Termination). The relation →m is terminating, and normal
forms can be computed in polynomial time.

Lemma 4. If S is a normalized swapping-free equivariant matching problem,
then S is in solved form.
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Theorem 9 (Completeness). The relation →m reduces any equivariant
matching problem S to a pre-solution S′ such that Solv(S) = Solv(S′).

Example 5. Recall the problem subst(var(a), T, a) ≤ subst(var(b), var(a), b)
mentioned in the Introduction. The above algorithm reduces to the solved form
a ≤ b, T := var(B), B ≤ a. Since subst(var(a), T, a) rewrites to T = var(B) and
B ≤ a, we rewrite subst(var(b), var(a), b) to var(a).

6 Related and Future Work

Many researchers (see for example [9]) have studied the problem of E-unification,
or unification with respect to a general equational theory E. However, nominal
logic poses some unique challenges to standard E-unification techniques based
on confluent rewrite systems. One reason is that it appears that the equivariance
principle p(x̄) ≈ p((a b)·x̄) cannot be directed so as to obtain a confluent rewrite
system for nominal terms.

There also may be an interesting connection between equivariant unification
and unification modulo equational laws having to do with name-restriction in the
π-calculus, such as νa.p ≡ p (where a /∈ FN(p)) and νa.νb.p ≡ νb.νa.p. More
generally, it may be interesting to study E-unification for equational theories
specified in nominal logic.

Cheney [2], Fernandez, Gabbay and Mackie [4], and Urban and Cheney [10]
have developed increasingly general tests for identifying rewriting systems or
logic programs for which nominal unification is adequate. These results demon-
strate that nominal unification can often be used instead of equivariant unifica-
tion to execute programs efficiently. Such special cases should be recognized and
exploited whenever possible.

FreshML [8] is a ML-like functional programming language based on nominal
abstract syntax. In FreshML, programs can perform pattern matching against
terms involving abstraction and name-variables but not constant names, swap-
pings; also, such pattern matching is not modulo equivariance. However, as usual
in ML, variables may appear at most once in patterns, so the matching prob-
lems involved in FreshML can be solved efficiently and without backtracking: for
example, to match u against an abstraction 〈A〉t, it suffices to generate a fresh
name c and match u against 〈c〉t. It would be interesting to see whether constant
names could be incorporated into FreshML-style functional programming.

In logic programming, nondeterminism is often a bigger performance prob-
lem than exponential worst-case complexity, so it would be worthwhile to find
ways of avoiding duplicate answers, delaying nondeterministic search, and de-
tecting failure early. One possibility is to look for and factor out symmetries in
subproblems as soon as they appear. Another step in this direction is to replace
the (≈abs) and (#abs) rules with

(≈abs) S, 〈a〉t ≈ 〈b〉u→1 S, Nc.(a c)·t ≈ (b c)·u
(#abs) S, a # 〈b〉u→1 S, Nc.a # (b c)·u
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where c 
∈ FN(a, b, t, u) and Nis nominal logic’s “new” or “fresh name” quan-
tifier. This is correct because in nominal logic, 〈a〉t ≈ 〈b〉u ⇐⇒ Nc.(a c)·t ≈
(b c)·u and a # 〈b〉u ⇐⇒ Nc.a # (b c)·u. This approach concentrates the non-
determinism in name–name constraints, which suggest that a practical approach
may be to delay attempts to solve such constraints as long as possible.

We expressed equivariant unification in terms of permutation terms and vari-
ables. In contrast, in nominal logic, only the swapping operator is present; general
permutations are not. It is not clear how solutions involving permutation vari-
ables produced by our algorithm relate to nominal logic. Thus, it would be an
advantage if permutation variables could be eliminated from the results of logic
programming queries. This issue needs to be investigated.

We have developed a prototype implementation of equivariant unification
using Constraint Handling Rules [5], which are available in many Prolog imple-
mentations. This helped identify some subtle issues and is a first step towards
incorporating nominal abstract syntax into standard logic programming lan-
guages.

7 Conclusions

Equivariant unification and matching are computationally hard problems requir-
ing subtle algorithmic techniques. Solutions to these problems are necessary for
complete implementations of nominal rewriting and logic programming. This
paper makes two contributions building upon an important technical device
called permutation graphs. We present an equivariant unification algorithm, the
first terminating algorithm for this problem. This algorithm can be viewed as a
nondeterministic polynomial time algorithm for reducing equivariant unification
problems to finite complete sets of solutions. It is evident from the structure of
the algorithm that the only sources of nondeterminism in equivariant unifica-
tion are swappings and abstractions. Based on this observation, we developed
an algorithm for efficient matching of swapping-free grounded terms. This algo-
rithm can be used to run interesting nominal rewrite systems that do not work
properly using nominal unification alone. However, there are several potential
efficiency problems which will need to be addressed for equivariant unification
to be practical.
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5. Thom Frühwirth. Theory and practice of constraint handling rules. Journal of
Logic Programming, 37(1–3):95–138, October 1998.

6. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2002.

7. A. M. Pitts. Nominal logic, a first order theory of names and binding. Information
and Computation, 183:165–193, 2003.

8. M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programmming with
binders made simple. In Proc. 8th ACM SIGPLAN Int. Conf. on Functional Pro-
gramming (ICFP 2003), pages 263–274, Uppsala, Sweden, 2003. ACM Press.

9. Wayne Snyder. A Proof Theory for General Unification, volume 11 of Progress in
Computer Science and Applied Logic. Birkhäuser, 1991.
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Abstract. Sorting information arises naturally in E-unification prob-
lems. This information is used to rule out invalid solutions. We show
how to use sorting information to make E-unification procedures more
efficient. We illustrate our ideas using Basic Syntactic Mutation. We give
classes of problems where E-unification becomes polynomial. We show
how E-unification can be separated into a polynomial part and a more
complicated part using a specialized algorithm. Our approach is moti-
vated by a real problem arising from Cryptographic Protocol Verification.

1 Introduction

The problem of Equational Unification is the problem of finding a substitution
that makes two terms equivalent modulo an equational theory [1]. This prob-
lem arises in automated theorem proving and formal methods, such as analysis
of cryptographic protocols [9]. In traditional formal methods tools for crypto-
graphic protocol analysis, cryptographic algorithms are modeled as a black box.
But it is possible to represent properties of algorithms using equational the-
ories. Such approaches are becoming more and more common [2]. Therefore,
E-unification becomes necessary in the analysis of cryptographic protocols. This
paper is inspired by a problem in [12] from cryptographic protocol analysis.

The problem of E-unification is undecidable in general. So it is important to
find ways to restrict the class of theories to make E-unification more efficient. For
example, given an equational theory that is saturated under Paramodulation, E-
unification is in NP using Basic Narrowing [10] and Basic Syntactic Mutation
(BSM) [7]. If the equational theory is further restricted, BSM runs in polynomial
time and gives a most general unifier. This has been used to show that E-
unification for an approximation of the commutativity of exponents in the Diffie
Hellman protocol runs in polynomial time [6]. This approximation is used in
practice in the NRL Protocol Analyzer [8].

This class of theories is restrictive. It would be helpful if we could use real-life
properties of the theory under consideration in order to reduce the search space
further. Here, we use sorts to define whether a term makes sense. And then terms
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that are not well-sorted do not have to be considered in the unification procedure.
Sorts are also used to instantiate some variables. For example, a delete operation
only makes sense when applied to an item and a set containing that item.

Specifically, we reconsider BSM, and give conditions for which BSM with
sorts runs in polynomial time. We also give conditions for which a theory can be
separated into two parts such that the E-unification procedure is divided into
a polynomial time part and a part that runs a specialized E-unification proce-
dure. The polynomial part can be performed first followed by the specialized
procedure, with no interaction between them.

We illustrate our ideas with an example of the key hierarchy theory from
cryptographic protocol analysis. This models a protocol where member keys
are stored in a tree, along with an associated group key. Member keys can be
added to or deleted from the tree. It is possible to access the group key if a
member key is known. We can view the tree as a set. This theory is closed under
paramodulation, so BSM runs in NP. We show how to use sorts to separate it
into a polynomial time procedure yielding a most general unifier, followed by a
separate procedure for E-unification modulo the theory of sets.

The paper is organized as follows. In Section 2, we introduce the key hierarchy
problem that motivates our idea, and give some observations to show why sorts
are needed. In Section 3, we introduce the kind of sorts used in this paper, and the
properties they should have. Then we show how certain violations of the proper-
ties can be rectified, so that theories that do not obey all the properties can be
forced to obey them. In Section 4, we give a sorting procedure, which we use later
to provide sorts to unsorted variables. Then we give Sort Expansion inference
rules that use that Sort procedure to give sorts to the variables in the equational
theory and the goal, and sometimes expand the terms in the goal. In Section 5,
we define a separable equational theory as one where the E-unification problem
for different theories can be solved separately. In Section 6, we show how the
Basic Syntactic Mutation procedure is modified for sorts. In Section 7, we show
how sorts are used to make E-unification polynomial for certain theories. Finally,
in Section 8 we relate our work to previous work on sorts. Proofs appear in the
full version at http://www.clarkson.edu/~clynch/papers/bsmsort full.ps.

2 Problem

In [7] we have shown that for some equational theories, called deterministic, we
have a deterministic E-unification algorithm which runs in O(n2) time. E is
subterm collapsing if there are terms s and t with s a proper subterm of t, and
s equal to t modulo E. We call E deterministic if E is not subterm-collapsing,
no two equations in E have the same root symbols at their sides, neither t nor
s is a variable and if s ≈ t ∈ E, then the root symbol of s is not the same as the
root symbol of t.

Here we present another set of theories, which can allow subterm collapsing
axioms, but also have a very fast E-unification solver. We first explain our ideas
on an example of an equational theory of key hierarchy in security protocols1:
1 In this example, x, y and M are variables.
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E = {pick(x, tree(y, f(x,M))) ≈ y
add(x, tree(y,M)) ≈ tree(y, f(x,M))
delete(x, tree(y, f(x,M))) ≈ tree(y,M)}

Here we want to deal with the member keys in a group of users and a
group key. A group key is a root of a tree of member keys, and the member
keys are leaves of that tree. tree(y,M) means that y is a root of a tree with
leaves M . f(x,M) is just a set constructor like cons(x,M) but for sets, and not
for lists, hence x is an element and M is a set of elements, i.e. member keys.
pick(x, tree(y, f(x,M))) allows us to retrieve a group key if a member key is
known. add and delete adds and deletes member keys in a tree.

The theory is closed under Paramodulation2, hence Basic Syntactic Mutation
(BSM) provides an NP-algorithm for E-unification in E. The first step in the
BSM-algorithm is to close a given E under the Right-Hand-Side Critical Pair
rule3, which in our example yields the following equational theory:

RHS(E)
= E ∪ {delete(x′, tree(y, f(x′, f(x,M)))) ≈ add(x, tree(y,M)),

delete(x, tree(y, f(x,M))) ≈ delete(x′, tree(y, f(x′,M))),
pick(x, tree(y, f(x,M))) ≈ pick(x′, tree(y, f(x′,M ′))),
pick(x, tree(tree(y′, f(x′,M ′)), f(x,M))) ≈ add(x′, tree(y′,M ′),
pick(x, tree(tree(y′,M ′), f(x,M))) ≈ delete(x′, tree(y′, f(x′,M ′)))}

We can see that RHS(E) is not a deterministic equational theory. It is
subterm-collapsing (e.g. pick(x, tree(y, f(x,M))) ≈ y), the first condition is sat-
isfied, but the second is not (pick(x, tree(y, f(x,M))) ≈ y) and neither is the
third (e.g. pick(x, tree(y, f(x,M))) ≈ pick(x′, tree(y, f(x′,M ′)))).

The situation is still worse if we add axioms defining sets of member keys in
order to obtain the full theory for key hierarchy.

E∗ = E ∪ {f(x, f(y,M)) ≈ f(y, f(x,M)),
f(x, f(x,M)) ≈ f(x,M) }

E∗ is not finitely saturated under Paramodulation.
That leads us to some observations.

1. Considering intended interpretation, we can restrict subterms appearing in
pick-, add-, delete-, tree- and f -terms4. A term pick(u, v) makes no sense if
u is not a member-key, and v a tree, tree(s, t), where s is a group-key, and
t a term representing a set of member-keys with u an element of t. Similar
restrictions can be imposed on add-, delete-, tree- and f -expressions.

2. A pick-expression represents an operation on trees which returns a group
key; add- and delete- expressions operate on trees and return a tree.

2 See section 6 for definitions of Paramodulation and RHS(E).
3 The rule appears again on page 100.
4 An f -term is a term with root symbol f .



Faster Basic Syntactic Mutation with Sorts 93

3. f -expressions are troublesome, because they represent sets, and in order to
enable them to properly unify, we have to add identities to E, which destroy
its closure under Paramodulation, and inevitably add to the complexity of
E-unification5. On the other hand we can postpone unification of f -terms
until all pick-, add-, delete-, and tree- terms are eliminated from the goal.
Hence our procedure may have two phases: first – polynomial, and the second
one, nondeterministic polynomial, dealing with sets. At any rate, if the goal
is ground, this phase can also be made polynomial.

We can look at it semantically: there is a universe of objects (in our example
the objects are group-keys, member-keys, trees and sets). Terms in our goal (if
it is unifiable) should map to some objects in the universe. But terms which are
not well-sorted, do not map to anything in the universe.

The second observation is also justified by this semantic point of view. There
are no special objects in our universe such as pick, add and delete. pick represents
a group-key, which was accessed in a given way, and add and delete refer to trees.
Assuming that our goal is E-unifiable, all its variables map eventually to objects:
trees, group-keys, member-keys or sets of member-keys.

3 A Sort Theory Associated with an Equational Theory

The previous section suggests that we should use some sort theory to help us
in the process of E-unification by restricting the search space for a solution.
Which sort theory to use for this purpose is perhaps mostly decided by semantic
information, outside of the possibilities of purely syntactic analysis of equations
in E. Nevertheless we can have some requirements which make a sort theory
suitable for our purposes. See [13] for the definition of a sort theory.

– Simplicity. The first such requirement is that the sort theory is simple, i.e.
for every function symbol there is at most one sort declaration in it. For
example, for our equational theory we could use the following sort theory:

LE = {G(pick(xM , tree(yG, f(xM , zS)))), T (add(xM , yT )),
T (delete(xM , tree(yG, f(xM , zS)))), T (tree(xG, yS)), S(f(xM , yS))}

where G represents group-keys, M represents member-keys, T represents
trees and S represents sets. Notice that this sort theory is simple. The no-
tation xM means that x is of sort M .

– Consistency with E. If u ≈ v ∈ E, then there are terms s, t and sort
declarations in the sort theory S(s), S(t), such that there is a matching
substitution σ, with sσ = u and tσ = v. Obviously, LE is consistent with E
or RHS(E).
The next requirement ensures that in each sort there is at least one term
E-unifying with all the other terms in this sort.

5 We could also apply the inferences modulo the theory of sets, but this also adds to
the complexity.
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– Property (*)
In each sort in a sort theory L, there must be at least one sort declaration
with a term u, such that for each other term v in the sort declaration of the
same sort, there is a substitution σ with E |= uσ ≈ vσ.
Our sort theory LE satisfies this requirement. It is enough to inspect the
equations in E or RHS(E) to see that e.g. any term in the sort T can be
chosen to be the term u in the description of the above requirement.

In order to define the fourth requirement, we first define a partial order on
the terms appearing in sort declarations. If S(f(u1, . . . , un), S(g(v1, . . . , vm)) are
sort declarations in L, we say that f(u1, . . . , un) ≥L g(v1, . . . , vm), if g appears
at a root position in a proper subterm of f(u1, . . . , un).

Definition 1. Given a sort theory L satisfying Property (*), for each sort S
in L, we call a term u appearing in a sort declaration S(u), such that u is
minimal with respect to ≥L and for each other term v in the same sort, there is
a substitution σ with E |= uσ ≈ vσ a minimal term in the sort S.

– Normal Term Requirement. We require that for each sort S in L, there
is a minimal term in S which does not contain any proper subterm of the
sort S, or is of the form g(xS) and E |= g(xS) ≈ xS . We call such a term, a
normal term in the sort S.

In LE , the normal term for the sort T can only be tree(xG, yS), because it is
the smallest term with the required property in this sort. However, LE does not
satisfy the normal term requirement, because it contains the sort declaration:
G(pick(xM , tree(yG, f(xM , zS)))), which is the only sort declaration for the sort
G, but the term pick(xM , tree(yG, f(xM , zS))) does contain yG which is not the
only argument in this term. A similar problem appears with the sort declaration
for sets, S. The term in the sort declaration S(f(xM , yS)) contains a subterm of
the same sort.

Definition 2. Given a sort theory L and an equational theory E, if L satisfies
all the above requirements, then L is called a sort theory associated with E.

Now we show how to refine a simple sort theory with Property (*) but not
satisfying the normal term requirement for a sort theory associated with E, in
such a way that we can have a sort theory satisfying all the requirements.

The normal term requirement is natural, because if we think about sorted
terms as terms mapping into a domain of objects, the sort of such terms must
be well-defined. In any case we can define a function g(x) such that each term
of a given sort is a fix point for this function (hence g(v) = v). Notice that if we
add the sort declaration S(g(xS)) to L and an equation g(x) ≈ x to E, g(xS)
will satisfy requirements for the normal term in the sort S.

So we can modify a simple sort theory L with Property (*) which does not
satisfy the normal term condition by adding to it a new function symbol and a
sort declaration. At the same time we have to modify the equational theory E
in such a way that the new sort theory is associated with the modified E.
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Definition 3. 1. Given a sort theory L and an equational theory E, if L has
Property (*), but for a sort S there is no term which can be normal in this
sort, we add to L a new sort declaration S(g(x)), where g is a fresh function
symbol, and set g(x) as normal term in the sort S.

2. If L′ is a sort theory obtained in 1, and g is a new function symbol added to
L in the process of the refinement, we add the equation g(x) ≈ x to E.

We call L′ obtained in such a way, a refinement of L, and E′, which is
obtained from E in 2, an equational theory modified for L′.

If L is a simple sort theory, then the refined L′ is also a simple sort theory.
In our example, from LE we obtain the following refined sort theory:

L′
E = {G(pick(xM , tree(yG, f(xM , zS)))), G(group-key(xG)), T (add(xM , yT )),

T (delete(xM , yT )), T (tree(xG, yS)), S(f(xM , yS)), S(set(xS))}

The equational theory E′ modified for L′ is the following:

E′ = {pick(x, tree(y, f(x,M))) ≈ y

add(x, tree(y,M)) ≈ tree(y, f(x,M))
delete(x, tree(y, f(x,M))) ≈ tree(y,M)} ∪

fixpoint equations: {group-key(x) ≈ x, set(x) ≈ x}

As a consequence of Definition 3 we know that if L is a simple sort theory
such that L has Property (*) with respect to some equational theory E, and
if L′ is a refined sort theory obtained from L, and E′ is an equational theory
modified for L′, then L′ is a sort theory associated with E′.

4 Sort – A Procedure to Sort a Goal

We assume we have a sort theory L associated with an equational theory E. We
want to use the sort theory for two tasks: to check whether the terms in the goal
are not ill-sorted and to assign appropriate sorted terms to the variables in the
goal in such a way, that the terms appearing there are sorted. For these purposes
we use a unification procedure Sort which is defined by the following rules and
an arbitrary selection rule6.

1. If the procedure is called on a set of equations, we require that on one side
of each equation is a renamed subterm from a sort theory.

2. A solved equation is an equation of the form
– x ≈ vS , where x is an unsorted variable from the goal or equational

theory, and v is a renamed subterm from a sort declaration of a sort
theory, where x doesn’t appear anywhere else in the goal, or

– an equation of the form uS ≈ vS , where both terms are renamed sub-
terms from a sort theory.

3. Apart from the usual syntactic unification rules (Tautology, Orientation,
Decomposition, Clash, Cycle), we have the following:

6 This procedure was inspired by the one from [13].
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(a) Weakening

vS ≈ f(v1, . . . , vn)
vS ≈ f(s1, . . . , sn), f(s1, . . . , sn) ≈ f(v1, . . . , vn)

where f(v1, . . . , vn) is an unsorted term, S(f(s1, . . . , sn)) is a renamed
sort declaration for f -terms, and vS is a subterm from a renamed sort
declaration from the sort theory, of the sort S (possibly a variable of the
sort S) which doesn’t have f as its root symbol.

(b) Sorted Fail
vS ≈ f(v1, . . . , vn)

FAIL

if vS is a subterm (possibly a variable) from a sort declaration from the
sort theory with sort S, G(f(s1, ..., sn)) is a sort declaration for f -terms,
and G 
= S or there is no sort declaration for an f -term in L.

(c) Variable Elimination is applied only to unsorted variables.

We will call this procedure on equations of the form s ≈ t, where s is a term
from a sort theory, and t is an unsorted term. The procedure will return a set
of substitutions for variables of s and equations of the form u ≈ v where both u
and v are sorted. Sortsub(s ≈ t) is the substitution determined for the variables
of s by the procedure. Sorteqs(s ≈ t) is the set of equations with sorted terms
on both sides that result from the procedure.

By inspection of the rules of Sort, we can make sure that the rules preserve
the form of the goal passed to the procedure, as expressed in the following lemma:

Lemma 1. Given a goal equation where one side is a subterm from a sort dec-
laration then the rules of Sort apply deterministically, and the conclusion of each
rule is either FAIL or a set of equations, each of which has a subterm from the
sort declaration on one side.

The next lemma states that Sort always halts on a goal of the required form.

Lemma 2. Given a sort theory L and a goal G such that each equation in G
has a renamed subterm of a sort declaration on one side then sort G halts with
a set of solved equations or Fails, in only a linear number of steps.

Sort-Expansion of E
For each equation f(u1, . . . , un) ≈ g(v1, . . . , vm) in E, we apply the following:

f(u1, . . . , un) ≈ g(v1, . . . , vm)
f(u1, . . . , un)σ ≈ g(v1, . . . , vm)σ

where there are sort declarations S(f(s1, . . . , sn)) and S(g(t1, . . . , tm)) in L, such
that σ = Sortsub(f(s1, . . . , sn) ≈ f(u1, . . . , un), g(t1, . . . , tn)) ≈ g(v1, . . . , vm)).

We are guaranteed that such σ exists by the fact that L is associated with
E. Moreover, we know that for the variables in f(u1, . . . , un) ≈ g(v1, . . . , vm),
σ is a renaming assigning sorts to variables, since L is associated with E and
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therefore there is a matcher τ such that f(s1, . . . , sn)τ = f(u1, . . . , un). The
original equation in E is replaced by the equation obtained in the conclusion.

For every equation f(u1, . . . , un) ≈ x in E, which is not a fixpoint equation,
we apply the following rule:

f(u1, . . . , un) ≈ x

f(u1, . . . , un)σ[xσ �→ g(v1, . . . , vn)] ≈ g(v1, . . . , vn)

where S(f(s1, ..., sn)) is a sort declaration in L such that σ=Sortsub(f(s1, ..., sn)
≈ f(u1, . . . , un)), obtained by Sort procedure, xσ is of sort S, g(v1, . . . , vm)
is the normal term in sort S and [xσ �→ g(v1, . . . , vn)] is a substitution of a
renamed variable xσ the normal term in the sort S. (Again, for variables in
f(u1, . . . , un) ≈ x, σ is just a renaming assigning sorts to these variables.)

Notice that in this way we get rid of collapsing equations in E, i.e. equations
of the form x ≈ t in E, except for the fixpoint equations. We will prove that the
fixpoint equations do not need to be used in the E-unification inferences.

Sort-Expansion of the Goal
For each equation in the goal, apply one of the following rules:

{f(u1, . . . , un) ≈ g(v1, . . . , vm)} ∪G

{f(u1, . . . , un)σ ≈ g(v1, . . . , vm)σ} ∪Gσ ∪ eqs

where there are sort declarations S(f(s1, . . . , sn)) and S(g(t1, . . . , tm)) in L, σ =
Sortsub(f(u1, . . . , un) ≈ f(s1, . . . , sn), g(v1, . . . , vm) ≈ g(t1, . . . , tm)), and eqs =
Sorteqs(f(u1, . . . , un) ≈ f(s1, . . . , sn), g(v1, . . . , vm) ≈ g(t1, . . . , tm)), obtained
by Sort procedure.

{f(u1, . . . , un) ≈ x} ∪G

{f(u1, . . . , un)σ ≈ xσ} ∪Gσ ∪ eqs

where there is a sort declaration S(f(s1, . . . , sn)) in L, and
σ = Sortsub(f(u1, . . . , un) ≈ f(s1, . . . , sn)), xσ is of the sort S and eqs =
Sorteqs(f(u1, . . . , un) ≈ f(s1, . . . , sn)), obtained by Sort procedure.

If σ does not exist, we fail, and the goal does not E-unify. If it does exist,
we replace the goal with the new one, after application of each rule. We do not
apply any expansion rule to an equation which was already expanded or added
in the sort-expansion.

We cannot get rid of collapsing equations in the goal, as we did in E, since
inference rules may create new collapsing equations. Hence we will have to deal
with such equations in the inference rules.

The following definition states the conditions for Sort to succeed, i.e. the
conditions for Sort not to return Fail.

Definition 4. Given a sort theory L, and an equational theory E, we call an
equation u ≈ v sortable, if there are ground substitutions σ and σ′ obeying sort
restrictions such that all of the following hold
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– if u is not a variable, there is a sort declaration S(u′), such that the root
symbol of u is the same as the root symbol of u′ and if v is not a variable,
there is a sort declaration S(v′), such that the root symbol of v is the same
as the root of v′,

– u′σ ≈ uσ and v′σ′ ≈ vσ′, and
– if x ∈ dom(σ) ∩ dom(σ′), then xσ and xσ′ are of the same sort.

Theorem 1. Given a sort theory L associated with an equational theory E, and
a sortable equation f(u1, . . . , un) ≈ g(v1, . . . , vm) (or f(u1, . . . , un) ≈ x), there
exists a set of equations, σ,containing no Fail, which is computed by
Sort(f(s1, . . . , sn) ≈ f(u1, . . . , un), g(t1, . . . , tm) ≈ g(v1, . . . , vm))
(or Sort(f(s1, . . . , sn) ≈ f(u1, . . . , un)) respectively).

We have to prove that we do not change an equational theory with respect
to a sorted ground domain by the sorted expansion.

Theorem 2. Given equational theory E and a sort theory L, if E′ is obtained
by Sort-expansion from E and L is associated with E′, then E |= u ≈ v, u, v
are sorted terms and there is a proof of u ≈ v obeying sort restrictions, iff
E′ |= u ≈ v.

As an example, if we use the sort theory:

L′
E = {G(pick(xM , tree(yG, f(xM , zS)))), G(group-key(xG)),

T (add(xM , yT )), T (delete(xM , tree(yG, f(xM , zS)))), T (tree(xG, yS)),
S(f(xM , yS)), S(set(xS))}

to sort the following equational theory:

E′ = {pick(x, tree(y, f(x,M))) ≈ y

add(x, tree(y,M)) ≈ tree(y, f(x,M))
delete(x, tree(y, f(x,M))) ≈ tree(y,M)} ∪

fixpoint equations: {group-key(x) ≈ x, set(x) ≈ x}

we get the following sorted equational theory:

Sorted(E′) = {pick(xM , tree(group-key(yG), f(xM , zS))) ≈ group-key(yG)
add(xM , tree(yG, zS)) ≈ tree(yG, f(xM , zS))
delete(xM , tree(yG, f(xM , zS))) ≈ tree(yG, zS)} ∪

fixpoint equations: {group-key(xG) ≈ xG, set(xS) ≈ xS}

5 A Separable Equational Theory

At the end of the previous section, we have shown how to sort an equational
theory E′, but in the beginning of this paper we started with an equational theory
E∗, which contains the troublesome equations defining unification between sets
of member-keys.
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Hence we have the following:

Sorted(E∗) = {pick(xM , tree(group-key(yG), f(xM , zS))) ≈ group-key(y)
add(xM , tree(yG, zS)) ≈ tree(yG, f(xM , zS))
delete(xM , tree(yG, f(xM , zS))) ≈ tree(yG, zS)} ∪
{f(xM , f(yM , zS)) ≈ f(yM , f(xM , zS)),
f(xM , f(xM , yS)) ≈ f(xM , yS)} ∪

fixpoint equations: {group-key(xG) ≈ xG, set(xS) ≈ xS}

As we have noticed already, the additional equations make the theory not be
saturated under Paramodulation, hence prevent us from applying the techniques
described in the next section.

But we can notice that the “good” equational theory E′ is separable from the
“bad” part of E∗, so that we can solve an E∗-unification problem in two steps:
first by using the E′-unification procedure and then tackling the unification in
sets. The general criterion for this is stated in the following definition.

Definition 5. Given a sort theory L and an equational theory E, sorted by L,
if E′ ⊂ E such that if u ≈ v is in E′, and u and v are of sort S, then there is
no subterm in E\E′ of sort S, then E′ is called separable in E.

With a goal-directed E-unification procedure, like the one we use in the next
section, we can try to solve a goal first with the procedure for E′, where E′ is
separable. This procedure will return an E\E′-unification problem.

This is obvious, since if u is a sorted subterm, and its sort is in E\E′, then
no subterms in u can be changed by equations from E′. Especially, no variables
in u can be assigned terms of the sorts of the terms from E′.

6 Basic Mutation Refined with Sorts

We now look again into the rules from [7] in order to show that the above
analysis can help us to get better E-unification time. Recall that we can apply
the Basic Syntactic Mutation technique only in the case when an equational
theory is saturated under Paramodulation. In the presence of sorts, we could
require that the theory is closed under Paramodulation obeying sorts from a
given sort theory L.

Paramodulation

u[s′] ≈ v s ≈ t

u[t]σ ≈ vσ

where σ = mgu(s, s′), sσ 
≺ tσ,
≺ is a reduction ordering on
terms.

σ in the above rule should obey sort restrictions, and neither of the premises
are fixpoint equations.
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Since we assume our sort theory to be simple and σ = mgu(s, s′), σ not
obeying sort restrictions, would mean that at least one of the terms is not well-
sorted. But we assume that E is well-sorted, hence σ can be just an mgu of s
and s′, with no additional regard for sorts.

In Basic Mutation without sorts, RHS(E) was constructed by the RHS Crit-
ical Pair rule. In the context of sorts, we also consider sort restrictions:

Right-Hand-Side Critical Pair

s ≈ t u ≈ v

sσ ≈ uσ

where sσ 
≺ tσ, uσ 
≺ vσ, σ ≈ mgu(v, t)
and sσ 
= uσ.

σ in the above rule should obey sort restrictions. As in the case of Paramod-
ulation, we should not perform RHS Critical Pair inferences with fixpoint equa-
tions, which were added to E in sort-expansion. However, if g(xS) ≈ xS is a
fixpoint equation, and a is a constant of sort S, then we must consider the
equation g(a) ≈ a as a premise in Right-Hand-Side Critical Pair.

In our example (page 98), if E′ is sort-expanded and closed under Paramod-
ulation, sorted RHS(E′) is the following.

Sorted-RHS(E′)
= E′ ∪ {delete(x′

M , tree(yG, f(x′
M , f(xM , zS)))) ≈ add(xM , tree(yG, zS)),

delete(xM , tree(yG, f(xM , zS))) ≈ delete(x′
M , tree(yG, f(x′

M , zS))),
pick(xM , tree(yG, f(xM , zS))) ≈ pick(x′

M , tree(yG, f(x′
M , z′S)))}

The Basic Syntactic Mutation (BSM) rules with sorts are presented in [7].
The following is true in general for this set of inference rules:

Theorem 3. Given a simple sort theory, associated with an equational theory E
and a well-sorted goal, the inference rules of Sorted BSM preserve well-sortedness
of the terms in the goal.

As an immediate corollary to the definition of sort-expanded equational the-
ory, we show that any rule involving an equation from E with a variable on one
side, such as Variable Mutate, is not needed.

Corollary 1. Given an equational theory sorted by an associated sort theory,
and a goal, the inference rule Variable Mutate never applies to a selected goal
equation.

Now we can state formally completeness of BSM rules with sorts for a sorted
equational theory and an equational goal.

Theorem 4. Given an equational theory E, a sort theory L, E′ which is E
modified for L so that L is associated with E′, such that E is closed under sorted
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Paramodulation, if E |= Gγ and Gγ is not solved, then there is a rule in the
sorted BSM-rules based on sort-expanded E′, such that G −→ G′ and there is
γ′ ≤E γ|V ar(G) and E |= G′γ′.

7 Redundancy of Rules and Determinism

We will show that sort restrictions can make some rules in the Sorted BSM pro-
cedure redundant. By deleting those rules from the set of our inference rules we
obtain a Sorted BSM E-unification procedure, which in some cases is determin-
istic and polynomial.

BSM solves E-unification in non-deterministic polynomial time for theories
saturated under Paramodulation. We will show that Sorted Deterministic BSM
will solve it in polynomial time for our key hierarchy example.

Definition 6. A rule R :

s ≈ t

s1 ≈ t1, . . . , sn ≈ tn

is redundant in the set of rules S, such that S does not contain R, iff there is a
rule R′ in S applicable to s ≈ t, such that s1 ≈ t1, . . . , sn ≈ tn is an instance of
the conclusion of R′ applied to s ≈ t.

It is easy to check if some rules in the set of rules for BSM with sorts, for
each function symbol in a given signature and a given equational theory are re-
dundant. Deleting redundant rules may result in eliminating all choices between
applications of different rules or choices of different equations from the equational
theory for inferences, and hence in a deterministic procedure. By Corollary 1,
we already know that there is no conflict between Mutate and Variable Mutate
in Basic Mutation with Sorts, assuming that we have a sort theory associated
with a sorted equational theory saturated under Paramodulation.

7.1 Collapsing Goal Equations

First we define a rule called Sort Imitation that is applied eagerly. This rule
replaces all rules in BSM , which apply to equations of the form x ≈ v. This is
possible, because of the normal term requirement for a sort theory L associated
with E.

Sort Imitation

{xS ≈ vS} ∪G

{g(v1, . . . , vn)S ≈ vS [x �→ g(v1, . . . , vn) ]} ∪G[x �→ g(v1, . . . , vn) ]

where xS ≈ vS is selected (hence not solved) and g(v1, . . . , vn)S is a normal term
in the sort S in a sort theory L associated with E. This rule does not destroy
the argument for termination for an E-unifiable sorted goal.
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7.2 When Decomposition Is Redundant

We will show that if f(u1, . . . , un) ≈ f(v1, . . . , vn) is in an equational theory,
then Decomposition is often redundant. This is stated formally, with all needed
assumptions, in the following theorem:

Theorem 5. Let E be an equational theory. If L is a sort theory associated with
E, f(u1, . . . , un) ≈ f(v1, . . . , vn) ∈ E, and all shared variables in f(u1, . . . , un)
and f(v1, . . . , vn) are at the same positions in these two terms, then the Decom-
position rule for f -terms is redundant in the set of rules of Sorted-BSM.

7.3 Deterministic BSM with Sorts

We are now ready to state the conditions which make our E-unification procedure
with sorts terminating and deterministic.

Definition 7. Given a sort theory L, an equational theory E is called L-deter-
ministic if:

1. no two equations in E have the same root symbols at their sides,
2. L is associated with E.

We show that if E′′ = RHS(E′), E′ is finite and saturated by Paramodula-
tion, and there is a sort theory L associated with E, which is E′′ modified for L,
then if E is also L-deterministic, then BSM can be turned into a deterministic
algorithm, which means that it will halt in a linear number of steps.

We define Sorted-BSMd as a deterministic version of Sorted-BSM, based on
any selection rule and the rules in Figure 1.

Theorem 6. Let E′′ = RHS(E′), such that E′ is finite and saturated by Para-
modulation, and let L be a sort theory associated with E, which is E′′ modified
for L. Then if E is L-deterministic, the algorithm Sort-BSMd solves a goal G
deterministically in polynomial time. E with sorts is then unitary.

8 Conclusion

We have shown how sorts are necessary in real problems of E-unification. The
example motivating our work is the key hierarchy theory from Cryptographic
Protocol Analysis. Reasoning modulo equational theories is currently an impor-
tant topic in Cryptographic Protocol Analysis, and so our results are applicable
there. But the characteristics of our example problem are general, and apply
to many E-unification problems from verification, such as modeling data struc-
tures with equational theories. In our example, we showed that the E-unification
problem can be divided into two stages: the first stage runs in polynomial time,
and the second stage can be solved solely by reasoning modulo the theory of
sets. We believe that many natural problems have this same structure.

Our use of sorts has some differences with other uses of sorts. We deal with
sorts in the context of E-unification. Much of the previous work considers sorts
with syntactic unification, although there is some work dealing with equational
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Decomposition:

{f(u1, · · · , un) ≈ f(v1, · · · , vn)} ∪ G

{u1 ≈ v1, · · · , un ≈ vn} ∪ G

where f(u1, · · · , un) ≈ f(v1, · · · , vn) is selected and Decomposition is
not redundant for f -terms.

Mutate: {f(u1, · · · , un) ≈ g(v1, · · · , vm)} ∪ G⋃
i{ui ≈ si } ∪ ⋃

i{ ti ≈ vi} ∪ G

where f(u1, · · · , un) ≈ g(v1, · · · , vm) is selected, f(u1, · · · , un) is not
boxed, f(s1, · · · , sn) ≈ g(t1, · · · , tm) ∈ E.

Sort Imitation:

{xS ≈ vS} ∪ G

{g(v1, . . . , vn)S ≈ vS [x �→ g(v1, . . . , vn) ]} ∪ G[x �→ g(v1, . . . , vn) ]

where xS ≈ vS is selected and g(v1, . . . , vn)S is a normal term in the
sort S in a sort theory L associated with E.

Variable-Variable Elimination:

xS ≈ yS, G
x ≈ y, G[x �→ y]

x ≈ x ∪ G
G

where both x and y appear in G

Fig. 1. Sorted BSMd Inference Rules.

theories[3–5, 11]. However, there are other ways where our work differs. We do
not consider that the equational theory and the goal are sorted. Instead, we
have procedures that give sorts to the variables in the equational theory and the
goal. We require that the sort theory is simple. Much other work only requires
that the sort theory is order-sorted. Deletion requires that an item can only
be deleted from a set if it is in the set. We could not capture this property in
an order-sorted theory. However, we do not try to deal with subsorts. We also
require certain properties of the equational theory, such that the terms of the
equations are instances of the sorts, and each sort must have some normal form
that is E-unifiable with everything else in the sort.

The properties we require naturally occur in many real life problems. We
showed in this paper that these properties imply a more efficient algorithm for
Sorted E-unification. Although our approach differs from other approaches on
sorts, we also have some similarities. For example, our Sort algorithm is inspired
by the Syntactic Sorted Unification procedure of [13], however we use it mainly
to give sorts to unsorted variables. Since we do not need to unify sorted terms,
it makes the algorithm more efficient.
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The results of this paper should lead to more efficient E-unification proce-
dures, because it bases the procedure more closely on the meaning of the terms.
We have also begun applying these ideas to Narrowing.
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Abstract. It has been proposed in [1] to perform deduction modulo
leaf permutative theories, which are notoriously hard to handle directly
in equational theorem proving. But unification modulo such theories is
a difficult task, not tackled in [1]; a subclass of flat equations has been
considered only recently, in [2]. Our emphasis on group theoretic struc-
tures led us in [6] to the definition of a more general subclass of leaf
permutative theories, the unify-stable theories. They have good seman-
tic and algorithmic properties, which we use here to design a complete
unification algorithm.

1 Introduction

An equation t = t′, joining two linear terms t and t′, is leaf permutative if t is
a variant of t′, i.e. one term is obtained from the other by a permutation of its
variables. As the axiom of commutativity, the simplest non-trivial example, these
equations cannot be oriented, an obvious obstacle to termination. The usual way
to handle this is to embed these equations directly in the deductive mechanisms,
including unification.

These lp-equations (lp is short for leaf permutative) are significantly more
difficult to handle than commutativity, especially if we consider a set E of lp-
equations, or lp-theory, because of possible interactions. If we consider for ex-
ample the two lp-equations

f(x, y, z, u) = f(y, x, z, u),
f(x, y, z, u) = f(y, z, u, x),

then we can deduce the lp-equation f(x, y, z, u) = f(xσ, yσ, zσ, uσ) for any per-
mutation σ of {x, y, z, u}. These permutations are of course the elements of the
symmetric group Sym({x, y, z, u}). Lp-theories naturally lead to permutation
groups, which opens the perspective of using group theoretic tools in specialized
deductive mechanisms. This was originally illustrated in [1].

Unfortunately, lp-equations cannot be considered simply as generators in
a group. Consider for example the two equations f(a, x, y) = f(a, y, x) and
f(x, y, c) = f(y, x, c), and the term t = f(a, b, c), where a, b and c are constants.
We may deduce t = f(a, c, b), i.e. apply the permutation (b c) to t, and we
may also deduce t = f(b, a, c), with permutation (a b), but we cannot deduce

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 105–119, 2005.
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t = f(c, b, a), i.e. we cannot apply the permutation (a b)(b c) = (a c b) to
t. Permutations cannot be freely composed, they are context dependent, which
fundamentally departs from group theory. Here, the context of the first equation,
f(a, ◦, ◦), differs from the context of the second equation, f(◦, ◦, c).

These conflicts can be avoided by deciding that, at any possible position, one
context applies at the exclusion of other contexts. Thus the notion of stratified
terms from [1], which are terms T where contexts and their associated groups are
attached to occurrences of function symbols in a non-overlapping way. Applying
any permutation in one of these groups is safe since no context is affected. The
so-called stratified set of terms thus obtained, noted S[T ], which can be seen as a
group theoretic construction (see [5]), is included in a congruence class modulo
E, but may not be complete.

Of course, there is still the possibility of covering an E-congruence class as
a finite union of stratified sets. However, even under this hypothesis, or if we
only consider complete stratified sets, the unification algorithm given in [1] is
not sufficient. Since it returns a set of most general substitutions θ such that
S[T ]θ and S[T ′]θ have a non-empty intersection, it basically performs unification
of stratified sets, not E-unification (as is duly acknowledged in [1, p. 261]).

The difference can be illustrated on an example. We consider an lp-theory E
with only one axiom:

f(g(x, y), z) = f(g(x, z), y),

so that complete stratified terms always exist. Since no subterm of t = f(x, a)
and t′ = f(y, b) is an instance of the context f(g(◦, ◦), ◦), then t and t′ are
complete stratified terms, and S[t] = {t}, S[t′] = {t′}. Since t and t′ are not
syntactically unifiable, then neither are their stratified sets. However, these
two terms are E-unifiable, and, as we will see later, the substitution {x ←
g(x1, b), y ← g(x1, a)} is a most general E-unifier. The clauses P (t) and ¬P (t′)
are E-unsatisfiable, which would not be recognized by unifying stratified sets
(unless the lp-axiom is added to the clauses, which is clearly unacceptable).

In [6], we introduced a class of lp-theories, so-called unify-stable, where every
term t can be lifted in a consistent way to a complete stratified term lift(t).
This is non-trivial in the sense that the contexts used as labels in lift(t) may
not appear explicitly in the axioms of E. In the present paper we give a E-
unification algorithm that is complete for all unify-stable theories E. It is more
complex than C-unification (see e.g. [3]) because we have to consider possible
expansions to the relevant contexts, as in the previous example.

In Section 2 we give a motivated definition of unify-stable theories, and prove
a basic property of such theories. This is proved using a result from [6], which al-
lows to keep the group-theoretic formalization to a minimum. Section 3 presents
a rule-based unification algorithm, as well as its basic properties. Most efforts
are devoted to proving termination. Compared to commutativity, a source of
inefficiency arises from the necessity to expand with many different contexts; we
give in Section 4 a way to reduce the number of contexts to be considered. A
conclusion follows.



Unification in a Class of Permutative Theories 107

2 Unify-Stable Theories

We are not going to develop the full technical details necessary to give a clean
group-theoretic formalization of stratified terms and sets. We just mention that
this treatment uses the notion of term trees, and can be found in [5]. Of course,
term trees are not unknown in unification theory, since they are used to improve
efficiency by sharing subterms. It should however be noted that subterm sharing
cannot be used in stratified terms, because occurrences may be freely permuted,
e.g. if f is commutative then f(f(a, b), f(a, b)) = f(f(a, b), f(b, a)).

We will use the standard notions of terms and substitutions. We will note
s . t when s is a subterm of t. We will also need the notion of contexts, which we
may consider as ground terms over a signature extended by a special constant ◦,
called the hole. This constant is special since each occurrence of ◦ in a context
sometimes behaves like a new variable. More precisely, all holes in a context can
be simultaneously substituted by terms (yielding a term) or by contexts (yielding
a context). For example, if c = f(◦, ◦), then c[s1, s2] is exactly f(x1, x2)θ, where
θ = {x1 ← s1, x2 ← s2}.

We therefore have on contexts a notion of substitution very similar to the
standard one. A context c′ is an instance of a context c, noted c % c′, if there is
a context substitution [c1, . . . , cn] such that c′ = c[c1, . . . , cn]. We also say that c
subsumes c′. All properties of the usual subsumption relation on terms are true
for %, which is an ordering relation, and not just a quasi-order. In particular, a
nonempty set of contexts C with an upper bound (i.e. a common instance) has
a least upper bound noted �C.

An lp-equation can be represented by a context c and a permutation σ of the
occurrences of ◦ in c. More precisely, σ is a permutation of vertices in a term
tree for c, but defining these notions is out of the scope of the present paper.
The important point is that, in any term t = c[t1, . . . , tn], the permutation σ
translates (through a group isomorphism) into a permutation μ on the integers
{1, . . . , n}, so that the action of σ on t, noted tσ, is given by c[t1μ , . . . , tnμ ]
(where the trivial action iμ is μ(i)). In the sequel we simply identify σ with μ.
For example, if τ swaps the two holes of f(◦, ◦), then f(a, b)τ = (f(◦, ◦)[a, b])τ =
f(◦, ◦)[b, a] = f(b, a), so we simply write τ = (1 2).

We use the notation �c, σ� to represent an lp-equation; in the previous exam-
ple, the axiom of commutativity of f is �f(◦, ◦), τ�. When the elements of a set of
lp-equations F = {�c, σ1�, . . . , �c, σm�} bear the same context, the group G gen-
erated by {σ1, . . . , σn} contains exactly the consequences of F of the form �c, π�
(G is complete for c), and we directly represent F by �c,G�. Every lp-theory E

can then be uniquely decomposed as
⊎k

i=1 Fi, where Fi is a set of lp-equations
on a context ci, and the ci’s are all different. Thus E can be represented by⊎k

i=1�ci, Gi�, where Gi is defined from Fi as above. But this set may not be
complete for all the contexts ci’s, as illustrated on the following example.

Example 1. We consider the commutativity axiom �c, τ� of f , together with the
lp-equation

g(f(h(x, y), h(z, u))) = g(f(h(y, x), h(u, z))),
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which we write �c′, τ ′�. This last equation is therefore represented by �c′, G′�,
where G′ is the group generated by τ ′. By applying the commutativity of f on
the term g(f(h(x, y), h(z, u))), we get

g(f(h(x, y), h(z, u))) = g(f(h(z, u), h(x, y))),

hence an equation �c′, π� where π 
∈ G′.

The problem here is of course that we have a position p inside c′ such that
c % c′|p. However, in this case, we also benefit from the fact that the context
substitution applied to c is invariant under τ . In other words, the holes of c
which may be permuted by its group G are matched to identical contexts in c′|p
(the context h(◦, ◦) in Example 1). We note this condition c %G c′|p, it permits
to easily identify induced permutations, like π in Example 1.

If an lp-theory E, decomposed as
⊎k

i=1�ci, Gi�, verifies for all i, j the property
ci % cj |p ⇒ ci %Gi cj |p, we say it is stable. It is then possible to build a group
ΓE(cj) (by amalgamating the induced permutations, like π in Example 1) which
is complete for cj . See [6] for details.

This of course does not imply that stratified sets are complete. It is obvious
that the lp-theory A = {�f(a, ◦, ◦), τ�, �f(◦, ◦, c), τ�}, given in the introduction,
is stable. Yet there is no stratified term T such that S[T ] is the A-congruence
class of f(a, b, c).

We therefore need a stronger notion. The idea is to build stratified terms
(which essentially means choosing once and for all which �c,G� to apply at some
position p) by unifying conflicting contexts. In order to ensure that this operation
does not introduce new conflicts, we came in [6] to the following definition.

Definition 1. The lp-theory E is unify-stable if and only if for all i, j

1. if ci and cj are unifiable, then ci %Gi ci � cj,
2. if there is a non-variable1 position p 
= ε in cj such that ci and cj |p are

unifiable, then ci %Gi cj |p.

We now briefly describe how a stratified term lift(t) is built from a term tree
t. We first consider the set C of contexts ci of which t is an instance. If C is
empty, we recursively lift the direct subterms of t. Otherwise, let c = �C, we
label the root of t with �c,ΓE(c)�, and recursively lift the subterms ti’s such that
t = c[t1, . . . , tn].

We have proved in [6] that the stratified set S[lift(t)], i.e. the set of terms
obtained from lift(t) by applying all permutations in the groups labeling lift(t)
(and then removing all labels), is exactly the congruence class of t modulo the
unify-stable theory E.

We therefore assume throughout the rest of the paper that E is unify-stable.
In order to simplify the treatment, we further suppose that E contains the equa-
tions of the form f(x1, . . . , xn) = f(x1, . . . , xn), for all f in the signature Σ.
1 i.e. it does not correspond to an occurrence of ◦. Note that this condition is mistak-

enly missing in [6], but it is easy to see that adding it preserves the results of [6],
especially the proof of Theorem 5.
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There is no loss of generality, since adding these equations (and contexts) pre-
serves unify-stability, and of course has no semantic influence. The only difference
is that, in the lifting algorithm, the set C is never empty.

Definition 2. Let C be the set of �C for all nonempty subsets C of {c1, . . . , ck}
such that all contexts in C have a common instance. Then we define

L = {�c,ΓE(c)� | c ∈ C}.
We will then mostly use the following property, for which we give a slightly

informal proof.

Theorem 1. For all terms t and t′, we have t =E t′ if and only if there is a
�c,G� ∈ L such that t = c[s1, . . . , sm], t′ = c[s′1, . . . , s

′
m], and there is a σ in G

such that for all i = 1, . . . ,m, siσ =E s′i.

Proof. The if part is trivial. Conversely, suppose t =E t′. Then by [6] Theorem
5, we have T = lift(t) � lift(t′) = T ′, which means that T and T ′ are isomorphic
trees up to an admissible permutation. Since there must be a label at the root of
each tree (because E contains the necessary trivial axioms), then it must be the
same label �c,G� ∈ L for both, and there must be an admissible permutation in
σ ∈ G such that Tiσ � T ′

i , where T = c[T1, . . . , Tm] and T ′ = c[T ′
1, . . . , T

′
m]. It

is clear that si is obtained from Ti (and s′i from T ′
i ) by removing all labels, and

thus siσ =E s′i.

3 Unification in Unify-Stable Theories

3.1 Notations and Generalities

E-unification problems will be noted S = {t1 =?
E t′1, . . . , tn =?

E t′n}, and their set
of E-unifiers UE(S). If S is in solved form, it induces a substitution θS , which
of course belongs to UE(S).

Given two E-unifiers θ and θ′ of S, we say that θ E-subsumes θ′ if there is a
substitution δ such that xθδ =E xθ′ for all variables x occurring in S. A set U of
E-unifiers of S is complete if every E-unifier of S is E-subsumed by an element
of U . We also say that U is a CSU for S.

If there is a complete set of E-unifiers for S with only one element, this
element is a most general E-unifier for S (or mgu). Since it is generally not the
case that a solvable E-unification problem admits a most general E-unifier, as
in commutative unification, we will use finite sets M of E-unification problems
(or extended unification problems), with of course

UE(M) =
⋃

S∈M

UE(S).

We will also consider syntactic unification problems, i.e. with E = ∅, and note
t =? t′ for t =?

∅ t′. Solvable unification problems always have a mgu θ such that
θθ = θ (it is idempotent); from now on, the mgu of a syntactic problem S is the
mgu computed by the standard algorithm given in [3].
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Example 2. Let E be the unify-stable theory whose associated set of labels is
L = {�f(◦, . . . , ◦), Sym(n)�}. Take the unification problem f(x1, . . . , xn) =?

E

f(a1, . . . , an), where the xi’s are variables, and the ai’s constants. For σ ∈
Sym(n), define θσ = {x1 ← a1σ , . . . , xn ← anσ}. Then U = {θσ |σ ∈ Sym(n)} is
a minimal CSU for the problem, of cardinality n!.

Example 3. We consider the unify-stable theory E with the equation �f(h(◦),◦,◦),
(2 3)� (and the trivial equations for f and h). Let S = {f(x, y, a) =?

E f(x, a, z)},
it is easy to see that the three substitutions

θ1 = {y ← a, z ← a}
θ2 = {x← h(x1), y ← a, z ← a}
θ3 = {x← h(x1), y ← z}

are E-unifiers. Moreover θ2 is subsumed by θ1, and E-subsumed by θ3.

We now need to develop special tools in order to handle contexts, which are
not, strictly speaking, Σ-terms.

Definition 3. A E-unifier θ of t =?
E t′ is under a context c if tθ and t′θ are

both instances of c.
The (syntactic) unification problem t =? c stands for the problem t =?

c[x1(c, t), . . . , xn(c, t)], where the xi(c, t)’s are new variables, which do not occur
in t, nor in any other problem t′ =? c or t =? c′. When no confusion is possible,
we may write these simply xi, or yi. . .

Given two terms t and t′ and a context c, if the syntactic unification problem
{t =? c; t′ =? c} has a solution, then we note γc(t, t′) the restriction of its mgu
to the set of variables appearing in t or t′.

Example 4. Let t = f(x, h(a, b)) and c = f(g(◦, ◦), ◦), the unification problem
t =? c stands for t =? c[x1, x2, x3], which is solvable, with mgu θ = {x ←
g(x1, x2), x3 ← h(a, b)}.

The fact that c[x1, . . . , xn] is linear, with variables disjoint from any term
appearing in a unification problem induces the following properties.

Lemma 1. For non-variable terms t, t′ and context c, consider the syntactic
unification problem {t =? c[x1, . . . , xn]; t′ =? c[y1, . . . , yn]}, and suppose that θ
is a mgu for this problem. If x is a variable of t or t′ that appears in Dom(θ), then
any non-variable subterm of xθ is an instance of a non-variable subcontext of c.

Proof. Let x be such a variable, and consider the set P of non-variable subterms
of c[x1, . . . , xn] and c[y1, . . . , yn] that correspond to occurences of x in t or t′. If
P is empty, then xθ is a xi or a yi. Otherwise, say P = {c1, . . . , cm}, where the
ci’s are linear terms over disjoint sets of variables. If m = 1, then xθ = c1, and
the result is immediate. If m ≥ 2, then (a restriction of) θ is also a mgu of the
linear unification problem {c1 =? ci | i = 2, . . . ,m}, and since for all i, xθ = ciθ,
any non-variable subterm of xθ is an instance of a subterm of each ci, and an
instance of a non-variable subterm of at least one ci. This proves the result.
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Lemma 2. Any unifier θ of t =?
E t′ under c is subsumed by γc(t, t′).

Proof. Let S = {t =? c; t′ =? c}. Since tθ and t′θ are instances of c, there
is a substitution δ such that tθ = c[x1, . . . , xn]δ and t′θ = c[y1, . . . , yn]δ. The
variables xi (resp. yi) do not appear in tθ (resp. t′θ), hence tθδ = tθ and t′θδ =
t′θ. We also have Dom(θ) ∩ {x1, . . . , xn, y1, . . . , yn} = ∅, so that

c[x1, . . . , xn]θδ = c[x1, . . . , xn]δ = tθ = tθδ,

and similarly for t′. This entails that θδ is a unifier of S, and therefore is sub-
sumed by its mgu τ . The restriction of θδ to the variables in t, t′ is equal to θ,
and is also subsumed by the same restriction of τ , i.e. by γc(t, t′).

We finally state an easy property, that we provide without a proof.

Property 1. For t, t′ terms unifiable under c′, and c % c′, let τ = γc(t, t′). If tτ
and t′τ are both instances of c′, then τ = γc′(t, t′).

3.2 Transformation Rules

We now show how to perform E-unification. The principles applied here are
basically the same as those applied to commutative theories in [3], except for the
decomposition rule. To present it in a simple way, we start by defining a function
that, given a unification problem, returns an extended unification problem.

Definition 4. Let t and t′ be two terms, none of which is a variable, let S be
a unification problem and �c,G� be an element of L. If t and t′ have no unifier
under c, then we define D(t, t′, �c,G�, S) = ∅. Otherwise, let τ = γc(t, t′), let
tτ = c[s1, . . . , sm], t′τ = c[s′1, . . . , s′m], and for any permutation σ of {1, . . . ,m}
we extend S to the unification problem

Sσ = {siσ =?
E s′i | i = 1, . . . ,m} ∪ {x =?

E xτ |x ∈ Dom(τ)} ∪ S,

and we define D(t, t′, �c,G�, S) = {Sσ |σ ∈ G}. The transformation rules for
solving extended E-unification problems are given in Figure 1.

Example 5. Take the lp-theory E with the unique non-trivial equation

f(g(x, y), z) = f(g(x, z), y).

E is unify-stable and induces the set L = {�f(◦, ◦), I�, �g(◦, ◦), I�, �c,G�}, where
I is the trivial group, c = f(g(◦, ◦), ◦), and G = Sym({2, 3}). Let t = f(x, a) and
t′ = f(y, b), and suppose we want to solve the unification problem S = {t =?

E t′}.
We start by computing:

D(t, t′, �f(◦, ◦), I�, ∅) = { {x =?
E y; a =?

E b}},
D(t, t′, �g(◦, ◦), I�, ∅) = ∅,
D(t, t′, �c,G�, ∅) = { { x1 =?

E y1, x2 =?
E y2, a =?

E b,
x =?

E g(x1, x2), y =?
E g(y1, y2)},

{ x1 =?
E y1, a =?

E y2, x2 =?
E b,

x =?
E g(x1, x2), y =?

E g(y1, y2)}}.
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1. trivial:
{{s =?

E s} ∪ S} ∪ M → {S} ∪ M
2. orient:

{{t =?
E x} ∪ S} ∪ M → {{x =?

E t} ∪ S} ∪ M if t is not a variable
3. clash:

{{f(t1, . . . , tn) =?
E g(t′1, . . . , t

′
m)} ∪ S} ∪ M → M

4. occurrence test:
{{s =?

E t} ∪ S} ∪ M → M if s is a proper subterm of t
5. replacement:

{{x =?
E u} ∪ S} ∪ M → {{x =?

E u} ∪ S[x ← u]} ∪ M if x appears in S
6. P-decomposition:

{{t =?
E t′} ∪ S} ∪ M → [

⋃
L∈L D(t, t′, L, S)] ∪ M if neither t nor t′ is a variable

Fig. 1. The transformation rules.

Respectively note these three unification problems S1, S2 and S3. Then the P-
decomposition rule yields {S} → {S1, S2, S3}.

Applying the clash rule on S1 and S2, and the orient and replacement rules
on S3 yields:

{S} →� {{x1 =?
E y1, y2 =?

E a, x2 =?
E b, x =?

E g(y1, b), y =?
E g(y1, a)}}.

This new unification problem is in solved form. Therefore, the unification prob-
lem has a mgu, which as expected maps x to g(y1, b) and y to g(y1, a).

The rest of the section is dedicated to the proof that these rules terminate
and compute a CSU for any extended unification problem.

3.3 Termination

We define a complexity measure on extended unification problems, and show
that each transformation step strictly decreases the measures of the associated
extended unification problems. The main problem that arises is that the P-
decomposition rule produces new variables and symbols, which makes it difficult
to determine a standard complexity measure that strictly decreases after its
application. The solution is to carefully consider the way new symbols and vari-
ables are created. Thanks to the unify-stable hypothesis, we prove that each
P-decomposition rule strictly decreases the number of candidates on which the
rule, when applied, will create new symbols.

Definition 5. Given a term t and a context c, we note t� c when t and c have
a common instance, but t is not an instance of c, and we define the set

Vt,c = {〈s, c〉 | s . t, s is not a variable, and s � c}.

To any unification problem S, we associate

V(S) =
⋃

c∈C, t=?
Et′∈S

(Vt,c ∪Vt′,c).
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Intuitively, these sets will represent the positions of the terms on which the
application of the P-decomposition rule would produce new symbols or vari-
ables. Of course, these sets are finite, and the main result we show is that the
applications of our transformation rules decrease their cardinalities.

We first prove some easy properties.

Lemma 3. Let t be a term, c a context, and θ a substitution. Then:

1. if s . t, then Vs,c ⊆ Vt,c,
2. if s . t and 〈sθ, c〉 ∈ Vtθ,c, then 〈s, c〉 ∈ Vt,c.

Proof. 1. This is an obvious consequence of the definition of Vt,c.
2. Since sθ is unifiable with c, then so is s, and since sθ is not an instance of c,

then neither is s.

In the following lemma we apply a substitution θ to a set Vt,c, which simply
means that each element 〈s, c〉 is transformed into 〈sθ, c〉.
Lemma 4. Given two terms t, u and a context c, let θ = {x← u}. We have:

Vtθ,c ⊆ Vt,cθ ∪Vu,c.

Proof. Let 〈s, c〉 ∈ Vtθ,c. Then either s . u, or there is a non-variable s′ . t such
that s = s′θ. If s . u, then by definition 〈s, c〉 ∈ Vu,c. Otherwise, by Lemma 3
we have 〈s′, c〉 ∈ Vt,c, so that , 〈s, c〉 = 〈s′θ, c〉 ∈ Vt,cθ.

We now use the definition of unify-stability to prove that the expanded vari-
ables introduced by the P-decomposition rule do not introduce new ways of
applying this rule.

Lemma 5. For any context c ∈ C, and non-variable terms t, t′ which are unifi-
able under c, let τ = γc(t, t′) and x ∈ Dom(τ). Then V(x =?

E xτ) = ∅.

Proof. By Definition 5 we have

V(x =?
E xτ) =

⊎
c′∈C

Vx,c′ ∪Vxτ,c′,

so let c′ be any context in C, we trivially have Vx,c′ = ∅. Suppose that there is
an element 〈s, c′〉 in Vxτ,c′ . Then xτ cannot be a variable, neither can s, and we
have s . xτ and s � c′.

By Lemma 1, there is a non-variable position p 
= ε of c such that s is
an instance of the subterm c[x1, . . . , xn]|p. By Definition 2, there is a subset
C ⊆ {c1, . . . , ck} such that c = �C, hence there must be a ci ∈ C such that p is
a non-variable position of ci. We then have ci|p % c|p, so that s is an instance
of ci|p.

Since s and c′ have a common instance, then ci|p and c′ are unifiable. As
above, there is a C′ ⊆ {c1, . . . , ck} such that c′ = �C′. For all cj ∈ C′, obviously
cj and ci|p are also unifiable, and by Definition 1 we have cj % ci|p. This means
that ci|p is an upper bound of C′, and therefore that c′ % ci|p. This proves that
s is also an instance of c′, contradicting s � c′.
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Lemma 6. Let t, t′ be two non-variable terms unifiable under a context c ∈ C,
and let τ = γc(t, t′). Then for any term s and any c′ ∈ C, we have Vsτ,c′ ⊆ Vs,c′τ .

Proof. We prove that for any subset θ of τ , and any term s, that Vsθ,c′ ⊆ Vs,c′θ,
by induction on the cardinality of θ. It it is 1, then θ is a substitution {x← u},
and by Lemma 4, we know that Vsθ,c′ ⊆ Vs,c′θ ∪ Vu,c′ . But u = xτ , hence by
Lemma 5 we have Vu,c′ = ∅.

We now suppose that θ′ = θ{x ← u} and that the inclusion holds for θ. By
using the base case on sθ we get

Vsθ′,c′ = Vsθ{x←u},c′ ⊆ Vsθ,c′{x← u} ⊆ Vs,c′θ{x← u} = Vs,c′θ
′.

We can now prove the main result concerning the P-decomposition rule.

Theorem 2. In the context of Definition 4, we have |V(Sσ)| ≤ |V({t =?
E t′} ∪

S)|. Moreover, if t � c or t′ � c, then |V(Sσ)| < |V({t =?
E t′} ∪ S)|.

Proof. By Lemma 5, V({x =?
E xτ}) = ∅ for all x ∈ Dom(τ). We thus have

V(Sσ) = V(S) ∪
m⋃

i=1

V(siσ =?
E s′i) and V(sj =?

E s′i) =
⊎

c′∈C
Vsj ,c′ ∪Vs′

i,c
′ .

For any c′ ∈ C, since sj is a subterm of tτ , by Lemma 3 we have Vsj ,c′ ⊆ Vtτ,c′ ,
and by Lemma 6 we get Vtτ,c′ ⊆ Vt,c′τ . Similarly we have Vs′

i,c
′ ⊆ Vt′,c′τ , so

that
V(sj =?

E s′i) ⊆
⊎

c′∈C
Vt,c′τ ∪Vt′,c′τ = V(t =?

E t′)τ.

This is true for all i, j, hence we obtain V(Sσ) ⊆ V(S)∪V(t =?
E t′)τ . The result

is then obvious.
Suppose now that, say, t� c. Then by definition, we have 〈t, c〉 ∈ Vt,c, hence

〈tτ, c〉 ∈ Vt,cτ . However, tτ is an instance of c, so 〈tτ, c〉 cannot belong to any
set Vs,c, nor of course to any set Vs,c′ with c′ 
= c, and therefore 〈tτ, c〉 /∈ V(Sσ).
But we have proved that 〈tτ, c〉 ∈ V(S)∪V(t =?

E t′)τ , so the inequality is strict.

We also need to prove that this measure cannot increase by applying the
other rules.

Lemma 7. If {S} ∪M → {S′} ∪M by another rule than P-decomposition, we
have |V(S′)| ≤ |V(S)|.

Proof. This is obvious for the trivial and orient rules. For the replacement rule,
suppose that S = {x =?

E u} ∪ A, and let θ = {x ← u}, so that S′ = {x =?
E

u} ∪ Aθ. By Lemma 4 we have Vtθ,c ⊆ Vt,cθ ∪ Vu,c for any term t and c ∈ C,
hence

V(Aθ) =
⋃

c∈C,t=?
Et′∈A

Vtθ,c ∪Vt′θ,c

⊆
⋃

c∈C,t=?
Et′∈A

Vt,cθ ∪Vt′,cθ ∪Vu,c = V(A)θ ∪ V(x =?
E u),
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so obviously V(S′) ⊆ V(A)θ ∪ V(x =?
E u). But the variable x does not occur in

u, so that Vu,cθ = Vu,c, and hence V(x =?
E u)θ = V(x =?

E u). This proves that
V(S′) ⊆ (V(A) ∪ V(x =?

E u))θ = V(S)θ, and we have the result.

In order to prove termination we will also use classical measures.

Definition 6. We map each E-unification problem S to a tuple of integers
〈n0, n1, n2, n3〉, where n0 = |V(S)|, and n1, n2, n3 are defined as in [3], i.e. n1

is the number of variables in S that are not solved in S (x is solved in S if
x =?

E t ∈ S is the only occurrence of x in S), n2 is the size of S (i.e. the total
number of symbols), and n3 is the number of equations of the form t =?

E x in S.
We then map each extended E-unification problem M to the multiset Ṁ of

the tuples the elements S ∈ M are mapped to. The well-founded strict order
M < M ′ is then defined as Ṁ � Ṁ ′, where � is the multiset order based on the
lexicographic order ≺ on tuples. We recall that A�B if B is obtained from A by
removing a multiset X and adding a multiset Y , such that for any tuple y ∈ Y
there is a tuple x ∈ X such that y ≺ x.

Theorem 3. The set of rules given in Figure 1 terminates.

Proof. We prove that if M → M ′ then M ′ < M . This is obvious for the clash
and occurrence test rules, since then M ′ � M .

For the trivial and orient rules, we have {S}∪M→{S′}∪M . Let 〈n0,n1,n2,n3〉
(resp. 〈n′

0, n
′
1, n

′
2, n

′
3〉) be the tuple corresponding to S (resp. S′), by Lemma 7

we have n0 ≤ n′
0. But it is known that, for these rules, we have 〈n1, n2, n3〉 ≺

〈n′
1, n

′
2, n

′
3〉, hence we obtain {S′} ∪M < {S} ∪M .

We now consider P-decomposition, applied to {{t =?
E t′} ∪ S} ∪M , where

t, t′ are non-variable terms. Let 〈n0, n1, n2, n3〉 be the tuple corresponding to
{t =?

E t′} ∪ S. For any �c,G� ∈ L such that t and t′ are unifiable under c, and
any σ ∈ G, let 〈n′

0, n
′
1, n

′
2, n

′
3〉 be the tuple corresponding to Sσ.

By Theorem 2 we have n′
0 ≤ n0. If t�c or t′�c we even have n′

0 < n0, and we
are done. Otherwise, t and t′ are instances of c, and it is easy to see that γc(t, t′)
is then empty. Hence, for all i the term si (resp. s′i) is a subterm of t (resp. t′).
This proves that no variable is introduced in Sσ compared to {t =?

E t′} ∪ S,
so that n′

1 ≤ n1, and that at least two occurrences of the head symbol of t
have disappeared, so that n′

2 < n2, and once again we obtain 〈n′
0, n

′
1, n

′
2, n

′
3〉 ≺

〈n0, n1, n2, n3〉.

3.4 Completeness

Once again, the main result we have to prove is that the P-decomposition rule
preserves the set of solutions of a unification problem.

Lemma 8. Let S′ = {t =?
E t′} ∪ S be a unification problem, and �c,G� ∈ L.

Suppose θ ∈ UE(S) is such that tθ = c[t1, . . . , tm], t′θ = c[t′1, . . . , t
′
m], and that

there exists a σ in G such that for i = 1, . . . ,m, tiσ =E t′i. Then θ is also in
UE(D(t, t′, �c,G�, S)).

Furthermore, if there is a �c′, G′� ∈ L such that c % c′ and tθ and t′θ are
both instances of c′, then θ ∈ UE(D(t, t′, �c′, G′�, S)).
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Proof. We will actually prove that θ ∈ UE(Sσ). Since tθ and t′θ are both in-
stances of c, τ = γc(t, t′) is guaranteed to exist, and by Lemma 2, there is a
substitution δ such that θ = τδ. Let tτ = c[s1, . . . , sm], and t′τ = c[s′1, . . . , s

′
m].

τ is idempotent, so τθ = ττδ = τδ = θ; therefore, tθ = tτθ = c[s1θ, . . . , smθ],
and t′θ = c[s′1θ, . . . , s

′
mθ]. This shows that for all i = 1, . . . ,m, ti = siθ and

t′i = s′iθ; therefore, by hypothesis, that siσθ =E s′iθ. Hence, θ is a solution of
the unification problem {siσ =?

E s′i | i = 1, . . . ,m}. Since τθ = θ, we also have
xθ = xτθ for any variable x, and therefore θ is also a solution of the unification
problem {x =?

E xτ |x ∈ Dom(τ)}. Finally, θ is a solution of S′, and since S ⊆ S′,
θ is also a solution of S. This proves that θ is a solution of Sσ, and therefore of
D(t, t′, �c,G�, S).

Now suppose that �c′, G′� exists. Let τ ′ = γc′(t, t′), t = c′[u1, . . . , un], and
t′ = c′[u′

1, . . . , u
′
n]. For the same reasons as previously, we have: τ ′θ = θ, and

c′[u1θ, . . . , unθ] =E c′[u′
1θ, . . . , u

′
nθ]. Since G′ is complete for c′ there is a μ in G′

such that for all i, uiμθ =E u′
iθ. So, θ is a solution of {uiμ =?

E u′
i | i = 1, . . . , n}.

By Property 1, τ = τ ′, so θ is also a solution of {x =?
E xτ ′ |x ∈ Dom(τ ′)} ∪ S,

hence the result.

Lemma 9. UE(D(t, t′, �c,G�, S)) ⊆ UE({t =?
E t′} ∪ S).

Proof. Let θ ∈ D(t, t′, �c,G�, S), and τ = γc(t, t′), then tτ = c[s1, . . . , sm], and
t′τ = c[s′1, . . . , s′m]. Let Sσ ∈ D(t, t′, �c,G�, S) be the unification problem such
that θ is a solution of Sσ. Then since S ⊆ Sσ, all we have to prove is that θ is a
solution of t =?

E t′.
θ is a solution of {x =?

E xτ |x ∈ Dom(τ)}, so, for every variable in Dom(τ),
xθ =E xτθ, which proves that tθ =E tτθ, and t′θ =E t′τθ.

θ is also a solution of {siσ =?
E s′i | i = 1, . . . ,m}, so, for all i, siσθ =E s′iθ,

and by Theorem 1, c[s1, . . . , sm]θ =E c[s′1, . . . , s
′
m]θ. Therefore, tθ =E tτθ =E

t′τθ =E t′θ, and we have the result by transitivity.

Theorem 4. UE({t =?
E t′} ∪ S) = UE(

⋃
L∈L D(t, t′, L, S)).

Proof. One inclusion is direct from Lemma 9. To prove the converse, let θ be a
solution of {t =?

E t′} ∪ S. Then we have tθ =E t′θ, and by Theorem 1 there is a
�c,G� ∈ L such that the conditions of Lemma 8 are fulfilled, so we may conclude
θ ∈ UE(D(t, t′, �c,G�, S)), and the result is obvious.

Theorem 5. If M →M ′ then UE(M) = UE(M ′).

Proof. The proof of the result for the first five transformation rules is exactly
identical to the proof for syntactic unification, and Theorem 4 proves the result
for P-decomposition.

So, now, we know that the system terminates, and that the set of solutions
of the extended unification problem is preserved by each transformation rule.
Since the only extended unification problems on which no transformation rule
can be applied (i.e. the normal forms for →) are those in solved form, we deduce
that:
Corollary 1. For any E-unification problem S, and any solved form M such
that {S} →� M , the set {θS′ |S′ ∈M} is a CSU for S.
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4 Optimization of the Algorithm

Several improvements can be made to this algorithm. First, consider the trivial
rule, which only tests for syntactic equality. It can be replaced by the following
rule, call it the E-trivial rule:

{{t =?
E t′} ∪ S} ∪M → {S} ∪M if t =E t′.

This rule prevents from decomposing t and t′ when they are equal modulo E,
and may therefore save a significant amount of space. Testing whether t =E t′

is NP-complete in general. However, for unify-stable theories, this test is in the
Luks complexity class, and conjectured not to be NP-complete (see [6]). Thus,
although no polynomial test exists to decide whether t =E t′, it can be performed
efficiently in general. As in [2], it is possible to carry out a pre-treatment on the
initial unification problem, but we would not gain much efficiency. Indeed, most
of the terms to be tested are obtained after application of the P-decomposition
rule, and those that were not E-equal may become so after instantiation.

A more manageable source of improvement is to reduce the number of con-
texts considered for P-decomposition. This is possible thanks to the following
result.

Lemma 10. Let S′ = {t =?
E t′} ∪ S, and let �c,G� and �c′, G′� be two elements

of L, such that c % c′ and τ = γc(t, t′) exists.
If both tτ and t′τ are instances of c′, then every solution of D(t, t′, �c,G�, S)

is a solution of D(t, t′, �c′, G′�, S), and for any context d such that τ ′ = γc�d(t, t′)
exists, both tτ ′ and t′τ ′ are instances of c′ � d.

Proof. Let θ be a solution of D(t, t′, �c,G�, S). Then tθ and t′θ are instances of
c, so by Lemma 2, there is a substitution δ such that θ = τδ. Therefore, tθ and
t′θ are also instances of c′, and θ is a solution of D(t, t′, �c′, G′�, S) by Lemma 8.

Since tτ ′ and t′τ ′ are instances of c � d, they also are instances of c, so τ ′ is
the restriction to the variables of t and t′ of a solution of the syntactic unification
problem {t =? c; t′ =? c}. This proves that there is a δ such that τ ′ = τδ by
Lemma 2, hence that tτ ′ and t′τ ′ are instances of c′. Since they are also instances
of d, they are instances of c′ � d, which proves the result.

The first point proves that, in this case, if L is the element of L with context
c, and L′ ∈ L with context c′, then all solutions of D(t, t′, L, S′) are also solutions
of D(t, t′, L′, S′), so that L may be discarded. The second one proves that this
is also the case for the other elements of L whose contexts are instances of c but
not of c′.

Example 6. Let E be the unify-stable theory from which we construct the set
{Li | i = 1, . . . , 3} = {�ci, Gi� | i = 1, . . . , 3}, along with the trivial equations for
f and g, where:

c1 = f(g(◦, ◦), ◦, ◦) and G1 = Sym(2),
c2 = f(g(◦, ◦), g(◦, ◦), ◦) and G2 = Sym(4),

c3 = f(g(◦, ◦), g(◦, ◦), g(◦, ◦)) and G3 = Sym(4)× Sym({5, 6}).
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Let t = f(x, g(a, b), y), t′ = f(y, x, g(c, d)), and suppose we want to solve the
unification problem t =?

E t′. Since τ = γc1(t, t
′) = {x← g(x1, x2), y ← g(y1, y2)},

then both tτ and t′τ are instances of c3, and there is no need to search for the
solutions for the other possible contexts, i.e. f(◦, ◦), c1 and c2. So we can restrict
the search of a solution to an extended unification problem with |G3| = 4! 2! = 48
elements, instead of one with 48 + 4! + 2! + 1 = 75 elements.

In Figure 2, we present an algorithm written in pseudo-CAML that, given
a unification problem S′ = {t =?

E t′} ∪ S, uses the set C = {c1, . . . , ck} of
contexts that appear in E to compute a subset F of L. This subset is such
that the associated extended unification problem generates the same set of E-
unifiers as the original P-decomposition rule. F can thus safely replace L in the
P-decomposition rule.

This algorithm starts by determining the contexts of C that t and t′ are
instances of, and computes their upper bound c. Note that these sets are guar-
anteed not to be empty: they each contain at least one element (the flat context
associated to the head symbol of the term). Since any E-unifier of t =?

E t′ is
under c, all the contexts that subsume c (i.e. those in Q∪Q′) can be discarded.

The recursive procedure subsearch(d, C) is meant to consider the contexts
of the form c′ = �(C′ ∪ {d}), for all C′ ⊆ C. If t and t′ have no common
instance under d, then obviously they do not have a common instance under
any context subsumed by d. Hence the contexts c′ can only produce empty sets
D(t, t′, �c′, G′�, S), and can therefore be skipped.

Pdec(t, t′, S) =
let F = ∅ in
let rec subsearch(d, C) =

if τ = γd(t, t
′) exists then

let Q = {c ∈ C | tτ and t′τ are instances of c � d} in
let d′ = �(Q ∪ {d}) in
let L = �d′, G� ∈ C in

F := F ∪ {L}
C := C \ Q
for c in C do

C := C \ {c}
if d′ � c exists then

subsearch(d′ � c, C)
done

in
let Q = {c ∈ C | t is an instance of c} in
let Q′ = {c ∈ C | t′ is an instance of c} in
if c = (�Q) � (�Q′) exists then

C := C \ (Q ∪ Q′)
subsearch(c, C)

return
⋃

L∈F D(t, t′, L, S)

Fig. 2. Optimization of the P-decomposition rule.
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Otherwise, Q contains all the elements c of C such that tτ and t′τ are in-
stances of c � d, and is used to construct the context d′. So, tτ and t′τ are both
instances of d′. By Lemma 10, there is no need to consider any element of L
whose context c′ is an instance of d but not of d′, so, only the element of L
whose context is d′ is added to F before the next call to the procedure.

5 Conclusion

In this paper we have presented a simple E-unification algorithm for unify-
stable theories. Since commutativity is a unify-stable theory, all negative results
concerning C-unification are preserved, among which NP-completeness of the
associated decision problem (see [7]; membership in NP should however be con-
sidered as a positive result, see [4]). Example 2 shows that simple unification
problems can have a huge number of unifiers; and another problem is that min-
imality of the CSU is not guaranteed. The optimizations of Section 4 of course
reduce the number of redundant solutions, but they would be useless on a the-
ory of commutativity, because it has only one context in L. Other redundancies
come from the fact that all permutations of a context are considered. Some opti-
mizations are possible at this level, but guaranteeing minimality would be very
difficult, and probably a waste of time compared to a simple post-processing.
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Abstract. Simply typed term rewriting proposed by Yamada (RTA,
2001) is a framework of higher-order term rewriting without bound vari-
ables. In this paper, the dependency pair method of first-order term
rewriting introduced by Arts and Giesl (TCS, 2000) is extended in order
to show termination of simply typed term rewriting systems. Basic con-
cepts such as dependency pairs and estimated dependency graph in the
simply typed term rewriting framework are clarified. The subterm crite-
rion introduced by Hirokawa and Middeldorp (RTA, 2004) is successfully
extended to the case where terms of function type are allowed. Finally,
an experimental result for a collection of simply typed term rewriting
systems is presented. Our method is compared with the direct applica-
tion of the first-order dependency pair method to a first-order encoding
of simply typed term rewriting systems.

1 Introduction

Simply typed term rewriting, proposed by Yamada [20], is a framework of higher-
order term rewriting. Equational specifications using higher-order functions, like
functional programs, are naturally expressed in this framework. In contrast to
the usual higher-order term rewriting [11, 12, 15], simply typed term rewriting
dispenses with bound variables. In this respect, this framework reflects limited
higher-order features. On the other hand, it is succinct and theoretically much
easier to deal with.

The dependency pair method, introduced by Arts and Giesl [3], is a technique
to prove the termination of (first-order) term rewriting systems. In contrast to
simplification orders, such as the recursive path ordering, this method can also
handle termination proofs of non-simply terminating term rewriting systems.
Various improvements of the technique have been proposed [4–6, 10, 16, 19].
Implementation techniques as well as experimental results of termination provers
based on the dependency pair method are reported in [6–9]. Extensions of the
method to the higher-order case have been considered in [13, 17, 18].

In this paper, the dependency pair method of first-order term rewriting is
extended to the case of simply typed term rewriting. We first study properties
of rewrite sequences over minimal non-terminating simply typed terms on which

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 120–134, 2005.
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all the dependency pair techniques are based (Section 3). Then basic concepts
such as the dependency pairs (Section 4) and the estimated dependency graph
(Section 5) in the simply typed term rewriting framework are clarified.

Simply typed terms may have variables as head symbols because variables
of function types are allowed. Hence we need to introduce a technique to deal
with dependency pairs with head variables. It turns out that head variables
in dependency pairs can always be instantiated for the termination proof. As
a result, the subterm criterion, introduced by Hirokawa and Middeldorp [10],
is successfully incorporated into the simply typed term rewriting framework
(Section 6).

Finally, an experimental result for a collection of simply typed term rewriting
systems is presented. The effectiveness of our method is supported by a compar-
ison with the direct application of the first-order dependency pair method to a
first-order encoding of simply typed term rewriting systems (Section 7).

2 Preliminaries

In this section, we briefly recall the terminology and the notations of simply
typed term rewriting which were introduced in [20]. Some additional definitions
needed in this paper are also given here.

A simple type is either the base type o or a function type τ1 × · · · × τn → τ0.
When clear, simple type is abbreviated as type. For the sake of simplicity, we
consider only the single base type, although all the results in this paper can be
extended to the case of multiple base types. The sets of constants and variables of
type τ are denoted by Στ and V τ , respectively. Let Σ =

⋃
τ Σ

τ and V =
⋃

τ V
τ .

The set of simply typed terms of type τ over Σ and V is denoted by T(Σ, V )τ .
We define T(Σ, V ) =

⋃
τ T(Σ, V )τ . The head symbol of a simply typed term t

is written as head(t).
A context of type τ is a simply typed term that contains one special symbol

�τ , called the hole, of type τ . The term obtained by replacing the hole in a
context C of type τ with a term t of the same type τ is denoted by C[t]. A
context of the form �τ is said to be empty. We omit the type of a hole when it is
not important. A term s is a subterm of a term t (denoted by s � t) if C[s] = t
for some context C, and is a proper subterm (denoted by s 	 t) when s 
= t holds
in addition. For a substitution σ : V → T(Σ, V ), an instance σ(t) of a term t is
also written as tσ. We say s matches t and write s � t if t is an instance of s.
Clearly, the relation � is a quasi-order. We note that when s and t do not have
variables in common, the existence of a term u such that s � u � t is equivalent
to the unifiability of s and t. We use mgu(s, t) to denote an arbitrary partial
function to compute a most general unifier of s and t.

Every simply typed rewrite rule l → r must satisfy the following conditions:
(1) l and r have the same type, (2) head(l) ∈ Σ, and (3) V(r) ⊆ V(l). The type
of a rewrite rule l → r is defined as that of l and r. Let R = 〈Σ,R 〉 be a simply
typed term rewriting system (STTRS, for short). The rewrite relation induced by
R is denoted by→R. The reflexive closure, transitive closure, reflexive transitive
closure of →R are written as →=

R, →+
R, →∗

R, respectively. When R is obvious
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from the context, we omit the subscript. A constant f ∈ Σ is a defined symbol
of an STTRS R = 〈Σ,R 〉 if f = head(l) for some l → r ∈ R, otherwise f is a
constructor symbol . The sets of defined and constructor symbols are denoted by
Σd and Σc, respectively.

Example 1 (simply typed term rewriting). Let R = 〈Σ,R 〉 be an STTRS where
Σ = { 0o, so→o, [ ]o, : o×o→o, +o→o→o, fold(o→o→o)×o→o→o, sumo→o }, and

R =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(+ 0) y → y
(+ (s x)) y → s ((+ x) y)
(fold F x) [ ] → x
(fold F x) (: y ys) → (F y) ((fold F x) ys)
sum → fold + 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

The function sum computes the sum of all elements of a list. Here is an example
of a rewrite sequence of R:

sum (: (s 0) [ ]) →R (fold + 0) (: (s 0) [ ])
→R (+ (s 0)) ((fold + 0) [ ])
→R (+ (s 0)) 0
→R s ((+ 0) 0)
→R s 0.

We have Σd = { +, fold, sum } and Σc = { 0, s, [ ], : }.

3 Chains of Minimal Non-terminating Terms

In this section, we study properties of minimal non-terminating terms, on which
all the dependency pair techniques are based. Basic notions and properties of
infinite rewrite sequences are lifted to the case of simply typed term rewriting.
Since root symbols in first-order term rewriting correspond to head symbols in
simply typed term rewriting, we now regard head rewrite steps instead of root
rewrite steps.

Definition 1 (root and head rewrite steps). We write s
r→ t when s = lσ

and t = rσ for some rewrite rule l → r and some substitution σ. The relation
r→ is called the root rewrite step. The head rewrite step h→ is defined recursively

as follows: s h→ t if (1) s
r→ t, or (2) s = (s0 u1 · · · un), t = (t0 u1 · · · un), and

s0
h→ t0. The non-root and non-head rewrite steps are defined by nr→ = → \ r→

and nh→ =→ \ h→, respectively.

By definition, r→ ⊆ h→ and thus nh→ ⊆ nr→ holds. If there are no terms of
function types which can be rewriten, then the reverse inclusions also hold.

Example 2 (root and head rewrite step). LetR be the STTRS in Example 1. The
following rewrite sequence exemplifies the use of the relations defined above:
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sum (: (s 0) [ ]) h→ (fold + 0) (: (s 0) [ ])
r→ (+ (s 0)) ((fold + 0) [ ])

nh→ (+ (s 0)) 0
r→ s ((+ 0) 0)

nh→ s 0.

We note that sum (: (s 0) [ ]) nr→ (fold + 0) (: (s 0) [ ]).

We say a term is terminating if there is no infinite rewrite sequence starting
from that term, otherwise non-terminating. We denote the set of non-terminating
terms by NT(R). The set of minimal (with respect to the subterm relation �)
non-terminating terms is denoted by NTmin(R). We may omit the parameter R
of NT(R) and NTmin(R) when it is clear from the context. We say an STTRS
R is terminating if all terms are terminating. Since the subterm relation is well-
founded, non-termination implies the existence of a minimal non-terminating
term.

Lemma 1 (chain of minimal non-terminating terms). Let s0 ∈ NTmin.
(1) There exist s1, . . . , sn, t ∈ NTmin (n ≥ 0) and sn+1 ∈ NT such that s0

nr→
s1

nr→ · · · nr→ sn
r→ sn+1 
 t. (2) There exist s1, . . . , sn, t ∈ NTmin (n ≥ 0) and

sn+1 ∈ NT such that s0
nh→ s1

nh→ · · · nh→ sn
h→ sn+1 
 t, and sn+1 = t whenever

sn
nr→ sn+1.

Proof. (1) The proof proceeds in the same way as the first-order case [3]. (2)
By (1), there exist s1, . . . , sm, u ∈ NTmin (m ≥ 0) and sm+1 ∈ NT such that
s0

nr→ s1
nr→ · · · nr→ sm

r→ sm+1 
 u. Since r→ ⊆ h→, there exists at least one
i ∈ {0, . . . ,m} such that si

h→ si+1. Let n be the smallest such i. We take t = u
if n = m, and take t = sn+1 otherwise. ��

We are now going to give a more detailed description of Lemma 1 (2). For
that purpose, we need to know some properties of head and non-head rewrite
steps. We first introduce a notion of argument context in order to characterize
a head rewrite step as a rewrite step accompanied by an argument context. We
next introduce a notion of argument sequence in order to deal with properties
of non-head rewrite steps.

Definition 2 (argument context). An argument context1 is a context whose
head symbol is the hole, more precisely, κ is an argument context of type τ if
(1) κ = �τ , or (2) κ = (κ′ t1 · · · tn) for some argument context κ′ of a function
type and some terms t1, . . . , tn of appropriate types.

Example 3 (argument context). κ = ((�o→(o→o) 0) (s 0)) is an argument context.
Then we have κ[+] = ((+ 0) (s 0)). Neither ((+ �o) (s 0)) nor ((+ 0) �o) is an
argument context.

1 A similar notion is called a suffix context in [13].
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Lemma 2 (characterization of head rewrite steps). s
h→ t if and only if

there exist a rewrite rule l → r, a substitution σ, and an argument context κ
such that s = κ[lσ] and t = κ[rσ].

Proof. (⇒) By induction on the definition of h→. (⇐) By induction on κ. ��

Lemma 3 (preservation of head symbols). (1) For any argument context
κ, head(κ[t]) = head(t). (2) If s

h→ t then head(s) ∈ Σd. (3) If s
nh→ t then

head(s) = head(t). (4) If s→ t and head(s) /∈ Σd then s
nh→ t and head(t) /∈ Σd.

Proof. (1) By induction on κ. (2) By (1) and Lemma 2. (3) By induction on s.
(4) Follows immediately from (2) and (3). ��

Definition 3 (argument sequence). An argument sequence Arg(t) of a sim-
ply typed term t is the empty sequence when t ∈ V ∪Σ; and is Arg(t0), t1, . . . , tn
when t = (t0 t1 · · · tn).

We write the length and the i-th element of a sequence X by |X | and X|i.

Example 4 (argument sequence). Let t = ((fold + (s 0)) (: (s 0) [ ])). The ar-
gument sequence of t is +, (s 0), (: (s 0) [ ]). We also have |Arg(t)| = 3 and
Arg(t)|2 = (s 0).

Lemma 4 (argument sequence of non-head rewrite steps). Suppose s
nh→

t. (1) |Arg(s)| = |Arg(t)| > 0. (2) Let |Arg(s)| = |Arg(t)| = n. Then there exists
some i ∈ {1, . . . , n} such that Arg(s)|i → Arg(t)|i and Arg(s)|j = Arg(t)|j for
all j ∈ {1, . . . , n} \ {i}.

Proof. (1) The contraposition can be shown by induction on s. (2) By induction
on s using (1). ��

Lemma 5 (head symbols of minimal non-terminating terms). If s ∈
NTmin then head(s) ∈ Σd.

Proof. Suppose s ∈ NTmin. Then there exists an infinite rewrite sequence s =
s0 → s1 → · · · . For a proof by contradiction, suppose head(s) /∈ Σd. By repeat-
edly applying Lemma 3 (4), we know s0

nh→ s1
nh→ s2

nh→ · · · . By Lemma 4 (1),
all Arg(sk) have the same length for k ≥ 0; so, let n = |Arg(sk)|. Then by
Lemma 4 (2), for each k ≥ 0 there exists i ∈ {1, . . . , n} such that Arg(sk)|i →
Arg(sk+1)|i and Arg(sk)|j = Arg(sk+1)|j for all j ∈ {1, . . . , n} \ {i}. Thus there
exists an index i such that Arg(s0)|i →= Arg(s1)|i →= · · · is an infinite rewrite
sequence, contradicting the minimality of s. ��

Lemma 6 (chain of minimal non-terminating terms in detail). If s ∈
NTmin then there exist a rewrite rule l → r, an argument context κ, a substi-
tution σ, and simply typed terms r′ � r and t ∈ NTmin satisfying the following
properties: (1) s

nh→∗ κ[lσ] h→ κ[rσ] 
 t, (2) if κ is empty then l 
� r′ and t = r′σ
hold, otherwise r = r′ and t = κ[rσ] hold, (3) head(r′σ) ∈ Σd.
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Proof. By Lemma 1, there exist terms s′, t ∈ NTmin and u ∈ NT such that
s

nh→∗ s′ h→ u 
 t, and u = t whenever s′ nr→ u. In order to prove (1) and (2),
first suppose s′ nr→ u. By Lemma 2, there exist a rewrite rule l → r, an argument
context κ, and a substitution σ such that s′ = κ[lσ] and u = κ[rσ]. Thus (1)
holds. By the definition of nr→, κ is nonempty. Since u = t, (2) is satisfied by
taking r′ = r. Next, suppose s′ r→ u. Then, there exist a rewrite rule l → r, a
substitution σ such that s′ = lσ and u = rσ. Hence (1) is satisfied by taking
κ to be an empty context. No subterm of σ(x) can be t for any x ∈ V(r), for
otherwise, t would be a proper subterm of lσ by V(r) ⊆ V(l) and l 
∈ V , which
contradicts the minimality of lσ(= s′). Hence t = r′σ for some r′ � r. Moreover
l 
� r′ holds, for otherwise, we would obtain lσ � r′σ = t, contradicting again
the minimality of lσ. This completes the proof of (2). Finally, (3) is obtained
from (2) by using Lemma 5 and Lemma 3 (1). ��

4 Dependency Pairs

As shown in Lemma 6, every minimal non-terminating sequence contains in-
finitely many rewrite steps each accompanied by an argument context. To treat
instances of a rewrite rule and instances of a rewrite rule within an argument
context in a uniform way, we introduce a notion of argument expansion of a
rewrite rule.

Definition 4 (argument expansion). The argument expansion Exp(l → r)
of a rewrite rule l → r is defined recursively as follows: if l → r is of base type
then Exp(l → r) = ∅, otherwise Exp(l → r) = {l′ → r′} ∪ Exp(l′ → r′) where
l′ = (l x1 · · · xn), r′ = (r x1 · · · xn), and x1, · · · , xn are distinct fresh variables
of appropriate types.

We are now ready to give an extended definition of dependency pairs.

Definition 5 (dependency pairs). The set DP(R) of dependency pairs of an
STTRS R = 〈Σ,R 〉 is defined as follows:

DP(R) = {〈l , r′〉 | l→ r ∈ R, r′ � r, r′ 
	 l, head(r′) ∈ Σd ∪ V }
∪ {〈l′, r′〉 ∈ Exp(l → r) | l→ r ∈ R, head(r) ∈ Σd ∪ V }

A dependency pair 〈l, r〉 is also written as l � r. We abbreviate DP(R) as DP
when R is clear from the context.

Note that head variables are allowed in the right-hand sides of dependency
pairs. If no right-hand side of the rewrite rules in R has a head variable of a
function type, then the first component of the definition of DP(R) is the same
as the first-order dependency pairs. Moreover, if all the rewrite rules are of base
type, then the second component is empty.

Example 5 (dependency pairs). Let R be the STTRS of Example 1. The set of
dependency pairs of R is as follows:
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DP(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) (+ (s x)) y � (+ x) y
(2) (+ (s x)) y � + x
(3) (fold F x) (: y ys) � (F y) ((fold F x) ys)
(4) (fold F x) (: y ys) � F y
(5) (fold F x) (: y ys) � (fold F x) ys
(6) sum � fold + 0
(7) sum � fold
(8) sum � +
(9) sum x � (fold + 0) x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Neither + 0 y � y nor (+ (s x)) y � + is a dependency pair of R because each
right-hand side is a proper subterm of the corresponding left-hand side.

We introduce a new relation which expresses a root rewrite step using a
dependency pair, because it is not in general type-preserving.

Definition 6 (dependency relation). The dependency relation �D of a set
of dependency pairs D is defined as follows: s �D t if there exist a dependency
pair l→ r ∈ D and a substitution σ such that s = lσ, t = rσ and head(t) ∈ Σd.

Lemma 7 (chain of minimal non-terminating terms via dependency

relation). If s ∈ NTmin then s
nh→∗ ·�DP t for some t ∈ NTmin.

Proof. By Lemma 6 and the definition of dependency pairs. ��

The next lemma gives a characterization of termination in terms of the de-
pendency relation.

Lemma 8 (termination by dependency pairs). An STTRS is terminating
if and only if the relation nh→∗ ·�DP on NTmin is terminating.

Proof. (⇒) The contraposition can be shown by using the inclusions nh→∗ ·�DP ⊆
→+ · 
 and 
 · →+ ⊆ →+ · 
. (⇐) The contraposition can be shown by using
Lemma 7 and the existence of a (minimal) non-terminating term. �

Definition 7 (dependency chain). Let D be a set of dependency pairs of
an STTRS R. A dependency chain of D is an infinite sequence t0, t1, . . . on
NTmin(R) such that ti

nh→∗ · �D ti+1 for all i ≥ 0. The family of all sets
of dependency pairs that admit dependency chain is denoted by DC(R). We
define DCmin(R) = {D ∈ DC(R) | D′ /∈ DC(R) for any D′ � D }. As usual,
we omit the parameter R when it is clear from the context.

We now come to the simply typed version of Theorem 6 of [3].

Theorem 1 (termination by dependency chains). An STTRS is terminat-
ing if and only if DC = ∅.

Proof. By Lemma 8 and the definition of a dependency chain. �

Corollary 1 (termination by DCmin). Let R be an STTRS such that DP is
finite. Then R is terminating if and only if DCmin = ∅.
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Proof. (⇒) By Theorem 1 and the inclusion DCmin ⊆ DC. (⇐) By Theorem 1
and the well-foundedness of the inclusion relation on the family of finite sets. �

The following property of DCmin is often used in the subsequent sections.

Lemma 9 (characterization of DCmin). Let D be a set of dependency pairs.
D ∈ DCmin if and only if D ∈ DC and for any dependency chain t0, t1, . . . of D
and any l � r ∈ D there exist infinitely many i such that ti

nh→∗ ·�{l�r} ti+1.

Proof. (⇒) Suppose D ∈ DCmin. If some dependency pair l � r ∈ D were
used only finitely many times, then we would have D \ {l � r} ∈ DC, which
contradicts the minimality of D. (⇐) For a proof by contradiction, suppose there
exists D′ � D such that D′ ∈ DC. Then there exists a dependency chain of D′,
which is also a dependency chain of D since D′ ⊆ D. No dependency pairs in
D \D′ are used in this chain. Hence any l � r ∈ D \D′ can be used to obtain
the desired contradiction. �

5 Dependency Graph

The dependency graph is useful to find sets of dependency pairs from which
dependency chains may arise. Any dependency chain corresponds to a path of
the dependency graph. One can prove absence of dependency chains by showing
that for every cycle in the graph there is no dependency chain corresponding to
that cycle.

Definition 8 (dependency graph). Let R be an STTRS and D be a set of
dependency pairs of R. The dependency graph DGR(D) is the directed graph
whose set of vertices is D in which 〈l � r, l′ � r′〉 is an edge if and only if there
exist substitutions σ, σ′ such that rσ

nh→∗ l′σ′.

Since the edges of a dependency graph are not computable in general, its
computable estimation needs to be considered. The most basic estimation in the
first-order setting is the one using REN ◦ CAP and unifiability [3]. We are now
going to extend this estimation for the simply typed framework.

Recall that in simply typed term rewriting, there may be a term consisting of
a head symbol and partially applied arguments which cannot be rewritten until
the remaining arguments are applied. To estimate such partially applied terms,
we introduce a notion of pattern.

Definition 9 (defined and undefined pattern). The pattern pat(t) of a term
t is the term obtained from t by replacing its arguments with fresh variables,
recursively defined as follows: (1) pat(t) = t if t ∈ Σ ∪ V , and (2) pat(t) =
(pat(t0) x1 · · ·xn) if t = (t0 t1 · · · tn) where x1, . . . , xn are distinct and fresh
variables of appropriate types. A subpattern of t is defined as follows: (1) pat(t)
is a subpattern of t, (2) if t = (t0 t1 · · · tn) then any subpattern of t0 is a
subpattern of t. A term t has a defined pattern if either (1) head(t) ∈ V or
(2) head(t) ∈ Σd and there exists a subpattern p of t such that p � l for some
l → r ∈ R; otherwise, it has an undefined pattern.
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Example 6 (defined and undefined patterns). LetR be the STTRS in Example 1.
Let s = ((fold + ((+ x) 0)) [ ]). Then s has a pattern ((fold F y) z); its subpatterns
are ((fold F y) z), (fold F y), and fold. The term t has a defined pattern, while
(fold + ((+ x) 0)) has an undefined pattern.

Lemma 10 (properties of patterns). Let s and t be terms. (1) pat(s) � s.
(2) If s = κ[t] for some argument context κ and p is a subpattern of t then p
is a subpattern of s. (3) If head(s) ∈ Σ, then, for any substitution σ, pat(s) =
pat(sσ) (up to the renaming of fresh variables).

Proof. (1) By induction on s. (2) By induction on κ. (3) By induction on s. �

Lemma 11 (properties of defined and undefined patterns). (1) If s =
(s0 s1 · · · sn) has an undefined pattern then s0 has an undefined pattern. (2) If
s has an undefined pattern, then for any substitution σ, sσ has an undefined
pattern. (3) For any rewrite rule l → r and any substitution σ, lσ has a defined
pattern. (4) If s has a defined pattern and C[s] has an undefined pattern then
C[x] has an undefined pattern where x ∈ V .

An approximation of a term is now defined by using the notion of pattern.

Definition 10 (approximation approx). Define approx(t) = REN(CAP(t)).
Here, CAP replaces every outermost subterm in any argument which have a
defined pattern by a fresh variable of appropriate type. REN replaces all occur-
rences of variables but the head occurrence2 with distinct fresh variables.

Example 7 (approximation approx). Let s = ((fold + ((+ x) y)) (s 0)). Then
approx(s) = ((fold + z) (s 0)). Let t = (F (G ((+ x) y))). Then approx(t) =
(F z).

Note that our CAP keeps a subterm with a defined head symbol if none of its
instance can be rewriten by a head step because of the lack of arguments. This
is contrasted with the CAP for first-order terms, which replaces every subterm
with a defined root symbol by a variable. Our CAP is the same as the original
first-order definition when it is applied to a first-order term.

Lemma 12 (properties of CAP and REN). (1) CAP(s) � s and REN(s) � s
for any term s. (2) CAP(s) � CAP(sσ) and REN(s) � REN(sσ) for any term s
and substitution σ. (3) For any l→ r ∈ R, x ∈ V , a context C, and a substitution
σ, CAP(C[lσ]) � CAP(C[x]).

Definition 11 (estimated dependency graph). Let R be an STTRS and D
a set of dependency pairs of R. The estimated dependency graph EDGR(D) is
the directed graph whose set of vertices is D in which 〈l � r, l′ � r′〉 is an edge
if and only if approx(r) and l′ are unifiable. The estimated dependency graph
EDGR(DP(R)) is abbreviated as EDG(R).

2 This is not at all essential, but it turns out to be useful to define head instantiation
later.
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Example 8 (estimated dependency graph). Let R be the STTRS of Example 1.
The dependency pairs of R are presented in Example 5. The estimated depen-
dency graph EDG(R) is shown below.
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Lemma 13 (soundness of estimation). For any terms s, t and substitutions
σ, τ , if sσ nh→∗ tτ then approx(s) and t are unifiable.

Proof. Let u →R v with s, t ∈ T(Σ, V ). Then u = C[lσ] and C[rσ] = v for
some rewrite rule l → r, substitution σ and a context C such that head(C) ∈
Σd ∪ V . Then by (2) and (3) of Lemma 12, approx(u) � approx(v). Thus,
by induction on the length of the reduction, it easily follows sσ

nh→∗ tτ im-
plies approx(sσ) � approx(tτ). Then by (1) and (2) of Lemma 12, approx(s) �
approx(sσ) � approx(tτ) � tτ � t. Since variables in approx(s) and t are dis-
joint, approx(s) and t are unifiable. �

Theorem 2 (approximation by estimated dependency graph). Let D be
a finite set of dependency pairs of an STTRS R. If D′ ⊆ D and D′ ∈ DCmin(R),
then for any vertices u, v ∈ D′ there exists a nonempty path in D′ from u to v.

Proof. By Lemma 9, Lemma 13, and the definition of an estimated dependency
graph. �

6 Subterm Criterion and Head Instantiation

Simple projections and the subterm criterion have been introduced by Hirokawa
and Middeldorp [10] to show the absence of dependency chains. We first extend
these notions to the case of simply typed term rewriting. A simple projection
maps a term to one of its arguments according to its head symbol. In the simply
typed framework, a simple projection may not be well-defined because of par-
tially applied arguments and head variables. For this reason, we have to speak
of feasible simple projections. The head instantiation technique is introduced in
order to handle dependency pairs with head variables.

Definition 12 (feasible simple projection). A simple projection is a map-
ping which maps each defined symbol to a positive integer. A simple projection
π is feasible for a term t if (1) head(t) ∈ Σd and (2) π(head(t)) ≤ |Arg(t)|. In
that case, we define π(t) = Arg(t)|π(head(t)). A simple projection π is feasible for
a set D of dependency pairs if it is feasible for l and r for any l � r ∈ D. In
that case, we define π(D) = {π(l) � π(r) | l � r ∈ D}.
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Example 9 (feasible simple projection). Let π1 be a simple projection satisfying
π1(+) = 1. Then π1 is feasible for ((+ (s 0)) 0) and for (+ (s 0)): we have
π1((+ (s 0)) 0) = π1(+ (s 0)) = (s 0). Let π2 be a simple projection satisfying
π2(+) = 2. Then π2 is feasible for ((+ (s 0)) 0) but not for (+ (s 0)): the latter
lacks the second argument.

Definition 13 (subterm criterion). Let D be a set of dependency pairs. We
say that D satisfies the subterm criterion if there exists a simple projection π
such that π is feasible for D, π(D) ⊆ 
, and π(D) ∩� 
= ∅.

Theorem 3 (absence of dependency chains by subterm criterion). If a
set of dependency pairs D satisfies the subterm criterion, then D /∈ DCmin.

Proof. The proof proceeds in the same way as for first-order TRSs (see [10]). �

Example 10 (termination by subterm criterion). Let R be the STTRS of Ex-
ample 1. DP(R) and EDG(R) are presented in Examples 5 and 8, respec-
tively. Let π be a simple projection satisfying π(+) = 1 and π(fold) = 3. Then
π((1)), π((5)) ∈ � and hence {(1)}, {(5)} /∈ DCmin. Therefore R is terminating.

A simple projection is infeasible for a set of dependency pairs if some right-
hand side has a variable as its head symbol. To deal with such a case, we intro-
duce a head instantiation technique. Some instantiation techniques for first-order
dependency pairs are discussed in [4, 6, 7].

Definition 14 (head instantiation). Let l � r and l′ � r′ be dependency
pairs such that head(r) ∈ V . Moreover, we assume that l � r and l′ � r′ do not
share any variables in common (after renaming). Suppose that approx(r) and l′

are unifiable and let σ = mgu(approx(r), l′). The head substitution of l � r for
l′ � r′ is defined as {F �→ pat(σ(F ))} where F = head(r) = head(approx(r)).
The set HSD(l � r) of head substitutions of l � r for a set D of dependency
pairs is the singleton set of the identity substitution if head(r) ∈ Σd and is the
set {σ | σ is the head substitution of l � r for some l′ � r′ ∈ D} if head(r) ∈ V .
The head instantiation HI(D) of a set D of dependency pairs is defined by:

HI(D) =
⋃

l�r∈D

{lσ � rσ | σ ∈ HSD(l � r)}.

Theorem 4 (soundness and completeness of head instantiation). Let D
be a set of dependency pairs. Then HI(D) ∈ DC if and only if D ∈ DC.

Proof. (⇒) By the inclusion �HI(D) ⊆ �D. (⇐) By the fact that s �D t
nh→∗

·�D u implies s �HI(D) t.

Example 11 (Termination by head instantiation). LetR = 〈Σ,R 〉 be an STTRS
where Σ = { [ ]o, : o×o→o, map(o→o)×o→o, pairo×o→o, appendo×o→o,
curry(o×o→o)→o→o, cartprodo×o→o }, and
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R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

append [ ] xs → xs
append (: x xs) ys → : x (append xs ys)
map F [ ] → [ ]
map F (: x xs) → : (F x) (map F xs)
((curry G) x) y → G x y
cartprod [ ] ys → [ ]
cartprod (: x xs) ys

→ append (map ((curry pair) x) ys) (cartprod xs ys)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

The function cartprod computes the cartesian product of two lists. For example,
cartprod [1, 2] [3, 4] = [(1, 3), (1, 4), (2, 3), (2, 4)]. We have DP(R) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) append (: x xs) ys � append xs ys
(2) map F (: x xs) � F x
(3) map F (: x xs) � map F xs
(4) ((curry G) x) y � G x y
(5) cartprod (: x xs) ys

� append (map ((curry pair) x) ys) (cartprod xs ys)
(6) cartprod (: x xs) ys � append
(7) cartprod (: x xs) ys � map ((curry pair) x) ys
(8) cartprod (: x xs) ys � map
(9) cartprod (: x xs) ys � (curry pair) x
(10) cartprod (: x xs) ys � curry pair
(11) cartprod (: x xs) ys � curry
(12) cartprod (: x xs) ys � cartprod xs ys

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The strongly connected components of EDG(R) are {(1)} and { (2), (3), (4),
(7), (12) }. It is easy to prove {(1)} /∈ DCmin by using a simple projection. Let
D = {(2), (3), (4), (7), (12)}. Then HI(D) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(2){F �→((curry G) y)} map ((curry G) y) (: x xs) � ((curry G) y) x
(3) map F (: x xs) � map F xs
(4){G �→cartprod} ((curry cartprod) x) y � cartprod x y
(7) cartprod (: x xs) ys � map ((curry pair) x) ys
(12) cartprod (: x xs) ys � cartprod xs ys

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

We now show HI(D) /∈ DC by using the recursive SCC algorithm of [9]. Take a
simple projection π as π(curry) = 3, π(map) = π(cartprod) = 2. It is easy to check
{π((2){F �→((curry G) y)}), π((3))} ⊆ � and {π((4){G �→cartprod}), π((7)), π((12))} ⊆

. Thus it suffices to show D′ = {π((4){G �→cartprod}), (7), (12)} /∈ DC. The only
cycle in EDG(D′) is {(12)}. By taking a simple projection π as π(cartprod) = 1,
we know D′ /∈ DC. Hence HI(D) /∈ DC. Therefore R is terminating.

7 Experiments

Based on the techniques presented in this paper, we implemented a termination
prover for STTRSs written in the functional programming language Haskell. We
have tested 125 examples of STTRSs (of which 122 examples are terminating).
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They include typical higher-order functions such as fold, map, rec, filter, etc. of
various simple types. For example, fold of types (o×o→o)×o×o→o, (o×o→o)×o→o→o,
(o→o→o)×o→o→o, and (o→o→o)→o→o→o. The table below is the number of STTRSs
categorized by the number of functions, i.e. defined symbols. (Mutually recursive
functions are counted as one function.)

number of functions 1 2 3 4 5 6 7 8
number of programs 40 21 28 15 7 5 6 3

In our first experiment, we count the number of STTRSs R whose termina-
tion can be inferred by checking that EDG(R) is acyclic. In the second experi-
ment, termination proof using subterm criterion is tried additionally; and in the
third, both subterm criterion and head instantiation are used.

We have also tested the direct application of the first-order dependency pair
method to a first-order encoding of STTRSs. In the experiment, we used the ter-
mination prover AProVE [8] of ver.1.1c-β where the non-overlappingness check
is disabled (so that it does not attempt innermost termination proof, but at-
tempts termination proof). Our encoding is the most naive one; the encoding
Θ from a simply typed term to the corresponding first-order term is defined
as Θ((t0 t1 · · · tn)) = an(Θ(t0), Θ(t1), . . . , Θ(tn)), where an (n > 0) are new
function symbols of arity n.

The result is summarized in the table below.

cycle + subterm + head first-order
check criterion instantiation encoding

success 6 56 98 67
failure/timeout(30 sec.) 119/0 69/0 27/0 55/3

This table shows that both the subterm criterion and the head instantiation are
effective in simply typed dependency pair approach. Our approach proves more
examples than the termination proof via the naive first-order encoding does.
There are, however, 8 examples that succeed in the approach via first-order
encoding but fail in our approach.

8 Concluding Remarks

We presented an extension of the dependency pair method of first-order term
rewriting which enlarges the scope of automatic termination proofs for simply
typed term rewriting systems. We clarified basic concepts of the dependency
pair method in the simply typed term rewriting framework. We incorporated
the subterm criterion into the extension and introduced the head instantiation.
As a result, we obtained a dependency pair method which is effectively applicable
even in the presence of function variables. We compared our method with the
direct application of the first-order dependency pair method to a naive first-
order encoding of simply typed term rewriting systems. Comparison with a more
elaborate encoding such as [1] and [2] remains as a future work.

In contrast to the subterm criterion, the argument filtering is not likely to be
incorporated in a straightforward way; for, in the presence of variables of function
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types, argument filtering functions are not closed under substitutions. Because
of this difficulty, the reduction pair and the argument filtering techniques in
the simply typed term rewriting framework still need to be investigated. Exten-
sions of other techniques of the first-order dependency pair method such as the
innermost termination proof have not yet been tried.

In [17, 18], dependency pair techniques for Nipkow’s HRSs [15] have been
proposed. In [18] the notions of the dependency pair and the dependency graph
are incorporated into HRSs, while the difficulty of using the argument filtering
are reported. In [17], the argument filtering has been incorporated at the cost of
limiting HRSs to be non-duplicating and non-nested.

In [13, 14], Kusakari proposed path orderings and a dependency pair method
for his higher-order framework TRShv. His method is based on the reduction
pair and the argument filtering techniques. Our characterization of minimal non-
terminating terms is similar to those used in his paper. However, we believe that
our in-depth analysis is indispensable to make our development robust. In his
method, in contrast to ours, the definition of the dependency chain is modified,
while the definition of the dependency pair is kept same as that of the first-
order dependency pair. By this difference, it seems not obvious whether our
version of the dependency graph and the subterm criterion are incorporated to
his dependency pair method or not.

Finally, we remark that experiments for a numerous collection of examples
have not been likely intended by these existing works on higher-order dependency
pair methods. The head instantiation and estimation of dependency graphs using
patterns are proposed for the first time in this paper.
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Abstract. We show that the structures of binding algebras and Σ-
monoids by Fiore, Plotkin and Turi are sound and complete models of
Klop’s Combinatory Reduction Systems (CRSs). These algebraic struc-
tures play the same role of universal algebra for term rewriting sys-
tems. Restricting the algebraic structures to the ones equipped with well-
founded relations, we obtain a complete characterisation of terminating
CRSs. We can also naturally extend the characterisation to rewriting on
meta-terms by using the notion of Σ-monoids.

1 Introduction

At RTA’98, Plotkin presented the theory of binding algebras [Plo98], which aimed
to apply ideas in universal algebra to type theory. It is interesting that this was
given as an invited talk at RTA. That is to say, in the context of rewriting,
it can be read as a possibility of a new direction of foundation of higher-order
rewriting as a type theoretic system. Plotkin’s idea of binding algebras was
inspired by Aczel’s work [Acz78]. In the field of rewriting, also inspired by Aczel’s
same work, Klop invented a system of higher-order rewriting called Combinatory
Reduction System (CRS) [Klo80]. It is natural to think that these two works,
having a common origin, have some relationship. However, such a relationship
is not obvious, especially about how the seemingly complex syntax of CRSs can
be understood in the theory of binding algebras.

Plotkin’s program of binding algebras later produced the notion of Σ-monoids
[FPT99]. Interestingly, the free Σ-monoids constructed in [Ham04] is the same
as the syntax of “meta-terms” of CRSs (cf. Theorem 5). This similarity suggests
that the universal algebra for CRSs may be Σ-monoids. Based on this idea, the
present paper provides a complete algebraic characterisation of CRSs.

Contribution. Complete characterisation of terminating CRSs obtained in this
paper provides a method of proving the termination of CRSs by algebraic in-
terpretation. The following CRS R for conversion into prenex normal form, i.e.
pushing quantifiers outside, is a typical example of higher-order rewrite rules
that require the feature of variable binding [Pol96, Raa]:

p ∧ ∀(x.q[x]) → ∀(x.p ∧ q[x]) ¬∀(x.q[x]) → ∃(x.¬(q[x]))
∀(x.q[x]) ∧ p→ ∀(x.p ∧ q[x]) ¬∃(x.q[x]) → ∀(x.¬(q[x]))

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 135–149, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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with the similar rewrite rules for ∨ and ∃ at the left column. Intuitively, rewrit-
ing using R and its termination are clear; notwithstanding, the application of
existing proof methods in the theory of higher-order rewriting to the CRS R is
not so straightforward [JR01], or it requires consideration of an involved function
space to interpret binders [Pol96, Pol94]. The present paper provides a simpler
method of showing termination of CRS such as R (cf. Example 24).

Organisation. This paper is organised as follows. We first review the definition
of CRSs in Section 2. We then introduce the notion of “structural CRSs” to define
a class of structurally well-formed CRSs in Section 3. Section 4 gives algebraic
semantics of CRSs syntax and valuations. Section 5 gives algebraic semantics
of CRSs rewriting. Section 6 gives algebraic semantics of CRSs meta-rewriting.
Finally, in Section 7, we show examples of termination proofs using a result of
this paper.

Future Work. This work opens a new direction of model theoretic study
of higher-order rewriting. An immediate application will be semantic labelling
method [Zan94] for CRSs using the algebraic structure developed in this paper.
Recursive path ordering on free structures in more general setting is also hopeful.

2 Combinatory Reduction Systems

We review the definition of CRSs. We use the definition of the standard reference
[KOR93] of CRSs with a slight modification of syntax used in [DR98]: −.− and
−[−] instead of ordinary ones [−]− and −(−) in [KOR93].

CRS. Assume a signature Σ of function symbols F l with arity, metavariables
zl with arity (in both cases the superscript l ∈ N is the arity).

(i) CRS terms have the form

t ::= x | x.t | F l(t1, . . . , tl).

The three forms are respectively called variables, abstractions, and function
terms.

(ii) CRS meta-terms extend CRS terms to

t ::= x | x.t | F l(t1, . . . , tl) | zl [t1, . . . , tl].

The last form is called a meta-application.
(iii) A valuation θ is a mapping that assigns to n-ary metavariable z an n-ary

substitute (a meta-level lambda notation, cf. [KOR93]):

θ : z � λ(x1, . . . , xn).t (1)

Valuations are extended to a function on meta-terms:

θ(x) = x θ(F (t1, . . . , tl)) = F (θ(t1), . . . , θ(tl))
θ(x.t) = x.θ(t) θ(z[t1, . . . , tl]) = θ(z) (θ(t1), . . . , θ(tl)) (2)
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Note that the rhs of the equation (2) uses an application at the meta-level
to the substitute. The valuation is safe if there are no two substitutes θ(z)
and θ(z’) such that θ(z) contains a free variable x which appears also bound
in θ(z’).

(iv) CRS rules, written l → r, consist of two meta-terms l and r with the
following additional restrictions:
(iv-a) l and r are closed (w.r.t. variables) meta-terms,
(iv-b) l must be a “pattern”, i.e. a function term where allmeta-applications

have the form z[x1, . . . , xn] with distinct xi,
(iv-c) r can only contain meta-applications with meta-variables occurring

in the left-hand side.
The rewrite rule l → r is safe for θ, if for no z in l and r, the substitute
θ(z) has a free variable x occurring in an abstraction x.− of l and r. A set
of rewrite rules is called a CRS.

(v) The CRS rewrite relation →R is generated by context and safe valuation
closure of a given CRS R:

l→ r ∈ R
θ(l)→R θ(l)

safe θ
s→R t

x.s→R x.t

s→R t

F (. . . , s, . . .)→R F (. . . , t, . . .)

where l → r must be safe for the safe valuation θ. The third rule means a
rewriting at the i-th argument of F .

3 Structural CRSs

In this section, we introduce the notion of structural CRS as a class of well-
formed CRSs. This idea of structural CRS is to treat only CRS (meta-)terms
built from binding signature (cf. Aczel’s contraction schemes [Acz78]). A binding
signature specifies how many binders are taken in arguments of each function
symbol.

Formally, a binding signature Σ is consisting of a set Σ of function sym-
bols with an arity function a : Σ → N∗. A function symbol of binding arity
〈n1, . . . , nl〉, denoted by f : 〈n1, . . . , nl〉, has l arguments and binds ni variables
in the i-th argument (1 ≤ i ≤ l).

For a formal treatment of named variables modulo α-equivalence in CRSs,
we assume the method of de Bruijn levels [dB72, LRD95, FPT99] for the naming
convention of variables (N.B. not for metavariables) in CRSs. We also use the
convention that n ∈ N denotes the set {1, . . . , n} (n is possibly 0). Under the
method of de Bruijn levels, this n means the set of variables from 1 to n.

Definition 1. A (meta-)term t is called structural if t is built from a binding
signature Σ and consistent with the binding arities of function symbols in Σ.

Schematically, structural meta-terms have the form:

t ::= x | F (x1 · · ·xi1.t1 , . . . , x1 · · ·xil
.tl) | zl [t1, . . . , tl]

where F has the binding arity 〈i1, . . . , il〉.
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More precisely, structural meta-terms are defined as follows. Fix an N-indexed
set Z of metavariables defined by Z(l)  {z | z has arity l}. A meta-term t is
structural if n * t is derived from the following rules.

x ∈ n

n * x

F : 〈i1, . . . , il〉 ∈ Σ n+i1 * t1 · · · n+il * tl
n * F ( n+1 . . . n+i1.t1, . . . , n+1 . . . n+il.tl )

z ∈ Z(l) n * t1 · · · n * tl
n * z[t1, . . . , tl]

By these rules, a meta-term always follows the method of de Bruijn levels. Using
only the first two rules (or equivalently, assuming Z(l) = ∅ for all l), we obtain
structural terms under n.

The notion of structural is obviously extended to rewrite rules, CRS, and
valuations. A rewrite rule is called structural if all meta-terms in the rule are
structural. A CRS is structural if all rules are structural.

Definition 2. A valuation θ is structural if for any mapping by θ : z �→
λ(x1, . . . , xn).t, t is a structural term and all variables in t are included in
x1, . . . , xn.

Structual CRS is a fairly good assumption because we can easily find that
almost all concrete examples of CRSs considered in the literature are structural;
namely, we can easily find a suitable binding signature of a given “plain” CRS.
Actually, in Raamsdonk’s collection [Raa] of examples of higher-order rewrite
systems all CRSs are structural .

Example 3 (CPS translation). The format of structural CRS is very similar
to an “everyday” meta-language for expressing formal systems in computer sci-
ence and logic. An example is the structural CRS R for prenex normal form in
the introduction. Another example related to theory of programming languages
is the following CRS S of a call-by-value CPS translation [DR98].

Assume the metavariables Z = {v0, e1, (e0)0, (e1)0} and the binding sig-
nature Σ consisting of the function symbols λ, λ : 〈1〉, (− −), (− −) : 〈0, 0〉,
CPS, ([−]) : 〈0〉. We write the structural CRS S of CPS translation in two ways:
the left column is written in the usual named notation, and the right column is
written in de Bruijn level notation, which is the format we use in this paper.

CPS(e) → λk.([e]) (λm.km) CPS(e) → λ1.([e]) (λ2.12)

([v]) → λk.k v ([v]) → λ1.1 v

([λx.e[x]]) → λk.k (λx.λk.([e[x]]) (λm.km)) ([λ1.e[1]]) → λ1.1 (λ2.λ3.([e[2]]) (λ4.34))

([e0e1]) → λk. ([e0]) (λm.([e1]) (λn.mn(λa.k a))) ([e0e1]) → λ1. ([e0]) (λ2.([e1]) (λ3.23(λ4.1 4)))

A point is that de Bruijn level version is obtained by just renaming variable
names with numbers according to their (de Bruijn’s) levels. Notice that this
completely differs from the more well-known method of de Bruijn indexes . Meta-
terms in de Bruijn levels are just “normal forms” of α-equivalent meta-terms (e.g.
λk.k v =α λ1.1 v).

Is the structural CRS S terminating1? Intuitively, termination is clear be-
cause ([−]) recursively decomposes a λ-term. In this paper, we derive a formal
1 This does not contain β-reduction rules, i.e. only for translation.
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way of showing termination from an algebraic characterisation of rewriting of
CRS. How this S is shown to be terminating will be given in Example 25 at the
end of the paper.

4 Algebraic Semantics of Syntax

In this section and in the next section, we consider algebraic semantics of CRSs.
As far as the author knows, this is the first algebraic consideration of CRSs.
The basic idea is similar to the algebraic semantics of TRSs by monotone Σ-
algebras popularized by Zantema [Zan94]. But the framework of usual first-order
universal algebra is insufficient. We consider CRS’s syntax in the framework of
binding algebras by Fiore, Plotkin and Turi [FPT99].

4.1 Binding Algebras

We review the notion of binding algebras. For detail, see [FPT99]. Let F be the
category which has finite cardinals n = {1, . . . , n} (n is possibly 0) as objects,
and all functions between them as arrows m→ n. This is the category of object
variables by the method of de Bruijn levels (i.e. natural numbers) and their
renamings. We use the functor category SetF. We define the functor δ : SetF →
SetF as follows: for L ∈ SetF, n ∈ F, ρ ∈ arr F, (δL)(n) = L(n + 1), (δL)(ρ) =
L(ρ + id1). To a binding signature Σ, we associate the signature functor Σ :
SetF → SetF given by ΣA 

∐
f :〈n1,...,nl〉∈Σ

∏
1≤i≤l δ

niA. A Σ-binding algebra
(or simply Σ-algebra) is a pair (A,α) consisting of a presheaf A ∈ SetF and a
map ([ ] denotes a copair of coproducts) α = [fA]f∈Σ : ΣA � A called algebra
structure, where fA is an operation fA : δn1A× . . .×δnlA � A defined for
each function symbol f : 〈n1, . . . , nl〉 ∈ Σ.

The “the presheaf of variables” V ∈ SetF is defined by V(n) = n, V(ρ) =
ρ (ρ : m → n ∈ F). Then, (SetF, •,V) forms a monoidal category [Mac71],
where the “substitution” monoidal product is defined as follows. For presheaves
A and B, (A • B)(n)  (

∐
m∈N

A(m)×B(n)m)/ ∼ where ∼ is the equivalence
relation generated by (t;uρ1, . . . , uρm) ∼ (A(ρ)(t);u1, . . . , ul) for ρ : m→ l ∈ F.
Throughout the paper, we use the following notation: an element of A(m)×
B(n)m is denoted by (t;u1, . . . , um) where t ∈ A(m) and u1, . . . , um ∈ B(m). A
representative of an equivalence class in A•B(n) is also denoted by this notation.

Let Σ be a signature functor with strength st defined by a binding signature.
A Σ-monoid M = (α, η, μ) consists of a monoid object [Mac71] (M,η : V →
M,μ : M •M → M) in the monoidal category (SetF, •,V) with a Σ-binding
algebra α : ΣM → M satisfying μ ◦ (α • idM ) = α ◦ Σμ ◦ st. A Σ-monoid
morphism (M,α) � (M ′, α′) is a morphism in SetF which is both Σ-algebra
homomorphism and monoid morphism.

4.2 Algebra of Structural CRS Terms

Structural terms and meta-terms have a good algebraic structure. We define
the presheaf TΣV ∈ SetF of all structural terms under n by TΣV(n) = {t | n *
t, t is a term} with obvious arrow part [Ham04]. We also define the map
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ν : V � TΣV in SetF by ν(n) : V(n) � TΣV(n), x � x. We abbreviate
n+1, . . . , n+k.t to n+�k.t. For every f ∈ Σ with the arity 〈i1, . . . , il〉, we define
the map FT : δi1TΣV×· · ·×δilTΣV � TΣV in SetF by (t1, . . . , tl) � F (n+
�i1.t1, . . . , n+�il.tl).

Theorem 4. Structural CRS terms TΣV forms an initial V+Σ-binding algebra.

Proof. Due to [FPT99]. The “syntactic algebra” in ([FPT99] Theorem 2.1) is
nothing but the V + Σ-algebra (TΣV, [ν, [FTΣ ]F∈Σ]). ��

Moreover, let Z be an arbitrary N-indexed set of metavariables (cf. Sect. 3).
The presheaf MΣZ of meta-terms is defined by

MΣZ(n) = {t | n * t}.

There is the map β : MΣZ •MΣZ � MΣZ in SetF, called multiplication,
that performs a substitution for variables [Ham04].

Theorem 5. Structural CRS meta-terms MΣZ forms a free Σ-monoid over Ẑ,
where Ẑ(n) =

∐
k∈N

F(k, n)×Z(k).

Proof. Due to [Ham04]. For Ẑ ∈ SetF, the free Σ-monoid constructed in [Ham04]
is nothing but (MΣZ, [FMΣ ]F∈Σ, ν, β) by just identifying minor notational differ-
ence of terms: regard ovar(x), [n]t, 0z1〈t1, . . . , tl〉 in [Ham04] as x, n.t, z[t1, . . . , tl]
respectively in the present paper. Here, operations FMΣ are defined by the same
as FTΣ . ��

4.3 Algebraic Characterisation of Valuations

Definition 6. An assignment φ : Z � A is a morphism of SetF whose target
A has a Σ-monoid structure (A, ν, β).

Notice that Z in the above definitions is a presheaf in SetF. So just an N-
indexed set X of metavariables cannot be the source of this presentation of
valuation. Fortunately, we can always construct a presheaf from an N-indexed
set X by defining X̂(n) 

∐
k∈N

F(k, n)×X(k) (see [Ham04] Sect. 5.2). Hence,
hereafter we abuse the notation to use X to denote its presheaf version X̂ ∈ SetF

in an assignment.
An assignment φ is extended to a Σ-monoid morphism φ∗ : MΣZ � A:

MΣZ(n) � A(n)
x � ν(n)(x) (x ∈ n)

F (n+�i1.t1, . . . , n+�il.tl) � FA(n+�i1.φ
∗(n+i1)(t1), . . . , n+�il.φ

∗(n+il)(tl))
z[t1, . . . , tl] � β(n)(φ(l)(z); φ∗(n)(t1), . . . φ∗(n)(tl) )

where f : 〈i1, . . . , il〉 ∈ Σ. In the special case A = TΣV, we have
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Proposition 7. An assignment θ : Z � TΣV gives a structural valuation,
and θ∗ : MΣZ � TΣV gives its “homomorphic” extension on meta-terms.

To see why, first we note that the assignment θ is a family of maps θ(n) :
Z(n) � TΣV(n) such that

θ(n) : z � t ∈ TΣV(n).

Namely, it maps an n-ary metavariable z to some structural term t under n.
Comparing the definition of structural valuation with this, and regarding the
substitute λ(x1, . . . , xn).t as t ∈ TΣV(n) (because θ is structural), both defini-
tions coincide. Hence, hereafter we use the word “valuation” in this sense:

Definition 8. A valuation is an assignment θ : Z � TΣV into the Σ-monoid
of terms. Also, we use the following: a meta-valuation is an assignment θ :
Z � MΣX into the Σ-monoid of meta-terms.

Now we know in what sense θ∗ is a “homomorphic” extension of a valuation
θ (which is not explained formally in the ordinary definitions [KOR93, OR94,
DR98, Oos94]). Namely θ∗ is a Σ-monoid morphism, which preserves Σ-algebra
structure (i.e. Σ-homomorphism) and monoid structure.

4.4 Structural Valuations are Sufficient

A valuation in the original sense (Sect. 2) was a map θ : z �→ λ(x1, . . . , xn).t
where t is an arbitrary term, which means that λ(x1, . . . , xn).t may have variables
other than x1, . . . , xn. But in the case of a structural valuation, variables in t
are taken only from x1, . . . , xn. We show that structural valuations are sufficient
to generate CRS rewrite relation on terms if we make some weakening of rules.

For m ≤ m′, let ρ : N → N be the function defined by ρ(m + i)  m′ + i
for each i ∈ Z. Suppose N-indexed metavariable sets Z ′ = Y ∪ {zm}, Z =
Y ∪ {zm′}, z 
∈ Y . The weakening of the arity of the metavariable z by ρ from
m to m′ is a function ρz on (unstructural) meta-terms defined as follows.

ρz(z[t1, . . . , tm]) = z[1, . . . ,m′ −m, ρz(t1), . . . , ρz(tm)]

ρz(n.t) = ρ(n).ρz(t) ρz(F (�t)) = F (ρz(�t)) ρz(x) = ρ(x) (x ∈ N).

Notation 9. We may use the notation Z|n * s→ t for a rule or a rewrite step
if metavariables and variables in s and t are included in Z and n respectively. We
may also simply write Z * s→ t or n * s→ t if another part is not important.

Let R be a structural CRS that follows the method of de Bruijn levels. Then
weakening closure of R, denoted by R◦, is defined by the following inference
rules (i.e. the least set satisfying the rules):

l → r ∈ R
l → r ∈ R◦

Y ∪ {zm} * l → r ∈ R◦

Y ∪ {zm+j} * �j.ρzl → �j.ρzr ∈ R◦
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where ρz is weakening of the arity of the metavariable z from m to m + j
(j ∈ N is arbitrary). This means that although originally a metavariable zm can
be replaced with a term exactly containing m-variables, it will be weakened to
zm+j , which can be replaced with a term containing m + j-variables.

Then, we reformulate the generation of rewrite relation as follows:

Z * �n.l→ �n.r ∈ R
n * θ∗(n)(l)⇒R θ∗(n)(r)

n + i * s⇒R t

n * F (. . . , n+�i.s, . . .)⇒R F (. . . , n+�i.t, . . .)

where θ : Z : � TΣV is a valuation.

Proposition 10. For a structural CRS R that follows the method of de Bruijn
levels, the ordinary definition (cf. Sect. 2) and the above definition with R◦

generate the same rewrite relation on structural terms, i.e. s ⇒R◦ t iff s →R t
for structural terms s, t.

5 Algebraic Semantics of Rewriting

In this section, we interpret rewrite rules of structural CRSs by Σ-binding al-
gebras, and give a complete characterisation of termination in this framework.
Hereafter, in this paper we only consider structural CRSs. So we just say “a
CRS” for a structural CRS.

For a presheaf A, we write >A for a family of transitive relations {>A(n)}n∈N,
where >A(n) is a transitive relation on the set A(n) for each n ∈ N. In this paper,
we use the following notion of monotonicity [Zan94].

Definition 11. Let (A1, >A1), . . . , (Al, >Al
), (B,>B) be presheaves equipped

with transitive relations. A map f : A1×· · ·×Al
� B in SetF is monotone if

all a1, b1 ∈ A1(n), . . . , al, bl ∈ Al(n) with ak >A(n) bk for some k and aj = bj for
all j 
= k, then f(n)(a1, . . . , al) >B(n) f(n)(b1, . . . , bl).

We interpret rewrite rules in a V+Σ-algebra.

Definition 12. Let A be a V + Σ-algebra. A term-generated assignment φ :
Z � A is a morphism of SetF that is expressed as the composite

Z
θ� TΣV

!A� A

for some valuation θ, where !A is the unique V+Σ-algebra homomorphism from
the initial V+Σ-algebra TΣV. Throughout the paper, we denote by !A this unique
V + Σ-homomorphism.

This means that an interpretation of a metavariable z by a term-generated as-
signment θ is performed by firstly assigning to z some term t and then interpret-
ing the term in a V+Σ-algebra A. Why this is needed is that CRS rewrite relation
is generated on terms (not on meta-terms). So, to interpret CRS rewrite rules,
not all assignments are needed; only term-generated assignments are sufficient.



Universal Algebra for Termination of Higher-Order Rewriting 143

Definition 13. A monotone V +Σ-algebra (A,>A) is a V +Σ-algebra A =
(A, [ν, [FA]F∈Σ]), (where ν : V � A), equipped with a transitive relation
>A(n) on A(n) for each n ∈ N such that every operation fA is monotone. More-
over, if >A(n) is a well-founded strict partial order for each n ∈ N, A is called
well-founded .

Definition 14. Let R be a CRS. A monotone V+Σ-algebra (A,>A) satisfies a
CRS rewrite rule Z * �n.l → �n.r if

φ∗(n)(l) >A(n) φ
∗(n)(r)

for all term-generated assignments φ : Z � A. A (V+Σ,R)-algebra A is a
monotone V+Σ-algebra A that satisfies all rules in the weakening closure R◦.

Define the N-indexed transitive relation →+
R(n) {(s, t) | n * s ⇒+

R◦ t},
where the latter (−)+ denotes the transitive closure.

Theorem 15. For a CRS R, (TΣV,→+
R) is an initial (V+Σ,R)-algebra, i.e.

for any (V+Σ,R)-algebra A, there exists a unique monotone homomorphism
TΣV � A.

Proof. Let (A,>A) be a (V+Σ,R)-algebra. Since TΣV is an initial V+Σ-algebra
(Theorem 4), !A : TΣV � A is a unique V+Σ-algebra homomorphism. So,
the remaining task is to show !A is monotone. This is proved by induction on
the structure of inference of ⇒R and induction on the length of ⇒+. Note that
!A ◦ θ is term-generated and all operations FA on A are monotone. ��

The following states that (V+Σ,R)-algebras are sound and complete for
many-step rewrite relation (where Notation 9 is used).

Corollary 16. Let R be a CRS. The following are equivalent:

(i) n * s→+
R t holds,

(ii) !A(n)(s) >A(n) !A(n)(t) for all (V+Σ,R)-algebras (A,>A).

Proof. (i)⇒(ii): By Theorem 15.
(ii)⇒(i): Take (A,>A) = (TΣV,→+

R). ��

Restricting the above corollary to the case of well-founded monotone algebras,
we obtain a complete characterisation of terminating CRSs.

Theorem 17. A CRS R is terminating if and only if there is a well-founded
(V+Σ,R)-algebra.

Proof. (⇐): Let A be a well-founded (V + Σ,R)-algebra. Assume R is non-
terminating, i.e. there exists an infinite reduction sequence n * t1 →R t2 →R
· · · . By Corollary 16, we have !A(n)(t1) >A(n) !A(n)(t2) >A(n) · · · . This con-
tradicts well-foundedness of >A.

(⇒): When a CRS R is terminating, the initial (V+Σ,R)-algebra (TΣV,→+
R)

is a desired well-founded algebra, because the strict partial order →+
R is well-

founded. ��
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Example 18 (Incompleteness of functional interpretation [Pol96]). As-
sume the metavariables Z = {f1,x1} and the binding signature Σ = {c : 〈0〉}.
Consider the CRS R consisting of the following only:

c(f[f[x[1]]]) → f[x[1]].

We want to show termination of R. Intuitively, this termination seems easy to
be proved because with any rewrite step the number of c-symbols decreases.
Nevertheless the existing interpretation method of higher-order rewriting based
on the model of hereditary monotone functionals cannot show termination of R
due to incompleteness of the model [Pol94, Pol96]. In contrast to it, we can show
termination of R by using Theorem 17 as follows. Take the monotone V+Σ-
algebra (TΣV,�TΣV) where s �TΣV(n) t iff the number of c-symbols in s and t
decreases. Notice that now all terms in TΣV(n) are consisting of c and variables
in n only. Hence, all assignments into TΣV are of the forms f �→ ck(1), x �→
cm(1) (k-times and m-times c’s). This gives a well-founded (V+Σ,R)-algebra
(TΣV,�TΣV), which implies termination of R by Theorem 17.

6 Algebraic Semantics of Meta-rewriting

We go beyond the standard definition of rewriting of CRS, and consider rewriting
on meta-terms, which we call meta-rewriting. In the literature, although meta-
rewriting has not been formally defined, Oostrom considered the notions of meta-
CR and meta-SN of CRS and pointed out each of them is not derived from CR
and SN of CRS respectively ([Oos94] Sect. 3.4).

We consider meta-termination, i.e. termination of meta-rewriting. In this
section, we give algebraic semantics of meta-rewriting. Basically we repeat the
semantics in Sect. 5, but we use Σ-monoids instead of Σ-binding algebras for the
semantics structure.

Rewriting on Meta-terms. First we formally define meta-rewriting. Let Z
be an N-indexed set of metavariables. For a CRS R in which any two rules have
disjoint metavariables taken from Z (if not, rename rules suitably), we denote
the CRS by (R, Z). We define the meta-rewriting relation �R as follows:

�n.l→ �n.r ∈ R
n * θ∗(n)(l) �R θ∗(n)(l)

n+i * s �R t

n * F (. . . , n+�i.s, . . .) �R F (. . . , n+�i.t, . . .)
z ∈ Z(l) n * s �R t

n * z[. . . , s, . . .] �R z[. . . , t, . . .]

where θ is a meta-valuation Z � MΣX (Definition 8). We say that R is
meta-terminating if �R is well-founded.

Definition 19. A monotone Σ-monoid (A,>A) is a Σ-monoid A equipped with
a transitive relation >A(n) on A(n) for each n ∈ N such that every operation
is monotone. Moreover, if >A(n) is a well-founded strict partial order for each
n ∈ N, A is called well-founded .
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Let R be a CRS. A monotone Σ-monoid A = (A,>A) satisfies a rewrite rule
Z * �n.l → �n.r ∈ R if

φ∗(n)(l) >A(n) φ
∗(n)(r)

for all assignments2 φ : Z � A. If A satisfies all rules in the weakening closure
R◦, it is called (Σ,R)-monoid .

An important example of (Σ,R)-monoid is (MΣZ,�+
R).

Definition 20. Let (A, ν, β) be a monotone Σ-monoid, and φ : Z � A an
assignment. Define the map σ : Z •A � A by the composite

Z •A φ•idA� A •A β� A.

The assignment φ is called admissible if σ is monotone3.

Notice that the multiplication β need not to be monotone. Actually, it is
rather difficult to find a Σ-monoid whose multiplication is monotone. The unit
ν : V � A is automatically monotone because V has no transitive relation.

The notion of admissible assignments is an important ingredient of inter-
pretation of meta-rewriting. Arbitrary assignments are not suitable to interpret
meta-rewriting because it may cause non-order preservation. For example, as-
sume the constants Σ = {a, b, c}, the metavariable Z = {z1} and the CRS
R = {a → b}. Then we have a meta-rewriting z[a] �R z[b]. We interpret this
rewrite step in the (Σ,R)-monoid (MΣZ,�+

R). Take the assignment φ : z � c.
Then, this does not preserve the order:

φ∗(z[a]) = c 
�R c = φ∗(z[b]).

We need “monotonic” interpretation of meta-rewriting to establish algebraic ter-
mination method. The idea of admissible assignment is motivated by to prohibit
this kind of “non-monotonic” interpretation of a rewrite step.

This problem is already recognised by van de Pol [Pol94]. The notion of
admissible assignments is analogue to his notion of strict functionals. Actually,
we can show that hereditary monotone functionals in his model forms a monotone
Σ-monoid and our admissible assignments into this monotone Σ-monoid is the
same as the strict valuations at the second-order types. Hence, we can apply the
method of termination proof using hereditary monotone functionals to CRSs.
For instance, termination of the examples of higher-order rewrite systems given
in [Pol94, Pol96] (and their CRS versions are in [Raa]) can be shown by using
Σ-monoids of hereditary monotone functionals given in [Pol94, Pol96].

Now we show a theorem analogue to Theorem 15 stating (MΣZ,�+
R) is an

“initial model”. More precisely,

2 Compare this definition with Definition 14 for rewriting.
3 More precisely, σ(n) :

∐
m∈N

Z(m)×A(n)m/ ∼ � A(n) is monotone, i.e. if
z ∈ Z(m) and all a1, b1 ∈ A(n), . . . , am, bm ∈ A(n) with ak >A(n) bk for some k and
aj = bj for all j �= k, we have σ(n)(z; a1, . . . , am) >A(n) σ(n)(z; b1, . . . , bm).
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Theorem 21
Z

ηZ� MΣZ

���φ�
A

φ∗
�

For a CRS (R, Z), (MΣZ,�+
R) is a free (Σ,R)-monoid

over Z, i.e. for any admissible assignment φ from Z into
a (Σ,R)-monoid (A,>A), there exists a unique Σ-monoid
map φ∗ that is monotone and makes the right diagram
commute in SetF, where ηZ : zl � z[1, . . . , l].

Proof. Let φ : Z � A be an admissible assignment into a (Σ,R)-monoid
(A,>A). Since MΣZ is a free Σ-monoid [Ham04], φ∗ is a unique Σ-monoid mor-
phism that makes the above diagram commute in SetF. So, the remaining task
is to show φ∗ is monotone. This is proved by induction on the structure of infer-
ence of �R and the length of �+

R. The case for instantiation of a rewrite rule,
we use (φ∗ ◦ θ)∗ = φ∗ ◦ θ∗, which is proved by induction on meta-terms. The
crucial case is to show φ∗ preserves the relation of z[. . . , s, . . .] �R z[. . . , t, . . .].
This holds because we have assumed that φ is admissible. ��

Theorem 22. A CRS (R, Z) is meta-terminating if and only if there is a well-
founded (Σ,R)-monoid.

Proof. (⇐): Let A be a well-founded (Σ,R)-monoid. Assume R is not meta-
terminating, i.e. there exists an infinite meta-rewriting sequence

Z|n * t1 �R t2 �R t3 �R · · · .

By Theorem 21, for any admissible assignment φ : Z � A, we have

φ∗(n)(t1) >A(n) φ∗(n)(t2) >A(n) φ∗(n)(t3) >A(n) · · · .

This contradicts well-foundedness of >A.
(⇒): When a CRS R is meta-terminating, the free (Σ,R)-monoid (MΣZ,�+

R)
over Z is a desired well-founded one, because the strict partial order �+

R is well-
founded. ��

7 Termination of Binding CRSs

Let (R, X) be a CRS such that every meta-application in rules of R is always of
the form zl[1, . . . , l]. We call such a CRS a binding CRS because it is essentially
meta-application-free (cf. binding TRS [Ham03]). To interpret a rule and meta-
rewriting in a binding CRS R, we do not need the monoid structure of Σ-
monoids, i.e. the multiplication β is not used. Because, for example, interpret
the meta-term z[1, 2] (for z2) in a rule by an assignment φ : X � A into a
Σ-monoid (A, ν, β):

φ∗(z[1, 2]) = β(φ(z); ν(1), ν(2)) = φ(z).

This is due to A • V ∼= A, i.e. V is the unit of the monoidal category SetF. So,
to interpret a meta-term like z[1, 2], we just need an assignment φ. Hence, we
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assume A to be a X+V+Σ-algebra for interpretation of binding CRSs. Then we
can replete the discussion of interpretation of meta-rewriting: A satisfies a rule
�n.l → �n.r ∈ R if φ∗(n)(l) >A φ∗(n)(r) for all assignments φ : X � A into
X+V+Σ-algebras. We denote by BΣX an initial X+V+Σ-algebra and call an
element of it a binding meta-term. Notice that a binding CRS is a CRS built
only from binding meta-terms. We define the meta-rewriting on binding meta-
terms by →R�R ∩

⋃
n∈N

(BΣX×BΣX)(n). Then, (BΣX,→+
R) is an initial

(X+V+Σ,R)-algebra.

Proposition 23. A binding CRS (R, X) is meta-terminating on binding meta-
terms if and only if there is a well-founded (X+V+Σ,R)-algebra.

For a binding CRS R, it is clear that meta-termination of R on binding
meta-terms implies termination of R on terms because all terms are binding
meta-terms (meta-application-free). Hence, in the case of binding CRSs this
becomes an interesting termination proof method by interpretation because we
do not need a monoid structure.

Example 24. We show termination of the CRS R for conversion into prenex
normal form in the introduction. Formally,R is built from the binding signature
Σ = {∀, ∃ : 〈1〉, ∧,∨ : 〈0, 0〉, ¬ : 〈0〉} and the metavariables X = {p0,q1}. The
structural CRS R in de Bruijn levels is obtained by just replacing the variable
x with 1.

p ∧ ∀(1.q[1]) → ∀(1.p ∧ q[1]) ¬∀(1.q[1])→ ∃(1.¬(q[1]))
∀(1.q[1]) ∧ p→ ∀(1.p ∧ q[1]) ¬∃(1.q[1])→ ∀(1.¬(q[1])).

We use Proposition 23 to show termination. Take the X+V+Σ-algebra K by
K(n) = N with >K(n) by the usual order > on N for all n ∈ N. The operations
are given by

∧K(n)(x, y) = ∨K(n)(x, y) = 2x + 2y
¬K(n)(x) = 2x ∀K(n)(x) = ∃K(n)(x) = x + 1.

All operations are monotone. We can show that K satisfies the rules: take an
assignment φ : X � K by p �→ x ∈ N and q �→ y ∈ N, then

φ∗(0)(p ∧ ∀(1.q[1])) = 2x + 2(y + 1) >K(0) (2x + 2y) + 1 = φ∗(0)(∀(1.p ∧ q[1]))
φ∗(0)(¬∃(1.q[1])) = 2(y + 1) >K(0) 2y + 1 = φ∗(0)(∀(1.¬(q[1]))).

Similar for other rules. Since >K(0) is well-founded, this shows K with φ is a well-
founded (X+V+Σ,R)-algebra. Thus, the binding CRS R is meta-terminating
on binding meta-terms by Proposition 23. Hence R is terminating on all CRS
terms. This interpretation is simpler than the hereditary monotone functional
model given in [Pol96].
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Example 25. The CRS S for a CPS translation in Example 3 is also shown to
be terminating by the following polynomial interpretation: take the X+V+Σ-
algebra K by K(n) = N with the unit ν : V → K, i �→ 0 and the operations:

CPSK(n)(e) = 5e + 5 ([e])K(n) = 5e + 1 λK(n)(e) = e λK(n)(e) = e + 1

(e0 e1)K(n) = e0 + e1 (e0 e1)K(n) = e0 + e1 + 1.

Checking this satisfies S is just by calculation. Hence S is terminating.

Namely, if a CRS is a binding CRS, we do not need functionals to interpret
higher-order function symbols such as ∀, ∃, λ, λ.
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Appendix: Elementary Description of The Category SetF

For those who are not familiar with category theory, we devote this section to
an elementary description of the central categorical structure used in this paper:
the category SetF and related morphisms. The functor category SetF plays an
central role in this paper. The objects of it are functors F→ Set and the arrows
are natural transformations between them. In more elementary term, an objects
A of SetF (often written as A ∈ SetF) is given by a N-indexed set {A(n)}n∈N

with “the arrow part” i.e. for each function ρ : m→ n ∈ F, we also need to give
a function A(ρ) : A(m) � A(n).

An arrow (or called a map, morphism) between objects A,B ∈ SetF is a
natural transformation f : A � B; more elementary, it is given by a family
of functions of the form f(n) : A(n) � B(n) parameterised by all n ∈ N
that satisfies the condition ∀a ∈ A(m) . B(ρ)(f(m)(a)) = f(n)(A(ρ)(a)) for all
functions ρ : m→ n. This condition (“naturality”) diagrammatically means the
commutativity of the diagram

m A(m)
f(m) � B(m)

n

ρ
�

A(n)
A(ρ) � f(n) � B(n)

B(ρ)�

Very roughly, we can think of A ∈ SetF as an N-indexed set equipped with
“something”, and a map f : A � B of SetF as an N-indexed function f(n) :
A(n) � B(n) with “some coherence law”. These “something” precisely mean
the above descriptions. We may ignore them to get a rough understanding (with
keeping in mind that these have officially such conditions). An object A ∈ SetF

is often called a presheaf .
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Abstract. Quasi-interpretations are an useful tool to control resources
usage of term rewriting systems, either time or space. They not only
combine well with path orderings and provide characterizations of usual
complexity classes but also give hints in order to optimize the program.
Moreover, the existence of a quasi-interpretation is decidable.

In this paper, we present some more characterizations of complexity
classes using quasi-interpretations. We mainly focus on small space-
bounded complexity classes. On one hand, by restricting quasi-inter-
pretations to sums (that is allowing only affine quasi-interpretations),
we obtain a characterization of LinSpace. On the other hand, a strong
tiering discipline on programs together with quasi-interpretations yield
a characterization of LogSpace.

Lastly, we give two new characterizations of Pspace: in the first, the
quasi-interpretation has to be strictly decreasing on each rule and in
the second, some linearity constraints are added to the system but no
assumption concerning the termination proof is made.

1 Introduction

The quasi-interpretation over reals method is a decidable procedure to certify
time or space complexity of a program based on rewriting semantics. This paper
focuses on several small space complexity classes.

From a practical point of view, the bottom line is to perform a complexity
analysis in order to measure space resources by static analysis. The knowledge
of the resource consumption is an important information to compile more effi-
ciently a program by certifying the space usage, this may also reinforce security.
Dynamic approaches, like direct evaluation of the space or time usage by numer-
ical recipes, as done by Benziger [1] for Nuprl, are the other way for controlling
resources. The advantage of static analysis is that it can provide a certificate
which guarantees the resource usage.

A program is a term rewriting system in which there are constructor terms
defining the domain and the range of the computation. Quasi-interpretations
are related to interpretation termination proofs. An interpretation is a quasi-
interpretation. Conversely, a quasi-interpretation does not prove termination a
priori. There are some interests to study programs, which have a polynomially
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bounded quasi-interpretation because it delineates a not too big class of func-
tions. Surprisingly, a function, which admits a polynomial interpretation, can
run in doubly exponential time. This observation was made by Hofbauer and
Lautemann [2] and Cichon and Lescanne [3]. The whole picture about polyno-
mial interpretation has been clarified in [4]. One of the key ideas is to separate
constructor terms from defined function symbols. In fact, the program complex-
ity depends mainly on the quasi-interpretation of constructor terms.

From the point of view of complexity, quasi-interpretations are very exciting.
Indeed quasi-interpretations give an upper bound on the size of the normal form
of a term if it exists. We obtained different resource upper bounds by combining
quasi-interpretations and termination proofs.

– If the program admits a quasi-interpretation and terminates by Product
Path Ordering, (PPO) then it is computable in polynomial time. See [5].

– If the program admits a quasi-interpretation and terminates by Lexico-
graphic Path Ordering (LPO), then the computation consumes a polynomial
space. See [6].

The results mentioned above should be compared to the expressive power of
both recursive path ordering PPO and LPO. Hofbauer [7] showed that Multiset
Path Ordering (MPO) gives rise to a characterization of primitive recursive
functions. It is not difficult to see that the same proof goes for PPO instead
of MPO. Then, Weiermann [8] has shown that LPO characterizes the multiple
recursive functions. So, quasi-interpretations allow us to tame the complexity of
treated algorithms.

In this paper, we present new characterizations of small space complexity
classes. The first result is a characterization of the class LinSpace of func-
tions, which are computable in linear space in the size of the inputs. For this,
we restrict quasi-interpretations to purely affine functions, that is the quasi-
interpretation of each symbol is a function like aX + b. The class of functions,
which are computed by programs which terminate by LPO and admit a purely
affine quasi-interpretations, is exactly LinSpace. Let us mention here the first
intrinsic characterization of LinSpace. It is due to Ritchie [9].

The second result is a characterization of the class LogSpace which contains
all functions which run in logarithmic space in the size of the inputs. Intuitively,
this means that we cannot copy an input on some registers. However, we can use
pointers to read and mark inputs. For this, we introduce the notion of tiers inside
a rewrite system which has yet be suggested by Beckmann-Weiermann [10] and
Marion [11]. The tiering discipline is due to independently Bellantoni-Cook [12]
and to Leivant-Marion [13, 14] in the context of simply typed lambda-calculus.
Our characterization of LogSpace is based on Jones [15] and is also related to
the work of Gurevich [16] on primitive recursive function algebra over first order
finite structures.

The last result is two characterizations of Pspace, which is the class of
functions computable in polynomial space. Such characterizations of Pspace by
functional programming have been already considered by Oitavem [17].
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In this paper, we demonstrate the use of quasi-interpretations to bound mem-
ory during a program execution. These results do not give a meaningful upper
bound on the runtime. However, it is interesting to have an upper bound on the
memory in several practical cases related to embedded systems. In this direc-
tion, Amadio and al [18] applied those ideas successfully to resource bytecode
verifier and to resource verifier for synchronous cooperative threads [19]. We con-
sider quasi-interpretation over the reals as it gives us a procedure to synthesis
quasi-interpretations. See [20, 21] for full details.

2 First Order Functional Programming

Throughout the following discussion, we consider three disjoint sets X ,F , C of
variables, function symbols and constructors.

2.1 Syntax of Programs

Definition 1. The sets of terms and the rules are defined in the following way:

(Constructor terms) T (C) 2 u ::= c | c(u1, · · · , un)
(terms) T (C,F ,X ) 2 t ::= c | x | c(t1, · · · , tn) | f(t1, · · · , tn)
(patterns) P 2 p ::= c | x | c(p1, · · · , pn)
(rules) D 2 d ::= f(p1, · · · , pn) → t

where x ∈ X , f ∈ F , and c ∈ C. We shall use a type writer font for function
symbols and a bold face font for constructors.

Remark 2. Notice that function symbols (sometimes called defined symbols) do
not appear in any pattern matching and may not have arity 0.

In the following, we will write
−→
t to denote the vector of terms t1, · · · , tn if

those terms are not relevant for the current discussion.

Definition 3. A program is a quadruple f = 〈X , C,F , E〉 such that E is a finite
set of D-rules. Each variable in the right-hand side of a rule also appears in the
left hand side of the same rule. We distinguish among F a main function symbol
whose name is given by the program name f.

The size |t| of a term t is defined by |b| = 0 and |b(t1, . . . , tn)| = 1 +
∑

i |ti|
where b ∈ C ∪ F . The size of

−→
t = (t1, . . . , tn) is |−→t | =

∑
i |ti|.

2.2 Semantics

The domain of the computed functions is the constructor algebra T (C). The set
of rules induces a rewriting relation→. We use +→ for the transitive closure of→
and ∗→ for the reflexive transitive closure of →. t !→s iff t

∗→s and s is in normal
form.

Definition 4. If the system is confluent, then we say that the program is deter-
ministic.
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In this case, the program f computes a partial function �f� : T (C)n →
T (C) defined as follows. For all ui ∈ T (C), �f�(−→u ) = v iff f(−→u ) !→v and v is a
constructor term. Otherwise �f�(−→u ) is undefined. See, among others, Huet [22]
for conditions ensuring the confluence of the system.

Definition 5. If the system is not confluent, then we say that the program is
non-deterministic.

In this case, following Grädel and Gurevich [23] or Bonfante, Cichon, Marion
and Touzet [4], the value of any term is the maximum value of the normal forms
of the terms (for a given order on terms, usually lexicographic ordering). Notice
that this includes the usual definition for decision problems by choosing true >
false.

3 Orderings

3.1 Precedences and Ranks

Definition 6. Let f = 〈X , C,F , E〉 be a program. A precedence over f is a pre-
order .F over F compatible with the rules. By compatible, we mean that if
g(−→p ) → r is a rule, then for any symbol h in r, we have h .F g. Let us note
≈F the induced equivalence relation, that is g ≈F h iff g .F h ∧ h .F g. The
strict induced ordering is noted ≺F , g ≺F h iff g .F h ∧ ¬(h .F g).

We extend canonically the ordering on F
⋃
C by choosing c ≺F f for each

constructor c and each function f and two constructors are mutually incompa-
rable.

Lemma 7. Let f be a program and .F be a precedence for that program. .F
induces a rank function rk assigning an integer to each symbol such that b .F b′

implies rk(b) ≤ rk(b′) and b ≺F b′ implies rk(b) < rk(b′).

Proof. By induction on the (finite) ordering. ��

In the following, we will often speak indifferently of either precedence or rank
function, depending whether we want to focus on the ordering or on the “slicing”
aspect.

Proposition 8. Let f = 〈X , C,F , E〉 be a program. There exists a precedence
.F for that program.

Proof. For each rule g(−→p ) → r and each function symbol h ∈ r, put h .F g.
Build the reflexive transitive closure of this relation. ��

Thus, mutually recursive functions will have the same rank and subfunctions
will have smaller rank than the caller.

Proposition 9. Let f be a program and .F a precedence of f. Let g(−→v ) ∗→t be
such that the vis are constructor terms. Then no symbol in t has a rank strictly
higher than g, that is for all symbols b ∈ t, b .F g.
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It is an immediate consequence of the compatibility and the transitivity of
the precedence. This proposition is really important in the following because it
allows some kind of computation “by rank”: functions of high ranks will never
interfere when computing the value of functions of low ranks. Thus, we will
be able to design recursive procedure to compute functions depending on their
ranks.

3.2 Termination Orderings

We now focus on termination orderings which we see as a kind of mold that cap-
ture some algorithmic patterns. Here, we consider Lexicographic Path Ordering
which is a simplification ordering and so well-founded. See Dershowitz [24] for
complete details about termination orderings. Krishnamoorthy and Narendran
in [25] have proved that deciding whether a program terminates by Lexicographic
Path Ordering is a NP-complete problem.

Let . be a partial ordering and ≺ be its strict part.

Definition 10. The lexicographic extension of ≺, noted ≺l, is defined as fol-
lows.

We have (m1, · · · ,mk) ≺l (n1, · · · , nk′) if and only if there exists an index j
such that (i) ∀i < j,mi . ni and (ii) mj ≺ nj.

Lexicographic Path Ordering

Definition 11. Given a precedence .F , the Lexicographic Path Ordering
(LPO) ≺lpo is defined in Figure 1.

A rule l → r is decreasing if we have r ≺lpo l. A program is ordered by ≺lpo

if there is a precedence on F such that each rule is decreasing.

∀i, si �lpo ti ∃j/sj ≺lpo tj

c ∈ C
c(s1, · · · , sn) ≺lpo c(t1, · · · , tn)

s = ti or s ≺lpo ti

f ∈ F ⋃ C
s ≺lpo f(. . . , ti, . . .)

∀i si ≺lpo f(t1, · · · , tn)
f ∈ F , c ∈ C

c(s1, · · · , sm) ≺lpo f(t1, · · · , tn)

∀i si ≺lpo f(t1, · · · , tn) g ≺F f
f, g ∈ F

g(s1, · · · , sm) ≺lpo f(t1, · · · , tn)

(s1, · · · , sm) ≺l
rpo (t1, · · · , tn) f ≈F g ∀i si ≺lpo f(t1, · · · , tn)

f, g ∈ F
g(s1, · · · , sm) ≺lpo f(t1, · · · , tn)

Fig. 1. Definition of ≺lpo.
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3.3 Quasi-interpretations

In order to control resources more precisely that termination orderings do, we
suggest the use of quasi-interpretations. Quasi-interpretations have been intro-
duced by Bonfante, Marion [11] and Marion-Moyen [5] and have proved them-
selves useful to obtain complexity bounds on programs.

The set of non-negative real numbers is noted R+.

Definition 12 (Assignment). An assignment of a symbol b ∈ F
⋃
C whose

arity is n is a function �b� : (R+)n → R+ such that:

(Subterm) �b�(X1, · · · , Xn) ≥ Xi for all 1 ≤ i ≤ n.
(Weak Monotonicity) �b� is increasing (not necessarily strictly) with respect

to each variable.
(Additive) For each constructor c, �c�(X1, · · · , Xn) =

∑n
i=1 Xi + αc, αc ≥ 1

We extend assignments �−� to terms canonically. Given a term t with n
variables, the assignment �t� is a function (R+)n → R+ defined by the rules:

�b(t1, · · · , tn)� = �b�(�t1�, · · · , �tn�)
�x� = X

Given two functions f : (R+)n → R+ and g : (R+)m → R+ such that
n ≥ m, we say that f ≥ g iff ∀X1, . . . , Xn : f(X1, . . . , Xn) ≥ g(X1, . . . , Xm).

We have �s� ≥ �t� if t is a subterm of s. We have also, for every substitution
σ, �s� ≥ �t� implies that �sσ� ≥ �tσ�.
Definition 13 (Quasi-interpretation). A program assignment �−� is an as-
signment of each program symbol. An assignment �−� of a program is a quasi-
interpretation if for each rule l → r, �l� ≥ �r�

It is worth noticing that the above inequality is not strict which differs from
the notion of interpretation used to prove termination. See, among others, [4].

Note that we restrict ourselves to additive quasi-interpretations, that is the
form of the assignment of constructors is fixed. Allowing other (polynomial)
assignment to constructors brings higher upper bound on complexity as shown
in [21].

Definition 14. The quasi-interpretation of a function symbol f is said to be: (i)
affine if �f�(X1, · · · , Xn) =

∑n
i=1 αf,iXi +αf with αf > 0, (ii) multiplicative if

�f� is a polynomial of the form P + αf with αf > 0 and P (x1, . . . , xn) ≥ xi for
all i ≤ n.

The quasi-interpretation of a program is said to be purely affine (resp. purely
multiplicative) if the quasi-interpretation of each function symbol is affine (resp.
multiplicative).

Notice that for function symbols, even if αf < 1, the quasi-interpretation
may be affine. Whereas for constructors, we force αc ≥ 1.

Proposition 15 ([4]). Suppose that f is a program with a quasi-interpretation.
Assume t is a constructor term in T (C), we have |t| ≤ �t� ≤ O(|t|).
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4 Call-Trees

We present now call-trees which are a tool that we shall use all along. Let
f = 〈X , C,F , E〉 be a program. A call-tree gives a static view of an execution and
captures all function calls. Hence, we can study dependencies between function
calls without taking care of the extra details provided by the underlying rewriting
relation. Call-trees are related to dependency graphs proposed by Aarts and
Giesl [26].

Definition 16. A state is a tuple 〈h, u1, · · · , up〉, sometimes noted 〈h,−→u 〉, where
h is a function symbol of arity p and u1, . . . , up are constructor terms. Assume
that η1 = 〈h, u1, · · · , up〉 and η2 = 〈g, s1, · · · , sm〉 are two states. A transition is
a triplet η1

e� η2 such that:

(i) e is a rule h(q1, · · · , qp)→ t of E,
(ii) there is a substitution σ such that qiσ = ui for all 1 ≤ i ≤ p,
(iii) there is a subterm g(v1, · · · , vm) of t such that viσ

!→si for all 1 ≤ i ≤ m.

Transition(f) is the set of all transitions between states. ∗� is the reflexive
transitive closure of ∪e∈E

e�.

Definition 17. The 〈f, t1, · · · , tn〉-call tree is a tree defined as follows: (i) nodes
are states, (ii) the root is the state 〈f, t1, · · · , tn〉, (iii) for each state η1, the
children of η1 are the states {η2 | η1

e� η2 ∈ Transition(f)}.

Proposition 18. Assume that η1 = 〈h,−→u 〉 ∗� η2 = 〈g, s1, · · · , sm〉 and �−� is a
quasi-interpretation for that program. Then we have �g(s1, · · · , sm)� ≤ �h(−→u )�
and thus |si| ≤ �si� ≤ �h(−→u )� for all 1 ≤ i ≤ m.

Proof. By virtue of the quasi-interpretation definition. Both the subterm prop-
erty, the weak monotonicity property and Proposition 15 are necessary. ��

The size of a state 〈g, s1, · · · , sm〉 is
∑m

i=1 |si|.
Lemma 19. The size of each state of the 〈f, t1, · · · , tn〉-call tree is bounded by
d× �f(−→t )� where d is the maximal arity of a function symbol.

Proof. |〈g, s1, · · · , sm〉| =
∑

i |si| ≤
∑

i�si� ≤ m× �f(−→t )� ≤ d× �f(−→t )� ��

5 Linear Space

Let a LPOQI+-program be a program that terminates by LPO and admits a
purely affine quasi-interpretation.

Theorem 20. The set of functions computed by deterministic LPOQI+-pro-
grams is exactly LinSpace.

Proof. The upper-bound on complexity is established by Theorem 27. The com-
pleteness of the characterization is established by Theorem 25. ��

Theorem 21. The set of functions computed by non-deterministic LPOQI+-
programs is exactly NLinSpace.
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5.1 Unary k-Stack Turing Machines

In this Section, we follow Gurevich [16], Leivant [13] and Marion et al. [4].

Lemma 22 ([4]). A function is in LinSpace if it is computed by a multi-stack
Turing Machine (STM) over the unary alphabet in polynomial time.

Actually, we will use another characterization.

Lemma 23. A function is in LinSpace if it is computed by a polynomial time
multi-stack Turing Machine over the unary alphabet and each stack is bounded
by the size of the input.

Proof. Following Lemma 22, we take M a STM that computes a function f ∈
LinSpace. Let K be such that M works in time less than nK . As a consequence,
each stack is bounded by nK . We can encode such numbers by K stacks, each
representing a digit of the number in base n. Suppose that M has p stacks,
let N have 2Kp stacks Π1

1 , Π
′1
1, . . . , Π

1
K , Π ′1

K , . . . , Πp
1 , Π

′p
1, . . . , Π

p
K , Π ′p

K . The
stacks Π1

1 , Π
1
2 , . . . , Π

1
K of N represent the stack Π1 of M . The primed stacks

are the complement of their corresponding stack to n, the length of the input.
To simulate the incrementing of a stack of M , say Π1, find the first non-empty
stack Π ′1

j , decrement it by one, increment Π1
j by one, then reset all Π1

i to 0 and
all Π ′1

i to n where i < j. Decrementing a stack is done in a similar way. So, the
simulation is done within the space bound. ��

5.2 Simulation of Linspace by LPOQI+-Programs

Given a function f : Wn → W in LinSpace, we take a p-stack Turing Machine
M which computes f , works on the unary alphabet {s} and such that each stack
is bounded by the length of the input. Say that M works in time nk for some
k. As we do the simulation of the machine step for step, we need to design a
program whose derivation length is at least nk on input n.

Lemma 24. Given k ∈ N, there is a (deterministic) LPOQI+-programs that
runs in nk steps on input of size n.

Proof. Let us first show how to have a program whose derivation length is the
square of its argument.

C2(0,0, y′) → 0
C2(S(x),0, y′) → C2(x, y′,0)
C2(x,S(y), y′) → C2(x, y,S(y′))

P2(x) → C2(x, x,0)

Let us define �0� = 1 and �S�(X) = X + 1. By choosing �C2�(X,Y, Y ′) =
X + Y + Y ′ + 1 and �P2�(X) = 2X + 2, the program admits a purely affine
quasi-interpretation. It is routine to check that it terminates by LPO.

Now, to have a program whose derivation length is nk, we use the same
trick: have a program Ck with 2k (actually 2k − 1 is sufficient) variables xi, x

′
i
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and adapts the rules of C2 to allow Ck to count in base n. x′
i is always the

complementary of xi to n, thus allowing to reinitialize the values. The generic
rule is:

Ck(S(x1), x′
1, . . . ,S(xi), x′

i,0, x
′
i+1, . . .) → Ck(S(x1), x′

1, . . . , xi,S(x′
i), x

′
i+1,0, . . .)

Then, Pk(x) simply calls Ck with each xi = x and x′
i = 0. The resulting pro-

gram has a derivation length equal to nk, �Ck�(X1, . . . , X2k) =
∑2k

i=1 Xi + 1 and
�Pk�(X) = kX + k + 1, both are purely affine for a fixed k. ��

Theorem 25. Suppose that f is in LinSpace, then it is computable by a
LPOQI+-program.

Proof. Let M be a p-Stack Turing machine computing f . As Lemma 23 shows
it, we can suppose that the stacks are bounded by the size of the input along the
computation. Let us consider the following system. To the template rules above,
we add some new variables, one variable for the state of the machine and two
for each stack of M. The first one (Πi) represents the content of the stack (the
ith), the second one (Π ′

i) its complement to n, the size of the input.
Take now for instance a transition that increments the stack Π1 and goes to

state q′ if Π2 is empty in state q, we transform each rule Ck(−→x ) → Ck(−→y ) as
follows:

Ck(−→x ,q, Π1,S(Π ′
1),0, Π

′
2, . . .) → Ck(−→y ,q′,S(Π1), Π ′

1,0, Π
′
2, . . .)

The program terminates by LPO because there is a decrease between (−→x ) and
(−→y ). �Ck� is the sum of its arguments. ��

5.3 Computation of LPOQI+-Programs in Linear Space

Let f be a program admitting a purely affine quasi-interpretation. If each func-
tion symbol f has a quasi-interpretation �f�(X1, · · · , Xn) =

∑
αf,iXi +αf with

αf > 0, then the following proposition holds:

Proposition 26. The size of any term t is bounded by K�t� for some con-
stant K.

Proof. Take α = mina∈F∪C(αa). As F ∪ C is finite, α > 0. By induction, we
have: |t| ≤ �t�/α.

Theorem 27. LPOQI+-Programs are computable by LinSpace machines.

Proof. First of all notice that if f(
−→
t ) ∗→s, then �s� ≤ �f(−→t )�. At the same time,

we have |s| ≤ K�s� with respect to Proposition 26. And finally, Proposition 15
shows that �f(−→t )� ≤ �f�(B(|−→t |) + 1) for some constant B. But, as �f� is affine,
we have �f(−→t )� ≤ �f�(B(|−→t |) + 1) ≤ A(|−→t |+ 1) for some constant A.

Putting things together, we conclude that the size of the terms obtained
along the computation is bounded by: |s| ≤ KA(|t|+ 1).
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A reduction step may be performed within linear space and this ensure that
the whole computation can. Indeed, finding a redex needs finite memory (plus a
pointer in the term) and replacing the redex may take finitely many times the
size of the input if one has to recopy some variables, like for instance in the rule:
D(x) → add(x, x). So, the linear constant of the cost of replacing a term can be
bounded by: M = maxl→r∈E(|r|). In other words, the computation can be done
in space AMKn on inputs of size n. ��

6 Logarithmic Space

From now on, we do not make any supposition concerning the quasi-interpre-
tation of functions. This means that the quasi-interpretation of a function must
only respect the rules (Subterm) and (Weak Monotonicity) of Definition 12 and
this allow, for example, �f�(X,Y ) = max(X,Y ).

In this section, we follow the work of Jones [15] in order to get a charac-
terization of LogSpace. The arguments of a function are separated into three
distinct sets:

– An input set. This set is read-only and contains binary words that are sub-
terms of the initial inputs.

– A working set. This set is read-write and contains unary integers. This con-
dition, together with the quasi-interpretation, has the net effect of allowing
these variables to be only pointers on a part of the input.

– An output set. This set is write-only and ensures that the result of a recur-
rence is not allowed to control another recurrence (at the same rank). This
is done by preventing any pattern matching on this set. These conditions are
forced by a tiering-rule similar to the one used by Bellantoni and Cook [12].

We consider programs whose inputs are binary words (that is built from
{ε,0,1}) and outputs are unary integers (that is built from {Z,S}). We now
define a strong tiering discipline on those programs, separating arguments of
functions into three sets: inputs, working and simple as described above.

Definition 28. Formally, let LinPOQI
tierbe the set of programs f such that:

(Cons) C = {ε,0,1,Z,S} ;
(LPO) f terminates by LPO.

(QI) f admits a quasi-interpretation.
(Lin) If f(−→u )→ t, there is at most one function symbol with the same prece-

dence as f in t. That is #{g ∈ F , g ≈F f and g ∈ t} ≤ 1.

Second, it is tiered, that is

(Rule) Each rule has the form f(p1, · · · , pn; q1, · · · , qm; y1, · · · , yl) → t where
pi is a pattern over the binary words, qi is a pattern over the unary
integers and yi is a variable.

(Input) If there is a subterm g(p′1, · · · , p′k;
−→
q′ ;
−→
y′ ) � t then for all i, there exists

j such that p′i � pj.
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(Output) If there is a subterm g(
−→
p′ ; q′1, · · · , q′m′ ; y′1, · · · , y′l′) � t, then neither

0,1, ε nor a variable present in any p′i appears in any of the q′i or the
y′j.

(Tier) If there is a subterm g(
−→
p′ ; q′1, · · · , q′m′ ;

−→
y′ ) � t then for all i and j,

yj /∈ q′i.

(Simple) If there are two subterms g(
−→
p′ ; q′1, · · · , q′m′ ;

−→
y′ ) � t and h(

−→
p′′;
−→
q′′;
−→
y′′) �

q′i then h ≺F g. That is the result of a function can only be matched
by functions of strictly higher rank.

The condition (Rule) separates the three sets of arguments for each func-
tion. The condition (Input) states that the input set is read-only. The condition
(Output) says that inputs have not the same type as other variables and thus
may no be used anywhere. The conditions (Tier) and (Simple) ensure the tiering
discipline with respect to the precedence.

Theorem 29. The set of functions computed by LinPOQI
tier-programs is exactly

LogSpace, the set of functions computable in logarithmic space on a Turing
machine.

We only give here the sketch of proof. A more complete proof can be found
in [27].

Proof (Sketch of proof). Jones has shown that LogSpace is the set of functions
computed by polynomial time counter machines with counter no bigger than the
input [15]. It is easy to simulate such a machine by a LinPOQI

tier-program. The
polynomial clock is done in a way similar to Lemma 24 and the counters can
easily be stored into the read-write variables.

In order to show that LinPOQI
tier-programs can be computed in logarithmic

space, there are crucial points:

– the constructor terms in input position are always subterms of the initial
term. As a consequence, they can be stored by a pointer. This is due to
Hypothesis (Input);

– the constructor terms in working and simple position have a polynomial size
(wrt the input data); it is a consequence of Hypothesis (QI). As they are
unary (Hypothesis (Output)), they also can be stored in logarithmic space.

– consider the deriving strategy where you rewrite the symbol of minimal rank
that is leftmost innermost. The tiering discipline shows that this strategy is
complete (Hypotheses (Tier, Simple)); that is give the normal form of the
term. Notice that the system terminates due to Hypothesis (LPO).

– due to the Hypothesis (Lin), the rewriting strategy above is such that there
are only finitely many function symbols in terms along the computation.

In other words, each terms along the computation can be coded in logarithmic
space and as each step can be performed in logarithmic space, the computation
can be done within the space bound. ��
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7 Polynomial Space

7.1 Strict Quasi-interpretations

We say that a program admits a strict-quasi-interpretation if it admits a quasi-
interpretation and (i) each rule verifies: �l� > �r�, (ii) �f�(x1, . . . , xn) ≥ xi + αf
for some constant αf > 0 and all i ≤ n.

Remark 30. If the interpretations are over rational numbers, condition (ii) can
be reformulated: �f�(x1, . . . , xn) > xi for all i.

Recall that a polynomial interpretation verifies all the properties above. They
have the further property: the interpretations are necessarily polynomials. This
prevent in particular the use of max in assignments. In that case, we have:

Theorem 31 (Bonfante, Cichon, Marion, Touzet [4]). Programs which
admit polynomial interpretations compute exactly PTime.

Theorem 32 (Dershowitz [28]). A program with a strict-quasi-interpretation
terminates.

Proposition 33. The height of a term t of a program that admits a strict-quasi-
interpretation is bounded by �t�.
Theorem 34. A function is computed by a program that admits a strict quasi-
interpretation iff it is in Pspace.

Proof. The fact that a function in Pspace can be computed by a strict-quasi-
interpretation is shown by Lemma 60 of [21]. The quasi-interpretation given
there need to be slightly modified in order to be strict.

Let f be a program which admits a strict quasi-interpretation and f(
−→
t ) ∗→s.

The hypothesis on the assignment induces a polynomial bound on the height of
terms. So, by considering a leftmost innermost strategy, we have a polynomial
bound on the size of the term. Actually, there are at most α× P (n) (with P (n)
the bound on the height of the term and α the maximal size of a right hand side
of a rule) defined symbols in terms along the computation. As a consequence,
the size of the term is O(P (n)2).

Computing the next configuration can be done clearly in polynomial space.
As a consequence, the computation can be done within Pspace. ��

There is actually an other characterization of Pspace due to Bonfante [29].
It shows the role of the two parameters that we are considering here: the choice
of l > r or l ≥ r and the choice of interpretations over +,× or +,×,max.

Theorem 35 (Bonfante [29]). Functions computed by programs such that

1. the program admits a purely multiplicative quasi-interpretation,
2. the program terminates,

are exactly Pspace functions.
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7.2 Linear Systems

Definition 36. Let f be a program and (≺F ,≈F) be a precedence. f is linear
with respect to (≺F ,≈F) if for each rule f(−→p ) → r there is at most one symbol
in r with the same precedence as f.

When the precedence is unspecified, we implicitly refer to a precedence com-
patible with the program such as the one used for termination orderings or the
one build in Proposition 9. In those cases, we simply say that the program is
linear.

Let a LinQI-program be a program that (i) terminates, (ii) is linear with
respect to the implicit precedence, and (iii) admits a quasi interpretation.

Theorem 37. The set of functions computed by LinQI-programs is exactly
Pspace.

Proof. The proof will goes by induction on the rank of the head symbol of nodes
in a call-tree.

If the rank is 0 (which can be achieved by a trivial extension of the definition
of call-trees), then no computations are needed in order to have the value of
〈f, t1, · · · , tn〉 (remember that in a node, tis are constructors terms).

Otherwise, we introduce sequents of the form 〈f,t1, · · · ,tn〉;t*〈g,s1, · · · ,sm〉;s
meaning “f(

−→
t ) !→t if g(−→s ) !→s”, and we define the covering graph of f in the

〈f, t1, · · · , tn〉-call tree as the sub-graph obtained by keeping only nodes labelled
by symbols with the same rank as f.

As the program is linear, the covering graph is a chain. As the program
admits a quasi-interpretation, it has at most O(2B) nodes, where B = �f(−→t )�.
Moreover, the size of each node of the call-tree is bounded by B.

To compute the value of 〈f, t1, · · · , tn〉, proceed as follows:

1. Guess a node 〈g, s1, · · · , sm〉 with g ≈F f and 〈g, s1, · · · , sm〉 having no
child with the same precedence, guess two values t and s and introduce the
sequent 〈g, s1, · · · , sm〉; s * 〈f, t1, · · · , tn〉; t.

2. Perform a reduction step on 〈f, t1, · · · , tn〉. If 〈g, s1, · · · , sm〉 is a child of
〈f, t1, · · · , tn〉 in the call-tree, then one just need to compute the values of
other children (using s when necessary) to verify that t was correctly guessed.
This can be done in polynomial space by induction hypothesis.

3. If 〈g, s1, · · · , sm〉 is not a child of 〈f, t1, · · · , tn〉, then guess a new node
〈h, u1, · · · , up〉 and a new value u. Replace the current sequent by the two
sequents 〈h, u1, · · · , up〉;u * 〈f, t1, · · · , tn〉; t and
〈g, s1, · · · , sm〉; s * 〈h, u1, · · · , up〉;u.

The depth of the proof tree for any sequent will be logarithmic in the length of
the covering graph, thus polynomial in the size of the inputs. Each sequent has a
polynomial size. Thus a clever depth-first search will allow to compute the value
of a term in polynomial space. ��

The three characterizations of Pspace may be obtained as a corollary of the
following conjecture.
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Claim. The set of functions computed by programs which terminate and admit
a quasi-interpretation is exactly Pspace.
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Abstract. We present the Maude sufficient completeness tool, which
explicitly supports sufficient completeness reasoning for partial condi-
tional specifications having sorts and subsorts and with domains of func-
tions defined by conditional memberships. Our tool consists of two main
components: (i) a sufficient completeness analyzer that generates a set
of proof obligations which if discharged, ensures sufficient completeness;
and (ii) Maude’s inductive theorem prover (ITP) that is used as a back-
end to try to automatically discharge those proof obligations.

1 Introduction

In computer science practice, equational specifications are often partial. That is,
some of the relevant operations are only defined on an adequate subset of data.
Simple examples of undefinedness include computing the top of an empty stack,
division by zero, and many operations on data structures. This has led to the
design of increasingly more expressive equational formalisms to deal with par-
tiality (see [1] for a survey). In particular, the papers [1–3] proposed membership
equational logic (MEL) as a framework logic for the equational specification of
partial functions. The key idea is that the domain of definition of a partial func-
tion is axiomatized by conditional membership axioms stating when the function
is defined. However, since conditional memberships may have arbitrarily com-
plex conditions and equations may be conditional, in this setting the sufficient
completeness problem is undecidable in general.

The Maude sufficient completeness tool (SCC), which analyzes MEL theo-
ries specified in Maude, is therefore not a decision procedure. Instead it is a
reasoning tool consisting of two main components: (i) a sufficient completeness
analyzer that generates a set of proof obligations which if discharged, ensures
sufficient completeness of confluent, sort decreasing and reductive specifications;
(ii) Maude’s inductive theorem prover (ITP), that is used as a backend to try to
automatically discharge those proof obligations.

Our tool has a number of useful applications. Two obvious ones are: (i) check-
ing that the defined functions of a MEL specification will always evaluate to data
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built with the constructors; and (ii) for inductive theorem proving purposes, en-
suring the correctness of the chosen proof technique (e.g. structural induction,
cover set induction, inductionless induction, etc.) which typically depends on
sufficient completeness. There are two other applications for which our tool has
proved useful: (iii) checking that a rewrite theory specifying a concurrent sys-
tem is deadlock-free, which is needed for verifying temporal logic properties using
abstraction techniques [4]; the point is that deadlock-freeness can be character-
ized as the sufficient completeness of an associated MEL specification; and (iv)
supporting more powerful cover set induction schemes in the style of [5] that
can prove general conjectures of the form ϕ(f(t1, . . . , tn)), where ϕ is a formula
containing the expression f(t1, . . . , tn) with f a defined function symbol and the
t1, . . . , tn constructor terms; the point here is that the sufficient completeness
checker can be used to generate base cases in the induction scheme which are
needed because in general the t1, . . . , tn may be nonvariable terms. This last
application is a “turning of the tables” in the interoperation between Maude’s
ITP and SCC: in the second tool, the ITP plays an auxiliary role in discharging
proof obligations, whereas in the ITP itself (which supports cover set induction)
the SCC plays an auxiliary role in generating induction schemes.

2 Preliminaries

A MEL signature Σ is a triple Σ = (K, Σ,S), where K is a set of kinds, S is a dis-
joint K-kinded family S = {Sk}k∈K of sets of sorts, and Σ = {Σw,s}(w,s)∈K∗×K
is a K-kinded signature of function symbols. Given a K-kinded disjoint family
of finite sets of variables �x = x1 : k1, . . . , xn : kn, where x1, . . . xn are disjoint
from the constants in Σ and the kinds k1, . . . kn in the list can be repeated, a
Σ-equation is a formula t = t′, with t, t′ ∈ TΣ(�x), TΣ(�x) being the free Σ-algebra
on the variables �x, and such that t, t′ have the same kind, i.e. t, t′ ∈ TΣ(�x)k for
some k ∈ K. A Σ-membership is a formula t : s such that if t ∈ TΣ(�x)k, then
s ∈ Sk. Σ-sentences are universally quantified Horn clauses of the form

(∀�x) A if A1 ∧ · · · ∧An

where A and the Ai are either Σ-equations or Σ-memberships. If A is a Σ-
equation, we call the sentence a conditional equation; and if A is a Σ-member-
ship, we call it a conditional membership. A MEL theory is a pair E = (Σ,Γ )
with Σ a MEL signature and Γ a set of Σ-sentences. A model of a MEL signature
(K, Σ,S) is a (K, Σ)-algebra A together with a subset As ⊆ Ak, for each sort
s ∈ Sk. Then, models of a MEL theory E = (Σ,Γ ) are models of Σ satisfying the
axioms Γ . There is a sound and complete inference system to derive all theorems
of a MEL theory (Σ,Γ ) [1]. We denote the initial algebra of E = (Σ,Γ ) by TE .
There is a unique Σ-homomorphism h : TE → A for every model A of E .

Under appropriate assumptions on the MEL theory E the conditional equa-
tions can be used from left to right as rewrite rules [2]. This is the way in which
MEL is efficiently implemented in the Maude language [6]. An inference system
for MEL reasoning is described in detail in Figure 7, page 57 of [2]. The notions
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of confluence and termination of term rewriting can be generalized to conditional
MEL theories by corresponding notions of confluence and reductiveness [2]. Since
sort computations are involved, a third important notion is sort decreasingness.
Assuming that E is confluent and reductive, we can characterize sort decreasing-
ness as the property that for each term t if we can infer E * t : s with the rewrite
inference system in Figure 7 of [2], then we can also infer E * canE(t) : s where
canE(t) denotes the canonical form of t obtained by applying the confluent and
reductive rewrite rules in E . Intuitively, the more we simplify a term with the
equations, the easier it becomes to compute its sort without having to remember
any intermediate terms in the rewrite computation.

3 A Partial Specification Example

In Misra’s data type of powerlists [7], a powerlist must be of length 2n for some
n ∈ N, and the zip operator 	
 is only fully defined on powerlists of equal length.
We can specify powerlists in MEL as a Maude functional module as follows:

fmod POWERLIST is protecting NAT . sort Pow .

op [_] : Nat -> Pow [ctor] . ops _|_ _X_ : [Pow] [Pow] -> [Pow] .

op len : Pow -> Nat .

vars I J : Nat . vars P Q R S : Pow .

cmb (P | Q) : Pow if len(P) = len(Q) .

cmb (P X Q) : Pow if len(P) = len(Q) [metadata "dfn"].

eq [I] X [J] = [I] | [J] . eq (P | Q) X (R | S) = (P X R) | (Q X S) .

eq len([I]) = 1 . eq len(P | Q) = len(P) + len(Q) .

endfm

The functional module POWERLISTincludes the predefined module NAT, which
declares the natural numbers with the expected arithmetic operations and rela-
tions. In the sort declaration section we introduce the sort Pow, which we will
reserve for those terms representing powerlists; Maude automatically introduces
also the kind [Pow] to denote the kind of the sort Pow. In the operator declara-
tion section we introduce four operators: [_] for representing the operation that
forms powerlist elements; _|_ for representing the powerlist tie operation; _X_
for representing the powerlist zip operation; and len for representing the oper-
ation that computes the length of a powerlist. Since we know that not all terms
constructed with the operators _|_ and _X_ will represent powerlists, we declare
those operators at the kind level. For example, [4] 	
 ([2] | [3]) is not a powerlist.
This is represented in POWERLIST by the fact that the term [4] X ([2] | [3])
has kind [Pow], but it does not belong to the sort Pow. On the other hand,
since we want to use the [_] operator to construct powerlists (in particular,
powerlists with only one element), we declare this operator at the sort level and
with the ctor attribute. Finally, since we expect that the len operator applied
to a powerlist will always evaluate to a natural number, we declare this operator
at the sort level, but without the ctor attribute.

In the variable declaration section, we associate to the variables I and J the
sort Nat, and to the variables P, Q, R, and S the sort Pow. By doing this, we are
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in fact declaring: i) that I and J are variables of the kind [Nat], and P, Q, R,
and S of the kind [Pow], and ii) that in all memberships and equations in which
those variables appear, there is an extra condition stating that those variables
only range over the set of terms belonging to their associated sort. Finally, in
the membership declaration section, we declare that both the tie and the zip of
two powerlists are powerlists if they have equal length; however, since we do not
want to use the _X_ operator as a constructor operator for terms representing
powerlists, but rather as a defined operator, we declare the membership for the
_X_ operator with the dfn attribute. In fact, if we go back to the operator
declarations section, we can realize that

op [_] : Nat -> Pow [ctor] . op len : Pow -> Nat .

is just syntactic sugar for the following declarations:

op [_] : [Nat] -> [Pow] . op len : [Pow] -> [Nat] .

mb [I]: Pow . mb len(P): Nat [metadata "dfn"].

As we will explain in the following section, the sufficient completeness prob-
lem for POWERLIST reduces to proving that all terms P X Q and len(P), where
P and Q are terms built with our constructor memberships, can be proved to
be of sort Pow without using the defined memberships.

4 Sufficient Completeness for MEL Specifications

The definition of sufficient completeness for MEL specifications is somewhat
subtle, in that in its most general form it cannot be given only in terms of a sub-
signature Ω of constructors. The point is that, when specifying the conditional
memberships for constructor operators in Ω, other nonconstructor function sym-
bols may appear in the condition. This is illustrated in the powerlist example by
the conditional membership for the constructor _|_ of powerlists. The definition
below strictly generalizes that in [2], which ruled out the use of nonconstructor
symbols in conditions of constructor memberships.

Definition 1. Let E = ((K, Σ,S) , E ∪M< ∪MΣ) be a MEL specification where
E contains the conditional equations, M< contains the memberships correspond-
ing to subsort declarations explained below, and MΣ contains the conditional
memberships specifying the sorts of function symbols in Σ. Subsort declarations
s < s′ with s 
= s′ and s, s′ ∈ Sk for some k are axiomatized by the conditional
membership:

(∀x : k) x : s′ if x : s

Finally, we assume that any conditional membership in MΣ is of the form:

(∀�x) f(t1, . . . , tn) : s if t1 : s1 ∧ · · · ∧ tn : sn ∧ C (1)

where f ∈ Σ, �x = var(f(t1, . . . , fn)), and C is a (possibly empty) conjunction
of Σ-equations and Σ-memberships, var(C) ⊆ �x, and if f is a constant in Σε,k

then C is empty.
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Given a subset of memberships MΩ ⊆MΣ, called constructor memberships,
we define a constructor subtheory to be EΩ = ((K, Σ,S), E ∪M< ∪MΩ). Fur-
thermore, we say that E is sufficiently complete relative to MΩ iff EΩ is such
that the unique Σ-homomorphism

h : TEΩ → TE

is an isomorphism. Finally, we define MΔ to be MΣ −MΩ.
To illustrate these notions, we can use (the desugared version of) POWERLIST. In
this specification: MΣ is the set containing the memberships

(1) mb 0 : Nat .

(2) cmb s N : Nat if N : Nat .

(3) mb [I]: Pow .

(4) cmb (P | Q) : Pow if len(P) = len(Q) .

(5) mb len(P): Nat [metadata "dfn"].

(6) cmb (P X Q) : Pow if len(P) = len(Q) [metadata "dfn"].;

M< is the empty set; MΔ is the set containing (5) and (6), that is the
memberships labeled with dfn; and MΩ is the set containing (1)–(4).

The soundness of the Maude sufficient completeness tool is based on the
following theorem, which we have proven in the technical report [8].

Theorem 1. Let E = (Σ,E∪M<∪MΩ∪MΔ) be a MEL specification satisfying:

(i) E and EΩ are reductive, ground confluent, and ground sort-decreasing.
(ii) Each membership in MΩ ∪MΔ is of the restricted form (1).

Then the two statements below are equivalent:

(a) E is sufficiently complete relative to constructor memberships MΩ

(b) For each membership (∀�x) t : s if C in MΔ and ground substitution θ : �x→
TΣ such that EΩ |= Cθ, either tθ is EΩ-reducible or there is a membership in
MΩ of the form (∀�y) u : s′ if C′ with s′ ≤ s and a substitution τ : �y → TΣ

such that tθ = uτ and EΩ |= C′τ .

Due to space constraints, we do not reproduce the proof here: consult [8] for
the detailed proof.

5 The Maude Sufficient Completeness Tool

The Maude Sufficient Completeness tool (SCC) is itself written in Maude using
reflection. (More details on reflection in Maude in Sect. 5.2.) The soundness of
the tool is based on Theorem 1. There are two major components to the tool:
a Sufficient Completeness Analyzer, which generates proof obligations for suffi-
cient completeness problems, and the Maude Inductive Theorem Prover (ITP),
extended with additional commands to try to automatically prove those proof
obligations. The tool has been run on a variety of different MEL specifications,
and is available for download with source, documentation, and examples (includ-
ing MEL specifications of ordered lists with sorting functions, stacks, and binary
trees) from the tool’s webpage: http://maude.cs.uiuc.edu/tools/scc/
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5.1 The Maude Sufficient Completeness Analyzer

The Maude Sufficient Completeness Analyzer follows the incremental construct-
or-based narrowing of patterns approach, but generalized to handle conditional
specifications. Given a MEL theory E = (Σ,E ∪M< ∪MΣ) in Maude, conve-
niently annotated to indicate a constructor subtheory EΩ, the Maude sufficient
completeness analyzer generates, in a two phase process, a set of proof obliga-
tions which if discharged, ensures the sufficient completeness of E relative to MΩ.
The sufficient completeness analyzer assumes that E satisfies the requirements
(i) and (ii) in Theorem 1.

The Narrowing Procedure. In its first phase, the analyzer returns a set
Δ = {(t, s, C)i}i∈N such that, if t′ is a counterexample for sufficient completeness,
then there exists a triple (t, s, C) ∈ Δ and a substitution θ : var(t) → TΣ

such that t′ = θt and EΩ |= θC. The set Δ is generated from the initial set
{(t, s, C) | (∀�x) t : s if C ∈ MΔ} by applying rule (2) below until it cannot be
applied anymore. The rule (2) uses the expandability relation � and the expand
function exp which are defined as follows:

Definition 2. Let t, t′ be terms in TΣ(�x) such that var(t) ∩ var(t′) = ∅, and
x ∈ var(t). Then, t �x t’ iff there exists a substitution θ such that θ is a most
general unifier of t and t′, and θ(x) is not a variable.

Definition 3. Let t ∈ TΣ(�x)k, s ∈ Sk, C a conjunction of atomic formulas,
x ∈ �x with x : s′ ∈ C, and M a set of memberships whose variables have all been
renamed to be disjoint from �x. Then,

exp(t, s, C, x,M) = {(tθ, s, Cθ ∧ C′) | (∀�y) u : s′ if C′ ∈M, θ = (x �→ u)}

Finally, we define the inference rule that generates the set Δ. Note that this rule
will only be applied a finite number of times, because of the condition t �x t′

on the rule.

Δ-rule For any (∀�y) t′ = t′′ if C′ in E,

Δ′ ∪ {(t, s, C)}
Δ′ ∪ exp(t, s, C, x,M< ∪MΩ)

if x ∈ var(t), t �x t′ (2)

The Proof Obligation Generator. In its second phase, the SCC produces,
from the set Δ, a set of proof obligations which if discharged, guarantees that E is
sufficiently complete with respect to MΩ. Since a triple (t, s, C) ∈ Δ represents
a set of potential counterexamples, the proof obligation generator produces a
sentence which if proven in EΩ, implies that for every substitution θ : var(t) →
TΣ at least one of the following holds and, therefore by Theorem 1, that E is
sufficiently complete with respect to EΩ:

a) EΩ 
|= Cθ
b) tθ is reducible
c) There exists a membership (∀�y) u : s′ if C′ in MΩ with s′ < s and a substi-

tution τ : �y → TΣ such that tθ = uτ and EΩ |= C′τ .
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In particular, for each (t, s, C) ∈ Δ, the proof obligation generator constructs the
sentence:

(∀x ∈ var(t))

⎛⎜⎜⎝¬C ∨ ∨
t′=t′′ if C′∈E,
θ s.t. C[t′θ]=t

C′θ ∨
∨

u:s′ if C′∈MΩ s.t. s′<s,
θ s.t. uθ=t

C′θ

⎞⎟⎟⎠ (3)

where C denotes a context.

5.2 The Maude ITP

The ITP [9] tool is an experimental interactive tool for proving properties of
MEL specifications in Maude. The ITP tool has been written entirely in Maude,
and is in fact an executable specification in MEL of the formal inference system
that it implements. The ITP inference system treats MEL specifications as data
– for example, one inference may add to the specification an induction hypoth-
esis as a new equational axiom. This makes a reflective design, in which Maude
equational specifications become data at the metalevel, ideally suited for imple-
menting the ITP. Using reflection to implement the ITP tool has one important
additional advantage, namely, the ease to rapidly extend it by integrating other
tools implemented in Maude using reflection, as it is the case of the SCC.

In the ITP, the user introduces commands which are interpreted as actions
that may change the state of the proof, specifically the set of goals that remain
to be proved, with each goal consisting of a formula to be proved and the MEL
specification in which the formula must be proved. After executing the action
requested by the user, the tool reports the resulting state of the proof. The
main module implementing the ITP is the ITP-TOOL module. In this module,
states of proofs, sets of goals, goals and formulas are represented by terms of
different sorts, and the actions interpreting the ITP commands are represented
as different, equationally defined functions over those terms.

To integrate the SCC in the ITP we have added two new commands, scc
and scc*, to the ITP; the scc* command is an extension of scc that takes
into account the information obtained by this command at run-time. We begin
with the scc command. This command is implemented by extending the module
ITP-TOOL with a new, equationally defined function that, given an equational
specification E , does the following:

– first, it calls on E the function checkCompleteness, which implements the
sufficient completeness analyzer described in Sect. 5.1;

– then, it converts the resulting proof obligations into a set of ITP goals, which
are all associated with EΩ;

– finally, it eliminates from the state of the proof those goals that can be proved
automatically using the ITP auto* command1.

1 The current implementation of the auto* command integrates its rewriting-based
simplification strategy with a decision procedure for linear arithmetic with uninter-
preted function symbols; this theory includes many of the formulas that one tends
to encounter in proof obligations generated by the SCC tool.
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As an example, we can use the scc command to check the sufficient com-
pleteness of POWERLIST. After introducing in Maude the command line (scc
POWERLIST .), the ITP tool reports the resulting state of the proof:

=================================

CTOR-POWERLIST$1.0

=================================

|- A{P:Pow ; Q’:Pow}

((~(len(P:Pow)= len(Q’:Pow)))V(~(len(P:Pow)+ len(Q’:Pow)= 1)))

=================================

CTOR-POWERLIST$2.0

=================================

|- A{P:Pow ; Q:Pow}

((~(len(P:Pow)= len(Q:Pow)))V(~(len(Q:Pow)+ len(P:Pow)= 1)))

In this case, the auto* command failed to discharge the above goals correspond-
ing to proof obligations generated by SCC, despite the fact that the formulas
associated to those goals are obviously true in EΩ The reason is the following.
In EΩ, the len operator is declared at the kind level: it takes a term of the kind
[Pow] and returns a term of the kind [Nat]. In this situation, the decision pro-
cedure cannot recognize the formulas associated to the above goals as belonging
to the class of formulas that it can solve. Therefore, to discharge the proof obli-
gations it is necessary to prove that the operator len always returns a term of
sort Nat when it is called on terms of sort Pow. This is, however, implied by the
fact that SCC has generated no proof obligations for the len operator.

Since the situation described above is a rather common one, we have also
implemented the command scc* that associates all the goals corresponding to
the proof obligations generated by SCC with EΩ, but extended this time with all
the operator declarations in E that SCC has found unproblematic. In the case
of powerlists, scc* discharges all the proof obligations automatically.

6 Related Work

We cannot survey here the extensive literature on sufficient completeness: we just
mention some related work to place things in context. Sufficient completeness of
MEL specifications was first studied in [2]; the definition and methods on which
the present tool is based are strictly more general than those in [2], allowing a
much wider class of MEL specifications to be checked. Sufficient completeness
itself goes back to Guttag’s thesis [10] (but see [11] for a more formal, direct
treatment of this notion). An early algorithm for handling unconditional linear
specifications is due to Nipkow and Weikum [12]. For a good review of the litera-
ture up to the late 80s, as well as some important decidability/undecidability and
complexity results, see [13, 14]. A more recent development is the casting of the
decidable cases of sufficient completeness as tree automata decision problems:
see Chapter 4 of [15] and references there. Two sufficient completeness tools
having a similar approach to ours, namely the incremental constructor-based
narrowing of patterns, are the sufficient completeness checkers of the Spike [16]
and RRL [17] theorem provers, both of which are based on many-sorted equa-
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tional logic. By contrast, our approach is based on a more expressive partial
equational logic (MEL). However, RRL [17], although based on a total many-
sorted logic, can address some partiality issues in a different way: incompleteness
can be due to omissions, yielding real counterexample patterns, or can be inten-
tional, due to partiality, in which case the partial function’s domain of definition
can be specified by a quantifier-free formula, which can be used to ascertain if a
counterexample pattern is relevant in that domain.

7 Conclusions and Future Work

At present, the SCC can handle specifications where some symbols have been
declared commutative. Future work will extend the tool to handle equations
modulo different combinations of associativity, commutativity, and identity. It
is well-known that sufficient completeness is undecidable in the presence of as-
sociative axioms, even for left-linear confluent and terminating equations [14].
However, equational tree automata techniques in the style of [18] can still make
the problem decidable for some subclasses, and the ITP can support reasoning
to discharge proof obligations for the general case.

As already mentioned, the tool assumes MEL specifications E that are ground
confluent, reductive, and sort-decreasing. Although Maude already has tools to
check these properties in the special case where E is an order-sorted specifi-
cations [19], tools to discharge the corresponding obligations for general MEL
specifications need to be developed. For termination of MEL specifications there
is already a tool prototype [20] and supporting theory [20, 21]. For checking
confluence and sort-decreasingness of general MEL specifications detailed sup-
porting theory can be found in [2], but a tool needs to be developed.
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1 Introduction

This paper describes the Tyrolean Termination Tool (TTT in the sequel), the
successor of the Tsukuba Termination Tool [12]. We describe the differences
between the two and explain the new features, some of which are not (yet) avail-
able in any other termination tool, in some detail. TTT is a tool for automatically
proving termination of rewrite systems based on the dependency pair method
of Arts and Giesl [3]. It produces high-quality output and has a convenient web
interface. The tool is available at

http://cl2-informatik.uibk.ac.at/ttt

TTT incorporates several new improvements to the dependency pair method. In
addition, it is now possible to run the tool in fully automatic mode on a collection
of rewrite systems. Moreover, besides ordinary (first-order) rewrite systems, the
tool accepts simply-typed applicative rewrite systems which are transformed into
ordinary rewrite systems by the recent method of Aoto and Yamada [2].

In the next section we describe the differences between the semi automatic
mode and the Tsukuba Termination Tool. Section 3 describes the fully automatic
mode. In Section 4 we show a termination proof of a simply-typed applicative
system obtained by TTT. In Section 5 we describe how to input a collection of
rewrite systems and how to interpret the resulting output. Some implementation
details are given in Section 6. The final section contains a short comparison with
other tools for automatically proving termination.

2 Semi-automatic Mode

Figure 1 shows the web interface.
This menu corresponds to the options that were available in the Tsukuba

Termination Tool. A first difference is that we now support the dependency pair
method for innermost termination [3]. A second difference is that dependency
pairs that are covered by the subterm criterion of Dershowitz [7] are excluded.
The other differences are described in the following paragraphs.
� A preliminary description of the Tyrolean Termination Tool appeared in the pro-

ceedings of the 7th International Workshop on Termination, Technical Report AIB-
2004-07, RWTH Aachen, pages 249–268, 2004.
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Fig. 1. A screen shot of the semi automatic mode of TTT.

First of all, when approximating the (innermost) dependency graph the orig-
inal estimations of [3] are no longer available since the approximations described
in [15] generally produce smaller graphs while the computational overhead is
negligible.

Secondly, the user can no longer select the cycle analysis method (all cy-
cles separately, all strongly connected components separately, or the recursive
SCC algorithm of [15]). Extensive experiments reveal that the latter method
outperforms the other two, so this is now the only supported method in TTT.

Finally, the default method to search for appropriate argument filterings has
been changed from enumeration to the divide and conquer algorithm of [15].
By using dynamic programming techniques, the divide and conquer method
has been improved (cf. [15]) to the extent that for most examples it is more
efficient than the straightforward enumeration method. Still, there are TRSs
where enumeration is more effective, so the user has the option to change the
search strategy (by clicking the enumerate box).

New features include (1) a very useful criterion based on the subterm relation
to discard SCCs of the dependency graph without considering any rewrite rules
and (2) a very powerful modularity criterion for termination inspired by the
usable rules of [3] for innermost termination. These features are described in
detail in [13]. The first one is selected by clicking the subterm criterion box
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and the second by clicking the usable rules box. In addition, linear polynomial
interpretations with coefficients from {−1, 0, 1} can be used as base order. In
[14] it is explained how polynomial interpretations with negative coefficients,
like x−1 for a unary function symbol or x− y for a binary function symbol, can
be effectively used in connection with the dependency pair method.

3 Fully Automatic Mode

In this mode TTT uses a simple strategy to (recursively) solve the ordering con-
straints for each SCC of the approximated dependency graph. The strategy is
based on the new features described in the previous section and uses LPO (both
with strict and quasi-precedence) with some argument filterings [15] and linear
polynomial interpretations with coefficients from {−1, 0, 1} as base orders.

After computing the SCCs of the approximated (innermost) dependency
graph, the strategy subjects each SCC to the following algorithm:

1. First we check whether the new subterm criterion is applicable.
2. If the subterm criterion was unsuccessful, we compute the usable rules.
3. The resulting (usable rules and dependency pairs) constraints are subjected

to the natural (see [14]) polynomial interpretation with coefficients from
{0, 1}.

4. If the constraints could not be solved in step 3, we employ the divide and
conquer algorithm for computing suitable argument filterings with respect
to the some heuristic [15] and LPO with strict precedence.

5. If the previous step was unsuccessful, we repeat step 3 with arbitrary poly-
nomial interpretations with coefficients from {0, 1}.

6. Next we repeat step 4 with the variant of LPO based on quasi-precedences
and a small increase in the search space for argument filterings (see below).

7. If the constraints could still not be solved, we try linear polynomial inter-
pretations with coefficients from {−1, 0, 1}.

If only part of an SCC could be handled, we subject the resulting new SCCs
recursively to the same algorithm.

If the current set of constraints can be solved in step 3 or 4, then they can
also be solved in step 5 or 6, respectively, but the reverse is not true. The sole
reason for adopting LPO and polynomial interpretations in alternating layers
is efficiency; the search space in steps 3 and 4 is significantly smaller than in
steps 5 and 6. The reason for putting the subterm criterion first is that with this
criterion many SCCs can be eliminated very quickly, cf. the third paragraph of
Section 6. The extension of the search space for argument filterings mentioned in
step 6 is obtained by also considering the full reverse argument filtering [n, . . . , 1]
for every n-ary function symbol. The advantage of this extension is that there
is no need for a specialized version of LPO with right-to-left status.

The effectiveness of the automatic strategy can be seen from the data pre-
sented in Figure 2, which were obtained by running TTT in fully automatic mode
on the 89 terminating TRSs (66 in Section 3 and 23 in Section 4) of [4]. An ex-
planation of the data is given in Section 5.
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Fig. 2. Output produced by TTT.

Our automatic strategy differs from the “Meta-Combination Algorithm” de-
scribed in [11]; we avoid transforming SCC constraints using techniques like
narrowing and instantiation because they tend to complicate the produced ter-
mination proofs. Instead, we rely on techniques (subterm criterion and polyno-
mial interpretations with negative coefficients) that lead to termination proofs
that are (relatively) easy to understand.

4 Simply-Typed Applicative Rewrite Systems

Besides ordinary first-order TRSs, TTT accepts simply-typed applicative rewrite
systems (STARSs) [1]. Applicative terms are built from variables, constants,
and a single binary operator ·, called application. Constants and variables are
equipped with a simple type such that the rewrite rules typecheck. A typical
example is provided by the following rules for the map function

(map · f) · nil → nil

(map · f) · ((cons · x) · y) → (cons · (f · x)) · ((map · f) · y)
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with the type declaration nil : α, cons : β → α → α, map : (β → β) → α → α,
f : β → β, x : β, and y : α. Here α is the list type and β the type of elements of
lists. STARSs are useful to model higher-order functions in a first-order setting.
As usual, the application operator · is suppressed in the notation and parentheses
are removed under the “association to the left” rule. The above rules then become

map f nil→ nil

map f (cons x y)→ cons (f x) (map f y)

This corresponds to the syntax of STARSs in TTT. The types of constants must
be declared by the keyword TYPES. The types of variables is automatically in-
ferred when typechecking the rules, which follow the RULES keyword. So the
above STARS would be inputted to TTT as

TYPES
nil : a ;

cons : b => (a => a) ;
map : (b => b) => a => a ;

RULES
map f nil -> nil ;
map f (cons x y) -> cons (f x) (map f y) ;

In order to prove termination of STARSs, TTT uses the two-phase transfor-
mation developed by Aoto and Yamada [2]. In the first phase all head variables
(e.g. f in f x) are removed by the head variable instantiation technique. The
soundness of this phase relies on the ground term existence condition, which ba-
sically states that all simple types are inhabited by at least one ground term.
Users need not be concerned about this technicality as TTT automatically adds
fresh constants of the appropriate types to the signature so that the ground term
existence condition is satisfied. (Moreover, the termination status of the original
STARS is not affected by adding fresh constants.) After the first phase an ordi-
nary TRS is obtained in which the application symbol is the only non-constant
symbol. Such TRSs are not easily proved terminating since the root symbol of
every term that has at least two symbols is the application symbol and thus
provides no information which could be put to good use. In the second phase
applicative terms are transformed into ordinary terms by the translation to func-
tional form technique. This technique removes all occurrences of the application
symbol. We refer to [2] for a complete description of the transformation. We
contend ourselves with showing the Postscript output (in Figure 3) produced
by TTT on the following variation of combinatory logic (inspired by a recent
question posted on the TYPES Forum by Jeremy Dawson):

TYPES
I : o => o ;
W : (o => o => o) => o => o ;
S : (o => o => o) => (o => o) => o => o ;
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RULES
I x -> x ;
W f x -> f x x ;
S x y z -> x z (y z) ;

Note that the types are crucial for termination; the untyped version admits the
cyclic rewrite step W W W →W W W.

5 A Collection of Rewrite Systems as Input

Single TRSs (or STARSs) are inputted by typing (the type declarations and)
the rules into the upper left text area or by uploading a file via the browse
button. Besides the original TTT syntax (which is obtained by clicking the TRS
link), TTT supports the official format1 of the Termination Problems Data Base.
The user can also upload a zip archive. All files ending in .trs are extracted
from the archive and the termination prover runs on each of these files in turn.
The results are collected and presented in two tables. The first table lists for
each TRS the execution time in seconds together with the status: bold green
indicates success, red italics indicates failure, and gray indicates timeout. By
clicking green (red) entries the user can view the termination proof (attempt)
in HTML or high-quality Postscript format. The second table gives the number
of successes and failures, both with the average time spent on each TRS, the
number of timeouts, and the total number of TRSs extracted from the zip archive
together with the total execution time. Figure 2 shows the two tables for the 89
terminating TRSs in Sections 3 and 4 of [4]. Here we used TTT’s fully automatic
mode with a timeout of 1 second (for each TRS). The experiment was performed
on a PC equipped with a 2.20 GHz Mobile Intel Pentium 4 Processor - M and
512 MB of memory, using native-compiled code for Linux/Fedora.

6 Some Implementation Details

The web interface of TTT is written in Ruby2 and the termination prover under-
lying TTT is written in Objective Caml (OCaml)3, using the third-party libraries4

findlib, extlib, and pcre-ocaml. We plan to make the OCaml source code
available in the near future.

The termination prover consists of about 13,000 lines of OCaml code. About
20% is used for the manipulation of terms and rules. Another 15% is devoted
to graph manipulations. This part of the code is not only used to compute
dependency graph approximations, but also for precedences in KBO and LPO,
and for the dependency relation which is used to compute the usable rules. The
various termination methods that are provided by TTT account for less than

1 http://www.lri.fr/∼marche/wst2004-competition/format.html
2 http://www.ruby-lang.org/
3 http://www.ocaml.org/
4 http://caml.inria.fr/humps/
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Termination Proof Scripta

Consider the simply-typed applicative TRS

I x → x

W f x → f x x

S x y z → x z (y z)

over the signature I : o ⇒ o, W : (o ⇒ o ⇒ o) ⇒ o ⇒ o, and S : (o ⇒ o ⇒ o) ⇒
(o ⇒ o) ⇒ o ⇒ o. In order to satisfy the ground term existence condition we extend
the signature by c : o ⇒ o ⇒ o and c′ : o. Instantiating all head variables yields the
following rules:

I x → x

W c x → c x x

S c I z → c z (I z)

S c (W w) z → c z (W w z)

S c (S w v) z → c z (S w v z)

S c (c w) z → c z (c w z)

By transforming terms into functional form the TRS

1 : I1(x) → x

2 : W2(c, x) → c2(x, x)

3 : S3(c, I, z) → c2(z, I1(z))

4 : S3(c, W1(w), z) → c2(z, W2(w, z))

5 : S3(c, S2(w, v), z) → c2(z, S3(w, v, z))

6 : S3(c, c1(w), z) → c2(z, c2(w, z))

is obtained. There are 3 dependency pairs:

7 : S�
3(c, I, z) → I�1(z)

8 : S�
3(c, W1(w), z) → W�

2(w, z)

9 : S�
3(c, S2(w, v), z) → S�

3(w, v, z)

The approximated dependency graph contains one SCC: {9}.
– Consider the SCC {9}. By taking the simple projection π with π(S�

3) = 2, the
dependency pair simplifies to

9 : S2(w, v) → v

and is compatible with the proper subterm relation.

a Tyrolean Termination Tool (0.03 seconds) — November 18, 2004.

Fig. 3. Example output.
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10% each. Most of the remaining code deals with I/O: parsing the input and
producing HTML and Postscript output. For the official Termination Problems
Data Base format we use parsers written in OCaml by Claude Marché. A rich
OCaml library for the manipulation of terms (or rose trees) and graphs would
have made our task much easier!

It is interesting to note that two of the original techniques that make TTT
fast, the recursive SCC algorithm and the subterm criterion, account for just
13 and 20 lines, respectively. Especially the latter should be the method of
first choice in any termination prover. To wit, of the 628 (full) termination
problems for pure first-order term and string rewrite systems in the Termination
Problems Data Base, 215 are proved terminating by the subterm criterion; the
total time to check the whole collection is a mere 32 seconds (on the architecture
mentioned in the previous section). Several of these 215 rewrite systems cannot
be proved terminating by the latest release of CiME [5]. (See the next section
for a comparison between TTT and other termination provers.)

Concerning the implementation of simply-typed applicative rewrite systems,
we use the Damas-Milner type reconstruction algorithm (see e.g. [17]) to infer
the types of variables.

We conclude this section with some remarks on the implementation of base
orders in TTT. The implementation of LPO follows [12] but we first check whether
the current pair of terms can be oriented by the embedding order in every recur-
sive call to LPO. This improves the efficiency by about 20%. The implementation
of KBO is based on [16]. We use the “method for complete description” [8] to
compute a suitable weight function. The implementation of polynomial interpre-
tations with coefficients from {0, 1} is based on [6, Figure 1] together with the
simplification rules described in Section 4.4.1 of the same paper. The current
implementation of polynomial interpretations with coefficients from {−1, 0, 1}
in TTT is rather naive. We anticipate that the recent techniques of [6] can be
extended to handle negative coefficients.

7 Comparison

Needless to say, TTT is not the only available tool for proving termination of
rewrite systems. In this final section we compare our tool with the other systems
that participated in the TRS category5 of the termination competition that was
organized as part of the 7th International Workshop on Termination6.

– We start our discussion with CiME [5], the very first tool for automatically
proving termination of rewrite systems that is still available. CiME is a tool
with powerful techniques for finding termination proofs based on polyno-
mial interpretations in connection with the dependency pair method. Since
CiME does not support (yet) the most recent insights in the dependency
pair method, it is less powerful than AProVE (described below) or TTT. In
contrast to TTT, CiME can handle rewrite systems with AC operators. As a

5 http://www.lri.fr/∼marche/wst2004-competition/webform.cgi?command=trs
6 http://www-i2.informatik.rwth-aachen.de/WST04/
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matter of fact, termination is only a side-issue in CiME. Its main strength
lies in completing equational theories modulo theories like AC and C.

– CARIBOO [9] is a tool specializing in termination proofs for a particular
evaluation strategy, like innermost evaluation or the strategies used in OBJ-
like languages. The underlying proof method is based on an inductive process
akin to narrowing, but its termination proving power comes from CiME,
which is used as an external solver. TTT supports innermost termination,
but no other strategies.

– Matchbox [19] is a tool that is entirely based on methods from formal lan-
guage theory. These methods are especially useful for proving termination
of string rewrite systems. Matchbox tries to establish termination or non-
termination by using recent results on match-bounded rewriting [10]. Match-
box is not intended as a general-purpose termination prover (as its author
writes in [19]).

– AProVE is the most powerful tool. Besides ordinary TRSs, it can handle logic
programs, conditional rewrite systems, context-sensitive rewrite systems, and
it supports rewriting modulo AC. Version 1.0 of AProVE is described in [11].
Of all existing tools, AProVE supports the most base orders and even of-
fers several different algorithms implementing these. It incorporates virtually
all recent refinements of the dependency pair method. AProVE has several
methods that are not available in any other tool. We mention here the size-
change principle [18], transformations for dependency pairs like narrowing
and instantiation, and a modular refinement where the set of usable rules is
determined after a suitable argument filtering has been computed. Despite
all this, last year’s termination competition version of AProVE, which further
includes the methods derived from match-bounded rewriting, could handle
only a few more systems than TTT.

We conclude the paper by listing what we believe to be the main attractions of
TTT (in no particular order):

– TTT comes equipped with a very user-friendly web interface,
– TTT produces readable and beautifully typeset proofs,
– TTT is a very fast termination tool,
– TTT is a very powerful tool based on relatively few techniques.
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5. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME version 2, 2000.
Available at http://cime.lri.fr/.
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Call-by-Value Is Dual to Call-by-Name –
Reloaded

Philip Wadler

Edinburgh University

Abstract. We consider the relation of the dual calculus of Wadler
(2003) to the λμ-calculus of Parigot (1992). We give translations from the
λμ-calculus into the dual calculus and back again. The translations form
an equational correspondence as defined by Sabry and Felleisen (1993).
In particular, translating from λμ to dual and then ‘reloading’ from dual
back into λμ yields a term equal to the original term. Composing the
translations with duality on the dual calculus yields an involutive notion
of duality on the λμ-calculus. A previous notion of duality on the λμ-
calculus has been suggested by Selinger (2001), but it is not involutive.

Note: This paper uses color to clarify the relation of types and terms,
and of source and target calculi. If the URL below is not in blue please
download the color version from

http://homepages.inf.ed.ac.uk/wadler/

or google ‘wadler dual reloaded’.

1 Introduction

Sometimes less is more. Implication is a key connective of logic, but for some
purposes it is better to define it in terms of other connectives, taking A ⊃ B ≡
¬A∨B. This is helpful if one wishes to understand de Morgan duality. The dual
of & is ∨, and ¬ is self dual, but the dual of an implication A⊃B is the difference
operator, B −A ≡ B & ¬A, which is not particularly familiar.

Church (1932) introduced the call-by-name λ-calculus, and a few years later
Bernays (1936) proposed the call-by-value variant. A line of work, including that
of Filinski (1989), Griffin (1990), Parigot (1992), Danos, Joinet, and Schellinx
(1995), Barbanera and Berardi (1996), Streicher and Reuss (1998), Selinger
(1998,2001), and Curien and Herbelin (2000), has led to a startling conclusion:
call-by-value is the de Morgan dual of call-by-name.

Wadler (2003) presents a dual calculus that corresponds to the classical se-
quent calculus of Gentzen (1935) in the same way that the lambda calculus
of Church (1932,1940) corresponds to the intuitionistic natural deduction of
Gentzen (1935). The calculus possesses an involutive duality, which takes call-
by-value into call-by-name and vice-versa. A key to achieving this is to not take
implication as primitive, but to define it by taking A ⊃ B ≡ ¬A ∨ B under
call-by-name, or A⊃B ≡ ¬(A & ¬B) under call-by-value.
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Wadler (2003) included a discussion of call-by-value and call-by-name CPS
translations from the dual calculus into the λ-calculus. Here we complete the
story by discussing a translation from the λμ-calculus of Parigot (1992) into the
dual calculus, together with an inverse translation. We will show that there is a
translation from the λμ-calculus into the dual calculus which forms an equational
correspondence, as defined by Sabry and Felleisen (1993).

Say we have a source and target calculus with equations defined on them,
writing

M =v N, M =v N

for equality in the source and target respectively, and

M∗, M∗

for translations from source to target and target to source respectively. We have
an equational correspondence if the following four conditions hold.

– The translation from source to target preserves equations,

M =v N implies M∗ =v N∗,

with M,N source terms.
– The translation from target to source preserves equations,

M =v N implies M∗ =v N∗,

with M,N target terms.
– Translating for source to target and then ‘reloading’ from target to source

yields a term equal to the original term,

(M∗)∗ =v M,

with M a source term.
– Translating for target to source and then ‘reloading’ from source to target

yields a term equal to the original term,

(M∗)∗ =v M,

with M a target term.

The existence of an equational correspondence shows in a strong sense that the
translation is both sound and complete with respect to equations. In particular
an equation holds in the source if and only if its translation holds in the target.

Wadler (2003) also presents a CPS translation from the dual calculus into
λ-calculus, again in both call-by-value and call-by-name variants. Composing
the translation from the λμ-calculus to the dual calculus with the CPS transla-
tion for the dual calculus yields the usual call-by-value and call-by-name CPS
translations for λμ, as studied by Hoffman and Streicher (1997) and Selinger
(2001).

Following the technique introduced in Sabry and Wadler (1997), it is shown
that the CPS translation for the dual calculus is a reflection, that is it both
preserves and reflects reductions. Every reflection is trivially an equational cor-
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respondence, where equality is the reflexive, symmetric, and transitive closure
of reduction. Since equational correspondences compose, it follows immediately
that the CPS translation for λμ-calculus is also an equational correspondence.

Fujita (2003) also shows that the call-by-value CPS translation for λμ-calcu-
lus is an equational correspondence; but says nothing about call-by-name. The
advantage of the proof here is that the CPS translation for λμ can be computed
by composing other translations, and that its properties follow immediately from
its construction by composition rather than requiring separate proof.

Duality is a translation that takes the call-by-value dual calculus into the
call-by-name dual calculus, and conversely; that is, if two terms are equal in
the call-by-value calculus then their duals are equal call-by-name. Duality is an
involution; that is, the dual of the dual is the identity. It follows immediately
that duality is an equational correspondence.

Our type system corresponds to minimal logic, with types A & B, A ∨ B,
¬A, and A ⊃ B corresponding to ‘and’, ‘or’, ‘not’, and ‘implies’. (We would
have ¬A = A⊃⊥, if we had defined a type ⊥ corresponding to ‘false’.) Duality
exchanges ‘and’ with ‘or’, and ‘not’ is self dual. The dual of implication A⊃B =
¬A ∨ B is difference B − A = B & ¬A. (One can confirm this by checking
B −A = ¬(¬A⊃¬B).) We choose not to include difference in our type system,
because its computational interpretation is not familiar. (For one exploration
of what the computational interpretation of difference might be, see Crolard
(2004).) It follows that before we consider duality, we first must translate away
implications. We use the translation A ⊃ B = ¬(A & ¬B) for call-by-value and
A⊃B = ¬A ∨B for call-by-name.

We may derive a duality transform from λμ-calculus to itself by forming the
threefold composition of (i) the translation from λμ-calculus to dual calculus
with (ii) the duality translation from dual calculus to itself with (iii) the reloading
translation from dual calculus back to λμ-calculus; and follows immediately that
this is an equational correspondence. The same duality transform works for both
call-by-value and call-by-name.

Selinger (2001) also presents a duality transformation for λμ-calculus.
Selinger’s duality required some cleverness to construct — it answered an open
question of Streicher and Reuss (1998).

As one would hope, Selinger’s duality is an involution for the types corre-
sponding to ‘and’ and ‘or’. However, Selinger has no type corresponding directly
to ‘not’, so he is forced to consider what the dual of an implication might be.
Since he has no type corresponding to difference, he is forced to require two
distinct mappings, one from call-by-value into call-by-name and one from call-
by-name into call-by-value. Further, the composition of these maps does not
yield the identity but only the identity up to isomorphism of types. Here we
avoid the problem by adding a negation type to the λμ-calculus, requiring that
one translate implications before computing the dual. The result is that for us
duality on λμ becomes a proper involution.

The advantage of the proof here is that duality for λμ can be computed by
composing other translations, and that its properties follow immediately from
its construction by composition rather than requiring separate proof. Also, the
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work here uses purely syntactic techniques, depending only on equations in the
λμ and dual calculi, with no reference to control categories or other semantic
frameworks.

Wadler (2003) considers reductions, while this paper considers equations. One
advantage of considering equations is that it is then easy to add (η) rules, which
are problematic for reductions in the presence of sums (see Balat, di Cosmo,
and Fiore (2004)). An interesting open question is whether one can replace the
equations of this paper by reductions (possibly omitting the (η) rules), and refine
the equational correspondence to a reflection.

This paper contains almost entirely new material as compared with Wadler
(2003). The description of the dual calculus overlaps with that paper, but the
relationship with λμ is entirely new, as is the treatment of η laws.

2 The λμ-Calculus

The syntax and type rules of the λμ-calculus are shown in Figure 1. Follow-
ing Parigot (1993), we distinguish two main constructs, terms and statements
(Parigot called these unnamed terms and named terms.)

As usual, we require the body of a μ-abstraction to be a statement. We
provide two variants of λ-abstraction, one where the body is a statement (corre-
sponding to negation), and one where the body is an expressions (corresponding
to implication). Informally, one can think of these as related by the equation
¬A = A⊃⊥.

Let A,B range over types. A type is atomic X ; a conjunction A & B; a
disjunction A ∨B; a negation ¬A; or an implication A⊃B.

Let x, y, z range over variables, α, β, γ range over covariables, M,N,O range
over terms, and S, T range over statements. A term is a variable x; a λ-ab-
straction λx. S or λx.N ; a negation application OM (where O : ¬A); or a
μ-abstration μα. S. A statement is a function application OM (where O : A ⊃
B); or a covariable application [α]M . The computational interpretation of a μ-
abstraction μα. S is to bind the covariable α and then evaluate statment S; if
during evaluation of S the covariable α is applied to a value, then that value
is returned as the value of the μ-abstraction; this is similar to the behaviour of
callcc in Scheme.

We also have products and sums. Products are constructed with pairing
〈M,N〉 and decontstructed with projections fstO and sndO. Following Selinger
(2001), we construct sums with a variant of the mu abstraction μ[α, β]. S, and
deconstruct sums with a variant of covariable application [α, β]O. The term
μ[α, β]. S constructs a sum: if α is passed a value of type A then the μ-abstraction
returns a left injection into the sum type A ∨ B, and if β is passed a value of
type B then the μ-abstraction returns a right injection into the sum type A∨B.
Conversely, the statement [α, β]O deconstructs a sum; the term O has a sum
type A ∨ B, and if it returns a left summand then covariable α is passed the
value of type A, while if it returns a right summand then covariable β is passed
the value of type B.

Substitution of a term for a variable is standard, but substitution for a covari-
able is slightly tricky. The notation used here is adapted from Selinger (2001).
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Type A, B ::= X | A & B | A ∨ B | ¬A | A ⊃ B

Term M, N, O ::= x | 〈M, N〉 | fst O | snd O | μ[α, β]. S |
λx. S | λx. N | O M | μα. S

Statement S, T ::= [α]M | [α, β]O | O M

Antecedent Γ ::= x1 : A1, . . . , xm : Am

Succedent Θ ::= β1 : B1, . . . , βn : Bn

Right sequent Γ ⇀ Θ | M : A
Center sequent Γ | S |⇀ Θ

Id
Γ , x : A ⇀ Θ | x : A

Γ ⇀ Θ | M : A Γ ⇀ Θ | N : B
&I

Γ ⇀ Θ | 〈M, N〉 : A & B

Γ ⇀ Θ | O : A & B
&E

Γ ⇀ Θ | fst O : A

Γ ⇀ Θ | O : A & B
&E

Γ ⇀ Θ | snd O : B

Γ | S |⇀ Θ, α : A, β : B
∨I

Γ ⇀ Θ | μ[α, β]. S : A ∨ B

Γ ⇀ Θ, α : A, β : B | O : A ∨ B
∨E

Γ | [α, β]O |⇀ Θ, α : A, β : B

x : A, Γ | S |⇀ Θ
¬I

Γ ⇀ Θ | λx. S : ¬A

Γ ⇀ Θ | O : ¬A Γ ⇀ Θ | M : A
¬E

Γ | O M |⇀ Θ

x : A, Γ ⇀ Θ | N : B
⊃I

Γ ⇀ Θ | λx. B : A ⊃ B

Γ ⇀ Θ | O : A ⊃ B Γ ⇀ Θ | M : A
⊃E

Γ ⇀ Θ | O M : B

Γ | S |⇀ Θ, α : A
Activate

Γ ⇀ Θ | μα. S : A

Γ ⇀ Θ, α : A | M : A
Passivate

Γ | [α]M |⇀ Θ, α : A

Fig. 1. Syntax and types of the λμ-calculus.

Definition 1. (Substitution for a covariable) Let S be a statement, α a covari-
able of type A, and T {−} be a statement context with a hole accepting a term of
type A. We write

S{T {−}/[α]{−}}

for the substitution that makes the recursive replacements
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[α]M �→ T {M},
[α, β]O �→ T {μα. [α, β]O},
[β, α]O �→ T {μα. [β, α]O}.

Call-by-value equalities, written =v are shown in Figure 2, and call-by-name
equalities, written =n are shown in Figure 3.

For the call-by-value calculus we need a notion of value, and notions of eval-
uation and statement contexts. Let V,W range over values, E range over evalua-
tion contexts, and D range over statement contexts. A value is a variable, a pair
of values, an injection of a value, a function, or a projection from a value. An
evaluation context is a term with a hole, and a statement context is a statement
with a hole, such that any term substituted into the hole will be the next to be
evaluated. We write {−} for the hole; the result of placing term M into the hole
in an evaluation context E is written E{M}, similarly for statement contexts.

The rules are grouped as (β) rules, which reduce a deconstructor applied to a
contructor; (η) rules, which introduce a constructor applied to a deconstructor;
and some additional rules. In the call-by-value calculus, three rules are stated
with statement contexts. It is easy to prove, using (ημ), that the rules also hold
when the statement context D is replaced with an evaluation context E. The
(name) rule introduces a name for the next term to be evaluated; it is similar to
the rules (let.1) and (let.2) in the λc-calculus of Moggi (1988) and the various
(let) rules in Selinger (2001). The (comp) rule is similar to the associativity rule
in the the λc-calculus of Moggi (1988), and the (let) rule in Selinger (2001).

Values V, W ::= x | 〈V, W 〉 | μ[α, β]. [α]V | μ[α, β]. [β]W |
λx. S | λx. N | fst V | fst W

Evaluation context E ::= {−} | 〈E, N〉 | 〈V, E〉 | fst E | snd E | E M | V E
Statement context D ::= [α]E | [α, β]E | E M | V E

(β&) fst 〈V, W 〉 =v V
(β&) snd 〈V, W 〉 =v W
(β∨) [α, β]μ[α′, β′]. S =v S{α/α′, β/β′}
(β¬) (λx. S) V =v S{V/x}
(β⊃) (λx. N) V =v N{V/x}
(βμ) [α]μα′. S =v S{α′/α}
(η&) V : A & B =v 〈fst V, snd V 〉
(η∨) M : A ∨ B =v μ[α, β]. [α, β]M
(η¬) V : ¬A =v λx. V x
(η⊃) V : A ⊃ B =v λx. V x
(ημ) M =v μα. [α]M

(name) D{M} =v (λx. D{x}) M
(comp) D{(λx. N) M} =v (λx. D{N}) M
(ς) D{μα. S} =v S{D{−}/[α]{−}}

Fig. 2. Equations of the call-by-value λμ-calculus.
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(β&) fst 〈M, N〉 =n M
(β&) snd 〈M, N〉 =n N
(β∨) [α, β]μ[α′, β′]. S =n S{α/α′, β/β′}
(β¬) (λx. S) M =n S{M/x}
(β⊃) (λx. N) M =n N{M/x}
(βμ) [α]μα′. S =n S{α′/α}
(η&) M : A & B =n 〈fst M, snd M〉
(η∨) M : A ∨ B =n μ[α, β]. [α, β]M
(η¬) M : ¬A =n λx. M x
(η⊃) M : A ⊃ B =n λx. M x
(ημ) M =n μα. [α]M

(ς∨) [α, β](μγ. S) =n S{[α, β]{−}/[γ]{−}}
(ς&) fst (μγ. S) =n μα. S{[α]fst {−}/[γ]{−}}
(ς&) snd (μγ. S) =n μβ. S{[β]snd {−}/[γ]{−}}
(ς¬) (μγ. S) M =n S{{−}M/[γ]{−}}
(ς⊃) (μγ. S) M =n μβ. S{[β]{−}M/[γ]{−}}

Fig. 3. Equations of the call-by-name λμ-calculus.

(let.1) OM =v let z = O in z N
(let.2) V M =v let x = M in V x
(comp) let y = (let x = M in N) in O =v let x = M in let y = N in O

The (ς) rules of the call-by-value and call-by-name calculi are similar to the (ς)
rules of Selinger (2001).

As noted, implication can be defined in terms of the other connectives, but
different definitions must be used for call-by-value or call-by-name.

Proposition 1. Under call-by-value, implication may be defined by

A⊃B ≡ ¬(A & ¬B)
λx.N ≡ λz. (λx. (snd z)N) (fst z)
OM ≡ μβ.O 〈M,λy. [β]y〉

validating (β⊃), (η⊃), and the other equations for functions, and where the
translation of a function abstraction is a value.

Proposition 2. Under call-by-name, implication may be defined by

A⊃B ≡ ¬A ∨B
λx.N ≡ μ[γ, β]. [γ]λx. [β]N
OM ≡ μβ. (μγ. [γ, β]O)M

validating (β⊃), (η⊃), and (ς⊃).
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3 The Dual Calculus

Figure 4 presents the syntax and inference rules of the dual calculus. Types,
variables, and covariables are the same as the λμ-calculus.

Let M,N range over terms, which yield values. A term is either a variable
x; a pair 〈M,N〉; an injection on the left or right of a sum 〈M〉inl or 〈N〉inr; a
complement of a coterm [K]not; a function abstraction λx.N , with x bound in
N ; or a covariable abstraction (S).α, with α bound in S.

Let K,L range over coterms, which consume values. A coterm is either a
covariable α; a projection from the left or right of a product fst[K] or snd[L]; a
case [K,L]; a complement of a term not〈M〉; a function application M @ L; or
a variable abstraction x.(S), with x bound in S.

Finally, let S, T range over statements. A statement is a cut of a term against
a coterm, M•K. Note that angle brackets always surround terms, square brackets
always surround coterms, and round brackets always surround statements. Curly
brackets are used for substitution and holes in contexts.

The type rules given here differ slightly from Wadler (2003), in that they are
presented in syntax-directed form; so thinning, exchange, and contraction are
built into the form of the rules rather than given as separate structural rules.

A cut of a term against a variable abstraction, or a cut of a covariable abstrac-
tion against a coterm, corresponds to substitution. This suggests the following
reduction rules.

(βL) M • x.(S) = S{M/x}
(βR) (S).α •K = S{K/α}

Here substitution in a statement of a term for a variable is written S{M/x},
and substitution in a statement of a coterm for a covariable is written S{K/α}.

A critical pair occurs when a covariable abstraction is cut against a variable
abstraction.

(S).α • x.(T )

Sometimes such reductions are confluent.

(x • α).α • y.(y • β)
↙ ↘

x • y.(y • β) (x • α).α • β
↘ ↙

x • β

But sometimes they are not.

(x • α).β • y.(z • γ)
↙ ↘

x • α z • γ

To restore confluence we must limit reductions, and this is achieved by adopting
call-by-value or call-by-name.
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Type A, B ::= X | A & B | A ∨ B | ¬A | A ⊃ B

Term M, N ::= x | 〈M, N〉 | 〈M〉inl | 〈N〉inr | [K]not | λx.N | (S).α
Coterm K, L ::= α | [K, L] | fst[K] | snd[L] | not〈M〉 | M @ L | x.(S)
Statement S, T ::= M • K

Antecedent Γ ::= x1 : A1, . . . , xm : Am

Succedent Θ ::= β1 : B1, . . . , βn : Bn

Right sequent Γ → Θ | M : A
Left sequent K : A | Γ → Θ
Center sequent Γ | S |→ Θ

IdR
x : A, Γ → Θ | x : A

IdL
α : A | Γ → Θ, α : A

Γ → Θ | M : A Γ → Θ | N : B
&R

Γ → Θ | 〈M, N〉 : A & B

K : A | Γ → Θ
&L

fst[K] : A & B | Γ → Θ

L : B | Γ → Θ
&L

snd[L] : A & B | Γ → Θ

Γ → Θ | M : A
∨R

Γ → Θ | 〈M〉inl : A ∨ B

Γ → Θ | N : B
∨R

Γ → Θ | 〈N〉inr : A ∨ B

K : A | Γ → Θ L : B | Γ → Θ
∨L

[K, L] : A ∨ B | Γ → Θ

K : A | Γ → Θ
¬R

Γ → Θ | [K]not : ¬A

Γ → Θ | M : A
¬L

not〈M〉 : ¬A | Γ → Θ

x : A, Γ → Θ | N : B
⊃R

Γ → Θ | λx.N : A ⊃ B

Γ → Θ | M : A L : B | Γ → Θ
⊃L

M @ L : A ⊃ B | Γ → Θ

Γ | S |→ Θ, α : A
RI

Γ → Θ | (S).α : A

x : A, Γ | S |→ Θ
LI

x.(S) : A | Γ → Θ

Γ → Θ | M : A K : A | Γ → Θ
Cut

Γ | M • K |→ Θ

Fig. 4. Syntax and types of the dual calculus.
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Value V, W ::= x | 〈V, W 〉 | 〈V 〉inl | 〈W 〉inr | [K]not |
λx.N | (V • fst[α]).α | (V • snd[β]).β

Evaluation context E ::= {−} | 〈E, N〉 | 〈V, E〉 | 〈E〉inl | 〈E〉inr

(β&) 〈V, W 〉 • fst[K] =v V • K
(β&) 〈V, W 〉 • snd[L] =v W • L
(β∨) 〈V 〉inl • [K, L] =v V • K
(β∨) 〈W 〉inr • [K, L] =v W • L
(β¬) [K]not • not〈M〉 =v M • K
(β⊃) λx.N • M @ L =v M • x.(N • L)
(βL) V • x.(S) =v S{V/x}
(βR) (S).α • K =v S{K/α}
(η&) V : A & B =v 〈(V • fst[α]).α, (V • snd[β]).β〉
(η∨) K : A ∨ B =v [x.(〈x〉inl • K), y.(〈y〉inr • K)]
(η¬) V : ¬A =v [x.(V • not〈x〉)]not
(η⊃) V : A ⊃ B =v λx.((V • x @ β).β)
(ηL) K =v x.(x • K)
(ηR) M =v (M • α).α

(name) E{M} • K =v M • x.(x • K)

Fig. 5. Equations of the call-by-value dual calculus.

Call-by-value only reduces a cut of a value against a variable abstraction,
but reduces a cut of a covariable abstraction against any coterm.

(βL) V • x.(S) =v S{V/x}
(βR) (S).α •K =v S{K/α}

Value V replaces term M in rule (βL). A value cannot be a covariable abstrac-
tion, so this avoids the critical pair.

Call-by-name only reduces a cut of a covariable abstraction against a covalue,
but reduces a cut of any coterm against a variable abstraction.

(βL) V • x.(S) =v S{V/x}
(βR) (S).α •K =v S{K/α}

Covalue P replaces coterm K in rule (βR). A covalue cannot be a variable
abstraction, so this avoids the critical pair.

In λ-calculus, the move from call-by-value to call-by-name generalizes values
to terms. In dual calculus, the move from call-by-value to call-by-name general-
izes values to terms but restricts coterms to covalues, clarifying the duality.

Call-by-value equalities, written =v, are shown in Figure 5 and call-by-name
equalities, written =n, are shown in Figure 6.

Let V,W range over values. A value is a variable, a pair of values, a left or
right injection of a value, any complement, any function, or a projection from a
value.
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Covalue P, Q ::= α | [Q, P ] | snd[P ] | fst[Q] | not〈M〉 |
M @ Q | x.(〈x〉inr • P ) | y.(〈y〉inl • P )

Coevaluation context F ::= {−} | [L, F ] | [F, P ] | snd[F ] | fst[F ]

(β∨) 〈M〉inr • [Q, P ] =n M • P
(β∨) 〈N〉inl • [Q, P ] =n N • Q
(β&) 〈N, M〉 • snd[P ] =n M • P
(β&) 〈N, M〉 • fst[Q] =n N • Q
(β¬) [K]not • not〈M〉 =n M • K
(β⊃) λx.N • M @ L =n M • x.(N • L)
(βR) (S).α • P =n S{P/α}
(βL) M • x.(S) =n S{M/x}
(η∨) P : A ∨ B =n [y.(〈y〉inl • P ), x.(〈x〉inr • P )]
(η&) M : A & B =n 〈(M • fst[β]).β, (M • snd[α]).α〉
(η¬) P : ¬A =n not〈([α]not • P ).α〉
(η⊃) M : A ⊃ B =n λx.((M • x @ β).β)
(ηR) M =n (M • α).α
(ηL) K =n x.(x • K)

(name) M • F{K} =n (M • α).α • K

Fig. 6. Equations of the call-by-name dual calculus.

Let P,Q range over covalues. A covalue is a covariable, a first or second
projection of a covalue, a case over a pair of covalues, any complement, an
application context where the second component is a covalue, or a left or right
injection into a covalue. Covalues correspond to a strict context, one that is
guaranteed to demand the value passed to it.

As before, the reduction rules are grouped into (β), (η,) (name) and (ς) rules.
The (name) rules correspond to the (ς) rules of Wadler (2003).

As before, implication can be defined in terms of the other connectives, but
different definitions must be used for call-by-value or call-by-name. Under call-
by-value function abstractions must translate to values, while under call-by-name
function applications must translate to covalues, and this is what forces different
definitions for the two reduction disciplines.

Proposition 3. Under call-by-value, implication may be defined by

A⊃B ≡ ¬(A & ¬B)
λx.N ≡ [z.(z • fst[x.(z • snd[not〈N〉])])]not
M @ L ≡ not〈〈M, [L]not〉〉.

validating (β⊃), (η⊃), and the other equations for functions, and where the
translation of a function abstraction is a value.
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Proposition 4. Under call-by-name, implication can be defined by

A⊃B ≡ ¬A ∨B
λx.N ≡ (〈[x.(〈N〉inr • γ)]not〉inl • γ).γ
M @ L ≡ [not〈M〉, L].

validating (β⊃), (η⊃), and the other equations for functions, and where the
translation of a function application is a covalue.

4 Translations

We now consider the translation from the λμ-calculus to the dual calculus and
its inverse translation. The results of this section apply to all types, including
implication.

Definition 2. The translation from the λμ-calculus into the dual calculus is
given in Figure 7. It consists of two operations,

M∗, S∗.

– If M is a λμ term of type A, then M∗ is a dual term of type A.

Γ ⇀ Θ |M : A

Γ → Θ |M∗ : A

– If S is a λμ statement, then S∗ is a dual statement.

Γ | S |⇀ Θ

Γ | S∗ |→ Θ

Definition 3. The translation from the dual calculus into the λμ-calculus is
given in Figure 8. It consists of three operations,

M∗, K∗{O}, S∗.

(x)∗ ≡ x
(〈M, N〉)∗ ≡ 〈M∗, N∗〉
(fst O)∗ ≡ (O∗ • fst[α]).α
(snd O)∗ ≡ (O∗ • snd[β]).β
(μ[α, β]. S)∗ ≡ (〈(〈(S∗).β〉inr • γ).α〉inl • γ).γ
(λx. S)∗ ≡ [x.(S∗)]not
(λx. N)∗ ≡ λx.N∗

(O M)∗ ≡ (O∗ • M∗ @ β).β
(μα. S)∗ ≡ (S∗).α

([α, β]O)∗ ≡ O∗ • [α, β]
(O M)∗ ≡ O∗ • not〈M∗〉
([α]M)∗ ≡ M∗ • α

Fig. 7. Translation from λμ-calculus to dual calculus.
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(x)∗ ≡ x
(〈M, N〉)∗ ≡ 〈M∗, N∗〉
(〈M〉inl)∗ ≡ μ[α, β]. [α]M∗
(〈N〉inr)∗ ≡ μ[α, β]. [β]N∗
([K]not)∗ ≡ λx. K∗{x}
(λx.N)∗ ≡ λx. N∗
((S).α)∗ ≡ μα. S∗

(α)∗{O} ≡ [α]O
([K, L])∗{O} ≡ L∗{μβ. K∗{μα. [α, β]O}}
(fst[K])∗{O} ≡ K∗{fst O}
(snd[L])∗{O} ≡ L∗{snd O}
(not〈M〉)∗{O} ≡ O M∗
(M @ L)∗{O} ≡ L∗{O M∗}
(x.(S))∗{O} ≡ (λx. S∗) O

(M • K)∗ ≡ K∗{M∗}

Fig. 8. Translation from dual calculus to λμ-calculus.

– If M is a dual term of type A, then M∗ is a λμ term of type A.

Γ → Θ |M : A

Γ ⇀ Θ |M∗ : A

– If K is a dual coterm of type A, and O is a λμ term of type A, then K∗{O}
is a λμ statement.

K : A | Γ → Θ Γ ⇀ Θ | O : A

Γ | K∗{O} |→ Θ

– If S is a dual statement, then S∗ is a λμ statement.

Γ | S |→ Θ

Γ | S∗ |⇀ Θ

In general, these translations do not preserve reductions, but they do preserve
equalities. We now present the detailed results to show that the translations form
an equational correspondence between the call-by-value λμ calculus and the call-
by-value dual calculus.

Proposition 5. (λμ reloaded) Translating from the λμ-calculus into the dual
calculus and then ‘reloading’ into the λμ-calculus gives a term equal to the orig-
inal under call-by-value,

(M∗)∗ =v M
(S∗)∗ =v S

with M a term and S a statement in λμ.

The two lines are shown by case analysis on terms and statements of λμ.

Proposition 6. (dual reloaded) Translating from the dual calculus into the λμ-
calculus and then ‘reloading’ into the dual calculus gives a term equal to the
original under call-by-value,

(M∗)∗ =v M
(K∗{O})∗ =v O∗ •K
(S∗)∗ =v S,

with M a term, K a coterm, and S a statement in dual, and O a term in λμ.
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The three lines are shown by case analysis on terms, coterms, and statements
of dual.

Proposition 7. (λμ to dual preserves equalities) Translating from the λμ-cal-
culus into the dual calculus preserves call-by-value equalities,

M =v N implies M∗ =v N∗

S =v T implies S∗ =v T ∗,

with M,N terms and S, T statements in λμ.

The two lines are shown by case analysis on the equations of λμ that apply
to terms and statements respectively.

Proposition 8. (dual to λμ preserves equalities) Translating from the dual cal-
culus into the λμ-calculus preserves call-by-value equalities,

M =v N implies M∗ =v N∗
K =v L implies K∗{O} =v L∗{O}
S =v T implies S∗ =v T ∗,

with M,N terms, K,L coterms, and S, T statements in dual, and O a term in λμ.

The three lines are shown by case analysis on the equations of dual that
apply to terms, coterms, and statements respectively.

The four propositions above also hold for call-by-name. The restatement is
easy, simply replace =v and =v everywhere by =n and =n. However, while the
structure of the proofs is essentially the same, the new sets of reductions require
that one repeat the proofs entirely, since there is no simple, systematic relation
between the call-by-value and call-by-name reductions of λμ.

However, there is a systematic relation between the call-by-value and call-
by-name reductions of dual. We next consider how to characterize and exploit
this regularity.

5 Duality

We now review the results about duality for the dual from Wadler (2003), and
use these to derive similar results concering duality for the λμ-calculus. Since
duality is not defined for implication, before applying the results of this section
any occurrences of implication must be translated away, using the results given
previously.

The dual calculus is designed to exploit duality. Variables are dual to covari-
ables, pairs are duals to sums, complement is self dual, term abstraction is dual
to coterm abstraction, and cut is self dual. This can be captured in a translation
from the dual calculus into itself. The translation is involutive – that is, it is its
own inverse – and it carries call-by-value equations into call-by-name equations,
and vice versa. So it is an equational correspondence.

We assume a one-to-one correspondence between variables and covariables.
Each variable x corresponds to a covariable x̄, and each covariable α corresponds
to a variable ᾱ, such that ¯̄x ≡ x and ¯̄α ≡ α. For instance, we might take
x̄ ≡ α, ȳ ≡ β, z̄ ≡ γ, and hence ᾱ = x, β̄ = y, γ̄ = z.
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(X)◦ ≡ X
(A & B)◦ ≡ B◦ ∨ A◦

(A ∨ B)◦ ≡ B◦ & A◦

(¬A)◦ ≡ ¬A◦

(x)◦ ≡ x̄
(〈M, N〉)◦ ≡ [N◦, M◦]
(〈M〉inl)◦ ≡ snd[M◦]
(〈N〉inr)◦ ≡ fst[N◦]
([K]not)◦ ≡ not〈K◦〉
((S).α)◦ ≡ ᾱ.(S◦)

(α)◦ ≡ ᾱ
([K, L])◦ ≡ 〈L◦, K◦〉
(fst[K])◦ ≡ 〈K◦〉inr
(snd[L])◦ ≡ 〈L◦〉inl
(not〈M〉)◦ ≡ [M◦]not
(x.(S))◦ ≡ (S◦).x̄

(M • K)◦ ≡ K◦ • M◦

Fig. 9. Duality for the dual calculus.

(x)◦{O′} ≡ [x̄]O′

(〈M, N〉)◦{O′} ≡ N◦{μβ. M◦{μα. [β, α]O′}}
(fst O)◦{O′} ≡ (λx. O◦{μ[β, α]. [α]x}) O′

(snd O)◦{O′} ≡ (λy. O◦{μ[β, α]. [β]y}) O′

(μ[α, β]. S)◦{O′} ≡ (λz. (λβ̄. (λᾱ. S◦) (fst z)) (snd z)) O′

(λx. S)◦{O′} ≡ O′ (μx̄. S◦)
(μα. S)◦{O′} ≡ (λᾱ. S◦) O′

([α]M)◦ ≡ M◦{ᾱ}
([α, β]O)◦ ≡ O◦{〈ᾱ, β̄〉}
(O M)◦ ≡ O◦{λx. M◦{x}}

Fig. 10. Duality for the λμ-calculus.

Definition 4. The duality translation from the dual calculus to itself is given in
Figure 9. It consists of operations on types, terms, coterms, and statements,

A◦, M◦, K◦, S◦.

– If A is a type, then A◦ is the dual type. This extends to environments and
coenvironments. If Γ ≡ x1 : A1, . . . , xm : Am, its dual is Γ ◦ ≡ x̄m : A◦

m, . . . ,
x̄1 : A◦

1, and similarly for coenvironments.
– If M is a dual term of type A, then M◦ is a dual coterm of type A.

Γ → Θ |M : A

M◦ : A | Θ◦ → Γ ◦

– If K is a dual coterm of type A, and K◦ is a dual term of type A.

K : A | Γ → Θ

Θ◦ → Γ ◦ | K◦ : A

– If S is a dual statement, then S◦ is a dual statement.

Γ | S |→ Θ

Θ◦ | S◦ |→ Γ ◦

It is immediate from the definition that duality is its own inverse.
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Proposition 9. (Involution) Duality is an involution up to identity,

(A◦)◦ ≡ A
(M◦)◦ ≡M
(K◦)◦ ≡ K
(S◦)◦ ≡ S,

with A a type of dual, M a term of dual, K a coterm of dual, and S a statement
of dual.

For the dual calculus, call-by-value is dual to call-by-name. This is easily con-
firmed by inspection of the reduction rules; indeed, it was the principle guiding
their design.
Proposition 10. (Call-by-value is dual to call-by-name) Duality takes call-by-
value equalities into call-by-name equalities, and vice versa.

M =v N iff M◦ =n N◦

K =v L iff K◦ =n L◦

S =v T iff S◦ =n T ◦,

with M,N terms, K,L coterms, and S, T statements of dual.
An immediate consequence is that duality is an equational correspondence

between the call-by-value dual calculus and the call-by-name dual calculus.
We now extend the above results from the dual calculus to the λμ-calculus.
Using the translations of the previous section, we can compute duals for the

λμ-calculus by translating from λμ to dual, taking the dual, and then ‘reloading’
back into λμ.
Definition 5. The duality transformation from the λμ calculus to itself is given
in Figure 10. It consists of operations on types, terms, and statements, defined
as follows,

A◦ ≡ A◦

M◦{O} ≡ ((M ∗)◦)∗{O}
S◦ ≡ ((S∗)◦)∗

– If A is a type, then A◦ ≡ A◦ is the dual type.
– If M is a λμ term of type A and O is a λμ term of type A◦, then M◦{O} is

a λμ statement.

Γ ⇀ Θ |M : A Θ◦ ⇀ Γ◦ | O : A◦

Θ◦ |M◦{O} |⇀ Γ◦
– If S is a λμ statement, then S◦ is a λμ statement.

Γ | S |⇀ Θ

Θ◦ | S◦ |⇀ Γ◦
In effect, we compose three equational correspondences (from λμ to dual,

from dual to itself, and from dual to λμ) to yield a new equational correspondence
(from λμ to itself).

It follows immediately that duality on λμ takes call-by-value into call-by-
name.
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Proposition 11. (Call-by-value is dual to call-by-name, reloaded) Duality takes
call-by-value equalities on λμ into call-by-name equalities, and vice versa.

M =v N iff M◦{O} =n N◦{O}
S =v T iff S◦ =n T◦

Here M,N are terms and S, T are statements of λμ.

The proof is easy. For the first line, we have

M =v N
iff M∗ =v N∗

iff (M∗)◦ =n (N∗)◦

iff ((M∗)◦)∗{O} =n ((N∗)◦)∗{O}
iff M◦{O} =n N◦{O}

The second line is similar.

Proposition 12. (Involution, reloaded) Duality on λμ is an involution up to
equality,

μα. (M◦{ᾱ})◦ =v M
(M◦{O})◦ =v O◦{M}
(S◦)◦ =v S,

with M,O terms and S a statement of λμ.

This follows from Propositions 5, 6, and 9 We will prove the lines in inverse
order. The third line is easy,

(S◦)◦
≡ (((((S∗)◦)∗)∗)◦)∗
=v (((S∗)◦)◦)∗
≡ (S∗)∗
=v S.

The second line is only slightly harder,

(M◦{O})◦
≡ (((((M ∗)◦)∗{O})∗)◦)∗
=v ((O∗ • (M∗)◦)◦)∗
≡ (M∗ • (O∗)◦)∗
≡ ((O∗)◦)∗{(M∗)∗}
=v O◦{M}.

The first line follows from the second,

μα. (M◦{ᾱ})◦
=v μα. ᾱ◦{M}
≡ μα. [α]M
=v M
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Since all of the results of the preceding section hold with =v replaced by =n,
the same holds for the above. However, unlike the preceding section, we don’t
need to redo any complex case analyses; the additional results follow immediately
from the work done previously.

Selinger (2001) gives a duality for λμ that takes call-by-value into call-by-
name, but it is not involutive. There are two distinct translations to take call-by-
value into call-by-name and call-by-name into call-by-value. Futher, one trans-
lation followed by the other does not preserve types up to identity, only up
to isomorphism. However, closer inspection shows that the two translations are
identical on all components except function types, and agree with the duality
translation on λμ given here. The key difference is that here we have replaced
implication by negation in λμ, yielding a cleaner version of duality. Sometimes
less is more!
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Abstract. Under the extension of Curry-Howard’s correspondence to
classical logic, Gentzen’s NK and LK systems can be seen as syntax-
directed systems of simple types respectively for Parigot’s λμ-calculus
and Curien-Herbelin’s λ̄μμ̃-calculus. We aim at showing their compu-
tational equivalence. We define translations between these calculi. We
prove simulation theorems for an undirected evaluation as well as for
call-by-name and call-by-value evaluations.

1 Introduction

Key systems for classical logic in proof theory are Gentzen’s NK and LK. The log-
ical equivalence between the latter was proved in [Gentzen, 1934]. We deal with
the extension of Curry-Howard’s correspondence between proofs and programs
through the systems of simple types for the λμ and λ̄μμ̃-calculi. This extension
concerns some other calculi. It is initially Felleisen’s λc-calculus. Its type system
is the intuitionistic natural deduction with the double negation axiom. Griffin
proposed this axiom as the type for the c-operator in [Griffin, 1990]. However, we
focus on calculi that correspond closer to Gentzen’s systems. The λμ-calculus
was defined for NK in [Parigot, 1992]. The λ̄μμ̃-calculus was designed for LK
in [Curien and Herbelin, 2000]. In the general case, these two calculi are not
deterministic. There exists critical pairs. The λ̄μμ̃-calculus admits two deter-
ministic projections depending on choosing one of the two possible symmetric
orientations of a critical pair. They correspond to the call-by-name/call-by-value
duality.

We aim at proving the computational equivalence between λμ and λ̄μμ̃-
calculi. A major step was reached with the proof of the simulation of the λμ-
calculus by the λ̄μμ̃-calculus in [Curien and Herbelin, 2000]. It holds both for
call-by-name and call-by-value evaluations. We present the call-by-name/call-by-
value projections of the λμ-calculus in the same way as for the λ̄μμ̃ in [Curien
and Herbelin, 2000] . It consists of choosing one of the two possible orientations
of a critical pair. We prove that the λμ-calculus simulates backwards the λ̄μμ̃-
calculus in such a way that we obtain easily the same result for the call-by-name,

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 204–218, 2005.
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for the call-by-value and for the simple type case. The λ̄μμ̃-calculus is composed
of three syntactic categories: terms, contexts (or environments) and commands.
The λμ-calculus is basically composed of terms and commands. We add contexts
to the λμ-calculus. It eases mappings between the λμ and λ̄μμ̃-calculi. We extend
the translation from the λμ-calculus to the λ̄μμ̃-calculus defined in [Curien and
Herbelin, 2000] over the λμ-contexts. We define backwards a translation from
the λ̄μμ̃-calculus to the λμ-calculus.

In section 2 we present the λμ-calculus. In section 3 we present the λ̄μμ̃-
calculus. In section 4 we define translations between these two calculi. In section 5
we prove simulation theorems that hold for call-by-name and call-by-value.

2 λμ-Calculus

We follow the definition given in [Parigot, 1992]. Firstly, we present the gram-
mar of terms and commands. Secondly, we present the system of simple types.
Thirdly, we present generic reductions and their call-by-name and call-by-value
projections. Fourthly, we extend both the grammar and the type system to the
contexts.

Basically, the λμ-calculus is composed of terms and commands. They are
defined by mutual induction:

t ::= x | λx.t | (t) t | μα.c c ::= [α] t

Symbols x range over λ-variables, symbols α range over μ-variables. We note
x ∈ t or α ∈ t the fact that x or α has a free occurrence in t. Symbols λ and μ
are binders. Two terms are equal modulo α-equivalence.

The system of simple types for the λμ-calculus is based on two kinds of
sequents. The first Γ * t : T | Δ concerns the terms and the second c : (Γ * Δ)
concerns the commands in which T is a simple type obtained by the grammar
T ::= X | T → T , Γ is a finite domain application from λ-variables to simple
types and Δ is a finite domain application from μ-variables to simple types. Γ, Γ ′

denotes the union of the applications Γ and Γ ′. System rules are:

x:A�x:A |
Γ�t:B | Δ

Γ\{x:A}�λx.t:A→B | Δ

Γ�u:A→B | Δ Γ ′�v:A | Δ′
(∗)

Γ,Γ ′�(u) v:B | Δ,Δ′

Γ�t:A | Δ
(∗)

[α] t:(Γ�Δ,α:A)

c:(Γ�Δ)

Γ�μα.c:A | Δ\{α:A}

The restriction (∗) requires that Γ and Γ ′ match each other on the intersection
of their domains. This holds for Δ and Δ′ too.

The category of contexts is introduced in order to ease comparisons with the
homonymous category of the λ̄μμ̃-calculus. λμ-contexts are defined by mutual
induction with the terms:

e ::= α | β(t) | t · e

We can see contexts as commands with a hole to fill. The first construction α
expects a term t in order to provide the command [α] t. The second β(t) expects
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a term u in order to provide the command [β] (t)u. The last t · h puts the term
t on a stack and expects another term to fill the hole.

Definition 1. Let t a term and e a context. The command e{t} is defined by
induction on e:

e{t} =

⎧⎪⎨⎪⎩
[α] t if e = α

[β] (u) t if e = β(u)
h{(t)u} if e = u · h

The type system is extended to another kind of sequents Γ | e : T * Δ. The
typing rules give the context e the type of the term t that fills the hole of e:

| α:A�α:A
Γ�t:(A→B) | Δ

Γ | β(t):A�Δ,β:B

Γ�t:A | Δ Γ ′ | e:B�Δ′

Γ,Γ ′ | t·e:(A→B)�Δ,Δ′

A sequent calculus like cut-rule can then be derived in this system as a term
against context application.

Lemma 1. The rule Γ�t:A | Δ Γ ′ | e:A�Δ′

e{t}:(Γ,Γ ′�Δ,Δ′)
holds in λμ.

Proof. By induction on e.

– if e = α then e{t} = [α] t and
Γ�t:A | Δ

[α] t:(Γ�Δ,α:A)

– if e = β(u) then e{t} = [β] (u) t and

Γ�u:(A→B) | Δ Γ ′�t:A | Δ′

Γ,Γ ′�(u) t:B | Δ,Δ′

[β] (u) t:(Γ,Γ ′�Δ,Δ′,β:B)

– if e = u · h then e{t} = h{(t)u} and

Γ�t:(A→B) | Δ Γ ′�u:A | Δ′

Γ,Γ ′�(t) u:B | Δ,Δ′ Γ ′′ | h:B�Δ′′
ind. hyp.

h{(t) u}:(Γ,Γ ′,Γ ′′�Δ,Δ′,Δ′′)

Definition 2. Let t a term, e a context and α a μ-variable, The term t[α← e]
– the substitution of α by e in t – is defined by induction on t:

t[α← e] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x if t = x

λx.u[α← e] if t = λx.u

(u[α← e]) v[α← e] if t = (u) v
μβ.c[α← e] if t = μβ.c

c[α← e] =

{
e{t[α← e]} if c = [α] t
[β] t[α← e] if c = [β] t
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The computation notion is based on reductions. We remind one-step reduc-
tion rules:

(λx.u) t→β u[x← t]
μδ.[δ] t →θ t (if δ /∈ t)

(μα.c) t →μ μα.c[α← t · α]
(t)μα.c→μ′ μα.c[α← α(t)]
[β]μα.c →ρ c[α← β]

The reduction ∗→γ stands for the reflexive and transitive closure of →γ and the
reduction ∗→ stands for the union of ∗→γ for γ ∈ {β, μ, μ′, ρ, θ}.

Some of these reductions are linear. Both of the ρ and θ-reductions are linear
because they correspond to the identity in NK. The β-reduction from the term
(λx.t) y is linear because it consists of replacing a variable by another variable
inside a term. It corresponds to a normalisation against an axiom rule in NK.
The β-reduction from the term (λx.t)u where x has a single free occurrence in t
is linear too because it consists either of substituting a single variable occurrence
by any term. It corresponds either to a normalisation without a proof-tree branch
duplication.

Reductions �γ , ∗
�γ and ∗

� have the same meanings as in the general
case. The relation ≈ is defined as the reflexive, transitive and symmetric closure
of ∗

� .
There exists a critical pair for computation determinism. Applicative terms

(λx.t)μβ.d and (μα.c)μβ.d can be β or μ′-rewritten in the first case and μ or
μ′-rewritten in the second case. We can see the call-by-name and call-by-value
disciplines as restrictions of the generic reductions.

The call-by-name evaluation consists of allowing every reduction but the μ′-
rule. The β-reduction holds in the first case and the μ-reduction in the second.
Formally the call-by-name reduction is ∗→n = ∗→\ ∗→μ′ .

The call-by-value evaluation consists of prohibiting β and μ-reductions in
which the argument is a μ-abstraction. Formally we define a subset of terms
called values by this grammar: v ::= x | λx.t. βv and μv-reductions are defined
instead of generic β and μ ones:

(λx.u) v →βv u[x← v] (μα.c) v →μv μα.c[α← v · α]

The call-by-value reduction ∗→v is the union of ∗→γ for γ ∈ {βv, μv, μ
′, ρ, θ}.

Critical pairs are then μ′-rewritten.
There is another way to define call-by-value into the λμ-calculus. The solution

is detailed in [Ong and Stewart, 1997]. It consists of restricting the μ′-rule to
values instead of the μ:

(v)μα.c→μ′
v
μα.c[α← α(v)]

Formally ∗→v becomes the union of ∗→γ for γ ∈ {βv, μ, μ
′
v, ρ, θ}. In fact terms

(λx.t)μα.c and (μα.c)μα′.c′ are respectively μ′ and μ-reduced because μα.c is
not a value in these cases. However, we follow Curien-Herbelin’s call-by-value
definition.

We finish this section by a lemma. It is useful for the section 5 simulation
theorems. Any command of the form e{μα.c} is a redex. However, some can not
be reduced in call-by-name nor in call-by-value.
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Lemma 2. e{μα.c} ∗→ c[α← e]

Proof. By induction on e.

– if e = β then e{μα.c} = [β]μα.c �ρ c[α← β]
– if e = β(t) then

e{μα.c} = [β] (t)μα.c
→μ′ [β]μα.c[α← α(t)]
�ρ c[α← α(t)][α← β]
= c[α← β(t)]

– if e = t · h then
e{μα.c} = h{(μα.c) t}

→μ h{μα.c[α← t · α]}
∗→ c[α← t · α][α← h]
= c[α← t · h]

This lemma does not hold in call-by-name for the β(t) induction case because
no μ′-rule is allowed. It holds in call-by-value if t is a value for the h · t induction
case.

3 λ̄μμ̃-Calculus

The λ̄μμ̃-calculus has the same relation against LK as the λμ-calculus against
NK. Reductions of λ̄μμ̃-calculus correspond to the cut elimination steps in LK
as well as the λμ-reductions correspond to the NK-normalisation. We follow the
definition given in [Curien and Herbelin, 2000]. Firstly, we present the grammar
of the λ̄μμ̃-calculus. Secondly, we present the simple type system. Thirdly, we
present generic reductions and their call-by-name and call-by-value projections.

The λ̄μμ̃-calculus is basically composed of terms, commands and contexts1.
They are defined by mutual induction:

t ::= x | λx.t | μα.c c ::= 〈t | e〉 e ::= α | t · e | μ̃x.c

As in the λμ, symbols x range over λ-variables, symbols α range over μ-variables
and symbols λ, μ and μ̃ are binders. Terms are equal modulo α-equivalence.

This calculus symmetry looks like LK’s left/right symmetry. It is confirmed
by its system of simple types. This system shares types with the λμ-calculus. It
shares the same kinds of sequents too. Its rules are:

x:A�x:A | | α:A�α:A
Γ�t:B | Δ

Γ\{x:A}�λx.t:A→B | Δ

Γ�t:A | Δ Γ ′ | e:B�Δ′
(∗)

Γ,Γ ′ | t·e:A→B�Δ,Δ′

c:(Γ�Δ)

Γ�μα.c:A | Δ\{α:A}
c:(Γ�Δ)

Γ\{x:A} | μ̃x.c:A�Δ

Γ�t:A | Δ Γ ′ | e:A�Δ′
(∗)

〈t | e〉:(Γ,Γ ′�Δ,Δ′)

The restriction (∗) is the same as that of λμ.
1 In [Dougherty et al., 2004] these are referred to respectively callers, callees and cap-

sules. We kept the terminology in [Curien and Herbelin, 2000] that sounds closer to
its meaning: terms are programs, contexts are environments and commands represent
“a closed system containing both the program and its environment”.
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We present one-step reduction rules. Substitutions inside the λ̄μμ̃-calculus
are supposed to be known. Each rule concerns a command but the θ-rule:

〈λx.u | t · e〉 →β 〈t | μ̃x.〈u | e〉〉 〈μα.c | e〉 →μ c[α← e]
μδ.〈t | δ〉 →θ t (δ /∈ t) 〈t | μ̃x.c〉 →μ̃ c[x← t]

μ and μ̃-reductions are duals of each other. They correspond to the structural
rules in LK. Reductions ∗→γ and ∗

�γ have the same meanings as in the λμ-
calculus. The β-rule is a mere term modification without term duplication. It
is therefore a linear reduction. The θ-reduction is linear too. There is no ρ-
reduction. It is a μ-rule particular case in which e = β.

This system is not deterministic. There is a single critical pair 〈μα.c | μ̃x.d〉.
It can be both μ or μ̃-rewritten so that Church-Rosser’s property does not hold.
In fact 〈μα.〈x | y · α〉 | μ̃x.〈z |x · β〉〉 is μ-rewritten as 〈x | y · μ̃x.〈z |x · β〉〉 and is
μ̃-rewritten as 〈z |μα.〈x | y · α〉 · β〉. These are two different normal forms.

Call-by-name and call-by-value disciplines still deal with this problem. They
both consist of restricting the context construction. The first new grammar is
called λ̄μμ̃T and the second is called λ̄μμ̃Q.

The call-by-name evaluation consists of restricting the μ-rule to a subset of
contexts that are called stacks. λ̄μμ̃T -grammar is:

t ::= x | λx.t | μα.c c ::= 〈t | e〉 s ::= α | t · s e ::= s | μ̃x.c

The μn-rule is restricted to the stacks:

〈μα.c | s〉→μn c[α← s]

Call-by-name reduction ∗→n is the union of ∗→γ for γ ∈ {β, μn, μ̃, θ}. The critical
pair can then only be μ̃-rewritten. This reduction was proved confluent and
stable in the λ̄μμ̃T -calculus in [Curien and Herbelin, 2000].

The call-by-value oriented grammar consists of allowing the t · e context con-
struction only for values. λ̄μμ̃Q-grammar is:

t ::= x | λx.t | μα.c v ::= x | λx.t c ::= 〈t | e〉 e ::= α | v · e | μ̃x.c

The μ̃v-rule is restricted to values:

〈v | μ̃x.c〉→μ̃v c[x← v]

Call-by-value reduction ∗→v is the union of ∗→γ for γ ∈ {β, μ, μ̃v, θ}. The com-
mand 〈μα.c |μα′.c′〉 can then only be μ-rewritten. This reduction was proved
confluent and stable in the λ̄μμ̃Q-calculus in [Curien and Herbelin, 2000].

The β′-rule contracts as shortcut for both a linear β-rule and a μ̃-rule:

〈λx.u | t · e〉 →β′ 〈u[x← t] | e〉

This β′-rule is obviously compatible with the call-by-name evaluation. It is also
compatible with the call-by-value because t is a value by definition of λ̄μμ̃Q.
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4 Translations Between λμ and λ̄μμ̃-Calculi

We define a translation ( )† from λμ to λ̄μμ̃. It extends that of Curien-Herbelin
to the λμ-contexts. We define backwards a translation ( )◦ from λ̄μμ̃ to λμ. We
prove properties about their compatibilities with the simple type system and
about their compositions.

Definition 3. Application ( )† maps any λμ-term t, command c and context e
respectively to a λ̄μμ̃-term, command and context. ( )† is defined by induction
on t, c and e:

t† =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x if t = x

λx.u† if t = λx.u

μβ.〈v† | μ̃y.〈u† | y · β〉〉 if t = (u) v ( )
μα.c† if t = μα.c

c† = [α] t† = 〈t† |α〉

e† =

⎧⎪⎨⎪⎩
α if e = α

μ̃y.〈t† | y · β〉 if e = β(t) (  )
t† · h† if e = t · h

Condition ( ) requires that variables y and β have no free occurrence in u neither
in v. Condition (  ) requires that y /∈ t. A straightforward induction leads us to
state that t and t† have the same free variables set.

It seems more natural to translate (u) v by μβ.〈u† | v† · β〉. This shorter term
corresponds in LK to the arrow elimination rule in NK too. But it would not
be compatible with the call-by-value evaluation. For example, (x)μα.c would be
translated as μβ.〈x |μα.c† · β〉 in this case. It can not be reduced by any rule in
the λ̄μμ̃-calculus. However, (x)μα.c can be μ′-reduced in the λμ-calculus.

(u) v should be translated as μβ.〈u† | μ̃y.〈v† | μ̃x.〈y |x · β〉〉〉 with Ong and
Stewart’s call-by-value definition in [Ong and Stewart, 1997].

We show that translation ( )† is compatible with the type system. If a typing
environment for a term t exists, it holds for t†.

Lemma 3. Γ * t : A | Δ =⇒ Γ * t† : A | Δ

Proof. By a straightforward induction on t. We show the less than obvious cases.

– if t = (u) v then t† = μβ.〈v† | μ̃y.〈u† | y · β〉〉 and

Γ ′�v†:A | Δ′

Γ�u†:A→B | Δ

y:A�y:A | | β:B�β:B

y:A | y·β:(A→B)�β:B

〈u† | y·β〉:(Γ,y:A�Δ,β:B)

Γ | μ̃y.〈u† | y·β〉�Δ,β:B

〈v† | μ̃y.〈u† | y·β〉〉:(Γ,Γ ′�Δ,Δ′,β:B)

Γ,Γ ′�μβ.〈v† | μ̃y.〈u† | y·β〉〉:B| Δ,Δ′
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– if e = β(t) then e† = μ̃y.〈t† | y · β〉 and

Γ�t†:(A→B) | Δ

y:A�y:A | | β:B�β:B

y:A | y·β:(A→B)�β:B

〈t† | y·β〉:(Γ,y:A�Δ,β:B)

Γ | μ̃y.〈t† | y·β〉:A�Δ,β:B

Definition 4. Application ( )◦ maps backwards any λ̄μμ̃-term t to a λμ-term.
Definition 1 is used to translate any λ̄μμ̃-command c. Definition of the λμ-
contexts is used to map the λ̄μμ̃-contexts e as well. ( )◦ is built by induction on
t, c and e:

t◦ =

⎧⎪⎨⎪⎩
x if t = x

λx.u◦ if t = λx.u

μα.c◦ if t = μα.c

c◦ = 〈t | e〉◦ = e◦{t◦}

e◦ =

⎧⎪⎨⎪⎩
α if e = α

t◦ · h◦ if e = t · h
β(λx.μδ.c◦) if e = μ̃x.c (∗)

Condition (∗) requires that δ /∈ c. t and t◦ have the same free variables set.
Application ( )◦ is compatible with the type system too.

Lemma 4. Γ * t : A | Δ =⇒ Γ * t◦ : A | Δ

Proof. By a straightforward induction on t. We give two cases.

– if c = 〈t | e〉 then c◦ = e◦{t◦} and

Γ�t:A | Δ Γ ′ | e:A�Δ′

〈t | e〉:(Γ,Γ ′�Δ,Δ′)

◦
= Γ�t◦:A | Δ Γ ′ | e◦:A�Δ′

lem. 1
e◦{t◦}:(Γ,Γ ′�Δ,Δ′)

– if e = μ̃x.c then e◦ = β(λx.μδ.c◦) and

c:(Γ�Δ)

Γ\{x:A} | μ̃x.c:A�Δ

◦
=

c◦:(Γ�Δ)

Γ�μδ.c◦:B | Δ

Γ\{x:A}�λx.μδ.c◦:(A→B)

Γ\{x:A} | β(λx.μδ.c◦):A�Δ,β:B

We focus on properties about the composition of ( )† and ( )◦. We want to
state that t†◦ = t and that t◦† = t for any term. But it is not the case, these
results hold modulo linear reductions.

Theorem 1. t†◦ ∗
� t

Proof. By a straightforward induction on t. Every cases is obtained successively
by expanding definitions 3, 1, 4 and by applying the induction hypothesis. We
give the case which uses linear reductions additionally.
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– if t = (u) v then

(u) v†◦ = μβ.〈v† | μ̃y.〈u† | y · β〉〉◦

= μβ.[γ] (λy.μδ.[β] (u†◦) y) v†◦
∗
� μβ.[γ] (λy.μδ.[β] (u) y) v
�β μβ.[γ]μδ.[β] (u) v
�ρ μβ.[β] (u) v
�θ (u) v

We prove two lemmas before stating backwards that ( )◦† is the identity
modulo linear reductions. The first lemma is useful to prove the second.

Lemma 5. 〈t0t1 . . . tn† | e〉 ∗
� 〈t0† | t1† · . . . · tn† · e〉

Proof. By induction on n.

– if n = 0 then it is obvious
– if n = m + 1 then

〈t0t1 . . . tmtm+1
† | e〉 = 〈μβ.〈tm+1

† | μ̃y.〈t0t1 . . . tm† | y · β〉〉 | e〉
�μ 〈tm+1

† | μ̃y.〈t0t1 . . . tm† | y · e〉〉
�μ̃ 〈t0t1 . . . tm† | tm+1

† · e〉
∗
� 〈t0† | t1† · . . . · tm† · tm+1

† · e〉

The second lemma shows how to map a definition 1 command.

Lemma 6. e{t}† ∗
� 〈t† | e†〉

Proof. By induction on e.

– if e = α then it is obvious by definitions 1 and 3
– if e = β(u) then

β(u){t}† = [β] (u) t†

= 〈μγ.〈t† | μ̃y.〈u† | y · γ〉〉 |β〉
�μ 〈t† | μ̃y.〈u† | y · β〉〉
= 〈t† |β(u)†〉

– if e = u · h then
u · h{t}† = h{(t)u}†

∗
� 〈(t)u† |h†〉
∗
� 〈t† |u† · h†〉
= 〈t† |u · h†〉

Theorem 2. t◦† ∗
� t

Proof. By induction on t. We apply definitions 3, 4 successively and the induction
hypothesis. We give a typical case and another which needs either the previous
lemma or linear reductions.
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– if c = 〈t | e〉 then
〈t | e〉◦† = e◦{t◦}†

∗
� 〈t◦† | e◦†〉
∗
� 〈t | e〉

– if e = μ̃x.c then
μ̃x.c◦† = β(λx.μβ.c◦)†

= μ̃y.〈λx.μβ.c◦† | y · β〉
∗
� μ̃y.〈λx.μβ.c | y · β〉
�β μ̃y.〈y | μ̃x.〈μβ.c |β〉〉
�μ̃ μ̃x.〈μβ.c |β〉
�μ μ̃x.c

5 Simulations Between λμ and λ̄μμ̃-Calculi

We want to prove that the λμ-calculus simulates and is simulated backwards
by the λ̄μμ̃-calculus. We focus on the undirected evaluation. Call-by-name and
call-by-value are drawn from this.

We begin with the simulation of the λμ by the λ̄μμ̃. The next four lemmas
show results of a λμ-substitution after a β, μ, μ′ and ρ-reduction. Each proof
consists successively of

– expanding the λμ-substitution
– expanding the definition of ( )†

– applying the induction hypothesis if necessary
– factorising the λ̄μμ̃-substitution
– factorising the definition of ( )†

We give basic cases and those which use lemmas additionally for any proof.

Lemma 7. t[x← u]† = t†[x← u†]

Proof. By induction on t.

– if t = x then x[x← u]† = u† = x†[x← u†]
– if t = y then y[x← u]† = y = y†[x← u†]
– if t = (v)w then

(v)w[x← u]† = (v[x← u])w[x← u]†

= μβ.〈w[x← u]† | μ̃y.〈v[x← u]† | y · β〉〉
= μβ.〈w†[x← u†] | μ̃y.〈v†[x← u†] | y · β〉〉
= μβ.〈w† | μ̃y.〈v† | y · β〉〉[x← u†]
= (v)w†[x← u†]

Lemma 8. t[α← u · α]† ∗
� t†[α← u† · α]

Proof. By induction on t.
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– if t = (a) b then

(a) b[α← u · α]† = (a[α← u · α]) b[α← u · α]†

= μβ.〈b[α← u · α]† | μ̃y.〈a[α← u · α]† | y · β〉〉
∗
� μβ.〈b†[α← u† · α] | μ̃y.〈a†[α← u† · α] | y · β〉〉
= μβ.〈b† | μ̃y.〈a† | y · β〉〉[α← u† · α]
= (a) b†[α← u† · α]

– if c = [α]w then

[α]w[α← u · α]† = [α]w[α← u · α]†

= u · α{w[α← u · α]}†

= 〈w[α← u · α]† |u† · α〉
∗
� 〈w†[α← u† · α] |u† · α〉
= 〈w† |α〉[α← u† · α]
= [α]w†[α← u† · α]

Lemma 9. t[α← α(u)]† ∗
� t†[α← μ̃y.〈y | y · α〉]u†

Proof. By induction on t.

– if t = (a) b then

(a) b[α← α(u)]†

= (a[α← α(u)]) b[α← α(u)]†

= μβ.〈b[α← α(u)]† | μ̃y.〈a[α← α(u)]† | y · β〉〉
∗
� μβ.〈b†[α← μ̃y.〈u† | y · α〉] | μ̃y.〈a†[α← μ̃y.〈u† | y · α〉] | y · β〉〉
= μβ.〈b† | μ̃y.〈a† | y · β〉〉[α← μ̃y.〈u† | y · α〉]
= (a) b†[α← μ̃y.〈u† | y · α〉]

– if c = [α]w then

[α]w[α← α(u)]† = [α] (w[α← α(u)])u†

= 〈(w[α← α(u)])u† |α〉
∗
� 〈w[α← α(u)]† |u† · α〉
∗
� 〈w†[α← μ̃y.〈u† | y · α〉] |u† · α〉
= 〈w† |α〉[α← μ̃y.〈u† | y · α〉]
= [α]w†[α← μ̃y.〈u† | y · α〉]

Lemma 10. t[α← β]† = t†[α← β]

Proof. By induction on t.

– if c = [α]u then
[α]u[α← β]† = [β]u[α← β]†

= 〈u[α← β]† |β〉
= 〈u†[α← β] |β〉
= 〈u† |α〉[α← β]
= [α]u†[α← β]
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Theorem 3 (simulation of the λμ-calculus by the λ̄μμ̃-calculus).

t→γ v =⇒ ∃u t† ∗→ u ∧ v† ∗
� u

Proof. By cases on γ.

– if γ = β then

(λx.u) v† = μβ.〈v† | μ̃y.〈λx.u† | y · β〉〉
�β μβ.〈v† | μ̃y.〈y | μ̃x.〈u† |β〉〉〉
�μ̃ μβ.〈v† | μ̃x.〈u† |β〉〉
→μ̃ μβ.〈u†[x← v†] |β〉
�θ u†[x← v†]
= u[x← v]†

– if γ = μ then

(μα.c) v† = μβ.〈v† | μ̃y.〈μα.c† | y · β〉〉
�μ̃ μα.〈μα.c† | v† · α〉
→μ μα.c†[α← v† · α]
≈ μα.c[α← v · α]†

– if γ = μ′ then

(v)μα.c† = μβ.〈μα.c† | μ̃y.〈v† | y · β〉〉
→μ μα.c†[α← μ̃y.〈v† | y · α〉]
≈ μα.c[α← α(v)]†

– if γ = ρ then
[β]μα.c† = 〈μα.c† |β〉

�μ c†[α← β]
= c[α← β]†

– if γ = θ then μδ.[δ] t† = μδ.〈t† | δ〉 �θ t†

Corollary 1 (call-by-name case). t→n v =⇒ ∃u t† ∗→n u ∧ v† ∗
�n u

Proof. By cases on β and μ-rules.
(λx.u) v is β-reduced in call-by-name without any restriction. It is simulated

in the λ̄μμ̃-calculus by a μ̃-reduction. The latter is in call-by-name without any
restriction too.

(μα.c) v is μ-reduced in call-by-name without any restriction. It is simulated
in the λ̄μμ̃-calculus by a μ-reduction. The latter is in call-by-name if v† · α is a
stack. It is the case by definition 3.

Corollary 2 (call-by-value case). t→v v =⇒ ∃u t† ∗→v u ∧ v† ∗
�v u
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Proof. By cases on β, μ and μ′-rules.
(λx.u) v is β-reduced in call-by-value if v is a value. It is simulated in the

λ̄μμ̃-calculus by a μ̃-reduction. The latter is in call-by-value if v† is a value. It
is the case by the definition of λ̄μμ̃Q.

(μα.c) v is μ-reduced in call-by-value if v is a value. It is simulated in the λ̄μμ̃-
calculus by a μ-reduction. The latter is in call-by-value without any restriction.

(v)μα.c is μ′-reduced in call-by-value without any restriction. It is simulated
in the λ̄μμ̃-calculus by a μ-reduction. The latter is in call-by-value without any
restriction as well.

The λ̄μμ̃-simulation by the λμ-calculus requires preliminary lemmas showing
that ( )◦ commutes over λμ and λ̄μμ̃-substitutions. Each proof consists of

– expanding the λ̄μμ̃-substitution
– expanding the definition of ( )◦

– applying the induction hypothesis if necessary
– factorising the λμ-substitution
– factorising the definition of ( )◦

Lemma 11. t[x← u]◦ = t◦[x← u◦]

Proof. By induction on t.

– if t = x then x[x← u]◦ = u◦ = x◦[x← u◦]
– if t = y then y[x← u]◦ = y = y◦[x← u◦]
– if t = 〈t | e〉 then

〈t | e〉[x← u]◦ = 〈t[x← u] | e[x← u]〉◦
= e[x← u]◦{t[x← u]◦}
= e◦[x← u◦]{t◦[x← u◦]}
= e◦{t◦}[x← u◦]
= 〈t | e〉◦[x← u◦]

Lemma 12. t[α← h]◦ = t◦[α← h◦]

Proof. By induction on t.

– if c = 〈t | e〉 then

〈t | e〉[α← h]◦ = 〈t[α← h] | e[α← h]〉◦
= e[α← h]◦{t[α← h]◦}
= e◦[α← h◦]{t◦[α← h◦]}
= e◦{t◦}[α← h◦]
= 〈t | e〉◦[α← h◦]

– if e = α then α[α← h]◦ = h◦ = α◦[α← h◦]
– if e = β then β[α← h]◦ = β◦ = β◦[α← h◦]
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Theorem 4 (simulation of the λ̄μμ̃-calculus by the λμ-calculus).

t→γ v =⇒ ∃u t◦ ∗→ u
∗
� v◦

Proof. By cases on γ.

– if γ = β′ then
〈λx.u | v · e〉◦ = v◦ · e◦{λx.u◦}

= e◦{(λx.u◦) v◦}
→β e◦{u◦[x← v◦]}
= e◦{u[x← v]◦}
= 〈u[x← v] | e〉◦

– if γ = μ then
〈μα.c | e〉◦ = e◦{μα.c◦}

∗→ c◦[α← e◦]
= c[α← e]◦

– if γ = μ̃ then
〈t | μ̃x.c〉◦ = [β] (λx.μδ.cδ) t◦

→β [β]μδ.c◦[x← t◦]
�ρ c◦[x← t◦]
= c[x← t]◦

– if γ = θ then μδ.〈t | δ〉◦ = μδ.[δ] t◦ �θ t◦

Corollary 3 (call-by-name case). t→n v =⇒ ∃u t◦ ∗→n u
∗
�n v◦

Proof. By cases on β′, μ and μ̃-rules.
〈λx.u | v · e〉 is β′-reduced in call-by-name without any restriction. It is simu-

lated in the λμ-calculus by a β-reduction. The latter is in call-by-name without
any restriction too.
〈μα.c | e〉 is μ-reduced in call-by-name if e 
= μ̃x.c′ else it were μ̃-reduced.

It is simulated in the λμ-calculus with the help of lemma 2. The latter is in
call-by-name if e◦ 
= β(t) i.e. if e 
= μ̃x.c′. It is the case by definition 4.
〈t | μ̃x.c〉 is μ̃-reduced in call-by-name without any restriction. It is simulated

in the λμ-calculus by a β-reduction. The latter is in call-by-name without any
restriction as well.

Corollary 4 (call-by-value case). t→v v =⇒ ∃u t◦ ∗→v u
∗
�v v◦

Proof. By cases on β′, μ and μ̃-rules.
〈λx.u | v · e〉 is β′-reduced in call-by-value if v is a value. It is simulated in

the λμ-calculus by a β-reduction. The latter is in call-by-value if v◦ is a value.
It is the case by definition 4.
〈μα.c | e〉 is μ-reduced in call-by-value if e is either a μ-variable or a context

of the form v · h where v is a value or a μ-abstraction by the definition of λ̄μμ̃Q.
It is simulated in the λμ-calculus with the help of lemma 2. The latter is in
call-by-value if v◦ is a value in a context of the form h◦ · v◦ i.e. if v is a value in
a v · h context. It is the case by definition 4.
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〈t | μ̃x.c〉 is μ̃-reduced in call-by-value if t is a value. It is simulated in the
λμ-calculus by a β-reduction. The latter is in call-by-value if t◦ is a value. It is
the case by definition 4.

6 Conclusion

Analysis of the λμ and λ̄μμ̃-calculi has shown their computational equivalence.
It holds for undirected evaluations of pure calculi (see theorems 3 and 4). This
result is then easily obtained for call-by-name and call-by-value evaluations (see
corollaries 1, 2, 3 and 4). It concerns the simple type system too (see lemmas 3
and 4).

The simulation of the λ̄μμ̃-calculus by the λμ-calculus is smoother than the
simulation of the λμ-calculus by the λ̄μμ̃-calculus. The first is obtained with the
help of linear reductions whereas the second is obtained with the help of linear
expansions.

This work can be extended in three ways. The first consists of proving the
same results for the call-by-value evaluation of the λμ-calculus defined in [Ong
and Stewart, 1997]. The second consists of defining CPS translations to λ-
calculus in order to complete [Curien and Herbelin, 2000]. The third consists
of extending the type system to the other logical constants.
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Reduction in a Linear Lambda-Calculus
with Applications to Operational Semantics

Alex Simpson

LFCS, School of Informatics, University of Edinburgh, UK

Abstract. We study beta-reduction in a linear lambda-calculus derived
from Abramsky’s linear combinatory algebras. Reductions are classified
depending on whether the redex is in the computationally active part of a
term (“surface” reductions) or whether it is suspended within the body of
a thunk (“internal” reductions). If surface reduction is considered on its
own then any normalizing term is strongly normalizing. More generally, if
a term can be reduced to surface normal form by a combined sequence of
surface and internal reductions then every combined reduction sequence
from the term contains only finitely many surface reductions. We apply
these results to the operational semantics of Lily, a second-order linear
lambda-calculus with recursion, introduced by Bierman, Pitts and Russo,
for which we give simple proofs that call-by-value, call-by-name and call-
by-need contextual equivalences coincide.

1 Introduction

The language Lily was introduced by Bierman, Pitts and Russo in [3]. It is a
typed lambda-calculus based on a second-order intuitionistic linear type theory
with recursion. What makes it interesting from a programming language per-
spective is that, following ideas of Plotkin [10], the language is able to encode
a remarkably rich range of datatype constructs (eager products, lazy products,
coproducts, polymorphism, abstract types, recursive types, etc.). Furthermore,
its linearity makes it potentially useful for modelling single-threadedness and
other state and resource-related concepts, cf. [7].

The main achievement of [3] was to establish direct operational techniques
for reasoning about Lily up to contextual equivalence. Such techniques include
useful extensionality properties, and a powerful framework for establishing pro-
gram equalities using an adaptation (based on [8]) of Reynolds’ relational para-
metricity (first introduced in [11]). In order to get this machinery to work, the
authors of [3] need to first establish one key result about Lily, a result which
pervades all further developments in their paper. This result, the so-called Strict-
ness Theorem, asserts the (surprising at first sight) fact that call-by-name and
call-by-value operational semantics for Lily both give rise to the same notion of
contextual equivalence.

The outline proof of the Strictness Theorem in [3] makes rather heavy use
of the well-stocked armoury of known operational techniques. In particular it
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c© Springer-Verlag Berlin Heidelberg 2005



220 Alex Simpson

uses Howe’s method [4] to obtain a version of Mason and Talcott’s ciu theo-
rem [6]. The starting point for the research in this paper was the realisation
that basic techniques from rewriting could be applied to obtain an alternative,
self-contained and essentially simple proof of the Strictness Theorem.

In Sec. 2, we review Lily and its operational semantics. Then, in Secs. 3
and 4, we present our alternative proof of the Strictness Theorem. We translate
Lily into a simple untyped linear lambda-calculus containing: linear lambda
abstractions, λx.M ; non-linear lambda abstractions, λ!x.M , which require their
arguments to be suspended as “thunks”; and thunks themselves, !M . We study
beta-reduction in this untyped calculus, making the restriction that, as thunks
are considered suspended, reductions should not take place within a thunk. This
restricted relation, which we call surface reduction, turns out to be extremely
well behaved: as well as the expected confluence property, it holds that every
normalizing term is strongly normalizing. The Strictness Theorem for Lily fol-
lows easily from this latter fact, using straightforward simulations under surface
reduction of call-by-name and call-by-value evaluation for Lily.

In Sec. 5, we (temporarily) turn attention away from Lily and take a deeper
look at our untyped linear lambda-calculus and its reduction properties. In order
to obtain a conversion relation between terms that is a congruence, it is neces-
sary to consider also reductions inside thunks. We call such reductions internal
reductions, and we call arbitrary reductions (either surface or internal) combined
reductions. As well as the expected confluence properties (for both internal and
combined reductions), we show that internal reductions can always be postponed
until after surface reductions. Further, we show that if a term reduces (under
combined reduction) to a surface normal form then any sequence of combined
reductions contains only finitely many surface reductions.

Next, in Sec. 6, we return to Lily and show that the results of Sec. 5 again
have applications to operational semantics. We use them to establish the equiva-
lence of the call-by-name operational semantics of Lily with an implementation-
oriented call-by-need semantics. Once again, the equivalence of these two seman-
tics had previously been established by the authors of [3], but with an intricate
and lengthy proof (private communication). Our proof turns out to be relatively
straightforward.

Finally, in Sec. 7, we observe that our untyped linear lambda-calculus is
exactly the lambda-calculus counterpart of Abramsky’s linear combinatory alge-
bras, presented in [1]. This connection makes us believe that the linear lambda-
calculus introduced in this paper is rather natural. Accordingly, it is plausible
that the properties of reduction established in Secs. 3 and 5 may turn out to
have other applications, perhaps again in the area of operational semantics, but
possibly more widely.

2 Lily and Its Operational Semantics

In this section, we review the language Lily, a typed λ-calculus, based on second-
order intuitionistic linear type theory with recursion, introduced in [3].
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The language of types for Lily contains just three type constructors: linear
function space σ � τ ; linear “exponentials” !σ, used to type thunks; and uni-
versally quantified types ∀α. σ, used for polymorphism. Types σ, τ, . . . are thus
built up from type variables α, β, . . . , according to the grammar:

σ ::= α | σ � τ | !τ | ∀α. τ .

As usual, α is bound in ∀α. τ . We write ftv(σ) for the set of free type variables
in σ (and below apply the same notation to terms and contexts in the evident
way). If ftv(σ) = ∅ then σ is said to be closed.

Although simple, the above language of types is remarkably rich. For exam-
ple, the other type constructors of intuitionistic linear logic can all be encoded:
non-linear (intuitionistic) function space, σ → τ , using Girard’s !σ � τ ; tensor,
⊗, product, & and sum, ⊕. One can also encode basic ground types (booleans,
natural numbers, etc.), and existentially quantified types ∃α. σ, and, due to the
recursion operator in Lily, arbitrary recursive types. These encodings are due
to Plotkin [10], see [3] for details.

The term language of Lily is the expected typed λ-calculus associated with
the above types, together with a recursion operator1. Raw terms s, t, . . . are
built from term variables x, y, . . . according to the grammar:

t ::= x | λx :σ. t | s(t) | !t | let !x = s in t | Λα. t | t(σ) | recx :σ. t .

Here, x is bound in λx :σ. t, in let !x = s in t 2 and in recx :σ. t, and α is bound
in Λα. t. We write fv(t) for the set of free variables in a term t. We identify
terms up to α-equivalence.

Γ ; x :σ � x : σ Γ, x :σ;− � x : σ

Γ ;Δ, x :σ � t : τ

Γ ; Δ � λx :σ. t : σ � τ

Γ ; Δ � s : σ � τ Γ ; Δ′ � t : σ

Γ ; Δ, Δ′ � s(t) : τ

Γ ;− � t : τ

Γ ;− � !t : !τ

Γ ; Δ � s : !σ Γ, x :σ;Δ′ � t : τ
Δ # x :σ

Γ ;Δ, Δ′ � let !x = s in t : τ

Γ ; Δ � t : τ
α /∈ ftv(Γ, Δ)

Γ ; Δ � Λα. t : ∀α. τ

Γ ; Δ � t : ∀α. τ

Γ ;Δ � t(σ) : τ [σ/α]

Γ, x :σ;− � t : σ

Γ ;− � rec x :σ. t : σ

Fig. 1. Typing rules for Lily.

1 We depart from [3] by building an explicit recursion operator into Lily, instead of
incorporating recursion within thunks. This is an inessential difference.

2 For simplicity, we place an inessential restriction in the typing rules ensuring that
the term let !x = s in t is well typed only when x does not occur free in s.
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s → s′

s(t) → s′(t)

t → t′

t(σ) → t′(σ) (Λα. t)(σ) → t[σ/α]

s → s′

let !x = s in t → let !x = s′ in t
let !x = !s in t → t[s/x] rec x :σ. t → t[rec x :σ. t/x]

t →vl t′

(λx :σ. s)(t) →vl (λx :σ. s)(t′) (λx :σ. s)(v) →vl s[v/x] (λx :σ. s)(t) →nm s[t/x]

Fig. 2. Call-by-value and Call-by-name Evaluation for Lily.

The typing rules for Lily are based on Barber and Plotkin’s DILL [2]. We use
Γ,Δ, . . . to range over “contexts”, which are finite functions from term variables
to types. We write Γ#Δ to say that the domains of Γ and Δ are disjoint.
The typing rules manipulate sequents Γ ;Δ * t : σ where Γ#Δ. Here, Γ types
the “intuitionistic” variables appearing in the term t, which have no restriction
on how they occur, and Δ types the “linear” variables, each of which occurs
exactly once in t, not within the scope of a ! or rec operator. The typing rules
are presented in Fig. 1. In them, a comma always denotes a disjoint union of
contexts and a dash denotes the empty context. We write t : τ to mean that
the sequent * t : τ is derivable, where τ is a closed type (t is necessarily a closed
term).

Following [3], we define two operational semantics for Lily, one using a call-
by-value evaluation of function application, and one using call-by-name. In both
cases, the operational semantics reduces terms to values v, . . . , which are terms
of the form:

v ::= λx :σ. t | !t | Λα. t .

In contrast to [3], we give the operational semantics in a small-step style. This
facilitates our proofs, but only in an inessential way, the equivalence of big-step
and small-step definitions being anyway easy to establish.

Figure 2 defines two small-step evaluation relations t →vl t
′ and t →nm t′

between Lily terms. The call-by-value (or strict) relation t→vl t
′ is inductively

defined by the two specific →vl rules for application together with all rules
written using the neutral→ notation. Similarly, the call-by-name (or non-strict)
relation t →nm t′ is defined by the specific →nm rule for application together
with the neutral rules. Note that both operational semantics are deterministic.

Our interest lies in the operational semantics of Lily programs, i.e. of closed
terms of closed type. It is easily seen that if t : σ and t →vl t

′ then t′ : σ (and
similar if t →nm t′). Also, by induction on the structure of t, one sees that if
t : σ then t does not reduce under →vl if and only if t is a value (and similar for
→nm). We write t ↓vl (resp. t ↓nm) for the “termination” property: there exists
a value v such that t →∗

vl v (resp. t →∗
nm v), where, as usual, R∗ (resp. R+)

denotes the reflexive-transitive (resp. transitive) closure of the relation R.
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The program below shows that sometimes call-by-name evaluation terminates
when call-by-value does not (cf. [3, Example 2.2]).

(λf :∀α.α � ∀α.α. λx :∀α.α. f(x))(rec g :∀α.α � ∀α.α. g) (1)

This program has type ∀α.α � ∀α.α. An important insight of [3], is that the
most useful notion of contextual equivalence for Lily is obtained by only ob-
serving termination for programs of exponential type !τ . The restriction to such
observations corresponds to observing termination at ground types (such as
booleans, naturals, etc.), it yields desirable extensionality properties for contex-
tual equivalence, and it is crucial to the correctness of Plotkin’s [10] encodings
of datatype constructions in Lily.

The key result of [3] that underpins its entire study of contextual equivalence
for Lily is the “Strictness Theorem”.

Theorem 2.1 (Strictness Theorem [3]3). If t : !τ then t ↓vl if and only if
t ↓nm.

When termination observations are restricted to exponential types, it follows
immediately from the theorem that both call-by-value and call-by-name opera-
tional semantics induce the same contextual equivalence.

We remark that the Strictness Theorem is stated in the most general form
possible: the result holds for no types other than exponential types, as simple
adaptations of (1) readily show. This suggests that any proof of Theorem 2.1
has to uncover some crucial property of exponential types. The machinery used
in [3] to this end has already been mentioned in Section 1. In this paper, we
shall instead prove Theorem 2.1 using surprisingly elementary techniques from
rewriting, translating Lily into a very simple untyped linear λ-calculus in which
(the appropriate notion of) β-reduction simulates both call-by-value and call-
by-name operational semantics. This untyped linear λ-calculus includes explicit
thunks, and it is the treatment of these thunks that will reflect the all-important
behaviour of Lily at exponential type.

3 A Linear Lambda-Calculus and Surface Reduction

In this section, we intruduce our untyped linear λ-calculus. Its main ingredients
are: applications MN ; linear lambda abstractions, λx.M ; non-linear lambda
abstractions, λ!x.M , which require their arguments to be suspended as thunks;
and thunks themselves, !M . Formally, raw terms M,N, . . . are built up from
variables x, y, . . . according to the grammar:

M ::= x |MN | λx.M | λ!x.M | !M .

The variable x is bound in both λx.M and λ!x.M . We write ≡ for syntactic
equality of terms modulo α-equivalence.
3 The theorem as stated here is easily shown to be equivalent to the original [3, The-

orem 2.3].
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(λx.M)(N) → M [N/x] (λ!x.M)(!N) → M [N/x]

M → M ′

MN → M ′N

N → N ′

MN → MN ′
M → M ′

λx.M → λx.M ′
M → M ′

λ!x.M → λ!x.M ′

Fig. 3. Surface Reduction.

We say that x is linear in M if x occurs free exactly once in M and, moreover,
this free occurence of x does not lie within the scope of a ! operator in M . A term
M is said to be linear if, in every subterm of M the form λx.M ′, it holds that
x is linear in M ′. Henceforth, we consider linear terms only.

In Fig. 3, we define a version of β-reduction for our calculus. The important
points are the two types of redex, and that no reduction occurs under the scope
of a ! operator. The latter restriction reflects the idea that thunks are suspended
computations. We call the reduction defined in Fig. 3 surface reduction. It is
easily shown that when M is linear and M → N then N is linear. From now
on, all similar observations about linearity will be omitted. All operations we
consider will respect the linearity of terms.

A term is said to be in surface normal form if there is no surface reduction
from the term. Trivially, any term !M is in surface normal form. A reduction
sequence from M is a finite or infinite sequence M ≡ M0 → M1 → M2 → . . . .
A completed reduction sequence is a reduction sequence that is either infinite or
is finite with the last term in the sequence in surface normal form.

The linearity restriction on terms combines with the disallowance of reduction
within thunks to ensure that the basic well-behavedness properties of surface
reduction are almost trivial to establish. The main, though very simple, results
of this section are Corollaries 3.3 and 3.4 below. (Only the latter is used in the
proof of Theorem 2.1.)

Lemma 3.1

1. If M →M ′ then M [N/x]→M ′ [N/x].
2. If N → N ′ and x is linear in M then M [N/x]→M [N ′/x].

Proposition 3.2. If M → L and M → L′ then either L ≡ L′ or there exists N
such that L→ N and L′ → N .

Proof. By induction on the structure of M , considering all possible cases for
M → L and M → L′. We consider only the two redex cases.

If M ≡ (λx.M1)(M2) → M1[M2/x] ≡ L and L 
≡ L′ then either L′ ≡
(λx.L′

1)(M2) where M1 → L′
1 or L′ ≡ (λx.M1)(L′

2) where M2 → L′
2. In the first

case, we have L→ L′
1[M2/x], by Lemma 3.1.1, and also L′ → L′

1[M2/x]. In the
second, we have L→M1[L′

2/x], by Lemma 3.1.2, and also L′ →M1[L′
2/x].

If M ≡ (λ!x.M1)(!M2)→M1[M2/x] ≡ L and L 
≡ L′ then L′ ≡ (λ!x.L′
1)(!M2)

where M1 → L′
1. Thus L→ L′

1[M2/x], by Lemma 3.1.1, and also L′ → L′
1[M2/x].

��
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Corollary 3.3 (Confluence). If M →∗ M1 and M →∗ M2 then there exists
N such that M1 →∗ N and M2 →∗ N .

Corollary 3.4 (Uniform normalization). If M →∗ V is a k-step reduction
sequence, where V is in surface normal form, then every reduction sequence from
M has at most k steps, and every completed reduction sequence has exactly k
steps and terminates with V . In particular, if a term is normalizing under surface
reduction then it is strongly normalizing.

4 Proof of the Strictness Theorem

The proof is based on a simple translation of Lily into the untyped linear λ-
calculus of Sec. 3. The translation uses an untyped recursion construct, defined
by:

μx.M =def (λ!x.M [x(!x) / x])( !λ!x.M [x(!x) / x]) .

Observe that μx.M →M [(μx.M)/x].
To every raw term t of Lily, we define a raw term t∗, in the grammar from

Sec. 3, by induction on the structure of t. In the definition, we make use of a
distinguished variable u, used as a dummy translation for types.

x∗ =def x (let !x = s in t)∗ =def (λ!x.t∗)(s∗)
(λx :σ. t)∗ =def λx.t

∗ (Λα. t)∗ =def λ!w.t∗ w /∈ fv(t∗)
(s(t))∗ =def s

∗ t∗ (t(σ))∗ =def t
∗(!u)

(!t)∗ =def ! t∗ (recx :σ. t)∗ =def μx.t
∗ .

The four lemmas below are straightforward.

Lemma 4.1. (s[t/x])∗ ≡ s∗[t∗/x].

Lemma 4.2. If Γ ;Δ * t : σ then the raw term t∗ is linear.

Lemma 4.3. If t1 →vl t2 then t∗1 → t2
∗.

Lemma 4.4. If t1 →nm t2 then t∗1 → t2
∗.

Corollary 4.5. If t : !τ then the following are equivalent:

1. t ↓vl ,
2. t ↓nm ,
3. t∗ is surface normalizing.

Proof. To show that 1 implies 3, suppose that t ↓vl . Then there exists v with
v : !τ such that t →∗

vl v. As v : !τ , it holds that v ≡ !t′. By Lemma 4.3,
t∗ →∗ (!t′)∗ ≡ !(t′∗). But !(t′∗) is in surface normal form, hence t∗ is surface
normalizing.

For the converse, suppose t 
↓vl. Then there exists an infinite sequence of call-
by-value evaluation steps t ≡ t0 →vl t1 →vl t2 →vl . . . . Whence, by Lemma 4.3,
t∗ has an infinite surface reduction sequence. Thus, by Corollary 3.4, t∗ is not
normalizing under surface reduction.

The equivalence of 2 and 3 is shown in the same way, using Lemma 4.4. ��



226 Alex Simpson

M → M ′

!M ��� !M ′

M ��� M ′

MN ��� M ′N

N ��� N ′

MN ��� MN ′

M ��� M ′

λx.M ��� λx.M ′
M ��� M ′

λ!x.M ��� λ!x.M ′
M ��� M ′

!M ��� !M ′

Fig. 4. Internal Reduction.

Theorem 2.1 is immediate from the corollary. Note that the point that fails for
Lily programs t : σ of arbitrary type is that it is not in general the case that
t ↓vl (or t ↓nm) implies that t∗ is surface normalizing, because, apart from at ex-
ponential type, Lily values do not necessarily translate to surface normal forms,
indeed not even to surface normalizing terms (for example, λx :σ. rec y :τ. y).

It is worth remarking that the techniques of this section can similarly be
used to show that variant operational semantics for Lily, in which evaluation
takes place under Λ- and/or λ-abstractions, also give rise to the same contextual
equivalence.

5 Internal and Combined Reduction

In this section, we undertake a deeper study of reduction in our untyped linear λ-
calculus. While surface reduction is computationally motivated, the disallowance
of reduction inside thunks means that the conversion relation induced by sur-
face reduction is not a congruence. To obtain a conversion relation that is a
congruence, it is necessary to consider reduction inside thunks.

We implement reduction inside thunks using internal reduction, M ��� M ′,
defined in Figure 4. Combined reduction M ⇒ M ′ is defined by: M ⇒ M ′ if
M →M ′ or M ��� M ′. Note that it is possible that both M →M ′ and M ���
M ′ (for example, Ω(!Ω) → Ω(!Ω) and Ω(!Ω) ��� Ω(!Ω), where Ω =def μx. x,
using the notation of Section 4). Accordingly, when we consider mixed reduction
sequences containing both surface and internal reductions, we shall assume that
each step comes with a distinguished status (as surface or internal).

The main technical effort of this section will go into the proof of Proposi-
tions 5.1 and 5.2 below.

Proposition 5.1 (Confluence)

1. If M ���∗ M1 and M ���∗ M2 then there exists N such that M1 ���∗ N
and M2 ���∗ N .

2. If M ⇒∗ M1 and M ⇒∗ M2 then there exists N such that M1 ⇒∗ N and
M2 ⇒∗ N .

By the proposition, the conversion relation defined by M =β M ′ if there exists
N such that M ⇒∗ N and M ′ ⇒∗ N is an equivalence relation. It is, moreover,
a congruence. Thus surface and internal reduction together provide an oriented
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decomposition of the natural β-conversion between terms of the untyped linear
calculus. The next result exhibits natural structure within this decomposition.

Proposition 5.2 (Internal Postponement). If M ⇒∗ N , by a reduction
sequence containing k surface reductions, then there exists L such that M →∗

L ���∗ N , where the surface reduction sequence M →∗ L contains at least k
reductions.

The proofs of the two propositions above make use of the (standard) technol-
ogy of parallel reduction relations. Before giving these, we apply Proposition 5.2
to derive further properties of and interactions between surface, internal and
combined reduction. The main result of the section is Theorem 5.5 below.

Lemma 5.3. If M → N and M ��� M ′ then there exists N ′ such that M ′→N ′.

Proof. By induction on the derivation of M → N . We consider one case.
Suppose M ≡ (λ!x.M1)(!M2)→M1[M2/x] ≡ N . Either M ′ ≡ (λ!x.M ′

1)(!M2)
where M1 ��� M ′

1, or M ′ ≡ (λ!x.M1)(!M ′
2) where M2 ⇒ M ′

2. In the first case,
M ′ →M ′

1[M2/x]. In the second, M ′ →M1[M ′
2/x]. ��

Corollary 5.4. If V is in suface normal form then:

1. V ��� N implies N is in surface normal form.
2. M ��� V implies M is in surface normal form.

Proof. Statement 1 follows from Proposition 5.2, and statement 2 from
Lemma 5.3. ��

Theorem 5.5. If M ⇒∗ V , where V is in surface normal form, then each
infinite ⇒ reduction sequence from M contains only finitely many → reductions.

Proof. By Proposition 5.2, there exists U such that M →∗ U ���∗ V . By Corol-
lary 5.4.2, U is in surface normal form. Let k be the number of reductions in the
sequence M →∗ U . We show that every ⇒ reduction sequence from M contains
at most k surface reductions. Consider any reduction sequence M ⇒∗ N with l
surface reductions. By Proposition 5.2, there exists L such that M →∗ L with
at least l reductions. But, by Corollary 3.4, any → reduction sequence from M
has at most k reductions. Thus indeed l ≤ k. ��

We now turn to the proofs of Propositions 5.1 and 5.2, which use the parallel
versions of combined and internal reduction defined in Figs. 5 and 6 respectively.

Lemma 5.6

1. M 
 
⇒M and M 
 
���M .
2. If M ⇒M ′ then M 
 
⇒M ′. Conversely, if M 
 
⇒M ′ then M ⇒∗ M ′.
3. If M ��� M ′ then M 
 
���M ′. Conversely, if M 
 
���M ′ then M ���∗ M ′.
4. If M 
 
���M ′ then M 
 
⇒M ′.

Lemma 5.7

1. If M 
 
⇒M ′ and N 
 
⇒N ′ then M [N/x] 
 
⇒M ′[N ′/x].
2. If M 
 
���M ′ and N 
 
���N ′ then M [N/x] 
 
���M ′[N ′/x].
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x � �⇒x

M � �⇒M ′ N � �⇒N ′

(λx.M)(N) � �⇒M ′[N ′/x]

M � �⇒M ′ N � �⇒N ′

(λ!x.M)(!N) � �⇒M ′[N ′/x]

M � �⇒M ′ N � �⇒N ′

MN � �⇒M ′N ′
M � �⇒M ′

λx.M � �⇒λx.M ′
M � �⇒M ′

λ!x.M � �⇒λ!x.M ′
M � �⇒M ′

!M � �⇒ !M ′

Fig. 5. Parallel Combined Reduction.

x � ���� x

M � ���� M ′ N � ���� N ′

MN � ���� M ′N ′

M � ���� M ′

λx.M � ���� λx.M ′
M � ���� M ′

λ!x.M � ���� λ!x.M ′
M � �⇒M ′

!M � ���� !M ′

Fig. 6. Parallel Internal Reduction.

Lemma 5.8

1. If M 
 
⇒M1 and M 
 
⇒M2 then there exists N such that M1 
 
⇒N and M2 
 
⇒N .
2. If M 
 
���M1 and M 
 
���M2 then there exists N such that M1 
 
���N and

M2 
 
���N .

Proof. The proof, which is by induction on the structure of M , is a routine
analysis of all possible cases, cf. [9]. ��

Proposition 5.1 is a straightforward consequence the last lemma.
The remaining lemmas are directed towards the proof of Proposition 5.2.

Sub-lemma 5.9. If M 
 
���M ′, N 
 
⇒N ′ and N →∗ N ′′ 
 
���N ′ then there exists
L such that M [N/x]→∗ L 
 
���M ′[N ′/x].

Proof. By a straightforward induction on the derivation of M 
 
���M ′. ��

Lemma 5.10. If M 
 
⇒M ′ then there exists L such that M →∗ L 
 
���M ′.

Proof. By induction on the derivation of M 
 
⇒M ′. The most interesting case is
when M ≡ (λ!x.M1)(!M2) 
 
⇒M ′

1[M
′
2/x] ≡ M ′, where M1 
 
⇒M ′

1 and M2 
 
⇒M ′
2.

Then, by induction hypothesis, there exist L1, L2 such that M1 →∗ L1 
 
���M ′
1

and M2 →∗ L2 
 
���M ′
2. By Sub-lemma 5.9, there exists L such that L1[M2/x]→∗

L 
 
���M ′
1[M ′

2/x]. Thus M ≡ (λ!x.M1)(!M2) → M1[M2/x] →∗ L1[M2/x] →∗

L 
 
���M ′
1[M

′
2/x] ≡M ′, as required. ��

Lemma 5.11. If M 
 
���L→ N then there exists L′ such that M → L′ 
 
⇒N .
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Proof. By induction on the derivation of L→ N . We consider two cases.
If L ≡ (λ!x.L1)(!L2) → L1[L2/x] ≡ N , then M ≡ (λ!x.M1)(!M2) where

M1 
 
���L1 and M2 
 
⇒L2. Thus M → M1[M2/x] and, by Lemmas 5.6 and 5.7,
we have that M1[M2/x] 
 
⇒L1[L2/x] ≡ N . Hence the result holds with L′ =def

M1[M2/x].
If L ≡ L1L2 → N1L2 ≡ N , where L1 → N1, then M ≡ M1M2 where

M1 
 
���L1 and M2 
 
���L2. By induction hypothesis, there exists L′
1 such that

M1 → L′
1 
 
⇒N1. Thus M → L′

1M2 
 
⇒N1L2, hence the result holds with L′ =def

L′
1M2. ��

Proof (of Proposition 5.2). We have a reduction sequence M ⇒∗ N , possibly
consisting of both → and ��� rewrites. This can equally well be viewed as a
sequence of → and 
 
��� rewrites. We begin by associating a complexity measure
to any such reduction sequence of → and 
 
��� rewrites. To do this, first assign
to to each 
 
��� rewrite in the sequence the number of → rewrites that occur to
the right of it. We thus obtain a sequence of numbers, one for each 
 
��� rewrite,
which we write in ascending order (equivalently, we write in sequence starting
with the rightmost 
 
��� rewrite and working leftwards). For example, the rewrite
sequence

M ≡M0 
 
���M1 
 
���M2 →M3 →M4 
 
���M5 →M6 
 
���M7 ≡ N

gets assigned the sequence 0, 1, 3, 3. This sequence is our complexity measure.
Now take the sequence of → and 
 
��� rewrites reducing M to N . If this

sequence does not contain a subsequence Mi 
 
���Mi+1 → Mi+2, then we have
M →∗ M ′ 
 
��� ∗N , and hence M →∗ M ′ ���∗ N as required.

Otherwise, select a two-step subsequence Mi 
 
���Mi+1 → Mi+2. Using
Lemma 5.11 followed by 5.10, replace this with a sequence Mi → M ′ →∗

M ′′ 
 
���Mi+2. One thus obtains a new reduction sequence from M to N contain-
ing the same number of 
 
��� rewrites and at least as many → rewrites (possibly
more). However, because the identified 
 
��� rewrite is shifted to the right, the
complexity measure of the new sequence is below that of the original in the
lexicographic ordering. Thus by repeatedly selecting two-step subsequences, we
repeatedly reduce the complexity measure until we obtain a reduction sequence
M →∗ M ′ 
 
��� ∗N containing at least as many surface rewrites as the original
sequence. Therefore M →∗ M ′ ���∗ N , as required. ��

6 Call-by-Need Operational Semantics for Lily

In the Lily expressions let !x = s in t and recx : σ. t, the variable x may oc-
cur zero, one or several times in t. Because of this, the natural implementation
mechanism is call-by-need, whereby the evaluation of the terms substituted for
such variables is shared. (In contrast, in an application (λx :σ. t)(s), the variable
x occurs exactly once in t, and there is no call for sharing.) An operational se-
mantics implementing such a call-by-need evaluation strategy is presented in [3],
and the authors have proved that the call-by-need semantics does not affect the
notion of contextual equivalence (private communication). In this section, we
outline a straightforward proof of this result.
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1. (S, s(t), H) →nd (S 〈(−)(t)〉, s, H)

2. (S, let !x = s in t, H) →nd (S 〈let !x = (−) in t〉, s, H)

3. (S, t(σ), H) →nd (S 〈(−)(σ)〉, t, H)

4.∗ (S, rec x :σ. t, H) →nd (S 〈x〉, t, [x �→ t ]H)

5.∗ (S 〈(−)(t)〉, λx :σ. s, H) →nd (S, s[t/x], H)

6.∗ (S 〈let !x = (−) in t〉, !s, H) →nd (S, t, [x �→ s]H)

7.∗ (S 〈(−)(σ)〉, Λα. t, H) →nd (S, t[σ/α], H)

8.∗ (S, x, H) →nd (S 〈x〉, H(x), H)

9. (S 〈x〉, v, H) →nd (S, v, H [v/x])

∗ active reductions, see Appendix A.

Fig. 7. Call-by-need Evaluation for Lily.

Again, rather than using the big-step operational semantics of [3], which is
based on [5, 12], it is convenient for our purposes to use a small-step version,
following [13]. We use S, . . . to range over variable/frame stacks, which are se-
quences of items of two forms: (i) 〈F 〉, where F is an “evaluation frame”,

F ::= (−)(t) | let !x = (−) in t | (−)(σ) ;

(ii) or 〈x〉, for a variable x. We use H to range over heaps, which are finite
sequences of assignments of the form [x �→ t], with all variables x distinct.

The call-by-need evaluation relation is defined in Fig. 7. It implements a
single-step relation of the form (S, t,H) →nd (S′, t′, H ′). Roughly, this is inter-
preted as saying that the Lily term built up from t using the nested evaluation
frames in S evaluates in a single step to the term built from t′ using the frames
in S′. In Fig. 7, when we write [x �→ t]H , we assume that x is not in the domain
of H . We treat heaps H as functions, writing H(x) for the value assigned to x,
and writing H [v/x] for the heap obtained from H by replacing the existing term
assigned to x (which is assumed to be in the domain of H) with v.

The call-by-need evaluation of a Lily program t : σ starts off with the
configuration (ε, t, ε) (where ε is the empty sequence) and then proceeds deter-
ministically according to the rules in Fig. 7. Either an infinite sequence of →nd

reductions results, or the evaluation terminates in a configuration of the form
(ε, v,H) for some (possibly open) value v. If the latter case holds, we write t ↓nd.
The main result of this section states that, for programs of arbitrary type, the
call-by-need semantics terminates if and only if the call-by-name semantics does.

Theorem 6.1. If t : σ then t ↓nd if and only if t ↓nm.

The sharing of recursion implemented in Fig. 7, introduces cycles into the
heap, and this makes it hard to give a direct operational proof of the equivalence
of call-by-name and call-by-need, see [12] for discussion. This difficulty has, in
fact, been overcome by the authors of [3], but their proof is highly involved
(private communication).
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We give a significantly simpler proof that call-by-name and call-by-need co-
incide. First, we define an almost trivial translation of Lily into itself, which
serves the purpose of “padding out” the call-by-name semantics (sic) for the
purpose of facilitating its comparison with the call-by-need semantics. The re-
maining step is to prove that the “almost trivial” translation really is trivial.
For this last step, we again translate into the untyped linear λ-calculus of Sec. 3,
this time applying Theorem 5.5.

The almost trivial translation from Lily to itself, is the identity everywhere,
except for the translation of thunks, which are padded with a dummy recursion,
acting as delay.

(!s)† =def !(rec z :τ. s†) z /∈ fv(s) .

Here, we are translating well-typed terms Γ ;Δ * t : σ, to well-typed terms Γ ;Δ *
t† : σ, and the type τ introduced above is determined by this requirement.

Lemma 6.2. If t : σ then t ↓nd if and only if t† ↓nm.

To prove Lemma 6.2, one shows that the call-by-name evaluation of t† simulates
the call-by-need evaluation of t. Crucially, the padding of thunks ensures that
rule 8 of Fig. 7 always corresponds to a →nm reduction for the term generated
from t† by inserting it in the context determined by F and substituting, for each
variable x with associated heap assignment [x �→ s], a term recx : σ. s0, where
s0 is the term originally assigned to x when it was first added to the heap. More
details are given in Appendix A.

Theorem 6.1 now follows from the lemma below, which is an easy application
of Theorem 5.5.

Lemma 6.3. If t : σ then t ↓nm if and only if t† ↓nm.

Proof. We give another translation from Lily into our untyped linear λ-calculus.

x‡ =def x (let !x = s in t)‡ =def (λ!x.t‡)(s‡)

(λx :σ. t)‡ =def !(λ!x.t‡) (Λα. t)‡ =def ! t‡

(s(t))‡ =def (λ!w.w(!t‡))(s‡) (t(σ))‡ =def (λ!z.z)(t‡)

(!t)‡ =def ! t‡ (recx :σ. t)‡ =def μx. t
‡

It is easily established that, for t : σ we have that t ↓nm if and only if t‡ is
surface normalizing. However, we have (t†)‡ ���∗ t‡. Therefore, by Theorem 5.5,
t‡ is surface normalizing if and only if (t†)‡ is. Thus indeed t ↓nm if and only if
t† ↓nm. ��

More generally, a similar application of Theorem 5.5 shows that call-by-name
termination is preserved by the congruence relation on Lily terms generated by
the call-by-name reductions. In other words, the natural “conversion relation”
on Lily terms is correct with respect to contextual equivalence. Of course, the
use of rewriting methods for establishing such simple results goes back to [9].
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7 Linear Combinatory Algebras

The aim of this short final section is to demonstrate that our untyped linear λ-
calculus is the λ-calculus counterpart of Abramsky’s linear combinatory algebras,
see [1]. This gives some evidence that our calculus arises reasonably naturally,
independently of is applications to operational semantics.

Definition 7.1. A !-applicative structure is an algebra (A, ·, !) where · is a bi-
nary operation on the set A and ! is a unary operation.

As is standard, we usually omit the “application” operation ‘·’, using a simple
juxtaposition xy for x · y. Application associates to the left (i.e. xyz = (xy)z).

Definition 7.2 ([1]). A linear combinatory algebra is a !-applicative structure
(A, ·, !) in which there exist elements I,B,C,K,W,D, δ,F ∈ A satisfying:

Ix = x Wx(!y) = x(!y)(!y)
Bxyz = x(yz) D(!x) = x

Cxyz = xzy δ(!x) = !!x
Kx(!y) = x F(!x)(!y) =!(xy) .

The main result of this section asserts that linear combinatory algebras are
characterized by a form of combinatory completeness in which the forms of
implicit λ-abstraction available correspond to the two forms λx.M and λ!x.M
of our untyped linear λ-calculus. Moreover, the equalities associated with the
implicit abstractions agree with the two redex forms in Fig. 3.

A !-applicative polynomial over a set A is a syntactic expression built up
using elements of A as constants, variables x, y, . . . , and operator symbols ‘·’,
and ‘!’. Any !-applicative structure (A, ·, !) induces an evident equality relation
between polynomials.

We say that a variable x is linear in a !-applicative polynomial e, if it occurs
exactly once, and not within the scope of a ‘!’-operator symbol. We write vars(e)
for the set of variables occurring in e, and linvars(e) for the set of variables that
are linear in e.

Theorem 7.3 (Linear combinatory completeness). For any !-applicative
structure (A, ·, !), the following are equivalent.

1. (A, ·, !) is a linear combinatory algebra.
2. For any !-applicative polynomial e over A,

(a) if x ∈ linvars(e) then there exists a polynomial λ∗x. e with vars(λ∗x. e) =
vars(e)−{x} and linvars(λ∗x. e) = linvars(e)−{x} such that the equality
(λ∗x. e)(x) = e holds;

(b) there exists a polynomial λ!∗x. e with vars(λ!∗x. e) = vars(e) − {x} and
linvars(λ!∗x. e) = linvars(e)− {x} such that (λ!∗x. e)(!x) = e.

It follows easily from the theorem that the closed linear terms of our untyped
λ-calculus, considered modulo =β (see Sec. 5), themselves form a linear combi-
natory algebra.
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A Outline Proof of Lemma 6.2

The main technical lemma we need is Lemma A.1 below. This concerns con-
figurations (S, t,H) arrived at by a sequence (ε, s, ε) →∗

nd (S, t,H) for some
program s : σ. Given such a sequence, and any term t′ with fv(t′) contained in
the domain of H , (the term t is one such), we define t′[H ] as follows. If H = ε
then t′[H ] =def t. If H = [x �→ u]H ′ then t′[H ] =def (t′[(recx : σ′. u0)/x])[H ′],
where u0 is the first value assigned to x in a heap occuring along the sequence
(ε, s, ε) →∗

nd (S, t,H), and σ′ is the appropriate type. Here t′[H ] is an abuse of
notation since the value does not solely depend on H . In fact, for any two heaps
H1, H2 occurring in the sequence (ε, s, ε) →∗

nd (S, t,H) and containing fv(t′),
it holds that t′[H1] ≡ t′[H2]. Also, for any term t′ we define [S]t′ as follows.
If S = ε then [S]t′ =def t′. If S = S′ 〈(−)(s′)〉 then [S]t′ =def [S′](t′(s)). If
S = S′ 〈let !x = − in s′〉 then [S]t′ =def [S′](let !x = t′ in s′). If S = S′ 〈(−)(σ′)〉
then [S]t′ =def [S′](t′(σ′)). If S = S′ 〈x〉 then [S]t′ =def [S′]t′. Finally, we call
reductions number 4–8, in Fig. 7, active, and the others passive.



234 Alex Simpson

Lemma A.1. Suppose s : σ and (ε, s, ε)→∗
nd (S, t,H).

1. If x is declared in H then (x[H ])† →+
nm ((H(x))[H ])†.

2. If S = S0 〈x〉S1 then (x[H ])† →+
nm (([S1]t)[H ])†.

3. If (S, t, H)→nd (S′, t′, H ′), where S = S0 S1 and S′ = S0 S
′
1, then it holds

that (([S1]t)[H ])† →∗
nm (([S′

1]t′)[H ′])†. Moreover, if the call-by-need reduction
step is active then the call-by-name sequence contains at least one reduction.

All three statements are proved simultaneously, by induction on the length of
the reduction sequence (ε, s, ε) →∗

nd (S, t,H). For space reasons, we omit the
details.

Proof (of Lemma 6.2). If t ↓nd then it follows easily from Lemma A.1.3 that
t† ↓nm. If t 
↓nd then there exists an infinite→nd reduction sequence from (ε, t, ε).
Because the four passive reductions either strictly reduce the size of the term
component in a configuration, or retain the same term and reduce the size of the
stack, the infinite sequence cannot contain infinitely many consecutive passive
reductions. Therefore, it must contain infinitely many active reductions. Thus,
again by Lemma A.1.3, t† has an infinite →nm reduction sequence. So indeed
t† 
↓nm. ��
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Abstract. A lambda term is linear if every bound variable occurs ex-
actly once. The same constant may occur more than once in a linear term.
It is known that higher-order matching in the linear lambda calculus is
NP-complete (de Groote 2000), even if each unknown occurs exactly once
(Salvati and de Groote 2003). Salvati and de Groote (2003) also claim
that the interpolation problem, a more restricted kind of matching prob-
lem which has just one occurrence of just one unknown, is NP-complete
in the linear lambda calculus. In this paper, we correct a flaw in Salvati
and de Groote’s (2003) proof of this claim, and prove that NP-hardness
still holds if we exclude constants from problem instances. Thus, multiple
occurrences of constants do not play an essential role for NP-hardness of
higher-order matching in the linear lambda calculus.

1 Introduction

While the second-order unification problem modulo β and βη [5] and the sixth-
order matching problem modulo β are undecidable [9] (matching modulo βη is
still open), some subclasses of the matching problem are known to be decidable.
In the second-order case [6], third-order case [4], and fourth-order case [10], the
matching problem is decidable. These results as well as others we will mention
below hold for both β and βη-matching.

Another kind of restriction on matching concerns the number of occurrences
of variables in solutions (and in problem instances). A λ-term is k-duplicating
if every variable (other than unknowns) occurs free at most k times in each of
its subterms1. Dougherty and Wierzbicki [3] show that the matching problem
of determining whether there is a k-duplicating solution for a given problem
instance is decidable. Moreover, they show matching in the 1-duplicating (i.e.,
affine) lambda calculus is NP-complete by extending the result by de Groote [1]
that matching in the linear lambda calculus is NP-complete.
1 This definition slightly differs from the definition given by Dougherty and

Wierzbicki [3]. But the difference is not essential.
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An affine λ-term is linear if every lambda abstractor binds exactly one occur-
rence of the bound variable. Salvati and de Groote [12] prove that NP-hardness
of the second-order matching problem in the linear lambda calculus still holds if
the linearity is imposed on occurrences of unknowns, i.e., each unknown occurs
exactly once in the problem.

There is another result on matching involving the linearity given by Levy [8].
He gives some conditions under which second-order unification with the restric-
tion that a solution must substitute linear λ-terms for unknowns is decidable.

In Salvati and de Groote’s paper [12], they also discuss a more restricted kind
of matching problem, called the interpolation problem, which has just one oc-
currence of just one unknown. Interpolation in the linear lambda calculus plays
an important role for parsing and generation with a certain grammar formal-
ism [2, 11], but we will not present this formalism here. Regrettably, Salvati
and de Groote’s proof of NP-completeness of third-order interpolation in the
linear lambda calculus contains an error. In this paper we correct the flaw and
prove NP-completeness of third-order interpolation in the linear lambda calcu-
lus. While no free variable occurs twice or more in a linear λ-term, the num-
ber of occurrences of constants is not constrained. Since constants behave like
free variables, the natural question arises which asks whether NP-hardness still
holds when we exclude constants from problem instances. This paper shows that
fourth-order interpolation in the linear lambda calculus is NP-complete even in
the absence of constants. Therefore, multiple occurrences of constants do not
play an essential role for NP-hardness of higher-order matching in the linear
lambda calculus.

2 Basic Definitions

Definition 1. Let A be a finite set of atomic types. The set T(A) of types built
on A is defined as follows:

– An atomic type o ∈ A is a type in T(A).
– If γ, δ ∈ T(A), then γ → δ ∈ T(A).

The order Od of a type is defined as follows:

– The order Od(o) of an atomic type o ∈ A is 1.
– The order of γ → δ is defined by Od(γ → δ) = max{Od(γ) + 1,Od(δ)}.

γ1 → γ2 → · · · → γn → δ abbreviates γ1 → (γ2 → (· · · → (γn → δ) . . . ))) and
γn → δ abbreviates γ → · · · → γ︸ ︷︷ ︸

n times

→ δ.

Definition 2. A higher-order signature Σ is a triple 〈A,C,Tp〉 where A is a
finite set of atomic types, C is a finite set of constants, and Tp is a function from
C to T(A).

Definition 3. For a higher-order signature Σ, we obtain a countably infinite set
X of variables and a countably infinite set U of unknowns such that for every
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type γ ∈ T(A), there are infinitely many variables of type γ and infinitely many
unknowns of type γ. The set of λ-terms constructed on Σ = 〈A,C,Tp〉 and the
extension of Tp to λ-terms are recursively defined as follows:

– A constant a ∈ C is a λ-term.
– A variable x ∈ X of type γ ∈ T(A) is a λ-term. We write Tp(x) = γ.
– An unknown X ∈ U of type γ ∈ T(A) is a λ-term. We write Tp(X) = γ.
– For two λ-terms M and N , if Tp(M) = γ → δ and Tp(N) = γ then MN is

a λ-term of type Tp(MN) = δ.
– For a variable x ∈ X of a type γ and a λ-term M , λx.M is a λ-term of type

Tp(λx.M) = γ → Tp(M).

The set of free variables of a λ-term denoted by FV is defined as follows:

– FV(a) = ∅ for a ∈ C. FV(x) = {x} for x ∈ X . FV(X) = ∅ for X ∈ U .
– FV(MN) = FV(M) ∪ FV(N) for λ-terms M and N .
– FV(λx.M) = FV(M)− {x} for a variable x ∈ X and a λ-term M .

Definition 4. A λ-term M is closed iff (if and only if) FV(M) = ∅. M is affine
iff for every subterm N of M , any variable x occurs free in N at most once. M
is relevant iff for every subterm λx.N of M , x occurs free in N at least once. M
is linear iff M is affine and relevant.

Note that a closed λ-term can contain unknowns and that constants and un-
knowns may occur any number of times in a linear λ-term.

To represent types of linear λ-terms, we use � instead of → according to
the custom. We use upper case italic letters A,B,C, . . . for λ-terms, but X and
Y for unknowns, lower case italic letters x, y, z, . . . for variables, and sanserif
a, b, . . . for constants. We abbreviate (. . . (M1M2) . . . )Mn to M1M2 . . .Mn, and
λx1.(. . . (λxn.M) . . . ) to λx1 . . . xn.M or λ�x.M if �x means the sequence x1, ..., xn.
Also for a finite set Y of variables, we write λY.M under the assumption that
the variables in Y are ordered in an appropriate manner. We define MN0 = M
and MNn+1 = MNnN . We write M [x := N ] for the usual capture-avoiding
substitution of a λ-term N for a variable x ∈ X , and similarly, M [X := N ] for
capture-avoiding substitution for an unknown X ∈ U . We abbreviate a simulta-
neous substitution [x1 := N1, . . . , xn := Nn] to [�x := �N ] when �x means x1, . . . , xn

and �N means N1, . . . , Nn. For a substitution σ, M1 . . .Mnσ means (M1 . . .Mn)σ.
If a λ-term M is of the form M = M0M1 . . .Mn where M0 ∈ C ∪ X ∪ U , we say
that M0 is the head of M and that Mi is an argument of M0 in M for i ≥ 1. We
define β-normal form, η-long form, β-reduction �β, βη-equivalence =βη etc., in
the usual way. We simply say “normal form” for β-normal form and “long form”
for η-long form.

Definition 5. A unification equation is a pair of closed λ-terms 〈L,R〉 of the
same type. Let �X be the unknowns in 〈L,R〉. A substitution σ = [ �X := �N ]
where �N contain no unknowns is a solution for 〈L,R〉 modulo β iff Lσ =β Rσ.
σ is a solution for 〈L,R〉 modulo βη iff Lσ =βη Rσ. A matching equation is
a unification equation 〈L,R〉 such that R has no unknowns. An interpolation
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equation is a matching equation 〈L,R〉 such that L has just one occurrence of
just one unknown as its head, i.e., L = XL1 . . . Lm, where each Li contains no
unknowns. The order of a unification equation is defined to be the maximum of
the orders of the types of the unknowns appearing in the equation. The unifica-
tion, matching, and interpolation problem modulo β (βη) are decision problems
which ask whether or not there is a solution modulo β (βη) for given unification,
matching, interpolation equations respectively. The unification, matching, and
interpolation problem in the linear lambda calculus allow only linear λ-terms as
problem instances and solutions.

3 NP-Complete Varieties of the Satisfiability Problem

As a preparation for showing NP-completeness of interpolation in the linear
lambda calculus, we introduce some NP-complete problems.

Definition 6. Let V be a finite set of Boolean variables. Let V be the set of
positive literals and ¬V = {¬v | v ∈ V} the set of negative literals. We then
define the set of literals as V ∪ ¬V . An instance of the satisfiability problem (or
Sat in short) S on V is a collection of clauses which are non-empty subsets of
V ∪ ¬V . A valuation ψ on V is a mapping from V ∪ ¬V to {0, 1} such that
ψ(v)+ψ(¬v) = 1 for all v ∈ V . A clause C ∈ S is satisfied by a valuation ψ via a
literal w ∈ V∪¬V iff w ∈ C and ψ(w) = 1. A Sat S is satisfied by a valuation ψ iff
every C ∈ S is satisfied by ψ. A Sat S is satisfiable iff there is ψ that satisfies S.

It is well known that the question of whether a given S is satisfiable is NP-
complete.

Definition 7. An mP-Sat S is a Sat such that each positive literal v ∈ V
occurs exactly m times in S. An nN-Sat S is a Sat such that each negative
literal ¬v ∈ ¬V occurs exactly n times in S.

A Sat S is polarized iff each clause C ∈ S contains only positive literals or
only negative literals. We say C is positive if C ⊆ V , and C is negative if C ⊆ ¬V .

By combining the above definitions we define an mPnN-Sat to be a Sat which
is at the same time an mP-Sat and an nN-Sat.

Theorem 1. The question of whether a given 2P1N-Sat S is satisfiable or not
is NP-complete.

Proof. For a given Sat S on V , we construct a 2P1N-Sat S′ on V ′ such that S
is satisfiable iff S′ is satisfiable.

(i) For each vi ∈ V , let mi be the number of occurrences of positive literal vi

in S and ni be the number of occurrences of negative literal ¬vi in S.
(ii) Introduce new Boolean variables vi,j for 1 ≤ j ≤ mi and ui,k for 1 ≤ k ≤ ni.
(iii) Replace the j-th occurrence of the positive literal vi with vi,j for 1≤j≤mi.
(iv) Replace the k-th occurrence of the negative literal ¬vi with ui,k for 1 ≤

k ≤ ni.
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(v) Add clauses {vi,j,¬vi,j+1} for 1 ≤ j < mi, {vi,mi , ui,1}, {¬ui,k, ui,k+1}
for 1 ≤ k < ni, and {¬ui,ni ,¬vi,1}. (If mi = 0, then add the clause
{¬ui,ni , ui,1}. If ni = 0, then add the clause {vi,mi ,¬vi,1}.)

By the construction, S′ is a 2P1N-Sat. It is clear that if S is satisfied by ψ, then S′

is also satisfied by ψ′ where ψ′(vi,j) = ψ(vi) and ψ′(ui,k) = ψ(¬vi). Conversely,
suppose that S′ is satisfied by a valuation ψ′. The condition (v) ensures that
ψ′(vi,1) = 0 implies ψ′(vi,2) = · · · = ψ′(vi,mi) = ψ′(¬ui,1) = · · · = ψ′(¬ui,ni) = 0
and that ψ′(vi,1) = 1 implies ψ′(¬ui,ni) = · · · = ψ′(¬ui,1) = ψ′(vi,mi) = · · · =
ψ′(vi,2) = 1. Therefore, S is also satisfied by ψ for ψ(vi) = ψ′(vi,1). ��

Theorem 2 (Kilpeläinen and Mannila [7]). The question of whether a given
polarized 1N-Sat S is satisfiable or not is NP-complete2.

Proof. For a given Sat S on V , we construct a polarized 1N-Sat S′ on V ′ such
that S is satisfiable iff S′ is satisfiable.

V ′ = {vi, ui | vi ∈ V}
S′ = {C′ | C ∈ S} ∪ {{vi, ui}, {¬vi,¬ui} | vi ∈ V}

where C′ = {vi | vi ∈ C} ∪ {uj | ¬vj ∈ C} ��

Definition 8. For a polarized 1N-Sat S = {C1, . . . , Cm,D1, . . . ,Dn} on V =
{v1, . . . , vl} where each Cj is a positive clause and each Dk is a negative clause,
we define the following two functions μS and νS which represent the positive
and negative occurrences of each Boolean variable respectively:

μS(i, j) =

{
j if vi ∈ Cj

0 otherwise
, νS(i) = k for ¬vi ∈ Dk

for 1 ≤ i ≤ l and 1 ≤ j ≤ m.

Since each negative literal occurs exactly once in a 1N-Sat, the unary function
νS is well-defined. We omit the subscript S of μS and νS if no confusion occurs.

4 Interpolation in the Linear Lambda Calculus

While every interpolation equation 〈XL1 . . . Lm, R〉 has a trivial solution [X :=
λx1 . . . xm.R] in the (general) lambda calculus, the interpolation problem in the
linear lambda calculus is not trivial. That the interpolation problem in the linear
lambda calculus is in NP is an immediate corollary of the following theorem.

Theorem 3 (de Groote [1]). The matching problem in the linear lambda cal-
culus is NP-complete.

2 In the original paper, they do not mention the restriction on polarity, though their
proof entails it.
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Note that the definition of matching equations by de Groote [1] allows λ-terms
which are not closed and he proves that the problem is in NP under the assump-
tion that R is closed. He claims that if R has a free variable x, 〈L,R〉 admits
a solution iff 〈λx.L, λx.R〉 admits a solution. That is not the case for L = X
and R = x, since a substitution for an unknown avoids capturing free variables.
But this is not a serious error at all. Clearly 〈L,R〉 admits a solution iff 〈L′, R′〉
admits a solution where L′ and R′ are obtained by replacing each free variable
x in L and R with a fresh constant ax.

Theorem 4 (Salvati and de Groote [12]). Second-order matching in the
linear lambda calculus is NP-complete even if every unknown appears exactly
once.

As already mentioned in the introduction, Salvati and de Groote [12, Propo-
sition 3] claim that third-order interpolation in the linear lambda calculus is NP-
complete by a reduction from a 1N-Sat. For a given 1N-Sat S = {C1, . . . , Cm}
on V = {v1, . . . , vl}, they define a third-order interpolation equation 〈L,R〉 on
Σ = 〈A,C,Tp〉 as follows3:

A = {o}, C = {a, cj, g | 1 ≤ j ≤ m},
Tp(xj) = Tp(a) = o, Tp(cj) = om� o, Tp(g) = ol � o,

L = X(λx1 . . . xm.c1x1 . . . xm) . . . (λx1 . . . xm.cmx1 . . . xm),
R = gV1 . . . Vl for Vi = NiPi,1 . . . Pi,m

where Ni = cj for ¬vi ∈ Cj and Pi,j =

{
cja

m if vi ∈ Cj

a otherwise
.

We present a counterexample to their claim that S is satisfiable iff 〈L,R〉 has a
solution. Consider their reduction from the following 1N-Sat S:

Instance S : C1 = {v1}, C2 = {¬v1}
Reduction 〈L,R〉 : L = X(λx1x2.c1x1x2)(λx1x2.c2x1x2)

R = g
(
c2(c1aa)a

)
They state that 〈L,R〉 has no solution, since S is not satisfiable. In fact, however,
[X := λy1y2.g

(
y2(y1aa)a

)
] is a solution for 〈L,R〉.

In this section, we present a correct proof for the proposition that third-order
interpolation in the linear lambda calculus is NP-complete by a reduction from
a polarized 1N-Sat.

Definition 9. Suppose that a polarized 1N-Sat S = {C1, . . . , Cm,D1, . . . ,Dn}
on V = {v1, . . . , vl} is given where each Cj is a positive clause and each Dk is
a negative clause. We define an interpolation equation 〈LS , RS〉 on a higher-
order signature Σ = 〈A,C,Tp〉, where A = {o}, C = {cj , dk, f, g | 0 ≤ j ≤ m

3 An inessential change is made to the original reduction to facilitate comparison with
our reduction.
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and 1 ≤ k ≤ n}, and Tp(xj) = Tp(cj) = o, Tp(dk) = om � o, Tp(f) = o �
o, Tp(g) = ol � o. Let

LS = XC1 . . . CmD1 . . . Dn

where

⎧⎪⎨⎪⎩
Cj = fcj

Dk = λx1 . . . xm.dk(fx1) . . . (fxm)
Tp(X) = om � (om � o)n � o and Od(X) = 3

,

RS = gV1 . . . Vl

where Vi = dν(i)(fcμ(i,1)) . . . (fcμ(i,m)).

The intuition behind the reduction is the following. Each Cj in LS represents
the positive clause Cj and each Dk in LS represents the negative clause Dk. Each
Vi in RS represents the occurrences of the Boolean variable vi ∈ V in the clauses
of S. Vi contains cj for j 
= 0 (respectively dk) iff vi appears in Cj (resp. ¬vi

appears in Dk). If S is satisfied by a valuation ψ, then for each Cj (resp. Dk),
there is vi ∈ Cj (resp. ¬vi ∈ Ck) such that ψ(vi) = 1 (resp. ψ(¬vi) = 1). In
this case, we can construct a solution [X := λy1 . . . ymz1 . . . zn.gU1 . . . Ul] which
puts the argument Cj (resp. Dk) of X into Ui via yj (resp. zk) and makes Ui

equivalent to Vi by β-reduction (see Example 1). Conversely if 〈LS , RS〉 has a
solution [X := S], then S must be of the form λy1 . . . ymz1 . . . zn.gU1 . . . Ul and
must put each argument Cj (resp. Dk) of X into Ui for some i via yj (resp.
zk) by the linearity. Then, one can find a valuation ψ such that if S puts the
argument Cj (resp. Dk) into Ui, then ψ satisfies Cj via vi (resp. Dk via ¬vi).
The presence of the constant f is the essential difference between Salvati and de
Groote’s reduction [12] and ours. Due to the number of occurrences of f in Vi for
each i, Cj and Dk cannot simultaneously be put into the same Ui for any j and
k. This corresponds to the fact that any valuation ψ on V cannot simultaneously
satisfy Cj via vi and Dk via ¬vi (see Example 2).

Example 1. Instance S : C1 = {v1}, C2 = {v1, v2}, D1 = {¬v1,¬v2}

Reduction 〈LS , RS〉 : LS = X(fc1)(fc2)
(
λx1x2.d1(fx1)(fx2)

)
RS = g

(
d1(fc1)(fc2)

)(
d1(fc0)(fc2)

)
Let ψ be defined as ψ(v1) = 1, ψ(v2) = 0. Corresponding to the fact that ψ satis-
fies C1 via v1, C2 via v1, and D1 via ¬v2, we give a solution [X := λy1y2z1.gU1U2]
which puts the argument C1 of X into U1, C2 into U1, and D1 into U2. That is,
we give a solution [X := S] where

S = λy1y2z1.g(d1y1y2)(z1c0c2).

Indeed, we obtain

LS [X := S] = SC1C2D1 �β g(d1C1C2)(D1c0c2) �β RS .
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Example 2. Instance S : C1 = {v1}, C2 = {v2}, D1 = {¬v1,¬v2}

Reduction 〈LS , RS〉 : LS = X(fc1)(fc2)
(
λx1x2.d1(fx1)(fx2)

)
RS = g

(
d1(fc1)(fc0)

)(
d1(fc0)(fc2)

)
S is not satisfiable and 〈LS , RS〉 has no solution. e.g.,

LS [X := λy1y2z1.g
(
d1y1(fc0)

)(
z1c0y2

)
]

�β g
(
d1(fc1)(fc0)

)(
d1(fc0)(f(fc2))

)

=β RS .

Lemma 1. 〈LS , RS〉 admits a solution whenever S is satisfiable.

Proof. Suppose that S is satisfied by a valuation ψ. Then, for each clause of S,
one can choose a literal via which ψ satisfies the clause. Let a function φ from
S to V ∪ ¬V be such a choice. That is, φ(Cj) ∈ Cj, ψ(φ(Cj)) = 1, φ(Dk) ∈ Dk,
and ψ(φ(Dk)) = 1. Define S by

S = λy1 . . . ymz1 . . . zn.gU1 . . . Ul

Ui =

{
zν(i)cμ(i,1) . . . cμ(i,m) if φ(Dν(i)) = ¬vi

dν(i)Ui,1 . . . Ui,m otherwise

Ui,j =

{
yj if φ(Cj) = vi

fcμ(i,j) otherwise
.

First we confirm the linearity of S. Each zk indeed occurs exactly once in S,
since zk appears in Ui iff φ(Dk) = ¬vi. For yj , let i be such that φ(Cj) = vi.
Then, ψ(vi) = 1 and thus φ(Dν(i)) 
= ¬vi because ψ(φ(Dν(i))) = 1. Hence,
Ui = dν(i)Ui,1 . . . Ui,m and the only occurrence of yj in S is in Ui,j . Therefore, S
is a linear λ-term.

In order to see that LS [X := S] �β RS , it is enough to check that Uiσ �β Vi

for the substitution σ = [y1 := C1, . . . , ym := Cm, z1 := D1, . . . , zn := Dn]. If
φ(Dν(i)) = ¬vi, then

Uiσ = Dν(i)cμ(i,1) . . . cμ(i,m)

= (λx1 . . . xm.dν(i)(fx1) . . . (fxm))cμ(i,1) . . . cμ(i,m)

�β dν(i)(fcμ(i,1)) . . . (fcμ(i,m))
= Vi.

If φ(Dν(i)) 
= ¬vi, then it is easy to see that Ui,jσ = fcμ(i,j). If φ(Cj) 
= vi,
Ui,jσ = fcμ(i,j)σ = fcμ(i,j). Otherwise, φ(Cj) = vi implies μ(i, j) = j and Ui,jσ =
yjσ = Cj = fcj = fcμ(i,j). Thus,

Uiσ = dν(i)Ui,1 . . . Ui,mσ �β dν(i)(fcμ(i,1)) . . . (fcμ(i,m)) = Vi. ��

Lemma 2. S is satisfiable whenever 〈LS , RS〉 admits a solution.
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Proof. Suppose that [X := S] is a solution for 〈LS , RS〉. We can assume that S is
in long normal form and S = λy1 . . . ymz1 . . . zn.S

′. Let σ denote the substitution
[�y := �C, �z := �D]. Since S′σ �β RS , S′ must be equal to gU1 . . . Ul for some
λ-terms Ui such that Uiσ �β Vi. It is obvious that the head of each Ui is either
zν(i) or dν(i). We show that S is satisfied by the valuation ψ defined as follows:

ψ(vi) =

{
0 if the head of Ui is zν(i)

1 otherwise

We show that each positive clause Cj ∈ S is satisfied by ψ. Suppose that yj

appears in Ui. Then, the head of Ui cannot be zk for any k, because if both yj

and zk are in Ui, Uiσ contains at least (m + 1) occurrences of f, so Uiσ never
β-reduces to Vi, which contains exactly m occurrences of f. Thus, the head of
Ui is dν(i) and ψ(vi) = 1. Since yjσ = fcj , Uiσ and Vi must contain cj and this
implies μ(i, j) = j, i.e., vi ∈ Cj . So ψ satisfies Cj via vi.

We show that each negative clause Dk ∈ S is satisfied by ψ. Suppose that
zk appears in Ui. Since zkσ contains dk, k = ν(i) and the head of Ui is zk.
Therefore, ψ(vi) = 0 and ¬vi ∈ Dk. So ψ satisfies Dk via ¬vi. ��

Proposition 1. Third-order interpolation modulo β (βη) in the linear lambda
calculus is NP-complete.

Proof. By Theorem 3 and Lemmas 1 and 2. ��

The above proof also entails NP-hardness of third-order interpolation in the
relevant lambda calculus.

It is clear that the second-order interpolation problem in the linear lambda
calculus is in P. The following proposition demonstrates the essential difference
between the second-order case and the third-order case.

Proposition 2. Third-order interpolation modulo β (βη) in the linear lambda
calculus is NP-complete even if all the constants, variables (other than the un-
known) and arguments of the unknown in the problem instances have types o or
o � o.

Proof. By a reduction from a 2P1N-Sat S = {C1, . . . , Cm} on V = {v1, . . . , vl}.
We define an interpolation equation 〈L,R〉 on Σ = {A,C,Tp} as follows:

A = {o}, C = {cj, f | 1 ≤ j ≤ m}, Tp(cj) = Tp(f) = o � o,

L = XC1 . . . Cm

where Cj = λx.f(cj(fx)) for Tp(x) = o and Tp(X) = (o � o)m � o � o,
R is the normal form of λx.V1(. . . (Vlx) . . . )

where Vi = λx.(f(cπ(i,1)(f(cν(i)(f(cπ(i,2)(fx)))))),
π(i, k) = j if the k-th occurrence of the positive literal vi is in Cj, and
ν(i) = j if the occurrence of the negative literal ¬vi is in Cj .
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The intuition behind the reduction is similar to the previous reduction. To fa-
cilitate discussion, assume that π(i, 1) 
= ν(i) 
= π(i, 2) for every i. If there is a
solution σ for 〈L,R〉, then one can find a valuation ψ which satisfies S such that
whenever σ assign cj in Cj to cπ(i,k) in Vi, ψ satisfies Cj via vi, and whenever
σ assign cj in Cj to cν(i) in Vi, ψ satisfies Cj via ¬vi. The occurrences of the
constant f makes it impossible for both Cν(i) and Cπ(i,k) to be simultaneously
used to construct Vi. This constraint corresponds to the fact that no valuation
simultaneously satisfies Cπ(i,k) via vi and Cν(i) via ¬vi. Conversely, we easily see
that if S is satisfiable, then 〈L,R〉 has a solution. ��
The problem in Proposition 2 is almost the same problem of determining whether
there is a permutation θ of a sequence of strings 〈w1, . . . , wm〉 over an alphabet
C such that the concatenation of wθ(1), . . . , wθ(m) coincides with a string wR

over C. Though the problem seems fundamental, the author could not find a
reference on the complexity of it and thus has invented his own proof of its
NP-completeness. The idea of the proof is used in the proof of Proposition 2.

The reader may wonder why we have presented a reduction in Definition 9,
though the new reduction in the proof of Proposition 2 is equally simple and
Proposition 2 is stronger than Proposition 1. The reason is that in the next
section, we will eliminate constants from 〈LS , RS〉 defined in Definition 9 with
a certain technique, which does not work for the new reduction.

5 Elimination of Constants

In this section, we show that the interpolation problem in the linear lambda
calculus is NP-hard even if there are no constants by eliminating constants in
〈LS , RS〉 in Definition 9.

For general unification problem, it is easy to construct a constant-free 〈P ∗,Q∗〉
from a unification equation 〈P,Q〉, such that 〈P,Q〉 has a solution iff 〈P ∗, Q∗〉
has a solution. We obtain P ∗ and Q∗ by successive transformations performed
on P and Q: first we replace the constants �a by fresh variables �a, then we re-
place each unknown Xi with Yi�a and finally we abstract the free variables. If
[Xi := Si] is a solution for 〈P,Q〉, then [Yi := λ�a.S∗

i ] is a solution for 〈P ∗, Q∗〉,
where S∗ is obtained by replacing each constant a by the variable a. If [Yi := S∗

i ]
is a solution for 〈P ∗, Q∗〉, then [Xi := S∗

i �a] is a solution for 〈P,Q〉.
However, such a transformation does not work for the unification problem

in the linear lambda calculus, because free variables can occur at most once
in a linear λ-term, while constants can occur any number of times. To con-
struct 〈L∗

S = Y C∗
1 . . . C∗

mD∗
1 . . . D

∗
n, R

∗
S〉 by eliminating constants from 〈LS , RS〉

defined in Definition 9, we adopt the following strategy:

– Let T be among C1, . . . , Cm, D1, . . . , Dn, RS .
– Let T ′ be the result of replacing occurrences of each constant in T with

suitable free variables or λ-terms constructed from free variables.
– Let T ∗ = λ�x.T ′ for a sequence �x of the elements of FV(T ′).

The main issue is what variable or λ-term each occurrence of a constant should be
replaced with. The formal definition and an example are given in Definition 10
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and Example 3. We give the basic strategy of our transformation here. First,
for each constant a, we provide an atomic type pa. Second we replace the i-
th occurrence of a in T with the application xa,iya,i of variables xa,i of type
pa � Tp(a) and ya,i of type pa. Finally, we close T by λ�x�y. This way, we can
avoid identifying λ-terms which are surrogates for distinct constants of the same
type, while preserving the well-typedness and the linearity of the interpolation
equation. If 〈LS , RS〉 has a solution [X := S], then 〈L∗

S , R
∗
S〉 also has a solution

[X∗ := S∗] which does not essentially differ from [X := S]. Each occurrence of
a constant a in S is replaced with the application xa,iya,i of two bound variables
of R∗

S for the appropriate i. Moreover, [X∗ := S∗] lets the arguments T ∗ of the
unknown Y be applied to bound variables of R∗

S which constitute the surrogates
for constants which appear in T .

A major problem is that one may construct a solution which causes a sub-
stitution of a complex λ-term for the bound variable xa,i of an argument T ∗ of
the unknown Y , since a λ-term which has the type pa � Tp(a) is not necessarily
a bound variable xa,j in R∗

S for some j. For instance, consider the interpolation
equation 〈X(fa), f(ga)〉 where the types of constants are as follows: Tp(a) = o,
Tp(f) = Tp(g) = o � o. Clearly it has no solution. By applying the above
conversion to 〈X(fa), f(ga)〉, we obtain the following equation:

〈Y
(
λxfyfxaya.xfyf(xaya)

)
, λxfyfxgygxaya.xfyf

(
xgyg(xaya)

)
〉

where the types of variables are defined by Tp(xa) = pa � o, Tp(ya) = pa,
Tp(xf) = pf � o � o, Tp(yf) = pf , Tp(xg) = pg � o � o, and Tp(yg) = pg.
But, this has a solution

[Y := λz.λxfyfxgygxaya.zxfyf

(
λa.xgyg(xaa)

)
ya]

where Tp(a) = pa. This problem may ruin our naive transformation from con-
stants to applications of bound variables, or at least, makes our discussion very
complicated. This is the reason why we have not employed the reduction in the
proof of Proposition 2 as a basis for a constant-free reduction. Fortunately, we
can tightly restrict λ-terms that can be substituted for bound variables in the
arguments T ∗ of Y , when we employ the reduction in Definition 9 as a basis for
the new reduction. The constants in 〈LS , RS〉 in Definition 9 are stratified in the
sense that cj is always an argument of f, fcj is of dk for some k, and a λ-term
whose head is dk is of g. So, we can let λ-terms in 〈L∗

S , R
∗
S〉 which are surrogates

for cj have type q, surrogates for f have type q � r, surrogates for dk have type
rm � t, and surrogates for g have type tl � u.

Now, we give a formal definition of the linear interpolation equation 〈L∗
S , R

∗
S〉

for a given polarized 1N-Sat S = {C1, . . . , Cm,D1, . . . ,Dn} on V = {v1, . . . , vl}.

Definition 10. Let the set of atomic types be A = {pj , q, r, sk, t, u | 0 ≤ j ≤ m,
1 ≤ k ≤ n}. The types of variables in 〈L∗

S , R
∗
S〉 are given as follows for 1 ≤ i ≤ l,

1 ≤ j ≤ m and 1 ≤ k ≤ n:
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Tp(cj) = pj, Tp(ci,j) = pμ(i,j), Tp(c̄j) = pj � q, Tp(c̄i,j) = pμ(i,j) � q,

Tp(dk) = Tp(di,k) = sk, Tp(d̄k) = Tp(d̄i,k) = sk � rm � t

Tp(f) = Tp(fj) = Tp(fi,j) = q � r, Tp(g) = tl � u, Tp(xj) = q.

We denote the set of variables in R∗
S by XR.

XR = {ci,j , c̄i,j , fi,j , di,ν(i), d̄i,ν(i), g | 1 ≤ i ≤ l and 1 ≤ j ≤ m}

〈L∗
S , R

∗
S〉 is defined by

L∗
S = Y C∗

1 . . . C∗
mD∗

1 . . . D
∗
n where⎧⎪⎨⎪⎩

C∗
j = λfc̄jcj .f(c̄jcj)

D∗
k = λd̄kdkf1 . . . fmx1 . . . xm.d̄kdk(f1x1) . . . (fmxm)

Tp(Y ) = Tp(C∗
1 ) � · · ·� Tp(C∗

m) � Tp(D∗
1) � · · ·� Tp(D∗

n) � Tp(R∗
S)

R∗
S = λXR.gV

∗
1 . . . V ∗

l where

V ∗
i = d̄i,ν(i)di,ν(i)

(
fi,1(c̄i,1ci,1)

)
. . .

(
fi,m(c̄i,mci,m)

)
.

It is not difficult to check that the above λ-terms are well-typed and that

Tp(C∗
j ) = (q � r) � (pj � q) � pj � r,

Tp(D∗
k) = (sk � rm � t) � sk � (q � r)m � qm � t,

Od(Y ) = 4.

We use yj for variables of type Tp(C∗
j ) and zk of type Tp(D∗

k) in this section.

Example 3. Instance S : C1 = {v1}, C2 = {v2}, D1 = {¬v1,¬v2}

Reduction with Constants 〈LS , RS〉 :

LS = X(fc1)(fc2)
(
λx1x2.d1(fx1)(fx2)

)
RS = g

(
d1(fc1)(fc0)

)(
d1(fc0)(fc2)

)
Reduction without Constants 〈L∗

S , R
∗
S〉 :

L∗
S = Y

(
λfc̄1c1.f(c̄1c1)

)(
λfc̄2c2.f(c̄2c2)

)(
λd̄1d1f1f2x1x2.d̄1d1(f1x1)(f2x2)

)
R∗

S = λXR.g
(
d̄1,1d1,1

(
f1,1(c̄1,1c1,1)

)(
f1,2(c̄1,2c1,2)

))
(
d̄2,1d2,1

(
f2,1(c̄2,1c2,1)

)(
f2,2(c̄2,2c2,2)

))
S is not satisfiable and 〈LS , RS〉 and 〈L∗

S , R
∗
S〉 have no solution. Note that

Y := λy1y2z1XR.g
(
z1d̄1,1d1,1f1,1f1,2(c̄1,1c1,1)(c̄1,2c1,2)

)(
d̄2,1d2,1(y1f2,1c̄2,1c2,1)(y2f2,2c̄2,2c2,2)

)
is not a solution for 〈L∗

S , R
∗
S〉. (y1f2,1c̄2,1c2,1) is not a λ-term of the simply

typed lambda calculus, for Tp(y1) = (q � r) � (p1 � q) � p1 � r but
Tp(c̄2,1) = pμ(2,1) � q = p0 � q and Tp(c2,1) = pμ(2,1) = p0.
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Lemma 3. 〈L∗
S , R

∗
S〉 admits a solution whenever S is satisfiable.

Proof. Suppose that ψ is a valuation which satisfies S. As in the proof of
Lemma 1, we can find φ : S → (V ∪ ¬V) which indicates a literal via which
each clause is satisfied. We show that a solution is given by [Y := S] where

S = λy1 . . . ymz1 . . . znXR.gU1 . . . Ul where

Ui =

{
zν(i)d̄i,ν(i)di,ν(i)fi,1 . . . fi,m(c̄i,1ci,1) . . . (c̄i,mci,m) if φ(Dν(i)) = ¬vi

d̄i,ν(i)di,ν(i)Ui,1 . . . Ui,m otherwise

Ui,j =

{
yjfi,j c̄i,jci,j if φ(Cj) = vi

fi,j(c̄i,jci,j) otherwise
.

Indeed S is a well-typed closed linear λ-term. The linearity of S can be checked
as in the proof of Lemma 1. We check the well-typedness of S. Recall that
Tp(zν(i)) = (sν(i) � rm � t) � sν(i) � (q � r)m � qm � t, Tp(d̄i,ν(i)) =
sν(i) � rm � t, Tp(di,ν(i)) = sν(i), Tp(fi,j) = q � r and Tp(c̄i,jci,j) = q. Hence,
Ui is well-typed and has the type t if φ(Dν(i)) = ¬vi. If φ(Dν(i)) 
= ¬vi, it is
enough to check that each Ui,j has type r. If φ(Cj) = vi and Ui,j = yjfi,j c̄i,jci,j ,
then vi ∈ Cj, Tp(c̄i,j) = pμ(i,j) � q = pj � q and Tp(ci,j) = pμ(i,j) = pj . Recall
that Tp(yj) = (q � r) � (pj � q) � pj � r and Tp(fi,j) = q � r. Hence, Ui,j

is well-typed and has the type r. If φ(Cj) 
= vi, it is clear that Ui,j is well-typed
and has the type r. Therefore, S is well-typed.

Second we show that L∗
S [Y := S] �β R∗

S . By the definition, L∗
S [Y := S] �β

λXR.gU1 . . . Ulσ for σ = [�y := �C∗, �z := �D∗]. It is enough to show that Uiσ �β

V ∗
i . If φ(Dν(i)) = ¬vi, then

Uiσ = D∗
ν(i)d̄i,ν(i)di,ν(i)fi,1 . . . fi,m(c̄i,1ci,1) . . . (c̄i,mci,m)

�β d̄i,ν(i)di,ν(i)

(
fi,1(c̄i,1ci,1)

)
. . .

(
fi,m(c̄i,mci,m)

)
= V ∗

i .

Otherwise, Ui = d̄i,ν(i)di,ν(i)Ui,1 . . . Ui,m. It is obvious that Ui,jσ �β fi,j(c̄i,jci,j)
for all j, since C∗

j fi,j c̄i,jci,j �β fi,j(c̄i,jci,j). ��

Lemma 4. Suppose that a linear λ-term M contains no free variables other
than the elements of XR ∪ {yj, zk | 1 ≤ j ≤ m, 1 ≤ k ≤ n}.

If M has an atomic type δ and contains a subterm N of type γ1 � · · · �
γi � γ with γ ∈ A, then γ ≤ δ where ≤ is the partial order on A such that
pj � q � r � t � u for 0 ≤ j ≤ m and sk � t � u for 1 ≤ k ≤ n.

If Tp(M) = q � r, then M =η fi,j for some i and j.

Lemma 5. Suppose that a subterm of a linear λ-term M has an atomic type p.
Then, for every N such that M �β N , N has a subterm of type p.

Lemma 6. S is satisfiable whenever 〈L∗
S , R

∗
S〉 admits a solution.
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Proof. Suppose that [Y := S] is a solution. We can assume that S is normal and
S = λy1 . . . ymz1 . . . znXR.S

′. Because of the type of the variable g in R∗
S , the

head of S′ is neither yj nor zk. S′ must be gU1 . . . Ul for some U1, . . . , Ul of type t.
Let σ = [�y := �C∗, �z := �D∗]. Since SC∗

1 . . . C∗
mD∗

1 . . . D
∗
n �β λXR.gU1 . . . Ulσ �β

λXR.gV
∗
1 . . . V ∗

l , we have Uiσ �β V ∗
i . Note that

(*) Ui contains no free variables other than the elements of

Xi = FV(V ∗
i ) ∪ {yj, zk | 1 ≤ j ≤ m, 1 ≤ k ≤ n}

= {d̄i,ν(i), di,ν(i), fi,j, c̄i,j , ci,j , yj , zk | 1 ≤ j ≤ m, 1 ≤ k ≤ n}.

Since Ui has type t, the head of Ui must be d̄i,ν(i) or zk for some k.
First, we show that if Ui contains zk, then zk is the head of Ui and Ui

contains neither yj nor zk′ for any j and k′ 
= k. Since zkσ = D∗
k contains a

variable of type sk, Uiσ and its normal form V ∗
i contain a subterm of type sk

by Lemma 5. This implies that k = ν(i) and V ∗
i contains no subterm of type sk′

for any k′ 
= k and thus Uiσ does so by Lemma 5 again. Therefore, Ui does not
contain zk′ for any k′ 
= k. If Ui = d̄i,ν(i)Mν(i)R1 . . . Rm for Tp(Mν(i)) = sν(i)

and Tp(Rh) = r for 1 ≤ h ≤ m, then zk cannot occur in Ui by Lemma 4. So
Ui is of the form zkNkMkF1 . . . FmQ1 . . . Qm where Tp(Nk) = sk � rm � t,
Tp(Mk) = sk, Tp(Fh) = q � r, and Tp(Qh) = q for 1 ≤ h ≤ m. We check that
yj cannot occur in Nk, Mk, Qh or Fh for any h. It is obvious that yj is not in
Mk, Qh or Fh by (*) and Lemma 4. Since Nk does not contain zk′ for any k′, if
Nk is in long normal form, then Nk is equal to λdkw1 . . . wm.d̄i,ν(i)dkR1 . . . Rm

where Tp(dk) = sk and Tp(wh) = Tp(Rh) = r for all h (provided that ν(i) = k).
One can check that for all h there is h′ such that Rh = wh′ . So yj does not
appear in Nk. Therefore, yj cannot occur in Ui unless the head of Ui is d̄i,ν(i).

Now, we show that S is satisfied by the valuation ψ defined as follows:

ψ(vi) =

{
0 if the head of Ui is a variable zk for some k

1 otherwise

By the linearity of S, each variable y1, . . . , ym, z1, . . . , zn appears in Ui for
some i. To show that each positive clause Cj is satisfied by ψ, suppose that yj

occurs in Ui. The above discussion claims that the head of Ui is d̄i,ν(i) and thus
ψ(vi) = 1. Since yjσ = C∗

j contains a variable of type pj, Uiσ and its normal form
V ∗

i contain a subterm of type pj by Lemma 5. Therefore, Tp(ci,j) = pμ(i,j) = pj

and vi ∈ Cj . So ψ satisfies Cj via vi.
To show that each negative clause Dk is satisfied by ψ, suppose that zk

occurs in Ui. The above discussion claims that zk is the head of Ui and k = ν(i).
Therefore, ψ satisfies Dk via ¬vi. ��

Theorem 5. Fourth-order interpolation modulo β (βη) in the linear lambda
calculus in the absence of constants is NP-complete.

Proof. By Theorem 3 and Lemmas 3 and 6. ��
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The above proof also entails NP-hardness of fourth-order interpolation in the
relevant lambda calculus in the absence of constants.

It is easy to see that Theorem 5 does not hold for the third-order case unless
P = NP. For an interpolation equation 〈XL1 . . . Lm, R〉, if Li is a constant-free
closed linear λ-term whose type is at most second-order, then Li = λxi.xi and
Tp(Li) = pi � pi for some atomic type pi ∈ A. Hence 〈XL1 . . . Lm, R〉 has a
linear solution modulo β (resp. βη) iff (resp. the long form of) R has a subterm
of type pi for every i by Lemma 5.
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Abstract. Fairness is a rich phenomenon: we have weak and strong
fairness, and many different variants of those concepts: transition fair-
ness, object/process fairness, actor fairness, position fairness, and so on,
associated with specific models or languages, but lacking a common the-
oretical framework. This work uses rewriting semantics as a common
theoretical framework for fairness. A common thread tying together the
different fairness variants is the notion of localization: fairness must of-
ten be localized to specific entities in a system. For systems specified
as rewrite theories localization can be formalized by making explicit the
subset of variables in a rule corresponding to the items that must be
localized. In this way, localized fairness becomes a parametric notion,
that can be easily specialized to model a very wide range of fairness phe-
nomena. After formalizing these concepts and proving basic results, the
paper studies in detail both a relative and an absolute LTL semantics
for rewrite theories with localized fairness requirements, and shows that
it is always possible to pass from the relative to the absolute semantics
by means of a theory transformation. This allows using a standard LTL
model checker to check properties under fairness assumptions.

1 Introduction

A key motivation of rewriting logic [13] is to provide a general semantic frame-
work for specifying concurrent systems. Indeed, most known models of concur-
rency have been specified quite naturally as rewrite theories [11]. In this way,
rewriting techniques – with rewrite rules no longer understood as oriented equal-
ities, but as concurrent transitions – play a crucial role in concurrency theory.
Fairness is an area ripe for the application of rewriting techniques. There has
been some initial work in this direction, by Francez and Porat [18, 19] – who
focused on what I call rule fairness and gave partial results on the decidabil-
ity of fair termination for ground TRSs – and by Tison [20], who proved the
decidability of fair termination for general ground TRSs using tree automata.

However, fairness is a rich phenomenon with many different variants. First of
all, there is weak and strong fairness (called, respectively, justice and fairness by
Manna and Pnueli [10]). Justice and fairness are properties of infinite computa-
tions. Justice means that, if a certain kind of transition is continuously enabled
beyond a certain point, then it is taken infinitely often. Assuming predicates,
enabled.τ and taken.τ that specify when a given transition τ is enabled, resp.
has been taken, then justice for τ can be expressed, using the � (eventually)
and � (always) operators, by the linear time temporal logic (LTL) formula,

��enabled.τ → ��taken.τ
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Similarly, fairness means that if a certain kind of transition is infinitely often
enabled, then it is taken infinitely often. In temporal logic terms, this is expressed
by the formula,

��enabled.τ → ��taken.τ

There are also many different variants of the justice and fairness concepts:
there is transition fairness, object/process fairness, actor fairness, position fair-
ness, and so on. At present these different variants have a pre-theoretic status,
in the sense that they are associated with specific models or languages, but they
lack a common theoretical framework. For example, process fairness is discussed
by Francez [6] in terms of the CSP language. Similarly, actor fairness is discussed
by Agha in terms of the Actor model of computation [1]. The opportunity now
at hand, and the main goal of this work, is to use rewriting semantics as a com-
mon theoretical framework for fairness, that can explain and do justice to the
different fairness variants and phenomena. This is an essential task in order to
provide a rewriting semantics framework for concurrency.

A key intuition is that the common thread tying together the different vari-
ants of fairness is the notion of localization: that fairness must often be local-
ized to specific entities in a system. This idea can be illustrated with a dis-
tributed object-oriented system example, exhibiting the need for object/process
fairness. Objects can be represented as record-like terms of the general form
〈o : C | a1 : v1, . . . an : vn〉, where o is an object-identifier, C its class name,
and the ai : vi the object’s attribute-value pairs. The objects and messages
collectively form a multiset, called a configuration, which is associative, com-
mutative, and has none as an identity, and where the multiset union operator
can be denoted with empty syntax (juxtaposition) [14]. An interesting example
is a dining philosophers specification with n philosophers, where object identi-
fiers can be modeled as the integers modulo n. Each philosopher can be in one
of three modes : t (thinking), h (hungry), and e (eating), and can hold none,
one, or two chopsticks of the form chop([I],[I+1]), with chop commutative,
which are placed between the i-th and the i + 1-th philosopher on the table.
To avoid deadlocks, philosophers can only think in a library (a subconfiguration
encapsulated by a library operator), and can go from the library to the dining
room table only when they get hungry; however, there must always be at least
one philosopher in the library. The relevant rewrite rules (see [12] for the full
specification) to pass from thinking to hungry [t2h], to pick the left [pickl]
or right [pickr] fork, or go back to the library [e2t], are the following (the
Maude [4] keyword rl (resp. crl) declares a rule (resp. a conditional rule)):

crl [t2h] : library(< [I] : Phil | mode : t , holds : none > C) =>

< [I] : Phil | mode : h , holds : none > library(C) if C =/= none .

crl [pickl] : < [I] : Phil | mode : h , holds : none > chop([I],[J])

=> < [I] : Phil | mode : h , holds : chop([I],[J]) > if [J] = [s(I)]

[fair(I)] .

rl [pickr] : < [I] : Phil | mode : h , holds : chop([I],[J]) >

chop([I],[K]) => < [I] : Phil | mode : e , holds : chop([I],[J])

chop([I],[K]) > [fair(I)] .
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rl [e2t] : < [I] : Phil | mode : e , holds : chop([I],[J])

chop([I],[K]) > library(C) => chop([I],[J]) chop([I],[K])

library(< [I] : Phil | mode : t , holds : none > C) [just(I)] .

The justice and fairness requirements are specified as attributes of each rule using
a Maude-like syntax. There is one justice requirement (for [e2t]) and fairness
requirements for [pickl] and [pickr]. Notice that they are all localized to the
variable I of the object identifier expression (here an equivalence class expres-
sion [I]). This means that each such requirement is local to each philosopher.
For example, the fair(I) requirement for [pickl] and [pickr] means that
each philosopher should have a fair chance of picking the left and right forks.
It is not enough to require that some philosopher should have that chance: this
is what would have been demanded if one had specified the attribute fair, in-
stead of fair(I), for those two rules. Under the above requirements, the rules
ensure nonstarvation. But notice again that nonstarvation must be localized to
each philosopher. That is, it is not enough to require that some hungry philoso-
pher eventually eats (because of the deadlock free nature of the specification,
this always happens without any fairness assumptions). Instead, what should be
required is that all hungry philosophers eventually get to eat; and for this each
of the above requirements’ localization to I is essential.

The general idea is then that, given a rewrite rule l : t −→ t′, say with
variables x̄, one can localize a justice or fairness requirement to a subset ȳ ⊆ x̄
of those variables. In the above example the subset ȳ just happened to be a single
variable I, but in general the subset could also be empty (the rule justice/fairness
case) or could contain more than one variable. Furthermore, since several rules
can share the same label, justice and fairness requirements can be specified not
just for one rule, but for a group of rules with the same label. In this way,
localized fairness emerges as a parametric notion, that can be easily specialized
to model a very wide range of fairness phenomena. There are essentially two
parameters supporting this flexibility: (i) how fine-grained one chooses to be
in the choice of labels for the rewrite rules (the coarsest choice is to use the
same label for all rules, and the finest to use different labels for different rules);
and (ii) what subset of variables x̄ in a rule one chooses to localize the fairness
requirements to (the more variables used, the more localized).

For a rewrite theory R having labeled conditional rewrite rules of the form
l : t −→ t′ if cond , I now give a precise notation for localized fairness speci-
fications. For convenience I assume a common set X of variables, each with its
type information (a sort or a kind), so that the variables x̄ of each rule in R
are a subset x̄ ⊆ X . This allows one to choose a set ȳ of variables to localize
the fairness requirements of one or more rules sharing the same label l, provided
that for each such rule, say having variables x̄, one always has ȳ ⊆ x̄.

Definition 1. A basic fairness specification for a rewrite theory R is an expres-
sion of the form j(l(ȳ)) (called a basic justice specification) or f(l(ȳ)) (called
a basic fairness specification) such that l is a label used in R, and ȳ is a set
of variables contained in the variables of all rules with label l in R. A fairness
specification for R is a finite set of basic fairness specifications. One can always
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decompose such a specification as J ∪ F , where J is the set of basic justice
specifications, and F is the set of basic fairness specifications. In general, J or
F (or both) can be empty. The pair (R,J ∪ F) is called a rewrite theory with
fairness specifications J ∪ F . ��

The best way to get a feeling for the different fairness phenomena that can
be formalized by the above definition is to discuss some concrete instances.

Label Justice and Fairness. This is the least localized notion. One only cares
about whether eventually there is always some rule among those having a given
label l enabled at each step (resp. at each step in an infinite set J ⊆ N) and then
one wants rules with that label to be infinitely often taken.

Rule Justice and Fairness. This is the special case of label justice, resp. fair-
ness, in which different rules have different labels; therefore here the justice and
fairness requirements are localized on a rule-by-rule basis. Maude’s rewrite
command [4] ensures rule justice in this sense.

Object/Process Justice and Fairness. Here one is dealing with distributed ob-
jects (sometimes called processes) that interact with each other either through
messages or synchronizing directly. The above dining philosophers example is a
typical example of the general pattern: (i) each rule has a different label; and
(ii) each rule is localized by the variable(s) of its object identifier expression. I
call this object/process justice, resp. object/process fairness.

Actor Justice. Actors [1] are the special class of distributed object systems where
all object interactions are achieved by asynchronous message passing. In their
rewriting semantics one object and one message rewrites to a new state for
the object, with possibly new messages and new objects being created [14].
The Actor model [1] requires that any message sent to an object should be
eventually received. This can be expressed as a localized justice requirement
by: (i) making all rule labels different; and (ii) giving a justice requirement for
each rule localized to the variables of the object identifier expression and of the
message it receives. For object-oriented systems, Maude’s frewrite command
[4] ensures actor justice in addition to rule and position justice (see below).

Ground Justice and Fairness. In a sense this is the most localized possible variant
(but see the discussion on position fairness below!) in which: (i) all rule labels
are different; and (ii) all rule variables are localized.

Position Justice and Fairness. Consider for example a rewrite system with Σ
having constants a, b and a binary symbol f , and with rules l1 : a −→ f(a, a)
and l2 : f(x, y) −→ b. Position justice, resp. fairness, means that if a given term
position is eventually always enabled, resp. enabled infinitely often, then that
position is rewritten infinitely often. Notice that the above system has infinite
rule fair computations, but is terminating under the position justice assumption.
Since positions are a metalevel concept, not explicitly present in terms or rules,
one should make them explicit at the object level by decorating terms with posi-
tion strings. For example, the term f(a, b) can be decorated as f(a@1, b@2)@nil.
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Rules may likewise be decorated as: l̃1 : a@p −→ f(a@p.1, b@p.2)@p and l̃2 :
f(x@p.1, y@p.2)@p −→ b@p, where p is a variable of sort Position, and where
the string concatenation operator . is declared associative and with identity
nil. In this way, a position-aware variant of our system is obtained. Position
justice or fairness then corresponds to: (i) using the same label for all rules (in
our example, identifying l̃1 and l̃2); and (ii) localizing all rules to the explicit
position variable p. This can be done in general for any left-linear rewrite system,
as shown in detail in [12]. One can of course have a more fine-grained combina-
tion of rule and position justice or fairness; in this case different rules must have
different labels, and one again localizes only the position variable p. Maude’s
frewrite command ensures both rule and position justice in all computations.
The most localized notions possible are ground and position justice or fairness,
where all rule labels are different, and all rule variables, including the position
variable p, are localized.

The paper makes the following contributions:

– Gives a precise notation for specifying localized justice and fairness for con-
current systems modeled as rewrite theories; defines the semantics of such
specifications; and proves basic results about this semantics. To the best of
my knowledge the general concept of localized fairness presented in this pa-
per is new, although specific instances of that concept have been previously
known in an ad-hoc way.

– Shows that a rich variety of fairness phenomena, such as all those listed
above, are all special cases of localized fairness.

– Studies in detail both a relative and an absolute LTL semantics for systems
specified as rewrite theories with localized justice/fairness specifications. In
the relative semantics, such specifications are built into the model and one
proves an LTL formula ϕ relatively to such a model; instead, in the absolute
semantics justice/fairness specifications are turned into an explicit LTL for-
mula θ and one proves that an LTL formula ϕ holds under those requirements
by proving that the implication θ → ϕ holds in a standard model (Kripke
structure) not having any fairness requirements built in. I show that it is
always possible to reduce the relative to the absolute semantics by means of
a rewrite theory transformation. One can then use a standard LTL model
checker to model check properties under justice/fairness requirements.

Section 2 recalls basic concepts on Kripke structures, LTL, and rewrite theo-
ries; Section 3 defines the semantics of localized fairness and studies basic prop-
erties; Section 4 studies the relative and absolute LTL semantics under localized
fairness assumptions; and Section 5 ends with some concluding remarks.

2 Kripke Structures, LTL, and Rewrite Theories

I recall basic notions on Kripke structures, linear time temporal logic (LTL) and
rewrite theories needed in the rest of the paper. AP denotes a set of atomic
propositions used in LTL formulas and in Kripke structures.
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A Kripke structure is a triple A = (A,→A, LA), where A is a set of states,
→A⊆ A × A is a total transition relation, and LA : A → P(AP) is a function
mapping each state to the set of atomic propositions holding in it. The notation
a→A b abbreviates (a, b) ∈ →A. Note that the transition relation must be total,
that is, for each a ∈ A there is a b ∈ A such that a →A b. For → an arbitrary
relation, →• denotes the total relation that extends → by adding a pair a→• a
for each a such that there is no b with a→ b. A path in a Kripke structure A is
a function π : N −→ A such that, for each i ∈ N, π(i)→A π(i + 1).

The syntax of LTL(AP) is given by the following grammar:

ϕ = p ∈ AP | ϕ ∨ ϕ | ¬ϕ | ©ϕ | ϕU ϕ .

The semantics of the logic, specifying the satisfaction relation A, a |= ϕ be-
tween a Kripke structure A, an initial state a ∈ A, and ϕ ∈ LTL(AP), is defined
as usual (see for example [3, Sect. 3.1], where ϕU ψ and ©ϕ are expressed in
CTL∗ notation as A(ϕUψ) and AXϕ). Other Boolean and temporal operators
(e.g., 9, ⊥, ∧, →, �, �, R, and �) can be defined as syntactic sugar.

Given Kripke structures A = (A,→A, LA) and B = (B,→B, LB), on the
same set AP of atomic propositions, an AP -simulation H : A −→ B of A by B
is a binary relation H ⊆ A×B such that:

– if a→A a′ and aHb, then there is b′ ∈ B such that b→B b′ and a′Hb′, and
– (∀a ∈ A)(∀b ∈ B) aHb ⇒ LB(b) = LA(a).

If both H and H−1 are AP -simulations, then H is called an AP -bisimulation.
It is well-known (see [3]) that if H : A −→ B is a simulation, aHb, and for an
LTL formula ϕ one has B, b |= ϕ, this then implies A, a |= ϕ. The implication
becomes an equivalence if H is a bisimulation.

A rewrite theory is a four-tuple R = (Σ,φ,E ∪ A,R), where (Σ,E ∪ A)
is an equational theory, that is assumed decomposed into a set E of (possibly
conditional) equations, and a set A of equational axioms such as associativity,
commutativity, etc., so that the equations E are applied modulo A. (Σ,E ∪A)
specifies a set of states as the algebraic data type TΣ/E∪A,k associated to the
initial algebra TΣ/E∪A of (Σ,E ∪ A) by the choice of a type k of states in
Σ 1. The system’s transitions are axiomatized by the conditional rewrite rules
R which are of the form l : t −→ t′ if cond , with l a label, t and t′ Σ-terms,
possibly with variables, and cond a condition2. Finally, the map φ associates
1 (Σ, E ∪ A) can be assumed to be an equational theory in membership equational

logic [15], that can have types, subtypes defined by semantic conditions, and operator
overloading; order-sorted, many-sorted, or unsorted specifications are all then special
cases. The desired set of states is then described by the carrier TΣ/E∪A,k of the initial
algebra TΣ/E∪A for one of those types k, technically called either sorts or kinds in
[15]. The elements of TΣ/E∪A are E ∪A-equivalence classes of terms [t]E∪A; that is,
two terms are equal iff they can be proved equal using E ∪ A.

2 In this paper I assume that the condition cond can involve a conjunction of equations
u = v and memberships of the form w : s, stating that the term w has sort s. The
conjunction must hold for a substitution instance θ before one is allowed to rewrite
θ(t) to θ(t′). I also assume that vars(t′) ∪ vars(cond) ⊆ vars(t).
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to each n-ary operator f in Σ a subset φ(f) ⊆ {1, . . . , n} of frozen argument
positions, so that it is forbidden to apply rules in subterms under those positions.
I will assume throughout that if f is a defined function (not a constructor), then
φ(f) = {1, . . . , n}.

Rewriting logic has inference rules to infer all the possible concurrent compu-
tations in a system [2, 13], in the sense that, given two states [u], [v] ∈ TΣ/E∪A,k,
one can reach [v] from [u] by some possibly complex concurrent computation iff
one can prove R * u −→ v in the logic. In particular one can easily define the
one-stepR-rewriting relation, which is a binary relation→1

R,k on TΣ,k that holds
between terms u, v ∈ TΣ,k iff there is a one-step proof of R * u −→ v, that is,
a proof in which only one rewrite rule in R is applied to a single subterm. One
can get a binary relation (with the same name) →1

R,k on TΣ/E∪A,k by defining
[u]→1

R,k [v] iff u′ →1
R,k v′ for some u′ ∈ [u], v′ ∈ [v].

R = (Σ,φ,E ∪A,R) is computable if: (1) there exists a matching algorithm
modulo A producing a finite number of A-matching substitutions, or failing oth-
erwise, that can implement rewriting in A-equivalence classes; (2) the equational
theory (Σ,E ∪ A) is ground confluent and terminating modulo A; and (3) the
rules R are ground coherent relative to the equations E modulo A in a some-
what stronger sense than in [21], namely, if one has a one-step rewrite proof
R * u −→1 v using a rule l : t −→ t′ if cond at some position in u with a
substitution θ, then there are terms u′ ∈ canE/A(u), and v′, and a one-step
rewrite proof R * u′ −→1 v′ using the same rule at some position in u′ with
substitution θ′ such that θ′(x) ∈ canE/A(θ(x)) for each variable x, and such
that canE/A(v) = canE/A(v′), where canE/A(t) denotes the canonical form of t
modulo A as an A-equivalence class. Conditions (1–2) ensure that TΣ/E∪A,k is
a computable set, since each ground term t can be simplified by applying the
equations E from left to right modulo A to reach the canonical form canE/A(t).
Condition (3) then implies that (→1

R,k)• is a computable binary relation on
TΣ/E∪A,k: one can decide [t]E∪A →1

R [u]E∪A generating the finite set of all one-
step R-rewrites modulo A of canE/A(t) and testing for equal canonical forms.

To associate a Kripke structure to a rewrite theory one must specify the state
predicates Π . Their syntax can be specified in a subsignature Π ⊆ Σ of function
symbols p of the general form p : s1 . . . sn −→ Prop, allowing state predicates
to be parametric. Their semantics can be defined by means of equations D ⊆
E ∪ A with the help of an auxiliary operator |= : k Prop −→ Result in
Σ, with Result a supersort (supertype) of Bool. By definition, given ground
terms u1, . . . , un, one says that the state predicate p(u1, . . . , un) holds in the
state [t] iff E ∪ A * t |= p(u1, . . . , un) = true. One can then associate to R a
Kripke structure K(R, k)Π = (TΣ/E,k, (→1

R,k)•, LΠ), whose atomic predicates
are specified by the set APΠ = {θ(p) | p ∈ Π, θ ground substitution} 3, and
where LΠ([t]) = {θ(p) ∈ APΠ | θ(p) holds in [t]}. If the rewrite theory R is
computable, one then obtains a computable Kripke structure K(R, k)Π which, if
it has finite reachability sets, can be used for model checking LTL formulas. The
Maude 2.0 system has an on-the-fly, explicit-state LTL model checker [5] which
supports the methodology just described.

3 By convention, if p has n parameters, θ(p) denotes the term θ(p(x1, . . . , xn)).
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3 The Semantics of Localized Fairness

I now define what it means for a fairness specification to be satisfied in the Kripke
structure K(R, k)Π associated to a rewrite theory R. The definition makes pre-
cise the exact sense in which the justice and fairness notions become localized
by the choices of the parameters l and ȳ.

Definition 2. (Satisfaction of Fairness Specifications). A path4 π in K(R, k)Π

satisfies j(l(ȳ)), written π |= j(l(ȳ)), if whenever there is a natural number m
and a ground substitution θ of the variables ȳ such that, for all natural numbers i,
there is a rule with label l in R and a substitution ρi extending θ to the variables
x̄i of that rule such that the rule is enabled (can be applied modulo A) at some
position in um+i, then for an infinite set J ⊆ N of indices j there is indeed a
rewrite um+j →1

R,k vm+j+1 with the enabled rule and a substitution ρ′j such that
ρ′j |ȳ = θ, and [vm+j+1] = [um+j+1].

Similarly, π satisfies f(l(ȳ)), written π |= f(l(ȳ)), if whenever there is a
ground substitution θ of the variables ȳ such that, for an infinite set J ⊆ N of
indices j, there is a rule with label l in R and a substitution ρj extending θ
to the variables ȳj of that rule such that the rule is enabled at some position
in uj, then for an infinite set J ′ ⊆ J of indices j′ there is indeed a rewrite
uj′ →1

R,k vj′+1 with the enabled rule and a substitution ρ′j′ such that ρ′j′ |ȳ = θ,
and [vj′+1] = [uj′+1].

Finally, if J ∪F is a fairness specification for R, one writes π |= J ∪F if π
satisfies each of the basic fairness specifications in J ∪ F ; and K(R, k)Π , [t] |=
J ∪F iff π |= J ∪F for each path π in K(R, k)Π such that π(0) = [t]. One then
also writes: Path(R)JF = {π in K(R, k)Π s.t. π |= J ∪ F}. Path(R)J , resp.
Path(R)F , abbreviate Path(R)J∅ , resp. Path(R)∅

F . ��

Due to the very definition of their semantics, adding more localized jus-
tice/fairness requirements to a specification has the effect of further reducing
the set of paths satisfying all such requirements. This can be expressed by the
formula,

Path(R)JF = (
⋂

j(l(ȳ))∈J
Path(R)j(l(ȳ))) ∩ (

⋂
f(l′(ȳ′))∈F

Path(R)f(l′(ȳ′))).

Since fairness implies justice, one always has, Path(R)f(l(ȳ)) ⊆ Path(R)j(l(ȳ)).
At first sight it would seem that the more localized a justice or fairness require-
ment is, the stronger it is logically; that is, one might conjecture that if ȳ ⊆ z̄,
then Path(R)j(l(z̄)) ⊆ Path(R)j(l(ȳ)), and Path(R)f(l(z̄)) ⊆ Path(R)f(l(ȳ)).
However, there are rewrite theories R with rules such that ȳ ⊂ z̄ are subsets
of variables for rules labeled l, and neither Path(R)j(l(z̄)) ⊆ Path(R)j(l(ȳ)) nor

4 Notice that, by construction, this is either an infinite sequence {[ui]}i∈N such that
for each i one has [ui] →1

R,k [ui+1], or a finite such sequence ending in an equivalence
class [um] that cannot be further rewritten, so that then [um] = [um+i] for all i; this
second case is due to the totalization (→1

R,k)• of the relation →1
R,k in K(R, k)Π . I

will assume throughout that all representatives ui ∈ [ui] are in E/A-canonical form.
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Path(R)j(l(ȳ))⊆Path(R)j(l(z̄)); likewise, neither Path(R)f(l(z̄))⊆Path(R)f(l(ȳ)),
nor Path(R)f(l(ȳ)) ⊆ Path(R)f(l(z̄)). This is demonstrated by the following
counterexample. Let R be an object-oriented rewrite theory in which object
identifiers are terms of the form o(n), with n a natural number, and hold-
ing just a natural number value in a single attribute val. There are two rules
inc : o(n) −→ o(s(n)), and double : 〈o(n) | val : m〉 −→ 〈o(n) | val : 2 ∗m〉. The
path π for the computation,

〈o(0) | val : 1〉 〈o(1) | val : 1〉 → 〈o(0) | val : 2〉 〈o(1) | val : 1〉 →
〈o(0) | val : 2〉 〈o(2) | val : 1〉 . . . → 〈o(0) | val : 2n−1〉 〈o(n) | val : 1〉 → . . .

is such that π ∈ Path(R)f(double) = Path(R)j(double) (the set equality holds
because both rules are always enabled for nonempty object configurations), but
π 
∈ Path(R)f(double(n)) = Path(R)j(double(n)). Similarly, the path π′ for the
computation,

〈o(1) | val : 1〉 → 〈o(2) | val : 1〉 → 〈o(3) | val : 1〉 . . . → 〈o(n) | val : 1〉 → . . .

is such that π′ ∈ Path(R)f(double(n)) = Path(R)j(double(n)), but
π′ 
∈ Path(R)f(double) = Path(R)j(double).

To be able to model check LTL properties of a rewrite theory R one should
assume that R has finite reachability sets, that is, that for each initial state [t],
the set of states reachable by rewriting with R is finite. The following result is
useful in those circumstances.

Proposition 1. If a computable rewrite theory R has finite reachability sets,
then, if ȳ ⊂ z̄ are subsets of the variables of all rules labeled l in R, one has
Path(R)f(l(z̄)) ⊆ Path(R)f(l(ȳ)).

Proof. Let π ∈ Path(R)f(l(z̄)). By the finite reachability assumption, any path
involves only a finite number of states [u1], . . . , [uk]. Given the variables z̄ and
the label l, by the computability of R, there is then only a finite number of A-
matching substitutions, say θ1, . . . , θn, on the variables z̄ for which some rule with
label l is enabled in some state in π. Suppose now that, for some substitution
ρ on the variables ȳ some rules with label l are enabled infinitely often in π.
There can then only be a finite number of possible extensions of ρ to a subset
{θj1 , . . . , θjm} ⊆ {θ1, . . . , θn} of substitutions of the variables z̄ for which some
rule with label l is enabled in some state in π. Therefore, there is some θji in that
subset for which some rules with label l are enabled infinitely often in π. Since
π ∈ Path(R)f(l(z̄)) some rules with label l are infinitely often taken in π with
that substitution θji on z̄, and therefore with substitution ρ on ȳ. Therefore,
π ∈ Path(R)f(l(ȳ)), as desired. ��

Under finite reachability, a similar containment doesn’t hold for justice. That
is, there are computable rewrite theories R with finite reachability sets and
subsets ȳ ⊂ z̄ of the variables of all rules labeled by some l in R, such that
Path(R)j(l(z̄)) 
⊆ Path(R)j(l(ȳ)). This is demonstrated by the following coun-
terexample. Let R be a rewrite theory with a sort Conf of states having a binary
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associative and commutative multiset union operator with empty syntax, a con-
stant [], and unary operators [ ], { } : Conf −→ Conf , and [ ] : Nat −→ Conf .
There are four rules: in : [n] [] −→ [[n]], in′ : [n] [] −→ {[n]}, out : [[n]] −→ [n] [],
and out′ : {[n]} −→ [n] []. Let π be the path associated to the cyclic computation

[1] [2] [] []→ {[1]} [2] []→ [1] [2] [] []→ {[2]} [1] []→ [1] [2] [] []→ . . .

Note that π ∈ Path(R)j(in(n)), but π 
∈ Path(R)j(in).

4 Relative vs. Absolute LTL Semantics

Given a computable rewrite theory R with fairness specifications J ∪ F and
with associated Kripke structure K(R, k)Π , one can relativize to the fairness
specifications J ∪ F the semantics of LTL formulas. In this way, one can build
the specifications J ∪ F into the LTL model. As it is well-known [3, 10], the
semantics of an LTL formula ϕ is first defined on paths by specifying recursively
the relation π |= ϕ. Then, the satisfaction relation K(R, k)Π , [t] |= ϕ is de-
fined by a universal quantification over paths: K(R, k)Π , [t] |= ϕ iff for all paths
π ∈ Path(R) with π(0) = [t], π |= ϕ. To build in the fairness specifications
J ∪F , thus relativizing to them the LTL semantics, one can define a new satis-
faction relation |=J

F as follows: (i) π |=J
F ϕ iff π |= ϕ; and (ii) K(R, k)Π , [t] |=J

F ϕ
iff for all paths π ∈ Path(R)JF with π(0) = [t], π |= ϕ. Of course, one has a more
expressive model, but one then needs deductive and model checking methods
to reason in this richer, relativized semantics. There are two ways to address
this need: (1) to develop deductive (see, for example, [16, 17]) or model checking
(see, for example, [7, 9]) techniques that build in reasoning under the fairness
specifications; or (2) to develop techniques transforming the deductive or model
checking reasoning under fairness into standard deductive or model checking
temporal logic reasoning; at the deductive level this is advocated, for example,
in [8]. The first are obviously relative semantics approaches, whereas the second
seek a reduction to absolute semantics. Each approach has its advantages and
usefulness for different purposes. Generally speaking, building in such informa-
tion is useful and efficient, but not all tools support this, and, furthermore, at
present none to my knowledge supports reasoning about localized fairness in the
general sense presented here. Also, some deductive approaches are based on quite
specific models or languages not trivially extensible to our general framework.

There is therefore sufficient interest in investigating reductions to absolute
semantics, both to support standard deductive reasoning, and to be able to
use an LTL model checker for rewrite theories like Maude’s [5] to model check
properties under localized fairness assumptions. The essence of all absolute
approaches, whether deductive or model checking, is to represent the fairness
specifications as an LTL formula θJF , so that one can reduce the relative sat-
isfaction problem K(R, k)Π , [t] |=J

F ϕ to the absolute satisfaction of the for-
mula (θJF → ϕ). Recall that justice of a transition τ means: ��enabled.τ →
��taken.τ ; and likewise fairness means: ��enabled.τ → ��taken.τ . There-
fore, if one can properly define the enabled and taken predicates, it should
be possible to obtain the desired formula θJF . Defining the appropriate local-
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ized forms of the enabled predicate for any computable rewrite theory R is
relatively easy. Suppose a justice requirement j(l(ȳ)), where the sorts of the
variables ȳ are, say, s1, . . . , sn. One can then define a parameterized predicate
enabled.l : s1, . . . , sn −→ Prop and define its semantics in terms of a family of
auxiliary predicates enabled.l.aux : ks1, . . . , sn −→ Result for each kind (type) k
in Σ (recall that Result is a supersort of Bool) by giving the following equations:
(i) x |= enabled.l(ȳ) = enabled.l.aux(x, ȳ); (ii) for each rewrite rule with label l,
say, l : t −→ t′ if cond , whose variables must contain those in ȳ, a conditional
equation enabled.l.aux(t, ȳ) = true if cond ; and (iii) for each constructor sym-
bol f : k1 . . . kn −→ k in Σ and each nonfrozen position i 
∈ φ(f) an equation
enabled.l.aux(f(x1, . . . , xn), ȳ) = true if enabled.l.aux(xi, ȳ) = true. One can
check that these are ground confluent and terminating equations, and that for
each term t of the state sort or kind one has an equivalence,

(∃t′) t l(θ)−→
1

R,k t′ ⇔ t |= enabled.l(θ) = true.

The serious challenge is defining the taken.l predicate. The point is that this
must be a predicate on a given state [t]; but it is in general undecidable whether,

for a given ground substitution θ, there is a ground term t′ such that t′
l(θ)−→

1

R,k t.
Even in cases in which this question could be decided, one would only know
that [t] could have been reached in one step from another state [t′] with a rule
with label l applied at some position with partial substitution θ. But many other
previous states, labels, and partial substitutions could likewise have been used:
in general one would have no way to know whether the step l(θ) was the one
actually taken. The upshot is that defining taken.l on the original set of states
is entirely hopeless: something else must be done. The solution I propose is to
transform R into another theory RJ

F having a Kripke structure bisimilar to
K(R, k)Π . [12] shows that this can always be done for any computable R. Here I
explain the main intuition – in a simpler setting than that required to define the
transformation for a general theory R – using our running dining philosophers
example. In this case, the transformed theory RJ

F is obtained as follows. The
original signature is first extended with the following new sorts and operations:

sorts Label LState .

op mt : -> Label .

ops pickl pickr e2t : Nat/(N) -> Label .

op {_,_} : Configuration Label -> LState .

That is, states in the new state sort, LState will be pairs consisting of a con-
figuration of philosophers and forks, and a label indicating the last rewrite and
which object performed it, i.e., label expressions are unary operators with the
same name as the corresponding rule label having object identifiers (in the para-
metric sort Nat/(N) of naturals modulo n) as arguments. If no rule has yet been
taken, or if t2h is taken, one uses the empty label mt. The equations are un-
changed, and rewrite rules are a modified version of the original rules in which
the label expression for the rule application is recorded in the resulting state:

crl [t2h] : {C’ library(< [N] : Phil | mode : t , holds : none > C), L}

=> {C’ < [N] : Phil | mode : h , holds : none > library(C), mt}

if C =/= none .
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crl [pickl] : {C < [N] : Phil | mode : h , holds : none > chop([N],[M]),

L} => {C < [N] : Phil | mode : h , holds : chop([N],[M]) >, pickl([N])}

if [M] = [s(N)] .

rl [pickr] : {C < [N] : Phil | mode : h , holds : chop([N],[M]) >

chop([N],[K]), L} =>

{C < [N] : Phil | mode : e , holds : chop([N],[M]) chop([N],[K]) >,

pickr([N])} .

rl [e2t] : {C’ < [N] : Phil | mode : e , holds : chop([N],[M])

chop([N],[K]) > library(C), L} => {C’ chop([N],[M]) chop([N],[K])

library(< [N] : Phil | mode : t , holds : none > C), e2t([N])} .

The fact that the above rules always rewrite at the top of the state expression
make the expression of the enabled.l and taken.l predicates particularly simple.
For example, for l = pickr they are defined as follows:

op enabled.pickr : Nat/(N) -> Prop .

op taken : Label -> Prop .

eq {C < [N] : Phil | mode : h , holds : chop([N],[M]) >

chop([N],[K]), L} |= enabled.pickr([N]) = true .

eq {C,L} |= taken(L) = true .

where the operator |= is used to define equationally the labeling function as a
binary predicate between states and propositions (see [12] for the full specifica-
tion). A similar pattern can be followed to define the enabled.l predicates for the
remaining labels. Furthermore, one can lift the definition of all predicates p ∈ Π
on the states of the original system to RJ

F by adding to the equations defining p
in R the equation (note the ad-hoc overloading of |=) {x, l} |= y = x |= y, where
x, y, and l are variables of, respectively: the old state sort (or kind), Prop5, and
Label. In this way, one obtains a Kripke structure K(RJ

F , k)Π , which can be
further extended to a Kripke structure K(RJ

F , k)Π′ by adding to the predicates
in Π the new localized taken predicates. In this example, since we there are three
basic fairness specifications in J ∪F , the desired LTL formula θJF characterizing
the fairness specifications is a conjunction θpickl ∧ θpickr ∧ θe2t. For example, for
an instance with n philosophers, the formula θpickr becomes:∧

0≤i≤n−1

��enabled .pickr ([i]) → ��taken(pickr([i]))

The formulas θpickl and θe2t are defined in an entirely analogous way. What one
can now do is to use the rewrite theory RJ

F to reason in an absolute semantics
way about the relative (to J ∪ F) semantics of LTL properties in R. The key
observations are: (1) K(RJ

F , [LState])′Π is also finitely reachable; and (2) there
is a surjective map H : [{t, u}] �→ [t], sending each state in RJ

F to a correspond-
ing state in R and satisfying the following properties: (i) H is a bisimulation
K(RJ

F , [LState])Π
∼= K(R, [Configuration])Π , and (ii) for each LTL formula ϕ

on the state predicates of R one has an equivalence:

K(RJ
F , [LState])Π′ , [{t, u}] |= (θJF → ϕ) ⇔ K(R, [Configuration])Π , [t] |=J

F ϕ.

5 One may assume that the enabled.l predicates are in Π and have been extended
from the old states to the new ones this way; in the above example I defined
enabled.pickr directly on the new states for the sake of brevity.
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For example, one can now use the transformed theory to verify a formula ϕ
asserting the non-starvation of our original dining philosophers system under
the specified fairness assumptions for some chosen value of n, by model checking
instead the formula θJF → ϕ in our transformed system. The pattern followed
for the above theory transformation remains valid for any object-oriented rewrite
theory whose configurations are a flat multiset [14]. The above equivalence holds
in fact true for any computable rewrite theory R, but the general construction is
somewhat more involved, due to the fact that in general rewriting can happen not
just at the top, but anywhere in a term. That is, as explained in detail in [12],
there is a general theory transformation R �→ RJ

F such that: (1) it preserves
finite reachability of the corresponding Kripke structures; and (2) there is a
bisimulation H : K(RJ

F , k̂)Π
∼= K(R, k)Π (with k̂ a kind of state-label pairs, see

[12]), and one has:
Theorem 1. For any computable R specifying a Kripke structure and having
fairness specifications J ∪F , and for any LTL formula ϕ in its state predicates,
one can define a formula θJF characterizing the fairness requirements so that
there is an equivalence,

K(RJ
F , k̂)Π′ , [t] |= (θJF → ϕ) ⇔ K(R, k)Π , H([t]) |=J

F ϕ . ��
In general, the formula θJF may have universally quantified parameters, so that
a deductive, instead of a model checking, verification may be needed. In our
example this could be avoided because of the finite number n of philosophers; but
the universal quantification was implicit in the conjunction over all philosophers
used to define, e.g., θpickr . Rule justice/fairness is of course parameterless.

5 Concluding Remarks

I have proposed the notion of localized fairness, shown its usefulness, given a
simple rewriting semantics for it, and proved basic results about it and about
LTL reasoning under such fairness assumptions. Several research directions seem
ready to be explored. First, deductive methods to reason about localized fairness,
including techniques for proving termination under such assumptions – extending
for example the termination proof techniques under rule fairness in [18, 19] –
should be developed. Second, model checking methods that build in localized
fairness – extending model checking algorithms for fairness such as [7, 9] – would
also be quite helpful for efficiency reasons, because for sophisticated fairness
requirements the formula θJF can be big, and there is an exponential blowup
when building the Büchi automaton for an LTL formula [3].
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Abstract. Partial-inversion compilers generate programs which com-
pute some unknown inputs of given programs from a given output and
the rest of inputs whose values are already given. In this paper, we pro-
pose a partial-inversion compiler of constructor term rewriting systems.
The compiler automatically generates a conditional term rewriting sys-
tem, and then unravels it to an unconditional system. To improve the
efficiency of inverse computation, we show that innermost strategy is
usable to obtain all solutions if the generated system is right-linear.

1 Introduction

Roughly speaking, an inverse of a program P with one argument is a program
P′ such that P(a) = b coincides P′(b) = a for any data a and b. In case of a
program P with two arguments, its full inverse program P′ satisfies that P(a, b)
= c coincides P′(c) = (a, b) for any data a, b and c. On the other hand, a partial
inverse of P with respect to the first argument is a program P′′ such that P(a, b)
= c coincides P′′(c, a) = b.

We can find inverse programs in practical cases. Data compression and ex-
traction commands (for example, gzip and gunzip) are examples of a program
with one argument and its inverse. For a cryptographic encoder E(x, k) with a
symmetric key k, the decoder D(y, k) can be seen as a partial inverse of E(x, k)
with respect to the second argument. Other typical examples of partial-inverses
are subtraction for addition and division for multiplication.

The inversion sometimes helps us to generate a program from a specification
given by equations. For example, the function gcd that computes the greatest
common divisor is specified by the equations gcd(x+y, y) = gcd(x, y), gcd(x, 0) =
x and gcd(x, y) = gcd(y, x). From these equations, we can construct the following
program: ⎧⎨⎩

gcd(z, y)→ gcd(z − y, y), x− 0 → x,
gcd(x, 0) → x, s(x)− s(y) → x− y,
gcd(x, y) → gcd(y, x).
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Subtraction used in the above program is the partial inverse of addition in the
specification. In this case, we fortunately know the definition of the subtraction.
However, we do not always know the definition of the needed inverse. For ex-
ample, it is not easy to code division as a recursive function by hand, while the
function of division is well-known.

Can we automatically construct an inverse from a given program? This naive
question motivates the study of inversion compilers . A (partial-)inversion com-
piler is an algorithm which automatically generates a (partial) inverse for a given
program. In this paper, we present a partial-inversion compiler in the framework
of term rewriting systems (TRSs), prove its correctness, and discuss the efficiency
of the computation done by inverses generated by the compiler.

The partial-inversion compiler which we propose generates a partial-inverse
EV-TRS (a TRS with extra variables that appear only in right-hand sides of
rewrite rules) from a given constructor TRS. The compiler consists of two stages.
In the first stage, the compiler generates a conditional TRS (a CTRS) as a
partial-inverse program. In the second stage, the compiler transforms it to an
equivalent EV-TRS, being based on the method of unraveling [14, 17, 19]. We
prove the correctness of the compiler, that is, the generated EV-TRS is really a
partial-inverse of the given TRS.

In inverse computation, it is not easy to handle values which are erased in the
forward computation. In order to represent a guess of such a value, we exploit
extra variables. Although the reduction of an EV-TRS is essentially infinitely-
branching and non-terminating, the reduction can be simulated by narrowing
sequences starting from ground terms [16]. The termination problem of such
narrowing is closer to that of the TRS reduction than that of the ordinary
narrowing. Therefore, the existence of extra variables in the generated systems
is not disadvantageous for the compiler in this paper. The compiler sometimes
generates a TRS (which has no extra variable), and it is terminating if it is lucky.

In logic programs like Prolog, inverse computation is realized by narrowing-
based computation. However, the execution of inverse computation in Prolog
does not terminate in some practical cases, when solving erased values in the
forward computation. By contrast, the corresponding generated EV-TRS of our
compiler terminates and bring all solutions by the depth-first search.

Unraveling brings a problem into the compiler. The reductions of CTRSs can-
not be always simulated by the unraveled CTRSs completely. Unravelings [14, 19]
which are developed in order to analyze properties of CTRSs, are not suitable for
the simulation of the CTRS reduction. In this paper, we show that the combina-
tion of membership conditional [25] and context-sensitive [12] reductions brings
the completeness. We also introduce another syntactic condition of CTRSs [17]
for the completeness.

Another important issue for inverse computation is the efficiency. It is often
necessary to find all normal forms of a given term. However, the exhaustive
search is inefficient. In this paper, we show that the generated EV-TRSs always
satisfy ILRJ property which is a part of conditions in [21] for the completeness
of the innermost strategy on TRSs.

This paper is organized as follows. Section 2 prepares notations. In Section 3,
we define a partial-inversion compiler of constructor TRSs, and prove its correct-
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ness. In Section 4, we discuss the computation of the generated EV-TRSs, and
in Section 5 the improvement of the efficiency of partial-inverse computation. In
Section 6, we state some related works briefly and give concluding remarks. The
missing proofs of theorems will be shown in the full version of this paper [18].

2 Preliminaries

This paper follows general notations of term rewriting [2, 20].
Let V be a countably infinite set of variables. The set of all terms over a

signature F and V is denoted by T (F ,V). Especially, we abbreviate the set
T (F , ∅) of all ground terms to T (F). The set of variables occurring in one of
terms t1, . . . , tn is represented by Var(t1, . . . , tn). Identity of terms is denoted
by ≡. The root symbol of a term t is represented by root(t). For a context
C[, . . . , ] with n holes � at positions p1, . . . , pn and for terms t1, . . . , tn, the
notation C[t1, . . . , tn]p1,...,pn (or simply C[t1, . . . , tn]) denotes the term obtained
by replacing � at pi with ti for i = 1, . . . , n. We denote the (proper) subterm
relation by � (�). The term σ(t) obtained by applying a substitution σ to a
term t is abbreviated to tσ. The composition σσ′ of substitutions σ and σ′ is
defined as tσσ′ ≡ σ′(σ(t)).

An (oriented) conditional rewrite rule l → r ⇐ c over a signature F consists
of the left-hand side l (∈ T (F ,V) \ V) (lhs), the right-hand side r (∈ T (F ,V))
(rhs) and the conditional part c which is a sequence s1 → t1, . . . , sk → tk of
oriented conditions with {s1, t1, . . . , sk, tk} ⊆ T (F ,V). We write l → r instead
of l → r ⇐ c if it is unconditional (that is, if k = 0). We denote by ρ : l→ r ⇐ c
the rule l→ r ⇐ c with a unique label ρ. The set EVar(ρ) of all extra variables
of ρ : l→ r ⇐ c is defined as EVar(ρ) = Var(r, c) \ Var(l).

An (oriented) conditional rewriting system (CTRS) over a signature F is a
finite set of oriented conditional rewrite rules over F . A CTRS is a term rewriting
system with extra variables (EV-TRS) if its every rule is unconditional, and then
it is a term rewriting system (TRS) if it is an EV-TRS without extra variables.
We use R⇐ and S⇐ for CTRSs (possibly EV-TRSs), and R and S for EV-TRSs.
For a CTRS R⇐, the rewrite relation of R⇐ is denoted by −→R⇐ . To specify
the position p for s −→R⇐ t, we write s −→p

R⇐ t. The set of all normal forms of
R⇐ is denoted by NFR⇐(F ,V). Conditional rewrite rules ρ : l → r ⇐ c are
classified according to the distribution of variables among l, r and c, as follows:
ρ is in type 3 if Var(r) ⊆ Var(l, c), and in type 4 if no restriction is imposed.
An i-CTRS contains only conditional rewrite rules of type i. A CTRS R⇐ is
said to be deterministic if every rule ρ : l → r ⇐ s1 → t1, . . . , sk → tk ∈ R⇐ is
deterministic, that is, Var(si) ⊆ Var(l, t1, . . . , ti−1) for 1 ≤ i ≤ k.

The set of defined symbols for a CTRS R⇐ over a signature F is DR⇐ =
{ root(l) | l → r ⇐ c ∈ R⇐ }. The signature is partitioned as F = DR⇐ 	
CR⇐ where 	 is the disjoint union of sets. Function symbols in CR⇐ are called
constructors of R⇐. A term t in T (CR⇐ ,V) is called a constructor term of R⇐. A
constructor system is a CTRS R⇐ such that every rule f(t1, . . . , tn)→ r ⇐ c ∈
R⇐ satisfies {t1, . . . , tn} ⊆ T (CR⇐ ,V). A CTRS R⇐ is convergent if it is confluent
and strongly normalizing with respect to −→R⇐ . We use a, b, c as constructors,
f , g, h as defined symbols, and x, y, z as variables.
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partial-inversion

Inv

constructor TRS

R
(= Inv(R))

R⇐ unraveling

(= (R⇐))
R′

CTRS EV-TRS

partial-inversion compiler

partial-inverse program of R

Fig. 1. The structure of the partial-inversion compiler proposed in this paper.

3 Partial-Inversion Compiler

In this section, we present a partial-inversion compiler of constructor TRSs which
consists of two stages (Fig. 1). The first stage is an actual partial-inversion which
generates a partial-inverse CTRS from a given constructor TRS. The second is
the unraveling which transforms the CTRS to an equivalent EV-TRS [20].

We prepare special constructors { tp0, tp1, . . .} to denote the tuple (t1, . . . , ti)
of terms t1, . . . , ti as tpi(t1, . . . , ti). The tuple tp1(t) of a term t may be abbre-
viated to the term t. The reason why introducing such symbols is that inverses
of n-ary functions return tuples of some terms.

An index for an n-ary defined symbol f is a natural number i such that 1
≤ i ≤ n, which intuitively stands for an argument position of f . We use sets
of indexes for f to represent which arguments of f are given. For a set I of
indexes for f , we denote by |I| the cardinality of I. The j-th index of I in the
increasing order is denoted by Ij . That is, if I = {i1, . . . , im} and ij < ij+1 for
all 1 ≤ j < m, then Ij represents ij. The notation Ī denotes the complement of
I, that is, Ī = {1, . . . , n} \ I. For a set D of defined symbols, the set of all pairs
of a defined symbol and a set of indexes for the symbol is denoted by ID: ID =
{ (g, I) | g ∈ D, I ⊆ {1, . . . , |g|} } where |g| is the arity of g.

3.1 Definition of Partial-Inverses

Here we give a concrete definition of partial-inverses.

Definition 1. Let R⇐ be a CTRS over a signature F , and S⇐ be a CTRS over
a signature F ′ satisfying CR⇐ ⊆ CS⇐. Let f and g be defined symbols of R⇐ and
S⇐, respectively, and I be a set of indexes for f . Then, g is a partial inverse of
f with respect to a set I if the following holds:

for all ground constructor terms t, t1, . . . , tn of R⇐, f(t1, . . . , tn) ∗−→R⇐

t if and only if g(t, tI1 , . . . , tI|I|)
∗−→S⇐ tp|Ī|(tĪ1 , . . . , tĪ|Ī|),

where tp|Ī| ∈ CS⇐. In particular, g is a full inverse of f if I = ∅. The CTRS S⇐

is called a partial-inverse system of R⇐ with respect to a set DI ⊆ IDR⇐ (simply
called a partial-inverse system of R⇐ when DI = IDR⇐ ) if for every (f, I) ∈
DI, there exists g ∈ DS⇐ such that g is a partial-inverse of f with respect to I.
R⇐ is sometimes called the forward(-computation) system for S⇐.
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mul( s(x), s(y) ) → s( mul( x, s(y) ), y ) )add(

mul( s(x), s(y) ) → s( add( mul( x, s(y) ), y ) )

mul{2}( s(z), s(y) )→ tp1(s(x))⇐add( mul( x, s(y) ), y ) → z

mul{2}( s(z), s(y) )→ tp1(s(x))⇐ add{2}( z, y ) , mul( x, s(y) )→tp1(w) → w

mul{2}( s(z), s(y) )→ tp1(s(x))⇐ add{2}( z, y ) , mul{2}( w, s(y))→tp1(w) →tp1(x)

add(mul(x, s(y)), y) = z

mul(x, s(y)) = w

Step 1.

Step 2.

Step 3.

: replacement

: exchange terms

: given argument

Fig. 2. Sketch of partial-inversion of the third rule of R1.

Example 2. Consider the following convergent constructor TRSs over the signa-
ture {0, s, add,mul,minus}:

R1 =

⎧⎪⎪⎨⎪⎪⎩
add(0, y)→ y,
add(s(x), y) → s(add(x, y)),
mul(0, y)→ 0, mul(x, 0)→ 0,
mul(s(x), s(y)) → s(add(mul(x, s(y)), y))

R2 =
{

minus(x, 0) → x,
minus(s(x), s(y)) → minus(x, y).

R2 is a partial-inverse TRS of R1 with respect to {(add, {1})}.

3.2 Idea of Partial Inversion

This subsection intuitively explains how to generate a partial-inverse CTRS from
a given constructor TRS, by using R1 in Example 2 and the pair (mul, {2}).

Roughly speaking, we generate a conditional rewrite rule for a rewrite rule
in a given system R, and a set of indexes for the root symbol of the lhs. The
idea of the generation is based on the essential property of inverses: f(v1, . . . , vn)
= v if and only if f−1(v, v1, . . . , vi) = (vi+1, . . . , vn). For a given pair (f, I) of
a defined symbol f and a set I of indexes for f , we use f I as a symbol of the
partial-inverse of f with respect to I. We add a special rewrite rule for each
(f, I) (as we will show the detail later). The partial-inverse CTRS of R1 with
respect to {(mul, {2})} is generated as follows:

R⇐
3 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

add{2}(y, y)→ tp1(0),
add{2}(s(z), y)→ tp1(s(x)) ⇐ add{2}(z, y)→ tp1(x),
mul{2}(0, y)→ tp1(0), mul{2}(0, 0)→ tp1(x),
mul{2}(s(z), s(y))→ tp1(s(x))

⇐ add{2}(z, y)→ tp1(w),mul{2}(w, s(y)) → tp1(x),
add{2}(add(x, y), y) → tp1(x), mul{2}(mul(x, y), y) → tp1(x).

We give an intuitive explanation by using the third rule of mul. To generate
the fifth rule in R3, we apply the following three steps to it (see Fig. 2):
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(Step 1). This step analyzes the rule and classifies variables in the rule into the
given and the unknown, depending on whether value is assigned in future
execution. The result of this step is illustrated in the second line of Fig. 2.
The pair (mul, {2}) means that the second argument s(y) of mul in the lhs
is given. Hence, the value of y is assigned in the execution. On the contrary,
the value of x is unknown. Therefore, the second arguments of add and mul
in the rhs are given, and their first arguments are unknown1.

(Step 2). This step creates a rule for inverses by exchanging parts of both the left-
and right-hand sides of the rule, except the given arguments in the lhs. When
exchanging, we replace the term add(mul(x, s(y)), y) in the rhs with a fresh
variable z (not used in the rule), and add the condition add(mul(x, s(y)), y) →
z caused by the replacement to the conditional part. This transformation
makes the original rhs a constructor term. We also replace the root symbol
mul in the lhs with the symbol mul{2}.

(Step 3). This step applies Step 2 to the condition part until it becomes deter-
ministic. By applying Step 2 twice to the condition part, we obtain the
conditional rewrite rule of mul{2} illustrated in the bottom line of Fig. 2.

By applying the above three steps to all rules in R1 and all needed pairs
((add, {2}) and (mul, {2})), we obtain the first five rules in R⇐

3 .
In addition to the above three steps, we generate for every pair (f, I) ∈ ID

the special rewrite rule f I(f(x1, . . . , xn), xI1 , . . . , xI|Ī|) → tp|Ī|(xĪ1 , . . . , xĪ|Ī|),
called the inverse-property rule of f with respect to I. These rules are neces-
sary for inverse computation of functions that invoke partial functions. Con-
sider the TRS R4 = R1 ∪ { half(0) → 0, half(s2(x)) → s(half(x)), g(x) →
mul(x, half(s(x))) }. Since we have a derivation g(0) ∗−→R4

0, the inverse com-
putation g∅(0) ∗−→ tp1(0) should hold. If half∅(half(x)) → tp1(x) were missing,
g∅(0) could not be reachable to tp1(0) because the only applicable rule to g∅(0)
is g∅(y) → tp1(x) ⇐ mul∅(y) → tp2(x, z), half(z) → tp1(s(x)) and we must find
z satisfying half∅(z)→ tp1(s(0)).

3.3 Generation of Partial-Inverse CTRSs

In this subsection, we formalize the idea described in Subsection 3.2. To simplify
the presentation, we focus on generating partial-inverse CTRSs with respect to
ID. We can easily get the CTRS with respect to a subset of ID by collecting
usable rules after the generation.

We first provide definitions (Definition 3–5) necessary to show the first stage
of our compiler. We write C[[t1, . . . , tn]] instead of a term C[t1, . . . , tn] if C is a
constructor context (that is, C[, . . . , ] ∈ T (C ∪{�},V)) and root(ti) is a defined
symbol for every i ∈ {1, . . . , n}. It is clear that every term s can be represented
in the form of C′[[s1, . . . , sk]].

Definition 3. Let ρ : f(w1, . . . , wn) → C[[r1, . . . , rm]] be a rewrite rule over a
signature D 	 C and I be a set of indexes for f . The set UVar(ρ, I) of variables
in ρ, whose values are unknown, is defined as follows:
1 The value of mul(x, s(y)) is not given because this term has the unknown variable x.
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UVar ( f(w1, . . . , wn) → C[[r1, . . . , rm]], I )
= Var(wĪ1 , . . . , wĪ|Ī|) \ Var(wI1 , . . . , wI|I| , C[, . . . , ]).

The above definition corresponds to the preparation of Step 1 in Subsection 3.2.
An example of the above definition will be found after Definition 5.

For a term t and the setX of unknown variables, we define a label attachment
to each defined symbol in t. The label of the defined symbol g for a subterm
g(t1, . . . , tn) is a set I of indexes for g such that i ∈ I if all variables in ti are
known (no variable in t is not in X).

Definition 4. Let F (= C 	 D) be a signature, f(t1, . . . , tn) be a term with f ∈
D, and X be a set of variables. We define the set of indexes which specifies posi-
tions of arguments tis not containing any variable in X, as I (f(t1, . . . , tn), X)
= { i | Var(ti) ∩X = ∅ }.

For a term t, the labeled term Lab(t,X) in which defined symbols are labeled
with a set of indexes, is recursively defined as follows:
– Lab(x,X) = x where x is a variable,
– Lab(c(t1, . . . , tn), X) = c (Lab(t1, X), . . . ,Lab(tn, X)) where c ∈ C, and
– Lab(f(t1, . . . , tn), X) = fI (Lab(t1, X), . . . ,Lab(tn, X)) where f ∈ D and I

= I(f(t1, . . . , tn), X).

The transformation from a rewrite rule f(w1, . . . , wn) → r to the labeled rule
fI(w1, . . . , , wn)→ Lab(r,UVar(ρ, I)) corresponds to Step 1 in Subsection 3.2.

We here define the procedure that produces a term and a sequence of condi-
tions, which are parts of constructing a conditional rule from a given rule.

Definition 5. Let F (= C 	 D) be a signature. The procedure T , which outputs
a pair of a term and a condition part from an input labeled term, is inductively
defined as follows:
(a) T (x) = 〈 x ; ε 〉 where x is a variable,
(b) T (c(t1, . . . , tn)) = 〈c(u1, . . . , un); Cond1, . . . , Condn 〉 where c ∈ C and T (ti)

= 〈 ui ; Condi 〉 for 1 ≤ i ≤ n,
(c) T (fI(t1, . . . , tn)) =

〈 y ; f I(y, uI1 , . . . , uI|I|)→ tp|Ī|(sĪ1 , . . . , sĪ|Ī|), Cond
′̄
I1
, . . . , Cond′̄

I|Ī|
〉

where f ∈ D, |I| < n, y is a ‘fresh’2 variable, T (ti) = 〈 ui ; Condi 〉 for 1
≤ i ≤ n,
– uĪj

= CĪj
[[uĪj ,1, . . . , uĪj ,mĪj

]], sĪj
= CĪj

[zĪj ,1, . . . , zĪj ,mĪj
],

– Cond′̄
Ij

= CondĪj
, uĪj ,1 → zĪj ,1, . . . , uĪj ,mĪj

→ zĪj ,mĪj
, and zĪj ,k is a

‘fresh’2 variable, and,
(d) T (f{1,...,n}(t1, . . . , tn)) = 〈 f(u1, . . . , un) ; Cond1, . . . , Condn 〉 where f ∈ D

and T (ti) = 〈 ui ; Condi 〉 for 1 ≤ i ≤ n,
where we write ε to represent the empty sequence of conditions.
2 This means that
– in the case (c), y �∈ ⋃n

i=1 Var(ti, ui, Condi), zĪj ,k �∈ {y} ∪ ⋃n
i=1 Var(ti, ui, Condi),

zĪj ,k′ �≡ zĪj ,k′′ (k′ �= k′′), and
– in the both (b) and (c), variables introduced in each T (ti) = 〈 ui ; Condi 〉 are

disjoint, that is, (Var(ui, Condi) \ Var(ti)) ∩ Var(tj , uj , Condj) = ∅ for i �= j.
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It is clear that the above procedure T always terminates and returns a pair
of a term and a conditional part. Note that for T (t) = 〈 u ; Cond 〉, u can be
represented as C[[u1, . . . , un]] (∈ T (F ,V)).

Example 6. UVar, I, Lab and T perform for the fifth rule of R1 as follows:

UVar( mul(s(x), s(y)) → s(add(mul(x, s(y)), y)), {2} ) = {x},
I( add(mul(x, s(y)), y), {x} ) = {2}, I( mul(x, s(y)), {x} ) = {2},
Lab( s(add(mul(x, s(y)), y)), {x} ) = s(add{2}(mul{2}(x, s(y)), y)),

T ( s(add{2}(mul{2}(x, s(y)), y)) )
= 〈 s(z) ; add{2}(z, y)→ w,mul{2}(w, s(y)) → x 〉.

We finally define the partial-inversion from constructor TRSs into CTRSs.

Definition 7. Let R be a constructor TRS over a signature F . For a rewrite
rule ρ : f(w1, . . . , wn) → r ∈ R and a set I of indexes for f , its corresponding
conditional rewrite rule InvRule(ρ, I) of f I is defined as follows:

InvRule( f(w1, . . . , wn)→ r, I) =
f I(C[y1, . . . , ym], wI1 , . . . , wI|Ī|) → tp|Ī|(wĪ1 , . . . , wĪ|Ī|)

⇐ u1 → y1, . . . , um → ym, Cond

where T ( Lab(r,UVar(ρ, I)) ) = 〈 C[[u1, . . . , um]] ; Cond 〉, each yi is a vari-
able with yi �∈ Var(w1, . . . , wn), and (Var(C[[u1, . . . , um]], Cond) \ Var(r)) ∩
Var(y1, . . . , ym, w1, . . . , wn) = ∅.

The partial-inverse CTRS Inv(R) is defined as follows:

Inv(R) = { InvRule(ρ, I) | ρ : f(w1, . . . , wn)→ r ∈ R, I ⊆ {1, . . . , n} }
∪{ f I(f(x1, . . . , xn), xI1 , . . . , xI|I|) → tp|Ī|(xĪ1 , . . . , xĪ|Ī|) | (f, I) ∈ IDR } ∪R.

The extended signature F is defined as F = F 	 { f I | (f, I) ∈ IDR }.
The generation of conditional rules by InvRule corresponds to Step 2 and Step 3
in Subsection 3.2. Note that our approach does not require the left-linearity of in-
put systems. It is clear that InvRule(ρ, I) is exactly a deterministic conditional
rewrite rule and then Inv(R) is exactly a deterministic CTRS over the signature
F . For a CTRS S⇐ and a set D of defined symbols of S⇐, we use (S⇐)|D for all
rules in S⇐ that are necessary to calculate terms in T (D ∪ CS⇐ ,V).

Example 8. Consider R1 again. For (mul, {2}) and (mul, {1, 2}), we obtain by
Inv the following CTRS:

R⇐
5 = Inv(R1)|{mul{2},mul{1,2}}

= R⇐
3 ∪

⎧⎨⎩
mul{1,2}(0, 0, y)→ tp0, mul{1,2}(0, x, 0)→ tp0,

mul{1,2}(s(z), s(x), s(y)) → tp0 ⇐ add(mul(x, s(y)), y) → z,

mul{1,2}(mul(x, y), x, y) → tp0

⎫⎬⎭ ∪R1.

The following theorem shows that the CTRS obtained by Inv from a given
constructor TRS can perform the inverse computation of innermost derivations
of the TRS. For a TRS R, we write −→

in R as the innermost reduction of R.
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Theorem 9. Let R be a constructor TRS over a signature F . Let (f, I) ∈ IDR

and t, t1, . . . , tn be normal forms of R. Then, f(t1, . . . , tn) ∗−→
in R t if and only if

f I(t, tI1 , . . . , tI|I|) −→Inv(R) tp|Ī|(tĪ1 , . . . , tĪ|Ī|).

It is clear that every normalizing reduction sequence of convergent TRSs can
be simulated by an innermost sequence. Hence, the above theorem implies the
following corollary:

Corollary 10. Let R be a convergent constructor TRS over a signature F . Let
(f, I) ∈ IDR and t, t1, . . . , tn be normal forms of R. Then, f(t1, . . . , tn) ∗−→R t if
and only if f I(t, tI1 , . . . , tI|I|) −→Inv(R) tp|Ī|(tĪ1 , . . . , tĪ|Ī|).

From the above corollary and the fact T (CR) ⊆ NFR(F ,V), the CTRS Inv(R)
is exactly a partial-inverse system of the convergent constructor TRS R with re-
spect to IDR in the sense of Definition 1. In addition, it is clear that (Inv(R))|DI
for some subset DI ⊆ IDR is a partial-inverse CTRS of R with respect to DI .

3.4 Unraveling to Unconditional Systems

As the second stage of the compiler proposed in this paper, we here give the
unraveling for deterministic CTRSs [20]. For a set A = {a1, . . . , an}, �A denotes
a list a1, . . . , an for a unique representation of A.

Definition 11 ([20]). Let R⇐ be a deterministic CTRS over a signature F .
For every conditional rewrite rule ρ : l → r ⇐ s1 → t1, . . . , sk → tk in R⇐, we
prepare k fresh function symbols uρ

1, . . . , u
ρ
k, called U symbols, neither of which

appears in F . Then, the set of rewrite rules determined by ρ is defined as follows:

U(ρ) = { l→ uρ
1(s1, �X1), uρ

1(t1, �X1)→ uρ
2(s2, �X2), · · · , uρ

k(tk, �Xk) → r }

where Xi = Var(l, t1, . . . , ti−1) ∩ Var(r, ti, si+1, ti+1, . . . , sk, tk). The system
U(R⇐) =

⋃
ρ∈R⇐ U(ρ) is an EV-TRS over the extended signature FU(R) = F 	⋃

ρ∈R⇐{ uρ
i | 1 ≤ i ≤ |ρ| } where |ρ| denotes the number of the conditions of ρ.

It is clear that R⇐ is a 3-CTRS if and only if U(R⇐) is a TRS.

Example 12. The CTRS R⇐
3 in Subsection 3.2 is unraveled by U as follows:

U(R⇐
3 ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

add{2}(y, y)→ tp1(0),
add{2}(s(z), y)→ u1(add{2}(z, y)), u1(tp1(x)) → tp1(s(x)),
mul{2}(0, y)→ tp1(0), mul{2}(0, 0)→ tp1(x),
mul{2}(s(z), s(y))→ u2(add{2}(z, y), y),
u2(tp1(w), y) → u3(mul{2}(w, s(y))), u3(tp1(x)) → tp1(s(x)),
add{2}(add(x, y), y)→ tp1(x), mul{2}(mul(x, y), y)→ tp1(x).

The unraveled CTRS cannot always simulate any rewrite sequence of an
original CTRS completely. It holds for every deterministic CTRS R⇐ over a
signature F that, for every terms s and t in T (F ,V), s ∗−→R⇐ t implies s ∗−→

U(R⇐)t.



Partial Inversion of Constructor Term Rewriting Systems 273

However, the converse does not hold in general (see Example 7.2.14 in [20]). The
converse is called the simulation-completeness of U for R⇐. That is, for every
terms s and t in T (F ,V), s ∗−→

U(R⇐) t implies s ∗−→R⇐ t. In Section 4, we will
show two solutions of this problem.

The unraveled CTRSs may produce some garbage normal forms, which con-
tain U symbols. When U is simulation-complete, we can easily recognize whether
a obtained normal form is garbage or not.

4 Computation of Partial-Inverse EV-TRSs

The rewrite relation of the generated systems has two problems to be solved. One
is the existence of extra variables, and the other is the simulation-incompleteness
of the unraveling U. In this section, we state briefly that the first problem does
not matter, and then we deal with the second problem from two approaches: a
restriction against the rewrite relation, and a syntactic constraint on CTRSs.

4.1 On Extra Variables

Extra variables cause infinitely-branching and non-termination of the rewrite
relation. However, these troubles are solved by narrowing [10] starting from
ground terms – every EV-normalized rewrite sequence with the ground initial
term has a narrowing sequence which starts from the same initial term, and of
which the last term is more general than the last of the rewrite sequence, and
vice versa [16]. Here a rewrite sequence is said to be EV-normalized , denoted by
−→ev , if a normal form is substituted for each extra variable in every reduction
step of the rewrite sequence. In the subproof of Theorem 9 (see [18]), the inverse
computation fI(t, tI1 , . . . , tI|I|) −→Inv(R) tp|Ī|(tĪ1 , . . . , tĪ|Ī|) is constructed from
the innermost derivation f(t1, . . . , tn) ∗−→

in R t, substituting normal forms for extra
variables. In addition, such a reduction can be easily simulated by the unraveled
CTRS. These facts mean that every partial-inverse computation for innermost
normalizing derivation can be represented by a (ground) EV-normalized rewrite
sequence of the generated EV-TRSs.

Proposition 13. Let R be a constructor TRS over a signature F . Let (f, I) ∈
IDR and t, t1, . . . , tn be normal forms of R. If f(t1, . . . , tn) ∗−→

in R t, then there ex-
ists an EV-normalized rewrite sequence such that f I(t, tI1 , . . . , tI|I|)

∗−→ev U(Inv(R))

tp|Ī|(tĪ1 , . . . , tĪ|Ī|).

Thus, the necessary rewrite sequences for partial-inverse computation can be
simulated by narrowing starting from ground terms. Every step of narrowing is
finitely branching up to renaming, and the non-termination is less serious in the
narrowing starting from ground terms than in the ordinary narrowing. In fact,
some EV-TRSs terminate with respect to narrowing starting from ground terms,
while they do not terminates with respect to the ordinary narrowing.
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4.2 On Simulation-Incompleteness of Unraveling

The second problem stated in the beginning of this section is caused from the
disordered evaluation of rules that originate in conditional parts (as shown in
Example 7.2.14 of [20]). It is solved by combining the membership conditional
and context-sensitive reductions.

We first give definitions of three reductions for the unraveled CTRSs: the
membership conditional reduction [25], the context-sensitive reduction [12] and
their combined reduction.

Definition 14. Let R⇐ be a deterministic CTRS over a signature F . The mem-
bership conditional rewrite relation −→

M U(R⇐) on T (FU(R⇐),V) is defined as
−→
M U(R⇐) = { (s, t) | s−→p

U(R⇐) t, ( ∀u, u � s|p implies u ∈ T (F ,V) ) }.
Let μ be a mapping from FU(R⇐) to a set of argument positions for f such

that μ(u) = {1} for all u ∈ FU(R⇐) \ F , and μ(f) = {1, . . . , n} for all n-ary
function symbol f ∈ F . The set Oμ(t) for a term t ∈ T (FU(R⇐),V) is defined
recursively as follows:

– Oμ(x) = ∅ where x is a variable, and
– Oμ(f(t1, . . . , tn)) = { ijq | 1 ≤ j ≤ m, q ∈ Oμ(tij ) } where f ∈ FU(R⇐) and
μ(f) = {i1, . . . , im}.

The context-sensitive rewrite relation −−→
CS U(R⇐)(μ) on T (FU(R⇐),V) is defined

as −−→
CS U(R⇐)(μ) = { (s, t) | s−→p

U(R⇐) t, p ∈ Oμ(s) }.
The membership context-sensitive (MCS) rewrite relation −−−→

MCS U(R⇐)(μ) is
defined as −−−→

MCS U(R⇐)(μ) = (−→
M U(R⇐)) ∩ (−−→

CS U(R⇐)(μ)).

Remark that these three reductions on narrowing are defined similarly. It is clear
that −−−→

MCS U(R⇐)(μ) ⊆ −→
M U(R⇐) ⊆ −→

U(R⇐), and −−−→
MCS U(R⇐)(μ) ⊆ −−→

CS U(R⇐)(μ)

⊆ −→
U(R⇐). From these facts, both the termination of −→

U(R⇐) and the μ-
termination of −−→

CS U(R⇐)(μ) guarantee the termination of −→
M U(R⇐), −−→CS U(R⇐)(μ)

and −−−→
MCS U(R⇐)(μ). To prove the termination of them, we can use existing tools,

such as AProVE [5], TTT [8], mu-term [13]. The MCS reduction above is im-
plemented as the particular case of MEP [4], and then we can use the technique
in [4] to prove the termination of −−−→

MCS U(R⇐)(μ).
We here discuss the simulation-completeness with respect to the MCS reduc-

tion. Consider the rule ρ : f(x, y) → x⇐ g(x) → z, g(y)→ z and the correspond-
ing unraveled rules U(ρ) = { f(x, y)→ uρ

1(g(x), x, y), uρ
1(z, x, y)→ uρ

2(g(y), x, z),
uρ
2(z, x, z)→ x }. The U symbol uρ

1 is used to evaluate in the first argument the
first condition g(x) → z, and to deliver the value of variables x and y via the
rest of its arguments (that is, the second and third). From this observation, no
redex in either of k-th argument (2 ≤ k ≤ n) of u should be reduced until u
is reduced, and u should not be evaluated until the evaluation of the first ar-
gument is finished. These evaluations are kept by the context-sensitive and the
membership reductions, respectively. Hence, conditional parts of rules in R⇐ are
evaluated in proper order on −−−→

MCS U(R⇐)(μ).

Theorem 15. For every deterministic CTRS R⇐, U is simulation-complete
with respect to −−−→

MCS U(R⇐)(μ).
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Proof (Sketch). This theorem can be proved straightforward by induction on the
length of the rewrite sequences of −→

U(R⇐). ��

As another solution of the second problem stated in the beginning of this
section, we have shown some results on the simulation-completeness of U with
respect to the ordinary rewrite relation [17].

Theorem 16 ([17]). Let R⇐ be a deterministic CTRS.

– If either U(R⇐) is a left-linear TRS or U(R⇐) is right-linear and non-
erasing, then U is simulation-complete for R⇐ with respect to −→

U(R⇐).
– If U(R⇐) is left-linear, then U is simulation-complete for R⇐ with respect

to −→ev U(R⇐).

Note that syntactic conditions of CTRSs that the unraveled CTRSs are left-
linear, right-linear and non-erasing, respectively, are shown in [17]. Theorem 16
may not be applicable to other unravelings, while −−−→

MCS U(R⇐)(μ) may provide the
simulation-completeness to them. According to Proposition 13, the restriction
of the rewrite sequences to −→ev U(R⇐) does not affect the computation of the
generated EV-TRSs.

From Theorem 9 and the discussion in this section, we can conclude that our
method is correct.

5 Improving Efficiency of Partial-Inverse Computation

In this section, we show that the efficiency of partial-inverse computation can be
improved by the innermost strategy without loss of completeness if the systems
are right-linear.

It has been shown in [23] that for every right-linear overlay TRS, all normal
forms of terminating terms can be obtained by innermost strategy. As shown in
the following theorem, this result has been extended.

Theorem 17 ([21]). Let R be an ILRJ and right-linear TRS, and s be a ter-
minating term. For all normal forms t of s, s ∗−→

in R t.

Here the inside critical pairs of a CTRS R⇐ are the critical pairs obtained from
rules overlap at non-root positions. The CTRS R⇐ is said to be inside left-to-
right joinable (ILRJ, for short) if every inside critical pair 〈s, t〉 (s ←−ε< · −→ε t)
satisfies s ∗−→R⇐ t. Note that overlay systems are ILRJ.

Our partial-inverse EV-TRSs are sometimes not overlay. For example, R⇐
5

in Example 8 is not overlay because they have the defined symbols add and mul
in the first arguments of the lhs’s of the inverse-property rules. From the same
reason, the combination of forward and inverse programs such as R1 ∪ U(R⇐

3 )
are not always overlay. However,R⇐

3 in Subsection 3.2 and U(R⇐
3 ) in Example 12

are ILRJ. In fact, the generated partial-inverse systems are always ILRJ.

Theorem 18. Let R be a constructor TRS over a signature F . Assume that
for every rule l → r ∈ R, the rhs r is weakly normalizing for the innermost
reduction. Then, Inv(R) ∪R and U(Inv(R)) ∪R are ILRJ.
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Proof. By the construction of Inv(R), inside overlaps in Inv(R) ∪ R happens
between rules f(w1, . . . , wn) → r ∈ R and f I(f(x1, . . . , xn), xI1 , . . . , xI|I|) →
tp|Ī|(xĪ1 , . . . , xĪ|Ī|) ∈ Inv(R). Hence, we have inside critical pairs only in the form

〈f I(r, wI1 , . . . , wI|I| ), tp|Ī|(wĪ1 , . . . , wĪ|Ī|)〉. By the assumption, there exists a nor-
mal form t of R such that r ∗−→

in R t. Then, we have f(w1, . . . , wn) −→
in R r

∗−→
in R t.

It follows Theorem 9 that f I(t, wI1 , . . . , wI|I|) −→Inv(R) tp|Ī|(wĪ1 , . . . , wĪ|Ī|), and

hence f I(r, wI1 , . . . , wI|I|)
∗−→Inv(R)∪R tp|Ī|(wĪ1 , . . . , wĪ|Ī|). Therefore, Inv(R)∪R

is ILRJ. The case of U(Inv(R)) ∪R is similar to the above case. ��
In this case , it is clear that (Inv(R))|DI ∪ R and U((Inv(R))|DI ) ∪ R for DI
⊆ IDR are also ILRJ. Now we suppose that forward computation is convergent,
and then the assumption holds. Hence, the assumption is not really a restriction
for the generated systems. It also holds that the CTRS S⇐ ∪ (R∪ (Inv(R))|DI )
(or S⇐ ∪ (R ∪U((Inv(R))|DI )) is ILRJ if S⇐ is ILRJ, because the assumption
that they are constructor-sharing systems is adequate.

From Theorem 17 and 18, innermost strategy is effective to improve the
efficiency of reductions by the right-linear partial-inverse systems, without loss
of the reachability to solutions.

The MCS reduction −−−→
MCS U(R⇐)(μ) does not eliminate any necessary reduc-

tion sequence starting from a given term. Innermost strategy does not also elim-
inate such a sequence, when all of the conditions in Theorem 17 are satisfied.
Therefore, in such cases, the MCS reduction with innermost strategy (that is,
−−−−−→
MCS,in U(R⇐)(μ)) is not less efficient than either −→

in U(R⇐) or −−−→
MCS U(R⇐)(μ).

6 Related Works and Conclusion

Full-inversion compilers have been studied in [6, 7, 11, 22] which are applicable to
several functional languages, and of which the correctness was not discussed (not
proved). By contrast, we have shown the correctness of our method. Moreover,
the discussion in Section 5 seems the first work on improving the efficiency of
inverse computation. A partial-inversion compiler is considered in [22], which is
for the programming language Refal (as like constructor normal CTRSs), and
in which the non-determinism of inverses is solved by representing output of
functions as a set. Bidirectional transformation [9] based on the bidirectional
updating in the field of database, uses bidirectional languages which is a similar
notion to the partial inversion.

There is another approach to inverse computation. Inverse interpreters are
procedures that compute unknown inputs from the program and a given output.
Several kinds of interpreters have been studied in [1, 3, 24]. Inverse interpreters
seem to deal easily with partial-inverse problem. The algorithm in [3] (which is
consists of inference rules) essentially resembles our method in the sense that the
input class is (ground-)convergent constructor TRSs. The algorithm terminates
if the input TRS is constructing. We believe that the EV-TRS generated by
our compiler from a constructing TRS is terminating with respect to narrowing
starting from ground terms. Moreover, we have the example TRS R4 which is
not constructing but whose inverse is terminating.
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The inverse computation in this paper can handle general solutions by vari-
ables that represent arbitrary terms. The compiler proposed in this paper is of
course applicable to functions which returns multiple values, because the com-
piler can handle them by rules in the form of f(· · ·) → tuple(v1, . . . , vm). The
resulted TRS of the unraveling may be optimized. For example, u1 and u3 in
U(R⇐

3 ) are nonsense.
We have encountered some examples that the efficiency of −−−−−→

MCS,in U(Inv(R))(μ)

is equal to that of −→
in U(Inv(R)). It is a future work to analyze the detail of the

efficiency. We are also interested in relationships between syntactic properties
of an input TRS and the generated EV-TRS, for example, a condition of R
inducing the right-linearity of U(Inv(R)).

Which is more effective, full inverses or partial inverses? Full inverses are in-
cluded in partial inverses, and partial inverses can compute by the corresponding
full-inverses because the results of the full inverses contain all solutions of par-
tial inverses. Full inverses seems to be less efficient than partial inverses, but we
know some desirable properties of syntactic relationships between forward and
full-inverse programs. Analysis for this problem is another future work.
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Abstract. For narrowing to be an efficient evaluation mechanism, sev-
eral lazy narrowing strategies have been proposed, although typically
for the restricted case of left-linear constructor systems. These assump-
tions, while reasonable for functional programming applications, are too
restrictive for a much broader range of applications to which narrow-
ing can be fruitfully applied, including applications where rules have a
non-equational meaning either as transitions in a concurrent system or
as inferences in a logical system. In this paper, we propose an efficient
lazy narrowing strategy called natural narrowing which can be applied
to general term rewriting systems with no restrictions whatsoever. An
important consequence of this generalization is the wide range of ap-
plications that can now be efficiently supported by narrowing, such as
symbolic model checking and theorem proving.

1 Introduction

Rewriting is currently recognized as a very general declarative formalism to
specify, program, and reason about computational systems. The more tradi-
tional applications have been in the context of equational reasoning and of
equational/functional programming, where the rewriting relation is understood
as oriented equality. But there is an increasing awareness of the usefulness of
rewriting in non-equational contexts, where a rewrite is understood as a transi-
tion or an inference: for example to specify and program concurrent systems or
logical inference systems. This has led, for example, to theoretical developments
such as rewriting logic [28], and to the development of language implementations
supporting non-equational rewriting such as ELAN [6] and Maude [7].

A similar widening of the scope is needed for narrowing, which generalizes
rewriting by performing unification in nonvariable positions instead of the usual
matching. Narrowing can in this way endow rewriting languages with new pro-
gramming and reasoning capabilities in a much wider setting and for a much
wider range of applications than those based on equational logic. The tradi-
tional understanding of narrowing [15, 23] has been as a mechanism for equa-
tional unification, that is, for solving equational goals E � (∃−→x ) t = t′; as
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a consequence, properties such as confluence and termination have often been
assumed, and many equational reasoning applications, as well as a number of
functional/logic programming languages supporting narrowing, have been de-
veloped. As proposed for example in [29], in a non-equational setting narrowing
can instead be understood as a powerful mechanism for solving reachability goals
R � (∃−→x ) t →∗ t′ in a rewrite theory R. The traditional equational interpreta-
tion can still be kept as a special case since, as explained in Section 4.2, solv-
ing equations becomes a special case of solving more general reachability goals.
However, in this wider setting traditional assumptions such as confluence and
termination are in general no longer reasonable (see Section 5 and [29, 34] for a
discussion of completeness issues for narrowing in this setting).

A key challenge for narrowing is the danger of combinatorial explosion in
exploring the narrowing tree. It becomes in fact essential in practice to use
adequate narrowing strategies that are as greedy as possible, yet remain com-
plete. One important breakthrough in this direction was the realization that
one could extend the work on optimal lazy reduction strategies originating with
Huet and Levy [22], and extended in different ways by other researchers (see, e.g.,
[1, 3, 11, 32]) to obtain efficient lazy narrowing strategies that only instantiate
those positions that are really needed. This was first achieved by Antoy, Echahed
and Hanus, who extended their (weakly) outermost-needed rewriting strategy to
a (weakly) needed narrowing strategy [3, 4]. Recently, both (weakly) outermost-
needed rewriting and (weakly) outermost-needed narrowing have been further
improved by Escobar by means of the natural rewriting and natural narrow-
ing strategies [11, 12]. We postpone a more detailed discussion of related work
in this area until Section 5. For the moment, the main point to bear in mind
is that most of the work on lazy rewriting and lazy narrowing strategies [1–
4, 11, 12, 17, 19, 25, 32] has taken place within the context of functional (logic)
programming languages, and depends on assumptions such as having left-linear
and constructor rules. These assumptions are reasonable for some functional
(logic) programming languages, but they substantially limit the expressive power
of equational languages such as OBJ [18], CafeOBJ [16], ASF+SDF [10], and the
equational subset of Maude [7], where non-linear left-hand sides which need not
be constructor-based are perfectly acceptable. Such assumptions become even
more restrictive and unreasonable for non-equational rewriting languages such
as ELAN [6] and Maude [7], where a rewrite t → t′ is no longer understood as
a step of equational simplification but as a transition, and where the rules need
not be confluent nor terminating, need not be left-linear, and the constructor
assumption is utterly unreasonable and almost never holds.

The goal of this paper is to propose an efficient lazy narrowing strategy
called generalized natural narrowing that greatly extends the natural narrowing
strategy of [11] and keeps all the good properties while overcoming all the above
limitations. In fact our strategy can be applied to completely general rewrite sys-
tems with no restrictions whatsoever: even rewrite rules with extra variables in
their righthand sides are allowed; furthermore, we allow rewritings to be context-
sensitive [26] according to a function φ specifying which argument positions in
each function symbol are frozen, so that rewriting in the subterms at those
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positions is forbidden. In this way, we obtain a general lazy narrowing strat-
egy applicable in the broader setting of solving reachability goals for rewrite
systems whose rules can have a non-equational semantics. Furthermore, this
generalization is obtained together with actual gains in efficiency, in the sense
that our natural narrowing strategy, besides being efficiently implementable, per-
forms strictly better than previously proposed lazy strategies when specialized
to their setting (see Section 5). A further efficiency advantage, generalizing that
of [3, 4, 11, 12], is that, as explained in Section 3, natural narrowing computes
substitutions in an incremental way, without explicit use of a unification algo-
rithm. Perhaps the most important consequence of the generality of our natural
narrowing strategy is the wide range of applications that can now be supported.
To give the reader a better feeling for some of these application areas, including
symbolic model checking and theorem proving, we discuss those areas, and the
respective benefits of using natural narrowing for each of them, in Section 4.
What emerges, in summary, is a general and efficient unified mechanism, seam-
lessly integrating rewriting and narrowing, and making it available for a very
wide range of programming and proving applications.

To give the reader a first intuitive feeling for how our generalized natural
narrowing works, and for the difficulties that it resolves, we illustrate some of
the key issues by means of a simple example.
Example 1. Consider the following rewrite system for proving equality (≈) of
arithmetic expressions built using modulus or remainder (%), subtraction (−),
and minimum (min) operations on natural numbers.

(1) M % s(N) → (M−s(N)) % s(N) (5) min(0, N) → 0

(2) (0 − s(M)) % s(N) → N − M (6) min(s(N),0) → 0

(3) M − 0 → M (7) min(s(N),s(M)) → s(min(M,N))

(4) s(M) − s(N) → M−N (8) X ≈ X → True

Note that this rewrite system is not left-linear because of rule (8) and it is
not constructor-based because of rule (2). Furthermore, note that it is neither
terminating nor confluent due to rule (1).

The aim of natural rewriting and narrowing strategies [11] is to lazily com-
pute head-normal forms of a given term t. Specifically, given a term that is
not a head-normal form, the strategy reduces (narrows) to the extent possi-
ble, only those redexes (narroxes) that are necessary for a rule to be applied
at the root. We would like to generalize natural rewriting and narrowing to
a version that enjoys the good optimality properties of natural rewriting and
natural narrowing (see [11]) and that can also handle non-left-linear and non-
constructor rules such as (2) and (8). This is accomplished for rewriting in the
generalized natural rewriting strategy of [14]. For example, consider the term1

t1 = 10!% min(X,X−0) ≈ 10!% 0 and the following two narrowing sequences
we are interested in amongst all possible. First, the following sequence leading
to True, that starts by unifying subterm t1|1.2 with left-hand side (lhs) l5:
1 The subterm 10! represents factorial of s10(0) but we do not include the rules for
! because we are only interested in the fact that it has a remarkable computational
cost, and therefore we would like to avoid its reduction in the examples whenever
possible.
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10!% min(X,X−0) ≈ 10!% 0 �[X�→0] 10!% 0 ≈ 10!% 0 �id True

Second, the following sequence not leading to True, that starts by reducing
subterm t1|1.2.2 with lhs l3 and that early instantiates variable X:

10!% min(X,X−0) ≈ 10!% 0 �[X�→s(X’)] 10!% min(s(X’),s(X’)) ≈ 10!% 0

�id 10!% s(min(X’,X’)) ≈ 10!% 0

Note that although it is possible to further narrow the last term, we are not
interested in doing so, since such term is already a head-normal form. In the
following, we informally introduce the key points of our strategy:
1. (Demanded positions). This notion is relative to a lhs l and determines which

positions in a term t should be narrowed in order to be able to apply lhs l
at root position. For the term t1 = 10!% min(X,X−0) ≈ 10!% 0 and lhs
l8 = X ≈ X, only subterm min(X,X−0) is demanded, since it is the only
disagreeing part in t1|1 w.r.t. t1|2.

2. (Failing term). This notion is relative to a lhs l and stops further wasteful
narrowing steps. Specifically, the last term 10!% s(min(X’,X’)) ≈ 10!% 0
of the second former sequence fails w.r.t. l8, since the subterm s(min(X’,X’))
is demanded by l8 but there is no possible narrowing step above it that would
convert it into term 0.

3. (Most frequently demanded positions). This notion determines those de-
manded positions w.r.t. non-failing lhs’s that are demanded by the maxi-
mum number of rules and that cover all such non-failing lhs’s. It provides
the optimality properties of our natural rewriting and narrowing strategies,
since it substantially reduces the set of positions to be considered. If we
look closely at lhs’s l5, l6, and l7 defining min, we can see that position 1 in
the term min(X,X−0) is more demanded than position 2, i.e., position 1 is
disagreeing w.r.t. l5, l6, and l7, whereas position 2 is disagreeing only w.r.t.
l6 and l7. Thus, position 1 is the most frequently demanded position for all
rules defining min that also covers such rules. Note that position 1 is rooted
by a variable and this motivates the following point.

4. (Lazy instantiation). This notion relates to an incremental construction of
unifiers without the explicit use of a unification algorithm. This is necessary
in the previous example, since subterm min(X,X−0) does not unify with lhs
l6 and l7. However, we can deduce that narrowing at subterm X−0 is only
necessary when substitution [X �→ s(X’)], inferred from l6 and l7, has been
applied. Thus, we early construct the appropriate substitutions [X �→ 0] and
[X �→ s(X’)] in order to reduce the search space.
In Section 2, we present the preliminary background. In Section 3 we de-

fine our generalized natural narrowing strategy. In Section 4, we motivate our
work by illustrating various applications of the generalized narrowing strategy.
In Section 5, we compare our work with related approaches, and we conclude in
Section 6. Proofs of all results can be found in [13].

2 Preliminaries

We assume some familiarity with term rewriting and narrowing (see [33] for
missing definitions). We assume a finite alphabet (function symbols) Σ and a
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countable set of variables X . We denote the set of terms built from Σ and
X by TΣ(X) and write TΣ for ground terms. A term is said to be linear if
it has no multiple occurrences of a single variable. We use finite sequences of
integers to denote a position in a term. Given a set S ⊆ Σ ∪X , PosS(t) denotes
positions in t where symbols or variables in S occur. We write Posf (t) and
Pos(t) as a shorthand for Pos{f}(t) and PosΣ∪X(t), respectively. We denote
the root position by Λ. Given positions p, q, we denote its concatenation as p.q.
For sets of positions P,Q we define P.Q = {p.q | p ∈ P ∧ q ∈ Q}. We write P.q
as a shorthand for P.{q} and similarly for p.Q. The subterm of t at position p
is denoted as t|p, and t[s]p is the term t with the subterm at position p replaced
by s. We define t|P = {t|p | p ∈ P}. The symbol labeling the root of t is denoted
as root(t).

A substitution is a function σ : X → TΣ(X) which maps variables to terms,
and which is different from the identity only for a finite subset Dom(σ) of X . We
homomorphically extend substitutions to terms. We denote by id the identity
substitution: id(x) = x for all x ∈ X . Terms are ordered by the preorder ≤
of “relative generality”, i.e., s ≤ t if there exists σ s.t. σ(s) = t. We write
σ−1(x) = {y ∈ Dom(σ) | σ(y) = x}.

A rewrite rule is an ordered pair (l, r) of terms, also written l→ r, with l �∈ X .
A rewrite system2 is a triple R = (Σ,φ,R) with Σ a signature, R a set of rewrite
rules, and φ : Σ → P(N) specifies the frozen arguments φ(f) ⊆ {1, . . . , k} for
the arity k of f . We say position p in t is frozen if ∃q < p such that p = q.i.q′ and
i ∈ φ(root(t|q)). L(R) denotes the set of lhs’s of R. A rewrite system R is left-
linear if for all l ∈ L(R), l is a linear term. Given R = (Σ,φ,R), we assume that
Σ is defined as the disjoint union Σ = C	D of symbols c ∈ C, called constructors,
and symbols f ∈ D, called defined symbols, where D = {root(l) | l → r ∈ R}
and C = Σ − D. A pattern is a term f(l1, . . . , lk) where f ∈ D and li ∈ TC(X),
for 1 ≤ i ≤ k. A rewrite system R = (C 	 D, φ, R) is a constructor system (CS)
if every l ∈ L(R) is a pattern.

A term t rewrites to s at a non-frozen position p ∈ PosD(t) using the rule
l → r ∈ R, called a rewrite step and written t →〈p,l→r〉 s (t

p−→ s or simply
t → s), if t|p = σ(l) and s = t[σ(r)]p. The pair 〈p, l→ r〉 is called a redex.
A term t is a normal form if it contains no redex. A term t is a head-normal
form if it cannot be reduced to a redex. We denote by >Λ−→ a rewrite step at a
position p > Λ. A substitution σ is called normalized if σ(x) is a normal form
for all variables x. Similarly, a narrowing step is defined as t �〈p,l→r,σ〉 s (or
simply t �σ s) if σ(t) →〈p,l→r〉 s. Note that we do not require p ∈ PosD(t) for
a narrowing step, which is a usual condition for left-linear constructor systems.
Instead, we require substitutions computed by narrowing to be normalized.

3 Generalizing Natural Narrowing

In [14], we have generalized the natural rewriting strategy of [11] to the larger
class of rewrite systems that need not be left-linear and constructor-based. In
2 What we call here a rewrite system is a special case of a rewrite theory [28], which

is a 4-tuple (Σ, φ,E, R) with E a set of equations.
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this paper, we define, again for this larger class of systems, a generalized natural
narrowing strategy that, to the extent possible, performs only those narrowing
steps that are essential for applying some rule at root position. That is, if a
term t is not a head-normal form (or some substitution making the term not a
head-normal form exists), then we know that after a (possibly empty) sequence
of narrowing steps at positions other than the root, a narrowing step at the root
position with a rule l→ r is possible. We use the notions of demanded positions,
failing terms, and most frequently demanded positions, as in [14]. First, we recall
the notion of demanded positions.

Definition 1. For a term s and a set of terms T = {t1, . . . , tn} we say that s
is a context of the terms in T if s ≤ ti for all 1 ≤ i ≤ n. There is always a
least general context s of T , i.e., one such that for any other context s′ we have
s′ ≤ s; furthermore s is unique up to renaming of variables. For 1 ≤ i ≤ n, let the
substitution σi be such that σi(s) = ti and Dom(σi) ⊆ Var(s). We define the set
Pos �=(T ) of disagreeing positions between the terms in T as those p ∈ PosX(s)
such that there is an i with σi(s|p) �= s|p.

Definition 2 (Demanded positions). For terms l and t, let s be the least
general context of l and t, and let σ be the substitution such that σ(s) = l. We
define the set of demanded positions in t w.r.t. l as

DPl(t) =
⋃

x∈Var(s)

if σ(x) /∈ X then Posx(s) else Q.Pos �=(t|Q)
where Q = Posσ−1(σ(x))(s)

Intuitively, the set DPl(t) returns a set of positions in t at which t necessarily
has to be “changed” (either by a narrowing step if it is a non-variable position, or
by an instantiation if it is a variable position) before the rule l → r can be applied
at the root position, i.e., before l can match the term under consideration.

Example 2. Consider the left-hand side l8 = X ≈ X and the term
t1 = 10!% min(X,X−0) ≈ 10!% 0 of Example 1. The least general context
of l8 and t1 is s = W ≈ Z. Now, for σ = {W �→ X, Z �→ X}, we have σ(s) = l8.
Then, while computing DPl8(t1), we compute the set of disagreeing positions
between the subterms in t1 corresponding to the non-linear variable X in l8, i.e.,
the set Pos �=(T ) for T = t1|{1,2} = {10!% min(X,X−0), 10!% 0}. According
to Definition 1, the least general context of T is the term 10!% Y and the set
of disagreeing positions between terms in T is then Pos�=(T ) = {2}. Thus, we
obtain that DPl8(t1) = {1, 2}.{2} = {1.2, 2.2}.

Now, four points have to be addressed. First, note that the symbol at a
position p ∈ DPl(t) in t can be changed not only by a narrowing step or by
instantiation at p, but also by a narrowing step or instantiation at a position
q < p. Thus, besides considering the positions in DPl(t) as candidates for eval-
uation, we also need to consider the positions q in t that are above some po-
sition in DPl(t). Thus, for a position q in a term t, we define D↑

t (q) = {p |
p ≤ q ∧ p ∈ PosD(t) ∧ p is not frozen}. We lift this to sets of positions as
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D↑
t (Q) = ∪q∈QD

↑
t (q). This gives us the following useful result that shows how

demandedness captures the neededness of positions in rewrite sequences for the
application of a rule at root position.

Lemma 1. [14] Consider a rewrite sequence t→〈p1,l1→r1〉 t1 · · · →〈pn,ln→rn〉 tn
such that pn = Λ. Then, either ln ≤ t or there is a k, 1 ≤ k < n, such that
pk ∈ D↑

t (DPln(t)).

Example 3. Continuing Example 2, we have D↑
t1(DPl8(t1)) = D↑

t1({1.2, 2.2}) =
{Λ, 1, 1.2, 2}, since position 2.2 is rooted by a constructor symbol, and thus
removed.

Second, we only compute DPl(t) for those left-hand sides l such that t does
not fail w.r.t. l. Roughly, we say t fails w.r.t. l if no sequence of narrowing steps
or instantiations in t will help to produce a term to which the rule l → r can
be applied at the root; this notion is undecidable but we provide a safe and
computable approximation.

For a position p and a term t, we define the set Rt(p) of reflections of p w.r.t.
t as follows: if p is under a variable position in t, i.e., p = q.q′ for some q such
that t|q = x, then Rt(p) = Posx(t).q′, else Rt(p) = {p}. We say that the path to
p in t is stable (or simply p is stable) if root(t|p) �∈ X and D↑

t (p) \ {Λ} = ∅.

Definition 3 (Failing term). Given terms l, t, we say t fails w.r.t. l, denoted
by l � t, if there is p ∈ DPl(t) such that p is stable, and one of the following
holds: (i) Rl(p)∩DPl(t) = {p}; or (ii) there is q ∈ Rl(p)∩DPl(t) with root(t|p) �=
root(t|q), and q is also stable. We denote by l �� t that t is not failing w.r.t. l.

Example 4. Consider the subterm t1|2 = 10!% 0 and the lhs’s l1 = M% s(N) and
l2 = (0 − s(M))% s(N) in Example 1. We have that l1 � t1|2 and l2 � t1|2,
because position 2 in t1|2 belongs to DPl1(t1|2) and DPl2(t1|2), is stable, and
Rl1(2)=Rl2(2)= {2}. Similarly, the term t′ = 10!% s(min(X’,X’)) ≈ 10!% 0
fails w.r.t. l8 since 1.2, 2.2 ∈ DPl8(t

′), 1.2, 2.2 are stable, and Rl8(1.2) = Rl8(2.2)
= {1.2, 2.2}.

Third, we do not consider all positions in each DPl(t) but a subset called the
most frequently demanded positions. The idea behind this is that narrowing or
instantiating at those positions is enough for being able to reduce at root posi-
tion. In this way, we can substantially reduce (or optimize) the set of positions
to be considered.

Definition 4 (Set cover). For a set of positions P , a sequence of lhs’s l1, ..., ln,
and a sequence of sets of positions Q1, . . . , Qn, we say that P covers l1, . . . , ln
and Q1, . . . , Qn if for all 1 ≤ i ≤ n, there is a position p ∈ P ∩ Qi such that
Rli(p) ⊆ P .

Definition 5 (Most frequently demanded positions). We define the fil-
tered set of demanded positions of a term t by the set FP(t) returning one of the
minimal sets of positions that cover l1, . . . , ln and DPl1(t), . . . ,DPln(t), where
{l1, . . . , ln} = {l ∈ L(R) | l ��t}.
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Example 5. Consider the subterm t1|1 = 10!% min(X,X−0) and the lhs’s l1 and
l2 in Example 1. The reader can check that DPl1(t1|1) = {2}, DPl2(t1|1) = {1, 2},
and DPl(t1|1) = {Λ} for any other lhs l. Then, the set P = {2,Λ} covers all lhs’s
and we obtain that FP(t1|1) = {Λ, 2}. On the other hand, consider the term t1
and the lhs l8 in Example 1. From Example 2, we have DPl8(t1) = {1.2, 2.2} and
DPl(t1) = {Λ} for any other lhs l. Thus, FP(t1) = {Λ, 1.2, 2.2}, since this set is
closed by reflection.

Fourth, whenever t matches l for a rule l→ r, in addition to reducing t with
l → r we have to consider as candidates for evaluation those positions q in t that
have a defined symbol and that are above a variable position in l; see [14] for
further explanations. Now, we are able to define the set of sufficient demanded
positions that collects the four previous ideas.

Definition 6 (Sufficient demanded positions). We define the sufficient set
of demanded positions of a term t as SP(t) = ∪l∈L(R)∧l≤tD

↑
l (PosX(l)) ∪

D↑
t (FP(t)).

Example 6. Consider term t1 in Example 1. Since t1 is not a redex, we have
SP(t1) = D↑

t1(FP(t1)). By Example 5, we have SP(t1) = D↑
t1({Λ, 1.2, 2.2}). And

by Example 3, we have SP(t1) = {Λ, 1, 1.2, 2}.

Before defining generalized natural narrowing, we have to define a set of
demanded substitutions for narrowing, to address the question of what substi-
tutions the variables at demanded positions are to be instantiated with.

Definition 7 (Demanded substitutions). We define the set DSub(t) of de-
manded substitutions for narrowing t at the root position as follows. For each
pair of p ∈ FP(t) ∩ PosX(t) and l ∈ L(R) such that p ∈ DPl(t) and l �� t, we
construct the substitution σ as explained below, and stipulate that σ ∈ DSub(t).

If p ∈ PosΣ(l), then σ = [t|p �→ root(l|p)(−→w )] for distinct fresh variables −→w .
On the other hand, if p /∈ PosΣ(l), then we know that p is under a non-linear
variable position in l, i.e., |Rl(p) ∩ DPl(t)| > 1, and let Q = Rl(p) ∩ DPl(t).
There are two cases: (i) if all the terms in t|Q are variables, then we define σ
to be such that for every q ∈ Q we have σ(t|q) = w for a fresh variable w, (ii)
if every non-variable term in t|Q is rooted by the same symbol f , then we define
σ = [t|p �→ f(−→w )].

Note that, in the previous definition, if there are two non-variable positions
p1, p2 ∈ Q such that t|p1 and t|p2 are rooted with different symbols, then no
substitution can resolve the conflict between the disagreeing positions p1 and p2
and they are demanded for evaluation.

We can deduce the following useful result that ensures that appropriate sub-
stitutions are inferred from left-hand sides for demanded variable positions.

Lemma 2. Let l, t, σ, and p ∈ FP(t) ∩ PosX(t). If l �� t, p ∈ DPl(t), and p �∈
DPl(σ(t)), then there exists θ ∈ DSub(t) s.t. θ(t|p) �= t|p and θ|Var(t) ≤ σ|Var(t).

Example 7. Consider the subterm t1|1.2 = min(X,X−0) and the lhs’s l5 =
min(0,N), l6 = min(s(N),0), and l7 = min(s(N),s(M)) of Example 1. The
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reader can check that DPl5(t1|1.2) = {1}, DPl6(t1|1.2) = {1, 2}, DPl7(t1|1.2) =
{1, 2}, and DPl(t1|1.2) = {Λ} for any other lhs l. Thus FP(t1|1.2) = {Λ, 1} ac-
cording to Definition 5. Then, position 1 is a variable position and we have that
the demanded substitutions for its variable X are DSub(t1|1.2) = {[X �→ 0, X �→
s(X’)]}, since 1 ∈ PosΣ(l5), 1 ∈ PosΣ(l6), root(l5|1) = 0, and root(l6|1) = s.

Thus, substitutions are computed in a lazy and incremental fashion with-
out resorting to an explicit unification algorithm. Now, we formally define our
generalized natural narrowing strategy.

Definition 8 (Generalized Natural Narrowing). We define the set of de-
manded narroxes of a term t as

DN(t) = {〈Λ, l→r, id〉 | l ∈ L(R) ∧ l ≤ t} ∪
⋃

q∈SP(t)\{Λ} q.DN(t|q) ∪⋃
σ∈DSub(t) DN(σ(t))@σ

where for a set of narroxes S we define q.S = {〈q.p, l→r, θ〉 | 〈p, l→r, θ〉 ∈ S} and
S@σ = {〈p, l→r, θ ◦ σ〉 | 〈p, l→r, θ〉 ∈ S}. We say that term t reduces by natural
narrowing to term s, denoted by t m

�〈p,l→r,σ〉 s (or simply t m
� s) if t �〈p,l→r,σ〉 s,

〈p, l → r, σ〉 ∈ DN(t), and p ∈ PosD(t).

In the following, we omit the rule l → r in a narrowing step 〈p, l→ r, σ〉,
whenever there is no scope for ambiguity about the rule.

Example 8. Consider again the term t1 = 10!% min(X,X−0) ≈ 10!% 0 from
Example 1 and the computation of DN(t1). Since t1 is not a redex, we have that
DN(t1) = ∪q∈SP(t1)\{Λ}q.DN(t1|q) ∪ ∪σ∈DSub(t1)DN(σ(t1))@σ. By Example 6,
SP(t1) = {Λ, 1, 1.2, 2}. We also have DSub(t1) = ∅, since no position in FP(t1)
is a variable. Thus, DN(t1) = 1.DN(t1|1) ∪ 2.DN(t1|2) ∪ 1.2.DN(t1|1.2). This
implies that we recursively compute DN(t1|1), DN(t1|1.2) and DN(t1|2).

Now consider DN(t1|1.2) = DN(min(X,X−0)). Since it is not a redex, we have
DN(t1|1.2) = ∪q∈SP(t1|1.2)\{Λ}q.DN(t1|1.2.q) ∪ ∪σ∈DSub(t1|1.2)DN(σ(t1|1.2))@σ.
By Example 7, we have SP(t1|1.2) = D↑

t1|1.2
(FP(t1|1.2)) = D↑

t1|1.2
({Λ, 1}) = {Λ}

and DSub(t1|1.2) = {σ, σ′} for σ = [X �→ 0] and σ′ = [X �→ s(X’)]. Then,
DN(t1|1.2) = DN(σ(t1|1.2))@σ ∪ DN(σ′(t1|1.2))@σ′, and we recursively call to
DN(min(0,0−0)) and DN(min(s(X’),s(X’)−0)). Now, the reader can check
that DN(min(0,0−0)) = { 〈Λ, id〉 }, since term min(0,0−0) matches lhs l5,
and DN(min(s(X’),s(X’)−0)) = 2.DN(s(X’)−0) = { 〈2, id〉 }, since term
s(X’)−0 matches lhs l3. Hence, we can conclude DN(t1|1.2) = {〈Λ, id〉}@σ ∪
{〈2, id〉}@σ′ = { 〈Λ, [X �→ 0]〉, 〈2, [X �→ s(X’)]〉 }.

Now consider DN(t1|1) = DN(10!% min(X,X−0)). Since it is not a redex, we
have DN(t1|1) = ∪q∈SP(t1|1)\{Λ}q.DN(t1|1.q) ∪ ∪σ∈DSub(t1|1)DN(σ(t1|1))@σ
and SP(t1|1) = D↑

t1|1(FP(t1|1)). By Example 5, FP(t1|1) = {Λ, 2}, and then

SP(t1|1) = D↑
t1|1({Λ, 2}) = {Λ, 2}. Moreover, we have DSub(t1|1) = ∅, since

no position in FP(t1|1) is rooted by a variable. Thus, we have DN(t1|1) =
2.DN(t1|1.2). However, DN(t1|1.2) was already computed before, and we obtain
DN(t1|1) = { 〈2, [X �→ 0]〉, 〈2.2, [X �→ s(X’)]〉 }.
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Finally, consider DN(t1|2) = DN(10!% 0). Since it is not a redex, we have
DN(t1|2) = ∪q∈SP(t1|2)\{Λ}q.DN(t1|2.q) ∪ ∪σ∈DSub(t1|2)DN(σ(t1|2))@σ. But by
Example 4, we have l1 � t1|2, l2 � t1|2, and DPl(t1|2) = {Λ} for any other
lhs l. Thus, we can conclude DN(t1|2) = ∅. Finally, putting everything together
we have DN(t1) = { 〈1.2, [X �→ 0]〉, 〈1.2.2, [X �→ s(X’)]〉 }. Note these narroxes
correspond to the optimal narrowing sequences in Example 1.

We are now ready to state the correctness and completeness properties of
our generalized natural narrowing strategy. The key fact used in establishing
these properties is the correspondence between generalized natural rewriting
and generalized natural narrowing, as stated by the following lemma.

Lemma 3 (Completeness w.r.t. rewriting). For a normalized substitution
σ, if σ(t) m→〈p,l→r〉 s, then there are η, θ, s′ such that t m

�〈p,l→r,θ〉 s
′, σ|Var(t) =

(η ◦ θ)|Var(t), s = η(s′), and η is normalized.

Using Lemmas 2 and 3 we get the following correctness and completeness
results for generalized natural narrowing.

Theorem 1 (Correctness). If t is not a variable and is a m
� -normal form,

then for every normalized σ we have σ(t) is a head-normal form.

Theorem 2 (Completeness). If σ(t) →∗ s and σ is a normalized substitution,
then there are s′, θ, θ′ s.t. t m

�∗
θ s

′, θ′(s′) >Λ−→∗ s, and σ|Var(t) = (θ′ ◦ θ)|Var(t).

The following example shows that our completeness result needs not hold for
non-normalized substitutions.

Example 9. Consider the rewrite system from [29] with rules: (i) f(b,c)→d, (ii)
a→b, and (iii) a→c. For the term t = f(X,X) and substitution σ = [X �→ a] we
have σ(t) →∗ d. But the generalized natural narrowing strategy cannot compute
the normal form d. Specifically, positions 1 and 2 in t are demanded by rule (i),
and the variable X is instantiated with substitutions [X �→ b] and [X �→ c], which
are inferred from rule (i). However, both f(b,b) and f(c,c) are failing w.r.t.
the left-hand side of rule (i). Thus DN(t) = ∅, and the strategy does not narrow
the term f(X,X) any further.

4 Application Areas

In this section, we show how narrowing can be used as a unified mechanism for
programming and proving, and explain informally how the generalized natural
narrowing strategy makes the specific applications more efficient. Our purpose
in this section is motivational. More applications, details and examples are given
in [13].

4.1 Symbolic Model Checking

Narrowing can be used as a technique for symbolic reachability analysis of con-
current systems with an infinite state space. Specifically, a concurrent system can
naturally be expressed as a rewrite system R = (Σ,φ,R), where terms represent
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states, and a rewrite rule t → t′ is understood as a (parametric) local tran-
sition [27, 28]. We can then formalize a reachability problem for a concurrent
system thus specified as solving an existential formula (∃−→x ) t(−→x ) →∗ t′(−→x )
where the source t(−→x ) is a term with variables representing a possibly infi-
nite set of initial states (namely all its instances by ground substitutions) and
the target t′(−→x ) represents a likewise possibly infinite set of final states that
we want to reach by a sequence of transitions. Solutions to this reachability
problem can then be described by substitutions σ for which indeed we have,
σ(t(−→x )) →∗ σ(t′(−→x )). More generally, we may consider conjunctive reachability
goals of the form G = (∃−→x ) t1(−→x )→∗ t′1(−→x ) ∧ . . . ∧ tn(−→x ) →∗ t′n(−→x ).

We can reduce solving a conjunctive reachability goal such as G, to the
case of solving a single reachability goal by means of a theory transformation
associating to a rewrite system R = (Σ,φ,R), a corresponding rewrite system
R̂ = (Σ̂, φ̂, R̂), where Σ̂ = Σ ∪{∧,�, True}, φ̂ extends φ with φ̂(�) = {2}, and
R̂ = R∪{x� x→ True, True∧True→ True}. Note that the second argument
of � is frozen, since only the sources of a goal are to be rewritten. Then, σ is
a solution of the conjunctive goal G in the rewrite system R if and only if σ is
a solution of the single reachability goal (∃−→x )Ĝ→∗ True in the rewrite system
R̂, where Ĝ is the Σ̂-term Ĝ = t1 � t′1 ∧ . . . ∧ tn � t′n.

Now, since the term True in the transformed theory R̂ is a head normal form,
any head normalizing strategy S [30], including our efficient generalized natural
narrowing strategy, gives us a semi-decision procedure to find all the normal-
ized solutions of a goal G. Specifically, the algorithm incrementally builds the
narrowing tree starting from the term Ĝ, and searches, using S, for narrowing
derivations that result in True. When one such derivation is found, the composi-
tion of substitutions accumulated during the narrowing derivation in the reverse
order gives us a solution of the goal G. Of course, the narrowing tree generated
by S has to be explored in a fair manner, since the narrowing derivations can be
infinitely long. The reader is referred to [29] for further details and an example
where the above technique is applied for analysis of safety properties of security
protocols.

Further, note that since the set of initial and final states specified in a goal
can be infinite, and likewise there is no restriction on the number of reachable
states, one can view the above narrowing procedure as a new form of “symbolic
model checking” for infinite state systems.

4.2 Theorem Proving

Equational Unification: Narrowing was originally introduced as a complete
method for generating all solutions of an equational unification problem, i.e.,
for goals F of the form (∃−→x ) t1(−→x ) = t′1(−→x ) ∧ . . . ∧ tn(−→x ) = t′n(−→x ) in free
algebras modulo a set of equations that can be described by a set of confluent
and termi- nating rewrite rules [15, 23, 24]. We note that the problem of solving
reachability goals in rewrite systems generalizes the problem of equational uni-
fication. Specifically, suppose we are to solve the equational goal F above in the
equational theory E = (Σ,E) where the equations E are confluent and termi-
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nating. Note that σ is a solution of F if and only if both σ(ti) and σ(t′i) can be
reduced by the (oriented) equations E to a common term. We can thus consider
the rewrite system RE = (Σ̃, φ,RE), where Σ̃ = Σ ∪ {≈, True}, φ(f) = ∅ for
all f ∈ Σ̃, and RE = E ∪ {x ≈ x → True}. Then σ is a solution of the system
of equations F in the equational theory E if and only if it is a solution of the
reachability goal G = (∃−→x ) t1 ≈ t′1 →∗ True ∧ . . . ∧ tn ≈ t′n →∗ True in the
rewrite system RE .

Inductive Theorem Proving: The just-described reduction of existential equal-
ity goals to reachability goals, when combined with the reduction described in
Section 4.1 of conjunctive reachability goals to a single goal has important appli-
cations to inductive theorem proving. Specifically, it is useful in proving existen-
tially quantified inductive theorems like E �ind (∃−→x ) t = t′ in the initial model
defined by the equations E. Natural narrowing can, using the two reductions just
mentioned, provide a very efficient semi-decision procedure (and even a decision
procedure for some restricted theories [31]) for proving such inductive goals be-
cause it will detect failures to unify, stopping with a counterexample instead of
blindly expanding the narrowing tree. Furthermore, natural narrowing can make
inductionless induction provers, particularly in the most recent formulations in
[8, 9], more effective and efficient, and can be used in such provers to prove
also universal inductive theorems like E �ind (∀−→x ) t = t′ (or, more generally,
clauses). The point is that natural narrowing’s complete narrowing strategy can
be used instead of the unrestricted narrowing carried out by superposition to
compute a smaller set of deductions, which can increase the chances of termi-
nation of the inductionless induction procedure without loss of soundness. The
extended version of this work [13] illustrates the previous point with an example
where inductionless induction is able to prove an inductive theorem with natural
narrowing, but not with unrestricted narrowing.

5 Related Work

Lazy rewriting strategies are based on the original strongly needed reduction
strategy of Huet and Levy [22]. This strategy is optimal (computes only needed
steps), correct, and complete for strongly sequential rewrite systems (SS), a sub-
class of orthogonal rewrite systems. Note that this strategy does not apply to
Example 1, since orthogonality implies left-linearity. Sekar and Ramakrishnan
proposed the parallel needed reduction strategy [32] as an extension of Huet
and Levy’s strongly needed reduction to make it correct and complete for a
larger rewrite system class, though still optimal for the former class. This larger
rewrite system class is constructor weakly orthogonal systems (CB-WO), and
thus it is not applicable to Example 1. Antoy proposed the outermost-needed
rewriting [1] as an efficient implementation of strongly needed reduction for
inductively sequential rewrite systems (IS), which are equivalent to SS’s when
instantiated to left-linear constructor systems [21]. In [1], Antoy also provides the
weakly outermost-needed rewriting to make outermost-needed rewriting correct
and complete for CB-WO’s. Thus, both are not applicable to Example 1.
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The continuous interest in the unification of functional and logic program-
ming in a seamless way attracted much attention (see [20] for a survey) and
Antoy, Echahed and Hanus extended Antoy’s outermost-needed rewriting strat-
egy to the needed narrowing strategy [4], becoming the best narrowing strategy
for functional logic programming languages over other narrowing strategies such
as [17, 19, 25] (see [4] for a detailed comparison). Antoy, Echahed, and Hanus ex-
tended their needed narrowing strategy to the weakly needed narrowing strategy
[3] in order to cope with CB-WO’s. Note that these strategies are not applicable
to Example 1.

In recent work [11], we have proposed refinements of (weakly) outermost-
needed rewriting and (weakly) needed narrowing, called natural rewriting and
natural narrowing. These strategies compute less (or exactly the same) steps than
outermost-needed rewriting and needed narrowing for IS’s. However, they are not
applicable to Example 1 because of left-linearity and constructor conditions.

This work is part of a broader joint effort to generalize narrowing from equa-
tional logic to rewriting logic, so as to make possible a much wider range of
applications. It builds on our previous work extending natural rewriting to gen-
eral term rewriting systems [14], and also on work by Meseguer and Thati on
narrowing for rewrite theories [29, 34]. As shown in [29, 34], for general rewrite
theories which need not be confluent and need not be terminating, the issue of
completeness, that is, of narrowing being a complete semi-decision procedure for
solving reachability goals, is nontrivial and does not always hold, essentially be-
cause rewrites can take place in the substitutions. The paper [29] characterizes
several classes of rewrite theories for which narrowing is complete. This paper of-
fers a narrowing strategy, which could be the basis of [29, 34], to make narrowing
efficient, and proves that this strategy is sound and complete in a different sense
of “completeness,” namely that any solution found by unrestricted narrowing
(outside substitutions) will also be reachable using the strategy.

6 Conclusions and Future Work

We have generalized the narrowing strategy of [11] so that it can be applied to a
much broader class of term rewrite systems. Specifically, the generalization drops
the requirement that the rewrite system under consideration is left-linear and
constructor, which is a typical assumption in functional (logic) programming.
As a result of this generality, a much broader range of applications such as,
symbolic reachability analysis of concurrent systems, and theorem proving, can
be efficiently supported by our strategy. Since our generalization is conservative,
we inherit all the optimality results presented in [11] for the class of left-linear
constructor systems; note that the strategies in [11] are the best known for the
class of left-linear constructor systems. An important problem for future research
is to investigate optimality results of the generalized strategies for a larger class
of rewrite systems.

Another interesting issue is to further generalize the strategies to the case
where rewriting and narrowing are performed modulo a set of axioms (such as
associativity, commutativity, and identity), as in languages such as ELAN [6]
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and Maude [7]. Specifically we are interested in strategies for rewrite theories of
the form R = (Σ,φ,E,R) where E is a set of axioms. A generalized narrowing
strategy for such rewrite theories, that computes substitutions in an incremental
manner, would have a very important efficiency advantage, since it will not
explicitly use unification algorithms for the axioms E.
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1 France Télécom R&D
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Abstract. We consider the following problem: Given a term t, a rewrite
system R, a finite set of equations E′ such that R is E′-convergent, com-
pute finitely many instances of t: t1, . . . , tn such that, for every substi-
tution σ, there is an index i and a substitution θ such that tσ↓ =E′ tiθ
(where tσ↓ is the normal form of tσ w.r.t. →E′\R).
The goal of this paper is to give equivalent (resp. sufficient) conditions for
the finite variant property and to systematically investigate this property
for equational theories, which are relevant to security protocols verifica-
tion. For instance, we prove that the finite variant property holds for
Abelian Groups, and a theory of modular exponentiation and does not
hold for the theory ACUNh (Associativity, Commutativity, Unit, Nilpo-
tence, homomorphism).

1 Introduction

In our recent work on the verification of cryptographic protocols [3, 5] we came
twice across the following problem:

Given an AC-convergent rewrite system R, is it possible (and how) to
compute from any term t a finite set of instances tσ1, . . . , tσn such that

{tσ↓R | σ ∈ Σ} =
n⋃

i=1

{tσi↓Rθ | θ ∈ Σ}

where Σ is the set of normalized substitutions and u↓R is the AC-normal
form of u w.r.t. R.

In other words, the reductions in tσ only depend on reductions in finitely
many (fixed) instances of t. This is typically what we will call the finite variant
property: compute in advance all possible normal forms of an instance of t,
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independently of that instance. In [3], this problem is solved in an ad hoc way
when R is the theory of exclusive or (also called the ACUN theory), given by
the rewrite rules:

x+ x→ 0
x+ x+ y → y

x+ 0 → x

and the associativity and commutativity axioms for +. Such a property, to-
gether with the finiteness of equivalence classes modulo E′ is claimed to be the
key property for decidability results in cryptographic protocols verification, in
presence of algebraic properties [2]. That is why we are especially interested in
studying the finite variant property for equational theories which are relevant to
cryptography and which define infinite equivalence classes.

When E′ = ∅, it is not difficult to see that the finite variant property is
implied by the termination of basic narrowing. This is not so easy in general.
Assume for instance that E′ consists in the axioms of associativity and commu-
tativity and E is defined by an AC-convergent rewrite system R. On one hand,
general AC-narrowing does not terminate, even for a single rule y + x + x → y
and, on the other hand, basic narrowing is incomplete for E-unification. We
didn’t find any reference for the incompleteness of basic AC-narrowing, hence
we show it in Section 3.2. E. Viola already noticed in [19] that the standard
completeness proof of basic narrowing does not extend to the AC-case and pro-
poses another narrowing strategy, introducing extensions of rules. This notion
of narrowing restores completeness. However, termination is lost, even in simple
cases. Even for equational theories presented by E′-convergent rewrite systems,
basic narrowing might not terminate, while E has the finite variant property.
This is the case for Abelian Groups, as we will see in Section 6.2.

The first contribution of this paper is to state a property (called boundedness)
equivalent to the finite variant property in case of theories defined by convergent
rewrite systems (Section 5.2). This is very similar to the existence of “narrowing
bounds” in [19]. We differ in two respects: first we consider only terms (not
unification problems) and second, there is a quantifier switch. Roughly, in [19],
the “narrowing bound” is equivalent to “there exists a normalized θ such that
(tθ↓ =AC u and) all (inner) derivations starting from tθ are bounded”. In our
case, boundedness is equivalent to “for every normalized θ, there is a derivation
from tθ to its normal form whose length is bounded”.

Second, we give sufficient conditions for the boundedness property, which do
not necessarily imply the termination of narrowing (Section 6.2) and prove that
these conditions are met for several equational theories, which are relevant to
cryptographic protocols. Our sufficient criteria is related to the notion of opti-
mally reducing (AC)-term rewriting system introduced in [14]. Indeed being an
optimally reducing rewrite system is a sufficient condition to satisfy our crite-
ria, and therefore the boundedness property. We provide however with strictly
weaker sufficient conditions and therefore new applications. For instance, we
show that the theory of Abelian Groups has the boundedness property, relying
on the unusual orientation of the inverse rule (Section 6.2). We use proof tech-
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niques which are similar to those of [12]. We also show in Section 7 that there
are equational theories for which unifiability is in PTIME, while there is no con-
vergent AC-rewrite system for the theory yielding the finite variant property.

Finally, we give some side-applications of the finite variant property: for
instance the existential fragment of the theory of T (F)/=E is decidable for the
theories E under study.

We start with recalling some definitions in Section 2. We state in Section 3
some results on basic and equational narrowing (for instance the incompleteness
of basic AC-narrowing). Next, we list in Section 4, some examples of equational
theories, which are relevant to cryptographic protocols, explaining briefly where
they come from. In Section 5, we state formally a definition of the finite vari-
ant property and give a characterization (the boundedness property) when the
equational theory is presented by a finite E′-convergent rewrite system. Then,
we briefly consider the case of E′ = ∅ in Section 6.1. In Section 6.2 we give
sufficient conditions for the boundedness property and then apply them to the
relevant theories listed in Section 4. In Section 7, we prove that the theory
ACUNh (Associativity, Commutativity, Unit, Nilpotence, homomorphism), for
which unifiability is in PTIME [13], does not have the finite variant property.
In Section 8, we show other applications of the finite variant property, and we
conclude in Section 9.

Missing proofs can be found in [4].

2 Preliminaries

2.1 Terms, Substitutions, Unification

We use classical notations and terminology from [7] on terms, unification, rewrite
systems. T (F ,X ) is the set of terms built over the finite (ranked) alphabet F
of function symbols and the set of variable symbols X . T (F , ∅) is also written
T (F). The set of positions of a term t is written O(t), and Ō(t) is the set of non-
variable positions of t. The empty sequence Λ denotes the top-most position. The
subterm of t ∈ T (F ,X ) at position p ∈ O(t) is written t|p. The term obtained
by replacing t|p with u is denoted t[u]p. The set of variables occurring in t is
denoted vars(t).

A substitution σ is a mapping from a finite subset of X called its domain
and written dom(σ) to T (F ,X ). Substitutions are extended to endomorphisms
of T (F ,X ) as usual. We use a postfix notation for their application.

If E is a set of equations (unordered pair of terms), =E is the least congruence
on T (F ,X ) such that uσ =E vσ for all pairs u = v ∈ E and substitutions σ. E is
regular if, for every equation t1 = t2 ∈ E, vars(t1) = vars(t2). Two terms s, t are
E-unifiable if there is a substitution σ such that sσ =E tσ. Such a substitution is
called an E-unifier of s, t. We say that there is an E-unification algorithm if it is
possible, for any two terms s, t, to compute a finite set σ1, . . . , σn of E-unifiers of
s, t, such that, for every E-unifier σ of s, t, there is an index i and a substitution
θ such that, for every variable x ∈ vars(s) ∪ vars(t), xσ =E xσiθ.
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2.2 Equational Rewriting

A term rewriting system (TRS) is a finite set of rewrite rules l → r where
l ∈ T (F ,X ) and r ∈ T (F , vars(l)). A term s ∈ T (F ,X ) rewrites to t by a
TRS R, denoted s →R t, if there is l → r in R, p ∈ O(s) and a substitution
σ such that s|p = lσ and t = s[rσ]p. The term lσ is called a redex and we say
that t rewrites to s by contracting the redex lσ. An innermost redex does not
contain other redexes and in an innermost reduction sequence only innermost
redexes are contracted. R= is the symmetric closure of R. ∗−→R is the reflexive
and transitive closure of→R. We write t

≤n−−→R u if there is a reduction sequence
of at most n steps from t to u. A TRS R is terminating if there are no infinite
chains t1 →R t2 →R . . ..

As in [7], given a set of rewrite rules R and a set of equations E, rewriting
modulo E, is the relation →E\R (others have used →R,E) defined as follows:
s→E\R t iff there exists a position p ∈ O(s) such that s|p =E lσ and t = s[rσ]p
for some substitution σ and rule l → r ∈ R.

A rewrite system R is E-confluent if and only if for every s, t such that
s =R=∪E t, there exists s′, t′ such that s ∗−→E\R s′, t ∗−→E\R t′, and s′ =E t

′. It
said to be E-convergent if, in addition, =E ◦ →R ◦ =E is well founded.

A term t is in normal form (w.r.t. →E\R) if there is no term s such that
t →E\R s. If t ∗−→E\R s and s is in normal form then we say that s is a normal
form of t. When this normal form is unique, we write s = t↓E\R or shortly
s = t↓ when E\R is clear from the context. A substitution σ is called normalized
if for every x ∈ dom(σ), xσ is in normal form. We write σ =E θ if ∀x ∈
dom(σ) ∪ dom(θ) xσ =E xθ. For an E-convergent rewrite system R and a
substitution σ, we write σ↓E\R the substitution whose domain is dom(σ) and
such that x(σ↓E\R) = (xσ)↓E\R for all x ∈ dom(σ).

3 Narrowing

Given a TRS R, we say that a term t narrows to t′ with the substitution σ, at
p ∈ Ō(t), by l → r ∈ R if there exists a renaming l′ → r′ of l → r ∈ R such that
σ is a unifier of t|p and l′ and t′ = (t[r]p)σ. In this case, we write t �σ t

′. We write
t

∗
�σ t

′ if there exists a narrowing derivation t = t1 �σ1 t2 . . . �σn−1 tn = t′

such that σ = σ1 . . . σn−1.

3.1 Equational Narrowing

If E is a set of equations such that an E-unification algorithm exists, we define
E-narrowing as expected (σ is an E-unifier of t|p and l).

The following lemma states that every rewrite derivation ( ∗−→E\R) can be
lifted to a narrowing derivation.

Lemma 1 (lifting lemma). Let E be a regular presentation for which an E-
unification algorithm exists. Let t be a term, θ be a normalized substitution and
tθ

∗−→E\R s′. Then there exists a term t′, a substitution σ and a normalized
substitution θ′ such that:
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1. t
∗
�σ t

′,
2. t′θ′ =E s

′,

Furthermore, the narrowing derivation t
∗
�σ t

′ and the rewrite sequence from
tθ to s′ use the same rewrite rules at the same positions.

We didn’t find this lemma in the litterature. A similar lemma, but only for a
one step derivation, and without the regularity assumption, is proved in [11] for
instance. The proof does not extend to an arbitrary derivation length. Actually,
we do not know whether or not the lemma would still hold without the regularity
assumption (which we indeed use in the proof).

3.2 Basic Narrowing

Definition 1 (basic positions). Let t1 �σ1 t2 �σ2 . . . �σn−1 tn be a narrow-
ing derivation. We assume that the ith step has been done at position pi with the
rule li → ri. We inductively define sets of positions B1,. . . , Bn as follows:

B1 = Ō(t) Bi+1 = B(Bi, pi, ri) for 1 ≤ i < n.

Here B(Bi, pi, ri) abbreviates (Bi − {q ∈ Bi|pi ≤ q}) ∪ {pi.q|q ∈ Ō(ri)}. Po-
sitions in Bi are referred to as basic positions. We say that the above narrowing
derivation is basic if pi ∈ Bi for 1 ≤ i < n.

In the same way, a rewrite sequence (w.r.t. E\R) t1 → t2 → . . . → tn is
based on a set of positions B1 ⊆ Ō(t1) if pi ∈ Bi for 1 ≤ i < n with B2,. . . ,Bn−1

defined as above.

Note that the latter is well-defined since →E\R preserves the positions which
are not in the redex.

In case of non-equational narrowing, there are several well-known results, for
instance:

Lemma 2 ([8]). Let t be a term and σ a normalized substitution. Every inner-
most derivation sequence (w.r.t R) starting from tσ is based on Ō(t).

It follows that basic narrowing is a complete unification procedure when R
is a convergent rewrite system. The situation is quite different for equational
narrowing. For instance in the case of AC-narrowing, Lemma 2 fails (contrary
to what is suggested in [11]), as shown by the following example (this has also
been noticed in [19]).

Example 1. Let R+ = {x+0 → x, x+x→ 0, x+x+ y → y}, which is known to
be AC-convergent. Let t = x1 + x2 and σ = {x1 �→ a+ b, x2 �→ a+ b}. Consider
the following innermost derivation (w.r.t. AC\R+) starting from tσ.

(a+ b) + (a+ b) Λ−→x+(x+y)→y b+ b Λ−→x+x→0 0

The first rewriting step takes place at position Λ ∈ B1 = Ō(t) with the rewriting
rule x+ (x+ y)→ y. Hence the set B2 is empty. So the above rewrite sequence
is not based on Ō(t) although it is an innermost derivation.
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This example can be generalized in such a way that there is a derivation from
tσ whose length is arbitrarily long. However, there is also another derivation
whose length is short (1 in the above example).

Not only Lemma 2 fails, but actually basic AC-narrowing is not complete,
as shown by the following example.

Example 2. We consider the following rewrite system R, in which + is an AC-
symbol and a, b are constants:

a+ a→ 0 b+ b→ 0 a+ a+ x→ x
b+ b+ x→ x 0 + x→ x

R is AC-convergent. σ = {x1 �→ a+ b; x2 �→ a+ b} is a solution of the equation
x1 + x2 = 0, whereas there is no narrowing derivation yielding a more general
solution. Indeed, narrowing with one of the first two rules yields x1 = x2 = a
or x1 = x2 = b, narrowing with the last rule yields x = 0 ∧ x + 0 = x1 + x2,
which do not subsume σ. Narrowing with one of the two other rules, for example
a+ a+ x→ x, yields x = 0 ∧ a+ a+ x = x1 + x2, again not wanted.

4 Some Relevant Equational Theories

We list here some algebraic theories which are relevant to cryptographic proto-
cols and which we investigate in Section 6. We only consider theories for which
equivalence classes are infinite. We use the notations which are customary in
cryptographic protocol descriptions. In particular, the pairing symbol 〈 , 〉 is
used in infix notation and encrypting m with k is written {m}k.

4.1 Explicit Destructors

The Axiomatized Dolev-Yao Theory (DYT) is the classical Dolev-Yao model with
explicit destructors such as decryption and projections. Here is a presentation
of this theory:

πi(〈x1, x2〉) = xi for i = 1, 2 d({x}y, y
−1) = x x−1−1 = x

In words, projections are inverses of pairing, and decrypting with k−1 a mes-
sage encrypted with a key k gives back the plain text message. Alternatively,
projections and decryption symbols are not part of the alphabet and such proper-
ties are part of the intruder deduction rules. Putting such rules in the equational
theory or in the intruder deduction rules seems to be a matter of taste. However,
there are subtle differences between the two approaches; some protocols can be
attacked if we consider explicit destructors, while they cannot otherwise (see for
instance [6]). This relies on the ability to apply the decryption algorithm d( , )
on a message x with a key y, even when x is not a cyphertext.

Proposition 1. Orienting equations of DYT from left to right and adding
d({x}y−1 , y) → x, we get a convergent rewrite system RDYT. Furthermore
(basic) narrowing w.r.t. RDYT terminates.
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The Key Inverse Theory (KIT) is obtained by extending DYT with the
equation {d(x, y)}y−1 = x. It expresses that decryption and encryption with the
inverse key are inverse of each other. This property holds when decryption is
just an encryption with the inverse key, as for the cryptosystem RSA.
Proposition 2. Orienting equations of KIT from left to right and adding the
rules d({x}y−1 , y) → x and {d(x, y−1)}y → x, we get a convergent rewrite
system RKIT. Furthermore (basic) narrowing w.r.t. RKIT terminates.

4.2 Exclusive Or Theory (ACUN )
This theory has been given in introduction. It is mandatory when protocols rely
on exclusive or ([15] vs [17]). As recalled in Example 1, the rewrite system R+

for this theory is AC-convergent.

4.3 Abelian Groups Theory (AG)
The Abelian Groups theory is defined by the following set of equations:

x ∗ (y ∗ z) = (x ∗ y) ∗ z x ∗ x−1 = 1
x ∗ y = y ∗ x x ∗ 1 = x

Proposition 3. Adding the consequences: 1−1 = 1, x−1−1 = x, (x ∗ y)−1 =
x−1 ∗ y−1, x ∗ (y ∗x−1) = y and orienting the rules from left to right, we get R∗,
an AC-convergent rewrite system for AG.
Note that, AC-narrowing (even basic) is not terminating w.r.t.R∗, as we have an
infinite derivation starting from x−1 by using repeatedly (x ∗ y)−1 → x−1 ∗ y−1.

4.4 Diffie-Hellman Theory (DH)

This theory contains the axioms of the Abelian Groups theory for the symbol ∗
and two others equations concerning the modular exponentiation’s symbol:

exp(x, 1) = x exp(exp(x, y), z) = exp(x, y ∗ z)
This theory takes into account simple properties of product and exponentiation,
which are widely used in protocol constructions. Exponentiation has more prop-
erties, which should be considered to capture to whole power of an attacker.
However, we only consider the two above axioms since, as shown in [10], many
extensions yield undecidable unification problems, hence undecidability of con-
fidentiality, even for a bounded number of sessions.

4.5 Combinations
The theory ACUNh consists of the axioms of ACUN for + and the equation
h(x + y) = h(x) + h(y). This theory is used in protocols such as the TMN
protocol (h is used to model an encryption with the public-key of the server S).

The equation h(x + y) = h(x) + h(y) can be oriented in both directions,
yielding two AC-convergent rewrite systems, which are displayed in Figure 1:
depending on the orientation, we get either 5 rules (R1) or 6 rules (R2).

Proposition 4. R1 and R2 are AC-convergent.
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x + 0 → x R1 : h(x + y) → h(x) + h(y)
x + x → 0

x + x + y → y R2 : h(x) + h(y) → h(x + y)
h(0) → 0 h(x) + h(y) + z → h(x + y) + z

Fig. 1. The Rewrite Systems R1 and R2 for the ACUNh Theory.

5 The Finite Variant Property

We come to the central notion of our paper: a property, which allows to reduce
equational theories to some (supposedly simpler) other theory. Let us first recall
the definitions given in introduction.

5.1 Definition and a First Characterization

We assume given a well founded ordering ≥ on terms, which is total on ground
terms. Given a theory E and a ground term t, we write t↓E the smallest term
in the equivalence class of t. It will serve as a representative of the class.

Definition 2 (E-variants). Given two sets of equations E, E′, t′ is an E-
variant of a term t if there is a substitution θ such that tθ =E t

′. A complete set
of E-variants modulo E′ of t (w.r.t. ≥) is a set S of E-variants of t such that,
for every substitution σ, there is a term t′ ∈ S and a substitution θ such that
tσ↓E =E′ t′θ.

Example 3. Assume E = ACUN and E′ = AC. Consider the term x+ f(x+ y).
A complete set of E-variants modulo AC is given by the single variable z. Indeed,

(x+f(x+y)){x �→ f(z)+z; y �→ f(z)} =AC f(z)+z+f(f(z)+z+f(z)) =ACUN z

hence z is a variant of x + f(x + y). This is a complete set since, for every
normalized substitution σ, (x+ f(x+ y))σ↓ =AC zθ for some θ.

Definition 3 (finite variant property). The pair (E,E′) has the finite vari-
ant property (w.r.t. ≥) if for every term t, we can effectively compute a finite
complete set of E-variants modulo E′.

Sometimes, we will simply say variants and complete set of variants when E
and E′ are clear from the context.

Now, we need a (uniform) way to compute the E-variants of a term. That
is why we will restrict our attention to theories E for which there exists R and
E′ such that R is an E′-convergent system for E. Then the ordering ≥ will be
chosen in such a way that →E′\R ⊆ ≥. To summarize now, our aim is, given a
theory E, to find a splitting of E in (R, E′) and an ordering ≥ such that:

1. R is an E′-convergent system for E and →E′\R ⊆ ≥ is a decidable relation,
2. for every term t, there is a finite set of variants t1, . . . , tn, effectively com-

putable, such that, for every substitution σ, there is an index i and a sub-
stitution θ such that tσ↓E′\R =E′ tiθ.
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We will simply say that (R, E′) is a decomposition of E satisfying the finite
variant property if the two above properties are satisfied. There are several well-
known techniques to obtain presentations satisfying the first condition. Hence,
we focus on the second condition.

The following lemma shows that, if (R, E′) has the finite variant property, we
may not only compute in advance some instances ti of t such that tσ↓ is always
an instance of some ti, but actually compute in advance substitutions θi such
that ti = tθi↓ is a complete set of variants and every normalized substitution
can be factorized through θi.

Lemma 3. A decomposition (R, E′) has the finite variant property iff

For every term t, there is a finite set of substitutions Σ(t) such that

∀σ ∃θ ∈ Σ(t), ∃τ. σ↓ =E′ θτ ∧ (tσ)↓ =E′ (tθ)↓τ
Proof Sketch: The if part is straightforward. Conversely, let T be the term
〈t, 〈x0, 〈. . . , xn〉〉〉 where {x0, . . . , xn} = vars(t) and 〈 , 〉 is a free binary function
symbol. We apply the hypothesis to T . This yields a definition of Σ(t). �

5.2 The Boundedness Condition

In what follows we assume we are given a theory E for which there exists R and
E′ such that R is an E′-convergent system for E.

Definition 4 (boundedness property). (R, E′) satisfies the boundedness
property if for every term t, there exists an integer n such that for every nor-
malized substitution σ, the normal form of tσ is reachable by a derivation whose
length can be bounded by n (thus independently of σ):

∀t, ∃n, ∀σ. t(σ↓) ≤n−−→E′\R (tσ)↓

The following theorem shows the relationships between the boundedness con-
dition and the finite variant property.

Theorem 1. Let E′ be a regular presentation for which an E′-unification algo-
rithm exists. If moreover (R, E′) satisfies the boundedness property then (R, E′)
is a decomposition of E satisfying the finite variant property.

Conversely, if (R, E′) satisfies the finite variant property, then it satisfies the
boundedness property.

Proof Sketch: The first implication is actually similar to a result in [19]: we use
narrowing, however bounding the length of derivation. For the converse, let t be
any term. We first apply Lemma 3. Then we let n be such that tθ

≤n−−→E′\R (tθ)↓
for every θ ∈ Σ(t). Then we prove that, for every normalized substitution σ,

tσ
≤n−−→E′\R (tσ) ↓. �

It must be emphasized that the proof of this theorem provides us with an
effective way of computing the variants: simply narrow t at most n times, where
n is given by the boundedness property.
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6 Proving Boundedness

6.1 The Case E′ = ∅
Thanks to Lemma 2, the narrowing derivation associated by Lemma 1 to an
innermost derivation is basic. Moreover, since R is a convergent system, we can
always choose an innermost derivation. Hence we have the following proposition:

Proposition 5. If basic narrowing terminates for R then (R, ∅) is a decompo-
sition of E satisfying the boundedness property.

This proposition allows us to conclude that the decomposition (RDYT, ∅)
(resp. (RKIT, ∅)) of DYT (resp. KIT ) presented in Section 4.1 satisfies the
boundedness property and, by Theorem 1 we conclude that these decompositions
satisfy the finite variant property.

6.2 Non-orientable Axioms

Because of non-orientable equations (typically AC), we need to consider equa-
tional rewriting. Unfortunately, we cannot extend directly the results of the pre-
vious section, as shown by Example 1. Anyway, for Abelian Groups and Diffie-
Hellman theories, independently of the orientation of x−1 ∗ y−1 = (x ∗ y)−1,
AC-narrowing (even basic) does not terminate. That is why we need to develop
refined criteria, which will be satisfied by these two theories, yielding a finite
variant property.

Let us first give a simple decidable sufficient condition for boundedness.

Lemma 4. If (R, E′) is a decomposition of E which satisfies:

∀f ∈ F ∃c ∀t1, . . . tn ∈ T (F ,X ). f(t1↓, . . . , tn↓)
≤c−−→E′\R f(t1, . . . , tn)↓.

Then (R, E′) satisfies the boundedness property.

Note that being an optimally reducing rewrite systems (see [14]) is a sufficient
condition for the boundedness property. Indeed such systems actually satisfy the
conditions of Lemma 4, with a constant c = 1. However, we are going to need (for
instance for Abelian Groups) to apply Lemma 4 with constants larger than 1.
Furthermore, even if we can apply Lemma 4, with c = 1, the rewrite system might
not be optimally reducing, simply because there are extra rules not satisfying
the required condition. Finally, in [14], the authors assume that the root symbol
of any left hand side is not associative-commutative, which we do not. So, our
condition, which is strictly weaker, provides us with new applications.

We show successively that Lemma 4 can be applied to the theories of exclusive
or, Abelian Groups and Diffie-Hellman.

Lemma 5. Let t1 and t2 be irreducible terms (w.r.t. AC\R+), t1 + t2 can be
reduced to its normal form, using at most 1 reduction step.



304 Hubert Comon-Lundh and Stéphanie Delaune

Asimilar lemma does not hold for the Abelian Groups decomposition (R∗,AC)
of Section 4.3. Even worse, this decomposition does not satisfy the boundedness
property: consider the term t = x−1 and the substitution σ = {x �→ a0∗ . . .∗an},
tσ requires at least n reduction steps before we reach its normal form.

However, an unusual orientation of some rules yields a presentation for which
the finite variant property holds. This orientation has first been proposed by
Lankford (see [9]). We get the following rewrite system:

R′
∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x ∗ 1 → x x−1−1 → x
1−1 → 1 (x−1 ∗ y)−1 → x ∗ y−1

x ∗ x−1 → 1 x ∗ (x−1 ∗ y)→ y
x−1 ∗ y−1 → (x ∗ y)−1 x−1 ∗ (y−1 ∗ z)→ (x ∗ y)−1 ∗ z

(x ∗ y)−1 ∗ y → x−1 (x ∗ y)−1 ∗ (y ∗ z)→ x−1 ∗ z
This rewrite system is an AC-convergent system for AG [9] and even though

basic narrowing does not terminate, we can show that:

Lemma 6. Let t1 and t2 be irreducible terms (w.r.t. AC\R′
∗), t

−1
1 and t1 ∗ t2

can be reduced to their normal form, using at most 1 (resp. 2) reduction step.

Example 4. Let t1 = a ∗ (b ∗ c)−1 and t2 = a−1 ∗ b. We have the following
derivation from t1 ∗ t2 to its normal form c−1.

(a ∗ (b ∗ c)−1) ∗ (a−1 ∗ b)→AC\R′∗ ((b ∗ c) ∗ a)−1 ∗ (a ∗ b)→AC\R′∗ c
−1

Now consider the Diffie-Hellman theory. We orient the two additional equa-
tions and get the following rewrite system:

RDH = R′
∗ ∪

{
exp(x, 1)→ x

exp(exp(x, y), z)→ exp(x, y ∗ z)

Proposition 6. RDH is an AC-convergent rewrite system for DH.

Lemma 7. Let t1 and t2 be irreducible terms (w.r.t. AC\RDH), t−1
1 , t1 ∗ t2 and

exp(t1, t2) can be reduced to their normal form, using at most 1 (resp. 2 and 4)
reduction step.

We illustrate the worst case for which we need the 4 reduction steps to obtain
the normal form.

Example 5. Let t1 = exp(e, a−1 ∗ b) and t2 = b−1 ∗ a, t = exp(t1, t2) can be
reduced to its normal form (w.r.t. AC\RDH) by a derivation using 4 reduction
steps. Indeed, we have:

exp(exp(e, a−1 ∗ b), b−1 ∗ a)→ exp(e, (a−1 ∗ b) ∗ (b−1 ∗ a))
→ exp(e, (a ∗ b)−1 ∗ (a ∗ b))
→ exp(e, 1)
→ e

To sum up, as consequences of Theorem 1, Lemmas 4, 5, 6 and 7:

Corollary 1. The decompositions (R+, AC), (R′
∗, AC) and (RDH, AC) have

the finite variant property.
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7 ACUNh Does Not Satisfy the Finite Variant Property

We prove here that the theory ACUNh, introduced in Section 4.5 does not have
the finite variant property.

Let us recall that, depending on the orientation of h(x + y) = h(x) + h(y),
we get two AC-convergent rewrite systems displayed in Figure 1. However, none
of them yields an appropriate decomposition:

Lemma 8. The decompositions (R1, AC) and (R2, AC) of the theory ACUNh
do not satisfy the boundedness property.

Proof: First, we consider the case of (R1, AC), and we show the result by con-

tradiction. Let t = h(x) and n be such that ∀σ. h(x)(σ↓) ≤n−−→E′\R (h(x)σ)↓. We
consider the substitution σ = {x �→ a+ h(a) + . . . + hn+1(a)}. It is easy to see
that we need n + 1 rewriting steps (with the rule h(x + y) → h(x) + h(y)) to
rewrite h(x)σ to its normal form h(a) + . . .+ hn+2(n). Hence contradiction.

The result for (R2, AC) can be obtained in a similar way with the term
t = x+ y and the substitution σ = {x �→ hn(a); y �→ hn(b)}. �

There are not many other choices than R1 and R2 and we get the following:

Theorem 2. There is no decomposition (R, AC) of ACUNh which satisfies the
boundedness property and such that the right members of the rules in R are
irreducible (w.r.t. AC\R).

The idea is to prove first that, for any AC-convergent rewrite system R, either
−→AC\R1 ⊆

∗−→AC\R or −→AC\R2 ⊆
∗−→AC\R. Next, we prove that there is an inte-

ger n such that −→AC\R ⊆
≤n−−→AC\R1 or −→AC\R ⊆

≤n−−→AC\R2 and we conclude
by Lemma 8.

Corollary 2. There is no decomposition (R, AC) of ACUNh which satisfies the
finite variant property and such that the right members of the rules in R are
irreducible (w.r.t. AC\R).

The property required on the right members of the rules of R seems to be
unnecessary. This assumption has been taken to make easier the proof.

8 Other Applications of the Finite Variant Property

Assume that (E,E′) has the finite variant property. This can be used to reduce
disunification problems modulo E to disunification problems modulo E′:

Theorem 3. The Σ1 fragment of the first-order theory of T (F)/=E is decidable
whenever the Σ1 fragment of the first-order theory of T (F)/=E′ is decidable.

To prove this, simply compute the variants φ1, . . . , φn of the formula φ. (In
such a computation, logical connectives are seen as free symbols). For every
substitution σ, there is an index i and a substitution θ such that φσ↓E =E′ φiθ.
In particular, φ is solvable modulo E iff one of the φi is solvable modulo E′.

Then, since the Σ1 fragment of the theory of T (F)/=AC is decidable [1], we
get the following new results:
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Corollary 3. The Σ1 fragments of the first-order theories of quotient term al-
gebras T (F)/=ACUN , T (F)/=AG, T (F)/=DH are decidable.

Such results cannot be derived from the decidability of unification. Even in
the dismatching case this is not so trivial to get a decision procedure. Consider
for instance x + f(x + y) �= a in the theory ACUN. A most general solution
of the matching problem is x = f(z) + a ∧ y = a + z + f(z). Complementing
the solutions of the matching equation involves quantifier elimination : ∀z.x �=
a+ f(z) ∨ y �= a+ z + f(z).

In the case of Abelian Groups, it is actually known that the first-order the-
ory of finitely generated Abelian Groups is decidable [16]. However, adding a
binary free function symbol, it might become undecidable. Actually, the status
of the first order theories of above-mentioned quotient algebras is unknown. On
the undecidability side, the method described in [18] can not be applied in a
straightforward way. On the decidability side, the finite variant property does
not help since the first-order theory of T (F)/=AC is undecidable [18].

9 Conclusion

We believe that the finite variant property is important in many applications.
It allows us to reduce problems modulo an equational theory E to problems
modulo an equational theory E′ ⊆ E. It is often useless for solving equations;
for instance, unification modulo ACUN is simpler than unification modulo AC.
However, for other constraint solving problems such as intruder derivability con-
straints [5] or disunification problems mentioned in the previous section, this
property can be crucial.

We have proposed some criteria for the finite variant property, which have
been applied to several equational theories. The techniques are inspired by nar-
rowing, though, as in [19], we do not rely directly on narrowing sequences, but
rather on innermost reductions of instances.

An open question is to design other criteria (both for the finite variant prop-
erty or its negation), which would not assume an E′-convergent rewrite system
for E. For instance, does (AC, ∅) have the finite variant property ? We are
tempted to answer no, but the proof is challenging.
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Abstract. Cryptographic protocols are small programs which involve
a high level of concurrency and which are difficult to analyze by hand.
The most successful methods to verify such protocols rely on rewriting
techniques and automated deduction in order to implement or mimic the
process calculus describing the protocol execution.
We focus on the intruder deduction problem, that is the vulnerability to
passive attacks, in presence of several variants of AC -like axioms (from
AC to Abelian groups, including the theory of exclusive or) and homo-
morphism which are the most frequent axioms arising in cryptographic
protocols. Solutions are known for the cases of exclusive or, of Abelian
groups, and of homomorphism alone. In this paper we address the com-
bination of these AC -like theories with the law of homomorphism which
leads to much more complex decision problems.
We prove decidability of the intruder deduction problem in all cases con-
sidered. Our decision procedure is in EXPTIME, except for a restricted
case in which we have been able to get a PTIME decision procedure
using a property of one-counter and pushdown automata.

1 Introduction

Cryptographic protocols are ubiquitous in distributed computing applications.
They are employed for instance in internet banking, video on demand services,
wireless communication, or secure UNIX services like ssh or scp. Cryptographic
protocols can be described as relatively simple programs which are executed in
an untrusted environment. These protocols use cryptographic primitives in order
to implement symmetric (shared-key) encryption, and asymmetric (public-key)
encryption and signatures.

Verifying protocols is notoriously difficult, and even very simple protocols
which look completely harmless may have serious security flaws, as it was dra-
matically demonstrated by the bug of the Needham-Schroeder protocol found
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by Lowe [14] using a model-checking tool. It took 17 years since the protocol was
published to find the flaw, a so-called man in the middle attack. An overview of
authentication protocols known a decade ago can be found in [5], a more recent
data base of protocols and known flaws is [11]. These protocols are often im-
plemented in small variants which differ from the originally proposed protocol,
or are used in combination with other protocols. As a consequence, there is a
multitude of verification problems, which raises the need for automatic tools.

There are different approaches to modeling cryptographic protocols and ana-
lyzing their security properties: process calculi like the spi-calculus [1], so-called
cryptographic proofs (see, for instance, [2]), and the approach of Dolev and Yao
[10] which consists in modeling an attacker by a deduction system. This deduc-
tion system specifies how the attacker can obtain new information from previous
knowledge, which he has either obtained by silently eavesdropping the commu-
nication between honest protocol participants (in case of a passive attacker),
or by eavesdropping and fraudulently emitting messages, thus provoking honest
protocol participants to reply according to the protocol rules (this is the case
of a so-called active attacker). We call intruder deduction problem the question
whether a passive eavesdropper can obtain a certain information from knowl-
edge that he observes on the network. The Dolev-Yao approach lends itself to
automation since the question whether the intruder can obtain a certain infor-
mation now reduces to the question whether this information can be deduced
using a certain deduction system.

Classically, the verification of cryptographic protocols was based on the so-
called perfect cryptography assumption which states that it is impossible to ob-
tain any information about an encrypted message without knowing the exact
key necessary to decrypt this message. This assumption allowed a separation of
verification tasks into proving lower bounds for the cryptanalysis of the crypto-
graphic primitives on the one hand, and verification of a distributed program on
the other hand. Unfortunately, this perfect cryptography assumption has proven
too idealistic: there are protocols which can be proven secure under the perfect
cryptography assumption, but which are in reality insecure since an attacker can
use properties of the cryptographic primitives in combination with the protocol
rules in order to obtain knowledge of a secret. These properties are typically
expressed as equational axioms (so-called algebraic properties), like for instance
associativity and commutativity of certain operators. Algebraic properties may
be essential for the executability of the protocol, or may just come into play
because the cryptographic primitives employed by the protocol happen to sat-
isfy these properties. A recent overview of algebraic properties of cryptographic
primitives, their use to mount attacks on protocols, and existing results on verifi-
cation of cryptographic protocols in presence of equational axioms can be found
in [8].

A number of results have been obtained, both for the intruder deduction
problem and for the preservation of secrecy under active attacks. We here only
mention some results which are of particular relevance to the problems studied
in this work: the intruder deduction problem in case of the equational axioms of
exclusive or is decidable [6] in polynomial time [4], and in case of the equational
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axioms of Abelian groups is decidable [6]1 in polynomial time [19]. Likewise, the
intruder deduction problem is decidable in polynomial time [7] in the case of
the equational theory of an homomorphism. Note that the two equational theo-
ries of exclusive or and of homomorphism model basic properties of important
cryptographic primitives:

– Exclusive or is a basic building block in many symmetric encryption methods
(for instance DES or the more recent AES) or even used directly as an
encryption method;

– Homomorphisms are ubiquitous in cryptography, by example the ElGamal
encryption method has this property. Note that many protocols combine
symmetric and asymmetric encryption.

– Symmetric encryption methods which often work on data blocks of fixed
size are in the simplest of cases (the so-called electronic codebook mode)
homomorphically extended to data streams of arbitrary size.

Some examples of attacks against protocols using the equational theories con-
sidered in this paper can be found in [8].

In this paper we investigate the intruder deduction problem in presence of
several variants of the equational theory of associativity and commutativity
(short AC ) of a binary operator ⊗, plus the homomorphism property of a unary
function symbol over the AC operator. The variants of AC which we consider
are: pure AC, the theory of exclusive or (also called ACUN ), and the theory
of Abelian groups. We are furthermore interested in the combination of these
AC -like theories with a generalization of one homomorphic function to some
form of distributivity of the encryption operator over the binary operator ⊗.
The homomorphism law is then replaced by a law stating that the encryption of
the ⊗ of two messages is equal to the ⊗ of the encryptions of the two messages
using the same encryption key. We do not assume that the set of encryption keys
is finite. Rather, any term can be used as an encryption key. This can be seen
as the extension to an infinite family of homomorphisms, one for each possible
encoding key. Our results can be summarized as follows:

1. The intruder deduction problem is decidable. It is NP-complete in case of
the theory AC plus homomorphism, and we have an exponential-time upper
bound for the equational theory ACUN plus homomorphism and Abelian
groups plus homomorphism.

2. The intruder deduction problem is in all three cases decidable in polyno-
mial time if we restrict the class of problems to the so-called binary case,
that is the case where the set of assumptions and the goal do not contain
applications of ⊗ to more than two terms.

3. The first two sets of results carry over to the generalization which consists
in replacing the homomorphic function by an encryption operation which
distributes over ⊗.

1 In fact, the NP-decision procedure in the case of Abelian groups given by [6] can
also be improved to deterministic polynomial time using the techniques explained
in this report.
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We follow the approach of [6] and [7] which consists in a generalization of
McAllester’s locality method explained in Section 3.

Plan of the paper: We present in Section 2 the Dolev-Yao model of intruder
capacities extended by a rewrite system modulo AC and list the rewrite sys-
tems investigated in this paper. In Section 3 we explain the generalization of
McAllester’s proof technique. We apply this technique in Sections 4, 5 and 6
to obtain decidability and complexity results for the case of exclusive or plus
homomorphism. We discuss in Section 7 how these results can be transfered to
some other related rewrite systems. Finally, we conclude in Section 8.

The full version of this paper with all proofs can be found at [13]. We use
standard notation from rewriting. The reader may consult [3, 9] if necessary.

2 A Dolev-Yao Model for Rewriting Modulo AC

We consider the classic model of deduction rules [10] introduced by Dolev and
Yao in order to model the deductive capacities of a passive intruder. We present
here an extension of this model where we assume an associative and commutative
operator ⊗, and an equational theory E which can be exploited by the intruder
to mount an attack. Knowledge of the intruder is represented by terms built over
a finite signature Σ of the form

Σ = {〈·, ·〉, {·}·,⊗, f} 	Σ0

where Σ0 is a set of constant symbols. The term 〈u, v〉 represents the pair of
the two terms u and v, and {u}v represents the encryption of the term u by the
term v. For the sake of simplicity we here only consider symmetric encryption;
the results and techniques can be easily transferred to the case of asymmetric
encryption.

The equational theory E is represented by a convergent rewrite system R
modulo AC, that is R is terminating and confluent modulo associativity and
commutativity of ⊗, and for all terms t, s ∈ T (Σ) we have that t =E s iff
t ↓R/AC =AC s ↓R/AC .

The deduction system describing the deductive capacities of an intruder is
given in Figure 1. This deduction system is composed of the following rules: (A)
the intruder may use any term which is in his initial knowledge, (P) the intruder
can build a pair of two messages, (UL, UR) he can extract each member of a
pair, (C) he can encrypt a message u with a key v, (D) if he knows a key v he
can decrypt a message encrypted by the same key, (F) he can construct a new
term using the function symbol f . Since we distinguish a special binary operator
⊗ we here furthermore add a family of rules (GX) which allows the intruder to
build a new term from an arbitrary number of already known terms by using
the (associative) ⊗ operator. The need for such a variadic rule (instead of just
a binary rule) will become apparent in Section 3.

In fact, this deductive system is equivalent in deductive power to a variant
of the system in which terms are not automatically normalized, but in which
arbitrary equational proofs are allowed at any moment of the deduction. The
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(A) u ∈ T
T � u ↓R/AC

(UL) T � r
T � u ↓R/AC

if〈u, v〉 = r ↓R/AC

(P) T � u T � v
T � 〈u, v〉 ↓R/AC

(UR) T � r
T � v ↓R/AC

if〈u, v〉 = r ↓R/AC

(C) T � u T � v
T � {u}v ↓R/AC

(D) T � r T � v
T � u ↓R/AC

if{u}v = r ↓R/AC

(F) T � u
T � f(u) ↓R/AC

(GX) T � u1 · · · T � un

T � (u1 ⊗ . . . ⊗ un) ↓R/AC

Fig. 1. A Dolev-Yao proof system working on normal forms by a rewrite system R
modulo AC.

f(x ⊗ y) → f(x) ⊗ f(y)

(a) ACh

0 ⊗ x → x
x ⊗ x → 0
f(0) → 0
f(x ⊗ y) → f(x) ⊗ f(y)

(b) ACUNh

0 ⊗ x → x
x ⊗ x → 0
I(0) → 0
I(x ⊗ y) → I(x) ⊗ I(y)
I(I(x)) → x
f(I(x)) → I(f(x))
f(0) → 0
f(x ⊗ y) → f(x) ⊗ f(y)

(c) AGh

Fig. 2. The three rewrite systems modulo AC

equivalence of the two proof systems has been shown in [7] without AC axioms;
in [13] this has been extended to the case of a rewrite system modulo AC.

In the rest of the paper, we will investigate the Dolev-Yao deduction system
modulo the rewrite systems presented in Figure 2, which correspond respectively
to AC plus homomorphism of f over ⊗, the theory of exclusive or plus homo-
morphism of f over ⊗, and the theory of Abelian groups plus homomorphism of
f over ⊗. We will omit the index R/AC and write → instead of →R/AC .

3 Locality and Complexity of Deduction Problems

Our starting point is the locality technique introduced by David McAllester [15].
He considers deduction systems which are represented by finite sets of Horn
clauses. He shows that there exists a polynomial-time algorithm to decide the
deducibility of a term w from a finite set of terms T0 if the deduction system
has the so-called locality property. A deduction system has the locality property
if any proof of T0 � w can be transformed into a local proof where a local proof
is a proof where all the nodes are syntactic subterms of T0 and w.

The idea of his proof is as follows: Checking existence of a proof amounts to
checking existence of a local proof. Let us call for the moment a relevant instance
of a deduction rule an instance of a rule where all terms are syntactic subterms
of T0 or w. Only these relevant instances are needed to construct a local proof.
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We say that w is one-step deducible from some set T , if we can obtain w from
T with only one application of a rule of the proof system. To check the existence
of a local proof of T0 � w it is now sufficient to saturate T0 by the one-step
deduction relation, where in addition it is sufficient to just consider the relevant
instances of the deduction rules.

This approach suffers from two main restrictions:

– The deduction system must be finite.
– The notion of locality is restricted to syntactic subterms.

These restrictions raise a serious problem when we want to work modulo
AC. If we used only a binary rule (GX) we would have to consider all possible
subterms modulo AC. Unfortunately, there is in general an exponential number
of subterms modulo AC of a given term. The solution proposed in [6], and
which we also adopt here, is to use the rule (GX) with an arbitrary number
of hypotheses. In this way, we can avoid the exponential number of subterms.
However, we are now stuck with an infinite number of rules. Fortunately, we can
still obtain an polynomial algorithm by implementing in a clever way the test
whether a term w is one-step deducible from a set T .

Definition 1. Let S be a function which maps a set of terms to a set of terms.
A proof P of T � w is S-local if all nodes are labeled by some T � v, with
v ∈ S(T ∪ {w}). A proof system is S-local if whenever there is a proof of T � w
then there also is some S-local proof of T � w.

Theorem 1. Let S be a function mapping a set of terms to a set of terms, and
P a proof system. If

– the set S(T ) can be constructed in time K1,
– P is S-local,
– one-step deducibility in P is decidable in time K2,

then provability in the proof system P is decidable in time max(K1,K2).

This theorem generalizes McAllester’s result because in his case the size of
the set of syntactic subterms of the set T is polynomial in the size of T , and since
one-step deducibility is decidable in polynomial time for a finite proof system.
Hence, in McAllester’s case, it remained only the S-locality to show.

4 Proof Transformations

The following definitions and transformations can be applied to the cases ACh
and ACUNh. The case of AGh requires an extension briefly discussed in Subsec-
tion 7.2.

Definition 2. The size of a proof P is the number of nodes in P , denoted
by |P |. A proof P of T � u is minimal if there is no proof P ′ of T � u such that
|P ′| < |P |.
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Definition 3. Let P be a proof of T � w, P is a

– simple proof if each node T � v occurs at most once on each branch.
– flat proof if there is no (GX) rule immediately above another (GX) rule,
– ⊗-lazy proof if P is flat and there is no (GX) rule immediately above an (F)

rule in P ,
– ⊗-eager proof if P is flat and if there is at most one (F) rule immediately

above a (GX) rule in P .

Since two successive (GX) rules can be merged into a single (GX) rule a
minimal proof is a flat proof. Obviously any minimal proof is simple. Intuitively,
in a ⊗-lazy proof the (GX) rule is applied as late as possible, and in a ⊗-eager
proof the (GX) rule is applied as early as possible.

Lemma 1. If there is a proof of T � w then there is also a ⊗-lazy proof and a
⊗-eager proof of T � w.

Proof. Successive (GX) rules can obviously be merged. We can obtain a ⊗-lazy
proof by applying the following proof transformation rule:

T � x1 . . . T � xn

(GX)
T � x1 ⊗ . . .⊗ xn

(F)
T � f(x1)⊗ . . .⊗ f(xn)

=⇒

T � x1

(F)
T � f(x1)

. . .

T � xn

(F)
T � f(xn)

(GX)
T � f(x1)⊗ . . .⊗ f(xn)

We obtain a ⊗-eager proof by applying the following proof transformation,
where the rules (Gi) are all different from (F ):

T � x1

(F)
T � f(x1)

. . .

T � xn

(F)
T � f(xn)

T � y1
(G1)

T � z1
. . .

T � ym

(Gm)
T � zm

(GX)
T � f(x1)⊗ . . .⊗ f(xn)⊗ z1 ⊗ . . .⊗ zm

⇓
T � x1 . . . T � xn

(GX)
T � x1 ⊗ . . .⊗ xn

(F)
T � f(x1)⊗ . . .⊗ f(xn)

T � y1
(G1)

T � z1
. . .

T � ym

(Gm)
T � zm

(GX)
T � f(x1)⊗ . . .⊗ f(xn)⊗ z1 ⊗ . . .⊗ zm

5 Locality for the Rewrite System ACUNh

Definition 4. Let u be a term in normal form, u is headed with ⊗ if u is of
the form u1 ⊗ . . .⊗ un with n > 1. Otherwise u is not headed with ⊗.
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We define the function atoms(u) as following:

– If u = u1 ⊗ . . . ⊗ un, where each of the ui is not headed with ⊗, then
atoms(u) = {u1, . . . , un}. The terms ui are called the atoms of u.

– If u is not headed with ⊗, then atoms(u) = {u}.

The definition of atoms(T ) generalizes in a natural way to sets of terms T in
normal form by atoms(T ) :=

⋃
t∈T atoms(t).

Definition 5. We define for any T ⊆ T (Σ) the set ST (T ) as the smallest set
which contains T , is closed under syntactic subterms, and such that if f(u1) ⊗
. . .⊗ f(un) ∈ ST (T ) then u1 ⊗ . . .⊗ un ∈ ST (T ).

Lemma 2. Let P be a proof which is minimal among all ⊗-lazy proofs of T � w,
and such that the last rule applied in P is of the form (X)T�N1...T�Nn

T�w , where
(X) is one of (UL), (UR), or (D). Then Ni ∈ ST (T ) for all i.

This has been shown [7] in the setting of exclusive or without an homomorphism.
The proof is very easily extended (see [13]) to our setting of ACUNh.

Lemma 3. Let P be a proof which is minimal among all ⊗-lazy proofs of T � w,
and let P ′ be a subproof of P with root label T � N . If the last rule applied in
P ′ is (P), (C), or (GX) then N ∈ ST (T ∪ {w}).
This is a central technical lemma. The proof is given in [13].

Lemma 4. Let P be a proof which is minimal among all ⊗-lazy proofs of T � w,
and let P ′ be a subproof of P with root label T � N such that the last rule applied
in P ′ is (F). If either

1. all nodes from the root of P ′ to the root of P are (F),
2. or if the first successor not labeled by (F) of the root of P ′ in P is labeled by

a rule different from (GX),

then N ∈ ST (T ∪ {w}).
The two cases of the lemma can be illustrated like this:

P’ P

(F)

P’ P

(X)

(F)

In the right picture, (X) denotes a rule different from (F) and from (GX). The
lemma states that (F) nodes are in ST (T ∪ {w}) as long as they do not produce
an hypothesis of a (GX) rule via a succeeding sequence of (F) nodes. This follows
easily from Lemma 2 and Lemma 3 (see [13]).
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Example 1 The following proof of T = {u⊗ v, f(v)} � f(u) is minimal:

u⊗ v ∈ T
(A)

T � u⊗ v
(F)

T � f(u)⊗ f(v)

f(v) ∈ T
(A)

T � f(v)
(GX)

T � f(u)
We obtain ST (T ∪ {w}) = {u, v, u ⊗ v, f(u), f(v)}. This proof is not ST -local
since f(u)⊗ f(v) �∈ ST (T ∪ {w}).
As can be seen in the above example, the problem in defining S-locality for a
polynomial-size S is to bound the number of applications of the (F) proof rule
when constructing hypotheses to a (GX) rule.

5.1 Locality in the Binary Case

In the binary case, that is when all terms in ST (T∪{w}) have at most two atoms,
we can actually find an upper bound for the number of applications of (F).
Definition 6. A term t is binary if every s ∈ ST (t) either is not headed with
⊗, or is of the form s1 ⊗ s2 where s1, s2 are not headed with ⊗. A set of terms
is binary if each of its elements is binary. A proof is binary if each of its nodes
is labeled by a sequent T � w where T and w are binary.

Proposition 1. If T and w are binary then every proof which is minimal among
the ⊗-lazy proofs of T � w is binary.

We define for any term t the term Stripf (f(t)) = Stripf (t), and Stripf (t) = t if t
does not have root symbol f . Furthermore, #f (f(t)) = 1 + #f (t), and #f (t) =
0 when t is not headed by f . In the binary case we associate a one-counter
automaton to the set ST (T ∪{w}). The idea is that states of the automaton are
terms in Stripf (atoms(ST (T ∪{w}))), and the counter represents the number of
applications of f to a term.
Definition 7. Let T be a set of terms such that every term in T has at most
two atoms. We partition T = T1	T2 where T1 is the set of terms not headed with
⊗, and T2 is the set of terms headed with ⊗. The automaton associated with T ,
abbreviated AT , is a one-counter automaton without input defined as follows:

The set of states QT of AT is

{init} ∪ {p′ | p ∈ Stripf (T1)} ∪ {r | r ∈ Stripf (T1) ∪ Stripf (atoms(T2))}
where init is the initial state of AT . The set of transitions is:

From To Condition Action
∀t ∈ T1 : init (Stripf (t))′ c ≥ 0 c := c
∀t ∈ T1 : (Stripf (t))′ (Stripf (t))′ c ≥ 0 c := c+ 1
∀t ∈ T1 : (Stripf (t))′ Stripf (t) c ≥ #f (t) c := c
∀t⊗ s ∈ T2 : Stripf (t) Stripf (s) c ≥ #f (t) c := c−#f (t) + #f (s)
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Note that in the last line of the above transition table the statement “t⊗s ∈ T2”
is to be understood modulo AC, such that we obtain from a binary clause a back
and a forth transition.

Example 2 The automaton AT for T = {a ⊗ f2(b), a} is as follows, where I
denotes the initial state:

I a’ a b

c ≥ 0
c := c

c ≥ 0
c := c+ 1

c ≥ 0
c := c

c ≥ 0
c := c+ 2

c ≥ 2
c := c− 2

One of the two lemmata relating the proof system with our automata con-
struction is:

Lemma 5. Let T be a set of binary terms. For all t0, . . . , tn ∈ Stripf (atoms(T ))
and all natural numbers c0, . . . , cn we have that

AT |= (t0, c0)→ (t1, c1)→ . . .→ (tn, cn)

iff there are terms s1, . . . , sn ∈ T and natural numbers d1, . . . , dn such that:

1. for 1 ≤ i ≤ n the term si is headed with ⊗ and has exactly two atoms, that
is si = s1i ⊗ s2i

2. ∀1 ≤ i ≤ n : fdi(s1i ) = f ci−1(ti−1)
3. ∀1 ≤ i ≤ n : fdi(s2i ) = f ci(ti)

As a consequence and using the axiom x⊗ x = 0, we obtain that
n⊕

i=1

fdi(si) ↓ = fd1(s11)⊗ fdn(s2n) = f c0(t0)⊗ f cn(tn)

Lemma 6. Let A be a one-counter automaton and π : (q, cq) →� (r, cr) a path
between the state q with the counter cq ≥ 0 and the state r with the counter
cr ≥ 0. Then there exists a path from (q, cq) to (r, cr) such that everywhere along
the path the value of the counter is bounded by p(|A|), where p is a polynomial
function.

We believe this lemma to be folklore but were unable to find a proof in the liter-
ature. A proof, along with a definition of the polynomial function p, is included
in the complete version [13]. We can now define:

Definition 8. We define for any finite subset U of T (Σ):

Sf (U) = {f i(u) ↓ | u ∈ ST (U), 0 ≤ i ≤ p(|AT |)}

where the function p is as in Lemma 6.
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Note that the size of Sf (U) is polynomial in the size of U . Combining Lemmata 2
through 6 we obtain:

Lemma 7. Let T ⊆ T (Σ) and w ∈ T (Σ) be binary, and let P be a proof which
is minimal among all ⊗-lazy proofs of T � w. All nodes of P are in Sf (T ∪{w}).

5.2 Locality in the General Case

Definition 9. We define for any finite subset U of T (Σ):

S⊗(U) = {u1 ⊗ . . .⊗ un|u1, . . . , un ∈ ST (U)}

Note that the size of S⊗(T ) is exponential in the size of T .

Lemma 8. Let M ⊆ T (Σ), t0 ∈ T (Σ), and t1, . . . , tn ∈ ST (M).
If (t0 ⊗ t1 ⊗ . . .⊗ tn) ↓ ∈ S⊗(M) then t0 ∈ S⊗(M).

The easy proof can be found in [13]. This lemma, together with the previous
lemmata, is the key for proving the following lemma which states that any proof
which is minimal among the ⊗-eager proofs of T � w contains only nodes in
S⊗(T ∪ {w}).
Lemma 9. The Dolev-Yao proof system in case of ACUNh is S⊗-local.

6 One-Step Deducibility in Case of ACUNh

We follow the well-known method for solving unification problems modulo AC -
like theories [16]. We only show how to decide one-step deducibility for the family
of rules (GX), since checking one-step deducibility for the remaining deduction
rules is straightforward. We transform the problem of testing one-step deducibil-
ity into the satisfiability of a system of linear Diophantine equations.

Let t ∈ T (Σ) and u ∈ T (Σ) not headed with ⊗. We denote by δ(u, t) the
number of occurrences of u in atoms(t) (which is, in the case ACUNh, either 0
or 1).

Definition 10. Let s ∈ T (Σ) and T = {t1, . . . , tn} be a finite subset of T (Σ).
Let atoms(T ∪ {s}) = {a1, . . . , am}. The equation system D(T, s) over the vari-
ables x1, . . . , xn is

D(T, s) :=
m∧

i=1

n∑
j=1

δ(ai, tj) ∗ xj = δ(ai, s)

Example 3 Let T = {a1⊗ a2 ⊗ a3, a1 ⊗ a4, a2 ⊗ a4} and s = a1 ⊗ a2, where all
the ai are not headed with ⊗. We introduce numerical variables x1, x2, x3, that
is one numerical variable for each element of T :

x1 for a1 ⊗ a2 ⊗ a3

x2 for a1 ⊗ a4

x3 for a2 ⊗ a4
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For every atom ai we create an equation. This yields the following equation
system: ⎧⎪⎪⎨⎪⎪⎩

a1 : x1 + x2 = 1
a2 : x1 + x3 = 1
a3 : x1 = 0
a4 : x2 + x3 = 0

Lemma 10. Let s ∈ T (Σ) and T a finite subset of T (Σ). Then s is deducible
with one application of a rule (GX) from T if and only if D(T, s) is solvable over
Z/2Z.

Since satisfiability of a system of linear Diophantine equations over Z/2Z is
in PTIME [12], we obtain from Lemma 10, Theorem 1, and Lemma 9 that:

Theorem 2. The question whether T � w is deducible form T in case of the
rewrite system ACUNh is decidable in EXPTIME.

In the binary case we obtain from Lemma 10, Theorem 1, Lemma 7, and Propo-
sition 1 that:

Theorem 3. The question whether T � w is deducible form T in case of the
rewrite system ACUNh, where T and w are binary, is decidable in PTIME.

7 Variants and Extensions

7.1 The Rewrite System ACh

The case of the rewrite system ACh is much simpler than the case ACUNh
since with ACh it is not possible that terms are canceled out when applying the
constructor ⊗. Hence we do not get the difficulty seen in Example 1.

Lemma 11. The extended Dolev-Yao proof system in case of ACh is ST -local.

The downside is that, in order to decide one-step deducibility, we now have to
solve linear Diophantine equation systems over N. This problem is in general
NP-complete [17]. Furthermore, it is quite easy to reduce satisfiability of linear
Diophantine equations over N to the intruder deduction problem modulo ACh.

An exception is again the binary case, where one-step deducibility is decidable
in polynomial time (which is trivial to prove in this case). We hence obtain:

Theorem 4. The problem whether T � w in case of the rewrite system ACh is
NP-complete, and decidable in PTIME if we restrict the problem to the binary
case.

7.2 The Rewrite System AGh

The case of the rewrite system AGh is very similar to the case of ACUNh. The
lemmata and techniques can be adapted easily when we change the definitions
of ST , Sf , and S⊗ and require now in addition that they are closed under appli-
cation of the inversion function and subsequent normalization of the term.
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We can test one-step deducibility essentially as in Section 6. The major differ-
ence is that we now have to check our equation system D(T, s) for satisfiability
in Z, which again is in PTIME [18].

Theorem 5. The problem whether T � w in case of the rewrite system AGh is
decidable in EXPTIME, and decidable in PTIME if we restrict the problem to
the binary case.

7.3 Extension to an Encryption Operation
Which is Homomorphic over ⊗

This extension consists of replacing, in the three rewrite systems given at the
end of Section 2, the rewrite rule

f(x⊗ y)→ f(x)⊗ f(y)

by the new rule
{x⊗ y}z → {x}z ⊗ {y}z

On a technical level, this introduces the additional difficulty that we can now
decompose in certain cases a sum built by ⊗, as for instance

T � {a}k ⊗ {b}k ⊗ {c}k T � k

(D)
T � a ⊗ b ⊗ c

However, we obtain for this extension lemmata and results which are analogous
to the ones in the previous sections. The construction of the automaton for the
binary case explained in Section 5 has now to be generalized since we now have
an a priori infinite family of homomorphisms. In the case of Section 5 one counter
was enough to count the number of applications of the homomorphic function f .
In the extended case, we have to represent the sequence of encryption keys used
in a stack of encryption operations, which can now be done with a pushdown
automaton. We can find a lemma analogous to Lemma 6 also for the class of
pushdown automata. The only remaining difficulty is to show that the stack
alphabet, which consists of the encryption keys used in a minimal and ⊗-lazy
proof, is finite. This is not obvious since we may use any term as an encryption
key. However, we obtain easily by the Lemmata which correspond to Lemmata 2,
3, and 4 that:

Lemma 12. Let P be a proof which is minimal among the ⊗-lazy proofs of
T � w. All the encryption keys used in the proof P are in ST (T ∪ {w}).
As a consequence, the Theorems 2, 3, 4, and 5 still hold for this extension.

8 Conclusion

A summary of the results obtained on the complexity of the intruder deduction
problem modulo AC -like equational theories with homomorphism is given in the
following table. The results for homomorphism only (without AC axioms) have
been shown in a different paper [7] and are here cited only for completeness.
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Complexity of the intruder deduction problem
Binary case General case

h PTIME [7]
ACh PTIME NP -Complete
ACUNh PTIME EXPTIME
AGh PTIME EXPTIME

The reason for the high complexity in the general case is a different one for
the different equational theories considered, as shown in the following table:

Complexity in the general case
Computation of subterms One step deducibility General deducibility

h PTIME [7] PTIME [7] PTIME [7]
ACh PTIME NP-Complete NP-Complete
ACUNh EXPTIME PTIME EXPTIME
AGh EXPTIME PTIME EXPTIME

As future work, we plan to investigate the case of an active intruder. We
can yet observe that it has been shown in [8] that decidability of unification
modulo an equational theory E is a necessary condition for the decidability of
the security of a protocol for a bounded number of sessions and in presence of
this equational theory E. Since unification modulo AC plus homomorphism is
known undecidable [16], the security against active attackers is undecidable at
least for this equational theory as well.
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Proving Positive Almost-Sure Termination
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Abstract. In order to extend the modeling capabilities of rewriting sys-
tems, it is rather natural to consider that the firing of rules can be subject
to some probabilistic laws. Considering rewrite rules subject to proba-
bilities leads to numerous questions about the underlying notions and
results.
We focus here on the problem of termination of a set of probabilistic
rewrite rules. A probabilistic rewrite system is said almost surely termi-
nating if the probability that a derivation leads to a normal form is one.
Such a system is said positively almost surely terminating if furthermore
the mean length of a derivation is finite. We provide several results and
techniques in order to prove positive almost sure termination of a given
set of probabilistic rewrite rules. All these techniques subsume classical
ones for non-probabilistic systems.

1 Introduction

Since 30 years, term rewriting has shown to be a very powerful tool in several
contexts where efficient methods for reasoning with equations are required [1, 13].
In the last decade, term rewriting has also shown to provide a very elegant
framework for specifying concurrency models and deduction systems [16, 17].

When specifying probabilistic systems, it is rather natural to consider that
the firing of a rewrite rule can be subject to some probabilistic rules. For that
purpose, we proposed in [4] to add basic probabilistic strategies to rule based
languages. The idea of adding probabilities to rewrite rules has also been explored
in [9] in the context of probabilistic constraint handling rules, or in [18]. The
idea of adding probabilities to high level models of reactive systems has also
been explored for models like Petri Nets [2, 22], automata based models [6, 26],
or process algebra [11].

Considering rewrite rules subject to probabilities leads to numerous questions
about the underlying notions and results. In [4], we introduced probabilistic ab-
stract reduction systems, and we introduced notions like almost-sure termination
or probabilistic confluence, with relations between all these notions. In [3], we
proved that, unlike what happens for classical rewriting logic, there is no hope
to build a sound and complete proof system with probabilities in the general
case. We however proposed a rather natural notion of rewriting logic which is
sound and complete when proof terms are explicit [3].

This paper is a contribution devoted to a next step: understand and provide
proof techniques for proving termination of a set of probabilistic rewrite rules.

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 323–337, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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As in [4], we propose to call a deterministic probabilistic rewrite system
almost surely terminating if the probability that a term leads to a normal form
is one. However, unlike in [4], we also allow non-deterministic systems. A non-
deterministic probabilistic rewrite system is said almost surely terminating if the
probability that a term leads to a normal form is one whatever the reduction
strategy is.

The idea of mixing probabilities with non-determinism in several other high
level models for reactive systems has quite extensively been discussed in litera-
ture. To solve semantical problems, discussed for example in [19] or [12], several
approaches exist. One of them, called the generative approach [25], consists in
ruling out non-determinism by means of a probability distribution that assigns
a probability to each possible action. The reactive approach [25] consists in
allowing both non-deterministic and probabilistic transitions. The present non-
determinism is solved using the notion of schedulers [26]. Note that there exist
intermediate approaches such that stratified approaches [25] or simple or fully
probabilistic transition systems [24] that are variants or combinations of these
two approaches. Our approach is close to the reactive approach, and what we
call a probabilistic abstract reduction system is also called a Markov decision
process in other contexts [20].

Termination is a desirable interesting notion. However, in the probabilistic
context, we think we should distinguish “reasonable” termination from general
termination.

Indeed, consider a system like a symmetric random walk on the set Zk of
integers. For k = 1 or 2, it visits almost surely all the points [5, 7]. Hence,
whatever the current position is, if one wants to go to the origin, a strategy is
to evolve like a symmetric random walk and stop at the origin. However, even
if one is almost sure to reach the origin, the expected time before reaching the
origin is infinite [5, 7].

Coming back to termination, the point is that in an almost surely terminating
system, with probability one a term leads to a normal form, but if the mean
number of a derivation is infinite then this information is rather useless.

Hence, we believe that the following notion is more interesting: a system will
be said positively almost surely terminating if the mean length of a derivation
is finite. After formally introducing all these notions, we will see that positive
almost sure termination implies almost sure termination. The rest of this paper
is then devoted to proof techniques that can be used to prove positive almost
sure termination.

In particular, in the classical non-probabilistic case, a simple and often used
criteria for proving termination consists in embedding the underlying abstract
reduction system into the set of natural integers, in such a way that each tran-
sition corresponds to a decreasing transition. This technique is sound in the
general case, and is complete for finitely branching systems [1].

We show that this technique has an equivalent for probabilistic abstract
reduction systems: we prove that a probabilistic abstract reduction system is
positively almost sure terminating if it can be embedded into the set of non-
negative reals in such a way that each transition corresponds to a decreasing
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transition in mean. The technique is proved sound in the general case, and
complete for finitely branching systems.

Benefiting from the possibility of considering non-deterministic probabilistic
abstract reduction systems, we then define probabilistic rewrite systems. The
idea is to allow in right hand sides of probabilistic rules a distribution on classical
right hand sides of classical rewrite rules. The proposed notions are intended to
subsume classical rewrite systems. In that spirit, they seem rather natural (at
least for the rewrite community) and probabilistic rewrite systems provide an
alternative to the numerous probabilistic high level formalisms for specifying
reactive systems.

We then discuss the equivalent of the classical result that says that a rewrite
system is terminating iff there is a reduction order monotone on each rewrite rule.

The paper is organized as follows: in Section 2, we recall classical non-
probabilistic theory. Sections 3 and 4 recall basic probability and Markov chain
theory, and Foster’s theorem respectively. Section 5 introduces probabilistic ab-
stract reduction systems. Section 6 defines positive almost sure termination.
Section 7 provides techniques for proving positive almost sure termination of a
probabilistic abstract reduction system. Probabilistic rewrite systems are intro-
duced in Section 8. Techniques for proving their positive almost sure termination
are discussed in Section 9.

2 Termination and Abstract Reduction Systems

We first come back to the classical setting: see for example [1, 13]. An abstract
reduction system (ARS) is A = (A,→) consisting of a set A and a binary relation
→⊂ A×A on A . A derivation is a finite, or infinite sequence π = π0 → π1 · · · →
πn with (πi, πi+1) ∈→ for all i. An abstract reduction system is said terminating
iff there is no infinite chain a0 → a1 → · · · .

As said in [1], the most basic method for proving termination of some A =
(A,→) is to embed it into another abstract reduction system B = (B,>) which
is known to terminate. This require a monotone mapping V : A → B, where
monotone means that x→ x′ implies V (x) > V (x′). Now → terminates because
an infinite chain

a0 → a1 → · · ·
would induce an infinite chain

V (x0) > V (x1) > . . .

The most popular choice for termination proofs is an embedding into (N, >).
Its popularity comes partly from the following easy completeness result [1].
Proposition 1. A finitely branching abstract reduction system terminates if and
only if there is a monotone embedding into (N, >).

As in [1], observe that the technique is sound in the general case, but complete
only for finitely branching systems. Indeed, the system with A = N2 and →
defined by (i + 1, j) → (i, k), (i, j + 1) → (i, j), for all i, j, k, is terminating,
whereas there is no monotone embedding from (N2,→) to (N, >) [1].
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3 Stochastic Sequences and Markov Chains
Let us first come back to school [7, 10, 21]: a σ-algebra on a set Ω is a set of
subsets of Ω which contains the empty-set, and is stable by countable union
and complementation. In particular, the set of subsets is a natural σ-algebra for
any countable set. A measurable space (Ω, σ) is a set with a σ-algebra on it. A
probability is a function P from a σ-algebra to [0, 1], which is countably additive,
and such that P (Ω) = 1. A triplet (Ω, σ, P ) is called a probability space.

If (Ω, σ) and (Ω′, σ′) are measurable spaces, a function f : Ω → Ω′ is measur-
able if for all W in σ′, f−1(W ) ∈ σ. A random variable is a measurable function
on some probability space. The mean of a random variable V taking values in
the set N of integers is E[V ] =

∑
i iP (V = i). This value is always defined, even

if it can be finite or infinite. Observe that such a random variable always satisfy
the so-called telescope formula E[X ] =

∑∞
n=0 P (X > n) [5]. For a random vari-

able V taking values in N ∪ {+∞}, the mean E[V ] can still always be defined:
practically, it is infinite if P (V = +∞) > 0 and equal to E[V ] =

∑
i iP (V = i)

(which may still be infinite) otherwise.
Given A,B ∈ σ, when P (B) > 0, the conditional probability of A given

B is by definition P (A|B) = P (A ∩ B)/P (B). The mean of random variable
V : Ω → N conditioned by B is defined by E[V |B] =

∑
i iP (V = i|B).

A stochastic sequence on a set A is a family (Xi)i∈N, of random variables
defined on some fixed probability space (Ω, σ, P ) with values on A. It is said
to be Markovian if its conditional distribution function satisfies the so-called
Markov property, that is for all n and s ∈ A,
P (Xn = s|X0 = π0, X1 = π1, . . . , Xn−1 = πn−1) = P (Xn = s|Xn−1 = πn−1),

and homogeneous if furthermore this probability is independent of n.
The matrix (pi

s,t) = (P (Xi+1 = t|Xi = s)) is what is called a stochastic
matrix (even when A is an infinite set) [5]. It has the nice property that columns
sum to 1.

Giving a Markov Chain is of course equivalent to giving the sequence of its
stochastic matrices. Given a Homogeneous Markov Chain corresponds to giving
a unique stochastic matrix (at any rank, the matrix is the same).

4 Foster’s Theorem
We are searching criteria in the spirit of Proposition 1. For that purpose, we now
state the following result, that can be attributed to Foster [8]. It has strong con-
nections with Martingale theory and can be seen as a consequence of very general
results of (super) Martingale theory. However, it can be proved independently
as in [5].
Theorem 1 (Foster’s Theorem). Given a homogeneous Markov chain over a
countable space A whose matrix is P = (pt,s), if there exists a measurable subset
C ⊂ A, and some function V : A→ R, with infi∈A V (i) > −∞ and such that the
mean drift defined by ΔV (i) =

∑
k∈A pi,kV (k) − V (i) satisfies for some ε > 0

ΔV (i) ≤ −ε for all i �∈ C, then almost surely one reaches C.
Furthermore, the mean time to reach C from i is finite and less than V (i)/ε.
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Notice that the technique of using Foster’s theorem in order to prove conver-
gence to some set C has similarities with techniques used in self-stabilization as
in [15, 23].

5 Probabilistic Abstract Reduction Systems

We are now ready to define probabilistic abstract reduction systems (PARS).
We define PARS in a slightly modified way to [4]. The main motivation is that
we want to allow non-deterministic systems.

In the same way that abstract reduction systems are also called transition
systems in other contexts, PARS can be considered as Markov Decision Processes
[20]. The only point is that, compared to usual definitions of Markov decision
processes, we explicitly allow states to be terminal, and that we do not label
transitions by actions.

The idea is that a PARS is given by some set A, and a relation that relate
states to distributions on their successors.

Definition 1 (PARS). Given some denumerable set S, we note Dist(S) for
the set of probability distributions on S: μ ∈ Dist(S) is a function S → [0, 1]
that satisfies

∑
i∈S μ(i) = 1.

A probabilistic abstract reduction system (PARS) is a pair A = (A,→) con-
sisting of a countable set A and a relation →⊂ A×Dist(A).

A PARS is said deterministic if, for all a, there is at most one μ with a→ μ.
A state a ∈ A with no μ such that a→ μ is said terminal.

We now need to explain how such systems evolve: a history (of length n+1)
is a finite sequence a0a1 · · · an of elements of the state space A. It is non-terminal
if an is. A policy φ, that can also be called a strategy, is a function that maps
non-terminal histories to distributions in such a way that φ(a0a1 · · ·an) = μ is
always one (of the possibly many) distribution μ with an → μ. A history is said
realizable, if for all i < n, if μi denotes φ(a0a1 · · · ai), one has μi(ai+1) > 0.

A derivation of A is then a stochastic sequence where the non-deterministic
choices are given by some policy φ, and the probabilistic choices are governed
by the corresponding distributions.

Formally:

Definition 2 (Derivations). A derivation π of A over policy φ is a stochastic
sequence π = (πi)i∈N on A ∪ {⊥} such that for all n,

P (πn+1 = ⊥|πn = ⊥) = 1,

P (πn+1 = ⊥|πn = s) = 1 if s ∈ A is terminal,

P (πn+1 = ⊥|πn = s) = 0 if s ∈ A is non-terminal,

and for all t ∈ A.

P (πn+1 = t|πn = an, πn−1 = an−1, . . . , π0 = a0) = μ(t)

whenever a0a1 · · · an is a realizable non-terminal history and μ = φ(a0a1 · · · an).
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Several observations are in order.

Remark 1. Deterministic probabilistic abstract reduction systems correspond to
probabilistic abstract reduction systems considered in [4].

Remark 2. The derivations are homogeneous and Markovian when the policy φ
is Markovian, i.e. when the value of φ(a0a1 . . . an) depends only on the value of
an. In particular, this holds for deterministic systems.

6 Termination of a Probabilistic Abstract
Reduction System

If a derivation is such that πn = ⊥ for some n, then πn′ = ⊥ almost surely
for all n′ ≥ n. Such a derivation is said to be terminating. In other words, a
non-terminating derivation is such that πn ∈ A (πn �= ⊥) for all n.

Definition 3 (Almost Sure Termination). A PARS A = (A,→) will be
said almost surely (a.s) terminating iff for any policy φ, the probability that a
derivation π = (πi)i∈N under policy φ terminates is 1: i.e. for all φ, P (∃n|πn =
⊥) = 1.

This can be restated as follows: given some policy φ, and some state a,
consider the random variable τ [a, φ] associated to a derivation π with π0 = a,
taking values in N ∪ {+∞}, defined as +∞ if πn �= ⊥ for all n, and defined as
τ [a, φ] = min{n|πn = ⊥} otherwise. Of course, τ [a, φ] corresponds to the number
of derivations from a under strategy φ before termination. τ [a, φ] is easily proved
to be a stopping time for all φ and a.

Previous definitions can then be stated as follows:

Proposition 2. A PARS A is almost surely terminating iff for all strategies φ
and all states a, P (τ [a, φ] = +∞) = 0.

As discussed in the introduction, this notion of termination is too weak. Even
if P (τ [a, φ] = ∞) = 0, it might happen that the mean time before termination

T [a, φ] = E[τ(a, φ)]

is not finite, and one may expect never to reach a terminal state.
That is why, we suggest to introduce the notion of positive almost sure termi-

nation. Note that the choice of the name “positive” is inspired by the distinction
between positive recurrence and null recurrence in Markov chains theory [5].

Definition 4 (Positive Almost Sure Termination). A PARS A = (A,→)
will be said positively almost surely (+a.s.) terminating if for all policies φ, for
all states a ∈ A, T [a, φ] is finite.

By the discussion in Section 3 on random variables taking values in N∪{+∞},
we know that if P (τ(a, φ) =∞) > 0 then necessarily E[τ(a, φ)] is infinite. That
means:



Proving Positive Almost-Sure Termination 329

Proposition 3. A positively almost surely terminating PARS is almost surely
terminating.

Remark 3. The previous notions subsume classical ones. As one may expect,
non-probabilistic systems are special cases of probabilistic systems: an abstract
reduction system is a probabilistic abstract reduction system where all the distri-
butions are Dirac distributions. I.e. all the distributions μ have value 1 on a single
point, and value 0 everywhere else. Strategies for abstract reduction systems do
indeed correspond to strategies for corresponding probabilistic abstract reduc-
tion systems. Terminating derivations for abstract reduction systems do indeed
correspond to terminating derivations for corresponding probabilistic abstract
reduction systems. An abstract reduction system is terminating iff the corre-
sponding probabilistic abstract reduction system is ((positively) almost surely)
terminating. Note that positive almost sure termination corresponds to almost
sure termination and to termination for those systems.

7 Proving Positive Almost Sure Termination

We are now going to discuss techniques for proving positive almost sure termi-
nation of a probabilistic abstract reduction system. We propose a technique that
subsumes the technique of Proposition 1.

One must understand that it is not at all a coincidence, but more or less
unavoidable: a deep consequence of remark 3 is that any technique for proving
positive almost surely termination of probabilistic abstract reduction systems
must also work for abstract reduction systems, and hence necessarily subsumes
a technique for non-probabilistic abstract reduction systems.

First, we prove soundness of our technique

Theorem 2 (Soundness). A PARS A = (A,→) is +a.s. terminating if there
exist some function V : A → R, with infi∈A V (i) > −∞, and some ε > 0, such
that, for all states a ∈ A, for all μ with a → μ, the drift in a according to μ
defined by

ΔμV (a) =
∑

i

μ(i)V (i)− V (a)

satisfies
ΔμV (a) ≤ −ε.

Proof. We would like to use Theorem 1. However, we can not work directly on the
PARS, since even if we fix a strategy, a PARS is not necessarily an homogeneous
Markov chain (the fixed policy can be non-Markovian).

The solution is to fix a policy φ and to work on an homogeneous Markov
chain Mφ defined on another state space: the state space of Mφ is defined as
the set of all realizable histories of A.

The matrix of Markov chain Mφ is then defined such that

– for all t, ph,ht = μ(t) where μ = φ(h) if h = a0a1 · · · an is a realizable
non-terminal history, where ht stands for history a0a1 · · · ant,

– ph,h = 1 if h is a realizable terminal history,
– and every other entry of the matrix is 0.
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By construction, Mφ is an homogeneous Markov chain. Now clearly, a tra-
jectory of PARS A starting from a reaches a terminal state under policy φ iff
the corresponding trajectory of Mφ of same length starting from a leads to a
terminal history. Furthermore, the probabilities of corresponding derivations are
preserved.

Consider now function W : Sφ → R defined by

W (a0a1 · · ·an) = V (an)

for all realizable histories a0a1 · · · an.
We have

ΔW (h) = ΔμV (h) ≤ −ε
for any non-terminal realizable history h, where μ = φ(h).

We can then apply Theorem 1 on Mφ, with C equal to the set of terminal
realizable histories to conclude that the derivations starting from a in Mφ reach
terminal realizable histories in a time whose mean is less thanW (a)/ε = V (a)/ε.

Hence, all the derivations starting from a in A under policy φ reach terminal
states in a time whose mean is also less than V (a)/ε. This holds for all a and φ.

We now prove that the technique is complete for finitely branching systems.

Definition 5. A probabilistic abstract reduction system A = (A,→) is finitely
branching if for all a, there is at most a finite number of distributions μ with
a→ μ.

Theorem 3 (Completeness for finitely branching systems). If a finitely
branching probabilistic abstract reduction system A = (A,→) is +a.s. terminat-
ing then there exist some function V : A → R, with infi∈A V (i) > −∞, and
some ε > 0, such that, for all states a ∈ A, for all μ with a → μ, the drift in a
according to μ defined by

ΔμV (a) =
∑

i

μ(i)V (i)− V (a)

satisfies
ΔμV (a) ≤ −ε.

Proof. By hypothesis, for all states a, and policy φ, we have T [a, φ] < +∞.
When h is a realizable history, and φ is a policy, we write T [h, φ] for the mean
time before reaching ⊥ after history h.

Note that for any policy φ, when h is a realizable non-terminal history, we
have

T [h, φ] = 1 +
∑
x∈A

φ(h)(x)T [hx, φ] (1)

If policy φ is Markovian, we have T [hx, φ] = T [x, φ], and hence

T [h, φ] = 1 +
∑
x∈A

φ(h)(x)T [x, φ]. (2)
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The idea is to consider the “worst” strategy Φ. This strategy can be built as
follows: in any realizable non-terminal history h = a0 . . . an, Φ maps h to the
distribution μ with an → μ that maximizes supφ

∑
x∈A μ(x)T [hx, φ].

Since to any strategy φ on can associate a strategy φ′ with

T [hx, φ] = T [x, φ′]

(take φ′(h′) = φ(hh′) for any realizable non-terminal history h′),

sup
φ

∑
x∈A

μ(x)T [hx, φ] = sup
φ

∑
x∈A

μ(x)T [x, φ],

and hence Φ is Markovian.
We claim that this is indeed the worst strategy, i.e.

sup
φ
T [h, φ] ≤ T [h, Φ] (3)

for all realizable non-terminal histories h.
This follows from the following arguments: for any integer i, let Φi be the

set of strategies that coincide with Φ on all histories of length less than i. Using
repeatedly Equation 1, one gets for all integers i,

sup
φ
T [h, φ] ≤ sup

φ∈Φi

T [h, φ]

for all realizable non-terminal histories h of length less than i.
Now, since T [h, Φ] is the limit of supφ∈Φi

T [h, φ] when i goes to infinity,
Equation 3 holds.

Now, in any non-terminal a, with a→ μ,∑
x∈A μ(x)T [x, Φ] ≤ supφ

∑
x∈A μ(x)T [x, φ]

≤ supφ

∑
x∈A Φ(a)(x)T [x, φ]

≤
∑

x∈A Φ(a)(x)T [x, Φ].
(4)

where first inequality comes from the fact that Φ is a particular strategy, the
second from the definition of Φ(a)(x), and the third from the fact that the sup
of a sum is always less that the sum of the sups.

We are done: indeed, if we take V (a) = T [a, Φ] for all states a, and ε = 1, we
know that V is non-negative, and for any μ with a→ μ, we have

ΔμV (a) =
∑

x∈A μ(x)V (x) − V (a)
=

∑
x∈A μ(x)T [x, Φ]− T [a, Φ]

= −1 + (
∑

x∈A μ(x)T [x, Φ] −
∑

x∈A Φ(a)(x)T [x, Φ])
≤ −1

where third equality comes from Equation 2, and last inequality from Equation 4.

Remark 4. Note that the restriction to finitely branching systems in the previous
theorem is mandatory: this can be seen as a consequence of Remark 3. Indeed,
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consider the counter-example after Proposition 1, considered as a probabilistic
abstract reduction system. If there were a function V and some ε > 0 as in the
conclusion of previous theorem, adding a constant if necessary, and multiplying
by 1/ε if necessary, we can assume V non-negative, and ε = 1. Now, in any
non-terminal state a with a→ μ, since we should have ΔμV (a) ≤ −1, and since
μ is a Dirac that is 0 except on some point x where it has value 1, we must have
for that x, V (x) ≤ V (a) − 1. Now, if k = V (1, 1), consider the strategy going
from (1, 1) to (0, k), (0, k − 1), . . . , (0, 0). V must decrease of at least 1 at each
transition. That leads to a contradiction, since starting from k, one can not do
it k + 1 times keeping V non-negative.

8 Probabilistic Rewrite Systems

We are now introducing the notion of probabilistic rewrite system. Our moti-
vation is to get something that covers classical (i.e. non-probabilistic) rewrite
systems, and also Markov chains over finite spaces. Doing so, we can claim that
all examples that have been modeled in literature using finite Markov chains (for
e.g. in model-checking contexts [14]) can be modeled in this framework.

Definition 6 (Probabilistic Rewrite system). Given a signature Σ and a
set of variables X, the set of terms over Σ and X is denoted by T (Σ,X).

A probabilistic rewrite rule is an element of T (Σ,X) × Dist(T (Σ,X)). A
probabilistic rewrite system is a finite set R of probabilistic rewrite rules.

To a probabilistic rewrite system is associated a probabilistic abstract reduc-
tion system (T (Σ,X),→R) over the set of terms T (Σ,X) where →R is defined
as follows: When t ∈ T (Σ,X) is a term, let Pos(t) be the set of its positions.
For ρ ∈ Pos(t), let t|ρ be the subterm of t at position ρ, and let t[s]ρ denote the
replacement of the subterm at position ρ in t by s. The set of all substitutions
is denoted by Sub.

Definition 7 (Reduction relation). To a probabilistic rewrite system R is
associated the following PARS (T (Σ,X),→) over terms:

t→R μ

iff there is a rule (g,M) ∈ R, some position p ∈ Pos(t), some substitution
σ ∈ Sub, such that t|p = σ(g), and, for all t′,

μ(t′) =
∑

t′=t[σ(d)]p

M(d).

For example, a probabilistic rewrite rule can be f(x, y) �→ g(a) : 1/2|y : 1/2,
where g(a) : 1/2|y : 1/2 denotes the distribution with value 1/2 on g(a) and
value 1/2 on y. Then f(b, c) rewrites to g(a) with probability 1/2, and to c with
probability 1/2. Now, f(b, g(a)) rewrites to g(a) with probability 1.
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9 Termination of a Probabilistic Rewrite System

We now provide an equivalent of the result that says that a rewrite system is
terminating iff there is a reduction order monotone on each rewrite rule [1, 13].

Theorem 4. A probabilistic rewrite system R is positively almost surely ter-
minating if and only if there exists some function V : T (Σ,X) → R, with
infi∈A V (i) > −∞, and some ε > 0, such that

1. “the drift of each rule is less than −ε”: for each probabilistic rewrite rule
g →M ∈ R, the drift

ΔMV (g) =
∑

d

M(d)(V (d)− V (g))

satisfies
ΔMV (g) ≤ −ε.

2. “drift being less than −ε is preserved by substitutions”:
for each term s ∈ T (Σ,X), for all μ with s → μ, for all substitutions σ ∈
Sub, if ΔμV (s) ≤ −ε then the drift

Δσ(μ)V (σ(s)) =
∑
s′
μ(s′)(V (σ(s′))− V (σ(s)))

satisfies
Δσ(μ)V (σ(s)) ≤ −ε

3. “drift being less than −ε is preserved by contexts”: for each term s1, ..., sn, s ∈
T (Σ,X), for all μ with s→ μ, for all function symbols f , if ΔμV (s) ≤ −ε,
then the drift

Δf(s1,...,μ,...,sn)V (f(s1, . . . , s, . . . , sn)) =
∑

s′ μ(s′)(V (f(s1, . . . , s′, . . . , sn))
−V (f(s1, . . . , s, . . . , sn)))

satisfies
Δf(s1,...,μ,...,sn)V (f(s1, . . . , s, . . . , sn)) ≤ −ε.

Proof. If R is positively almost surely terminating, then by Theorem 3, there
exists some function V : T (Σ,X)→ R, with infi∈A V (i) > −∞, and some ε > 0,
such that, for all states a ∈ T (Σ,X), for all μ with a→ μ, ΔμV (a) ≤ −ε.

In particular, for a = g, we have a→ μ, where μ(t′) = M(t′), and hence

ΔμV (a) =
∑

t′ μ(t
′)V (t′)− V (a)

=
∑

dM(d)(V (σ(d)) − V (a))
= ΔMV (g)
≤ −ε.
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Now, when s → μ′, for a = σ(s), we have a → μ, where μ(σ(s′)) = μ′(s′),
and hence

ΔμV (a) =
∑

t′ μ(t
′)V (t′)− V (a)

=
∑

t′=σ(s′) μ
′(s′)V (σ(s′))− V (a)

= Δσ(μ′)V (σ(s))
≤ −ε.

In a same way, when s → μ′, for a = f(s1, . . . , s, . . . , sn), we have a → μ
where μ(f(s1, . . . , s′, . . . , sn)) = μ′(s′), and hence

ΔμV (a) =
∑

t′ μ(t
′)V (t′)− V (a)

=
∑

s′ μ′(s′)V (f(s1, . . . , s′, . . . , sn))− V (f(s1, . . . , s, . . . , sn)
= Δf(s1,...,μ′,...,sn)V (f(s1, . . . , s, . . . , sn))
≤ −ε.

This proves that conditions 1, 2 and 3 are necessary.
Conversely, assume that conditions 1, 2 and 3, hold. We have t→ μ iff there

is a rule (g,M) ∈ R, some position p ∈ Pos(t), some substitution σ ∈ Sub, such
that t|p = σ(g), and, for all t′, μ(t′) =

∑
t′=t[σ(d)]p

M(d).
Since a derivation t→ μ is necessarily via some rule (g,M), from Theorem 2,

we only need to prove that for all rules (g,M) and term t, if t → μ via (g,M)
then ΔμV (t) ≤ −ε.

This is proved by induction on the length of p. If p is of length 0, then
t = σ(g). By condition 1, we know that ΔMV (g) ≤ −ε. By condition 2, since
g →M , and ΔMV (g) ≤ −ε, we have ΔμV (t) = Δσ(M)V (σ(g)) ≤ −ε, where the
equality is established as in the third paragraph above.

If p = p1p2 . . . pk is of length k > 0, then t can be written as f(s1, . . . ,s, . . . ,sn)
and s → μ′ via (g,M). By induction hypothesis, Δμ′V (s) ≤ −ε. By condition
3, ΔμV (t) = Δf(s1,...,μ′,...,sn)V (f(s1, . . . , s, . . . , sn)) ≤ −ε, where the equality is
established as in the fourth paragraph above.

Sufficient conditions for 1, 2 and 3 can be established. Indeed:

Definition 8 (Context preservation of a function). A function V : T (Σ,X)
→ R is context preserving if for all t, t′, s1, . . . , sn and function symbol f ,

V (f(s1, . . . , t, . . . , sn))− V (f(s1, . . . , t′, . . . , sn)) = V (t)− V (t′).

Definition 9 (Substitution decrease on a rule). A function V : T (Σ,X)→
R is substitution decreasing on a probabilistic rewrite rule (g,M), if for all sub-
stitution σ ∈ Sub, if we denote

Δσ(M)V (σ(g)) =
∑

d

M(d)(V (σ(d)) − V (σ(g)))

and ΔMV (g) =
∑

dM(d)(V (d)− V (g)) as before, we have

Δσ(M)V (σ(g)) ≤ ΔMV (g).
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Theorem 5. A probabilistic rewrite system R is positively almost surely termi-
nating if there exists some function V : T (Σ,X) → R, with inf i∈A V (i) > −∞,
and some ε > 0, such that the drift of each rule is less or equal to −ε, V is
context preserving, and V is substitution decreasing on every rule.

Proof. Condition 1 holds by hypothesis.
Since V is context preserving, for all f, s, s1, . . . , sn and μ, we have

Δf(s1,...,μ,...,sn)V (f(s1, . . . , s, . . . , sn)) = ΔμV (s)

and so, condition 3 holds.
Now, given conditions 1 and 3, the proof of indirect sense of Theorem 4, only

require that Δσ(M)V (σ(g)) =
∑

dM(d)(V (σ(d))−V (σ(g))) ≤ −ε for each prob-
abilistic rule (g,M) and substitution σ. Now, this holds, since V is substitution
decreasing and so Δσ(M)V (σ(g)) ≤ ΔMV (g) ≤ −ε, by condition 1.

We are now discussing some examples:

Example 1. The probabilistic rewrite system restricted to the unique rule

a→ a : 1/2|b : 1/2

is +a.s. terminating. Indeed, consider V (a) = 10, V (b) = 2, and observe that
1/2× 10 + 1/2× 2− 10 < 0.

Example 2. The probabilistic rewrite system

f(x) → x : p1|f(f(x)) : 1− p1
f(x) → x : p2|f(f(x)) : 1− p2

is +a.s. terminating if p1 > 1/2 and p2 > 1/2. Indeed, consider V that returns
the size of a term. V is easily shown context preserving. V is also easily shown
substitution decreasing on both rules. Now the drift of each rule is given by
−1× pi + 1× (1− pi) = 1− 2pi ≤ min(1− 2p1, 1− 2p2) < 0.

Example 3. The probabilistic rewrite system

f(x) → f(f(x)) : p11 |g(f(x)) : p12 |x : p13

f(h(f(x), x)) → h(g(f(f(x))), f(x)) : p21 |g(f(x)) : p22 |f(g(f(f(x)))) : p23

It is +a.s. terminating if p11 + p13 < p13 and p21 < p22 . Indeed, consider same
function V , which is clearly context preserving. An easy computation shows
that the drift of the first rule (g1,M1) is ΔM1V (g1) = p11 + p12 − p13 . For
the second rule (g2,M2), we have ΔM2V (g2) = 2p21 − 2p22 . Hence, both are
negative. Now V is substitution decreasing on both rules: given some substitution
σ ∈ Sub, if we denote n = V (σ(x)), some easy computations show that we
have Δσ(M1)V (σ(g1)) = p11 + p12 − p13 = ΔM1V (g1) and Δσ(M2)V (σ(g2)) =
(p21 − 1)n + 2p21 − p22 + p23 ≤ 2p21 − 2p22 = ΔM2V (g2) since n ≥ 1 and
(p21 − 1) = −p22 − p23 < 0.
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10 Conclusion and Perspective

In this paper we presented non-deterministic probabilistic abstract reduction
systems, probabilistic rewrite systems, and we gave necessary and sufficient con-
ditions for proving positive and almost sure termination of these systems. We
also provided tractable sufficient conditions and application examples.

We believe that our notion of probabilistic rewrite system is very powerful
since it covers all systems that can be encoded by classical rewrite systems and
finite Markov chains. In particular, we already explored it to model a telecom-
munication protocol.

Next step include understanding whether there could be valid and interesting
results generalizing techniques based on polynomial orders, or even on semantical
methods.
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Abstract. This paper is a contribution to the long standing open prob-
lem of uniform termination of Semi-Thue Systems that consist of one rule
s → t. McNaughton previously showed that rules incapable of (1) delet-
ing t completely from both sides, (2) deleting t completely from the left,
and (3) deleting t completely from the right, have a decidable uniform
termination problem. We use a novel approach to show that Premise (2)
or, symmetrically, Premise (3), is inessential. Our approach is based on
derivations in which every pair of successive steps has an overlap. We
call such derivations single-threaded.
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1 Introduction

The decidability of the uniform termination problem of one-rule Semi-Thue Sys-
tems (1STS) has been open for 14 years. A systematic exploration of the problem
was started by Kurth [5].

This problem is both a test case for the strength of termination proof methods
and a trigger for their development. Remarkable progress has been made by
investigating the consumption and introduction patterns in derivations [4, 7, 8].

McNaughton’s notion of a well-behaved derivation is based on the idea that
some rules act as if there was an invisible barrier (“inhibitor”) somewhere at
their right hand side. This inhibitor cannot be removed, so derivations cannot
exhibit global communication through the string. McNaughton shows that it is
decidable whether a rule is well-behaved, i.e. admits only well-behaved deriva-
tions. Moreover he shows that uniform termination is decidable for well-behaved
rules.
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In a well-behaved derivation the contractum introduced by any step during
a derivation cannot be consumed completely. The contractum can be consumed
partially from the left or from the right. We want to study non-well-behaved
derivations and hence call a derivation:

– both-sides-digestible (BD) if the remainder of some step after partial con-
sumption from the left and partial consumption from the right is consumed
later completely;

– left-digestible (LD) if the remainder of some step after partial consumption
from the left (without any partial consumption from the right) is consumed
later completely;

– right-digestible (RD) if the remainder of some step after partial consumption
from the right (without any partial consumption from the left) is consumed
later completely.

We study the following question:

– A 1STS is obviously well-behaved iff it satisfies none of these properties. Can
we decide uniform termination also if some of them are true?

An interesting special case is given when the left hand side of the rule has no
self-overlap. For this self-overlap free (SOF) case, Kobayashi et al. [4] introduce
derivation patterns that are less restrictive than well-behavedness and they call
derivations which satisfy them tame, gentle and simple. They show that a gentle
1STS can be transformed to another Semi-Thue System which may have more
rules. The two systems have equivalent uniform termination problems. Typically,
the transformed system is more amenable to the classic termination criteria.
Kobayashi et al. call the properties ¬LD, ¬RD, and their conjuntion “left very
gentle”, “right very gentle”, and “very gentle”, respectively. They show that very
gentle 1STSs are gentle and that the image of a simple 1STS is a context-free
grammar whence its uniform termination problem is decidable. Other examples
can often be solved by a transformation and a subsequent ad hoc argument.
Beyond the SOF, simple systems no decidability result is available yet.

In a straightforward way the notions of tame, gentle, and simple 1STSs are
generalized to non-SOF 1STSs [2]. These properties form a hierarchy:

very gentle ⇒ gentle ⇒ tame
⇑ ⇑

well-behaved⇒ simple ⇒ ¬BD

It is easily verified that a 1STS is simple iff it is tame and ¬BD. We establish
the following result:

– Uniform termination is decidable for 1STSs that satisfy ¬BD∧(¬LD∨¬RD).

We reduce the uniform termination problem of 1STSs that satisfy ¬BD ∧
¬RD to the uniform halting problem of pushdown automata which is decid-
able [12]. For this purpose we show that each non-terminating such 1STS has an
infinite derivation where each step overlaps with the previous one. We call such
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derivations single-threaded. In this case the left and right contexts of the redex
can be represented as the contents of two stacks. By ¬RD, the left stack is size
bounded.

This class of 1STSs includes the following examples which are not covered
by Kobayashi et al.: examples that are simple and non-SOF; examples that are
non-simple (thus non-tame), non-SOF. On the other hand, Kobayashi et al.
also cover the SOF, simple, left-digestible, right-digestible 1STSs, a class which
however may be void.

Our examples are not covered by any existing automated termination cri-
teria, except inverse match-boundedness [3]. Inverse match-boundedness covers
all well-behaved 1STSs, but it is unknown what other classes of 1STSs it also
covers.

This work is a thoroughly revised and extended version of the first author’s
master’s thesis [9] and a Technical Report [10].

The paper is organized as follows: In Section 2, we introduce concepts impor-
tant in our framework, such as chain graph and mother-in-law. In Section 3, we
introduce the notion of single-threaded derivation and we derive the decidability
result of uniform termination. In Section 4 we give examples of the systems to
which our results apply.

2 Preliminaries

We assume familiarity of the reader with semi-Thue systems (string rewrit-
ing) [1].

A string u is called a factor of v, in symbols u $ v, if v = xuy for some
x, y ∈ Σ∗; a prefix if v = uy for some y ∈ Σ∗; a suffix if v = xu for some x ∈ Σ∗.
The prefix or suffix u of v is called proper if u �= v. The set of all proper suffixes
of the word u is denoted by Suf(u).

The set of overlaps of a string u with a string v is defined by

OVL(u, v) = {w ∈ Σ+ | u = u′w, v = wv′, u′v′ �= ε, u′, v′ ∈ Σ∗}

The length of a string u is denoted by |u|.
A Semi-Thue System R is a finite set of rules (s, t) ∈ Σ∗ ×Σ∗, also written

s → t. The one-step rewrite relation → ⊆ Σ∗ × Σ∗ is defined by usv → utv
if u, v ∈ Σ∗ and (s, t) ∈ R. The factors s and t are also called the redex and
the contractum, respectively. Occasionally we underline the redex and overline
the contractum, as in the following two rewrite steps for the example system
ab → ba: aab → aba → baa. A sequence of rewrite steps is called a derivation.
We write D : w0 → w1 → . . . to denote a derivation named D with rewrite
steps w0 → w1 → . . .. A system R is called terminating if there is no infinite
derivation w0 → w1 → . . . .

We focus on one-rule Semi-Thue Systems (1STS) {s→ t}, also written s→ t.
As s → t is non-terminating if s $ t, and terminating if |s| ≥ |t| and s �= t, we
assume throughout the paper that s �$ t and |s| < |t|. A 1STS s → t is called
self-overlap free (SOF ), if OVL(s, s) = ∅. If OVL(t, s) = ∅ or OVL(s, t) = ∅,
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then s→ t terminates [5, Criterion D]. If OVL(t, s) ∩OVL(s, t) �= ∅ (“bordered
rule”) then the uniform termination problem of s → t is reducible to that of a
non-bordered rule [2, Theorem 6.21]. We henceforth assume that OVL(t, s) and
OVL(s, t) are disjoint and non-empty.

Definition 1 ([4]). If α ∈ OVL(t, s) then let sα and tα be defined by s = αsα
and t = tαα. If β ∈ OVL(s, t) then let sβ and tβ be defined by s = sββ and
t = βtβ.

By OVL(t, s) ∩ OVL(s, t) = ∅, there can be no confusion between sα and sβ or
between tα and tβ .

2.1 Positions

By [m,n] we mean the set of integer numbers between, and including, m and n.
We flip the square bracket next to m or n to indicate that m or n, respectively,
shall be excluded. Positions in a string w are integer numbers in [0, |w|]. We
call 0 and |w| the (left and right, respectively) boundary positions of w, and the
other positions the inner positions of w. The inner positions represent the spaces
between letters.

Let a (finite or infinite) derivation D : w0 → w1 → . . . be presupposed. We
denote positions in D by pairs (i, p) where p is a position in wi. The position
(i − 1, p) corresponds to the position (i, q), in symbols (i − 1, p) ↪→res (i, q), if
there are x, y ∈ Σ∗ such that wi−1 = xsy, wi = xty, and either 0 ≤ q = p ≤ |x|
or |xs| ≤ p ≤ |xsy| and q = p− |s|+ |t|.

If to a given (i − 1, p) a q exists such that (i − 1, p) ↪→res (i, q), then q is
unique. If no such q exists, i.e., if |x| < p < |xs|, then p is said to be consumed
at step i. Likewise if to a given (i, q) a p exists such that (i − 1, p) ↪→res (i, q),
then p is unique. If no such p exists, i.e., |x| < q < |xt|, then q is said to be
introduced at step i.

The redex position, R(i), of the i-th rewrite step in D is defined by R(i) = |x|
if wi−1 = xsy and wi = xty for some x, y ∈ Σ∗.

The set of positions consumed in step i is ]R(i), R(i)+|s|[. The set of positions
introduced in step i is ]R(i), R(i) + |t|[.

The equivalence closure of ↪→res, denoted by ∼res, allows us to identify a
position in wi with its corresponding position in wj . If (i, p) ∼res (j, q) then the
position p in wi and the position q in wj are called residuals (of each other).
We will conveniently speak about a position p in string wi when we mean the
residual of p.

Example 1. As a running example we use the system aabbab→ abbaabba. Con-
sider the following derivation D:

w0 = aabbaabbabbb→ aabbabb ∗ aabbabb→ abbaabbab ∗ aabbabb
→ abbaabbab ∗ abbaabbab→ abbabbaabba ∗ abbaabbab
→ abbabbaabba ∗ abbabbaabba→ abbabbaabbabbaabbabaabba = w6
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The set of positions consumed in the first step of D is [5, 9]. The set of
positions introduced in the first step of D is [5, 11]. The position marked by ∗
in any word in D is a residual of the position marked by ∗ in any other word.
According to our convention, we may say that the position ∗ introduced in the
first step of D is consumed by the last step of D.

Definition 2 ([8]). A step i is called digestible, in symbols D(i), if all contrac-
tum positions in wi are later consumed. The derivation is called well-behaved
if no step in it is digestible. The 1STS s → t is called well-behaved if all its
derivations are well-behaved.

Note that according to our definitions, the inner positions of the contractum
are exactly the introduced positions.

Example 2. The first step in the derivation D from Example 1 is digestible.

Theorem 1 ([8]). It is decidable whether an arbitrary 1STS is well-behaved.
Uniform termination is decidable for the class of well-behaved 1STS.

Definition 3 ([9, Definition 5.2]). For each j ≥ i let Rem(i, j) (for “remain-
der”) denote the set of all residuals in wj of the set of contractum positions
from step i. Step j ≥ i is said to consume from the left the remainder of step i
if Rem(i, j) �= ∅ and

min Rem(i, j − 1) ∈]R(j), R(j) + |s|[.

Step j > i is said to consume from the right the remainder of step i if Rem(i, j) �=
∅ and

maxRem(i, j − 1) ∈]R(j), R(j) + |s|[.

Intuitively, step j consumes from the left (right) the remainder of step i if it
consumes the leftmost (rightmost) position, but not every position, from the
remainder at step j − 1.

Example 3. The second step in the derivation D from Example 1 consumes from
the left the remainder of step 1, whereas the third step consumes it from the
right.

Definition 4 ([9, Definition 5.5]). We say that step i is

– both-sides-digestible, in symbols BD(i), if D(i) holds and some steps j > i
consume from the left the remainder of step i, and some steps j > i consume
from the right the remainder of step i;

– left-digestible, in symbols LD(i), if D(i) holds and all steps j > i that par-
tially consume the remainder of step i do so from the left (i.e., no steps j > i
consume from the right the remainder of step i);

– right-digestible, in symbols RD(i), if D(i) holds and all steps j > i that
partially consume the remainder of step i do so from the right (i.e., no steps
j > i consume from the left the remainder of step i).
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The conditions are mutually exclusive for given i. A derivation is said to sat-
isfy BD, LD, orRD, if some of its steps i satisfy BD(i), LD(i), orRD(i), respec-
tively. A 1STS s→ t satisfies BD, LD, or RD, if some of its derivations satisfy
BD, LD, or RD, respectively. We define (both-sides, left, right)-indigestibility
for steps, derivations and systems, denoting them by ¬BD,¬LD,¬RD, by negat-
ing the respective conditions. Note that by definition a 1STS is well-behaved if
and only if it satisfies ¬BD ∧ ¬LD ∧ ¬RD.

Example 4. The condition BD(1) holds for the derivation from Example 1.

Theorem 2 ([6]). The Conditions LD and RD are decidable for 1STSs.

Proof. Conditions LD and RD are equivalent to McNaughton’s conditions C2
and C3, respectively [6, Theorem 6.1]. This shows up in cases I and II in his
proof. ��

If ¬LD ∧ ¬RD holds then BD is equivalent to McNaugton’s Condition C1.
However, Condition BD is not equivalent to C1 in the general case.

Example 5. The system from Example 1 satisfies ¬RD and ¬C1. However, it
satisfies BD as the derivation D exhibits.

2.2 Chain Graphs

The notion of chain graph gives one the means to reason in detail about the
relation between steps in a derivation.

Definition 5. Let D : w0 → w1 → . . .. Let wi = xsy for some i, x, y. The factor
s in wi is called live if:

– there is a step j ≥ i such that (i, |x|) ∼res (i − 1, R(j)), i.e., at step j the
redex |x| from wi is reduced;

– (i, p) ∼res (j − 1, p′) for all |x| ≤ p ≤ |xs|; i.e., no position of s is consumed
until s is rewritten.

Informally speaking, a live factor is finally reduced and it is not touched before
then. Note that the live factor in wi need not be reduced in the very next step
wi → wi+1. Since the residuals of overlapping redexes overlap, live factors do
not overlap.

Definition 6 ([5, Definition 4.25]). The chain graph of a (finite or infinite)
derivation D : w0 → w1 → . . . is a directed graph (V,E). The vertices in V are
the positions of live factors. The edges in E = E0 ∪ E1 are defined as follows:

– if (i− 1, p) ↪→res (i, q) and (i− 1, p), (i, q) ∈ V then ((i− 1, p), (i, q)) ∈ E0;
– if (i− 1, R(i)), (i, q) ∈ V , and some of the positions (i, q), . . . , (i, q + |s|) are

introduced by step i, then ((i− 1, R(i)), (i, q)) ∈ E1.

We define selector functions src, tgt, level : E → N for the source, the target,
and the level of an edge k ∈ E by src(k) = p, tgt(k) = q, level(k) = i if
k = ((i− 1, p), (i, q)).
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Fig. 1. The chain graph of the derivation from Example 1.

The chain graph is a forest of finitely many trees, T1, . . . , TK , rooted at the
positions p1 < · · · < pK of the live redexes in w0.

Example 6. Figure 1 shows the chain graph of the system in Example 1. The
lowest edge has the source vertex (4, 14), the target vertex (5, 10), it is in E1,
and its level is 5.

Definition 7. Edges from the set E1 will also be called active. An active edge k
is called a left edge if src(k) > tgt(k); and a right edge if src(k)+|s| < tgt(k)+|t|.
We will call the active edges on the same level rivals.

By s �$ t and |s| < |t|, every active edge is a left or a right edge. There can
be at most one left edge and at most one right edge at each level.

Lemma 1. If k is a left edge at level i then wi−1 = zsβsy and wi = zstβy for
some β ∈ OVL(s, t) and z, y ∈ Σ∗. Moreover src(k) = |zsβ| and tgt(k) = |z|.
If k is a right edge at level i then wi−1 = xssαv and wi = xtαsv for some
α ∈ OVL(t, s) and x, v ∈ Σ∗. Moreover src(k) = |x| and tgt(k) = |xtα|.

Proof. Straightforward from the definitions. ��

Lemma 2. If (i, p) ∼res (j, q) and (i, p′) ∼res (j, q′) and p < p′ then q < q′.

Proof. By induction on |j − i|, with the inductive step done by case analysis on
R(i) ≤ p, p < R(i) < p′, and p′ ≤ R(i). ��

2.3 Family Members

New tools developed in this section will enable us to speak in more detail about
infinite derivations.

Definition 8 ([9, Definition 7.1]). Let k be a right edge at level i. Then sα
and (i−1, |xs|) in Lemma 1 are called the husband and its position, respectively.
Likewise for a left edge, sβ and (i−1, |z|) are called the husband and its position,
respectively.
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Intuitively, a husband is a non-empty factor that is supplemented to a live
redex by the next rewrite step. The husband positions of k are the residuals of
the positions of the live redex created by k.

Example 7. In the chain graph of the derivation from Example 1, the husbands
of the edges at level 1 are aabb at position (0, 0) and b at position (0, 10).

Definition 9. [[9, Definition 7.3]] Let p be a position in the husband h of an
active edge k. Then we call the vertex (i− 1, R(i)) the mother-in-law of p if p is
introduced in step i. A mother-in-law of the active edge k is the mother-in-law of
one of the positions in the husband of k. The step that rewrites the target redex
of k is called the marriage consumption step of k.

Example 8. The vertex (0, 4) in the chain graph of the derivation D from Ex-
ample 1 is the mother-in-law of the position ∗ in w4. The string aabb at position
(4, 10) is the husband of the edge going from (4, 14) to (5, 10), and the vertex
(3, 3) is its mother-in-law.

Note that a mother-in-law need not be the source vertex of an edge. In other
words, the rewrite step wi−1 → wi need not create a live redex.

wi−1
�

s
mother-in-law �

wi
� t �

q′

��
��
��
��
��
��
��

...

wj−1 �
s

�
k

��											
husband

�

��
��

q

��
��

wj
� t ��

s
�

Fig. 2. Husband and mother-in-law.

3 Uniform Termination
of One-Rule Single-Threaded Systems

In this section we define single-threaded derivations, show how single-threaded-
ness can be derived, and use single-threadedness for decidability of uniform ter-
mination in a special case.

3.1 Single-Threadedness and Independence

Definition 10. Apath in the chain graph of a derivation is called single-threaded
if every edge on it is active. A derivation is called single-threaded if its chain
graph is a single-threaded path. A 1STS is called single-threaded if it admits an
infinite single-threaded derivation.
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Theorem 3 ([7, Theorem 7.4],[9, Theorem 3]). Every non-terminating,
well-behaved 1STS is single-threaded.

McNaughton’s xy-sequence corresponds to a single-threaded path.

Definition 11 ([9, Definitions 8.2 and 8.3]). An active edge k is called
independent if all its mothers-in-law are ancestors of k. A mother-in-law that is
not an ancestor of k is called alien to k. A path is called independent if every
active edge on it is independent.

In other words, an edge is dependent iff it has an alien mother-in-law. In con-
trast, an independent path does not need any other paths to proceed with its
reductions.

Example 9. The left path in Figure 1 is independent. However, the right path is
not – the mother-in-law (3, 3) of the boundary position (4, 10) of the husband is
a vertex in the left path and is hence alien to the edge ((4, 14), (5, 10)).

Lemma 3. If there is an infinite derivation whose chain graph contains an infi-
nite independent path whose first i edges are active, then there is also an infinite
derivation whose chain graph contains an infinite independent path whose first
i+ 1 edges are active. Moreover, the two derivations coincide up to, and includ-
ing, step i.

Proof. Let k denote the active edge at level i in the independent path S. Let
j > i denote the next level at which S has an active edge, k′. By symmetry we
may assume that k′ is a right edge. Let h be the husband of k′, i.e., there are
x, y, g ∈ Σ∗ such that wj−1 = xshy → xthy = xgsy = wj . Since k′ ∈ S and all
edges between k and k′ are inactive, the occurrence of s is preserved, i.e., none of
its positions is consumed, during the derivation wi →∗ wj−1. Only the parts left
or right to it in wi may be touched during this derivation. All mothers-in-law of
h are above level i since they are both redexes and ancestor nodes of k. Hence h
is present in wi and not touched during the derivation wi →∗ wj−1 either. Let
x′ →∗ x and y′ →∗ y render the changes that happened during the derivation
wi →∗ wj−1. Then the derivation can be rearranged thus:

wi = x′shy′ ∗−−−−→ wj−1 = xshy⏐⏐� ⏐⏐�
w′

i+1 = x′gsy′ ∗−−−−→ w′
j = wj = xgsy

We will show that the chain graph of the new derivation D′ : w0 → w1 → · · · →
wi → w′

i+1 → · · · → w′
j−1 → w′

j = wj → wj+1 → . . . has an infinite independent
path with the first i + 1 edges active. In steps w′

i+1 → · · · → w′
j−1 → w′

j we
execute reductions left and right from gs in the same order as they were executed
in D.

First note that the inactive edge at level i + 1 having source (i, |x′|) in the
chain graph of D is replaced by the active edge ((i, |x′|), (i+1, |x′g|)) in the chain
graph of D′. Let us denote this active edge by K.
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Let S consist of vertices

v0, . . . , vi−1, (i, |x′|), . . . , (j − 1, |x|), (j, |xg|), vj+1, . . .

and respective edges between them. The path S′ consisting of the vertices:

v0, . . . , vi−1, (i, |x′|), (i+ 1, |x′g|), . . . , (j, |xg|), vj+1, . . .

in the chain graph of D′ has by its construction first i+1 edges active. It suffices
to show that it is an infinite independent path.

Suppose that there is a dependent edge l ∈ S′. There are 3 possible cases:

– level(l) ≤ i. Since D′ up to step i is the same as D and hence the respective
parts of their chain graphs are the same, l is dependent also in the chain
graph of D, a contradiction.

– level(l) ∈]i, j]. Then l = K, since K is the only active edge in those levels.
Hence one of the positions in the husband h of K is introduced before level
i+1 by an alien mother-in-law m. But before level i+1 the derivations and
their chain graphs are the same, hence m is also an alien mother-in-law of
k′, a contradiction.

– level(l) > j. Then l was present in the original chain graph as well since all
reduction steps later than j are the same. Let m = (j′−1, R(j′)) be an alien
mother-in-law of l. We have 3 possible cases:
• j′ > j. Since the steps after j and hence their chain graphs are the same,
m is alien to l in S as well.

• j′ ∈ ]i, j]. Obviously, j′ �= i+1, because m is alien. Let p be the position
in the husband of l introduced by the reduction corresponding to m.
Then p has a residual p′ in w′

j . We can either have p′ < |x| or p′ > |xgs|,
since other positions stay untouched during the derivation w′

i+1 →∗ w′
j .

Therefore p′ is either an inner position of x or of y. To fix our atten-
tion, suppose that it is an inner position of y. By Lemma 2, we have
w′

j′−1 = x′′gsy1sy2 for some x′′, y1, y2 ∈ Σ∗, where x′ →∗ x′′ →∗ x and
y′ →∗ y1sy2 →∗ y. Let |x′′gsy1| < p′′ < |x′′gsy1t| be the residual of p
introduced in step j′. Consider the corresponding reduction step in D:
wj′ = x′′shy1sy2 → x′′shy1ty2 = wj′+1. The position p′′′ = |h| − |g|+ p′′
in wj′+1 is introduced in this reduction. One shows that (j′, p′′′) is a resid-
ual of (j, p′) in D. Since (j′, |x′′|) ∈ S, the mother-in-law (j′, |x′′shy1|) is
alien. Hence S is not independent, a contradiction.

• j′ ≤ i. By definition of mother-in-law, the step w′
j′−1 → w′

j′ in D′

introduces a residual of (level(�)−1, p). The same step in D introduces a
residual of (level(�)−1, p) in D, because the derivation wi →∗ wj−1 → wj

touches exactly the same positions as the derivation wi → w′
i+1 →∗ wj .

So m is an alien mother-in-law of � also in the chain graph of D, a
contradiction.

So S′ contains no dependent edge, which finishes the proof. ��
Example 10. Consider the first three steps of D from Example 1. Let B denote
the right branch in its chain graph. The edges on B come from sets E1, E0, E1.
Pushing up the second active edge from B, results in the following derivation:
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Fig. 3. The chain graph from Example 10.

aabbaabbabbb→ aabbabb ∗ aabbabb→
→aabbabb ∗ abbaabbab→ abbaabbab ∗ abbaabbab

Its chain graph is shown in Figure 3. Note that the right path starts with
two active edges.

Lemma 4 ([9, Lemma 15]). If the chain graph of an infinite derivation con-
tains an infinite independent path then there is a derivation that contains an
infinite, single-threaded path starting from level 0.

Proof. First we drop enough initial steps from the derivation, so that the inde-
pendent path starts from level 0. Then we construct the i-the step of the target
derivation and the i-th level of its chain graph by applying Lemma 3 i times. ��
Lemma 5. A derivation whose chain graph contains an infinite single-threaded
path starting from level 0 is a single-threaded derivation.

Proof. Let an infinite derivation be given that contains an infinite, single-threaded
path, S. As every edge on the path is active, there cannot be, besides the path,
another redex that is rewritten during the derivation. By definition of chain graph
there is, therefore, no inactive edge in the chain graph. By the same token, the
active edges have no rivals. So there are no edges outside S. ��

The concepts and lemmas introduced so far can be used to prove:

Theorem 4. Every both-sides-indigestible, non-terminating 1STS is single-
threaded.

3.2 Simulation by a Pushdown Automaton

We show in this section that the single-threaded derivations of a right-indigestible
1STS can be rendered by a pushdown automaton, whence the uniform termina-
tion problem for single-threaded, right-indigestible 1STSs is decidable.

Lemma 6 ([9, Proposition 34]). Let w0 → w1 → . . . be an infinite single-
threaded derivation and let D(i) hold for some i > 0. If ki is a left edge then
LD(i) holds. If ki is a right edge then RD(i) holds.

Proof. To fix our attention, suppose that ki is a left edge. Hence reduction of
the target redex consumes positions introduced in the i-th step from the left. By
induction we can show that no step consumes positions from the right. ��
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During the remainder of this section we assume that the given 1STS s → t
is single-threaded and satisfies ¬RD.

Lemma 7 ([9, Lemma 35]). Let k be a right edge at level i in the chain graph
of a single-threaded derivation. Then no position p ≤ src(k) in wi−1 is consumed
later.

Proof. By contradiction. Suppose that there is a right edge k at level i and the
position p ≤ src(k) is consumed later. Since the derivation is single-threaded, we
can show by induction that all positions between src(k) and tgt(k) in wi are also
consumed; hence D(i) holds. By Lemma 6, we get RD(i), a contradiction. ��

Definition 12 ([9, Definition 10.5]). To a 1STS s → t, we assign a gener-
alized pushdown automaton [11] A whose transitions will correspond to rewrite
steps in a given derivation. The input alphabet and the stack alphabet are Σ each.
The state of the automaton is encoded as the contents of a stack of size strictly
bounded by |t|. So a configuration is a pair (x, y) ∈ Σ<|t| ×Σ∗. The automaton
has the transition relation � ⊆ (Σ<|t| ×Σ∗)× (Σ<|t| ×Σ∗) defined by:{

(x, y) � (x′, tβy) if x = x′sβ, β ∈ OVL(s, t), x ∈ Σ<|t|,x′, y ∈ Σ∗

(x, y) � (tα, y′) if y = sαy
′, α ∈ OVL(t, s), x ∈ Σ<|t|, y′, y ∈ Σ∗

The transition relation � is well-defined by |x′| < |x| < |t| and |tα| < |t|. A
finite or infinite sequence of transitions is called a computation.

Lemma 8 ([9, Lemma 37]). If A admits an infinite computation then there
is an infinite derivation.

Proof. One shows that for all x, x′ ∈ Σ<|t| and y, y′ ∈ Σ∗, if (x, y) � (x′, y′)
then xsy → x′sy′ or xsy → xx′sy′. ��

Definition 13. We say that A is put on the derivation w0 → w1 → . . . , if its
configuration is set to (x, y), and |x| < |t|, where x and y are the left and right
contexts of the first rewrite step, w0 → w1.

Lemma 9. The automaton A, put on an infinite, single-threaded derivation,
admits an infinite computation.

Proof. We prove that A admits one transition and thereafter it is put on an
infinite, single-threaded derivation again. By applying this argument i times, we
can construct the i-th transition of the automaton for any i > 0.

To prove the claim, let an infinite, single-threaded derivation D : w0 →
w1 → . . . be given, and let w0 = xsy and R(1) = |x| for some x, y ∈ Σ∗. If
R(1) > R(2) (k1 is a left edge), then x = x′sβ and w1 = x′stβy for some x′ ∈ Σ∗

and β ∈ OVL(s, t). The automaton can make a transition (x, y) � (x′, tβy), and
is so put on the remaining derivation w1 → w2 → . . . . If R(1) < R(2) (k1 is a
right edge), then y = sαy

′ and w1 = xtαsy
′ for some y′ ∈ Σ∗ and α ∈ OVL(t, s).

By Lemma 7, the prefix x remains unaffected by the derivation w1 → w2 → . . . .
Now for all i > 0 let w′

i be defined by wi = xw′
i. Then w′

1 → w′
2 → . . . is again

an infinite, single-threaded derivation. ��
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Lemma 10. Let S be a path in the chain graph of an infinite, single-threaded
derivation. If S contains infinitely many active edges then it contains infinitely
many left edges and infinitely many right edges.

Proof. Suppose that there are only finitely many left edges on S. Then there is
some N such that kn is a right edge, or an inactive edge, for all n > N . Let
an = |wn| − tgt(kn). Obviously an ≥ 0 for all n > N . On the other hand, the
subsequence of all an, n > N for which kn is a right edge strictly decreases. This
gives a contradiction. ��

Lemma 11. If s→ t is a right-indigestible, single-threaded 1STS then A admits
an infinite computation.

Proof. Let s→ t admit the infinite, single-threaded derivation w0 → w1 → . . . .
In order to work with Lemma 9, we need to ensure |x| < |t| for the left context
of the first rewrite step. This is not the case for an arbitrary derivation, but a
suitable derivation can be derived as follows.

By Lemma 10, the single-threaded path of w0 → w1 → . . . contains a right
edge, at level i say. Then the derivationwi−1 → wi → . . . starts with a right edge:
we have wi−1 = xssαy

′ and wi = xtαsy
′ for some x, y′ ∈ Σ∗ and α ∈ OVL(t, s).

By Lemma 7 the prefix x remains unaffected by the derivation wi−1 → wi → . . . .
Now for all j ≥ i− 1 let w′

j be defined by wj = xw′
j . Then D : w′

1 → w′
2 → . . .

is again an infinite, single-threaded derivation. Moreover |tα| < |t| holds for the
left context tα of its first rewrite step. By Lemma 9, the automaton A put on D
admits an infinite computation. ��

Example 11. Consider the well-behaved system abcd → cdcdbabab taken from
[7], and the infinite derivation:

abcdcd→ cdcdbababcd→ cdcdbabcdcdbabab→ cdcdbcdcdbababcdbabab→ . . .

The corresponding computation is:

(ε, cd) � (cdcdbab, ε) � (cdcdb, cdbabab) � (cdcdbab, babab) � . . .

Definition 14. The uniform halting problem of pushdown automata is the fol-
lowing problem: ”Given a pushdown automaton (Σ,Z,Q,�, q0, z0) – is there
(x, y) ∈ Q× Z∗ that initiates an infinite computation?”

Theorem 5. The uniform termination problem is decidable for the class of
1STS s→ t that satisfy ¬BD ∧ (¬RD ∨ ¬LD).

Proof. By symmetry we may assume ¬RD. By Lemmas 8 and 11, the uniform
termination problem is reduced to the uniform halting problem of pushdown
automata which is decidable [12]. ��



Termination of Single-Threaded One-Rule Semi-Thue Systems 351

4 Applications

There is a decidable sufficient criterion for both-sides-indigestibility of 1STSs.
First BD can be characterized by the existence of two peculiar single-threaded
derivations, then one can develop a simple test for non-existence of such deriva-
tions, based on the sets of suffixes of s and t that can be consumed and intro-
duced, respectively. The question whether BD is decidable remains open.

We give several examples of systems to which this criterion and our theorems
apply.

Example 12. The 1STS R = {caabca → aabccaabc} is both-sides-indigestible,
satisfies ¬LD and RD and is not tame.

Example 13 ([2]). The SOF 1STS aaabbab→ abbaaabba satisfies ¬BD∧¬LD∧
RD and is tame and terminating.

Example 14. The non-SOF 1STS R = {babbabb → abbabbbba} satisfies ¬BD ∧
LD ∧ ¬RD. It is non-tame and non-terminating.

Kobayashi et al. [4, page 603] find no instances for the case SOF ∧ ¬BD ∧
RD ∧ LD. Non-SOF systems satisfying ¬BD ∧RD ∧ LD however do exist:

Example 15. For every n ≥ 3, the 1STS R = {ba(ab)n → (ab)n+2a is not both-
sides-digestible. However R is both left-digestible ((ab)n+1a suffix of (ba)n+1)
and right-digestible (aba prefix of (ab)n).

5 Conclusion

We have shown that one-rule Semi-Thue Systems (1STSs) that satisfy ¬BD ∧
(¬RD ∨ ¬LD) have a decidable uniform termination problem, for their non-
terminating members admit infinite single-threaded derivations, which can be
simulated by pushdown automata. The uniform termination problem for 1STSs
that satisfy ¬BD ∧RD ∧ LD is open.
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Abstract. We present a new method for proving termination of term
rewriting systems automatically. It is a generalization of the match bound
method for string rewriting. To prove that a term rewriting system termi-
nates on a given regular language of terms, we first construct an enriched
system over a new signature that simulates the original derivations. The
enriched system is an infinite system over an infinite signature, but it is
locally terminating: every restriction of the enriched system to a finite
signature is terminating. We then construct iteratively a finite tree au-
tomaton that accepts the enriched given regular language and is closed
under rewriting modulo the enriched system. If this procedure stops,
then the enriched system is compact: every enriched derivation involves
only a finite signature. Therefore, the original system terminates. We
present three methods to construct the enrichment: top heights, roof
heights, and match heights. Top and roof heights work for left-linear sys-
tems, while match heights give a powerful method for linear systems.
For linear systems, the method is strengthened further by a forward clo-
sure construction. Using these methods, we give examples for automated
termination proofs that cannot be obtained by standard methods.

1 Introduction

We present a new method for proving automatically that a term rewriting system
(TRS) terminates on each term from a given regular term language. Our method
consists of two steps. In the first step, we switch to an enrichment of the given
TRS, i.e., a rewriting system over a different signature that simulates the original
derivations. We consider enriched systems over infinite signatures that are locally
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terminating: every restriction to a finite signature is terminating. In the second
step, we compute a compatible finite tree automaton for this enrichment, i.e.,
a tree automaton that contains the enriched given regular tree language and
is closed under rewriting modulo the enriched system. The existence of such
a compatible automaton ensures that the enriched TRS is compact, i.e., every
infinite derivation involves only a finite signature. By local termination of the
enrichment, the automaton certifies termination of the original system.

We have previously applied this method to string rewriting [7]. The string
rewriting version is implemented in the tools TORPA [19], Matchbox [18] and
AProVE [12]. In the present paper, we describe how to extend it to term rewrit-
ing. Non-linearities in the TRS complicate both the termination arguments
and the automata constructions. The algorithms we present are implemented
in Matchbox.

The enrichments that we consider are variants of the original TRS in which
the symbols are labelled by natural numbers. An enrichment is more powerful
than another if the labels in the right-hand sides are smaller. We introduce three
enrichments with increasing power: top heights, roof heights and match heights.
For match heights, linearity of the TRS is required for the desired theorem to
hold. So for linear TRSs the best results are obtained by choosing the enrich-
ment based on match heights, and for non-right-linear TRSs the best results are
obtained by choosing the enrichment based on roof heights.

For linear systems, uniform termination can be concluded from termination
on a restricted set of initial terms: the set of right-hand sides of forward closures.
We use our method both to compute this set, and to prove termination on it, at
the same time. This turns out to be more powerful than applying the method
directly for the original system and the set of all terms. To our knowledge, this is
the first method that computes finite representations of infinite sets of right-hand
sides of forward closures on TRSs.

The paper is organized as follows. In Section 3 we define enrichments, give
three instances, and compare them. In Section 4 we define compatible tree au-
tomata and in Section 5 we discuss how to construct them. Section 6 presents
the simulation of forward closures by rewriting, while Section 7 shows how to
implement this with an automata construction.

A preliminary version of this paper has been presented at the 7th Interna-
tional Workshop on Termination, Aachen 2004 [8].

2 Preliminaries

For a relation ρ on a set T and t ∈ T write SN(t, ρ) if there is no infinite sequence
t0, t1, . . . over T where t = t0 and ti ρ ti+1 for every i ≥ 0. Define SN(S, ρ) for
S ⊆ T by ∀s ∈ S : SN(s, ρ); then ρ is terminating (or: strongly normalizing) on
S. Let SN(ρ) stand for SN(T, ρ). The reflexive closure of ρ is ρ=, the composition
of two relations ρ ⊆ A × B and σ ⊆ B × C is ρ ◦ σ = {(a, c) | ∃b ∈ B : (a, b) ∈
ρ, (b, c) ∈ σ}.

For standard notations on term rewriting see [1, 20], for instance. Throughout
we fix a signature Σ, a set of variables X , and consider term rewriting systems
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R ⊆ TΣ(X)×TΣ(X). Unless otherwise stated, signatures and rewriting systems
are finite. The set of left- and right-hand sides of R are denoted by lhs(R) and
rhs(R) respectively. Since our topic is termination, we assume lhs(R) ∩X = ∅,
and X(r) ⊆ X(�) for rules �→ r. Let X(t) ⊆ X denote the set of variables that
occur in t ∈ TΣ(X), and let X(T ) =

⋃
t∈T X(t) for T ⊆ TΣ(X). For a mapping

h : TΣ(X) → TΓ (X) define the term rewriting system h(R) = {h(�) → h(r) |
� → r ∈ R} over signature Γ . For the symbol at position p in term t we write
t(p). For Y ⊆ Σ ∪X let PosY (t) be the set of positions p such that t(p) ∈ Y .
We use < for the prefix ordering on positions. The set of descendants modulo R
of a tree language L ⊆ TΣ is →∗

R(L) = {s ∈ TΣ | ∃t ∈ L : t→∗
R s}.

The domain and the range of a substitution α : X → TΣ(X) are dom(α) =
{x ∈ X | xα �= x} and ran(α) = {xα | x ∈ dom(α)}. For Y ⊆ dom(α) let α|Y
be the substitution with domain Y where α|Y : x �→ xα for x ∈ Y , α|Y : x �→ x
otherwise. For substitutions α and α′ we write α →R α

′ if dom(α) = dom(α′),
and xα→R xα

′ for some x ∈ dom(α) and yα = yα′ for every y �= x.
A tree automaton A = (Q,Σ, F, T ) over a signature Σ consists of a set Q

of constant symbols, disjoint from Σ, called states ; a set F ⊆ Q of final states ;
and a ground rewriting system T over Σ∪Q with rules (transitions) of the form
q0 → q or f(q1, . . . , qn) → q for n-ary f ∈ Σ, n ≥ 0, and q0, . . . , qn, q ∈ Q. The
automaton is finite if T is finite, and it is deterministic if T is non-overlapping.
The language accepted by A is L(A) = {t ∈ TΣ | ∃q ∈ F : t→∗

T q}. For more on
tree languages we refer to [2, 5].

3 Enrichments of Rewriting Systems

Definition 1. A TRS R′ over a signature Σ′ is an enrichment
of a TRS R over a signature Σ if there is a mapping base : TΣ′

→ TΣ such that every R-derivation step can be lifted to an R′-
derivation step: for each step s →R t and each s′ ∈ base−1(s)
there is some t′ ∈ base−1(t) with s′ →R′ t′.

s′

base

��

R′
�� t′

base

��
s

R
�� t

We use enrichments to propagate termination properties:

Proposition 1. Let R and R′ be TRSs over Σ and Σ′ resp., let L ⊆ TΣ and
L′ ⊆ TΣ′ . If R′ is an enrichment of R via base : TΣ′ → TΣ, and L ⊆ base(L′),
then termination of R′ on L′ implies termination of R on L.

Suitable enrichments will satisfy the following property:

Definition 2. A finite or infinite TRS R over a finite or infinite signature Σ
is called locally terminating if every restriction of R to a finite signature Γ ⊆ Σ
is terminating: R ∩ (TΓ (X)× TΓ (X)) is terminating on TΓ .

In the following, we will present three enrichments that are locally terminat-
ing, one of them under a suitable linearity restriction. We choose the enriched
signature Σ′ = Σ×N, and call the numbers heights. We often write fh for (f, h).
Define the mappings base : Σ′ → Σ, height : Σ′ → N, and lifth : Σ → Σ′ by

base : (f, h) �→ f, height : (f, h) �→ h, lifth : f �→ (f, h),
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which are extended pointwise to term morphisms. E.g., lift2(f(x, a)) = f2(x, a2))
where a is a constant symbol, and x is a variable. We will use one fixed ordering
on Σ′, called the height ordering, given by (f, h) < (f ′, h′) iff h > h′. This
ordering is well-founded when restricted to finite sets.

The enrichments label symbols in the right-hand side of a rule with the
successor of the minimum of the heights of all symbols at a specified subset of
positions in the left-hand side:

Definition 3. For a term rewriting system R over Σ, and a function f that
maps a rewriting rule (� → r) to a nonempty subset of PosΣ(�), we define the
f -cover of R to be the term rewriting system over Σ × N given by

coverf (R) = {�′ → lifth(r) | (�→ r) ∈ R, base(�′) = �,

h = 1 + min{height(�′(p)) | p ∈ f(�, r)}}.

Note that coverf (R) is indeed an enrichment of R.
To present the enrichments, we need one auxiliary definition:

Definition 4. A position p ∈ PosΣ(t) is a roof position in t ∈ TΣ(X) for a set
of variables Y ⊆ X if for each y ∈ Y there is q ∈ Pos{y}(t) such that p < q. Let
RPosY (t) denote the set of all roof positions in t for Y .

E.g., term t = f(f(x, g(y)), a) has RPos{y}(t) = {ε, 1, 12} and RPos{x}(t) =
RPos{x,y}(t) = {ε, 1}, so position 12 of g is not a roof position for {x} or {x, y}.
Also for s = f(f(x, g(y)), x) we get RPos{x}(s) = RPos{x,y}(s) = {ε, 1}.

Now we define the enrichments that we will use in the rest of this paper.

Definition 5. – The top enrichment top(R) is coverf (R) for f(�, r) = {ε}.
– The roof enrichment roof(R) is coverf (R) for f(�, r) = RPosX(r)(�).
– The match enrichment match(R) is coverf (R) for f(�, r) = PosΣ(�).

Example 1. Take R = {s(x) + 0→ s(x)}. Then top(R) contains, among others,
the rule s1(x)+2 00 → s3(x), since 2 is the height of the top symbol +2. The sys-
tem roof(R) contains the rule s1(x)+2 00 → s2(x), since 1 is the minimal height
of a roof symbol (and 00 is not in roof position). Finally, match(R) contains the
rule s1(x) +2 00 → s1(x), since 00 has minimal height.

Lemma 1. For a term rewriting system R, both the systems top(R) and roof(R)
are locally terminating.

Proof. top(R) and roof(R) are ordered by the recursive path ordering induced
by the height ordering on Σ′, which is well-founded for finite signatures. ��

Lemma 2. For a right-linear term rewriting system R, the system match(R) is
locally terminating.

Proof. To each term in a ground match(R)-derivation assign the multiset of its
symbols. By right-linearity, this sequence of multisets is decreasing with respect
to the height ordering on Σ′. ��
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Remark 1. Right-linearity is essential, as shown by the non-terminating system
{f1(a0, x) → f1(x, x)} ⊆ match({f(a, x)→ f(x, x)}).

Definition 6. For e ∈ {top, roof,match}, a term rewriting system R over Σ
is called e-bounded by c ∈ N for a language L over Σ if the maximal height
occurring in →∗

e(R)(lift0(L)) is at most c.

Definition 7. A finite or infinite term rewriting system R over a finite or in-
finite signature Σ is said to be compact for a language L ⊆ TΣ if there exists a
finite subset Γ ⊆ Σ such that →∗

R(L) ⊆ TΓ .

Lemma 3. If a finite or infinite term rewriting system R is locally terminating
and compact for L ⊆ TΣ, then R is terminating on L.

Obviously e(R) is compact for every e-bounded TRS R. Together with Lem-
mas 1 and 2 we get:

Proposition 2. – If R is top-bounded for L, then R is terminating on L.
– If R is roof-bounded for L, then R is terminating on L.
– If R is right-linear and match-bounded for L, then R is terminating on L.

Remark 2. All the enrichments discussed here are obtained as covers (Defini-
tion 3). This has two implications: since we take the minimum, each enrichment
is monotonic (pointwise domination of heights is preserved by parallel deriva-
tions), and since the respective sets of positions are comparable by set inclusion
the enrichments are comparable as well: for corresponding derivations, match
heights are lower or equal to roof heights, and these are lower or equal to top
heights. So we prefer roof-heights to top-heights in general, and we will use
match-heights for right-linear systems.

Remark 3. Results on derivation lengths carry over from coverf (R) to R. For
instance, for right-linear systems R, every restriction of match(R) to a finite
signature has linear derivational complexity, so the same complexity holds for
every match-bounded right-linear system R. In contrast, for top-bounded R we
can have (single) exponential complexity, as for the system {f(x) → g(x, x)}
which is top-bounded by 1.

Remark 4. The correspondence between R and its enrichment R′ is a rewrite
labelling (with lift0 as the initial labelling function) as defined by van Oostrom
and de Vrijer [17], Section 8.4. They mention an earlier example of a labelling
with the property that “bounded reductions are finite”: the Hyland-Wadsworth
labelling of a rewriting system R is defined just like match(R), with the only
difference of taking max instead of min in Definition 3.

Remark 5. In the string rewriting case, which can be seen as a particular form
of linear term rewriting, all non-variable positions are roof positions, therefore
match(R) and roof(R) coincide. Match-boundedness and top-boundedness differ,
as the example {ab → a} shows, which is match-bounded by 1, but not top-
bounded.
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4 Compatible Tree Automata

Definition 8. We call a tree automaton A = (Q,Σ, F, T ) compatible with a
term rewriting system R over Σ and a language L over Σ if L ⊆ L(A), and
for each rule (� → r) ∈ R, for each state q ∈ Q, and for each substitution
σ : X(�)→ Q, we have that �σ →∗

T q implies rσ →∗
T q.

Remark 6. We can decide compatibility of A with R and L in case A and R are
finite, and L is given by a finite tree automaton, by just enumerating all cases.

A compatible automaton is closed under left-linear rewriting.

Lemma 4. If A is compatible with R and L, and R is left-linear, then →∗
R(L) ⊆

L(A).

Proof. We show that R-derivations are covered “step by step” in A: if t1 ∈ L(A)
and t1 →R t2, then t2 ∈ L(A). Let t1 = t1[�σ]p →R t1[rσ]p = t2 for some
rule � → r, position p, and substitution σ : X(�) → TΣ . Since t1 ∈ L(A),
there is a state q, a final state q̄, and a substitution ρ : X(�) → Q such that
t1 = t1[�σ]p →∗

T t1[�ρ]p →∗
T t1[q]p →∗

T q̄. Note that ρ exists as R is left-linear.
From �ρ →∗

T q and compatibility of A with R we get rρ →∗
T q. This implies

t2 = t1[rσ]p →∗
T t1[rρ]p →∗

T t1[q]p →∗
T q̄, thus t2 ∈ L(A). ��

The requirement of left-linearity in Lemma 4 cannot be dropped, as the
following example shows.

Example 2. We take an automaton A with states Q = {1, 2, 3} and transitions
a → 1, a → 2, f(1, 2) → 3 ∈ F . Then L(A) = {f(a, a)}. This automaton is
compatible with the rewriting system R = {f(x, x)→ b} since there are no rule
(�→ r) ∈ R, state q and substitution σ : X(�)→ Q with �σ →∗

T q. On the other
hand, A is not closed under rewriting, as →∗

R(L(A)) = {f(a, a), b}.
The premise “R is left-linear” in Lemma 4 may be exchanged with “A is

deterministic”. We don’t follow on this branch in the present paper.
By Lemma 4 we get

Lemma 5. If R is left-linear, and there is some finite automaton A that is
compatible with R and L, then R is compact for L.

5 Constructing Compatible Automata

The following obvious procedure yields an automaton A = (Σ,Q, F, T ) that is
compatible with a rewriting system R and a regular tree language L whenever
the procedure terminates:

Start with an automaton A0 that accepts L;
A := A0;
while A is not compatible

choose q ∈ Q, (�→ r) ∈ R, σ : X(�)→ Q
such that �σ →∗

T q and rσ �→∗
T q;
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add new states and transitions to A
yielding a new automaton A′ with transitions T ′

such that rσ →∗
T ′ q;

A := A′;

The interesting issue is the strategy: exactly how new states and transitions
are chosen. The straightforward strategy is to add a new state for each proper
subterm of rσ that is not in Q, and fill in the corresponding transitions.

Example 3. For the automaton A with transitions {a → 0, b → 1, f(0, 1) → 1},
and the rewriting system R = {� → r} = {f(x, y) → g(h(y), x)} we have
�σ →∗

T q for q = 1 and σ = {x �→ 0, y �→ 1}. Transitions and states have
to be added such that rσ = g(h(1), 0) →∗

T 1 = q. We add one new state 2,
corresponding to the subterm h(1) of rσ, and transitions {h(1)→ 2, g(2, 0)→ 1}.

The straightforward strategy is the basic idea behind automata closure con-
structions for various syntactically restricted classes of rewriting systems, e.g.,
ground, (generalized) (semi)-monadic, finite path overlapping systems. In each
case, the syntactic restriction ensures that only finitely many states and transi-
tions will be added.

We cannot generally avoid the addition of states. Therefore the completion
procedure for tree automata need not stop. Indeed there are rewriting systems
R, as in Example 5, for which the set of descendants is not regular. In such a
case, we try to over-approximate the set of descendants by a compatible tree
automaton. Genet [6] gets such an approximation by limiting the number of
states that are added to the automaton during completion.

We follow a more simplistic approach here that works well for match-bounded
string rewriting [10, 19]. We avoid generating some of the additional states as
follows. If rσ �→∗

T q, we look for a contextD[�], a context C[�, . . . ,�], and terms
t1, . . . , tn ∈ TΣ(Q) such that D[C[t1, . . . , tn]] = rσ. Suppose that D[q0] →∗

T q for
some state q0, and ti →∗

T qi for states qi, 1 ≤ i ≤ n. Then we add a fresh state
for each non-leaf, non-root subterm of C[�, . . . ,�], and transitions such that
C[q1, . . . , qn] →∗

T ′ q0. In this way, we re-use states that occur in the derivations
D[q0]→∗

T q and ti →∗
T qi.

This is a non-deterministic procedure. Our implementation chooses in each
step one such context C[�, . . . ,�] that requires the least number of new states.

For instance, take R = {� → r} = {b(a(x)) → c(b(x))}, and let A be a
two-state automaton with transitions T = {e→ 0, a(0)→ 0, b(0) → 1}, state 1
being final. Here, L(A) = b(a∗(e)). Now we have �{x �→ 0} = b(a(0)) →T 1, but
r{x �→ 0} = c(b(0)) �→T 1. Here, c(b(0)) = D[C[t1]] for D[�] = �, C[�] = c(�),
and t1 = b(0). We have t1 →∗

T 1, so we add no new state (as C[�] has no
non-trivial subterms), but the transition c(1) → 1. The new automaton is now
compatible with R and L(A), and it accepts →∗

R(L(A)) = c∗(b(a∗(e))).
Note that a compatible automaton obtained this way may be an over-approx-

imation of the set of descendants:

Example 4. Let R = {a(c) → b(c)}, and L = {a(c), a(d)} accepted by the au-
tomaton with states {0, 1}, state 1 being final, and transitions {c → 0, d → 0,
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a(0)→ 1}. The rewrite rule matches in state 1, so we have to ensure b(c)→∗ 1.
This could be done by adding a new state 2 and transitions c → 2, b(2) → 1.
As c →∗ 0, we might want to avoid state 2 and instead add the single tran-
sition b(0) → 1. But then b(d) →∗ 1 as well, so the automaton now accepts
{a(c), a(d), b(c), b(d)}, which is a proper superset of →∗

R(L) = {a(c), a(d), b(c)}.
For string rewriting, match-boundedness implies preservation of regularity of

languages [7]. As the following example shows, the corresponding property does
not hold for term rewriting.

Example 5. The system R = {g(f(x, y)) → f(h(x), h(y))} is top-bounded by 1.
However, the language →∗

R(L) ∩ f(h∗(a), h∗(a)) = {f(hn(a), hn(a)) | n ≥ 0} is
not regular for the regular language L = g∗(f(a, a)), so →∗

R(L) is not regular
either.

So contrary to the string rewriting case, there is no exact construction for the
sets of descendants of a regular language modulo top-bounded term rewriting.
Note that the same holds for roof- and match-bounded rewriting, since these
heights are majorized by top heights.

We conclude this section with a few examples that illustrate
our approach. In order to visualize tree automata, a transition
fh(q1, . . . , qn)→ q is graphically represented as the hyperedge
in the illustration at the right. Squares contain function sym-
bols with height annotations as subscripts, where the argument
ordering is indicated by numbers at the incoming arrows. Cir-
cles denote states, and double circles denote final states.


������q

fh

��


������q1
1

�������
. . . 
������qn

n

��

Example 6. For R = {f(x, f(a, a)) → f(f(x, a), x)} over {f, a} we present the
construction that proves that R is top-bounded by 3. We have to find an automa-
ton A that is compatible with top(R) and lift0(L). We start with the automaton
A0 = (Σ × N, {0}, {0}, T0) where T0 = {a0 → 0, f0(0, 0) → 0}, which accepts
lift0(TΣ). Now we have a derivation

f0(0, f0(a0, a0)) →∗
T0

0,

starting with a redex of the rule f0(x, f0(a0, a0))→ f1(f1(x, a1), x) from top(R).
The automaton A0 is not compatible, for f1(f1(0, a1), 0) �→∗

T0
0. There are no

states we could re-use, so our first step follows the straightforward strategy: to
add the new states 1 and 2, corresponding to the subterms f1(0, a1) and a1,
respectively, and the rules

a1 → 2, f1(0, 2)→ 1, f1(1, 0)→ 0.

This way we get another automaton, A1 = (Σ × N, {0, 1, 2}, {0}, T1), where
T1 = T0 ∪ {a1 → 2, f1(0, 2) → 1, f1(1, 0) → 0}, such that f1(f1(0, a1), 0) →T1

f1(f1(0, 2), 0) →T1 f1(1, 0) →T1 0. For the new automaton, we again look for
violations of compatibility: We have the redex match

f1(1, f0(a0, a0))→∗
T1

0
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with the rule f1(x, f0(a0, a0)) → f2(f2(x, a2), x) in top(R). So A1 is not com-
patible, for f2(f2(1, a2), 1) �→∗

T1
0. According to the straightforward strategy, we

add states 3 and 4, corresponding to the subterms f2(1, a2) and a2, respectively,
and transitions to A1. We get A2 = (Σ × N, {0, . . . , 4}, {0}, T2) where

T2 = T1 ∪ {a2 → 4, f2(1, 4)→ 3, f2(3, 1)→ 0},

and f2(f2(1, a2), 1) →∗
T2

0 as wanted. For A2

again there is a redex

f2(3, f1(a0, a1)) →∗
T2

0,

but f3(f3(3, a3), 3) �→∗
T2

0. We add states 5 and 6
for f3(3, a3) and a3, and transitions

a3 → 6, f3(3, 6)→ 5, f3(5, 3)→ 0.

The resulting automaton is displayed at the right;
it is compatible with top(R) and lift0(TΣ). By Re-
mark 6 we can check compatibility with top(R)
restricted to the signature Σ × {0, 1, 2, 3, 4}, be-
ing a finite system. Since heights ≥ 4 do not oc-
cur, it is even compatible with the infinite system
top(R). So R is top-bounded by 3 as claimed, and
thus terminating.

f0

��

a0 ���������������� !0
2

��

1

		

2





1

��

f1
��

f2

��

��������1
2

��

1

��

1
��

f1��

f3



��������3
2

��

1

��

1
��

f2�� ��������2

2

��

��������5

1

��

f3�� ��������4

2

��

a1

��

��������6

2

��

a2

��

a3

��

Example 7. For R = {f(f(x, a), a) → f(x, f(x, a))}
we can easily show that it is not top-bounded, as we
have the derivation

tn+2 = f(f(tn, a), a)→R f(tn, f(tn, a)) = f(tn, tn+1)

where t0 = a and tn+1 = f(tn, a). Thus by induction,
tn+2 →∗

R f(tn, f(tn−1, . . . f(a, a) . . . )). This derivation
reaches top height n + 1. However, R is roof-bounded
by 1, as the compatible automaton to the right reveals.
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Example 8. Let R = {f(a, f(x, a)) → f(a, f(f(a, a), x))}. As before, we start
with the one-state automaton with transitions {a0 → 0, f0(0, 0) → 0}, accept-
ing lift0(TΣ). There is a redex match f0(a0, f(0, a0)) → f0(0, 0) → 0 so we
have to ensure that f1(a1, f1(f1(a1, a1), 0))→∗ 0. This is done by adding states
{1, 2, 3, 4, 5} and transitions {a1 → 1, a1 → 4, a1 → 5, f1(4, 5) → 3, f1(3, 0) →
2, f1(1, 2) → 0}. This produces another redex f1(a1, f(3, a0)) → f1(1, 2) → 0
which requires f1(a1, f1(f1(a1, a1), 3))→∗ 0. Note that a0 in the redex has min-
imal height, and thus the labels in the contractum are 1. This requirement can
be fulfilled by adding the transition f1(3, 3)→ 2, since then

f1(a1, f1(f1(a1, a1), 3))→∗ f1(1, f1(f1(4, 5), 3))→ f1(1, f1(3, 3))→ f1(1, 2)→ 0.
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Note that this is a state re-use corresponding to the choice rσ = D[C[t1, t2]]
with t1 = f1(a1, a1) → 3 = q1, t2 = 3 = q2, C = f1(�,�), D = f1(a1,�),
q0 = 2, D[q0] → 0 = q. The resulting automaton is compatible with match(R)
and lift0(TΣ), thus R is match-bounded by 1, and therefore terminating.

In general, if we want a compatible automaton for L = TΣ , then we may
simply start with the automaton for L that has just one state q, which is
also final, and for each symbol f ∈ Σ, a transition f(q, . . . , q) → q. Doing
so fails to distinguish between symbols, and this might cause non-termination
of completion. In such cases it is better to “split” the automaton. We then take
Q = F = {qf | f ∈ Σ}, and transitions {f(q1, . . . , qn) → qf | f ∈ Σ, qi ∈ Q}.

For the following example a termination proof via top heights can be obtained
by completion starting with the split automaton, but not starting with the one-
state automaton.

Example 9. (AProVE-forward instantiation2, [15]) Consider the system

R = {f(x, y, z)→ g(x, y, z), g(d, e, x)→ f(x, x, x), a→ b, a→ c}.

over signature Σ = {a, b, c, d, e, f, g}. Completion does not stop if we start with
an automaton for lift0(TΣ) with only one state q: We find a redex f0(q, q, q) → q,
so we have to add the transition g1(q, q, q) → q. Since g1(d, e, q)→2

R g1(q, q, q) →
q, we have to add f2(q, q, q) → q, and so forth, creating symbols g3, f4, g5, . . . .

Completion does succeed if we start with a split automaton. It has 7 states
in Q = {qa, qb, qc, qd, qe, qf , qg}, and all symbols are labelled by 0. Because of
the rules {a → b, a → c}, we add transitions b1 → qa, c1 → qa. Due to the rule
f(x, y, z)→ g(x, y, z) we add 73 transitions {g1(qx, qy, qz)→ qf | qx, qy, qz ∈ Q},
and due to rule g(d, e, x) → f(x, x, x) we add {f2(q, q, q) → qg | q ∈ Q}. Rule
f(x, y, z) → g(x, y, z) entails the transitions {g3(q, q, q) → qf | q ∈ Q}. The
result is a compatible automaton, so 3 is the top bound, and R is terminating.

6 Simulating Forward Closures by Rewriting

Forward closures [14] can be used to characterize uniform termination by termi-
nation on a restricted set of terms: For a right-linear [4] or non-overlapping [11]
term rewriting system R, termination is equivalent to termination on the set
RFC(R) of right-hand sides of forward closures.

Following [11], we inductively define the set RFC(R) as the least subset of
TΣ(X) that contains rhs(R), is closed under renaming of variables, and satisfies
the condition:

– if t ∈ RFC(R), p ∈ PosΣ(t), (�→ r) ∈ R, � variable-disjoint with t, μ a most
general unifier of t|p and �, then (t[r]p)μ ∈ RFC(R).

Next, we will show how to simulate the construction of RFC(R) by ordinary
rewriting. Note that since we simulate unification by matching, we cannot cope
with non-linearity in left- or right-hand sides. So for the rest of this section we
consider linear rewrite rules only, i.e., rules with linear left- and right-hand sides.
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Let C ∈ TΣ(X) be linear, and let α : X → TΣ(X) be a substitution with
dom(α) ⊆ X(C). We say that (C,α) is a factorization of t ∈ TΣ(X) if t = Cα,
and we call C the context of the factorization. The factorization is non-trivial if
C /∈ X , dom(α) �= ∅, and xα /∈ X for every x ∈ dom(α). In order to mark the
border between the context and the substitution of a factorization, we use the
constant �, not contained in Σ. Let the substitution σ� : X → TΣ∪{�} be defined
by σ� : x �→ � for x ∈ X .

Definition 9. For a linear TRS R define the TRS R� over Σ ∪ {�} by

R� = R ∪ {Cσ′α→ rσ′′ | �→ r ∈ R, (C,α) a non-trivial factorization of �,
σ′ = σ�|dom(α) and σ′′ = σ�|X(ran(α))}.

That is, R� consists of all rules obtained in the following way. If �→ r is a rule
in R and (C,α) is a non-trivial factorization of �, then �′ → r′ is a rule in R�,
where �′ is obtained from C by replacing every variable in dom(α) by �, and r′

is obtained from r by replacing every variable that occurs in ran(α) by �. Note
that R� is linear, and that X(r) ⊆ X(�) for each rule �→ r in R�.

Example 10. For R = {g(f(h(x), h(y))) → f(y, x)}, the system R� consists of R
together with the rules

g(�) → f(�, �), g(f(�, �)) → f(�, �),
g(f(�, h(y))) → f(y, �), g(f(h(x), �)) → f(�, x).

For R = {g(x) → x} we get R� = R, for R = {g(g(x)) → x} we have R� =
R ∪ {g(�)→ �}, and for R = {g(g(x))→ a} we obtain R� = R ∪ {g(�)→ a}.

Replacing variables by �, we can now characterize RFC(R) as the set of
descendants modulo R� of rhs(R), provided R is linear:

Lemma 6. If R is linear then RFC(R)σ� = →∗
R�

(rhs(R)σ�).

Abbreviate RFC(R)σ� by RFC�(R). A self-contained proof of the following
theorem can be found in [9].

Theorem 1. Let R be a linear term rewriting system. Then

SN(→R) if and only if SN(RFC�(R),→R).

Corollary 1. If a linear term rewriting system R is match-bounded for RFC�(R),
then R is terminating.

Proof. If R is match-bounded for RFC�(R) then R is terminating on RFC�(R)
by Proposition 2, thus terminating by Theorem 1. ��
Remark 7. In general we do not have SN(→R) iff SN(rhs(R)σ�,→R�

). As a
counter-example consider the terminating system R = {g(g(x)) → g(x)}. Here,
R� = R ∪ {g(�)→ g(�)} is non-terminating on rhs(R)σ� = {g(�)}.

Theorem 1 cannot be generalized to left-linear and non-overlapping systems:

Example 11. For R = {f(a, x) → f(x, x)} we get R� = R ∪ {f(�, x) → f(x, x)}.
Obviously, R is terminating on RFC�(R) = →∗

R�
({f(�, �)}) = {f(�, �)}, but not

terminating.
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7 Compatible Automata and Forward Closures

According to Corollary 1, termination of R can be shown by verifying that R is
match-bounded for RFC�(R). Literally following the definition, we would first
construct an automaton A with RFC�(R) ⊆ L(A), that is, A should be compat-
ible with R� and rhs(R)σ�. Then we find an automaton A′ that is compatible
with some enrichment R′ of R, and a suitable language L′ with L(A) ⊆ base(L′).
Since R is linear, we want to use R′ = match(R) and L′ = lift0(L(A)).

We can merge these two automata constructions into one. To do so, we need
an additional, trivial enrichment that completely disregards heights in left-hand
sides and assigns height 0 everywhere in the right-hand sides.

Definition 10. For a term rewriting system R over Σ, the enrichment zero(R)
over Σ × N is defined by

zero(R) = {�′ → lift0(r) | (�→ r) ∈ R, base(�′) = �}.

Lemma 7. For TRSs R and S and a language L over Σ, if a finite tree au-
tomaton A over Σ ×N is compatible with match(R)∪ zero(S) and lift0(L), then
R is match-bounded for →∗

R∪S (L).

Proof. We will show that R is match-bounded for →∗
R∪S (L) by c, where c is the

maximal height occurring in L(A), which exists since A is assumed to be finite.
Consider a derivation t1 →∗

R t2 with t1 ∈ →∗
R∪S(L), and its canonical lifting

t′1 →∗
match(R) t

′
2. We have to show that the maximal height in t′2 is ≤ c.

Define the relation ≤ on TΣ×N by s ≤ t if base(s) = base(t) and for each
position p in s, height(s(p)) ≤ height(t(p)).

t′′0
∗

match(R)∪zero(S)
�� t′′1

∗
match(R)

�� t′′2 ∈ L(A)

t′1
∗

match(R)
��

≤

t′2
base

��

≤

L & t0 ∗
R∪S

��

lift0

��

t1
∗

R
��

lift0

��

t2

Since t1 ∈ →∗
R∪S(L), there is a term t0 ∈ L such that t0 →∗

R∪S t1. For the
canonical lifting t′′0 →∗

match(R)∪zero(S) t
′′
1 of the derivation t0 →∗

R∪S t1 we have
base(t′′1 ) = t1 = base(t′1), therefore t′1 ≤ t′′1 . Now there are two canonical lift-
ings of the derivation t1 →∗

R t2, both starting in terms with the same base:
t′1 →∗

match(R) t
′
2 and t′′1 →∗

match(R) t
′′
2 . From t′1 ≤ t′′1 we obtain t′2 ≤ t′′2 by mono-

tonicity, cf. Remark 2. We have t′′2 ∈ L(A) by compatibility, since t′′0 ∈ lift0(L)
and t′′0 →∗

match(R)∪zero(S) t
′′
2 . Therefore the maximal height in t′′2 is ≤ c, and by

t′2 ≤ t′′2 the same is true for t′2. ��

Choosing S = R� \ R and L = rhs(R)σ�, in combination with Corollary 1
and Lemma 6 this will be used as follows.
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Corollary 2. For a linear TRS R, if some finite tree automaton is compatible
with match(R) ∪ zero(R� \R) and lift0(rhs(R)σ�), then R is terminating.

Example 12. The system R = {f(f(a, x), a) → f(a, f(x, a))} is not match-
bounded. This can be seen as follows. Writing Rhx for fh(ah, x), and Lhx for
fh(x, ah), we have match(R)-derivations Ln

0R
n
0a0 →∗ R1R2 . . . RnLn . . . L2L1a0

for each n ≥ 0, exceeding any given bound. On the other hand, the system is
match-bounded for RFC�(R): We have

R� =

⎧⎨⎩
f(�, �) → f(a, f(�, a)), f(f(�, x), �) → f(a, f(x, a)),

f(f(a, x), �) → f(a, f(x, a)), f(�, a)→ f(a, f(�, a)),
f(f(�, x), a) → f(a, f(x, a))

and rhs(R)σ� = {f(a, f(�, a))}. This can be accepted by an automaton with
states Q = {0, 1, 2, 3, 4}, F = {1}, and transitions {a0 → 2, �0 → 0, a0 →
4, f0(0, 4) → 3, f0(2, 3) → 1}. There is only one redex match for match(R) ∪
zero(R� \ R), namely f0(�0, a0) → f0(0, 4) → 3. So we need to ensure that
f0(a0, f0(�0, a0)) →∗ 3, This can be achieved by adding the single transition
f0(4, 3) → 3, because then f0(a0, f0(�0, a0)) → f0(4, f0(0, 4)) → f0(4, 3) →
3. The resulting automaton is compatible with match(R) ∪ zero(R� \ R). In
particular, no rule of match(R) matches in the automaton. So the automaton
certifies that R is match-bounded for RFC�(R) by 0, and thus the system is
terminating. Termination of R can also be proved by standard methods.

Example 13. Take R = {f(a, f(a, x)) → f(a, f(x, f(f(a, a), a)))}. Here, the set
of descendants of rhs(R)σ� modulo R� is actually finite: {f(a, f(�, f(f(a, a), a))),
f(a, f(f(f(a, a), a), f(f(a, a), a)))}. Since match(R) does not match at all, it is
match-bounded for RFC�(R) by 0.

8 Conclusion

In this paper, we presented a new automated method for termination proofs in
term rewriting: constructing compatible tree automata for systems enriched by
height annotations. We offered three enrichment schemes – top, roof, and match
– which are increasingly more powerful. We demonstrated that match-bounds
on the set of right-hand sides of forward closures can be even more powerful
for linear TRSs. In contrast to string rewriting, match-bounded systems do not
preserve regular languages for term rewriting.

The power of standard methods, like path orderings and interpretations,
markedly decreases for small signatures. The fewer symbols there are, the fewer
orderings and statuses there are to choose from. To improve this situation, people
develop methods that encode additional information into the signature. This can
be semantic information (as in semantic labelling, e.g.), or syntactic information
(as in dependency pairs, e.g.). Our method belongs to the latter category, for
the construction of compatible automata can be seen as a detailed analysis of
overlap patterns. An earlier use of tree automata for analyzing rewrite patterns
is Middeldorp’s estimation of dependency graphs [16].
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The algorithms described in this paper have been implemented in the pro-
gram Matchbox. It is a highly configurable testbed for string and term rewriting
with height annotations. The string rewriting version has been described in [18].
Our program is freely available (Haskell source, GNU/Linux executable, CGI
interface) via http://141.57.11.163/matchbox/.

An earlier version of Matchbox took part in the Termination Competition
during WST04. It solved part of the problems from the contest data base. Since
Matchbox does not implement any of the standard methods for automated ter-
mination, this illustrates the power of our approach.

The present paper provides known (Example 9) and new (Examples 8, 13)
termination problem instances that Matchbox can solve but that other available
automated provers cannot. We checked with CiME [3], AProVE [12], TTT [13].
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Abstract. The first RTA conference took place in Dijon, in 1985. This
year, 2005, it takes place in Nara. Nara and Dijon share a glorious past
but can be considered as being “Sleeping Beauties”, after the title of a
book by the Nobel price novelist yasunari Kawabata.
Is RTA sleeping on its glorious past? Back in the late 80s, many of us
feared that this would soon be the case, that research in rewrite systems
was deepening the gap with everyday’s computer science practice, and
that we should develop rewrite-based powerful provers that would make
a difference with the state of art and help address real applications such
as software verification.
More than ten years later this has not really happened in the way we
thought it would. What has happened is that many research areas, such
as programming languages, constraint solving, first-order provers, proof
assistants, security theory, and verification have all been fertilized by
ideas coming from term rewriting. In return, our field has been renewed
by new problems and techniques coming from outside our small commu-
nity.
I am convinced that this will continue, and that new subject areas will
join the journey. There are at least two reasons. To quote a celebrated
sentence that I have read in many papers: Equations are ubiquitous in
computer science. This is the first reason: we all like to use equations
for modeling problems. The second is that we have developed extremely
powerful, sophisticated tools to reason with equations. Many computer
scientists do not know these tools. It is our responsibility to preach for
their use by showing all we can do with them.

1 Introduction

My goal is to illustrate several aspects of the contributions of rewriting theory
to problems originating from programming and theorem proving, two closely
related fields that benefit from a term rewriting perspective. I will concentrate on
ordered paramodulation, a very old problem which is still progressing, rule-based
programming, tree automata, and proof assistants. I will not refrain quoting my
self.
� Twenty years later is the title of a novel by the french writer Alexandre Dumas.

�� Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay,
CNRS, École Polytechnique, INRIA, Université Paris-Sud.

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 368–375, 2005.
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2 Basic Ordered Resolution and Paramodulation

Ordered completion is a generalization of ground completion, because it yields a
convergent rewrite system from an arbitrary set of equations, therefore providing
with a uniform technique to reason about the word problem in an arbitrary
equational theory, which is based on the existence of normal forms. The main
difference with the case of ground completion is that the rewrite system may be
infinite, and therefore no decidability result can be obtained in general. This is
indeed the main strength of this method, that decidability is not required.

Ordered completion was first successfully addressed by Peterson [50], who
addressed the case of a finite rewrite ordering, before the general case was solved
by Hsiang and Rusinowitch who developed transfinite semantic trees for that
purpose [31]. The use of transfinite semantic trees was made necessary by the
possible use of transfinite orderings in ordered completion.

A more general, earlier framework was elaborated by Robinson and Wos [54],
combining resolution and paramodulation: they were the first to propose the re-
placement of the axioms for equality by specific inference rules in order to reduce
the search space. The idea of restricting the set of inferences further by system-
atically using normal forms generated by a rewrite ordering as it is the case
with ordered completion is due to Lankford [42]. Lankford, however, did not
have the tools to solve the problem in its full generality. This was done much
later in a series of papers pioneered by Bachmair and Ganzinger, who came up
with a novel, model theoretic method based on the idea of forcing [2–5]. It is
interesting to notice that Goubault succeeded recently to improve over Bach-
mair and Ganzinger by using finite semantic trees: the very simple but beautiful
idea, which Goubault himself ascribes to Rusinowitch, consists in applying a
compactness argument before to construct the finite semantic tree of a given
unsatisfiable set of clauses [28].

The last 15 years saw another achievement, with constraints taking over uni-
fication in deduction calculi [40]. This is an important phenomenon: after logic
programming, constraints are making their way everywhere, in term rewriting
theory where the difficult problem of local confluence of order-sorted rewrite rules
was reduced to satisfiability of membership constraints [20], in automated deduc-
tion seen as a generalization of logic programming, but also in model checking
where it allows to go smoothly from finite to some decidable infinite systems [25],
or in functional programming where it yields a more elegant and powerful tool
to express type inference algorithms [1]. In particular, constraints have been
used very successfully to block inferences that were made inside substitutions
inherited from previous inferences [6, 48]. This restriction of deduction calculi is
dubbed basic after Hullot’s pionneering work on basic narrowing [35].

Examples of use of ordered completion to modularity problems include: mod-
ular unification algorithms [13], modular confluence properties [36], and the
study of CCC, a calculus of constructions embedding the congruence closure al-
gorithm into the conversion rule [11]. Examples of use of constrained deduction
to decidability results include: decidability of set constraints [7] and decidability
of standard theories [47].
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3 Rule-Based Programming

This topic is probably best examplified with MAUDE, a language developed by
José Meseguer and his collaborators at SRI first, and now at the state university
of Illinois at Urbana-Champaign [45]. Related efforts were conducted in parallel
in France and in Japan, by Claude Kirchner and his group, who developed
the language ELAN [41], and by Kokichi Futatsugi and his collaborators, who
developed the language CAFE [46]. All three languages owe their origin to the
OBJ-family of languages, a project started in California by Joseph Goguen in
the early 80s, following his earlier work on Clear [16].

The main novelty of MAUDE was to consider that both functional and
concurrent programming could be addressed uniformly by rewriting, depending
whether confluence was satisfied or not. Elan goes even further by internalizing
rewriting in the so-called ρ-calculus via a specific binding construct general-
izing the λ-calculus [8], while Cafe insists on the use of co-algebrsa [23]. The
use of rewriting as a functional model was of course well accepted [22], while
the use of rewriting for non-functional programming had been advocated before
for particular applications, especially unification, and more generally constraint
solving [37].

There are even more familiar programming languages that use rule based
constructs: this is the case of the Ocaml family of languages, where the case
construct bases selection on pattern matching.

Another language based on rewriting is Isabelle, implementing Nipkow’s
higher-order rewrite systems [44]. Isabelle is targeting applications in which pro-
grams operate on data structures with binders, like program transformations.
What makes this work apparently different from a language like MAUDE is that
it uses higher-order pattern matching instead of plain matching. But this singu-
larity is not really relevant: MAUDE uses pattern matching modulo associativity
and commutativity, and a close look to Nipkow’s higher-order rewrite systems
shows that the problems are exactly those of rewriting modulo [39].

4 Tree Automata

At the first RTA, there was not a single paper using tree automata. There were
of course papers in formal language theory using word automata. But no tree
automaton. However, there were many informal talks about an almost published
paper by David Plaisted, who solved the problem of inductive reducibility [51]1.

It is easy to see that tree automata are equivalent to OBJ’s order-sorted
signatures, and they were actually introduced in the 60s in a related context,
1 Actually, the proof was wrong. I had found a counterexample to a simple lemma

stated without proof, and the whole proof could not be repaired. When Emmanuel
Kounalis and myself explained the problem to David Plaisted, he succeeded to found
a new, completely different proof at the blackboard in ten minutes. This was really
impressing: he understood our counterexample much better than ourselves. This new
proof contained a complex argument that was much later understood as a pumping
lemma on tree automata with equality tests [17].
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see also [14]. But they had been almost completely forgotten. In some sense,
RTA’85 was their second birth. They were later used in many different context,
with the strong push coming from the rewriting community: set constraints [26],
higher-order matching [33], strong sequentiality [19], Presbuger arithmetic [12],
AC-inductive-reducibility [43], inductive theorem proving [15] and more. The
theory of tree-automata and its many applications is studied in depth in [32].

5 Proof Assistants

Many will agree with me when saying that Isabelle, Coq and PVS are three
among the most important proof assistants. Isabelle is based on Nipkow’s higher-
order rewriting [44]. PVS is based on Shostak’s decision procedure for a com-
bination of convex theories, whose ideas are clearly based on rewriting [52, 53].
Originally based on the Calculus of Constructions [21], then on the Calculus of
Inductive Constructions [49], Coq is now rapidly moving towards a heavy use
of rewriting, for defining inductive types on the one hand [10], and for speci-
fying the conversion rule on the other hand [9]. None of these proof-assistants
was available in 1985. At that time, most people in our community believed in
the future of first-order provers, rather than higher-order ones. The situation
is now reversed: many believe in the superiority of higher-order languages for
modeling purposes: first-order provers are often seen as supplementing tactics
for higher-order provers. And first-order decidability results are accordingly seen
as a particular way to automate the higher-order prover in these cases. An even
stronger argument is the existence of the Curry-Howard isomorphism which al-
lows to see intuitionistic logic as a kind of abstract machine for implementing
formal proofs. On the other hand, first-order provers have been successful for
solving very particular problems such as crypto-attacks, for which a blind search
appears adequate [24].

My own perspective on this question is that the coming years will see a new
generation of proof assistants, in which (higher-order) rewriting superseeds the
lambda calculus. Isabelle is the first prover of this kind, but has lost many of the
important features of Curry-Howard based calculi. I anticipate both approaches
to merge in the coming years, and some work has been done already [9, 11].
An other merge is coming as well: dependent types are making their way in
programming languages [55], while modules and functors have been successfully
added to the calculus of inductive constructions [18] as well as a compiler for
reductions [29, 30]. This move towards harmony will make its way through in
the coming years. I do not see a good reason in the present dichotomy between
programming languages and proof assistants.

6 Conclusion

I tried to sketch what important unexpected developments based on rewriting
took place in the past. I will try now to give my idea about the future.

First, I think that we need to continue investigating the fundamental proper-
ties of term rewriting formats: type preservation, termination and Church-Rosser
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properties are equally important. Any progress there means a progress with the
applications. Another important fundamental question is the relationship be-
tween term rewriting and tree automata. We need to investigate these questions
in various contexts, first-order, higher-order, and modulo. And we need to con-
tinue our work on abstract rewriting, in the light of Huet’s work for the first-
order case [34], and what was later done for the modulo [38] and higher-order
cases [27]. The higher-order case, especially, needs more work, since the only
abstract property investigated there was the finite development theorem.

Second I think we need to continue investigating the efficient implementation
techniques of rewriting systems. Much has been done for the first-order case with
Maude and Elan, and with the work of Ganzinger’s group and of Nieuwenhuis’s
group with the SATURATE and SPASS systems, but this is not the end of
the road. Since type-checking in proof-assistants like Coq relies on rewriting
techniques, compilation techniques must be throroughly studied which combine
first- and higher-order pattern matching.

Third, I think that we need to understand which other areas of computer
science may benefit from our work. A recent interesting example was provided
by security protocols: since rewrite rules can be seen as a specification language,
security protocols can be modeled by rules. Using this approach, Rusinowitch
showed that finding an attack to a cryptographic protocol could be achieved by
using narrowing. Comon and others also showed that rewriting was a good tool
for modeling security protocols since it allowed to smoothly integrate properties
of the cryptographic primitives which were naturally expressed as equations.

Last, but not least, I think that we need to integrate the different existing
kinds of rewriting, plain rewriting based on plain pattern matching, rewriting
modulo based on plain pattern matching, rewriting modulo based on pattern
matching modulo, normalized rewriting, normal rewriting, higher-order rewriting
based on plain pattern matching, higher-order rewriting based on higher-order
pattern matching, higher-order rewriting based on higher-order pattern matching
modulo, into a single coherent framework in order to better understand how to
design an abstract machine to implement them all, and make them available to
users. This question is of course directly related to my view on the future of
proof assistants that I sketched in the previous section. It is also related to the
need of an abstract investigation of the fundamental properties of term rewriting
formats
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24. Michaël Rusinowitch et alii. The aviss security protocols analysis tool – system
description. In Proceedings of Computer-Aided Verification 02, 2003.

25. Laurent Fribourg and Morcos Veloso Peixoto. Automates concurrents à con-
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Open closed open.
That is Man.

—Yehudah Amichai (Israel)
Open Closed Open (1998)

Abstract. As a window into the subject, we recount some of the his-
tory (and geography) of two mature, challenging, partially open, partially
closed problems in the theory of rewriting (numbers 13 and 21 from the
original RTA List of Open Problems). One problem deals with (criteria
for left-linear) confluence and the other with termination (of one linear or
string rule), the two paradigmatic properties of interest for rewrite sys-
tems of any flavor. Both problems were formulated a relatively long time
ago, have seen considerable progress, but remain open. We also venture
to contemplate the future evolution and impact of these investigations.

1 Introduction

Twenty years later, and we’re still hitting on a keyboard.

—Michael Capellas, Chairman and CEO of Compaq (USA),
Twentieth Anniversary of the PC,

Tech Museum of Innovation (August 2001)

Rewriting – in the sense of systematically replacing symbolic terms – is as
old as algebra. Diophantus of Alexandria1 (Egypt) in his famous (ca. 3rd c. ce)
book, Arithmetica2, reduced determinate and indeterminate equations to a form
he knew how to solve. The use of rewriting nowadays in automated deductive
engines derives from this ancient nascence of symbolic computation.

The formal study of rewriting and its properties began in 1910 with a paper
by Axel Thue (Norway) [89]. Significantly, most early models of computation

1 After whom Diophantine equations are named.
2 It was in his copy of

this book that Pierre
de Fermat (France)
wrote this frustrat-
ingly famous marginal
note:

Cubem autem in duos cubos, aut quadratoquadratum in
duos quadratoquadratos, et generaliter nullam in
infinitum ultra quadratum potestatem in duos ejusdem
nominis fas est dividere: cujus rei demonstrationem
mirabilem sane detexi. Hanc marginis exiguitas non
caparet.

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 376–393, 2005.
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were based on notions of rewriting strings or terms: Thue systems [90]; Andrei
Markov’s (Russia) normal algorithms [66]; and Alonzo Church’s (USA) lambda
calculus [10]. This all led to the continued study of rewriting in the context of
programming language semantics.

As a window into the history of rewriting, I have chosen two problems (num-
bers 13 and 21) from the original RTA List of Open Problems [19]. The first
relates to confluence and the second, to termination.

Confluence is perhaps better known as the (equivalent) “Church-Rosser prop-
erty,” after a 1936 paper by Church and Barkley Rosser (USA) [11]. Properties
of this property were studied shortly thereafter by Maxwell Newman (England)
[73], of “Newman’s Lemma” fame, and remain central in Combinatory Logic and
Lambda Calculus (the immediate ancestors of the study of rewriting). Thue’s pa-
per foreshadowed the use of these and other concepts in solving word problems;
see the review by Magnus Steinby (Finland) and Wolfgang Thomas (Germany)
[85]. Already in 1967, Saul Gorn (USA) [37] discussed the Church-Rosser prop-
erty for the use of definitions in symbolic computation.

Termination (“uniform termination” or “strong normalization”) is important
in automated deduction applications, to guarantee that simplification of formulæ
does not itself go on forever. Simplification is often essential for reasonable per-
formance of theorem provers. Formal proofs of termination are as old as Euclid’s
(Egypt) algorithm for greatest common divisor.

Gorn also did early work on proofs of termination of symbolic computation.
In the abstract to his 1973 paper [36], he wrote3:

This paper . . . explores such questions as (1) What different interpre-
tations can be given to the expression “the intent of the process”? (2)
Does the process, or should the process end? In either event, how do
we prove it? (3) If the process does end, how do we prove that it does
what was intended? This question may be meaningful even if the process
does not end. (4) Is there a whole class of processes that stand or fall
together? Can we adapt our proof of conclusiveness to cover the whole
class? (5) Do the processes of the class yield the same or different results,
and whichever it is, how do we prove it?

The RTA list open problems, whence the examples herein are drawn, was cre-
ated by Jan Willem Klop (The Netherlands), Jean-Pierre Jouannaud (France),
and myself (USA, at the time) on the occasion of the fourth Rewriting Tech-
niques and Applications conference, held in 1991 (in Italy) and chaired by the
3 Gorn is indirectly responsible for my interest in the subject of termination of rewrit-

ing: He discussed the issue with Bob Floyd (USA), who posed a question on the
subject on a 1967 qualifying exam in computer science at Carnegie-Mellon Univer-
sity. Zohar Manna (USA) solved the problem and went on to write a dissertation
on termination. Later, Zohar showed me a 1970 paper [65] of his with Steve Ness
(USA) on termination of rewriting, notes of his discussions with Steve and with Amir
Pnueli (Israel) on completeness of homomorphism-based methods, as well as the dis-
sertation of another CMU student, Renato Iturriaga (USA, at the time), thereby
sparking my unquenched interest.
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late Ron Book (USA)4. Its 44 problems were compiled thanks to the contri-
butions of many researchers who responded to messages on Pierre Lescanne’s
(France) rewriting mailing list5, and from various older lists. Updated lists sub-
sequently appeared in the proceedings of RTA ’93 (Canada) [20] – which added
33 more problems, RTA ’95 (Germany) [21] – 10 more, and RTA ’98 (Japan) [23].

Since October 1997, the list of open problems has been maintained as a web
service at

http://www.lsv.ens-cachan.fr/∼treinen/rtaloop

This effort is spearheaded by Ralf Treinen (France). Currently, the list comprises
103 problems6, at least 28 of which have – gratifyingly – been solved to date,
and many more have enjoyed significant progress.

2 Left-Linear Confluence

E[lementary Problem] #1541:
Find the maximum7 and minimum8 numbers of

“Friday the 13th’s” that can occur in a year.

—George Clark Bush (Canada)
The American Mathematical Monthly (1988)

The thirteenth problem in the original list of open problems is:

Problem #13: Give decidable (sufficient) criteria for left-linear
rewriting systems to be Church-Rosser.

This problem was suggested for inclusion by Jean-Jacques Lévy (France)9.
As already mentioned, the Church-Rosser property, ↔∗ ⊆ →∗ ∗← (conver-

gence implies joinability), had been thoroughly investigated in the context of
lambda calculi and combinatory logic, and shown equivalent to the diamond
confluence property ∗←→∗ ⊆ →∗ ∗← (meetability implies joinability) by Max
Newman (UK) in 1942 [73]10.

4 For a summary of Ron’s contributions to the theory of Thue systems, a.k.a. string
rewriting, see Bob McNaughton’s (USA) [63]. Book and Friedrich Otto (Germany)
co-authored a monograph on the subject [7].

5 Pierre has been caretaker of this mailing list since he founded it in 1988.
6 One more than Harvey Friedman’s (USA) list of hard problems in mathematical

logic in J. Symbolic Logic 40(2), pp. 113–129 (1975).
7 Three, as shown by Charles Heuer, AMM 70(7), p. 759. The editors of AMM mis-

takenly asserted that there can be four if any 12-month period counts as a “year.”
Their retraction appeared in AMM 98(7), p. 649.

8 One or none, depending on what is meant by a “year” (AMM, ibid.).
9 Jean-Jacques is well-known for his work on optimal strategies in the lambda calculus

and for his joint work with Gérard Huet (France) on sequentiality of rewriting [47]
– work that had remained in technical-report form for some 12 years.

10 I can’t help preferring →∗ over � for the reflexive-transitive closure.
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In 1973, Barry Rosen (USA) [81] provided a proof (albeit for the variable-free
case) that shows that when a term-rewriting system is orthogonal11, confluence
is guaranteed. In other words, when left-linear systems are also non-ambiguous
(no left-hand side unifies – after renaming apart – with another left-hand side,
or with any non-variable proper subterm of any left-hand side), the system is
confluent. This is for much the same reason as combinatory logic is Church-
Rosser, and is usually proved by recourse to an intermediate relation, such as
parallel rewriting→‖ (for “rewriters,” this means contracting redexes at disjoint,
“parallel” positions), or complete developments →⊥(in the sense of contracting
all residuals)12.

Newman had also shown that termination plus local confluence yield the
(global) confluence property13. Huet, in his influential 1980 paper [44], referred
to the Church-Rosser property as “confluence,” and provided a beautiful proof
of this “Diamond Lemma,” based on Noetherian (well-founded) induction14.
Steve Kleene (USA) had given (according to Roger Hindley (UK) [41]) a simple
counterexample to confluence sans termination: • ← ◦ ←→ ◦ → •. But the
rewrite system for this graph has more than one rule with identical left side.

In the late 1960s, Don Knuth (USA), with a student, Peter Bendix (USA),
wrote a seminal paper [52] in which they showed that confluence of critical pairs
is sufficient (and necessary) for confluence of a terminating, but not necessarily
left-linear, system15. Using the notation s ←�→ t for the critical-pair relation
s = u[r]μ ← u[l]μ = gμ → dμ = t (for rules l → r and g → d and most general
unifier μ of l with a non-variable subterm of g in context u), this amounts to
←�→ ⊆ →∗ ∗← (joinability, or resolvability, of critical pairs)16. In his paper,

11 I take some pride in having coined this term to replace its predecessors, “regular”
and “non-ambiguous linear.”

12 My new notation for multi-steps at orthogonal positions.
13 Marc Bezem (Norway) and Jan Willem Klop collect four proofs of this fact in the

textbook [88] which they, and Roel de Vrijer (The Netherlands) edited: Newman’s,
Huet’s, one based on decreasing diagrams, and one Jan Willem and I used, based on
a multiset ordering of terms. For a discussion of its mechanization, see the column
by Bezem and Thierry Coquand (Sweden) [5]. Unaware of Newman’s lemma, several
others after him proved weaker versions.

14 This – the most general form of mathematical induction – is named after the great
twentieth century algebraist, Emily Noether (Germany and the USA).

15 Knuth is a great-great-grand-student of Thue. When I was a student, Knuth gave
me an offprint of this paper (dated 1969 – the conference at which it had been
presented took place in 1968), since I was working on termination methods and the
paper included what is now called the “Knuth-Bendix ordering.”

16 Rather than argue æsthetics, as to which way a critical pair ought to be oriented, in
those cases where it matters, we use this explicit notation. Critical pairs had been
presaged in a paper by Trevor Evans (USA) [24], which served as starting point
for Knuth’s investigations.17 Knuth also reinvented (syntactic) unification, as used
by Alan Robinson (USA) in his resolution proof procedure [80], for the purpose of
calculating critical pairs, since the goal is to obtain as generic a pair as necessary
to encompass all critical peaks between two rules. Bendix implemented Knuth’s
algorithm in Fortran.
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Huet also observed that Knuth’s proof of his Critical Pair Lemma does not
require termination; in other words, that a system is locally confluent if, and
only if, its critical pairs resolve.

Huet provided an unambiguous (critical-pair-free; hence, locally conflu-
ent) example of the necessity of left-linearity for (global) confluence of non-
terminating systems: f(x, x) → a, c→ g(c), f(x, g(x)) → b. Klop gave a similar
one (with only one non-left-linear rule, but two non-terminating ones) in his foun-
dational study [51]: f(x, x) → a, c → g(c), g(x) → f(x, g(x)). Six years later,
my student, Sivakumar (USA, at the time) constructed the following (weakly)
normalizing (every term has a normal form) and unambiguous example of non-
confluence: f(x, x) → g(x), f(x, g(x)) → b, h(c, y)→ f(h(y, c), h(y, y)).

So, confluence is decidable for (finite) terminating systems, by the Critical
Pair criterion. It is, however, undecidable for non-terminating systems, since the
uniform word problem is, in general, undecidable, even for string (semi-Thue)
rewrite systems (see below).

The question that now begged asking was how – notwithstanding the above –
one might establish the confluence of ambiguous (overlapping) non-terminating
systems. Indeed, functional programmers love to write interpreters and to use
streams, but still desire unique normal forms. Though they are usually content
with left-linear rule patterns, it is quite natural to code nondeterministically,
with ambiguous left sides18.

Accordingly, Huet proved that term-rewriting systems that are linear (that
is, both left- and right-linear) are confluent if, but not only if, the two sides
of every critical pair reduce in at most one step to a term reachable from the
other side. In symbols: ←�→ ⊆ (→= ∗←) ∩ (→∗ =←) implies confluence.
Huet also included a counterexample of Lévy’s, showing the necessity for right-
linearity. This criterion, however, is not very useful, since right-linearity is usually
an impractical constraint, except in the string-rewriting setting (see the next
section).

In any case, one cannot hope for a decidable necessary and sufficient critical-
pair criterion in the general non-terminating linear case.

It was always clear that trivial critical pairs (of what are called “weakly
orthogonal” systems: ←�→ ⊆ =) do no harm – vis-à-vis confluence, at least.
Huet also proved that, without regard to right-linearity, left-linear systems are
confluent if, but not only if,←�→ ⊆→‖, a property he dubbed “parallel closed.”
But his proof only works when the resolving parallel step applies to the reduct
of the lower diverging step (on the open side of the symbol �).

Several years subsequent, in 1988, Yoshihito Toyama (Japan) [92] relaxed
this condition to allow a resolution of the weak form→‖ ‖←, but only for critical
pairs generated from two rules overlapping at their roots, a situation that we will
capture with a symmetric symbol: ←��→. More precisely, Toyama’s sufficient
condition is: ←�→ ⊆ →‖ ∪

(
[→‖ ∗←] ∩ [→∗ ‖←] ∩ [←��→]

)
. In other words,

root overlay pairs need only satisfy the weaker requirement [→‖ ∗←] ∩ [→∗ ‖←].

18 Whether non-terminating systems are necessary in the more general framework of
logic programming is a question; compare my arguments in [16].
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These results and many others are usually based on strong versions of local
confluence, for which all one-step divergences can be resolved by some variant of
rewriting for which both terms resolve in at most one step19. But Huet’s work
left open various alternative conditions on critical pairs20:

Problem #13a: Is ←�→ ⊆ ‖← also enough for confluence?

Problem #13b: If yes, then maybe some critical pairs may re-
solve with a step in this direction (‖←), and others the other
way around (→‖)? In other words: Is ←�→ ⊆↔‖ enough (where
the intent is the symmetric closure of →‖)?

Problem #13c: If not, then what about a stronger condition,
namely, ←�→ ⊆ =←?

Problem #13d: If yes, then one could ask whether ←�→ ⊆↔=

suffices?

A positive answer to any of these would provide a new criterion for confluence,
and would suggest a Knuth-Bendix–like completion procedure for potentially
non-confluent systems, adding equations to ensure that the condition is satisfied.
Of course, for non-right-linear systems, a resultant critical pair may be non-linear
on both sides, and, hence, unorientable. On the other hand, if these conditions
are insufficient, counterexamples will have to be (besides left-linear) non-right-
linear, non-terminating, and overlapping. To date, none of these conjectures has
succumbed to a counterexample.

In 1991, Rolf Socher-Ambrosius (Germany) [84] wrote a short report on Prob-
lem #13a, in which an arbitrary ordering of rules induces a multiset-ordering
condition on the rules used to resolve critical pairs.

In 1996, Bernhard Gramlich (Germany, at the time) [39] suggested expand-
ing the overlaps being considered to include “parallel critical pairs21.” Paral-
lel rewriting is a standard tool for proving confluence of orthogonal systems,
since it satisfies the diamond property ‖←→‖ ⊆ →‖ ‖←. The idea is to han-
dle critical overlaps of such parallel steps, by requiring ←�→ ⊆ (→‖ ∗←) ∩(
→∗ ∪

(
[→∗ ‖←] ∩ [←��→]

))
for all ordinary critical pairs, plus ‖←�→ ⊆ →∗

∪
(
[→‖ ∗←] ∩ [→∗ ‖←] ∩ [←��→]

)
for all parallel pairs.

19 This is an opportunity to apologize for sowing confusion by defining “strong conflu-
ence” in [18] as the “subcommutative” property, namely, ←→ ⊆ →= =←, whereas
Huet used the term for his weaker condition ←→ ⊆ (→= ∗←) ∩ (→∗ =←).

20 Problem #13b was not posed explicitly in [19], but was included, for example, by
Bernhard Gramlich (Germany, at the time) in [39].

21 Gramlich generously attributes this extension of the notion of critical pairs to what
underlies what are known as “critical pair criteria,” as in the works of Franz Winkler
and Bruno Buchberger (Austria) [93], Wolfgang Küchlin (USA, at the time) [54],
Deepak Kapur (USA), Dave Musser (USA), and P. Narendran (USA) [49], and my
student, Leo Bachmair (USA), and myself [1]. Around the same time, Dave Plaisted
(USA) and Andrea Sattler-Klein (Germany) [79] also employed parallel critical pairs,
but for other purposes.
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Actually, parallel critical pairs and a related result were already present in an
unpublished 1981 report in Japanese by Toyama [91]. There, the condition was
the weaker inclusion ←�→ ⊆ (→‖ ∗←) ∩ (→∗ ‖←) for ordinary critical pairs,
plus ‖←�→ ⊆ →∗ ‖← for all parallel overlaps – the latter, however, subject to
the extra requirement that all variables that appear in the contractum(s) of the
resolving parallel step were also within the critical parallel redexes.

The next step transpired almost immediately, when Vincent van Oostrom
– in discussions with Gramlich – realized that whatever can be said for par-
allel rewriting can also be said for developments22. Accordingly, he defined a
development-closed criterion, improving on Toyama’s 1988 weakening of Huet’s
1980 parallel-closed condition, by replacing →‖ with →⊥ [76]. Specifically, a
system is Church-Rosser if ←�→ ⊆ →⊥ ∪

(
[→⊥ ∗←] ∩ [→∗ ⊥←] ∩ [←��→]

)
.

In the special case where the only overlaps are at the root, the condition is
←��→⊆

(
[→⊥ ∗←] ∩ [→∗ ⊥←]

)
, which is satisfied when ←��→⊆ (→⊥⊥←).

This led Aart Middeldorp (Japan, at the time) to raise the following question:

Problem #13-1: What if the critical pair reduces by an incom-
plete development, that is, if ⊥←�→ ⊆ →∅, where →∅ signifies
that only some of the redexes of a complete development →⊥

are contracted?

van Oostrom thinks the critical-pair theorem still holds, despite the fact that
the invariant used in his proof for complete developments fails23.

Plus, we have yet another unanswered question:

Problem #13-2: Is ⊥←�→ ⊆ ⊥← enough for confluence?

One can go further, by considering overlaps between developments. This con-
dition, based on what I will call “orthogonal” critical pairs (but not define)24,
was presented by Satoshi Okui (Japan) at RTA ’98 [74]. The conditions are:
←�→ ⊆ (→∗ ⊥←)∩(→⊥ ∗←) for ordinary critical pairs, plus⊥←��→ ⊆→∗ ⊥←
for all orthogonal pairs. Independently, van Oostrom had obtained the same re-
sult – again, in the higher-order context. Whereas parallel reduction is a problem
in the higher-order case, complete developments work nicely for both first-order
and higher-order rewriting25. So, Okui and van Oostrom teamed up, and now
have an unpublished generalization to the higher-order case.
22 van Oostrom was motivated by attempts of Tobias Nipkow (Germany) and Richard

Mayr (Germany, at the time) to extend Huet’s condition to handle Nipkow’s “higher-
order pattern” rewrite systems. Some advantages of reasoning with orthogonal steps
in Church-Rosser arguments had been pointed out by Masako Takahashi (Japan)
in 1995 [87]. I heard Masako present her ideas at the Toyohashi Symposium on
Theoretical Computer Science in 1990.

23 van Oostrom: “I recall that in 1995 I came ‘close’ to solving it in the plane to Japan,
but then we arrived, and I’ve never worked on it since.”

24 Instead of “simultaneous” or “multi-step” critical pairs.
25 Vincent presented his ideas at a 1995 seminar in Munich (Germany), where he was

holding a postdoctoral position with Tobias Nipkow at the time. He applied it to
βηΩ-reduction – see Henk Barendregt’s (The Netherlands) book [3, p. 388] – with
eight orthogonal-critical pairs.
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Significant progress on Problem #13a was made by Michio Oyamaguchi
(Japan) and Yoshikatsu Ohta (Japan) in 1997 [77, 78]. Let →# stand for
→‖ ∪ Λ←, where Λ← signifies a root-step. They require ← � → ⊆ # ←
∪

(
[→# ∗←] ∩ [→∗ #←] ∩ [←��→]

)
, but with an additional side condition on the

parallel steps. The proof involves a beautiful invariant in terms of “outside in”
sequences of →‖.

Lastly, five years ago, Toshimasa Matsumoto (Japan) [69] devised a new
condition on the parallel resolution of ordinary critical pairs, based on Okui’s
work, but the extent of its applicability is unknown.

Perhaps critical pair criteria (see fn. 21), Nicolaas de Bruijn’s (The Nether-
lands) and van Oostrom’s decreasing diagrams [8, 75], and/or abstract semantic
notions of criticality, as in Claude Kirchner’s (France), Maria Paola Bonacina’s
(Italy), and my recent work [6, 22], can contribute to a fuller understanding of
this fundamental problem.

3 One-Rule Termination

If you leave it in existence and forget about it,
all your future rewrite commands

will be needlessly slow.

—GNU Emacs Calc 2.02 Manual

Another problem on the original list was:

Problem #21a: Is termination of one (left- and right-) linear
rule decidable?

This problem was contributed by Max Dauchet (France), who had recently (at
RTA ’89) shown that left-linearity alone is insufficient for decidability. This was
the culmination of a series of efforts to delineate the borders of decidability.

Richard Lipton (USA) and Lawrence Snyder (USA) had claimed in a footnote
to a 1997 paper [60] that three rules suffice for undecidability of termination. As
they had not responded to a request for a proof, Huet and Dallas Lankford (USA)
set out, in an unpublished report [45], to find one26. They used a string-rewriting
simulation of Turing machines, similar to that used by Ann Yasuhara (USA) in
her book on Recursion Theory [95]. Thus termination of string-rewriting systems
was provenly undecidable – for an unbounded number of rules.

In the summer of 1980, visiting Lévy and Huet at INRIA, I managed to
encode Turing machines in two rules, one of which was non-linear. Dauchet went
one giant step further, and found a way of showing undecidability for only one
non-linear rule [12, 13]. Pierre Lescanne (France) in 1994 [59] redid this more
naturally, by reducing the Post Correspondence Problem to this case. So the

26 Dallas Lankford was an early player in the field, along with Mike Ballantyne (USA).
Dallas was probably the first to realize, in 1975 [57], that a process like Knuth-
Bendix completion, which uses oriented equations, could replace paramodulation as
a means of handling equality within resolution theorem provers.
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question (still unanswered) was (and is) whether termination of one linear rule
is decidable.

In a recent paper [33], Alfons Geser (USA), Aart Middeldorp (Austria), Enno
Ohlebusch (Germany), and Hans Zantema (The Netherlands) leave the following
question unanswered:

Problem #21-1: Is termination decidable for one (not neces-
sarily linear) normalizing rule?

Geser (Germany, at the time) constructed a (overlapping) string rule that is
normalizing but neither leftmost terminating nor rightmost terminating, and
one that is rightmost terminating but non-terminating [27].

Most common term-rewriting termination proofs use simplification orderings,
making terms always bigger than their subterms27. Aart Middeldorp (Japan, at
the time) and Bernhard Gramlich (France, at the time) used Dauchet’s trick and
showed that it is also undecidable whether there exists a simplification ordering
that proves termination of a single term-rewriting rule [71] (correcting a claim
in [48]).

This negative answer suggested yet another problem:

Problem #87: Is it decidable whether a single term-rewriting
rule can be proved terminating by a monotonic ordering that
is total on ground terms?

Such orderings are important in deduction engines; see, for example, the work on
unfailing completion of my former student, Jieh Hsiang (USA, at the time), with
Michaël Rusinowitch (France) [43], and of Leo Bachmair (USA), Dave Plaisted
(USA), and myself [2]. Zantema, who posed this one-rule problem, already knew
that it is undecidable for more rules [96]. A negative solution to this question
was given two years later by Geser, Middeldorp, Ohlebusch, and Zantema [32].

Now, one might think that a one-rule system is nonterminating only if it is
looping in the sense of deriving a term from one of its subcontexts. But, it turns
out that there is a non-looping, non-terminating one-rule term system, as well
as such a two-rule string system [34]. This raises the following question:

Problem #95: Is there a one-rule string-rewriting system that
is non-terminating but also non-looping?

A loop would be a string derivation of the form s →+ usv. Bob McNaughton
(USA) [62] has conjectured that no such rule exists.

This all brings us around to a perhaps less ambitious, but long-standing open
problem for the much simpler case of string rewriting:

Problem #21b: Is termination of one string rule decidable?

This had been mentioned in my survey with Jean-Pierre Jouannuad (France)
[18], and was included in the second edition of our open problem list, in 1993.
27 What I called “simplification orderings” in [14] are (in the fixed-arity case) the

“divisibility orders” of Graham Higman (UK) [40].
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Length-decreasing rules (however many) are obviously terminating. In
1991, Anne-Cécile Caron (France) had shown that termination is undecidable
for multi-rule non-length-increasing string systems [9]. But a single length-
preserving rule is only nonterminating when both sides are identical. In the
latter case, one may still enquire about the length of derivations, the subject of
a 1985 paper by Yves Métivier (France) [70], and of yet another problem in our
original list:

Problem #20b: What is the best bound on the length of
a derivation for a one-rule length-preserving string-rewriting
(semi-Thue) system? Is it quadratic in the size of the initial
term, as conjectured in [70], or of order nk (for rules of length
k and input of length n) as proved there?

Métivier had provided a lower bound of n2/4, easily reached by the derivation
from bn/2an/2 for the rule ba→ ab. His conjecture that this was also the upper
bound for a binary alphabet was proved a few years later by Alain Bertrand
(France) [4]. In that paper, Bertrand floated a new combinatorial conjecture
relating to the positions of the letters in the input word28.

String systems are confluent when no suffix of a left side is also a prefix, since
that makes them orthogonal. For right-linear systems, in general, and string sys-
tems, in particular, termination of all forward closures (a subset of derivations in
which only created redexes are contracted) is valid evidence of termination [15],
an idea that grew out of an unpublished preliminary note [58] by Lankford and
Dave Musser (USA). Moreover, when there are no left-side overlaps, the specific
string-rewriting strategy (leftmost, rightmost, etc.) does not affect termination,
and (weak) normalization implies termination [17, 38].

As an example of a difficult, though non-overlapping, length-increasing rule,
Zantema suggested bbaa → aaabbb, a problem that itself engendered a spate
of interesting work by my student, Charles Hoot (USA) [17], Elias Tahhan [86]
(France, at the time), Geser [25], and others. A complete classification of termi-
nation for a rule of the form biaj → akb� was presented by Geser and Zantema
at RTA ’95 (see [97]), which, in turn, was subsumed by the later work of Géraud
Sénizergues (France) [82] and of Yuji Kobayashi, Masashi Katsura, and Kayoko
Shikishima-Tsuji (all from Japan) [53], for biaj → r, where r ∈ {a, b}∗.

Geser picked up the gauntlet, obtaining partial results for single string-rewrite
rules, culminating in his dissertation [29]. Rules with only one overlap had al-
ready been solved by Winfried Kurth (Germany) in his thesis [55], who also
proved decidability of existence of loops of lengths 1–3 for one-rule string sys-
tems, and showed decidability for lone rules with right sides no more than six
letters long [56]. Building on ideas of McNaughton [61, 62], Geser showed decid-
ability for up to nine letters [26]29. More recently, Geser [30] proved that termi-
28 From inception and until recently, our on-line list stated: “Rumor has it that the

conjecture has been shown true.”
29 Geser: “My termination sieve had a bug that I only detected after finishing my

habilitation thesis in 2002. As a consequence of this bug, eight additional rules
remain that cannot be solved by the methods in this paper.”
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nation is decidable for one-rule systems that have precisely one overlap between
a prefix of the left and a suffix of the right and vice-versa. For fewer overlaps, this
was already known. In [83], Shikishima-Tsuji, Katsura, and Kobayashi reduced
the termination problem for a confluent overlapping rule to the non-overlapping
case.

A grid rule is one in which some letter appears equally often on both sides
(or diminishes). Grid rules cover all systems amenable to a total simplification
ordering. Geser showed that termination is equivalent to the non-existence of
loops of length one or two, which is decidable [28].

Dieter Hofbauer (Germany) and Johannes Waldmann (Germany) showed
recently that string systems admitting a termination proof by the set exten-
sion (like the multiset extension, but for sets) of a symbol precedence preserve
regular languages [42]. A string system is said to be match-bounded if only a
finite section of a system annotated with symbol numbers can be used in any
(labelled) derivation. Geser, Hofbauer, and Waldmann showed, in a series of pa-
pers, that match-bounded string systems are terminating; match-boundedness
of right sides of forward closures is a stronger termination criterion; and inverse
match-bounded string systems have a termination problems; see [31]. Decidabil-
ity of match-boundedness is open.

Single-threaded derivations, where each pair of successive rewrites overlap,
were introduced by Wojciech Moczyd�lowski (Poland; now in the USA) in his
Masters thesis. He showed that one-rule string systems that are cannot con-
sume all of a contractum from the right, nor from both sides, have a decidable
termination problem. The second condition entails that the systems are either
terminating or single-threaded, whence they can be simulated by a two-stack
pushdown automaton; the first implies that one stack’s size is bounded; hence,
the problem is decidable. See his joint paper with Geser [72] in these proceedings.

In sum, the jury is still out on Problem #21b, one string-rule termination.
Plaisted conjectured its decidability long ago; Kurth believes it is in general un-
decidable; McNaughton conjectures that at least the confluent case is decidable.

Turning again to the Church-Rosser property: The critical-pair test of Knuth
and Bendix gave us a decision procedure for confluence of terminating systems,
which, for non-terminating systems, remains undecidable. Confluence for one
string rule is decidable, by the work of Celia Wrathall (USA) [94], but undecid-
able, even for just twelve string rules, as per Yuri Matiyasevich30 (Russia) [67]
(see [88, p. 151]), a bound that has been pared down to five by Matiyasevich
and Sénizergues [68]31. Accordingly, the 1993 list also included the following
question:

Problem #21c: Is confluence of one linear rule decidable?

There are a number of cases for which decidability has been shown regardless
of the number of linear rules. Most recently: Guillem Godoy (Spain), Ashish

30 Of “Hilbert’s Tenth Problem (Diophantine equations) is undecidable” fame.
31 Derivability (accessibility) is undecidable for three string rules [68]. It is, however,

decidable for one; see Bob McNaughton’s (USA) [64].
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Tiwari (USA), and Rakesh Verma (USA) have shown decidability when variables
do not appear deeper than immediately below the outer function symbol [35].

To conclude, the questions raised in this section are interesting and important
for demarcating the boundaries of decidability of termination and confluence.
Their resolution, however, especially in the string case, seems combinatorial in
nature, though some automata-based and residual-theory techniques are now
entering the picture. The methods have ramifications for other decidability and
complexity questions relating to semigroups and monoids (see, for example, the
work of Katsura and Kobayashi with Friedrich Otto (Germany) [50]), topics of
increasing interest in this bio-informatical era.
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Abstract. Proof-carrying code provides a mechanism for insuring that
a host, or code consumer, can safely run code delivered by a code pro-
ducer. The host specifies a safety policy as a set of axioms and inference
rules. In addition to a compiled program, the code producer delivers
a formal proof of safety expressed in terms of those rules that can be
easily checked. Foundational proof-carrying code (FPCC) provides in-
creased security and greater flexibility in the construction of proofs of
safety. Proofs of safety are constructed from the smallest possible set of
axioms and inference rules. For example, typing rules are not included.
In our semantic approach to FPCC, we encode a semantics of types from
first principles and the typing rules are proved as lemmas. In addition,
we start from a semantic definition of machine instructions and safety
is defined directly from this semantics. Since FPCC starts from basic
axioms and low-level definitions, it is necessary to build up a library of
lemmas and definitions so that reasoning about particular programs can
be carried out at a higher level, and ideally, also be automated. We de-
scribe a high-level organization that involves Hoare-style reasoning about
machine code programs. This organization is presented using a detailed
example. The example, as well as illustrating the above mentioned ap-
proach to organizing proofs, is designed to provide a tutorial introduction
to a variety of facets of our FPCC approach. For example, it illustrates
how to prove safety of programs that traverse input data structures as
well as allocate new ones.

1 Introduction

In our first presentation of the semantic approach to foundational proof-carrying
code (FPCC) [2], we encoded a semantics of types and proved typing rules as
lemmas from the basic definitions. We also gave a direct encoding of machine
semantics from which we built several layers of definitions so that reasoning
about programs was similar to reasoning using Hoare-style program verification
rules. This work extended the original proof-carry code (PCC) work [13] which
stated typing rules as axioms and generated a safety theorem using a verification
condition generator (VCG). Both the axioms and the VCG were parts of the
system that had to be trusted.

In FPCC, much progress has been made in a variety of directions since our
original work. Type systems that are currently handled are more sophisticated

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 394–406, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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and include contravariant recursive types [3] and mutable references [1]. Also,
larger machine instructions sets have been encoded [9]. In addition, foundational
versions of typed assembly languages (TAL) [10] have been developed for use in
FPCC systems (e.g. [6, 14, 15]). Also, an alternative syntactic approach has been
explored [8].

Although we presented an example in our first account [2], it was not large
enough to illustrate the structure of proofs of safety in general, or demonstrate
the style of reasoning that is used to build such proofs. This paper attempts to
fill this gap. Although the example is larger, we keep the semantics simple. We
only require the simple semantics of types and the same simple set of machine
instructions as in our first account. Because any FPCC system is built in layers
so that reasoning about particular programs is done at a fairly high level, this
example could be carried over fairly directly to current FPCC systems which
use machine instruction sets for real machines and more complex type systems.
Like our previous work, we adopt the semantic approach to FPCC here. A more
detailed comparison to syntactic approaches is future work.

The example presented here is a machine language program which reverses a
list of integers. This example is complex enough to require recursive data types.
It takes a list as input, and the computation includes traversing this input list as
well as building a new one. The latter operation requires allocating new memory
along the way. In addition, the program uses most of the instructions available
in our simple instruction set.

After presenting the example program in Sect. 2, we present the typing lem-
mas in Sect. 3, followed by the encoding of machine instruction semantics. We
present the machine semantics in two steps. As a first step, we prove the safety
of our example program with respect to a set of Hoare-style program verifica-
tion rules for machine instructions given in Section 4. Using such rules is fairly
similar to the use of a VCG in the original PCC framework [13], but provides a
slightly higher level of security. In original PCC, the safety proof is a proof of
the formula output by the VCG; the VCG program must be trusted. Here, the
proof steps which apply the Hoare-style rules are encoded as part of the safety
proof. We must trust these rules because they are a part of our basic safety
policy, but this should be simpler than trusting a VCG program. Roughly, using
the Hoare rules corresponds to recording the primitive steps of the VCG in the
proof so that they can be later checked. After presenting these rules, we discuss
the safety proof of our example program.

Sect. 5 presents the second step in encoding machine instruction semantics.
Here, we follow the approach of Appel and Michael [9]. We start with a direct
encoding of machine instructions as a step relation relating one machine state to
another, and we prove a theorems stating that safety follows from “progress” and
“preservation” lemmas. We do not derive the Hoare rules of Sect 4, but we build
up a library of lemmas which provides reasoning similar in style to using such
rules. Describing both approaches here allows us to compare them. In particular,
our example, discussed again in Sect. 6 provides enough detail to illustrate how
the two styles of reasoning correspond. It would be interesting to take this work a
step further and derive Hoare-style rules from the direct step-relation encoding.
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Hamid and Shao [7], in fact, derive a version of Hoare-style rules in the context
of reasoning using TAL in a syntactic FPCC system. Perhaps their approach
could be carried over to our setting.

The proof discussed in Sect. 6 has been fully formalized in Coq [5]. We began
by adopting and modifying some of the basic definitions in the Coq libraries used
in Hamid et. al.’s syntactic approach to FPCC [8]. Most of the proof was done
interactively, but we discuss its automation in Sect. 7, where we also discuss
other issues and related work.

2 Example

We assume a representation of integer lists where the empty list uses one memory
location and is just a tag whose value is 0. If the list is non-empty, then three
consecutive memory locations are used. The first contains the tag value 1. The
second contains an integer, and the third contains a pointer to the rest of the
list. We assume there are 32 registers, denoted r0 to r31. We introduce our set
of machine instructions by directly presenting the reverse program in Fig. 1. We

100 ST m(r8 + 0) := r0 store 0 at m(r8)
101 ADDC r2 := r8 + 0 store r8’s value in r2

102 ADDC r8 := r8 + 1 increase r8 by 1
103 LD r5 := m(r1 + 0) load tag of list r1 into r5

104 BEQ (r5 = r0) 114 jump to point after loop end
105 LD r3 := m(r1 + 1) load head of list r1 into r3

106 LD r1 := m(r1 + 2) load tail of list r1 into r1

107 ADDC r4 := (r0 + 1) r4 gets value 1
108 ST m(r8 + 0) := r4 store this value in m(r8)
109 ST m(r8 + 1) := r3 store head in m(r8) + 1
110 ST m(r8 + 2) := r2 store r2 (new tail) in m(r8) + 2
111 ADDC r2 := r8 + 0 store r8’s current value in r2

112 ADDC r8 := r8 + 3 update allocation pointer r8 by 3
113 BEQ (r0 = r0) 103 jump back to loop start
114 ADDC r1 := (r2 + 0) r1 gets value of r2

115 JMP r7 return

Fig. 1. A Program for Reversing a List.

assume that register r0 has value 0 and that input register r1 contains a list
of integers. We also assume that there is a set of consecutive memory locations
(unbounded) that are unallocated, and the first location in this set is given by the
value of an allocation pointer whose value is stored in r8. The program allocates
new memory and increases the value of the allocation pointer as needed. The first
3 lines of the program perform the initialization steps; an empty list is stored
at the memory location pointed to by the allocation pointer. Register r2 stores
the reversed list as it is built, and is initialized to point to the new empty list.
Lines 103-113 contain the main loop of the program. First, the tag of the next
location in the input list is loaded into r5 and checked. If it is 0, then the program
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jumps to the point after the loop (line 114), puts the result in r1, and jumps
to some designated return point stored in r7. Otherwise the body of the loop is
executed. In this case, the next 3 memory locations starting at the allocation
pointer are used to store the new list. The tail of the new list is assigned to
the value of r2, which is a pointer to the reversed list as constructed so far,
and r2 is updated to point to the new beginning of the reversed list. Finally,
the allocation pointer is increased by 3, and control returns to the beginning
of the loop. In addition to the instructions used in this program, our simple
programming language also includes a MOV instruction, and another branching
instruction BGT which compares two values and branches if the first is greater
than the second.

To prove safety, the precondition of this program must include our assump-
tions r0 = 0 and that r1 contains a list of integers. We write this latter assump-
tion as the typing judgment (r1 :m,r8 intlist). Typing judgments depend on the
contents of memory and the set of currently allocated locations; in particular
all memory locations used to represent a list must be allocated. We leave the
exact specification of this set unspecified here, but assume that it is a subset
of all memory locations occurring before the allocation pointer r8. To indicate
this dependence, memory m and allocation pointer r8 are given explicitly as
subscripts to the typing judgment.

The precondition of this program must include additional information that
is part of the loop invariant needed to prove safety of the program. For instance,
the policy on readable memory locations is needed. We assume that all memory
locations after a particular location start are readable, expressed as the formula
Policy and defined as follows:

Policy := ∀w.(w ≥ start⇒ readable(w)).

We assume that the memory locations that we are permitted to write to are a
subset of the readable locations. In particular, we assume they are all locations
starting at the allocation pointer r8 and that the allocation pointer r8 is greater
than start:

(r8 ≥ start) ∧ ∀w.(w ≥ r8 ⇒ writable(w)).

The loop invariant also includes safe exit(r7) which states that the return lo-
cation is indeed safe. The complete precondition is stated as the precondition of
the first line of code (line 100), defined as formula I100 in Fig. 2.

Fig. 2 also includes preconditions of some other lines of code in the program.
In general, we write Ic to denote the precondition of line c of the code. In addition
to the precondition of the entire program, we must have preconditions of all of
the jump points, in this case lines 103 and 114. The precondition of line 103
is the loop invariant. When executing the loop body and when exiting it, we
must know the type of register r2, which stores the intermediate results, i.e., the
reversed list as it is being constructed. This typing judgment appears in both I103
and I114. Because line 103 is a load instruction, I103 contains the requirement
that the load is from a readable location. Everything else in I103 comes from
the precondition and remains invariant when executing the loop body. In this
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I100 : Policy ∧ (r8 ≥ start) ∧ ∀w.(w ≥ r8 ⇒ writable(w)) ∧
∧safe exit(r7) ∧ r0 = 0 ∧ (r1 :m,r8 intlist)

I102 : allocptr r8 1
I103 : Policy ∧ (r8 − 1 ≥ start) ∧ ∀w.(w ≥ r8 ⇒ writable(w)) ∧

safe exit(r7) ∧ r0 = 0 ∧ (r1 :m,r8 intlist) ∧
(r2 :m,r8 intlist) ∧ readable(r1)

I112 : allocptr r8 3
I114 : safe exit(r7) ∧ (r1 :m,r8 intlist) ∧ (r2 :m,r8 intlist)
I115 : safe exit(r7) ∧ (r1 :m,r8 intlist)

Fig. 2. Preconditions for Selected Lines of Code.

example, we also include a precondition for the last line of the program I115.
Much of the information provided in Fig. 2, including the typing information, can
be generated automatically by a certifying compiler [13]. We call such compiler-
generated formulas hints to distinguish from those we calculate later. To handle
allocation correctly, we also need to know which lines in the program modify the
allocation pointer. Lines I102 and I112 provide this information; in particular,
the register serving as the allocation pointer and the amount it is increased at a
given line is stated.

3 Types

We present the typing rules that are used in the proof of safety of the exam-
ple program. We leave out the definitions and lemmas needed to prove these
rules. We simply note that we require most of the definitions of types and type
constructors and lemmas about them that were presented in our earlier work [2].

We define a valid type to be any type τ for which the following two rules
hold.

w :m,A τ ¬A(v)
w :m[v �→u],A τ

w :m,A τ ∀x.A(x) ⇒ A′(x)
w :m,A′ τ

In these rules A is an arbitrary allocation predicate specifying the set of allocated
addresses. In our example, A(w) := (start ≤ w < r8). The expression m[v �→ u]
denotes the memory m modified so that location v has value u. Integers and
integer lists are both valid types [2].

The remaining typing rules we use in proving safety of our program are given
in Fig. 3. They are stated in terms of lists of arbitrary type τ .

4 Machine Semantics as Hoare-Style Rules

Fig. 4 contains a set of Hoare-style rules for our machine instructions. Unlike the
typing rules in the previous section, we take these rules as axioms. As mentioned
earlier, although we must trust them, they provide more security than a VGC.
The first rule is used to prove safety of a program with respect to a precondition
Pre. We assume the program is a sequence of machine instructions ending with a
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w :m,A l ist(τ ) valid(τ ) m(w) �= 0

m(w + 1) :m,A τ

w :m,A l ist(τ ) valid(τ ) m(w) �= 0

m(w + 2) :m,A l ist(τ )

w :m,A l ist(τ ) valid(τ )

readable(w)

w :m,A l ist(τ ) valid(τ ) m(w) �= 0

readable(w + 1)

w :m,A l ist(τ ) valid(τ ) m(w) �= 0

readable(w + 2)

valid(τ ) m(w) = 0 A(w) readable(w)

m(w) :m,A l ist(τ )

m(w + 1) :m,A τ
m(w + 2) :m,A l ist(τ )

m(w) = 1
valid(τ )

A(w)
A(w + 1)
A(w + 2)

readable(w)
readable(w + 1)
readable(w + 2)

m(w) :m,A l ist(τ )

Fig. 3. Typing rules for integer lists.

Pre ⇒ I1 {I1}S1{I2} . . . {In}Sn{In+1} In+1 ⇒ safe exit(r)
safety

safe(Pre, (S1; . . . ; Sn; JMP r))

addc{I [rs + c/rd]} ADDC rd := rs + c {I} mov{I [c/rd]} MOV rd := c {I}

add{I [rs1 + rs2/rd]} ADD rd := rs1 + rs2 {I} jmp{Im(r)} JMP r {I}

bgt{(rs1 > rs2 → Ic) ∧ (¬(rs1 > rs2) → I)} BGT (rs1 > rs2) c {I}
beq{(rs1 = rs2 → Ic) ∧ (rs1 �= rs2 → I)} BEQ (rs1 = rs2) c {I}

ld{I [m(rs + c)/rd] ∧ readable(rs + c) } LD rd := m(rs + c) {I}

st{I [m[rd + c �→ rs]/m] ∧ writable(rd + c)} ST m(rd + c) := rs {I}

A → A′ {A′}S{B′} B′ → B
Implied{A}S{B}

Fig. 4. Hoare-style rules for machine instructions.

JMP to a safe return point. Note that there is one rule for each machine instruction
and that these rules are axioms.

A proof of safety is built by starting with the postcondition In+1 and applying
the rule corresponding to statement Sn to obtain In. Then In is used as the
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postcondition of statement Sn−1 to compute In−1, etc. For any statement Sk

(1 ≤ k ≤ n), if there is an associated hint Ik, this hint is used as the postcondition
of statement Sk−1. Let I ′k be the formula obtained by applying the axiom for
statement Sk using postcondition Ik+1. At this point the Implied rule is used,
resulting in proof obligation Ik ⇒ I ′k. The formula Ic in rules bgt and beq is the
precondition of the statement at location c. Requiring hints for all jump points
insures that such a formula always exists when applying the proof strategy just
described.

The allocptr hints also generate proof obligations. The hint Ik tells us how
to modify the postcondition of Sk. If Ik+1 is the postcondition computed by
applying the appropriate axiom, and I ′k+1 is obtained from Ik+1 because of the
allocptr hint, the we have proof obligation I ′k+1 ⇒ Ik+1. We will see how to use
the allocptr hints to modify postconditions for our example program in Sect. 5.

Finally, we also have the proof obligations that appear as the first and last
premise in the safety rule.

We can modify the safety rule so that the program includes a postcondition
Post and the final premise states In ⇒ (safe exit(r)∧Post). We use this version
of the safety rule in our proof, so that in addition to safety, we prove that the
output reversed list does indeed have type intlist.

5 Encoding Machine Semantics Directly

We define the type Reg to be the type of the set of 32 registers r0 to r31. Word
is defined to be the set of natural numbers. For simplicity, we do not build in
fixed-size words, though this can and has been done in various PCC systems (for
example [9]). We write Mem to represent the function type (Word →Word). In
particular, memory is modelled as a function from machine addresses to machine
values. Similarly register banks are functions from registers to values; RegFile
denotes the function type (Reg → Word).

We define a machine state to be a triple of the form (R,M, pc) where R
is a register bank (of type RegFile), M is a memory (of type Mem), and pc
is a Word . We define a step relation that relates two machine states, one be-
fore execution and one after execution of a particular instruction. We write
(R,M, pc �→ R′,M ′, pc′) to denote this relation, and (R,M, pc �→∗ R′,M ′, pc′)
to denote the reflexive transitive closure of this operation.

Machine instructions are encoded as 32-bit machine integers. These integers
are decoded into machine instructions by extracting information from specific
bits. The step relation is defined by extracting the instruction at line pc in M ,
decoding it, and changing the machine state according to the semantics of the
particular instruction.

We leave out the details, which can be found in our earlier work [2]. We note
that what we have described so far is the part of our formalization in Coq where
we have adopted and modified some basic definitions from Hamid et. al. [8].

Following Michael and Appel [9], we define safe, Progress, and Preservation
predicates as follows, and prove the safe∗ rule below.



A Tutorial Example of the Semantic Approach 401

safe(R,M, pc) := ∀R′,M ′, pc′.[(R,M, pc �→∗ R′,M ′, pc′)⇒
∃R′′,M ′′, pc′′.(R′,M ′, pc′ �→ R′′,M ′′, pc′′)]

Progress(Inv) := ∀R,M, pc.[Inv(R,M, pc)⇒
∃R′,M ′, pc′.(R,M, pc �→ R′,M ′, pc′)]

Preservation(Inv) := ∀R,M, pc,R′,M ′, pc′.Inv(R,M, pc)⇒
(R,M, pc �→ R′,M ′, pc′)⇒ Inv(R′,M ′, pc′)

Inv(R,M, pc) Progress(Inv) Preservation(Inv)
safe∗safe(R,M, pc)

The safe predicate expresses the fact that execution of safe programs don’t get
stuck, for example, trying to execute a load from a non-readable location or a
store to a non-writable location. Note that safe is now a predicate on a machine
state. The code is in M and pc points to the first instruction. In the definitions
of Progress and Preservation, Inv is a predicate which takes a machine state
(R,M, pc) as an argument.

Finally, we define safe exit as follows:

safe exit(w) := ∀R,M, pc.(pc = w ⇒ safe(R,M, pc)).

6 Example Revisited

It can be seen from the formalization discussed in the previous section that we
start from a fairly low-level encoding of the machine semantics and end with
the high-level derived rule safe∗. Reasoning using this rule corresponds closely
to reasoning using the Hoare-style rules of Sect. 4. In the new setting, a proof
of safety starts by applying safe∗. To do so, we need a predicate Inv which
expresses a program invariant. Inv will have one clause for every line of the
program stating what is true at the point when that line is executed. For the
lines for which we already have hints, we use those hints fairly directly. We
modify them to become predicates over a register bank and memory. If R is the
function representing a register bank, we abbreviate R(ri) as Ri. We writeM for
memory functions. Using this encoding, we modify the formulas given in Fig. 2
to obtain the predicates in Fig. 5.

We must actually make one more modification. We must add information
to the invariant so that we can show that this program does not include self-
modifying code. This information is not needed in the proof using the Hoare-
style rules of Sect. 4. In these rules, there is an implicit separation of code from

I100(R, M) := Policy ∧ (R8 ≥ start) ∧ ∀w.(w ≥ R8 ⇒ writable(w)) ∧
∧safe exit(R7) ∧ R0 = 0 ∧ (R1 :M,R8 intlist)

I103(R, M) := Policy ∧ (R8 − 1 ≥ start) ∧ ∀w.(w ≥ R8 ⇒ writable(w)) ∧
safe exit(R7) ∧ R0 = 0 ∧ (R1 :M,R8 intlist) ∧
(R2 :M,R8 intlist) ∧ readable(R1)

I114(R, M) := safe exit(R7) ∧ (R1 :M,R8 intlist) ∧ (R2 :M,R8 intlist)
I115(R, M) := safe exit(R7) ∧ (R1 :M,R8 intlist)

Fig. 5. Clauses of the invariant that come from hints.
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data in memory because there is no connection between the statement part of
judgments and the memory. In our new encoding, we define the program using
a predicate l istrev(M) which states that decoding the instruction at line 100
gives instruction 100 as defined in Fig. 1, and similarly for all the lines of code in
the program. If there was overlap between the code and data parts of memory,
we would not be able to prove safety. To make explicit that there is no overlap,
we add the formula start > 1000 to I100 and I103. It then becomes part of the
loop invariant, and since all of the store instructions are inside the loop, we can
prove that l istrev(M) remains invariant even while M is changing. The formula
start > 1000 does not appear in Fig. 5, and we continue to leave it out of the
invariant clauses that we present below. Although it is important to the proof,
it is not important to the rest of the presentation, and it is easy to prove that it
remains a constant at each step.

The full predicate Inv has the following form:

Inv(R,M, pc) := [(l istrev M) ∧
(pc = 100 ∧ I100(R,M)) ∨ · · · (pc = 115 ∧ I115(R,M))] ∨
safe(R,M, pc)

The second clause of Inv’s top-level disjunction is used when the program
counter gets the value of r7. The definition of safe exit is used directly to
prove this case. The clauses for lines of code that are not defined in Fig. 5 can
be automatically calculated by simply applying the rules in Sect. 4. As we have
stated, we do not prove the Hoare rules as lemmas from our new encoding of
machine semantics. Instead, we apply them by hand to get Inv. It would be easy
and much better to write a program to automatically generate them. Note that
such a program would not be part of the trusted code; if an invariant is incorrect,
it would not be possible to prove the program safe. To illustrate, some of these
remaining clauses of Inv are given in Fig. 6. Given a memory function M , we
write M [a1 �→ w1, . . . , an �→ wn] to denote a new function which is the same as
M except that for i = 1, . . . , n, the new function maps address ai to value wi. We
write readable({w1, . . . , wn}) to abbreviate readable(w1) ∧ · · · ∧ readable(wn),
and similarly for writable.

First, consider I113 which is the precondition for the statement (BEQ (r0 =
r0) 103). We applied the beq rule to obtain I113 from I114. Note that the precon-
dition in this rule has a true and a false case. We only need the true case here,
so we can take as a precondition simply Ic, which in our case is I103. In addition,
we need to consider the fact that the statement at line 113 follows a line which
increased the allocation pointer r8 by 3. We must modify I103 to account for this
increase. Our signal to do so comes from the hint I112 in Fig. 2, which we repeat
(for documentation purposes only) in Fig. 6 just before the definition of I112.
In particular, we must subtract 3 from the expression R8 − 1 in I103 to obtain
(R8 − 4 ≥ start) in I113.

To obtain I112, we simply apply the addc rule to I113, replacing R8 with
R8 + 3. Most invariant clauses are obtained from such simple rule applications.
I111 is also obtained by a simple application of addc.
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I101(R,M) := Policy ∧ (R8 ≥ start) ∧ ∀w.(w ≥ R8 + 1 ⇒ writable(w)) ∧
safe exit(R7) ∧ R0 = 0 ∧ (R1 :M,R8 intlist) ∧
(R8 :M,R8 intlist) ∧ readable(R1)

I102(R,M) := allocptr R8 1 :
Policy ∧ (R8 ≥ start) ∧ ∀w.(w ≥ R8 + 1 ⇒ writable(w)) ∧
safe exit(R7) ∧ R0 = 0 ∧ (R1 :M,R8 intlist) ∧
(R2 :M,R8 intlist) ∧ readable(R1)

I104(R,M) := (R5 = R0 ⇒ I114) ∧ (R5 �= R0 ⇒ I105)
I105(R,M) := Policy ∧ (R8 − 1 ≥ start) ∧ ∀w.(w ≥ R8 + 3 ⇒ writable(w)) ∧

∧safe exit(R7) ∧ R0 = 0 ∧
(R1 :M[R8 �→R0+1,R8+1�→M(R1+1),R8+2�→R2],R8 intlist) ∧
(R8 :M[R8 �→R0+1,R8+1�→M(R1+1),R8+2�→R2],R8 intlist) ∧
readable({M(R1 + 2), R1 + 2, R1 + 1}) ∧
writable({R8, R8 + 1, R8 + 2})
...

I110(R,M) := Policy ∧ (R8 − 1 ≥ start) ∧ ∀w.(w ≥ R8 + 3 ⇒ writable(w)) ∧
∧safe exit(R7) ∧ R0 = 0 ∧ (R1 :M[R8+2�→R2],R8 intlist) ∧
(R8 :M[R8+2�→R2],R8 intlist) ∧ readable(R1) ∧ writable(R8 + 2)

I111(R,M) := Policy ∧ (R8 − 1 ≥ start) ∧ ∀w.(w ≥ R8 + 3 ⇒ writable(w)) ∧
∧safe exit(R7) ∧ R0 = 0 ∧ (R1 :M,R8 intlist) ∧
(R8 :M,R8 intlist) ∧ readable(R1)

I112(R,M) := allocptr R8 3 :
Policy ∧ (R8 − 1 ≥ start) ∧ ∀w.(w ≥ R8 + 3 ⇒ writable(w)) ∧
∧safe exit(R7) ∧ R0 = 0 ∧ (R1 :M,R8 intlist) ∧
(R2 :M,R8 intlist) ∧ readable(R1)

I113(R,M) := Policy ∧ (R8 − 4 ≥ start) ∧ ∀w.(w ≥ R8 ⇒ writable(w)) ∧
∧safe exit(R7) ∧ R0 = 0 ∧ (R1 :M,R8 intlist) ∧
(R2 :M,R8 intlist) ∧ readable(R1)

Fig. 6. More clauses of the invariant.

Next, consider I110 which is the precondition for (ST m(r8 + 2) := r2).
We obtain I110 by first replacing the memory expression M which appears as a
subscript to the typing judgments by M [R8 + 2 �→ R2], and then adding a new
writable conjunct.

Working backward, I109 back through I105 are obtained by straightforward
applications of the appropriate rules. We omit the details, showing only the last
in the series, I105. We then obtain I104 by applying the beq rule. This brings
us back to I103 which was already given in Fig. 5. Note that at the point I103
was generated as a hint, the allocation pointer had to be taken into account;
in this case, the increment by 1 at line 102 means we decremented R8 by 1
to obtain (R8 − 1 ≥ start) in I103. Finally, I102 and I101 are also obtained by
straightforward rule applications.

We show that our example program is safe whenever precondition I100 holds
for the initial register bank and memory. We must add the fact that the program
counter starts at line 100 and that l istrev(M0) holds. Thus, the safety theorem
is stated:
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∀R0,M0, pc0.(pc0 = 100 ∧ l istrev(M) ∧ I100(R0,M0)) ⇒ safe(R0,M0, pc0).

To prove this theorem, we apply the safe∗ rule, which means we must show
that Inv(R0,M0, pc0), Progress(Inv), and Preservation(Inv) hold under the
assumptions pc0 = 100, l istrev(M0), and I100(R0,M0). Inv(R0,M0, pc0) is a
disjunction, and we prove the first disjunct, and the proof is immediate. Since
pc0 = 100, showing Inv(R0,M0, pc0) reduces to showing that l istrev(M0) and
that I100(R0,M0). To show progress, we must show that no matter which line we
are at in the program, there is a next step. This is straightforward, and includes
proving readable and writable subgoals for load and store instructions. These
follow immediately from the fact that the preconditions of all such instructions
contain the necessary readable and writable facts.

I ′
100(R, M) := allocptr R8 1 :

Policy ∧ (R8 ≥ start) ∧ ∀w.(w ≥ R8 + 1 ⇒ writable(w)) ∧
safe exit(R7) ∧ R0 = 0 ∧ (R1 :M[R8 �→R0],R8 intlist) ∧
(R8 :M[R8 �→R0],R8 intlist) ∧ readable(R1) ∧ writable(R8)

I ′
103(R, M) := (M(R1) = R0 ⇒ I114) ∧ (M(R1) �= R0 ⇒ I105) ∧ readable(R1)

I ′
114(R, M) := safe exit(R7) ∧ (R2 :M,R8 intlist)

Fig. 7. Clauses that form proof obligations.

Proving Preservation(Inv) is where Hoare-style reasoning takes place. We
have a case for each line of the program; for pc = 100, . . . , 114, under the
assumption that Invi(R,M) and (R,M, i �→ R′,M ′, pc′) hold, we show that
Invi+1(R′,M ′, pc′) holds. For the cases where we calculated Invi from Invi+1

by a straightforward application of one of the Hoare-style axioms, the proof is
immediate. The step relation encodes the same information as the corresponding
Hoare rule, so all the work was done when we applied the rule by hand to de-
termine the right Invi to include in Inv. More reasoning is needed for the cases
when Invi comes from a hint. The subgoals we must prove correspond to the
proof obligations that were described earlier. Consider the formulas in Fig. 7.
Formula I ′k is obtained from formula Ik+1 by an application of the Hoare axiom
for the statement at line k. Note that there is one such clause in Fig. 7 for every
line of code for which we started out with a hint. The proof obligations we are
left with are to show that I100 ⇒ I ′100, I103 ⇒ I ′103, and I114 ⇒ I ′114. The third
one is straightforward. The second one is the most complex. The first and second
together require all of the typing rules in Fig. 3. This reasoning corresponds to
applications of the Implied rule in the proof using the Hoare-style rules.

7 Discussion

The complete proof is approximately 3000 lines of Coq script. Roughly half of
that is the foundational part and the other half is the proof of safety of the
example program. The latter part could be fully automated. In fact, in our first
prototype system, we used the typing rules in Sect. 3 and the Hoare-style rules
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in Sect 4 as axioms. Thus the system was not yet foundational, but instead con-
centrated on handling allocation of data structures correctly. This prototype was
implemented in λProlog [11, 12], and proofs of safety of a variety of examples,
including the list reverse program presented here, were constructed fully auto-
matically. Since the typing rules have since been derived, and since reasoning
using the safe∗ rule corresponds to reasoning using the Hoare-style rules, the
proof we generated automatically is similar to the proof done by hand in Coq.
In fact, our motivation for doing the Coq proof was to study the similarities and
differences in the two styles of reasoning to gain an understanding of how to auto-
mate proofs using only the foundational rules. Most of the proof search involves
determining which typing rules to apply and fairly straightforward reasoning
about arithmetic equalities and inequalities, which can easily be handled by a
system with simple but efficient rewriting capabilities. Proving that l istrev(M)
is an invariant, which was not part of our original automated proof, involves
simple but numerous subgoals which followed from simple arithmetic rules.

Our example program is one representative from a large class of programs
that could be proved safe with the same kind of automated proof search. Al-
though we did not include the basic definitions, our intlist type was defined
using a library of definitions for a wide variety of type constructors. Any pro-
grams manipulating data structures built from such type constructors fit into
this class.

PCC systems that use foundational versions of TAL go even further in the
direction of easily automated safety proofs. They essentially reduce such proofs
to type checking. Safety in such a setting is limited to what is expressible in
TAL. Chang et. al. [4] argue that because there exist a variety of code verifi-
cation strategies, it is better to use a verifier that is best suited to the code
verification strategy. Most examples of safety policies have been simple. In fact,
our example does not use a safety policy any more sophisticated than what can
be expressed in TAL. But when extending such policies to include more complex
properties, other strategies besides TAL may become important. Our approach
to automating proofs should provide more flexibility in handling a variety of
strategies. This is another subject of future work.
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Abstract. We present a simple term language with explicit operators
for erasure, duplication and substitution enjoying a sound and complete
correspondence with the intuitionistic fragment of Linear Logic’s Proof
Nets. We establish the good operational behaviour of the language by
means of some fundamental properties such as confluence, preservation
of strong normalisation, strong normalisation of well-typed terms and
step by step simulation. This formalism is the first term calculus with
explicit substitutions having full composition and preserving strong nor-
malisation.

1 Introduction

The Curry-Howard paradigm, according to which the terms/types/reduction of a
term language respectively correspond to the proofs/propositions/normalisation
of a logical system, has already shown its numerous merits in the computer
science community. Such a correspondence gives a double reading of proofs as
programs and programs as proofs, so that insight into one aspect helps the
understanding of the other.

A typical example of the Curry-Howard correspondence is obtained by taking
the simply typed l-calculus [11] as term language and Natural Deduction for
Intuitionistic Logic as logical system. But both formalisms can be decomposed
in the following sense: on the one hand the evaluation rule of l-calculus, known
as β-reduction, can be decomposed into more elementary operations: the various
tasks needed to implement β can be achieved by manipulation of various explicit
operators, such as erasure, duplication and substitution. On the other hand Linear
Logic [24] decomposes the intuitionistic logical connectives into more elementary
connectives, such as the linear arrow and the exponentials, thus providing a more
refined use of resources than that of Intuitionistic Logic.

We show that there is a deep connection between these two elementary de-
compositions. In order to relate them, we must bridge the conceptual gap be-
tween the formalism of a term syntax and that of Proof Nets [24] that we use to
denote proofs in Linear Logic. Visually convenient to manipulate, the latter re-
tains from the structure of a proof the part that is logically relevant, thus giving
geometric insight into proof transformations. However, it is quite cumbersome
in proof formalisations. On the other hand, term notation is more convenient to
formalise and carry detailed proofs of properties, and also when one wants to
implement them via some proof-assistant [12, 31].
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Several works [16, 17] have already explored the relation between these two
approaches, but none of them has pushed the formalism far enough to obtain
a computational counterpart to Proof Nets that is sound and complete with
respect to the underlying logical model.

We present a calculus with explicit operators for erasure, duplication and
substitution, called λlxr, which can be seen as a functional computational coun-
terpart to Proof Nets. The major features of this calculus are

• Simple syntax and natural semantics via reduction rules and equations;
• Sound and complete correspondence with the Proof Nets model, where the

equations and reductions of terms have a natural correspondence with those
of Proof Nets;

• Full composition of substitutions;
• Nice properties such as confluence, preservation of strong normalisation,

strong normalisation for well-typed terms, and step by step simulation of
β-reduction.

Explicit Operators and Proof Nets. Much work on explicit substitutions
has been done in the last 10 years, for example [1, 5, 8, 32]. In particular,
an unexpected result was given by Melliès [40] who has shown that there are
β-strongly normalisable terms in l-calculus that are not strongly normalisable
when evaluated by the reduction rules of an explicit version of the l-calculus,
such as for example λσ [1] or λσ⇑ [27]. In other words, λσ and λσ⇑ do not enjoy
the property known as Preservation of Strong Normalisation (PSN) [5].

This phenomenon shows a defect in the design of these calculi with explicit
substitutions because they are supposed to implement their underlying lan-
guage without losing its good properties. However, there are many ways to avoid
Melliès’ counter-example in order to recover the PSN property. One of them is to
simply forbid the substitution operators to cross lambda-abstractions [22, 39];
another consists of avoiding composition of substitutions [5]; another one im-
poses a simple strategy on the calculus with explicit substitutions to mimic
exactly the calculus without explicit substitutions [25]. The first solution leads
to weak lambda calculi, not able to express strong beta-equality, which is used
for example in implementations of proof-assistants [12, 31]. The second solu-
tion is drastic as composition of substitutions is needed in implementations of
HO unification [20] or functional abstract machines [28]. The last one does not
take benefit of the power of explicit operators because substitutions are neither
controlled nor delayed.

In order to cope with this problem David and Guillaume [14] defined a cal-
culus with explicit labels, called λws, which allows controlled composition of
substitutions without losing PSN. These labels are obtained by considering a
weakening rule in the logical system that specifies the typing rules of λws, and
then by annotating in the term language the formula introduced by this rule
via a label. But the λws-calculus has a complicated syntax and its named ver-
sion [17] is even more unreadable. On the positive side we should mention that
λws-calculus has very nice properties as it is confluent (or Church-Rosser) and
enjoys PSN. Also, it can be shown [18] that there is a simple translation from λws
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into the Proof Nets of Linear Logic that preserves reduction. This translation
gives at the same time an elegant proof of strong normalisation for well-typed
λws-terms. Moreover, the translation reveals a natural semantics for composition
of explicit substitutions, and also suggests that explicit erasure and duplication
can be added to the calculus without losing termination. These are the main
ideas constituting the starting point of the calculus called λlxr that we present
in this paper.

Explicit operators of typed λlxr have thus a nice logical interpretation: sub-
stitution is cut , duplication is contraction, erasure is weakening. From the point
of view of implementation, this can be read as the facts that substitution can be
delayed, and that duplication and erasure can be controlled.

Instead of translating a term syntax into Proof Nets, we extract a term calcu-
lus from Proof Nets, thus defining a simple and natural syntax involving not only
reduction rules but also equations. Every term equation of λlxr can be seen as
a computational counterpart to an equality between Proof Nets and, vice-versa,
every Proof Net equality can be naturally read back as an equality between
λlxr-terms.

It is then not surprising that we obtain a full correspondence between typed
λlxr and the Intuitionistic fragment of Linear Logic’s Proof Nets in the sense
that the interpretation is not only sound but also complete (in contrast to the
translation from λws to Proof Nets, which was only sound).

Weakening and Garbage Collection. The erasure/weakening operator has
an interesting computational behaviour that we illustrate via an example. Let
us denote by W ( ) the weakening operator, so that a λlxr-term whose variable x
is used to weaken the term N is written Wx(N), that is, we explicitly annotate
that the variable x does not appear free in the term N . Then, when evaluating
the application of a term λx.Wx(N) to another term L, an explicit substitution
〈x = L〉 is created and the computation will continue with Wx(N)〈x = L〉.
Then, the weakening operator will be used to prevent the substitution 〈x = L〉
from going into the term N , thus making more efficient the propagation of a
substitution with respect to the original term.

Another interesting feature of our system is that weakening operators are
always pulled out to the top-level during λlxr-reduction. Moreover, free variables
are never lost during computation because they get marked as weakening op-
erators. Indeed, if t β-reduces to t′, then its λlxr-interpretation reduces to that
of t′ where weakening operators are added at the top level to keep track of the
variables that are lost during the β-reduction. Thus for example, when simulat-
ing the β-reduction steps (lx.ly.x)Nz−→∗

β N , the lost variable z will appear in
the result of the computation by means of a weakening operator at the top level,
i.e. as Wz(N) (where N is the interpretation of N in λlxr), thus preparing the
situation for an efficient garbage collection on z.

The explicit weakening operator can thus be seen as a tool for an efficient
implementation of garbage collection. This feature is not present in l-calculus,
so one can think that l-calculus is better or simpler, but implementation of
functional programming shows that garbage collection exists and must be taken
into account.
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It is worth noticing that the labels of the λws-calculus cannot be pulled out to
the top-level as in λlxr. Also, free variables may be lost during λws-computation.
Thus, garbage collection within λws does not offer the advantages existing in
λlxr.
Composition. From a rewriting point of view this calculus can be viewed as
the first formalism that is confluent (or Church-Rosser) and strongly normalis-
ing on typed terms, simulates β-reduction step by step, and has PSN as well as
full composition. By simulation of β-reduction step by step we mean that every
β-reduction step in l-calculus induces a non-empty λlxr-reduction sequence. By
full composition we mean that we can compute the application of an explicit sub-
stitution to a term, no matter which substitution remains non-evaluated within
that term. In particular, in a term N〈y = P 〉〈x = L〉, the external substitution
is not blocked by the internal one and can be further evaluated without ever re-
quiring any preliminary evaluation of N〈y = P 〉. In other words, the application
of the substitution 〈x = L〉 to the term N can be evaluated independently from
that of 〈y = P 〉. A more technical explanation of the concept of full composition
appears in Section 2.

Related Work. Besides the λws-calculus [14] and its encoding in linear logic [17]
already mentioned, other computational meanings of logic via the use of explicit
operators have already been proposed.

Herbelin [30] proposes a term language with applicative terms and explicit
substitutions which corresponds to the Gentzen-style sequent calculus LJT. A
similar approach to intuitionistic logic is also studied in [49]. In a very different
spirit, [10] relates the pattern matching operator in functional programming to
the cut elimination process in sequent calculus for intuitionistic logic.

Abramsky [2] gives computational interpretations for intuitionistic and clas-
sical Linear Logic which are based on sequents rather than Proof Nets. As a
consequence, no equalities between terms reflect the fact that some proofs of the
sequent calculus approach get identified when expressed as Proof Nets. Many
other term calculi based on sequents rather than Proof Nets have been proposed
for Linear Logic, as for example [6, 23, 45, 50].

A related approach was independently developed by V. van Oostrom (avail-
able in course notes written in Dutch [48]), where explicit operators for contrac-
tion and weakening are added to the λ-calculus to present optimal reduction in
a framework with implicit substitutions. We show here how the same operators
allow a fine control of composition when using explicit substitutions, although
the proofs of some fundamental properties, such as PSN and confluence, become
harder. A complete overview on optimal sharing in functional programming lan-
guages, and its connection with linear logic can be found in [4].

Another approach is taken in [21], where a calculus with explicit operators
is defined in order to study the notion of “closed reduction” in l-calculus. Al-
though reduction rules take enormous advantage of the fact that some subterms
are closed (i.e. without free variables), which greatly simplifies the definition of
reduction, no deep relation with Proof Nets is exploited and no equalities appear
at the level of terms.
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Our completeness proof is inspired by [37], where polarised Proof Nets are
proposed as a sound and complete model of the λμ calculus [42]. Finally, a
revised version of the calculus λws with names is developed in [43].

The paper is organised as follows. Section 2 presents the syntax and opera-
tional semantics of the λlxr-calculus. Section 3 defines the model of the calculus
and establishes soundness and completeness. Section 4 shows the relation be-
tween l-calculus and λlxr-calculus by giving mutual translations from one to the
other. In Section 5 we state the main operational properties of λlxr. Finally we
conclude and give some ideas for further work. For lack of space, we cannot
give full proofs in this extended abstract; we refer the reader to [33] for further
details.

2 The Calculus λlxr

The syntax for raw terms, given by the following grammar, is extremely simple1

and can be just viewed as an extension of that of lx [8].

t ::= x | lx.t | t t | t〈x = t〉 |Wx(t) | Cy,z
x (t)

The term x is called a variable, lx.t an abstraction, t u an application,
t〈x = u〉 a substitution, Wx(t) a weakening and Cy,z

x (t) a contraction. The last
three constructors are called explicit operators.

The terms lx.t and t〈x = u〉 define binders for the variable x (said to be
bound) whose scope is t. The term Cy,z

x (t) defines a binder for y and z (also
said to be bound) whose scope is t, whereas x is free in the terms x, Cy,z

x (t) and
Wx(t). We write V(t) to denote the set of variables of the term t and FV(t) to
denote the subset of V(t) which contains only the free ones. As usual we shall
consider α-conversion to guarantee that no variable is free and bound in a term
at the same time and that bound variables have all different names.

We say that a term is linear if it satisfies the following: in every subterm,
every variable has at most one free occurrence, and every binder binds a variable
that does have a free occurrence (and hence only one). For instance, the terms
Wx(x) and lx.xx are not linear. However, the latter can be represented in the
λlxr-calculus by the linear term lx.Cy,z

x (yz). More generally, every l-term can be
translated to a linear λlxr-term (c.f. Section 4).

We use Φ, Δ, Σ, Π, . . . to denote finite lists of variables (with no repetition).
We use the notationWx1,...,xn(t) for Wx1(. . .Wxn(t)), and C

(y1,...,yn),(z1,...,zn)
x1,...,xn (t)

for Cy1,z1
x1

(. . . Cyn,zn
xn

(t)). For any term t we define a renaming operation
Rx1,...,xn

y1,...,yn
(t) as the result of simultaneously substituting yi for every free oc-

currence xi in t where i ∈ 1 . . . n. Thus for instance Rx,y
x′,y′(Cy,z

w (x(yz))) =
Cy,z

w (x′(yz)).
We now introduce a congruence ≡ (i.e. a symmetric, reflexive, transitive re-

lation closed under any context) on terms which brings the typed version of the
calculus closer to the Proof Nets modulo as defined in [15]. The relation ≡ is the
1 In contrast to lws with names [17, 18], where terms affected by substitutions have a

complex format t[x, u, Γ, Δ]
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smallest congruence that includes the axioms in Figure 1 expressing associativ-
ity and commutativity for contraction (equations A,C1c, C2c), commutativity
for weakening (equation Cw) and commutativity for independent substitutions
(equation S), which is also called parallel composition. Terms up to rule S could
be represented using sets of substitutions instead of atomic ones. Finally, con-
traction and substitution are treated at the same level using axiom Cont2.

Cx,v
w (Cz,y

x (t)) ≡A Cx,y
w (Cz,v

x (t)) if x �= y, v
Cy,z

x (t) ≡C1c Cz,y
x (t)

Cy′,z′
x′ (Cy,z

x (t)) ≡C2c Cy,z
x (Cy′,z′

x′ (t)) if x �= y′, z′ & x′ �= y, z
Wx(Wy(t)) ≡Cw Wy(Wx(t))
t〈x = u〉〈y = v〉 ≡S t〈y = v〉〈x = u〉 if y /∈ FV(u) & x /∈ FV(v) & x �= y
Cy,z

w (t)〈x = u〉 ≡Cont2 Cy,z
w (t〈x = u〉) if x �= w & y, z �∈ FV(u)

Fig. 1. Congruence axioms for λlxr-terms.

It can easily be proven that the congruence relation defined by the previous
rules preserves free variables and linearity. Since we shall deal with rewriting
modulo the congruence ≡, it is worth noticing that ≡ is decidable. More than
that, each congruence class contains finitely many terms.

The congruence ≡ enables us to write “WS(u)”, or “CΔ,Π
Φ (t) where Φ := S”

without ordering the variables in S. Besides, we shall sometimes not specify what
the lists Δ and Π are, assuming them to be two disjoint lists of fresh variables.

The reduction relation of the calculus, denoted −→λlxr , is the relation gen-
erated by the reduction rules in Figure 2 modulo the congruence relation in
Figure 1. In order to avoid variable capture, rules Abs and CAbs respectively
need the side-conditions (y �∈ FV(u)) and (x �= y, z), which can always be sat-
isfied by α-conversion, so that their nature is different from that of the other
side-conditions. The rules should be understood in the prospect of applying them
to linear terms. Indeed, it can be shown that if t is linear and t −→λlxr t

′, then
t′ is linear and FV(t) = FV(t′). The last statement is achieved in particular by
the weakening operator, and coincides with the property called “interface pre-
serving” [36] in interaction nets. The fact that linearity is preserved is a essential
requirement of the system, so that we can henceforth consider linear terms only.

It is worth noticing that weakening and contraction can naturally be viewed,
respectively, as explicit erasure and duplication operators. The former may be
pulled out to the top level by using rules WAbs,WApp1,WApp2,WSubs in
order to eliminate void substitutions as soon as possible, while the latter may
be pushed in by using rules CAbs, CApp1, CApp2, CSubs in order to delay the
duplication of substitutions as much as possible.

For any reduction relation −→j , we denote by −→+
j the transitive closure

and by −→∗
j the reflexive and transitive closure.

Owing to the linearity constraints previously imposed, the Comp rule is
equivalent to the following rule Compbad:

t〈y = v〉〈x = u〉 −→ t〈y = v〈x = u〉〉 x /∈ FV(t)
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(lx.t) u −→B t〈x = u〉

System x System r

(ly.t)〈x = u〉 −→Abs ly.t〈x = u〉 lx.Wy(t) −→WAbs Wy(lx.t) x �= y
(t v)〈x = u〉 −→App1 t〈x = u〉 v x ∈ FV(t) Wy(u) v −→WApp1 Wy(uv)
(t v)〈x = u〉 −→App2 t v〈x = u〉 x ∈ FV(v) u Wy(v) −→WApp2 Wy(uv)

t〈x = Wy(u)〉 −→WSubs Wy(t〈x = u〉)
x〈x = u〉 −→V ar u
Wx(t)〈x = u〉 −→Weak1 WFV(u)(t) Cy,z

w (Wy(t)) −→Merge Rz
w(t)

Wy(t)〈x = u〉 −→Weak2 Wy(t〈x = u〉) x �= y Cy,z
w (Wx(t)) −→Cross Wx(Cy,z

w (t)) x �= y, z

Cy,z
x (t)〈x = u〉 −→Cont1 CΔ,Π

Φ (t〈y = u1〉〈z = u2〉)
where Φ := FV(u) Cy,z

w (lx.t) −→CAbs lx.Cy,z
w (t)

u1 = RΦ
Δ(u) Cy,z

w (t u) −→CApp1 Cy,z
w (t) u y, z ∈ FV(t)

u2 = RΦ
Π(u) Cy,z

w (t u) −→CApp2 t Cy,z
w (u) y, z ∈ FV(u)

t〈y = v〉〈x = u〉 −→Comp t〈y = v〈x = u〉〉 x ∈ FV(v) Cy,z
w (t〈x = u〉) −→CSubs t〈x = Cy,z

w (u)〉 y, z ∈ FV(u)

Fig. 2. Reduction rules for λlxr-terms.

However, if the linearity constraints are not taken into account, the Compbad

rule causes failure of the PSN property [7].
Also, when linearity constraints are not considered, four cases may occur

when composing two substitutions as in t〈y = v〉〈x = u〉: either (1) x ∈ FV(t)∩
FV(v), or (2) x ∈ FV(t) \ FV(v), or (3) x ∈ FV(v) \ FV(t), or (4) x /∈ FV(t) ∪
FV(v).

Composition is said to be partial in calculi like λws [14] because only cases (1)
and (3) are considered by the reduction rules. Because of the linearity constraints
of λlxr, cases (1) and (4) have to be dealt with by the introduction of a contraction
for case (1) and a weakening for case (4). Those operators will interact with
external substitutions by the use of rules (Weak1) and (Cont1), respectively.
Case (3) is treated by rule (Comp), and case (2) by the congruence rule ≡S . We
say in this case that composition is full as all cases (1)-(4) are treated. Thus,
λlxr turns out to be the first term calculus with explicit substitutions having full
composition and preserving β-strong normalisation (c.f. Theorem 7).

We now define a typing system for λlxr Types are defined by means of the
following syntax, where σ ranges over a countable set of atomic types.

A ::= σ | A→ A

An environment is a set of decorated variables of the form x : A, where A
is any type. A judgement is a triplet of the form Γ � t : A, where Γ is an
environment, t is a λlxr-term, and A is a type.

We say that t is well-typed if there is an environment Γ and a type A such
that the judgement Γ � t : A is derivable from the set of typing rules in Figure 3.

Remark that Γ � t : A always implies that the domain of Γ is exactly FV(t).
Also, when writing Γ, x : B, the variable x is supposed to be fresh w.r.t Γ .

As expected, Subject Reduction holds:

Theorem 1. If Γ � s : A and s −→λlxr s
′, then Γ � s′ : A.
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x : A � x : A

Γ, x : A � t : B

Γ � lx.t : A → B

Γ, x : A, y : A � M : B

Γ, z : A � Cx,y
z (M) : B

Γ, x : B � t : A Δ � M : B

Γ, Δ � t〈x = M〉 : A

Γ � t : A → B Δ � v : A

Γ, Δ � (t v) : B

Γ � t : A

Γ, x : B � Wx(t) : A

Fig. 3. Typing Rules for λlxr-terms.

3 A Model for λlxr

This section is devoted to show two of the main properties of our calculus. The
first one concerns strong normalisation of well-typed terms, which is achieved by
translating well-typed λlxr-terms to MELL Proof Nets. The second one shows
that the translation from λlxr to Proof Nets is sound and complete w.r.t the
appropriate equivalence relations on terms and proof nets respectively.

We briefly recall here the traditional notion of Proof Nets of Linear Logic
and some of its basic properties. We refer the interested reader to [24] for more
details.

Let A be a set of atomic formulae equipped with an involutive function
⊥ : A → A, called linear negation. The set of formulae of the multiplicative
exponential fragment of linear logic (called MELL) is defined as follows:

F ::= A | F ⊗ F | F � F | !F | ?F
The formula F � G denotes a “non-economic” version of the classical dis-

junction, whereas ?F and !F are used to indicate where contraction or weakening
can take place. We extend the notion of linear negation to formulae as follows:

(?A)⊥ = !(A⊥) (A ⊗ B)⊥ = A⊥ � B⊥

(!A)⊥ = ?(A⊥) (A � B)⊥ = A⊥ ⊗ B⊥

The set of Proof Nets is denoted PN (we refer the reader to [24] or [33] for
a formal definition). Proof Nets are the computational objects behind Linear
Logic, where the notion of reduction (called also “cut elimination”) corresponds
exactly to the cut-elimination procedure on sequent derivations. The traditional
reduction system for MELL consists in cut elimination rules, we refer the reader
to [24] or [33] for a formal definition.

Unfortunately, the original notion of reduction on PN is not well adapted
to simulate either the β rule of λ-calculus, or the rules dealing with propaga-
tion of substitution in explicit substitution calculi: too many inessential details
about the order of application of the rules are still present, and in order to get
rid of them, one is naturally led to define an equivalence relation on PN , as is
done in [15], defined by the axioms A and B in Figure 4. Equivalence A turns
contraction into an associative operator. Equivalence B abstracts away the rel-
ative order of application of the rules of box-formation and contraction. Finally,
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Fig. 4. Axioms and extra reduction rules for MELL Proof Nets.

besides these equivalence relations defined in [15], we shall also need the two
extra reduction rules in Figure 4: elim is used to remove unneeded weakening
links when simulating explicit substitutions and pull allows weakening links to
go outside boxes.

Notation: Henceforth, we shall call R the system made of rules Ax-cut, �-⊗,
w-b, d-b, c-b, b-b and elim and pull. We shall write ∼E for the congruence (reflex-
ive, symmetric, transitive, closed by contexts) relation on Proof Nets generated
by axioms A,B. We shall write R/E for the system made of the rules in R and
the axioms in A,B. System R/E is actually defining a notion of reduction mod-
ulo an equivalence relation, so we write r −→R/E s if and only if there exist r′

and s′ such that r ∼E r
′ −→R s′ ∼E s.

In order to prove the properties of the translation from typed λlxr to Proof
Nets, we shall use the following result:

Theorem 2. The reduction relation −→R/E terminates.

Proof. This result is proved in [43] for which we refer the interested reader for
full details. The proof uses postponement of rule pull w.r.t to the rest of the
system for which termination is stated in [15]. For the sake of completeness, we
include the proof in English in the full version of our paper [33].

We now present the natural interpretation of typed λlxr-terms as Proof Nets.
For that, we use the translation of types introduced in [13] given by:

A∗ = A for atomic types
(A→ B)∗ = ?((A∗)⊥) �B∗ otherwise
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Figure 5 defines the translation T ( ) from derivable typing judgements of λlxr
to Proof Nets. We shall often write T (t) instead of T (Γ � t : A) when Γ and A
do not matter or are clear (from Subject Reduction, for example). T ( ) satisfies
the following properties:

T (x : A � x : A) T (Γ � lx.t : B → C) T (Γ,Δ � t u : A)

D

?A∗⊥

A∗⊥

A∗ ?B∗⊥?Γ ∗⊥ C∗

T (t)

?B∗⊥ � C∗

T (t)

B∗
?B∗⊥ � A∗ ?Δ∗⊥

?Δ∗⊥

A∗

T (u)

?Γ ∗⊥

!B∗ A∗⊥

!B∗ ⊗ A∗⊥

T (Γ,Δ � t〈x = u〉 : A) T (Γ,x : B � Cy,z
x (t) : A) T (Γ, x : B � Wx(t) : A)

?B∗⊥

!B∗

T (u)

T (t)

A∗?Γ∗⊥ ?Δ∗⊥

?Δ∗⊥B∗
?B∗⊥?B∗⊥

C

?B∗⊥

?Γ ∗⊥
A∗

T (t)

?Γ ∗⊥ A∗ ?B∗⊥

W
T (t)

Fig. 5. Encoding typed λlxr-terms into MELL proof-nets.

Lemma 1 (Simulation of λlxr-reduction).

• If t ≡ t′, then T (t) ∼E T (t′).
• If t −→B t′, then T (t)−→+

R/E T (t′).
• If t −→xr t

′, then T (t)−→∗
R/E T (t′).

As a consequence we obtain one of the main important properties of λlxr:

Theorem 3 (Strong Normalisation).
The relation −→λlxr is strongly normalising on well-typed λlxr-terms.

Proof. An infinite λlxr-reduction sequence would have infinitely many B-steps.
Indeed, system xr can be proven terminating [33]. But this would lead byLemma 1
to an infinite R/E-reduction sequence which is impossible by Theorem 2.

In order to show Theorem 3 another technique [43] using Preservation of
Strong Normalisation (c.f. Section 5) together with the strong normalisation of



Extending the Explicit Substitution Paradigm 417

typed λ-calculus could be used. Direct proofs using for instance reducibility by
perpetuality [9, 38] seem much more difficult to adapt to our case. We remark
however that those techniques are no simpler than ours, as many auxiliary prop-
erties about the computational behaviour of the calculus need to be establish.

The relevant computational steps of the cut-elimination procedure in Proof
Nets are those modifying the box structure. Hence, we are interested in char-
acterising those terms that are translated by T ( ) into Proof Nets that have
identical box structures. Let TB be the reduction relation on PN generated by
the rules that do not modify the box structure, namely pull, elim, Ax-cut and
�-⊗, modulo the congruence ∼E .

Proposition 1. The reduction relation TB is confluent and terminating. Hence,
the normal form of a proof net r w.r.t this reduction relation, written TB(r),
exists and is unique up to the congruence ∼E.

Hence, “having the same box structure” can be expressed by the equivalence
relation ≈ defined as: r ≈ r′ if and only if TB(r) ∼E TB(r′).

We now define for the terms a congruence ∼= obtained by adding to ≡ the
following rules turned into equalities:

{B,Abs,App1,Weak2,WAbs,WApp1,WApp2, Cross,Merge, CAbs, CApp1,
CApp2}

Remark that WSubs and CSubs are included in ∼=.
The following property relates two ∼=-convertible terms w.r.t. their semantic

translations into Proof Nets and is one of the interesting results about λlxr.

Theorem 4 (Soundness and Completeness). The interpretation T ( ) is
sound and complete, i.e. given two λlxr-terms t1, t2 we have t1 ∼= t2 iff T (t1) ≈
T (t2).

The proof is inspired by that of a similar characterisation, given in [37],
for lμ-terms with respect to Polarized Proof Nets, where equality in the term
syntax is an extension of the σ-equivalence on l-terms defined in [44]. Yet,
the latter needs to consider specific permutations of β-redexs to achieve the
characterisation, instead of simply turning some reduction rules into equivalence
rules.

4 Recovering the l-Calculus

We show in this section the relation between λlxr-terms and l-terms. More pre-
cisely, we show that the linearity constraints and the use of explicit resource
operators in λlxr are sufficient to decompose the β-reduction step into smaller
steps. We shall use the notation Γ �l t : A to denote typing judgements and
typing derivability in l-calculus.

We now describe how to encode a l-term (possibly not linear) into a λlxr one,
up to the congruence ≡.
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Definition 1. The encoding of l-terms is defined by induction as follows:

A(x) := x
A(lx.t) := lx.A(t) if x ∈ FV(t)
A(lx.t) := lx.Wx(A(t)) if x /∈ FV(t)
A(tu) := CΔ,Π

Φ (RΦ
Δ(A(t)) RΦ

Π(A(u))) where Φ := FV(t) ∩ FV(u)

Note that A(tu) = A(t)A(u) in the particular case FV(t) ∩ FV(u) = ∅.
It is worth noticing that A commutes with renaming (i.e. A(RΦ

Δ(t)) =
RΦ

Δ(A(t))) and that A preserves free variables (i.e. FV(t) = FV(A(t))). As a
consequence, the encoding of a λ-term is a linear λlxr-term. For instance, given
t = lx.ly.y(zz), we have A(t) = lx.Wx(ly.(y Cz1,z2

z (z1 z2))).
Notice that a β-reduction step may not preserve the set of free variables

whereas any reduction in λlxr does. Indeed, we have t = (λx.y) z −→β y, but

A(t) = (lx.Wx(y)) z−→∗
λlxr Wz(y) = Wz(A(y))

It is hence the following statement that we prove by induction on terms.

Theorem 5. If t −→β t′, then A(t)−→+
λlxr WFV(t)\FV(t′)(A(t′)).

As for the types, a straightforward induction on typing derivations allows us
to show the soundness of the translation A:

Lemma 2 (A preserves types). If Γ �l t : A, then Γ �WΓ\FV(t)(A(t)) : A.

We now show how to encode a λlxr-term into a l-term.

Definition 2. Let t be a λlxr-term. We define the function B(t) by induction on
the structure of t as follows:

B(x) = x B(t〈x = u〉) = B(t){x\B(u)}
B(lx.t) = lx.B(t) B(t u) = B(t)B(u)
B(Wx(t)) = B(t) B(Cy,z

x (t)) = B(t){y\x}{z\x}

The translation B commutes with renaming (i.e. B(RΦ
Δ(t)) = RΦ

Δ(B(t))) and
does not add new free variables (i.e. FV(B(t)) ⊆ FV(t)). Now the following
simulation result can be proven:

Theorem 6. If M −→λlxr N , then B(M)−→∗
β B(N).

Remark that congruent terms are mapped to the same l-term, so that it
makes sense to consider B(A( )), which is in fact the identity: t =α B(A(t)).

A straightforward induction on typing derivations allows us to show:

Lemma 3 (B preserves types). If Γ � t : A, then Γ �l B(t) : A.
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5 Operational Properties

In Sections 2, 3 and 4 we have already established the properties of subject
reduction, strong normalisation of well-typed λlxr-terms and simulation of β-
reduction step by step. But a calculus which is defined in order to implement
l-calculus is also expected to preserve fundamental properties such as confluence
and preservation of strong normalisation. We state in this section both properties
which hold not only for well-typed terms but for all (linear) terms.

The original notion of PSN [5] has to be properly reformulated in our context
as follows: every strongly normalisable l-term is encoded into a strongly normal-
isable λlxr-term. We establish PSN of λlxr by simulating reductions in λlxr by
reductions in the λI-calculus of Church-Klop [35] with its associated reduction
relations β,π. We refer the reader to [47, 51] for a survey on different techniques
based on the λI-calculus to infer normalisation properties. Our proof technique
can be summarised as follows (full details are given in [33]).

1. Define a relation I between linear λlxr-terms and lI-terms.
2. Show that t I T and t −→xr t

′ imply t′ I T ,
3. Show that t I T and t −→B t′ imply ∃T ′ such that t′ I T ′ and T−→+

βπ T
′.

4. Deduce from 1,2,3 that if t I T and T ∈ SNβπ, then t ∈ SNλlxr.
5. Define an encoding i() : l �→ λI such that if t ∈ SNβ then i(t) ∈WNβπ.
6. Show that A(t) I i(t), where A(t) is the encoding given in Section 4.

Theorem 7 (PSN). For any l-term t, if t ∈ SNβ, then A(t) ∈ SNλlxr.

Proof. If t ∈ SNβ, then by the above point 5, i(t) ∈WNβπ. A well-known result
of Nederpelt [41] states that WNβπ ⊆ SNβπ, so i(t) ∈ SNβπ and by points 6
and 4 we have A(t) ∈ SN

λlxr.

We now use both simulations presented in Section 4 to derive the confluence
property via a generalisation of the Interpretation Method [26]. We refer the
reader to [33] for more details.

Theorem 8. The system λlxr is confluent.

6 Conclusion and Further Work

This paper extends the explicit substitution paradigm by showing how the Proof
Nets of Linear Logic can be suitable as a logical model of a language with explicit
operators for erasure, duplication and substitution.

Our term language is expressed by a simple syntax, and enjoys natural op-
erational semantics via a well-established notion of reduction modulo a set of
equations. Soundness and completeness of λlxr are shown with respect to its
Proof Nets model.

In contrast to other calculi in the literature, λlxr has full composition and
enjoys PSN. Moreover, λlxr enjoys all the nice properties that one expects such as
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confluence, strong normalisation of well-typed terms and step by step simulation
of β-reduction. All these properties are shown by considering the complex notion
of reduction modulo an equivalence which we have associated to λlxr-terms.

We claim that weakening operators are well-adapted to implement efficient
garbage collection. Indeed, free variables are never lost and weakening operators
are pulled out to the top-level during computation.

Our soundness and completeness proofs illustrate that the only rules with
computational relevance in λlxr are {App2, Comp, V ar,Weak1, Cont1}, just as
the interesting rules in Proof Nets are only those concerning boxes. More pre-
cisely, App2 and Comp in λlxr correspond to b-b in PN , V ar to d-b, Weak1 to
w-b and Cont1 to c-b.

It is worth mentioning the calculus obtained by turning the equation Cont2
into a reduction rule (from left to right) and by eliminating reduction rules
WSubs and CSubs enjoys exactly the same properties as the calculus presented
in this paper, namely Theorems 1,3,5,6,7,8. However, they seem to be necessary
for the confluence on open terms (ongoing work).

We think that many interesting points raised in this work deserve further de-
velopment. The first one concerns the study of reduction strategies well-adapted
to handle explicit operators of substitution, erasure and duplication. This may
take into account the notion of weak reduction used to implement functional
programming [39].

Proof techniques used in the literature to show PSN of calculi with explicit
substitutions (zoom-in [3], minimality [5], semantic RPO [7], PSN by standard-
isation [34], or intersection types [19]) are not all easy to adapt/extend to λlxr
and other formalisms. We believe that the proof technique used here is really
flexible.

But using the PSN result, we believe that we can characterise very neatly
the strongly normalising terms of λlxr as the terms typable with intersection
types, as it it the case in l-calculus as well as in the explicit substitution calculus
lx [38].

First-order term syntax for λlxr via de Bruijn indices, or other special nota-
tion to avoid α-conversion as for example explicit scoping [29] or also director
strings [46], would make implementation easier and bring the term language even
closer to the Proof Nets model which has no notion of binding.
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Abstract. We present constructive arithmetic in Deduction modulo
with rewrite rules only.

In natural deduction and in sequent calculus, the cut elimination theorem and
the analysis of the structure of cut free proofs is the key to many results about
predicate logic with no axioms: analyticity and non-provability results, com-
pleteness results for proof search algorithms, decidability results for fragments,
constructivity results for the intuitionistic case. . .

Unfortunately, the properties of cut free proofs do not extend in the presence
of axioms and the cut elimination theorem is not as powerful in this case as it
is in pure logic. This motivates the extension of the notion of cut for various
axiomatic theories such as arithmetic, Church’s simple type theory, set theory
and others. In general, we can say that a new axiom will necessitate a specific
extension of the notion of cut: there still is no notion of cut general enough to be
applied to any axiomatic theory. Deduction modulo [2, 3] is one attempt, among
others, towards this aim.

In deduction modulo, a theory is not a set of axioms but a set of axioms
combined with a set of rewrite rules. For instance, the axiom ∀x x + 0 = x
can be replaced by the rewrite rule x + 0 −→ x. The point is that replacing
the axiom by the rewrite rule introduces short-cuts in the corresponding proofs,
which avoid axiomatic cuts. When the set of rewrite rules is empty, one is simply
back to regular predicate logic. On the other hand, when the set of axioms is
empty we have theories expressed by rewrite rules only. For such theories, cut
free proofs are similar to cut free proofs in pure logic, in particular they end with
an introduction rule. Thus, when a theory can be expressed in deduction modulo
with rewrite rules only and, in addition, cuts can be eliminated modulo these
rewrite rules, the theory has most of the properties of pure logic. This leads to
the question of which theories can be expressed with rewrite rules only in such
a way that cut-elimination holds.

It is known that several theories can be expressed in such a setting, for in-
stance all equational theories, type theory, set theory, etc. . . But arithmetic was
an important example of a theory that lacked such a presentation. The goal of
this paper is to show that arithmetic can indeed be presented in deduction mod-
ulo without axioms in such a way that cut elimination holds. The cut elimination
result is built using the generic tools introduced in [3].

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 423–437, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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When considering arithmetic, it is customary to keep the cut-elimination
argument predicative. We show that these generic tools also make it possible to
build a predicative proof.

It should be noticed that second-order arithmetic can be embedded in simple
type theory with the axiom of infinity and thus that it can be expressed in deduc-
tion modulo. Our presentation of first-order arithmetic in deduction modulo uses
many ideas coming from second-order arithmetic. However, our presentation of
arithmetic has exactly the power of first-order arithmetic.

1 Deduction Modulo

1.1 Identifying Propositions

In deduction modulo, the notions of language, term and proposition are those of
predicate logic. But, a theory is formed with a set of axioms Γ and a congruence
≡ defined on propositions. Such a congruence may be defined by a rewrite system
on terms and on propositions (as propositions contain binders — quantifiers —
these rewrite systems are in fact combinatory reduction systems [10]). Then,
the deduction rules take this congruence into account. For instance, the modus
ponens is not stated as usual

A⇒ B A
B

as the first premise need not be exactly A ⇒ B but may be only congruent to
this proposition, hence it is stated

C A
if C ≡ A⇒ B

B

All the rules of intuitionistic natural deduction may be stated in a similar
way (see Figure 1).

For example, we can define a congruence with the following rewrite system

0 + y → y S(x) + y → S(x+ y)
0× y → 0 S(x)× y → x× y + y

In the theory formed with a set of axioms Γ containing the axiom ∀x x = x and
this congruence, we can prove, in natural deduction modulo, that the number 4
is even

axiom
Γ �≡ ∀x x = x 〈x, x = x, 4〉 ∀-elim
Γ �≡ 2× 2 = 4 〈x, 2× x = 4, 2〉 ∃-intro

Γ �≡ ∃x 2× x = 4

Substituting the variable x by the term 2 in the proposition 2×x = 4 yields the
proposition 2 × 2 = 4, that is congruent to 4 = 4. The transformation of one
proposition into the other, that requires several proof steps in usual formulations
of natural deduction, is dropped from the proof in deduction modulo.
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axiom if A ∈ Γ and A ≡ B
Γ �≡ B

Γ, A �≡ B ⇒-intro if C ≡ (A ⇒ B)
Γ �≡ C

Γ �≡ C Γ �≡ A ⇒-elim if C ≡ (A ⇒ B)
Γ �< ≡B

Γ �≡ A Γ �≡ B ∧-intro if C ≡ (A ∧ B)
Γ �≡ C

Γ �≡ C ∧-elim if C ≡ (A ∧ B)
Γ �≡ A

Γ �≡ C ∧-elim if C ≡ (A ∧ B)
Γ �≡ B

Γ �≡ A ∨-intro if C ≡ (A ∨ B)
Γ �≡ C

Γ �≡ B ∨-intro if C ≡ (A ∨ B)
Γ �≡ C

Γ �≡ D Γ, A �≡ C Γ, B �≡ C ∨-elim if D ≡ (A ∨ B)
Γ �≡ C

�-intro if A ≡ �
Γ �≡ A

Γ �≡ B ⊥-elim if B ≡ ⊥
Γ �≡ A

Γ �≡ A 〈x,A〉 ∀-intro if B ≡ (∀x A) and x �∈ FV (Γ )
Γ �≡ B

Γ �≡ B 〈x, A, t〉 ∀-elim if B ≡ (∀x A) and C ≡ (t/x)A
Γ �≡ C

Γ �≡ C 〈x,A, t〉 ∃-intro if B ≡ (∃x A) and C ≡ (t/x)A
Γ �≡ B

Γ �≡ C Γ, A �≡ B 〈x,A〉 ∃-elim if C ≡ (∃x A) and x �∈ FV (ΓB)
Γ �≡ B

Fig. 1. Natural deduction modulo.

In this example, the rewrite rules apply to terms only. Deduction modulo
permits also to consider rules rewriting atomic propositions to arbitrary ones.
For instance, in the theory of integral domains, we can take the rule

x× y = 0→ x = 0 ∨ y = 0

that rewrites an atomic proposition to a disjunction.
Notice that, in the proof above, we do not need the axioms of addition and

multiplication. Indeed, these axioms are now redundant: since the terms 0 + y
and y are congruent, the axiom ∀y 0+y = y is congruent to the axiom of equality
∀y y = y. Hence, it can be dropped. Thus, rewrite rules replace axioms.

This equivalence between rewrite rules and axioms is expressed by the the
equivalence lemma that for every congruence ≡, we can find a theory T such
that Γ �≡ A is provable in deduction modulo if and only if T , Γ � A is provable
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in ordinary predicate logic [2]. Hence, deduction modulo is not a true extension
of predicate logic, but rather an alternative formulation of predicate logic. Of
course, the provable propositions are the same in both cases, but the proofs are
very different.

1.2 Model of a Theory Modulo

A model of a congruence≡ is a model such that if A ≡ B then for all assignments,
A andB have the same denotation. A model of a theory modulo Γ,≡ is a model of
the theory Γ and of the congruence ≡. Unsurprisingly, the completeness theorem
extends to classical deduction modulo [6] and a proposition is provable in the
theory Γ,≡ if and only if it is valid in all the models of Γ,≡.

1.3 Normalization in Deduction Modulo

Replacing axioms by rewrite rules in a theory changes the structure of proofs and
in particular some theories may have the normalization property when expressed
with axioms and not when expressed with rewrite rules. For instance, from the
normalization theorem for predicate logic, we get that any proposition that is
provable with the axiom A ⇔ (B ∧ (A ⇒ ⊥)) has a normal proof. But if we
transform this axiom into the rule A → B ∧ (A ⇒ ⊥) (Crabbé’s rule [1]) the
proposition B ⇒ ⊥ has a proof, but no normal proof.

We have proved a normalization theorem: proofs normalize in a theory mod-
ulo if this theory bears a pre-model [3]. A pre-model is a many-valued model
whose truth values are reducibility candidates, i.e. sets of proof-terms. Hence we
first define proof-terms, then reducibility candidates and finally pre-models.

Definition 1 (Proof-term). We write t, u . . . for terms of the language. Proof-
terms denoted by π, σ . . . and are inductively defined as follows.

π ::= α | I
| λα π | (π π′) | δ⊥(π)
| 〈π, π′〉 | fst(π) | snd(π) | λx π | (π t)
| i(π) | j(π) | δ(π1, απ2, βπ3) | 〈t, π〉 | δ∃(π, xαπ′)

Each proof-term construction corresponds to an intuitionistic natural deduc-
tion rule: terms of the form α express proofs built with the axiom rule, terms
of the form λα π and (π π′) express proofs built with the introduction and
elimination rules of the implication, terms of the form 〈π, π′〉 and fst(π), snd(π)
express proofs built with the introduction and elimination rules of the conjunc-
tion, terms of the form i(π), j(π) and δ(π1, απ2, βπ3) express proofs built with
the introduction and elimination rules of the disjunction, the term I expresses
the proof built with the introduction rule of the truth, terms of the form δ⊥(π)
express proofs built with the elimination rule of the contradiction, terms of the
form λx π and (π t) express proofs built with the introduction and elimination
rules of the universal quantifier and terms of the form 〈t, π〉 and δ∃(π, xαπ′) ex-
press proofs built with the introduction and elimination rules of the existential
quantifier.
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Definition 2 (Reduction). Reduction on proof-terms is defined as the con-
textual closure of the following rules that eliminate cuts step by step.

(λα π1 π2) � (π2/α)π1 (λx π t) � (t/x)π
fst(〈π1, π2〉) � π1 snd(〈π1, π2〉) � π2

δ(i(π1), απ2, βπ3) � (π1/α)π2 δ(j(π1), απ2, βπ3) � (π1/β)π3

δ∃(〈t, π1〉, αxπ2) � (t/x, π1/α)π2

We write �∗ for the reflexive-transitive closure of the relation �.

In the following, the techniques are usual for normalization proofs by reducibility.
The setting, however, is different.

Definition 3 (Reducibility candidates). A proof-term is said to be neutral
if it is a proof variable or an elimination (i.e. of the form (π π′), fst(π), snd(π),
δ(π1, απ2, βπ3), δ⊥(π), (π t), δ∃(π, xαπ′)), but not an introduction. A set R of
proof-terms is a reducibility candidate if

– whenever π ∈ R, then π is strongly normalizable,
– whenever π ∈ R and π �∗ π′ then π′ ∈ R,
– whenever π is neutral and if for every π′ such that π �1 π′, π′ ∈ R then
π ∈ R.

We write CR for the set of all reducibility candidates.

Definition 4. Let SN be the set of all strongly normalizable proof-terms and ⊥⊥
be the set of all strongly normalizing proof-terms whose normal form is neutral.

It is easy to check that both SN and ⊥⊥ are reducibility candidates. Further-
more, they are respectively the maximal and minimal reducibility candidate with
respect to inclusion.

Definition 5 (Pre-model). A pre-model M for a many-sorted language L is
given by:

– for every sort s a set Ms,
– for every function symbol f of rank 〈s1, . . . , sn, sn+1〉 a mapping f̂ from
Ms1 × . . .×Msn to Msn+1,

– for every predicate symbol P of rank 〈s1, . . . , sn〉 a mapping P̂ from Ms1 ×
. . .×Msn to CR.

Definition 6 (Denotation in a pre-model). Let M be a pre-model, φ an
assignment mapping any variable x of sort s to an element of Ms and let t be a
term of sort s. We define the object �t�φ ∈ Ms by induction over the structure
of t.

– �x�φ = φ(x),
– �f(t1, . . . , tn)�φ = f̂(�t1�φ, . . . , �tn�φ).
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Let A be a proposition and φ a well-sorted assignment as above. We define
the reducibility candidate �A�φ by induction over the structure of A.

If A is an atomic proposition P (t1, . . . , tn) then �A�φ = P̂ (�t1�φ, . . . , �tn�φ).
When A is a non-atomic proposition, its interpretation is defined by the fol-

lowing, usual, equations:

�B ⇒ C�φ = {π ∈ SN |π �∗ λα π′ ⇒ ∀σ ∈ �B�φ (σ/α)π′ ∈ �C�φ}
�B ∨ C�φ = {π ∈ SN | π �∗ i(π1) ⇒ π1 ∈ �B�φ ∧ π �∗ j(π2)⇒ π2 ∈ �C�φ}
�B ∧ C�φ = {π ∈ SN |π �∗ 〈π1, π2〉 ⇒ (π1 ∈ �B�φ ∧ π2 ∈ �C�φ)}

�)�φ = SN
�⊥�φ = SN

�∃x B�φ = {π ∈ SN |π �∗ 〈t, π′〉 ⇒ ∃X ∈Ms π
′ ∈ �B�φ,X/x}

�∀x B�φ = {π ∈ SN |π �∗ λx π′ ⇒ ∀X ∈Ms∀t ∈ T (t/x)π′ ∈ �B�φ,X/x}
where T is th set of terms of the language.

Definition 7. A pre-model is said to be a pre-model of a congruence ≡ if when
A ≡ B then for every assignment φ, �A�φ = �B�φ.

Theorem 1 (Normalization). [3] If a congruence ≡ has a pre-model all proofs
modulo ≡ strongly normalize.

In this article we will be able to shorten some proofs using the following
remark; it simply states that the previous definition can also be reformulated in
a more conventional way.

Proposition 1. A proof term σ belongs to �A ⇒ B�φ if and only if for any
proof term π ∈ �A�φ, (σ π) ∈ �B�φ.

A proof term σ belongs to �∀xsA�φ if and only if for any term t of the language
and any element X of Ms, (σ t) ∈ �A�φ,X/x.

2 An Alternative Presentation of Arithmetic

Heyting arithmetic is usually presented as a theory in predicate logic with the
axioms of Definition 8 below. Before we give a presentation of arithmetic in de-
duction modulo, we shall give an alternative presentation HAClass of arithmetic
in predicate logic in Definition 9 below and prove the equivalence with HA. This
equivalence is proved in several steps using two intermediate theories. Let us
first recall the usual presentation of arithmetic.

2.1 Heyting Arithmetic

Definition 8 (HA). The language of the theory HA is formed with the symbols
0, S, +, × and =. The axioms are the axioms of equality corresponding to these
symbols and the propositions
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∀x ∀y (S(x) = S(y)⇒ x = y)

∀x ¬(0 = S(x))

((0/x)P ⇒ ∀y ((y/x)P ⇒ (S(y)/x)P ) ⇒ ∀n (n/x)P )

∀y (0 + y = y) ∀x ∀y (S(x) + y = S(x+ y))

∀y (0× y = 0) ∀x ∀y (S(x)× y = x× y + y)

2.2 A Symbol for Predecessor

The first step is to add a predecessor symbol to arithmetic and the axioms

Pred(0) = 0 Pred(S(x)) = x

∀x∀y (x = y ⇒ Pred(x) = Pred(y))

We prove that the theory obtained this way, called HAPred is a conservative
extension of HA. This is a consequence of Skolem’s theorem for constructive
logic (see, for instance, [5]). But notice that in order to obtain the third axiom
above, it is not sufficient to skolemize the theorem

∀x∃y ((x = 0 ∧ y = 0) ∨ x = S(y))

but we need to skolemize the theorem

∀x∃y ((x = 0⇒ y = 0) ∧ ∀z (x = S(z)⇒ y = z))

2.3 A Symbol for Natural Numbers

The second step is to introduce a theory HAN where the universe of discourse
is not restricted to the natural numbers and where we have a predicate symbol
N to characterize the natural numbers. The language of this theory is formed
with the symbols 0, S, +, ×, =, Pred , Null and N . The axioms are the axioms
of equality (including those related to Pred , Null and N) and the propositions

(0/x)P ⇒ ∀y (N(y) ⇒ (y/x)P ⇒ (S(y)/x)P ) ⇒ ∀n (N(n) ⇒ (n/x)P )

N(0) ∀x (N(x) ⇒ N(S(x)))

Pred(0) = 0 ∀x (Pred(S(x)) = x)

Null(0) ∀x (¬Null(S(x)))

∀y (0 + y = y) ∀x ∀y (S(x) + y = S(x+ y))

∀y (0× y = 0) ∀x ∀y (S(x)× y = x× y + y)

In the induction scheme, all the symbols, including Pred , Null and N may
occur in the proposition P

Because of the introduction of the predicate N , we must define a translation
from the language of HAPred to the language of HAN .
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– |P | = P , if P is atomic, |)| = ), |⊥| = ⊥, |A ∧ B| = |A| ∧ |B|, |A ∨ B| =
|A| ∨ |B|, |A⇒ B| = |A| ⇒ |B|,

– |∀x A| = ∀x (N(x) ⇒ |A|), |∃x A| = ∃x (N(x) ∧ |A|).

Then we prove that HAN is a conservative extension of HAPred in the sense
that if A is a closed proposition formed in the language of HAPred then A is
provable in HAPred if and only if |A| is provable in HAN . Proving that HAN

is an extension of HAPred is relatively easy as it just requires to prove that
if a proposition A is an axiom of HAPred then |A| is provable in HAN and
an induction over proof structure. Proving that the extension is conservative
is achieved using the completeness theorem by verifying that all constructive
models of HAPred extend to models of HAN .

2.4 A Sort for Classes of Numbers

Finally, we introduce a second sort for classes of natural numbers and use these
number classes to express equality and the induction scheme.

Definition 9 (HAClass).
The theory HAClass is a many sorted theory with two sorts ι and κ. The

language contains a constant 0 of sort ι, function symbols S and Pred of rank
〈ι, ι〉 and + and × of rank 〈ι, ι, ι〉, predicate symbols = of rank 〈ι, ι〉, Null and N
of rank 〈ι〉 and ∈ of rank 〈ι, κ〉 and for each proposition P in the language 0, S,
Pred, +, ×, =, Null and N and whose free variables are among x, y1, . . . , yn of
sort ι, a function symbol fx,y1,...,yn,P of rank 〈ι, . . . , ι, κ〉. The symbol fx,y1,...,yn,P

is written fP when the variables x, y1, ..., yn are clear from the context. The
axioms are

∀y∀z (y = z ⇔ ∀p (y ∈ p⇒ z ∈ p))

∀n (N(n)⇔ ∀p (0 ∈ p⇒ ∀y (N(y) ⇒ y ∈ p⇒ S(y) ∈ p) ⇒ n ∈ p))

∀x∀y1...∀yn (x ∈ fx,y1,...,ynP (y1, . . . , yn)⇔ P )

Pred(0) = 0 ∀x (Pred(S(x)) = x)

Null(0) ∀x (¬Null(S(x)))

∀y (0 + y = y) ∀x∀y (S(x) + y = S(x+ y))

∀y (0 × y = 0) ∀y (S(x) × y = x× y + y)

The theory HAClass is a conservative extension of HAN . Again, proving
that is is an extension is relatively simple, while proving that the extension
is conservative requires to prove that prove that all constructive models of HAN

extend to models of HAClass.
The conclusion is the equivalence between HA and HAClass.

Proposition 2. Let A be a closed proposition in the language of HA. Then A
is provable in HA if and only if |A| is provable in HAClass.
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3 Arithmetic in Deduction Modulo

Definition 10 (The theory HA−→)).
The language of the theory HA−→ is the same as that of the theory HAClass.

This theory has no axioms and the rewrite rules

y = z −→ ∀p (y ∈ p⇒ z ∈ p)

N(n) −→ ∀p (0 ∈ p⇒ ∀y (N(y)⇒ y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)
x ∈ fx,y1,...,yn,P (y1, . . . , yn) −→ P

Pred(0) −→ 0 Pred(S(x)) −→ x
Null(0) −→ ) Null(S(x)) −→ ⊥

0 + y −→ y S(x) + y −→ S(x+ y)
0× y −→ 0 S(x)× y −→ x× y + y

Proposition 3. The theory HA−→ is a conservative extension of HA.

Proof. It is equivalent to HAClass.

Remark 1. The variant of HA−→ where the rule

N(n) −→ ∀p (0 ∈ p⇒ ∀y (N(y)⇒ y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)

is replaced by

N(n) −→ ∀p (0 ∈ p⇒ ∀y (y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)

is also a conservative extension of HA.
We favor the first formulation that allows more natural induction proofs (see

Section 6).

4 Cut Elimination

In this section, we build a pre-model to show that HA−→ has the cut elimination
property.

Proposition 4. The theory HA−→ has the cut elimination property.

Proof. We build a pre-model as follows. We take Mι = N, Mκ = CRN. The
denotations of 0, S, +, ×, Pred are obvious. We take ˆNull(n) = SN . The
denotation of ∈ is the function mapping n and f to f(n). Then we can define
the denotation of

∀p (y ∈ p⇒ z ∈ p)
and the denotation of = accordingly.

To define the denotation of N , for each function f of CRN we can define an
interpretation Mf of the language of the proposition

∀p (0 ∈ p⇒ ∀y (N(y)⇒ y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)
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where the symbol N is interpreted by the function f . We define the function Φ
from CRN to CRN mapping f to the function mapping the natural number x to
the candidate

�∀p (0 ∈ p⇒ ∀y (N(y)⇒ y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)�Mf

x/n

The order on CRN defined by f ⊆ g if for all n, f(n) ⊆ g(n) is a complete
order and the function Φ is monotonous as the occurrence of N is positive in

∀p (0 ∈ p⇒ ∀y (N(y)⇒ y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)

Hence it has a fixpoint g. We interpret the symbol N by the function g.
Finally, the denotation of the symbols of the form fP is defined in the obvious

way.
This pre-model is a pre-model of each rule of HA−→ by construction.

Remark 2. Building a premodel for the variant of HA−→ with the rule

N(x) −→ ∀p (0 ∈ p⇒ ∀y (y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)

is even simpler, we do not need to use the fixpoint theorem and we just define
the denotation of the proposition N(n) as the denotation of

∀p (0 ∈ p⇒ ∀y (y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)

5 A Predicative Cut Elimination Proof

The normalization proof of the previous section is essentially obtained by map-
ping arithmetic into second order arithmetic and then applying the usual nor-
malization proof of second order arithmetic.

This proof is impredicative, indeed, to define the reducibility candidates in-
terpreting the propositions t = u and N(t) we use a quantification over the set
Mκ of functions mapping natural number to reducibility candidates.

We shall now see that it is possible to build also a predicative proof. In
this proof, we restrict the set Mκ to contain only some functions from natural
numbers to candidates, typically definable functions. Then these functions can
be replaced by indices, for instance, a natural number and the quantification
over functions from natural numbers to candidates can be replaced by a simple
quantification over natural numbers. The difficulty here is that to define the
denotation of = and N we must use quantification on elements of the set Mκ.
To define this set we need to define the notion of definable functions and as the
symbols = and N occur in the language, to define this notion we need to use the
denotation of the symbols = and N . To break this circularity, we give another
definition of the interpretation of t = u and N(t) that does not use quantification
over the elements of Mκ. Then the rewrite rules are not valid by construction
anymore and we have to check their validity a posteriori.

Thus, we shall start by constructing the reducibility candidates E and E′

used for interpreting equality and Pn used for interpreting the symbol N .
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5.1 The Construction of Some Candidates

Definition 11. Let A be a set of strongly normalizing terms. The set [A] is
inductively defined by

– if π ∈ A then π ∈ [A],
– if π ∈ [A] and π �∗ π′ then π′ ∈ [A],
– if π is an elimination and all its one step reducts are in [A] then π ∈ [A].

It is routine to check that if A is a set of strongly normalizing proof-terms,
then [A] is the smallest reducibility candidate containing A.

The smallest reducibility candidate ⊥⊥ can be defined by ⊥⊥ = [∅]. For each
strongly normalizing proof-term σ we define Cσ, the smallest reducibility candi-
date containing σ, by Cσ = [{σ}].
Definition 12.

E = {π ∈ SN | ∀t ∀σ ∈ SN (π t σ) ∈ Cσ}
E′ = {π ∈ SN | ∀t ∀σ ∈ SN (π t σ) ∈ ⊥⊥}

Let P = (Pi)i∈N andQ = (Qi)i∈N be two sequences of reducibility candidates,
recall that the order defined by P ⊆ Q if for all n, Pn ⊆ Qn is a complete order.

Definition 13. Let σ0 and σS be two proof terms and P be a sequence of re-
ducibility candidates, we define the family of candidates Cσ0,σS ,P

n by induction
on n.

Cσ0,σS ,P
0 = [{π | π = σ0 ∧ π ∈ SN}]

Cσ0,σS ,P
n+1 = [{(σS t ρ π) ∈ SN | ρ ∈ Pn ∧ π ∈ Cσ0,σS ,P

n }]
It is easy to check that if P ⊆ Q then Cσ0,σS ,P

n ⊆ Cσ0,σS ,Q
n .

Definition 14 (P -Peano pair). A pair of proof-terms 〈σ0, σS〉 is called a P -
Peano pair if

– σ0 is SN ,
– σS is SN and for every term t, for every natural number n, every proof-term
ρ ∈ Pn, and for every proof-term π in Cσ0,σS ,P

n , the term (σS t ρ π) is SN .

It is easy to check that if P ⊆ Q then (〈σ0, σS〉 is a P -Peano pair ⇐ 〈σ0, σS〉
is a Q-Peano pair).

Finally we define a family of candidates Φ(P ).

Definition 15.

(Φ(P ))n = {π ∈ SN | ∀t∀σ0∀σS 〈σ0, σS〉 is a P -Peano pair
⇒ (π t σ0 σS) ∈ Cσ0,σS ,P

n }.

It is easy to check that is P ⊆ Q then Φ(P ) ⊆ Φ(Q), i.e. that the function Φ
is monotonous.

As this function is monotonous, it has a least fixpoint. Let (Pi)i∈N be the
least fixpoint of Φ. By definition

Pn ={π ∈ SN | ∀t∀σ0∀σS 〈σ0, σS〉 is a P -Peano pair⇒(π t σ0 σS) ∈ Cσ0,σS ,P
n }.
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5.2 A Pre-model

As in the impredicative construction, we take Mι = N, we interpret the symbols
0, S, +, ×, Pred in the obvious way and we take ˆNull(n) = SN . Then, we define
the interpretation of the symbols = and N as follows.

=̂(n, n) = E

=̂(n,m) = E′ if n �= m

N̂(n) = Pn

Before we define the set Mκ and the interpretation of the symbol ∈, we
introduce a notion of definable function from the set of natural numbers to the
set of candidates.

Definition 16 (Definable function). A function f from N to CR is said to
be definable if there exists a proposition P in the language of HA−→ without the
symbol ∈ and an assignment φ such that for all n f(n) = �P �φ,n/x.

We then define the set Mκ, as the (countable) set of functions from N to CR
containing

– definable functions,
– constant functions taking the value Cσ for some proof-term σ,
– and functions mapping k to Cσ0,σS ,P

k for some proof-terms σ0 and σS .

Finally, we complete the construction of the pre-model by defining the deno-
tation of ∈ as the obvious application function and the denotation of the symbols
of the form fP accordingly. The validity of all the rewrite rules of HA−→ is rou-
tine, except that of the rules

y = z −→ ∀p (y ∈ p⇒ z ∈ p)

N(x) −→ ∀p (0 ∈ p⇒ (∀y (N(y)⇒ y ∈ p⇒ S(y) ∈ p))⇒ x ∈ p)

each of them requiring a lemma.

Remark 3. (Making the proof predicative). The pre-model construction
as presented above is not obviously predicative since to define the reducibility
candidate associated to proposition ∀p A we use quantification over Mκ that is
a set of functions mapping natural numbers to reducibility candidates. However
as the set Mκ is countable, it is not difficult to associate a natural number to
each of its elements and to define a function U that maps each number to the
associated function. Then we can replace Mκ by N and define the interpretation
of ∈ as the function mapping n and m to U(m)(n). The construction obtained
this way is predicative. For instance, it could be formalized in Martin-Löf’s Type
Theory with one universe.
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Remark 4. For the variant of HA−→ with the rule

N(n) −→ ∀p (0 ∈ p⇒ ∀y (y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)

the proof is simpler as we do not need to apply the fixpoint theorem. If σ0 and
σS be two proof terms, we define the family of candidates Cσ0,σS ,P

n by induction
on n without the parameter P . Peano pairs and the family Pn can be defined
directly and the rest of the proof is similar.

6 The System T

More traditional cut elimination proofs for arithmetic use the normalization of
Gödel system T. We show here that the normalization of system T also can be
obtained as a corollary of the normalization theorem of [3] although the system
T contains a specific rewrite rule on proofs and [3] allows only specific rewrite
rules on terms and propositions but uses fixed rewrite rules on proofs.

Consider the symbol nat = fN(x) and →= fx∈y⇒x∈z. In HA−→, we have

x ∈ nat −→ N(x)

x ∈ (y → z) −→ x ∈ y ⇒ x ∈ z
and of course

N(n) −→ ∀p (0 ∈ p⇒ ∀y (N(y)⇒ y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)

We can drop the first rule, replacing all propositions of the form N(x) the
proposition x ∈ nat and we get this way the rewrite system with two rules

n ∈ nat −→ ∀p (0 ∈ p⇒ ∀y (y ∈ nat⇒ y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)

x ∈ (y → z) −→ x ∈ y ⇒ x ∈ z
In this system, we get rid of all terms of type ι. We get the following theory

Definition 17 (The theory T ).

ε(nat) −→ ∀p (ε(p)⇒ (ε(nat) ⇒ ε(p)⇒ ε(p))⇒ ε(p))

ε(y → z) −→ ε(y)⇒ ε(z)

Proposition 5. The theory T has the cut elimination property.

The proof is structurally similar to the one of Section 5.

Definition 18 (The system T). The system T is the extension of simply typed
lambda-calculus with a constant 0, a unary function symbol S and a ternary
function symbol RecA for each type A and the rules

Rec(a, f, 0) −→ a

Rec(a, f, S(b)) −→ (f b Rec(a, f, b))
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Proof normalization for the theory T implies normalization for the system
T. Indeed, types of the system T are terms of the theory T and terms of type A
in the system T can be translated into proofs of ε(A) in the theory T (Parigot’s
numbers [11]):

– |x| = x, |u v| = |u| |v|, |λx : A u| = λx : ε(A) |u|,
– |0| = λp λx : ε(p) λf : ε(nat) ⇒ ε(p)⇒ ε(p) x,
– |S(n)| = λp λx : ε(p) λf : ε(nat)⇒ ε(p)⇒ ε(p) (f |n| (|n| p x f)),
– |RecA(x, f, n)| = (|n| A x f).

It is routine to check that if t −→1 u in the system T then |t| −→+ |u| in the
theory T . For instance:

|RecA(x, f, 0)| = (|0| A x f) = (λp λx : ε(p) λf : ε(nat)⇒ ε(p) ⇒ ε(p) x) A x f
−→+ x.

Here we reap the benefit of having chosen the rule

N(n) −→ ∀p (0 ∈ p⇒ ∀y (N(y)⇒ y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)

and not

N(n) −→ ∀p (0 ∈ p⇒ ∀y (y ∈ p⇒ S(y) ∈ p)⇒ n ∈ p)

that would have given us only the termination of the variant of system T where
the recursor is replaced by an iterator.
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Abstract. We define infinitary combinatory reduction systems (iCRSs).
This provides the first extension of infinitary rewriting to higher-order
rewriting. We lift two well-known results from infinitary term rewriting
systems and infinitary λ-calculus to iCRSs:

1. every reduction sequence in a fully-extended left-linear iCRS is com-
pressible to a reduction sequence of length at most ω, and

2. every complete development of the same set of redexes in an ortho-
gonal iCRS ends in the same term.

1 Introduction

One of the main reasons for the initial research in infinitary rewriting was to
have a model of lazy or stream-based programming languages easily accessi-
ble to people familiar with term rewriting. Two notions of infinitary rewriting
were developed: infinitary (first-order) term rewriting systems (iTRSs) [1–3] and
infinitary λ-calculus (iλc) [3, 4]. However, the standard notion of rewriting em-
ployed to model higher-order programs is higher-order rewriting, and thus goes
beyond λ-calculus. The absence of a general notion of infinitary higher-order
rewriting thus constitutes a gap in the arsenal of the rewriting theorist bent on
modelling lazy or stream-based languages.

In the present paper we aim to plug this gap by investigating infinitary
higher-order rewriting.

As for iTRSs and iλc some finitary system needs to be chosen as a start-
ing point. We choose the notion of higher-order rewriting most familiar to the
authors, namely combinatory reduction systems (CRSs) [3, 5, 6].

The definition of infinitary combinatory reduction systems (iCRSs) consists
of a combination of the usual four-stage definition of CRSs and the corresponding
four-stage definition of iTRSs and iλc:

CRSs iTRSs/iλc
1a. Meta-terms
1b. Terms 1. Infinite terms
2. Substitutions 2. Substitutions
3. Rewrite rules 3. Rewrite rules
4. Rewrite relation 4. Rewrite relation

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 438–452, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Given the definition of iCRSs, we seek to answer two of the most pertinent
questions asked for any notion of infinitary rewriting:

1. Are reduction sequences compressible to reduction sequences of length at
most ω?

2. Do complete developments of the same set of redexes end in the same term?

For iTRSs these questions have positive answers under assumption of respec-
tively left-linearity and orthogonality. For iλc the same holds as long as the
η-rule is not introduced. Apart from the definition of iCRSs, the main contri-
bution of this paper is that similar positive answers can be given in the case of
iCRSs.

The remainder of this paper is organised as follows. In Sect. 2 we give some
preliminary definitions, and in Sect. 3, we define infinite (meta-)terms and sub-
stitutions. Thereafter, in Sect. 4 we define infinitary rewriting and prove com-
pression, and in Sect. 5 we investigate complete developments. Finally, in Sect. 6
we give directions for further research.

2 Preliminaries

Prior knowledge of CRSs [6] and infinitary rewriting [3] is not required, but will
greatly improve the reader’s understanding of the text.

Throughout the paper we assume a signature Σ, each element of which has
finite arity. We also assume a countably infinite set of variables, and, for each
finite arity, a countably infinite set of meta-variables. Countably infinite sets are
sufficient, given that we can employ ‘Hilbert hotel’-style renaming. We denote
the first infinite ordinal by ω, and arbitrary ordinals by α, β, γ, . . ..

The set of finite meta-terms is defined as follows:

1. each variable x is a finite meta-term,
2. if x is a variable and s is a finite meta-term, then [x]s is a finite meta-term,
3. if Z is a meta-variable of arity n and s1, . . . , sn are finite meta-terms, then
Z(s1, . . . , sn) is a finite meta-term,

4. if f ∈ Σ has arity n and s1, . . . , sn are finite meta-terms, then f(s1, . . . , sn)
is a finite meta-term.

A finite meta-term of the form [x]s is called an abstraction. Each occurrence
of the variable x in s is bound in [x]s. If s is a finite meta-term, we denote by
root(s) the root symbol of s.

The set of positions of a finite meta-term s, denoted Pos(s), is the set of
finite strings over N, with ε the empty string, such that:

– if s = x for some variable x, then Pos(s) = {ε},
– if s = [x]t, then Pos(s) = {ε} ∪ {0 · p | p ∈ Pos(t)},
– if s = Z(t1, . . . , tn), then Pos(s) = {ε} ∪ {i · p | 1 ≤ i ≤ n, p ∈ Pos(ti)},
– if s = f(t1, . . . , tn), then Pos(s) = {ε} ∪ {i · p | 1 ≤ i ≤ n, p ∈ Pos(ti)}.
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Given p, q ∈ Pos(s), we say that p is a prefix of q, denoted p ≤ q, if there
exists an r ∈ Pos(s) such that p · r = q. If r �= ε, then we say that the prefix
is strict and we write p < q. Moreover, if neither p < q nor q < p, then we say
that p and q are parallel, which we denote p ‖ q. We denote by s|p the subterm
of s at position p.

3 (Meta-)Terms and Substitutions

In iTRSs and iλc, terms are defined by means of introducing a metric on the
set of finite terms and subsequently taking the completion of the metric. That
is, taking the least set of objects containing the set finite terms such that every
Cauchy sequence converges [2, 4, 7]. Intuitively, in such a metric, two terms s and
t are close to each other if the first ‘conflict’ between them occurs ‘deep’ according
to some depth measure. In iTRSs, a conflict is a position p such that root(s|p) �=
root(t|p). In iλc, a conflict is defined similarly, but also takes into account α-
equivalence. The metric, denoted d(s, t), is defined as 0 when no conflict occurs
between s and t and otherwise as 2−k, where k denotes the minimal depth such
that a conflict occurs between s and t.

To define terms and meta-terms for iCRSs, we first define the notions of a
conflict and α-equivalence for finite meta-terms. In the definition we denote by
s[x → y] the replacement in s of the occurrences of the free variable x by the
variable y.

Definition 3.1. Let s and t be finite meta-terms. A conflict of s and t is a
position p ∈ Pos(s) ∩ Pos(t) such that:

1. if p = ε, then root(s) �= root(t),
2. if p = i · q for i ≥ 1, then root(s) = root(t) and q is a conflict of s|i and t|i,
3. if p = 0 · q, then s = [x1]s′ and t = [x2]t′ and q is a conflict of s′[x1 → y]

and t′[x2 → y], where y does not occur in either s′ or t′.

The finite meta-terms s and t are α-equivalent if no conflict exists [4].

We next define the depth measure D.

Definition 3.2. Let s be a meta-term and p ∈ Pos(s). Define:

D(s, ε) = 0
D(Z(t1, . . . , tn), i · p′) = D(ti, p′)

D([x]t, 0 · p′) = 1 +D(t, p′)
D(f(t1, . . . , tn), i · p′) = 1 +D(ti, p′)

Note that meta-variables are not counted by D. Changing the second clause to
D(Z(t1, . . . , tn), i · p′) = 1 + D(ti, p′) yields the ‘usual’ depth measure, which
counts the number of symbols in a position.

The measure D is employed in the definition of the metric, which is defined
precisely as in the case of iTRSs and iλc.
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Definition 3.3. Let s and t be meta-terms. The metric d is defined as:

d(s, t) =
{

0 if s and t are α-equivalent
2−k otherwise,

where k is the minimal depth with respect to the measure D such that a conflict
occurs between s and t.

Following precisely the definition of terms in the case of iTRSs and iλc, we
define the meta-terms.

Definition 3.4. The set of meta-terms over a signature Σ is the metric com-
pletion of the set of finite meta-terms with respect to the metric d.

Note that, by definition of metric completion, the set of finite meta-terms is a
subset of the set of meta-terms.

The notions of a set of positions and a subterm of a finite meta-term carry
over directly to the meta-terms, we use the same notation in both cases.

The metric completion allows precisely those meta-terms such that the depth
measure D increases to infinity along all infinite paths in the meta-term. Thus,
by the definition of D and d, no meta-term has a subterm s such that there
exists an infinite string p over N with the property that each finite prefix q of p
is a position of s with root(s|q) a meta-variable. Informally, no meta-term has
an infinite chain of meta-variables.

Examples of candidate ‘meta-terms’ that are disallowed by the definition of
meta-term are:

Z(Z(. . . (Z(. . .))))
Z1(Z2(. . . (Zn(. . .))))

A construction that is allowed is an infinite number of finite chains of meta-
variables ‘guarded’ by abstractions or function symbols. For example, the fol-
lowing is allowed:

[x1]Z1([x2]Z2(. . . ([xn]Zn(. . .))))

If we had wanted to include ‘meta-terms’ with infinite chains of meta-variables
we should have used the usual depth measure on finite meta-terms instead of
the measure D.

We explain the reason for the exclusion of meta-terms with infinite chains of
meta-variables after the definition of substitutions. The idea of the exclusion of
certain meta-terms comes from iλc where it is possible to define subsets of the
set of infinite λ-terms by slightly changing the notion of the depth measure on
which the metric is based [4]. It is, for example, possible to define a subset in
which no λ-terms with infinite chains of λ-abstractions occur, i.e., subterms of
the form λx1.λx2 . . . λxn . . . are disallowed.

The terms can now be defined as in the finite case [3, 5, 6]. The only difference
is that meta-terms now occur in the definition instead of finite meta-terms.

Definition 3.5. The set of terms is the largest subset of the set of meta-terms,
such that no meta-variables occur in the meta-terms.
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Note that the definition of meta-terms, as defined by the measure D, only
restricts meta-terms containing meta-variables, not meta-terms without meta-
variables. Hence, the set of terms is independent of the use of either D in Defini-
tion 3.3 or the usual depth measure. As a consequence, both the set of (infinite)
first-order terms and the set of (infinite) λ-terms are easily shown to be included
in the set of terms.

We next define substitutions. The required definitions are the same as in the
case of CRSs [3, 6], except that coinduction is employed instead of induction.
This is identical to what is done in the case of iTRSs and iλc with respect to
the finite systems they are based on. In the definitions we use x and t as a
short-hands for respectively the sequences x1, . . . , xn and t1, . . . , tn with n ≥ 0.
We assume n fixed in the next two definitions.

Definition 3.6. A substitution of the terms t for distinct variables x in a term
s, denoted s[x := t], is coinductively defined as:

1. xi[x := t] = ti,
2. y[x := t] = y if y does not occur in x,
3. ([y]s′)[x := t] = [y](s′[x := t]),
4. f(s1, . . . , sm)[x := t] = f(s1[x := t], . . . , sm[x := t]).

The above definition implicitly takes into account the variable convention [8] in
the third clause to avoid the binding of free variables by the abstraction.

Definition 3.7. An n-ary substitute is a mapping denoted λx1, . . . , xn.s or
λx.s, with s a term, such that:

(λx.s)(t1, . . . , tn) = s[x := t] . (1)

Reading Eq. (1) from left to right gives rise to the rewrite rule

(λx.s)(t1, . . . , tn) → s[x := t] .

This rule can be seen a parallel β-rule. That is, a variant of the β-rule from iλc
which substitutes for multiple variables simultaneously. The root of (λx.s) is
called the λ-abstraction and the root of the left-hand side of the parallel β-rule
is called the λ-application.

Definition 3.8. A valuation σ̄ is an extension of a function σ which assigns
n-ary substitutes to n-ary meta-variables. It is coinductively defined as:

1. σ̄(x) = x,
2. σ̄([x]s) = [x](σ̄(s)),
3. σ̄(Z(s1, . . . , sm)) = σ(Z)(σ̄(s1), . . . , σ̄(sm)),
4. σ̄(f(s1, . . . , sm)) = f(σ̄(s1), . . . , σ̄(sm)).

Similar to Definition 3.6, the above definition implicitly takes into account the
variable convention in the second clause to avoid the binding of free variables by
the abstraction.

Thus, applying a substitution means applying a valuation and proceeds in
two steps: In the first step each subterm of the form Z(t1, . . . , tn) is replaced by
a subterm of the form (λx.s)(t1, . . . , tn). In the second step Eq. (1) is applied to
each subterm of the form (λx.s)(t1, . . . , tn) as introduced in the first step.
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In the light of the rewrite rule introduced just below Definition 3.7 the sec-
ond step can be viewed as a complete development of the parallel β-redexes
introduced in the first step. This is obviously a complete development in a vari-
ant of iλc. The variant has the parallel β-rule and a signature containing the
λ-application, the λ-abstraction, the abstractions, the meta-variables, and the
elements of Σ.

As in the finite case [5, Remark II.1.10.1], we need to prove that the appli-
cation of a valuation to a meta-term yields a unique term.

Proposition 3.9. Let s be a meta-term and σ̄ a valuation. There exists a unique
term that is the result of applying σ̄ to s.

Proof (Sketch). That the first step in applying σ̄ to s has a unique result is an
immediate consequence of being defined coinductively. We denote the result of
the first step by sσ. The set of parallel β-redexes in sσ is denoted U .

To prove that the second step also has a unique result we employ the rewrit-
ing terminology as introduced above. Although omitted, the definitions of a
development and a complete development can be easily derived from the iλc
definitions.

Note that to repeatedly rewrite the root of sσ by means of the parallel β-
redex, the root must look like

(λx.xi)(t1, . . . , tn) ,

with 1 ≤ i ≤ n and ti again such a redex. This is only possible if there exists in sσ
an infinite chain of such redexes which starts at the root. However, this requires
an infinite chain of meta-variables to be present in s, which is not allowed by the
definition of meta-terms. Thus, the root can only be rewritten finitely often in
a development. Applying the same reasoning to the roots of the subterms, gives
that a complete development is obtained by reducing the redexes in U in an
outside-in fashion. As all parallel β-redexes occur in U and as no λ-applications
and λ-abstractions occur in s the result of the complete development, which we
denote σ̄(s), is necessarily a term.

To show that each complete development ends in σ̄(s), note that we can view
each parallel β-redex (λx1, . . . , xn.s)(t1, . . . , tn) as a sequence of β-redexes:

(λx1(. . . ((λxn.s)tn) . . .))t1 .

This means that each complete development in our variant of iλc corresponds to
a complete development in iλc extended with some function symbols. As each
complete development in iλc ends in the same term, a result independent of
added function symbols, the complete developments of the second step must
also end in the same term. Hence, σ̄(s) is unique. ��

Let us now see why we excluded ‘meta-terms’ with infinite chains of meta-
variables from Definition 3.4. Consider the ‘meta-term’

Z(Z(. . . (Z(. . .)))) .
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Applying the valuation that assigns to Z the substitute λx.x yields:

(λx.x)((λx.x)(. . . ((λx.x)(. . .))))

which has no complete development, as no matter how many parallel β-redexes
are contracted, it reduces only to itself and not to a term. This is inadequate,
as rewrite steps in iCRSs need to relate terms to terms.

The previous problem does not depend on only a single meta-variable be-
ing present in the ‘meta-term’. The same behaviour can occur with different
meta-variables of different arities. In that case, we can define a valuation that
assigns λx.y to each meta-variable Z in the ‘meta-term’ with y in x such that y
corresponds to an argument of Z which is a chain of meta-variables.

The above ‘meta-term’ still has the nice property that it exhibits confluence
with respect to the parallel β-rule. Unfortunately, there are ‘meta-terms’ that
do not have this property. Consider a signature with constants a and b and also
consider the ‘meta-term’

Z(a, Z(b, Z(a, Z(b, Z(. . .))))) .

Applying the valuation that assigns to Z the substitute λxy.y yields the ‘λ-term’
of Fig. 1. It reduces by means of two different developments to the λ-terms of
Fig. 2 and Fig. 3. These last two λ-terms have no common reduct with respect
to parallel β-reduction. They reduce only to themselves. Note that this problem
also occurs in iλc [4, Sect. 4].

(λxy.y)

���
a (λxy.y)

���

b (λxy.y)

���
a (λxy.y)

���
�

b ...

Fig. 1.

(λxy.y)

���
a (λxy.y)

���
a (λxy.y)

���
a (λxy.y)

��
��

a ...

Fig. 2.

(λxy.y)

���

b (λxy.y)

���

b (λxy.y)

���

b (λxy.y)

���
�

b ...

Fig. 3.

Concluding, when we allow ‘meta-terms’ with infinite chains of meta-variables
we have two problems. First, substitution in such a ‘meta-term’ does not always
yield a term. Second, substitution may yield distinct results, none of which are
terms. We can overcome these problems by not allowing infinite chains of meta-
variables to occur in meta-terms, as shown in Proposition 3.9.

4 Infinitary Rewriting

We continue to combine the definitions of iTRSs and iλc and those of CRSs. We
start with a definition that comes directly from CRS theory.
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Definition 4.1. A finite meta-term is a pattern if each of its meta-variables
has distinct bound variables as its arguments. Moreover, a meta-term is closed
if all its variables occur bound.

We next define rewrite rules and iCRSs. In analogy to the rewrite rules of
iTRSs, the definition is identical to the one in the finitary case, but without the
finiteness restriction on the right-hand sides of the rewrite rules [1, 2].

Definition 4.2. A rewrite rule is a pair (l, r), denoted l→ r, where l is a finite
meta-term and r is a meta-term, such that:

1. l is a pattern and of the form f(s1, . . . , sn) with f ∈ Σ of arity n,
2. all meta-variables that occur in r also occur in l, and
3. l and r are closed.

An infinitary combinatory reduction system (iCRS) is a pair C = (Σ,R) with Σ
a signature and R a set of rewrite rules.

As the rewrite rules of iTRSs and iλc only have finite chains of meta-variables
when their rules are considered as rewrite rules in the above sense, it follows
easily that iTRSs and iλc are iCRSs.

A context is a term over Σ ∪ {�} where � is a fresh constant. One-hole
contexts are defined in the usual way. We now define redexes and rewrite steps.

Definition 4.3. Let l→ r be a rewrite rule. Given a valuation σ̄, the term σ̄(l)
is called a l → r-redex. If s = C[σ̄(l)] for some context C[�] with σ̄(l) a l → r-
redex and p the position of the hole in C[�], then an l → r-redex, or simply a
redex, occurs at position p and depth D(s, p) in s. A rewrite step is a pair (s, t),
denoted s → t, such that a l → r-redex occurs in s = C[σ̄(l)] and such that
t = C[σ̄(r)].

We can now define what a transfinite reduction sequence is. The definition
copies the definition from iTRSs and iλc verbatim [2, 4].

Definition 4.4. A transfinite reduction sequence of ordinal length α is a se-
quence of terms (sβ)β<α+1 such that sβ → sβ+1 for all β < α. For each rewrite
step sβ → sβ+1, let dβ denote the depth of the contracted redex. The reduction
sequence is weakly convergent or Cauchy convergent if for every ordinal γ ≤ α
the distance between tβ and tγ tends to 0 as β approaches γ from below. The
reduction sequence is strongly convergent if it is weakly convergent and if dβ

tends to infinity as β approaches γ from below.

Notation 4.5. By s �α t, respectively s �≤α t, we denote a strongly conver-
gent transfinite reduction sequence of ordinal length α, respectively of ordinal
length less than or equal to α. By s � t we denote a strongly convergent trans-
finite reduction sequence of arbitrary ordinal length and by s→∗ t we denote a
reduction sequence of finite length.

As in [2–4], we prefer to reason about strongly converging reduction se-
quences. This ensures that we can restrict our attention to reduction sequences
of length at most ω by the so-called compression property. To prove the property
we need the following lemma and definitions.
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Lemma 4.6. If s � t, then the number of steps contracting redexes at depths
less than d ∈ N is finite for any d.

Proof. This is exactly the proof of [2, Lemma 3.5]. ��

Definition 4.7. A rewrite rule l → r is left-linear, if each meta-variable occurs
at most once in l. Moreover, an iCRS is left-linear if all its rewrite rules are
left-linear.

Definition 4.8. A pattern is fully-extended [9, 10], if, for each of its meta-
variables Z, and each abstraction [x] having Z in its scope, x is an argument of
Z. Moreover, an iCRS is fully-extended if the left-hand sides of all rewrite rules
are fully-extended.

Left-linearity and fully-extendedness ensure no redex is created by either
making two subterms equal in an infinite number of steps or by erasing some
variable in an infinite number of steps.

Theorem 4.9 (Compression). For every fully-extended, left-linear iCRS, if
s �α t, then s �≤ω t.

Proof (Sketch). Let s �α t, and proceed by ordinal induction on α. By [3,
Theorem 12.7.1] it suffices to show that the theorem holds for α = ω + 1: The
cases where α is 0, a limit ordinal, or a successor ordinal greater than ω + 1 do
not depend on the definition of rewriting.

For α = ω+1 it follows by Lemma 4.6 that we can write s �α t as s→∗ s′ �ω

s′′ → t, such that all rewrite steps in s′ �ω s′′ occur below the meta-variable
positions of the redex contracted in the step of s′′ → t. By fully-extendedness
and left-linearity it follows that a redex of which the redex contracted in s′′ → t
is a residual occurs in s′. Hence, we can contract the redex in s′, which yields a
term t′.

The result now follows if we can construct a strongly convergent reduction
sequence t′ �≤ω t. To construct such a reduction sequence, assume t0 = t′ and
construct for each d > 0 a reduction sequence td−1 →∗ td where all rewrite steps
occur at depths greater or equal to d − 1, and where d(td, t) ≤ 2−d. That the
construction of these reduction sequences is possible follows by a proof that is
similar to the proof of compression for iλc [4]. Using the fact that only finite
chains of meta-variables occur in meta-terms is essential to the proof. By the
requirements on the constructed reduction sequences, it follows that t0 →∗ t1 →∗

. . .→∗ td−1 →∗ td →∗ . . . t is a strongly convergent reduction sequence of length
at most ω. As s→∗ t′, we then have that s �≤ω t, as required. ��

The previous theorem does not hold in general for iCRSs that are not left-linear
or fully-extended. For left-linearity, this follows from the iTRS counterexample in
[2]. For fully-extendedness, this follows from the infinitary λβη-calculus in which
reduction sequences occur that are not compressible to reduction sequences of
length at most ω [3, 4]. The η-rule is not fully-extended.
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5 Developments

In this section we prove that each complete development of the same set of
redexes in an orthogonal iCRS ends in the same term. As all the left-hand sides
of the rewrite rules in iCRSs are finite, the definition of orthogonality carries
over immediately from CRSs.

Definition 5.1. Let R = {li → ri | i ∈ I} be a set of rewrite rules.

1. R is non-overlapping if it holds that:
– each li → ri-redex that occurs at a position p in an lj → rj-redex with
i �= j occurs such that there exists a position q ≤ p with q ∈ Pos(lj) and
root(lj |p) a meta-variable,

– likewise for p �= ε and i = j.
2. R is orthogonal if it is left-linear and non-overlapping.
3. An iCRS is orthogonal if its set or rewrite rules is orthogonal.

In the remainder of this section we assume an orthogonal iCRS, a term s,
and a set U of redexes in s.

5.1 Descendants and Residuals

Before we can consider developments, we need to define descendants and resid-
uals. The definition of descendant across a rewrite step σ̄(l) → σ̄(r) follows the
definition of substitution, and is thus defined in two steps. The first step defines
descendants in σ̄(r) where only the valuation is applied and not Eq. (1). The
second step defines descendants across application of Eq. (1).

Given that the second step of the substitution is just a complete development
in a variant of iλc, the second step in the definition of descendants is just a variant
of descendants in iλc [3, 4]. For this reason, the step is not made explicit here.

We next give a definition of the first step. In the definition we denote by
0 the position of the subterm on the left-hand side of a λ-application and
also the position of the body of a λ-abstraction. By 1, . . . , n we denote the
positions of the subterms on the right-hand side of the λ-application. This
means that (λx.s)(t1, . . . , tn)|0 = (λx.s), λx.s|0 = s, and Z(t1, . . . , tn)|i =
(λx.s)(t1, . . . , tn)|i = ti for 1 ≤ i ≤ n. We denote by σ̄(l) → rσ the rewrite
step σ̄(l)→ σ̄(r) when only the first step of the substitution applied to r.

Definition 5.2. Let l → r be a rewrite rule, σ̄ a valuation, and p ∈ Pos(σ̄(l)).
Suppose u : σ̄(l)→ rσ. The set p/1u is defined as follows:

– if a position q ∈ Pos(l) exists such that p = q · q′ and root(l|q) = Z, then
define p/1u = {p′ · 0 · 0 · q′ | p′ ∈ P} with P = {p′ | root(r|p′ ) = Z},

– if no such position exists, then define p/1u = ∅.

Note that Pos(r) ⊆ Pos(rσ) by the notation of positions in subterms of the
form (λx.s)(t1, . . . , tn). From this it follows that P ⊆ Pos(rσ).

We can now give a complete definition of a descendant across a rewrite step.
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Definition 5.3. Let u : C[σ̄(l)] → C[σ̄(r)] be a rewrite step, such that p is the
position of the hole in C[�], and let q ∈ Pos(C[σ̄(l)]). The set of descendants
of q across u, denoted q/u, is defined as q/u = {q} in case p ‖ q or p < q. In
case q = p · q′, it is defined as q/u = {p · q′′ | p′′ ∈ Q}, where Q is the set of
descendants of q′/1u′ with u′ : σ̄(l) → rσ across complete development of the
parallel β-redexes in rσ.

Descendants across a reduction sequence are defined as for iTRSs and iλc.

Definition 5.4. Let s0 �α sα and let P ⊆ Pos(s0). The set of descendants of
P across s0 �α sα, denoted P/(s0 �α sα), is defined as follows:

– if α = 0, then P/(s0 �α sα) = P ,
– if α = 1, then P/(s0 → s1) =

⋃
p∈P p/(s0 → s1),

– if α = β + 1, then P/(s0 �β+1 sβ+1) = (P/(s0 �β sβ))/(sβ → sβ+1),
– if α is a limit ordinal, then p ∈ P/(s0 �α sα) iff p ∈ P/(s0 �β sβ) for all

large enough β < α.

By orthogonality, if there exists a redex at a position p using a rewrite rule
l → r that is not contracted in rewrite step and if p has descendants across
the step, then there exists a redex at each descendant of p also employing the
rule l → r. Hence, there exists a well-defined notion of residual by strongly
convergent reduction sequences. We overload the notation ·/· to denote both the
descendant and the residual relation.

5.2 Complete Developments

We now define developments. Recall that we assume we are working in an or-
thogonal iCRS and that U is a set of redexes in a term s.

Definition 5.5. A development of U is a strongly convergent reduction sequence
such that each step contracts a residual of a redex in U . A development s � t is
complete if U/(s � t) = ∅.

To prove that each complete development of the same set of redexes ends
in the same term, we extend the technique of the Finite Jumps Developments
Theorem [3] to orthogonal iCRSs. The theorem employs notions of paths and
path projections. In essence, paths and path projections are ‘walks’ through
terms starting at the root and proceeding to greater and greater depths. An
important property of paths and path projections is that when a walk encounters
a redex to be contracted in a development, a ‘jump’ is made to the right-hand
side of the employed rewrite rule. It continues there until a meta-variable is
encountered, at which point a jump back to the original term occurs.

In the following definition, we denote by pu the position of the redex u in s.
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Definition 5.6. A path of s with respect to U is a sequence of nodes and edges.
Each node is labelled either (s, p) with p ∈ Pos(s) or (r, p, q) with r a right-hand
side of a rewrite rule, p ∈ Pos(r), and q = pu with u ∈ U . Each directed edge is
either unlabelled or labelled with an element of N.

Every path starts with a node labelled (s, ε). If a node n of a path is labelled
(s, p) and if it has an outgoing edge to a node n′, then:

1. if the subterm at p is not a redex in U , then for some i ∈ Pos(s|p) ∩ N the
node n′ is labelled (s, p · i) and the edge from n to n′ is labelled i,

2. if the subterm at p is a redex u ∈ U with l → r the employed rewrite rule,
then the node n′ is labelled (r, ε, pu) and the edge from n to n′ is unlabelled,

3. if s|p is a variable x bound by an abstraction [x] occurring in the left-hand
side of the rule l → r of a redex u ∈ U , then the node n′ is labelled (r, p′ ·i, pu)
and the edge from n to n′ is unlabelled, such that (r, p′, pu) was the last node
before n with pu, root(r|p′ ) = Z, the unique position of Z in l is q, and
l|q·i = x.

If a node n of a path is labelled (r, p, pu) and if it has an outgoing edge to a node
n′, then:

1. if root(r|p) is not a meta-variable, then for some i ∈ Pos(r|p) ∩ N the node
n′ is labelled (r, p · i, pu) and the edge from n to n′ is labelled i,

2. if root(r|p) is a meta-variable Z, then the node n′ is labelled (s, q ·q′) and the
edge from n to n′ is unlabelled, such that l → r is the rewrite rule employed
in u, q is the position of u in s, and q′ is the unique position of Z in l.

We say that a path is maximal if it is not a proper prefix of another path. We
write a path P as a (possibly infinite) sequence of alternating nodes and edges
P = n1e1n2 . . ..

Definition 5.7. Let P = n1e1n2 . . . be a path of s with respect to U . The
path projection of P is a sequence of alternating nodes and edges φ(P ) =
φ(n1)φ(e1)φ(n2) . . . such that for each node n in P :

1. if n is labelled (t, p), then φ(n) is unlabelled if root(t|p) is a redex in U or a
variable bound by some redex in U and it is labelled root(t|p) otherwise,

2. if n is labelled (r, p, q), then φ(n) is unlabelled if root(r|p) is a meta-variable
and it is labelled root(r|p) otherwise.

For each edge e, if e is labelled i, then φ(e) has the same label, and if e is
unlabelled, then φ(e) is labelled ε.

Example 5.8. Consider the iCRS with the following rewrite rule l → r:

f([x]Z(x), Z ′)→ Z(g(Z(Z ′))) .

Also, consider the terms s = f([x]g(x), a) and t = g(g(g(a))), the meta-term
r = Z(g(Z(Z ′))), and the set U containing the only redex in s. Obviously, s→ t
is a complete development.
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The term s has one maximal path with respect to U :

(s, ε)→ (r, ε, ε)→ (s, 10)→1 (s, 101)→ (r, 1, ε)→1 (r, 11, ε)
→ (s, 10)→1 (s, 101)→ (r, 111, ε)→ (s, 2)

The term t has one maximal path with respect to U/U = ∅:

(t, ε)→1 (t, 1)→1 (t, 11)→1 (t, 111) .

The path projections of the maximal paths are respectively

· →ε · →ε g →1 · →ε g →1 · →ε g →1 · →ε · →ε a

and
g →1 g →1 g →1 a .

Let P(s,U) denote the set of path projections of maximal paths of s with
respect to U . The following result can be witnessed in the above example.

Lemma 5.9. Let u ∈ U and let s→ t be the rewrite step contracting u. There is
a surjection from P(s,U) to P(t,U/u). Given a path projection φ(P ) ∈ P(s,U),
its image under the surjection is acquired from φ(P ) by deleting finite sequences
of unlabelled nodes and ε-labelled edges from φ(P ).

Proof (Sketch). By straightforwardly, but very tediously, tracing through the
construction of paths, it is evident that the set of maximal paths of t with
respect to U/u can be obtained from the set of maximal paths of s with respect
to U by replacing or deleting nodes of the form (r, p, pu). If a maximal path of
t is obtained from a maximal path of s in this way, then they have identical
path projections, except that sequences of ε-labelled edges and unlabelled nodes
may have been deleted (due to the contraction of u). This establishes the desired
surjection. It is easy to see that the sequences of deleted edges can only be infinite
if there is an infinite chain of meta-variables in the right-hand side of the rule of
u, which is impossible by definition of meta-terms. ��

We next define a property for sets P(s,U): the finite jumps property. We also
define some terminology to relate a term to a set P(s,U).

Definition 5.10. If no path projection occurring in P(s,U) contains an infinite
sequences of unlabelled nodes and ε-labelled edges, then we say that U has the
finite jumps property. Moreover, we say that a term t matches P(s,U), if, for
all φ(P ) ∈ P(s,U), and for all prefixes of φ(P ) ending in a node n labelled f ,
we have that root(t|p) = f , where p is the concatenation of the edge labels in the
prefix (starting at the first node of φ(P ) and ending at φ(n)).

We have the following.

Proposition 5.11. If U has the finite jumps property, then there exists a unique
term, denoted T (s,U), that matches P(s,U).

Proof. The proof is identical to the proof of Proposition 12.5.8 in [3]. ��
We can now finally prove the Finite Jumps Developments Theorem:
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Theorem 5.12 (Finite Jumps Developments Theorem). If U has the fi-
nite jumps property, then:

1. every complete development of U ends in T (s,U),
2. for any p ∈ Pos(s), the set of descendants of p by a complete development

of U is independent of the complete development,
3. for any redex u of s, the set of residuals of u by a complete development of
U is independent of the complete development, and

4. U has a complete development.

Proof (Sketch). The proof is identical to the proof of Proposition 12.5.9 in [3],
except that Lemma 5.9 is employed instead of tracing. ��

With the Finite Jumps Developments Theorem in hand, we can now precisely
characterise the sets of redexes having complete developments. This characteri-
sation seems to be new.

Lemma 5.13. The set U has a complete development if and only if U has the
finite jumps property.

Proof. To prove that the finite jumps property follows if U has a complete de-
velopment, suppose U does not have the finite jumps property. In this case there
is a path projection which ends in an infinite sequence of unlabelled nodes and
ε-labelled edges.

By Lemma 5.9 we have for each step s → t contracting a redex in U that
there is a surjection from P(s,U) to P(t,U/u) which deletes only finite sequences
of unlabelled nodes and ε-labelled edges. Hence, for all path projections we have
that the nodes and edges left after the contraction of a redex in U either stay
at the same distance from the first node of the path projection in which they
occur or move closer to the first node. But then it follows immediately by ordinal
induction that a path projection with an infinite sequence of unlabelled nodes
and ε-labelled edges is present after each development. In particular, such an
infinite sequence is present after the complete development. However, by defini-
tion of paths and path projections this means that a descendant of a redex in
U is present in the final term of the complete development. But this contradicts
the fact that no descendants of redexes in U exist in the final term of a complete
development. Hence, U has the finite jumps property.

That U has a complete development if it has the finite jumps property is an
immediate consequence of Theorem 5.12(4). ��

The result we were aiming at now follows easily.

Theorem 5.14. If U has a complete development then all complete develop-
ments of U end in the same term.

Proof. By Lemma 5.13, if U has a complete development then it has the finite
jumps property. But then each complete development of U ends in the same final
term by Theorem 5.12(1). ��
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6 Further Directions

We have defined and proved the first results for iCRSs, but a number of questions
that have been answered for iTRSs and iλc remain open: Does there exist a
notion of meaningless terms [11] that allows for the construction of Böhm-like
trees? Can we prove a partial confluence property [2, 3, 11] showing infinitary
confluence up to equivalence of meaningless terms?

Furthermore, can the treatment of iCRS in this paper be extended to the
other formats of higher-order rewriting? The fact that CRSs have a clean sepa-
ration of abstractions (in terms and rewrite rules) and substitutions which is not
present in some of the other forms of higher-order rewriting [3] may constitute
a stumbling block in this respect.

Finally, it is as yet unclear how to relax the requirement that no infinite chains
of meta-variables are allowed in meta-terms while still retaining a meaningful
notion of substitution.
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Abstract. Many applications of congruence closure nowadays require
the ability of recovering, among the thousands of input equations, the
small subset that caused the equivalence of a given pair of terms. For this
purpose, here we introduce an incremental congruence closure algorithm
that has an additional Explain operation.
First, two variations of union-find data structures with Explain are in-
troduced. Then, these are applied inside a congruence closure algorithm
with Explain, where a k-step proof can be recovered in almost optimal
time (quasi-linear in k), without increasing the overall O(n log n) runtime
of the fastest known congruence closure algorithms.
This non-trivial (ground) equational reasoning result has been quite in-
tensively sought after (see, e.g., [SD99, dMRS04, KS04]), and moreover
has important applications to verification.

1 Introduction

Union-find data structures maintain the equivalence relation induced by a given
sequence of Union operations between pairs of elements. Similarly, congruence
closure algorithms maintain a congruence relation given by a sequence of pairs
of terms (i.e., equations) without variables. The difference between equivalence
closure and congruence closure is that the congruence relation, in addition to
reflexivity, symmetry and transitivity, also satisfies the monotonicity axioms
saying, for all f , that f(x1 . . . xn)=f(y1 . . . yn) whenever xi=yi for all i in 1 . . . n.

Example 1. The equation a=b belongs to the congruence generated by the three
equations: b=d, f(b)=d, and f(d)=a.

This is equivalent to saying that a=b is a logical consequence (in first-order
logic with equality) of these three ground equations. ��

Congruence closure is closely related to ground Knuth-Bendix completion; in
fact, as usual, our congruence closure algorithm applied to an input set of ground
equations E builds a convergent term rewrite system for E (possibly with some
new symbols).

Decision procedures based on congruence closure are used in numerous de-
duction and verification systems, where the generation of explanations is highly
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desirable if not required. For instance, this is crucial in the so-called lazy ap-
proaches to decision procedures for Boolean formulae over theory atoms. In these
procedures, the Boolean formulae frequently include equality atoms; see, e.g.,
CVC-Lite, at verify.stanford.edu/CVCL, and [dMR02, ABC+02, BDS02,
FJOS03]. All these approaches are lazy in the sense that initially each equality
atom is simply abstracted by considering it as a distinct propositional variable,
and the resulting propositional formula is sent to a SAT solver. If the SAT solver
reaches a (partial) model that is not a congruence, an additional propositional
clause (a lemma) precluding that model is added; this is iterated (many times)
until the SAT solver finds a congruence model or all assignments have been
explored.

Example 2. Assume that, in such a lazy approach, the model being built by the
SAT solver is fed into the congruence closure algorithm as a (long!) sequence
of atoms that, in particular, includes b= d, f(b)= d, and f(d) = a. Then, if
additionally a �=b is given, it is no longer a congruence (see Example 1).

At that point, the congruence closure algorithm has to generate as a lemma
the clause b=d∧ f(b)=d∧ f(d)=a −→ a=b, because the first three atoms are the
explanation of a=b. It is hence crucial in these applications to efficiently recover
this small explanation among the (thousands of) originally input equations. ��

Another recent approach for the flexible generation of decision procedures
given in [GHN+04] also heavily relies on incremental congruence closure with
intermixed Explain operations. The basic idea is similar to the CLP(X) scheme
for constraint logic programming: to provide a clean and efficient integration of
specialized theory solvers within the Davis-Putnam-Logemann-Loveland proce-
dure [DP60, DLL62]. A general engine DPLL(X) is used, where X can be instan-
tiated with a solver for a given theory T , thus producing a system DPLL(T ).
Each time the DPLL(T ) procedure produces a conflict, explanations need to
be generated by the theory solver for building the conflict graph that is used
for non-chronological backtracking in modern SAT solvers like Chaff [MMZ+01].
The fact that this approach currently outperforms previous techniques on logics
with equality is largely due to the efficient incremental algorithm for congru-
ence closure with explanations described here (see [GHN+04] for details about
the DPLL(T ) approach and experiments on benchmarks from a large variety of
verification problems).

Since in such an incremental setting many Explain operations occur during
a single congruence closure procedure, it is crucial to efficiently recover these
explanations, even at the expense of making the congruence closure algorithm
slightly slower in practice. If the congruence closure procedure deals with input
equations of size n and Explain , say, were linear in n, the cost of Explain would
enormously dominate the O(n log n) runtime of the overall congruence closure
algorithm. Here we present, to our knowledge, the first congruence closure algo-
rithm able to produce these explanations in an efficient way.

Section 2 of this paper is on union-find data structures with Explain . Indeed,
already for union-find data structures the problem requires some thinking, since
the information about the original input unions is, in general, lost in the compact
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representations of the equivalence relation. We first very briefly introduce some
basic notions about union-find data structures and define the Explain operation.
A first solution that supports optimal Union and Find operations (as in Tarjan’s
well-known algorithm with path compression [Tar75]) and recovers the k-step
proof in time O(k logn) is given in Subsection 2.1. In Subsection 2.2 we describe
another union-find data structure that has optimal O(k) Explain operations and
optimal Find , at the expense of a slightly more costly Union, which has an
amortized time bound of O(log n).

Section 3 is the core of this paper, where the latter union-find data structure
is applied inside an incremental congruence closure algorithm. Its complexity is
analyzed in Subsection 3.3, where we show that the use of this more costly union-
find algorithm (needed for bookkeeping the explanations) does not increase the
overall O(n logn) runtime of the fastest known congruence closure algorithms.

The Explain operation is given in Subsection 3.4, and analyzed in detail in
Subsection 3.5, showing that it is almost optimal, running in O(k α(k, k)) time
for a k-step explanation, where α(k, k) (related to the inverse of Ackermann’s
function) is in practice never larger than 4. Subsection 3.6 discusses quality is-
sues of explanations, gives extensive experimental results, and introduces several
extensions with practical impact of our explanation algorithms.

2 Union-Find with Proofs

For the sake of self-containedness of this paper and for introducing some nota-
tion, here we first shortly explain the classical union-find data structure (see, e.g.,
[CLR90] for details). A binary relation over a set E is a subset of E × E . It is an
equivalence relation if it is reflexive, symmetric and transitive. The equivalence
closure of a relation U is the smallest equivalence relation containing U .

The union-find data type maintains the equivalence closure of a relation
U = { (e1, e′1) . . . (ep, e′p) } given incrementally (on-line) as a sequence of oper-
ations Union(e1, e′1) . . .Union(ep, e′p). Each equivalence class is identified by its
representative, which is a certain element of the class. After initializing the data
type with the singleton classes {e1}, {e2}, . . . , {en}, it supports the operations:

– Union(e, e′): merges the classes containing e and e′ into a new class. We will
assume that e and e′ were not in the same class prior to the operation, or,
equivalently, that redundant unions are ignored.

– Find(e): returns the current representative of the class containing e.

A very well-known implementation of this data type is a set of trees, i.e., a forest,
where each tree represents one class. Each node in a tree is (labelled with) some
element ei, and the root of a tree is the representative of that class. Then, Find(e)
amounts to returning the root re of its tree, and each Union(e, e′) first finds the
two roots by doing Find(e) and Find(e′), and then adds the tree rooted with re
as an additional child of re′ (or vice versa). This is implemented efficiently by an
array A of n integers where A[i] = j if the parent of ei is ej, and A[i] = −1 if ei is
a root (i.e., a representative). This way, the cost of both operations depends only
on the depth of the trees. This depth can be kept logarithmic in n, by adding,
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in each Union operation, the tree with fewer nodes as an additional child of the
larger one’s root. Then, each time an element increases its depth by one, the size
of its class is at least doubled, which cannot happen more than logn times. Note
that the size of each tree can be kept as a negative number at its root. Thus,
both operations can be done in O(log n).

Example 3. Below we show a (numbered) sequence of 12 Union operations and
the tree and array representations of the resulting two classes. Each edge in the
trees is labelled with the union that caused it.

(1, 8)︸︷︷︸
1

, (7, 2)︸︷︷︸
2

, (3, 13)︸ ︷︷ ︸
3

, (7, 1)︸︷︷︸
4

, (6, 7)︸︷︷︸
5

, (9, 5)︸︷︷︸
6

, (9, 3)︸︷︷︸
7

, (14, 11)︸ ︷︷ ︸
8

, (10, 4)︸ ︷︷ ︸
9

, (12, 9)︸ ︷︷ ︸
10

, (4, 11)︸ ︷︷ ︸
11

, (10, 7)︸ ︷︷ ︸
12

e8
12←− e11 e13

↗1 ↑4 ↖5 ↑11 ↖8 ↗3 ↑7 ↖10

e1 e2 e6 e4 e14 e3 e5 e12
↑2 ↑9 ↑6
e7 e10 e9

8 8 13 11 13 8 2 −9 5 4 8 13 −5 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 ��

An optimization known as path compression aims at further decreasing the
trees’ depth: at each Find(e), for every element e′ on the path from e to re a
direct shortcut to re is created, that is, all such e′ become children of re; this
comes at the expense of (roughly) duplicating the work at each Find . It turns
out (see [Tar75]) that a sequence of n−1 Union operations (i.e., in the end
there is only one class), intermixed with m ≥ n Find operations, is processed in
Θ(m α(m,n)) time by the algorithm with path compression, where α(m,n) is a
very slowly growing function. This Θ(m α(m,n)) bound is optimal [Tar79].

Our purpose here is to extend the data structure in order to support the
following operation, that is able to explain at any point of the computation
“why” two given elements e and e′ are equivalent at that moment:

– Explain(e, e′): if a sequence U of unions of pairs (e1, e′1) . . . (ep, e
′
p) has taken

place, it returns a minimal subset E of U such that (e, e′) belongs to the
equivalence relation generated by E and it returns ⊥ if no such E exists.

Example 4 (Example 3 continued). On the previous example, Explain(e1, e4)
returns the explanation {(e7, e1), (e10, e7), (e10, e4)}. ��

Proposition 1. The subset E returned by Explain is unique if it exists.

The previous property is easy to see by considering the undirected graph
which has as edges the pairs in the sequence U of unions. Since U includes
no redundant unions, this graph (which we will re-visit in Section 2.2) has no
cycles. Therefore, Explain(e, e′) consists exactly of the edges on the unique path
between e and e′.
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2.1 Union-Find with an O(k log n) Explain Operation

In this section a data structure will be developed that supports optimal Union
and Find operations and where Explain takes time O(k logn) for a k-step expla-
nation. The starting point will be the classical union-find forest implementation,
without path compression.

Example 5 (Example 3 continued). Consider again Explain(e1, e4) on:

(1, 8)︸︷︷︸
1

, (7, 2)︸︷︷︸
2

, (3, 13)︸ ︷︷ ︸
3

, (7, 1)︸︷︷︸
4

, (6, 7)︸︷︷︸
5

, (9, 5)︸︷︷︸
6

, (9, 3)︸︷︷︸
7

, (14, 11)︸ ︷︷ ︸
8

, (10, 4)︸ ︷︷ ︸
9

, (12, 9)︸ ︷︷ ︸
10

, (4, 11)︸ ︷︷ ︸
11

, (10, 7)︸ ︷︷ ︸
12

e8
12←− e11 e13

↗1 ↑4 ↖5 ↑11 ↖8 ↗3 ↑7 ↖10

e1 e2 e6 e4 e14 e3 e5 e12
↑2 ↑9 ↑6
e7 e10 e9

The key observation is the following. Among the three unions (unions #1, #11,
and #12) corresponding to the paths from e1 and from e4 to their nearest com-
mon ancestor e8, only the one that occurs last (union #12) in the sequence U
is sure to belong to Explain(e1, e4). ��

In the example we have seen how to find one union (a, b) in Explain(e, e′).
The remaining unions can be found with two recursive calls Explain(e, a) and
Explain(b, e′), which, as we will see, gives an algorithm for Explain of cost
O(k logn). Note however that the recursive calls could also be Explain(e, b) and
Explain(a, e′); in order to know which one of the two situations applies, it is
also necessary to distinguish at each edge in which direction the union was ap-
plied, i.e., each edge has an oriented associated union. In a given sequence U
of unions of pairs (e1, e′1) . . . (ep, e

′
p), a union (ei, e′i) will be called newer than a

union (ej , e′j) whenever i > j. Now, another technical detail is that the pair (a, b)
found as in the example is in fact the newest union in Explain(e, e′); therefore,
the newest union in both recursive calls will be strictly older than (a, b) and
hence an infinite recursion cannot occur. Below all this is formalized.

Lemma 1. Consider a union-find forest data structure without path compres-
sion. For each pair of constants (e, e′) with nearest common ancestor c, the
newest associated union (a, b) of the paths from e to c and from e′ to c belongs
to Explain(e, e′). Moreover, (a, b) is the newest union in Explain(e, e′).

The previous lemma can be used in a data structure where the unions are kept
as a numbered sequence of (oriented) pairs, and where the array representation
now also contains the associated unions corresponding to each edge. Since path
compression is necessary in order to have optimal Find and Union operations,
we will also keep, with each element, the parents on the data structure with path
compression.
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Example 6 (Example 3 continued). For our example, the data structures are:

(1, 8)︸︷︷︸
1

, (7, 2)︸︷︷︸
2

, (3, 13)︸ ︷︷ ︸
3

, (7, 1)︸︷︷︸
4

, (6, 7)︸︷︷︸
5

, (9, 5)︸︷︷︸
6

, (9, 3)︸︷︷︸
7

, (14, 11)︸ ︷︷ ︸
8

, (10, 4)︸ ︷︷ ︸
9

, (12, 9)︸ ︷︷ ︸
10

, (4, 11)︸ ︷︷ ︸
11

, (10, 7)︸ ︷︷ ︸
12

associated union: 1 4 3 11 7 5 2 −1 6 9 12 10 −1 8
parent w/ path c. : 8 8 13 11 13 8 8 −9 13 11 8 13 −5 11
parent wo/ path c.: 8 8 13 11 13 8 2 −9 5 4 8 13 −5 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14
��

Theorem 1. The previous data structure performs a sequence of m ≥ n finds
and n−1 intermixed unions in time Θ(m α(m,n)). Moreover, any Explain(e, e′)
is supported in O(k logn) where k is the size of the proof.

Proof. If always Find and Union are computed first on the compressed trees,
in the same way as it is done in [Tar75], the remaining work at each Union
(updating the non-compressed parents and the associated union) only needs
constant time. Hence, this extra work will not affect the Θ(m α(m,n)) runtime.
For Explain(e, e′), by Lemma 1 we can identify one pair of the proof in time
O(log n) from the non-compressed tree which has depth O(log n). This work will
only be repeated k times, and hence, the total complexity for Explain(e, e′) is
O(k logn). ��

2.2 Union-Find with an O(k) Explain Operation

Here we develop a data structure in which Explain can be answered in optimal
time O(k) for a k-step proof, at the expense of slightly more costly Unions,
which have an amortized time bound of O(log n).

The main idea is to consider again, as we did for Proposition 1, the graph
which has as edges the pairs in the sequence U of unions. As said, since U
includes no redundant unions, this graph has no cycles, i.e., it is a forest, and
therefore Explain(e, e′) consists exactly of the edges on the unique path between
e and e′. Of course this forest can be maintained with only constant work at
each Union, and hence the only problem is how to efficiently find this unique
path for a given Explain operation.

For this purpose we will choose a root for each tree and direct all its edges
towards that root. With this structure being invariant, Explain(e, e′) will amount
to returning the edges in the paths from e and e′ to their common ancestor,
which is computable in time O(k), k being the length of the proof. This concrete
structure, which in the following will be called proof forest, can be kept invariant
as follows. At each Union(e, e′), assume, w.l.o.g., that the tree of e has no more
elements than the one of e′, and do:

1. Reverse all edges on the path between e and the root of its tree.
2. Add an edge e→ e′.
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It is not difficult to see that this preserves the aforementioned tree structure, as
well as the invariant that the path between two nodes is found by computing
their nearest common ancestor. Moreover, each time an edge is reversed, the size
of its tree is at least doubled. Therefore we have the following:

Lemma 2. In a sequence of n−1 Union operations, each edge in the proof forest
is reoriented at most O(log n) times.

Example 7. (Example 3 revisited).
Assume that again the following sequence of unions takes place:

(1, 8)︸︷︷︸
1

, (7, 2)︸︷︷︸
2

, (3, 13)︸ ︷︷ ︸
3

, (7, 1)︸︷︷︸
4

, (6, 7)︸︷︷︸
5

, (9, 5)︸︷︷︸
6

, (9, 3)︸︷︷︸
7

, (14, 11)︸ ︷︷ ︸
8

, (10, 4)︸ ︷︷ ︸
9

, (12, 9)︸ ︷︷ ︸
10

, (4, 11)︸ ︷︷ ︸
11

, (10, 7)︸ ︷︷ ︸
12

Then the proof forest could be as follows (but note that it is not unique):

8 → 1 → 7 ← 2 12→ 9→ 3→ 13
↗ ↑ ↑

14 → 11→ 4 → 10 6 5
��

The algorithm we propose is to use the standard union-find with path com-
pression and maintain at the same time the proof forest, which can be represented
by an array of pointers (integers) to parents, as it is done in the union-find data
structure itself. Altogether, the only operation whose cost will be increased is
Union.

Theorem 2. In a sequence of m ≥ n finds and n−1 intermixed unions, the
previous data structure performes each Union in an amortized time bound of
O(log n). Moreover, any Explain(e, e′) operation is supported in O(k) where k is
the size of the proof.

Proof. For every call to Union the only extra work to be done is the reorientation
of the appropriate edges. Since we will have a maximum of n−1 edges and each
edge will be reoriented at most O(log n) times, this extra work will be O(n log n)
in the whole sequence, hence giving an amortized time bound of O(log n) for each
Union. Note that the Find operations are still as efficient as in [Tar75].

As explained above, Explain(e, e′) will consist of the edges in the paths from
e and e′ to their common ancestor, which is computable in time O(k) with the
invariant structure of the proof forest. ��

3 Incremental Congruence Closure with Explain

Let F be a set of (fixed-arity) function symbols and let T (F) be the set of terms
without variables built over F : all constants (0-ary symbols) are terms, and
f(t1, . . . , tn) is a term whenever f is a non-constant n-ary symbol and t1, . . . , tn
are terms. A binary relation = over T (F) is a congruence relation if it is reflexive,
symmetric, transitive and monotonic; the latter property states, for every non-
constant function symbol f , that f(x1 . . . xn)=f(y1 . . . yn) whenever xi=yi for
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all i in 1 . . . n. The congruence closure of a relation U is the smallest congruence
relation containing U . Well-known algorithms for computing the congruence clo-
sure of a given set of equations between terms without variables were already
given in the early 1980s, such as the O(n log n) DST algorithm by Downey, Sethi,
and Tarjan, [DST80], the Nelson-Oppen one of [NO80] and Shostak’s algorithm
[Sho78].

Here we will define an incremental congruence closure algorithm: we con-
sider a sequence of n Merge(s, t) operations, for terms s and t, intermixed with
AreCongruent?(s, t) operations asking whether s and t are currently congruent,
and Explain(s, t) operations for recovering the original Merge operations causing
s and t to be congruent.

3.1 Initial Assumptions and Operations

We will use as a starting point the (non-incremental) congruence closure algo-
rithm of [NO03], which is essentially a simplification of the DST algorithm. DST
needs an initial transformation to directed acyclic graphs of outdegree 2, which
in [NO03] is replaced by another one, at the formula representation level. This is
done by Currifying, as in the implementation of functional languages; as a result,
there will be only one binary “apply” function symbol (denoted here by an f)
and constants. For example, Currifying g(a, h(b), b) gives f(f(f(g, a), f(h, b)), b).

Furthermore, as in the abstract congruence closure approaches (see [Kap97],
[BT00]), new constant symbols c are introduced for giving names to non-constant
proper subterms t; such t are then replaced everywhere by c, and the equation
t=c is added. Then, in combination with Currification, one can obtain the same
efficiency as in more sophisticated DAG implementations by appropriately in-
dexing the new constants such as c, which play the role of the pointers to the
(shared) subterms such as t in the DAG approaches. For example, the equa-
tion f(f(f(g, a), f(h, b)), b)=b is flattened by replacing it by the four equations
f(g, a)=c, f(h, b)=d, f(c, d)=e, and f(e, b)=b.

These two (structure-preserving) transformations can be done in linear time,
and, in all practical applications we are aware of, also once and for all, instead
of at each call to the congruence closure procedure. The transformations could
even be done back-and-forth at each operation without increasing the asymptotic
complexity bounds (although then the k in the complexity of Explain becomes
the proof size, rather than its number of steps, since each step can involve large
terms).

Hence, along this section, we will assume that the equations input to Merge
are of the form f(a, b)=c, or of the form a=b, where a, b and c always denote
constants. This makes the algorithm surprisingly simple and clean and more
efficiently implementable than algorithms for arbitrary terms (in fact, its non-
incremental version of [NO03] is about 50 times faster than other recent imple-
mentations such as [TV01] on the benchmarks of [TV01]). Due to its simplicity,
our algorithm is also easier to extend; e.g., in [NO03] we considered congruence
closure with integer offsets.
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In the remainder of this paper we consider an abstract data type for incre-
mental congruence closure with the following operations:

– Merge(t, c) : where t is a flat term of the form f(a, b) or a constant a.
– AreCongruent?(s, t) : returns “yes” if s and t currently belong to the same

congruence class and “no” otherwise.
– Explain(s, t): assume a sequenceM of merges (s1, t1) . . . (sp, tp) has occurred,

and that (s, t) is in the congruence closure of M ; then Explain(s, t) returns
a subset E = (si1 , ti1) . . . (sik

, tik
) of M , with 1 ≤ i1 < . . . < ik ≤ p, such

that exactly at the ik-th merge s and t became congruent, due to the merge
operations in E.

Theorem 3. A sequence of n Merge operations can be processed in O(n log n)
time, and hence each one of them in O(log n) amortized time. Furthermore, each
question AreCongruent?(s, t) can be answered in O(|s| + |t|), i.e., in constant
time if s and t are constants. For the Explain(s, t) operation between constants,
a k-step proof can be found in time O(k α(k, k)), to which, for arbitrary terms s
and t, an additional cost O(|s| + |t|) has to be added.

3.2 Implementation of Merge

The underlying union-find data structure used here applies eager path compres-
sion, that is, for each constant symbol ci, its representative can always be re-
turned in constant time by accessing an array Representative[i]. In order to
maintain this Representative table, there will be additional Class Lists contain-
ing for each representative the constants in its class.

The basic data structures for the congruence closure algorithm are:

1. Pending : a list whose elements are input equations a=b, or pairs of input
equations (f(a1, a2)=a, f(b1, b2)=b) where ai and bi are already congruent
for i = 1, 2. In both cases, when inserting such an element in Pending, what
is pending is the merge of the constants a and b.

2. The Use lists: for each representative a, UseList(a) is a list of input equations
f(b1, b2)=b such that a is the representative of b1 or of b2 (or of both).

3. The Lookup table: for all pairs of representatives (b, c), Lookup(b, c) is some
input equation f(a1, a2)=a such that b and c are the current respective rep-
resentatives of a1 and a2 iff such an equation exists. Otherwise, Lookup(b, c) is
⊥. A useful additional invariant is that, for representatives b and c, f(a1, a2)=
a is in UseList(b) and in UseList(c) iff Lookup(b, c) is f(a1, a2) = a.

4. The Proof forest data structure, as presented in the previous section.

Here we present the algorithms in a way as similar as possible to the non-
incremental one of [NO03], and separate the treatment of the proof forest from
the congruence closure algorithm itself. The data structures are initialized as ex-
pected: all Use Lists, Pending , and the Proof forest are empty, and Lookup(a, b)
is ⊥ for all pairs (a, b). Each ClassList(a) is initialized to contain only a and each
Representative(a) is initialized with a. Note that Lookup could also be stored in a
hash table (since a 2-dimensional array will be almost empty), and that the non-
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constant time initializations can also be avoided1. In the following algorithms,
a′ always denotes Representative(a) for each constant a.

1. Procedure Merge(s=t)
2. If s and t are constants a and b Then {
3. add a=b to Pending
4. Propagate() }
5. Else /* s=t is of the form f(a1, a2)=a */
6. If Lookup(a′1, a′2) is some f(b1, b2)=b Then {
7. add ( f(a1, a2)=a, f(b1, b2)=b ) to Pending
8. Propagate() }
9. Else {
10. set Lookup(a′1, a

′
2) to f(a1, a2)=a

11. add f(a1, a2)=a to UseList(a′1) and to UseList(a′2) }
12. Procedure Propagate()
13. While Pending is non-empty Do {
14. Remove E of the form a=b or (f(a1, a2)=a, f(b1, b2)=b) from Pending
15. If a′ �= b′ and, wlog., |ClassList(a′)| ≤ |ClassList(b′)| Then {
16. old repr a := a′

17. Insert edge a→ b labelled with E into the proof forest
18. For each c in ClassList(old repr a) Do {
19. set Representative(c) to b′

20. move c from ClassList(old repr a) to ClassList(b′) }
21. For each f(c1, c2)=c in UseList(old repr a) Do
22. If Lookup(c′1, c′2) is some f(d1, d2)=d Then {
23. add (f(c1, c2)=c, f(d1, d2)=d) to Pending
24. remove f(c1, c2)=c from UseList(old repr a) }
25. Else {
26. set Lookup(c′1, c

′
2) to f(c1, c2)=c

27. move f(c1, c2)=c from UseList(old repr a) to UseList(b′) }}}
Each iteration of the Propagate() algorithm picks a pending union. If this union
is not redundant, it is added to the proof forest (line 17) and (lines 19 and 20) to
the union-find data structure. Lines 21–27 traverse the UseList of the constant
whose representative has changed and, checking the lookup table, detect new
pairs of constants to be merged.

3.3 Complexity of Merge and AreCongruent?

As said, an amortized analysis is done over the whole sequence of n Merge
operations. The procedure Merge itself has no loops. Concerning Propagate(),
let m be the number of different constants (note that m ≤ 3n). The loop at lines
1 For example, Representative [a] can be updated by storing in Representative [a] an

index k to an auxiliary array A, where A[k] contains a and its representative, and
with a counter max indicating that, for all k < max, A[k] contains correct (i.e.,
initialized) information; re-initialization then simply amounts to setting max to 0
(in fact, this general idea can always avoid any n-dimensional array initialization).
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19 and 20 is executed in total O(m logm) times, namely when some constant
changes its representative, which for each one of them constants happens at most
logm times, because each time the size of its class is at least doubled. Line 17
inserts an edge between pair of constants in the proof forest. This is done at most
m−1 times, and by Lemma 2 the total time for the m−1 insertions is O(m logm).
In the loop at lines 21–27, each one of the at most n input equations of the form
f(c1, c2)=c is treated when c1 or c2 changes its representative (which, as before,
cannot happen more than logm times). Altogether, we obtain an O(n log n)
runtime. Re-using UseList and ClassList nodes, only linear space is required.

Note that the equivalence relation between all constants is dealt with by the
Representative array, i.e., by union-find with “eager path compression”. This
makes the algorithm simpler and allows one to handle AreCongruent?(a, b) in
constant time; asymptotically speaking, it causes no overhead to Merge. In prac-
tice, lazy path compression may globally perform better since strictly less “com-
pressions” are done, although it has an overhead caused by additional checks
(whether the representative has been reached or not, etc.). In any case, all
asymptotic bounds given here carry over straightforwardly to the case of lazy
path compression.

3.4 Implementation of Explain

As said, each edge a−b in the proof forest is labelled with a single input equation
a=b or with a pair of input equations (f(a1, a2)=a, f(b1, b2)=b). The way the
proof forest (and the information associated to its edges) is represented is not
described here; it can be done e.g., as in Subsection 2.2, by an array of pointers.

Example 8. Below we show a (numbered) sequence of 6 Merge operations and
the state of the proof forest after processing them. Each edge of the proof forest
is annotated with its corresponding input equation or pair of input equations:

f(g, h)=d︸ ︷︷ ︸
1

, c=d︸︷︷︸
2

, f(g, d)=a︸ ︷︷ ︸
3

, e=c︸︷︷︸
4

, e=b︸︷︷︸
5

, b=h︸︷︷︸
6

,
a

1,3−→ d
2←− c 4←− e 5←− b 6←− h

On an Explain(a, b) operation, the nearest common ancestor d is detected, and
the merge operations on the paths a−d (1,3) and b−d (5,4,2) are output as part
of the proof; but from 1 and 3 also recursively Explain(h, d) needs to be output.
In order to obtain the desired complexity bound, it is necessary to avoid repeated
visits to nodes like b, e, c, d in such recursive calls. After the merge operations in
the path b−d have been output, the constants b, e, c and d can be considered to
be inside the same equivalence class C. Since the information in the edges in the
path b − d has already been output, in any future traversal one can jump from
any element of C to d (here d is the highest node of C, the element of C that
is closest to the root of its tree in the proof forest). Hence, in the recursive call
to Explain(h, d), only the edge b − h is traversed, since from b one can directly
jump to d. ��

The data structures for avoiding such repeated visits and the way they are used
is explained in the following two points:
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The Additional Union-Find, and HighestNode. At each call toExplain(s, t),
an additional union-find data structure with path compression keeps track of the
classes of constants that are already equivalent by the proof output so far. More
precisely, apart from the Find(a) operation, there is also a HighestNode(a) op-
eration, which returns the highest node among all nodes of the proof tree in the
equivalence class of a; this highest node is simply stored at the node of Find(a).
Maintaining the HighestNode information will be easy: since only unions of the
form Union(a, parent(a)) take place, the HighestNode of the new class is al-
ways the HighestNode of the second argument of the call, i.e. the HighestNode
of parent(a).

Finding the Nearest Common Ancestor in the Proof Forest. There is
also a NearestCommonAncestor(a,b) operation that retrieves the highest node of
the class of the nearest common ancestor of a and b in the proof forest. When
looking for it, as it happens in the ExplainAlongPath procedure below, one has
to jump over whole classes of equivalent constants by means of the HighestNode
operation in order to avoid traversing unnecessary edges.

Now we are ready to present the two procedures implementing Explain :

1. Procedure Explain(c1, c2)
2. Set PendingProofs to {c1=c2}
3. While PendingProofs is not empty Do {
4. Remove an equation a=b from PendingProofs
5. c := NearestCommonAncestor(a,b)
6. ExplainAlongPath(a,c)
7. ExplainAlongPath(b,c) }

8. Procedure ExplainAlongPath(a,c)
9. a := HighestNode(a)
10. While a �=c Do {
11. b := parent(a)
12. If edge a→ b is labelled with a single input merge a=b
13. Output a=b
14. Else { /* edge labelled with f(a1, a2)=a and f(b1, b2)=b */
15. Output f(a1, a2)=a and f(b1, b2)=b
16. Add a1=b1 and a2=b2 to PendingProofs }
17. Union(a, b)
18. a := HighestNode(b) }

3.5 Complexity of Explain

Let k be the number of steps in the final proof that is output. There are in total
O(k) iterations of the ExplainAlongPath loop since at each iteration either one
(line 13) or two (line 15) such steps are output. In fact, for each call of the form
ExplainAlongPath(a,c), the number of iterations corresponds to the number of
different equivalence classes along the path from a to c, and at each iteration,
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one union between classes takes place, as well as one call to HighestNode (i.e.,
one Find). Hence in total O(k) such classes are merged along the whole proof.
The total work done for searching nearest common ancestors (line 5 of procedure
Explain) is also O(k), because it can be done in time linear in the number of
classes that are merged in the subsequent two calls ExplainAlongPath(a,c) and
ExplainAlongPath(b,c). Furthermore, for each iteration of ExplainAlongPath, at
most two equalities are added to PendingProofs, and hence the loop of procedure
Explain is executed O(k) times. Altogether, the global runtime is dominated by
the O(k) unions of classes and the O(k) calls to Find , which has a total cost of
O(k α(k, k)) in the union-find algorithm with path compression.

3.6 Quality of Explanations. Experiments

Example 9. After a given sequence of input equations E, there can be several
explanations for an equation s=t. Consider the sequence of 7 input equations E:
a=b1 b1=b2 b2=b3 b3=c f(a1, a1)=a f(c1, c1)=c a1=c1

In our algorithm, Explain(a=c) will return the first four equations, although the
last three equations also form a correct explanation of a=c. ��

Finding short explanations is good for most practical applications, and also
finding the oldest explanation (i.e., the one contained in the shortest prefix of
the sequence E) is desirable (roughly, because it allows one to do more powerful
backjumping). Since our algorithm always returns the oldest explanation (see the
definition of Explain before Theorem 3), from now on we will focus on length.

Unfortunately, trying to always find the shortest explanation (in number of
steps) is too ambitious: given such an E, an equation s=t, and a natural number
k, deciding whether an explanation of size smaller than k exists for s= t is
already an NP-hard problem2. Therefore, the usual criterion for quality of an
explanation is its irredundancy: after removing any step, it is no longer a valid
explanation. Surprisingly, the explanations found by our algorithm as presented
in the previous subsection sometimes still contain redundant steps.

Example 10. After the sequence of input equations:
a1=b1 a1=c1 f(a1, a1)=a f(b1, b1)=b f(c1, c1)=c

the proof forest may consist of the two trees: a→ b← c and b1 → a1 ← c1 .
Now Explain(a=c) will return all five equations. However, the two equations
containing b1 are redundant. ��

We have run our algorithm as given in the previous subsection over a very
large set of benchmarks (all the EUF examples mentioned in [GHN+04], available
at the second author’s home page). There, on average, explanations have 12.6
steps; redundant explanations are returned in 13.56 percent of the cases, having,
on average, 40 steps of which 6 are redundant.

Fortunately, one can easily and efficiently post-process explanations in order
to fully remove all redundant steps. On the one hand, it is not very hard to see
2 Ashish Tiwari. Personal communication.
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that one of our explanations can be redundant only if it contains at least three
equations of the same structural class, i.e., of the form f(a1, a2)=a, f(b1, b2)=b,
f(c1, c2)=c where ai, bi and ci have the same representative for i = 1, 2. This
can be checked in time linear in k, and is an extremely good filter: three such
equations occur only in 0.27 percent of the irredundant explanations.

The 13.8 percent of the explanations marked as “possibly redundant” by
this test can be post-processed as follows in time O(k2 log k) in order to remove
all redundancies: while not all equations are marked as “necessary”, pick an
unmarked one, remove it if the remaining equations are still a correct explanation
(checking this takes O(k log k) time), and otherwise mark it as “necessary”.

Proof Forests with Structural Classes as Nodes. We have also imple-
mented a variant of our proof forests where the nodes are these structural classes
and hence all edges are labelled with a single input equation between constants.
Now, instead of inserting edges labelled with (f(a1, a2)= a, f(b1, b2)= b), one
merges the two nodes (classes) [...a...] and [...b...] into a single one.

Example 11. Consider again the input sequence of the previous example:
a1=b1 a1=c1 f(a1, a1)=a f(b1, b1)=b f(c1, c1)=c

Now the proof forest will consist of the two trees: [a, b, c] and b1 → a1 ← c1
and Explain(a=c) will return only the structural equations involving a and c
and its corresponding recursive explanation that a1=c1. ��

In such proof forests, the Explain operation is implemented in a very similar
way as before. For simplicity, in the previous subsection we have not mentioned
this improvement, but it is not hard to see that all results apply.

With this new approach, only 3.5 percent of the explanations are still redun-
dant, having on average 34 steps, of which 6 are redundant. Using the test, now
postprocessing is needed only in 3.95 percent of the cases.

Example 12. Let’s see why some redundancies can still appear. Consider:
1. f(a1, a1)=a 2. f(b1, b1)=b 3. f(c1, c1)=c 4. f(d1, d1)=d
5. a1=b1 6. c1=d1 7. a1=c 8. a1=a 9. d=d1

Then the proof tree may become: [a, b]→ a1 ← [c, d] ← d1 ← c1
↑
b1

and Explain(b=d1) returns the set of all 9 input equations, of which #1 and
#8 are redundant. This redundancy is caused by the two equivalent classes [a, b]
and [c, d]. Indeed, it can be shown that if no two such equivalent non-singleton
structural classes exist, proofs will always be irredundant. But it seems too
expensive to maintain that property during the congruence closure procedure;
in particular, the difficulties arise when two such classes become equivalent (in
the example, after d=d1) while they are already in the same tree, i.e., when they
are already equal by equations between constants. ��
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4 Related and Future Work

To our knowledge, this is the first congruence closure algorithm able to produce
explanations in time that does not depend on the number of input equations
n. Moreover, the congruence closure algorithm itself is not only simple, but it
also runs in the best known time, namely O(n log n), and is indeed very fast in
practice.

We believe that this kind of fundamental algorithmic developments are ex-
tremely useful, because we have seen several less adequate ad-hoc solutions being
applied in modern deduction and verification tools. E.g., in [BDS02] where the
CVC tool is described (verify.stanford.edu/CVC), a trial-and-error method
for finding explanations is given. Another example of this phenomenon is SRI’s
“lemmas-on-demand” approach in the ICS tool: in [dMR02] it is mentioned that
“Unfortunately, current domain-specific decision procedures lack such a conflict
explanation facility. Therefore, we developed an algorithm that calls C-solver
O(k × n) times, where k is given, for finding such an overapproximation”. Sev-
eral authors have attacked the specific problem of generating explanations in the
context of union-find and congruence closure [SD99, KS04, dMRS04]). In par-
ticular, in the paper “Justifying Equality” [dMRS04], for union-find Explain is
done in time O(nα(n)), i.e., it depends on the number of unions that have taken
place. For the (strict) generalization to congruence closure, this is indeed also
the case (although no concrete bound is given in that paper), and the notion of
local irredundancy achieved in [dMRS04] already holds for our basic algorithm
of Section 3.

Concerning future work, we plan to study extensions, such as the version for
congruence closure with integer offsets [NO03], to which the ideas given here for
Explain can also be applied. It also remains to be studied whether irredudant
proofs can be generated directly without any postprocessing (although this does
not seem to lead to more practical efficiency).

References

[ABC+02] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani.
A SAT based approach for solving formulas over boolean and linear math-
ematical propositions. In CADE-18, LNCS 2392, pages 195–210, 2002.

[BDS02] Clarke Barrett, David Dill, and Aaron Stump. Checking satisfiability of
first-order formulas by incremental translation into sat. In Procs. 14th
Intl. Conf. on Computer Aided Verification (CAV), LNCS 2404, 2002.

[BT00] L. Bachmair and A. Tiwari. Abstract congruence closure and specializa-
tions. In Conf. Autom. Deduction, CADE, LNAI 1831, pages 64–78, 2000.

[CLR90] Thomas T. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-
duction to algorithms. MIT Press, 1990.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Comm. of the ACM, 5(7):394–397, 1962.

[dMR02] Leonardo de Moura and Harald Rueß. Lemmas on demand for satisfiabil-
ity solvers. In Procs. 5th Int. Symp. on the Theory and Applications of
Satisfiability Testing, SAT’02, pages 244–251, 2002.



468 Robert Nieuwenhuis and Albert Oliveras

[dMRS04] L. de Moura, H. Rueß, and N. Shankar. Justifying equality. In Proc. of
the Second Workshop on Pragmatics of Decision Procedures in Automated
Reasoning, Cork, Ireland, 2004.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. Journal of the ACM, 7:201–215, 1960.

[DST80] Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the
common subexpressions problem. J. of the Association for Computing
Machinery, 27(4):758–771, 1980.

[FJOS03] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using
lazy proof explanation. In Procs. 15th Int. Conf. on Computer Aided
Verification (CAV), LNCS 2725, 2003.

[GHN+04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras,
and Cesare Tinelli. DPLL(T): Fast decision procedures. In R. Alur and
D. Peled, editors, Proceedings of the 16th International Conference on
Computer Aided Verification, CAV’04 (Boston, Massachusetts), volume
3114 of Lecture Notes in Computer Science, pages 175–188. Springer, 2004.

[Kap97] Deepak Kapur. Shostak’s congruence closure as completion. In Procs. 8th
Int. Conf. on Rewriting Techniques and Applications, LNCS 1232, 1997.

[KS04] Robert Klapper and Aaron Stump. Validated proof-producing decision
procedures. In Proceedings of the Second Workshop on Pragmatics of De-
cision Procedures in Automated Reasoning, Cork, Ireland, 2004.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proc.
38th Design Automation Conference (DAC’01), 2001.

[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures bases on
congruence closure. Journal of the Association for Computing Machinery,
27(2):356–364, April 1980.

[NO03] Robert Nieuwenhuis and Albert Oliveras. Congruence closure with inte-
ger offsets. In 10h Int. Conf. Logic for Programming, Artif. Intell. and
Reasoning (LPAR), LNAI 2850, pages 78–90, 2003.

[SD99] Aaron Stump and David L. Dill. Generating proofs from a decision pro-
cedure. In A. Pnueli and P. Traverso, editors, Proceedings of the FLoC
Workshop on Run-Time Result Verification, Trento, Italy, 1999.

[Sho78] Robert E. Shostak. An algorithm for reasoning about equality. Commun.
ACM, 21(7), 1978.

[Tar75] Robert Endre Tarjan. Efficiency of a good but not linear set union algo-
rithm. Journal of the ACM (JACM), 22(2):215–225, April 1975.

[Tar79] Robert Endre Tarjan. A class of algorithms that require nonlinear time to
maintain disjoint sets. J. Comput. and Sys. Sci., 18(2):110–127, 1979.

[TV01] Ashish Tiwari and Laurent Vigneron. Implementation of Abstract Con-
gruence Closure with randomly generated CC problem instances, 2001. At
www.csl.sri.com/users/tiwari.



The Algebra of Equality Proofs

Aaron Stump and Li-Yang Tan

Dept. of Computer Science and Engineering
Washington University in St. Louis

St. Louis, Missouri, USA
http://cl.cse.wustl.edu/

Abstract. Proofs of equalities may be built from assumptions using
proof rules for reflexivity, symmetry, and transitivity. Reflexivity is an
axiom proving x=x for any x; symmetry is a 1-premise rule taking a proof
of x=y and returning a proof of y=x; and transitivity is a 2-premise rule
taking proofs of x=y and y=z, and returning a proof of x=z. Define an
equivalence relation to hold between proofs iff they prove a theorem in
common. The main theoretical result of the paper is that if all assump-
tions are independent, this equivalence relation is axiomatized by the
standard axioms of group theory: reflexivity is the unit of the group,
symmetry is the inverse, and transitivity is the multiplication. Using a
standard completion of the group axioms, we obtain a rewrite system
which puts equality proofs into canonical form. Proofs in this canonical
form use the fewest possible assumptions, and a proof can be canonized
in linear time using a simple strategy. This result is applied to obtain
a simple extension of the union-find algorithm for ground equational
reasoning which produces minimal proofs. The time complexity of the
original union-find operations is preserved, and minimal proofs are pro-
duced in worst-case time O(nlog23), where n is the number of expressions
being equated. As a second application, the approach is used to achieve
significant performance improvements for the CVC cooperating decision
procedure.

1 Introduction

Ground equational reasoning plays an important role in many approaches to
verification and automated reasoning [3, 8, 9, 12–14, 17]. Recently, there has
been interest in producing minimal proofs from algorithms for ground equational
reasoning [5, 10, 11]. Minimal proofs are of interest primarily for performance
reasons: they can be exported to a fast SAT solver as conflict clauses, which
greatly improve search space pruning [1].

In this paper, we approach the problem of minimal proofs by studying the
algebra of equality proofs themselves (Section 2). It turns out that theorem
equivalence of equality proofs with independent assumptions is completely char-
acterized by the axioms for free groups (Sections 3, 4, and 5). This enables us to
use a standard convergent rewrite system for free group terms to put equality
proofs into canonical form (Section 5). If all assumptions are independent, this
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form is minimal, in the sense that it uses the unique minimal set of assump-
tions needed to prove the equality. We analyze the number of steps required
for canonization using the rewrite rules. A simple strategy yields canonization
in time linear in the size of the equality proof (Section 6), although without a
strategy canonization can take cubic time (Section 7). We then show how these
results can be used to obtain minimal proofs of equations x = y from a simple
augmentation of the standard union-find algorithm for ground equational rea-
soning in (O(nlog2 3) time, where n is the size of the equivalence class for x and
y (Section 8). Finally, major improvements in search space pruning and overall
performance are obtained in the context of the CVC tool [16] using the algebra
of equality proofs (Section 9).

2 Equality Proofs

Notation: If f is an n-ary function symbol and A1, . . . , An are sets of terms,
we write f(A1, . . . , An) for {f(t1, . . . , tn) | t1 ∈ A1, . . . , tn ∈ An}.

Let U be a set of assumptions, and let P be the set of equality proofs induc-
tively defined as follows, where Refl, Symm, and Trans are function symbols of
arities 0, 1, and 2, respectively:

P ::= U | Refl | Symm(P) | Trans(P ,P)

Let A be a set of atoms, and let E be the set of all equations between atoms. Let
:: be a total function from U to E , specifying which equation is proved by each
assumption. Extend this to a non-functional relation on all of P ×E , which says
which theorems are proved by which equality proofs; this is done inductively by
the universal closures of the following clauses:

Refl :: a = a
p :: a1 = a2 ⇒ Symm(p) :: a2 = a1

p1 :: a1 = a2 ∧ p2 :: a2 = a3 ⇒ Trans(p1, p2) :: a1 = a3

We say that the assumptions in U are independent iff no equation proved by
an assumption is equationally entailed by the other assumptions. For example,
assumptions of a = b, b = c, and a = c, respectively, are not independent.

Finally, define a relation == of theorem equivalence on P×P by the universal
closure of

p1 == p2 ⇔ (∃ e. p1 :: e ∧ p2 :: e)

Two equality proofs are in this relation iff they prove a theorem in common. For
example, Trans(Refl,Refl) == Refl, because each proof proves a = a, for some
a ∈ A. It turns out that technical reasons prevent us from adopting the stronger
notion where proofs are equivalent iff they prove exactly the same theorems. Not
every equality proof proves a theorem. Write ≡ for meta-equality on sets like A,
E , and P . Then, for example, if p ∈ P proves a = b with a �≡ b, then Trans(p, p)
does not prove any theorem. The following lemmas help justify the use of the
notion of proving a theorem in common as our notion of theorem equivalence.
We define P̂ to be Dom(::), so that p ∈ P̂ iff p proves a theorem.
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Lemma 1 If p ∈ P̂ does not contain any assumptions, then ∀a ∈ A. p :: a = a.
Further, if a �≡ b, then p does not prove a = b.

Lemma 2 If p ∈ P̂ contains an assumption, then p proves exactly one theorem.

3 Algebraic Characterization of Theorem Equivalence

In this Section, we show that theorem equivalence on proofs which prove a
theorem is axiomatized by the standard axioms of group theory, as long as the
assumptions in U are independent. In more detail, for all p1, p2 ∈ P̂, p1 ==
p2 holds iff the equation p1 ∼= p2 is provable using standard congruence rules
for equality and the universal closures of the formulas given in Figure 1. For
comparison, the group axioms are given in more customary form in Figure 2.
Refl plays the role of the group unit, Symm is the inverse operator, and Trans
is the multiplication.

[Associativity] Trans(Trans(p1, p2), p3) ∼= Trans(p1,Trans(p2, p3))
[Unit] Trans(Refl, p) ∼= p
[Inverse] Trans(Symm(p), p) ∼= Refl

Fig. 1. Group Axioms for Equality Proofs.

[Associativity] (x1 ∗ x2) ∗ x3
∼= x1 ∗ (x2 ∗ x3)

[Unit] 1 ∗ x ∼= x
[Inverse] x−1 ∗ x ∼= 1

Fig. 2. Group Axioms.

We observe first that strictly speaking, neither P nor P̂ forms a group with
operators Refl, Symm, and Trans and equivalence relation ==. For the case of
P , this is because if p is an equality proof which does not prove any theorem,
then the left hand side (lhs) of the [Inverse] axiom of Figure 1 does not prove
any theorem, but the rhs (Refl) does. Hence, the two proofs do not prove the
same theorems, so the axiom is just false (if == is taken for ∼=) for domain P .
We prove below that all the axioms are sound with respect to == for P̂, but P̂
is not closed in general under Trans. As noted above, if p :: a = b with a �≡ b,
then Trans(p, p) is not in P̂. So, P̂ does not form a group under Refl, Symm, and
Trans. Nevertheless, we have the following results, which are proved in Sections 4
and 5 below.

Theorem 1 (Soundness) For all p1, p2 ∈ P̂, if p1 ∼= p2, then p1 == p2.

Theorem 2 (Completeness) For all p1, p2 ∈ P̂, if p1 == p2, then p1 ∼= p2.
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4 Proof of Soundness

Lemma 3 (Theorem Determinacy) Suppose p ∈ P̂, p :: a1 = a2 and p ::
b1 = b2. Then a1 ≡ b1 iff a2 ≡ b2.

Proof. If p contains no assumption, then by Lemma 1, a1 ≡ a2 and b1 ≡ b2,
and we have the result by transitivity of ≡. If p contains an assumption, then
by Lemma 2, p proves exactly one theorem, and so a1 ≡ b1 and a2 ≡ b2.

Proof (Soundness (Theorem 1)). First we observe that the congruence rules for
∼= are sound. If p1 == p2, then Symm(p1) == Symm(p2). For the congruence rule
for Trans, we reason as follows. Suppose one of p1 or p2 contains assumptions.
WLOG, say it is p1. Then by Lemma 2, both p1 and Trans(p1, p) prove at
most one theorem, for any p. If the latter proves no theorem, we contradict
the hypothesis of Theorem 1 that the proofs in question prove a theorem. If
Trans(p1, p) proves a theorem, then since p2 proves a theorem in common with p1,
p2 must prove the same theorem as p1, and hence Trans(p2, p) proves a theorem
in common with Trans(p1, p). If neither p1 nor p2 contains an assumption, then
by Lemma 1, they prove all the same theorems, and hence Trans(p1, p) and
Trans(p2, p) prove a theorem in common, assuming again that they prove any
theorem at all. We now consider the group axioms for ∼=.

Case [Associativity]: Suppose Trans(Trans(p1, p2), p3) :: a = d. By the definition
of ::, this implies that there is a c such that Trans(p1, p2) :: a = c and p3 :: c = d.
The former fact implies again by the definition of :: that there is a b such that
p1 :: a = b and p2 :: b = c. Then clearly Trans(p1,Trans(p2, p3)) proves a = d.

Case [Unit ]: If Trans(Refl, p) proves a = b, then p must prove a = b.

Case [Inverse]: If Trans(Symm(p), p) proves a = c, then there must be a b such
that Symm(p) :: a = b and p :: b = c. The former consequence implies that
p :: b = a. By Lemma 3, a ≡ c, so Trans(Symm(p), p) :: a = a. We also
have, of course, Refl :: a = a. Note that this is the point at which defining
theorem equivalence as proving exactly the same theorems breaks down. For
we also have, e.g., Refl :: b = b, but by Lemma 1, if p contains an assumption,
Trans(Symm(p), p) cannot prove two theorems. And hence, since it proves a = a,
it cannot prove b = b. So this axiom would not be sound with the stronger version
of theorem equivalence.

5 Canonical Proofs and Completeness

The proof of our completeness theorem (Theorem 2) relies on the canonical forms
for equality proofs. Recall that the rewrite rules of Figure 3 are a convergent
completion of the group axioms of Figure 2, oriented from left to right [7]. These
rules are given again in Figure 4, formulated for equality proofs.
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(x1 ∗ x2) ∗ x3 → x1 ∗ (x2 ∗ x3)
1 ∗ x → x
x ∗ 1 → x
x−1 ∗ x → 1
x ∗ x−1 → 1
1−1 → 1
(x−1)−1 → x
(x ∗ y)−1 → y−1 ∗ x−1

x−1 ∗ (x ∗ y) → y
x ∗ (x−1 ∗ y) → y

Fig. 3. Convergent System for Simplifying Group Terms.

Trans(Trans(p1, p2), p3) → Trans(p1,Trans(p2, p3))
Trans(Refl, p) → p
Trans(p,Refl) → p
Trans(Symm(p), p) → Refl
Trans(p,Symm(p)) → Refl
Symm(Refl) → Refl
Symm(Symm(p)) → p
Symm(Trans(p1, p2)) → Trans(Symm(p2),Symm(p1))
Trans(Symm(p1),Trans(p1, p2)) → p2

Trans(p1,Trans(Symm(p1), p2)) → p2

Fig. 4. Convergent System for Canonizing Proofs.

Theorem 3 (Canonical Proofs) Suppose an equality proof p is in canonical
form with respect to the rewrite system of Figure 4. Then p is either Refl or in
the set C inductively defined by:

C ::= U | Symm(U) | Trans(U , C) | Trans(Symm(U), C)

Furthermore, no assumption is used twice in p, and if p ∈ C, then there is no
a ∈ A such that p :: a = a.

Proof. The proof is by induction on the form of p. If p is Refl or in U , it is clearly
in C and satisfies the condition on assumptions. It does not prove any equation
of the form a = a, by independence of assumptions. If p ≡ Symm(p1) for some
p1, then by IH, p1 ∈ C. We cannot have p1 ≡ Symm(p2), since then p is not
canonical. For the same reason, we cannot have p1 ≡ Trans(p2, p3) or p1 ≡ Refl.
The only possibility is that p1 ∈ U , which shows that p ∈ C. This also implies
that p does not prove any equations of the form a = a, since p1 does not by
independence of assumptions. The condition on assumptions is clearly satisfied,
since p contains a single assumption.

Finally, if p ≡ Trans(p1, p2) for some p1, p2, then by IH we may assume
p1, p2 ∈ C; p is not canonical if one of p1 or p2 is Refl. We also cannot have
p1 ≡ Trans(p3, p4), since p would not be canonical. Similar considerations show
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that the only possibilities are p1 ≡ u ∈ U or p1 ≡ Symm(u) ∈ Symm(U). This
shows p ∈ C. To show that the condition on assumptions is satisfied by p, we
have by IH that it is satisfied by p2. It now suffices to show that u cannot occur
in p2. Suppose p1 :: a = b for some a, b ∈ A. Since p1 contains an assump-
tion, a and b are, in fact, the unique atoms such that p1 :: a = b. Suppose
u occurs in p2. Since p2 ∈ C, this means that there is a sequence L1, . . . , Ln

of proofs in U ∪ Symm(U) such that p2 ≡ Trans(L1,Trans(. . . ,Trans(Ln, q)))
for some q ∈ C; where Ln ≡ u or Ln ≡ Symm(u). Suppose Ln ≡ p1. If
n = 1, then the only way p (≡ Trans(p1,Trans(p1, q))) can prove a theo-
rem is if a ≡ b, which contradicts independence of assumptions. If n > 1,
then Trans(L1,Trans(. . . ,Trans(Ln−2, Ln−1))) :: b = a. This contradicts in-
dependence, since this latter term and Ln do not contain the same assump-
tion by IH. Suppose now that Ln �≡ p1, and hence, Ln :: b = a. Suppose
n > 1. We have Trans(L1,Trans(. . . ,Trans(Ln−2, Ln−1))) :: b = b. If n = 2
then Ln−1 :: b = b, contradicting independence of assumptions. Otherwise,
Trans(L1,Trans(. . . , Ln−2)) :: b = x for some x, and Ln−1 :: x = b. This
again contradicts independence of assumptions. A similar argument shows that
p does not prove any equation of the form b = b. If n = 1, then p ≡ Trans(p1,
Trans(L1, q)), where either p1 = Symm(L1) or L1 = Symm(p1). In either case, p
is not in canonical form.

Completeness now follows easily:

Proof (Completeness (Theorem 2)). Assuming p1, p2 ∈ P̂ prove a theorem in
common, we must show p1 ∼= p2. By Soundness (Theorem 1), we may assume p1
and p2 are in the canonical form of Theorem 3. Suppose p1 �≡ p2. Then neither
one can be Refl, since by Theorem 3, Refl is the only proof in that canonical form
which proves an equation of the form a = a. So p1, p2 ∈ C. Since p1 and p2 both
prove a theorem and both contain an assumption, by Lemma 2, we may suppose
they both prove just a = b (where a �≡ b). Suppose p2 ∈ U ∪ Symm(U). Then
independence of assumptions is violated, since p1 :: a = b but p1 �≡ p2. Suppose
p2 ≡ Trans(L,Trans(L1, . . . Ln)). Then L :: a = x and Trans(L1, . . . Ln) :: x = b
for some x. Hence,

Symm(Trans(Trans(L1, . . . Ln),Symm(p1))) :: a = x

which again contradicts independence of assumptions (since L ∈ U ∪ Symm(U
also proves a = x).

6 A Linear-Time Strategy for Canonizing Proofs

In this Section, we show that if the rules of Figure 4 are applied with a leftmost
outermost strategy, a given equality proof can be canonized in a number of steps
linear in its size. Let Collapse be the set of all rewrite rules from the Figure
which have either a variable or a constant on the rhs. We call the remaining two
rules RAssoc and InverseIn, respectively:

Trans(Trans(p1, p2), p3) → Trans(p1,Trans(p2, p3))
Symm(Trans(p1, p2)) → Trans(Symm(p2),Symm(p1))
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Define the right-linear spine of a proof p to be the longest position π of
the form 1∗ such that p|π′ is a Trans expression, for every prefix π′ of π. The
internal nodes of a proof are those of its subexpressions that are Trans or Symm
expressions. A node p′ is on the right-linear spine π of a proof p if there is a
prefix π′ of π such p|π′ ≡ p′. Now the leftmost outermost strategy decreases
the measure (m1(p),m2(p),m3(p)) in the lexicographic combination of the usual
arithmetic ordering, where the components are:
m1(p) The number of subterms occuring in some subterm of p of the form

Symm(p′).
m2(p) The size (denoted |p|) of p.
m3(p) The number of internal nodes not on the right-linear spine of p.

Note that the whole measure is bounded above by (|p|, |p|, |p|). We now show
that every rule decreases this measure. InverseIn decreases m1. This is because
we are using an outermost strategy, and so if InverseIn applies to a subterm,
that subterm is not itself contained in a Symm node at a shorter position in p.
No other rule increases m1, no matter what strategy is used. Note that when
InverseIn decreasesm1, it causesm2 to increase by 1. No other rule can increase
m2, and the Collapse rules all decrease it, without increasing m3. This is again
true no matter what strategy is used. The rule RAssoc decreases m3. This is
so again because we are using an outermost strategy. If RAssoc applies to a
subterm of p, that subterm must actually occur on the right-linear spine of p. If
not, it is either immediately beneath some Symm node, in which case InverseIn
applies; or else it is the left child of some other Trans node. That other Trans
node cannot be on the right-linear spine, since if it were, RAssoc would have
been applied to it using our leftmost outermost strategy. An inductive argument
based on similar reasoning shows that other Trans node cannot be off the right-
linear spine. Hence, the original subterm we considered must have indeed been
on the right-linear spine. And then the length of that spine is increased by one by
applying RAssoc. We can then bound the number of steps to canonize p above
by 4|p|. This is so since each component is decreased linearly from an amount
bounded by |p|, with only the linear increase in m2 caused by applying InverseIn
to account for additionally.

7 Canonizing Proofs Without a Strategy

In this Section, we analyze the complexity of canonization if no strategy is used.
Canonization of term p can take time at least cubic in |p|. To see this, first
observe that right associating a left-associated term of size n takes O(n2) time if
a leftmost innermost strategy is used. This is because with an innermost strategy,
each assumption starting with the third one from the left must be pushed past
all the assumptions to its left. This takes Σn

i=3i = O(n2) time. Now consider the
following example

Symm1(. . . (Symmn
2
(Trans(. . . (Trans(a1, a2), a3), . . .), an

2
)) . . .)

where a1, . . . , an
2

are assumptions. For each instance of the inverse operator
Symm, it obviously takes (at least) linear time to distribute it inwards to the
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innermost positions. Since InverseIn swaps the positions of its arguments, each
distribution of Symm into a proof in completely right associated form results
in a completely left-associated form. The proof then has to be put into right
associated form again. If we alternate pushing inverses in and right associating
fully left associated terms, the overall time complexity is O(n3). The following
theorem shows that this is, in fact, the worst case.

Theorem 4 (Analysis with no strategy) It takes O(|p|3) steps to normalize
a proof p using the rules of Figure 4 (without a fixed strategy).

Proof. Let TransPos(p) be the set of positions in p at which there is a Trans
operator. Let lefts(π) be the number of 0s in position π, and let invs above(π, p)
be the number of prefixes of π at which p has a Symm operator. Now define the
following three measures:

m1(p) = Σπ∈TransPos(p) invs above(π, p),
m2(p) = Σπ∈TransPos(p) lefts(π),
m3(p) = |p|

The claim is that each rule reduces the measure

m(p) = (m1(p),m2(p),m3(p))

in the lexicographic combination of the usual less-than relation on natural num-
bers. Collapse rules clearly reduce m3, and can readily be seen to preserve m1

and m2. InverseIn reduces m1, and RAssoc maintains m1 while reducing m2.
We obtain a bound of 2|p|3 for the number of rewrite steps to normalize

p. This is done using a more refined analysis of the changes to the measure
m, presented by the table of Figure 5. Each row bounds the effect of a rule
or rules on m(p), for an arbitrary proof p, by showing the worst-case (slowest
decrease) change on the measure when p is rewritten to some p′. In the worst
case, RAssoc rewrites Trans(Trans(p1, p2), p3) to Trans(p1,Trans(p2, p3)) where
p1 is an assumption. This is the worst case because p1 then contributes nothing
to m2(p), since its position is not in TransPos(p). If p1 contained a Trans node,
then m2 would decrease by more than 1. As it is, the only decrease to m2(p)
is due to the fact that the Trans node at position 1 in p′ is to the left of one
fewer Trans nodes than the node at position 0 in p. The worst case shown by
Figure 5 for InverseIn occurs when the rule is applied at the top position of
Symm(Trans(p1, p2)), where p1 is an assumption and p2 is hence a term of size
|p| − 3. In this case, m2 increases by |p| − 3, because p2 occurs to the left of one
more Trans node in the resulting term than in the original term p.

To obtain the 2|p|3 bound, we next observe that m1(p) and m2(p) are both
bounded by |p|2 for any p. Each use of InverseIn results in a decrease by 1 in m1

and an increase by |p| − 3 in m2. To offset the latter increase, RAssoc will have
to be used some number of times bounded by |p|. Hence, the overall number of
steps is bounded by the sum of |p|2 for the initial value of m2; |p|3 to reduce all
the additions to m2 caused by reducing m1 (|p| for each reduction to m1, which
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Rule(s) Starting measure Ending measure

Collapse (m1, m2, m3) (m1, m2, m3 − 1)
RAssoc (m1, m2, m3) (m1, m2 − 1, m3)
InverseIn (m1, m2, m3) (m1 − 1, m2 + |p| − 3, m3 + 1)

Fig. 5. How the rules change the measure m(p) of a proof p.

is bounded by |p|2); |p|2 to offset the additions to m3 incurred by InverseIn; and
|p| for the initial value of m3. For any p with |p| > 2, this sum is bounded above
by 2|p|3. (The only reducible term of size less than or equal to 2 is Symm(Refl),
which reduces to Refl in just one step.)

8 Minimal Proofs from Union-Find

This Section presents an approach to producing minimal proofs from the well-
known union-find algorithm [4, Chapter 22]. Proofs are minimal in the sense
that they use the unique minimal subset of independent assumptions from which
a given equation can be derived. Recall that union-find maintains equivalence
classes of atoms in balanced, lazily path-compressed trees. Each atom has an
associated find pointer which points towards the root of its tree. Roots of trees
have null find pointers.

We obtain minimal proofs from union-find by first instrumenting the code for
union and find to maintain proofs (cf. [15, Chapter 5]). Unioning the equivalence
classes for atoms x and y requires a proof that x = y. Here, such proofs are
just assumptions from U . Finding the representative y of x’s equivalence class
produces a proof that x = y. Each non-null find pointer has an associated proof.
We maintain the invariant that if x’s find pointer points to y, then the associated
proof is a proof of x = y. This invariant is maintained as illustrated in Figures 6
and 7. Find pointers are denoted with solid arrows, and the associated proofs
are written (using the compact group notation) next to them. In Figure 7, the
dotted arrow is for an assumption given to union. The proof produced for a call
to find for atom x is just the proof associated with x’s find pointer after path
compression has modified it to point directly to the root of x’s tree. If x is the
root of its tree, the proof is just Refl.

On top of proof-producing union and find, we define a check function, that
checks whether or not atoms x and y are equal under the assumptions given
to union. If they are equal, the function produces a minimal proof of x = y.

e3

e2

e1

p2

p1

p2

p1  p2

e3

e2

e1

Fig. 6. Maintaining proofs during path compression.
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r1             r2

e1             e2

p1 p2

p

                r2

r1

                e2

e1

p1
-1  p  p2

Fig. 7. Maintaining proofs during unions.

The implementation is as follows. We call find on x and y. If they have the
same representative z, then find produces proofs p1 and p2 of x = z and y = z,
respectively. To compute the minimal proof that x = y, we simply canonize the
proof Trans(p1,Symm(p2)) using the rules of Figure 4. Since we can canonize a
proof using the strategy of Section 6 in time linear in the proof’s size, it suffices
to bound the size of Trans(p1,Symm(p2)) to bound the additional time needed
for producing the minimal proof.

We bound the size of proofs returned by find as follows. Define the proof to the
root for a non-root atom x in a union-find tree to be Trans(p1,Trans(p2, . . . , pn)),
where p1, . . . , pn are the proofs associated with the find pointers on the path from
x to the root of the tree. Clearly the size of the proof to the root for x is the size
of the proof returned by find for x. Suppose that T (n) is a bound on the size of
the biggest proof to the root in a tree of size n maintained by union-find. Clearly
the size of the biggest proof to the root is not affected by path compression. So
consider the effect of doing a union. The worst case is when two trees of equal
size n are merged. The size of the new tree is 2 ∗ n + 1. The proof associated
with the new find pointer (see Figure 7) is clearly bounded by 2∗T (n)+4, since
it consists of one Symm node, two Trans nodes, an assumption, and two proofs
to the roots of the merged trees. The size of the biggest proof to the root in the
resulting tree is hence 3 ∗ T (n) + 4. This is because all the paths in one of the
merged trees have been augmented by a find pointer whose associated proof is
of size 2 ∗ T (n) + 4. So T (n) must satisfy T (2 ∗ n+ 1) = 3 ∗ T (n) + 4. Textbook
techniques yield a solution to this recurrence of T (n) = O(nlog2 3). In the worst
case, when the size of the minimal proof is O(n), this result is quite close to the
result of O(n logn) obtained in [10]. It must be noted, however, that in that
work, minimal proofs of size k are obtained in O(k logn) time, which is clearly
better than the bound obtained here, if k . n or n is very large. The advantage
of the approach presented here is its simplicity: the cited work requires rather
subtle additions to union-find to compute minimal proofs.

9 Application to Cooperating Decision Procedures

In this Section, the above ideas are applied in the context of the CVC (“Cooper-
ating Validity Checker”) system to obtain major performance improvements on
benchmark formulas from hardware verification [16]. In review, CVC and similar
tools like CVC Lite (CVC’s successor) and ICS separate boolean reasoning from
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theory-specific reasoning [2, 6]. A fast propositional SAT solver tries to find an
assignment to the propositional skeleton of the input formula, or possibly to an
equisatisfiable CNF version. Either at each step as the assignment is generated
or once it is found, cooperating decision procedures (DPs) are consulted about
the consistency of the assignment. For example, a large formula might contain
many equalities or other interpreted atomic formulas between ground terms.
The SAT solver chooses an assignment to some of those formulas which makes
the goal formula satisfiable, if the meanings of the interpreted predicates are
ignored. The cooperating DPs then determine if that assignment is consistent
with the meanings of the interpreted predicates. If not, a subset of the assign-
ment is identified as inconsistent and returned to the SAT solver as a conflict
clause. Conflict clauses are maintained during subsequent search for a satisfying
assignment, and can greatly prune the search space [1]. Smaller conflict clauses
are always more effective than their supersets at pruning the search space.

CVC leverages its infrastructure for generating proofs to track assumptions.
The basic idea is that when the cooperating DPs discover that an assignment
proposed by the SAT solver is inconsistent, a subset of the assumptions used
in that assignment can be determined by inspecting an explicit proof of the
contradiction. Such proofs are generated by CVC’s DPs. In its fastest mode
before the present work, the DPs generate not a full proof, but an abstract proof
consisting just of the assumptions that would have appeared in the full proof [1].
This greatly reduces the time required to manipulate proofs and extract conflict
clauses.

For the first experiments reported in this Section, CVC was modified to
canonize equality proofs according to the linear-time strategy of Section 6. Note
that this requires full proofs instead of abstract proofs. Each time CVC’s DPs
try to build an equality proof, that proof is put in canonical form. It turns
out that an additional transformation on proofs is required to get significant
benefits for CVC’s equational reasoning. CVC’s congruence closure algorithm
rewrites asserted disequalities each time one of the sides is asserted equal to
something else. The modified disequality is then asserted. The resulting proofs
of contradictions turn out often to involve subproofs of the following form:

a = b
a = c b = d

(a = b)⇔ (c = d)SubstEquiv

c = d
EquivMP

Such subproofs are rewritten to ones of the following form in order to take
advantage of the canonization algorithm:

a = c
c = aSymm

a = b b = d
a = d

Trans

c = d
Trans

Algebraically, this corresponds to adding the following rewrite rule to the rules
of Figure 4:

EquivMP(p1,SubstEq(p2, p3)) → Trans(Symm(p2),Trans(p1, p3))
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Adding this rule to those of Figure 4 leads to no new critical pairs, and the
resulting system is obviously still terminating. Hence, it remains convergent.
Leftmost outermost application is readily seen to remain linear time.

Figure 8 compares the number of decisions (the number of times a value
was chosen for an atomic formula in a propositional assignment) and wallclock
time on 6 benchmark formulas from hardware verification, using the approach
with abstract proofs and the approach with canonized full proofs. The sizes
of the benchmark formulas themselves in ASCII text are also listed. We see
that canonization reduces the number of decisions from anywhere from 15% to
65% on these benchmarks, but in all but one case (pp-dmem) requires more
time overall. Profiling the largest benchmark (pp-regfile) reveals that 60% of the
overall runtime is going to proof canonization. This is an unacceptably high price
to pay for the search space pruning we are achieving. We address this problem,
but first consider data on the canonization itself.

Benchmark Size (KB) dec. orig time orig (s) dec. canon time canon (s)

dlx-regfile 70.9 2807 2.1 2430 5.6
dlx-dmem 71.0 1336 1.0 1025 1.8
pp-regfile 2480.0 115197 295.7 43610 336.9
pp-dmem 1842.2 25928 68.1 11991 58.2
pp-bloaddata 314.2 4060 1.7 3502 3.3
pp-TakenBranch 1842.3 15364 26.1 9616 33.2

Fig. 8. Comparison of original CVC and CVC with canonization of equality proofs on
hardware verification benchmarks (“dec.” stands for decisions).

Figure 9 breaks out the number of uses of the different rewrite rules during
canonization. Note that the numbers for the Collapse rules do not count uses
of the following rules, where it is never necessary to build the left hand side at
all when canonizing equality proofs as they are being built:

1 ∗ x→ x
x ∗ 1 → x
1−1 → 1

We address the problem of spending too much time canonizing full equality
proofs as follows. Instead of canonizing equality proofs and then extracting the
assumptions from proofs of contradictions (with canonical equality subproofs),
we extract assumptions from uncanonized proofs of contradictions in a way that
incorporates the algebra of equality proofs. In more detail, for each equality
subproof occurring in a proof of a contradiction, we compute the difference
between the number of positive and the number of negative occurrences of each
assumption in that subproof. An occurrence is positive if it beneath an even
number of uses of Symm, and negative otherwise. During this computation, we
queue up non-equality subproofs of the equality proof for later consideration. It
is an easy lemma that the difference between the number of positive and the
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Benchmark Collapse RAssoc InverseIn Total

dlx-regfile 87515 156463 85961 329939
dlx-dmem 25576 46584 22721 94881
pp-regfile 4620398 10391230 3933697 18945325
pp-dmem 964806 1885856 737122 3587784
pp-bloaddata 41329 61975 31831 135135
pp-TakenBranch 486355 834499 273832 1594686

Fig. 9. Number of rewrites by category for canonization of equality proofs when run-
ning modified CVC on the given benchmarks.

Benchmark dec. orig time orig (s) dec. smart time smart (s)

dlx-regfile 2807 2.1 2430 2.5
dlx-dmem 1336 1.0 1048 0.9
pp-regfile 115197 295.7 44547 121.9
pp-dmem 25928 68.1 11899 23.7
pp-bloaddata 4060 1.7 3461 2.1
pp-TakenBranch 15364 26.1 11928 24.6

Fig. 10. Comparison of original CVC and CVC with smart abstraction of assumptions
from uncanonized proofs of contradictions.

number of negative occurrences of an assumption is 0 iff that assumption does
not occur in the canonized version of the subproof (cf. Theorem 3).

With this “smart” abstraction of otherwise uncanonized proofs of contradic-
tions, we obtain the favorable results in Figure 10. Wallclock times range from
slightly slower for some of the smaller benchmarks to 60% faster in the case
of the two toughest benchmarks. Profiling the pp-regfile benchmark reveals that
smart abstraction now takes a much more acceptable 10% of the overall runtime.

The numbers of decisions used for the smart version are slightly different from
the numbers of decisions for the canonizing version (Figure 8). Careful inspection
of trace data from canonization shows that in some cases, a Collapse rule applies
to eliminate an entire non-equality subproof. This sort of elimination will not be
possible in general in the case of smart abstraction. And once different conflict
clauses begin to be added, the behaviors of the two versions of CVC are highly
likely to diverge.

10 Conclusion and Future Work

Theorem equivalence of equality proofs using independent assumptions is com-
pletely characterized by the standard axioms for free groups. Using a standard
completion of the group axioms taken as rewrite rules, equality proofs can be put
into canonical form. This form is minimal in the sense that the fewest possible
assumptions are used. Canonization can be performed using a simple strategy in
time linear in the size of the equality proof. Without a strategy, canonization can
take cubic time in the proof’s size. Using these results, the standard union-find
algorithm for ground equational reasoning can be instrumented to produce min-
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imal proofs of equations x = y in additional time O(nlog2 3), where n is the size
of the equivalence class of x and y. Using the algebra of equality proofs, major
improvements were achieved in the performance of the CVC tool on hardware
verification benchmark formulas. The approach is attractive, because rather than
carefully modifying specific algorithms to produce minimal proofs (as in [5, 10]),
we apply a simple general-purpose technique. This can result, for example, in
improvements for other decision procedures, like arithmetic, that do equational
reasoning.

The most exciting avenue for future work is to extend the algebra of equality
proofs to an algebra of congruence proofs. In the case of unary function symbols,
the congruence proof rule functions like a homomorphism: Congr(Trans(p1, p2))
= Trans(Congr(p1),Congr(p2)). If this observation can be generalized appro-
priately to higher arities, we may be able to canonize congruence proofs. This
promises further speedups for tools like CVC, which rely heavily on congruence
closure. Careful inspection of some of the conflict clauses generated reveal cases
where out of large clauses (e.g., 21 literals) derived from proofs using congruence
rules, only a very small number (e.g., 3) are needed for inconsistency.

The authors wish to thank the anonymous reviewers for their helpful com-
ments, as well as Grigori Mints and David Dill for earlier feedback on the ideas.
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Abstract. We consider the problem of symbolic reachability analysis of
a class of term rewrite systems called Process Rewrite Systems (PRS).
A PRS can be seen as the union of two mutually interdependent sets
of term rewrite rules: a prefix rewrite system (or, equivalently, a push-
down system), and a multiset rewrite system (or, equivalently, a Petri
net). These systems are natural models for multithreaded programs with
dynamic creation of concurrent processes and recursive procedure calls.
We propose a generic framework based on tree automata allowing to
combine (finite-state automata based) procedures for the reachability
analysis of pushdown systems with (linear arithmetics/semilinear sets
based) procedures for the analysis of Petri nets in order to analyze PRS
models. We provide a construction which is parametrized by such proce-
dures and we show that it can be instantiated to (1) derive procedures
for constructing the (exact) reachability sets of significant classes of PRS,
(2) derive various approximate algorithms, or exact semi-algorithms, for
the reachability analysis of PRS obtained by using existing symbolic
reachability analysis techniques for Petri nets and counter automata.

1 Introduction

Software verification is one of the main challenges in computer-aided verification.
Among the difficulties to face when dealing with this problem, we can mention
the fact that (1) programs manipulate data ranging over infinite domains, and
the fact that (2) programs may have complex control structures. Concerning the
first point, abstraction techniques (such as predicate abstraction) can be used to
obtain abstract programs on finite data domains (see, e.g., [5]). As for the second
point, standard model-checking algorithms can be used if the control structure of
the program is finite. However, programs may have unbounded control structures
due to, e.g., (unbounded depth) recursive procedure calls, and dynamic creation
of concurrent processes (threads). Therefore, we need to extend the capabilities
of automatic verification to deal with infinite-state models which capture the
behaviors of such (abstract) programs.

Recently, model-checking techniques for infinite-state systems have been suc-
cessfully used in this context. Pushdown systems have been proposed as a nat-
ural model for sequential programs with procedure calls [23, 26], whereas Petri
nets have been used to reason about multi-threaded programs without proce-
dure calls (in this case, each thread is a finite-state system, but there may be
an arbitrary number of them running at the same time) [4, 19]. In both cases,
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symbolic reachability analysis techniques are used to verify properties, basically
safety properties, on these models.

In this paper, our aim is to define reachability analysis techniques for models
which subsume pushdown systems and Petri nets, allowing to deal with multi-
threaded programs with procedures calls. We consider models based on term
rewrite systems called Process Rewrite Systems (PRS). These models can be
seen as combinations of prefix and multiset rewrite systems.

The construction of the reachability sets of PRS is a hard problem, in partic-
ular because they subsume Petri nets which are known to be not semilinear in
general (i.e., their reachability sets cannot be defined in Presburger arithmetics)
[30]. However, there exist well-known classes of semilinear Petri nets (see, e.g.,
[25]), and moreover, several algorithms or semi-algorithms have been developed
(and implemented) recently for computing exact or upperapproximate reachabil-
ity sets of counter automata, using various representation structures for linear
arithmetical constraints (polyhedra, automata, etc), and fixpoint acceleration
techniques [2, 7, 8, 14, 17, 18, 28, 39].

Then, our approach is to design a framework where all existing semilinear
sets-based symbolic analysis procedures for Petri nets (or counter automata)
can be integrated with existing automata-based symbolic analysis algorithms
for pushdown systems in order to derive procedures for the reachability analysis
of PRS models.

Our main contribution is a generic procedure which constructs a tree auto-
mata-based representation of the reachability set of a given PRS by invoking
procedures for the analysis of prefix and multiset rewrite systems. While the
procedure for analyzing prefix rewrite systems can be considered as fixed (e.g.,
the one of [15]), the construction is parameterized by a procedure for the analysis
of multiset rewrite systems using semilinear sets (or Presburger arithmetics) for
the representation of sets of configurations (markings). This procedure can be:

– an exact algorithm, but applicable to some particular subclass of multiset
rewrite systems (which is known to be semilinearity preserving), or to some
particular subclass of semilinear sets (which is known to be closed under
multiset rewriting),

– an approximate algorithm, or an exact semi-algorithm (for which termination
is not guaranteed), but applicable in general to any multiset rewrite system
and to any semilinear set of configurations.

The construction we propose allows to derive, for every class of multiset
rewrite systems C for which we have an algorithm (resp. semi-algorithm) for
exact (resp. upperapproximate) reachability analysis, an algorithm (resp. semi-
algorithm) for exact (resp. upperapproximate) reachability analysis for the class
of PRS obtained by combining C systems with prefix rewrite systems. We show
that our construction can be instantiated in such a manner to derive:

– an algorithm for computing the exact forward and backward reachability sets
for the synchronization-free PRS (equivalent to the so-called PAD systems)
which subsume pushdown systems and synchronization-free Petri nets. As a
corollary, we obtain an algorithm for global model checking of PAD vs the
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EF fragment of the temporal logic CTL, i.e., an algorithm for computing the
set of all configurations of a PAD system satisfying some given formula in
the logic EF. These results extend all the existing ones concerning symbolic
reachability analysis for subclasses of PRS, and solves for the first time the
problem of global model checking of EF for PAD systems.

– exact/approximate procedures for the analysis of PRS based on various
analysis procedures and invariant generation techniques for Petri nets and
counter automata.

In order to characterize the reachability sets of PRS, we use a class of tree
automata allowing to define (nonregular) sets of trees with unbounded width,
which are closed under commutation of the children of some of their nodes (those
corresponding to the parallel operator). This class of automata enjoys all closure
and decision properties which are necessary in symbolic reachability analysis.

Related Work: Mayr has proved in [34] that the reachability problem between
two fixed terms is decidable using a reduction to the reachability problem of
Petri nets. The problem we consider here is the constructibility problem of the
(potentially infinite) set of terms which are reachable from a given possibly
infinite set of terms.

Symbolic reachability analysis based on (word) automata techniques has been
used for model-checking pushdown systems in, e.g., [9, 29]. In [33], this approach
is used for the analysis of PA processes, i.e., combination of context-free prefix
and multiset rewrite rules (left-hand-sides of the rules are reduced to single
symbols). In that work, the authors use finite bounded-width tree automata as
symbolic representation structures.

Our construction allows to handle (in particular) the class of PAD systems
(or synchronization-free PRS) which is strictly larger than both pushdown sys-
tems and PA. The class PAD allows for instance to take into account return
values of procedures whereas PA cannot. In the case of a pushdown system,
our construction will behave like the algorithms for this class of systems (it will
compute the set of all reachable configurations). In the case of PA systems our
construction will also compute the precise set of all reachable configurations,
whereas the construction in [33] computes only a set of representatives of terms
w.r.t. associativity and associativity-commutativity of the sequential and parallel
composition. Indeed, the set of all reachable configurations of PA processes is not
regular in general in the sense that it cannot be represented by a bounded-width
tree automaton. In [12], we have extended the approach of [33] for constructing
representatives of the reachability sets to the class of PAD. The construction
we give in this paper is more general in the sense that it allows to compute the
whole set of all backward/forward reachable configurations, and allows also to
solve the problem of global model checking for PAD against the EF fragment of
CTL. The decidability problem of PAD vs EF has been shown to be decidable
by Mayr [34]. However, his proof is rather complex and concerns only the model
checking problem for a single process term against a formula, whereas our ap-
proach allows to compute for the first time the whole satisfiability set of a PAD
formula.
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The application of symbolic reachability analysis of PRS to program analysis
has been advocated in [23] for sequential recursive programs using pushdown
systems. This approach is extended in [27] to parallel programs using PA systems.
In [21] a discussion about the modeling power of PRS is given. In [4, 19], the
model of Petri nets is proposed for the verification of multi-threaded programs
without procedure calls (threads are finite-state communicating systems).

In [10, 11] we define a different framework for the analysis of concurrent
programs with procedure calls based on models which are either communicating
pushdown systems [10] or synchronized PA systems (PA with synchronization
à-la CCS) [11] The verification problem for these model is undecidable, and
therefore we propose an analysis approach based on computing (either finite or
commutative) abstractions of the path languages. While the considered models
in [10, 11] are more general than those we consider in this paper, their analysis
is (by necessity) approximate.

In [35], another approach for dealing with concurrent programs with pro-
cedures is proposed based on combining the so-called summarization technique
(control location reachability in pushdown systems) with a partial order-like
approach. Basically, the authors show that under some restrictions on the oc-
currences of synchronizations, the program has a representative (modulo some
action commutations) where the summarization technique can be applied. When
these conditions are not satisfied, the technique may not terminate. It is not
completely clear how our models are related to the class of programs for which
the algorithm of [35] terminates. However, in principle our symbolic techniques
are more general than summarization-based techniques since they allow to con-
struct the whole infinite set of reachable configurations. Moreover, the approach
we present in this paper allows to deal with dynamic creation of concurrent
processes.

Finally, the tree automata we use in this paper are extensions of the hedge
automata [13] recognizing sets of trees with unbounded width (i.e., tree languages
closed under associativity). Our automata, called commutative hedge automata,
are equivalent to other kinds of automata defined recently in the literature for
instance in [16, 32, 37]. However, as far as we know, our use of commutative hedge
automata in the context of the analysis of process rewrite systems is original.

2 Models

We introduce hereafter Process Rewrite Systems (PRS for short) [34]. Our pre-
sentation of PRS does not follow the standard one given in [34]. In fact, we adopt
the view that PRS are sets of (mutually dependent) multiset and prefix rewrite
rules. It can be proved that every (standard) PRS can be transformed into an
equivalent one that has the form we consider here [34].

2.1 Process Terms

Let Const = {X,Y, . . .} be a set of process constants, and let Tp be the set of
process terms t defined by the following syntax:
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t ::= 0 | X | t/ t | t‖t
where, intuitively, 0 corresponds to the idle process, and “/” (resp. “‖”) repre-
sents the sequential composition (resp. parallel composition) operator. We use
ω to denote in a generic way / or ‖. We denote by ω the operator / (resp. ‖) if
ω = ‖ (resp. ω = /).

Process terms are considered modulo the following algebraic properties: as-
sociativity of “/”, commutativity and associativity of “‖”, and neutrality of 0
w.r.t. both “/” and “‖”. Let 0 be the equivalence relation on Tp induced by
these properties.

Process terms in canonical form are terms t defined by:

t ::= 0 | s | p
s ::= X | p1 / p2 · · · / pn, n ≥ 2
p ::= X | s1‖s2 · · · ‖sn, n ≥ 2

It can easily be seen that every term has an 0-equivalent term in canonical form.
From now on, we work only with terms in canonical form.

A seq-term (resp. paral-term) is either 0, a constant X , or a term of the form
p1 / · · · / pn, called /-rooted term (resp. s1‖ · · · ‖sn, called ‖-rooted term), for
n ≥ 2. A flat seq-terms (resp. flat paral-terms) is a term of the form X1/· · ·/Xn

(resp. X1‖ · · · ‖Xn) for n ≥ 0 (the case n = 0 corresponds to the term 0, and the
case n = 1 corresponds to a process constants X).

2.2 Process Rewrite Systems

A PRS is a set of rewrite rules of the forms:

X1 / · · · /Xn ↪→ Y1 / · · · / Ym (1)
X1‖ · · · ‖Xn ↪→ Y1‖ · · · ‖Ym (2)

for n,m ≥ 0. Rules of the form (1) (resp. (2)) are called /-rules (resp. ‖-rules).
A PRS R induces a transition relation →R over Tp defined as the smallest

relation between process terms such that:

1. if t1 ↪→ t2 is a rule in R, then t1 →R t2,
2. if t1 = tωt2, and t→R t

′, then t1 →R t
′ωt2,

3. if t1 0 t′1, t′1 →R t
′
2, and t′2 0 t2, then t1 →R t2,

Let PostR(t) = {t′ ∈ Tp | t→Rt
′}, and PreR(t) = {t′ ∈ Tp | t′→Rt}. As

usual, Post∗R(t) and Pre∗R(t) denote respectively the reflexive-transitive closures
of PostR(t) and PreR(t). We omit the subscript R when it is understood from
the context. Also, we write sometimes R(t) instead of PostR(t), and similarly
R∗(t) instead of Post∗R(t). These definitions and notations can be extended to
sets of terms in the obvious manner. Given a system R, we denote by R−1

the system obtained by swapping the left-hand-sides and right-hand-sides of the
rules of R. Notice that for every set of process terms L, Pre∗R(L) = Post∗R−1(L).
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2.3 Subclasses of PRS and Program Modeling

PRS is a natural formal model for multithreaded programs with procedure calls
(see, e.g., [21, 23, 27]). It subsumes several well-known classes of (infinite-state)
models. We mention hereafter the ones which are relevant to this paper and
mention their relevance in program modeling.

– Prefix rewrite systems are sets of /-rules. They are equivalent to push-
down systems (PDS). Prefix rewrite systems are models for sequential
programs with procedure (recursive) calls ranging over finite data domains
(see, e.g., [23, 36]): values of global variables correspond to control states,
local variables and program control points are modeled as stack symbols
which are stored at each recursive call.

– BPA processes (or context-free processes) are prefix rewrite systems where
all the left-hand-sides of the rules are process constants. They are equivalent
to pushdown systems with a single control state. Therefore, they do not allow
to take into account global variables.

– Multiset rewrite systems are sets of ‖-rules. These systems are equivalent
to Petri nets (PN). They are natural models of multithreaded programs
(with arbitrary number of parallel finite-state systems) (see, e.g., [18]).

– BPP processes (commutative context-free processes) are multiset rewrite
systems where all left-hand-sides of the rules are process constants. They are
equivalent to synchronization-free Petri nets.

– PA processes are PRSs where all the left-hand-sides of the rules are process
constants (i.e., they are the nesting of BPA and BPP systems). PA processes
are abstract models for programs with procedure calls and dynamic creation
of (asynchronous) parallel processes [27].

– PAD processes are PRSs which are the nesting of BPP and prefix rewrite
systems (i.e., PRS such that all the left-hand-sides of their rules are seq-
terms). PAD systems subsume pushdown systems and PA processes. Con-
trary to PA processes, they allow to take into account return values of pro-
cedure calls.

Let C be a class of multiset rewrite systems. We denote by PRS[C] the class
of PRSs that are unions of prefix rewrite systems and multiset rewrite systems
in C. For instance, PRS[BPP] is precisely the class PAD.

Given a class C of PRS, we denote by coC the dual class of C which consists
of all systems R such that R−1 is in C. Clearly, PRS = coPRS, and the same
holds for prefix and multiset rewrite systems.

3 Tree Automata-Based Symbolic Representations

We use a class of tree automata, called commutative hedge automata, for the
representation and the manipulation of infinite sets of PRS process terms. The
automata we consider extend (bottom-up) hedge automata recognizing sets of
arbitrary-width trees [13]. They recognize sets of terms modulo associativity of
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/ and associativity-commutativity of ‖. Our automata are very close to the
ones defined in [16], and can be seen as particular cases of those introduced in
[32, 37]. Let us give briefly the intuition behind the definition of these automata:
Consider first a “classical” bottom-up tree automaton over fixed-width trees,
say binary trees. To accept a tree in a bottom-up manner, the automaton has
to find a labelling of the nodes of this tree by control states which (1) puts a
final state at the root, and (2) is compatible with rules of the form: either (i)
a → q allowing to label a leaf a with state q, or (ii) f(q1, q2) → q allowing
to label a tree f(t1, t2) with q provided that its subtrees t1 and t2 are labeled
by q1 and q2. Now, assume that f represents an associative operator. Then, we
consider that a node corresponding to such an operator can have an arbitrary
number of sons. Therefore, we use labelling rules of the form f(L)→ q, where L
is a regular language over the alphabet of control states, which allow to label a
tree f(t1, . . . , tn) with q provided that each sub-tree ti is labelled by qi and the
word q1 · · · qn is in the language L. Assume furthermore that f is associative and
commutative. In such a case, the ordering between sons is not relevant. Therefore,
we use rules of the form f(ϕ) → q, where ϕ is an arithmetical constraint, allowing
to label a tree f(t1, . . . , tn) with q provided that each subtree ti is labelled by qi
and the number of occurrences of each control state in the word q1 · · · qn satisfies
the constraint expressed by ϕ.

In the sequel, we give the definition of the general class of commutative hedge
automata, and then we describe the particular automata which are used for the
representation of sets of process terms.

3.1 Preliminaries

Presburger arithmetics is the first order logic of integers with addition and linear
ordering. Given a formula ϕ, we denote by FV (ϕ) the set of its free variables. Let
FV (ϕ) = {x1, . . . , xn}. Then, a vector u = (u1, . . . , un) ∈ Zn satisfies ϕ, written
u |= ϕ, if ϕ(u) = ϕ[xi ← ui] is true. Each formula ϕ defines a set of integer
vectors [[ϕ]] = {u ∈ Zn | u |= ϕ}. Presburger formulas define semilinear sets
of integer vectors, i.e., finite union of sets of the form {x ∈ Zn | ∃k1, . . . , km ∈
Z,x = v0 + k1v1 · · ·+ kmvm}, where vi ∈ Zn, for 1 ≤ i ≤ m.

Given a word w over an alphabet Σ = {a1, . . . , an}, the Parikh image of
w, denoted Parikh(w), is the vector (|w|a1 , . . . , |w|an). This definition can be
generalized to sets of words (languages) over Σ in the obvious manner.

As usual, a set of words is regular if it is definable by a finite-state automaton.
The notion of regularity can be transfered straightforwardly to sets of flat seq-
terms. Similarly, the notion of semilinearity can be transfered to sets of flat
paral-term by associating with a termX1‖ · · · ‖Xn the vector Parikh(X1 · · ·Xn).

In the sequel, we will represent by γ a constraint which is either a regular
language or a Presburger formula. We say that a word w = a1a2 . . . an satisfies
the constraints γ if w ∈ γ (resp. Parikh(w) |= γ) when γ is a language (resp. a
formula).
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3.2 Commutative Hedge Automata

Let Σ = Σ′ ∪ ΣA be a finite alphabet, where Σ′ is a ranked alphabet, and ΣA

is a finite set of associative operators. We assume that Σ′ and ΣA are disjoint.
For k ≥ 0, let Σk denote the set of elements of Σ′ of rank k.

Σ-Terms: Let X be a fixed denumerable set of variables {x1, x2, . . .}. The set
TΣ [X ] of Σ-terms over X is the smallest set such that:

– Σ0 ∪ X ⊆ TΣ[X ],
– for k ≥ 1, if f ∈ Σk and t1, . . . , tk ∈ TΣ[X ], then f(t1, . . . , tk) ∈ TΣ[X ],
– if f ∈ ΣA, t1, . . . , tn ∈ TΣ[X ] for some n ≥ 1, and root(ti) �= f for every

1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ TΣ [X ], where root(σ) = σ if σ ∈ Σ0 ∪X , and
root

(
g(u1, . . . , um)

)
= g.

Terms without variables are called ground terms. Let TΣ be the set of ground
terms over Σ. A term t in TΣ[X ] is linear if each variable occurs at most once
in t. A context C is a linear term of TΣ[X ]. Let t1, . . . , tn be terms of TΣ,
then C[t1, . . . , tn] denotes the term obtained by replacing in the context C the
occurrence of the variable xi by the term ti, for each 1 ≤ i ≤ n.

Definition of CH-Automata. Let us consider that ΣA = Σ′
A ∪ Σ′

AC where
Σ′

AC is a set of associative and commutative operators. We assume that Σ′
A and

Σ′
AC are disjoint. Then, a CH-automaton is a tuple A = (Q,Σ, F,Δ) where:

– Q is a union of disjoint finite sets of states Q′ ∪
⋃

f∈ΣA
Qf ,

– F ⊆ Q is a set of final states,
– Δ is a set of rules of the form:

1. a→ q, where q ∈ Q′, a ∈ Σ0,
2. f(q1, . . . , qk)→ q, where f ∈ Σk, q ∈ Q′, and qi ∈ Q,
3. q → q′, where (q, q′) ∈ Q′ ×Q′ ∪

⋃
f∈ΣA

Qf ×Qf ,
4. f(L)→ q, where f ∈ Σ′

A, L ⊆ (Q \Qf )∗, and q ∈ Qf ,
5. f(ϕ) → q, where f ∈ Σ′

AC , q ∈ Qf , and ϕ is a Presburger formula such
that FV (ϕ) = {xq | q ∈ Q \Qf}.

We define a move relation →Δ between ground terms in TΣ∪Q as follows: for
every two terms t and t′, we have t→Δ t

′ iff there exist a context C and a rule
r ∈ Δ such that t = C[s], t′ = C[s′], and:

– r = a→ q, with s = a and s′ = q, or
– r = q → q′, with s = q and s′ = q′, or
– r = f(q1, . . . , qk) → q, with s = f(q1, . . . , qk) and s′ = q, or
– r = f(L)→ q, with f ∈ Σ′

A, s = f(q1, . . . , qn), q1 · · · qn ∈ L, and s′ = q, or
– r = f(ϕ) → q, with f ∈ Σ′

AC , s = f(q1, . . . , qn), Parikh(q1 · · · qn) |= ϕ,
and s′ = q.
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Let ∗→Δ denote the reflexive-transitive closure of →Δ. A ground term t ∈ TΣ

is accepted by a state q if t ∗→Δ q. Let Lq = {t | t ∗→Δ q}. A ground term t is
accepted by the automaton A if there is some state q in F such that t ∗→Δ q.
The CH-language of A, denoted by L(A), is the set of all ground terms accepted
by A.

By adapting the constructions for hedge automata [13], it is possible to prove
the following fact (see [16, 32, 37, 38]):

Theorem 1. The class of CH-automata is effectively closed under boolean op-
erations. Moreover, the emptiness problem of CH-automata is decidable.

3.3 CH-Automata for PRS Process Terms

We consider PRS process terms as trees and use CH-automata to represent sets
of such trees. Indeed, the set Tp of PRS process terms can be seen as the set of
Σ-terms TΣ where Σ0 = {0} ∪ Const, Σ′

A = {/}, and Σ′
AC = {‖}.

Sets of process terms are recognized by CH-automata A = (Q,Σ, F,Δ) such
that (1) Q is the disjoint union Q = Q′ ∪Q� ∪Q‖ where Q′ is itself the disjoint
unionQ′ = Q0∪Q−, and (2) the rules inΔ are of the form: (a)X → q, where q ∈
Q−, X ∈ Const, (b) 0 → q, where q ∈ Q0, (c) q → q′, where (q, q′) ∈ (Q0)2 ∪
(Q−)2∪ (Q�)2∪ (Q‖)2, (d) /(L)→ q, where L ⊆

(
Q\ (Q�∪Q0)

)∗ and q ∈ Q�,
and (e) ‖(ϕ) → q, where q ∈ Q‖, and ϕ is a Presburger formula such that
FV (ϕ) = {xq | q ∈ Q \ (Q‖ ∪Q0)}. In other words, the states in Q� (resp. Q‖)
recognize trees whose root is / (resp. ‖). The states in Q− recognize constants
in Const, and the states in Q0 recognize 0.

4 A Generic Construction of PRS Reachability Sets

We provide a construction of the reachability analysis of PRS which is parame-
terized by two algorithms Θ� and Θ‖ such that (1) Θ� is an algorithm for the
reachability analysis of prefix rewrite systems based on regular languages, and
(2) Θ‖ is an algorithm for the reachability analysis of multiset rewrite systems
based on semilinear sets.

4.1 Preliminaries

A class of multiset rewrite systems (Petri nets) C is effectively semilinear if we
have for it an algorithm Θ‖ which constructs, for every given system M ∈ C
and every semilinear set of paral-terms S (markings), a set Θ‖(M,S) which is
semilinear and equal to M∗(S).

Let us fix for the rest of this section an effectively semilinear class C of
multiset rewrite systems and let Θ‖ be the algorithm we have for its symbolic
reachability analysis. For a reason which will be clear in the next subsection, we
assume that C is 1-rules closed, i.e., for every system M ∈ C, and every X,Y in
Const, the system M ∪ {X → Y } is also in the class C.
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Let us fix also an algorithm Θ� for computing regular reachability sets of
prefix rewrite systems (let us assume for instance that it corresponds to one of
the algorithms in [9, 15, 22]).

Then, let us consider a PRS R = R� ∪ R‖, where R� is a prefix rewrite
system, and R‖ is a multiset rewrite system in C, and let A = (Q,Σ, F,Δ)
be a CH-automaton recognizing a set of initial configurations (process terms)
L. The rest of this section is devoted to the construction of a CH-automaton
A∗[R,Θ�, Θ‖] = (Q̃, Σ, F̃ , Δ̃) which recognizes R∗(L), where Q̃ is the set of
states, F̃ is the set of final states, and Δ̃ the set of rules.

4.2 The Set of States

The set of states Q̃ includes the set of states Q of A and contains new states qX ,
which are assumed to accept precisely the singletons {X} (i.e., LqX = {X}), for
each X ∈ Const. Let QR be the set of states {qX | X ∈ Const}. In addition,
the set Q̃ contains states which recognize the successors by R of terms in Lq

for each q ∈ Q ∪ QR (these states will have this property at the end of the
iterative construction of automaton described below). In order to ensure (during
the construction) that the recognized trees are always in canonical form, we need
to partition the sets of recognized trees according to their types (given by their
root). We associate with each q ∈ Q ∪ QR different states (q,−), (q, 0), (q,/),
and (q, ‖) recognizing successors of terms in Lq which are respectively constants
in Const, null (equal to 0), /-rooted terms, and ‖-rooted terms.

Let Q = Q0∪Q−∪Q�∪Q‖. We consider that the set Q̃ is equal to the union
of the following sets: (1) Q̃0 = Q0∪{(q, 0) : q ∈ Q∪QR}, (2) Q̃− = Q− ∪QR ∪
{(q,−) : q ∈ Q∪QR}, and (3) Q̃ω = Qω∪{(q, ω) : q ∈ Q∪QR}, for ω ∈ {/, ‖}.
Moreover, we consider that F̃ = {q, (q,−), (q, 0), (q,/), (q, ‖) : q ∈ F}.

4.3 Nested Prefix/Multiset Rewriting

The construction of the automatonA∗[R,Θ�, Θ‖] is based on closure rules which
add new transitions to those originally in the automaton A in order to recognize
terms obtained by applying the transitive closure of R. The added transitions are
defined by computing new constraints reflecting the effect of applying sequences
of rewriting steps using the systems R� and R‖. Intuitively, given a rule ω(γ)→
q, we would like to add a rule ω(γ′)→ q where γ′ is obtained, roughly speaking,
by applyingΘω to γ. However, many problems appear since/ and ‖-rooted terms
are nested, and the applications of R� and R‖ may interact at different levels of
the term. The main issue is to deal with these interactions in such a manner that
only a finite number of transitions needs to be added to the automaton A. The
crucial idea is to use, instead of the system R, an extended system R′ (called
its transitive normal form) where nested prefix and multiset rewriting have been
taken into account. The computation of this system is a preliminary step of our
construction. Then, the construction itself deals with the problems which come
from closing the language of the given CH-automaton under the application of
the system S.
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Transitive Normal Form: The transitive normal form of R is the union of
the multiset and prefix rewrite systems R′‖ and R′� defined, for ω ∈ {/, ‖}, by
R′

ω = Rω ∪ {X → Y : Y ∈ R∗(X)}.

Lemma 1. We have R∗ = (R′)∗. Moreover, for every flat seq-term (resp. paral-
term) t, R′

�
∗(t) (resp. R′

‖
∗(t)) is the set of all the flat seq-terms (resp. paral-

terms) in R∗(t).

The systems R′
ω, for ω ∈ {/, ‖}, can be computed iteratively as the limits of

the ascending chains of sets of rules (Rω
i )i≥0 defined by Rω

0 = Rω , and Rω
i+1 =

Rω
i ∪ {X → Y : Y ∈ Θω(Rω

i , X)}, for i ≥ 0. Notice that these chains are finite
since there is a finite number of pairs (X,Y ).

Rewrite System over the Alphabet of States: Rules in CH-automata
(of the forms ω(γ) → q) involve constraints on sequences of states, whereas the
systems R′

� andR′
‖ are defined over the alphabet of process constants. Therefore,

we define the systems R′′
� = α(R′

�) and R′′
‖ = α(R′

‖) where α is the substitution
such that α(X) = qX , for every X ∈ Const (extended in the standard way to
terms, rules, and sets of rules).

Successor Closure: The system S used in the construction is the union of the
systems Sω, for ω ∈ {/, ‖}, defined by Sω = R′′

ω ∪ {q → (q,−), (q, ω) : q ∈
Q ∪QR}.

The role of the additional rules is, roughly speaking, to close the set of ac-
cepted trees under the “succession relation”: If a rule ‖(ϕ) → q is added to the
automaton, whenever it allows to recognize a tree ‖(t1, t2, · · · , tn) at state q,
it should also recognize any tree of the form ‖(t′1, t′2, · · · , t′n) where each t′i is
a (constant or /-rooted) successor of ti. For the case of the operator /, this
closure concerns only the left-most tree due to prefix rewriting.

4.4 The Set of Transition Rules

The set Δ̃ is inductively defined as the smallest set of transition rules which (1)
contains Δ, (2) contains the set of rules X → qX for every X ∈ Const, and (3)
is such that:

(β1) Initialization rules:
For every state q ∈ Q ∪ QR, (a) if q ∈ Q0, then 0 → (q, 0) ∈ Δ̃, (b) if
q ∈ Q− ∪QR, then q → (q,−) ∈ Δ̃, and (c) if q ∈ Qω, then q → (q, ω) ∈ Δ̃.

These rules express that Lq ⊆ L(q,0) if q ∈ Q0, Lq ⊆ L(q,−) if q ∈ Q−∪QR,
and Lq ⊆ L(q,ω) if q ∈ Qω.

(β2) Simulation of the ε-rules:
If q → q′ ∈ Δ, then {(q,−)→ (q′,−), (q, 0)→ (q′, 0), (q, ω)→ (q′, ω)} ⊆ Δ̃.

This rule expresses that if initially Lq ⊆ Lq′ , then any successor of Lq is
also a successor of Lq′ .
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(β3) Term flattening rules:
(a) If ω(γ)→ (q, ω) ∈ Δ̃, (q′,−) ∈ γ, and (q′, ω) ∈ γ, then (q′, 0)→ (q, 0) ∈

Δ̃, (q′,−)→ (q,−) ∈ Δ̃, and (q′, ω) → (q, ω) ∈ Δ̃,
(b) If ω(γ)→ (q, ω) ∈ Δ̃ and 0 ∈ γ, then 0 → (q, 0) ∈ Δ̃.

These rules express that if ω(t) is a successor of Lq, then t and all its
successors are also successors of Lq.

(β4) Closure rules: successors of process constants and 0:
(a) If X ∗→Δ̃ (q,−), then ω

(
Θω(Sω, qX)

)
→ (q, ω) ∈ Δ̃,

(b) If 0 ∗→Δ̃ (q, 0), then ω
(
Θω(Sω, 0)

)
→ (q, ω) ∈ Δ̃.

The rule (a) says that if X is a successor of some term in Lq, then all its
ω-successors obtained by applying the system R′

ω are also successors of Lq.
The rule (b) says the same thing for successors of 0.

(β5) Closure rule: successors of ω-rooted terms:
If ω(γ)→ p ∈ Δ, then ω

(
Θ(S′

ω , σ(γ))
)
→ (p, ω) ∈ Δ̃, where:

− σ is the substitution such that ∀q ∈ Q∪QR, σ(q) = {q} ∪ {qX : X ∗→Δ

q},
− S′

ω = Sω∪{q → qX : X ∗→Δ̃ (q,−), q ∈ Q∪QR}∪{q → 0 : 0 ∗→Δ̃ (q, 0)}
This rule concerns the case of ω-rooted terms where rewritings have not
occurred so far at their root (they have occurred starting from the level of
the child of the root). The rule says the following: Let t = ω(t1, . . . , tn) be
a term initially accepted at p due to the fact that each of the ti’s can be
labelled with a qi with q1 · · · qn |= γ. Let t′ be a successor of t, and assume
that it is equal to t where some of the ti’s have been rewritten to 0, and
some others have been transformed into constants X. Then, any successor
of t′, obtained by applying the rewrite system R′

ω to the subsequence of all
constants appearing among its first-level children, must also be a successor
of t.

The set of rules Δ̃ can be constructed iteratively as the limit of an increas-
ing sequence Δ̃1 ⊆ Δ̃2 ⊆ . . . of set of rules, obtained by applying iteratively
the closure and flattening β-rules. It can be seen that this iterative procedure
terminates. Indeed, the flattening rules (β3) create rewrite rules of the form
(q,∼) → (q′,∼). Since there is a finite number of pairs (q, q′), (β3) can only
be applied a finite number of times. The same holds for the closure rules (β4)
and (β5) since they can only be applied if there is a new pair (X, q) such that
X

∗→Δ̃ (q,−), and there is a finite number of such pairs. We can prove the fol-
lowing fact (the proof can be found in the full version of the paper and in [38]):

Lemma 2. For every process term t, and every q ∈ Q∪QR we have: (1) t ∗→Δ̃

(q, 0) iff t ∈ Post∗(Lq) and t = 0, (2) t ∗→Δ̃ (q,−) iff t ∈ Post∗(Lq) and t ∈
Const, and (3) t ∗→Δ̃ (q, ω) iff t ∈ Post∗(Lq) and root(t) = ω, for ω ∈ {/, ‖}.
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Theorem 2. Let Θ� be an algorithm for computing Post∗ images of regular sets
by prefix rewrite systems. Let C be a 1-rules closed, effectively semilinear class
of multiset rewrite systems, and let Θ‖ be an algorithm for computing Post∗

images of semilinear sets by systems in C. Then, for every system R in PRS[C],
and every CH-automaton A, we have Post∗R

(
L(A)

)
= L(A∗[R,Θ�, Θ‖]).

5 Application: Reachability Analysis of PRS

5.1 Computing Reachability Sets of PAD Systems

As said in section 2, the class of PAD system is precisely the class PRS[BPP], and
moreover, the class coPAD is equal to PRS[coBPP]. It has been shown that the
reachability relation of BPP systems is semilinear and effectively constructible
[20]. This implies that both classes BPP and coBPP are effectively semilinear.
These classes are also 1-rules closed, by definition. Therefore, an immediate
consequence of Theorem 2 is the following result:

Corollary 1. For every PAD system R, and every CH-automaton A, the sets
Post∗R

(
L(A)

)
and Pre∗R

(
L(A)

)
are computable and effectively representable by

CH-automata.

5.2 Global Model Checking for EF

We consider the EF fragment of the temporal logic CTL: the set of formulas
built over a finite set of atomic propositions, and closed under boolean operators
and the EF operator (EFφ means that there exists a computation path where
φ is eventually true). We consider that atomic propositions are interpreted as
CH-automata definable sets of process terms.

The global model checking problem is “given a PRS R and a formula φ,
compute the set of all configurations (process terms) satisfying φ”. Then, since
EF corresponds to the Pre∗ operator and CH-automata are closed under boolean
operations (Theorem 1), we obtain as a consequence of Corollary 1 the fact that:

Corollary 2. For every PAD system R, and for every formula φ in the EF frag-
ment of CTL over CH-automata definable valuations of atomic propositions, the
set of configurations of R satisfying φ is computable and effectively representable
by a CH-automaton.

5.3 Integrating Reachability Analysis Procedures
for Pushdown Systems and Petri Nets

Our construction provides a framework for extending any procedure (exact or
approximate) for symbolic reachability analysis of Petri nets using semilinear
sets (or linear arithmetics) to a procedure for symbolic reachability analysis of
PRS.
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Indeed, we can compute upper approximations of reachability sets of PRS
by instantiating the parameter Θ‖ of the construction by an algorithm which
computes, for any given multiset rewrite system, a semilinear upper approxima-
tion of its reachability set. There are several such algorithms, leading to different
analysis procedures for PRS with different precisions, such as the Karp-Miller
algorithm for computing the coverability set, and procedures which generate
invariants based on, e.g, flow constraints and trap constraints (see [24]).

Other possible instantiations can be obtained by using various existing ap-
proximate algorithms or exact semi-algorithms for symbolic reachability anal-
ysis of counter automata (multiset rewrite systems can of course be seen as
particular cases of such general models). Many of such procedures have been
developed in the last few years using either polyhedra-based representations or
automata-based representations for linear constraints or Presburger arithmetics
[2, 7, 8, 14, 17, 18, 28, 39]. These procedures are quite efficient thanks to the use
of different fixpoint acceleration techniques (such as widening-based techniques
[2, 7, 14, 17], or meta-transition techniques [8, 28]) allowing to force or to help
termination of the reachability analysis.

6 Conclusion

We have defined automata-based techniques for computing reachability sets of
PRS. These techniques provide a general framework for modeling and analyzing
programs with dynamic creation of concurrent processes and recursive proce-
dure calls. Indeed, such programs can be modeled quite naturally using term
rewrite systems combining prefix and multiset rewrite systems. Then, our generic
construction allows to use procedures for reachability analysis of both kinds of
rewrite systems in order to derive various analysis procedures for their combi-
nation. This allows in particular to establish new analysis and model-checking
algorithms for the class of PAD systems. Our results generalize and unify all ex-
isting results on the kind of models we consider based on process rewrite systems.
Furthermore, our construction provides a theoretical basis for the construction
of a tool for symbolic analysis of multithreaded programs modeled as PRS, based
on the integration of existing, and quite efficient, tools for symbolic reachabil-
ity analysis of pushdown systems (e.g., [36]) and tools for symbolic reachability
analysis of counter automata (e.g., [1, 3, 6, 31]).
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Abstract. In this paper, we consider the monadic second order logic
(MSO) and two of its extensions, namely Counting MSO (CMSO) and
Presburger MSO (PMSO), interpreted over unranked and unordered
trees. We survey classes of tree automata introduced for the logics PMSO
and CMSO as well as other related formalisms; we gather results from
the literature and sometimes clarify or fill the remaining gaps between
those various formalisms. Finally, we complete our study by adapting
these classes of automata for capturing precisely the expressiveness of
the logic MSO.

1 Introduction

Relationship between logics and tree automata for ranked trees has been estab-
lished by Thatcher and Wright in their seminal paper [19]: they proved that
languages of finite and ranked trees that are accepted by tree automata co-
incide with the models of monadic second-order logic (MSO) sentences when
interpreted over (ranked) tree structures.

Recently, due to the development of semi-structured databases and in partic-
ular, of XML, there has been some new interest in unranked and ordered trees;
for those trees, the number of children of some node is not a priori bounded
and for instance, does not depend on the symbol labeling this position in the
tree. Moreover, those trees are said to be ordered in the sense that there exists
a total ordering on children of each node. The relationship between logics and
automata has been carried over unranked and ordered trees [13],[1]: once again,
languages that are definable by means of tree automata are exactly models of
MSO sentences.

In this paper we consider unranked and unordered trees, ie trees that are
unranked but without any ordering relation between children of the same node.
As noticed by Courcelle in [4], the fact that there is no order between siblings
drastically reduces the expressiveness of MSO: hence, for ordered unranked trees,
properties such as “the root has an even number of children labeled with b” or
such as “the number of nodes in the tree is a multiple of 5” can be expressed in
MSO (where the ordering relation on sibling nodes is represented as an order-
ing relation or as some successor relation). It goes differently for unranked and
unordered trees where those two latter properties can no longer be expressed in
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MSO. Courcelle proposed in [4] to extend MSO with some constraints for count-
ing modulo on cardinalities of sets. He showed that this logic, named Counting
MSO (CMSO), can be related to tree automata by the notion of algebraic rec-
ognizability in the sense of [12]: a set of trees can be expressed by some CMSO
sentence iff it is recognizable.

Recently, Seidl, Schwentick and Muscholl introduced Presburger monadic
second order logic (PMSO) [18]: it extends MSO with a new kind of atomic
formula x/φ; in such an atomic formula, x is a variable denoting a node of the
tree and φ is a Presburger formula expressing arithmetical constraints on the
cardinality of sets when restricted to the children of x. Seidl et al. also defined
a notion of automata, called Presburger tree automata, and showed that tree
languages accepted by Presburger tree automata are precisely models of PMSO
sentences.

The objective of this paper is two folds: first, we gather results concerning
formalisms that can express sets of unranked and unordered trees definable by
PMSO and CMSO sentences. This survey permits to clarify or sometimes make
explicit the relationship of different formalisms, in particular, various classes of
tree automata (eg Presburger tree automata [18], ACU equational tree automata
[15], [20] and equational tree languages [4] when considering the logic PMSO).
Our second aim is to try to get a uniform view on tree languages that can be
defined by the logics CMSO and PMSO, but also by MSO: in particular, for
PMSO and CMSO, we try to adapt systematically (when possible) a formalism
associated to some specific logic to the other one. Finally, we investigate the ex-
pressiveness of the logic MSO: considering formalisms used for describing CMSO
and PMSO definable sets, we propose subclasses capturing precisely MSO over
unranked and unordered trees.

This paper is organized as follows: Section 2 presents definitions for trees as
graphs, an algebraic view of trees and recall Presburger formulas. In Section 3
we define the three logic formalisms MSO, CMSO and PMSO. Sections 4 and 5
survey PMSO- and CMSO-complete formalisms respectively, and in Sections 6
and 7 we present new characterizations of PMSO- and CMSO-definable sets of
trees. Finally, in Section 8 we give characterizations of MSO-definable sets of
trees.

2 Preliminaries

2.1 The Tree Model

We consider here edge-labeled1 unranked and unordered trees (called simply
trees in the rest of the paper).

Trees will be finite non-empty directed graphs with a distinguished node,
the root of the tree, such that for any node, there exists exactly one path from
the root to this node. Additionally, we suppose a mapping associating with each
1 For simplicity, we assume that nodes are unlabeled. However, the results presented

here could be extended to trees where both edges and nodes are labeled.



502 Iovka Boneva and Jean-Marc Talbot

edge of the graph a label from a finite set Λ. Formally, a tree is given by a triple
(V,E, λ) such that V is a finite non-empty set of nodes, E ⊆ V × V is a finite
set of edges and λ is a mapping from E to Λ. Moreover, it satisfies that any
node is reached by a unique path from the root: for any nodes vn, v

′
n′ , for any

two sequences v0, v1, . . . , vn and v′0, v
′
1, . . . , v

′
n′ such that v0, v′0 both denote the

root of the tree, vn,v′n′ are equal and (vi, vi+1), (v′j , v
′
j+1) belong to E for all

0 ≤ i ≤ n− 1, 0 ≤ j ≤ n′ − 1, the two sequences are identical.
As usual, we consider two isomorphic trees as being equal. We denote Tree

the set of all trees. We denote root(τ) the root of the tree τ and for any node v,
children(v) the set of nodes {v′ | (v, v′) ∈ E}.

2.2 An Algebraic View of Trees

We adopt the algebraic view of trees proposed in [4]. We consider the signature
Σ given by the constant 0, the unary function symbols a for each a in Λ and
the binary (infix) symbol |.

Let T be the Σ-algebra whose domain is the set of all finite edge-labeled
trees. The constant 0 is interpreted in T as 0T the tree having one single node
and no edge (we consider only non-empty graphs). For any tree τ defined as
(V,E, λ), the tree aT (τ) is given by (V ∪ {r}, E ∪ {r, root(τ)}, λ′) where r is a
new node (not belonging to V ) and λ′ extends λ by letting λ′((r, root(τ))) = a.
For trees τ, τ ′ defined as (V,E, λ), (V ′, E′, λ′) respectively, τ |T τ ′ is the tree
given by (V ′′, E′′, λ′′) where (assuming V ∩ V ′ = ∅):

– V ′′ = (V ∪ V ′ ∪ {r}) � {root(τ), root(τ ′)} (where r /∈ V ∪ V ′)
– E′′ = {(r, v) | v ∈ children(root(τ))∪ children(root(τ ′))}∪ (E� {(root(τ), v) |
v ∈ V }) ∪ (E′ � {(root(τ ′), v′) | v′ ∈ V }).

– λ′′ is defined as λ and λ′ for edges in E′′ coming from E and E′ respectively
and by λ′′((r, v)) = λ((root(τ), v)) if v ∈ E and λ′′((r, v)) = λ((root(τ ′), v))
if v ∈ E′.

Informally, aT (t) adds a new edge labeled by a from a new node (the new root)
to the ancient root of t whereas t |T t′ is obtained from t and t′ by merging their
roots. Figure 1 illustrates algebraic operations on trees.

One can remark that the set of trees Tree is finitely generated by Σ, that
is each tree in Tree can be obtained by combining the operators from the Σ-
algebra T .

aT

⎛⎝ ba

⎞⎠ =
ba

a
ba

T

ba

a

=

aa b

ba

Fig. 1. Algebraic operations over trees.



Automata and Logics for Unranked and Unordered Trees 503

It should also be noticed that the operation |T is associative and commuta-
tive over trees and that 0T is its neutral element. Therefore, (Tree, |T ,0T ) is a
commutative monoid.

We will also consider C the algebra of terms built over the signature Σ (ie
the initial algebra over Σ). We will denote hC the unique homomorphism from
C, the Σ-algebra of terms to T , the algebra of trees.

2.3 Arithmetical Formulas

In this paper, we will have to consider different kinds of arithmetical formulas
interpreted over N the set of natural numbers. Different logics will be defined
depending on the atomic predicates that are allowed.

Let U be a set of natural variables and B be a set of atomic formulas whose
free variables belong to U . We define FU(B) as the least set of formulas such
that (i) B is included in FU(B) and (ii) if φ,φ′ are in FU(B) then φ∧φ′, ¬φ are
in FU(B) as well.

For our purpose, we are going to consider only two kinds of atomic formulas:
p ≤ p′ and Divk(p), where k is some fixed natural number different from zero
and p is an arithmetical term defined as:

p ::= n | u | p+ p (u ∈ U , n ∈ N)

Formulas in FU(B) are interpreted over (N, {+}, {≤, Divk}) the structure of
naturals where + is interpreted as the addition function, ≤ as the usual ordering
over N and finally, Divk is the unary predicate such that Divk(n) holds if n is
divisible by k. The semantics for Boolean connectives is the usual one.

Let φ be a formula from FU (B). We say that a valuation μ mapping free
variables of φ to naturals is a solution of φ if the structure (N, {+}, {≤, Divk})
is a model of φ under the valuation μ.

Formulas from FU ({p ≤ p′, Divk(p)}) are called Presburger formulas and the
ones from FU ({p ≤ p′}) are called ordering formulas.

Strictly speaking, Presburger formulas usually allow also existential quan-
tification ∃u.φ. However, it is well-known that for any Presburger formula φ
with quantification, there exists an equivalent (quantifier-free) formula φ′ from
FU ({p ≤ p′, Divk(p)}) 2. Note that this is not the case for ordering formulas for
which adding existential quantification strictly increases their expressiveness3.

An atomic formula from {p ≤ p′, Divk(p)} is said to be unary if this formula
contains only one variable (but possibly several occurrences of it). By extension,
a formula φ from FU({p ≤ p′, Divk(p)}) is unary if it is built over unary atomic
formulas. Note that a unary formula may contain several different variables but
any of its atoms contains only one variable.
2 The first-order theory of formulas built over {p ≤ p′, Divk(p)} interpreted over

natural numbers admits quantifier elimination.
3 In presence of existential quantifications, Presburger and ordering formulas are

equally expressive as Divk(p) can be written as ∃y.p = y + . . . + y︸ ︷︷ ︸
k

.
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We will denote F1
U ({p ≤ p′, Divk(p)}) (resp. F1

U ({p ≤ p′})) the set of unary
Presburger formulas (resp. of unary ordering formulas).

2.4 Presburger-Definable Sets and Multiset Languages

Let Nl be the set of tuples of length l of naturals. A subset N of Nl is said
to be Presburger-definable (resp. ordering-definable) if there exists a Presburger
formula (resp. an ordering formula) φ whose free variables are (x1, . . . , xl) con-
sidered as totally ordered and such that for any tuple (n1, . . . , nl) from N , the
valuation {x1 �→ n1, . . . , xl �→ nl} is a solution of φ.

Let A = (a1, . . . , al) be a sequence of symbols. We denote M(A) the set of
all multisets whose elements are in A. The Parikh mapping [17] is a mapping
from M(A) to Nl defined as πA(m) = (|m|a1 , . . . , |m|al

), where |m|ai is the
number of occurrences of ai in the multiset m. Parikh mappings are extended
as mappings from multiset languages to subsets of Nl as follows: for M ⊆ M(A),
πA(M) = {πA(m) | m ∈M}.

Denoting ∅ the empty multiset and 	 the multiset union,

Definition 1. The family Rat(M(A)) of rational multiset languages is the least
subset of M(A) which contains any finite subset of M(A) and such that if L,L′

belong to Rat(M(A)) then L ∪ L′, L 	 L′ = {m 	 m′ | m ∈ L and m′ ∈ L′},
L∗ =

⋃
n∈N

Ln (where L0 = ∅ and Li+1 = Li	L for i > 0) belong to Rat(M(A)).

It is well-known that

Note 1. Let N be a subset of Nl and A = (a1, . . . , al) be some alphabet. Then
N is Presburger-definable iff π−1

A (N) ∈ Rat(M(A)).

Definition 2. A multiset language L ∈ M(A) is recognizable if there exists a
monoid morphism h from (L,	, {∅}) to a finite monoid (D,+, ι) and a finite
subset D′ of D such that L = h−1(D′).

We denote Rec(M(A)) the set of recognizable multiset languages. It is well-
known that the set of recognizable multisets is strictly included into the set of
rational multisets, ie Rec(M(A)) � Rat(M(A)).

3 MSO-Based Logics for Trees

We consider in this section monadic second-order logic (MSO) as well as two
extensions of it. First, let us recall how trees can be viewed as logical structures
over which logical formulas are interpreted.

Let σ be the signature {labela | a ∈ Λ} where the labela’s are binary
predicates. With a tree τ = (V,E, λ), we associate a finite σ-structure Sτ =
〈V, {labelτa | a ∈ Λ}〉, such that labelτa(v, v′) holds in Sτ if (v, v′) ∈ E and
λ((v, v′)) = a.

We assume a countable set of first-order variables ranging over by x, y, z, . . .
and a countable set of second-order variables ranging over by X,Y, Z, . . ..
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Definition 3. The formulas of the logic MSO are defined by the following syn-
tax:

ψ ::= labela(x, y) | x ∈ X | ψ ∨ ψ | ¬ψ | ∃x.ψ | ∃X.ψ

Let S be a σ-structure whose domain is V . Let ρ be a valuation mapping
first-order variables to elements of V and second-order variables to subsets of V .
The structure S is a model of a MSO formula ψ under the valuation ρ (defined
for free variables of ψ) denoted S |=ρ ψ, if:

– ψ is labela(x, y) and labela(ρ(x), ρ(y)) holds in S;
– ψ is x ∈ X and ρ(x) belongs to ρ(X);
– ψ is ψ1 ∨ ψ2 (resp. ¬ψ′) and S |=ρ ψ1 or S |=ρ ψ2 (resp. S � |=ρψ

′) holds;
– ψ is ∃x.ψ′ and there exists an element v from V s.t. S |=ρ[x→v] ψ

′ holds.
– ψ is ∃X.ψ′ and there exists a subset V ′ of V s.t. S |=ρ[X→V ′] ψ

′ holds.

Overloading the notation, for a closed MSO formula ψ and a tree τ , we write
τ |= ψ whenever Sτ |= ψ for the σ-structure Sτ associated with τ ; moreover, we
write [[ψ]] to denote the set of all trees τ such that τ |= ψ. We say that a set of
trees T is MSO-definable if there exists some closed MSO formula ψ such that
[[ψ]] = T .

The logic CMSO Courcelle defined in [4] the counting MSO logic (CMSO) as an
extension of MSO. The syntax of CMSO4 augments the one from MSO with an
atomic formulaModi

j(X) whereX is a second-order variable and i, j are naturals
such that i �= 0 and j < i. The formula Modi

j(X) holds for a σ-structure S and
a mapping ρ associating with X a subset of the domain of S if the cardinality
of ρ(X) modulo i is equal to j.

The logic PMSO Seidl et al. introduced in [18] an extension of MSO called Pres-
burger MSO (PMSO). This extension is defined by a new kind of atomic formu-
las of the form x/φ, φ being a Presburger formula from FV({p ≤ p′, Divk(p)}),
where V is the set of integer variables {#X | X is a second-order variable}.

The formula x/φ holds in some σ-structure S under a valuation ρ if the
valuation μ mapping each variable #X from φ to the cardinality of the set
ρ(X) ∩ children(ρ(x)) is a solution for φ 5.

CMSO-definable and PMSO-definable set of trees are defined on the same
way that MSO-definable set of trees.

4 Actually, the syntax of CMSO from [4] is richer than the one we consider here; there,
the logic has two sorts for both individual and set variables, respectively a sort for
nodes and a sort for edges. However, Courcelle showed in [5] that this two-sorted
extension does not add expressive power when trees are considered.

5 PMSO allows to express quite complex relationships between cardinalities of sets;
however, those sets are always relative to some precise node. For arbitrary sets, the
associated monadic second order logic would be undecidable [11].
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4 A Survey on PMSO-Complete Formalisms

In this section, we present various formalisms which are able to express precisely
PMSO definable sets of trees.

4.1 Presburger Tree Automata

In [18], Seidl et al. introduced Presburger tree automata which correspond to the
logic PMSO. We define here an adaptation of these automata for edge-labeled
trees. Later on we identify precisely subclasses of these automata for the logics
MSO and CMSO. These automata are also very close to sheaves automata from
[8],[7].

Definition 4. A Presburger tree automaton (PTA) is given by a tuple
(Λ,Q, F, δ) where Λ is a finite set of labels, Q is a finite set of states, δ is a
transition mapping from Q×Λ to FU({p ≤ p′, Divk(p)}) where U is {xq | q ∈ Q}
and finally, F ∈ FU({p ≤ p′, Divk(p)}) is the acceptance condition.

A run rA for a tree τ = (V,E, λ) and a PTA A = (Λ,Q, F, δ) is a mapping
from E to Q such that for all edges (v, v′) in E, μv |= δ(rA((v, v′)), λ((v, v′)))
where μv is the valuation associating with each variable xq the cardinality of the
set {(v′, v′′) | (v′, v′′) ∈ E and rA((v′, v′′)) = q}.

Informally, a run labels edges with states from Q: the state labeling some
edge e = (v, v′) depends on the label of the edge as well as on the multiplicity of
the states labeling the edges originating from the node v′ (ie edges of the form
(v′, v′′) for some node v′′).

A tree τ = (V,E, λ) is accepted by a Presburger tree automaton A =
(Λ,Q, F, δ) if there exists a run r for τ and A such that μF |= F where μF

is the valuation associating with each variable xq the cardinality of the set
{(root(τ), v) | (root(τ), v) ∈ E and rA((root(τ), v)) = q}. For some PTA A,
we denote L(A) the set of all trees accepted by A.

Example 1. The Presburger tree automaton A1 here after accepts precisely the
set of trees of height 1 such that the root has as many a outgoing edges as b ones:
A1 = ({a, b}, {qa, qb}, xqa = xqb

, δ) where δ is the transition mapping such that
δ((qa, a)) = δ((qb, b)) = xqa ≤ 0∧xqb

≤ 0 and δ((qa, b)) = δ((qb, a)) = false . The
automaton A2 accepts precisely the set of trees satisfying that each node has
as many a outgoing edges as b ones: A2 = ({a, b}, {qa, qb}, xqa = xqb

, δ) where

b
qa qb

qb qa

b a

a

Fig. 2. Run of the automaton A2.
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δ is the transition mapping such that δ((qa, a)) = δ((qb, b)) = (xqa = xqb
) and

δ((qa, b)) = δ((qb, a)) = false.

Theorem 1. [18] For any set of trees T , T is PMSO-definable iff there exists
some Presburger tree automaton A that accepts T .

4.2 Rational-Multiset Tree Automata

Colcombet proposed in [2] rational-multiset tree automata. We give here a
slightly rephrased definition of those automata.

Definition 5. A rational-multiset automaton (RatMA) is a tuple (Λ,Q, F, δ)
where Λ is a finite set of labels, Q is a finite set of states, δ is a transition mapping
from Q× Λ to Rat(M(Q)) and F ∈ Rat(M(Q)) is the acceptance condition.

A run rA for a tree τ = (V,E, λ) and a RatMA A = (Λ,Q, F, δ) is a mapping
from E to Q such that for all edges (v, v′) in E, the multiset {rA((v′, v1)), . . . ,
rA((v′, vn))} belongs to δ(rA((v, v′)), λ((v, v′))), v1 . . . vn being exactly the chil-
dren of v′.

A tree τ = (V,E, λ) is accepted by a RatMA A = (Λ,Q, F, δ) if there exists a
run r for τ and A such that {rA((root(τ), v1)), . . . , rA((root(τ), vn))} belongs to
F , v1 . . . vn being exactly the children of root(τ). For some RatMA A, we denote
L(A) the set of all trees accepted by A.

Using Note 1, it is straightforward that

Proposition 1. For any set of trees T , T is PMSO-definable iff there exists a
rational-multiset automaton A that accepts T .

4.3 ACU Equational Tree Automata

Let us consider the equational theory ACU stating that | is associative and
commutative and that 0 is its neutral element. Formally,

ACU

⎧⎨⎩
x | 0 = x
x | y = y | x

x | (y | z) = (x | y) | z

We write t 0ACU t
′ whenever the two Σ-terms t and t′ are equal modulo ACU.

It is well-known that even when a term language L is regular, its ACU-closure,
that is the set of terms {t | t 0ACU t

′ and t′ ∈ L}, may not be regular.
For dealing with languages obtained as closure of regular term languages

by some equational theory, Ohsaki [15],[16] and Verma [20] have independently
introduced so-called equational tree automata6.

An ACU equational tree automaton A over the signature Σ is given by a
tuple (Σ,Q, F,Δ) where Q is a finite set of states, F ⊆ Q is the set of final
6 For some equational theory, the classes of automata defined respectively in [15] and

in [20] may differ. However, they do coincide for the ACU equational theory.
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states and Δ is a finite set of transition rules of the form (q, q1, q2 being states
from Q and a a unary symbol from Σ):

0→ q a(q1)→ q q1 | q2 → q

A run for a Σ-term t in an ACU equational tree automaton A = (Σ,Q, F,Δ)
is a sequence t1, . . . , tn of terms built over the signature Σ∪Q (where states from
Q are considered as constants) such that t1 = t, tn ∈ Q and for all 1 ≤ i ≤ n,
ti 0ACU t

′ →Δ t
′′ 0ACU ti+1 for some terms t′, t′′. The relation→Δ is the ground

rewriting relation induced by Δ. A run t1, . . . , tn is accepting if the state tn
belongs to F . A Σ-term t is accepted by some ACU equational tree automaton
A if there exists an accepting run for t in A. Finally, the language accepted by an
ACU equational tree automaton A over the signature Σ is the set of all Σ-terms
having an accepting run in A.

Definition 6. A set of Σ-terms is ACU-regular if it is accepted by an ACU
equational tree automaton.

Ohsaki showed in [15] that a language E is ACU-regular iff there exists a
regular set of Σ-terms E′ such that E = {t′ | t 0ACU t

′ and t ∈ E′}.

Lemma 1. For any two Σ-terms t, t′, if t 0ACU t
′ then hC(t) = hC(t′)

Proof. By definition, t 0ACU t
′ holds iff there exists a sequence of terms t1, . . . , tn

such that t = t1, t′ = tn and for all i ∈ {1, . . . , n− 1}, there exists an equation
l = r or r = l in the ACU theory satisfying that ti = C[θ(l)] and ti+1 = C[θ(r)]
for some context C and some substitution θ mapping variables from l, r to Σ-
terms. The proof goes by trivial induction over the context C.

From Colcombet’s work [2], it follows easily that

Proposition 2. For any ACU-closed set of Σ-terms E, E is ACU-regular iff
hC(E) is accepted by some rational-multiset automaton.

As for any set of trees T , h−1
C (T ) is always ACU-closed (see Lemma 1),

Corollary 1. For any set of trees T , T is accepted by some rational-multiset
automaton iff h−1

C (T ) is ACU-regular.

5 A Survey on CMSO-Complete Formalisms

We present here formalisms expressing precisely CMSO definable sets of trees.

5.1 Algebraic Recognizability

We focus first on the notion of algebraic recognizability in the sense of Mezei and
Wright [12].
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Definition 7 ([12]). Let M be a Σ-algebra and B be a subset of the domain
of M. Then B is said to be M-recognizable if there exists a finite Σ-algebra A
with domain dom(A), a homomorphism from M to A and a finite subset D of
dom(A) such that B = h−1(D).

As a particular case, a tree language T is T -recognizable if there exists a
finite Σ-algebra A with domain dom(A), a homomorphism from T to A and a
finite subset D of dom(A) such that T = h−1(D).

Theorem 2 ([4]). For any set of trees T , T is CMSO-definable iff T is T -
recognizable.

Starting from a sightly different algebra for trees, Niehren and Podelski de-
fined in [14] a notion of (feature) tree automata for which accepted languages
coincide with T -recognizable sets of trees. Note that T -recognizability can be
defined alternatively as:

Proposition 3. A tree language T is T -recognizable iff there exists a finite Σ-
algebra A with domain dom(A) such that (dom(A), |A,0A) is a commutative
monoid, h is a homomorphism from T to A and D is a finite subset of dom(A)
such that T = h−1(D).

Proof. As T is T -recognizable, there exists a finite Σ-algebra A with domain
dom(A), an homomorphism h from T to A and a finite subset D of dom(A)
such that T = h−1(D). Let us consider the sub-algebra A′ of A whose domain
is precisely h(Tree). Obviously, T is T -recognizable using the finite algebra A′,
the homomorphism h and the set D ∩ dom(A′). It is then easy to prove that
(dom(A′), |A′

,0A′
) is a commutative monoid.

5.2 Recognizable-Multiset Tree Automata

In [6], Courcelle introduced a notion of tree automaton whose transitions are
defined by means of recognizable sets of finite multisets. This notion can be
rephrased in our settings as follows:

Definition 8. A recognizable-multiset tree automaton is a rational-multiset tree
automaton (Λ,Q, F, δ) such that F ∈ Rec(M(Q)) and for all q in Q and a in Λ,
δ(q, a) ∈ Rec(M(Q)).

Theorem 3. [6] For any set of trees T , T is CMSO-definable iff there exists
some recognizable-multiset automaton A that accepts T .

As recognizable sets of multisets are strictly included into rational sets of
multisets, we have:

Corollary 2. The PMSO logic is strictly more powerful than the CMSO logic
over unranked and unordered trees.
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Courcelle proved in [4] that CMSO is strictly more expressive than MSO on
unranked and unordered trees. So, this shows that MSO-CMSO-PMSO is a strict
hierarchy for this kind of trees; this has to be contrasted with the case of ranked
trees where it is known that MSO and CMSO have the same expressive power [4].
It is also not difficult to see that the extension to PMSO does not bring neither
some new expressiveness for ranked trees. For unranked and ordered trees, it is
quite simple to write an MSO formula for the atomModi

j(X), and thus, showing
that MSO and CMSO have in that case the same expressiveness. But, PMSO is
for unranked and ordered trees strictly more expressive than MSO [18].

6 New Characterizations for PMSO Definable Sets

We consider first sets of trees defined by means of a system of equations, namely,
equational trees languages. Then as done in Section 5.1 for CMSO, we give a
fully algebraic characterization of PMSO definable sets of trees.

6.1 Equational Tree Languages

Let X1, . . . , Xn be a finite set of variables. We consider the signature Σ ∪ {+}∪
{X1, . . . , Xn} where + is a binary symbol used in infix notation and X1, . . . , Xn

are considered as constants.
A system S of equations over the signature Σ ∪ {+} and the variables

X1, . . . , Xn is a set of equations of the form Xi = si such that si is a term
built over Σ ∪ {+} ∪ {X1, . . . , Xn} and for each Xi, there exists precisely one
equation in S.

For a Σ-algebra M and a set of variables {X1, . . . , Xn}, a M-valuation I is
a mapping associating with each variable Xi a subset of the domain of M. A
M-valuation I is extended to terms built over the signature Σ ∪{+} as follows:

– I(0) = {0M}
– I(a(s)) = {aM(t) | t ∈ I(s)}
– I(s1 | s2) = {t1 |M t2 | t1 ∈ I(s1), t2 ∈ I(s2)}
– I(s1 + s2) = I(s1) ∪ I(s2)

AM-valuation I is a solution of a system of equations S for the Σ-algebraM
if for all equations Xi = si in S, it holds that I(Xi) is equal to I(si). Valuations
(and thus, solutions) over the same set of variables are equipped with a natural
partial ordering: I is smaller than I′ if for all Xi, I(Xi) ⊆ I(X ′

i). It is not
difficult to prove that any system of equations S admits a least solution; we will
denote Least(S,M) the least M-valuation which is a solution of S.

Definition 9 ([12]). For a Σ-algebra M, a subset L of the domain of M is
equational if there exists a system of equations S (over the signature Σ ∪ {+})
with some designated variable X such that Least(S,M)(X) = L.
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As a particular case for the Σ-algebra T , a set of trees T is equational if
there exists a system of equations S with some designated variable X such that
Least(S, T )(X) = T . We denote Equat(T ) the set of equational tree languages.

Courcelle proved in [4] that CMSO-definable languages are equational but
that the converse is not true: some languages are equational but not CMSO-
definable.

We recall in the next two propositions some useful properties of equational
languages.

Proposition 4 ([12]). Let M,M′ be two Σ-algebras and h a homomorphism
from M to M′. For any system of equations S, for any variable X from S, it
holds that Least(S,M′)(X) = h(Least(S,M)(X)).

Proposition 5 ([12]). For the Σ-algebra of terms C, a language L is equa-
tional (ie L ∈ Equat(C)) iff L is regular (ie accepted by some “classical” tree
automaton).

Theorem 4. For any set of trees T , T is PMSO-definable iff T ∈ Equat(T ).

Proof. By proposition 5, a set S of Σ-terms is regular iff it is equational over C.
By Proposition 4, we have that hC(S) is equational over T . Conversely, if T is
equational over T then still by Proposition 4, there exists S equational over C
such that T = hC(S). Then, by Proposition 1, it is sufficient to prove that hC(S)
is accepted by some rational-multiset automaton.

Let us denote ACU(S) the ACU-closure of S. By Proposition 2, hC(ACU(S))
is accepted by some rational-multiset automaton. We conclude easily using that
hC(S) = hC(ACU(S)).

6.2 An Algebraic Characterization of PMSO Definability

We are going to define now an algebraic recognizability criteria for the logic
PMSO. Recalling that C is the algebra of terms built over the signature Σ, it is
obvious to see that the notion of C-recognizability is the same as the one defined
by “classical” tree automata [3] for ranked trees written over the signature Σ
(ie for Σ-terms): the set of states is the domain of the finite Σ-algebra A, the
interpretation of the function symbols from Σ in A provides the transition rules
(which are bottom-up deterministic) and D is the set of final states.

We define weak T -recognizability for unranked and unordered trees as fol-
lows:

Definition 10. A tree language T is weakly T -recognizable iff there exists some
C-recognizable set of Σ-terms M such that T = hC(M).

Intuitively, we can consider Σ-terms as representatives for trees and hC as the
mapping associating with each Σ-term the tree it represents. However, hC is not
injective, ie a single tree may have several representatives (actually, countably
many). The intuition of weak T -recognizability is to consider recognizability for
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the representatives (ie the Σ-terms) instead of the trees themselves. This notion
is therefore different from T -recognizability as T -recognizability requires all the
representatives of some tree to be recognized (see Proposition 6).

Theorem 5. A set of trees T is PMSO-definable iff T is weakly T -recognizable.

Sketch of proof. By definition, T is weakly T -recognizable iff there exists some
C-recognizable set of Σ-terms M such that T = hC(M). By Proposition 5, this
is equivalent to the existence of some equational language M over the algebra C
such that T = hC(M). Using Proposition 4, this latter holds iff T is an equational
language over the algebra T . Finally, by Theorem 4, this amounts to have T
PMSO-definable.

7 New Characterizations for CMSO Definable Sets

In this section we reformulate CMSO definability first in terms of C-recogniz-
ability and then by a restricted subclass of Presburger tree automata.

7.1 CMSO-Definability and C-Recognizability

Proposition 6. For any set of trees T , T is CMSO-definable iff the set of Σ-
terms h−1

C (T ) is C-recognizable.

Proof. Immediate from Theorem 2 and Proposition 4.4 from [6] stating that T
is T -recognizable iff h−1

C (T ) is C-recognizable.

7.2 CMSO-Definability and Presburger Tree Automata

Definition 11. A unary Presburger tree automaton is a PTA (Λ,Q, F, δ) such
that F ∈ F1

U({p ≤ p′, Divk(p)}) and for all q ∈ Q and all a ∈ Λ, δ(q, a) belongs
to F1

U({p ≤ p′, Divk(p)}).

Lemma 2. Let N be a subset of Nl and A = (a1, . . . , al) be some alphabet. Then
N is unary ordering-definable iff π−1

A (N) ∈ Rec(M(A)).

Proof. Courcelle showed in [6] that π−1
A (N) ∈ Rec(M(A)) iff N is a finite union

of Cartesian products of l ultimately periodic sets of naturals, ie N is a finite
union of sets of the form B1 × . . .×Bl where for each i, Bi = {b+ αp | α ∈ N}
for some b, p ∈ N. We just prove then that N is unary ordering-definable iff N
is a finite union of Cartesian products of l ultimately periodic sets of naturals

Then, as for Presburger tree automata and PMSO, we have

Proposition 7. For any set of trees T , T is CMSO-definable iff there exists
some unary Presburger tree automaton A that accepts T .

Proof. Straightforward using Theorem 3 and Lemma 2.
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8 Some Characterizations for MSO Definable Sets

In this section, we investigate sets of trees definable by means of MSO sen-
tences; Mainly, we are going to study how restrictions over formalisms used to
characterize CMSO or PMSO can be put.

8.1 MSO-Definability and Presburger Tree Automata

Definition 12. A unary ordering tree automaton is a PTA (Λ,Q, F, δ) such
that F ∈ F1

U ({p ≤ p′}) and for all q ∈ Q and all a ∈ Λ, δ(q, a) belongs to
F1

U ({p ≤ p′}).

Proposition 8. For any set of trees T , T is MSO-definable iff there exists some
unary ordering tree automaton A that accepts T .

Sketch of proof. The proof is rather standard. We show first that the existence
of an accepting run for a tree can be expressed by some MSO sentence. For the
converse, we show closure of the unary ordering tree automaton under union,
complementation (by computing first a deterministic and complete automaton)
and relabeling morphism. Then, we build such an automaton inductively over
the structure of the MSO formula.

8.2 MSO-Definability and Aperiodic-Recognizable Tree Automata

Definition 13. A multiset language L ∈ M(A) is aperiodically recognizable if
there exists a monoid morphism h from (L,	, {∅}) to a finite aperiodic7 monoid
(D,+, ι) and a finite subset D′ of D such that L = h−1(D′).

We denote ApRec(M(A)) the set of aperiodically recognizable multiset lan-
guages.

Definition 14. An aperiodic-recognizable multiset tree automaton is a rational-
multiset tree automaton (Λ,Q, F, δ) such that F ∈ ApRec(M(Q)) and for all q
in Q and a in Λ, δ(q, a) ∈ ApRec(M(Q)).

Lemma 3. Let N be a subset of Nl and A = (a1, . . . , al) be some alphabet, N
is unary ordering-definable iff π−1

A (N) ∈ ApRec(M(A)).

Sketch of proof. We prove first that N is unary ordering-definable iff N is a
finite union of Cartesian products of l ultimately periodic sets of naturals with
periods in {0, 1}, ie N is a finite union of sets of the form B1× . . .×Bl where for
each i, Bi = {b+αp | α ∈ N} for some b ∈ N and p ∈ {0, 1}. Then, we use a result
from [9] stating that N is a finite union of Cartesian products of l ultimately
periodic sets of naturals with periods in {0, 1} iff N is a star-free subset of Nl, ie
N can be obtained from finite subsets of Nl using sum + and Boolean operations
7 We recall that a monoid (S, .) is said to to be aperiodic if for all s ∈ S, there exists

some natural n such that sn = sn+1 where s1 = s and sk+1 = sk.s.



514 Iovka Boneva and Jean-Marc Talbot

(union, intersection, complement). Finally, we can conclude using that (Nl,+) is
isomorphic to (M(A),	) and that over commutative monoids, star-free languages
are precisely the recognizable and aperiodic ones [10].

Theorem 6. For any set of trees T , T is MSO-definable iff there exists some
aperiodic-recognizable multiset automaton A that accepts T .

Proof. Straightforward from Proposition 8 and Lemma 3.

8.3 An Algebraic Characterization of MSO Definability

We relate here MSO definability and algebraic T -recognizability.

Definition 15. A tree language T is aperiodically T -recognizable iff there ex-
ists a finite Σ-algebra A with domain dom(A) such that (dom(A), |A,0A) is an
aperiodic and commutative monoid, h is a homomorphism from T to A and D
is a finite subset of dom(A) such that T = h−1(D).

Theorem 7. For any set of trees T , T is MSO-definable iff T is aperiodically
T -recognizable.
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