

Lecture Notes in Artificial Intelligence 3392
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Dietmar Seipel Michael Hanus
Ulrich Geske Oskar Bartenstein (Eds.)

Applications
of Declarative Programming
and Knowledge Management

15th International Conference
on Applications of Declarative Programming
and Knowledge Management, INAP 2004
and 18th Workshop on Logic Programming, WLP 2004
Potsdam, Germany, March 4-6, 2004
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Dietmar Seipel
Universität Würzburg, Institut für Informatik
Am Hubland, 97074 Würzburg, Germany
E-mail: seipel@informatik.uni-wuerzburg.de

Michael Hanus
Christian-Albrechts-Universität Kiel
Institut für Informatik und Praktische Mathematik
Olshausenstr. 40, 24098 Kiel, Germany
E-mail: mh@informatik.uni-kiel.de

Ulrich Geske
Fraunhofer FIRST
Kekulestr. 7, 12489 Berlin, Germany
E-mail: geske@first.fhg.de

Oskar Bartenstein
IF Computer Japan Limited
5-28-2 Sendagi, Bunkyo-ku, Tokyo, 113-0022, Japan
E-mail: oskar@ifcomputer.co.jp

Library of Congress Control Number: 2005923659

CR Subject Classification (1998): I.2.4, I.2, D.1.6

ISSN 0302-9743
ISBN-10 3-540-25560-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25560-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11415763 06/3142 5 4 3 2 1 0

Preface

This volume contains a selection of papers presented at the 15th International
Conference on Applications of Declarative Programming and Knowledge Man-
agement, INAP 2004, and the 18th Workshop on Logic Programming, WLP
2004, which were held jointly in Potsdam, Germany, from March 4th to 6th,
2004.

Declarative programming is an advanced paradigm for the modeling and
solving of complex problems. This specification method has become more and
more attractive in recent years, for example, in the domains of databases, for the
processing of natural language, for the modeling and processing of combinatorial
problems, and for establishing knowledge-based systems for the Web.

The INAP conferences provide a forum for intensive discussions of applica-
tions of important technologies around logic programming, constraint problem
solving, and closely related advanced software. They comprehensively cover the
impact of programmable logic solvers in the Internet society, its underlying tech-
nologies, and leading-edge applications in industry, commerce, government, and
social services.

The Workshops on Logic Programming are the annual meeting of the Society
for Logic Programming (GLP e.V.). They bring together researchers interested
in logic programming, constraint programming, and related areas like databases
and artificial intelligence. Previous workshops have been held in Germany, Aus-
tria, and Switzerland.

The topics of the selected papers of this year’s joint conference concentrate on
three currently important fields: knowledge management and decision support,
constraint programming and constraint solving, and declarative programming
and Web-based systems.

During the last couple of years a lot of research has been conducted on the use
of declarative programming for the management of knowledge-based systems and
for decision support. Reasoning about knowledge wrapped in rules, databases,
or the Web allows us to explore interesting hidden knowledge. Declarative tech-
niques for the transformation, deduction, induction, visualization, or querying
of knowledge, or data mining techniques for exploring knowledge have the ad-
vantage of high transparency and better maintainability compared to procedural
approaches.

The problem when using knowledge to find solutions for large industrial tasks
is that these problems have an exponential complexity, which normally prohibits
the fast generation of exact solutions. One method that has made substantial
progress over the last few years is the constraint programming paradigm. The
declarative nature of this paradigm offers significant advantages for software en-
gineering both in the implementation and in the maintenance phases. Different
interesting aspects are in discussion: how can this paradigm be improved or com-

VI Preface

bined with known, classical methods; how can practical problems be modelled
as constraint problems; and what are the experiences of applications in really
large industrial planning and simulation tasks?

An emerging topic in knowledge management is the use of the World Wide
Web to distribute, store, and use knowledge. This spans vision, technology,
and the application of non-monolithic cooperating Web-based systems. With
respect to declarative programming, representation languages, transformation,
and search procedures are of interest, and they are easily adaptable to the fast-
changing content and structure of the Web, for example, in W3C Web services
and queries. Other aspects are commercial Web-based consulting or the use of
the Web as a platform for concurrent engineering or program development for
effective distributed collaborative design.

The two conferences INAP 2004 and WLP 2004 were jointly organized at the
University of Potsdam, Germany by the following institutions: the Society for
Logic Programming (GLP e.V.), the Hasso Plattner Institute for Software Sys-
tems Engineering (HPI), and the Fraunhofer Institute for Computer Architecture
and Software Technology (FhG First). We would like to thank all authors who
submitted papers and all conference participants for the fruitful discussions. We
are grateful to the members of the Program Committee and the external referees
for their timely expertise in carefully reviewing the papers, and we would like to
express our thanks to the Hasso Plattner Institute for hosting the conference at
the modern campus in the traditional atmosphere of Potsdam.

December 2004 Dietmar Seipel, Michael Hanus,
Ulrich Geske, Oskar Bartenstein

Organization

Program Chair

Dietmar Seipel University of Würzburg, Germany

Organization

Ulrich Geske Fraunhofer First, Berlin, Germany
Thomas Linke University of Potsdam, Germany
Wolfgang Severin University of Potsdam, Germany
Armin Wolf Fraunhofer First, Berlin, Germany

Program Committee of INAP

Sergio A. Alvarez Boston College, USA
Roman Barták Charles University, Prague, Czech Republic
Oskar Bartenstein IF Computer Japan, Japan
Joachim Baumeister University of Würzburg, Germany
James P. Delgrande Simon Fraser University, Canada
Robin Drogemuller Csiro, Australia
Shuichi Fukuda Tokyo Metropolitan Institute of Technology, Japan
Rita Gavriloaie Learning Lab Lower Saxony, Hannover, Germany
Nicola Henze University of Hannover, Germany
Ulrich Geske Fraunhofer First, Germany
Geun-Sik Jo Inha University, Korea
Thomas Linke University of Potsdam, Germany
Steve Prestwich 4C/UCC, Ireland
Georg Ringwelski 4C/UCC, Ireland
Carolina Ruiz Worcester Polytechnic Institute, USA
Torsten Schaub University of Potsdam, Germany
Dietmar Seipel University of Würzburg, Germany (Chair)
Paul Tarau Binnet Corporation, USA
Armin Wolf Fraunhofer First, Germany
Akihiro Yamamoto Kyoto University, Japan
Osamu Yoshie Waseda University, Japan

Program Committee of WLP

Slim Abdennadher German University Cairo, Egypt
Christoph Beierle FernUniversität in Hagen, Germany

VIII Organization

François Bry University of München, Germany
Jürgen Dix Technical University of Clausthal, Germany
Uwe Egly Technical University of Vienna, Austria
Thomas Eiter Technical University of Vienna, Austria
Burkhard Freitag University of Passau, Germany
Thom Frühwirth University of Ulm, Germany
Norbert E. Fuchs University of Zürich, Switzerland
Ulrich Geske Fraunhofer First, Berlin, Germany
Michael Hanus Christian Albrechts University Kiel,

Germany (Chair)
Petra Hofstedt Technical University of Berlin, Germany
Steffen Hölldobler Technical University of Dresden, Germany
Ulrich Neumerkel Technical University of Vienna, Austria
Dietmar Seipel University of Würzburg, Germany
Armin Wolf Fraunhofer First, Berlin, Germany

External Referees for INAP and WLP

Christian Anger Martin Atzmueller
Matthias Beck Bernd Braßel
Ole Boysen Tom Carchrae
Mona Gharib Bernd Heumesser
Marbod Hopfner Kathrin Konczak
Horst Reichel Maged F. El Sayed
Armagan Tarim Manfred Widera
Stefan Woltran

Table of Contents

Knowledge Management and Decision Support

Optimizing the Evaluation of XPath Using Description Logics
Peter Baumgartner, Ulrich Furbach, Margret Gross-Hardt,
Thomas Kleemann . 1

Declaratively Querying and Visualizing Knowledge Bases in Xml
Dietmar Seipel, Joachim Baumeister, Marbod Hopfner 16

SQL-Based Frequent Pattern Mining with FP-Growth
Xuequn Shang, Kai-Uwe Sattler, Ingolf Geist . 32

Incremental Learning of Transfer Rules for Customized Machine
Translation

Werner Winiwarter . 47

Quality Measures and Semi-automatic Mining of Diagnostic Rule Bases
Martin Atzmueller, Joachim Baumeister, Frank Puppe 65

An Evaluation of a Rule-Based Language for Classification Queries
Dennis P. Groth . 79

Deductive and Inductive Reasoning on Spatio-Temporal Data
Mirco Nanni, Alessandra Raffaetà, Chiara Renso, Franco Turini 98

Mining Semantic Structures in Movies
Kimiaki Shirahama, Yuya Matsuo, Kuniaki Uehara 116

Solving Alternating Boolean Equation Systems in Answer Set
Programming

Misa Keinänen, Ilkka Niemelä . 134

Constraint Programming and Constraint Solving

Effective Modeling with Constraints
Roman Barták . 149

X Table of Contents

A Local Search System for Solving Constraint Problems of Declarative
Graph-Based Global Constraints

Markus Bohlin . 166

Realising the Alternative Resources Constraint
Armin Wolf, Hans Schlenker . 185

Integrating Time Constraints into Constraint-Based Configuration
Models

Ulrich John, Ulrich Geske . 200

Distributed Constraint-Based Railway Simulation
Hans Schlenker . 215

Declarative Programming and Web-Based Systems

Concurrent Engineering to Wisdom Engineering
Shuichi Fukuda . 227

Web Services Based on Prolog and Xml
Bernd D. Heumesser, Andreas Ludwig, Dietmar Seipel 245

A Contribution to the Semantics of Xcerpt, a Web Query and
Transformation Language

François Bry, Sebastian Schaffert, Andreas Schroeder 258

DialogEngines – Dialog Agents for Web-Based Self Service Consulting
Oskar Bartenstein . 269

Towards Ubiquitous Maintenance – Defining Invocation of Plant
Maintenance Agents in Real Workspace by Spatial Programming

Hiroki Takahashi, Osamu Yoshie . 278

A Pragmatic Approach to Pre-testing Prolog Programs
Christoph Beierle, Marija Kulaš, Manfred Widera 294

Author Index . 309

Optimizing the Evaluation of XPath
Using Description Logics

Peter Baumgartner1,2, Ulrich Furbach1, Margret Gross-Hardt1,
and Thomas Kleemann1

1 Institut für Informatik, Universität Koblenz-Landau, D-56070 Koblenz, Germany
2 Max-Planck-Institut für Informatik, D-66123 Saarbrücken

{peter, uli, margret, tomkl}@uni-koblenz.de

Abstract. The growing use of XML in commercial as well as non-commercial
domains to transport information poses new challenges to concepts to access
this information. Common ways to access parts of a document use XPath-
expressions. We provide a transformation of DTDs into a knowledge base in
Description Logic. We use reasoning capabilities grounded in description logics
to decide if a given XPath can be satisfied by a document, and to guide the
search of XML-Processors into possibly successful branches of the document,
thus avoiding parts of the document that will not yield results. The extension
towards object oriented subclassing schemes opens this approach towards
OODB-queries. In contrast to other approaches we do not use any kind of graph
representing the document structure, and no steps towards incorporation of the
XML/OODB-processor itself will be taken.

Keywords: XML, XPath, Description Logics, automated reasoning, DTD,
Schema.

1 Introduction

Within a short period of time XML has become a widely accepted standard for informa-
tion interchange. Starting as a subset of SGML to transport structured text, the ease of
understanding and using XML has promoted its use as an interchange format of rather
large documents. This evolution has created the needs for a validation of documents
against an according definition. Most common and basic validation is accomplished by
XML-processors referring to a Document Type Definition (DTD). A DTD defines the
structure of elements in the document, that references the DTD. We will detail the terms
element and structure in the following chapters.

Beyond the need to validate data, several attempts have been made or are currently
made to access parts of a document. One common idea in these attempts is the access
of parts of a document following a path from its root to some subtrees. In general, these
paths are not specified completely from the root to the subtree, but leave unspecified
gaps to be filled by the XML query processor. Usually XML processors have to traverse
the whole document tree to find instances of the specified parts of a path.

Based on DTD and XPath expressions we will provide a way to optimize this traver-
sal. Actually, a XPath expression may be seen as a pattern that describes certain subtrees

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 P. Baumgartner et al.

of the complete document. As already mentioned, current processors traverse the com-
plete document in order to determine the appropriate subtrees. Instead, our goal is to
follow only those parts that may result in desired data, but omit those paths that are
guaranteed to fail. The idea is to exploit structural knowledge in order to determine
the relevant parts of a document for a certain query. This allows to enhance other ap-
proaches based on indexing techniques in query processing. To this aim, we translate
the DTD into a set of description logics (DL) formulae and the XPath query into a
query in a logical representation. Questions about the satisfiability of a XPath in a doc-
ument will be answered as well as queries of the starting element of subtrees, which
may contain fillers for the path specification.

Recently, XML Schema [14] has evolved as a successor of DTDs. Basically, XML
Schema addresses some shortcomings of DTDs; in particular XML Schema supports
besides others user defined types and some aspects of object orientation. We will show
the compatibility of our translation and reasoning with these sorts of object oriented
extensions. This opens our approach towards the use of path completion techniques in
object oriented databases as well as schema-based definitions of XML documents.

2 XML Documents

Starting as a specialisation of the Standard Generalized Markup Language (SGML) the
eXtensible Markup Language (XML) was supposed to provide a better way of docu-
ment markup than the widespread HyperText Markup Language (HTML). The norma-
tive definition of XML is available from the W3C [6]. In contrast to the fixed markup
and its interpretation of HTML, the XML approach offers a standardized way to markup
arbitrary documents. This may include redefined HTML documents but is not limited
to this application.

A XML document consists of a prologue and an element, optionally followed by
miscellaneous comments and processing instructions, that are not in the scope of this
paper. An element is either an empty element or a sequence of a starting tag followed
by content and an ending tag. Taken from [6]:

[1] document ::= prolog element Misc*
[39] element ::= EmptyElemTag | STag content Etag
[40] STag ::= ’<’ Name Attribute* ’>’
[41] Attribute ::= Name ’=’ Attvalue
[42] ETag ::= ’</’ Name ’>’
[43] content ::= CharData? ((element | Reference | CDSect | PI |

Comment) CharData?)*
[44] EmptyElemTag ::= ’<’ Name Attribute* ’/>’

Content by itself may again contain so called child-elements. Tags are identified by
their names. We will use this name as the name of an element.

The W3C cares about character codings, white spaces and miscellaneous compo-
nents. Because we are merely interested in the structure of the document we will omit
these otherwise important details. The topmost element will be called root element. It

Optimizing the Evaluation of XPath Using Description Logics 3

spans almost all of the document, especially it contains all other elements. We expect
all documents to be well-formed and valid, as explained in the following section.

Sample Document

According to the above mentioned productions and constraints a well-formed document
may look like this:

<?xml version="1.0"?>
<!DOCTYPE university SYSTEM "university.dtd">
<university name="Universität Koblenz">

<library>
<book isbn="978123123">

<author> </author>
<title> </title>

</book>
<book isbn="978234234">

<author> </author>
<title> </title>

</book>
</library>
<department name="cs"/>
<department name="math"/>
...more descriptions...

</university>

The prologue specifies this document to be a XML document according to version
1.0. This is currently the only possible version. The second line specifies a document
type definition. University is the root element of the document. This university element
contains a library element, that contains several book elements, and several department
elements. The department elements are empty elements. Empty elements are empty
with respect to the content, but may contain attributes. The university, department and
book elements contain attributes, i.e. name and isbn.

Fig. 1. Graphical Representation of Document

4 P. Baumgartner et al.

A XML document may be represented as a tree, see figure 1. The root element cor-
responds to the root of this tree. The elements are represented as nodes of the tree. An
element is linked to its child elements and attributes. With respect to our query opti-
mization task, we may omit the data of elements. Instead, we concentrate on the struc-
ture of documents. The following section introduces a common way to define possible
structures.

3 Validation of Documents

Whenever XML is used to transport information between independent applications,
which is most common in business-to-business communication, there is a need to vali-
date the document structure. Validation of document structure means that the processor
checks if the XML documents obey to the structure defined in the appropriate DTD.
Validating XML processors offer standardized ways for this validation process. These
processors use a Document Type Definition or a schema as a description of accepted
elements, nesting of elements and type information. In the example document above
(2nd line) we already introduced the reference to an external DTD. This Document Type
Declaration names the root element, university in this case. DTDs may as well be inline.
The advantage of external DTDs is that they are stored centrally and only once. Beyond
these differences both kinds of DTDs provide the same set of definitions. DTDs are
already known to SGML [12] and HTML documents. They do not provide significant
type information or any aspect of object orientation. To overcome these insufficiencies
XML schema has been introduced by the W3C. A schema introduces some basic type
information and a limited support of object oriented concepts. We will start with DTDs
and demonstrate afterwards the opportunities of extended type information.

A DTD for the sample document above may look like this

<!ELEMENT university (library, department*, #PCDATA)>
<!ATTLIST university name CDATA #REQUIRED)>
<!ELEMENT library (book)+>
<!ELEMENT department EMPTY>
<!ATTLIST department name CDATA #REQUIRED)>
<!ELEMENT book (author+, title, abstract?)>
<!ATTLIST book isbn CDATA #REQUIRED)>
<!ELEMENT author #PCDATA>
<!ELEMENT title #PCDATA>

Focusing on the structure of a document, we will not use any information about
the data of the document that is described. So #PCDATA, CDATA and so on will not
be in the scope of this paper. Crucial to our target of optimization and completion of
path expressions are the definitions of the child elements and attributes of elements. All
elements mentioned in the definition of an element are child elements. The sequence
operator ’,’ may be used to establish a sibling relation among child elements. In this
example author, title and abstract are child elements of book. isbn is an attribute of
book. author is a sibling of author and title and so on. Figure 2 provides an overview.

For the purpose of this paper we limit our presentation to the abbreviated syntax for
XPath. In this syntax, one does not have the possibility to express sibling relationships

Optimizing the Evaluation of XPath Using Description Logics 5

Fig. 2. Graphical Representation of DTD

directly. Therefore we omit these relations in the remaining of this paper although these
relations between elements are covered by our approach.

Different from the tree like structure of the XML documents themselves, the de-
scription may contain cycles. A well known example of a cycle is the HTML table.
The TD element is a child of an TR element, that is a child of the TABLE element.
Because TABLE is part of arbitrary HTML content, TABLE is a possible child of TD.
The reasoning capabilities used in our query optimization approach are robust against
these cyclic definitions.

Even in our quite small example, DTD cycles can be found, e.g. the element author
is a sibling of itself.

4 Picking the Parts

Common to almost all processing of documents is the addressing of parts of these. The
basic idea of all addressing schemes is a path expression, that specifies the navigation
through the document. These path expressions may be rooted or relative to an existing
position in the document tree. Several notational variants have been developed. We will
use the abbreviated XPath 2.0 notation, that is covered by a W3C-working-draft [15].
Path expressions following these recommendations are incorporated in XSLT, XQuery,
CSS2 and other standards.

Path expressions are explained by the following rules taken from [15]:

path ::= ’//’ relativePath | ’/’ relativePath | relativePath
relativePath ::= stepExpr (’/’ | ’//’) stepExpr

stepExpr ::= ’.’ | ’@’ nameTest | ’..’ | nodeTest

The leading ’/’ and ’//’ construct a path starting at the document out of an relative path.
’//’ will expand to a path of zero or more steps. Step expressions access the current
context node, its attributes by a preceding ’@’ the parent of an element, or perform node
tests, ranging from simple element names to more complex expressions. Especially a
wildcard ’*’ will match all child elements. A detailed description can be found in [15].

6 P. Baumgartner et al.

Because we restrict our path expressions to abbreviated syntax, the names of the axes
are not mentioned, but inherently used. ’.’ uses the self axis. ’..’ uses the parent axis.
The child axis will be used in nodeTest, as we will demonstrate with some examples:

/university/library will access the library element

//department will access the two department elements

several ways to access the book elements:

/university/*/* will access all grandchildren of the root

/university/*/book and /university/library/book will do the same

//book will also access the two book elements

//*[@isbn] this expression accesses all elements that have an isbn attribute

//*[author AND title] access all elements that have author and title child elements

The wildcard ’*’ and the universal path fragment ’//’ are a huge gain in comfort. A
user may specify a correct path expression even if she does not know the structure in
detail, as can be seen in the expression //book. Regardless of the structure, all book
elements will be matched. This will happen regardless of how many totally different
paths exist in the document. As a first approach, a XML processor may traverse the
document and evaluate all constraints that a path expression contains. However, the
larger the documents the worse this approach may become. We will provide decisions
that guide the traversal towards those subtrees that may yield results with respect to
the path expression. These decisions will be made based on the DTD of the document,
using a description logics representation of the DTD.

The reasoning will also provide information about empty result sets. If you spec-
ify a path like //book[@isbn=”987001001”] the XML processor will compare the isbn
attribute of all book elements with the given string. In the above sample document no
book element will fulfill this condition, and the result will be empty. But other doc-
uments according to the DTD may return results. This decision is made by the XML
processor by comparing all book elements.

An additional empty path expression will be //book/library. Different from the first
empty path expression this expression will never return any book elements, because the
structure in question, library as a child of book, is a contradiction to the DTD. Again the
reasoning capabilities in the logic representation state, that this expression will always
be empty. Any traversal of the document may be omitted.

5 Description Logic for the Representation of DTDs

The target of our translation is a description logic (DL) that provides inverse and tran-
sitive roles and role hierarchies. Examples have been translated into input files for
RACER [11] that offers services of a SH I Q -reasoner. An alternative approach, de-
scribed in Section 7.4, is based on a translation from DL to the input language of the
KRHyper [16] Tableaux prover.

Number restrictions have not been used so far, although DTDs provide informa-
tion about singular or multiple occurrences of child elements. These informations are

Optimizing the Evaluation of XPath Using Description Logics 7

dropped right now, because we didn’t expect significant enhancements towards opti-
mization of path expressions.

The building blocks of the DL used here are concepts and roles. Concepts, describ-
ing sets of the domain, may be seen as unary predicates, roles are binary predicates.
In order to form new concepts, negation, conjunction and disjunction of existing con-
cepts are allowed. The semantics of these constructors are defined as the complement
with respect to the domain of the interpretation, intersection and union. The semantics
of an existential restriction ∃r.C is defined as {x ∈ ∆I |∃y : (x,y) ∈ rI ∧ y ∈ CI} where
the domain ∆I is a nonempty set of individuals in an interpretation I, with CI ⊆ ∆I and
rI ⊆ ∆I ×∆I . Value restrictions ∀r.C are defined as {x ∈ ∆I |∀y : (x,y) ∈ rI → y ∈ CI}.

An inverse role r− is derived from r as {(x,y)|(y,x) ∈ rI}. A role s is called a super-
role of r if rI ⊆ sI . Transitivity of roles works as expected.

A TBox contains definitions of concepts as well as general inclusion axioms. A
thorough introduction is given in [2, 1].

Besides terminological knowledge individual assignments are stated in an ABox.
Individuals a ∈ ∆ may be members of named concepts a : C, also written as C(a), which
results in aI ∈ CI , and role assertions (a,b) : r or r(a,b) are explained as (aI ,bI) ∈ rI .

Standard queries into a DL knowledge representation include subsumption of con-
cepts, C � D, and the satisfiability of concepts. The subsumption problem can be trans-
formed to a satisfiability problem. Beyond these queries concerning the terminology
most DL reasoners offer instance checking.

The TBox contains few concepts that correspond to the distinct parts of a DTD.
The concepts of our translation will be the building blocks of the DTD like element,
attribute and type. These concepts will be populated by the individual elements of the
specific DTD during the translation process.

A type concept is almost absent for DTDs. The translation though allows for the
integration of the enhanced typing capabilities of XML-schema. We give details later
on, see section 7.3.

An important part of the TBox are the definitions of roles and their attributes. We
introduce roles to be instantiated in the following translation step as well as roles that
are superroles of these. Figure 3 depicts the role hierarchy.

Fig. 3. The Role Hierarchy

8 P. Baumgartner et al.

Roles with an appended – are inverse roles, like hasParent is the inverse of hasChild.
reachable is a superrole of hasChild and hasAttribute. The appended + indicates that this
role is transitive.

6 The Optimization

Optimization in our approach is the detection of empty XPath expressions, which may
be seen as a verification task, and the restriction of the document traversal to those parts,
that may contain results conforming to the XPath expressions.

6.1 Translation of DTDs

The following translations demonstrate how we setup the ABox of our knowledge base
from the DTD. The root element of the document and the corresponding DTD are men-
tioned in the prologue of the XML-file.

<!DOCTYPE rootelem Pointer to DTD>

This line leads to the ABox entry (root,rootelem) : hasChild. root is an artificial
individual that has the document’s root element as a child. For further translation we
analyze the appropriate DTD.

The description of the document structure contains information about the relation-
ship of elements.

<!ELEMENT parent child1 child2 ...>

is translated to (parent,child1) : hasChild, (parent,child2) : hasChild and so on. The
according syntax would be (related parent child1 hasChild) for KRSS [13], that is used
by RACER. In addition to these role assertions we have to declare parent, child1 and
child2 as individuals of the element concept (e.g. parent : element.) A concept defi-
nition like (define-concept element (some hasChild top)) and (define-concept element
(some hasParent element)) will do that automatically.

In terms of DL this will be performed by the general inclusion axioms:

∃hasChild.	 � element
∃hasParent.element � element

The special empty element

<!ELEMENT elem EMPTY>

will lead to the simple assertion elem : element, that reads (instance elem element) in
the KRSS syntax.

Translation of lists of attributes is straight forward as well.

<!ATTLIST elem att1 type1 att2 type2 ...>

leads to the assertions (elem,att1) : hasAttribute, (elem,att2) : hasAttribute,
(att1, type1) : hasType, and (att2, type2) : hasType. Again the definition (define-
concept attribute (some hasType type)) will insure that att1 and att2 are elements of
the concept attribute.

Optimizing the Evaluation of XPath Using Description Logics 9

This is guaranteed by the inclusion axioms:

∃hasAttribute.	 � element
∃hasAttribute−.element � attribute

∃hasType.type � attribute

Because of the limited number of types in DTDs, all types may be declared independent
of the document: PCDATA : type, CDATA : type...

After these translation steps the ABox contains information about the structure of
the DTD. Also, reachability of elements and attributes is encoded. While roles like
hasChild correspond to the child-axis of XPath, the transitive superrole reflects the de-
scendant axis.

6.2 Querying the Knowledge Base

The example above includes library as a role successor of university for the role
hasChild. The element book is a role successor to library in hasChild. These relation-
ships are valid for role reachable too because reachable is a superrole of hasChild. Due
to the transitive attribute of reachable, book is a role successor of university.

The DL reasoner provides queries like (individuals-related? university book reach-
able) to ask, if the above mentioned relation is satisfied, i.e. book is a role successor
of university for the role reachable. This query asks for (university,book) : reachable
in the usual notation of DL. Similarly, the query (individual-fillers book hasParent) re-
veals all possible parents of book. This query can be written as the concept descrip-
tion ∃hasChild.{book} in the notation of DL. At first sight it looks like using nomi-
nals, which would be beyond the capabilities of DL reasoners like RACER. To solve
this problem we introduce an additional concept named c book. Furthermore we as-
sert book : c book. With this individual concept RACER will carry out ABox reasoning
without any difficulties.

Further reasoning support is provided to check the instances of concepts and the
subsumption of concepts.

6.3 Empty Result Sets

With the Knowledge Base (KB) consisting of the TBox and the ABox our system is
able to decide if a XPath expression will lead to an empty result set. There are two
reasons why a XPath expression can be empty. First, the XPath expression may locate
optional elements that are not in the specific document. Similarly, an expression will
return an empty result, if the XPath expression incorporates comparisons to values of
attributes that are not satisfied in the document. The second way to receive empty re-
sults are XPath expressions that try to locate elements in a structurally impossible way.
With our reasoning capabilities we are able to find most of these necessarily empty ex-
pressions. The indication of an empty result due to the knowledge base therefore is a
partial detection of empty results.

As an example, we consider the XPath expression /book and our example from
above. In order to decide if the expression can return results one has to check if book is
an individual of the concept element, i.e. book:element? If this is true we have to check

10 P. Baumgartner et al.

if book is a role successor of hasChild to root. Obviously this is not the case, therefore
the expression /book will be empty for all documents according to the DTD.

Changing the expression to //book will have an impact on the second condition. We
will query if book is a role successor of reachable to root. This is true with respect to
our DTD.

Determining if an expressions is empty is quite useful when expressions have to be
evaluated, because these empty result sets are provided without any search in the docu-
ment itself. Furthermore, the presence of permanently empty expressions in a software
may be an indication that the expression is not useful or contains an error.

For more complex XPath expression, expressions can be combined to conjunctive
conditions. //book/*@name is possibly not empty if the condition for //book is satisfied
and book has a child that has an attribute ’name’.

We will show a way to combine these fragments in a single query (see Section 6.5.)

6.4 Optimizing Search in XML Documents

Beyond the ability to decide necessarily empty result sets we are able to predict in what
parts of the document tree further search may be successful. Thus we avoid traversal of
those parts of the documents that will not lead to results. In our simple expression //book
the traversal of department elements cannot lead to any book elements. The DTD does
not allow for it, and the knowledge base does not contain the pair (department,book)
in reachableElement. During traversal of the document tree the search can be limited to
those elements (here library) that contain the requested structure made up of elements
and attributes.

Our approach evaluates a concept expression to obtain all possible child elements
of the current node of the traversal. If this concept expression returns an empty set,
no further traversal of the subtree is required. Consequently, no traversable children
of ’root’ indicate an empty result of the XPath expression. This is equivalent to an
unsatisfiable concept in terms of the used reasoners.

Additionally, the traversal of subtrees stops as soon as possible. If, for example, the
structure is extended in a way that library may contain book elements as well as journal
elements, the traversal will not deepen the search into the journal elements, even if there
are no book elements present.

The extension of the concept expressions contains a maximal set of possible ele-
ments that have to be matched with the elements found in the document. Thus a query
may be empty in a document even if the concept expression is not empty, because the
structure allows for appropriate documents.

In our example (see Figure 1) the traversal of the document during the evaluation
of the XPath expression //*[@isbn] is limited to the elements university, library and the
two book elements. The other six elements are omitted.

6.5 How to Construct the Concept Expressions

In order to use the complete information provided by the XPath expression we choose a
“bottom-up” approach to construct the DL concept expression. Some detailed patterns
for this are shown in the following section. In a path like //library/*[@isbn] we will start
at the end and construct a concept term for *[@isbn]. This term describes some elements,
name unknown, that have an attribute named ’isbn’. The corresponding concept term is

Optimizing the Evaluation of XPath Using Description Logics 11

∃hasAttribute.{isbn}

Explicit values in a XPath expression like @isbn=”987123123” are discarded because
we focus on the structural decision. Stepping back to library we add

{library}
∃hasChild.∃hasAttribute.{isbn}
where the latter part contains the parents of the previous term that is intersected with the
individual concept mentioned in the XPath expression. In case of an arbitrary element
‘*’ no intersection or specialization will occur. To complete the task we add the ‘//’ part,
that is formed by the child elements of ‘root’ and the parents of the existing expression.
These parents are either immediate or transitive parents.

∃hasParent.{root}

∃reachable.({library}
∃hasChild.∃hasAttribute.{isbn})

The resulting concept contains all child elements of the root that may lead to the el-
ements in question. To guide the search of the XML processor one has to iterate the
query after each step.

Regarding our sample DTD and the corresponding knowledge base, this expression
would yield {university}. From this, we conclude that the expression in question is
structurally possible. If the resulting concept is empty no search in the document will
be needed.

Disjunctive or conjunctive connections of XPath expressions are easily transferred
into union or intersection of the corresponding concept expressions. For instance, the
XPath expression //*[@isbn OR @name] will be translated to

∃hasParent.{root}

∃reachable.(∃hasAttribute.{isbn}�∃hasAttribute.{name})

by following the same ideas as in the above example. All of the above examples query
the first element descending from the root. Upon the optimized traversal of the doc-
ument tree the queries have to be iterated according to this traversal. This is mainly
accomplished by the substitution of the starting element, here ’root’, by the current
document node and the adaption of the remaining XPath to the descent in the document
as a non-optimized XPath processor has to do. The query then has to be modified with
respect to the remaining XPath fragment.

7 Discussion

This sections discusses some restrictions of our approach as well as possible extensions
especially with respect to XML schema.

7.1 Finite Model

While the number of possible paths is infinite in a cyclic structure, the set of possible
child elements is finite. In fact every concept expression is a subset of the concept
element.

12 P. Baumgartner et al.

7.2 Limitations

A strict limitation to all structural analysis are the “pointing” elements IDREF. These
elements point to other elements based on an attribute identifier. Because no information
is provided where they point to, the optimization is limited to the path from the root to
the IDREF. At the referenced element an optimization or prediction may start with the
remaining XPath expression.

The completion of the path through a XML document is performed on a step by step
basis. The iteration of the completion is performed by the document processor. While
this puts some tasks into the XML processor, the optimization is robust against cyclic
structures.

Further improvements to decide if a query can lead to empty results might be derived
from number restrictions. A structure with two Y-children in an X-element will not
satisfy an expression X/Y[3], because there is no third Y-child in this structure. We
have dropped these number restrictions because we did not find any XPath expression
in our sample code base that accesses children this way, while the DTD description
limits the number of child elements in an appropriate way.

7.3 Extensions

So far we have given patterns for the XPath expressions used in the abbreviated syntax.
These expressions incorporate the child and parent axis. The transitive reachable role
and its inverse cover the ancestor and descendant axis. To extend the knowledge base
towards another axis we would simply have to introduce a role for the axis and integrate
these roles into the translation of the DTD.

An important extension is the integration of a type system, which is introduced by
XML schema. The type information is available on two levels. First, there are more
types for attributes (44). This can easily be integrated by additional individuals in the
type concept. Second, a type hierarchy is realized by certain concept subsumption.
These types offer further refinement of the concept expressions. Similar to the expres-
sion ∃ hasAttribute.{isbn} we could easily use the hierarchy of types to query with
concept expressions like ∃hasAttribute.Number. Using the subsumption of types, as
in NaturalNumber � Number, this query will provide all elements that have attributes
of type Number or NaturalNumber. Unfortunately XPath does not provide any type
conditions for attributes, although this information is available from schema.

On a second level XML schema introduces some very basic kind of extension and
restriction mechanism of elements. We expect this feature to develop in an object ori-
ented fashion, that might lead to a subsumption hierarchy of these typed elements. Cur-
rently we can deal with this typing mechanism through the roles hasSpecial and the
inverse, or the above introduced subsumption.

An element s that extends an element g will be encoded as (s,g) : isSpecialO f .
Elements s are reachable if an element g is reachable. The reachableElement role will
cover both the child axis and a specialization relation between elements.

A fully object oriented typing might introduce the needs for nonmonotonic reason-
ing, beyond the capabilities of a standard DL system. Experiments with the first order
prover KRHyper [3, 16, 10] indicate the ability to add the needed features.

Optimizing the Evaluation of XPath Using Description Logics 13

7.4 Translation to Logic Programs

As mentioned above we have used the prover KRHyper [16] to answer the queries
derived from translated XPath expressions and the structural description. Implementing
the Hyper Tableau calculus [5], KRHyper tries to find a model of its input, which can
be seen a disjunctive logic program. A possible source of disjunctions in the head of the
program clauses are substitution groups, where every member of the group is a valid
replacement for the head of the group in a path. A XPath expression may introduce
disjunctions by the union of path elements.

In order to enable KRHyper with reasoning on description logics we employ a trans-
formation into KRHyper’s input language, domain restricted, stratified disjunctive logic
programs. The transformation basically follows the standard relational transformation
scheme, however making use of a nonmonotonic negation operator. See also [4], which
describes a similar transformation.

In contrast to DL, the queries into the KB are performed now under the closed
world assumption in these logic programs. Concerning the queries that are imposed by
our approach, there will be no differences, because all concept expressions within the
queries are bound by the concept “element”.

We expect nonmonotonic nega-

Fig. 4. Performance

tion to be an efficient way to trans-
late the extension and restriction ca-
pabilities of XML schema. This is ac-
tually postponed to a future version of
our translation. Although DL reason-
ers like RACER use highly optimized
tableau algorithms, replacing the DL
reasoner with the translation and us-
ing KRHyper improved the perfor-
mance significantly.

The runtimes in figure 4 were
measured on a comtemporary PC. The time includes the setup of the knowledge base
and twenty queries according to an iterated evaluation of a XPath expression. The un-
derlying DTD contained 25 element descriptions. The queries asked for subsets of ele-
ment and the relation between individual elements, as indicated in section 6.2.

8 Conclusion

With the evolving use of DL reasoners in the field of the Semantic Web, the question
arose if the optimization of the document processing has to use different reasoners or
graph oriented tools. We have shown so far that a DL reasoner or a compatible rea-
soner is suitable for the task of predicting an empty result and the optimization of the
document processing itself.

The structural decisions may be used in conjunction with indexing of the document.
While indexing provides an efficient way to locate elements our approach will aug-
ment this by a preselection of possibly needed elements. Different from indexing our
optimization may take place before any part of the document has been read.

14 P. Baumgartner et al.

With the ability to act as a reasoner about the semantic annotation of documents
and the documents and their structure themselves a single reasoning component can be
used to perform both tasks. This single tool concept may reduce overhead in system load
and maintenance. The reduced learning effort, to understand the reasoning component,
should help to promote the use of reasoning systems.

The use of a DL-representation for semistructured data is not new at all. In [9, 8] a
thorough translation is presented that aims at a TBox representing the structure, and an
ABox containing the content of such data. Our focus was the ability to guide an existing
XPath processor through the document tree, not the processing of data. Furthermore the
occurrence of cyclic structures introduces some challenges for this approach. In contrast
to [7] we don’t want to introduce an enhanced language for queries.

Our focus has led to the use of an ABox reflecting the structural properties of docu-
ments. Using the KRHyper prover we could get the results of 20 queries into a document
structure within less than 0.04 seconds on an ordinary PC, including the setup of the
knowledge base and the queries.

In contrast to a merely relational calculus, we did not want to sacrifice the ease of
querying for a possible increase in speed, that is still in doubt.

Finally we have to admit that the reasoner has to catch up with the increasing com-
plexity of the document’s description and the reasoning task. The foreseeable task to
integrate some kind of OO type system will lead to some needed improvements in the
reasoner. The enhancements of the reasoning component may offer additional reason-
ing capabilities to all clients of the service. Focusing on a single system may speed up
the process of improvement compared to the development of multiple services.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. Descrip-
tion Logic Handbook. Cambridge University Press, 2002.

2. F. Baader and U. Sattler. An overview of tableau algorithms for description logics. Studia
Logica, 69:5–40, 2001.

3. P. Baumgartner. Hyper Tableaux — The Next Generation. In H. de Swaart, editor, Automated
Reasoning with Analytic Tableaux and Related Methods, volume 1397 of LNAI, pages 60–76.
Springer, 1998.

4. P. Baumgartner, U. Furbach, M. Groß-Hardt, and T. Kleemann. Model Based Deduction for
Database Schema Reasoning. In KI 2004 - 27th German Conference on Artificial Intelli-
gence, LNCS. Springer Verlag, Berlin, Heidelberg, New-York, 2004. To appear.

5. P. Baumgartner, U. Furbach, and I. Niemelä. Hyper Tableaux. In Proc. JELIA 96, number
1126 in LNAI. European Workshop on Logic in AI, Springer, 1996.

6. T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible markup language (xml)
1.0 (second edition), w3c recommendation. http://www.w3.org/TR/REC-xml, 6 October
2000.

7. F. Bry and S. Schaffert. Towards a declarative query and transformation language for XML
and semistructured data: Simulation unification. In Proceedings of the Int. Conf. on Logic
Programming (ICLP). Springer-Verlag LNCS, 2002.

8. D. Calvanese, G. D. Giacomo, and M. Lenzerini. Queries and constraints on semi-structured
data. In Proc. of CAiSE, pages 434–438, 1999.

Optimizing the Evaluation of XPath Using Description Logics 15

9. D. Calvanese, G. D. Giacomo, and M. Lenzerini. Representing and reasoning on XML
Documents: a Description Logic Approach. Journal of Logic and Computation, pages 295–
318, 1999.

10. J. Dix, U. Furbach, and I. Niemelä. Nonmonotonic Reasoning: Towards Efficient Calculi
and Implementations. In A. Voronkov and A. Robinson, editors, Handbook of Automated
Reasoning, pages 1121–1234. Elsevier-Science-Press, 2001.

11. V. Haarslev and R. Möller. RACER system description. Lecture Notes in Computer Science,
2083:701, 2001.

12. ISO8879:1986. Information processing – text and office systems – standard generalized
markup language (sgml), 1986.

13. P. F. Patel-Schneider and B. Swartout. Description-logic knowledge representation system
specification, Nov. 1993.

14. W3C. XML Schema - part 0 to part 2. http://www.w3.org/TR/xmlschema-0,-1,-2,
2001.

15. W3C. XML path language (XPath) 2.0. http://www.w3.org/TR/xpath20, 2002.
16. C. Wernhard. System Description: KRHyper. Fachberichte Informatik 14–2003, Universität

Koblenz-Landau, Institut für Informatik, 2003.

Declaratively Querying and Visualizing
Knowledge Bases in

Dietmar Seipel1, Joachim Baumeister1, and Marbod Hopfner2

1 University of Würzburg, Institute for Computer Science,
Am Hubland, D – 97074 Würzburg, Germany

{seipel, baumeister}@informatik.uni-wuerzburg.de
2 University of Tübingen, Wilhelm–Schickard Institute for Computer Science,

Sand 13, D – 72076 Tübingen, Germany
hopfner@informatik.uni-tuebingen.de

Abstract. The maintenance of large knowledge systems usually is a rather
complex task. In this paper we will show that extensions or modifications of a
knowledge base can be supported by appropriate visualizations techniques, e.g.
by illustrating dependencies within the considered knowledge.

In particular, we introduce a declarative approach for querying and visualizing
rule–based knowledge represented as XML documents; a knowledge engineer can
extract and visually inspect parts of the knowledge base by ad–hoc declarations
in a flexible manner.

Keywords: knowledge systems, rule bases, PROLOG, OWL, XML query / trans-
formations, visualization.

1 Introduction

The extension and maintenance of large rule–based systems is a complex task. For
instance, the deletion of redundant or incorrect rules is often very difficult to perform.
Thus, transitive dependencies in which the rules are involved are not obvious at first
sight, but they can effect the behaviour of the entire knowledge system.

In this paper we introduce a declarative approach for flexibly generating a suitable
visualization of rule–based knowledge of various types, such as diagnosis rules, abstrac-
tion rules, and indication rules. For example, the dependency graph visualizes the rule
base by depicting knowledge objects (e.g., findings or solutions) as nodes and rules as
edges between them. The visualization of knowledge can be used, e.g., in the following
scenarios:

– Restructuring knowledge: If the expert wants to remove or modify existing rules,
then it is helpful to inspect all dependend knowledge objects (e.g., constrained find-
ings and inferred solution objects) and rules, respectively. A visual representation
of the dependencies can simplify the inspection of the knowledge base.

– Validating knowledge: The visual inspection of knowledge can be also helpful dur-
ing the validation of the reasoning behavior of the knowledge system. In particular,
the visualization of the derivation graph of a solution object defined by its deriving
rules can assist the expert during a debugging session.

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 16–31, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

XML

Declaratively Querying and Visualizing Knowledge Bases in XML 17

– Examining the knowledge design: The design of the knowledge base can be simply
analyzed by viewing the dependency graph. The interpretation of the results of this
analysis is domain dependent. E.g., a subgraph connected to the remaining graph
structure only by one node is an indicator for a vulnerable knowledge design, since
a part of the implemented knowledge depends on a single object.

Besides the examples given above there exist many other applications for the visualiza-
tion of rule bases. However, for the implementation of a visualization tool we face the
problem that we cannot specify a predefined set of meaningful visualizations for rule
bases, since the visualization depends on the requirements of the current task. There-
fore, in a real–world environment a flexible and adaptive visualization tool is required
for a reasonable application of visualization techniques.

In this paper we introduce a declarative approach for flexibly defining visualizations
of rule bases. We assume the knowledge base to be available in an XML format. The
declarative approach allows for a fast and compact ad–hoc definition of visualizations
based on given requirements of the expert. We provide some exemplary queries and
transformations for generating reports about the knowledge base in the form of HTML

and graphs in GXL format, a standard format for graph–based structures [9]. In princi-
ple, our approach is not restricted to the visualization of rule bases; it can be generalized
to arbitrary XML documents. E.g., in [8] we have described the tool VISUR/RAR for the
visualization of procedural or declarative programs represented in XML structures, e.g.,
JAVA or PROLOG programs, and for reasoning about the structure of these programs.

The rest of the paper is organized as follows: In Section 2 we sketch a suitable XML

representation of knowledge bases and motivate the processing of such XML structures.
The visualization system VISUR is briefly introduced in Section 3. In Section 4 the
declarative specification of visualizations is described by motivating examples. Our ap-
proach is not limited to a particular XML schema; in Section 5 we apply it to OWL based
knowledge. In the conclusions we summarize the presented work and we outline some
promising directions for future work.

2 Management of Knowledge Bases in

XML has been established as a frequently used standard for representing and interchang-
ing data and knowledge. Consequently, various different markups have been proposed
for formalizing explicit knowledge; OWL is a prominent example [15].

VISUR/RAR [7] is a system for managing and visualizing rule–based knowledge in
XML notation. It is part of the DISLOG developers toolkit DDK, and it is based on the
DDK–library FNQUERY [13] for querying, updating, and transforming XML data. The
component RAR (reasoning about rules) is applied for query and modification tasks.
The results of this task are handled by VISUR, which can visualize graphs given in the
Graph eXchange Language GXL [9]; we have added some additional attributes to the
GXL notation for configuring the graph display.

In this section we first introduce the XML schema that we are using for representing
knowledge bases, and then we sketch the processing of knowledge bases using FN-
QUERY.

XML

18 D. Seipel, J. Baumeister, and M. Hopfner

Fig. 1. Knowledge Schema Graph of D3

2.1 Knowledge Bases in

In our running example we work with a particular XML schema for knowledge bases,
which is used by the D3 system. The expert system shell–kit D3 [11] has been ap-
plied successfully for building many diagnostic knowledge systems in the medical, the
technical, and the biological domain.

The schema graph of D3 knowledge bases is depicted in Figure 1. The root tag
is KnowledgeBase, and the important successor tags are KnowledgeBaseDe-
scriptor (meta information about the given knowledge base), InitQASets (ini-
tial questions asked to the user of the system), Questions (questions to be asked to
the user), Diagnoses (possible solutions derived by the system), and Knowledge-
Slices (inferential knowledge connecting questions and diagnoses). All objects, e.g.,
diagnoses, questions, and rules, are identified by unique IDs in the XML representation
of the knowledge base.

In Figure 2 a small excerpt of the SonoConsult knowledge base [10] is shown. Sono-
Consult is a fielded knowledge–based documentation and consultation system for med-
ical sonography. Diagnoses and questions are described by a text containing the name
of the knowledge object; for each question a list of the possible answers is given. The
rules are production rules: if the given condition evaluates to true, then the production
rule assigns a score category to the specified diagnosis.

XML

Declaratively Querying and Visualizing Knowledge Bases in XML 19

Fig. 2. Excerpt of the Knowledge Base SonoConsult

The knowledge base SonoConsult contains about 8.000 rules. The rule with the ID
Rfb3955 from above is represented in XML as the following knowledge slice:

<KnowledgeSlice ID="Rfb3955" type="RuleComplex">
<Action type="ActionHeuristicPS">
<Score value="P6"/>
<Diagnosis ID="P165"/>

</Action>
<Condition type="or">
<Condition type="equal" ID="Msi250" value="Msi250a2"/>
<Condition type="equal" ID="Msi250" value="Msi250a3"/>
<Condition type="equal" ID="Msi250" value="Msi250a4"/>

</Condition>
</KnowledgeSlice>

The condition of the rule Rfb3955 evaluates to true if the question Msi250 has one
of the values Msi250a2, Msi250a3, or Msi250a4. In that case, the score P6 is given
to the diagnosis P165; due to this high score of P6 the diagnosis will be considered
as a possible solution. In general, the value range of the scores given to diagnoses is
SC = {N7, . . . , N1, P1, . . . , P7} with ascending categories P1, . . . , P7 for confirm-
ing a diagnosis and categories N1, . . . , N7 for disconfirming a diagnosis.

For many questions the value can be derived by another rule in the knowledge base,
since the knowledge base can describe transitive paths for deriving a diagnosis. Then
it is not necessary that the user enters this value. For a more detailed discussion of the
applied knowledge representation we refer to [11].

2.2 Processing Knowledge Bases with

The library FNQUERY offers a variety of PROLOG predicates for querying and trans-
forming XML documents and two different data structures, which we call field notation
and database notation. In field notation a complex object can be represented as an asso-
ciation list

[a1 : v1, . . . , an : vn],

XML FNQUERY

20 D. Seipel, J. Baumeister, and M. Hopfner

where ai is an attribute and vi is the associated value; this representation is well–known
from the field of artificial intelligence. Using the field notation for semi–structured data
with many attributes has got several advantages compared to ordinary PROLOG facts
”o(v1, . . . , vn)” : The sequence of attribute/value–pairs is arbitrary. Values can be ac-
cessed by attributes rather than by argument positions. Null values can be omitted, and
new values can be added at runtime. In the PROLOG library FNQUERY this formalism
has been extended to the field notation for XML documents: an XML element

〈Tag a1 = ”v1” . . . an = ”vn”〉 Contents 〈/Tag〉

with the tag “Tag” can be represented as a PROLOG term Tag :As :C, where As is an
association list for the attribute/value–pairs ai = ”vi”, and C represents the contents,
i.e., the subelements of the element. E.g., for the XML representation of the knowledge
slice from Section 2.1 we obtain:

’KnowledgeSlice’:[’ID’:’Rfb3955’, type:’RuleComplex’]:[
’Action’:[type:’ActionHeuristicPS’]:[

’Score’:[value:’P6’]:[],
’Diagnosis’:[ID:’P165’]:[]]

’Condition’:[type:or]:[
’Condition’:[

type:equal, ’ID’:’Msi250’, value:’Msi250a2’]:[],
’Condition’:[..., value:’Msi250a3’]:[],
’Condition’:[..., value:’Msi250a4’]:[]]]

Another way of representing XML in PROLOG is the database notation, which is based
on the object–relational mapping: the attributes of a complex object o are represented
by facts ”attr(o, ai, vi)”, and the subelements o′ are stored in facts ”ref(o, t, n, o′)”,
where o′ is the n–th subelement of o with the tag t. We are currently comparing the
efficiency of query evaluation based on the two data structures.

The operations for accessing and updating an object O are the same for both repre-
sentations. They use a binary infix predicate “:=”, which evaluates its right argument
and tries to unify the result with its left argument. Given an element tag E and an at-
tribute A, we use the call X := O^E to select the E–subelement X of O, and we use
Y := O@A to select the A–value Y of O; the application of selectors can be iterated,
cf. path expressions in XML query languages [1]. On backtracking all solutions can be
obtained.

?- KS =
’KnowledgeSlice’:[

’ID’:’Rfb3955’, type:’RuleComplex’]:[
’Action’:[type:’ActionHeuristicPS’]:[

’Score’:[value:’P6’]:[],
’Diagnosis’:[ID:’P165’]:[]]

’Condition’:[type:or]:[
’Condition’:[..., value:’Msi250a2’]:[],
’Condition’:[..., value:’Msi250a3’]:[],
’Condition’:[..., value:’Msi250a4’]:[]]],

Type := KS@type,

Declaratively Querying and Visualizing Knowledge Bases in XML 21

findall(Value,
Value := KS^’Condition’^’Condition’@value,
Values).

Type = ’RuleComplex’,
Values = [’Msi250a2’, ’Msi250a3’, ’Msi250a4’]

Yes

To update the values of attributes or subelements, the call X := O*As is used,
where As specifies the new elements or attribute/value–pairs in the updated object X.
The following statements assign the value ’P3’ to the score of an action:

?- A1 = ’Action’:[type:’ActionHeuristicPS’]:[
’Score’:[value:’P6’]:[],
’Diagnosis’:[ID:’P165’]:[]],

A2 := A1*[^’Score’@value:’P3’].

A2 = ’Action’:[type:’ActionHeuristicPS’]:[
’Score’:[value:’P3’]:[],
’Diagnosis’:[ID:’P165’]:[]]

Yes

The library FNQUERY also contains additional, more advanced methods, such as
the selection/deletion of all elements/attributes of a certain pattern, the transformation
of subcomponents according to substitution rules in the style of XSLT, and the manip-
ulation of path or tree expressions. Thus, FNQUERY can be used for transforming a
given knowledge base into an arbitrary document, e.g., the GXL format for visualizing
graphs.

3 Visualization of Knowledge Bases in

Queries and transformations on XML knowledge bases are applied using FNQUERY

and RAR. The results of the transformation process are visualized by graphs and ta-
bles using the component VISUR. The system VISUR/RAR can significantly improve
the development cycle of logic programming applications, and it facilitates the imple-
mentation of techniques for syntactically analyzing and visualizing a given knowledge
base. For obtaining efficiency and for representing complex deduction tasks we have
used techniques from deductive databases and non–monotonic reasoning.

The goal of the system VISUR/RAR is to support the application of knowledge engi-
neering and refactoring techniques, and the further system development. VISUR/RAR

facilitates program comprehension and review, design improvement by refactoring, the
extraction of subsystems, and the computation of software metrics (such as, e.g., the
degree of abstraction). When we apply it to rule–based knowledge systems, then it
helps developers in becoming acquainted with the knowledge base by visualizing de-
pendencies between different questions and diagnoses defined by the available rules.
It is possible to analyse knowledge bases customized to the individual needs of a user,
and to visualize the results graphically or in tables.

VISUR

22 D. Seipel, J. Baumeister, and M. Hopfner

In previous papers [7, 8] we have shown how also JAVA source code represented in
XML can be analysed using VISUR/RAR. In the future, we will gradually extend VI-
SUR/RAR with additional features. We intend to implement sophisticated methods for
program analysis from software engineering [4, 5, 6], and we want to integrate further
refactoring techniques for XML knowledge bases, some of which have been described
in [14] for PROLOG.

4 Declarative Specification of Visualizations

In this section we give motivating examples for visualizing XML knowledge bases us-
ing VISUR/RAR. As mentioned in the introduction, an appropriate visualization of the
available knowledge depends on the current task. For large rule bases an exhaustive list-
ing of all dependencies defined by the rules is not helpful, and also a focussing selection
of the generated graph may be not meaningful. VISUR/RAR enables the developer of
a rule base to flexibly generate visualizations in a declarative way; a visualization re-
quired for a specific task can be easily defined by a compact FNQUERY statement. In
the following, we illustrate this by examples using the knowledge base of the SONO-
CONSULT documentation and consultation system for medical sonography [10].

4.1 Neighbours of a Question

A frequent maintenance operation for knowledge systems considers the restructuring
of an already available question. E.g., the value range of a choice question is extended
or the question is refined by two more precise questions. Such a restructuring opera-
tion can be simplified by a preceding visual analysis of the considered question and
its dependencies with other knowledge objects, respectively. The following declaration
determines all neighbours of a specified question (here with ID Msi250) defined by
incoming and outgoing derivation rules:

knowledge_base_to_neighbours_of_question(KB, Edges) :-
findall(Edge,

(knowledge_base_to_neighbour_of_question(KB, Edge),
edge_is_incident_with_node(Edge, ’Msi250’)),

Edges).

knowledge_base_to_neighbour_of_question(KB, Cid-Rid-Qid) :-
Rule := KB^’KnowledgeSlices’^’KnowledgeSlice’,
Rid := Rule@’ID’,
’RuleComplex’ := Rule@type,
Cid := Rule^_^’Condition’@’ID’,
Qid := Rule^’Action’^’Question’@’ID’.

In Figure 3 the result of this declaration can be visualized using VISUR.
It is easy to see that the five questions Mf249, Msi1851, Mf2206, Mf1849, and Mf1922,
derive a value for the question Msi250 using the three rules RADD430, RADD431, and
RADD1834. Furthermore, there exist four outgoing rules Rfb3955, Rfb3949, Rfb3932,
and Rfb2943, that derive values for the diagnoses P165, P1857, P2244, and P2221,
depending on the value of Msi250.

Declaratively Querying and Visualizing Knowledge Bases in XML 23

Fig. 3. Neighbours of Question Msi250

4.2 Derivation Tree of a Diagnosis

The visualization of a derivation tree for a specified diagnosis can be helpful during the
validation task. Then, the debugging of an erroneous reasoning behavior (e.g.: a given
diagnosis is not derived as a possible solution) is simplified by depicting its derivation
graph. The following declaration generates the derivation tree for the diagnosis P181:

knowledge_base_to_rule_edges(KB, Edges) :-
findall(Edge,

knowledge_base_to_rule_edge(KB, Edge),
Edges_2),

reaching_edges(’P181’, Edges_2, Edges).

knowledge_base_to_rule_edge(KB, Cid-Rid-Qid) :-
Rule := KB^’KnowledgeSlices’^’KnowledgeSlice’,
Rid := Rule@’ID’,
’RuleComplex’ := Rule@type,
Cid := Rule^_^’Condition’@’ID’,
Qid := Rule^’Action’^_@’ID’.

The resulting VISUR presentation is depicted in Figure 4.
For example, the derivation tree shows that the diagnosis P181 is directly derived

by the two rules Rfb1831 and Rfb1822.

4.3 Compact Views of Knowledge Bases

Another possible application of the presented work is the transformation of an existing
knowledge base into a more compact XML representation: existing XML structures and
tags are combined or deleted in order to remove redundant or uninteresting information.
The result of such a transformation can for instance be used for reporting issues.

24 D. Seipel, J. Baumeister, and M. Hopfner

Fig. 4. Derivation Tree of Diagnosis P181

The following declarations shrink the verbose representation of or and equal condi-
tions by condensing disjunctions Q = a1 ∨ . . .∨Q = an of equalities to more readable
set conditions Q ∈ { a1, . . . , an }.

knowledge_base_view(KB_1, KB_2) :-
Substitution = [

(X:As:Es)-(’Condition’:[type:X|As]:Es),
Y-X-shorten_value_by_id(X, Y),
In-Or-or_condition_to_in_condition(Or, In)],

fn_transform_elements_fixpoint(Substitution, KB_1, KB_2).

or_condition_to_in_condition(Or, In) :-
fn_item_parse(Or, or:[]:Equals),
first(Equals, equal:[’ID’:Id, value:_]:[]),
maplist(d3_equal_to_in(Id),

Equals, Vs),
In = in:[’ID’:Id]:Vs.

equal_to_in(Id, Equal, In) :-
fn_item_parse(Equal, equal:[’ID’:Id, value:V]:[]),
In = element:[value:V]:[].

The predicate fn_transform_elements_fixpoint/3 of the library FNQUERY

offers a powerful substitution mechanism: E.g., the substitution

(X:As:Es)-(’Condition’: [type:X|As]:Es)

transforms a ’Condition’–element of type X with the further attributes As and
the subelements Es into a new element with the tag X, the attributes As and the subele-
ments Es; the substitution

In-Or-or_condition_to_in_condition(Or, In)

Declaratively Querying and Visualizing Knowledge Bases in XML 25

transforms an XML element Or = or:[]:Equals, such that all conditions in the
list Equals have the same ’ID’, into a new element In = in:[’ID’:Id]:Vs,
where Vs contains elements element:[value:V]:[] with their different values.

When applied to the rule Rfb3955 given in Section 2.1 the resulting knowledge slice
is the following, which is more compact and readable than the original representation:

<KnowledgeSlice ID="Rfb3955" type="RuleComplex">
<Action type="ActionHeuristicPS">
<Score value="P6"/>
<Diagnosis ID="P165"/>

</Action>
<in ID="Msi250">
<element value="a2"/>
<element value="a3"/>
<element value="a4"/>

</in>
</KnowledgeSlice>

Our declarative query processing techniques can also be applied for producing an
overview of the knowledge base in a reader–friendly format. Figure 5 displays an ex-
cerpt of the SonoConsult rule base in HTML format, which was also generated using
the FNQUERY library (see Figure 2 for another excerpt).

Fig. 5. Rules of SonoConsult in Compact Form

26 D. Seipel, J. Baumeister, and M. Hopfner

4.4 Static Analysis of the Knowledge Base

For examining the knowledge design it is interesting to have statistics about the com-
plexities of the diagnostic rules of the knowledge base. The following PROLOG rule
determines the number of findings for each rule condition of SonoConsult:

knowledge_base_to_condition_statistics(KB, Numbers) :-
findall(N,

(Slice := KB^_^’KnowledgeSlice’,
knowledge_slice_to_conditions(Slice, Conditions),
length(Conditions, N)),

Numbers).

knowledge_slice_to_conditions(Slice, Conditions) :-
findall(Condition,

((Condition := Slice^’Condition’
; Condition := Slice^_^’Condition’),
_ := Condition@’ID’,
_ := Condition@value),

Conditions),
!.

The computation took about 1 minute. Due to the wildcard in the path expres-
sion KB^_^’KnowledgeSlice’ the system tests for each element in the Sono-
Consult knowledge base whether it has the tag ’KnowledgeSlice’. Interestingly,

Fig. 6. Findings in Rule Conditions

Table 1. Size of Rule Conditions

Size 0 1 2 3 4 5–9 10–19 20–50

Number 0 4.437 1.629 636 417 692 198 14

Declaratively Querying and Visualizing Knowledge Bases in XML 27

in our current implemantation only half of the computation time was spend on the
calls knowledge_slice_to_conditions(Slice, Conditions), whereas
the other half was needed to find out that there exist no further ’KnowledgeSlice’
elements in the knowledge base. We could save this time by automatically completing
the path expression to KB^’KnowledgeSlices’^’KnowledgeSlice’ based on
the available schema knowledge. Note that the other wildcard in the path expression
Slice^_^’Condition’ is necessary to find deeply nested subconditions.

The chart in Figure 6 was created using XPCE–PROLOG. It shows the numbers of
rules (y–axis) having a certain number of findings (x–axis) in their condition.

The following (partially aggregated) Table 1 shows that most of the rules, namely
7.119, have between 0 and 4 findings in their conditions, and that only 906 rules have
at least 5 findings in their conditions. Interestingsly, there was even one rule condition
with 192 findings and one with 204 findings, respectively.

5 Knowledge Bases in

In the previous sections we have discussed a proprietary XML schema for representing
real–world knowledge bases. However, with the advent of the semantic web the demand
for a standard representation of knowledge has been increasingly identified, which has
resulted in the introduction of RDF(S)1 and OWL 2 [15]; for a recent introduction to
the concepts and techniques of the semantic web we refer to [2]. It has been repeatedly
shown that the application of such standards significantly simplifies the interchange and
reuse of knowledge – not only in the context of the web.

Compared to the schema presented in Section 2, XML–based notions like OWL ad-
ditionally allow for the standardized representation of semantic meta–knowledge, e.g.,
hierarchical relationships and semantic constraints like disjointness properties. In this
section, we will show an OWL–based representation of the previously described Sono-
Consult knowledge base. In general, OWL documents are relatively verbose. Thus, we
will apply FNQUERY to such documents for creating abbreviated reports in PROLOG

syntax.
An OWL document is typically defined by the following template:

<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF
xmlns="http://d3web.de/ontology#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#">

<< OWL Classes >>
<< OWL Object Properties >>
<< Knowledge Instances >>

</rdf:RDF>

1 resource description framework (schema).
2 ontology web language.

OWL

28 D. Seipel, J. Baumeister, and M. Hopfner

In the following we represent some interesting aspects from the SonoConsult do-
main in OWL.

Classes

Basic entities of the knowledge representation are defined as OWL classes (some se-
mantic annotation is omitted):

<owl:Class rdf:ID="question"/>
<owl:Class rdf:ID="answer"/>
<owl:Class rdf:ID="diagnosis"/>
<owl:Class rdf:ID="rule"/>
<owl:Class rdf:ID="diagnosticRule">
<rdfs:subClassOf rdf:resource="#rule"/>

</owl:Class>
<owl:Class rdf:ID="ruleCondition"/>
<owl:Class rdf:ID="condOr">
<rdfs:subClassOf rdf:resource="#ruleCondition"/>

</owl:Class>
<owl:Class rdf:ID="condChoiceEqual">
<rdfs:subClassOf rdf:resource="#ruleCondition"/>

</owl:Class>
<owl:Class rdf:ID="questionChoice">
<rdfs:subClassOf rdf:resource="#question"/>

</owl:Class>
<owl:Class rdf:ID="answerChoice">
<rdfs:subClassOf rdf:resource="#answer"/>

</owl:Class>

An element

<owl:Class rdf:ID="C">
<rdfs:subClassOf rdf:resource="#S"/>

</owl:Class>

which indicates that C is a class and that C is a subclass of S, is represented in PRO-
LOG as a term C --> S; if there is no rdfs:subClassOf element, then it is simply
represented as C.

owl_classes([
question, answer, diagnosis,
rule, diagnosticRule --> rule,
ruleCondition,
condOr --> ruleCondition,
condChoiceEqual --> ruleCondition,
questionChoice --> question,
answerChoice --> answer]).

Based on the ontological knowledge we can make query evaluation in FNQUERY

more flexible. E.g., it is now possible to evaluate a path expression

KB^_^rule^ruleCondition

to obtain both condOr and condChoiceEqual elements, since both classes are
subclasses of ruleCondition.

OWL

OWL

Declaratively Querying and Visualizing Knowledge Bases in XML 29

Properties

In the following we show only a small part of the existing OWL properties for the de-
fined classes. We distinguish data type properties using standard primitive representa-
tion based on XMLSchema, and object properties that are based on other OWL classes:

<owl:DatatypeProperty rdf:ID="questionText">
<rdfs:domain rdf:resource="#question"/>
<rdfs:range rdf:resource="XMLSchema#string"/>
<rdf:type rdf:resource="&owl;FunctionalProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="questionCond">
<rdfs:domain rdf:resource="#condChoiceEqual"/>
<rdfs:range rdf:resource="#questionChoice"/>
<rdf:type rdf:resource="&owl;FunctionalProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="answerCond">
<rdfs:domain rdf:resource="#condChoiceEqual"/>
<rdfs:range rdf:resource="#answerChoice"/>
<rdf:type rdf:resource="&owl;FunctionalProperty"/>

</owl:ObjectProperty>

The following PROLOG representation of the properties is much more readable than
the OWL representation, and much more compact (by a factor of 4–5); notice, that we
have shown only a small portion of the corresponding OWL data:

owl_data_type_properties(functional, [
questionText: question --> ’XMLSchema#string’,
answerText: answer --> ’XMLSchema#string’]).

owl_object_properties(functional, [
questionCond: condChoiceEqual --> questionChoice,
answerCond: condChoiceEqual --> answerChoice,
diagnosisRuleAction: diagnosticRule --> ruleAction,
diagnosisAction: diagnosticRuleAction --> diagnosis,
ruleScore: diagnosticRuleAction --> score]).

Obviously, the OWL representation can be restored from the PROLOG representation
using simple PROLOG rules.

SonoConsult Knowledge

The following OWL instance of a diagnostic rule represents an excerpt from the Sono-
Consult knowledge base:

<diagnosticRule rdf:ID="Rfb3955">
<ruleCondition>

<condOr rdf:ID="c1">

OWL

30 D. Seipel, J. Baumeister, and M. Hopfner

<subConditions>
<condChoiceEqual rdf:ID="sc1">
<questionCond rdf:resource="#Msi250"/>
<answerCond rdf:resource="#Msi250a2"/>

</condChoiceEqual>
</subConditions>
...

</condOr>
</ruleCondition>
<diagnosticRuleAction>

<diagnosisAction rdf:resource="#P165"/>
<ruleScore rdf:resoucre="#P6"/>

</diagnosticRuleAction>
</diagnosticRule>

It is easy to see that FNQUERY can also be applied for stating declarative queries
based on OWL documents. In contrast to the proprietary XML format used in the previ-
ous sections, we additionally can utilize semantic information, e.g. the subclass infor-
mation.

6 Conclusions

In this paper we have presented a declarative approach for querying and visualizing
rule–based knowledge. We have introduced a possible XML representation for rule
bases and we have briefly described the system VISUR/RAR: The component RAR al-
lows for compact queries and transformations on XML documents based on FNQUERY.
This is used here, e.g., for transforming a specified part of an XML knowledge base into
GXL or HTML format. The component VISUR in turn uses GXL documents for graph–
based visualizations. The applicability of VISUR/RAR was demonstrated by motivating
examples taken from a real–world application. Additionally, we have shown that FN-
QUERY can also be applied to OWL documents which allow for a deeper declaration of
the semantics contained in the represented knowledge.

In the future we are planning to generalize the presented work to further types of
knowledge, e.g., case–based knowledge and model–based knowledge. Furthermore, the
usability of the system can be increased by improving the interactivity between the user
and the system. E.g., extended browsing techniques for the generated visualizations are
necessary.

References

1. S. Abiteboul, P. Bunemann, D. Suciu: Data on the Web – From Relations to Semi–Structured
Data and XML, Morgan Kaufmann, 2000.

2. G. Antoniou, F. van Harmelen: A Semantic Web Primer, MIT Press, 2004.
3. S. Ceri, G. Gottlob, L. Tanca: Logic Programming and Databases, Springer, 1990.
4. S. Diehl (Ed.): Software Visualization: International Seminar, Dagstuhl Castle, Germany,

Springer LNCS 2269, 2002.

Declaratively Querying and Visualizing Knowledge Bases in XML 31

5. H. Erdogmus, O. Tanir (Eds.): Advances in Software Engineering – Comprehension, Evalu-
ation, and Evolution, Springer, 2002.

6. M. Fowler: Refactoring – Improving the Design of Existing Code, Addison–Wesley, 1999.
7. M. Hopfner, D. Seipel: Reasoning about Rules in Deductive Databases, Proc. 17th Workshop

on Logic Programming WLP 2002.
8. M. Hopfner, D. Seipel, J. Wolff von Gudenberg: Comprehending and Visualising Software

based on XML Representations and Call Graphs, Proc. 11th IEEE International Workshop
on Program Comprehension IWPC 2003.

9. R. Holt, A. Winter, A. Schürr: GXL: Towards a Standard Exchange Format, Proc. Working
Conference on Reverse Engineering WCRE 2000, http://www.gupro.de/GXL/

10. M. Hüttig, G. Buscher, T. Menzel, W. Scheppach, F. Puppe, H.–P. Buscher: A Diagnostic
Expert System for Structured Reports, Quality Assessment, and Training of Residents in
Sonography, Medizinische Klinik, 2004.

11. F. Puppe: Knowledge Reuse among Diagnostic Problem–Solving Methods in the Shell–Kit
D3, International Journal of Human–Computer Studies (49), 1998.

12. A. Serebrenik, B. Demoen: Refactoring Logic Programs, Proc. Intl. Conference on Logic
Programming ICLP 2003 (Poster Session).

13. D. Seipel: Processing XML Documents in PROLOG, Proc. 17th Workshop on Logic Program-
ming WLP 2002.

14. R. Seyerlein: Refactoring in Deductive Databases Applied to the Information System Qual-
imed, Diploma Thesis (in German), University of Würzburg, 2001.

15. M. Smith, C. Welty, D. McGuinness: OWL Web Ontology Language Guide, February 2004,
http://www.w3.org/TR/2004/REC-owl-guide-20040210/

16. J. Wielemaker, A. Anjewierden: Programming in XPCE/PROLOG

http://www.swi-prolog.org/

SQL Based Frequent Pattern Mining with
FP-Growth

Xuequn Shang, Kai-Uwe Sattler, and Ingolf Geist

Department of Computer Science,
University of Magdeburg,

P.O.BOX 4120, 39106 Magdeburg, Germany
{shang, kus, geist}@.iti.cs.uni-magdeburg.de

Abstract. Scalable data mining in large databases is one of today’s
real challenges to database research area. The integration of data min-
ing with database systems is an essential component for any successful
large-scale data mining application. A fundamental component in data
mining tasks is finding frequent patterns in a given dataset. Most of the
previous studies adopt an Apriori-like candidate set generation-and-test
approach. However, candidate set generation is still costly, especially
when there exist prolific patterns and/or long patterns. In this study
we present an evaluation of SQL based frequent pattern mining with a
novel frequent pattern growth (FP -growth) method, which is efficient
and scalable for mining both long and short patterns without candidate
generation. We examine some techniques to improve performance. In ad-
dition, we have made performance evaluation on DBMS with IBM DB2
UDB EEE V8.

1 Introduction

Mining frequent patterns in transaction databases has been studied popularly
in data mining research. Most of the previous studies adopt an Apriori-like
candidate set generation-and-test approach [3, 7, 8], which is based on an anti-
monotone Apriori heuristic: if any length k pattern is not frequent in the
database, its length (k+1) super-pattern can never be frequent. The above
Apriori heuristic achieves good performance gain by reducing significantly the
size of candidate sets. However, in situations with prolific frequent patterns, long
patterns, or quite low minimum support thresholds, this kind of algorithm may
still suffer from the following two nontrivial costs:

1. It is costly to handle a huge number of candidate sets.
2. It is tedious to repeatedly scan the database and check a large set of candi-

dates by pattern matching, which is especially true for mining long patterns.

Recently, an FP -tree based frequent pattern mining method [4], called FP -
growth, developed by Han et al achieves high efficiency, compared with Apriori-
like approach. The FP -growth method adopts the divide-and-conquer strategy,

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 32–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

SQL Based Frequent Pattern Mining with FP-Growth 33

uses only two full I/O scans of the database, and avoids iterative candidate
generation.

The integration of data mining with database systems is an emergent trend
in database research and development area. This is particularly driven by the
following reasons.

– Explosion of the data amount stored in databases such as Data Warehouses.
– Database systems provide powerful mechanisms for accessing, filtering, in-

dexing data. Rather than devising specialized parallelization, one can po-
tentially exploit the underlying SQL parallelization. The DBMS support for
check-pointing and space management can be especially valuable for long-
running mining algorithms on huge volumes of data.

– SQL-aware data mining systems have ability to support ad-hoc mining, ie.,
allowing to mine arbitrary query results from multiple abstract layers of
database systems or Data Warehouses.

– These techniques need to be re-implemented in part if the data set in main-
memory approaches does not fit into the available memory.

Data mining on large relational databases has gained popularity and its sig-
nificance is well recognize. However the performance of SQL based data mining
is known to fall behind specialized implementation since the prohibitive nature
of the cost associated with extracting knowledge, as well as the lack of suitable
declarative query language support. Main-memory algorithms employ sophis-
ticated in-memory data structures and try to reduce the scan of data as few
times as possible while SQL based algorithms either require several scans over
the data or require many and complex joins between the input tables. There
are some SQL based approaches proposed to mine frequent patterns [9, 12], but
they are on the base of Apriori-like approach which suffer from the inferior per-
formance since the candidate-generation-and-test operation. This fact motivated
us to examine if we can get efficient performance by the utilization of SQL based
frequent pattern mining using FP -growth-like approach. We propose mining al-
gorithms based on FP -growth to work on DBMS and compare the performance
of these approaches using synthetic datasets.

The remainder of this paper is organized as follows: In section 2, we introduce
the method of FP -tree construction and FP -growth algorithm. In section 3, we
discuss different SQL based frequent pattern mining implementations using FP -
growth-like approach. Experimental results of the performance test are given in
section 4. We present related work in section 5 and finally conclude our study
and point out some future research issues in section 6.

2 Frequent Pattern Tree and Frequent Pattern Growth
Algorithm

The frequent Pattern mining problem can be formally defined as follows. Let I =
{i1, i2, ..., im} be a set of items, and DB be a transaction database, where each
transaction T is a set of items and T ⊆ I. An unique identifer, called its TID,

34 X. Shang, K.-U. Sattler, and I. Geist

is assigned with each transaction. A transaction T contains a pattern P , a set of
items in I, if P ⊆ T . The support of a pattern P is the number of transactions
containing P in DB. We say that P is a frequent pattern if P

′
s support is no

less than a predefined minimum support threshold ξ.
In [4], frequent pattern mining consists of two steps:

1. Construct a compact data structure, frequent pattern tree (FP-tree), which
can store more information in less space.

2. Develop an FP -tree based pattern growth (FP-growth) method to uncover
all frequent patterns recursively.

2.1 Construction of FP-Tree

The construction of FP -tree requires two scans on transaction database. The
first scan accumulates the support of each item and then selects items that sat-
isfy minimum support. In fact, this procedure generates frequent 1-items and
then stores them in frequency descending order. The second scan constructs
FP -tree.

An FP -tree is a prefix-tree structure storing frequent patterns for the trans-
action database, where the support of each tree node is no less than a predefined
minimum support threshold ξ. It consists of one root labelled as ”null”, a set of
item-prefix subtrees as the children of the root, and a frequent-item-header

Table 1. A transaction database DB and ξ = 3

TID Items Frequent Items

1 a, c, d, f, g, i, m, o c, f, a, m, o

2 a, b, c, f, l, m, n c, f, a, b, m

3 b, f, h, j, n f, b

4 b, c, k, o, c, b, o

5 a, c, e, f, l, m, o c, f, a, m, o

Fig. 1. An FP -tree for Table 1

SQL Based Frequent Pattern Mining with FP-Growth 35

table. Each node in the item-prefix subtree consists of three fields: item-name,
count, and node-link. Where node-link links to the next node in the FP -tree
carrying the same item-name, or null if there is none. For any frequent item ai,
all the possible frequent patterns that contain ai can be obtained by following
ai’s node-links, starting from ai’s head in the FP -tree header. The frequent
items in each path are stored in their frequency descending order.

FP -tree is a highly compact and a much smaller than its original database,
and thus saves the costly database scans in the subsequent mining processes.
Let us give an example with five transactions. Let the transaction database DB,
be the first two columns of Table 1 and the minimum support threshold be 3.
The last column of Table 1 collects all frequent 1-items ordered in frequency
descending order. One may construct an FP -tree as in Figure 1.

2.2 FP-Growth

Based on FP -tree structure, an efficient frequent pattern mining algorithm,
FP -growth method is proposed, which is a divide-and-conquer methodology:
decompose mining task into smaller ones, and only need sub-database test.

FP -growth performed as follows:

– For each node in the FP -tree construct its conditional pattern base, which is
a ”subdatabase” constructed with the prefix subpath set co-occurring with
the suffix pattern in the FP -tree. FP -growth traverses nodes in the FP -tree
from the least frequent item in L;

– Construct conditional FP -tree from each conditional pattern base;
– Execute the frequent pattern mining recursively upon the conditional FP -

tree. If the conditional FP -tree contains a single path, simply enumerate all
the patterns.

With the FP -tree in Figure 1, the mining process and result is listed in
Table 2.

Table 2. Mining of all-patterns based on FP -tree

Item Conditional Conditional Frequent
Pattern Base FP -tree Pattern

o {(m : 2, a : 2, f : 2, c : 2), 〈c : 3〉 c o : 3
(b : 1, c : 1)}

m {(a : 2, f : 2, c : 2), 〈c : 3, f : 3, a : 3〉 c m : 3, f m : 3
{(b : 1, a : 1, f : 1, c : 1) a m : 3

b {(a : 1, f : 1, c : 1), (f : 1)} φ φ

a {(f : 3, c : 3)} 〈c : 3, f : 3〉 c a : 3, f a : 3
f {(c : 3)} 〈c : 3〉 c f : 3
c φ φ φ

36 X. Shang, K.-U. Sattler, and I. Geist

3 Frequent Pattern Mining Based on SQL

Although an FP -tree is rather compact, it is unrealistic to construct a main
memory-based FP -tree when the database is large. However using RDBMSs
provides us the benefits of using their buffer management systems specifically
developed for freeing the user applications from the size considerations of the
data. And moreover, there are several potential advantages of building mining
algorithms to work on RDBMSs as described in Introduction. An interesting
alternative is to store an FP -tree in a relational table and to propose algorithms
for frequent patterns mining based on such a table. We studied two approaches
in this category - FP , EFP (Extended Frequent Pattern). They are different in
the process of constructing frequent pattern tree table, named FP . FP approach
checks each frequent item of each transaction table one by one to decide whether
it should be inserted into the table FP or not to construct FP . EFP approach
introduces an extended frequent pattern table, named EFP , which collects the
set of frequent items and their prefix items of each transaction, thus table FP
can generate from EFP by combining the items which share a common prefix.

Transaction data, as the input, is transformed into a table T with two column
attributes: transaction identifier (tid) and item identifier (item). For a given
tid, typically there are multiple rows in the transaction table corresponding to
different items in the transaction. The number of items per transaction is variable
and unknown during table creation time.

3.1 Construction of the FP Table

FP -tree is a good compact tree structure. In addition, it has two properties:
node-link property (all the possible frequent patterns can be obtained by fol-
lowing each frequent’s node-links) and prefix path property (to calculate the
frequent patterns for a node ai in a path, only the prefix sub-path of ai in P
need to be accumulated). For storing the tree in a RDBMS a flat table structure
is necessary. According to the properties of FP -tree, we represent an FP -tree
by a table FP with three column attributes: item identifier (item), the num-
ber of transactions that contain this item in a subtree (count), and item prefix
subtree (path). The field path is beneficial not only to construct the table FP
but also to find all frequent patterns from FP . In the construction of table FP ,
the field path is an important condition to judge if an item in frequent item
table F should be inserted into the table FP or not. If an item does not exist
in the table FP or there exist the same items as this item in the table FP but
their corresponding path are different, insert the item into table FP . Otherwise,
update the table FP by incrementing the item’s count by 1. In the process of
mining frequent patterns using FP , we need to recursively construct conditional
frequent pattern table, named ConFP , for each frequent item. Due to the path
column of FP storing the set of prefix items of each frequent item, it’s easy to
find the items which co-occur with this item by deriving all its path in the table
FP .

SQL Based Frequent Pattern Mining with FP-Growth 37

The process of the table FP construction is as following:

1. Transfer the transaction table T into table T ′, in which infrequent items are
excluded. The size of the transaction table is a major factor in the cost of
joins involving T . It can be reduced by pruning the non-frequent items from
the transactions after the first pass. We insert the pruned transactions into
table T ′ which has the same schema as that of T . In the subsequent passes,
join with T can be replaces by join with T ′. This could result in improved
performance especially for datasets which contains lot of non-frequent items.
SQL query using to generate T ′ from T in figure 2.

insert into T ′

select t.id, t.item from T t,
((select item, count(*) from T
group by item
having count(*) ≥ minsupp
order by count(*) desc) as F (item, count))

where t.item = F.item

Fig. 2. SQL query to generate T ′

Algorithm 1 (table FP construction)
Input: a transferred transaction table T ′

Output: a table FP
Procedure:

curcnt := 1;
curpath := null;
find distinct tid from the table T ′

for each item ik of the first tid
insert ik with curcnt and curpath into the table FP ;
curpath += ik;

insertFP (items);

insertFP (items)
if FP has an item f == i1 (the first item in the items) and f. path == null

for each item ik in the items
insert ik with curcnt and curpath into the table FP ;
curpath += ik;

else
for each item ik in the items

if FP has an item f == ik and f. path == ik. path
curcnt = ik. count + 1;
update the table FP ;

else
insert ik into the table FP ;

curpath += ik;

Fig. 3. Algorithm for constructing table FP

38 X. Shang, K.-U. Sattler, and I. Geist

2. Construct the table FP . Frequent items in T ′ are sorted in descending order
by frequency. (If the frequent ones are sorted in their frequency descending
order, there are better chances that more prefix items can be shared.) Each
frequent item is tested as follows.
– If the item does not have the same item and path as those in the FP ,

insert it into the FP as a new item with the count being 1.
– Otherwise, update the FP by increasing the count by 1.

The algorithm for constructing the table FP is show in Figure 3.

3.2 Finding Frequent Pattern from FP

After the construction of a table FP , we can use this table to efficiently mine the
complete set of frequent patterns. For each frequent item i we construct its con-
ditional pattern base table PBi, which has three column attributes (tid, item,
count). The table PBi includes items that co-occur with i in the table FP . As
we said above, the path attribute in the table FP represent the information of
prefix subpath set of each frequent itemset in a transaction. So this process is
implemented by a select query to get all corresponding counts and paths, then
split these paths into multiple items with the same count. This can be achieved
as follows.

select count, path from FP where item = i;
for each count cnr, path p

id := 1;
item[] = split(p);
for each item j in item[]

insert into PBi values (id, cnr, j);
id += 1;

Then we construct the table ConFPi from each conditional pattern base table
PBi using the same algorithm as the table FP construction, and mine recur-
sively in the table ConFPi. We start from the frequent item with the minimum
frequency. The similar procedure goes on until the last one.

Further optimization can be exploring if the FP table has a single path.
In this case, all the frequent patterns associated with it can be mined by enu-
meration of all the combinations of the items in FP . Let us examine an ex-
ample in Table 3. Thus, the following set of frequent patterns is generated,
{(a : 3), (f : 3), (c : 3), (a f : 3), (a c : 3), (f c : 3), (a f c : 3)}.

The algorithm of finding frequent patterns from table FP is showed in
Figure 4.

3.3 EFP Approach

In the whole procedure, the construction of table FP (table ConFP) is a time-
consuming procedure. The important reason is that each frequent item must be
tested one by one to construct the table FP (table ConFP). In that case, the
test process is inefficient.

SQL Based Frequent Pattern Mining with FP-Growth 39

Table 3. An FP table has a single path

Item Count Path

a 3 null

f 3 null : a

c 3 null : a : f

Algorithm 2 (FindFP)
Input: table FP constructed based on Algorithm 1 and table F collects all

frequent itemsets.
Output: table Pattern, which collects the complete set of frequent patterns.
Procedure:
If items in the table FP in a single path

combine all the items with prefix, insert into Pattern;
else

for each item i in the table F
construct table ConFPi;
if ConFPi �= φ

call FindFP(ConFPi);

Fig. 4. Algorithm for finding frequent patterns from table FP

From the above discussions, we expect significant performance improvement
by introducing an extended FP table, called EFP , which has the same format
as table FP (item, count, path). We can obtain EFP by directly transforming
frequent items in the transaction table T ′. We initialize the path of the first
frequent item i1 in each transaction and set it as null. The path of the sec-
ond frequent item i2 is null : i1, and the path of the third frequent item i3
is null : i1 : i2, and so on. Table EFP represents all information of frequent
itemsets and their prefix path of each transaction. We combine the items with
identical path to get the table FP . However, compare to the construction of
table FP , we do not need to test each frequent item to construct the table
EFP and can make use of the database powerful query processing capability.
The construction of table EFP can be implemented using a recursive query as
follows.

for each tid id
select item from T ′

where id = id
create table temp (id int, iid int, item varchar(20))

iid := 1;
for each item i

insert into temp values(iid, i)
iid += 1;

40 X. Shang, K.-U. Sattler, and I. Geist

with fp (item, path, nsegs) as
((select item, cast (’null’ as varchar (200)), 1 from temp

where iid = 1)
union all
(select t.item, cast (f.path ‖′ :′ ‖ f.item as varchar (200)), f.nesgs+1

from fp f, temp t
where t.iid = f.nsegs+1 and
f.nesgs ¡ iid))

insert into EFP select item, path from FP

For example, with the transactions in Table 1, we get a table FP and a table
EFP in Figure 5.

Item Count Path

c 4 null

f 3 null : c

a 3 null : c : f

m 2 null : c : f : a

o 2 null : c : f : a : m

b 1 null : c : f : a

m 1 null : c : f : a : b

f 1 null

b 1 null : f

b 1 null : c

o 1 null : c : b

(a) AnFP table forTable1

Item Path

c null

f null : c

a null : c : f

m null : c : f : a

o null : c : f : a : m

c null

f null : c

a null : c : f

b null : c : f : a

m null : c : f : a : b

f null

b null : f

c null

b null : c

o null : c : b

c null

f null : c

a null : c : f

m null : c : f : a

o null : c : f : a : m

(b) An EFP table
for Table 1

Fig. 5. Table FP and table EFP for Table 1

Basically, EFP table is larger than FP table especially there are lots of items
share the prefix strings. However, from the performance aspect, the construction
of EFP is more efficient than that of FP since the former avoid checking each
item of each transaction one by one. The SQL statement of construct FP from
EFP is illustrated as follows.

SQL Based Frequent Pattern Mining with FP-Growth 41

insert into FP
select item, count(*) as count, path from EFP
group by item, path

3.4 Using SQL with Object-Relational Extension

In the following section, we study approaches that use object-relational exten-
sion in SQL to improve performance. We consider an approach that use a table
function path. As a matter of fact, all approaches above have to materialize its
temporary table namely T ′ and PB′. Those temporary tables are only required
in the construction of table FP and table ConFP . They are not needed for gen-
erating the frequent patterns. So we further use subquery instead of temporary
tables. The data table T is scanned in the (id, item) order and combined with
frequent itemsets table F to remove all infrequent items and sort in support
descending order as F , and then passed to the user defined function Path, which
collects all the prefixes of items in a transaction. SQL query to generate FP
using the user defined function Path as follows:

insert into FP select tt2.item, tt2.count (*), tt2.path
from (select T.id, T.item from T, F
where T.item = F.item
order by T.id, F.count desc) as tt1,
table (Path (tt1.id, tt1.item)) as tt2
group by tt2.item, tt2.path
order by tt2.path

4 Performance Evaluation

4.1 Dataset

We use synthetic transaction data generation with program describe in Apriori
algorithm paper [3] for experiment. The nomenclature of these data sets is of
the form TxxIyyDzzzK, where xx denotes the average number of items present
per transaction, yy denotes the average support of each item in the data set and
zzzK denotes the total number of transactions in K (1000’s). We report exper-
imental results on four data sets, they are respectively T5I5D1K, T5I5D10K,
T25I10D10K, T25I20D100K.

The first dataset consists of 1 thousand transactions, each containing an
average of 5 items and the average size of potentially frequent itemsets is 5.

The following two datasets consist of 10 thousand transactions. Each con-
taining an average of 5 items and 25 items. The average size of the maximal
potentially frequent itemsets is 5 and 10 respectively .

The last one consists of 100 thousand transactions with an average 25 number
of items per transaction and the average length of potentially frequent patterns
is 20. There exist exponentially numerous frequent itemsets in this data set when
the support threshold goes down. There are pretty long frequent itemsets as well

42 X. Shang, K.-U. Sattler, and I. Geist

as a large number of short frequent itemsets in it. It is a relatively dense dataset
and contains mixtures of short and long frequent itemsets.

4.2 Performance Comparison

Our experiments were performed on DBMS with IBM DB2 UDB EEE V8. For
comparison, we also implemented two approaches as follows.

1. A loose-coupling approach, in which access to data stored in RDBMS was
provided through a JDBC interface. The procedure of an FP -tree build and
pattern growth is implemented in memory.

2. A k-way join approach based on Aprioti algorithm, as proposed in [12].
In K-way join, the candidate generation phase computes a set of potential
frequent k-itemsets Ck from Fk−1. The statement of candidate generation is
illustrated in Figure 6.

insert into Ck select I1.item1, . . . , I1.itemk−1, I2.itemk−1

from Fk−1I1, Fk−1I2

where I1.item1 = I2.item1 and
...

I1.itemk−2 = I2.itemk−2 and
I1.itemk−1 < I2.itemk−1

Fig. 6. Candidate generation phase in SQL-92

The support counting phase uses k instances of the transaction table and
joins it k times with itself and with a single instance of Ck to filter out those
itemsets from Ck that appear more frequently in the given set of transactions
than the minimum support and store them in Fk. The statement of K-Way
join is illustrated in Figure 7.

insert into Fk select item1, . . . , itemk, count(*)
from Ck, T t1, . . . T tk

where t1.item = Ck.item1 and
...

tk.item = Ck.itemk and
t1.tid = t2.tid and

...
tk − 1.tid = tk.tid

group by item1, item2 . . . itemk

having count(*) ≥ minsupp

Fig. 7. Support counting by K-Way join

SQL Based Frequent Pattern Mining with FP-Growth 43

(a) (b)

(c) (d)

Fig. 8. Comparison of four approaches. In (c), for k-way join approach with the sup-
port value of 0.2% , and in (d), for Loose and k-way join approach with the support
value of 0.3% and 0.2%, the running times were so large that we had to abort the runs
in many cases

We built (id, item), (item id) index on the data table T and (item) index on
the frequent itemsets table F , table FP , and table EFP . The goal was to let
the optimizer choose the best plan possible.

In figure 8 (a)(b) we show the total time taken by the four approaches on data
set T5I5D1K and T5I5D10K: K-way join approach, loose-coupling approach,
SQL-based FP , and improved SQL-based EFP (without object-relational ex-
tension in SQL). From the graph we can make the following observation: K-way
join, FP , EFP has the better performance than loose-coupling approach. EFP
approach can get competitive performance out of FP implementation. An im-
portant reason for superior performance of EFP over FP is the avoid testing
each frequent item one by one in the construction of table FP . For instance, for
dataset T5I5D10K with the support value of 0.5%, in the FP approach, almost

44 X. Shang, K.-U. Sattler, and I. Geist

50% of execution time belongs to the construction of table FP . However, in the
EFP approach, almost less 24% of execution time belongs to the construction of
table FP . Since the recursive construction of table ConFP use the same method
as the construction of table FP . In that case, the overall execution time is highly
reduced.

In data set T5I5D10K, as the support threshold is high, the frequent items are
short and the number of item is not large. The advantages of EFP over Apriori
are not so impressive. EFP is even slightly worse than Apriori. However, as
the support threshold goes down, the gap is becoming wider. When the support
threshold is low, the number of frequent patterns as well as that of candidates
are non-trivial. In contrast, EFP avoid candidates generation and test. That is
why EFP can get significant performance improvement.

We compare the four approaches on data sets T25I10D10K and T25I20D100K:
K-way join approach, loose-couple approach, EFP approach, and Path ap-
proach using a user defined table functions (Path). Figure 8 (c)(d) shows the
results of experiments. From the graph we can make the following observation:
EFP and Path approach can get better performance than K-way join on large
data sets or long patterns. The main reason is that generating candidate-k table
Ck is time-consuming procedure when T is large or minimum support thresh-
old is quite low. In addition, with the extended SQL we can get the improved
performance.

5 Related Work

The work on frequent pattern mining started with the development of the AIS
algorithm, and was further modified and extended in [3]. Since then, there have
been several attempts in improving the performance of these algorithms. [7]
presents a hash based algorithm, which is especially effective for the generation
of candidate set for large 2-itemsets. [8] presents a partition algorithm, which
improve the overall performance by reducing the number of passes needed over
the complete database to at most two. [1] presents a TreeProjection method,
which represents frequent patterns as nodes of a lexicographic tree and uses the
hierarchical structure of the lexicographic tree to successively project transac-
tions and uses matrix counting on the reduced set of transactions for finding
frequent patterns. [4] builds a special tree structure in main memory to avoid
multiple scans of database. However, most of these algorithms are applicable to
data stored in flat files. The basic characteristics of these algorithms are that
they are main memory algorithms, where the data is either read directly from
flat files or is first extracted from the DBMS and then processed in main memory.

Recently researchers have started to focus on issues related to integrating
mining with databases. There have been language proposals to extend SQL to
support mining operators. The data mining Query Language DMQL [5] pro-
posed a collection of such operators for classification rules, characteristics rule,
association rules, etc. The Mine Rule operator [6] was proposed for a generalized
version of the association rule discover problem. [2] presents a methodology for

SQL Based Frequent Pattern Mining with FP-Growth 45

tightly-coupled integration of data mining applications with a relational database
system. [9] has tried to highlight the implications of various architecture alter-
natives for coupling data mining with relational database systems. They have
also compared the performance of the SQL-92 architecture with SQL-OR based
architecture, and they are on the base of Apriori-like approach.

6 Summary and Conclusion

We have implemented SQL based frequent pattern mining using FP -growth-
like approach. We represent FP -tree using a relational table FP and proposed
a method to construct this table. To improve its performance, a table called
EFP is introduced, which is in fact stores all information of frequent item sets
and their prefix path of each transaction. And then, table FP can derived from
table EFP . Compare to the construction of FP , the process of the construction
of EFP avoid testing each frequent item one by one. We next experimented with
an approach that made use of the object-relational extensions like table function.
The experimental results show that SQL based frequent pattern mining approach
using FP -growth can get better performance than Apriori on large data sets or
long patterns.

There remain lots of further investigations. We plan to implement our SQL
based frequent pattern mining approach on parallel RDBMS, and to check
how efficiently our approach can be parallelized and speeded up using paral-
lel database system. Additionally, we will investigate an SQL based algorithm
which combine Apriori and FP -growth to scale both small and large data sets.

References

1. R. Agarwal, C. Aggarwal, and V. Prasad. A tree projection algorithm for genera-
tion of frequent itemsets. Journal of Parallel and Distributed Computing(Special
Issue on High Performance Data Mining), 2000.

2. R. Agrawal and K. Shim. Developing tightly-coupled data mining application on a
relational database system. In Proc.of the 2nd Int. Conf. on Knowledge Discovery
in Database and Data Mining, Portland,Oregon, 1996.

3. R. Agrawal, R. Srikant. Fast algorithms for mining association rules. In Proc. of
the 20st VLDB Conference, Santiago, Chile, pp.487-499, 1994.

4. J. Han, J. pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proc. of the ACM SIGMOD Conference on Management of data, 2000.

5. J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data mining
query language for relational database. In Proc. Of the 1996 SIGMOD workshop
on research issues on data mining and knowledge discovery, Montreal, Canada,
1996.

6. M. Houtsma and A. Swami. Set-oriented data mining in relational databases. DKE,
17(3): 245-262, December 1995.

7. R. Meo, G. Psaila, and S. Ceri. A new SQL like operator for mining association
rules. In Proc. Of the 22nd Int. Conf. on Very Large Databases, Bombay, India,
1996.

46 X. Shang, K.-U. Sattler, and I. Geist

8. J. S. Park, M. Chen, and P. S. Yu. An effective hash based algorithm for mining
association rules. In Proc. of the ACM SIGMOD Conference on Management of
data, pp.175-186, 1995.

9. I. Pramudiono, T. Shintani, T. Tamura and M. Kitsuregawa. Parallel SQL based
associaton rule mining on large scale PC cluster: performance comparision with di-
rectly coded C implementation. In Proc. Of Third Pacific-Asia Conf. on Knowledge
Discovery and Data Mining, 1999.

10. R. Rantzau. Processing frequent itemset discovery queries by division and set con-
tainment join operators. DMKD03: 8th ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, 2003.

11. A. Savsere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining as-
sociation rules in large databases. In Proc. of the 21st VLDB Conference, 1995.

12. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating mining with relational
database systems: alternatives and implications. In Proc. of the ACM SIGMOD
Conference on Management of data, Seattle,Washinton,USA, 1998.

13. K. Sattel and O. Dunemann. SQL database primitives for decision tree classifiers.
In Proc. Of the 10nd ACM CIKN Int. Conf. on Information and Knowledge Man-
agement, Atlanta,Georgia, 2001.

14. S. Thomas and S. Chakravarthy. Performance evaluation and optimization of join
queries for association rule mining. In Proc. DaWaK, Florence, Italy, 1999.

15. H. Wang and C. Zaniolo. Using SQL to build new aggregates and extenders
for Object-Relational systems. In Proc. Of the 26th Int. Conf. on Very Large
Databases, Cairo,Egypt, 2000.

16. T. Yoshizawa, I. Pramudiono, and M. Kitsuregawa. SQL based association rule
mining using commercial RDBMS (IBM DB2 UDB EEE). In Proc. DaWaK, Lon-
don, UK, 2000.

Incremental Learning of Transfer Rules
for Customized Machine Translation

Werner Winiwarter

Faculty of Computer Science,
University of Vienna, Liebiggasse 4, A-1010 Vienna, Austria

werner.winiwarter@univie.ac.at
http://www.ifs.univie.ac.at/~ww/

Abstract. In this paper we present a machine translation system, which
translates Japanese into German. We have developed a transfer-based
architecture in which the transfer rules are learnt incrementally from
translation examples provided by a user. This means that there are no
handcrafted rules, but, on the contrary, the user can customize the sys-
tem according to his own preferences. The translation system has been
implemented by using Amzi! Prolog. This programming environment had
the big advantage of offering sufficient scalability even for large lexicons
and rule bases, powerful unification operations for the application of
transfer rules, and full Unicode support for Japanese characters. Finally,
the application programming interface to Visual Basic made it possible
to design an embedded translation environment so that the user can use
Microsoft Word to work with the Japanese text and invoke the trans-
lation features directly from within the text editor. We have integrated
the machine translation system into a language learning environment
for German-speaking language students to create a Personal Embedded
Translation and Reading Assistant (PETRA).

1 Introduction

For language students and other people interested in Japanese documents, the
Web makes available a wealth of information. In general, after reaching a cer-
tain level of linguistic competence in a foreign language, the reading of written
material represents an excellent way to improve the fluency by learning new ter-
minology or grammatical structures in their natural context with comparatively
little effort.

However, this approach to language acquisition, which works so well with
many languages, is seriously hampered by the complexity of the Japanese writ-
ing system. Japanese texts are a mixture of the two syllabaries hiragana and
katakana as well as the Japanese versions of Chinese characters called kanji.
The two syllabaries are relatively easy to learn with only 46 different characters
each, but there are several thousand, mostly quite complex kanji of which the
pronunciations or readings often depend on the textual context. Another severe

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 47–64, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 W. Winiwarter

Japanese sentence:

Roman transcription:

Kore wa, katamen dake ni ji o kaite, onaji ookisa ni kirisoraeta mono o,
nan mai mo kawa no himo de tojita.

Human translation into German:

Man hat es nur einseitig beschrieben und mehrere auf gleiche Größe
zurechtgeschnittene Blätter mit Lederriemen zusammengebunden.

Human translation into English:

It was written on only one side, and several sheets, trimmed to the same size,
were bound together with leather laces.

Machine translation by WorldLingo
 (www.worldlingo.com/products_services/worldlingo_translator.html):

Dieses, den Brief auf gerade die eine Seite, die schreibend, die sie in die
gleiche Größe trimmt, geschlossen vielen mit der Zeichenkette des Leders.

This, writing the letter on just the one side, those which it trims in the same size,
closed many with the string of the leather.

Machine translation by Excite
(www.excite.co.jp/world/url/):

This is leather many sheets about what wrote the character only to one side
and was cut to an even length in the same size. With a string It closed.

Machine translation by @nifty
(www.nifty.com/globalgate/):

This wrote the character only to one side and also closed many things cut to
an even length in the same size with the string of leather.

Machine translation by TransLand
(www.brother.co.jp/jp/honyaku/demo/index.html):

A letter was written only to the settlement side, and this how many sheets
of things which cut it into the same size and which was completed with the
leather string, too.

Machine translation by iTranslator
(itranslator.mendez.com/BGSX/BGSXeng_us-EntryPage.htm):

For this, as writing a character, I cut and leveled it for a similar size for one
side only, and any sheets are of a leather.

Machine translation by !!
(ai2you.com/goma/):

This bound the one, that writes only to one side and evenly cut a/the
character to the same size with the strings of many sheets of leather.

 Fig. 1. Example output of machine translation systems

problem in Japanese is that the individual words are not separated by spaces so
that the reader has to guess the word boundaries.

All these difficulties make reading and translating Japanese sentences a cum-
bersome and tedious process. If the reader reaches an inscrutable text passage,

Incremental Learning of Transfer Rules for Customized Machine Translation 49

he must first guess where an unknown word starts and then consult a dictio-
nary. To look up the word in a bilingual dictionary is quite straightforward as
long as the reader is sure about the correct pronunciation, otherwise he has to
consult a kanji dictionary, which lists kanji and their readings categorized by
214 basic elements or radicals. The retrieval of this kanji information is again a
time-consuming task, especially because the radicals appear in different shapes
depending on the position within the kanji.

Online documents have the great advantage that they enable the use of con-
venient tools, which assist the reader in comprehending the meaning of the
Japanese text. Today, there exist several Web sites that offer information about
kanji as well as English or German translations of Japanese words as pop-up
hints just by pointing with the mouse at a certain text position, e.g. POPjisho1

or Rikai2. Even if these tools are very useful, there are still often problems with
the correct segmentation and the retrieval of conjugated words.

In a previous project we developed a reading tool for the use within Mi-
crosoft Word. We implemented this environment by using Amzi! Prolog, which
provides full Unicode support so that Japanese characters can be used freely
in the Prolog source code. Its application programming interface to Visual
Basic enabled us to embed the Prolog program into the text editor. The
implemented functionality of our reading tool included correct segmentation,
the lookup of conjugated words, and the addition of new word definitions.
This application represented also an evaluation of the scalability of Amzi!
Prolog. We could achieve excellent performance although we searched 6,355
entries extracted from the kanji dictionary KANJIDIC3, 100,014 entries from
the Japanese-English dictionary EDICT4, and 190,251 entries from the
Japanese-German dictionary WaDokuJT5.

Another, less satisfying observation with using our reading environment was
that even with all this information available, it was still often not possible to
correctly reproduce the intended meaning of a Japanese text. The main rea-
son for this lies in the complexity of the translation task for the language pair
Japanese–German caused by the very different grammars of the two languages.
Whereas German grammar has a very specific system of declensions and con-
jugations to express number, gender, case, tense, mood, voice, etc., Japanese is
highly ambiguous regarding most of these features, e.g. there exist no articles
to indicate gender or definiteness, no declension to indicate number or case, and
only two tenses. The ambiguity is further increased dramatically by the exten-
sive use of ellipsis in Japanese. Therefore, a machine translation system requires
sophisticated disambiguation techniques [1, 17, 19, 20] and anaphoric resolution
strategies [12, 16, 18, 27].

1 http://www.popjisyo.com
2 http://www.rikai.com/perl/Home.pl
3 http://www.csse.monash.edu.au/~jwb/kanjidic.html
4 http://www.csse.monash.edu.au/~jwb/edict.html
5 http://www.wadoku.de

50 W. Winiwarter

Instead of a lengthy discussion of the state of the art of systems available
for Japanese translation, we show the results of an entertaining experiment in
Fig. 1. The figure lists the attempts of several machine translation programs to
translate a sentence about producing a parchment codex. We could only find one
program that also translates into German, all others translate only into English.
All the examples are taken from free online translation Web sites, except the
last entry, which was produced by a commercial product.

As can be seen, the results are far from satisfactory. All the systems are
certainly not suitable for fully automatic high quality machine translation. It is
sometimes even hard or impossible to grasp the exact meaning of a Japanese
sentence from the mutilated translations.

This unsatisfactory situation was the motivation for us to meet the challenge
of developing a high quality machine translation system from Japanese into
German. In our approach the system learns the transfer rules incrementally from
translation examples by using structural matching between the syntax trees. This
way the user can customize the system according to his personal preferences.
If the user is not satisfied with a translation result, he can simply correct the
translation and activate the adaptive learning module, which results in an update
of the translation rule base.

We have integrated our machine translation system with the previously de-
veloped reading tool to create the Personal Embedded Translation and Reading
Assistant (PETRA). PETRA’s main aim is to assist German-speaking language
students in reading and translating Japanese documents. PETRA offers the stu-
dents valuable information, which the students apply to solve the translation
task at hand. This encourages a bidirectional knowledge transfer so that the
students play an active role during their whole interaction with PETRA. There-
fore, studying Japanese becomes more interesting and entertaining.

The rest of the paper is organized as follows. In Sect. 2 we first provide a brief
discussion of related work. Then we give an overview of the system architecture
in Sect. 3 before we describe the technical details of the individual components
of our translation environment in Sect. 4, i.e. tokenization, parsing, learning,
transfer, and generation. Finally, we close the paper with concluding remarks
and an outlook on future work.

2 Related Work

Research on machine translation has a long tradition (for good overviews see
[7, 8, 9, 11, 22]). The state of the art in machine translation is that there are
quite good solutions for narrow application domains with a limited vocabulary
and concept space. For more general use only systems for very similar language
pairs promise to produce output that is acceptable or at least comprehensible. It
is the general opinion that fully automatic high quality translation without any
limitations on the subject and without any human intervention is far beyond the
scope of today’s machine translation technology, and there is serious doubt that
it will be ever possible in the future [10].

Incremental Learning of Transfer Rules for Customized Machine Translation 51

This is true for transfer-based machine translation systems, which try to find
mappings between specific language pairs, and even more so for interlingua-based
machine translation systems aiming to find a language-independent representa-
tion that mediates among arbitrary languages. The latter are also often referred
to as knowledge-based machine translation systems [15, 23, 24] because in most
cases a semantic representation of the sentence meaning is used as interlingua.
The most ambitious initiative in this direction is probably UNL6; one recent
system limited to the translation of Japanese, Spanish, and Arabic texts into
English is GAZELLE [6].

It is very disappointing to have to notice that the translation quality has
not much improved in the last 10 years [28]. One main obstacle on the way
to achieving better quality is seen in the fact that most of the current ma-
chine translation systems are not able to learn from their mistakes. Most of
the translation systems consist of large static rule bases with limited cover-
age, which have been compiled manually with huge intellectual effort. All the
valuable effort spent by users on post-editing translation results is usually lost
for future translations.

As a solution to this knowledge acquisition bottleneck, corpus-based machine
translation tries to learn the transfer knowledge automatically on the basis of
large bilingual corpora for the language pair (for a good survey and discussion
see [14]). Statistical machine translation [3, 4] basically translates word-for-word
and rearranges the words afterwards in the right order. Such systems have only
been of some success for very similar language pairs. For applying statistical
machine translation to Japanese several hybrid approaches have been proposed
that also make use of syntactic knowledge [29, 30].

The most prominent approach for the translation of Japanese has been
example-based machine translation [21, 26]. The basic idea is to collect trans-
lation examples for phrases and to use a best match algorithm to find the closest
example for a given source phrase. The translation of a complete sentence is
then built by combining the retrieved target phrases. The different approaches
vary in the representation of the translation examples. Whereas some approaches
store structured representations for all concrete examples [2], others explicitly
use variables to produce generalized templates [5, 13]. However, the main draw-
back remains that most of the representations of translation examples used in
example-based systems of reasonable size have to be manually crafted or at least
reviewed for correctness [25].

To summarize, we are faced with the dilemma that by relying on the available
approaches one can either spend several years of effort in creating hand-coded
transfer rules or a knowledge-based interlingua – ending up with a large knowl-
edge base that is difficult to maintain – or put one’s trust in statistical machine
translation based on huge bilingual corpora resulting in mediocre translations
caused by the use of inaccurate approximations. Example-based machine trans-
lation somehow offers a compromise: one can choose how much effort one wants

6 www.undl.org.

52 W. Winiwarter

to invest in adding or correcting translation examples in order to improve the
translation quality.

3 System Architecture

In our approach we use translation examples provided by the user to learn the
transfer rules incrementally by using structural matching between the corre-
sponding syntax trees. There were several considerations that guided us towards
this design choice:

– as our aim was to develop a domain-independent machine translation system,
an interlingua-based approach was out of the question,

– we did not have the resources to manually build a large transfer rule base,
also a handcrafted rule base is in conflict with our need for flexible adapta-
tion,

– we had no huge bilingual corpus available for Japanese–German, also the
insufficient data quality of today’s large corpora would interfere with our
demand for high quality translations,

– even if we had an adequate corpus, the poor results achieved by statistical
techniques and the manual effort to compile translation templates of suffi-
cient quality for the use in example-based machine translation prohibit the
use of existing approaches,

– in our opinion there exists no “perfect” translation but only a preferred one
for a certain user, therefore we aim at full customization of our machine
translation system,

Tokenization
Japanese input

German input
Tokenization

Parsing

Japanese
token list

Parsing

German
token list

Japanese
lexicon

German
lexicon

Learning

German
syntax tree

Japanese
syntax tree

Transfer
rules

Japanese
grammar

 German
grammar

Fig. 2. Learning mode

Incremental Learning of Transfer Rules for Customized Machine Translation 53

– the interactive improvement of translation results has also an important ped-
agogical benefit for the language students because it turns a boring transla-
tion task into an entertaining hands-on experience,

– the structured representation in the syntax trees proved to be an efficient
input to the learning algorithm, and we can display the trees to language
students as additional valuable information.

The operation of our machine translation system can be divided into a learn-
ing mode and a translation mode. In the learning mode (see Fig. 2) we derive
new transfer rules by using a Japanese–German sentence pair as input. Both
sentences are first analyzed by the tokenization modules, which produce the cor-
rect segmentations into word tokens associated with their part-of-speech (POS)
tags. Both token lists are then transformed into syntax trees by the parsing
modules. The syntax trees represent the input to the learning module, which
uses a structural matching algorithm to discover new transfer rules.

In the translation mode (see Fig. 3) we translate a Japanese sentence into
the corresponding German sentence by invoking the transfer module. It applies
the transfer rules stored in the rule base to transform the Japanese syntax tree
into the corresponding German syntax tree. Finally, the task of the generation
module is to produce the surface form of the German sentence as a character
string. Of course, the user can correct the translation result and activate the
learning mode to incrementally improve the quality of the transfer rule base.

In Sect. 4 we give a more detailed technical description of the individual
modules. We illustrate their mode of operation by using the sentence in Fig. 1
as a running example throughout the rest of this paper.

Tokenization
Japanese input

German output
Generation

Parsing

Japanese
token list

Transfer

German
syntax tree

Japanese
lexicon

German
lexicon

Japanese
syntax tree

Transfer
rules

Japanese
grammar

Fig. 3. Translation mode

54 W. Winiwarter

4 System Description

4.1 Tokenization

The task of the tokenization module is to analyze the surface string of a sentence,
to divide the string into words, to lemmatize the words (i.e. to reduce inflectional
and variant forms of a word to their base form), and to annotate the base forms
with POS tags. Figure 4 shows the token list for our example sentence. The
demonstrative pronoun “kore” is an anaphoric reference to “the parchment”,
which was introduced before in the Japanese text. The ta-form of a verb indicates
English past tense (expressed as perfect tense in German), whereas the te-form is
the connective form. The expression “nan mai mo” (literally “what thin objects
also”) means “several sheets” in this context.

Japanese sentence:

Segmentation:

| | | | | | | | | | | | | |
| | | | | | | | | | |

Roman transcription:
Kore wa, katamen dake ni ji o kaite, onaji ookisa ni kirisoraeta
mono o, nan mai mo kawa no himo de tojita.

/dpr demonstrative pronoun – kore – it

/par particle – wa – (topic indicator)
/cma comma

/nou noun – katamen – one side
/suf suffix – dake – only

/par particle – ni – on
/nou noun – ji – character
/par particle – o – (direct object indicator)

/vte verb te-form – kaku – to write
/cma comma

/ano adjectival noun – onaji – same
/nou noun – ookisa – size

/par particle – ni – to
/vta verb ta-form – kirisoraeru – to trim

/nou noun – mono – thing
/par particle – o – (direct object indicator)
/cma comma
/ipr interrogative pronoun – nan – what
/cou counter – mai – thin object
/par particle – mo – also
/nou noun – kawa – leather
/par particle – no – (attribution indicator)

/nou noun – himo – lace
/par particle – de – with

/vta verb ta-form – tojiru – to bind together
/per period

Fig. 4. Example of Japanese token list

Incremental Learning of Transfer Rules for Customized Machine Translation 55

Since Japanese writing does not use word delimiters (such as space char-
acters), we have to represent a Japanese sentence as one single atom during
segmentation. We have to find and remove the correct word token that is the
left subatom of the sentence:

segment(Sentence, [BaseForm/POS|TokenList]) :-
find_token(Sentence, BaseForm, WordLength, POS),
remove_token(Sentence, WordLength, TokenList).

To remove the word token from the sentence we use the information about
the word length to calculate the subatom that has to be extracted. Then we
continue recursively with the retrieval of the next word token. The recursion
ends when the word length equals the length of the remaining partial sen-
tence:

remove_token(Sentence, WordLength, []) :-
atom_length(Sentence, WordLength).

remove_token(Sentence, WordLength, TokenList) :-
atom_length(Sentence, SentenceLength),
StartPos is 1 + WordLength,
RestLength is SentenceLength - WordLength,
sub_atom(String, StartPos, RestLength, RestSentence),
segment(RestSentence, TokenList).

For the identification of the correct word token we retrieve all words from the
Japanese lexicon that are left subatoms of the sentence. From the list of word
candidates we choose the correct word by applying some disambiguation rules.
The default choice is the longest matching sequence:

find_token(Sentence, BaseForm, WordLength, POS) :-
findall(W:B:P, find_word(Sentence, W, B, P), Candidates),
select_word(Candidates, BaseForm, WordLength, POS).

The retrieval of a word from the Japanese lexicon is performed by matching
it with the beginning of the sentence:

find_word(Sentence, Word, Word, POS) :-
jap_lex_entry(Word, POS),
atom_length(Word, WordLength),
sub_atom(Sentence, 1, WordLength, Word).

Since Japanese has quite a complex system of conjugations for verbs and
adjectives, we also have to search for all concatenations of word stems and end-
ings for these two word classes. The base form of conjugated words is computed
by concatenating the stem and the correct base form ending depending on the
conjugation class:

56 W. Winiwarter

find_word(Sentence, Word, BaseForm, POS) :-
jap_lex_verbadj(Stem, ConjClass),
atom_length(Stem, StemLength),
sub_atom(Sentence, 1, StemLength, Stem),
jap_ending(ConjClass, Ending, POS),
atom_length(Ending, EndLength),
StartPos is StemLength + 1,
sub_atom(Sentence, StartPos, EndLength, Ending),
atom_concat(Stem, Ending, Word),
jap_baseform_ending(ConjClass, BaseFormEnding),
atom_concat(Stem, BaseFormEnding, BaseForm).

The tokenization of Japanese sentences requires a lot of processing power,
but is solved by Amzi! Prolog even for large lexicons without any problems.

Compared to this, tokenization of German sentences is quite a trivial task.
It can be solved by simply using the predicate string tokens to transform the
sentence into a list of tokens, which can then be lemmatized separately. Figure 5
shows the German token list for our translation example. Some ambiguities re-
garding syntactic features are resolved later during parsing. For example, for the
noun “Lederriemen” plural and singular forms are identical so that the decision
about the correct number is left to the parsing module. Within the PETRA
environment, the language students can consult the token lists to offer them
valuable information at the word level.

German sentence:
Man hat es nur einseitig beschrieben und mehrere auf gleiche Größe
zurechtgeschnittene Blätter mit Lederriemen zusammengebunden.

man/npr indefinite pronoun – one
haben/apr auxiliary verb present tense – to have
es/pep personal pronoun – it
nur/adv adverb – only
einseitig/apo adjective positive comparison – on one side
beschreiben/vpp verb past participle – to write
und/con conjunction – and
mehrere/npr indefinite pronoun – several
auf/prp preposition – to
gleich/apo adjective positive comparison – same
Größe/nsg noun singular – size
zurechtschneiden/vap verb attributive past participle – to trim
Blatt/npl noun plural – sheet
mit/prp preposition – with
Lederriemen/nsp noun singular or plural – leather lace
zusammenbinden/vpp verb past participle – to bind together
. /per period

Fig. 5. Example of German token list

Incremental Learning of Transfer Rules for Customized Machine Translation 57

4.2 Parsing

The parsing modules compute the syntactic structure of sentences from their
token lists. One interesting property of Japanese grammar is that it uses post-
positions instead of prepositions and that the predicate is at the end of the
sentence. Therefore, it is easier to parse a Japanese sentence from right to left.
Figure 6 shows the syntax tree for our example sentence. As can be seen, the
POS tag for conjugated word forms is indicated as feature hwf (head word form).

hew ver
hwf vta
pob hew nou
 php par
 anp hew nou
dob hew nou
 amo hew cou
 php par
 qua ipr
 avp hew ver
 hwf vta
 pob hew nou
 php par
 aap hew ano
pcl hew ver
 hwf vte
 dob hew nou
 adp hew nou
 php par
 asf suf
 sub dpr

head word – verb – tojiru – to bind together
head word form – verb ta-form
postpositional object – head word – noun – himo – lace
phrase particle – particle – de – with
attributive noun phrase – head word – noun – kawa – leather
direct object – head word – noun – mono – thing
amount – head word – counter – mai – thin object
phrase particle – particle – mo – also
quantity – interrogative pronoun – nan – what
attributive verb phrase – head word – verb – kirisoraeru – to trim
head word form – verb ta-form
postpositional object – head word – noun – ookisa – size
phrase particle – particle – ni – to
attributive adjective phrase – head word – adjectival noun – onaji – same
preceding clause – head word – verb – kaku – to write
head word form – verb te-form
direct object – head word – noun – ji – character
adverbial phrase – head word – noun – katamen – one side
phrase particle – particle – ni – on
attributive suffix – suffix – dake – only
subject – demonstrative pronoun – kore – it

Fig. 6. Example of Japanese syntax tree

We use the Definite Clause Grammar (DCG) preprocessor of Amzi! Prolog
to write the grammar rules. Instead of using a fixed structure to represent the
syntax tree, we opted for a more flexible and robust representation by using sets
modeled as Prolog lists. A sentence is a set of constituents, and each constituent
is a compound term of arity 1 with the constituent name as principal functor
and the argument being either

– a simple constituent (feature value or word/word class) or
– a complex constituent (set of subconstituents).

This flexible representation has the advantage that it is compact, because
empty optional constituents are not stored explicitly, and is not affected by the
ordering of the different subconstituents. The latter is important for a robust
and effective realization of the transfer module so that the transfer rules can
change the syntax tree without having to consider any sequencing information.

During parsing we collect arguments for all possible subconstituents and then
eliminate empty subconstituents by using the predicate compress to remove all
list entries with argument nil.

58 W. Winiwarter

In the following we show some (strongly simplified) grammar rules for a
noun phrase with an optional attributive suffix and an optional attributive noun
phrase (we use the Roman transcription of the particle “no” just in this example):

noun_phrase(NP) --> attr_suffix(Asf), [N/nou], attr_np(Anp),
{compress([hew(N), asf(Asf), anp(Anp)], Np)}.

attr_suffix(Asf) --> [Asf/suf].
attr_suffix(nil) --> [].
attr_np(Anp) --> [no/par], noun_phrase(Anp).
attr_np(nil) --> [].

To facilitate the matching between Japanese and German syntax trees (see
Sect. 4.3) we tried to align the German grammar as best as possible with the
Japanese one. Therefore, we also parse German sentences from right to left.
For that purpose we have to perform a preprocessing step on the token list in
which we shift all prepositions to the end of prepositional phrases so that they are
parsed first. Figure 7 shows the German syntax tree for our translation example.
As mentioned in Sect. 4.1 we resolve ambiguous feature values during parsing,
e.g. now we can assign the correct number plural to “Lederriemen”.

hew ver zusammenbinden
ten per
pob hew nou Lederriemen
 php prp mit
 det nod
 num plu
dob hew nou Blatt
 det nod
 num plu
 aip npr mehrere
 avp hew ver zurechtschneiden
 ten per
 pob hew nou Größe
 php prp auf
 det nod
 num sng
 aap hew adj gleich
 com pos
sub npr man
pcl hew ver beschreiben
 ten per
 php con und
 pap hew adj einseitig
 com pos
 aav adv nur
 dob pep es

head word – verb – to bind together
tense – perfect
prepositional object – head word – noun – leather lace
phrase particle – preposition – with
determiner type – no determiner
number – plural
direct object – head word – noun – sheet
determiner type – no determiner
number – plural
attributive indefinite pronoun – indefinite pronoun – several
attributive verb phrase – head word – verb – to trim
tense – perfect
prepositional object – head word – noun – size
phrase particle – preposition – to
determiner type – no determiner
number – singular
attributive adjective phrase – head word – adjective – same
comparison – positive
subject – indefinite pronoun – one
preceding clause – head word – verb – to write
tense – perfect
phrase particle – conjunction – and
predicative adjective phrase – head word – adjective – on one side
comparison – positive
attributive adverb – adverb – only
direct object – personal pronoun – it

Fig. 7. Example of German syntax tree

For displaying the parsing trees to the user we have implemented one generic
display module for both Japanese and German syntax trees, which is also able
to deal with mixed representations caused by missing coverage of the transfer
rule base. This way we can show the limitations of the translation system to the
language student who can easily fix them with an update of the rule base.

Incremental Learning of Transfer Rules for Customized Machine Translation 59

4.3 Learning

The learning module traverses the Japanese and German syntax trees and derives
new transfer rules, which are added to the rule base. For that purpose we have
implemented generic predicates for the simultaneous navigation in two complex
constituents. We start to search for new rules at the sentence level before we look
for corresponding constituents to continue the search for finer-grained transfer
rules recursively. We always perform a complete traversal, i.e. new rules are
learnt even if they are not required for the translation of the Japanese sentence
in order to extract as much information as possible from the example.

We distinguish between four different types of transfer rules for simple con-
stituents (SC) and complex constituents (CC). The transfer rules are stored as
facts in Prolog:

– tr sc(C1,C2,A1,A2): changes the SC C1(A1) to C2(A2),
– tr asc(A1,A2): changes the argument of an SC from A1 to A2,
– tr cc(C1,C2,Hew,Req1,Req2): changes the CC C1(A1), A1=Req1∪Opt, to

C2(A2), A2=Req2∪Opt, if hew(Hew)∈A1,
– tr acc(Hew,Req1,Req2): changes the argument of a CC from A1=Req1∪Add

to A2=Req2∪Add if hew(Hew)∈A1.
Hew serves as index for the fast retrieval of matching rules and the reduction

of the number of rules that have to be analyzed. For transfer rules of type
tr acc any additional subconstituents are allowed in Add, whereas Opt in rules of
type tr cc can only contain certain optional subconstituents. Transfer rules for
complex constituents can use shared variables for unification in Req1 and Req2.
In addition to those four generic rule types, we also use several more specific
types, e.g. for the correct translation of conjunctions and syntactic features.

Figure 8 shows the transfer rules that we can learn from our translation
example. We omit the default rules for deriving the perfect tense from the head
word form vta, for deriving the conjunction “und” from the head word form
vte, and for inserting the indefinite pronoun “man” for the missing subject. The
suffix “dake” is an optional subconstituent, which can extend the set of required
subconstituents in Rule 8. Rule 1 and Rule 4 are two examples of transfer rules
that use shared variables for unification.

The principal steps for performing the structural matching between two com-
plex constituents are:

– we either derive transfer rules of type tr asc for the head word or transfer
rules of type tr acc for head/modifier combinations,

– we derive transfer rules of type tr sc or tr cc to translate a Japanese sub-
constituent into a different German subconstituent,

– we search for corresponding subconstituents and apply the matching recur-
sively to those subconstituents,

– we derive transfer rules for conjunctions and syntactic features.

Each rule is validated against the existing rules to resolve all conflicts arising
from adding the new rule to the rule base. The resolution is achieved by making
the conflicting rules more specific.

60 W. Winiwarter

hew ver
hwf vta
pob hew nou
 php par
 anp hew nou
dob hew nou
 amo hew cou
 php par
 qua ipr
 avp hew ver
 hwf vta
 pob hew nou
 php par
 aap hew ano
pcl hew ver
 hwf vte
 dob hew nou
 adp hew nou
 php par
 asf suf
 sub dpr

hew ver zusammenbinden
ten per
pob hew nou Lederriemen
 php prp mit
 det nod
 num plu
dob hew nou Blatt
 det nod
 num plu
 aip npr mehrere
 avp hew ver zurechtschneiden
 ten per
 pob hew nou Größe
 php prp auf
 det nod
 num sng
 aap hew adj gleich
 com pos
sub npr man
pcl hew ver beschreiben
 ten per
 php con und
 pap hew adj einseitig
 com pos
 aav adv nur
 dob pep es

Rule 1

Rule 2

Rule 3

Rule 5
Rule 6

Rule 4

Rule 7

Rule 8

Rule 10
Rule 9

Fig. 8. Example of learning transfer rules

4.4 Transfer

The transfer module traverses the Japanese syntax tree and searches for transfer
rules that can be applied. The flexible definition of the rules enables a robust
processing of the syntax tree. One rule only changes certain parts of a con-
stituent into the German equivalent, other parts are left unchanged to be trans-
formed later on. Thus, our transfer algorithm deals efficiently with a mixture of
Japanese–German, which gradually turns into a correct German syntax tree.

To translate the argument A1 of a constituent C(A1) into A2 we have defined
the predicate tf arg(C, A1, A2). For simple constituents we just apply transfer
rules of type tr asc, for complex constituents we first apply transfer rules of
type tr acc (predicate tf acc(A1, A2)) as well as rules for conjunctions and
syntactic features before we recursively call the predicate tf sub(Csub, A1,
A2) for the translation of each subconstituent Csub(Asub):

Incremental Learning of Transfer Rules for Customized Machine Translation 61

tf_sub(Csub, A1, A2) :-
find_subconstituent(Csub, A1, Asub),
tf_sub_arg(Csub, Asub, A1, A2).

tf_sub(_, A, A).

The predicate find subconstituent retrieves the argument Asub for the
subconstituent Csub(Asub). It fails if no subconstituent with constituent name
Csub is included in A1. The predicate tf sub arg first tries to apply rules of type
tr sc and tr cc to replace the Japanese subconstituent with a different German
subconstituent before it recursively calls the predicate tf arg to translate the
argument Asub:

tf_sub_arg(Csub, Asub, A1, A2) :-
tr_sc(Csub, Csub2, Asub, Asub2),
replace_subconstituent(Csub, Csub2, A1, Asub2, A2).

tf_sub_arg(Csub, Asub, A1, A2) :-
tf_cc(Csub, Csub2, Asub, Asub2),
replace_subconstituent(Csub, Csub2, A1, Asub2, A2).

tf_sub_arg(Csub, Asub, A1, A2) :-
tf_arg(Csub, Asub, Asub2),
Asub \== Asub2,
replace_arg_subconstituent(Csub, A1, Asub2, A2).

tf_sub_arg(_, _, A, A).

To apply transfer rules of type tr acc we retrieve the head word from A1 as
index for the access to matching transfer rules and then call split to unify the
subconstituents in Req1 with the corresponding subconstituents in A1:

tf_acc(A1, A2) :-
find_subconstituent(hew, A1, Hew),
tr_acc(Hew, Req1, Req2),
split(A1, Req1, Add),
append(Req2, Add, A2).

tf_acc(A, A).

The predicate split takes every subconstituent in Req1, retrieves the corre-
sponding subconstituent in A1 and unifies the two structures. This way we can
guarantee that the unification is not affected by the order of the subconstituents
in Req1 and A1. As a byproduct of this sorting procedure, split returns the set
of additional subconstituents Add=A1\Req1, i.e. all subconstituents in A1 that
were not retrieved. Figure 9 shows an example of the application of a transfer
rule of type tr acc with a shared variable for unification (Rule 4 in Fig. 8). The
predicate tf cc for the application of transfer rules of type tr cc is defined in
a similar way.

62 W. Winiwarter

Fig. 9. Example of the application of a transfer rule

4.5 Generation

To generate the surface form of a German sentence, we traverse the syntax tree in
a top-down fashion. For each complex constituent we transform its argument into
a list of surface strings, which is computed recursively from its subconstituents
as nested list and flattened afterwards. The syntactic features to compute the
correct determiners and the declensions and conjugations of German words are
partly included in the German syntax tree, e.g. number or tense, and partly
retrieved from the German lexicon, e.g. gender. In the following we show the
(strongly simplified) predicate to generate the list of surface strings for a noun
phrase (the predicate find optional subconstituent returns nil if it cannot
find the subconstituent):

generate_np(nil, _, []).
generate_np(NP, Case, StringList) :-

find_subconstituent(hew, NP, Hew/nou),
find_subconstituent(det, NP, Det),
find_subconstituent(num, NP, Num),
ger_lex_noun(Hew, Gender, DeclClass),
generate_det(Det, Num, Case, Gender, Determiner),
find_optional_subconstituent(aap, NP, Aap),
generate_aap(Aap, Det, Num, Case, Gender, Adjective),
generate_hew(Hew, Num, Case, DeclClass, Noun),
flatten([Determiner, Adjective, Noun], StringList).

generate_np(_, _, []).

After the complete traversal of the syntax tree, the resulting flat list of surface
strings is transformed into a single character string by inserting spaces where
appropriate.

Finally, we provide some means for the resolution of simple intersentential
anaphora by storing candidates for antecedents in previous sentences, e.g. to
compute the correct surface form of a personal pronoun.

Incremental Learning of Transfer Rules for Customized Machine Translation 63

5 Conclusion

In this paper we have presented a customizable machine translation system,
which incrementally learns transfer rules from translation examples provided by
a user. We have completed the implementation of the translation system and the
integration into the language learning environment PETRA. We are now in the
process of filling the transfer rule base with the help of several language students
from the University of Vienna. So far, the feedback from the students has been
very positive. For some, PETRA has already become an invaluable companion
throughout their language studies.

Whereas at the moment language students are our main target audience,
we hope to reach a level of linguistic competence in the near future that will
make it also possible for non-specialist users to benefit from our translation
environment. In addition to constantly extending the coverage of our machine
translation system, future work will also concentrate on a thorough evaluation
of the system according to the FEMTI7 framework.

References

1. Bond, F., Ogura, K., Kawaoka, T.: Noun phrase reference in Japanese-to-English
machine translation. Proceedings of the 7th International Conference on Theoret-
ical and Methodological Issues in Machine Translation, Leuven, Belgium (1995)

2. Brockett, C. et al.: English-Japanese example-based machine translation using ab-
stract linguistic representations. Proceedings of the COLING-2002 Workshop on
Machine Translation in Asia, Taipei, Taiwan (2002)

3. Brown, P.: A statistical approach to machine translation. Computational Linguis-
tics 16(2) (1990) 79–85

4. Brown, P. et al.: The mathematics of statistical machine translation: Parameter
estimation. Computational Linguistics 19(2) (1993) 263–311

5. Furuse, O., Iida, H.: Cooperation between transfer and analysis in example-based
framework. Proceedings of the 14th International Conference on Computational
Linguistics, Nantes, France (1992) 645–651

6. Germann, U.: Making semantic interpretation parser-independent. Proceedings of
the 3rd AMTA Conference, Longhorne, USA (1998) 286–299

7. Hutchins, J.: Machine Translation: Past, Present, Future. Ellis Horwood (1986)
8. Hutchins, J.: Machine translation over 50 years. Histoire epistémologie langage

23(1) (2001) 7–31
9. Hutchins, J.: Has machine translation improved? Some historical comparisons. Pro-

ceedings of the 9th MT Summit, New Orleans, USA (2003) 181–188
10. Hutchins, J.: Machine translation and computer-based translation tools: What’s

available and how it’s used. In: Bravo, J. M., ed.: A New Spectrum of Translation
Studies. University of Valladolid (2003)

11. Hutchins, J., Somers, H.: An Introduction to Machine Translation. Academic Press
(1992)

12. Isozaki, H., Hirao, T.: Japanese zero pronoun resolution based on ranking rules and
machine learning. Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Sapporo, Japan (2003) 184–191

7 www.isi.edu/natural-language/mteval/.

64 W. Winiwarter

13. Kaji, H., Kida, Y., Morimoto, Y.: Learning translation examples from bilingual
text. Proceedings of the 14th International Conference on Computational Linguis-
tics, Nantes, France (1992) 672–678

14. Knight, K.: Automatic knowledge acquisition for machine translation. AI Magazine
18(4) (1997) 81–96

15. Leavitt, J. R. R., Lonsdale, D. W., Franz, A. M.: A reasoned interlingua for
knowledge-based machine translation. Proceedings of the 10th Canadian Confer-
ence on Artificial Intelligence, Banff, Canada (1994)

16. Murata, M., Isahara, H., Nagao, M.: Pronoun resolution in Japanese sentences
using surface expressions and examples. Proceedings of the ACL-99 Workshop on
Coreference and its Applications, Maryland, USA (1999)

17. Murata, M., Nagao, M.: Determination of refential property and number of nouns
in Japanese sentences for machine translation into English. Proceedings of the 5th
International Conference on Theoretical and Methodological Issues in Machine
Translation, Kyoto, Japan (1993) 218–225

18. Murata, M., Nagao, M.: Resolution of verb ellipsis in Japanese sentence using
surface expressions and examples. Proceedings of the Natural Language Processing
Pacific Rim Symposium, Phuket, Thailand (1997) 75–80

19. Murata, M. et al.: An example-based approach to Japanese-to-English translation
of tense, aspect, and modality. Proceedings of the 8th International Conference
on Theoretical and Methodological Issues in Machine Translation, Chester, United
Kingdom (1999) 66–76

20. Murata, M. et al.: A machine-learning approach to estimating the referential prop-
erties of Japanese noun phrases. Proceedings of the CICLing-2001 Conference on
Intelligent Text Processing and Computational Linguistics, Mexico City, Mexico
(2001)

21. Nagao, M.: A framework of a mechanical translation between Japanese and English
by analogy principle. In: Elithorn, A., Banerji, R., eds.: Artificial and Human
Intelligence. NATO Publications (1984)

22. Newton, J., ed.: Computers in Translation: A Practical Appraisal. Routledge (1992)
23. Nirenberg, S. et al.: Machine Translation: A Knowledge-Based Approach. Morgan

Kaufmann Publishers (1992)
24. Onyshkevych, B., Nirenburg, S.: A lexicon for knowledge-based MT. Machine

Translation 10(1-2) (1995) 5–57
25. Richardson, S. et al.: Overcoming the customization bottleneck using example-

based MT. Proceedings of the ACL Workshop on Data-driven Machine Translation,
Toulouse, France (2001) 9–16

26. Sato, S.: Example-Based Machine Translation. PhD thesis, Kyoto University (1991)
27. Seki, K., Atsushi, F., Ishikawa, T.: A probabilistic method for analyzing Japanese

anaphora integrating zero pronoun detection and resolution. Proceedings of the
19th International Conference on Computational Linguistics, Taipei, Taiwan
(2002) 911–917

28. Somers, H., ed.: Computers and Translation: A Translator’s Guide. John Benjamins
(2003)

29. Watanabe, T., Imamura, K., Sumita, E.: Statistical machine translation based on
hierarchical phrase alignment. Proceedings of the 9th International Conference on
Theoretical and Methodological Issues in Machine Translation, Keihanna, Japan
(2002) 188–198

30. Yamada, K.: A Syntax-Based Statistical Translation Model. PhD thesis, University
of Southern California (2002)

Quality Measures and Semi-automatic Mining
of Diagnostic Rule Bases

Martin Atzmueller, Joachim Baumeister, and Frank Puppe

Department of Computer Science,
University of Würzburg, 97074 Würzburg, Germany
Phone: +49 931 888-6739, Fax: +49 931 888-6732

{atzmueller, baumeister, puppe}@informatik.uni-wuerzburg.de

Abstract. Semi-automatic data mining approaches often yield better results than
plain automatic methods, due to the early integration of the user’s goals. For
example in the medical domain, experts are likely to favor simpler models instead
of more complex models. Then, the accuracy of discovered patterns is often not
the only criterion to consider. Instead, the simplicity of the discovered knowledge
is of prime importance, since this directly relates to the understandability and the
interpretability of the learned knowledge.

In this paper, we present quality measures considering the understandability
and the accuracy of (learned) rule bases. We describe a unifying quality measure,
which can trade-off small losses concerning accuracy vs. an increased simplicity.
Furthermore, we introduce a semi-automatic data mining method for learning
understandable and accurate rule bases. The presented work is evaluated using
cases from a real world application in the medical domain.

1 Introduction

Automatic methods for learning rules commonly perform well concerning the classi-
fication accuracy of the learned models. However, often the understandability of the
learned patterns is poor, which is problematic if the learned knowledge should be man-
ually processed in further steps. Semi-automatic approaches often yield better results
than plain automatic methods, due to the early integration of the user’s goals. In such
semi-automatic scenarios the learned knowledge is not used as a black-box reasoning
engine, but can be refined incrementally by other techniques, e.g., human interpretation.

Furthermore, semi-automatic learning methods can incorporate additional back-
ground knowledge for further quality improvements. When guiding the knowledge dis-
covery process, it often turns out that user interests concerning the accuracy of the
learned knowledge are not related to other aspects, e.g., simplicity of the patterns [1, 2].
So, the knowledge discovery method should take both accuracy and simplicity of the
learned knowledge into account.

In this paper, we present quality measures for rating the simplicity and the accuracy
of a learned rule base, and we briefly introduce a semi-automatic learning method for
simple scoring rules. Besides the discussed quality measures we propose a unifying
quality measure balancing the accuracy and the understandability of a given rule base.

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 65–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

66 M. Atzmueller, J. Baumeister, and F. Puppe

It is worth noticing, that the presented measures are not only applicable to scoring rules
but can be easily generalized to other rule-based approaches, e.g., association rules.
However, in this paper we focus on the application of scoring rules.

Our implementation and evaluation is based on the knowledge-based documentation
and consultation system for sonography SONOCONSULT [3]. The cases are detailed de-
scriptions of findings of the examination(s), together with the inferred diagnoses (con-
cepts). The cases acquired using SONOCONSULT have a high quality regarding the
derived diagnoses as evaluated by medical experts (cf. [3]).

The rest of the paper is organized as follows: In Section 2 we define the basic notions
used in this paper, and we introduce diagnostic scores implemented by scoring rules as
an intuitive concept for representing diagnostic knowledge. In Section 3 we present
simplicity measures for diagnostic scores and scoring rules. These measures are used to
determine the understandability of the learned knowledge. We present a unifying quality
measure taking both the simplicity and the accuracy of the rule base into account. In
Section 4 we outline a method for learning diagnostic scores, and discuss additional
background knowledge that is applicable to the learning task. An evaluation using a
real-world case base is given in Section 5. We conclude the paper in Section 6 discussing
the presented work, and we show promising directions for future work.

2 Diagnostic Scores Using Scoring Rules – An Overview

We first give an introduction to the applied knowledge representation before discussing
appropriate quality measures and semi-automatic learning methods. Let ΩQ be the uni-
verse set of all questions available in the problem domain. In the context of machine
learning methods, questions are commonly called attributes. A value v ∈ dom(q) as-
signed to a question q ∈ ΩQ is called a finding, and we call ΩF the set of all possible
findings in the given problem domain. A finding f ∈ ΩF is denoted by q:v for q ∈ ΩQ

and v ∈ dom(q). The set Fq ⊆ ΩF of possible findings for a given question q is defined
as Fq = {f ∈ ΩF | f = q:v ∧ v ∈ dom(q)}. Each finding f ∈ ΩF is defined as a
possible input of a diagnostic knowledge system.

Let d be a diagnosis representing a possible output of a diagnostic knowledge sys-
tem. We define ΩD to be the universe of all possible diagnoses for a given problem
domain. With respect to a given problem a symbolic state

dom(d) = {not probable, undefined , probable}
is assigned to a diagnosis d ∈ ΩD.

A case c is defined as a tuple c = (Fc,Dc, Ic), where Fc ⊂ ΩF is the set of ob-
served findings for the given case. The set Dc ⊆ ΩD contains the diagnoses describing
the solution of the case c, and Ic contains additional (meta-) information describing
the case c in more detail. The set of all possible cases for a given problem domain is
denoted by ΩC . For the learning task we consider a case base CB ⊆ ΩC containing all
available cases that have been solved previously.

Diagnostic scores, e.g., [4, 5] are a rather wide spread formalism for medical deci-
sion making. For inferring a diagnosis a limited number of findings is used in a regular
and simple to interpret manner. In its simplest form, each observed finding individu-

Quality Measures and Semi-automatic Mining of Diagnostic Rule Bases 67

ally contributes one point to an account. If the total score of the account exceeds a
given threshold, then the diagnosis is established. Diagnostic scores are commonly im-
plemented using scoring rules, which are used to derive a specific diagnosis. A simple
scoring rule r is denoted by r = f

s→ d , where f ∈ ΩF is a finding, and d ∈ ΩD is the
target diagnosis. For each rule a symbolic confirmation category s ∈ Ωscr is attached
with Ωscr ∈ {S3, S2, S1, 0, S-1, S-2, S-3 }. Formally, a diagnostic score DS (d) for a
diagnosis d ∈ ΩD is defined as the set of scoring rules r ∈ R that contain d in their
rule action, i.e., DS (d) = {r ∈ R | r = f

s→ d ∧ f ∈ ΩF} . Let ΩR be the universe of
all possible rules for the sets ΩF , ΩD and Ωscr . Then, we call R ⊆ ΩR the rule base
containing the inferential knowledge of the problem domain.

Confirmation categories of scoring rules are used to represent a qualitative degree
of uncertainty. In contrast to quantitative approaches, e.g., Bayesian methods, symbolic
categories state the degree of confirmation or disconfirmation for a diagnosis. In this
way, a symbolic category s expresses the uncertainty for which the observation of find-
ing f will confirm/disconfirm the diagnosis d. Whereas s ∈ {S1, S2, S3} stand for
confirming symbolic categories in ascending order, the categories s ∈ {S-1, S-2, S-3}
are ascending categories for disconfirming a diagnosis. A rule with category 0 has no
effect on the diagnosis’ state, and therefore is usually omitted from the rule base. It
is worth noticing, that the value range Ωscr of the possible symbolic categories is not
fixed. For a more detailed (or coarse) representation of confirmation the value range
may be extended (or reduced).

For a given case c ∈ ΩC the final state of each diagnosis d ∈ ΩD is determined
by evaluating the available scoring rules r ∈ R targeting d. Thus, rules r = f

s→ d
contained in R are activated, iff f is observed in case c, i.e., f ∈ Fc. The symbolic
categories of the activated rules are aggregated by adding the categories in a way, so that
four equal categories result in the next higher category (e.g., S1 +S1 +S1 +S1 = S2),
and so that two equal categories with opposite sign nullify (e.g., S1 + S-1 = 0). For a
more detailed or coarse definition of Ωscr the aggregation procedure may be adapted.
A diagnosis is assumed to be probable (i.e., part of the final solution of the case), if
the aggregated score is greater or equal than the symbolic category S3. Analogously, a
diagnosis is assumed to be not probable, if the aggregated score is less or equal than the
symbolic category S-3.

Scoring rules have proved to be useful in large medical knowledge bases, e.g., in the
INTERNIST/QMR project [6]. In our own work with the shell-kit D3, scores have been
applied successfully in many (large) knowledge system projects, e.g., in a biological
application [7] or in medical domains [3] and technical domains [4] using generalized
scores.

3 Quality Measures for Diagnostic Rule Bases

When we consider the quality of the learned knowledge in the semi-automatic setting,
then we are not only interested in classification accuracy, but also in understandabil-
ity of the learned patterns. Understandability, unexpectedness, actionability, surpris-
ingness, validity and simplicity measured on rules, or patterns in general, are several
interestingness measures used in data mining research [8, 9].

68 M. Atzmueller, J. Baumeister, and F. Puppe

Quality measures =

Simplicity measures

Applied findings
Rule base size
Mean scoring rules
Mean score categories

Accuracy measures

Precision
Recall
E-measure / F-measure

Fig. 1. Quality measures for (scoring) rule bases

Validity is most often measured, and together with the simplicity it can be regarded
as an objective measure. We will focus on these measures, for which we assess the accu-
racy, corresponding to validity. The understandability of the learned scores is typically
defined by its simplicity, which can be measured with respect to the learned scoring
rules in the rule base R ⊆ ΩR. If the learned rules have a low complexity, then it is
easier for the expert/user to understand the corresponding scores.

In general, a score is considered to be the more complex, the more findings it con-
tains. This directly corresponds to the number of learned rules per diagnosis. An overall
impression of the simplicity of the learned scores is given by the total number of learned
rules. Furthermore, as a global simplicity measure we count the total number of findings
used in scoring rules of the rule base. Usually a moderate number of findings is consid-
ered more comprehensible than a large number of findings. Similarly, the comprehen-
sibility of a score also depends on the number of the applied distinct score categories: a
smaller (mean) number of different confirmation categories is usually easier to survey
and to interpret by the expert, than a larger number of distinct confirmation categories.
Figure 1 depicts an overview of the presented measures considering the simplicity and
accuracy of (scoring) rule bases.

In the following, we discuss simplicity measures and accuracy measures for diag-
nostic scores in more detail. Based on these measures we develop a unifying quality
measure combining the aspects of both, the simplicity and the accuracy of (scoring)
rule bases.

3.1 Simplicity Measures

It is difficult to determine the simplicity of a rule base by only one measure. For defining
global simplicity measures, we consider the rule base as a whole. Local variants, con-
sidering a specific knowledge item, i.e., a diagnostic score, can be defined accordingly.
In contrast to the local simplicity measures the use of global measures is appropriate
for comparing the understandability of different (learned) rule bases. We consider the
following issues and define corresponding functions applied on scoring rule bases.

– APPLIED FINDINGS: Number of findings used in the rule base; the rule base is
much simpler to survey, if fewer findings are used to describe the scores.

– RULE BASE SIZE: Overall number of learned scoring rules; obviously the num-
ber of scoring rules is a direct measure for the complexity of the learned knowl-
edge. However, for a more detailed analysis of the rule base complexity the applied

Quality Measures and Semi-automatic Mining of Diagnostic Rule Bases 69

classes of confirmation categories should be considered. Thus, the interpretation
of scoring rules categorically establishing or excluding a diagnosis, i.e., S3, S-3, is
very simple, when compared to scoring rules with less certain confirmation cate-
gories, e.g., S1, S-1.

Therefore, it is suggestive to define a weighting function w : Ωscr → IN for
the confirmation categories. In the context of our work we defined w(s) = 1 for
s ∈ {S3, S-3}, and w(s) = 2 otherwise, i.e., we define a category s ∈ Ωscr \
{S3, S-3} to be twice as complex as the categories S3, S-3, which are categorically
(de)establishing a diagnosis.

In summary, the measure RULE BASE SIZE is simply defined by the count of the
rules contained in the rule base. A more refined measure RULE BASE SIZE for a
rule base R ⊆ ΩR is defined as follows

RULE BASE SIZE(R) =
∑
r∈R

w
(
category(r)

)
. (1)

– MEAN SCORING RULES: This measure gives the mean number of rules for scoring
a single diagnosis, and can be derived from RULE BASE SIZE. Fewer scoring rules
for a diagnosis are much simpler to understand than more rules. Similar to the
measure RULE BASE SIZE, it can be computed using the weighted categories or by
directly counting the number of rules.

– MEAN SCORE CATEGORIES: Mean number of different confirmation categories
applied for scoring a single diagnosis. A smaller number of distinct categories al-
low for a much simpler interpretation of the diagnosis score, since confirmation
strengths of the findings contributing to a score are less distributed. This measure
is indirectly dependent on the global number of different confirmation categories
defined, i.e., |Ωscr |. A small universe of possible confirmation categories allows for
a simpler distinction between the single categories.

In addition to the simplicity measures, the second part of the quality measures for the
semi-automatic learning task are measures concerning the accuracy.

3.2 Accuracy Measures

There exists a variety of methods for assessing the accuracy of individual rules, or
the entire rule base. Several factors need to be considered. For a two-class prediction
problem, e.g., predicting a single diagnosis, we have to consider four possible outcomes,
shown in the following table.

Predicted Class = YES Predicted Class = NO

Actual Class = YES True Positive False Negative
Actual Class = NO False Positive True Negative

The true positives and true negatives are correct classifications. If the class is in-
correctly predicted as ’YES’ while it is in fact ’NO’, then we have a false positive.
Likewise, if the class is incorrectly predicted as negative while it is in fact positive, then

70 M. Atzmueller, J. Baumeister, and F. Puppe

we have a false negative. In the following, TP , FP , TN , and FN denote the number
of true positives, false positives, true negatives, and false negatives, respectively.

For measuring the different trade-offs between correct and false classifications, there
exist several measures like sensitivity (TP/(TP +FN)), specificity (TN /(TN +FP))
from diagnosis, or likewise precision (TP/(TP + FP)) and recall (same as sensitiv-
ity) from information theory. For the different measures the trade-off between these
classification alternatives has to be taken into account. The success rate, or efficiency,
is a widely used measure: (TP + TN)/(TP + TN + FP + FN). However, a single
diagnosis, which is not predicted very frequently, and which also does not occur very
frequently as the correct diagnosis of a case, might get a better rating, than a diagno-
sis which occurs more frequently. This is especially relevant, if we apply a case base
with multiple disorders, as experienced in our evaluation setting. Therefore we used an
adaptation of the E-measure (cf. [10]), for all applied diagnoses d ∈ ΩD.

In our context of multiple disorders as case solutions, precision and recall are de-
fined as follows

prec(Dc,Dp) =
|Dc ∩ Dp|

|Dp| , recall(Dc,Dp) =
|Dc ∩ Dp|

|Dc| , (2)

where Dc ⊆ ΩD is the correct solution and Dp ⊆ ΩD specifies the proposed, derived
solution. The E-measure itself is defined as follows

E(Dc,Dp) = 1 − (β2 + 1) · prec(Dc,Dp) · recall(Dc,Dp)
β2 · prec(Dc,Dp) + recall(Dc,Dp)

. (3)

Then, the F-measure (cf. [11–Ch. 5]), the harmonic mean between recall and precision,
is defined as follows

F (Dc,Dp) = 1 − Eβ=1(Dc,Dp) , (4)

where β ∈ [0;∞[denotes the relative weight of precision vs. recall. The F-measure
uses a value of β = 1 to give an equal weight to recall and precision.

In contrast to the E-measure, higher values of the F-measure correspond to higher
classification accuracy, which is more suitable for combining the accuracy measure and
the simplicity measure into the unified quality measure defined below.

3.3 A Unifying Quality Measure for Semi-automatic Learning Methods

In a semi-automatic scenario the user wants to obtain an overview of the quality of
the learned knowledge. Concerning accuracy and simplicity of the learned knowledge
often there is a trade-off between these two measures. Then, accurate learned models
are quite complex, while simpler ones lack performance. Therefore, it is suggestive to
balance the two measures. Also user quality standards need to be taken into account
regarding the simplicity, since the simplicity is subjective to the user’s goals and is also
dependent on the applied domain. We combine a normalized simplicity measure and
the accuracy measure into a single quality measure.

For the simplicity measure we first define a local simplicity measure SCORING

RULES, which gives the absolute number of scoring rules for scoring a single specific
diagnosis. Then, the function SCORING RULES(DS (d)) returns the number of scoring

Quality Measures and Semi-automatic Mining of Diagnostic Rule Bases 71

rules learned for the specified diagnostic score DS (d). For the definition of the unifying
quality measure QM we first introduce a normalized simplicity measure NSM

(
DS (d)

)
concerning a single diagnostic score DS (d), which is defined as follows

NSM
(
DS (d)

)
= 1 − SCORING RULES

(
DS (d)

) − 1
SCORING RULES

(
DS (d)

)
+ γ

, (5)

where γ is a generalization parameter, with default value γ = 1. If γ is set to larger
values, then larger scores will get an increased simplicity value. Since NSM (DS (d)) ∈
[0; 1], the maximum value NSM (DS (d)) = 1 is obtained, if a diagnosis d is predicted
with a single rule, i.e., if the score has the size one.

We propose to combine this measure with the accuracy in a term similar to the F-
measure balancing both measures. Then, the unifying quality measure QM : 2ΩR →
[0; 1] for a rule base R is defined as follows,

QM (R) =
1

|ΩD|
∑

d∈ΩD

(α2 + 1) · NSM
(
DS (d)

) · ACC
(
DS (d)

)
α2 · NSM

(
DS (d)

)
+ ACC

(
DS (d)

) , (6)

where the function ACC
(
DS (d)

)
calculates the accuracy of the specified diagnostic

score DS (d) using the F-measure. The factor α is a weight balancing simplicity vs.
accuracy. We used α = 1 for our experiments to assign an equal weight to the simplicity
and the accuracy.

Related Work. Favoring simple rules is in line with a classic principle of inductive
learning methods called Ockham’s Razor [12]. Existing interestingness measures ap-
plying this principle generate compact rules [13], for example, where the number of
rules, the number of conditions in a rule, and the classification accuracy of a rule are
taken into account. A general measure discussed by Freitas [9] takes the size of the
disjuncts of a rule into account. Due to the fact that we only consider simple scoring
rules not containing disjuncts, this measure is not applicable to diagnostic scores. We
purely concentrate on the syntactic elements contained in the rule base R. For a local-
ized evaluation, we propose a unifying quality measure, which combines both aspects,
i.e., the simplicity and the accuracy. This measure with fixed upper and lower bounds
provides a first intuitive evaluation for the user.

4 Learning Diagnostic Scores

In the following we first describe diagnostic profiles utilized in the learning method.
Then, we briefly discuss necessary data preprocessing steps for the learning task. After
that we outline the method for inductive learning of diagnostic scores.

4.1 Constructing Diagnostic Profiles

Diagnostic profiles describe a compact representation for each diagnosis. A diagnostic
profile Pd for a diagnosis d ∈ ΩD contained in a case base CB is defined as the set of
tuples

Pd =
{
(f, freqf,d)

∣∣ f ∈ ΩF ∧ freqf,d ∈ [0, 1]
}

,

72 M. Atzmueller, J. Baumeister, and F. Puppe

where f ∈ ΩF is a finding and freqf,d ∈ [0, 1] represents the frequency with which the
finding f occurs in conjunction with d in the case base CB . Only findings f are stored
that occur frequently with the diagnosis d.

We construct diagnostic profiles by first learning coarse frequency profiles such that
the finding frequencies are determined according to the given case base. Thus, learning
diagnostic profiles entails, that each profile will initially contain all findings which occur
together with the profile’s diagnoses. Therefore, also seldom findings occur in the plain
profile. However, we want to construct a profile only containing the typical findings for
a given diagnosis. Thus, we apply a statistical pruning method, removing unfrequent
findings. After that, a diagnostic profile contains at least all relevant findings for the
specified diagnosis. For a more detailed discussion we refer to [14].

4.2 Basic Algorithm for Learning Diagnostic Scores

The basic algorithm for learning diagnostic scores can only handle discrete valued at-
tributes. If no partitions of continuous attributes were defined by the expert, then we
applied a k-means clustering method (e.g., described in [15]) with a default k of 5, for
the discretization of continuous attributes.

In the following, we outline the method for learning diagnostic scores: we first have
to identify dependencies between findings and diagnoses. In general, all possible com-
binations between diagnoses and findings have to be taken into account. However, in or-
der to reduce the search space we only consider the findings occurring most frequently
with the diagnosis. Thus we constrain the set of important findings using diagnostic
profiles. In summary, we basically apply three steps for learning a diagnostic scoring
rule:

1. Identify a dependency between a finding f ∈ ΩF and a diagnosis d ∈ ΩD
2. Rate this dependency and map it to a symbolic category s ∈ Ωscr
3. Finally, construct a diagnostic rule: r = f

s→ d

This basic procedure is applied in Algorithm 1, and explained below in more detail.

Identify Dependencies. For each diagnosis d ∈ ΩD, we create a diagnostic profile
containing the most frequent findings occurring with the diagnosis. We consider all
attributes (questions) in the profile selecting the findings which are observed in the
case base. For each finding f = q:v we apply the χ2-test for independence for binary
variables, i.e., variable D for diagnosis d and variable F for finding f , respectively. D
and F measure if d and f occur in a case. If they occur the respective variable is true and
false otherwise. The χ2-test for independence, is applied using a certain threshold χ2

α

corresponding to confidence level α. We construct the following four-fold contingency
table for the binary variables:

D = true D = false
F = true a b
F = false c d

The frequency counts denoted in the table are defined as follows:

a = N(D = true ∧ F = true), b = N(D = false ∧ F = true),
c = N(D = true ∧ F = false), d = N(D = false ∧ F = false),

Quality Measures and Semi-automatic Mining of Diagnostic Rule Bases 73

Algorithm 1. Learning Simple Diagnostic Scores

Require: Case base CB ⊆ ΩC

1: for all diagnoses d ∈ ΩD do
2: Learn a diagnostic profile Pd

3: for all attributes q ∈ {
q | q ∈ ΩQ, ∃f ∈ Fq, f ∈ Pd)

}
do

4: for all findings f ∈ Fq do
5: Construct binary variables D, F for d and f , which measure if d and f occur in cases

of the case base CB .
6: Compute χ2

fd = χ2(F, D)
7: if χ2

fd ≥ χ2
α then

8: Compute the correlation/φfd coefficient φfd = φ(F, D)
9: if |φfd| ≥ thresholdc then

10: Compute the quasi-probabilistic score qps ,
qps = sgn(φfd) ∗ prec(r)(1 − FAR(r)) using the pseudo-rule: f → d

11: Map the qps-score to a symbolic category s using a conversion table
12: Apply background knowledge to validate the diagnostic scoring rule, if available
13: Create a diagnostic scoring rule (if valid): f

s→ d

where N(cond) is the number of times the condition cond is true for cases c ∈ C. For
binary variables the formula for the χ2-test simplifies to

χ2(F,D) =
(a + b + c + d)(ad − bc)2

(a + b)(c + d)(a + c)(b + d)
. (7)

We require a certain minimal support threshold for a finding f co-occurring with di-
agnosis d. The default threshold is set to 5, i.e., the finding has to occur together with
the diagnosis at least five times. Generally, for small sample sizes, we apply the Yates’
correction for a more accurate result.

For all dependent tuples (F,D) we derive the quality of the dependency, i.e., the
strength of the association using the φ-coefficient,

φ(F,D) =
ad − bc√

(a + b)(c + d)(a + c)(b + d)
, φ(F,D) ∈ [−1; 1] , (8)

which is a correlation measure between two binary variables. We use it to discover
positive or negative dependencies. A positive value of φ(F,D) signifies a positive as-
sociation, whereas a negative value signifies a negative one. If the absolute value of
φ(F,D) is less than a certain threshold thresholdc, i.e., |φ(F,D)| < thresholdc, then
we do not consider this weak dependency for rule generation. For the remaining de-
pendencies we generate rules described as follows: If φ(F,D) < 0, then we obtain a
negative association between the two variables, and we generate a rule f

s→ d with a
negative category s. If φ(F,D) > 0, then we construct a rule f

s→ d with a positive
category s.

Mapping Dependencies. For determining the exact symbolic confirmation category of
the remaining rules r, we utilize two measures used in diagnosis: The precision and the
false alarm rate (FAR); the precision of a rule r is defined as

74 M. Atzmueller, J. Baumeister, and F. Puppe

prec(r) = TP/(TP + FP) , (9)

whereas the false alarm rate FAR for a rule r is given by

FAR(r) = FP/(FP + TN) , (10)

where the symbols TP ,TN ,FP denote the number of true positives, true negatives,
and false positives, respectively. These can easily be extracted from the contingency
table. For a positive dependency between the finding f and the diagnosis d, we see
that TP = a, TN = d and FP = b. For a negative dependency we try to predict the
absence of the diagnosis d, so in this setting we obtain TP = b, TN = c and FP = a.

To score the dependency, we first compute a quasi probabilistic score (qps) which
we then map to a symbolic category. The numeric qps score for a rule r is computed as
follows

qps(r) = sgn
(
φ(D,F)

) ∗ prec(r)
(
1 − FAR(r)

)
. (11)

We achieve a tradeoff between the accuracy of the diagnostic scoring rule to predict a
disease measured against all predictions and the proportion of false predictions.

It is worth noting, that often the true positive rate (TPR) – which is also known
as recall/sensitivity – is used in combination with the FAR as a measure of accuracy.
However, this is mostly applicable to standard rules, which usually contain more com-
plex rule conditions than scoring rules applied in diagnostic scores. Since a diagnostic
score is a combination of several diagnostic scoring rules, which support each other
in establishing a diagnosis, their accuracy needs to be assessed on localized regions of
the diagnosis space. Therefore, precision is more suggestive, since it does not take the
entire diagnosis space into account, but it only measures the accuracy of the localized
prediction.

To ease interpretability of the discovered knowledge, we restrict the mapping pro-
cess to only six different symbolic confirmation categories, three positive and three
negative. The qps-scores are then mapped to the symbolic categories according to the
following conversion table (ε ≈ 0):

qps(r) category(r) qps(r) category(r)
[-1.0, -0.9) ⇀ S-3 (ε, 0.5) ⇀ S1
[-0.9, -0.5) ⇀ S-2 [0.5, 0.9) ⇀ S2
[-0.5, −ε) ⇀ S-1 [0.9, 1.0] ⇀ S3

We accept the loss of information to increase the understandability and to facilitate
a user-friendly adaptation of the learned diagnostic scores.

Including Background Knowledge. The presented algorithm can be augmented with
additional background knowledge in order to achieve better learning results. We intro-
duce abnormality information and partition class knowledge as appropriate background
knowledge.

If abnormality information about attribute values is available, then each value v of
a question q is attached with an abnormality label. It explains, whether v ∈ dom(q)
is describing a normal or an abnormal state of the question. For example, consider the
attribute temperature with the value range: dom(temperature) = {normal ,marginal ,

Quality Measures and Semi-automatic Mining of Diagnostic Rule Bases 75

high}. The values normal and marginal denote normal values of the question, whereas
the value high describes an abnormal value. We will use these abnormalities, for further
reducing the size of the generated rule base.

We apply two heuristics for pruning, which are motivated by the diagnostic situation
that a normal value of an attribute usually is not responsible for causing a diagnosis,
while an abnormal value may. Let r = q:v

s→ d be a scoring rule. If s ∈ Ωscr denotes
a positive category and v is a normal value of attribute q, then we omit rule r, since
findings describing normal behavior usually should not increase the confirmation of a
diagnosis. Furthermore, if s denotes a negative category and v is an abnormal value of
attribute q, then we likewise omit rule r because an abnormal finding usually should
not decrease the confirmation of a diagnosis, but possibly increases the confirmation of
other diagnoses. Thus, we apply the heuristics above in order to reduce the size of the
learned rule base, and to increase its quality with respect to its interpretability.

As a second type of background knowledge the expert can provide partition class
knowledge describing how to divide the set of diagnoses and attributes into partially
disjunctive subsets, i.e., partitions. These subsets correspond to certain problem areas
of the application domain. For example, in the medical domain of sonography, we have
subsets corresponding to problem areas like liver, pancreas, kidney, stomach, and in-
testine. This knowledge is especially useful when diagnosing multiple faults. Since a
case may contain multiple diagnoses, attributes occurring with several diagnoses will
be contained in several diagnostic profiles. We reduce noise and irrelevant dependencies
by pruning such discovered dependencies f → d, for which f and d are not in the same
partition class.

5 Evaluation

We evaluated the presented method with cases taken from a fielded medical application.
The applied SONOCONSULT case base contains 1340 cases, with a mean of diagnoses
Md = 4.32 ± 2.79 and a mean of relevant findings Mf = 76.89 ± 20.59 per case.
SONOCONSULT [3] is a knowledge-based documentation and consultation system for
sonography. It is developed and maintained by the domain experts using the shell-kit
D3 [16]. The quality of the derived diagnoses is very good as checked by medical
experts in a medical evaluation (cf. [3]).

For the evaluation of our experiments we adopted the F-measure introduced in Sec-
tion 3, adapted to the multiple disorder problem occurring in the applied case base.
Furthermore, a stratified 10-fold cross-validation method was applied. We performed
two experiments to determine the impact of including background knowledge into the
learning process. For experiment E0 we applied no background knowledge at all. To
demonstrate how the utilization of knowledge improves the results we used both parti-
tion class knowledge and abnormality knowledge for experiment E1. We created several
sets of scores depending on the parameter thresholdc, which describes the correlation
threshold used in the learning algorithm. Two criteria – accuracy and simplicity – as
outlined in Section 3, were used to define the quality of the scores.

The results are presented in the following tables. Column thresholdc specifies the
correlation threshold, QM1 shows the combined quality measure with the default pa-

76 M. Atzmueller, J. Baumeister, and F. Puppe

rameter γ = 1, whereas QM5 and QM10 show the measure with a parameter γ = 5
and γ = 10, respectively. MR corresponds to the measure MEAN SCORING RULES,
attached with standard deviation. RBS describes the measure RULE BASE SIZE with
total number of rules in addition to the number of weighted rules in parentheses (as
described in Section 3.1). The column SC corresponds to the measure MEAN SCORE

CATEGORIES. Column AF shows the number of applied findings, i.e., the values of the
measure APPLIED FINDINGS. Finally, we depict the accuracy of the rule base using the
F-measure in column ACC.

Experiment E0: no knowledge used
thresholdc QM1 QM5 QM10 ACC RBS (w) MR AF SC

0.2 0.15 0.33 0.46 0.94 2201 (3798) 30.58 ± 16.83 395 3.49
0.3 0.21 0.41 0.54 0.92 1510 (2466) 20.97 ± 10.59 348 3.20
0.4 0.27 0.49 0.61 0.90 1069 (1647) 14.85 ± 7.02 297 2.98
0.5 0.34 0.56 0.68 0.89 770 (1101) 10.70 ± 4.90 247 2.67
0.6 0.40 0.61 0.72 0.83 594 (789) 8.24 ± 3.51 207 2.32
0.7 0.51 0.70 0.77 0.81 369 (413) 5.13 ± 2.13 158 1.44

Experiment E1: using partition class and abnormality knowledge
thresholdc QM1 QM5 QM10 ACC RBS (w) MR AF SC

0.2 0.39 0.59 0.68 0.88 594 (990) 8.25 ± 5.00 180 2.60
0.3 0.45 0.64 0.72 0.86 437 (693) 6.07 ± 3.30 153 2.38
0.4 0.51 0.68 0.75 0.85 328 (495) 4.56 ± 2.15 131 2.12
0.5 0.58 0.72 0.77 0.84 240 (335) 3.34 ± 1.36 113 1.78
0.6 0.62 0.73 0.77 0.78 188 (245) 2.61 ± 1.04 101 1.49
0.7 0.68 0.75 0.77 0.76 131 (149) 1.81 ± 0.70 81 1.10

The evaluation shows that applying background knowledge helps to improve the
simplicity of the learned rule base significantly, i.e., by suppressing or pruning rules.
However, the accuracies of the learned rule bases in experiment E1 compared to exper-
iment E0 are slightly lower, but this is countered by the significant increase in rule base
simplicity evidenced by the individual values for the combined quality measure QM.

Looking at both experiments E0 and E1, the high values of the accuracy for low val-
ues of thresholdc and the large number of rules per diagnosis indicate overfitting of the
learned knowledge. This is domain dependent and therefore the expert needs to tune the
threshold carefully. With greater values for thresholdc less rules are generated, since
only strong dependencies are taken into account. If thresholdc is too high, i.e., if too
many rules are pruned, this obviously degrades the accuracy of the learned scores. In
our experiments this occurs for thresholdc = 0.6, for which the accuracy decreases
significantly in comparison to thresholdc = 0.5. Furthermore, the number of rules per
diagnosis (MR) is reduced considerably without decreasing the accuracy (ACC) sig-
nificantly from thresholdc = 0.2 to thresholdc = 0.5. Analogously, the number of
applied findings (AF) is reduced with an increasing value of thresholdc but a decreas-
ing accuracy. Column SC indicates that the number of applied confirmation categories
is reduced by an increased thresholdc, i.e., simpler scoring rules are learned.

Quality Measures and Semi-automatic Mining of Diagnostic Rule Bases 77

These findings are also reflected in the unifying quality measure. It is easy to see that
the balance between the scores’ accuracy and simplicity depends on the generalization
parameter γ. QM1 has a stronger increase from thresholdc = 0.6 to thresholdc = 0.7
than QM5 since the size of the score, i.e., the number of rules has a higher impact.This
depends on the priorities of the user: If γ = 1, then we have a strong bias favoring
minimal scores, one rule per diagnosis in the best case. If γ is set to higher values,
then we generalize this, such that the accuracy is more important. This can be seen in
experiment E1 for γ = 10 considering thresholds 0.5, 0.6, and 0.7, where the increased
score simplicity is balanced by the decrease in score accuracy. In the case of such a
plateau, the user has to consult the detailed quality measures to trade-off accuracy vs.
simplicity. Additionally the user also can tune the quality measure with respect to the
parameter α, i.e., the weighting factor which trades-off simplicity vs. accuracy. Then,
either a clear cut-off point is found, where the quality measure has a maximum value,
or the appropriate cut-off point has to be selected from a limited number of options, in
the case of a plateau, i.e., a set of equal values.

6 Conclusion

Standard learning methods usually concentrate on the accuracy of the learned patterns.
In this paper, we described quality measures focussing on the understandability, i.e.,
simplicity of the learned knowledge. Additionally, a unifying quality measure also
takes the accuracy of the learned knowledge into account. This measure allows for a
first quick evaluation of the learned patterns. The measure can be fine-tuned guided
by the user’s expectations and goals. This is especially important in the context of
semi-automatic learning methods, which can be refined incrementally taking different
amounts of background knowledge into account.

As an example of such a semi-automatic approach, we outlined a method for learn-
ing simple diagnostic scores, and presented an evaluation of the proposed method using
a case base from a real-world application in the medical domain. This demonstrated
the applicability of the presented simplicity measures and the unifying quality measure
balancing simplicity and accuracy aspects.

In the future, we are planning to apply the measures to other rule-based representa-
tions of knowledge, such as subgroup patterns. Additionally, interpretation and evalua-
tion of the learned knowledge together with the proposed quality measures by medical
experts should further demonstrate the usefulness of these measures.

References

1. Ho, T., Saito, A., Kawasaki, S., Nguyen, D., Nguyen, T.: Failure and Success Experience in
Mining Stomach Cancer Data. In: International Workshop Data Mining Lessons Learned,
International Conf. Machine Learning. (2002) 40–47 1

2. Gamberger, D., Lavrac, N.: Expert-Guided Subgroup Discovery: Methodology and Appli-
cation. Journal of Artificial Intelligence Research 17 (2002) 501–527 1

3. Huettig, M., Buscher, G., Menzel, T., Scheppach, W., Puppe, F., Buscher, H.P.: A Diagnostic
Expert System for Structured Reports, Quality Assessment, and Training of Residents in
Sonography. Medizinische Klinik 99 (2004) 117–122 1, 1, 2, 5, 5

78 M. Atzmueller, J. Baumeister, and F. Puppe

4. Puppe, F., Ziegler, S., Martin, U., Hupp, J.: Wissensbasierte Diagnosesysteme im Service-
Support (Diagnostic Knowledge Systems for the Service-Support). Springer Verlag (2001)
2, 2

5. Ohmann, C., et al.: Clinical Benefit of a Diagnostic Score for Appendicitis: Results of a
Prospective Interventional Study. Archives of Surgery 134 (1999) 993–996 2

6. R., M., Pople, H.E., Myers, J.: Internist-1, an Experimental Computer-Based Diagnostic
Consultant for General Internal Medicine. NEJM 307 (1982) 468–476 2

7. Neumann, M., Baumeister, J., Liess, M., Schulz, R.: An Expert System to Estimate the Pes-
ticide Contamination of Small Streams using Benthic Macroinvertebrates as Bioindicators,
Part 2. Ecological Indicators 2 (2003) 391–401 2

8. Tuzhilin, A.: Usefulness, Novelty, and Integration of Interestingness Measures. Chapter
19.2.2. In: Klösgen, Zytkow: Handbook of Data Mining and Knowledge Discovery. Oxford
University Press, New York (2002) 3

9. Freitas, A.A.: On Rule Interestingness Measures. Knowledge-Based Systems 12 (1999)
309–325 3, 3.3

10. Lewis, D.D., Gale, W.A.: A Sequential Algorithm for Training Text Classifiers. In: Proc.
of the 17th ACM International Conference on Research and Development in Information
Retrieval (SIGIR 94), London, Springer (1994) 3–12 3.2

11. Witten, I.H., Frank, E. In: Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations . Morgan Kaufmann (1999) 3.2

12. Mitchell, T.: Machine Learning. McGraw-Hill Comp. (1997) 3.3
13. Yen, S.J., Chen, A.L.P.: An Efficient Algorithm for Deriving Compact Rules from Databases.

In: Ling, Masunaga: Proceedings of the 4th International Conference on Database Systems
for Advanced Applications-95, World Scientific (1995) 364–371 3.3

14. Baumeister, J., Atzmueller, M., Puppe, F.: Inductive Learning for Case-Based Diagnosis with
Multiple Faults. In: Advances in Case-Based Reasoning. Volume 2416 of LNAI. Springer-
Verlag, Berlin (2002) 28–42 Proceedings of the 6th European Conference on Case-Based
Reasoning (ECCBR-2002). 4.1

15. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers,
San Mateo, California (2000) 4.2

16. Puppe, F.: Knowledge Reuse Among Diagnostic Problem-Solving Methods in the Shell-Kit
D3. Int. J. Human-Computer Studies 49 (1998) 627–649 5

An Evaluation of a Rule-Based Language for
Classification Queries

Dennis P. Groth

Indiana University School of Informatics,
Bloomington, IN 47408, USA

dgroth@indiana.edu

Abstract. This paper provides results from a usability experiment com-
paring two different database query languages. The research focuses on a
specific type of query task, namely classification queries. Classification is
the process of assigning input data to discrete classes according to appli-
cation specific criteria. While SQL can be used to perform classification
tasks, we seek to discover whether a different type of query language of-
fers any advantages over SQL. We present a rule-based language, which
organizes the queries in a logical way. The rule based language is specif-
ically designed to support classification tasks. The usability experiment
measures the effectiveness, efficiency and satisfaction of novice and ex-
pert users performing a variety of classification tasks. The results show
that while both approaches are usable for classification tasks, the rule-
based approach was preferred by expert users.

1 Introduction

Classification is the process of assigning input data to discrete classes according
to application specific criteria. Simple examples abound for this type of task.
For example, employees in an employee database may be classifed according to
their salary into “High”, “Medium” and “Low” classes.

In this research we consider classifications that are definable by the user in two
ways. First, a classification is definable if the class values are explicitly assigned.
The definition can be stated in the form of a series of If .. Then statements.
For example, consider the following sentences that define the employee salary
classification:

1. If an employee’s salary is less than $30,000 then assign the employee to the
“low” salary class.

2. If an employee’s salary is between $30,000 and $60,000 then assign the em-
ployee to the “medium” salary class.

3. If an employee’s salary is more than $60,000 then assign the employee to the
“high” salary class.

A classification is derivable if the class values are assigned according to a
calculation. For example, we can assign employees to classes using the state-

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 79–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

80 D.P. Groth

ment SalaryClass = floor(Salary/1000), which effectively “bins” employees
into salary ranges.

This research considers schemes that may be either definable or derivable to
the extent that a user can describe the classification in some declarative form.
We do not consider algorithmic techniques encountered in data mining, such as
automatic cluster detection or discretization, which are described in [5, 4].

In this research we present a declarative language that supports both de-
finable and derivable classifications. We call the language a Mapping Query
Language (MQL), since the user declares the mappings between the input data
and the classifications. The language has a syntax that succinctly describes the
classifications according to a set of rules. A BNF grammar is provided as an
appendix to this paper. We compare our approach with an Structured Query
Language (SQL) approach in a controlled usability experiment.

The usability experiment seeks to determine whether one approach is superior
to another in a controlled fashion. Previous experiments have compared equiv-
alent systems. That is, each system was fully equivalent in expressive power,
differing in syntactic form, or in interaction style. This research differs from pre-
vious approaches in that the language we describe is strictly weaker than SQL.
Nevertheless, by focusing on a specific work task (classification) the systems are
comparable.

This paper is structured as follows. Section 1.1 provides pointers to the rel-
evant literature most closely related to this work. Section 2 provides a brief
description of the rule-based language. In Section 3 we describe the setup for
our experiment. Section 4 provides the results from the usability experiments.
Lastly, in Section 5 we provide directions for future research activities and sum-
marize our findings.

1.1 Related Work

In this section we describe the relevant work that is related to this research. First,
from a query language perspective, our approach is based on Datalog. Descrip-
tions of the theoretical aspects of Datalog can be found in database texts, such
as [1]. A comprehensive description of logic-based query languages is described
by Vianu in [10]. There are numerous references for SQL, including general texts
[1, 7] as well as language standards [3]. From a data mining perspective, SQL has
been used in support of various techniques. With regards to classification tasks,
very little work has focused on relational query languages, with the exception
being [6].

There have been numerous examples in the literature related to usability of
query languages. The approaches tend to follow a fairly standard experimen-
tal design, in which two query languages are compared. Early work by Reis-
ner et. al. [9] forms the basis for many other experiments. Surveys that pro-
vide a compilation of multiple experiments were provided by Reisner [8] and
Welty [11]. A study by Yen and Scamell [13] comparing SQL to Query By
Example (QBE) serves as the basis of our experiment design. More recently,

An Evaluation of a Rule-Based Language for Classification Queries 81

comparisons of diagramatic languages to SQL have been presented, including
work by Catarci [2].

2 The Rule-Based Language

Conceptually, we view the process of classifying data as shown in Figure 1. The
class values that are assigned can be expressed with database queries. We will
continue with the employee salary example for the purposes of describing our
approach.

Input Data

Classifier

Classes

Fig. 1. The classification process

We assume a basic familiarity with relational database processing. Data is
stored in tables that are described by their schema, which is a finite set of
attribute names. Given a table r over attributes R = {A, B, C, . . .}, let t ∈ r
be a tuple. A query q is a mapping from input schema to an output schema.

Our rule-based language specifies queries in the form of a finite list of rules.
Each rule is of the form Head ← Body, with the following semantics. The body
of a rule is a boolean expression involving attribute names and constants, as
well as a small number of supported functions. For example, basic mathematical
functions such as addition and subtraction are supported. The head of a rule is
an expression like the body, except that it is not restricted to a {0, 1} result.
Each rule head in a query must of the same data type. We refer to the set of
attributes used in the rules as the schema of the query.

Let P = {p1, . . . , pk} be a rule query and r be a table. For each t ∈ r, let
Head(t) be the value of the expression Head when given t as input. Body(t)
is defined in the same manner. The output schema of P is R∪Class, where R
is the schema of the input table and Class is the class value assigned to each
tuple.1 The following rule query defines the employee salary classification.

1 The implementation provides the user with a mechanism for defining a unique
name for Class.

82 D.P. Groth

′Low′ ← Salary < 30000
′Medium′ ← Salary >= 30000 and Salary <= 60000
′High′ ← Salary > 60000

Rules are evaluated in the order that they are defined. In addition, we support
two different interpretation strategies. Queries may be interpreted functionally or
relationally. Under a functional interpretation, rules are evaluated until a success
is encountered. In contrast, a relational interpretation will evaluate every rule,
which provides for a single input tuple to be mapped to multiple classes.

We support two special types of rules to provide greater control over the
process. A rule of the form Except ← Body excludes input tuples from further
processing. A rule of the form Head ← Else allows for a tuple to be mapped
if all of the preceding rules failed. A BNF syntax description of the language is
provided as an appendix to this paper.

By design, the rule-based query language is restricted in terms of the types
of queries that can be expressed. While it is similar to Datalog in terms of its
syntax, we do not support recursive queries or negation in the head of the rule.
With these restrictions, the queries can be executed in linear time by processing
one tuple at a time.

2.1 Equivalence to SQL

Each rule query is equivalent to an SQL query involving set operations. The proof
of this equivalence is based on a transformation from the rule-based language to
SQL. Rather than providing the proof we provide a sketch of the transformation
process here. First, note that the body of a rule is essentially the same as the
SQL where clause. The head of a rule is the same as the SQL select clause.
The following SQL query is equivalent to the rule query that classifies employee
salaries.

Select "Low", * from employee where salary < 30000
Union

Select "Medium", * from employee where salary >= 30000 and salary <=60000
Union

Select "High", * from employee where salary > 60000

Special care must be taken to support the Except and Else rules by creating
more complicated where clauses in the SQL queries. From a processing perspec-
tive, it is likely that SQL queries used for classification tasks will be less efficient
than the rule-based process. Note that the SQL queries may require multiple
passes through the input data. In addition, using SQL in support of classifica-
tion tasks may require complex queries to be written, which may be beyond the
end-user’s ability.

2.2 Classification as Visualization Mapping

The rule language is envisioned as a component within the visualization pipeline
[12] that supports the mapping of data into a visual representation. Our process

An Evaluation of a Rule-Based Language for Classification Queries 83

implements maps as relations that are used to transform input data into a form
that is more useful for visualization purposes. The input data to be mapped
is represented by relation and is physically stored as a table in the database.
The contents of the map depend on the application, as specified by the user.
Note that the map controls how data appears in the visualization, but remains
separate from the data itself.

A map is used to add order and scale to the data that is desired to be
visualized. The mapping process is conceptualized in Figure 2. For example,
the input data is “mapped” to a point in the display based on the contents of
the map. In this case, we use a two-dimensional scatterplot only as a means to
illustrate the mapping process. The approach we present here is independent of
any particular choice of graphical display technique.

Map

Input Instance

Visualization

Fig. 2. The mapping process

Formally, a map is a relation instance s over schema S. s is applied to data
through the use of a relational join operator. Our approach places no restriction
on the type of join being performed, allowing for the specific requirements of the
visualization problem to be satisfied by a user specified join.

To describe the concepts behind the mapping process we will use an example
based on the instance of the Customer relation shown in Figure 3. Note that the
schema of Customer contains a mixture of categorical and numeric attributes.

CustomerId State AnnualSales Employees
1 IN 1000 2500
7 IL 2000 1150
5 CA 500 6000
75 FL 6500 579
...

...
...

...

Fig. 3. An example Customer relation

84 D.P. Groth

The visualization we are interested in viewing is a two-dimensional scatterplot
of annual sales compared to geographic region. The sales amount is a numeric
value that maps naturally to our display. However, the geographic region must
be derived from the state attribute. To accomplish this, consider the map shown
in Figure 4, which we will refer to as StateMap.

State StateOrder
AK 1
HI 1
CA 2
OR 2
WA 2
...

...

Fig. 4. A map that orders states from West to East

In this example, the map associates with each state a natural number,
which adds both order and scale to the categorical value of the state. The
application process combines the map with the Customer relation by using
a natural join. In SQL this map is applied to the original data with the fol-
lowing query:

Select Customer.*, StateMap.StateOrder
From Customer, StateMap
Where Customer.State = StateMap.State

In order to generate the desired visualization we execute the following
aggregate query, which extracts the ”mapped” state value and the annual
sales for each customer. The resulting visualization is shown in Figure 5.
The color for each point is derived from the Frequency attribute of the
aggregate query.

Select vis.StateOrder, vis.AnnualSales, count(*) as Frequency
From (Select Customer.*, StateMap.StateOrder

From Customer, StateMap
Where Customer.State = StateMap.State) vis

Group By vis.StateOrder, vis.AnnualSales

This approach to mapping provides flexibility in a number of ways. First,
changes to the visualization can be effected by simply changing the map, and
not the base data. Second, multiple maps can be defined for the same data,
allowing for reuse of data in multiple contexts.

There are many ways that a map may be constructed. For example, simple
SQL insert statements are sufficient to populate the map used previously. The
following, partial sequence of SQL insert statements creates StateMap.

An Evaluation of a Rule-Based Language for Classification Queries 85

Fig. 5. An example visualization using the mapped value

Insert Into StateMap Values (’AK’, 1)
Insert Into StateMap Values (’HI’, 1)
Insert Into StateMap Values (’CA’, 2)

. . .

While construction of the map can be accomplished with SQL statements,
it is important to note that a user’s proficiency with the formulation of queries
serves as an effective upper-bound on the complexity of problems that can be
addressed using this technique. To address this issue, we propose a declarative
approach for specifying maps that shields the user from the SQL syntax. The
remainder of this section provides an example of how the user applies maps.

2.3 Mapping Example

In this subsection we provide a description of the prototype system’s implemen-
tation of the mapping process. Using the application manager interface, a user
adds various objects to the desktop. In order to give a flavor for the process that
a user employs, we provide a series of screen captures for a simple application.
In the left pane of Figure 6, the user right-clicks with the mouse on the desktop
and a popup menu is displayed. The menu provides access to the various objects
that can be placed on the desktop. The right pane shows a list of available input
data sources, in the form of user-defined queries.

The example data we are using is unemployment data, downloaded from the
U.S. Department of Commerce. The data is comprised of (Y ear, Month, Rate)
triples for years 1948-2001. The data is already numeric, but we will still apply
a map to the month field in order to demonstrate the process. In particular, we
will map the months of the year to quarters, using the following rules:

86 D.P. Groth

Fig. 6. The user right-clicks with their mouse to see a menu of available application
objects. Selecting ”Add Query”, the user is presented a list of available queries that
can be visualized

Fig. 7. The user uses the mouse to connect an input data source to a map. After the
map has been applied to the input data, a new object is automatically added to the
desktop

1 <- month <= 3
2 <- month <= 6
3 <- month <= 9
4 <- Else

Using the same process as before, the user adds the map to the desktop.
Then, as shown in Figure 7, the user right clicks on the query object and selects
the ”Connect” option. Then, the user moves the mouse over the map object and
clicks the mouse button. Feedback is provided to the user during this process

An Evaluation of a Rule-Based Language for Classification Queries 87

Fig. 8. The user adds a plotting object to the desktop and connects the mapped data
to the plotting object. The user is then presented with options based on the input data
and the type of plot

Fig. 9. The left pane shows the mapped unemployment data within a 3D scatterplot.
The right pane shows the original data in its unmapped form

by coloring the connecting line from the query to the map. If two application
objects are connectable, the color of the line is green, otherwise it is red and
the user cannot connect the objects. When the objects are connected the server
component applies the map the input data. The right pane of the figure shows
the result of the operation, in which a new object is added to the desktop that
represents the input data transformed according to the map.

With the map applied to the data we can plot the data using similar steps.
In Figure 8 the user adds a plotting object to the application, in this case a
3D plot. After connecting an input data source to the 3D plot object, the user
is presented with display options based on the input data and the plot object.

88 D.P. Groth

The user can select any of the input attributes as the data being visualized. In
addition, the user can select how the data is to be displayed. For example, the
user can choose to display the data as spheres in the 3D space. The user has
control over the color of objects, which can be based on an attribute of the input
data, or a derived value such as frequency.

With the data connected to the plot object and the appropriate options
selected, the user can view the resulting visualization by right-clicking on the
plot object and selecting ”View”. Figure 9 shows the unemployment data in
using a 3D scatterplot display. The original, unmapped data is shown in the
right pane of the figure.

3 Experiment Design

In order to understand the usefulness of our approach we have performed a
controlled usability experiment. This experiment seeks to quantify a user’s ability
to solve classification tasks with either SQL or the rule-based language. The focus
is targeted only at classification tasks, and is not a broad comparison of fully
equivalent systems. SQL was chosen as the most appropriate comparative tool
due to its predominant use by both expert and novice users.

3.1 Independent Variables

The independent variables used to control the experiment were:

1. User skill level (Low, Medium-Low, Medium-High, High)
2. Query language (SQL, Rule-Based Language)
3. Query complexity (Less complex, More complex)

Subjects for the experiment were recruited from a one-semester course in
database systems as well as professional programmers. Table 1 describes how
user skill levels were assigned as well as the number of subjects in each skill
level.

Half of the subjects performed classification tasks using either SQL or the
rule language. The use of SQL and the rule language was balanced within the
groups. The same problems were attempted by each user. Query complexity was
based on the type of classification being performed. The complexity of the task
was calculated based on a model answer for the problem as formulated in the
rule-based language. A complexity score for a rule is defined according to the

Table 1. The base of experimental subjects

User Description Skill Level Number
Undergraduate Student Low 27
Graduate Student Medium-Low 28
Professional experience < 3 years Medium-High 6
Professional experience >= 3 years High 4

An Evaluation of a Rule-Based Language for Classification Queries 89

combined complexity of the head and the body, each of which is given a score of
1 (simple) or 2 (complex). An expression is simple if it involves only constants or
simple boolean comparisons, otherwise it is complex. The total complexity score
for a task is given by summing the score for each rule. The score for our running
example would be 6 - each rule involves only simple expressions and there are 3
rules.

Tasks below the mean score for all tasks are considered less complex, while
tasks that score above the mean are considered more complex. It is important
to note that the queries required to solve most of the tasks in this experiment
would be classified as complex in the previously reported experiments due to
their use of set operations.

3.2 Environment and Evaluation

While we have a fully functioning implementation of the rule-based language, we
decided to administer the experiment by using a paper and pencil exam. This
technique has been frequently employed in previous experiments, and benefits
from being efficiently administered to multiple subjects simultaneously. Prior to
participating in the exam, each subject filled out a short demographic question-
aire, which identified their skill level.

The exam was comprised of twelve classification problems against three dif-
ferent datasets. The datasets were described in terms of the input schema of the
table. The problems were worded in the form of english sentences describing the
desired classification.

Each subject was provided a training manual for the tool they were to use to
solve the classification tasks. Each user had some experience with writing SQL
queries, so the SQL training material focused on the writing of queries invlolving
set operations. The rule-based language training materials were slightly longer
due to syntax differences. Both training manuals contained an identical set of
example classification tasks as well as solutions. After reviewing the training
materials the users were asked to solve the twelve classification problems.

The professional developers (expert users) were asked to complete both ver-
sions of the test. The order of exposure was controlled, ensuring that half of the
expert subjects first used SQL and then used the rule-based language. The other
half reversed this order of exposure. After completing both tests, the expert users
completed a satisfaction survey comparing the two approaches.

3.3 Subject Group Comparison

Because of the design of the experiment, there are several groups whose charac-
teristics need to be considered. Table 2 provides a summary of the information
provided by the subjects that reported GPA’s. A test for homogeneity of vari-
ances showed that the subject groups were comparable (p < .10).

The professional programmers were not asked to provide GPA’s. Instead,
they were asked to report their work experience (in years) with databases. As a
group, the professional programmers averaged 4.2 years of experience.

90 D.P. Groth

Table 2. The average GPA and number of database courses for the student subjects

Subject Description Average GPA (SD) Average Experience (SD)
Undergraduate Student 3.35 (0.47) 1.18 (0.62)
Graduate Student 3.64 (0.31) 1.00 (0.85)

Table 3. Possible scores assigned to each problem solution

Score Description
3 Correct solution
2 Essentially correct solution (typographical errors)
1 Partially correct solution (missing conditions)
0 Incorrect solution, or unsolved

3.4 Dependent Variables

The dependent variables we measured with this experiment were: 1. User Accu-
racy, and 2. User Satisfaction.

Accuracy is a quantitave measurement of the user’s ability to solve classifica-
tion problems with a specific tool. Satisfaction is a qualitative measurement of
the user’s feelings towards using a specific tool to solve classification problems.
We did not measure the time required to solve each problem for two reasons.
First, measuring time would have required the use of either an SQL interface
as well as the implemented rule-based system. The queries are more efficiently
processed using the rule-based system, which we believe would unduly influence
the satisfaction measurement. Second, interacting with either system introduces
possible side-effects to the accuracy measurements. For example, subjects may
fail to get the syntax of the query exactly correct and become frustrated with
either system leading to fewer problems attempted.

We determined the accuracy of a user’s solution using a technique similar
to [13]. Each problem was assigned the lowest of the possible scores shown in
Table 3.

The scoring method is intentionally coarse. Each subject’s total score was
computed by totaling their score for each problem and dividing by the maximum
number of possible points.

User satisfaction was determined by using a qualitative assessment survey.
Two surveys were completed by each student. The first survey was completed
after reviewing the training material. The second survey was completed after
completing the exam problems.

3.5 Hypotheses

Figure 10 provides the hypotheses we seek to test with this experiment. By
convention, each hypothesis is stated in its negative form.

The expert users were the only subjects that evaluated both approaches.
As a result, the between-groups comparisons are limited to the first approach

An Evaluation of a Rule-Based Language for Classification Queries 91

H1: There will be no difference in accuracy based on tool selection.
H2: There will be no difference in accuracy based on user skill level.
H3: There will be no difference in accuracy based on task complexity level.
H4: There will be no interaction between user skill level and task complexity on ac-

curacy.
H5: There will be no interaction between user skill level and tool selection on accuracy.
H6: There will be no interaction between task complexity level and tool selection on

accuracy.
H7: There will be no difference in satisfaction based on tool selection.
H8: There will be no difference in satisfaction based on user skill level.
H9: There will be no difference in satisfaction based on task complexity level.
H10: There will be no interaction between user skill level and tool selection on satis-

faction.
H11: There will be no difference on user satisfaction for expert users based on the

order of exposure.

Fig. 10. Experimental hypotheses

evaluated by the expert users. Within-groups comparisons are based on the order
of exposure for expert users.

4 Results

In this section we report the results of the experiment. In the following sub-
sections we report: 1. Efficiency, 2. Accuracy, 3. Satisfaction, 4. Professional
programmers.

The statistical test employed for this analysis was the standard T-Test. The
significance level employed for all tests was 0.10. Note that the risk associated
with making a type I error with either approach is small.

4.1 Efficiency

Often, usability experiments of this type will measure the efficiency with which
users can solve problems. Efficiency may be measured in terms of time; however,
for this experiment time was a constraint placed upon the user. Consequently,
the time involved in solving problems would have a more significant effect on
effectiveness measures, since the lack of time to solve all of the problems would
preclude users from fully completing the problems. This was certainly the case
with the student subjects, with only two subjects providing solutions for every
problem.

A different measure of effectiveness which can be reported for this experiment
is the number of steps involved in solving problems with each system. For ex-
ample, a smaller number of steps with one system may indicate an improvement
efficiency . The problems given to the users in this experiment involved similar
steps with either system:

92 D.P. Groth

1. Identify the classes to be generated.
2. Define a condition for each class.
3. Define the output value to be generated for each condition.
4. Construct a simple query in SQL or the Rule language.
5. Put the queries or rules in the correct order.

Syntactically, the solutions had the same number of rules or queries. For this
experiment, then, the systems are not separable. In the future, more elaborate
experiments could be constructed to more closely measure the cognitive impact
of these languages.

It is clear that the rule language is less verbose than SQL, which allows for
a comparison on this basis. For example, the following rule program classifies
patients according to their age:

′Newborns′ ← Age < 3
′Children′ ← Age ≥ 3 AND Age ≤ 12
′Adolescents′ ← Age ≥ 13 AND Age ≤ 18
′Adults′ ← Age ≥ 19 AND Age ≤ 65
′Elderly′ ← Age > 65

The equivalent SQL query is much more verbose:

Select "Newborns", * from Patient where Age < 3
Union

Select "Children", * from Patient where Age >= 3 and Age <= 12
Union

Select "Adolescents", * from Patient where Age >= 13 and Age <= 18
Union

Select "Adults", * from Patient where Age >= 19 and Age <= 65
Union

Select "Elderly", * from Patient where Age > 65

A word count (each term) of the rule language yields 37 words, while the
SQL query has 61 words. Using this measure, the SQL queries were all longer
than the rule programs. The average word count for the rule programs was 29.2
words, while the average for the SQL queries was 44.8 words.

Even though the rule language has the propensity to be more efficient using
this measure, it is difficult to draw any direct conclusions. It is more likely
that the experiment has revealed this in an indirect way. For instance, it is
plausible that the lower satisfaction scores for SQL are related to the length of
the solutions.

4.2 Accuracy

Table 4 shows the accuracy scores for each subject group.
The low scores for the students is related to the limited time that was provided

for the exam. The difference in performance between the undergraduate and

An Evaluation of a Rule-Based Language for Classification Queries 93

Table 4. Mean accuracy scores for each group, as a percent of total (standard
deviation)

Subject SQL Mapping Language
Undergraduate Student 27 (17) 37 (10)
Graduate Student 26 (19) 24 (21)
Professional 97 (0.1) 96 (0.2)

Table 5. Statistical tests of the accuracy results (Hypothesis 1 - 3)

Hypothesis t (critical value) Result (p)
H1 -0.56 (±1.665) Not Rejected (p > .10)
H2: Undergrad -1.86 (±1.708) Rejected (p < .10)
H2: Grad 0.29 (±1.706) Not Rejected (p > .10)
H2: Prof - 1 0.44 (±1.86) Not Rejected (p > .10)
H2: Prof - 2 0.26 (±1.86) Not Rejected (p > .10)
H3: SQL 2.4 (±1.665) Rejected (p < .10)
H3: MQL 1.82 (±1.665) Rejected (p < .10)

graduate student subjects is interesting. Note that the performance of graduate
and undergraduate students is indistinguishable when using SQL. However, when
using the mapping language, the undergraduate students performed better.

The lack of a similar relationship between accuracy scores for graduate stu-
dents is a result of 4 students that did not get any problem correct. When
omitting these students the average accuracy score for graduate students in-
creases to 34% (SD 17), which tracks more accurately with the undergraduate
result. The best explanation we have is based on the mix of students in the grad-
uate class, which has a higher number of international students. It is possible
that a language barrier was the primary influencer of the lower scores for these
students. Since we did not control for this variable, we retained these students
scores, rather than removing them from our result.

Table 5 reports the statistical tests for Hypothesis 1 - 3. Each result was
tested at a 0.10 significance level. When the hypothesis is rejected, we report
the lowest significance level, even though our a priori test was at 0.10. For the
professional programmers we report both parts of the experiment: Prof-1 refers
to the first exam, Prof-2 refers to the second exam. For Hypothesis 3, we tested
both SQL and the mapping language.

The undergraduate students accuracy scores were higher for the mapping
language. However, the trend on accuracy as experience increases indicates that
either tool can be used to solve such classification problems. This is a positive
result for the mapping language, since the subjects had no prior knowledge of
the language. Future work certainly needs to consider the effect of experience
with the mapping language.

The results for Hypothesis 3 show that complexity of the solution does impact
the accuracy. However, the actual result is counterintuitive - subjects were more

94 D.P. Groth

Table 6. Mean satisfaction scores (1=Best, ..., 5=Worst) for the SQL group. (standard
deviation)

Subject Pre-Exam Post-Exam
Undergraduate Student 1.82 (0.65) 2.45 (0.67)
Graduate Student 1.92 (0.80) 2.48 (0.81)
Professional 1.90 (0.78) 2.62 (0.56)

Table 7. Mean satisfaction scores (1=Best, ..., 5=Worst) for the Mapping Language
group. (standard deviation)

Subject Pre-Exam Post-Exam
Undergraduate Student 2.09 (0.78) 2.01 (0.92)
Graduate Student 1.83 (0.57) 2.42 (0.58)
Professional 2.10 (0.60) 2.03 (0.68)

Table 8. Statistical tests of the satisfaction results (Hypothesis 4 and 5)

Hypothesis t (critical value) Result (p)
H4 1.69 (±1.665) Rejected (p < .10)
H5: Undergrad -1.45 (±1.708) Not Rejected (p > .10)
H5: Grad 0.22 (±1.706) Not Rejected (p > .10)
H5: Prof - 1 1.53 (±1.86) Not Rejected (p > .10)
H5: Prof - 2 -0.86 (±1.86) Not Rejected (p > .10)

accurate with complex solutions. This was especially true with SQL. In retro-
spect, controlling for complexity in the way we did is probably faulty. Note that
the more complex solutions were shorter, which most likely skewed the results.

4.3 Satisfaction

Table 6 shows the results of the satisfaction surveys for the SQL group. Table 7
shows the results of the satisfaction surveys for the Mapping Language group.

What is interesting about the satisfaction scores is the relationship between the
pre-exam and post-exam scores. For the SQL group, the post-exam score is higher.
Again, the undergraduate students are interesting, in that their post-exam score is
actually lower than the pre-exam score. Omitting the same 4 students as we previ-
ously omitted still resulted in a higher post-exam satisfaction score for the graduate
students, although not as high as the SQL, graduate student group.

We compared the satisfaction scores to a target satisfaction score of 2.0, which
would indicate that the user subjectively believes that the tool is a “good” tool to
use. The statistical test employed was a standard T-Test with degrees of freedom
set to the size of the sample minus 1. As a group, the SQL group’s post-exam
satisfaction scores indicated that SQL was not as good as they initially believed.
For the Mapping Language group, only the Graduate students exhibited the
same behavior.

An Evaluation of a Rule-Based Language for Classification Queries 95

Table 9. Statistical tests of the satisfaction results (Hypothesis 6, 7 and 8)

Hypothesis t (critical value) Result (p)
H6 -0.01 (±1.86) Not Rejected (p > .10)
H7 -1.68 (±1.86) Not Rejected (p > .10)
H8 6.11 (±1.833) Rejected (p < .10)

Table 8 reports the statistical results for Hypothesis 4 and 5. Again, we
distinguish between the professional programmer’s first and second exams.

Hypothesis 4 was rejected. Note that this result compares the mean satisfac-
tion score to 2.0 for the post-exam satisfaction survey. This result is influenced by
the decreased satisfaction in SQL. For Hypothesis 5 the results do not consider
the tool. Rather, they simply indicate that either tool is subjectively considered
to be a good tool to solve classification problems.

4.4 Details of the Professional Programmer Experiment

In this subsection we report the results of statistical testing of Hypothesis 6 -
8. These hypotheses consider whether there is any difference in accuracy and
satisfaction for the professional programmers when given both tools to solve
problems. Table 9 reports the statistical results for these hypotheses.

Professional programmers had no problem with solving the problems with
either tool, so there is no surprise about the accuracy hypothesis (H6). The
satisfaction hypothesis (H7) is close to rejection. Again, the trend indicates that
the subjects were less satisfied with SQL.

The significant result from Hypothesis 8 is based on a preference survey
administered after using both tools. The raw data was scored on a 1 to 5 scale:

1: Strong preference for SQL.
2: Preference for SQL.
3: No preference.
4: Preference for MQL.
5: Strong preference for MQL.

The professional programmers preferred the mapping language, with a mean
preference score of 3.7 (sd 0.35). The mean score indicates a somewhat weak
preference for the mapping language. However, for the type of problem (clas-
sifications) no subject had a preference for SQL. This is especially positive for
MQL, since the subjects had no prior knowledge of the language.

5 Conclusion and Future Work

The usability experiment showed that the mapping language could be used by
both experienced and lesser experienced users with about as much accuracy as
SQL. This in itself is encouraging, since the mapping language was a new concept

96 D.P. Groth

for the subjects. The subjects were satisfied with both SQL and the mapping
language. In general, the subjects were more satisfied with the mapping language.

We took advantage of the time the professional programmers made available
for the study. Ideally, we would have liked many more professionals to participate
in the study. The professionals had a strong preference for the mapping language
for all types of classification tasks. At the same time, they tended to like SQL,
since they had much more experience with it. The professionals were able to
envision the benefits of the mapping language, which translated into the higher
preference scores.

For future work, we are investigating a web service implementation of the
process. This approach would allow for users to submit rule programs and data
files for mapping. A web service approach may allow for optimizations to occur
that are not feasible in the current implementation. In addition, we are looking
at a continuous processing implementation for data streams, in which the process
must necessarily look at a tuple only once.

References

1. Abiteboul, S., Hull, R., and Vianu, V. Foundations of Databases. Addison-
Wesley, 1995.

2. Catarci, T. What happened when database researchers met usability. Information
Systems 25, 3 (2000), 177–212.

3. Date, C. J., and Darwen, H. A Guide to the SQL Standard. Addison-Wesley,
Reading, Mass., 1993.

4. Han, J., and Kamber, M. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2001.

5. Hand, D., Mannila, H., and Smyth, P. Principles of Data Mining. The MIT
Press, 2001.

6. Meier, A., Savary, C., Schindler, G., and Veryha, Y. Database schema
with fuzzy classification and classification query language. In Computational In-
telligence: Methods and Applications (2001).

7. Ramakrishnan, R. Database Management Systems. McGraw-Hill, 1998.
8. Reisner, P. Human factors studies of database query languages: A survey and

assessment. ACM Computing Surveys 13, 1 (1981), 13–31.
9. Reisner, P., Boyce, R., and Chamberlin, D. Human factors evaluation of

two database query languages - square and sequel. In Proceedings of the National
Computer Conference (1975), pp. 447–452.

10. Vianu, V. Rule-based languages. Annals of Mathematics and Artificial Intelligence
19 (1997), 215–259.

11. Welty, C., and Stemple, D. Human factors comparison of a procedural and
a nonprocedural query language. ACM Transactions on Database Systems 6, 4
(1981), 626–649.

12. Wright, H., Brodlie, K., and Brown, M. The dataflow visualization pipeline
as a problem solving environment. In Virtual Environments and Scientific Visual-
ization ’96, M. Göbel, J. David, P. Slavik, and J. J. van Wijk, Eds. Springer-Verlag
Wien, 1996, pp. 267–276.

13. Yen, M., and Scamell, R. A human factors experimental comparison of SQL
and QBE. IEEE Transactions on Software Engineering 19, 4 (1993), 390–402.

An Evaluation of a Rule-Based Language for Classification Queries 97

Appendix

<MAP PROGRAM> ::= <RULE> [<Line Feed> <RULE>]*
<RULE> ::= <HEAD> “<-” <BODY>
<HEAD> ::= <EXPRESSION>

| “Except”
<BODY> ::= <BOOLEAN EXPR> | “Else” | Null
<BOOLEAN EXPR> ::= <CONDITIONAL EXPR> [<BOOLEAN OPERATOR>

<CONDITIONAL EXPR>]*
| [“NOT”] “(” <BOOLEAN EXPR> [<BOOLEAN OPERATOR>

<BOOLEAN EXPR>]* “)”
<BOOLEAN OPERATOR> ::= “AND” | “OR”
<CONDITIONAL EXPR> ::= <STATEMENT> [<RELATION> <STATEMENT>]
<STATEMENT> ::= [“NOT”] <EXPRESSION>
<RELATION> ::= “<” | “<=” | “>” | “>=” | “=” | “!=”
<EXPRESSION> ::= <EXPRESSION> [<OPERATOR> <EXPRESSION>]*

| “(” <EXPRESSION> “)”
| <FUNCTION> | <ELEMENT>

<OPERATOR> ::= “+” | “-” | “*” | “/” | “̂’’ | “&” | “#” | “|”
<FUNCTION> ::= “ABS(” <EXPRESSION> “)”

| “FLOOR(” <EXPRESSION> “)”
| “CEIL(” <EXPRESSION> “)”
| “SQRT(” <EXPRESSION> “)”
| “GRAYCODE(” <EXPRESSION> [“,” <EXPRESSION>]* “)”
| “LENGTH(” <EXPRESSION> “)”
| “SUBSTRING(” <EXPRESSION> “,” <EXPRESSION> “,”

<EXPRESSION> “)”
<ELEMENT> ::= <VARIABLE> | <CONSTANT> | “(” <EXPRESSION> “)”
<VARIABLE> ::= Ai ∈ R
<CONSTANT> ::= number | “string”

Deductive and Inductive Reasoning on
Spatio-Temporal Data

Mirco Nanni1, Alessandra Raffaetà2, Chiara Renso1,
and Franco Turini3

1 ISTI CNR - Pisa
{nanni, renso}@isti.cnr.it

2 Dipartimento di Informatica - Università Ca’ Foscari Venezia
raffaeta@dsi.unive.it

3 Dipartimento di Informatica - Università di Pisa
turini@di.unipi.it

Abstract. We present a framework for a declarative approach to spatio-
temporal reasoning on geographical data, based on the constraint logical
language STACLP, which offers deductive and inductive capabilities. It
can be exploited for a deductive rule-based approach to represent domain
knowledge on data. Furthermore, it is well suited to model trajectories
of moving objects, which can be analysed by using inductive techniques,
like clustering, in order to find common movement patterns. A sketch of
a case study on behavioural ecology is presented.

1 Introduction

New technologies in the field of mobile computing and communication can pro-
vide a wealth of spatio-temporal information. Collected data are useful as far as
they can be used to analyse phenomena and to take informed decisions. Induc-
tive methods can be exploited for data analysis since they are capable to extract
implicit knowledge from raw observations. However, extracted patterns are very
seldom geographic knowledge prêt-à-porter: it is necessary to reason on patterns
and on pertinent background knowledge, evaluate pattern interestingness, refer
them to geographic information.

The first step for allowing one to make a profitable use of data and extracted
patterns is to provide a query language for them. The query language has to
be flexible enough both to represent the kind of knowledge we wish to extract
from the spatio-temporal data and to express how such a knowledge can be
induced. From this viewpoint, a logic based query language is a good candidate
in terms of flexibility and expressive power. Furthermore, we believe that the
query language, even more in the case of spatio-temporal data, must be able to
handle not only data but also rules, and exhibit both deductive and inductive
capabilities. Rules can be used to represent general knowledge about the collected
data, and deductive capabilities can provide answers to queries that require some
inference besides the crude manipulation of the data. Induction can help in

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 98–115, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Deductive and Inductive Reasoning on Spatio-Temporal Data 99

extracting implicit knowledge from data and, according to its impressive success
for knowledge discovery in database field, it can provide a powerful support
to decision making. The approach we propose here is a first step towards a
framework where a representational and a query language for spatio-temporal
data mining are integrated on a logic programming basis. Such a framework
must allow to represent raw data, to encode methods for pattern extraction and
to support reasoning over background knowledge to permit the integration of
other related georeferenced data and of extracted patterns.

To support both deductive and inductive reasoning on spatio-temporal data,
the framework exploits STACLP (Spatio-Temporal Annotated Constraint Logic
Programming) [34], a language based on constraint logic programming, extended
with annotations. Constraint logic programming provides the deductive capa-
bilities, and annotations allow a neat representation of temporal, spatial and
spatio-temporal knowledge. On this ground, knowledge extraction methods can
be implemented thus providing the required inductive capabilities.

Our proposal fits in a new and promising research field, that is the integration
of declarative paradigms and systems for dealing with spatial and/or temporal
information, such as spatial databases and Geographical Information Systems
(GISs). In the literature we can find other attempts to exploit the deductive
capabilities of logics to reason on geographic data [47, 41, 1, 16, 27].

Information induction over spatio-temporal data is far from being a mature
field, yet. In recent years, many algorithms and applications have been investi-
gated, which deal with spatial data (e.g., [10, 19, 31, 25]) or temporal data (e.g.,
[42, 15, 22]), either extending ideas coming from relational data mining or in-
troducing new concepts of patterns and new computational approaches. On the
contrary, only a limited number of proposals are actually available on mining
methods which exploit both the spatial and the temporal components of data.
In Section 2 a brief review is provided.

Section 3 introduces the language STACLP and Section 4 focuses on the rep-
resentation of trajectories as a paradigmatic example of spatio-temporal objects.
In Section 5 we sketch how STACLP allows us to solve a case study concern-
ing behavioural ecology by using the deductive capabilities of the language, and
the inductive capabilities implementing a clustering method. Finally, Section 6
draws some conclusions and outlines future research directions.

2 Related Work

While a lot of effort has been spent in developing extensions of logic programming
languages capable to manage time [32], the logic based languages for the handling
of spatial information only deal with the qualitative representation and reasoning
about space (see e.g. [37]). And also the few attempts to manipulate time and
space have led to languages for qualitative spatio-temporal representation and
reasoning [46]. On the other hand, temporal [44, 11] and spatial [18, 33] database
technologies are relatively mature, although, also in the database area, their
combination is far from straightforward [5].

100 M. Nanni et al.

Our spatio-temporal language is based on the design principles of MuTA-
CLP [27, 35]. In MuTACLP temporal information is represented by annotations
whereas spatial information is encoded into the formulae, by using constraints.
This leads to a mismatch of conceptual levels and a loss of simplicity. In STA-
CLP we overcome this mismatch, by defining a uniform setting where spatial
information is represented by means of annotations, so that the advantages of
using annotations apply to the spatial dimension as well. Moreover, STACLP is
close to the approaches based on constraint databases [4, 7, 16]. From a database
point of view, logic programs can represent deductive databases, i.e. relational
databases enriched with intensional rules, constraint logic programs can repre-
sent constraint databases [21], and thus STACLP can represent spatio-temporal
constraint databases. The spatio-temporal proposals in [4, 16] are extensions of
languages originally developed to express only spatial data. Thus the high-level
mechanisms they offer are more oriented to query spatial data than temporal in-
formation. In fact, they can model only definite temporal information and there
is no support for periodic, indefinite temporal data. On the contrary, STACLP
provides several facilities to reason on temporal data and to establish spatio-
temporal correlations. For instance, it allows one to describe continuous change
in time as well as [7] does, whereas both [4] and [16] can represent only discrete
changes. Also indefinite spatial and temporal information can be expressed in
STACLP, a feature supported only by the approach in [26].

Spatio-temporal data mining is a subfield of data mining and knowledge
discovery, aimed at the extraction of spatial and temporal patterns and rela-
tionships not explicitly contained in the database. Introducing a spatial and/or
temporal component to data has two main effects: on one hand, the complexity
of the data mining task is highly increased, requiring to adopt suitable measures
to contain the computation time; on the other hand, space and time are not
simple attributes, since they have a specific semantics, and thus new, ad hoc
analysis tools should be developed to take full advantage of such information.

In the last ten years, several mining algorithms for temporal data have been
presented in literature. Among the mainstream research subfields, we mention
the mining of frequent patterns in transactional, timestamped databases such as
sequential patterns [3] and episodes [28], and the large area of time series mining:
time series classification [15, 8], sequential association rules [9, 20], clustering
[17, 22] and anomaly detection [48].

Several approaches have also been proposed for mining spatial data (see [29],
[40] for reviews of recent results): spatial trend detection [10], clustering [19],
outlier detection [31, 39], association/co-location rules [25, 38] and classification
[24, 10].

In the context of spatio-temporal data mining, where the spatial and tem-
poral component are expected to be used together, [2] suggests two main kinds
of information to induce: meta-rules, i.e., regularities shown along time by the
rules obtained in each snapshot, and evolution rules, i.e., rules computed over
pre-computed spatio-temporal features of entities. So far, only a limited number
of concrete proposals are available for the mining of spatio-temporal data, such as

Deductive and Inductive Reasoning on Spatio-Temporal Data 101

sequential patterns [45], movement prediction [43] and clustering [30, 23, 14, 12].
In this work, in particular, a clustering algorithm for trajectories is designed
within the STACLP system, following the solution described in [30]. However
a few alternative approaches can be found in literature: [23] considers generic
sequences together with a conceptual hierarchy over the sequence elements, used
to compute both the cluster representatives and the distance between two se-
quences. In [14], a model-based clustering method for continuous trajectories is
proposed, which puts together objects which can be obtained from a common
core trajectory by adding noise with normal distribution. Finally, [12] proposes a
general mapping from any data space to an Euclidean space, where any standard
clustering algorithm can be applied.

3 STACLP: A Spatio-Temporal Language

In this section we present the language STACLP [34], which extends Temporal
Annotated Constraint Logic Programming [13], a constraint logic programming
language with temporal annotations, by adding spatial annotations. The pieces
of spatio-temporal information are given by pairs of annotations which specify
the spatial extent of an object at a certain time period. The use of annotations
makes time and space explicit, but avoids the proliferation of spatial and tempo-
ral variables and quantifiers. Moreover, it supports both definite and indefinite
spatial and temporal information, and it allows one to establish a dependency
between space and time, thus permitting to model continuously moving points
and regions.

Let us start by describing the temporal and spatial domain underlying STA-
CLP. Time can be discrete or dense. Time points are totally ordered by the
relation ≤. We denote by T the set of time points and we suppose to have a
set of operations (e.g., the binary operations +, −) to manage such points. The
time-line is left-bounded by 0 and open to the future, with the symbol ∞ used
to denote a time point that is later than any other. A time period is an interval
[r, s] with r, s ∈ T and 0 ≤ r ≤ s ≤ ∞, which represents the convex, non-empty
set of time points {t | r ≤ t ≤ s}. Thus the interval [0,∞] denotes the whole
time line.

Analogously space can be discrete or dense and we consider as spatial regions
rectangles represented as [(x1, x2), (y1, y2)], where (x1, y1) and (x2, y2) denote the
lower-left and upper-right vertex of the rectangle. Precisely, [(x1, x2), (y1, y2)]
models the region {(x, y) | x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}. Rectangles are the
two-dimensional counterpart of convex sets of time points.

Annotated formulae are of the form A α where A is an atomic formula and
α an annotation. We define three kinds of temporal and spatial annotations
inspired by similar principles:

atT and atp (X, Y) are used to express that a formula holds in a time or spatial
point, respectively.

th I, thrR are used to express that a formula holds throughout, i.e., at every
point, in the temporal interval or the spatial region, respectively.

102 M. Nanni et al.

in I, inrR are used to express that a formula holds at some point(s) - but
we may not know exactly which - in the interval or the region, respectively.
They account for indefinite information.

The set of annotations is endowed with a partial order relation �. Given two
annotations α and β, the intuition is that α � β if α is “less informative” than
β in the sense that for all formulae A, A β ⇒ A α. This partial order is used
in the definition of new inference rules. In addition to Modus Ponens, STACLP
has the two inference rules below:

A α γ � α
A γ rule (�) A α A β γ = α � β

A γ rule (�)

The rule (�) states that if a formula holds with some annotation, then it also
holds with all annotations that are smaller according to the partial ordering.
The rule (�) says that if a formula holds with some annotation α and the same
formula holds with another annotation β then it holds with the least upper
bound α � β of the two annotations.

Next, we introduce the constraint theory for temporal and spatial annotations.
A constraint theory is a non-empty, consistent first order theory that axiomatises
the meaning of the constraints. Besides an axiomatisation of the total order
relation ≤ on the set of points, the constraint theory includes the axioms defining
the partial order on temporal and spatial annotations.

(at th) at t = th [t, t]
(at in) at t = in [t, t]
(th �) th [s1, s2] � th [r1, r2] ⇔ r1 ≤ s1, s2 ≤ r2
(in �) in [r1, r2] � in [s1, s2] ⇔ r1 ≤ s1, s2 ≤ r2
(atp thr) atp (x, y) = thr [(x, x), (y, y)]
(atp inr) atp (x, y) = inr [(x, x), (y, y)]
(thr �) thr [(x1, x2), (y1, y2)] � thr [(x′

1, x
′
2), (y

′
1, y

′
2)] ⇔

x′
1 ≤ x1, x2 ≤ x′

2, y
′
1 ≤ y1, y2 ≤ y′

2
(inr �) inr [(x′

1, x
′
2), (y

′
1, y

′
2)] � inr [(x1, x2), (y1, y2)] ⇔

x′
1 ≤ x1, x2 ≤ x′

2, y
′
1 ≤ y1, y2 ≤ y′

2

The first two axioms state that th I and in I are equivalent to at t when the
time period I consists of a single time point t. Next, if a formula holds at every
point of a time period, then it holds at every point in all sub-periods of that
period ((th �) axiom). On the other hand, if a formula holds at some points of
a time period then it holds at some points in all periods that include this period
((in �) axiom). The axioms for spatial annotations are analogously defined.

Spatio-temporal annotations are obtained by combining spatial and temporal
annotations. More precisely, if Spat denotes the set of spatial annotations built
from atp, thr and inr and Temp denotes the set of temporal annotations built
from at, th and in, then spatio-temporal annotations are of the kind αβ and
βα where α ∈Spat and β ∈Temp, with the obvious componentwise order, i.e.,
whenever α1 �Spat α2 and β1 �Temp β2 then α1β1 � α2β2 and β1α1 � β2α2.

Deductive and Inductive Reasoning on Spatio-Temporal Data 103

The constraint theory presented above is enriched to include the axiomati-
sation of the least upper bound on spatio-temporal annotations. The reader is
referred to [34] for a more detailed presentation.

Now we can introduce the clausal fragment of STACLP, which can be used
as an efficient spatio-temporal programming language. It consists of clauses of
the following form:

A αβ ← C1, . . . , Cn, B1 α1β1, . . . , Bm αmβm (n, m ≥ 0)

where A is an atom, α, αi, β, βi are (optional) temporal and spatial annotations,
the Cj ’s are constraints, and the Bi’s are atomic formulae. Constraints Cj cannot
be annotated. A STACLP program is a finite set of STACLP clauses.

Example 1. Assume that a person is described by his/her name, the activity and
the spatial position(s) in a certain time interval. For instance, from 1am to 10am
John sleeps, then he goes skiing up to 4pm, while Monica skies from noon to
4pm. This can be expressed by means of the following clauses.

does(john,sleep) atp (200,700) th [1am,10am].
does(john,ski) inr [(500,2000),(1000,2000)] th [10am,4pm].
does(monica,ski) inr [(500,800),(800,2000)] th [12am,4pm].

place(ski shop) thr [(700,900),(1200,1400)].

Notice that the spatial location is expressed by using an atp annotation when
the exact position is known, and by an inr annotation if we can only delimit
the area where the person can be found. Furthermore, a place can be described
by its name and its area represented by a thr annotation.

An example of query is: Where is John while Monica is at the ski shop?,
encoded in the following way:

does(john,) inr R th I, does(monica,) inr R1 th I, place(ski shop) thr R1.

This query is a composition of a spatial join and a temporal join.

4 Representing Trajectories

One of the basic forms of spatio-temporal information is given by spatio-temporal
objects, namely objects which move along time within a spatial environment.

From an abstract point of view, the movement of a spatio-temporal object
o – i.e., its trajectory – can be represented by a continuous function of time
which, given a time instant t, returns the position at time t of the object in a
d-dimensional space (typically d ∈ {2, 3}). Formally o : R

+ → R
d.

In a real-world application, however, object movements are given by means
of a finite set of observations – or control points –, i.e. a finite subset of points
taken from the actual continuous trajectory. Moreover, it is reasonable to expect
that observations are taken at irregular rates within each object, and that there
is not any temporal alignment between the observations of different objects. As

104 M. Nanni et al.

a result, it is possible to have couples of objects for which at all time points
the observation of at least one of the objects is missing. A very basic operation
such as the comparison between objects, then, cannot be performed by simply
comparing their raw observations. To allow the comparison between objects, an
(approximate) reconstruction of their full trajectory is needed. Among the sev-
eral possible solutions, we will focus on Local interpolation. According to this
method, although there is not a global function describing the whole trajec-
tory, objects are assumed to move between the observed points following some
rule. For instance, a linear interpolation function models a straight movement
with constant speed, while other polynomial interpolations can represent smooth
changes of direction. The above mentioned linear (local) interpolation, in partic-
ular, seems to be a quite standard approach to the problem (see, e.g., Chomicki
and Revesz’s parametric 2-spaghetti model [7]).

Now, let us show how trajectories can be modelled in STACLP. Given an
object o, the observations that describe its trajectory is a finite set of triplets
(x, y, t), where x and y are the coordinates of the object tracked at time t. The
trajectory reconstruction through linear interpolation can be easily represented
by equations of the following form, which define the (x, y) coordinates of an
object at time t ∈ [t1, t2]:

(x − x1)(t2 − t1) − (x2 − x1)(t − t1) = 0, and
(y − y1)(t2 − t1) − (y2 − y1)(t − t1) = 0

where (x1, y1, t1) and (x2, y2, t2) are two consecutive location points (i.e., there
are not other locations in the time interval [t1, t2]).

Specifically, the N locations of each object o, (xi, yi, ti) for i = 1, . . . , N , can
be represented by the following N STACLP facts:

fix(o) atp (x1, y1) at t1.
...

fix(o) atp (xN, yN) at tN.

Such locations will define the core of the trajectory of object o, which is then
completed by defining all the intermediate points through linear interpolation
using the following STACLP rules:

traj(O) atp (X, Y) at T :- fix(O) atp (X, Y) at T.
traj(O) atp (X, Y) at T :- fix(O) atp (X1, Y1) at T1,

fix(O) atp (X2, Y2) at T2,
succ(T1,T2), T1 < T < T2,
X=(X1(T2-T)+X2(T-T1))/(T2-T1),
Y=(Y1(T2-T)+Y2(T-T1))/(T2-T1).

In the body of the second rule, approximate points (x, y) are computed by using
the equation for the line passing through two given points, shown above. The
presence of the (standard) successor predicate succ, defined as true for all and
only the couples of (strictly) consecutive location points, ensures that no other

Deductive and Inductive Reasoning on Spatio-Temporal Data 105

observation exists between times t1 and t2, i.e., the interpolation is performed
only between consecutive location points.

5 Spatio-Temporal Analysis in STACLP

In this section we sketch a case study about behavioural ecology, the science
which studies animal behaviour with special interest in the relation to the envi-
ronment where animal lives. This is definitely an appealing application domain
for our framework since the problems coped with require the analysis of large
spatio-temporal datasets.

Typically, biologists collect information tracking the movement of animals
by means of special radio-collars thus building large datasets containing spatio-
temporal locations, called fixes. Each fix includes the identifier of the animal,
the position expressed by the spatial coordinates X, Y and the time T of the
location. The set of fixes allows us to view animals as spatio-temporal objects.

To experiment the usefulness of our framework for spatio-temporal analysis,
we coped with some relevant problems in behavioural ecology of the crested por-
cupines. In particular, we focused on determining the estimated position of the
den whenever its real location is unknown, detecting how the life area of the
animal, called home range, changes along the time, discovering the relationships
existing among individuals, or assessing whether and to what extent an event
(e.g. a change in a crop cover, meteorological or geo-morphological occurrence)
defined in time and space, has caused variations in the movement of the moni-
tored animals. Such questions emerged from a research leaded by biologists from
the University of Siena about the behavioural ecology of crested porcupines in
the Maremma Regional Park (Tuscany, Italy) [6]. It is worth recalling that the
crested porcupine is mainly nocturnal, lives in natural or artificial burrows and
there is very few information available on the behaviour of such species. For this
reason there is currently much interest, in the animal ecology field, in studying
its habits.

Here we will describe only how changes in the home range of the animals can
be discovered and how relationships among individuals can be established. The
last problem includes a wide range of cases such as finding pairs of individuals of
different sex that move together and possibly share the same den (couples), or
groups of individuals that move together (herds), or couple/groups of individu-
als that avoid each other (territoriality). In facing such issues, we can highlight
the benefits of STACLP. First of all, the language allows for a high level rep-
resentation and manipulation of time as well as space thus providing primitive
support for reasoning on spatio-temporal data. Secondly, it allows us to mix
inductive and deductive steps in order to perform complex kinds of analysis on
the behaviour of crested porcupines.

Section 5.1 below focuses on deduction, showing how the deductive capability
of our language allows us to select the animals which are likely to be a couple
and to detect changes in the home range. Section 5.2, instead, is devoted to

106 M. Nanni et al.

introduce mechanisms to support inductive analysis, describing how these tools
can be successfully used in our case study.

5.1 Deductive Analysis in STACLP

To model the spatio-temporal locations of each crested porcupine we define a
collection of facts of the kind:

fix(id) atp (x,y) at t.

specifying the position x,y, and the time t (expressed in seconds) of a location
for the animal identified by id.

Below we will show the STACLP code that implements the expert crite-
ria by which we successfully solve the questions of interest. To focus on the
knowledge representation ability of the language, the rules are slightly sim-
plified by removing some implementation details, but the code can be made
executable by a simple precompilation step. The rules extensively use the Pro-
log meta-predicate findall(X,G,L) which computes the list L of elements X that
satisfy the goal G.

For understanding the habits and the social behaviour of animals, it is ex-
tremely relevant to discover the relationships existing among individuals. To
assess the degree of association among individuals the inter-individual distance
between animals localised at the same time is computed. Two fixes are called
contemporary if they refer to locations of animals in the same place and at the
same time, i.e., a kind of spatio-temporal closeness among individuals is con-
sidered. Since the tracking technique usually presents several sources of error,
in the analysis two fixes are assumed to be contemporary if they fall within a
given time interval and the corresponding locations are within a certain distance.
The effective values for the temporal and spatial thresholds are established by
biologists (and they can be varied if the results are not satisfactory).

Analysing this kind of inter-individual distance between animals, it is possible
to make hypotheses about which animals can be considered a couple, form a herd,
or avoid other individuals. For instance, two animals of different sex are likely
to be a couple in a given day if a high quantity of contemporary fixes for the
two animals is found in such a day. The following code implements the described
criteria to determine a couple.

fixes in day(Id1,Id2,R,S,N) at T :-
findall(c(Id1,Id2), (fix(Id1) atp(X1,Y1) at T1,

fix(Id2) atp(X2,Y2) at T2,
sex(Id1, S1), sex(Id2, S2), S1 != S2,
contem(X1,Y1,X2,Y2,R,S,T1,T2) at T),

L),
length(L,N).

contem(X1,Y1,X2,Y2,Rad,Sec,T1,T2) at T:-
in day(T1) at T, in day(T2) at T,
dist(X1,Y1,X2,Y2,D), D < Rad, abs(T2-T1) < Sec.

Deductive and Inductive Reasoning on Spatio-Temporal Data 107

couple(Id1,Id2,R,S,Ratio) at T :-
porcupine(Id1), porcupine(Id2),
fixes in day(Id1,Id2,R,S,N) at T,
fixes in day(Id1,Id2,1000000,S,M) at T,
Ratio is (N/M).

The predicate fixes in day returns the number N of contemporary fixes in a
day T for the pair of crested porcupines Id1,Id2. Two fixes are considered con-
temporary if they are in the same day (predicate in day) and their spatial and
temporal distance is bounded by R and S respectively, as encoded by the predi-
cate contem. Finally, the predicate couple returns the ratio between the number
of contemporary fixes of the crested porcupines Id1,Id2 and the number of ob-
servations of Id1,Id2 within S seconds at arbitrary distance (concretely this is
obtained by setting a very large bound for the distance parameter) in the day T.

Another basic objective in the analysis of animal behaviour is a better un-
derstanding of how the animals change their home ranges along time. This goal
requires, among other tasks, the detection of seasonal variations of the home
ranges, both in location and size, and also, to infer the factors determining the
dimensions of home ranges for these species. A simple approach to face this prob-
lem consists of partitioning the time period covered by the analysis, [tstart, tend],
into consecutive time sub-intervals of appropriate duration ∆T , thus evaluating
the home ranges within each sub-interval, and analysing the sequence of results
obtained. However, in general, determining a suitable value for ∆T results to be
not easy. On one hand, it has to be large enough to allow the computation of a
significant home range, but, on the other one, it has to be small enough to catch
swift changes. A solution to this problem is to calculate home ranges in a “con-
tinuous” way within a given time interval (e.g., a season). The “continuity” can
be obtained by replacing the time partitioning approach, described above, with a
temporal sliding window: now, two parameters δt and Wt are defined, and home
ranges are computed on overlapping time intervals, each of duration Wt and each
shifted of δt w.r.t. the previous one, starting from interval [tstart, tstart + Wt].
We assume that Wt <= t end - t start, i.e., at least one of such intervals can
fit in [t start,t end].

homerange(Fix list, Home) :- <ad hoc query/external call>

home(Id, Home) at t start:- findall((X,Y),
fix(Id) atp (X,Y) in [t start, t start+Wt], Fix list),
homerange(Fix list, Home).

home(Id, Home) at T:- home(Id,) at T prev,
T=T prev+δt, T + Wt <= t end,
findall((X,Y),

fix(Id) atp (X,Y) in [T, T+Wt],
Fix list),

homerange(Fix list, Home).

Given a list of fixes, the predicate homerange returns the corresponding home
range Home by simply calling a routine provided by an external application. More

108 M. Nanni et al.

details on the use of built-in predicates to directly invoke external functions can
be found in [27, 35].

The predicate home returns the home range Home for an animal Id at reg-
ular time points, i.e. at t start and at time points shifted from t start of a
multiple of δt. The first rule states that the home range for animal Id at the
time instant t start is obtained by finding all the fixes included in the inter-
val [t start, t start+Wt] and then applying the home range routine to these
fixes. The second rule manages the remaining time points and is defined in a
similar way: it computes the home range using the fixes within the interval [T,
T+Wt], provided that T is shifted from t start by a multiple of δt and T+Wt <=
t end.

It is worth noting that computing home ranges over a sliding window produces
a smoothly-evolving home range, which is perfectly analogous to the smooth
curve obtained by applying any (of the several well known) sliding window-based
smoothing operator on a time series. Such operators have a wide application in
several fields, such as noise-reduction filters in signal processing tools. In this
sense, the sequence of home ranges obtained for an object o can be viewed as
an alternative, improved representation of its trajectory. Therefore, depending
on how home ranges are computed and the complexity of their representation,
they can be used in some analysis tasks in place of the original trajectory, in
order to improve the quality of the results (e.g., in any analysis where the global
trend of o’s movement is relevant, while its single movements are uninteresting
and potentially misleading). This represents an interesting direction for future
work.

5.2 Inductive Analysis in STACLP

As shown in the previous subsection, deductive reasoning can be useful to solve
analysis problems which essentially require to find entities and values having
some, possibly complex, properties.

However, when dealing with sophisticated analysis tasks, it is quite common
to meet concepts and abstract entities whose definition through deductive rules
can be extremely difficult. In many cases, a suitable solution to the problem at
hand requires the extrapolation of new pieces of information from those already
available. In other words, knowledge induction capabilities can be needed to
properly tackle some difficult problems.

For this reason, we will show how the STACLP language can be fruitfully used
to support induction capabilities, such as data mining algorithms. In this section
we show (i) how a basic data mining tool, the k-means clustering algorithm,
specifically tailored around trajectories, can be defined as STACLP rules, and
(ii) how it can be used to provide an alternative solution to the problem of
discovering couples and herds.

Clustering. The clustering task is aimed at identifying clusters embedded in
the data, i.e. to partition (although not necessarily in a crisp way) the dataset
into collections of data objects, such that within each partition the objects are

Deductive and Inductive Reasoning on Spatio-Temporal Data 109

“similar” to one another, while they are “different” from the objects contained
in other partitions.

Among the classical clustering algorithms, K-means is one of the best known
and widely used, for its simplicity and its low computational complexity. It is
a centre-based algorithm, meaning that clusters are represented by means of
artificial objects (the centres or representatives) which summarise the properties
of all the objects in their cluster. The k-means algorithm is essentially an iterative
convergence process which tries to find “stable” centres: it starts with k random
centres, and then, at each iteration (i) each object is associated with the closest
centre, and (ii) new centres are computed. The algorithm ends when the centres
are stable, i.e. they do not change any more from an iteration to the next one.

The general k-means clustering schema can be instantiated to a specific k-
means algorithm by specifying the two key operations used in the schema: (i)
computing the distance between two objects, and (ii) computing the represen-
tative of a set of objects (i.e., the centre of a cluster). Different definitions for
these two steps can yield completely different notions of clustering.

The STACLP language allows to implement a k-means algorithm in a very
compact, well structured and readable form. In what follows, we show the most
high level rules of such implementation. For ease of presentation, we assume that
k is the (fixed) number of clusters to find, and all objects to be clustered have
an Id of the form “objs(name of object)”.

objs to cluster(O list) :-
findall(X, (fix(X) atp (,) at , X=objs()), O list).

assign(It, [], []).
assign(0,[A1|A],[Obj1|Objs]) :- K=random(k),

A1=cluster(Obj1,K), assign(0, A, Objs).
assign(It,[A1|A],[Obj1|Objs]) :- It>0, closest(It-1, Obj1, Clust),

A1=cluster(Obj1,Clust), assign(It, A, Objs).

The objs to cluster predicate defines the set of objects to be clustered. In
the example instantiation given above, all objs() objects having some fixes
defined were selected. For any iteration It, the assign predicate associates ev-
ery object with its closest cluster centre, based on the results recursively ob-
tained at the previous iteration, representing this information as terms of the
form cluster(object ID, cluster number). At iteration zero, the assignment
object-cluster is random.

closest(Iter, Obj, Clust) :- best dist(Iter, Obj, k, Clust, D).

best dist(Iter, Obj, 1, 1, D) :- distance(centre(Iter, 1), Obj, D).
best dist(Iter, Obj, K, Clust, D) :- K>1,

distance(centre(Iter, K), Obj, D1),
best dist(Iter, Obj, K-1, Clust2, D2),
if D1 < D2 then Clust=K, D=D1

else Clust=Clust2, D=D2.

110 M. Nanni et al.

Here the selection of the closest cluster centre is implemented, simply scanning
all the k centres obtained for the previous iteration, searching for the minimum
value of the distance w.r.t. the object to assign. Here it appears the distance
predicate, defined later in this section. In the following last set of rules, the
centre of each cluster for any iteration is defined by setting its coordinates to
the average values taken by all objects in the cluster (notice that a predicate
sum pairs is used to sum the single components of couples: since it is quite
trivial to implement, its definition is omitted).

fix(centre(Iter,K)) atp (X,Y) at T :-
objs to cluster(O list), assign(Iter, A, O list),
member(cluster(Obj,K), A), fix(Obj) atp (,) at T,
compute avg position(A, K, T, X, Y).

compute avg position(A, K, T, X, Y) :-
findall((X1, Y1),

(member(cluster(O,K),A), traj(O) atp (X1, Y1) at T), L),
sum pairs(L, (Xsum, Ysum)), length(L,N), N>0,
X=Xsum/N, Y=Ysum/N.

fix(centre(K)) atp (X,Y) at T :-
fix(centre(max n iters, K)) atp (X,Y) at T.

assignments(A) :- objs to cluster(O list),
assign(max n iters, A, O list).

Notice that in the definition of compute avg position, the traj predicate is
used to interpolate the position of objects, since the fixes of an object could be
not aligned to the fixes of the others. The final result of the clustering process is
represented by the cluster assignments (see the assignments predicate) and the
means of the centres obtained when the maximum number of iterations has been
reached – in particular, such centres will coincide with a local minimum of the
clustering process if the algorithm converges in less than max n iters iterations.

The distance between objects can be defined in several ways, depending,
e.g., on the meaning given to clusters or the coarseness allowed in the compu-
tation. One example of coarse but simple distance has been implicitly given in
the previous section, where the similarity between two animals were defined as
the percentage of mutually contemporary fixes (see the couple predicate in Sec-
tion 5.1). In that case, only the explicit information on fixes has been exploited,
not considering the whole trajectory followed by objects. A different and more
precise solution, then, should take into account the position of objects for each
time instant. Following this idea, a simple general approach to compute the dis-
tance D(o1, o2) between two objects o1 and o2, whose positions along time o1(t)
and o2(t) are defined over a time interval T , can be described by the following
expression:

D(o1, o2) = Φ(do1,o2)
∣∣
T

Deductive and Inductive Reasoning on Spatio-Temporal Data 111

where the first parameter of the schema, do1,o2(t), is a distance measure between
o1(t) and o2(t), and the second one, Φ(f)|T , is a functional computed over func-
tion f and domain T and returns a real value. In the STACLP rules given below,
d() is instantiated as the Euclidean distance on R2, and Φ() is the average func-
tional, thus modelling D(o1, o2) as the average Euclidean distance between o1
and o2. However, such parameters are modular components of the clustering al-
gorithm, and therefore can be easily instantiated with other functions, as those
described in [30], thus defining new distance notions for D(o1, o2).

Computing the average Euclidean distance between moving objects requires
to calculate an integral of the Euclidean distance formula over a given time inter-
val [ts, te]. Thanks to the linear interpolation model adopted, such computation
can be realised in linear time w.r.t. the number of fixes of each object [30]. This is
due to the fact that the integration interval can be broken down to subintervals,
and in each of them the integral can be symbolically solved and thus computed in
constant time. The following rules essentially find such subintervals, use a predi-
cate compute sub (not described here, as well as sort without duplicates, for
sake of brevity) to compute local integrals, and aggregate them.

distance(O1,O2,D) :- collect fixes(O1,O2,Fixes),
integral(O1,O2,Fixes,Int), D=I/(t e-t s).

collect fixes(O1,O2,Fixes) :-
findall(T, fix(O1) atp (,) at T, L1),
findall(T, fix(O2) atp (,) at T, L2),
append(L1,L2,L).
sort without duplicates(L, Fixes).

integral(O1,O2,[],0).
integral(O1,O2,[T1|[T2|T]], Int) :-

traj(O1) atp (X11,Y11) at T1, traj(O1) atp (X12,Y12) at T2,
traj(O2) atp (X21,Y21) at T1, traj(O2) atp (X22,Y22) at T2,
compute(X11, Y11, X12, Y12, X21, Y21, X22, Y22, T1, T2, Int1),
integral(O1,O2,[T2|T], Int2), Int = Int1 + Int2.

Knowledge Discovery on Trajectories. In this section we provide a very
compact STACLP program which shows how using the clustering tool can yield
an alternative, more sophisticated, solution to the problem of discovering animal
couples or herds.

In Section 5.1, a fully deductive approach has already been presented, where
a simple criterion was adopted, based on contemporary fixes, to discover animal
couples. A more precise and general solution to the problem can be achieved
by noticing that animal couples and animal herds are groups of animal which,
in general, move together. This can be straightforwardly rephrased saying that
animal herds are clusters of animal individuals whose mutual distance is, on
average, small. This leads to the following STACLP formalisation, where trajec-
tories of animals are clustered using the k-means algorithm, and focusing on a
time interval [ts, te]:

112 M. Nanni et al.

objs to cluster(O list) :-
findall(X, (fix(X) atp (,) at , X=cut obj()), O list).

fix(cut obj(O)) atp (X,Y) at t s :- traj(obj(O)) atp (X,Y) at t s.
fix(cut obj(O)) atp (X,Y) at t e :- traj(obj(O)) atp (X,Y) at t e.
fix(cut obj(O)) atp (X,Y) at T :- T > t s, T<t e,

fix(obj(O)) atp (X,Y) at T.

cluster member(K,O list) :- findall(Obj,
(assignments(A), member(cluster(Obj,K), A)),
O list).

couples([Obj1, Obj2]) :- cluster member(, [Obj1, Obj2]),
sex(Obj1, S1), sex(Obj2, S2), S1 != S2.

herds(O list) :- cluster member(, O list),
length(O list, N), N>=min herd size.

The first rule redefines the objs to cluster predicate in order to cluster the new
cut obj(O) objects, obtained by clipping the trajectories of the original obj(O)
objects on the [ts, te] time interval. Such task is accomplished, for each object,
by (i) selecting those of its fixes which fall within the time interval, and (ii) inter-
polating the position of the object on the extremes of the time interval. Notice
that, to such purpose, in the first case the rules which define fix(cut obj(O))
make use of the fix predicate (third clause), while in the second case the traj
predicate is invoked. The cluster member predicate provides the list of objects
belonging to a cluster and it is exploited to find out couples and herds by check-
ing the size of clusters. In the rules defining couples and herds, we assumed (i)
to be interested in clusters of two individuals of different sex, and that (ii) a
necessary (and sufficient) condition for a group of animals to be a herd is that
its size is not smaller that a given threshold. Of course, it is easy to insert more
complex conditions on the properties of the group and of the animals it contains
(e.g., checking the respect of given proportions in the number of male and female
individuals).

6 Conclusions

The main aim of the framework we presented is to provide the user with high level
mechanisms to represent and reason on spatio-temporal data. The peculiarity of
this approach is that it exhibits both deductive and inductive capabilities, thus
offering the possibility to make analysis both exploiting domain expert rules and
general background knowledge (deduction), and driven by observations (induc-
tion). Furthermore we sketched how this approach can be successfully applied to
a concrete case study concerning behavioural ecology that well represents these
two kinds of reasoning.

Deductive and Inductive Reasoning on Spatio-Temporal Data 113

We are currently improving the implementation of STACLP, which is at
a prototype stage and lacks of optimisation techniques. As a future research
direction we are moving towards the introduction of other knowledge discovery
techniques, such as classification and frequent patterns, in this framework. This
leads to challenging and interesting research problems as well as a wide range
of possible applications related to mobile devices. As an example, classification
applied to trajectories can be exploited to predict the future direction of a moving
object. Detecting frequent patterns of a number of trajectories representing car
movements can allow to identify routes with high traffic density depending on
the time of the day.

Another promising direction we intend to address concerns qualitative spatio-
temporal reasoning. Starting from some preliminary results presented in [36], we
aim at defining forms of qualitative reasoning on trajectories thus providing sup-
port for qualitative spatio-temporal reasoning, possibly enriched with uncertainty
information. As an example, a typical qualitative spatio-temporal query can be
to find out whether, when and with which degree of certainty a given trajectory
crosses a specific area.

Acknowledgements. We thank T. Ceccarelli and A. Massolo for providing
us the case study and F. Fornasari and B. Furletti who collaborated in the
implementation of the system.

References

1. A.I. Abdelmoty, N.W. Paton, M.H. Williams, A.A.A. Fernandes, M.L. Barja, and
A. Dinn. Geographic Data Handling in a Deductive Object-Oriented Database. In
DEXA Conf., volume 856 of LNCS, pages 445–454. Springer, 1994.

2. T. Abraham. Knowledge Discovery in Spatio-Temporal Databases. PhD thesis,
School of Computer and Information Science, Faculty of Information Technology,
University of South Australia, 1999.

3. R. Agrawal and R. Srikant. Mining sequential patterns. In Philip S. Yu and Arbee
S. P. Chen, editors, Eleventh International Conference on Data Engineering, pages
3–14, Taipei, Taiwan, 1995. IEEE Computer Society Press.

4. A. Belussi, E. Bertino, and B. Catania. An extended algebra for constraint
databases. IEEE TKDE, 10(5):686–705, 1998.

5. M.H. Böhlen, C.S. Jensen, and M.O. Scholl, editors. Spatio-Temporal Database
Management, volume 1678 of Lecture Notes in Computer Science. Springer, 1999.

6. T. Ceccarelli, D. Centeno, F. Giannotti, A. Massolo, C. Parent, A. Raffaetà,
C. Renso, S. Spaccapietra, and F. Turini. The behaviour of the Crested Porcupine:
the complete case study. Technical report, DeduGIS - EU WG, 2001.

7. J. Chomicki and P.Z. Revesz. Constraint-Based Interoperability of Spatiotemporal
Databases. GeoInformatica, 3(3):211–243, 1999.

8. P. Cotofrei. Statistical temporal rules. In Proc. of the 15th Conf. on Computational
Statistics, 2002.

9. G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery
from time series. In Proc. of the Fourth International Conference on Knowledge
Discovery and Data Mining - KDD98, pages 16–22, 1998.

114 M. Nanni et al.

10. M. Ester, H.-P. Kriegel, and J. Sanders. Algorithms and applications for spatial
data mining. In [29], pages 160–187.

11. O. Etzion, S. Jajodia, and S. Sripada, editors. Temporal Databases: Research and
Practice, volume 1399 of Lecture Notes in Computer Science. Springer, 1998.

12. C. Faloutsos and K.-I. Lin. Fastmap: a fast algorithm for indexing of traditional
and multimedia databases. In SIGMOD Conf., pages 163–174. ACM, 1995.

13. T. Frühwirth. Temporal Annotated Constraint Logic Programming. Journal of
Symbolic Computation, 22:555–583, 1996.

14. S. Gaffney and P. Smyth. Trajectory clustering with mixture of regression models.
In KDD Conf., pages 63–72. ACM, 1999.

15. P. Geurts. Pattern extraction for time series classification. Lecture Notes in Com-
puter Science, 2168:115–127, 2001.

16. S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-Temporal Data Handling with
Constraints. GeoInformatica, 5(1):95–115, 2001.

17. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
In IEEE Symposium on Foundations of Computer Science, pages 359–366, 2000.

18. R.H. Güting. An Introduction to Spatial Database Systems. VLDB Journal,
3(4):357–400, 1994.

19. J. Han, M. Kamber, and A. K. H. Tung. Spatial clustering methods in data mining:
a survey. In [29], pages 188–217.

20. S. K. Harms, J. Deogun, and T. Tadesse. Discovering sequential association rules
with constraints and time lags in multiple sequences. In Proc. of the 13th Int.
Symposium on Methodologies for Intelligent Systems, pages 432–441, 2002.

21. P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Jour-
nal of Computer and System Sciences, 51(1):26–52, 1995.

22. E. Keogh, J. Lin, and W. Truppel. Clustering of Time Series Subsequences is
Meaningless: Implications for Previous and Future Research. In Proceedings of the
3rd IEEE International Conference on Data Mining, pages 115–122, 2003.

23. A. Ketterlin. Clustering sequences of complex objects. In KDD Conf., pages 215–
218. ACM, 1997.

24. K. Koperski. A Progressive Refinement Approach to Spatial Data Mining. PhD
thesis, Simon Frasery University, 1999.

25. K. Koperski and J. Han. Discovery of spatial association rules in geographic infor-
mation databases. In Advances in Spatial Databases, Proc. of 4th Symp. SSD’95,
volume 951 of LNCS, pages 47–66, Berlin, 1995. Springer-Verlag.

26. M. Koubarakis and S. Skiadopoulos. Tractable Query Answering in Indefinite
Constraint Databases: Basic Results and Applications to Querying Spatiotemporal
Information. In [5], pages 204–223, 1999.

27. P. Mancarella, A. Raffaetà, C. Renso, and F. Turini. Integrating Knowledge Rep-
resentation and Reasoning in Geographical Information Systems. International
Journal of GIS, 18(4):417–446, June 2004.

28. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

29. H. J. Miller and J. Han, editors. Geographic Data Mining and knowledge Discovery.
Taylor & Francis, 2001.

30. M. Nanni. Clustering Methods for Spatio-Temporal Data. PhD thesis, Dipartimento
di Informatica, Università di Pisa, 2002.

31. R. T. Ng. Detecting outliers from large datasets. In [29], pages 218–235.
32. M. A. Orgun and W. Ma. An Overview of Temporal and Modal Logic Program-

ming. In ICTL’94, volume 827 of LNAI, pages 445–479. Springer, 1994.

Deductive and Inductive Reasoning on Spatio-Temporal Data 115

33. J. Paredaens. Spatial databases, the final frontier. In ICDT’95, volume 893 of
LNCS, pages 14–32. Springer, 1995.

34. A. Raffaetà and T. Frühwirth. Spatio-Temporal Annotated Constraint Logic Pro-
gramming. In PADL’01, volume 1990 of LNCS, pages 259–273. Springer, 2001.

35. A. Raffaetà, C. Renso, and F. Turini. Enhancing GISs for Spatio-Temporal Rea-
soning. In ACM GIS’02, pages 35–41. ACM Press, 2002.

36. A. Raffaetà, C. Renso, and F. Turini. Qualitative Spatial Reasoning in a Logical
Framework. In AI*IA Conf., volume 2829 of LNAI, pages 78–90, 2003.

37. D. Randell, Z. Cui, and A. Cohn. A Spatial Logic based on Regions and Connection.
In KR1992, pages 165–176. Morgan Kaufmann, 1992.

38. S. Shekhar and Y. Huang. Discovering spatial co-location patterns: A summary of
results. In Advances in Spatial and Temporal Databases, 7th International Sympo-
sium, SSTD 2001, volume 2121 of LNCS, pages 236–256, 2001.

39. S. Shekhar, C.-T. Lu, and P. Zhang. Detecting graph-based spatial outliers: algo-
rithms and applications (a summary of results). In Proc. of the 7th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 371–376.
ACM Press, 2001.

40. S. Shekhar, P. Zhang, R. R. Vatsavai, and Y. Huang. Research accomplish-
ments and issues on spatial data mining. In White paper of the Geospatial
Visualization and Knowledge Discovery Workshop, Lansdowne, Virginia, 2003.
http://www.ucgis.org/Visualization/.

41. S. Spaccapietra, editor. Spatio-Temporal Data Models & Languages (DEXA Work-
shop). IEEE Computer Society Press, 1999.

42. R. Srikant and R. Agrawal. Mining sequential patterns: generalisations and per-
formance improvements. In Proc. of the 5th Int. Conf. on Extending Database
Technology (EDBT’96), volume 1057 of LNCS, pages 3–17, 1996.

43. N. Sumpter and A. Bulpitt. Learning spatio-temporal patterns for predicting object
behaviour. Image and Vision Computing, 18(9):697–704, 2000.

44. A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass editors.
Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings,
1993.

45. I. Tsoukatos and D. Gunopulos. Efficient mining of spatiotemporal patterns. In
Advances in Spatial and Temporal Databases, 7th International Symposium, SSTD
2001, volume 2121 of LNCS, pages 425–442, 2001.

46. F. Wolter and M. Zakharyaschev. Spatio-temporal representation and reasoning
based on RCC-8. In KR2000, pages 3–14. Morgan Kaufmann, 2000.

47. M. F. Worboys. GIS - A Computing Perspective. Taylor & Francis, 1995.
48. T. Yairi, Y. Kato, and K. Hori. Fault detection by mining association rules from

house-keeping data. In Proc. of International Symposium on Artificial Intelligence,
Robotics and Automation in Space, 2001.

Mining Semantic Structures in Movies

Kimiaki Shirahama, Yuya Matsuo, and Kuniaki Uehara

Graduate School of Science and Technology, Kobe University,
Nada, Kobe, 657-8501, Japan

{kimi, yuya, uehara}@ai.cs.scitec.kobe-u.ac.jp

Abstract. ‘Video data mining’ is a technique to discover useful patterns
from videos. It plays an important role in efficient video management.
Particularly, we concentrate on extracting useful editing patterns from
movies. These editing patterns are useful for an amateur editor to pro-
duce a new, more attractive video. But, it is essential to extract editing
patterns associated with their semantic contents, called ‘semantic struc-
tures’. Otherwise the amateur editor can’t determine how to use the
extracted editing patterns during the process of editing a new video.

In this paper, we propose two approaches to extract semantic struc-
tures from a movie, based on two different time series models of the
movie. In one approach, the movie is represented as a multi-stream of
metadata derived from visual and audio features in each shot. In another
approach, the movie is represented as one-dimensional time series con-
sisting of durations of target character’s appearance and disappearance.
To both time series models, we apply data mining techniques. As a re-
sult, we extract the semantic structures about shot transitions and about
how the target character appears on the screen and disappears from the
screen.

1 Introduction

Advances in multimedia technologies have yielded a vast amount of video data.
For efficient video management, ‘video data mining’ has attracted much research
interest in recent years. Video data mining is a technique to discover useful pat-
terns from videos. For example, [16] extracted patterns of news and commercial
video clips for content-based video retrieval and browsing. [13] extracted pat-
terns of object motions for monitoring a surveillance video. Also, for extracting
interesting patterns from movies, [12] proposed the mining framework by using
already existing audio and video analysis techniques. But, they didn’t report the
use of the extracted interesting patterns. In our case, considering that a lot of
video materials are left behind for the lack of video editing knowledge, we have
been trying to discover useful editing patterns from movies [1].

Video editing is a process of selecting and joining various shots to create
a final video sequence. Here, a shot is a sequence of video frames which are
contiguously recorded by a single camera. Although there is no absolute rule
to present a certain semantic content (e.g. happiness, sadness, violence etc),

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 116–133, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mining Semantic Structures in Movies 117

some editing patterns make it easy to convey a specific semantic content to the
viewers. Particularly, in the field of movie production, there are a lot of editing
patterns which have been employed for a long time and known to successfully
convey editor’s intention to the viewers [10]. Therefore, useful editing patterns
extracted from movies can be used by an amateur video editor to produce a new,
more attractive video.

(video media) (audio media)

timetime

semantic information of video data

Shotsize MS LS TS

Y Y YBGM

Camerawork fix pan fix

shot boundaries
A D A D

A(ppearance), D(isappearance)

2.3 (sec), -5.6, 4.2, -1.9

time

Video stream

Character’s rhythm

video frames
30 (frames/sec)

audio samples
44.1 (khz)

Fig. 1. Our two time series models of video data for semantic structure extraction

It is essential to extract editing patterns associated with their semantic con-
tents, which we didn’t discuss the problem in [1]. In [1], we extracted the editing
patterns from a movie, called ‘cinematic rules’, such as “a long distance shot
with a duration of about 6 seconds followed by a middle distance shot about
4 seconds”. But, as described in [1], although the extracted cinematic rules are
essential to make the movie meaningful, they don’t especially characterize any
kind of semantic contents. As a result, an amateur editor can’t determine how to
use the extracted cinematic rules during the process of editing a new video. Con-
sidering this problem, in this paper, we concentrate on extracting useful editing
patterns associated with their semantic contents, called ‘semantic structures’.

Video data like a movie is ‘unstructured’. It does not have a clear structure to
describe its rich and complicated semantic information [11]. This unstructured
nature of video data is caused by the characteristics of video and audio media,
both of them being known as ‘continuous media’. As shown in Fig. 1, video or
audio media consists of a sequence of media quanta (i.e. video frames or audio
samples), and it conveys its meaning only when media quanta are continuously
presented in time. So, the semantic information of video data conveyed through
video and audio media is time-dependent. Furthermore, temporal relationships
among semantic (information) contents are ambiguous and ill-defined.

Considering the above unstructured nature of video data, we firstly organize
a movie into a time series model which is relevant for the extraction of semantic
structures. This is one of the most important task since it constructs the building

118 K. Shirahama, Y. Matsuo, and K. Uehara

blocks of the movie, and converts the movie from a raw material to data with
reasonable semantic information [13].

In this paper, we propose two approaches to extract semantic structures from
a movie, based on two different time series models of the movie. In section 3,
considering the editing process where the movie editor connects various shots
with certain meanings, we represent the movie as a multi-stream, called ‘video
stream’ shown in Fig. 1. Here, one stream is a sequence of metadata derived
from visual and audio media in each shot. Then we extract semantic structures
about shot transitions. We call these semantic structures ‘syntactical association
rules’.

Rather than the above shot transitions, character’s appearance and disap-
pearance are more essential for the viewer to understand the semantic informa-
tion about what happens to that character. In section 4, we represent the movie
as one-dimensional time series consisting of durations of target character’s ap-
pearance and disappearance, called ‘character’s rhythm’ shown in Fig. 1. Based
on character’s rhythm, we extract the semantic structures about how he/she
appears on the screen and disappears from the screen. One interval where char-
acter’s rhythm roughly stays constant defines a semantically meaningful episode
where the character performs a particular action and plays a particular role in
the movie. We call this semantic structure ‘topic continuity’.

In the next section, we clarify the semantic structures we aim to extract. We
also describe some extensions of our video data mining approach from the previ-
ous work [1]. In section 3 and 4, we present a method for extracting syntactical
association rules from a video stream and a method for extracting topic continu-
ities based on character’s rhythm, respectively. Examples of extracted semantic
structures are shown in section 5. Finally, we conclude this paper in section 6,
by giving some current research issues and future works.

2 Semantic Structures

We plan to mine the following two types of semantic structures from movies.

Syntactical Association Rules: A syntactical association rule defines syntac-
tical shot transitions for presenting a certain semantic content. An example of
a syntactical association rule is “two types of shots are connected one after the
other in a battle scene, where one shot presents the leading character close to
the camera with a long duration and the other presents the secondary character
distant from the camera with a short duration”. In order to extract such syntac-
tical association rules, a shot is indexed by the ‘raw-level’ metadata (Shotsize,
Camerawork, and Duration) and the ‘semantic-level’ metadata (Character, BGM
(BackGround Music) and SE (Sound Effect)).

In [1], we extracted frequent editing patterns from a movie, called ‘cinematic
rules’. Specifically, a cinematic rule is defined as a pattern in the video stream,
where the corresponding shot sequence of metadata frequently appears in the
same form. But, this definition is too rigid to extract syntactical association
rules. First, two shot transitions which are used to present a certain semantic

Mining Semantic Structures in Movies 119

content may be slightly different (i.e. the corresponding two shot sequences have
slightly different metadata in the video stream), because one of them are varied
according to some semantically minor factors. For example, in the above battle
scene, depending on the leading (or secondary) character’s action, a few shots
may take shorter (or longer) durations. Secondly, editing patterns which are
certainly used to present some specific semantic contents are ignored by measur-
ing the importance of a editing pattern by its frequency. Considering the above
drawbacks, we define a syntactical association rule as a pattern in the video
stream, where the corresponding shot sequence contains shots with a strong cor-
relation among themselves, which is supported by the appearance of several shot
sequences similar to that syntactical association rule. Based on this definition,
we can extract syntactical association rules in more flexible and effective way.

Topic Continuities: A ‘topic’ is an interval, where one semantically meaningful
episode of a target character is presented. For example, the target character
talks to someone or makes love with a partner in the topic. In such a topic,
character’s rhythm which consists of durations of target character’s appearance
and disappearance, is assumed to roughly stay constant. So, we index semantic-
level metadata for each shot, representing intervals where the target character
appears on the screen and intervals where he/she disappears from the screen.
We will show that a topic is semantically meaningful in terms of the continuity
of target character’s action and his/her role in the movie. Thus, we can know
the outline about how target character appears on the screen and disappears
from the screen, in order to present his/her semantically meaningful episode.

[7] proposed an efficient method to extract topics of a target subject from an
e-mail stream, based on rates of message arrivals relevant to the target subject.
In [1], by using rates of target character’s appearances instead of those of relevant
message arrivals, we extracted topics from a movie. But, this approach deals too
coarsely with the semantic information about the target character in the movie.
Here, the semantic information of the movie is provided as a continuous function
of time, because the video and audio media are continuous media (see Fig. 1).
On the other hand, the semantic information of an e-mail stream is provided as
a discrete function of time, because each message emerges at a single time point
and makes sense by itself. So, in the e-mail stream, no semantic information
about a target subject is provided between consecutive time points of relevant
message arrivals. But, in the movie, the interval between the time points of two
consecutive appearances of the target character includes two semantically differ-
ent intervals, his/her appearance interval and disappearance interval. In order
to more precisely capture the semantic information about the target character,
we propose character’s rhythm and extract topics based on it.

The above raw-level and semantic-level metadata can be automatically iden-
tified by existing techniques. For example, [16] automatically extracts one type
of semantic object of interest in a video (e.g. human being, cars, and airplanes),
and tracks it across video frames. So. [16] can be used to detect intervals where
a target character appears on the screen and intervals where he/she disappears
from the screen. However, our goal is to discover useful editing patterns from

120 K. Shirahama, Y. Matsuo, and K. Uehara

movies. We thus manually index the above metadata to extract reliable editing
patterns (see [12] where several audio and video analysis techniques useful for
indexing the above row-level and semantic level metadata are introduced).

3 Mining Syntactical Association Rules in Video Streams

Since a shot doesn’t make sense by itself, a movie editor connects various shots
during an editing process in order to convey the editor’s intention to the viewer.
So, several shot transitions are associated with the semantic contents that the
movie editor wants to present, that is, syntactical association rules are used. For
example, suppose a scene where the leading character and the secondary one
are standing face to face and fighting. Here, the editor uses the tight shots (TS)
with long durations, where the leading character appears close to the camera.
In contrast, the editor uses the loose shots (LS) with short durations, where
the secondary character appears distant from the camera. This is one of the
syntactical association rules to present a battle scene, where the leading character
is more emphasized than the second one.

In order to extract syntactical association rules described above, each shot is
indexed by the following row-level and semantic-level metadata;

Shotsize: Shotsize is selected according to the distance from the camera to the
objects. Shotsize is classified into loose shot (LS), medium shot (MS) and tight
shot (TS). TS and LS are the shots taken by approaching to and leaving from
the object, respectively.

Camerawork: Camerawork means camera movement including its direction.
We consider the following seven types of Cameraworks; Fix, RightPan, LeftPan,
UpPan, DownPan, ZoomIn, and ZoomOut.

Duration (sec): Duration (= (EndFrameNo−StartFrameNo) / 30) means
the duration of the shot. The value of Duration is classified according to the
distribution of each shot’s length. The shot duration plays an important role to
convey the meaning of the shot.

Character: Character represents the name of a character who appears on the
screen.

BGM: BGM represents whether the background music is present or not in the
shot. The editors use BGM with a certain intention. For example, even in scenes
of the same type, rhythms of Durations in these scenes may be different from
each other, depending on the presence of BGM .

SE (Sound Effect): SE represents whether the sound which adds some effects
to the scene (e.g. a gunshot, an explosion, a strike and so on) is present or
not in the shot. The SE also influences the rhythm of Durations in a scene.
For example, a scene with many sounds is assumed to be a battle scene, and
therefore they should be edited in a fast rhythm.

Mining Semantic Structures in Movies 121

1

LS
fix
1.5
A
Y
Y

2

MS
fix
2
B
Y
-

3

TS
fix
3
A
Y
-

4

MS
pan
4
-
Y
-

5

LS
fix
2
A
Y
Y

6

MS
pan
3
B
Y
Y

7

TS
fix
2
A
Y
-

8

TS
fix
3
B
Y
-

10

MS
fix
3
-
-
Y

11

MS
pan
10
A
-
Y

12

LS
fix
2
A
-
Y

13

MS
fix
4
B
-
Y

14

TS
fix
5
A
-
-

Shot No.

Shotsize
Camerawork
Duration[sec]

Character
BGM

SE

. .

. .

. .

. .

. .

. .time

9

LS
fix
6
A
Y
Y

Fig. 2. Video stream indexed by the raw-level and semantic-level metadata

As illustrated in Fig. 2, we formulate the video stream that is a multi-stream
data indexed by the above raw-level and semantic-level metadata. Shot No.1
represents the content that “Shotsize is LS, Camerawork is fix, Duration of
Shot No.1 is 1.5 seconds, the Character A is displayed on the screen, and BGM
and SE are present in this shot”. Since the pattern extraction algorithm from
the multi-stream data needs to consider vast amounts of candidate patterns, the
work of extracting significant patterns from the multi-stream data takes huge
amount of time. Therefore, it is essential to develop an effective algorithm which
reduces the amount of redundant calculation [9]. Especially, in order to count the
frequency of a candidate pattern, the method introduced in [1] unwisely searches
all positions in the multi-stream, where data in many positions don’t obviously
match that candidate pattern.

From now, we present a new mining method to effectively extract the signifi-
cant patterns from a multi-stream data, such as the video stream in Fig. 2. Our
method searches the significant patterns in the multi-stream with the following
procedure.

1. Generate the candidate pattern whose length is 1. After scanning
the symbols in the multi-stream data, our method generates the group of
the possible candidate patterns whose length is 1. That is, these candidate
patterns are the unique sets of symbols which occur at the same time in the
multi-stream. For example, in the video stream in Fig. 2, a unique set of
metadata indexed for each shot, such as (Shotsize = LS, Camerawork =
fix, Duration = 1.5, Character = A, BGM = Y, SE = Y), (MS, fix, 2, B,
Y, -), is a candidate pattern of length 1.

2. For each candidate pattern, determine the search positions where
the candidate pattern may occur in the multi-stream. In order to
improve the efficiency of this procedure, our method employs Boyer-Moore
approach [3] which is known as one of the fastest string matching algo-
rithms. For the candidate pattern P (= p1p2 · · · pm) and a focused stream
S (= s1s2 · · · sn) of length m and n respectively, it can complete the string
matching in average time order complexity O(n

m logk m), where k is the
number of symbols.

122 K. Shirahama, Y. Matsuo, and K. Uehara

stream1 ABC..........ABC.............ABC...........ABC......................ABC......
stream2 CDE...........CDF............CDE............EEF.......................CDD......

stream3 HIJ.............KIH.............HII...............HKJ.........................HIK......

stream4 PQR...........PQR.............PQR............PQQ.......................PQR.....

stream5 XYZ..........YYZ.............XYZ............YZZ.......................XYZ.....

BM BM BM BM

DP
(match)

(2) DP
(match)

DP
(match)

DP
(mismatch)

DP
(match)

time

(1)

ABC
CDD

HIJ

PQR

ZYZ

candidate pattern

ABC
CD-

HI-

PQR

-YZ

extracted pattern

Fig. 3. The mining method using Boyer-Moore approach by focusing on stream (1)
and Dynamic Programming (2)

Suppose the current candidate pattern is {(A, C, H, P, Z) ⇒ (B, D, I, Q, Y) ⇒
(C, D, J, R, Z)} in Fig. 3. As shown in (1) in Fig. 3, by applying Boyer-Moore
approach to the stream 1 being focused, our method effectively searches the
symbol “ABC” that is the candidate pattern of stream 1, and detects the five
search positions where “ABC” occurs in stream 1. In the next procedure, at
these search positions, our method performs matching between the candidate
pattern and the original data in stream 2, 3, 4 and 5.

3. At all the positions determined in procedure 2, perform match-
ing between each candidate pattern and the original data, using
dynamic programming algorithm.
As can be seen from Fig. 3, at the detected search positions, the original
data differs from the candidate pattern in stream 2, 3, 4 and 5. In Fig. 3,
the symbols in the original data which don’t match the candidate pattern
are emphasized by bold and italic fonts. Like this, the candidate pattern is
rarely completely matched by the original data. In a movie, various factors
such as a change of character’s action and an occasional SE affect the editing
patterns. Nevertheless, the fundamental editing patterns are assumed to be
preserved. So, we adopt approximate string matching between the candidate
pattern and the original data by dynamic programming algorithm.

The dynamic programming algorithm (DP) for approximate string match-
ing [5] computes the edit distance between two strings A and B of length m1
and m2, respectively. For these strings, DP computes a matrix C0...m1,0...m2

that consists of m1 + 1 columns and m2 + 1 rows. The value Ci,j holds the
edit distance between A1...i and B1...j . Ai is the symbol of A at i-th position.
Ai...j represents a substring of A enclosed between i-th and j-th symbols.

Ci,0 ← i, C0,j ← j (1)
Ci,j ← if Ai = Bj then Ci−1,j−1,

else 1 + min(Ci−1,j−1, Ci−1,j , Ci,j−1) (2)

The edit distance ed(A, B) is the final value of Cm1,m2 . The rationale of the
formula is that if Ai = Bj then the cost to convert A1...i into B1...j is the cost
of converting A1...i−1 into B1...j−1. Otherwise, we have to select one among

Mining Semantic Structures in Movies 123

three choices: (a) convert A1...i−1 into B1...j−1 and replace Ai by Bj . (b)
convert A1...i−1 into B1...j and delete Ai, or (c) convert A1...i into B1...j−1
and insert Bj . At all the positions determined in procedure 2, we perform
the same matching process.

(2) in Fig. 3 represents that our method performs matching from stream 2 to 5
between the candidate pattern and the original data at the five search positions.
During this matching, our method counts the number of search positions, whose
edit distances between the candidate pattern and original data are less or equal
than the pre-specified maximal cost. In Fig. 3, where the maximal cost is set to
4, the original data is matched by the candidate pattern at the four out of the
five search positions. The number of these matching positions is used to measure
the significance of the candidate pattern in the next procedure.

4. Remove the non-significant patterns from the group of candidate
patterns by using J−measure. J-measure represents the average amount
of information content contained in a candidate pattern with the following
equation [6];

J(B; A) = P (A)∗
{

P (B|A) log2
P (B|A)
P (B)

+ (1 − P (B|A)) log2
1 − P (B|A)
1 − P (B)

}
.

(3)
Here, B is the last column of the candidate pattern and A is the remain-
ing columns. For the candidate pattern in Fig. 3, A = {(A, C, H, P, Z) ⇒
(B, D, I, Q, Y)} and B = (C, D, J, R, Z). P (A) and P (B) represent the prob-
abilities of A’s and B’s appearances, respectively. P (B|A) represents the
conditional probability of B’s appearance, given that A appears. The first
term (P (A)) measures the frequency of the candidate pattern in the multi-
stream. The second term (surrounded by the braces) expresses the degree of
dissimilarity between a prior probability (P (B)) and a posterior probability
conditioned on A (P (B|A)) (this is known as the cross-entropy). J-measure
is larger if a candidate pattern is more frequent and has a stronger con-
nection between the conditional part (A) and the consequential part (B).
Therefore, we use J-measure to measure how significant a candidate pattern
is. Candidate patterns that don’t satisfy the threshold value are regarded as
non-significant and can be removed from the group of candidate patterns.

By using J-measure, we can extract not only “general” patterns which
frequently appear in the overall range of the multi-stream, but also “special-
ized” patterns which don’t appear frequently but are confirmed by the oc-
currences of conditional parts in this multi-stream. For example, in our case
of extracting syntactical association rules from a video stream, the pattern
((Shotsize = TS, Camerawork = fix) ⇒ (TS, fix) ⇒ (TS, fix)) is a gen-
eral pattern which is frequently used in most of conversation scenes. On the
other hand, the pattern ((Shotsize = TS, Duration = long, Character = A) ⇒
(LS, short, B) ⇒ (TS, long, A)) is a specialized pattern which is used in some
battle scenes.

124 K. Shirahama, Y. Matsuo, and K. Uehara

5. Generate candidate patterns whose length is incremented by 1, and
repeat procedure 2 while candidate patterns still exist. Generate
the new candidate patterns whose lengths are incremented by 1, using the
remaining candidate patterns. Go back to procedure 2.

We can obtain a set of candidate patterns whose J − measures are larger
than the threshold value. Suppose that the candidate pattern {(A, C, H, P, Z) ⇒
(B, D, I, Q, Y) ⇒ (C, D, J, R, Z)} is extracted in Fig. 3. This means that the
patterns similar to this candidate pattern are significant in Fig. 3. Furthermore,
by checking the symbols which frequently matched the original data in procedure
3, we can know which part is significant in an extracted candidate pattern, such
as {(A, C, H, P,−) ⇒ (B, D, I, Q, Y) ⇒ (C,−,−, R, Z)} in Fig. 3. In this way,
we extract the syntactical association rules from a video stream. In addition, the
above mining method can reduce about 40% of calculation time compared with
the method described in [1].

4 Extracting Topics Based on Character’s Rhythm

In this section, we describe a technique for extracting topic continuities which
defines semantically meaningful episodes from the perspective of a target char-
acter in the movie. First of all, we explain how character’s appearance and
disappearance patterns serve for conveying to the viewer what happens to the
target character, by using Fig. 4. Fig. 4 represents the several shots from Al-
fred Hitchcock’s movie “PSYCHO”, where there are two characters, Marion and
Norman. In the bottom row of the table in Fig. 4, A and D indicate Marion’s
appearance and disappearance in a shot, respectively.

In a movie, each character definitely has his/her own ‘action flow’. Character’s
action flow presents ‘actions’ and ‘surrounding events’ to the viewer. An action
means an action that the target character performs during his/her appearance.
A surrounding event means other characters’ actions or changes of surrounding
settings during target character’s disappearance. Consider Marion’s action flow
in Fig. 4. In Marion’s appearance in shot 207, her action is driving her car. In
Marion’s disappearance in shot 208, the surrounding event is that, looming light
is to be seen outside her car. Also, at the end of shot 254, the surrounding event
is, Norman talks to Marion who disappears from the screen.

Each action or surrounding event in character’s action flow, must be consis-
tent with the previous one. For example, Marion’s action in shot 209 (she glances
outside while driving her car) is relevant to the reaction to the surrounding event
in shot 208. Marion’s action in shot 251 (she listens to Norman) is relevant to

Fig. 4. Several shots from Alfred Hitchcock’s movie PSYCHO

Mining Semantic Structures in Movies 125

the reaction to her previous action in shot 250 (she talks to Norman). These
consistent connections in Marion’s action flow allow the viewer to understand
why she glances outside her car or why she listens to Norman. So, the connec-
tions of target character’s actions and surrounding events over a certain period,
construct his/her semantically meaningful episode, that is a ‘topic’.

Meanwhile, the movie editor determines the duration of a target character’s
action (i.e. his/her appearance) is determined based on his/her action and sit-
uation. Similarly, the duration of a surrounding event (i.e. target character’s
disappearance) reflects other characters’ actions and situations, while the target
character disappears from the screen. Consequently, we can assume that, as long
as the target character performs similar actions in a particular situation, where
other characters perform similar actions as surrounding events (i.e. in a topic),
character’s rhythm which consists of durations of target character’s appearance
and disappearance, roughly stays constant.

From the above discussion, a topic is characterized by a certain ‘interaction’
between the target character and other characters. A change of such an interac-
tion is naturally reflected in character’s rhythm. As a simple example, suppose a
conversation scene where the target character talks with other characters. This
example consists of the following three topics; firstly the target character mainly
talks to one of the other characters, secondly all characters talk to each other,
and thirdly the target character just looks at other characters’ talking. It is eas-
ily conceivable that durations of target character’s disappearance in the second
(or third) topic are distinctly longer than those of the first (or second) topic,
because the number of other characters’ talking actions in his/her disappear-
ance significantly increases. Thus, extracting topics where character’s rhythm is
relatively constant reveals his/her semantically meaningful episodes.

To implement the above concept, we index metadata for each shot, repre-
senting intervals where a target character appears and intervals where he/she
disappears. Some metadata indexed for Marion, are shown in Fig. 4, where ex-
cept shot 254, she appears or disappears throughout the entire period of a shot
(indexed by A or D). Marion’s rhythm from shot 194 to 267 can be drawn as
shown in Fig. 5, by scanning durations of her appearance and disappearance
one by one. Starting from the leftmost in Fig. 5, the small circles correspond to
Marion’s appearance or disappearance in shot 207, 208, 209, 250, 251, start of
254, end of 254, and 255, respectively (Fig. 4). A positive value indicates the
duration of Marion’s appearance, and a negative value indicates the duration of
her disappearance.

The best example reflecting our assumption of character’s rhythm is the
interval from Marion’s 198th to 226th disappearance (topic 2). In topic 2, the
durations of Marion’s appearance and disappearance are shown as alternating
positive and negative values with very similar amplitudes. Corresponding to this
Marion’s constant rhythm, she drives her car in a rainy night in topic 2. But,
character’s rhythm may be rugged in a topic, because the topic may include
some different character’s actions and surrounding events. For example, in topic
3 (Marion calls Norman after reaching his motel), Marion walks around looking

126 K. Shirahama, Y. Matsuo, and K. Uehara

20

15

10

5

0

-5

-10

-15

-20

200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275

Appearance or Disappearance’s duration (seconds)

topic 2 topic 3

topic 1 topic 4

topic 7topic 0

l2

l1

l3

Appearance
or

Disapperance

l4

l7

topic 5 topic 6

topic 8
topic 9

Fig. 5. Our rhythmic model of character’s actions and surrounding events

for Norman and she waits impatiently beeping the horn. So, we need to extract
topics where character’s rhythm is relatively constant with some degree of error.

We extract topics by employing time series segmentation method [4]. Our
method recursively divides a segment of character’s rhythm into two sub-segments
in a top-down approach, beginning from the whole range of his/her rhythm. In
each recurrence, our method examines whether character’s rhythm in a segment
is constant or not, by using the following “correlation measure”.

Suppose we approximate the values of character’s rhythm in a segment (yi)
by the least-square regression line (ŷi = bxi + a, such as the straight lines in
Fig. 5). The correlation of character’s rhythm in the segment is estimated by
the ‘Sum of Residual Squares (SRSsegment =

∑
(yi − ŷi)2)’, where a smaller

SRSsegment means a stronger correlation. In each recurrence, by applying the
correlation measure to a segment and sub-segments, our method evaluates the
constancy of character’s rhythm with the following procedure:

1. Find the optimal pair of sub-segments within a segment, which
satisfies the following condition:

min(SRSsub−segment1 + SRSsub−segment2) (4)

For every possible pair of sub-segments within the segment, SRSsub−segment1
andSRSsub−segment2 are computedbydetecting the respective least-square re-
gression lines. Our method finds the optimal pair of sub-segments which mini-
mizesthesumofSRSsub−segment1andSRSsub−segment2.Accordingtotheprop-
erty of the correlation measure described above, character’s rhythm is well cor-
related with different least-square regression lines. That is, the segment is sup-
posed to have different types of rhythms in the optimal pair of sub-segments.

Here, we assume that if the segment has a constant rhythm, the values of
appearance and disappearances’ durations are relatively uniformly distributed
around the least-square regression line, such as topic 2 in Fig. 5. In such a case,
any pair of sub-segments will have similar types of rhythms associated with

Mining Semantic Structures in Movies 127

topic 0

topic 1
topic 4

topic 2
topic 3

topic 5
topic 6

topic 7

topic 8

topic 9

Fig. 6. The resulting tree of topics to be extracted from Marion’s rhythm in Fig. 5

least-square regression lines similar to that of the original segment. So, the dif-
ference between the rhythms in the optimal pair of sub-segments can be used
for the evaluation of the constancy of character’s rhythm in a segment.

2. Decide whether the segment should be divided into the optimal
pair of sub-segments in the following way:

R SRSsegment = SRSsegment − min(SRSsub−segment1 + SRSsub−segment2).

=⇒
{

If R SRSsegment > threshold, then divide the segment.
Else don′t divide the segment any more.

(5)

A more precise approximation of character’s rhythm, by dividing the segment
into the optimal pair of sub-segments, generates a “Reduction of SRSsegment

(R SRSsegment)”. R SRSsegment is larger than the threshold if the seg-
ment has considerably different types of rhythms in the optimal pair of
sub-segments. In Fig. 5, Marion’s rhythm in topic 2 and topic 3 (which
are selected as the optimal pair) are completely different, so R SRStopic1
is larger than the threshold. In such a segment, character’s rhythm is not
regarded as constant, and our method divides the segment into the optimal
pair of sub-segments.

On the other hand, R SRSsegment is smaller than the threshold if there
is no considerable difference between rhythms in the optimal pair for the
segment, such as topic 2 in Fig. 5. In such a segment, character’s rhythm is
regarded as constant, and our method no longer divides the segment.

Finally, we can obtain a binary tree of topics where character’s rhythm is
constant at multiple abstraction levels. Fig. 6 shows that Marion’s rhythm in
Fig. 5 is divided into more precisely constant rhythms. Correspondingly, a part
of PSYCHO is divided into more localized topics from Marion’s perspective. In
Fig. 5, Marion’s rhythm is relatively constant in topic 2 (Marion drives car in a

128 K. Shirahama, Y. Matsuo, and K. Uehara

rainy night) and topic 7 (Marion talks to Norman in her room). But, although
topic 4 (Marion checks in Norman’s motel) and topic 7 can be thought as Mar-
ion’s semantically meaningful episodes, they are over-divided due to extremely
long durations of her disappearance compared to other durations. In these long
durations of Marion’s disappearance, Norman suspects Marion in topic 4 and
he moves around her room before talking to her in topic 7, respectively. While
this kind of temporal change of character’s rhythm can be thought as an edit-
ing technique, we need to develop a method which can robustly extract topics
including such temporal changes of character’s rhythm (i.e. outliers).

5 Experiments

We implemented the methods stated in section 3 and 4, and mainly analyzed
two movies, “PSYCHO” and “Star Wars Episode I” directed by Alfred Hitchcock
and George Lucas, respectively. Also, we analyzed some additional movies. Since
our experimental movies are very famous and popular, we considered that there
are many useful editing patterns to persuasively convey editor’s intentions to
the viewer, that is, semantic structures.

5.1 Syntactical Association Rules

We implemented the method stated in section 3 to extract the syntactical as-
sociation rules. The following presents some examples of syntactical association
rules that our mining method extracted from the movie PSYCHO.

1. Fast rhythm with BGM and rapid transition of Shotsizes: The
rhythm of Durations is associated with the presence of BGM and the
way of a transition of Shotsizes. The rapid transition of Shotsizes (LS ⇒
TS, TS ⇒ LS) in a BGM scene induces a fast rhythm of Durations. In
this movie, this pattern characterized by the visual leap (rapid transition of
Shotsizes), speedy deployment (fast rhythm of Durations) and BGM , is
often used in tense scenes.

2. Constant rhythm with BGM and constant transition of Shotsizes:
In contrast with case 1, the constant transition of Shotsizes (LS ⇒ LS,
MS ⇒ MS, TS ⇒ TS) in a BGM scene induces a constant rhythm of
Durations, in most cases, a slow rhythm. This pattern characterized by
using constant Shotsizes and Durations in a BGM scene, is often used to
smoothly present a conversation of two Characters.

3. Long Durations of Pan shots in a BGM scene: Durations of Pan shots
in a BGM scene are longer than those of a non-BGM scene. Especially, a
Pan shot with a long Duration is used to thoroughly present the action of
one Character who appears on the screen. Furthermore, this pattern is got
more effective by involving BGM .

The following shows the examples of syntactical association rules in the movie
Star Wars Episode I.

Mining Semantic Structures in Movies 129

1. Fast rhythm with BGM and SE in a scene: The editing patterns are
influenced by whether BGM or SE (Sound Effect) is present or not in a
scene. Even in similar scenes, a BGM scene is edited in a fast rhythm of
Durations compared with a non-BGM scene. Non-BGM scenes generally
contain long conversation scenes, and these scenes are edited in slow rhythms.
On the other hand, a scene with BGM or SE generally contains a lot of
quick Cameraworks, and the scene is obviously edited in a fast rhythm of
Durations.

2. Character’s appearance: The editing patterns are influenced by which
Character appears in a scene. In a scene where rapid transitions of Shotsizes
are used frequently, the leading Character appears in close shots (TS) with
long Durations. On the other hand, the secondary Character appears in
distant shots (LS) with short Durations. This pattern characterized by
changing Shotsizes and Durations depending on each character, is often
used in battle scenes.

3. Intelligible Camerawork in a fast rhythm scene: Especially in a scene
edited in a fast rhythm of Durations, the editor connects shots whose
Cameraworks have the same direction. That is, it is inappropriate to fol-
low a shot with RightPan by a shot with LeftPan in a scene edited in a
fast rhythm of Durations, because this inconsistent connection in the fast
rhythm confuses the viewers.

Finally, we present some examples of syntactical association rules in the movie
“Seven Samurai” directed by Akira Kurosawa. Although George Lucas is said
to be influenced by Akira Kurosawa, their editing patterns are quite different.

1. Shot connection without TS: In most of scenes, the editor does not use
TS, but uses distant shots such as MS and LS.

2. Slow rhythm with BGM at the beginning or the end of a scene:
The beginning or end of a scene is presented in a slow rhythm of Durations
by using BGM . This editing pattern is often used at the beginning or the
end of a silent scene.

3. Using TS with BGM in a conversation scene: In a conversation scene
with BGM , TS is often used with a long Duration.

5.2 Topic Continuities

By the method described in section 4, we extracted topic continuities of leading
characters, Marion in PSYCHO, Qui-Gon in Star Wars Episode I, and Roger
in another Alfred Hitchcock’s movie “North By Northwest”. For giving a clear
summary of our experiments, we use a ‘specific topic’ which is considered as a
semantically relevant atomic episode of a target character. And we use a ‘long-
running topic’ which is a large topic generalized by some specific topics. Our
experiments shows that, by using the temporal information about target charac-
ter’s appearance and disappearance, we could extract almost all specific topics,
but we could not successfully extract long-running topics. We summarize our
experimental results of topic extraction by using Fig. 7. Here, the topics which

130 K. Shirahama, Y. Matsuo, and K. Uehara

a) a part of Qui-Gon’s rhythm

-20

-15

-10

-5

 0

 5

 10

 15

 560 570 580 590 600

(second)

A or D

topic 1

topic 1: Qui-Gon goes to pick up the boy.

topic 2: Qui-Gon is allowed
 to take the boy.

topic 3: Qui-Gon goes
 to call the boy. topic 4: Qui-Gon watches boy’s

 conversation with his mother.

topic 5: Qui-Gon talks
 to boy’s mother.

b) a part of Marion’s rhythm

-10

-5

 0

 5

 10

 15

 20

 25

 30

 420 430 440 450 460 470

(second)

topic 6

A or D

topic 10: Marion dies.

topic 6: Marion is killed by the man.

topic 7: Marion writes a letter.

topic 8: Marion washes her body.

topic 9: Marion is attacked by the man.

Fig. 7. The parts of the resulting trees extracted for Qui-Gon’s (a) and Marion’s (b)
rhythms

can be considered as semantically meaningful episodes of Qui-Gon and Marion,
are manually annotated by human interpretation.

In Fig. 7 (a), topic 1 is a long-running topic including four specific topics topic
2 ∼ 5. These specific topics reveal the interactions between Qui-Gon and other
characters. For example, Qui-Gon’s rhythm has different patterns in topic 3 and
topic 4, because the duration of Qui-Gon’s disappearance suddenly becomes
very long at the beginning of topic 4. And this change in Qui-Gon’s rhythm
corresponds to a great change in his actions. That is, although Qui-Gon was a
principal actor in topic 3, after this point of change, he plays a secondary role in
topic 4. Since the editor can use only a single video stream to present the story
of a movie, it can be thought that a duration of target character’s disappearance

Mining Semantic Structures in Movies 131

reflects his/her importance. Thus, a specific topic is considered as semantically
meaningful, because it is sensitive to changes of target character’s role in the
movie.

On the other hand, a duration of target character’s appearance reflects his/her
action. As can be seen from Fig. 7 (b), at the beginnings of topic 9 and topic 10,
the durations of Marion’s appearance dramatically change. And, these changes
of Marion’s rhythm are confirmed by changes of her actions too. Like this, a
specific topic is not only sensitive to changes of target character’s role, but also
sensitive to changes of his/her action. In this way, one roughly constant rhythm
of a target character defines a specific topic in terms of the continuity of his/her
action and role in the movie. Although the degree of constancy of the rhythm
in each specific topic is different, almost all specific topics can be preserved in
the resulting tree where character’s rhythm is constant at multiple abstraction
levels. Furthermore, by investigating specific topics, we can know the outline
about how the target character appears on the screen and disappears from the
screen in order to present his/her semantically meaningful episodes.

However, our method is not efficient for extracting long-running topics such as
topic 1 and topic 6 in Fig. 7. The reason is that, the resulting tree cannot preserve
semantic relationships between consecutive topics. For example, taking a close
look at Fig. 7 (a), the positions of topic 4 and topic 5 are distant, although they
are very close in the following semantic content, “both topics happen in boy’s
house”. Consequently, two consecutive specific topics whose semantic contents
are different from each other, have the same parent topic in the resulting tree.

6 Conclusion and Future Work

In this paper, we extracted two types of semantic structures, syntactical associ-
ation rules and topic continuities, by applying data mining techniques to movies
organized into time series models of raw-level and semantic-level metadata. By
using the extracted semantic structures in our video editing support system [2],
the system becomes able to help an amateur produce a new, more attractive
video. But, there are some issues and future works to be further explored, which
are summarized as follows:

In section 3, we proposed a method for effectively extracting syntactical asso-
ciation rules from a video stream, by adopting Boyer-Moore approach, dynamic
programming and J-measure. Our method can perform fast matching between
a candidate pattern and the original data and eliminate non-significant patterns
from the group of candidate patterns. But, our method seems to be still too
rigid to extract useful editing patterns of shots associated with their semantic
contents. The weakest point is that our method invariably searches a sequence
of shots where the last shot can be predicted by the preceding sub-sequence.
That is, we assume that a certain semantic content is always presented in the
same temporal order of shots, but it is obviously impractical. Therefore, we may
need to deal with a video stream from a different perspective. For example,
it may be better to firstly segment a video stream into sub-sequences of shots

132 K. Shirahama, Y. Matsuo, and K. Uehara

(e.g. [8] introduces an unsupervised segmentation algorithm in categorical time
series). And then, we classify these sub-sequences into groups which have similar
distributions of shots indexed by raw-level and semantic level metadata.

In section 4, we proposed a method for extracting topic continuities based on
character’s rhythm. For a target character, our method extracts the binary tree
of topics where his/her rhythm is constant at multiple abstraction levels. From
this resulting tree, we could extract almost all specific topics as semantically
meaningful episodes of the target character. But, at present, we extract specific
topics by investigating the resulting tree with our own sights. To solve this
issue, we aim to calculate the importance score for each topic, by modifying
the importance measure introduced in [15]. By using the importance measure,
we can assign large importance scores to topics with our desired properties. Our
experiments show that a specific topic is a topic which is as long as possible and in
which character’s rhythm is as constant as possible. Thus, by using importance
measure, we may extract only topics with large importance scores as specific
topics. Furthermore, by classifying segments of character’s rhythm in extracted
specific topics, we may extract patterns of character’s rhythm which characterize
certain types of episodes.

References

1. Y. Matsuo, K. Shirahama and K. Uehara: Video Data Mining: Extracting Cine-
matic Rules from Movie. In Proc. of 4th International Workshop on Multimedia
Data Mining MDM/KDD. (2003) 18-27

2. M. Kumano, Y. Ariki, M. Amano, K. Uehara, K. Shunto and K. Tsukada: Video
Editing Support System Based on Video Grammar and Content Analysis. In Proc.
of 16th International Conference on Pattern Recognition. (2002) 346-354

3. R. Boyer and S. Moore: A Fast String Searching Algorithm. Communications of
the ACM. Vol. 20 (1977) 762-772

4. V. Guralnik and J. Srivastava: Event Detection from Time Series Data. In Proc.
of the 5th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. (1999) 33-42

5. G. Navarro and R. Baeza-Yates: Fast Multi-Dimensional Approximate Pattern
Matching. In Proc. of the 10th Annual Symposium on Combinatorial Pattern
Matching, Lecture Notes in Computer Science, Vol. 1645. Springer. (1999) 243-
257

6. P. Smyth and R. M. Goodman: An Information Theoretic Approach to Rule In-
duction from Databases. IEEE Transactions on Knowledge and Data Engineering,
Vol. 4, Issue 4. (1992) 301-316

7. J. Kleinberg: Bursty and Hierarchical Structure in Streams. In Proc. of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. (2002) 91-101

8. P. Cohen, B. Heeringa and N. Adams: An Unsupervised Algorithm for Segment-
ing Categorical Timeseries in Episodes. In Proc. of ESF Exploratory Workshop
on Pattern Detection and Discovery in Data Mining, Lecture Notes in Artificial
Intelligence. Vol. 2447. Springer. (2002) 49-62

Mining Semantic Structures in Movies 133

9. F. Hoppner: Discovery of Core Episodes from Sequences Using Generalization for
Defragmentation of Rule Sets. In Proc. of ESF Exploratory Workshop on Pattern
Detection and Discovery in Data Mining, Lecture Notes in Artificial Intelligence.
Vol. 2447. Springer. (2002) 199-213

10. D. Arijon: Grammar of File Language. Focal Press Limited Publishers. (1976)
11. A. Hampapur: Designing Video Data Management Systems. Ph.D dissertation,

University of Michigan. (1995)
12. D. Wijesekera and D. Barbara: Mining Cinematic Knowledge: Work in Progress.

In Proc. of the International Workshop on Multimedia Data Mining. (2000) 98-103
13. J. Oh and B. Bandi: Multimedia Data Mining Framework for Raw Video Sequences.

In Proc. of 3th International Workshop on Multimedia Data Mining MDM/KDD.
(2002) 1-10

14. J. Pan and C. Faloutsos: VideoCube: a novel tool for video mining and classifica-
tion. In Proc. of 5th ICADL conference. (2002) 194-205

15. S. Uchihashi, J. Foote, A. Girgensohn and J. Boreczky: Video Manga: Generating
Semantically Meaningful Video Summaries. In Proc. of 7th ACM Multimedia 1999.
(1999) 383-392

16. J. Fan and Y. Ji: Automatic Moving Object Extraction toward Content-Based
Video Representation and Indexing. Jour. of Visual Communications and Image
Representation, Vol. 12, No. 3. (2001) 217-239

Solving Alternating Boolean Equation Systems
in Answer Set Programming

Misa Keinänen and Ilkka Niemelä

Dept. of Computer Science and Engineering,
Lab. for Theoretical Comp. Science,
Helsinki University of Technology,

P.O. Box 5400, FI-02015 HUT, Finland
{Misa.Keinanen, Ilkka.Niemela}@hut.fi

Abstract. In this paper we apply answer set programming to solve al-
ternating Boolean equation systems. We develop a novel characterization
of solutions for variables in disjunctive and conjunctive Boolean equa-
tion systems. Based on this we devise a mapping from Boolean equation
systems with alternating fixed points to normal logic programs such that
the solution of a given variable of an equation system can be determined
by the existence of a stable model of the corresponding logic program.
The technique can be used to model check alternating formulas of modal
µ-calculus.

1 Introduction

Model checking is a verification technique aimed at determining whether a sys-
tem model satisfies desired properties expressed as temporal logic formulas. In
recent years, research on model checking has addressed large scale verification
problems, which are often solved by special purpose verification tools.

Yet it has been demonstrated that also logic programming systems can suc-
cessively be applied to the construction of practical model checkers, like e.g. in
[10, 5, 13]. In the present paper, we continue this line of research and restrict the
attention to the model checking problem of modal µ-calculus [12], and in par-
ticular to its formulation as Boolean equation systems [1, 18, 23]. The research
topic belongs to the area of formal verification, but more specifically it addresses
effective ways of solving systems of fixed point equations.

The modal µ-calculus is an expressive logic for systems verification, and has
been widely studied in the recent model checking literature (e.g. [3] gives a
general exposition). Boolean equation systems provide here a useful framework,
because µ-calculus expressions can easily be translated into this more flexible for-
malism (see [1, 3, 18] for the standard translations). The complexity of µ-calculus
model checking is an important open problem; no polynomial time algorithm has
been discovered. On the other hand, it is shown in [6, 7] that the problem is in
the complexity class NP ∩ co-NP (and is known to be even in UP ∩ co-UP [11],
where UP is the class of problems decided by unambiguous polynomial time
nondeterministic Turing machines, see [21]).

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 134–148, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Solving Alternating Boolean Equation Systems in Answer Set Programming 135

In this paper we propose an answer set programming (ASP) based approach
for solving alternating Boolean equation systems. In ASP a problem is solved
by devising a mapping from a problem instance to a logic program such that
models of the program provide the answers to the problem instance [14, 19, 20].
We develop such a mapping from alternating Boolean equation systems to logic
programs providing a basis for a model checking technique for µ-calculus logic.

Previously, answer set programming has been applied to solve Boolean equa-
tion systems in [13] where it is argued that alternating Boolean equation systems
can be solved by translating them to propositional normal logic programs, and
computing stable models which satisfy certain criteria of preference. Moreover,
it is shown in [13] how alternation-free Boolean equation systems can be mapped
to stratified logic programs, which can be directly solved in linear time, preserv-
ing the complexity [2] of model checking alternation-free fragment of µ-calculus.
However, the approach proposed in [13] does not preserve the polynomial time
complexity [9] of solving disjunctive and conjunctive Boolean equation systems.

We reduce the problem of solving alternating Boolean equation systems to
computing stable models of normal logic programs. This is achieved by devising
an alternative mapping from Boolean equation systems to normal logic pro-
grams so the solution for a given variable in an equation system can be deter-
mined by the existence of a stable model of the corresponding logic program.
Our translation is such that it ensures polynomial time complexity of solving
both disjunctive and conjunctive alternating systems, and hence preserves the
complexity of model checking many important fragments of µ-calculus, like L1
and L2 investigated in [4, 6, 7].

The paper is organized as follows. In the following section we introduce basic
notions of Boolean equation systems. In Section 3 we state some properties of
Boolean equation systems which are important in solving them. In Section 4
we review stable model semantics of normal logic programs. In Section 5 we
show how alternating Boolean equation systems can be solved using answer
set programming techniques. In Section 6 we discuss some initial experimental
results. Finally, Section 7 contains conclusive remarks.

2 Boolean Equation Systems

We will give in this section a short presentation of Boolean equation systems.
Essentially, a Boolean equation system is an ordered sequence of fixed point
equations over Boolean variables, with associated signs, µ and ν, specifying the
polarity of the fixed points. The equations are of the form σx = α, where α is
a positive Boolean expression. The sign, σ, is µ if the equation is a least fixed
point equation and ν if it is a greatest fixed point equation.

Let X = {x1, x2, ..., xn} be a set of Boolean variables. The set of positive
Boolean expressions over X is denoted by B(X), and given by the grammar:

α ::= 0 | 1 | x ∈ X | α1 ∧ α2 | α1 ∨ α2

136 M. Keinänen and I. Niemelä

where 0 stands for false and 1 for true. We define the syntax of Boolean equation
systems as follows.

Definition 1 (The syntax of a Boolean equation system). A Boolean
equation is of the form σixi = αi, where σi ∈ {µ, ν}, xi ∈ X , and αi ∈ B(X).
A Boolean equation system is an ordered sequence of Boolean equations

((σ1x1 = α1)(σ2x2 = α2), ..., (σnxn = αn))

where the left-hand sides of the equations are all different. We assume that the
order on variables and equations are in synchrony, and that all right-hand side
variables are from X .

The priority ordering on variables and equations of a Boolean equation system
is important for it ensures the existence of a unique solution. The semantical
interpretation of Boolean equation systems is such that each system E has a
uniquely determined solution, which is a valuation assigning a constant value
in {0, 1} to variables occurring in E . More precisely, the solution is a truth
assignment to the variables {x1, x2, ..., xn} satisfying the fixed-point equations
such that the right-most equations have higher priority over left-most equations
(see e.g. [1, 18]). In particular, we are interested in the value of the left-most
variable x1 in the solution of a Boolean equation system. Such a local solution
can be characterized in the following way.

Let α be a closed positive Boolean expression (i.e. without occurrences of
variables in X). Then α has a uniquely determined value in the set {0, 1} which
we denote by ‖α‖. We define a substitution for positive Boolean expressions.
Given Boolean expressions α, β ∈ B(X), let α[x/β] denote the expression α
where all occurrences of variable x are substituted by β simultaneously.

Similarly, we extend the definition of substitutions to Boolean equation sys-
tems in the following way. Let E be a Boolean equation system over X , and let
x ∈ X and α ∈ B(X). A substitution E [x/α] means the operation where [x/α]
is applied simultaneously to all right-hand sides of equations in E . We suppose
that substitution α[x/α] has priority over E [x/α].

Definition 2 (The local solution to a Boolean equation system). The
solution to a Boolean equation system E, denoted by [[E]], is a Boolean value
inductively defined by

[[E]] =
{‖α[x/bσ]‖ if E is of the form ((σx = α))

[[(E ′)[x/α[x/bσ]]]] if E is of the form (E ′(σx = α))

where bσ is 0 when σ = µ, and bσ is 1 when σ = ν.

The following example illustrates the definition of the solution.

Example 1. Let X be the set {x1, x2, x3} and assume we are given a Boolean
equation system

E1 ≡ ((νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)(νx3 = x3)).

Solving Alternating Boolean Equation Systems in Answer Set Programming 137

The local solution, [[E1]], of variable x1 in E1 is given by

[[((νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)(νx3 = x3))]] =
[[((νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)[x3/1]]] =
[[((νx1 = x2 ∧ x1)(µx2 = x1 ∨ 1)]] =
[[((νx1 = x2 ∧ x1)[x2/x1 ∨ 1]]] =
[[(νx1 = (x1 ∨ 1) ∧ x1)]] = ‖((1 ∨ 1) ∧ 1)‖ = 1

3 Properties of Boolean Equation Systems

In this section, we discuss important concepts concerning Boolean equation sys-
tems. We also state some facts about Boolean equation systems which turn out
to be useful in the computation of their solutions.

The size of a Boolean equation system is inductively defined as |(σx = α)E| =
1 + |α| + |E|, where |α| is the number of variables and constants in α, and the
size of an empty equation system is 0.

A Boolean equation system E is in a standard form if each right-hand side
expression αi consists of a disjunction xi ∨ xj , a conjunction xi ∧ xj , or a single
variable xi. As pointed out in [18], for each system E there is another system E ′

in the standard form such that E ′ preserves the solution of E and has size linear
in the size of E . In the sequel we restrict to standard form Boolean equation
systems.

Given a Boolean equation system, we define a variable dependency graph sim-
ilar to a Boolean graph in [1], which provides a representation of the dependencies
between the variables.

Definition 3 (A dependency graph). Let E be a standard form Boolean
equation system:

((σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)).

The dependency graph of E is a directed graph GE = (V, E) where

– V = {i | 1 ≤ i ≤ n} is the set of nodes
– E ⊆ V × V is the set of edges such that for all equations σi xi = αi:

(i, j) ∈ E iff a variable xj appears in αi.

We say that a variable xi depends on variable xj in a Boolean equation
system E , if the dependency graph GE of E contains a directed path from node
i to node j. It is said that two variables xi and xj are mutually dependent, if
xi depends on xj and vice versa. A Boolean equation system is alternation free,
if xi and xj are mutually dependent implies that σi = σj holds. Otherwise,
the Boolean equation system is said to be alternating. An important notion
of Boolean equation systems is alternation depth, and we take the standard
definition of alternation depth which can be found in Definition 3.34 of [18].

We say that a variable xi is self-dependent, if xi depends on itself such that
no variable xj with j < i occurs in this chain of dependencies. More precisely,
the notion of self-dependency can be defined in the following way.

138 M. Keinänen and I. Niemelä

� ��

�
�

�
�

�
�

�
�

1 2 3νx1 = x2 ∧ x1

µx2 = x1 ∨ x3

νx3 = x3

Fig. 1. The dependency graph of Boolean equation system E1 in Example 1

Definition 4. Given a Boolean equation system E, let G = (V, E) be its depen-
dency graph and k ∈ V . We define the graph G�k = (V �k, E�k) by taking

– V �k = {i ∈ E | i ≥ k}
– E�k = {〈i, j〉 ∈ E | i ≥ k and j ≥ k}.

The variable xk is self-dependent in the system E, if node k is reachable from
itself in the graph G�k.

Example 2. Consider the Boolean equation system E1 of Example 1. The depen-
dency graph of E1 is depicted in Figure 1. The system E1 is in standard form
and is alternating, because it contains alternating fixed points with mutually
dependent variables having different signs, like x1 and x2 with σ1 �= σ2. Notice
that two variables are mutually dependent when they appear on the same cycle
in the dependency graph. The variables x1 and x3 of E1 are self-dependent, but
x2 is not as G�2 = ({2, 3}, {(2, 3), (3, 3)}) contains no loop from node 2 to itself.

The variables of a standard form Boolean equation system can be partitioned
in blocks such that any two distinct variables belong to the same block iff they are
mutually dependent. Consequently, each block consists of such variables whose
nodes reside on the same strongly connected component of the corresponding
dependency graph. The dependency relation among variables extends to blocks
such that block Bi depends on another block Bj if some variable occurring in
block Bi depends on another variable in block Bj . The resulting dependency
relation among blocks is an ordering. For example, the system E1 of Example 1
can be divided in two blocks, B1 = {x1, x2} and B2 = {x3} such that the
block B1 depends on the block B2. In Mader [18], there are two useful lemmas
(Lemma 6.2 and Lemma 6.3) which allow us to solve all blocks of standard form
Boolean equation systems one at a time. The basic idea is that we start by
solving blocks that do not depend on any other block. For each solved block we
can substitute its solution to blocks depending on it and thus iteratively solve
them. Alternation-free blocks of standard form Boolean equation systems can
be trivially solved in linear time in the size of the blocks [2]. Thus, we focus here
on devising a technique to solve an alternating block of standard form Boolean
equations, for which no polynomial time solution technique is known.

We call an equation σixi = αi disjunctive if its right-hand side αi is a disjunc-
tion. A standard form Boolean equation system is said to be disjunctive if all its
equations σixi = αi are either disjunctive or αi ∈ X . Similarly, a Boolean equa-
tion σixi = αi is conjunctive if its right-hand side αi is a conjunction. A standard
form Boolean equation system is conjunctive if all its equations σixi = αi are
conjunctive or αi ∈ X .

Solving Alternating Boolean Equation Systems in Answer Set Programming 139

The following lemmas form the basis for our answer set programming based
technique to solve standard form Boolean equation systems with alternating
fixed points. For a disjunctive (conjunctive respectively) form Boolean equation
systems we have:

Lemma 1 (Lemma 4.2 of [9]). Let E be a disjunctive (conjunctive) Boolean
equation system in the standard form. Then the following are equivalent:

1. [[E]] = 1 (or [[E]] = 0 respectively)
2. There is a variable xj in E such that σj = ν (σj = µ) and:

(a) x1 depends on xj, and (b) xj is self-dependent.

From each Boolean equation system E containing both disjunctive and conjunc-
tive equations we may construct a new Boolean equation system E ′, which is
either in a disjunctive or in a conjunctive form. To obtain from E a disjunctive
form system E ′, we remove in every conjunctive equation of E exactly one con-
junct; otherwise the system E is unchanged. The dual case is similar. For any
standard form Boolean equation system having both disjunctive and conjunctive
equations we have:

Lemma 2. Let E be a standard form Boolean equation system. Then the follow-
ing are equivalent:

1. [[E]] = 0 (or [[E]] = 1 respectively)
2. There is a disjunctive (conjunctive) system E ′ with the solution

[[E ′]] = 0 ([[E ′]] = 1 respectively) which can be constructed from E.

Proof. We only show that (2) implies (1) for the conjunctive case. The other
direction can be proved by a similar argument and also follows directly from
Proposition 3.36 in [18].

Define a parity game in the following way. Given a standard form Boolean
equation system E = ((σ1x1 = α1), (σ2x2 = α2), ..., (σnxn = αn)), we define a
game ΓE = (V, E, P, σ) where V and E are exactly like in the dependency graph
of E and

– P : V → {I, II} is a player function assigning a player to each node;
for 1 ≤ i ≤ n, P is defined by P (i) = I if αi is conjunctive and P (i) = II
otherwise.

– σ : V → {µ, ν} is a parity function assigning a sign to each node;
for 1 ≤ i ≤ n, σ is defined by σ(i) = µ if σi = µ and σ(i) = ν otherwise.

A play on the game graph is an infinite sequence of nodes chosen by players I
and II. The play starts at node 1. Whenever a node n is labelled with P (n) = I,
it is player I’s turn to choose a successor of n. Similarly, if a node n is labelled
with P (n) = II, it is player II’s turn to choose a successor of n. A strategy
for a player i is a function which tells i how to move at all decision nodes,
i.e. a strategy is a function that assigns a successor node to each decision node
belonging to player i. Player I wins a play of the game if the smallest node that
is visited infinitely often in the play is labelled with µ, otherwise player II wins.

140 M. Keinänen and I. Niemelä

We say that a player has a winning strategy in a game whenever she wins all the
plays of the game by using this strategy, no matter how the opponent moves.
According to Theorem 8.7 in [18], player II has a winning strategy for game on
ΓE with initial vertex 1 iff the solution of E is [[E]] = 1.

So suppose there is a conjunctive equation system E ′ obtained from E by
removing exactly one disjunct from all equations of the form σixi = xj ∨xk such
that [[E ′]] = 1. We can construct from E ′ a winning strategy for player II in the
parity game ΓE . For all nodes i of ΓE where it is player II’s turn to move, define
a strategy for II to be strII(i) = j iff σixi = xj is an equation of E ′. That is, the
strategy strII for II is to choose in every II labelled node of ΓE the successor
which appears also in the right-hand side expression of the i-th equation in E ′.

It is then straightforward to verify that for the game on ΓE with initial node
1 player II wins every play by playing according to strII . By Lemma 1, the
system E ′ does not contain any µ labelled variables that depend on x1 and
are self-dependent. The crucial observation is that the dependency graph of E ′

contains all and only those paths which correspond to the plays of the game ΓE
where the strategy strII is followed. Consequently, there cannot be a play of the
game ΓE starting from node 1 that is won by player I and where player II plays
according to strII . It follows from Theorem 8.7 in [18] that the solution of E is
[[E]] = 1. ��

Example 3. Recall the Boolean equation system E1 of Example 1. There is only
one conjunctive equation νx1 = x2∧x1, yielding two possible disjunctive Boolean
equation systems which can be constructed from E1:

– if we throw away the conjunct x2, then we obtain:

E ′
1 ≡ ((νx1 = x1)(µx2 = x1 ∨ x3)(νx3 = x3))

– if we throw away the conjunct x1, then we obtain:

E ′′
1 ≡ ((νx1 = x2)(µx2 = x1 ∨ x3)(νx3 = x3)).

Using Lemma 1, we can see that these disjunctive systems have the solutions
[[E ′

1]] = [[E ′′
1]] = 1. By Lemma 2, a solution to E1 is [[E1]] = 1 as expected.

In Section 5 we will see the application of the above lemmas to give a compact
encoding of the problem of solving alternating Boolean equation systems as the
problem of finding stable models of normal logic programs.

4 Stable Models of Normal Logic Programs

For encoding Boolean equation systems we use normal logic programs with the
stable model semantics [8]. A normal rule is of the form

a ← b1, . . . , bm, not c1, . . . ,not cn. (1)

Solving Alternating Boolean Equation Systems in Answer Set Programming 141

where each a, bi, cj is a ground atom. Models of a program are sets of ground
atoms. A set of atoms ∆ is said to satisfy an atom a if a ∈ ∆ and a negative
literal not a if a �∈ ∆. A rule r of the form (1) is satisfied by ∆ if the head a is
satisfied whenever every body literal b1, . . . , bm, not c1, . . . ,not cn is satisfied by
∆ and a program Π is satisfied by ∆ if each rule in Π is satisfied by ∆.

Stable models of a program are sets of ground atoms which satisfy all the
rules of the program and are justified by the rules. This is captured using the
concept of a reduct. For a program Π and a set of atoms ∆, the reduct Π∆ is
defined by

Π∆ = {a ← b1, . . . , bm. | a ← b1, . . . , bm, not c1, . . . ,not cn. ∈ Π,
{c1, . . . , cn} ∩ ∆ = ∅}

i.e., a reduct Π∆ does not contain any negative literals and, hence, has a unique
subset minimal set of atoms satisfying it.

Definition 5. A set of atoms ∆ is a stable model of a program Π iff ∆ is the
unique minimal set of atoms satisfying Π∆.

We employ two extensions which can be seen as compact shorthands for normal
rules. We use integrity constraints, i.e., rules

← b1, . . . , bm, not c1, . . . ,not cn. (2)

with an empty head. Such a constraint can be taken as a shorthand for a rule

f ← not f, b1, . . . , bm, not c1, . . . ,not cn.

where f is a new atom. Notice that a stable model ∆ satisfies an integrity
constraint (2) only if at least one of its body literals is not satisfied by ∆.

For expressing the choice of selecting exactly one atom from two possibilities
we use choose-1-of-2 rules on the left which correspond to the normal rules on
the right:

1 {a1, a2} 1. a1 ← not a2. a2 ← not a1. ← a1, a2.

Choose-1-of-2 rules are a simple subclass of cardinality constraint rules [22].
The Smodels system (http://www.tcs.hut.fi/Software/smodels/) provides
an implementation for cardinality constraint rules and includes primitives sup-
porting directly such constraints without translating them first to corresponding
normal rules.

5 Solving Boolean Equation Systems in ASP

The overall idea of our approach is as follows. Given a standard form Boolean
equation system E , we partition its variables into blocks so that variables are in
the same block iff they are mutually dependent. The partition can be constructed

142 M. Keinänen and I. Niemelä

in linear time on the basis of the dependencies between the variables. Like argued
in Section 3, the variables can be solved iteratively one block at a time.

If all variables in a single block have the same sign, i.e. the block is alterna-
tion free, the variables in this block can be trivially solved in linear time (see e.g.
[2, 17]). So we only need to concentrate on solving alternating blocks contain-
ing mutually dependent variables with different signs. Consequently, we present
here a technique to solve an alternating Boolean equation system which applies
Lemmas 1-2 from Section 3.

In order to reduce the resolution of alternating Boolean equation systems to
the problem of computing stable models of logic programs we define a translation
from equation systems to normal logic programs. Consider a standard form,
alternating Boolean equation system E . We construct a logic program Π(E)
which captures the solution [[E]] of E . Suppose that the number of conjunctive
equations of E is less than (or equal to) the number of disjunctive equations,
or that no conjunction symbols occur in the right-hand sides of E . The dual
case goes along exactly the same lines and is omitted.1 The idea is that Π(E)
is a ground program which is polynomial in the size of E . We give a compact
description of Π(E) as a program with variables. This program consists of the
rules

solve(1). (3)
depends(Y) ← dep(X, Y), solve(X). (4)
depends(Y) ← depends(X), dep(X, Y). (5)
reached(X, Y) ← nu(X), dep(X, Y), Y ≥ X. (6)
reached(X, Y) ← reached(X, Z), dep(Z, Y), Y ≥ X. (7)
← depends(Y), reached(Y, Y), nu(Y). (8)

extended for each equation σixi = αi of E by

dep(i, j). if αi = xj (9)
dep(i, j). dep(i, k). if αi = (xj ∨ xk) (10)
1 {dep(i, j), dep(i, k)} 1. if αi = (xj ∧ xk) (11)

and by nu(i). for each variable xi such that σi = ν.

Example 4. Recall the Boolean equation system E1 of Example 1. The program
Π(E1) consists of the rules 3-8 extended with rules:

1 {dep(1, 2), dep(1, 1)} 1.
dep(2, 1). dep(2, 3).
dep(3, 3).
nu(1). nu(3).

1 This is the case where the number of disjunctive equations of E is less than the
number of conjunctive equations, or where no disjunction symbols occur in the right-
hand sides of E .

Solving Alternating Boolean Equation Systems in Answer Set Programming 143

The idea is that for the solution [[E]] of E , [[E]] = 0 iff Π(E) has a stable model.
This is captured in the following way. The system E is turned effectively into a
disjunctive system by making a choice between dep(i, j) and dep(i, k) for each
conjunctive equation xi = (xj ∧ xk). Hence, each stable model corresponds to a
disjunctive system constructed from E and vice versa. Then by Lemmas 1 and
2 the main result can be established.

Theorem 1. Let E be a standard form, alternating Boolean equation system.
Then [[E]] = 0 iff Π(E) has a stable model.

Proof. Consider a system E and its translation Π(E). The rules (9–11) effec-
tively capture the dependency graphs of the disjunctive systems that can be
constructed from E . More precisely, there is a one to one correspondence be-
tween the stable models of the rules (9–11) and disjunctive systems that can
be constructed from E such that for each stable model ∆, there is exactly
one disjunctive system E ′ with the dependency graph GE′ = (V, E) where
V = {i | dep(i, j) ∈ ∆ or dep(j, i) ∈ ∆} and E = {(i, j) | dep(i, j) ∈ ∆}.

Now it is straightforward to establish by the splitting set theorem [15] that
each stable model ∆ of Π(E) is an extension of a stable model ∆′ of the rules
(9–11), i.e., of the form ∆ = ∆′ ∪∆′′ such that in the corresponding dependency
graph there is no variable xj such that σj = ν and x1 depends on xj and xj is
self-dependent. By Lemma 2 [[E]] = 0 iff there is a disjunctive system E ′ that can
be constructed from E for which [[E ′]] = 0. By Lemma 1 for a disjunctive system
E ′, [[E ′]] = 1 iff there is a variable xj such σj = ν and x1 depends on xj and xj is
self-dependent. Hence, Π(E) has a stable model iff there is a disjunctive system
E ′ that can be constructed from E whose dependency graph has no variable xj

such that σj = ν and x1 depends on xj and xj is self-dependent iff there is a
disjunctive system E ′ with [[E ′]] �= 1, i.e., [[E ′]] = 0 iff [[E]] = 0. ��

Similar property holds also for the dual program, which allows us to solve all
alternating blocks of standard form Boolean equation systems.

Although Π(E) is given using variables, for the theorem above a finite ground
instantiation of it is sufficient. For explaining the ground instantiation we intro-
duce a relation depDom such that depDom(i, j) holds iff there is an equation
σixi = αi of E with xj occurring in αi. Now the sufficient ground instan-
tiation is obtained by substituting variables X, Y in the rules (4–6) with all
pairs i, j such that depDom(i, j) holds, substituting variables X, Y, Z in rule (7)
with all triples l, i, j such that nu(l) and depDom(i, j) hold and variable Y in
rule (8) with every i such that nu(i) holds. This means also that such condi-
tions can be added as domain predicates to the rules without compromising
the correctness of the translation. For example, rule (7) could be replaced by
reached(X, Y) ← nu(X), depDom(Z, Y), reached(X, Z), dep(Z, Y), Y ≥ X. No-
tice that such conditions make the rules domain restricted as required, e.g., by
the Smodels system.

144 M. Keinänen and I. Niemelä

6 Experiments

In this section, we describe some experimental results on solving alternating
Boolean equation systems with the approach presented in the previous section.
We demonstrate the technique on two series of examples which are solved using
the Smodels system as the ASP solver. Unfortunately, we were not able to com-
pare this method to other approaches as we did not find any implementation
capable of handling Boolean equation systems with high alternation depths.

We also experimented with another ASP system, DLV (release 2004–05–23
available on http://www.dbai.tuwien.ac.at/proj/dlv/), as the underlying
ASP solver but ran into performance problems as explained below.

The times reported are the average of 3 runs of the time for Smodels 2.26
to find the solutions as reported by the /usr/bin/time command on a 2.0Ghz
AMD Athlon running Linux. The time needed for parsing and grounding the
input with lparse 1.0.13 is included.

The encoding used for the benchmarks is that represented in Section 5 with a
couple of optimizations. Firstly, when encoding of dependencies as given in rules
(9–11) we differentiate those dependencies where there is a choice from those
where there is not, i.e., for each equation σixi = αi of E we add

ddep(i, j). if αi = xj

ddep(i, j).ddep(i, k). if αi = (xj ∨ xk)
1 {cdep(i, j), cdep(i, k)} 1. depDom(i, j). depDom(i, k). if αi = (xj ∧ xk)

instead of rules (9–11). Secondly, in order to make use of this distinction and to
allow for intelligent grounding, rules (4–7) are rewritten using the above predi-
cates as domain predicates in the following way.

depends(Y) ← ddep(X, Y), solve(X).
depends(Y) ← depDom(X, Y), cdep(X, Y), solve(X).
depends(Y) ← depends(X), ddep(X, Y).
depends(Y) ← depends(X), depDom(X, Y), cdep(X, Y).
reached(X, Y) ← nu(X), ddep(X, Y), Y ≥ X.

reached(X, Y) ← nu(X), depDom(X, Y), cdep(X, Y), Y ≥ X.

reached(X, Y) ← nu(X), reached(X, Z), ddep(Z, Y), Y ≥ X.

reached(X, Y) ← nu(X), depDom(Z, Y), reached(X, Z), cdep(Z, Y), Y ≥ X.

All benchmark encodings are available at http://www.tcs.hut.fi/Software/
smodels/tests/inap2004.tar.gz.

The first series deals with solving alternating Boolean equation systems of
increasing size and alternation depth. The problem is taken from [18–p.91] and
consists of finding the solution of the left-most variable x1 in Fig. 2. The exam-
ple is such that a Boolean equation system with n equations has the alternation
depth n. The solution of the system is such that [[E]] = 1 which can be obtained
by determining the existence of a stable model of the corresponding logic pro-
gram. The experimental results are summarised in Fig. 2. Our benchmarks are

Solving Alternating Boolean Equation Systems in Answer Set Programming 145

ν x1 = x2 ∧ xn

µ x2 = x1 ∨ xn

ν x3 = x2 ∧ xn

µ x4 = x3 ∨ xn

. . .
ν xn−3 = xn−4 ∧ xn

µ xn−2 = xn−3 ∨ xn

ν xn−1 = xn−2 ∧ xn

µ xn = xn−1 ∨ xn/2

for n ∈ 2N

Problem (n) Time (sec)
1800 33.6
2000 41.8
2200 51.4
2400 60.0
2600 71.7

Fig. 2. The Boolean equation system in [18–p.91] and experimental results

ν xs = ys

µ ys =
∧

s′∈∇(t,s)

zs′ ∨ ys

µ zs =
∨

s′∈∇(a,s)

true ∧ xs

for all s ∈ S.

where ∇(t, s) := {s′|s i−→ s′ ∧ i ∈ A}
and ∇(a, s) := {s′|s a−→ s′}.

Problem |s| | −→ | n Time (sec)
M500 503 505 1006 4.0
M1000 1003 1005 2006 16.4
M1500 1503 1505 3006 39.0

Fig. 3. The Boolean equation system and experimental results

essentially the only results in the literature for alternating Boolean equation sys-
tems with the alternation depth n ≥ 4 of which we are aware. Notice that our
benchmarks have the alternation depths 1800 ≤ n ≤ 2600. Like pointed out in
[18], known algorithms based on approximation techniques are exponential in the
size of the equation system in Fig. 2, because a maximal number of backtracking
steps is always needed to solve the left-most equation.

We tried to use also DLV as the underlying ASP solver on this benchmark, but
found that it does not scale as well as Smodels when the size n of the problem
grows. For example, for size n = 1800 the running time for DLV was over 30
minutes.

In the second series of examples we used a set of µ-calculus model checking
problems taken from [16], converted to alternating Boolean equation systems.
The problems consist of checking a µ-calculus formula of alternation depth 2,
on a sequence of models M = (S, A,−→) of increasing size (see Fig. 2 in [16]).
Suppose that all transitions of process M in [16] are labelled with a and we want
to check, at initial state s, the property that a is enabled infinitely often along
all infinite paths. This is expressed with alternating fixed point formula:

φ ≡ νX.µY.([−].(〈a〉true ∧ X) ∨ Y) (12)

which is true at initial state s of the process M . The problem can be directly
encoded as the problem of solving the corresponding alternating equation system
in Fig. 3. The results are given in Fig. 3. The columns are:

146 M. Keinänen and I. Niemelä

– Problem: Process M = (S, A,−→) from [16].
– |S|: Number of states in M .
– | −→ |: Number of transitions in M .
– n: Number of equations in the corresponding Boolean equation system.
– Time: The time in seconds to solve variable xs.

The benchmarks in [16] have a quite simple structure and no general results can
be drawn from them. In fact, the equation system in Fig. 3 reduces to a sequence
of purely conjunctive equations, whose encoding involves no choose-1-of-2 rules,
i.e. is a Horn program. A more involved practical evaluation of our approach is
highly desirable, and benchmarking on real world systems is left for future work.

7 Conclusion

We present an answer set programming based method for computing the so-
lutions of alternating Boolean equation systems. We developed a novel char-
acterization of solutions for variables in Boolean equation systems and based
on this devised a mapping from systems with alternating fixed points to normal
logic programs. Our translation is such that the solution of a given variable of an
equation system can be determined by the existence of a stable model of the cor-
responding logic program. This result provides the basis for verifying µ-calculus
formulas with alternating fixpoints using answer set programming techniques.

The experimental results indicate that stable model computation is quite a
competitive approach to solve Boolean equations systems in which the number of
alternation is relatively large. The alternation of fixpoint operators gives more
expressive power in µ-calculus, but all known model checking algorithms are
exponential in the alternation depth. Consequently, our approach is expected to
be quite effective in the verification tasks where there is a need of formulas with
great expressive power.

Acknowledgements. We would like to thank Keijo Heljanko for valuable dis-
cussions. The financial supports of Academy of Finland (project 53695), Emil
Aaltonen foundation and Helsinki Graduate School in Computer Science and
Engineering are gratefully acknowledged.

References

1. H.R. Andersen. Model checking and Boolean graphs. Theoretical Computer Sci-
ence, 126:3–30, 1994.

2. A. Arnold and P. Crubille. A linear algorithm to solve fixed-point equations on
transition systems Information Processing Letters, 29: 57–66, 1988.

3. A. Arnold and D. Niwinski. Rudiments of µ-calculus. Studies in Logic and the
foundations of mathematics, Volume 146, Elsevier, 2001.

4. G. Bhat and R. Cleaveland. Efficient local model-checking for fragments of the
modal µ-calculus. In Proceedings of the International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, Lecture Notes in Computer
Science 1055, pages 107–126, Springer Verlag, 1996.

Solving Alternating Boolean Equation Systems in Answer Set Programming 147

5. G. Delzanno and A. Podelski. Model checking in CLP. In Proceedings of the Int.
In Proceedings of the International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer Science 1579,
pages 223–239, 1999.

6. E.A. Emerson, C. Jutla and A.P. Sistla. On model checking for fragments of the µ-
calculus. In Proceedings of the Fifth International Conference on Computer Aided
Verification, Lecture Notes in Computer Science 697, pages 385–396, Springer Ver-
lag, 1993.

7. E.A. Emerson, C. Jutla, and A.P. Sistla. On model checking for the µ-calculus and
its fragments. Theoretical Computer Science, 258:491–522, 2001.

8. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proceedings of the 5th International Conference on Logic Programming, pages
1070–1080, Seattle, USA, August 1988. The MIT Press.

9. J.F. Groote and M. Keinänen. Solving Disjunctive/Conjunctive Boolean Equation
Systems with Alternating Fixed Points. In Proceedings of the 10th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
Lecture Notes in Computer Science 2988, pages 436 – 450, Springer Verlag, 2004.

10. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable mod-
els. Theory and Practice of Logic Programming, 3: 519–550, Cambridge University
Press, 2003.

11. M. Jurdzinski. Deciding the winner in parity games is in UP ∩co−UP . Information
Processing Letters, 68:119–124, 1998.

12. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

13. K. N. Kumar, C. R. Ramakrishnan, and S. A. Smolka. Alternating fixed points
in Boolean equation systems as preferred stable models. In Proceedings of the
17th International Conference of Logic Programming, Lecture Notes in Computer
Science 2237, pages 227–241, Springer Verlag, 2001.

14. V. Lifschitz. Answer Set Planning. In Proceedings of the 16th International Con-
ference on Logic Programming, pages 25–37, The MIT Press, 1999.

15. V. Lifschitz and H. Turner. Splitting a Logic Program. In Proceedings of the
Eleventh International Conference on Logic Programming, pages 23–37, The MIT
Press, 1994.

16. X. Liu, C.R. Ramakrishnan and S.A. Smolka. Fully Local and Efficient Evaluation
of Alternating Fixed Points. In Proceedings of the 4th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science 1384, pages 5–19, Springer Verlag, 1998.

17. X. Liu and S.A. Smolka. Simple Linear-Time Algorithms for Minimal Fixed Points.
In Proceedings of the 26th International Conference on Automata, Languages, and
Programming, Lecture Notes in Computer Science 1443, pages 53–66, Springer
Verlag, 1998.

18. A. Mader. Verification of Modal Properties using Boolean Equation Systems. PhD
thesis, Technical University of Munich, 1997.

19. W. Marek and M. Truszczyński. Stable Models and an Alternative Logic Program-
ming Paradigm, The Logic Programming Paradigm: a 25-Year Perspective, pages
375–398, Springer-Verlag, 1999.

20. I. Niemelä. Logic Programs with Stable Model Semantics as a Constraint Program-
ming Paradigm. Annals of Mathematics and Artificial Intelligence, 25(3,4):241–
273, 1999.

21. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

148 M. Keinänen and I. Niemelä

22. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1–2):181–234, 2002.

23. B. Vergauwen and J. Lewi. Efficient local correctness checking for single and al-
ternating Boolean equation systems. In Proceedings of the 21st International Col-
loquium on Automata, Languages and Programming, Lecture Notes in Computer
Science 820, pages 302–315, Springer Verlag, 1994.

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392,, pp. 149 – 165, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Effective Modeling with Constraints

Roman Barták

Charles University, Faculty of Mathematics and Physics,
Institute for Theoretical Computer Science,

Malostranské nám. 2/25, Prague, Czech Republic
roman.bartak@mff.cuni.cz

Abstract. Constraint programming provides a declarative approach to solving
combinatorial (optimization) problems. The user just states the problem as a
constraint satisfaction problem (CSP) and a generic solver finds a solution
without additional programming. However, in practice, the situation is more
complicated because there usually exist several ways how to model the problem
as a CSP, that is using variables, their domains, and constraints. In fact,
different constraint models may lead to significantly different running times of
the solver so constraint modeling is a crucial part of problem solving. This
paper describes some known approaches to efficient modeling with constraints
in a tutorial-like form. The primary audience is practitioners, especially in logic
programming, that would like to use constraints in their projects but do not have
yet deep knowledge of constraint satisfaction techniques.

1 Introduction

“Constraint programming (CP) represents one of the closest approaches computer
science has yet made to the Holy Grail of programming: the user states the problem,
the computer solves it.” [4] This nice quotation might convince a reader that
designing a constraint model for a particular combinatorial problem is an easy and
straightforward task and that everything stated as a constraint satisfaction problem can
be solved efficiently by the underlying constraint solver. This holds for simple or
small problems but as soon as the problems are more complex, the role of constraint
modeling is becoming more and more important. The reason is that different
constraint models of the same problem may lead to very different solving times.
Unfortunately, there does not exist (yet) any guide that can steer the user how to
design an efficiently solvable model. This “feature” of constraint technology might be
a bit depressing for novices. Nevertheless, there are many rules of thumb about
designing efficient constraint models. We also believe that it is important to be aware
of the insides of constraint satisfaction to understand better the behavior of the solvers
and, as a consequence, to design models that exploit the power of the solvers.

The goal of this paper is to introduce the basic terminology useful for reading
further CP texts and to give an overview of modeling techniques used to state
problems as constraint satisfaction problems. The emphasis is put to novice users of
the constraint technology, in particular to the current users of logic programming

150 R. Barták

technology that can be naturally extended by constraints. Respecting what has been
said above we will first survey the mainstream constraint satisfaction technology. In
the main part of the paper we will demonstrate some modeling techniques namely
symmetry breaking, dual models, and redundant constraints, using practical examples.

2 Constraint Satisfaction at Glance

Constraint programming is a framework for solving combinatorial (optimization)
problems. The basic idea is to model the problem as a set of variables with domains
(the values for the variables) and a set of constraints restricting the possible
combinations of variables’ values (Figure 1). Usually, the domains are finite and we
are speaking about constraint satisfaction problems (CSP)1. The task is to find an
assignment of all the variables satisfying all the constraints – a so called complete
feasible assignment. Sometimes, there is also an objective function defined over the
problem variables. Then the task is to find a complete feasible assignment minimizing
or maximizing the objective function – an optimal assignment. Such problems are
called constraint optimization problems (COP).

Note that modeling problems as a CSP or a COP is natural because constraints can
describe arbitrary relations and various constraints can be easily combined within a
single system. Opposite to frameworks like linear and integer programming,
constraints in a CSP/COP are not restricted to linear equalities and inequalities. The
constraint can express arbitrary mathematical or logical formula, like (x2<y ∨ x=y).
The constraint could even be an arbitrary relation that can be hardly expressed in an
intentional form, for example restricted resource state transitions in scheduling
applications. Then, a table is used to describe tuples satisfying the constraint.

Fig. 1. A CSP consists of variables (X,Y,Z), their domains (in this case identical [1,2,3,4,5]),
and constraints (X<Y, Y<X-2). It can be represented as a constraint (hyper) graph

Solving problems using constraints typically involves three steps. First, the
problem is expressed in terms of variables, their domains, and constraints – this is
called constraint modeling. Second, the constraint model is passed to a generic
constraint solver that, hopefully, finds a feasible (or optimal) assignment – constraint
satisfaction. Finally, this assignment is interpreted as a solution of the original
problem. To understand better the important role of constraint modeling let us first
look inside the mainstream technique of constraint satisfaction that is a combination
of depth-first search (enumeration) with constraint propagation. Despite the fact that

1 There also exist constraint problems over infinite domains, for example over real numbers,

but constraint solving over infinite domains is not covered by this paper.

X in [1,2,3,4,5]

X<Y

Y in [1,2,3,4,5]
Z in [1,2,3,4,5]

Z<X-2

 Effective Modeling with Constraints 151

many researchers outside CP put equality between constraint satisfaction and simple
enumeration, the reality is that the real power of CP is hidden in constraint
propagation. Note however, that some other techniques, for example local search, can
also be applied to solve the problems with constraints.

Constraint propagation is based on the idea of using constraints actively to reduce
domains of the variables by removing the values that do not satisfy the constraint.
Assume that variables X and Y have an identical domain {1,2,3,4,5} and there is a
constraint X<Y between the variables. Visibly, the value 1 can be removed from the
domain of Y because there is no value a in the domain X such that the pair (a,1)
satisfies the constraint. Similarly, the value 5 can be removed from the domain of X.
This domain filtering is realized by a so called filtering algorithm that is attached to
each constraint. After applying the filtering algorithm, the constraint becomes (arc)
consistent, that is for any value in the domain of a constrained variable there is a
compatible value(s) in the domain of the other constrained variable(s) such that the
pair (tuple) satisfies the constraint. The filtering algorithm is evoked every time a
domain of some variable in the constraint is changed and this change is propagated to
domains of the other variables in the constraint and so on (Figure 2).

Fig. 2. Constraint propagation does domain reduction by repeated evoking of the filtering
algorithms until a fix-point is reached

Notice that a filtering algorithm for a particular constraint may be evoked several
times in the propagation loop but because values can only be removed from domains,
propagation must finish sometime either by reaching a fix point or by emptying some
domain. This basic constraint propagation scheme is called (generalized) arc
consistency (AC) and it ensures that after finishing the propagation loop each
constraint is (arc) consistent. Note however, that arc consistency ensures local
consistency only meaning that the values which cannot be part of the complete
feasible assignment may still remain in the domains. There exist consistency
techniques stronger than AC, like path consistency, but they are rarely used in
practice. More frequently, filtering is being strengthened by encapsulating a subset of
constraints into a so called global constraint. Note finally that the same problem can
often be modeled using different sets of constraints leading to different domain
pruning and hence the important role of constraint modeling.

Global constraints. Due to its local character arc consistency cannot detect all global
inconsistencies. Assume the constraint network on right. All
binary constraints are consistent so arc consistency deduces no
change of the domains. However, a more global view can
discover that values 5 and 6 cannot be assigned to X3 because
they both will be used for X1 and X2. If we see the set of
primitive constraints as a single n-ary constraint – a global

X
<

Y

X in [1,2,3,4,5]
Y in [1,2,3,4,5]
Z in [1,2,3,4,5]

X in [1,2,3,4]
Y in [2,3,4,5]
Z in
[1 2 3 4]

X in [4]
Y in [2,3,4,5]
Z in [1]

X in [4]
Y in [5]
Z in [1]

Z
<

X
-2

X
<

Y

X1 in [5,6]

X1≠X2

X2 in [5,6]

X3 in [5,6,7]

X1≠X3

X2≠X3

152 R. Barták

constraint – we can use a special filtering algorithm for this constraint that achieves
stronger pruning of domains. Régin proposed an efficient filtering algorithm for such a
constraint called all-different based on finding a maximal matching in the bipartite graph
with variables on one side and values on the other side [8].

There exist many other global constraints; some of them were designed for a particular
problem area. For example, global constraints in scheduling are used to describe resources
to which activities can be allocated. Assume a unary resource that can process only one
activity at given time. If we model the position of activity in time using its start time S
and processing time P then the main feature of the unary resource, namely that no two
activities overlap in time, can be modeled using a set of disjunctions Si+Pi≤Sj ∨ Sj+Pj≤Si.
Again, domain pruning via AC over such a set of disjunctive constraints is weak and
stronger pruning can be achieved for example using a global constraint over all Si and Pi
based on a technique called edge-finding [1].

As we mentioned above, arc consistency is a local consistency technique so some
infeasible values may still sit in the domains of the variables and thus search (with
backtracking) is necessary to find a complete feasible assignment of the variables.
This stage is often called labeling because the variables are being labeled there – the
values from respective domains are assigned to the variables. After each assignment,
the value is propagated to other variables using the above described AC scheme – this
is called maintaining arc consistency during search. If a failure is detected (any
domain becomes empty during AC) then another value is tried and if no value
remains in the domain then the algorithm backtracks to the last but one variable and
so on. In general, the labeling procedure adds new constraints to the system to resolve
the remaining disjunctions until domains of all the variables are singleton. For
example, finding a value for the variable X with the domain {5,6,7} is equivalent to
resolving the disjunction X=5 ∨ X=6 ∨ X=7 which is called enumeration (the
constraint X=5 is added first, then X=6 is tried, and finally X=7). Resolving
X=5 ∨ X≠5 is called a step labeling and resolving X≤6 ∨ X>6 is called bisection. By
adding the above mentioned constraints, the constraint solver actually builds different
constraint models in different branches of the search tree so in some sense choosing
the right branching scheme is a part of constraint modeling. We will present later how
different branching schemes influence efficiency of constraint satisfaction.

Variable and value selection. The labeling procedure needs to be accompanied by
heuristics for choosing the variable to be labeled and for selecting the value to be tried
first (or, in general, for selecting the branch). If the variables are labeled in a fix ordered
then we are speaking about the left-most variable selection. Frequently, fail-first variable
selection is used where the variable with the smallest domain is labeled first (ties are
broken randomly). Value selection heuristics are usually problem dependent, for example
the smallest value for the time variables is tried first if we are minimizing the makespan
(the end time of the latest activity) in scheduling problems.

The standard constraint satisfaction technique looking for feasible assignments can be
extended to find out an optimal assignment. Usually a technique of branch-and-bound
is used there. First, some feasible assignment is found and then, a next assignment
that is better than the previous assignment is looked for and so on. This could be
realized by posting a new constraint restricting the value of the objective function by
the value of the objective function for the so-far best assignment. This is repeated

 Effective Modeling with Constraints 153

until no feasible assignment is found and then the last found feasible assignment is the
optimal assignment.

A deep and general view of constraint programming can be found in [2,6,7,11].

3 Modeling with Constraints

In this section, we will present several example problems and their constraint models.
We will use these problems to demonstrate typical constraint modeling techniques
like global constraints, symmetry breaking, dual models, and redundant constraints.
The main idea behind these techniques is to improve solving efficiency of the models.
To allow immediate testing of the presented ideas, the constraint models are
programmed using the clpfd library of SICStus Prolog [3,9].

3.1 A Seesaw Problem: Symmetry Breaking and Global Constraints

Let us start our journey with a toy combinatorial problem of placing children to a
seesaw [7]. Assume that Adam, Boris, and Cecil want to sit in a seesaw in such a way
that the seesaw balances. There are five seats placed uniformly on both arms of the
seesaw and one seat is placed in the middle (see Figure 3). Moreover, the boys want
to have some space around them. In particular, they require that they are at least three
seats apart. The weights of Adam, Boris, and Cecil are respectively 36, 32, and 16 kg.
To solve the problem, we need to assign the seats to all children (or vice versa).
Figure 3 shows one of the acceptable solutions to this problem.

Fig. 3. A seesaw problem and one of its solutions

To model the problem as a constraint satisfaction problem, one needs to decide
about the variables, their domains, and the constraints. The natural model for the
seesaw problem is using a variable for each boy describing his position on the seesaw:
A for Adam, B for Boris, C for Cecil. If we choose carefully the domain for these
variables, that is a position on the seesaw: -5,-4,…,+4,+5, then the constraint that the
seesaw balances is simply that the moments of inertia sums to 0:

36*A + 32*B + 16*C = 0.

To restrict the minimal distances between the boys we can use a standard formula for
computing the distances that is an absolute value of the difference of the positions.
Thus we get the constraints:

|A-B| > 2, |A-C| > 2, |B-C| > 2.

Note that |A-B| > 2 is a compact representation of the disjunctive constraint (A-B > 2
∨ B-A > 2) and that it also ensures that two boys are not sitting on the same seat.

154 R. Barták

The above constraints describe completely the seesaw problem. To get the
solution we need to post all these constraints and to do labeling that is a procedure
deciding about the variables’ values via depth first search. Figure 4 shows a coding in
SICStus Prolog.

seesaw(Sol):-
 Sol = [A,B,C],

 domain([A,B,C],-5,5),
 36*A+32*B+16*C #= 0,
 abs(A-B) #> 2,
 abs(A-C) #> 2,
 abs(B-C) #> 2.

 labeling([ff],Sol). % fail-first variable selection

Fig. 4. A constraint model for the seesaw problem

Notice that the constraint model for the seesaw problem is fully declarative. So
far, we said no single word about how to solve the problem. We merely concentrate
on describing the problem in terms of variables, domains, and constraints. The
underlying constraint solver that encodes constraint propagation as well as the
labeling procedure does the rest of the job.

If we now run the program from Figure 4 we get six different solutions (Figure 5).

?- seesaw(X).

X = [-4,2,5] ? ;
X = [-4,4,1] ? ;
X = [-4,5,-1] ? ;
X = [4,-5,1] ? ;
X = [4,-4,-1] ? ;
X = [4,-2,-5] ? ;
no

Fig. 5. All solutions of the seesaw problem

An open-minded reader might notice that only three of the above solutions are
really different while the remaining three solutions are merely their symmetrical
copies. These symmetrical solutions can be removed from the search space by adding
a so called symmetry breaking constraint. For example it could be a constraint
restricting Adam to sit on the seats marked by the non-positive numbers: A≤0.

Rule of thumb – symmetry breaking. Some solutions of the problem can be easily
deduced from their symmetrical counterparts. These symmetrical solutions should be
removed from the search space to decrease its size and thus to improve time efficiency of
the search procedure. The easiest way how to realize it is via adding symmetry breaking
constraints that avoid symmetrical solutions and reduce the search space. There exist
other techniques of symmetry breaking, for details see [10]. For a more convincing
example, how the symmetry breaking constraint improves efficiency of the constraint
model, see the section on Golomb rulers.

 Effective Modeling with Constraints 155

Let us now try to improve further the constraint model from Figure 4. Usually, the
constraint model that propagates more is assumed to be better so our goal is to
improve the initial domain pruning. Figure 6 shows the result of the initial domain
pruning before the start of labeling (the symmetry breaking constraint is included).

A in -4..0
B in -1..5
C in -5..5

Fig. 6. Initial domain pruning for the seesaw problem (including symmetry breaking)

As we already mentioned a typical way of improving domain pruning is using
global constraints that encapsulate a set of primitive constraints. If we look at the
constraint model for the seesaw problem (Figure 4), we can identify a set of similar
constraints, namely the distance constraints, that is a good candidate to be
encapsulated into a global constraint. Notice that these constraints express the same
information as non-overlapping constraints in scheduling. In fact, we can see each
boy as a box of width three and if these boxes do not overlap then all boys are at least
three seats apart (Figure 7). So the seesaw behaves like a unary resource in scheduling
problems.

Fig. 7. Allocating boys to seats is similar to scheduling activities to a unary resource

Thus, we can see the seesaw problem via glasses of scheduling and we can
use a global constraint modeling the unary resource to substitute the set of
distance constraints. For example, the following constraint may by used in SICStus
Prolog:

serialized([A,B,C],[3,3,3],[bounds_only(false)])

The first argument of the serialized constraint describes the start times of the
“activities”, the second argument describes their duration, and the third argument is
used for options of the filtering algorithm (above, we asked to propagate the domains
completely, not only their bounds). Figure 8 shows the initial domain pruning when
the serialized constraint is used. We can see that more infeasible values are removed
from the variables’ domains and thus the search space to be explored by the labeling
procedure is smaller.

A in -4..0
B in -1..5
C in (-5..-3)\/(-1..5)

Fig. 8. Initial domain pruning for the seesaw problem with the serialized constraint

A

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

B C

156 R. Barták

Rule of thumb – global constraints. More values pruned from variables’ domains mean
smaller search space so the constraint models that prune more are assumed better. Most
constraint solvers use (generalized) arc consistency so the global constraints are the best
way how to improve pruning while keeping good time efficiency. Thus the basic rule in
the design of constraint models is using global constraint wherever possible.

Typically, the global constraint substitutes a homogeneous set of primate constraints,
like differences or distances between the variables. So if such a subset of constraints
appears in the constraint model, it is a good candidate for a global constraint. As we
showed in the seesaw problem, it is useful to look for global constraints even in the
problem areas which do not seem to be directly related to a given problem.

3.2 An Assignment Problem: Dual Models

The second studied problem is more real-life oriented than the seesaw problem. It
belongs to the category of assignment problems like allocating ships to berths, planes
to stands, crew to planes etc. In particular, we will describe a problem of assigning
workers to products.

Consider the following simple assignment problem [7]. A factory has four workers
W1, W2, W3, and W4, and four products P1, P2, P3, and P4. The problem is to assign
workers to products so that each worker is assigned to one product and each product
is assigned to one worker (Figure 9).

Fig. 9. A simple assignment problem

Table 1. The profit made by workers on particular products

 P1 P2 P3 P4

W1 7 1 3 4
W2 8 2 5 1
W3 4 3 7 2
W4 3 1 6 3

The profit made by the worker Wi working on the product Pj is given by Table 1.
The task is to find a solution to the above assignment problem such that the total

profit is at least 19.

 Effective Modeling with Constraints 157

A straightforward constraint model can use a variable for each worker indicating
the product on the worker is working. The domain of such a variable will naturally
consists of the products that can be assigned to a given worker. The fact that each
worker is working on a different product can be described via a set of binary
inequalities or better using the all-different constraint. To describe the profit of the
worker, we can use a set of tabular constraints element encoding Table 1. The
semantics of element(X,List,Y) is as follows: X-th element of List equals Y.
Then the sum of the individual profits must be at least 19. Figure 10 shows the
constraint model for the assignment problem in SICStus Prolog.

assignment_primal(Sol):-
 Sol = [W1,W2,W3,W4],

 domain(Sol,1,4),
 all_different(Sol),
 element(W1,[7,1,3,4],EW1),
 element(W2,[8,2,5,1],EW2),
 element(W3,[4,3,7,2],EW3),
 element(W4,[3,1,6,3],EW4),
 EW1+EW2+EW3+EW4 #>= 19,

 labeling([ff],Sol).

Fig. 10. A constraint model for the assignment problem

By running the above program we get four different assignments that satisfy the
minimal profit constraint (Figure 11). The first two assignments have the profit 19,
the third assignment has the profit 21 and the last assignment has the profit 20.

?- assignment_primal(X).

X = [1,2,3,4] ? ;
X = [2,1,3,4] ? ;
X = [4,1,2,3] ? ;
X = [4,1,3,2] ? ;
no

Fig. 11. All solutions of the assignment problem

Frequently, the assignment problem is formulated as an optimization problem. The
nice feature of the CP approach is that one does not need to change a lot the constraint
model to solve the optimization problem instead of the feasibility problem. Only the
standard labeling procedure is substituted by a procedure looking for optimal
assignments. In practice, the value of the objective function is encoded into a variable
and the system minimizes or maximizes the value of this variable. Figure 12 shows a
change in the code necessary to solve the optimization problem where the task is to
find an assignment with the maximal profit.

158 R. Barták

…
EW1+EW2+EW3+EW4 #= E,

maximize(labeling([ff],Sol),E).

Fig. 12. A change of the constraint model to solve the optimization problem

The branch and bound technique behind the maximize procedure will now find
the optimal solution which is X=[4,1,2,3].

Let us now turn our attention back from optimization to the original constraint
model. We decided to use the variables for the workers and the values for the
products. However, we could also assign workers to products so the variables will
correspond to the products while the values will identify the workers. Figure 13
shows such a dual constraint model.

assignment_dual(Sol):-
 Sol = [P1,P2,P3,P4],

 domain(Sol,1,4),
 all_different(Sol),
 element(P1,[7,8,4,3],EP1),
 element(P2,[1,2,3,1],EP2),
 element(P3,[3,5,7,6],EP3),
 element(P4,[4,1,2,3],EP4),
 EP1+EP2+EP3+EP4 #>= 19,

 labeling([ff],Sol).

Fig. 13. A dual model for the assignment problem

It may seem that both primal (Figure 10) and dual (Figure 13) models are
equivalent. However, somehow surprisingly the dual model requires a smaller number
of choices to be explored to find all the solutions of the problem (11 vs. 15). The
reason is that the profit depends more on the product than on the worker. Thus, the
profitability constraint propagates more for the products than for the workers. Figure
14 compares the initial pruning before the start of labeling procedure for both models.
It shows that the dual model propagates more so it is a better model for this particular
problem.

The propagation power of both primal and dual models can be combined in a
single model. In practice, variables and constraints from both models are used
together and

W1 in 1..4
W2 in 1..4
W3 in 1..4
W4 in 1..4

P1 in 1..2
P2 in 1..4
P3 in 2..4
P4 in 1..4

Fig. 14. Initial domain pruning for the assignment problem (left – primal model, right – dual
model)

 Effective Modeling with Constraints 159

special “channeling” constraints interconnect the models (SICStus Prolog provides
the assignment constraint to interconnect the models). Figure 15 shows the
combined constraint model. Notice that it is enough to label only the variables from
one of the original models. Thanks to stronger domain pruning the combined model
requires only 9 choices to be explored to find all the solutions of the problem. Figure
16 shows the initial pruning of the combined model.

Rule of thumb – dual models. In many problems, the role of variables and values can be
swapped and a so called dual model to the original primal model can be obtained.
Comparing the initial pruning of both primal and dual models could be a good guide for
selecting one of them. Usually, the best model will be the one in which information is
propagated more.

Sometimes, both primal and dual models can be combined together interconnected via
channeling constraints. This combined model exploits the propagation power of both
models but it also requires overhead to propagate more constraints. Consequently, one
must be very careful when combining models with many constraints. Empirical evaluation
of the models could be a good guide there.

assignment_combined(Workers):-

Workers= [W1,W2,W3,W4],

domain(Workers,1,4),
all_different(Workers),
element(W1,[7,1,3,4],EW1),
element(W2,[8,2,5,1],EW2),
element(W3,[4,3,7,2],EW3),
element(W4,[3,1,6,3],EW4),
EW1+EW2+EW3+EW4 #>= 19,

Products = [P1,P2,P3,P4],

domain(Products,1,4),
all_different(Products),
element(P1,[7,8,4,3],EP1),
element(P2,[1,2,3,1],EP2),
element(P3,[3,5,7,6],EP3),
element(P4,[4,1,2,3],EP4),
EP1+EP2+EP3+EP4 #>= 19,

assignment(Workers,Products),

labeling([ff],Workers).

Fig. 15. A combined model for the assignment problem

W1 in (1..2)\/{4}
W2 in 1..4
W3 in 2..4
W4 in 2..4

P1 in 1..2
P2 in 1..4
P3 in 2..4
P4 in 1..4

Fig. 16. Initial domain pruning for the assignment problem with the combined model

160 R. Barták

3.3 A Golomb Ruler Problem: Redundant Constraints

Lessons learnt in the previous sections will now be applied to solving a really hard
problem of finding an optimal Golomb ruler of given size. In particular, we will show
how “small” changes in the constraint model, like adding the symmetry breaking and
redundant constraints, may influence dramatically the efficiency of the solver.

Golomb ruler of size M is a ruler with M marks placed in such a way that the
distances between any two marks are different. The shortest ruler is the optimal ruler.
Figure 17 shows an optimal Golomb ruler of size 5.

Fig. 17. An optimal Golomb ruler of size 5

Finding an optimal Golomb ruler is a hard problem. In fact, there is not known an
exact algorithm to find an optimal ruler of size M ≥ 24 even if there exist some best
so far rulers of size up to 150 [5]. Still, these results are not proved yet to be (or not to
be) optimal. Golomb ruler is not only a hard theoretical problem but it also has a
practical usage in radio-astronomy. Let us now design a constraint model to describe
the problem of the Golomb ruler.

A natural way how to model the problem is to describe a position of each mark
using a variable. Thus for M marks we have M variables X1,…, XM. The first mark
will be in the position 0 and the position of the remaining marks will be described by
a positive integer. Moreover, to prevent exploring all permutations of the marks, we
can sort the marks (and hence the variables) from left to right by using constraints in
the form Xi<Xi+1. Finally, we need to describe the difference of distances between the
marks. Thus for each pair of marks i and j (i<j) we introduce a new distance variable
Di,j = Xj – Xi. The difference of distances is modeled using the all-different constraint
applied to all distance variables. Figure 18 shows this base constraint model.

X1 = 0
X1<X2<…<XM
∀i<j Di,j = Xj – Xi
all_different({D1,2,D1,3,…,DM,M-1})

Fig. 18. A base constraint model for the Golomb ruler

The base constraint model already includes several features discussed in the
previous sections. In particular, we use a global constraint all-different instead of the
set of binary inequalities. We already removed many symmetric solutions by using
the ordering constraints (permutation can be seen as a special case of symmetry).
There is no doubt about a positive effect of this feature. Still, there is one more
symmetric solution to be removed and this is mirroring of the ruler. Assume the
optimal ruler [0,1,4,9,11], then the ruler [0,2,7,10,11] is a mirror of this ruler that

0 1 4 9 11

 Effective Modeling with Constraints 161

should be removed from the solution space. The mirror solutions can be removed for
example by assuming only the solutions where the distance between the first two
marks is smaller than the distance between the last two marks. The symmetry
breaking constraint has the following form:

D1,2 < DM-1,M

As we can see from Table 2, adding the above symmetry breaking constraint
decreases significantly the running time because the symmetric areas of the search
tree are not explored during search.

We can further improve efficiency of the model by adding some redundant
constraints. The redundant constraint is not necessary to define the solution, it can be
deduced from the existing constraints, but it can improve the propagation power. In
case of the Golomb ruler, we can derive better bounds for the difference variables. Di,j
is a distance between the marks i and j. Notice that this distance consists of the
distances (i,i+1), (i+1,i+2) …(j-1,j). Formally,

Di,j = Di,i+1 + Di+1,i+2 + … + Dj-1,j

Because all distances must be different, we can estimate the minimal sum of distances
(i,i+1), (i+1,i+2) …(j-1,j) as a sum of (j-i) different positive numbers. In particular:

Di,j ≥ Σj-i = (j-i)*(j-i+1)/2

Let us now try to estimate the upper bound for Di,j using a similar principle:

XM = XM–X1 = D1,M = D1,2 + D2,3 + … + Di-1,i + Di,j + Dj,j+1 + … + DM-1,M

Di,j = XM – (D1,2 + … Di-1,i + Dj,j+1 + … + DM-1,M)

Again, all distances must be different so we can estimate the minimal sum of
distances (1,2),..,(i-1,i), (j,j+1), …, (M-1,M). There are (M-1-j+i) different numbers
so the upper bound for Di,j can be defined as:

Di,j ≤ XM – (M-1-j+i)*(M-j+i)/2

The above analysis of the problem deduced three additional redundant constraints that
can be added to the base model to improve domain pruning. Figure 19 surveys all the
additional constraints.

D1,2 < DM-1,M
∀i<j Di,j ≥ (j-i)*(j-i+1)/2
∀i<j Di,j ≤ XM–(M-1-j+i)*(M-j+i)/2

Fig. 19. An extension of the model for the Golomb ruler

As we can see from Table 2, the model with redundant constraints pays off and the
running times are significantly smaller. For the interested reader, the complete code
(SICStus Prolog) of the constraint model with symmetry breaking and redundant
constraints is given in Appendix.

162 R. Barták

Table 2. Running times (in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM) to
find out optimal Golomb rulers using different constraint models

size Base model Base model
+ symmetry

Base model
+ symmetry
+ redundant constraints

7 220 80 30
8 1 462 611 190
9 13 690 5 438 1 001

10 120 363 49 971 7 011
11 2 480 216 985 237 170 495

Rule of thumb – redundant constraints. From the constraints in the base model we can
sometimes deduce some derived constraints that bridge the weak domain pruning. These
so called redundant constraints are not necessary to define the solution but if they are
added to the base constraint model they can improve domain pruning. On the other hand,
propagation via the redundant constraints adds overhead to solving time so one must be
careful what and how many redundant constraints are added. A good test for adding
redundant constraints can be improved initial pruning. A dual model added to the primal
model is a special case of redundant constraints.

As we mentioned in the survey of constraint satisfaction technology, efficiency of
problem solving is influenced by the constraint model but also by choosing the right
labeling strategy. We achieved the above results (Table 2) by using a labeling strategy
which selects the variable with the smallest index for assignment (leftmost variable
selection) and which uses the step branching scheme (X=Value ∨ X≠Value). We
compared two standard variable selection heuristics, namely fail-first and leftmost
variable selection, and three branching schemes, namely enumeration, step labeling,
and bisection, on the Golomb ruler problem (Table 3). The combination of the
leftmost variable selection with the bisection branching scheme seems to be the best
option for solving the Golomb ruler problem. Note that different parameters of the
labeling strategy may be more appropriate for other problems. Usually, fail-first in the
combination with step branching is used as the first choice.

Table 3. Comparison of variable and value selection heuristics for the Golomb ruler problem
(runtime is measured in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM)

size leftmost fail first
 enum step bisect enum step bisect
7 30 30 30 40 60 40
8 220 190 200 390 370 350
9 1 182 1 001 921 2 664 2 384 2 113

10 8 782 7 011 6 430 20 870 17 545 14 982
11 209 251 170 495 159 559 1 004 515 906 323 779 851

4 Conclusions

Determining the efficiency of different constraint models is a difficult problem and
one which relies upon an understanding of the underlying constraint solver. The best

 Effective Modeling with Constraints 163

model will be the one in which information is propagated earliest [7]. In this paper,
we explained the basics of the constraint technology and we presented several
techniques that usually improve efficiency of the constraint models by following the
above rule on propagating earliest.

Encapsulating a set of constraints into a global constraint is always the
recommended way of modeling especially if the appropriate global constraints are
implemented in the system. As we showed, sometimes a global constraint intended to
a different application area can be applied to the problem so do not be restricted to the
subset of the global constraints for your problem area only.

We have also showed that some parts of the solution (search) space can be
removed because the solutions from these parts can be easily reconstructed from other
solutions. In particular, including so called symmetry breaking constraints always
speeds up the solver because they prevent the solver to explore irrelevant
(symmetrical) parts of the search space.

Last but not least we presented the idea of redundant constraints. Redundancy
means that these constraints are not necessary to define the solution but they can
significantly speed up the solver by improving domain pruning (and thus restricting
the search space). One example of adding redundancy to the model is combining the
primal model with the dual model where the role of variables and values is swapped.
However, redundant constraints add overhead necessary to propagate through them so
the user must be careful about using them. Empirical evaluation of the models could
be a good guide there.

Acknowledgements

The author is supported by the Czech Science Foundation under the contract No.
201/04/1102 and by the project LN00A056 of the Ministry of Education of the Czech
Republic. I would like to thank the anonymous reviewers of the preliminary draft for
very useful comments and suggestions.

References

1. Baptiste, P. and Le Pape, C.: Edge-finding constraint propagation algorithms for
disjunctive and cumulative scheduling. Proceedings of the Fifteenth Workshop of the
U.K. Planning Special Interest Group, 1996.

2. Barták, R.: On-line Guide to Constraint Programming, Prague, 1998.
http://kti.mff.cuni.cz/~bartak/constraints/

3. Carlsson M., Ottosson G., Carlsson B.: An Open-Ended Finite Domain Constraint Solver.
Proceedings Programming Languages: Implementations, Logics, and Programs, Springer-
Verlag LNCS 1292, 1997.

4. Freuder, E.C.: In Pursuit of the Holy Grail. Constraints: An International Journal, 2, 57-
61, Kluwer, 1997.

5. Golomb rulers: some results, 2003.
http://www.research.ibm.com/people/s/shearer/grtab.html

6. Kumar, V.: Algorithms for Constraint Satisfaction Problems: A Survey, AI Magazine
13(1): 32-44, 1992.

7. Mariot K. and Stuckey P.J.: Programming with Constraints: An Introduction. The MIT
Press, 1998.

164 R. Barták

8. Régin J.-Ch.: A filtering algorithm for constraints of difference in CSPs. Proceedings of
12th National Conference on Artificial Intelligence, 1994.

9. SICStus Prolog 3.11.2 User's Manual.
10. Smith B.: Reducing Symmetry in a Combinatorial Design Problem. Proceedings of CP-

AI-OR2001, pp. 351-359, Wye College, UK, 2001.
11. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London, 1995.

Appendix

The following code describes a complete constraint model to solve the Golomb ruler
problem of size M. More precisely, the largest problem that we have solved was of
size 13 and it took almost eleven hours on Mobile Pentium 4-M 1.70 GHz. The code
follows the syntax of constraints and built-in predicates of SICStus Prolog 3.11.2 [9].
For example, SICStus Prolog uses the all_distinct constraint that implements
the Régin’s filtering algorithm while the all_different constraint implements a
simple propagation where the value is removed from domains after its assignment to
some variable. The last comment is about the upper bound for the variables describing
marks. As the built-in labeling procedure requires the domains of the labeled variables
to be finite we decided to use M2 as the upper bound for these variables.

:-use_module(library(clpfd)).
:-use_module(library(lists)).

golomb(M,Sol):-
 UpperBound is M*M,
 ruler(M,-1,UpperBound,Sol),
 Sol = [0|_], % set the first mark to 0
 last(Sol,XM), % find the last mark
 distances(Sol,1,M,XM,Dist),
 all_distinct(Dist), % distances between marks are diff-
 erent
 (Dist=[DF,_|_] -> last(Dist,DL), DF#<DL ; true),

 % symmetry breaking
 minimize(labeling([leftmost,bisect],Sol),XM).

% generate variables for marks and post ordering constraints
ruler(0,_,_,[]).
ruler(K,PrevX,UpperBound,[X|Rest]):-
 K>0,
 PrevX#<X, X#=<UpperBound,
 K1 is K-1,!,
 ruler(K1,X,UpperBound,Rest).

% generate distance variables and post redundant constraints
distances([],_,_,_,[]).
distances([X|Rest],I,M,XM,Dist):-
 J is I+1,
 distances_from_x(Rest,X,I,J,M,XM,Dist,RestDist),
 I1 is I+1,!,
 distances(Rest,I1,M,XM,RestDist).

 Effective Modeling with Constraints 165

% compute distances between XI and the rest marks YJ, I<J
% and post redundant constraints for distances
distances_from_x([],_,_,_,_,_,RestDist,RestDist).
distances_from_x([Y|Rest],X,I,J,M,XM,[DXY|Dist],RestDist):-
 DXY #= Y-X,
 LowerBound is integer(((J-I)*(J-I+1))/2),
 LowerBound #=< DXY,
 UpperBoundP is integer(((M-1-J+I)*(M-J+I))/2),
 DXY #=< XM - UpperBoundP,
 J1 is J+1,!,
 distances_from_x(Rest,X,I,J1,M,XM,Dist,RestDist).

A Local Search System for Solving Constraint Problems
of Declarative Graph-Based Global Constraints

Markus Bohlin

Swedish Institute of Computer Science,
Kista, Sweden

markus.bohlin@sics.se

Abstract. In this paper we present a local search constraint solver in which con-
straints are expressed using cost functions on graph structures of filter constraints
of equal type. A similar theoretical approach has previously been used to model
a large number of complex global constraints, which motivates the use of such a
model in practice. In a local search context, we view global constraints as com-
plex cost functions, encapsulating the structure of the constraints using a graph of
variables, values and filter constraints. This representation gives us a declarative
model, which can also be used to efficiently compute a cost as well as conflict
levels of the variables in the constraints. We have implemented these ideas in a
compositional C++ framework called COMPOSER, which can be used to solve
systems of graph-based constraints. We demonstrate the usability of this approach
on several well-known global constraints, and show by experimental results on
two problems that an approach using a graph basis for global constraint modeling
is not only possible in practice, but also competitive with existing constraint-based
local search systems.

1 Introduction

The constraint satisfaction problem (CSP) is well-known in computer science. Infor-
mally, a CSP instance can be defined as follows: Given a set of variables and a set of
constraints on these, is there an assignment to the variables such that all constraints are
satisfied? A large amount of scientific activity has been spent on solving generic CSP’s.
One such approach is constraint programming, which has evolved from generic sys-
tematic search methods since the late 70’s. Unfortunately these methods can for certain
problems be very time and space consuming.

Another approach for combinatorial problem solving is to use incomplete methods
such as local search. Heuristic methods based on such methods for solving constraint
problems have evolved during the last fifteen years, becoming one of the most power-
ful techniques for solving large combinatorial problems, often outperforming complete
algorithms. The classical approach for generic constraint solving in local search is to
provide a set of primitive constraints for modeling [22]. These constraints can then be
combined, typically using logic conjunction, to model the declarative semantics of more
complex combinatorial substructures. Unfortunately, for several common combinatorial
structures there is no simple model, expressed in primitive constraints only, which is
acceptable in terms of space and/or time complexity. Global constraints are present in

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 166–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Local Search System for Solving Constraint Problems 167

local search systems to give efficient high-level components capturing such combina-
torial substructures. This has been demonstrated in several papers on integrating local
search and global constraints [7, 9, 12–14, 16]. One such constraint is the well-known
alldiff constraint, restricting a set of variables to take disjoint values. A natural
decomposition of this constraint reduces to n(n − 1)/2 binary inequality constraints,
where n is the number of variables. In evaluating the effect of a single variable change
to such a set of constraints, one must re-examine all n−1 inequality constraints on the
changed variable. This is unfortunate, since there are more efficient representations of
the alldiff constraints.

In this paper we present a local search constraint solver called COMPOSER (referring
to the modeling of constraints using graph components in the system), which uses declar-
ative specifications of global constraints in terms of cost functions on filtered graphs of
variables, values and arcs. The basic idea goes back to the article [2] by Beldiceanu,
where properties on graphs of the mentioned type are used to model global constraints.
To be able to implement cost and conflict computation on such a model, we have modified
the graph model of Beldiceanu, mainly by replacing the graph properties of Beldiceanu
with cost functions.

As we see it, the main benefit of such a parametrized model of global constraints is
that practitioners can easily experiment with different cost functions and combinatorial
structures, creating modifications and completely new global constraints with minimum
effort. Also, the declarative approach we use is not only well-suited for constraint mod-
eling; the resulting constraints can be evaluated efficiently using incremental algorithms.

1.1 Local Search in COMPOSER

The basic technique of constraint solving in COMPOSER is iterative repair, which has
previously been used with much success for solving constraint problems [7–9, 14, 16,
21]. A problem is described using a set of integer variables with associated finite domains,
and a set of constraints. A solution to a problem, where all constraints are satisfied, is
found by modifying a total assignment v of the variables in the problem. The assignment
v is iteratively refined by evaluation of a neighborhood of transitions from v. Typically,
the transitions are changes in a single variable assignment, denoted as v[x �→ a] where
x is a variable and a a value, or variable swaps, where the values of two variables are
interchanged. A cost is used to rate transitions; a transition with lower or minimal cost is
selected for application. In COMPOSER, we use a weighted sum of the individual costs
of the constraints in the problem as the cost of an assignment. A default weight of 1 is
used if this is not specified. Weights are in practice a necessity in order to compensate
for the different sizes of the constraint (in terms of variables) as well as the different
number of constraints of a certain type. The main benefit of using a common cost basis
is that the different cost functions themselves does not have to be balanced.

To speed up neighborhood evaluation, several local search algorithms first select a
promising transition subset using a heuristic of moderate accuracy. This subset can then
in turn be evaluated more thoroughly to find a transition to apply. A common way to
do this in constraint-based local search is to compute a conflict level of the variables
in the problem, indicating to which degree the variables are responsible for the cost
of the current assignment [7, 14, 16]. A set of transitions on the variables with highest

168 M. Bohlin

conflict level can then be selected for full evaluation. The basic idea is that the variables
that are responsible for most of the cost should be investigated first, since they offer
more opportunities for large improvements. A common variation on this is to restrict the
neighborhood to variables that have a positive conflict level [9, 15].

Conflict level computation of variables are supported in COMPOSER. On a global
level, the conflict level of a variable is computed as the sum of the weighted constraint-
specific conflict levels of the variable, using the same constraint weights as in the cost
computation. In Section 2.3 we describe a generic method for conflict level computation
on our model, distributing the cost of the constraints fairly over the variables.

In general, the conflict level computation is more expensive than the cost compu-
tation. However, in COMPOSER the conflict levels of the variables are only needed in
preprocessing the neighborhood. Therefore, the conflict computation is only done in the
actual application of the selected transition; in evaluating the transitions in the neigh-
borhood, it is sufficient to compute a cost only. The automatic conflict computation can
also be manually disabled if not needed, for example in local search algorithm which do
not preprocess its neighborhood.

1.2 Related Work

COMPOSER and the local search system Comet [14] has a similar basis in incremen-
tal evaluation and iterative improvement. The main difference is that in Comet, global
constraints are represented by differentiable objects, which are implemented using in-
variants (automatically updated incremental expressions) and an imperative language
similar to Java. In COMPOSER, we use a declarative model for constraint modeling,
where an explicit graph representation is used. On this representation, we then compute
costs and conflicts directly. A constraint is then implemented simply by selecting a set
of graph components to use.

Galinier and Hao [9] describes a general constraint solver using local search. The
solver handles global constraints including alldiff, capa and nbdiff, and is based
on hill-climbing and tabu search. Galinier and Hao give costs for the constraints used
in their work and demonstrate it on some combinatorial problems. They also propose
to use the minimum number of variables that need to be modified for a constraint to be
satisfied as the cost of the constraint.

Codognet and Diaz present the local search algorithm Adaptive Search in [7]. This
algorithm takes a CSP on a special form as input, and performs local search using variable
swaps and Tabu search. Constraints are represented by error functions, computing a cost.
The conflict level for a variable x is computed by combination (using a combination
function) of the costs of the constraints in which x is present. A cost function must also
be supplied, which the algorithm tries to minimize. In practice, variations of summation
are used as both cost and combination functions.

The main difference between COMPOSER and Adaptive Search is that in the former,
a full framework of incremental graph components is available to help the user in global
constraint modelling, while in the latter the user has no help from the system, and is
forced to re-implement efficient incremental error functions, combination functions and
ad-hoc cost functions for use in the algorithm. Also, the user has little or no control of
which algorithm to use for solving problems.

A Local Search System for Solving Constraint Problems 169

Global constraints in local search has also been investigated by Nareyek in [16],
using an approach where a selected constraint improves the current assignment in a local
manner. He also gives costs for some global constraints including ordered-tasks
and a version of the serialized constraint.

Petit, Régin and Bessière use cost-based filtering for systematic constraint program-
ming [18]. The authors also propose two general cost policies for global constraints. The
first is to use the minimum number of variables needed to be modified as the cost. The
second is to use the number of violated binary constraints that can be used to represent
the global constraint as cost. In our work we extend the second approach to constraints
that are hard or impossible to represent using binary constraints only.

It has, since the completion of this work, come to our attention that costs based on
graph properties in the framework of [2] have also been discussed more recently by
Beldiceanu and Petit [4]. These costs are based purely on the graph properties, and the
paper does not address computing conflicts for the variables in the constraints, nor does
it investigate incremental cost evaluation and necessary extensions of the model, which
allows efficient cost computations. Another difference compared to our work is that we
have actually implemented the cost evaluation, and also give empirical results on using
it in a local search context.

1.3 Organization

The rest of the article is organized as follows. First, Section 2 gives an overview of the
constraint model we use. Section 3 continues with an introduction on how to model
constraints in COMPOSER, and presents two example applications, showing that para-
metrized graph constraint modeling for local search is indeed useful in practice. Finally,
Section 4 gives some concluding remarks.

2 The Constraint Model

In a local search context, we define a global constraint as a software component with
the following characteristics:

– The constraint is dependent only on the current assignment of a set of variables, and
constants passed to the constraint at initialization.

– The constraint produces a non-negative cost, reflecting to which level the constraint
is violated in the current assignment. This cost must be 0 when the constraint is
satisfied.

– The constraint can produce a non-negative conflict level for a variable in the con-
straint, indicating how much of the cost of the constraint the variable causes in the
current assignment. The conflict level of each variable must be 0 when the constraint
is satisfied.

In addition, since constraint evaluation is done for many transitions in each iteration,
the constraints should ideally compute their costs and conflict levels as fast as possible.
A global constraint is represented in COMPOSER as a directed graph, which we filter
and apply a cost function on. The goal is a constraint cost comparable with the cost of
a set of semantically equivalent primitive constraints; this cost measurement has been

170 M. Bohlin

Fig. 1. Illustration of the basic ideas behind the computation of costs for constraints in COMPOSER

used before and is natural for several common global constraints [9, 18], but the main
advantage of such a cost is that it is comparable between a large number of constraints.
In the COMPOSER system, we describe a global constraint by three components:

1. A graph structure, maintaining a set of binary arcs on a set of vertices,
2. A filter constraint, filtering the arcs in the graph, and
3. A cost function, computing a cost, and optionally conflict levels for the variables.

This division of a global constraint into components gives us an expressive high-level
model, which also can be implemented efficiently. The process of computing a cost using
modeled constraints is illustrated in Figure 1 and is described in detail in the rest of this
section.

2.1 Graph Structures

The graph structure maintains a set of binary arcs on a set of vertices and is used to form
a graph of more primitive constraints (called filter constraints, see below) for further
processing. A graph structure consists of a vertex generator and an arc generator, where
the vertex generator produces vertices for the graph from the arguments to the global
constraint — this is the same structure as in the paper of Beldiceanu [2]. Each global
constraint has at least one vertex generator. In this paper, we only use identity vertex
generators, creating vertices directly from its arguments, and the domain generator,
creating as vertices the union of the values in the domains of a set of variables. Which
graph structure to use often becomes obvious once we have decided on a filter constraint.
For example, if the constraint checks that the number of variables equal to a set of values
is within certain boundaries (a cardinality constraint), we would select an equality filter
constraint on a graph structure connecting each variable to each value.

Arc generators produce the arcs of the graph. Constraints on binary arcs are quite
expressive, and allow modeling of many global constraints [2, 3]. The arc generators
we use take either one or two vectors X ,W of vertices and produce a set of arcs be-
tween these vertices. In this paper, we use only the three arc generators AllUnord,
Connect and Bipartite; AllUnord creates arcs between X [i] and X [j] for all in-
tegers i < j, Connect creates the arcs (X [i],W [i]) where i ∈ 1..min(size(X),size(W)),

A Local Search System for Solving Constraint Problems 171

Fig. 2. The three arc generators AllUnord (left), Connect (middle) and Bipartite (right)

and Bipartite creates arcs from each vertex X [i], which must be a variable, in the
first vector to each vertex in the domain of X [i] in the second vector. These three arc
generators are shown in Figure 2. The implementation of the Bipartite arc generator
is specialized for efficient evaluation of graphs with equality filter constraints. More arc
and vertex generators are described in [2, 3] and [5].

2.2 Filter Constraints

A filter constraint is a primitive constraint that is applied to the arcs in the graph. The
role of a filter constraint is to filter the set of arcs as an intermediate step in computing the
cost of the global constraint. This is essentially the same as the elementary constraints
of [2]; the difference is that we use filter constraints as a basis for cost computation
instead of consistency checking. We use generic binary constraints as filter constraints
in this paper. Formally, a filter constraint fc is a function taking an arc from the arc set
A (produced by the graph structure), and an assignment v for a set of variables X , and
returning a Boolean value.

2.3 Costs and Conflict Levels

The cost for a given constraint is formalized by a cost function cf of type AS → int,
where AS is the set of all possible arc sets. In many cases we can construct a cost function
directly from a property p on the arc set, and a cost modifier cm. We refer to such a
cost as a regular cost. A property p : AS → int takes an an arc set and returns an
integer — this corresponds roughly to the graph properties of [2], but return a value
instead of defining if the constraint is satisfied or not. The properties we use in this
paper are the Card property, computing the size |A| of an arc set A, and a weighted sum
property WSum, computing a sum of weights ∑a∈A w(a) for a set of arcs. The cardinality
property is useful for constraints whose structure is similar to a decomposition into
primitive constraints, and where the consistency is directly dependent on the number of
remaining arcs. For constraints where weights are used to determine if the constraint is
satisfied, the WSum property is often useful. Other properties are used for more complex
constraints, but we do not go into detail on this in this paper.

A cost modifier cm is a function of type int→ int, which is applied to the integer
result of the property. Cost modifiers are used in those cases where a constraint has a
threshold parameter that we need to use in order to check if the constraint is consistent
and in computing its cost. The result of the cost modifier application is then returned as
the cost of the constraint.

To get a cost that is comparable with other constraint costs, one must select the
cost modifier carefully. We use mostly threshold cost modifiers of the type cm(x) =
max(0,x−k) for a constant k, returning the linear distance from the threshold k as cost.

172 M. Bohlin

Such costs have been used previously for similar purposes in [9, 14] and fit constraints
whose graph structure is closely related to a decomposition into primitive constraints.
In other cases for graph structures not directly related to binary decompositions, we use
quadratic costs to emulate the cost of a decomposed graph structure.

The conflict level of a variable in a constraint should indicate to which degree the
current value of the variable contributes to the cost of the constraint. For a regular cost
and a variable x, we use the cost weighted with the ratio between the number of filtered
arcs on x and the total number of filtered arcs as conflict level clc(v,x) of the variables;
clc(v,x) = cf (A′) · |A′

x|/|A′|, where A′ is the set of filtered arcs, and A′
x is the set of arcs

in A′ involving x. Note that in the implementation, A′ and A′
x are updated incrementally.

Partitioned Costs and Subcosts. Replacing a global constraint with a set of more
primitive constraints is an approach which has been used numerous times in the past —
for example in local search, see [22]. However, many global constraints have semantics
which cannot be efficiently stated by a conjunction of primitive constraints, and often,
a regular cost is simply not expressive enough. One example is the gcc constraint1 of
[20]. This constraint takes a set of variables X and two sets of integers L,U of lower and
upper bounds, associated to unique values in the union of the domains of the variables in
X . gcc is satisfied when, for all values a and an assignment v, the number of variables
taking the value a is in the interval (La,Ua).

∀a ∈
⋃
x∈X

dom(x).La ≤ ∣∣{x | x ∈ X ∧ v(x) = a}∣∣ ≤ Ua

An obvious way to compute a cost for this constraint is to accumulate several costs on
the individual values, and then use the sum of these costs as the final cost of the constraint.
This technique has been used previously in [9, 14, 15, 19, 21] for similar structures. To
be able to express such constructs, we introduce partitioned costs cf Σ and subcosts.
A partitioned cost consists of a partition function pf and a subcost function cf . The
partition function pf partitions the filtered arc set A′ into a vector of disjoint arc subsets
pf (A′). We then apply the subcost function cf on each arc set in pf (A′), and take the sum
of the subcosts as the total cost of the constraint; cf Σ (A′) = ∑q∈pf (A′) cf (q). The subcost
can be any normal cost function.

In this paper we only use the Entering partition function, which generate the sets
of arcs that all enter the same node xi. This is usable in situations like the one described
for the cardinality family of constraints above. For a partitioned cost, when they are
needed, the conflict levels are computed in the subcosts — these are added to form the
total conflict level of a variable.

2.4 Incremental Computation

An important characteristic of local search is the efficiency of the cost computation.
Typically, a neighbor is constructed by changing the values of a small set of variables.
One way of speeding up the cost computation is to take advantage of this small difference
between a neighbor and the current solution in the computation of the new cost. This

1 gcc is an abbreviation of Global Cardinality Constraint.

A Local Search System for Solving Constraint Problems 173

is the basis of incremental cost computation; recomputing only the parts of the cost
that have actually changed. Incremental computation has been investigated in a general
context by Paige and Koenig [17], Alpern et al. [1], and Yellin and Strom [23], as well
as for computing local search costs; see for example Michel and Van Hentenryck [14].
The novelty of our work comes from the application of this technique for evaluating
declarative models of global constraints.

The incremental evaluation of components in COMPOSER is based on evaluating
the change of a single variable assignment. This atomic change can in turn be used to
form more complicated changes. For example, value swaps of two variables x,y can
be seen as two simultaneous assignments v[x �→ v(y),y �→ v(x)]. For space reasons, we
have omitted the details of the incremental updates done in COMPOSER, and focuses on
describing the general ideas. We refer the interested reader to [5] for more details.

The basic ideas of the incremental cost and conflict computation of a constraint in
COMPOSER is to only evaluate how the cost is affected by addition and removal of
arcs due to a changed variable. In addition to this, the total cost and conflict levels are
also incrementally updated using finite differencing on the changed costs and conflict
levels [17]. Basically, for a transition v[x �→ a], where v is the current assignment, x is a
variable, a is a value assigned to x, and a �= v(a), we reapply the filter to those arcs that
contain x, and incrementally recompute the affected properties and subcosts, as shown
below. Only costs and property values are updated incrementally — the status of filter
constraints and cost modifiers are computed more efficiently from scratch.

In doing this for a single constraint, we maintain two sets of added and removed
edges respectively. For a regular cost, a new property value can be computed as the old
property value po and a difference ∆ p. The common properties used are cardinality and
weighted sums, whose differences can easily be recomputed in constant and linear time
respectively, as shown in [17]. We can then compute a new cost cn by application of the
cost modifier, so that cn = cm(po +∆ p).

Next, if they are needed, the conflicts of the vertices are incrementally recomputed.
To do this, we also maintain the set of arcs A′ satisfying the filter constraint and the
partitions A′

x of this set, where for a variable x each arc in A′
x is connected to x. By

maintaining and investigating only the arc sets A′
x that have actually changed, we can

update the total conflict level efficiently by finite differencing.
A partitioned cost on the other hand is computed as the sum of its subcosts. For a

partitioned cost function, we once again can compute a new cost by finite differencing
of the changed subcosts. Partitioning the cost of a constraint intelligently can therefore
decrease evaluation time considerably. The conflict level of a variable for a partitioned
cost is computed as the sum of its subcost conflict levels, and is therefore done in the
individual computations of the subcosts.

3 Constraint and Problem Modeling Using COMPOSER

In this section we take a closer look on constraints and combinatorial problem modeling
in COMPOSER from a practical point of view. For COMPOSER, all problems were solved
using a 1 GHz Pentium III running Linux.

174 M. Bohlin

3.1 Constraint Modeling

In this section we will discuss how to model global constraints using the COMPOSER

system. More details can be found in [5] and [6]. In COMPOSER, a global constraint is
created simply by selecting the graph components used to represent the constraint. As an
example of how to model a constraint using COMPOSER, we consider the binarization
of the alldiff constraint as presented in Figure 3. Here, a constraint on the vari-
ables X is instantiated with a AllUnord graph structure component, which represents
arcs between all subsets (xi,x j) of variables where i < j. An equality filter constraint,
VarEqVar, is used, which removes an edge (xi,x j) if v(xi) �= v(x j) for an assignment
v. Finally, the cardinality of the resulting arc set is used as cost, using the Card property
and an implicit identity cost modifier.

constraint alldiff (vec[var] X) {
structure = AllUnord(X);
filter = VarEqVar;
cost = Card;

}

Fig. 3. The primitive alldiff constraint

Although the model from Figure 3 for alldiff is concise and natural, it has one
drawback. It is essentially a decomposition of the constraint into n(n − 1)/2 binary
inequalities, where n is the number of variables. The space complexity of O(n2) and
incremental time complexity of O(b ·n), where b is the number of variable changes, is
naturally the same as for the decomposition.

However, we can do better than this, given that a efficient implementation of the
alldiff constraint should have a space complexity of O(n + m) and an incremental
time complexity of O(b), where m is the total number of values for all variables. For
structures similar to the alldiff constraint, a bipartite graph can be used, where one
partition is the variable nodes, and the other is the set of possible values [9, 14, 15, 19, 21].
The edges of the graph then correspond to assignments. In such a model we can update
the cost efficiently by keeping track of the number of variables that are connected to a
single value. In COMPOSER we can model the alldiff constraint in this way using
the Bipartite graph structure. The model can also be extended to a more generic
gcc constraint, shown in Figure 4. In this constraint, two integer arrays L and U are
given to the constraint, which are used in the subcost for the value node i to compute
q(max(0,L[i]− pi, pi −U[i])), where q(x) = x(x−1)/2 and pi is the number of final arcs
connected to i — this is equal to the number of variables taking the value i.

3.2 The n-Queens Problem

In this section we will investigate models and algorithms for solving the n-queens prob-
lem, a classical combinatorial puzzle that has been used extensively as an example in
the constraint community. In this problem, n queens are to be placed on a chessboard of
dimension n×n so that no queen can attack another queen.

A Local Search System for Solving Constraint Problems 175

constraint gcc (vec[var] X, vec[int] L, vec[int] U) {
structure = Bipartite(X);
filter = VarEqC;
cost = Entering;
subcost[i] = QuadBetween(L[i],U[i]);
property = Card;

}

Fig. 4. A bipartite gcc constraint with subcosts

Model model;
statevector Q(Queens,"Queen_",0,Queens-1);
vector<int> pos(fromto(0,Queens-1)), neg(fromto(Queens-1,0));
alldiff(model,&Q); alldiff(model,&Q,pos); alldiff(model,&Q,neg);
model.close();

Fig. 5. A first model of the n-queens problem

constraint alldiff (vec[var] Y, vec[int] M) {
structure = Bipartite(Y);
filter = VarPlusEqC(M) ;
cost = Entering ;
subcost = QuadAtmostC<1> ;
property = Card ;

}

Fig. 6. A bipartite alldiff constraint with an offset vector M

A Constraint Model. We have solved the n-queens problem in two different ways —
one using a simple assignment neighborhood, and one using a more elaborate swap
neighborhood. Both models are similar in that each queen is represented by a state
variable with domain 0..n − 1. In the first model, shown in Figure 5, we use three
alldiff constraints to model that no queen may attack another queen. The alldiff
variant with a third argument states that for all variable pairs (xi,x j) in Q where i �= j,
the constraint xi +mi �= x j +m j should hold where mi,m j ∈ M.

In Figure 6, this alldiff constraint with offset is modeled in COMPOSER. Note
that similar ideas has been used previously in [7, 14, 15, 21]. The new model is obtained
simply by replacing the filter constraint VarEqC of the original alldiff (equal to
v(x) = i) with an equality filter constraint using an offset,VarPlusEqC (equal to v(x)+
M[x] = i). This shows quite clearly the expressiveness of the global constraint modeling
approach of COMPOSER. The cost of this new model of the alldiff constraint can
also be represented using O(n+m) space and updated in O(1) time for a single variable
change.

A First Local Search Algorithm. The local search algorithm for the first model of the
n-queens problem is depicted in Figure 7, and is basically the same cost minimization
variation of the min-conflicts procedure [15] found in [14]. The procedure first selects

176 M. Bohlin

while(model.violation()!=0) {
int Q = model.getMaxConflicting();
int V = model.getMinCostValue(Q);
model.assign(Q,V);

}

Fig. 7. Local search algorithm for the n-queens puzzle using steepest descent

Table 1. Experimental results of 11 runs of the n-Queens Problem using Comet (left, from [14])
and using COMPOSER with cost minimization (middle) and cost improvement (right)

Comet COMPOSER

(minimize) minimize improve
Size n Sec. Iter. Sec. Iter. Sec Iter.

512 0.72 304 0.31 326 0.19 562
1024 2.35 628 1.10 582 0.62 1112
2048 7.50 1100 4.64 1072 2.55 2212
4096 25.51 2092 19.17 2088 10.60 4383
8192 92.07 4040 74.44 4043 43.55 8739

16384 348.58 7968 294.47 7972 178.02 17577
32768 1362.53 15899 1181.63 15924 725.12 35136

a queen with maximum number of conflicts, and then assigns this queen to the position
which minimizes the cost. Ties are broken at random. It is worth noting that COMPOSER

updates all relevant costs and conflicts automatically in assigning a variable to a value.
We also tried a cost improvement variation, where the first position yielding an

improvement in cost was selected. This was implemented simply by using the method
getImprovingValue instead of getMinCostValue.

Results. In Table 1 we show the median solution times obtained by running n-queens
11 times for each instance, using our first model. The left column for COMPOSER report
times when using the cost minimization strategy shown in Figure 7. This strategy is
also used in obtaining the results for Comet [14]. The right COMPOSER column shows
the results of using a cost improvement strategy, selecting the first value decreasing the
current cost of the assignment. Results for the problem on 256 queens or less were all
below 90 ms. for COMPOSER and 290 ms. for Comet.

The results of Table 1 for COMPOSER are clearly competitive with the Comet results
on a 1.1 GHz computer, as reported in [14] and shown in the table. As can be seen, for
very similar algorithms using cost minimization, COMPOSER has a clear advantage over
Comet in all tested instances of the problem. The iteration results are nearly identical on
the larger problem instances, which is not surprising considering the similarities between
the algorithms used. When considering a cost improvement strategy, the iteration results
are roughly doubled for COMPOSER compared with the minimization results, but the
execution times have been reduced by almost 40% on the largest problem instance. The
results of Table 1 are not directly comparable to those reported by Codognet and Diaz
in [7], due to different neighborhoods.

A Local Search System for Solving Constraint Problems 177

A Swap-Based Local Search Algorithm. The results presented in the previous section
are clearly competitive with those reported using other systems. However, previous work
on the n-queens problem indicates that a variable swap neighborhood can yield excellent
results [7, 9, 21]. If we initialize the queens as a random permutation of 0..Queens−1
and always use swaps between two variables as the transition, it is easy to see that the
first alldiff constraint of Figure 5 becomes redundant, since it will be satisfied in
all visited assignments. Thus, the second model only differs from the first in that we
remove the first constraint, and use a randomized permutation instead of an assignment
in the initialization.

int Qi,Qj,oldV,iter;
Tabuvector tabu(model.arity(),&iter);
for(iter=0; model.violation()!=0; iter++) {
Qi = model.getMaxConflicting(tabu);
Qj = model.getMinCostSwapWith(Qi,tabu);
oldV = model.violation();
model.swap(Qi,Qj);
if(model.violation() >= oldV) tabu.insert(Qi,Tenure);

}

Fig. 8. Local search algorithm for the n-queens puzzle using variable swaps

In the new algorithm, we begin each iteration by selecting a queen s with maximum
number of conflicts; ties are broken at random. We then find the set of queens t minimizing
the resulting cost of swapping queen s and t. Next, we select one of these queens at
random, denote this queen as t ′, and swap the positions of s and t ′. We also use a
tabu component from COMPOSER to diversify the search on plateaus and to escape
local minima [10]. The tabu component for this problem is a vector T of size n, where
element Ti stores the iteration when queen i was marked as tabu. This arrangement
makes it possible to check if a queen qi is tabu in constant time, simply by checking
the current iteration count against Ti. A similar Tabu structure was introduced in [9] for
the progressive party problem. The code for solving the second model is presented in
Figure 8. The lines

Qi = model.getMaxConflicting(tabu);
Qj = model.getMinCostSwapWith(Qi,tabu);

first selects a variable Qi with maximum number of conflicts. We disregard variables
that are tabu, and break ties at random. We then select a second random variable Qj, for
which swapping Qi and Qj yields the least violation possible. Once again we disregard
variables declared as tabu. Finally, the lines

oldV = model.violation();
model.swap(Qi,Qj);
if(model.violation() >= oldV) tabu.insert(Qi,Tenure);

first save the previous violation of the model, and then commits to the value swap between
Qi and Qj. If the new violation is greater or equal to the previous one, we declare Qi
tabu. We use a tabu tenure of 10, determined by minor experimentation.

178 M. Bohlin

Table 2. Experimental results of 11 runs of the n-Queens Problem using the second model and
conflict minimization

Adaptive Search COMPOSER

(minimize) minimize improve
Size n Sec. Iter. Sec. Iter. Sec Iter.

512 0.06 116 0.03 111 0.01 237
1024 0.22 216 0.12 217 0.02 482
2048 0.82 409 0.67 418 0.09 986
4096 3.23 805 4.03 817 0.31 1984
8192 13.12 1577 19.29 1601 1.20 3959

16384 59.25 3118 83.55 3163 8.78 7981
32768 276.09 6215 349.41 6287 49.29 15942

Previous work on the n-queens puzzle has been successful in using a first-descent
strategy instead of cost minimization [21]. We therefore modified our search procedure
to select an improvement immediately if one existed. The new procedure is equal to the
one shown in Figure 8 except that we use the method getImprovingSwapWith to
select a second queen. This method works exactly as the one above, except that as soon
as a swap which improves the current violation is found, the method returns with this
one immediately.

Results. The results of the swap-based steepest-descent algorithm is shown in Table 2,
together with results obtained by using the Adaptive Search algorithm from [7] on the
same computer as the one running COMPOSER. The Adaptive Search framework uses
a similar basic model as COMPOSER; the main difference is that in Adaptive Search,
each constraint is defined by an error function, which has to be implemented by the
user. Therefore, the Adaptive Search procedure cannot be adapted without programming
skills to new constraints, whereas COMPOSER allows a significantly more user-friendly,
declarative specification of constraints.

The reported times for both systems were acquired on the same computer, and are
median results of 11 runs. We can see that using COMPOSER with cost minimization,
similar to what is used in Adaptive Search [7], is overall marginally slower. This is a
result of the declarative model of constraints using an explicit graph structure used in
COMPOSER, which imposes a small but not negligible overhead in execution time.

The results on the n-queens problem show that using a generic graph-based frame-
work for global constraints is competitive with results previously obtained using local
search in [14] and [7]. The results of the modified cost improvement algorithm, shown
in the right COMPOSER column of Table 2, also support this. As before, the number
of iterations has increased, but the runtime of the new algorithm is overall significantly
smaller than the cost minimizing algorithm.

In [15], the conflict minimization strategy is claimed to solve the n-queens problem
in linear number of iterations. The random queen initialization used in our work makes
it difficult to compare the results of Table 2 with the results obtained in [15], where a
heuristic preprocessing stage is used. Also, the results presented in [15] is expressed
only in number of repairs (corresponding to iterations), whereas we express our results
in both solution time and iterations. An O(n) time complexity of a repair is also noted

A Local Search System for Solving Constraint Problems 179

Table 3. Configuration of the Progressive Party Problem. Each boat i has a total capacity ki (the
total number of people allowed on board at the same time), and a crew size ci. The spare capacity
si of a boat is formed by subtracting the crew size from the total capacity, si = ki − ci

i ki ci si i ki ci si i ki ci si i Ki ci si i ki ci si i ki ci si i Ki ci si

1 6 2 4 7 12 4 8 13 8 4 4 19 8 4 4 25 7 2 5 31 6 2 4 37 6 4 2
2 8 2 6 8 10 1 9 14 8 2 6 20 8 2 6 26 7 2 5 32 6 2 4 38 6 5 1
3 12 2 10 9 10 2 8 15 8 3 5 21 8 4 4 27 7 4 3 33 6 2 4 39 9 7 2
4 12 2 10 10 10 2 8 16 12 6 6 22 8 5 3 28 7 5 2 34 6 2 4 40 0 2 -2
5 12 4 8 11 10 2 8 17 8 2 6 23 7 4 3 29 6 2 4 35 6 2 4 41 0 3 -3
6 12 4 8 12 10 3 7 18 8 2 6 24 7 4 3 30 6 4 2 36 6 2 4 42 0 4 -4

Table 4. Progressive Party Problem analysis for different host configurations

Instance Host boats h g ratio Instance Host boats h g ratio
1 1-12,16 100 92 0.92 7 1-11,21,22 94 92 0.98
2 1-13 (orig.) 98 94 0.96 8 1-9,16-18,22 92 90 0.98
3 1,3-13,19 96 92 0.96 9 1-9,15-17,22 91 89 0.98
4 3-13,25,26 98 94 0.96 10 1-11,22,23 93 92 0.99
5 1-11,19,21 95 93 0.98 11 1,3-11,21-23 91 90 0.99
6 1-9,16-19 93 91 0.98

in [15]. This is equal to the complexity of evaluating all transition in one iteration of
our solution. As can be seen, the time and iteration results in Table 2 are also consistent
with these observations.

3.3 The Progressive Party Problem

The progressive party problem is a well-known benchmark problem in the constraint
programming community, and have been used in several generic constraint-based local
search methods as well [9, 14, 22]. The problem can be described informally as follows.
An evening party is to be organized in the setting of a yachting rally. The organizers
have decided that the guest boats will visit the organizers’ boats (the host boats) in turn,
where the crew of a host boat stays aboard and serves the guests on the visiting guest
boats. Every 30 minutes, each guest boat will move to a different host boat. This will go
on for a given number of time periods. The organizers have also decided that no guest
boat has to visit the same host boat twice, and that two crews must never meet more than
once. In Table 3 the different boats and their crews and capacities are shown. We also
show the spare capacities of each boat, which is simply the number of guests that can
safely be taken aboard.

The Model. We have solved the progressive party problem using global constraints in
COMPOSER. The problem instances we have considered are listed in Table 4, where the
first 6 instances are well-known and previously studied in a local search context [9, 14].
Instance 7 to 11 are new and has not been investigated as far as we know. Also, we have
tried to solve the progressive party problem for as many time periods as possible; the
constrainedness of the problem increases significantly with each additional time period.

180 M. Bohlin

statematrix boat(P,G); vector<state*> X(P),Y(P); int p,i,j;
for(p=0;p<P;p++) capa(model,boat(p),size,spare);
for(i=0;i<G;i++) {
for(j=0;j<P;j++) X[j] = boat(j,i);
alldiff(model,&X);

}
for(i=0;i<G;i++) {
for(j=i+1;j<G;j++) {

for(p=0;p<P;p++) X[p]=boat(p,i), Y[p]=boat(p,j);
nbdiff(model,&X,&Y);

}
}

Fig. 9. A model of the progressive party problem

constraint capa (vec[var] Y, vec[int] C, vec[int] K) {
structure = Bipartite(Y);
filter = VarEqC;
cost = Entering;
subcost[i] = AtmostVariant(K[i]);
property = WSum1<WVector>(C);

}

Fig. 10. A bipartite capa constraint with subcosts

Figure 9 contains the model, similar to the one used in [8] and [14], that we used
in solving the problem. A matrix of state variables boat of dimension p × g, where p
is the number of periods to run the problem, and g is the number of guests available,
represents the guest boats; boat(i,j) holds the host boat that guest j visits in period
i. We also use the auxiliary vectors size, which hold the crew size of the guests, and
spare which hold the spare capacities of the host boats.

The constraint model consists of three types of modeled global constraints, which
were also used in [9, 14]. First, the capa constraint states that for all time periods, the
capacity of the host boats most be respected. The capa constraint is actually a restricted
version of a general weighted cardinality constraint (which is also easily expressed using
COMPOSER), and is shown in Figure 10. This constraint is equivalent with the inequalities
∀i.∑v(x)=i wx ≤ ci. The nbdiff constraint states that in the two vectors X and Y, at most
k = 1 pairs (xi,yi) may be equal.

A Local-Search Algorithm. The local search procedure used is presented in Figure 11
and was inspired heavily by the two algorithms in [9] and [14]. In short, we use a simple
modification of the hill-climbing algorithm, in which the best move is always selected
and where ties are broken randomly. As before we use the single-assign neighborhood
and a tabu structure, this time over the variables and values, to diverge the search.
This Tabu structure was proposed by Galinier and Hao in [8]. As parameters we use a
tabu tenure of initially 2. This tenure is increased or decreased as the search proceeds,
in order to allow exploration of new assignments. We also use a limited backtracking

A Local Search System for Solving Constraint Problems 181

mechanism to improve performance on very hard problem instances. Every time an new
best assignment is found, an assignment memory is cleared and initialized by the line

model.hist_clear(); model.hist_store();

The assignment history component also keeps track of the frequency of the assign-
ments. Whenever Backtrack transitions have been done, an assignment in the mem-
ory is chosen with probability inversely proportional to the frequency of the assignment.
The search then backtracks to this assignment. This will ensure a restart from a good
assignment, and also that all currently best assignments are kept in memory for future
backtracking reference.

We also use a mechanism restarting from scratch whenever MaxTries iterations
have passed. We added this feature when we noted that the search got stranded in areas
where no improvement was possible. With the restarting mechanism, we were able to
get the local search to terminate with a solution in every sample run of every instances
of the problem tested.

Results. The resulting median CPU times and iterations of 101 sample runs of PPP are
shown in Table 5 and 6, together with results from [14] for the Comet system. Note that in
[14], the results of the first two instances has been interchanged [11] — this is reflected
in the table. For the first 6 host configurations we see a clear improvement over the
results reported in [9, 14, 22] using similar neighborhoods. In CPU seconds COMPOSER

is significantly faster than Comet on all problem instances. The results of Galinier and
Hao [9] on the original instance using a variable assignment neighborhood is not directly
comparable with the COMPOSER results due to different hardware configurations, but
COMPOSER is nearly 5 times faster than the results of 67.5 seconds on the largest
problem instance from [9], for the original host configuration on a 134 MHz Sun ULTRA

int G,H,iter,bestsofar=model.violation()+1,nonimproving,oldV;
Tabumatrix(model.arity(),Hosts,&iter,&bestsofar);
for(iter=0; model.violation()!=0; iter++) {
oldV = model.violation();
G = model.getMaxConflicting();
H = model.getMinCostValue(tabu);
model.assign(G,H); tabu.insert(G,H,Tenure);
if(model.violation() < oldV && Tenure > 2) Tenure --;
if(model.violation() >= oldV && Tenure < TLimit) Tenure ++;
if(model.violation() < bestsofar) {

model.hist_clear(); model.hist_store(); nonimproving=0;
} else {

nonimproving++;
if(model.violation()==bestsofar) model.hist_store();

}
if(nonimproving>Backtrack) model.hist_restoreProportional();
if(iter>MaxTries) model.randomAssign();

}

Fig. 11. The search procedure for the progressive party problem

182 M. Bohlin

Table 5. Median CPU time of 101 runs of the Progressive Party Problem

COMPOSER Comet
Hosts/Periods 3 4 5 6 7 8 9 10 6 7 8 9 10
1-12, 16 0.02 0.04 0.06 0.10 0.18 0.31 0.69 5.23 0.61 0.90 1.17 4.41 21.00
1-13 (orig.) 0.09 0.16 0.27 0.27 0.58 2.51 14.9 0.98 1.64 5.13 90.19
1, 3-13, 19 0.05 0.10 0.15 0.27 0.57 2.28 22.2 0.90 1.53 5.28 253.92
3-13, 25, 26 0.06 0.11 0.19 0.31 0.66 2.52 20.8 1.21 1.81 7.02 82.66
1-11, 19, 21 0.11 0.20 0.40 1.14 6.94 4.50 24.35
1-9, 16-19 0.13 0.26 0.55 1.81 18.3 6.20 161.16
1-11, 21, 22 0.11 0.22 0.47 1.41 46.1
1-9, 16-18, 22 0.13 0.24 0.61 2.26 118
1-9, 15-17, 22 0.14 0.31 1.11 49.5
1-11, 22, 23 0.51 4.46
1, 3-11, 21-23 0.62 3.03

Table 6. Median iterations of 101 runs of the Progressive Party Problem using COMPOSER

Hosts/Periods 3 4 5 6 7 8 9 10
1-12, 16 62 103 165 256 456 832 1862 13248
1-13 (orig.) 249 430 729 729 1572 6634 37226
1, 3-13, 19 144 266 405 736 1570 6206 55262
3-13, 25, 26 164 284 508 841 1812 6609 51681
1-11, 19, 21 300 559 1143 3256 17853
1-9, 16-19 372 735 1540 4927 46298
1-11, 21, 22 298 595 1332 3929 116239
1-9, 16-18, 22 348 665 1765 6511 291119
1-9, 15-17, 22 398 885 3162 124017
1-11, 22, 23 1479 11532
1, 3-11, 21-23 1780 8090

1. On the other hand, for 8 time periods, COMPOSER is actually slower than the 1.7
seconds reported in [9]. The reader should note that in the paper by Galinier and Hao,
the algorithm for solving PPP for p time periods reuses the solution found for p − 1
time periods; this can reduce solution time significantly. Comparing iterations, Galinier
and Hao also reports 51507 iterations for 9 time periods using reuse solving, which is
roughly comparable with the 37226 iterations of COMPOSER. Iterations are not reported
for PPP in [14]. The results reported in our work and those reported in [22] are not
directly comparable, since Walser uses linear constraints exclusively to model PPP.
Also, Galinier and Hao uses an extended neighborhood using variable swaps in [8],
which yields excellent results. Due to the different neighborhoods, the results of Table
5 and 6 cannot be directly compared with those reported in [8] for variable swaps.

It is important to note that the local search algorithm does not differ in any substantial
way from those used in [9] and [14]. This clearly shows the feasibility of graph-based
constraint modeling.

A Local Search System for Solving Constraint Problems 183

4 Conclusions

In this paper, we presented a particular declarative approach for constraint modeling
and implementation using a modified version of the framework of Beldiceanu [2] where
global constraints are represented using graph structures, filters, and cost functions.
The main point of such a declarative approach for constraint modeling is that it allows
great flexibility in experimenting with modification and creation of new constraints —
this at a low run-time overhead. In our declarative constraint model, global constraints
are parametrized over three main properties of their structure; their graph structure,
filter constraint and cost components. Using this parametrization, we have modeled
several useful global constraints using COMPOSER. We also showed, by solving two
hard combinatorial problems using local search, that evaluating costs and conflict levels
for an explicit graph representation of such constraints is not only feasible, but that this
model is also highly competitive with existing approaches for constraint modeling and
solving.

References

[1] B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and F. K. Zadeck. Incremental evaluation
of computational circuits. In Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 32–42, San Francisco, California, January 1990.

[2] N. Beldiceanu. Global constraints as graph properties on a structured network of elementary
constraints of the same type. In Proc. CP2000, pages 52–66, 2000.

[3] N. Beldiceanu. Global constraints as graph properties on structured networks of elementary
constraints of the same type. Technical Report 2000/01-SE, SICS, 2000.

[4] N. Beldiceanu and T. Petit. Cost evaluation of soft global constraints. In J.-C. Régin and
M. Rueher, editors, Proc. CPAIOR 2004, Nice, France, pages 80 – 95, April 2004.

[5] M. Bohlin. Design and Implementation of a Graph-Based Constraint Model for Local
Search. Philosophy Licentiate Thesis No. 27, Mälardalen University, April 2004.

[6] M. Bohlin, W. Kocjan, and P. Kreuger. Designing global scheduling constraints for local
search: A generic approach. Technical Report T2002-20, SICS, 2002.

[7] P. Codognet and D. Diaz. Yet another local search method for constraint solving. In SAGA,
pages 73–90, 2001.

[8] P. Galinier and J.-K. Hao. Solving the progressive party problem by local search. In S. Voss,
S. Martello, I. Osman, and C. Roucairol, editors, Meta-heuristics: Advances and Trends in
Local Search Paradigms for Optimization, chapter 29, pages 418–432. Kluwer, 1998.

[9] P. Galinier and J.-K. Hao. A general approach for constraint solving by local search. In
Proc. CP-AI-OR’00, Paderborn, Germany, March 2000.

[10] F. Glover and M. Laguna. Tabu search. In C. R. Reeves, editor, Modern Heuristic Techniques
for Combinatorial Optimization, chapter 3, pages 70–150. McGraw-Hill, 1995.

[11] L. Michel. Personal communication, September 2003.
[12] L. Michel and P. V. Hentenryck. Localizer: A modeling language for local search. In

Principles and Practice of Constraint Programming, pages 237–251, 1997.
[13] L. Michel and P. V. Hentenryck. Localizer++: An open library for local search. Technical

Report CS-01-02, Brown University, January 2001.
[14] L. Michel and P. V. Hentenryck. A constraint-based architecture for local search. In 17th

ACM OOPSLA Conference, November 2002.

184 M. Bohlin

[15] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts: a heuristic
repair method for constraint satisfaction and scheduling problems. Artificial Intelligence,
58(1–3):161–205, 1992.

[16] A. Nareyek. Using global constraints for local search. In Proc. DIMACS Workshop on
Constraint Programming and Large Scale Discrete Optimization, pages 1–18, 1998.

[17] R. Paige and S. Koenig. Finite differencing of computable expressions. ACM Transactions
on Programming Languages and Systems, 4(3):402–454, July 1982.

[18] T. Petit, J.-C. Regin, and C. Bessiere. Specific filtering algorithms for over-constrained
problems. In Proceedings of the 7th International Conference on Principles and Practice
of Constraint Programming, pages 451–463. Springer-Verlag, 2001.

[19] J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proc. 12th
National Conference on AI, pages 362–367, Seattle, Washington, 1994.

[20] J.-C. Régin. Generalized arc consistency for global cardinality constraint. In Proc. 13th
National Conference on AI, volume 1, pages 209–215, Portland, August 1996.

[21] R. Sosic and J. Gu. Efficient local search with conflict minimization: A case study of the
n-queens problem. IEEE Trans. Knowledge and Data Eng., 6(5):661–668, Oct. 1994.

[22] J. P. Walser. Integer Optimization by Local Search, volume 1637 of Lecture Notes in Artificial
Intelligence. Springer, 1999.

[23] D. Yellin and R. Strom. INC: a language for incremental computations. SIGPLAN Not.,
23(7):115–124, 1988.

Realising the Alternative Resources Constraint

Armin Wolf and Hans Schlenker

Fraunhofer FIRST, Kekuléstraße 7, D-12489 Berlin, Germany
{Armin.Wolf, Hans.Schlenker}@first.fraunhofer.de

Abstract. Alternative resource constraint problems have to be solved
in practical applications where several resources are available for the ac-
tivities to be scheduled. In this paper, we present a modular approach to
solve such problems which is based on single resource constraints. Fur-
thermore, we present a new sweeping algorithm which performs some
“global” overload checking for the alternative resource constraint prob-
lem. To our knowledge, this is the first presentation where “sweeping”,
a well-known technique in computational geometry, was used to perform
this checking efficiently.

For a practical evaluation of our approach, we implemented and in-
tegrated it into our Java constraint engine firstcs. We compared our
implementation with the more general disjoint2 constraint in SICS-
tus Prolog on some benchmark problems: the publicly available random
placement problems (RPP).

1 Introduction

Constraint Programming (CP) is the major declarative approach for solving real-
world planning and optimisation problems efficiently. With CP, the real-world
problem is modelled as a Constraint Satisfaction Problem (CSP) which is solved
by general purpose propagation methods. In scheduling situations like course
timetabling, medical tool use, or the allocation of railway tracks, we always have
to deal with resources (e.g. machines) that have to be assigned to activities (e.g.
courses or surgeries) exclusively.

Most resource allocation problems can be mapped into a discrete, two-
dimensional space where a point (X,Y) represents the usage of a resource Y
at time X. Thus, the usage of a resource for some duration can be described
as a set of time points. Since each activity is assigned exactly one resource Y
for its duration, i.e. some consecutive time points, a task is often geometrically
interpreted as a rectangle. Thus, the problem of finding an exclusive allocation
of tasks to resources can be seen as finding a rectangle placement such that any
two rectangles do not overlap.

Often, the tasks have to be assigned to any one of a set of alternative re-
sources. In CP, there are two main approaches to solve such alternative re-
source scheduling problems: either by an extension of some single resource con-
straints [1] or by abstraction and application of a more general non-overlapping

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 185–199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

186 A. Wolf and H. Schlenker

rectangles constraint. Recent publications [3, 8] have shown that for both kinds
of constraints some efficient pruning techniques based on “sweeping” [6] exist.

In this paper, we combine both approaches: the extension and application of
pruning algorithms developed for single resource constraints [8] and the devel-
opment of a new sweeping algorithm for a non-overlapping rectangle constraint.
This algorithm performs some overload checks for the early detection of some
inconsistency after the application of the pruning algorithms.

2 The Alternative Resource Constraint Problem

Informally, the alternative resource constraint problem is the problem of finding
an allocation of non-interruptible tasks to be processed on one of its alternative
resources such that they do not overlap on any resource. More formally, the
problem is defined as follows:

Definition 1 (Task). A task t is a non-interruptible activity having a non-
empty finite set of potential start times St ⊂ Z, i.e. an integer set which is the
domain of its variable start time. Furthermore, a task t has a non-empty finite
set of possible durations Dt ⊂ N, i.e. a positive integer set which is the domain
of its variable duration. Finally, a task t has a non-empty finite set of alternative
resources Rt ⊂ Z, i.e. an integer set which is the domain of its variable resource.

Definition 2 (Alternative Resource Constraint Problem). Given a finite
set of tasks T = {t0, . . . , tn} with at least two elements (n > 0). An alternative
resource constraint problem is determined by such a set of tasks T . The problem
is to find a solution, i.e. some start times s(t0) ∈ St0 , . . . , s(tn) ∈ Stn

, some du-
rations d(t1) ∈ Dt1 , . . . , d(tn) ∈ Dtn

and some resources r(t1) ∈ Rt1 , . . . , r(tn) ∈
Rtn

such that for 1 ≤ i < j ≤ n it holds

s(ti) + d(ti) ≤ s(tj) ∨ s(tj) + d(tj) ≤ s(ti) ∨ r(ti) �= r(tj) .

An alternative resource constraint problem is solvable if there is such a solution
and unsolvable, otherwise.1

Assuming that the durations are fixed and the (average) size of all sets of
potential start times is m and of all sets of alternative resources is k, the determi-
nation of a solution has in general an exponential time complexity of O(mnkn).
To deal with this exponential complexity in CP, propagation is used: An itera-
tion over efficient (polynomial) algorithms pruning the variables’ domains such
that some – ideally all – values are eliminated not belonging to any solution.

Our aim is the development and implementation of such algorithms for al-
ternative resource constraint problems. Keeping in mind that an alternative
resource constraint problem corresponds to a conjunction of single resource con-
straint problems if the resource domains are singular, i.e. if

|Rt1 | = · · · = |Rtn
| = 1

1 Empty or singleton sets of tasks would define trivial problems.

Realising the Alternative Resources Constraint 187

holds, our work focuses on an generalisation of our previous work performed for
non-preemptive one-machine constraint problems (cf. [8] following the sugges-
tions in [1]). Therefore, in the following, we will use integer intervals:

Definition 3 (Integer Intervals). Given two integers n,m ∈ Z we define

[n,m] :=
{ ∅ if n > m,

{k ∈ Z | n ≤ k ≤ m} otherwise.

3 Forbidden Regions

Given a single resource constraint problem determined by a set of tasks T . A
forbidden region of a task t ∈ T to be scheduled on a resource r is an integer
interval I such that for any start time s(t) ∈ I it is impossible to schedule
another task u ∈ T \ {t} on the same resource r either before or after the task t
(see Figure 1).

min(D)

forbidden

min(S)u
t max(S)u

umin(D)

t

min(D)

min(D)u

min(S)t max(S)t

Fig. 1. A forbidden region of a task t with respect to another task u

Assuming that all tasks in T must be scheduled on the same resource r, the
application of the pruning rule

∀t ∈ T ∀u ∈ T \ {t} :

S′
t := St \

⋃
u∈T\{t}

[max(Su) − min(Dt) + 1,min(Su) + min(Du) − 1] (1)

removes the forbidden regions for each task t ∈ T from its domain of potential
start times with respect to all other tasks u ∈ T \ {t}.

The updated start times S′
t of the task t (primed to emphasise the possible

change)2 will prune the search space correctly (cf. [8] for the correctness poof.)
Considering an alternative resource constraint problem, this means that after

an allocation of all tasks to their resources this pruning rule and all the other
rules presented in [1, 8] are applicable. However, any pruning and consistency
checks must be delayed until all tasks’ resources are determined. This seems to
be rather late and contradicts the principle of early pruning in CP. Therefore, we
investigated in a generalisation of the pruning rule (1) for alternative resource
constraint problems. The result of this investigation is presented in the following:

2 By convention, any update of a set M is emphasised by a prime, i.e. M ′.

188 A. Wolf and H. Schlenker

Definition 4. Given an alternative resource constraint problem determined by
a set of tasks T . Then, for each task t ∈ T and every resource r ∈ Rt, we define:

– a non-empty, finite set of alternative start times Sr
t := St,

Now the pruning rule (1) will be generalised. Therefore, let R :=
⋃

t∈T Rt

be all allocatable resources, Tr := {p ∈ T | r ∈ Rp} be the tasks that may be
scheduled on the resource r ∈ R and Ar := {q ∈ T | Rq = {r}} be the tasks
already allocated on the resource r ∈ R.

If a task t is allocated or may be scheduled on a resource r and the forbidden
region of this task t with respect to all other already scheduled tasks u on r will
prune the potential start times of t, i.e. the task t cannot be scheduled at start
times in these forbidden regions on the resource r:

∀r ∈ R ∀t ∈ Tr : (2)

S′r
t := Sr

t \
⋃

u∈Ar\{t}
[max(Sr

u) − min(Dt) + 1,min(Sr
u) + min(Du) − 1] .

The replacement of the original pruning rule (1) by the rule (2) for each single
resource r ∈ ⋃

t∈T Rt will perform some pruning for the alternative resource
constraint problem. Furthermore, this pruning is still correct, i.e. no solutions
are lost: The rule (2) is a specialisation of the original rule; whenever the start
times Sr

t are pruned, the start times St would be also pruned by the original
rule (1) assuming that the task t will be scheduled on the resource r.

However, for further pruning the changes with respect to each single resource
must be propagated to the original domains and from one resource to another.
Especially, this must be performed if the start times of a task t on a resource r
become the empty set (cf. pruning rule (2)) or the potential start times are re-
stricted from “outside”, e.g. during a search process. In either case, these changes
have to be propagated to the individual resources and back to the common po-
tential start times:

∀t ∈ T ∀r ∈ Rt : Sr
t ∩ St = ∅ ⇒ R′

t := Rt \ {r} , (3)
∀t ∈ T ∀r ∈ Rt : Sr

t ∩ St �= ∅ ⇒ S′r
t := Sr

t ∩ St , (4)

∀t ∈ T : S′
t := St ∩ (

⋃
r∈Rt

Sr
t) . (5)

In the first case, there is no potential start time left for a task t and a resource r.
Consequently, it will be impossible to allocate the task t to the resource r. Thus,
r will be removed from the set of alternative resources. In the second case, the
restriction of the start times is propagated to the start times on the alternative
resources. Last but not least, the restrictions of the start times which are valid
for all alternative resources are propagated to the potential start times.

The application of all these rules in the given order, supersedes an iteration
over these rule for the computation of a local fix-point.

Realising the Alternative Resources Constraint 189

4 Global Overload Checking

The application of several single resource constraints for the realisation of the
alternative resource constraint benefits from overload checking performed “lo-
cally” for each resource (cf. [8]). However, these checks are weak as long as all
activities are allocated to the resources: the greater the number of allocated tasks
the stronger the pruning based on the rule (2) (see Section 3).

A necessary, global condition for the solvability of an alternative constraint
problem determined by a set of tasks T = {t0, . . . , tn} is that each non-empty
set of tasks M ⊆ T is not overloaded, i.e. the occupied area is not greater than
the available area:

∑
t∈M

min(Dt) × 1 ≤

(max
t∈M

(max(St) + min(Dt)) − min
t∈M

(min(St)))

× (max
t∈M

(max(Rt)) + 1 − min
t∈M

(min(Rt))).

The naive overload checking of all 2n+1 − 1 non-empty subsets of T is not
practical. Thus, we suppose to consider the set of at most

∑n
l=0 l × ∑n

m=0 m =
(n+2)2(n+1)2

4 task rectangles, i.e. the set of tasks defined by the Cartesian product
of two integer intervals whose bounds are determined by some tasks:

[llc(i, j)X , urc(h, k)X] × [llc(i, j)Y , urc(h, k)Y]
:= {t ∈ T | llc(i, j)X ≤ min(St) ∧ max(St) + min(Dt) ≤ urc(h, k)X

∧ llc(i, j)Y ≤ min(Rt) ∧ max(Rt) + 1 ≤ urc(h, k)Y }
where the lower left corners (the llcs) and the upper right corners (the urcs)
are defined as follows:

llc(i, j)X := min(min(Sti
),min(Stj

))
llc(i, j)Y := min(min(Rti

),min(Rtj
))

urc(h, k)X := max(max(Sth
) + min(Dth

),max(Stk
) + min(Dtk

))
urc(h, k)Y := max(max(Rth

) + 1,max(Rtk
) + 1)

for 0 ≤ i ≤ j ≤ n and 0 ≤ h ≤ k ≤ n (see Figure 2).
To perform overload checking we use “sweeping” originated and used widely

in computational geometry [6]. The recent publication [4] has shown that sweep-
ing is also an efficient pruning technique when adapted and applied to finite
domain constraint solving problems, especially for non-overlapping rectangles
constraint problems.

While sweeping over task rectangles, it is assumed that the tasks in T are
numbered t0, . . . , tn according to an ascending sorting with respect to the order
relation

t � u :⇔ (min(St) + min(Rt) < min(Su) + min(Ru))
∨ (min(St) + min(Rt) = min(Su) + min(Ru) ∧ min(Rt) ≤ min(Ru)

190 A. Wolf and H. Schlenker

such that t0 � · · · � tn holds. Furthermore, we assume that all the corners (llcs
and urcs) are also numbered c0, . . . , cm according to an ascending sorting with
respect to the order relation

c � d :⇔ (cX + cY < dX + dY) ∨ (cX + cY = dX + dY

∧ ((c, d are both either llcs or urcs ∧ cY ≤ dY) ∨ (c is an urc ∧ d is an llc))

such that c0 � · · · � cm holds. Then, we are sweeping forward, i.e. in ascending
order, over the sorted corners:

(01) let S := λ be the empty sweep line;
(02) for j = 0, . . . , m do begin (iterate over all corners)
(03) if the corner cj is an llc then
(04) let S := S · cj ; (append cj to the end of the sweep line)
(05) else (the corner cj is an urc) do begin
(06) let p := 0;
(07) be S = ci0 , . . . , cik

the current sweep line
(08) for l = 0, . . . , k do begin (iterate over the llcs in S)
(09) if cil X < cjX ∧ cilY < cjY then do begin
(10) let A := 0 be the (currently) occupied area;
(11) let Ail,j := (cjX − cil X) × (cjY − cil Y)

be the available area;
(12) while ((min(Stp

) + min(Rtp
) < cil X + cil Y)

∨(min(Stp
)+min(Rtp

) = cil X +cilY ∧min(Rtp
) < cil Y))

do let p := p + 1;
(13) for m = p, . . . , n do begin

(iterate over the tasks tp, . . . , tn)
(14) if min(Stm

) + min(Rtm
) > cjX + cjY then

(15) let m := n; (stop this iteration over the tasks)
(16) else do begin
(17) if min(Stm

) ≥ cilX ∧ min(Rtm
) ≥ cil Y ∧

max(Stm
) + min(Dtm

) ≤ cjX ∧ max(Rtm
) + 1 ≤ cjY

then let A := A + (min(Dtm
× 1);

(18) if A > Ail,j then exit ; (there is no schedule)
(19) end of the else part
(20) end of the iteration over the tasks
(21) end of if non-empty rectangle
(22) end of the iteration over the llcs
(23) end of the corner is an urc
(24) end of the iteration over all corners

The algorithm works as follows: During the forward iteration over the sweep
line (cf. lines 08–22) all llcs are considered which might define a possibly non-
empty rectangle with respect to the current urc cj (cf. Figure 2 and lines 09–21).
The chosen order relation ‘�’ on corners ensures that all rectangles with a posi-
tive area Ail,j are considered. Figure 3 (a) gives some evidence for skipping those
llcs that are not “left” or “below” the considered upper-right corner cj . Then,

Realising the Alternative Resources Constraint 191

URC
sweep line

y

LLCy

LLCx URCx

Fig. 2. Determining a possibly non-empty task rectangle

l

Y

Y
c

c j

i

(a) llc iteration

X+Y = const.c

t

j

m

(b) task iteration

Fig. 3. Breaking conditions for the iterations

the available and the occupied areas in the currently considered rectangle are
determined (cf. lines 10–11 and further lines 13–20). For the last only the areas
of those tasks are aggregated that are contained in this rectangle. Therefore, the
tasks which are “left” or “below” (cf. line 12) as well as those which are “right”
or “above” (cf. lines 14–15) are skipped. Again, the chosen order relations ‘�’
on tasks and corners as well as their compatibility with each other ensure that
only irrelevant tasks are skipped. In detail, Figure 3 (b) gives some evidence
for stopping the iteration over the tasks. An overload is detected if the occu-
pied area A becomes greater than the available area Ail,j (cf. line 18): Then,
the algorithm stops because there is obviously no feasible solution of the given
alternative resource constraint problem.

192 A. Wolf and H. Schlenker

5 Implementation

The extensions presented in Section 3 as well as the sweeping algorithm intro-
duced in Section 4 are implemented in Java: Both implementations are integrated
in our pure Java constraint engine firstcs [5]. Concretely, the forbidden region
pruning algorithm in the existing SingleResource constraint implementation
was generalised. In detail, the implementation of the pruning rule (1) was re-
placed by an implementation of the pruning rule (2). This pruning is also realised
by a sweeping procedure (see [8] for details).

Then, we implemented an AlternativeResource constraint which generates
for each resource r ∈ ⋃

t∈T Rt a SingleResource constraint which performs
pruning for each single resource constraint problem determined by the task set
Tr. Thus, pruning for the alternative resource constraint problem benefits from
additional pruning rules, like edge finding and not-first/not-last detection also
implemented in the SingleResource constraint (cf. [8] for details).

Additionally, we realized in the AlternativeResource constraint the prun-
ing rules presented in Section 3 performing propagation from and to the original
domains and between the generated SingleResource constraints. This imple-
mentation iterates over these rules until a local fix-point is computed, i.e. any
application of the presented rules and algorithms will not further restrict the
potential start times or the alternative resources.

Finally, we implemented the sweeping algorithm for overload checking. This
algorithm is applied after the computation of the fix-point because it will not
change any domains.

6 Empirical Examinations

For empirical examinations, we used the publicly available random placement
problems (RPP)3. All the problem instances consist of 200 activities of randomly
generated durations. There are different problem classes which are discriminated
with respect to their filled area ratio. This is “the ratio between the size of the
placement area and the total area of all objects [activities] . . .”. Their potential
start times as well as their alternative resources are randomly restricted to some
finite integer intervals. For any of these instances the start times and resources
for the 200 activities must be determined such that the resources are exclusively
available during the execution of these activities.

From a practical point of view, these RPP instances correspond to sim-
ple course timetabling problems [2]: each activity corresponds to a course and
its alternative resources to the adequate classrooms, i.e. of sufficient capac-
ity and with the needed equipment. We used the RPP instances to test our
AlternativeResource constraint presented in Section 5. Furthermore, we com-
pared our implementation based on the Java Standard Edition, version 1.4.0-03
against the more general disjoint2 constraint in SICStus Prolog, version 3.11.0.

3 online available at http://www.fi.muni.cz/˜hanka/rpp/

Realising the Alternative Resources Constraint 193

Table 1. Runtime results for all instances with filled area ratio of 80 % without global
propagation in SICStus Prolog resp. overload checking in our Java firstcs implemen-
tation

SICStus Prolog
80 % gen./1st prop. # assigns 1st sol.
gen1 0 393 47
gen2 0 389 47
gen3 0 388 62
gen4 0 393 47
gen5 0 397 47
gen6 0 393 63
gen7 0 390 63
gen8 0 394 46
gen9 0 390 47
gen10 0 386 47
gen11 0 396 62
gen12 0 395 47
gen13 0 390 47
gen14 0 382 47
gen15 0 388 47
gen16 0 396 47
gen17 0 393 63
gen18 16 393 31
gen19 0 386 63
gen20 0 388 47
gen21 0 390 62
gen22 0 395 63
gen23 0 393 63
gen24 0 387 47
gen25 0 391 63
gen26 0 385 47
gen27 16 389 31
gen28 0 392 47
gen29 0 389 62
gen30 0 385 47
gen31 0 395 47
gen32 0 383 47
gen33 16 391 31
gen34 0 396 47
gen35 0 393 47
gen36 0 394 63
gen37 0 394 63
gen38 0 391 47
gen39 16 390 15
gen40 0 394 47
gen41 0 394 47
gen42 0 393 62
gen43 16 384 31
gen44 0 397 46
gen45 16 391 31
gen46 0 389 63
gen47 0 389 62
gen48 0 387 46
gen49 0 387 47
gen50 0 387 63

Java firstcs
80 % gen./1st prop. # assigns 1st sol.
gen1 265 393 1203
gen2 234 389 1062
gen3 156 388 1046
gen4 156 393 1062
gen5 172 397 1124
gen6 156 393 1124
gen7 140 390 1031
gen8 171 394 1125
gen9 156 390 1109
gen10 156 386 999
gen11 156 396 1109
gen12 156 395 1108
gen13 156 390 1031
gen14 172 382 1046
gen15 157 388 1046
gen16 171 396 1140
gen17 156 393 1046
gen18 172 393 1077
gen19 156 386 1000
gen20 156 388 1046
gen21 172 390 1124
gen22 172 395 1093
gen23 156 393 1093
gen24 157 387 1108
gen25 156 391 1078
gen26 156 385 1093
gen27 156 389 1078
gen28 172 392 1124
gen29 172 389 1124
gen30 156 385 1031
gen31 172 395 1140
gen32 156 383 1031
gen33 156 391 1061
gen34 172 396 1109
gen35 172 393 1077
gen36 172 394 1124
gen37 172 394 1093
gen38 156 391 1062
gen39 172 390 1124
gen40 172 394 1171
gen41 171 394 1078
gen42 172 393 1046
gen43 140 384 1031
gen44 171 397 1109
gen45 172 391 1155
gen46 156 389 1062
gen47 171 389 1093
gen48 172 387 1109
gen49 156 387 1000
gen50 171 387 1062

194 A. Wolf and H. Schlenker

Table 2. Runtime results for all instances with filled area ratio 85 % without global
propagation in SICStus Prolog resp. overload checking in our Java firstcs implemen-
tation

SICStus Prolog
85 % gen./1st prop. # assigns 1st sol.
gen1 15 393 32
gen2 0 387 63
gen3 0 394 63
gen4 0 384 63
gen5 0 388 47
gen6 0 381 63
gen7 0 382 47
gen8 0 389 47
gen9 15 382 32
gen10 0 388 47
gen11 0 386 47
gen12 0 388 47
gen13 0 395 47
gen14 0 387 62
gen15 0 386 62
gen16 0 388 63
gen17 0 389 62
gen18 15 388 32
gen19 0 385 47
gen20 0 394 47
gen21 0 382 47
gen22 0 389 63
gen23 0 395 47
gen24 0 385 47
gen25 0 389 47
gen26 0 389 47
gen27 0 383 63
gen28 0 388 63
gen29 0 392 47
gen30 0 391 47
gen31 0 393 47
gen32 0 387 47
gen33 0 392 47
gen34 0 386 47
gen35 0 391 47
gen36 0 385 47
gen37 0 388 62
gen38 0 393 63
gen39 15 391 32
gen40 16 385 15
gen41 0 386 47
gen42 15 394 32
gen43 0 378 46
gen44 0 389 63
gen45 0 378 47
gen46 0 390 46
gen47 0 387 47
gen48 0 393 47
gen49 0 390 47
gen50 0 390 46

Java firstcs
85 % gen./1st prop. # assigns 1st sol.
gen1 266 393 1140
gen2 156 387 1031
gen3 172 394 1156
gen4 171 384 1078
gen5 156 388 1125
gen6 171 381 1062
gen7 156 382 1093
gen8 156 389 1062
gen9 140 382 984
gen10 157 388 1061
gen11 172 386 1046
gen12 156 388 1078
gen13 187 395 1155
gen14 157 387 1046
gen15 156 386 1093
gen16 156 388 1077
gen17 157 389 1139
gen18 156 388 1125
gen19 141 385 1015
gen20 172 394 1155
gen21 157 382 999
gen22 156 389 1047
gen23 156 395 1109
gen24 172 385 1093
gen25 156 389 1093
gen26 172 389 1109
gen27 172 383 1031
gen28 140 388 1078
gen29 172 392 1078
gen30 156 391 1031
gen31 157 393 1093
gen32 156 387 1016
gen33 156 392 1109
gen34 157 386 1031
gen35 172 391 1093
gen36 140 385 1016
gen37 156 388 1063
gen38 156 393 1109
gen39 156 391 1093
gen40 156 385 1031
gen41 156 386 1047
gen42 172 394 1077
gen43 157 378 984
gen44 157 389 1046
gen45 140 378 985
gen46 156 390 1094
gen47 156 387 1046
gen48 156 393 1125
gen49 172 390 1187
gen50 156 390 1093

Realising the Alternative Resources Constraint 195

Table 3. Runtime results for some solvable instances with filled area ratio of 100 %
without global propagation in SICStus Prolog resp. overload checking in our Java
firstcs implementation

SICStus Prolog
100 % gen./1st prop. # assigns 1st sol.
gen1 0 379 47
gen2 0 378 47
gen8 0 382 47
gen9 0 379 62
gen11 0 381 47
gen14 0 375 47
gen16 0 375 47
gen17 0 381 63
gen18 0 379 31
gen21 0 376 47
gen22 0 382 47
gen23 16 385 47
gen24 0 378 47
gen25 16 385 31
gen28 0 383 47
gen30 16 382 15
gen33 0 380 47
gen34 0 381 47
gen35 16 379 31
gen36 0 376 63
gen38 16 377 31
gen39 0 386 47
gen40 0 380 31
gen41 0 379 47
gen42 0 379 47
gen43 0 379 47
gen44 16 382 31
gen46 0 381 63
gen48 0 379 47

Java firstcs
100 % gen./1st prop. # assigns 1st sol.
gen1 250 379 969
gen2 172 378 1000
gen8 172 382 1109
gen9 187 379 1016
gen11 156 381 984
gen14 157 375 1031
gen16 156 375 1062
gen17 203 381 1000
gen18 187 379 906
gen21 188 376 1047
gen22 156 382 1031
gen23 203 385 984
gen24 188 378 984
gen25 141 385 1000
gen28 141 383 1015
gen30 157 382 1031
gen33 156 380 985
gen34 156 381 1047
gen35 141 379 1000
gen36 157 376 1015
gen38 141 377 922
gen39 141 386 1016
gen40 156 380 1015
gen41 188 379 922
gen42 203 379 1047
gen43 188 379 953
gen44 140 382 969
gen46 140 381 969
gen48 156 379 1032

The experiments were performed under Microsoft Windows XP on a PC Pen-
tium 4, 2.8 GHz with 1 GByte RAM.

In both implementations we used standard labelling (simple depth-first
search) to determine the start times and the resources: The activities were con-
sidered in their given order (activity 1 first, activity 200 last). During the search,
for each activity the start time was assigned after selecting the resource. In both
cases, the smallest available, not yet tried value was selected. Iin SICStus Prolog,
we accordingly used the built-in search labelling with the options [leftmost,
up, assumptions(N)] where N is unified with the number of choices, i.e. assign-
ments made, when a solution is found.

196 A. Wolf and H. Schlenker

Table 4. Runtime results for some unsolvable instances with filled area ratio of 100 %
with global propagation in SICStus Prolog resp. overload checking in our Java firstcs

implementation

SICStus Prolog
100 % gen./1st prop. # assigns search
gen4 16 0 0
gen6 0 ? > 1h
gen10 0 0 0
gen12 0 0 0
gen13 0 ? > 1h
gen29 0 0 0
gen32 0 ? > 1h
gen37 0 0 0
gen45 0 0 0
gen49 0 0 0
gen50 0 ? > 1h

Java firstcs
100 % gen./1st prop. # assigns search
gen4 252 0 0
gen6 204 0 0
gen10 173 0 0
gen12 173 0 0
gen13 188 0 0
gen29 157 0 0
gen32 188 0 0
gen37 173 0 0
gen45 173 0 0
gen49 172 0 0
gen50 173 0 0

Our experiments have shown that all instances with filled area ratio of 80 %
and 85 % (see Table 1 and Table 2) are solvable. Both implementations found
their first solutions backtrack-free and without any global propagation. This
means that in SICStus Prolog the global option was switched off as well as the
global overload checking (cf. Section 4) in our Java firstcs implementation.
The number of required assignments for finding a first solution are surprisingly
identical (see column # assigns in Table 1 and Table 2). Further, they are less
than 400 (200 resources plus 200 start times) because some variables’ values are
determined due to propagation. For all these problems, the SICStus Prolog im-
plementation requires on average no measurable time for constraint generation
and initial propagation, our implementation requires on average 164 milliseconds
(see column gen./1st prop. in Table 1 and Table 2 for the required runtime in
milliseconds). The labelling process for finding the first solution of one of these
problems which triggers some further propagation takes on average 50 millisec-
onds in SICStus Prolog and about 1079 milliseconds in our Java firstcs imple-
mentation (see column 1st sol. in Table 1 and Table 2 for the required runtime
in milliseconds).

Additional experiments on the instances with a filled area ratio of 100%
behave analogously: all instances which are backtrack-free solvable using the
SICStus Prolog implementation are also backtrack-free solvable with our Java
firstcs implementation. Furthermore, all the instances which are detected to
be unsolvable using SICStus Prolog are also detected by the use of our Java
firstcs implementation. In any case, an inconsistency is detected during the
initial “global” propagation: SICStus Prolog’s disjoint2 with its global op-
tion switched on and our implementation with the overload checking presented
in Section 4 (see column gen./1st prop. in Table 4 for the required propaga-
tion time in milliseconds and column search for the required search time). In
these unsolvable cases, SICStus Prolog used on average 15 milliseconds to detect

Realising the Alternative Resources Constraint 197

Table 5. Runtime results for all instances with filled area ratio of 80 and 85 % with-
out global propagation but with the first-fail variable selection heuristics in our Java
firstcs implementation

Java firstcs with first-fail
80 % gen./1st prop. # assigns 1st sol.
gen1 469 590 2875
gen2 187 571 2531
gen3 172 582 2625
gen4 188 563 2687
gen5 188 589 2765
gen6 187 578 2547
gen7 188 598 2765
gen8 187 595 2781
gen9 187 563 2438
gen10 188 559 2296
gen11 203 573 2688
gen12 188 561 2594
gen13 187 575 2532
gen14 172 555 2359
gen15 187 617 3094
gen16 204 584 2750
gen17 188 545 2406
gen18 188 565 2500
gen19 187 570 2484
gen20 188 560 2500
gen21 203 582 2485
gen22 188 602 2765
gen23 187 623 2938
gen24 171 561 2500
gen25 172 556 2516
gen26 188 563 2469
gen27 187 592 2703
gen28 188 570 2546
gen29 187 573 2500
gen30 187 555 2360
gen31 188 593 2671
gen32 188 565 2515
gen33 188 558 2531
gen34 203 553 2531
gen35 188 608 2687
gen36 187 573 2734
gen37 187 574 2641
gen38 188 568 2437
gen39 187 567 2469
gen40 188 645 3141
gen41 187 583 2688
gen42 188 593 2625
gen43 188 507 2000
gen44 203 587 2640
gen45 203 581 2500
gen46 187 563 2484
gen47 187 566 2578
gen48 187 578 2547
gen49 187 552 2360
gen50 188 582 2625

Java firstcs with first-fail
85 % gen./1st prop. # assigns 1st sol.
gen1 468 593 2954
gen2 188 590 2734
gen3 203 598 2765
gen4 172 631 2781
gen5 188 556 2359
gen6 188 578 2406
gen7 187 561 2391
gen8 188 593 2609
gen9 188 566 2343
gen10 187 599 2766
gen11 204 616 3015
gen12 188 576 2469
gen13 203 625 2891
gen14 188 562 2437
gen15 203 590 2531
gen16 203 613 2844
gen17 188 593 2703
gen18 188 604 2703
gen19 203 575 2500
gen20 188 621 2812
gen21 171 587 2547
gen22 203 569 2578
gen23 188 577 2594
gen24 203 619 2890
gen25 203 600 2781
gen26 187 606 2938
gen27 188 561 2406
gen28 187 588 2672
gen29 188 596 2812
gen30 187 613 2860
gen31 203 588 2594
gen32 187 599 2703
gen33 187 595 2704
gen34 188 570 2468
gen35 203 592 2594
gen36 172 576 2453
gen37 203 604 2812
gen38 187 575 2594
gen39 203 567 2515
gen40 188 563 2437
gen41 187 577 2547
gen42 188 597 2781
gen43 188 568 2328
gen44 204 603 2796
gen45 203 598 2641
gen46 188 585 2547
gen47 187 596 2641
gen48 203 581 2672
gen49 203 675 3047
gen50 203 596 2641

198 A. Wolf and H. Schlenker

an inconsistency. However, our Java firstcs implementation detects further
unsolvable instances with filled area ratio of 100% during the initial “global”
propagation: 100/gen6, 100/gen13, 100/gen32, and 100/gen50. It takes only
203 milliseconds on average per instance to detect all these inconsistencies. How-
ever, the SICStus Prolog implementation is not able to prove the inconsistencies
within more than one hour runtime for each of these additional instances.

The described behaviour changes dramatically, if we use the well-known first-
fail variable selection heuristics instead, i.e. if the variables are selected with
respect to their domain sizes in increasing order. Our Java firstcs implemen-
tation behaves rather stable (cf. Table 5). However, the SICStus Prolog imple-
mentation is not possible to find a solution for the instances gen1 and gen2
within several hours.

7 Conclusion and Future Work

In this paper, we presented a modular approach for the alternative resource con-
straint problem based on single resource constraints. Furthermore, we presented
a new sweeping algorithm which performs overload checking for the alternative
resource constraint problem.

Obviously, the presented “global” overload checking in Section 4 is applicable
to more general non-overlapping rectangles problems with rectangles’ heights
greater than one. Thus, our future work focuses on the combination of our
sweeping algorithm with the one presented in [3] yielding better pruning for
non-overlapping rectangles problems than other approaches.

Last but not least, our implementation of the pruning rules and algorithms
is successfully applied to some online available benchmark placement problems
yielding some encouraging results. Compared to SICStus Prolog, the pruning
in firstcs is even better: Our Java implementation detects more unsolvable
problem instances (cf. Table 4) and behaves stable and efficient while using the
first-fail variable selection heuristics (cf. Table 5). However, our implementa-
tion’s runtime is about one order of magnitude slower than the SICStus Prolog
implementation. Thus, future practical work will concentrate on runtime opti-
misation. Therefore, we will replace the currently quadratic pruning algorithms
in our SingleResource constraint with the recently presented O(n log n) algo-
rithms [7]. Furthermore, we will try to adopt the underlying ideas to reduce the
O(n4) time complexity of the presented “global” but costly overload checking.

References

1. Philippe Baptiste, Claude le Pape, and Wim Nuijten. Constraint-Based Scheduling.
Number 39 in International Series in Operations Research & Management Science.
Kluwer Academic Publishers, 2001.

2. Roman Barták, Tomáš Müller, and Hana Rudová. Minimal perturbation prob-
lem - a formal view. In Proceedings of the Joint Annual Workshop of the ERCIM
Working Group on Constraints and the CoLogNET area on Constraint and Logic
Programming, MTA SZTAKI, Budapest, Hungary, 30 June – 2 July 2003.

Realising the Alternative Resources Constraint 199

3. Nicolas Beldiceanu and Mats Carlsson. Sweep as a generic pruning technique applied
to the non-overlapping rectangles constraint. In Toby Walsh, editor, Proceedings of
the 7th International Conference on Principles and Practice of Constraint Program-
ming - CP2001, number 2239 in Lecture Notes in Computer Science, pages 377–391.
Springer Verlag, 2001.

4. Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives constraint
with negative heights. In Pascal van Hentenryck, editor, Proceedings of the 8th
International Conference on Principles and Practice of Constraint Programming -
CP2002, number 2470 in Lecture Notes in Computer Science, pages 63–79. Springer
Verlag, 2002.

5. Matthias Hoche, Henry Müller, Hans Schlenker, and Armin Wolf. firstcs - A
Pure Java Constraint Programming Engine. In Michael Hanus, Petra Hofstedt,
and Armin Wolf, editors, 2nd International Workshop on Multiparadigm Constraint
Programming Languages – MultiCPL’03, 29th September 2003. Online available at
uebb.cs.tu-berlin.de/MultiCPL03/Proceedings.MultiCPL03.RCoRP03.pdf.

6. Franco P. Preparata and Michael Ian Shamos. Computational Geometry, An Intro-
duction. Texts and Monographs in Computer Science. Springer Verlag, 1985.

7. Petr Viĺım. O(n log n) filtering algorithms for unary resource constraint. In Pro-
ceedings of the International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorical Optimisation Problems – CP-AI-
OR’04, number 3011 in Lecture Notes in Computer Science, pages 335–347, Nice,
France, April 20–22, 2004. Springer Verlag, Heidelberg.

8. Armin Wolf. Pruning while sweeping over task intervals. In Francesca Rossi, edi-
tor, Proceedings of the 9th International Conference on Principles and Practice of
Constraint Programming – CP 2003, number 2833 in Lecture Notes in Computer
Science, pages 739–753, Kinsale, County Cork, Ireland, 30th September – 3rd Oc-
tober 2003. Springer Verlag.

Integrating Time Constraints into
Constraint-Based Configuration Models

Ulrich John1 and Ulrich Geske2

1 DaimlerChrysler AG, Research Information & Communication
Ulrich.John@daimlerchrysler.com

2 Fraunhofer FIRST
Ulrich.Geske@first.fraunhofer.de

Abstract. Over the last few years, we have been developing the config-
uration model ConBaCon, which is based on Constraint Programming
over finite domains. The model is sound and suitable for building effi-
cient and flexible systems that fulfill all the requirements of advanced
configuration systems.

In this paper, we present model extensions that enable time-extended
configuration and reconfiguration problems to be solved: Besides “nor-
mal” configuration and reconfiguration problems, the extended model
can now also solve problems that contain time-dependent resource avaibil-
ities or supply constraints for the ground components included. The
general nature of the model extensions introduced seems to be suitable
for integration in other (commercial) constraint-based configuration sys-
tems/configurator libraries as well.

1 Introduction

Configuration problems can be found in a huge number of business fields. That
is why the development of efficient and flexible configuration systems is still a
hot topic in computer science. In the last twenty years, with the introduction
of the well-known, rule-based configuration system XCON for configuring DEC
computers, different approaches have been proposed and investigated for the
knowledge-based configuration of products and technical systems. These include
various rule-based, case-based and, recently, more and more constraint-based
approaches. Overviews of different approaches and systems are given in [19], [18]
and [12]. When both research approaches and commercial systems were con-
sidered in the past, the following general shortcomings were often found. The
problem specification was nondeclarative and hard to maintain. Often, the se-
quence of interactions during the configuration process was fixed, making a flex-
ible configuration process such as that supported by ConBaCon impossible. The
simulation of different effects resulting from alternative, interactive decisions is
rare and the support of good reconfigurations, which is needed by industry, is
inadequate or nonexistent. Furthermore, finding optimal or nearly-optimal con-
figurations is impossible, and there are other problems like the occasional failure
of the underlying algorithms to terminate.

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 200–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Integrating Time Constraints into Constraint-Based Configuration Models 201

It is generally accepted that high-quality configuration systems can be real-
ized, especially by using constraint programming (cf. [8], [2], [17]).

Our configuration system ConBaCon, based on the CLP language CHIP,
overcomes the above shortcomings/problems. The ConBaCon model behind the
system is theoretically sound and covers – together with several model exten-
sions – a broad range of technical and non-technical configuration problems
(cf. [12]).

A rather interesting problem class is that of time-constrained configuration
problems. Such problems contain, besides the “normal” problem elements, time-
constrained resource availabilities and possible supply times for potential result
components.

The practical importance of these problems is highlighted by the following ex-
ample:Oftenwehavea situationwhere a customerwants tobuya complexproduct,
for instance a car. Besides some constraints related to the physical configuration of
the car like color and equipment, and someoptimizing goals like price and consump-
tion, the customer wants the guarantee of delivery by a certain self-appointed date.

Although several software and research companies are working on approaches
that tackle these problems, there are neither configuration systems available that
are able to handle this problem satisfactorily, nor the authors are familiar with any
publication that describe adequate solutions. At best, some approaches offer the
opportunity to check the earliest delivery date after completion of the configuration
process.

We have developed some extensions of our constraint-based configuration
model that allow highly flexible, efficient configuration and reconfiguration pro-
cesses driven by the fixed delivery date. After giving the delivery date as a hard
constraint, the user can explore the possibilities for his/ her car in a flexible,
interactive way. All options that cannot be chosen because of the fixed delivery
date are marked automatically throughout the configuration process. This en-
ables the user to configure his/ her “dream car” subject to the restriction of the
self-appointed delivery date.

The following section outlines the specification language ConBaConL accord-
ing to our initial configuration model. Section 3 introduces some key aspects of
our configuration model and its realization ConBaCon, which allows the config-
uration of industrial products/technical systems. The model extensions for solv-
ing time-constrained configuration and reconfiguration problems are presented
in Section 4, where we also give an example for illustrative purposes. The paper
closes with a conclusion and some remarks on possible future extensions.

2 ConBaConL

By analyzing the results of design problems for industrial control systems, we
developed a formal problem model and, based on this, the largely declarative
specification language ConBaConL, which allows the specification of relevant
configuration problems. Such specifications are composed of three parts: object
hierarchy, context-independent constraints and context constraints. Every tech-

202 U. John and U. Geske

nical object that can play a part in the configuration problem must be specified
in terms of its structure in the object hierarchy. An object can consist of several
components in the sense of the consist of -relation, where components may be
optional, or the object has some specializations in the sense of the is a-relation.
In addition, all attributes of the technical objects are specified. If the attribute
values of a technical object are explicitly known, then they are enumerated.

A correct context-independent representation of the configuration problem is
created from the object-hierarchy specification by adding the specification of the
constraints concerning different attribute value sets on the one hand, and the ex-
istence or nonexistence of technical objects in the problem solution on the other.
If context constraints exist (e.g. customer-specific demands or resource-oriented
constraints), then we have to specify them as problem-specific constraints in
ConBaConL. The distinction between problem-specific and context-independent
constraints is useful because the technical correctness of the problem solution is
ensured if all context-independent constraints are fulfilled.

The constraint elements of ConBaConL can be divided into Simple Con-
straints, Compositional Constraints and Conditional Constraints. Most of them
are introduced below.

2.1 Simple Constraints

Attribute Value Constraints and Existence Constraints
[o, Attr, VS]/not([o, Attr, VS]) ≡

the attribute Attr of object o must/must not take a value from V S,
exist(Objectlist)/noexist(Objectlist) ≡

all objects contained in Objectlist must/must not be part of the solution.

Relational Constraints Between Attribute Value Sets & Table Con-
straints
=(T1,T2), �=(T1,T2), <(T1,T2), ≤(T1,T2), >(T1,T2), ≥(T1,T2). Furthermore,
it is possible to specify equations over attributes.

In practice, coherences between solution parts are often specified in the form
of tables (decision tables). To avoid a manual, error-prone translation of the
table into other kinds of ConBaConL constraints, a table constraint (see [10])
was introduced.

2.2 Compositional Constraints

Compositional Constraints are, besides the above-mentioned Simple Constraints,
compositions of compositional constraints: and([Cons1, . . . ,Consn]), or([Cons1,
. . . ,Consn]), xor([Cons1, . . . ,Consn]),at least([Cons1, . . . ,Consn],N)/ at most
([Cons1, . . . ,Consn],N)/ exact([Cons1, . . . ,Consn],N) ≡ at least/at most/exactly
N of the listed constraints are valid1.

1 So far, the processing of or-, xor, at least, at most, exact-constraints concerning the
existence and nonexistence demands of objects has been realized in ConBaCon.

Integrating Time Constraints into Constraint-Based Configuration Models 203

2.3 Conditional Constraints

[if(Comp Cons1), then(Comp Cons2)] ([iff(Comp Cons1), then(Comp Cons2)])
If (and only if) the compositional constraint Comp Cons1 is fulfilled, the com-
positional constraint Comp Cons2 must be fulfilled.

2.4 Preferences

There are two ways of describing and processing preferences. One is to try encod-
ing the existing preferences as preference rules in the labeling heuristics (see be-
low) within the problem-solution model. Another is to specify weak constraints.
So far, specifying weak simple constraints has been supported (cf. [10]).

2.5 Modifications

In practice, the specification of product taxonomies/component catalogues has
high modification rates. For instance, about 40% of the 30,000 component types
of DEC computers used in R1/XCON were updated annually (cf. [4]). There are
several reasons for the need to change the product taxonomies/problem specifica-
tions. The most common is the fact that new technical modules become available
or obsolete ones are withdrawn. A special case of this is so-called versioning. An-
other reason is the changing of context-independent constraints due, for instance,
to changes in laws or government policy. In order to allow subsequent reconfigu-
rations, obsolete information should not be deleted in the specification. Instead,
obsolete modules and constraints should be labeled with the keyword obsolete in
the specification/product taxonomy. New modules and constraints can easily be
added to the specifications/product taxonomies. There are two cases in which a
new module/object new o is integrated as an alternative to an already specified
module ox. In the first case, ox is a specialization of an object o. In the second
case, ox is a module of o, whereby a notional object must be introduced at the
position of ox, which acquires the specializations new o and ox.

Other important elements of ConBaConL are optimization goals such as min-
imization or maximization of indicated attribute values.

A typical specification of ground converters for large electric motors is out-
lined in [10], together with the problem solution using ConBaCon.

3 Problem Solution Model

When transforming a problem specification, our goal is to obtain a problem-
solution model that allows efficient problem solution. The model should also
support the option of high-quality user interactions. The model of a constraint-
logic system over finite domains is taken as a basis for the solution model outlined
below. Thus, the model can also be seen as a global constraint for structural
configuration.

204 U. John and U. Geske

3.1 Objects

Each specified object (representing a technical module) that is not marked as
obsolete is transformed into a module object of the problem-solution model2.
Moreover, each attribute of a specified object is transformed into an attribute
object, i.e. a specified object with n attributes is represented by n + 1 objects in
the problem-solution model (Fig. 1).

O O

components component_list

attr1:: v11, ..., vnr(1)

attrn:: vn1, ..., vnr(n)

Ex_Var:: 0..1
structure_typ
opt_typ

...
attr1(o)

attrn(o)
value_children_list1

value_children_listn

. . .

attr_pointer_list

P
ro

bl
em

 S
pe

ci
fi

ca
ti

on
(C

on
B

aC
on

-L
)

Problem
-Solution M

odel

.

Fig. 1. Transformation of Objects

Objects of the problem-solution space acquire certain model-specific attri-
butes. The attribute component list of object o contains identifiers of the object
components (structure type = and-node) and of the specializations (structure-
type = or-node) of o, respectively. The constraint variable Ex V ar determines

whether or not the object is contained in the solution. If the value of Ex V ar
is zero, then o is not part of the solution. If the value is one, then o is part of
the solution. opt type contains information about whether o is optional or not.
Links to the corresponding attribute objects are given by attr pointer list. Each
attribute object stores possible attribute values in value children lists and in
the domain of a corresponding constraint variable. Moreover, identifiers of the
value-related children nodes are stored if the object o contains specializations. In
this case, the attribute value sets of o are the set unification of the corresponding
attribute value sets of the specialization objects.

3.2 CE Constraints

Besides the model objects, constraints are needed in the problem-solution model
to ensure the coherences between the objects of the model so that the correct-
ness of the solution and the completeness of the solution process are guaranteed
with respect to the problem specification. These constraints we call consistency-
ensuring constraints (CE constraints). Consistency-Ensuring Constraints are

2 Some constellations require the introduction of auxiliary module objects. These are
not considered in the present paper. Details can be found in [12].

Integrating Time Constraints into Constraint-Based Configuration Models 205

realized as logical coherences between values of Ex V ar-attributes/attribute
value sets of different attribute objects. The most important CE constraints
are schematized in Fig. 2. If it becomes obvious that an object cannot occur in

optional

I. II.

III. IV. V. VI.

Fig. 2. Consistency-Ensuring Constraints

the solution, then it must be inferred that no component/specialization of it can
occur in the solution (I). If it becomes obvious that an object is part of the so-
lution (Ex V ar = 1), then it must be ensured that all nonoptional components
of the object are part of the solution, too (II). The existence of an object in a
solution implies in each case the existence of its parent object (III). Furthermore,
if a nonoptional component of an object o cannot occur in any solution, then the
parent object o cannot occur in any solution either (IV). If the specialization of
an object o is part of the solution, then no other specialization of o can be part
of the solution (V). If it becomes obvious that no specializations of an object o
can occur in any solution, then it must be inferred that o cannot occur in the
solution either (VI).

Attribute value sets are kept consistent by a special class of CE constraints.
Where a value is deleted in the attribute value set of a specialization of an
object o, the value must be deleted in the corresponding attribute value set of
o, except if there is another specialization of o that contains the deleted value
in the corresponding attribute value set3. If an attribute value is deleted in an
attribute value set of an object o possessing specializations, then the same value
must be deleted in all corresponding attribute value sets of the specializations of
o. If an attribute value set of an object o becomes empty, then the nonexistence
of o will be inferred by a special CE constraint.

By integrating the introduced CE constraints in the problem-solution model,
the structural coherences between objects of the solution model are ensured with
respect to their existence, nonexistence and attribute value sets. Moreover, the
constraints formulated in the problem specification must be transformed into
constraints of the problem-solution model.

3 To avoid intensive checking, the attribute value children list of the corresponding
attribute object is checked and updated after each deletion of an attribute value.

206 U. John and U. Geske

3.3 Specified Constraints

Attribute value constraints and existence constraints result in the deletion of
attribute values in the problem-solution model or in the setting of Ex V ar-
attributes. Relational constraints between attribute value sets result in the dele-
tion of attribute values, which become invalid because of the specified relation.
If there are other value tuples that do not fulfill the relation, then some appro-
priate daemons have to be generated which control the relational constraints
after each alteration of the attribute value sets in question. Table constraints
define connections between the attribute value sets in question and existence
information (Ex V ar) on the objects listed in the table head. Altering the at-
tribute value sets or existence values results in the marking as invalid of cor-
responding table lines. If all table lines are marked as invalid, then the table
constraint is not satisfied. Conversely, it is ensured that the attribute value sets
in question contain only values that are registered in valid table lines4. Com-
positional Constraints are normally realized in the solution model by equations
and inequations over corresponding Ex V ar-attributes. For each nonexistence
statement of an object, the term “1−Ex V ar” is used instead of Ex V ar in the
equation/inequation. Conditional Constraints are transformed into conditional
transitions of the problem-solution model, which ensure the specified logical co-
herences within the problem-solution model. In order to substantially reduce
the problem space within the problem-solution model, the contrapositions of
the specified conditional constraints are also transformed into elements of the
problem-solution model.

3.4 Configuration Process

Based on the outlined problem-solution model, a flexible and efficient problem-
solution process (Figure 3) was realized within the prototypical configuration
system ConBaCon using the CLP language CHIP. In particular, the object-
based data management and the existence of Conditional Propagation Rules5 in
CHIP facilitated the implementation.

The specified configuration problem is transformed into objects of the prob-
lem-solution model. This means that the objects of the solution model are gen-
erated, corresponding CE constraints are inferred and set, and the specified con-
straints are transformed into corresponding constraints of the problem-solution
model. The value one is assigned to the Ex V ar-attribute of the target object
because the target object must exist in each solution.

Thanks to the generated model with the model-specific CE constraints, a
substantial reduction of the search space is guaranteed. In [12] mathematical
sentences with their proofs are presented which allow explicit identification of
whether a given configuration-problem specification will be transformed by the
described procedure into a strong k-consistency solution model (backtrack-free

4 For implementation details of table constraints, see [12].
5 Similar language elements exist in other CLP languages, e.g. Constraint-Handling

Rules in ECLIPSE.

Integrating Time Constraints into Constraint-Based Configuration Models 207

Problem Specification
(ConBaCon-L)

target object

Problem Solution Model
(objects, CE-Constraints,

target_object@Ex_Var = 1

Transformation

Configuration Space

Interaction

Generation of SolutionI-Constraints

Labeling
(Heuristics/ Backtracking)

SolutionValuation of Solutions

Specific
Improvement of Solution

Next Solution

Acceptance

(Setting/ Deletion)

CH-Transformator

Additional Constraints

transformed specified constraints)

Fig. 3. Problem-Solution Process

solution process is ensured) or not. For specified problems that do not fulfill
the required properties, instructions for possible preprocessing steps and – as an
alternative – for generating interaction-control procedures for the configuration
process are given.

We call the set of the currently active module objects of the problem-solution
model Configuration Space. Interactive user constraints now can be given (one
by one) relating to the existence or nonexistence of objects of the configura-
tion space or to the shape of the corresponding attribute value sets. The user’s
freedom to decide which object or attribute value set of the configuration space
should be restricted by an interactively given user constraint is a distinguish-
ing feature compared with most other configuration models/tools. Governed by
the constraints of the problem-solution model, this results in a new configura-
tion space. Thus, a new cycle can start. Users can either give a new interactive
constraint or they can delete previously given interactive user constraints. This
allows the simulation of several user decisions, which is the prerequisite for a
highly flexible configuration process. If no further interactive constraints are re-
quired, then the generation of a solution can be started. This is done by labeling
the Ex V ar-attributes of the (still) active objects of the problem-solution model.
Such labeling can be controlled by heuristics. This allows us to take into account
preferences in the form of preference rules for controlling the labeling process. If
the solution found is not suitable or fails to pass the solution-quality check, then
further solutions can be created by backtracking. If a partial improvement of the
solution suffices, then a specific solution improvement can be started by speci-
fication and processing of a constraint hierarchy, i.e., the constraints that must
be satisfied unconditionally are specified as hard constraints, and the solution
parts that should, if possible, be in the new solution or desired attribute values
are fixed as weak constraints. The weak constraints can be marked with several

208 U. John and U. Geske

weights. The specified constraint hierarchy is processed in an error-minimization
process, which results in the generation of a set of equivalent (hard) constraints
of the problem-solution model. Information about the realization and applica-
tion of constraint hierarchies in ConBaCon for partial improvement can be found
in [12].

At second sight, it becomes obvious that the improvement process using
a constraint-hierarchy transformer provides a sound basis for reconfiguration,
which is needed by industry. The reconfiguration approach using ConBaCon is
described in [13], and in more detail in [12].

Besides model extensions for realizing reconfiguration processes with Con-
BaCon, we have developed a couple of other model extensions which extend
the set of configuration problems that are manageable by our approach. Among
them are extensions for tackling large configuration problems (mainly cluster-
ing of the model; see [11, 12]), for certain design problems and for optimization-
oriented configuration problems (handling of large nets of arithmetic constraints;
see [12]).

In the following section, we present the idea of how to integrate time con-
straints into the solution model in such a way as to enable the solution of time-
constrained configuration problems of the sort described in the Introduction.

4 Integrating Time Constraints

Time-constrained configuration problems emerge from classical configuration
problems by taking into account availability times of preliminary products, pro-
cessing times, constraints between these time points/slices and resource con-
straints regarding the required processing operations. We can distinguish be-
tween assembly processes and transformation processes. Transformation pro-
cesses can be connected with all problem objects represented by module objects
in the problem-solution model (cf. Section 3). Assembly processes are connected
with all aggregated objects which are presented in the solution model by mod-
ule objects with structure type = and-node and their component elements. To
be able to specify time-constrained configuration problems, we must of course
add, some suitable specification primitives to the specification language ConBa-
ConL. In the rest of this section we focus on necessary extensions of the problem
solution model.

4.1 Availability Variables

For each module object o of the solution model, an availability FD-variable
avail(o) must be introduced, which represents the availability of the module.

The domain of each availability variable must contain the value zero as a
special element.

If a module is a ground object (supply component), then the domain of
the associated variable must contain, in addition to zero, all the time values at
which the module is available. The domains of availability variables of nonground

Integrating Time Constraints into Constraint-Based Configuration Models 209

objects (not supply objects) initially get a proper FD-interval in addition to the
special domain element zero, e.g. 〈now, end of planning horizon〉6.

The inital domains of the availability variables are normally reduced after
generating special constraints into the problem-solution model (see below). In
order to get better propagation, it is advantageous to delete, in a preprocess-
ing step, values from 〈now, end of planning horizon〉 that obviously cannot be
valid because of the availabilities of the respective components (see next section).

Each processing step (or atomic chain of processing steps) in production can
be explicitly associated with a module object. For each object o, we have to
introduce an FD-variable proctime(o).

To simplify the description, let us asume that the processing times are always
zero. This restriction does not affect the quality of the presented model extensions
because processing times greater than zero can be easily introduced into the
model by proper additional addends (FD variables) in the model.

4.2 Availability Constraints

We must ensure the generation of proper constraints that specify the problem-
dependent relations between the availability variables of a solution model. We
call them availability constraints. In doing so, we must distinguish between or-
objects (structure type = or-node) and aggregated objects (structure type =
and-node).

Or-Objects. For each or-node o with specializations s1, . . . , sn, we know that
o can be available at earliest when one of its specializations si is available and
the transformation operation possibly associated with si is finished. We can
realize these dependencies between the availability variables of objects in an or-
dependency using the same procedure, which is also used for model extensions
relating to large nets of arithmetic constraints in specified configuration problems
(for details, see [12]).

For each specialization dependency of a specified configuration problem, this
procedure is called with parameters specifying the availability variable of the
or-object R and the availability variable list S of the specializations. We have
to ensure that values are deleted from the domains of the variables in L (excep-
tion: special value zero) if the values are deleted in the domain of R. Another
procedure ensures that values are deleted from the domain of R if they are re-
moved from the domains of all availability variables listed in L. In our model,
this means that R is, in each generated problem solution, equal to one availabil-
ity variable of L. This gives us the guarantee that the propagation will be done
in the desired quality. Thus, the mentioned procedures ensure the consistency
between availability value sets of an or-node and its specializations. By doing so,
a complete propagation between the availability variables in or-dependencies is
guaranteed.

Aggregated Objects. In the case of aggregated objects o with components
c1, . . . , cn, it is clear that avail(o) = proctime(o)+max(avail(c1)+proctime(c1),

6 now should be greater than zero.

210 U. John and U. Geske

. . . , avail(cn) + proctime(cn)) if we assume that the assembly process can start
at the earliest when all components are available after associated transforma-
tion processes are finished. In our solution model, we can realize this relation
using the global constraint maximum(CV ,CV List) in addition to the predicates
which we use for realizing the dependencies between or-objects (see above). The
maximum constraint maximum(CV ,CV List) ensures that CV is the maximum
of the elements of CV List.

The propagation realized in the aggregation procedure works in both direc-
tions: from the availability variable of the aggregated object o to the availability
variables of its components and vice versa. If the availability variable domain
of an aggregated object is restricted top-down, then the availability variable
domains of all components will be restricted with the same limit. If “no real”
availability time point remains, then the variable will be instantiated with the
remaining value zero.

Initial Reduction of Availability Variables. After generation and activa-
tion of the described availability constraints, the initial availability-variable do-
mains that belong to aggregated objects should be reduced before the config-
uration process is started. This should be done bottom-up with respect to the
specified taxonomy. For each aggregated object o, the smallest value limit that is
able to fulfill the maximum relation (see above) is calculated on the basis of the
availability-variable domains of the components of o. All values from 〈1, limit−1〉
are deleted in avail(o). Of course, further domain reductions can follow, caused
by propagation due to the availability constraints of the model during the initial
reduction process.

Constraints Between Availability and Existence. It is intuitively clear
that object elements of configuration problems can be part of a problem solu-
tion if and only if they are available in time. A remaining task is introducing
transformations of these constraints into our problem-solution model.

We can do this by extending the set of CE Constraints (see Section 3.2)
by constraints between availability variables and their associated existence vari-
ables. To ensure the described dependencies, it is enough to generate, for each
module object o, the following conditional constraints:

1. Ex V ar(o) = 0 → avail(o) = 0,
2. avail(o) = 0 → Ex V ar(o) = 0 and
3. Ex V ar(o) = 1 → avail(o) > 0.

4.3 Example of Time-Constrained Configuration

To understand better the way our configuration model works – and the exten-
sions introduced in the previous sections – let us now consider the following
example problem shown in Figure 4.

Given is the problem of configuring the complex product a, which consists
of the components b, c and d. The specification elements b, c and d are abstract
elements. This means that b can be instantiated in the final product either

Integrating Time Constraints into Constraint-Based Configuration Models 211

a

b c d

e f g ih j k

l m n o p q

r s t u v w

x zy

vr=17 vs=25 vt=7 vu=5 vv=102

vx=306 vy=27 vz=59

vq=109vn=43 vo=98

vk=111vi=402vh=203vg=107

Fig. 4. Taxonomy of Product a with Given Availabilities

with e or f , c with g, h or i, and d with j or k, and so on. The specified
components g, h, i, k, n, o, q, r, s, t, u, v, x, y and z are ground components (which
may be delivered by a supplier). For each of them, the earliest possible delivery
time is listed in the figure; vs is, for instance, the earliest availability time for s.

For the sake simplicity, we assume that all operation durations are zero. In
principle, however they could be greater than zero. On the other hand, resource
constraints relating to availability could also be integrated into the problem
specification.

Let the specified configuration problem be transformed into a correspond-
ing (constraint-based) problem-solution model following the description given in
Section 3. In addition to this transformation process, availability variables and
availability constraints are generated as described in Sections 4.1 and 4.2.

After processing the initial reduction of the availability-variable domains
of aggregated objects (see above) and following the domain reductions due to
the constraints realized in the solution model, we obtain the following variable
domains:

dom(avail(L)) = {0, vL} for all leaves L and values vL for the earliest availability time
for L (see figure 4),
dom(avail(n)) = {0, 43},
dom(avail(o)) = {0, 98},

212 U. John and U. Geske

dom(avail(q)) = {0, 109},
dom(avail(l)) = {0, 17, 25},
dom(avail(m)) = {0, 5, 7},
dom(avail(p)) = {0, 102, 306},
dom(avail(e)) = {0, 17, 25},
dom(avail(f)) = {0, 98},
dom(avail(j)) = {0, 109, 306},
dom(avail(b)) = {0, 17, 25, 98},
dom(avail(c)) = {0, 107, 203, 402},
dom(avail(d)) = {0, 109, 111, 306},
dom(avail(a)) = {0, 109, 111, 203, 306, 402}.

Now the main configuration process, which is described in Section 3.4 can
be started. In addition to the “conventional” questions, which can be answered
during the configuration process, we are now able to investigate time-relevant
questions as well. For instance, the user can observe that the earliest delivery
time for product a is 109.

Also, it is obviously possible to answer questions of the type mentioned
in the introduction using the problem solution model. For instance, system
users are able to investigate, which configurations of a are available if they
set the latest delivery time to 203. This demand is equivalent with the inter-
actively given constraint avail(a) ≤ 203. Because of the maximum constraint
between avail(a), avail(b), aivail(c) and avail(d) (see Section 4.2), the value
402 is deleted from dom(avail(c)) and the value 306 is removed from the do-
main of avail(d). This immediately implies the deletion of 306 in dom(avail(j))
due to the domain aeq cb constraints between avail(c), avail(g), avail(h) and
avail(i) and between avail(d), avail(j) and avail(k). The deletion of 402 in the
domain of avail(i) results in the implication of the nonexistence of i because of
the constraint avail(i) = 0 → Ex V ar(i) = 0 (cf. Section 4.2). And so on.

As a result of the hard demand that the latest possible delivery time be 203,
our solution model deduces that neither the component i nor the component x
can be included in the final product.

The configuration process can now be continued in the familiar way (see
Section 3.4). Of course, reconfiguration processes can also be started after the
generation of a solution.

5 Conclusion

We have presented some fundamental information about our constraint-based
problem-solution model ConBaCon for the configuration and reconfiguration of
technical systems/industrial products. An idea of the complexity of the con-
figuration problems that can be tackled by the solution model was given by
describing the main elements of the corresponding specification language Con-
BaConL.

Integrating Time Constraints into Constraint-Based Configuration Models 213

The problem-solution model – together with several extensions7 – was real-
ized using the CLP language CHIP. The resulting ConBaCon system was suc-
cessfully used with several realistic and abstract configuration problems, includ-
ing the configuration of power-supply systems for large electric motors and the
configuration of computer rack systems.

By substantially reducing the search space, the problem-solution model –
together with the underlying CLP system – allows an efficient configuration
process that can be flexibly controlled by user interactions. It is ensured that
each solution obtained is correct with respect to the problem specification and
the underlying constraint solver. In addition, the completeness of the solution
process is guaranteed.

The main focus of this paper was on novel model extensions that allow the
flexible solving of time-constrained configuration problems. Compared with other
configuration systems, this is a distinguishing feature of the resulting problem-
solution model. Given the rather general nature of the extensions, we assume
that the key ideas presented here can also be integrated quite easily into other
constraint-based configuration systems or configuration libraries like ILOG Con-
figurator.

The new features of the problem-solution model were demonstrated by means
of an example.

Our extended configuration model offers a broad range of interesting tasks
for future work. For instance, the development of extensions for time-constrained
multiproduct configurations as well as investigations on the tighter integration
of scheduling systems into the problem-solution model are important areas of
future research.

References

1. Axling, T.: Collaborative Interactive Design in Virtual Environments. www.sics.se/
∼axling/3dobelics.html (1996)

2. Axling, T., Haridi, S.: A Tool for Developing Interactive Configuration Applica-
tions. Logic Programming 26 (2) (1996) 147-168

3. Fleischanderl, G. et al.: Configuring Large Systems Using Generative Constraint
Satisfaction. IEEE- Intelligent Systems 13 (4) (1998)

4. Freuder, E. C.: The Role of Configuration Knowledge in the Business Process.
IEEE Intelligent Systems 13 (4) (1998)

5. Geller, S.: Come, and they will build it. Manufacturing Systems (June 1999)
6. Gupta, L., Chionglo, J. F., Fox, M. S.: A Constraint Based Model of

Coordination in Concurrent Design Projects. www.ie.utoronto.ca/EIL/DITL/
WETICE96/ProjectCoordination/ (1996)

7. Haselböck, A., Stumptner, M.: A Constraint-Based Architecture for Assembling
Large-Scale Technical Systems. Proceedings of International Conference on Expert
Systems Applications/ AI in Engineering. Edinburgh (1993)

8. Van Hentenryck, P., Saraswat, V.: Constraint Programming: Strategic Directions.
J. of Constraints (2) (1997)

7 Links to the corresponding publications are given in the paper.

214 U. John and U. Geske

9. John, U.: Constraint-Based Design of Reliable Industrial Control Systems. In: Ba-
jic, V.(eds.): Advances in Systems, Signals, Control and Computers. IAAMSAD.
Durban, South Africa (1998)

10. John, U.: Model and Implementation for Constraint-Based Configuration. Pro-
ceedings of the 11th International Conference on Applications of Prolog, INAP’98.
Tokyo (1998)

11. John, U.: Solving Large Configuration Problems Efficiently by Clustering the Con-
BaCon Model. Proceedings of the 13th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE-
2000. Lecture Notes in Artificial Intelligence, Vol. 1821, Springer-Verlag, Berlin
Heidelberg New York (2000)

12. John, U.: Configuration and Reconfiguration with Constraint-based Modelling (in
German). PhD Thesis Technical University of Berlin. DISKI 255, Aka-Verlag,
Berlin (2001)

13. John, U., Geske, U.: Reconfiguration of Technical Products Using ConBaCon. Pro-
ceedings of the AAAI’99 Workshop on Configuration. Orlando (1999)

14. John, U., Geske, U.: Constraint-Based Configuration of Large Systems. In: Barten-
stein, O. et al: Web Knowledge Management and Decision Support. Revised Papers
of 14th International Conference on Applications of Prolog, INAP 2001. Lecture
Notes in Artificial Intelligence, Vol. 2543, Springer-Verlag, Berlin Heidelberg New
York (2003)

15. Van Parunak et al.: Distributed Component-Centered Design as Agent-Based Dis-
tributed Constraint Optimization. Proceedings of the AAAI’97 Workshop on Con-
straints and Agents. Providence (1997)

16. Pasik, A. J.: The Configuration Invasion. Report, Lazard Frères & Co. LLC,
www.selectica.com/html/articles/Lazard1.html. New York (1998)

17. Sabin, D., Freuder, E. C.: Configuration as Composite Constraint Satisfaction.
Proceedings of AAAI’96. Portland (1996)

18. Sabin, D., Weigel, R.: Product Configuration Frameworks - A Survey. IEEE- In-
telligent Systems 13 (4) (1998)

19. Stumptner, M.: An Overview of Knowledge-Based Configuration. AI Communica-
tions 10 (2) (1997)

Distributed Constraint-Based Railway
Simulation

Hans Schlenker

Fraunhofer FIRST, Kekuléstr. 7, 12489 Berlin, Germany
hans.schlenker@first.fraunhofer.de

Abstract. In railway simulation, given timetables have to be checked
against various criteria, mainly correctness and robustness. Most exist-
ing approaches use classical centralized simulation techniques. This work
goes beyond that in two main aspects: We use constraint satisfaction to
get rid of deadlock problems and the simulation is done distributedly
for better performance. This should make it possible to solve very large
railway simulation problems.

1 Introduction

This paper is organized as follows: In the first section, I give short introduc-
tions to Railway Simulation (Sec. 1.1), Constraint-based Railway Simulation
(Sec. 1.2), and Distributed Constraint-based Railway Simulation (Sec. 1.3), each
with reference to the current state of the art. Sec. 2 contains the main contri-
bution of this paper: the algorithm DRS. In Sec. 3, I describe our extensive
implementation of DRS. Sec. 4 empirically evaluates both algorithm and imple-
mentation through a case study. Sec. 5 concludes the contribution, and in Sec. 6,
I give some outlook.

1.1 Railway Simulation

A railway system [11, 15] consists of a set of stations, a network of tracks that
connects the stations, a set of trains, and a timetable. The timetable assigns to
each train and each station this train must pass two points in time: when the
train is scheduled to reach the station (arrival) and when to leave (departure).
Each train moves from one station to the next along the network built by the
tracks. Signals and additional devices like train-end-detectors ensure safety on
the tracks. Blocks are subnets, delimited by signals and train-end-detectors.
The railway’s today’s fundamental safety rule, which applies to all current long-
distance railways, is: There may never be more than one train within one block.

The issue of railway simulation is to virtually let trains run through the
network and to check whether the timetable is satisfiable (correctness) or stable
against perturbations (robustness), always under the given safety restrictions.
Note that the timetable to be checked is given in advance.

There exist some fundamental approaches for simulating physical systems
[4, 7]: continuous vs. discrete event simulation and time driven vs. event driven

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 215–226, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

216 H. Schlenker

simulation. Common to all approaches is that the real world system is described
in terms of states and events. In continuous event simulation, “state changes
occur continuously in time, while in a discrete simulation, the occurrence of an
event is instantaneous and fixed to a selected point in time”[7]. Also according
to [7], any continuous model can be converted to an equivalent discrete model,
such that discrete event simulation can be used to model every physical system.
It is obvious that discrete event simulation can be done naturally on modern
(discrete) computer architectures.

In time driven simulation, the simulator looks at the virtual system in discrete
points in time. You can think of this simulation following a given clock pulse.
Event driven simulation, on the other hand, uses an event list, that stores all
future events. When an event is processed (the one in the list with the lowest time
stamp), this may generate new events which are inserted into the list according
to their future time stamp (e.g. [4]). Event driven simulation has already been
successfully applied to traffic simulation problems (e.g. [14]).

Distributed event simulation is an extension to event driven simulation. Here,
the system to be simulated is divided into parts, which are evaluated on physi-
cally distinct (computer) nodes. Events are sent through the simulator’s network
from where they occur to where they make an impact on. Milestone works on
discrete event simulation (e.g. [4, 8]) deal with methods how to asynchronously
let some nodes run into the (simulated) future while others still treat the (sim-
ulated) past.

1.2 Constraint-Based Railway Simulation

In constraint-based simulation (CBS), we also use discrete time events, but use
a completely different modeling: The system to be simulated is described as one
complex constraint satisfaction problem (CSP) [10]. This CSP is then solved
using well-known and newly adapted propagation and search techniques. A so-
lution to the CSP is finally mapped into a description of a simulation run.

CBS basically works as follows. The railway network is mapped into an ab-
stract discrete model: It is divided into blocks, while each real track section may
belong to more than one block. A block is then the atomic exclusion unit: In
no event, one block may be occupied by more than one train at the same time.
The way of a train through the network is divided into blocks such that the
concatenation of all parts makes up the whole way of the train from its source
to its destination. Figure 1 depicts this approach. The blocks are modeled using
constraint variables for the starting times and durations, which are connected
through arithmetic equations. The timetable is given by minimal departure times
for each train and each block (possibly being 0). Note that the arrival times are
not directly given as constraints!

The fundamental safety law is ensured using well-known resource constraints
(like cumulative or diffn [1]). Each block is modelled as a set of tasks, that share
start and duration times. Each task relates to a track section. And each track
section is modelled as an exclusive resource. Assigning start and duration times
to each part with respect to its block gives then rather directly a solution to the
simulation problem.

Distributed Constraint-Based Railway Simulation 217

time

Infrastructure

Simulationway

Fig. 1. Constraint-based railway simulation: The upper part of this figure depicts a
very simple railway network: one track from left to right, two shunting switches, and
two additional tracks, each starting at a shunting, then parallel to the main track.

The lower part describes the way of a train running on the main track, together
with (assignment) blocks. The thick line (a so-called distance-time curve) depicts the
way of the train, going from left to right, through time (vertically, top to bottom) and
space (along the track). The train’s way is surrounded by blocks (rectangles) that are
related to the infrastructure (e.g. the thick bounded one relates to the single track
section above). Each block describes the assignment in time of the according train to
the block.

The fundamental safety law requires that corresponding rectangles never overlap:
The dashed bounded block of another train must not overlap the thick bounded block
of this train on one and the same track section

The big advantage of this approach is that deadlock situations are detected
very early: constraint propagation does this for us. We can thus prevent most
situations where a number of trains jointly lock up parts of the railway network.
This is the case for example when one track serves both directions (which is
a common situation in Germany) and two opposed trains stand head to head
(in theory, a train can’t go backwards). This special one-track case has been
exhausted in [5].

In contrast to classical approaches, ours does not have a continuous advancing
simulation time: Propagation may run from the future to the past. This is untyp-
ical compared to classical simulation. Fortunately, this approach has an analogon
in our real-world problem: The actual movements of all trains are guided by a
real-time train management. This management also looks into the future, when
determining the actual train’s scheduling, for example to decide which train may
leave a certain station immediately, and which one has to wait. Constraint based

218 H. Schlenker

simulation equivalently uses this information to detect and avoid deadlock cases.
We call this approach therefore look-ahead simulation.

1.3 Distributed Constraint-Based Railway Simulation

In general, there are several reasons for distributed problem solving: reliability,
privacy and social boundaries, and performance and load balancing (see e.g. [9]).
This work is part of the research and development project SIMONE [13]. There,
we want to solve very large simulation problems. Therefore, performance (or
scalability) is our main motivation for distributing the simulation.

In distributed simulation, the simulation problem has to be divided into sub-
parts, which are then simulated in several computing nodes. A meta-algorithm
conducts the cooperative solving process. There are several general purpose con-
cepts to cooperatively solve distributed constraint problems: e.g. [3, 16, 19]. Most
of them are characterized by distributed search or propagation. I, however, fa-
vor a more application-oriented approach: distribution is done on the application
level rather than on the constraint network level. This avoids vast communication
overhead due to micro-propagation between different computers over some net-
work. Propagation in its very constraint programming sense (e.g. looking-ahead,
forward-checking [10]) is done only within one simulator node. Coordination is
done by the meta-algorithm.

Regarding railway simulation, there is currently one important work dealing
with distributed simulation: [12]. Here, a number of local discrete event simula-
tions jointly compute a global simulation. Each local node is responsible for a
part of the network and the nodes exchange train information for trains leaving a
subnet and entering another subnet. The simulation clocks are synchronized such
that all computing nodes know about the global simulation time. This is also
the main drawback of this approach: There is usually a lot of synchronization
information to be communicated. This bottleneck greatly obstructs scalability
of the algorithm.

2 Algorithm

Figure 2 sketches my distributed railway simulation algorithm DRS. Initially
(1), the global simulation problem is divided into parts, which are distributed
on several computing nodes (see also Sec. 2.1). There, solutions for the local
problems are computed (2): the boxes in (2) show very simplified distance-time
curves like that in Fig. 1. Information regarding the borders of the sub-problems
is then communicated (showed by the dashed arrows) between sub-problems’
neighbors. While the local problems are globally inconsistent – what can be
detected locally – the local simulations are iterated (2), taking into account
the neighbors information (see also Sec. 2.2). Finally (3), a globally consistent
solution is achieved (see also Sec. 2.3).

Distributed Constraint-Based Railway Simulation 219

(1)

(3)

(2)

Fig. 2. The DRS algorithm

2.1 Problem Distribution

Each railway simulation problem is kind of naturally distributed: Its track net-
work is spread spatially. Therefore, the natural way to decompose and distribute
the simulation problem is along the railway network: We cut the network into
subnets.

In our real-world problem, the data is already pre-partitioned. Each track
section belongs to exactly one so-called operating site (OS, German Betriebs-
stelle). So, each OS o consists of a number so of track sections, and to each of
o’s neighbors o′ a number to,o′ of crossing trains. The OSs together with their
neighboring relation form a network. The nodes in this network are weighted
by so, and the edges between two nodes o and o′ are weighted by to,o′ . We also
assume some given k that relates to the number of available computing nodes.

This network is then cut into k parts such that the sum of so in all parts is
uniformly distributed (there is no part with a sum that is by far greater than
the other sums), and the edge cut is minimized. The edge cut is the sum of the
weights of cut edges, i.e. edges between nodes that do not belong to the same
part. This partitioning is the basis for the problem distribution. The described
optimizations imply that the size of the different sub-problems is uniformly dis-
tributed and therefore the workload for the computing nodes is balanced, and
that the number of crossing trains that have to be communicated between dif-
ferent nodes is minimized, reducing communication and – as we will see – re-
computation costs.

2.2 Iterations

The local sub-problems are given by sub-nets of the global track network. In
each local iteration, the sub-problem is simulated using the above described

220 H. Schlenker

constraint-based simulation technique. As soon as such a simulation is finished,
the entering and leaving times of all crossing trains are communicated to the
node’s neighbors. Thus, each node can locally determine which train’s simulation
is globally inconsistent.

While there are inconsistent trains, the local simulation CSP is extended,
such that the local times for incoming and outgoing trains must be greater than
or equal to the times given by the neighbors. Then, a new solution to the updated
CSP is computed, leading to new entering and leaving times. All new times that
are different from previous solutions, are considered (globally) inconsistent and
are therefore communicated to the neighbors. Since each train that crosses parts
may trigger re-computations of local simulations, it is obvious that their number
should be kept minimal.

Note that the computations of the local simulations can be done interleaved:
While one node a is computing, its neighbor b can be finished, sending a the new
crossing data. Some moments before, b’s other neighbor c finished its work and
sent some connection data to b so that b now immediately could recompute its
local simulation, taking into account c’s work. He would not wait until a finished.
This approach makes maximal use of the available computing resources. It is,
however, not deterministic: Two (global) simulation-runs on the same problem
may not produce the same results, depending on the order in which the local
simulation jobs have been executed.

It is a strict requirement (from the railway experts) in the SIMONE project,
that simulations can be done deterministically. This issue can be solved by syn-
chronizing the simulation processes: All local simulations wait for each other
after they have finished their local computations. And when all are finished, all
of them communicate and then all of them recompute (in case it is necessary).
This algorithm is deterministic and therefore always yields the same results. The
drawback here is that the computational resources are used less optimally.

2.3 Formal Properties

Many distributed problem solving algorithms do not terminate on their own in
all cases. Mostly, there has to be some algorithm-external termination detection.
DRS, however, is guaranteed to terminate, i.e. it always finds a solution (if one
exists) in finite time. I proved this termination property together with correctness
of the algorithm theoretically. However, due to lack of space, I can’t give the proof
in detail here.

Its baseline is as follows: The trains are ordered by some pre-defined global
priority and treated in each local simulation part accordingly. So, no two trains
can displace each other forever: For each two trains there is a major and a minor
one and the major one always and everywhere supersedes the minor one. Fur-
thermore, with DRS the simulated departure times of all trains always advance.
So, although the timeline is potentially infinite, the global consistency algorithm
always converges and terminates finitely.

Distributed Constraint-Based Railway Simulation 221

3 Realization

DRS is designed as a grid-computing system [18]: The simulation work should be
done by standard workstations that are registered with some central information
service and can be used by various clients. Figure 3 shows the global architecture:
There is exactly one central server machine, one or more workstations that do
the simulation computation, and one or more client machines. All these nodes
are connected by some standard Ethernet network.

The server runs the central information service called DIR. This is embedded
in a Tomcat server, which is a very stable and operating-system independent
platform. Tomcat [2] is an open-source web server written in Java. It is designed
as a runtime environment for web services and provides remote management
facilities for these. It can thus be used as an application server, as we do it in
DRS. The server machine usually hosts additionally a database and CVS service.
The latter is used for an integrated development process that allows updating
most of DRS’ components while the system is running! The DIR must always
run since it is the only common service point that all system components must
know.

On each workstation there is a WRK service – also running inside a
Tomcat – that provides the worker’s facilities to the system. The WRK reg-
isters itself with the central DIR. The workstations can be shut down, in which
case the WRK unregisters with the DIR. Thus, the DIR always knows about all
living workers.

1

WRK

1..*

SIM

1

Tomcat

1..*workstation

1

CAP

1..*client

1

CVS

1

DB

1

DIR

1

Tomcat

server 1

etheth

eth

Fig. 3. The DRS architecture

222 H. Schlenker

The clients for the user run on some possibly smaller terminals, there may
be several clients at a time. The CAP clients contact the DIR to get the list
of available workers and – after the user has configured the simulation to be
done – reserve there workers for their own use. When the simulation is started,
the WRK servers create SIM objects – possibly more than one each – that do
the local simulation. The algorithm control is either done centralized inside the
CAP or decentralized within the WRKs.

Although it is still a prototype, our implementation is already very stable: The
DIR usually runs for weeks without the need for restarting it, and we recently
did 900 successive simulations on one and the same running WRK instances.

4 Case Study

The major example, we are working with in the SIMONE project, is based
on real world data of a part of the German railway. Table 1 summarizes its
characteristics.

Each track section is a part of the railway network, delimited by signals,
train-end-detectors, switches, or the like. The example’s timetable knows about
1118 trains altogether. It contains, however, data for trains running for example
from Monday to Friday, only on weekends, or every day. Thus, only a part
of all trains run actually on e.g. Monday. The Germany column – taken from
[6] – gives you some impression on how the example relates to the whole German
railway system.

The main parameters that specify a concrete simulation problem are: the
(part of the whole) timetable (e.g. Monday), the trains (e.g. all that start between

Table 1. Characteristics of our example data. The left column describes the whole
data set, the middle column the part of the timetable for one day of the week, and the
right column roughl the equivalents for the whole German railway network

Example Monday Germany
sum track length [km] 1006.503 65005
operating sites OS 104
avg track length / OS [km] 9.678
track sections 7111
avg track section length [km] 0.142
avg track sections / OS 68
avg trains / day 795 781 34950
avg trains / OS 123
avg OSs / train 11
avg track sections / train 266
avg train way / train [km] 43.509 37.844
avg train way / day [km] 34583.981 29556.384

Distributed Constraint-Based Railway Simulation 223

0

10

20

30

40

50

60

2 4 6 8

C
om

pu
tin

g
T

im
e

[s
ec

]

Nodes

03-09
09-15
15-21
21-03

(1)

0

10

20

30

40

50

60

2 4 6 8
C

om
pu

tin
g

T
im

e
[s

ec
]

Nodes

03-09
09-15
15-21
21-03

(2)

Fig. 4. Experimental results: all 104 OSs (1), and a connected selection of 67 (2)

9 and 10 a.m.), and the spatial parts of the network. For the DRS system, the user
additionally can select mainly: the set of workers to be used, the partitioning,
synchronized (deterministic) or non-synchronized (non-deterministic) operation,
and central or de-central control.

Figure 4 shows some empirical results of DRS: In (1), we simulated the whole
example, while in (2) we used only about half of the operating sites or network.
In both cases, we separately simulated the trains from 3 a.m. to 9 a.m. (“03-09”),
from 9 a.m. to 3 p.m. (“09-15”), from 3 p.m. to 9 p.m. (“15-21”), and from 9
p.m. to 3 a.m. (“21-03”). So, here, we did not do the whole day but different
6-hour timeslices. And, we tried all this on 2, 4, 6, and 8 computing nodes. Each
node is equipped with 1GB of memory and 2 AMD K7 processors working at
1.2 GHz and runs Red Hat 8.0 Linux 2.4 and Sun’s Java 1.4.0.

We can see from (1) that the computing times for simulating the whole net-
work may differ greatly from timeslice to timeslice: The 15-21 one takes more
than 50 seconds on 2 nodes and even on 8 nodes more than 40 seconds, while
simulating the trains from 09-15 takes between 15 and 31 seconds. This comes
mainly from the different problems’ complexity: There are 199 trains in timeslice
03-09, 243 in 09-15, 259 in 15-21, and 199 in 21-03. But although the number
of trains in 09-15 and 15-21 are not too different, the latter takes about twice
as long as the former. Sometimes there are local problems, that are hard to
solve, e.g. when there are many trains very close together. And this is not nec-
essarily exactly the same situation in all timeslices. So, obviously, there is some
exceptional problem in the 15-21 slice.

If we take only a spatial part of the network – 67 connected OSs out of the
whole 104, see Figure 4 (2) – the simulation times get reduced by an average
of 50% and the exceptional problem with one of the timeslices disappears. The

224 H. Schlenker

overall reason for these differences is that the example contains some very very
heavy (or complex) OSs whose local computation takes by far longer than that
of the others. And since we do not split OSs when dividing and distributing the
global problem, having more computing nodes does not help solving the heavy
parts. This may limit the scalability of the overall algorithm, as can be seen in
the 15-21 case in (1).

We generated and compared different problem partitionings with 16, 30 and
50 parts. The 30s partitioning turned out to be best for most of the problems.
So, the above tests are all based on this partitioning. I already mentioned, that
the system can operate in synchronized or non-synchronized mode – here we
used the synchronized mode since it always produces the same simulation result
for a given problem and therefore should be preferred by most users. In fact,
the non-synchronized mode is slightly faster (about 10 to 25%, according other
experiments we made). Additionally, we could use central or de-central control.
Our implementation allows synchronized operation only in company with central
control, so we used this one. We ran each particular test five times and averaged
the resulting computing times.

It should be noted that solving the local simulation problem includes solving
a job-shop scheduling problem. Each track section can thus be regarded as a
machine that is used by blocks (see Section 1.2), the jobs. Each job consists of
consecutive tasks. Each train uses an average of 266 track sections, thus building
266 tasks. So, in the morning timeslice 03-09, there are about 266 ∗ 199 = 52934
tasks, 266 ∗ 243 = 64638 in 09-15, 266 ∗ 259 = 68894 in 15-21, and about 266 ∗
199 = 52934 in 21-03. And all those have to be scheduled onto 7111 machines!
So, each simulation problem is quite a large job-shop-scheduling problem. DRS
solves them very quickly.

Our example is not very dense, nor did we try to find an optimal schedule
for the trains. So, there was very few search needed for finding the simulation
solutions. The 03-09 time slice took 486 backtracking steps, the 09-15 one took
1635, the 15-21 one took 1485, and the 21-03 one took only 320 steps. Note that
these are not average counts because we used the synchronized mode, where
each simulation is done deterministically, independant from execution sequences
or even the number of computing nodes!

5 Conclusion

I presented here the railway simulation algorithm DRS that uses – in contrast to
existing approaches – constraint programming and distributed problem solving.
I showed that we have a fast, stable and powerful implementation that proves the
algorithms abilities empirically. Some essential features have also been testified
theoretically.

Distributed Constraint-Based Railway Simulation 225

6 Outlook

In addition to simulate a given timetable, the DRS algorithm could also be used
to generate a new timetable, rather from scratch. We would only have given
the physical characteristics of the trains (together with the exact running time
computation), pre-defined train routes through the network, and rough time
slots, when the trains should run. The exact timetable could then obviously be
computed using DRS and appropriate local simulators.

But, for finding a good timetable, we would need some form of optimization:
the system should be able to find good or better timetables wrt. some optimiza-
tion criterion related to the timetable (e.g. minimal running times of expensive
trains, or minimization of transfer delays). This is currently not possible, the
trains are always delayed (shifted into the future through the greater-or-equal
constraints). Optimization could be done through some controlled cooling : The
trains are computed in the order of their given priority, and in each iteration
steps, some high-priority trains keep their exact time slots, while for all lower-
priority trains, earlier time slots (than in the previous iterations) could be tried.
The frontier between fixed and optimizable trains should then be advanced from
iteration to iteration, cooling the system step by step.

With this extension, DRS could be used for railway timetable construction.
Another possible application is distributed process scheduling or supply chain
management. There, tasks, that are connected wrt. time and content, have to be
scheduled and optimized. They could be modelled similarly to our blocks. The
schedule would be computed distributedly by DRS.

We could even use DRS as a general labeling procedure for distributed con-
straint satisfaction problems: There, usually, a number of (distributed) agents
each take care of a constraint network. These networks are connected through
some shared variables: variables of different agents, that represent the same
entity and have to get the same value in a final solution to the CSP. These con-
necting variables make a large single constraint network out of the distributed
local ones.

The intensional equality between shared variables is usually realized by ex-
ternal equality constraints, i.e. constraints between different agents. And these
external equality constraints could be realized by DRS through the distributed
search process: Here we use in each agent (or simulator) a greater-or-equal con-
straint such that when finally a consistent state is reached, all these greater-or-
equal constraints hold, and thus equality holds between the shared variables.

References

1. A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex schedul-
ing and placement problems. Mathematical and Computer Modelling, 1993.

2. Apache Software Foundation. Apache Tomcat. http://jakarta.apache.org/tomcat/.
3. P. Berlandier and B. Neveu. Problem partition and solvers coordination in dis-

tributed constraint satisfaction. In Proc. Workshop on Parallel Processing in Ar-
ticial Intelligence (PPAI-95), Montreal, Canada, 1995.

226 H. Schlenker

4. K. M. Chandy and R Sherman. Space-time and simulation. In Proc. SCS Multi-
conference on Distributed Simulation, 1989.

5. Elias Silva de Oliveira. Solving Single-Track Railway Scheduling Problem Using
Constraint Programming. PhD thesis, The University of Leeds, UK, 2001.

6. Deutsche Bahn AG. Daten und Fakten 2002.
7. Alois Ferscha. Parallel and distributed simulation of discrete event systems. In

Handbook of Parallel and Distributed Computing. McGraw-Hill, 1995.
8. Richard M. Fujimoto. Parallel discrete event simulation. Communications of the

ACM, 33(10):30–52, 1990.
9. Markus Hannebauer. Autonomous Dynamic Reconfiguration in Collaborative Prob-

lem Solving. PhD thesis, Technische Universität Berlin, 2001.
10. Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,

1989.
11. Daniel Hürlimann. Objektorientierte Modellierung von Infrastrukturelementen und

Betriebsvorgängen im Eisenbahnwesen. PhD thesis, Eidgenössische Technische
Hochschule Zürich, 2001.

12. Volker Klahn. Die Simulation großer Eisenbahnnetze. PhD thesis, Universität
Hannover, 1994.

13. Dirk Matzke and Maren Bolemant. Modellierung innovativer Systemtechniken der
Zugbeeinflussung mit constraint-logischer Programmierung. In ASIM – Symposium
Simulationstechnik. SCS Europe, 2003.

14. B. C. Merrifield, S. B. Richardson, and J. B. G. Roberts. Quantitative studies of
discrete event simulation modelling of road traffic. In Proc. SCS Multiconference
on Distributed Simulation, 1990.

15. Jörn Pachl. Systemtechnik des Schienenverkehrs. B. G. Teubner, 2000.
16. Georg Ringwelski. Asynchrones Constraintlösen. PhD thesis, Technische Univer-

sität Berlin, 2003.
17. Hans Schlenker. Distributed Constraint-based Railway Simulation. PhD thesis,

Technische Universität Berlin, to appear.
18. Detlef Schoder, Kai Fischbaum, and Rene Teichmann, editors. Peer-to-Peer.

Springer, 2002.
19. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. The

distributed constraint satisfaction problem: Formalization and algorithms. IEEE
Transactions on Knowledge and Data Engineering, 10(5), September 1998.

Concurrent Engineering to Wisdom Engineering

Shuichi Fukuda

Tokyo Metropolitan Institute of Technology,
6-6, Asahigaoka, Hino, Tokyo, 191-0065, Japan

fukuda@tmit.ac.jp
http://www.tmit.ac.jp/

Abstract. 21st century will be an age of wisdom, where product devel-
opment will be replaced by wisdom development. We have been produc-
ing products, but from now on, we have to move in such a direction as to
satisfy higher level needs in Maslow’s Hierarchy. An age of wisdom is a
world of combinations and Wisdom Engineering, which developed from
Concurrent Engineering through Collaborative Engineering, and which is
based upon the world of combinations, will serve extensively for wisdom
development.

1 Introduction

Concurrent Engineering at its initial stage was discussed widely in terms of time
concurrency. Emphasis was placed upon bringing downstream information more
upstream so that adequate decisions can be made at an earlier stage. Time to
market was greatly reduced.

With the diversification of society, Concurrent Engineering was interpreted
more in terms of space concurrency. Requirements vary from customer to cus-
tomer. Concurrent Engineering provided a solution to cope with this diversifica-
tion problem and to satisfy our customers.

But the growing diversification required more and more heads to really solve
the problem. Thus, the importance of strategy and team working are emphasized.
Concurrent Engineering is now called Collaborative Engineering to emphasize
the importance of collaboration.

The 21st century is the age of wisdom. What we sell is not products, but
wisdom. Product value is determined by market but wisdom is not. Only wisdom
creators know its true value. When people with different grounds meet and
discuss, they come up with wisdom that is beyond the sum of their individual
knowledge and experience. The wisdom thus created cannot be truly evaluated
without them. Thus these people must explore a new market and sell their
wisdom.

The age of wisdom will change the whole scene of business. We have been
creating products and selling them to market. But from now on, what we have
to create is market itself. How we can secure the final functions of a product has
long been thought to be the most important issue in product development. In
fact, that is why we call this activity ’product development’. But we must be

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 227–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

228 S. Fukuda

aware that the business situations are quickly changing. Processes themselves
are yielding market value as well as the final product functions, as is exemplified
by software and games. Thus, the new age will be the age of product, process
and market creation. Wisdom will play a central role there.

Concurrent Engineering in this new age should be called Wisdom Engineer-
ing, which provides the common ground for people to communicate in order to
create wisdom.

2 World Is Changing Now

2.1 Age of Mass Production

Traditional society has been linear. It may be compare to a railroad. We can
easily tell our destination. We could predict easily. Problems did not vary too
much so that tactics were emphasized (Fig. 1).

Fig. 1. Linear society compared to a railroad

This age of mass production was a product oriented society.Final product
functions alone were emphasized and the process to produce a product has been
considered just as a cost increasing factor.

It may also be compared to agriculture. Although the environment changes
from season to season, it does not vary too much and we will produce more
and better quality products, if we fertilize the farmland properly. The market is
fundamentally fixed.

Although we moved from gproduct outh to gmarket inh to cope with the
diversification of customersf requirements, chief attention is still paid to the
same old market.

2.2 Age of Wisdom

Society from now on will be diversifying more and more so it will become non-
linear. It may be compared to a ship going out to sea. We cannot predict easily.
We have to examine where we will go and how we can get there. Many factors
are involved and they are not easy to cope with. Therefore, strategy becomes
increasingly important (Fig.2).

In this age of wisdom, we have to determine first of all where we will head
for, or in other words, which market we should explore. We have to create a new

Concurrent Engineering to Wisdom Engineering 229

Fig. 2. Nonlinear society compared to ship going out to sea

Fig. 3. Process and market oriented age of wisdom

market, and we have to develop a new process to get there. These new processes
and markets will create new types of value (Fig.3).

Creating new markets and new processes may be compared to hunting. If we
come across the game which is stronger than us, we have to use a new tool, but
if this new tool does not work, then we have to look for another game which we
can kill.

3 Creating for What?

It is very important for us to look back and ask ourselves once again for what
we are creating. Maslow’s Hierarchy of Needs [1] provides us with a good per-
spective. Maslow classified our needs into 5 levels. The first or bottom level is
physiological needs. We have to eat for living. The second level is safety and
security needs. After we satisfy our appetite, we would like to keep ourselves
safe from severe environments. The 3rd level is love and belonging needs. We
would like to be a member of some communities. We need a family. The 4th level
is esteem needs. We would like to be respected by others. The 5th level is self
actualization. Art will satisfy our self actualization needs (Fig.4).

Agriculture and fishing industries may be considered to satisfy our bottom
level needs. These needs are primarily important. Housing is the industry to
satisfy our second level needs. Note that industries seem to be climbing up the
hierarchy. Recently games become very popular. Games may be considered as

230 S. Fukuda

one of the means to self actualization. Brands may be interpreted as one of the
ways to satisfy our 3rd or 4th level needs.

If we are climbing up the hierarchy, then we must be more creative. We have
to create wisdom how we can satisfy such needs. We have to ask ourselves for
what we are creating. We have to look for a good strategy to produce a new
market with a new process.

Fig. 4. Maslow’s Hierarchy of Needs

Fig. 5. World of Single Peak to World of Multiple Peaks

In our traditional world, there was only a single peak. But now our world is
quickly expanding and there are many peaks around us. So we have to determine
which peak we should climb and which path we should take to get there (Fig.5).

Concurrent Engineering to Wisdom Engineering 231

4 Combine Type and Overlap Type

When we build up a system, there are two types (Fig.6).
‘Combine Type’ develops a system by combining independent functional ele-

ments, while ’Overlap Type’ considers functional overlapping. For example, US
robots separate functions into independent elements while Japanese ones assem-
ble many different functions into one.

Fig. 6. Combine Type and Overlap Type

Same difference is found in US and Japanese team working. US teams work
together very well at a strategic level but when it comes to tactical level, mem-
bers work independently. Japanese teams act contrary. They work very closely
together at a tactical level, but they do not at a strategic level.

In an age of wisdom, we have to change from Combine Type to Overlap
Type and further to Fusion Type. Wisdom is produced when different people
with different backgrounds work in a cross functional manner. Better wisdom
may be produced if these pieces of knowledge and experience are fused.

To produce such high level wisdom, true collaboration is required both at
strategic and at tactical levels.

5 Concurrent Engineering: Looking Back into History

5.1 It Started with DICE

Concurrent Engineering (CE) started with DICE (DARPA’s Initiative in Con-
current Engineering). What did DICE CE achieve? They reduced time to market
and secured better quality and reduced costs. This was true at this time but does
this hold true even now?

Let us consider this problem by looking back into CE history.

5.2 What Does ’Concurrent’ Mean ?

Fig.7 shows the definition of ’concurrent’ Oxford Dictionary provides. It should
be noted that ’concurrent’ is not just doing things at the same time. In fact, in
a computer world, concurrent processing and parallel processing are very much
different. In concurrent processing, data or knowledge is shared and communi-
cated.

232 S. Fukuda

Fig. 7. What does ’concurrent’ mean?

5.3 DICE Is Not for New Product Development

It should be noted that DICE project is very much constraint-driven.
Suppose Company A started to produce a product with the final function

AF1 within a scheduled time AT1. But Company B later on started to pro-
duce another product with a better function BF within shorter time BT. When
Company A finds out that Company B is producing a better function product
and will be delivering it to market earlier. Company A has to catch up with
them. Company A has to change their policy when they find out this and has
to produce the same level function AF2 product within the time AT2 (Fig.8).

Fig. 8. Why was DICE Concurrent Engineering proposed?

Company A has to use their presently available resources and time is limited.
Thus, CE is not a methodology to produce a new product but rather it is the
one to find out a solution to how we can deal with the constraints.

Concurrent Engineering to Wisdom Engineering 233

Fig. 9. Product development before DICE

Fig. 10. What DICE Concurrent Engineering attempted

5.4 Product Development Before DICE

Each process had its own goal so that goals changed from process to process.
It was a sequential flow and communication among processes were very much
limited (Fig.9).

5.5 What DICE Attempted

The primary objective of DICE was to reduce time to market. To realize this
goal, they emphasized to bring the downstream processing more upstream. DICE
CE at its initial stage was nothing other than parallel processing (Fig.10).

6 Concurrent Engineering: It Grew with Time

Several years were needed for CE to be really ’concurrent’. CE moved from par-
allel to concurrent processing. Then, goals are coordinated through processes.
The importance of strategy and communication among processes were empha-
sized (Fig.11).

234 S. Fukuda

Fig. 11. Improved Concurrent Engineering

DICE CE at its initial stage was in essence a centralized system. Information
was integrated only vertically and communication was minimal.

Improved CE was still a centralized system. But information was integrated
not only vertically but also horizontally. Communication was encouraged and
emphasized.

7 Concurrent Engineering: It Opened the Door to
Collaborative Engineering

With the quick spread of Internet in the US, information systems changed from
central to distributed systems. In a network, any node can produce an output.
Thus, a large degree of flexibility can be introduced and true collaboration be-
comes necessary as shown in Fig.12.

Fig. 12. Network system

8 Concurrent Engineering: Reborn as Life Cycle
Engineering

Diversification has been discussed only in terms of variations from customer
to customer. But diversification is also found along the time axis. Even a single
customerfs requirements change from time to time. So not only spatial variations
but also temporal variations must be considered.

Concurrent Engineering to Wisdom Engineering 235

Fig. 13. Concurrent Engineering to Life Cycle Engineering

Before the advent of CE, design-manufacturing-use was processed in a sequen-
tial order. But diversification brought design and manufacturing closer together,
which was the goal of CE at the later stage. But temporal variation changed
CE into Life Cycle Engineering, where a closed design-manufacturing-use loop
is repeated throughout the whole product life cycle as shown in Fig.13.

9 Various Types of Concurrencies

We have been emphasizing temporal concurrency because the reduction of time
to market has been our primary concern. But it should be stressed that there are
other types of concurrencies. Spatial concurrency and technological concurrency.

In a product development, the number of combinations increase as we go
downstream, and solution space becomes narrower and the number of constraints

Fig. 14. Temporal concurrency

236 S. Fukuda

increases. Collaborative Engineering, or improved CE, was very much successful
in distributing the constraints and providing the solution space uniformly all
across the different processes from upstream to downstream as shown in Fig. 14.

Spatial concurrency becomes more and more important with increasing glob-
alization. Corporations desire 24 hour operation and it will be possible, if we
operate globally. And cultural differences will no longer be the hurdles, but will
add another value.

Last, but most important is technological concurrency. To produce wisdom,
we have to move from Combine Type to Overlap Type and further to Fusion
Type. By this way, we can create new pieces of knowledge beyond just the sum
of different pieces of knowledge and experience.

10 Collaboration: How It Changed with Time

Collaboration helps us produce a better quality products. But when it comes to
creating wisdom, it is a prerequisite.

Collaboration has evolved from tree to network system. In terms of collabo-
ration level, a tree structure is low and a network one is high (Fig.15).

Fig. 15. Collaboration level from tree to network

In a tree structure, information flows one way, from top to bottom and al-
though there may be information flow the other way, it just takes the same way
backward. The output node is just one at the top. Typical tree structure is a
military system and only vertical expansion is allowed as shown at left.

An advanced tree structure permits communication within the same layer
level. This allows adjustments so that the system becomes more flexible. But
the expansion is still allowed only in the vertical direction and the output node
is, of course, still single as shown in the middle. This type of system is very
popular among Japanese industries.

Concurrent Engineering to Wisdom Engineering 237

Fig. 16. Product development before Concurrent Engineering

Fig. 17. Concurrent Engineering product development

But when we adopt a network system, it will change the whole scene. We
can interact with any one, i.e. any nodes can interact with any nodes. And it
allows a horizontal expansion. Any node could be an output node, so that the
maximum flexibility will be attained as shown at right.

Let us look at how collaboration evolved by comparing it with the change of
product development system.

Fig.16 shows the situation before the advent of CE. The information system
was tree-structured, and information was processed sequentially from stage to
stage. The concept of Workflow applied to this situation. The whole system was
linear.

Fig.17 shows the situation at the time of initial CE. Information was shared
and processed concurrently. Product Data Model was developed to share knowl-
edge and experience. But it was still a tree. Although the system allows commu-

238 S. Fukuda

Fig. 18. From Frame to Object

nication, the extent of communication was still limited so that a cross functional
team was introduced to solve the problem. But the system was no more linear.

With the transition from a tree to a network, more flexible and adaptive
information processing became necessary. Frame was developed for this purpose,
but Frame is useful for structured knowledge. It may be compared to a bound
book. Adaptability and flexibility was not enough.

So, the concept of ’Object’ and object oriented programming were introduced
to provide the maximum degree of flexibility and adaptability. Wisdom may
most appropriately be expressed in an object-oriented approach. ORB, or Object
Request Broker was developed to cope with the situation as shown in Fig.18.

11 Fixed Function and Growing Function

Functions are classified into two types as shown in Fig.19.
Fixed Type is usually observed in hardware. Functions are determined at the

start of design and a product is produced and delivered to a customer. Then, it
will degrade gradually so that maintenance is required.

Fig. 19. Fixed function and growing function

Concurrent Engineering to Wisdom Engineering 239

Fig. 20. Life Cycle Engineering

Fig. 21. One physical man to one virtual man

Fig. 22. Collaborative Engineering to Life Cycle Engineering

240 S. Fukuda

Software belongs to Growing Type. Software is developed and shipped to a
customer with a minimum level of functions and the functions grow with the
customer.

In the Fixed Type case, design functions do not change from process to
process so that CE can be applied straightforwardly. The producer and the
customer are distinguished from each other.

In the Growing Type case, CE is very difficult to apply. Growing function may
be achieved by a true prosumer system, where the producer and the consumer
work together seamlessly.

Life Cycle Engineering (LCE) repeats a short design-manufacturing-use cycle
throughout the product life cycle, so that LCE will be an enabler to realize such
a product with growing functions (Fig.20).

Collaborative Engineering may be interpreted as a system to realize a virtual
one man. In the old days man produced a tool to produce a product (Homo
Faber, Homo Fabricare). The same activity will be realized from now on by
networking knowledge and experience. So one physical manfs activity will be
realized by one virtual man from now on (Fig.21).

Collaborative Engineering provides a basis for LCE. As the environment
varies and we need each different adapting function for each varied portion,
Collaborative Engineering provides a different solution for a different portion of
the environment as shown in Fig.22.

12 Value in an Age of Wisdom

Traditional Value Engineering defines value in the following way.

Value = Function / Cost

In these days, Function meant the function of a final product and production
or manufacturing was considered just as a cost increasing factor, which in other
words means it will not add any value.

In the new interpretation, value is given by the following equation.

Value = Performance / Cost

In this definition, performance does not mean just the functions of a final prod-
uct alone. It also contains satisfaction the production or manufacturing processes
provide to the customer and even fashion or brand is also included. In short, per-
formance here includes all kinds of satisfaction a customer enjoys.

Games are sold because the process to get to the goal provides excitement.
Housing may be another example. No one would be happy even if a housing
firm provides them with the highest quality house. They would like their houses
changed to suit their tastes and their voices heard. The process of building a
house provides them with joy and with satisfaction. Education may be another
example. Art is nothing other than a process. People enjoy art because they

Concurrent Engineering to Wisdom Engineering 241

interact with their objects. It is self actualization in Maslow’s Hierarchy , which
is our highest need. Games may also be interpreted as one of the ways to satisfy
our self actualization needs. Fashion and brand will satisfy the 3rd and 4th level
needs in Maslow’s Hierarchy.

13 Creating Wisdom

13.1 Ethnography or Situated Understanding

Schon [2] introduced the concept of a reflective practitioner. A reflective practi-
tioner plans, does, checks and acts as shown in Fig.23, which is nothing more or
less than a quality circle.

Fig. 23. Reflective practitioner

And in psychology, the idea of ethnography is attracting wide attention these
days. They insist that as the situations change very widely and very rapidly, the
traditional concept of understanding will no longer be useful. Traditionally, we
have been structuring our knowledge and we apply them from case to case. But
the amount of our knowledge and experience has become too much enormous
and we don’t have time and capabilities to use all these pieces of knowledge and
experience for an immediate judgment. What is most important to cope with
and to adapt to the rapidly and widely changing situations is to determine what
to do immediately rather than how to do prudently.

The ethnographic approach will certainly contribute to the realization of
LCE.

13.2 From Product to Wisdom Development

Fig.24 shows the transition from product to wisdom development.
Our traditional engineering has been very much analytical. And prediction

was easy because we define our problem domain, find out an equation that
controls this domain and applied it to solve the problem. It is analog, continuous

242 S. Fukuda

Fig. 24. From product to wisdom

and linear in nature. This world is very well fitted for product development or
for satisfying the lower needs in Maslow’s Hierarchy.

In an age of wisdom, it is fundamentally a world of combinations so that it
is very difficult to predict. And it is digital , discrete and nonlinear in nature. In
essence, this is nothing other than our life. Our life is full of diversity and adapt-
ability is very much important there. Wisdom Engineering will satisfy higher
level needs in Maslow’s Hierarchy.

13.3 Team Working

To produce wisdom, team members should work in a ’Logical AND’ manner as
shown in Fig. 25.

13.4 Communication

The present framework of communication places emphasis upon how exactly we
can convey to others what we think. We have to listen to understand what is
happening or what is around us. Thus, we have to develop a new framework for
communication to really understand the quickly and widely changing situations.
Such a new framework of communication is also needed to establish ethnography.

Another important issue is emotion. Emotion conveys very important mes-
sages and intents. If we could communicate emotionally, then we could commu-
nicate better [3].

Concurrent Engineering to Wisdom Engineering 243

Fig. 25. Team working

Fig. 26. Role of verb

Another importance issue is the role of verbs in communication. In fact, QFD
or Quality Function Deployment uses verbs to define functions(Fig.26). Verbs
visualize our images. It should be stressed that Prolog is verb-based. Prolog may
help ethnography to grow.

14 Summary

It is pointed out that industries will climb up Maslow’s Hierarchy of Needs and
Wisdom Engineering help them to achieve this goal.

Wisdom Engineering is based upon the world of combinations, which is digi-
tal, discrete and nonlinear. Wisdom Engineering will be an enabler for achieving
Life Cycle Engineering, where products vary their functions with the changes of
their environments and for producing products with growing functions.

Value will be interpreted in a new definition; value= performance/cost. The
manufacturing process will now be considered as a new element to add value
and brand or fashion will create a new market.

244 S. Fukuda

Wisdom Engineering is more or less ethnographic. Our primary concern is
how we understand the situation. To create wisdom, higher level team working
and communication are needed, where emotions are communicated and where
images are visualized.

References

1. Maslow, A., ’Motivation and Personality’,1st edition, 1954,Harper,2nd edi-
tion,1970,Harper & Row, 3rd edition,1987,Addison-Wesley,ISBN0060419873

2. Schon, Donald A., ’The Reflective Practitioner: How Professionals Think in Action’,
1983, Perseus Books, ISBN0465068782

3. Kostov, Vlaho, ’Computer-mediated Agile Emotional Communication’, Doctoral
Dissertation, March, 2002, submitted to Tokyo Metropolitan Institute of Technology
(in English)

Web Services Based on PROLOG and XML

Bernd D. Heumesser1, Andreas Ludwig1, and Dietmar Seipel2

1 University of Tübingen, Wilhelm Schickard Institute for Computer Science,
Sand 13, D – 72076 Tübingen, Germany

{heumesser, ludwig}@informatik.uni-tuebingen.de
2 University of Würzburg, Department of Computer Science,

Am Hubland, D – 97074 Würzburg, Germany
seipel@informatik.uni-wuerzburg.de

Abstract. This paper describes how the deductive power of PROLOG can be made
available across the Internet using standardized Web services technologies. This
facilitates the use of PROLOG as a component of distributed information systems
and in many new application scenarios. Some of those application scenarios are
discussed and one is presented in greater detail. Since a lot of information available
on the Internet is nowadays XML based and since Web services technologies use
XML based encodings, it is both necessary and useful to be able to process XML

documents in PROLOG itself. To make this possible, a new package for SWI–
PROLOG called X2P is introduced, making available to PROLOG many of the
XML processing facilities of the Libxml2 library, which is a very up–to–date
and efficient implementation of most of the current XML related standards.

1 Motivation and Overview

The World Wide Web as we know it today, was initially designed as a platform for
information sharing. The core Web technologies, i.e., HTTP, HTML, Web servers and
Web browsers, enable the exchange of information in the form of documents.

Web browsers soon became standard tools and it was realized that they can also be
used as universal clients to information systems, if these information systems expose
their user interface using HTML documents. Most modern information systems use such
a Web based architecture. Tools like application servers simplify the development of
Web based information systems at the server side.

The development and deployment of distributed information systems, which integrate
applications that are distributed on an Intranet or even on the Internet, is still a lot more
difficult. The need for such an (enterprise) application integration over the Web was
initially generated mainly by business to business (B2B) applications. However, there
are a lot of interesting application scenarios aside from B2B, especially in the context of
information integration and the Semantic Web [1].

Figure 1 compares the traditional Web with the Web services approach. While the
traditional Web is concerned with the interaction between applications and humans, Web
services technologies and standards aim at taking the Web one step further by enabling
interaction between applications and thereby facilitating application integration.

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 245–257, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

246 B.D. Heumesser, A. Ludwig, and D. Seipel

Fig. 1. Traditional Web vs. Web services

Web services are still at an early stage of development, but they certainly have the
potential to solve many interoperability problems and are likely to play an important
role as a means of implementing distributed information systems in the near future.

We believe that making applications based on the deductive power of PROLOG

available across the Internet is very useful and promising, because PROLOG is a very
widely used logic programming language, which at the same time enables rule–based
programming and rapid prototyping of applications. By adopting the new Web services
technologies and standards to facilitate the use of PROLOG based applications across
the Internet, we enable the widest range of platforms to integrate such applications.

All Web services standards use XML based document encodings and not all of those
documents are transparently handled by the Web services toolkits or middleware, e.g. in
the so–called document–style interaction the two interacting applications agree upon the
structure of XML documents exchanged between them and must be able to process such
documents as requests or responses. Furthermore, a lot of information is made available
on the Internet in the form of XML documents. In the context of Web services based on
PROLOG, this illustrates that it is both necessary and useful to be able to process XML

documents in PROLOG programs.
The rest of the paper is structured as follows: Section 2 describes how XML document

processing can be handled in PROLOG. Specifically, it is shown how SWI–PROLOG can
be extended with foreign libraries and how this can be used to develop a new package for
XML document handling called X2P. In conjunction with this, a term representation for
XML documents, the so–called field notation, is introduced. The API for the package X2P

is described and the package is compared to another standard package for SWI–PROLOG

in terms of functionality and performance. Web services, their underlying technologies,
standards and tools are the topic of Section 3, while Section 4 shows how in practice
all those tools and libraries together can be used to make available Web services based on

Web Services Based on PROLOG and XML 247

PROLOG. Following this, the next section discusses some application scenarios, and the
paper concludes with a summary and an outlook on future developments in Section 6.

2 XML Document Processing in PROLOG

XML [19] provides a standard way to define the structure of documents that is suitable
for automatic processing. This enables the development of generic tools that parse docu-
ments and extract their content as well as their structure. Restrictions on the structure of
a document can be specified by Document Type Definitions (DTDs) or XML SCHEMAs
(however, neither of these provide any semantic information). XML has been widely
adopted as the foundation for data representation and formats on the Web. Many parsers
and toolkits exist for different programming environments, which implement the XML

related standards.

2.1 XML and PROLOG

PROLOG is a widely used logic programming language supporting a rule–based, declar-
ative programming approach and enabling rapid prototyping of applications. We use
SWI-PROLOG [18], which is available on many platforms.

Since every element in an XML document (except the root element) is nested into
another element, we can consider XML documents as term structures, which can be
handled nicely by PROLOG and which can then be used to process those terms in a very
compact and efficient way.

SWI–PROLOG offers in a package called Sgml2pl an SGML/XML parser, which
can also take into account a document’s DTD. This parser can parse a document from
a file and transform the content into a PROLOG data structure. The data structure used
is a nested term of the functor element with three arguments: the name of an XML

element, the list of its attributes and the content of this element. The parser uses different
kinds of functors to represent other constructs in an XML document (e.g. entities, a DTD

declaration or processing instructions). The parsing process can optionally be controlled,
e.g. to influence the treatment of spaces.

Libxml2 [8] is the XML parser and toolkit that was developed for the Gnome project
[6], but it can also be used standalone and outside of the Gnome platform. This library
of C functions implements XML parsers and toolkits for a number of existing standards
related to XML, e.g. XPATH [20].Libxml2 contains functions to parse XML documents
supporting validation against an (internal or external) DTD or an XML SCHEMA. It can
also handle namespaces and different XML document encodings. The internal document
representation follows the DOM interface. The library can also be used to evaluate XPATH

expressions.

2.2 Extending SWI–PROLOG with Foreign Libraries

SWI–PROLOG offers a foreign language interface, which can be used to combine code
written in a foreign programming language like C with PROLOG programs. This interface
can be used in two different ways:

– It provides data types and functions to implement PROLOG predicates in a foreign
language, e.g. in C, and hence may use other C functions and libraries. The C code

248 B.D. Heumesser, A. Ludwig, and D. Seipel

is compiled to a shared object, and the predicates must be properly registered with
SWI–PROLOG as so–called foreign predicates. When a foreign predicate is used,
SWI–PROLOG calls the corresponding function from the shared object.

– On the other hand, the foreign language interface can be used to embed the PROLOG

engine into a foreign language program. For instance, PROLOG goals can be called
and evaluated from a C program.

We use the foreign language interface of SWI–PROLOG in both ways. First, to make
some of the functionalities of Libxml2 available to SWI–PROLOG for efficient XML

document processing (see the next two paragraphs). Secondly, to provide PROLOG based
applications as Web services (see Section 4).

2.3 The X2P Package

We have developed a package called X2P, which makes available through the foreign
language interface some of the functionalities of Libxml2 within SWI–PROLOG. X2P

is therefore implemented in C and PROLOG and consists of several foreign predicates
that encapsulate Libxml2 functions and convert arguments from PROLOG to C and
vice versa.

X2P offers predicates for reading, parsing and validating XML documents and for
making their content available in PROLOG. There are options available to control some
details of this processing, such as the handling of whitespaces, namespaces and entities.
Furthermore, X2P allows for the evaluation of an XPATH expression on an XML docu-
ment. In both cases we recieve the data in the so–called field notation, which serves as a
Document Object Model for XML in PROLOG. Sections 2.4 and 2.5 describe the X2P’s
API and the field notation in greater detail.

Feature X2P Sgml2pl

Evaluation of XPATH Expressions Yes No
Support for XML Schema Yes No
Handling of large documents Yes No
SGML Document parsing No Yes
Fully implemented in PROLOG No No

Fig. 2. Comparison of X2P and Sgml2pl

The differences, as shown in Figure 2, between the X2P package and the SGML

parser from SWI’s Sgml2pl package stem from the different concepts and history of
the two packages. X2P offers the broader range of functionalities for XML documents
and the more up–to–date support and implementation of XML related standards. Doc-
uments can be validated against an XML SCHEMA document and XPATH expressions
can be evaluated only with X2P. X2P can be easily extended to incorporate a current
version of Libxml2 offering new functionalities. It offers many more detailed options,
influencing the handling of entities, namespaces, comments or processing instructions.
However, X2P is limited to XML documents, whereas Sgml2pl can parse all SGML

based documents including HTML documents.

Web Services Based on PROLOG and XML 249

SIGMODDocument SIGMOD
(Old version)

DBLP

Size 478 KB 704 KB 184 MB
Parsing time X2P 0.34 s 0.62 s 233.17 s
Parsing time Sgml2pl 0.32 s 0.67 s NA

Fig. 3. Comparison of document sizes and parsing times

In practice it turned out, that in terms of parsing times Sgml2pl and X2P are
comparable. However, for large documents X2P seems to be far more efficient: Even
with the biggest possible trail stack for SWI (1 GB for SWI–PROLOG on a 64 bit Sun
UltraSPARC architecture) Sgml2pl could not parse the XML document containing the
data from the Digital Bibliography & Library Project (DBLP, [9]), while X2P could in
acceptable time. See Figure 3 for a more detailed comparison of runtimes for parsing
the XML editions of DBLP and SIGMOD Record [2].

2.4 The API of X2P

To give an impression of the application programming interface of the X2P package, we
describe some of the PROLOG predicates.

The following predicates all make an XML document (or parts of it when evaluating
XPATH expressions) available in PROLOG as a term in field notation (or a list of field
notation terms).

load xml file(+File, -FNTerm)
Reads the XML document from the specified file and returns the field notation
representing the document in a term.

load xml file(+File, -FNTerm, -Valid)
This predicate is an extension of the above predicate, which additionally attempts
to validate the document against the DTD it references. The boolean result of the
validation is returned as the third parameter.

load xml file(+File, +Schema, -FNTerm, -Valid)
Reads the XML document from the given file, validates it against the specified XML

SCHEMA document and returns the corresponding field notation and the validation
result.

apply xpath(+File, +XPathExpr, -FNList, +Options)
The XPATH expression given as the second parameter is evaluated on the specified
XML document read from the file and the result of this evaluation is bound to the
third parameter (a list of field notation terms). Additional options governing the
evaluation process can be supplied in the fourth argument.

For each of these predicates, a corresponding predicate exists, which reads the XML

document not from a file but instead from a string. Such predicates are for example
necessary when the SOAP server passes an XML document in document–style interaction
to the PROLOG engine (see Section 4).

250 B.D. Heumesser, A. Ludwig, and D. Seipel

Additionally, many options are available to influence the behaviour of the parser:
E.g., if blanks should be conserved or omitted, how namespaces, entities, comments,
processing instructions are treated. The predicate xml file to fn allows to pass all
of these options to the parser and serves as a basis for the predicates shown above.

Let us take a look at this predicate, which parses an XML document and transforms
it into field notation. Its implementation indicates how PROLOG and Libxml2 work
together:

xml_file_to_fn(File, FNTerm, Options) :-
process_options(Options, Options1)
new_parser(Parser),
set_parser_options(Parser, Options1, Options2),
parse_xml_doc(Parser,

[source(File), document(FNTerm) | Options2]),
free_parser(Parser).

First, some options influencing the parsing are preprocessed. The foreign predicate
new parser uses Libxml2 to initialize a new parser object. The PROLOG predicate
set parser options calls another foreign predicate to pass the parsing options to
the parser object created before. The actual parsing process is initiated by the predicate
parse xml doc. This predicate calls the foreign parsing routine of Libxml2 and
transforms the resulting parse tree into field notation. Finally, free parser frees the
resources allocated by the parsing process.

2.5 Field Notation and FNPATH

Instead of using term structures as the result of parsing an XML document, we map
them to the so–called field notation (cf. [12]), which we use as the Document Object
Model (DOM) for PROLOG. We represent an XML element, which can have attributes
and nested elements, by a triple T : A : C, where T is the name of the element, A is a
list of attribute/value–pairs representing the attributes and their values and C represents
the content of the element or the nested elements.

Consider the following fragment of the DBLP XML document describing one of
Codd’s famous articles:

<article mdate="2002-12-04" key="journals/cacm/Codd70">
<author>E. F. Codd</author>
<title>A Relational Model of Data for Large Shared Data Banks.</title>
<pages>377-387</pages>
<year>1970</year>
<volume>13</volume>
<journal>CACM</journal>
<number>6</number> ...

</article>

Web Services Based on PROLOG and XML 251

The resulting representation of the document fragment in field notation is shown
below:

article:[mdate:’2002-12-04’, key:’journals/cacm/Codd70’]:[
author:[]:[’E. F. Codd’],
title:[]:[’A Relational Model of Data for Large Shared Data Banks.’],
pages:[]:[’377-387’],
year:[]:[’1970’],
volume:[]:[’13’],
journal:[]:[’CACM’],
number:[]:[’6’], ...]

All the content (and all uppercase tag names) is enclosed in single quotes, since we
transform the data contained in elements into atoms.

Based on this field notation we use a powerful and flexible query language called
FNPATH, which has been introduced in [12]. A detailed description of the field notation
and FNPATH can be found there. The FNPATH language allows to address, select and
change any part of an XML document. In terms of functionality FNPATH is comparable
to XPATH, but it is much more appropriate for using in PROLOG. Additionally it contains
features from XQUERY [21] or XSLT [22] like aggregation and efficient transformation
mechanisms.

FNPATH defines the :=/2 operator: on the right hand side there is a term in field
notation followed by a tree expression addressing some parts of the document. The result
of the evaluation of this tree expression is unified with the left hand side.

The tree expressions look like XPATH expression, except that FNPATH uses the
operator ˆ for separating the location steps.

3 Web Services

The term Web services [3] is not always used with the same meaning. Often, in a
very generic meaning, a Web service is simply seen as an application accessible over the
Web. We want to use the more specific and restrictive definition given by the W3C’s Web
Service Architecture Working Group [15] defining a Web service as "a software system
identified by a URI, whose public interfaces and bindings are defined and described
using XML. Its definition can be discovered by other software systems. These systems
may then interact with the Web service in a manner prescribed by its definition, using
XML based messages conveyed by Internet protocols".

Web services are still at a very early stage of development and some say that they
currently are not more than yet another attempt to master the complexity of enterprise
application integration. The Web services movement is a standardization effort that
builds on a lot of experience in developing and deploying middleware systems using e.g.
Remote Procedure Calls (RPC) or the Common Object Request Broker Architecture
(CORBA). Thus, Web services are certainly evolutionary rather than revolutionary.

But if the ongoing standardization effort succeeds and Web services standards be-
come as widely adopted as the Web technologies already have, Web services could
become the basis for a seamless and almost completely automated infrastructure for

252 B.D. Heumesser, A. Ludwig, and D. Seipel

enterprise application integration, because the use of standard technologies reduces het-
erogeneity drastically.

So the Web services activities try to bridge the gap between what the Web already
provides (originally for the interaction between humans and applications, e.g. HTTP as
a standard interaction protocol and XML as a standard data format) and what applica-
tion integration still requires (e.g., interface definition languages, name and directory
services, transaction protocols and so on).

Web services assume that some functionality (performed by internal systems) will
be exposed as a service and made discoverable and accessible for applications (not hu-
mans) through the Web in a controlled manner. Today, three components and proposed
standards are the core of Web services, all of them covering different aspects of appli-
cation integration over the Web: The Simple Object Access Protocol (SOAP) as a way
to communicate, the Web Services Description Language (WSDL) as a way to describe
services and the Universal Description, Discovery, and Integration (UDDI) project as a
name and directory server. Besides these fundamental specifications, which have gone
quite some way in terms of standardization and are already implemented and used in
practice, some other more high–level concepts are being developed: coordination pro-
tocols (concerned for example with transactions) and Web service composition or flow
languages (concerned with the composition of Web services clients and services into
complex business processes). However, those specifications are at a very early stage of
standardization and are still changing rapidly.

We will take a look at the three proposed standards SOAP, WSDL and UDDI, which
all use XML based languages to tag the data exchanged, in general and in particular with
respect to our goal of making PROLOG based applications available as Web services.

3.1 SOAP, WSDL, and UDDI

The Simple Object Access Protocol (SOAP, [13]) is the communication protocol for Web
Services. It provides a standardized way to encode different protocols and interaction
mechanisms into XML documents that can be easily exchanged across the Internet.
Services can exchange messages by means of standardized conventions to turn a service
invocation into an XML message, to exchange the message, and to turn the XML message
back into an actual service invocation. The SOAP specification describes in detail a
message format, i.e., how information can be packaged into an XML document, a set
of conventions for using SOAP messages to implement different interaction patterns
(among others the traditional RPC interaction pattern), a set of processing rules that
each entity that processes SOAP messages must comply to, and how SOAP messages
should be transported on top of HTTP or SMTP. Bindings to other transport protocols
can also be defined, but currently HTTP is the most commonly used transport protocol.

SOAP exchanges information using messages. These messages are used as an enve-
lope where the application encloses whatever information needs to be sent. In essence,
there are two different interaction styles: document–style and RPC–style. When using
document–style interaction, two interacting applications have to agree upon the struc-
ture of XML documents exchanged between them, which are then transported from one
application to another in SOAP messages. For RPC–style interaction on the other hand,

Web Services Based on PROLOG and XML 253

two interacting applications have to agree upon the RPC method signature. The SOAP

specification then governs how XML documents representing the request with input
parameters and the response with output parameters have to be constructed. This task is
typically hidden by the SOAP middleware.

We use gSOAP (see Section 3.2) as a SOAP middleware to provide standalone Web
services that make the functionality of PROLOG applications available on the Internet.
gSOAP handles the SOAP messaging transparently, so that we are not really concerned
with the exchange of messages, the handling of message envelopes or the underlying
transport protocol HTTP etc. This leaves us with the task of providing the implementation
for the functionality that is to be exposed as a Web service. This implementation differs
depending on which interaction style is actually used for the Web service: for RPC–
style interaction, we have to provide a function that receives some input parameters
(of simple types) from the SOAP middleware and returns the output parameters, while
for document–style interaction the implementation must be able to process an XML

document as input and produce another XML document as output.
Both interaction styles can be used in conjunction with PROLOG based Web services,

but in particular Web services using a document–style interaction make it necessary to
be able to process XML documents using PROLOG.

The Web Services Description Language (WSDL, [17] and [16]), is an XML based
language that is used both as an advanced form of interface definition language and to
describe several aspects of a service that are unique to Web services. This includes the
transport protocol (e.g. HTTP) to use when invoking the service and the address where
the service can be requested (e.g. an URL when using HTTP as the transport protocol).

We use WSDL documents in conjunction with the Web services middleware toolkit
gSOAP for two purposes. First, to let gSOAP generate (for each described Web service
interface) stubs and intermediate layers that make requests to the Web service transparent.
These stubs are then used as the basis to implement the PROLOG based Web services.
Secondly, to publish information about those Web services for use by client applications.

The Universal Description, Discovery, and Integration (UDDI) specification [14]
describes how to organize information about Web services and how to build registries
where such information can be published (by service providers) and queried (by client
service requesters). While WSDL is concerned with the description of service interfaces
and information needed to actually access theses services, UDDI offers additional layers
of information in a registry that can be used by clients to autonomously discover services
and decide whether to use a service or not. Thus, the Web services registry acts as a name
and directory server like on other middleware platforms. As a result of a UDDI query,
the client recieves a WSDL document describing a Web service. UDDI is currently not
used in conjunction with the PROLOG based Web services, although it could of course
be used to register the available Web services at the UDDI registry.

3.2 gSOAP

gSOAP [5] is a Web services middleware toolkit for C and C++ developed by Robert
van Engelen at the Florida State University. The gSOAP compiler tools offer full SOAP

interoperability using a simple API which relieves the user from the burden of SOAP

254 B.D. Heumesser, A. Ludwig, and D. Seipel

details and thereby ease the development of Web services and client applications in C or
C++. The included WSDL parser automates server and client application development
and also generates WSDL documents to publish the Web services. gSOAP is available for
almost any platform, has shown to be very fast and efficient, and is very well maintained
and up–to–date in terms of supporting the latest standards. We currently use gSOAP only
for the development of Web services, i.e., not for developing clients requesting those
Web services.

4 Putting It All Together

Figure 4 shows how all the technologies and concepts presented so far work together to
provide for PROLOG based Web services.

The implementation of a PROLOG based Web service starts with the specification of
the function that will be exposed as a service. This is done by supplying a C/C++ header
file containing the definitions of data types and a function prototype. The gSOAP compiler
generates a C/C++ stub from this header file and a corresponding WSDL document.
The stub can then be used to implement the Web service’s functionality. In our case,
the implementation is merely a C wrapper function, which uses the foreign language
interface of SWI–PROLOG to embed the PROLOG engine into the application. For this
purpose, a so–called saved state of SWI–PROLOG is used, where the predicates of the
X2P package already have been consulted and can be used immediately. These predicates
again use the foreign language interface to access functions of the Libxml2 library,
which leads to the inclusion of this library as a shared object. The top layer of the Web
service application consists of a gSOAP runtime library acting as a SOAP server, which
transparently handles the SOAP requests and responses.

gSOAP
SOAP server

gSOAP server stub
C wrapper function

SWI Prolog
(saved state)

x2p
Libxml2

Foreign Language
Interface

Web Service

SOAP
request
SOAP

response

HTTP

WSDL

Foreign Language
Interface

gSOAP
compiler/toolkit

HTTP

Fig. 4. Architecture of PROLOG based Web services

Web Services Based on PROLOG and XML 255

The WSDL document describing the Web service can be used by a Web service client
to locate and request the Web service (HTTP is used as the transport protocol). Upon
such a request, depending on the interaction style used, the SOAP server extracts the
input parameters (RPC–style) or an XML document (document–style) and passes them
to the C function handling the request. In our case, this function uses a PROLOG engine
to process the request and produce output parameters or another XML document as a
result. This result is returned to the SOAP server, which packages it into a SOAP response
that is sent back to the client.

5 Applications

The framework for PROLOG based Web services presented in the last section can be
used in many different application scenarios. PROLOG itself can be used as an inference
engine for many purposes, and with the advent of the Semantic Web this will gain
even more importance. Furthermore, PROLOG enables rapid prototyping of heuristic
approaches, especially together with the extensions for XML document processing. The
Web services framework for PROLOG then allows us to quickly make such functionality
available on the Web as standardized components.

As a simple example, consider a PROLOG based Web service which offers a fuzzy
search on the SIGMOD Record XML document. The PROLOG program implementing
this Web service receives through the gSOAP middleware and the wrapping C function
an XML document (document–style interaction) containing the name of an author. This
XML document is then parsed and the author’s name is extracted. The SIGMOD Record
document is also parsed and transformed into the field notation. The actual search for
articles by the given author is fuzzy or fault–tolerant as it can deal (with respect to
both the query document and the author names in the SIGMOD Record document) with
different name formats, e.g. "firstname(s) lastname", "lastname, firstname(s)", firstnames
abbreviated to initials, different spellings and so on. This heuristic approach is well
supported by PROLOG, the XML processing facilities and FNPATH resulting in a very
compact and elegant program that is easy to maintain. The titles of all articles by the
author specified in the query is returned as an (simple) XML document and returned to
the calling C program, which passes it to the client calling the Web service.

The main predicate implementing the search is shown below:

search_articles(Qname, Titles) :-
data(sigmod, Doc),
process_name(Qname, Query),
findall(T,

(Article := Doc^’SigmodRecord’^issues^issue^articles^article,
[Author] := Article^authors^author,
process_name(Author, Aname),
match_names(Query, Aname),
T := Article^title),

Titles).

256 B.D. Heumesser, A. Ludwig, and D. Seipel

Notice how the relevant parts of the XML document for SIGMOD Record are ad-
dressed using FNPATH expressions. The predicate process name does some prepro-
cessing for the author name used as a query, while the fuzzy matching is done by the
predicate match names, which is a simple and compact rule–based algorithm. The
predicate returns a list of article titles, which are then converted into an XML document
and passed back through the layers of the Web services framework.

An approach like this is very promising when used in conjunction with serveral
different XML documents from the same domain (e.g. the DBLP and SIGMOD Record
documents) or in general for information fusion or information integration tasks, because
it enables rapid prototyping of heuristics and services that are easy to maintain.

6 Summary and Outlook

We have presented how the ability to efficiently process XML documents in PROLOG

together with the gSOAP Web services toolkit and middleware make it possible to expose
the functionalities of PROLOG programs on the Internet as Web services. Due to the
thorough standardization of Web services technologies, this enables generic clients to
autonomously use such Web services.

Until now, there is very few related work on the topic of combining PROLOG and
Web services: In [4], Chen et al. describe the architecture of an intelligent agent that
integrates concepts from the Semantic Web with Web Services. This agent system uses
SWI–PROLOG as its inference engine for processing semantic information extracted from
DAML+OIL documents and SOAP to access other Web services, but it only includes a
Web services client and does not provide PROLOG based applications directly as Web
services.

Web services technologies are rapidly being adopted by the industry. They are very
likely to become the dominant platform for implementing distributed information sys-
tems. Just like Web browsers became the universal client for the interaction of humans
with information systems, generic Web services clients will be used to discover and
autonomously access information systems. For example, major Database Management
Systems like IBM’s DB2 offer extensions [11] to support Web services both as a provider
(i.e. exposing relational data through a Web service) and as a requester (i.e. invoking
Web services from within SQL statements using user defined functions). This is also an
interesting perspective for our project, because it makes the deductive power of PROLOG

available to Database Management Systems.
Another interesting aspect is the implementation of Web services clients for SWI–

PROLOG as a complementary technology. This would make the rapidly increasing num-
ber of Web services accessible for PROLOG programs. As mentioned in section 3.2, we
currently use gSOAP only for the generation of PROLOG based Web services. But given
a WSDL document describing a Web service, gSOAP can also generate stub routines for
accessing this Web service. These stub routines can then be used to implement PRO-
LOG predicates via the foreign language interface, which access the Web service from a
PROLOG program with parameter values determined at runtime and make the responses
returned by the Web service available in PROLOG.

We think that PROLOG based Web services can be valuable components of many
distributed information systems, for example in an information broker [10] to support

Web Services Based on PROLOG and XML 257

complex information gathering and integration strategies or to control a mulit–agent
system [7].

References

1. T. Berners–Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific American, May 2001.
2. Association For Computing Machinery. SIGMOD Record in XML.

http://www.acm.org/sigmod/record/xml/
3. G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services: Concepts, Architectures and

Applications. Springer, 2004.
4. Y. Chen, W. Hsu, P. Hung. Towards Web Automation by Integrating Semantic Web and Web

Service. Proc. of the 12th Intl. World Wide Web Conference, 2003.
5. R. van Engelen. The gSOAP toolkit. Florida State University,

http://www.cs.fsu.edu/˜engelen/soap.html
6. GNU Network Object Model Environment,

http://www.gnome.org
7. B. Heumesser, R. Schimkat. Deduction on XML Documents: A Case Study. Proc. of the 14th

Intl. Conf. on Applications of PROLOG (INAP), 2001.
8. D. Veillard. Libxml2. http://www.xmlsoft.org
9. M. Ley. Digital Bibliography & Library Project (DBLP) XML records.

http://dblp.uni-trier.de/xml/
10. A. Ludwig, U. Güntzer. An Information Brokering Framework. Proc. of the 7th World

Multiconference on Systemics, Cybernetics and Informatics (SCI), 2003.
11. S. Malaika, C. J. Nelin, R. Qu, B. Reinwald, D. C. Wolfson. DB2 and Web services. IBM

Systems Journal, 41 (4), 2002.
12. D. Seipel. Processing XML–Documents in PROLOG. Workshop on Logic Programming

(WLP), 2002.
13. Simple Object Access Protocol (SOAP) Version 1.2, W3C Recommendation,

http://www.w3.org/TR/soap12-part0/
14. Universal Description, Discovery and Integration (UDDI) protocol, OASIS Standards Con-

sortium, http://uddi.org/
15. Web Services Architecture Working Group. Web Services Architecture Requirements, W3C

Working Draft, http://www.w3.org/TR/wsa-reqs
16. Web Services Description Language (WSDL) Version 2.0, W3C Working Draft,

http://www.w3.org/TR/wsdl20/
17. Web Services Description Working Group, http://www.w3.org/2002/ws/desc/
18. J. Wielenmaker. SWI–PROLOG Reference Manual, http://www.swi-prolog.org/
19. Extensible Markup Language (XML) 1.1, W3C Proposed Recommendation,

http://www.w3.org/XML/Core/#Publication
20. XML Path Language (XPATH) Version 1.0, W3C Recommendation,

http://www.w3.org/TR/xpath
21. XQUERY 1.0: An XML Query Language, W3C Working Draft,

http://www.w3.org/TR/xquery
22. XSL Tranformations (XSLT), World Wide Web Consortium (W3C), August 2002,

http://www.w3.org/TR/xslt20/

A Contribution to the Semantics of Xcerpt, a
Web Query and Transformation Language

François Bry, Sebastian Schaffert, and Andreas Schroeder

Institute for Computer Science, University of Munich
http://www.pms.informatik.uni-muenchen.de/

1 Introduction

Xcerpt [1, 2] is a declarative and pattern-based query and transformation lan-
guage for the Web with deductive capabilities. In contrast to Web query lan-
guages like XQuery and XSLT [3, 4], Xcerpt relies on concepts and techniques
from logic programming and automated theorem proving such as declarative
“query patterns” and “rule chaining”. Xcerpt can also be used for querying Web
metadata, like OWL or RDF data [5, 6], and reasoning on such metadata. In
contrast to specific languages for OWL and RDF, however, Xcerpt is a general
purpose query, transformation, and reasoning language, i.e. it can be used for
reasoning not only with Web metadata but also with plain Web data.

Salient aspects of Xcerpt are its nonstandard “query patterns” for retrieving
incompletely specified data and its unusual “grouping constructs” some and all
that significantly depart from the standard approaches in logic programming or
automated theorem proving. Xcerpt relies on a new, assymmetric unification,
called simulation unification for evaluating query patterns that incompletely
specify data. Furthermore, Xcerpt does not rely on meta reasoning for express-
ing and processing “grouping” constructs corresponding to Prolog’s metalevel
predicates setof and bagof.

This article gives a brief overview over challenges of applying logic program-
ming techniques to Web querying. In particular it suggests two different ap-
proaches for treating the meta-level grouping constructs all and some in a proof
calculus formalising the operational semantics of Xcerpt.

2 Requirements of a Web Query Language

2.1 Differences to Traditional Logic Programming

The observation that motivated the development of Xcerpt is that Web data
formats like XML describe tree or graph structures just like terms in logic pro-
gramming. However, the usage of these terms differs in several important aspects
from the terms used in traditional logic programming, which are discussed below.

Information Representation. In logic programming, a database usually consists
of a set of facts, each of which comprises an alternative entry in the database. In

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 258–268, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Contribution to the Semantics of Xcerpt 259

the Web, the concept of a database is usually much broader. Besides considering a
collection of terms (or documents) as a database, it is very common to represent a
complete database within a single term, where the individual entries are subterms
of the database.

Structure. Whereas logic programming (and relational databases, for that mat-
ter) assumes very homogenous sets of data, databases on the Web are in general
more flexible and data items of a similar kind often have a slightly different
structure. For example, an address book might contain one address entry which
has two email addresses and no phone, and another which has no email address
but a phone as well as a mobile number.

Schema. Terms in logic programming follow a rather rigid schema, in which
both the term label and the arity are fixed (i.e. f{a} and f{a, b} are instances
of different schemas and a query for f{X} would match only the first).

Semistructured databases as found on the Web are much more flexible in this
respect, mostly due to the heterogeneous and constantly evolving nature of the
Web. In particular,

– documents are not required to have a schema at all
– if a schema exists, they do not need to fully comply to it
– schema languages like XML Schema or RelaxNG [7, 8] allow more flexible

structures, where subterms might be optional, alternatives, or repeated an
arbitrary number of times

For example, f{a} and f{a, b} might both be instances of the same schema
and should thus both match with the query f{{X}}.

Note that this article uses for simplicity reasons a reduced syntax, in which
terms are limited to the curly braces { }. Curly braces denote that the order of
subterms is irrelevant. The full language Xcerpt [9] also allows a so called ordered
term specification with square brackets [], which is a more precise representation
for XML documents as they are always ordered.

2.2 Partial Patterns and Grouping Constructs

To summarise, a Web query language like Xcerpt needs to fulfill the following
requirements:

– it needs to be able to work with partial information about the queried doc-
ument, as schema information might be missing or incomplete.

– it needs to be able to query several alternatives within the same document,
which might even differ in their structure.

– it needs to be able to construct new documents in the same manner, i.e.
where several alternatives are grouped in the same document.

Xcerpt addresses the first two requirements by extending the notion of terms
to partial patterns (expressed by double curly braces as in f{{a}}) and by the
descendant construct (expressed by the keyword desc as in f{{desc a}}). Partial
patterns allow the programmer to specify only the minimum information that is

260 F. Bry, S. Schaffert, and A. Schroeder

necessary for querying (e.g. in an address book, it is sufficient to specify the name
to retrieve an entry). Partial patterns also allow to query several alternatives in
a single term, as these can be identified with the different alternative ways of
matching a partial pattern with the term (e.g. a partial query for f{{X}} against
a database f{a, b} matches either with X = a or with X = b). The descendant
construct allows to match a pattern at arbitrary depth (e.g. a partial query for
f{{desc X}} against the database f{g{a}, h{b}} matches with X = g{a}, with
X = h{b}, with X = a or with X = b).

The last requirement is addressed by the grouping constructs all and some,
which are similar in meaning to the Prolog predicates setof or bagof in that
they collect all possible alternative solutions. Since grouping constructs are very
frequently used in Web querying, Xcerpt includes them into the language itself
rather than as external predicates. As a consequence, the proof calculi should
support such grouping constructs directly, whereas Prolog works around this
problem with meta reasoning. An example of an Xcerpt rule containing both
grouping constructs and partial query patterns is given in Figure 2.

Xcerpt has many constructs that are not covered here for space reasons. A
more detailed introduction into Xcerpt can e.g. be found in [9].

3 Simulation Unification

Simulation unification [10] is a non-standard, asymmetric unification method
that respects partial term specifications. Simulation unification is based on a
relation called simulation, which is a partial ordering on the set of terms. Intu-
itively, a term t1 is simulated in a term t2 if the structure of t1 can be found in
t2 (see Figure 4).

Simulation unification of a partial term t1 and a term t2 computes a set
of alternative substitutions for the variables in t1 and t2 such that the ground
instance of t1 simulates into the ground instance of t2. For instance, simulation
unification of the partial term f{{X}} and the term f{a, b} yields the two
alternative substitutions σ1 = {X = a} and σ2 = {X = b}.

The simulation unification algorithm is specified in terms of constraint reduc-
tion rules that operate on a constraint store initialised with t1 �S t2 (meaning
that t1 should simulation unify into t2, i.e. after adequate variable bindings t1
should simulate into t2). All unification rules decompose a single constraint to a
formula containing conjunctions and/or disjunctions of smaller constraints, until
no further decomposition is possible (i.e. until either the left or the right side
consists of a variable, or a constraint is reduced to one of the boolean values true
or false). If no further rule is applicable, simulation unification creates a set of
substitutions by computing the disjunctive normal form of the constraint store,
and by replacing all constraints of the form X �S t by X = t. Each disjunct in
the disjunctive normal form is an alternative substitution.

It is assumed that the constraint store applies simplification rules as needed
(e.g. remove conjunctions that contain a boolean value false). Furthermore, the

A Contribution to the Semantics of Xcerpt 261

<bib>
<book year="1994">
<title>TCP/IP Illustrated</title>
<authors>
<author>
<last>Stevens</last>
<first>W.</first>

</author>
</authors>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="1992">
<title>
Advanced Programming ...

</title>
<authors>
<author>
<last>Stevens</last>
<first>W.</first>

</author>
</authors>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="2000">
<title>Data on the Web</title>
<authors>
<author>
<last>Abiteboul</last>
<first>Serge</first>

</author>
<author>
<last>Buneman</last>
<first>Peter</first>

</author>
<author>
<last>Suciu</last>
<first>Dan</first>

</author>
</authors>
<publisher>Morgan Kaufmann</publisher>
<price>39.95</price>

</book>...
</bib>

<reviews>
<entry>
<title>Data on the Web</title>
<price>34.95</price>
<review>

A very good discussion of semi-
structured database systems
and XML.

</review>
</entry>
<entry>
<title>

Advanced Programming
</title>
<price>65.95</price>
<review>

A clear and detailed discussion
of UNIX programming.

</review>
</entry>
<entry>
<title>TCP/IP Illustrated</title>
<price>65.95</price>
<review>

One of the best books on TCP/IP.
</review>

</entry>...
</reviews>

Fig. 1. Two bookstore databases with different structures but similar contents. Note
that several alternative entries are contained within the same document and how book
entries in the left database differ slightly in structure

following rule enforces consistency between different constraints for the same
variable and ensures that after the evaluation there exists only a single upper
bound for each variable.

X �S t1 ∧ X �S t2
X �S t1 ∧ t1 �S t2 ∧ t2 �S t1

In case that the two bounds for the variable (t1 and t2) are inconsistent, i.e.
cannot be unified, one of the constraints t1 �S t2 or t2 �S t1 is reduced to false
in further evaluation steps.

262 F. Bry, S. Schaffert, and A. Schroeder

CONSTRUCT
books {

all book {
var TITLE, price-a { var PRICEA }, price-b { var PRICEB } }

}
FROM
and {
in { resource { "http://bn.com" },
bib {{
book {{ var TITLE � title{{}}, price { var PRICEA } }}

}} },
in { resource { "http://amazon.com" },
reviews {{
entry {{ var TITLE � title{{}}, price { var PRICEB } }}

}} }
}

WHERE
or {
var PRICEA < 40,
var PRICEB < 40

}
END

Fig. 2. An Xcerpt rule that queries two book databases (given in Figure 1) and returns
a list of book titles with price comparisons (given in Figure 3). Partial query patterns
are indicated by double braces. A more detailed presentation of Xcerpt can be found
in [9]

<books>
<book>
<title>TCP/IP Illustrated</title>
<price-a>65.95</price-a>
<price-b>65.95</price-b>

</book>
<book>
<title>Advanced Programming ...</title>
<price-a>65.95</price-a>
<price-b>65.95</price-b>

</book>
<book>
<title>Data on the Web</title>
<price-a>39.95</price-a>
<price-b>34.95</price-b>

</book>
</books>

Fig. 3. The XML document resulting from the evaluation of the Xcerpt rule in Figure
2. For each book, the element price-a contains the price of the first database of Figure
1, the element price-b the price from the second database

3.1 Decomposition Rules

Root Elimination. Root elimination rules compare the roots of the two terms
and distribute the unification to the children.

Left Term without Children. This set of rules consider all such cases where the
left term does not contain child elements. These cases have to be treated sepa-
rately from the general decomposition rules below as this would yield the wrong
result. For instance, an empty or is equivalent to False but the result should al-

A Contribution to the Semantics of Xcerpt 263

Fig. 4. A simulation between two graph representations of terms. Note that the sub-
term c is contained in the term on the right but not in the term on the left

ways be True in case the left term is only a partial specification. In the following,
let m ≥ 0 and k ≥ 1:

l{{ }} �S l{t21, . . . , t
2
m} l{ } �S l{t21, . . . , t

2
k} l{ } �S l{ }

True False True

As specified by these rules, a term without children, but with a partial speci-
fication (double braces) matches with any term which has the same label. If the
term specification is not partial, it matches only with such terms that also do
not have subterms.

Decomposition. The general decomposition rule eliminates the two root nodes
in parallel and distributes the unification to the various combinations of children
that result from total/partial specification. If there exists no such combination,
then the result is an empty or, which is equivalent to False.

In the following, let n,m ≥ 1, and, given two terms l{t11, . . . , t
1
n} and

l{t21, . . . , t
2
m}, let Π,Πsurj : {1, . . . , n} → {1, . . . , m} be defined as follows:

– Π is the set of all total, injective functions from {1, . . . , n} to {1, . . . , m}.
– Πsurj is the set Π restricted to all surjective functions

l{{t11, . . . , t1n}} �S l{t21, . . . , t
2
m} l{t11, . . . , t

1
n} �S l{t21, . . . , t

2
m}∨

π∈Π

∧
1≤i≤n t1i �S t2π(i)

∨
π∈Πsurj

∧
1≤i≤n t1i �S t2π(i)

For instance, if the left term has a partial specification for the subterms, the
simulation unification has to consider as alternatives all combinations of children
from the left term with children from the right term, provided that each child
on the left gets a matching partner on the right.

Label Mismatch. In case of a label mismatch, the unification fails. In the follow-
ing, let l1 �= l2.

l1{{t11, . . . , t1n}} �S l2{t21, . . . , t
2
m} l1{t11, . . . , t

1
n} �S l2{t21, . . . , t

2
m}

False False

f

b

d e d

b

a

f

d

e

da c

264 F. Bry, S. Schaffert, and A. Schroeder

Descendant Elimination. The descendant construct is eliminated by adding
a disjunction of constraints, which express that the current term t2 is matched
by t1 or that at least one of the subterms of t2 is matched by desc t1, thus
distributing the decomposition to the children of t2. Let m ≥ 0.

desc t1 �S l2{t21, . . . , t
2
m}

t1 �S l2{t21, . . . , t
2
m} ∨ ∨

1≤i≤m desc t1 �S t2i

4 Two Approaches to Proof Calculi for Xcerpt

The suggested calculi are inspired by the SLD resolution used in logic program-
ming. However, traditional approaches like the SLD resolution do not account
well for constructs like partial patterns or grouping constructs. Both kinds of
constructs have implications on possible proof calculi.

High Branching Rate. In traditional logic programming, there are two elements
of nondeterminism that lead to branching in the proof tree: selection of the pred-
icate to unfold in the evaluation of a rule body, and the selection of the program
rule used for further chaining. Xcerpt’s usage of partial patterns adds a third
element: When using partial patterns, there is in general no single way to match
two terms. Instead, all possible alternative matchings have to be considered,
which leads to a significantly higher branching rate.

Grouping Constructs all and some. Unlike Prolog’s setof and bagof predicates,
the grouping constructs all and some are an integral part of the language. It
is hence desirable to support such higher order constructs in the proof calculus
itself rather than treating them as external predicates.

This article gives a brief overview over possible approaches to proof calculi
that are taking into account the above-mentioned issues. The remainder of this
section introduces two approaches called “one at once” and “all at once”, which
differ in that “one at once” follows only a single proof path at a time (like SLD
resolution), whereas “all at once” allows to follow a different proof path at each
step, regardless of whether the previous path was finished or not.

4.1 Common Properties

The evaluation of the two approaches yields a set of substitutions which is con-
structed in almost the same manner as for simulation unification above. In both
approaches, the proof tree is represented as a formula of constraints, the con-
straint store. Such constraints are one of

– folded queries represent query parts that have not yet been evaluated (e.g. a
query pattern or a conjunction of query patterns) and are expressed as 〈Q〉.

– simulation constraints specify that two terms t1 and t2 have to be unified
and are expressed as t1 �S t2,

– dependency constraints specify that the evaluation of one constraint depends
on the evaluation of another and are expressed as (C1 | C2).

A Contribution to the Semantics of Xcerpt 265

Furthermore, the following notations are used:

– Pgrouping denotes the set of all rules in the program P that contain one of
the grouping constructs all or some

– Pnongrouping denotes the set of all rules in the program P that do not contain
one of the grouping constructs all or some

– T denotes the set of all database terms contained in the program, or refer-
enced by resource specifications

The following constraint reduction rules are also common to both approaches:

Dependency Resolution. The dependency resolution is required for computations
that involve the all and some constructs. A dependency constraint of the form
(t1 �S t2 | C2) requires to evaluate the complete proof tree (in case of all) or
parts of the proof tree (in case of some) of C2 before C1, and applies the resulting
substitution Σ to t2 (application to t1 is not necessary, as t1 and C2 are variable
disjunct).

(t1 � t2 | D)∨
t′
2∈Σ(t2) t1 � t′2

Σ = subst(solveall(D))

The actual implementation of the solveall function depends on whether the
“one at once” or “all at once” algorithm is used. In the “one at once” algorithm,
solveall evaluates all paths in the proof tree. In the “all at once” approach,
solveall evaluates the complete constraint store.

4.2 One at Once

The “one at once” calculus is similar to the SLD resolution calculus with opera-
tional treatment of higher order predicates used in logic programming. Like SLD
resolution, the calculus considers only a single path at a time. If a grouping con-
struct occurs, the calculus interrupts the evaluation of the current path, visits
each of the paths of the queries in scope of this grouping construct in turn and
collects the respective solutions, and afterwards continues with the evaluation of
the current path.

“One at once” consists of three unfolding rules which are introduced below:

Query Unfolding against Database Term. Unfold a folded query term against a
database term t by replacing the folded query term by a simulation constraint
between the folded query term and the term t.

〈tq〉
t ∈ T

tq �S t

Query Unfolding against Rule. Unfold a folded query term tq against the head
tc of a rule.

266 F. Bry, S. Schaffert, and A. Schroeder

1. In case tc contains none of the grouping constructs all and some, add a
constraint for the simulation of tq in tc and add the query part of the rule
as a folded query.

2. In case tc contains at least one of the grouping constructs all and some, add
a dependency constraint such that the unification of tq in tc is only evaluated
in case the query part is evaluated successfully.

〈tq〉 〈tq〉
(tc → Q) ∈ Pnongrouping (tc → Q) ∈ Pgrouping
tq �S tc ∧ 〈Q〉 (tq �S tc | 〈Q〉)

The dependency part in a dependency constraint (as in the result of the right
rule) is solved in an auxiliary calculation. In case tc contains an all construct,
or nested some constructs, it is necessary to solve the complete query part. If tc

contains only a single some construct, it is sufficient to only search for solutions
until a sufficient amount is found.

Disjunctive Split. Note that all of these rules need to select both a folded query to
continue with and either a rule or a term, and backtrack in case the selected rule
or term leads to failure. This selection with backtracking yields a so-called proof
tree. Both the selection of constraints and of rules/terms is non-deterministic and
different search strategies, like the depth-first search used in SLD resolution, are
conceivable.

Some of the rules above may yield a disjunction as a result (most notably the
dependency resolution and the unification part of the consistency verification).
In such cases, the “one at once” approach needs to split the disjunction into
different paths of the proof tree (and insert a choice point). The following rule
represents this split. Assume that C is in disjunctive normal form:

C1 ∨ . . . ∨ Cn

C1 | . . . | Cn

“One at once” has the advantage that it only needs to consider a single con-
junctive path at a time. On the other hand, only a depth first search is possible
and occurrences of grouping constructs externally “interrupt” the evaluation
by requiring an auxiliary application of the calculus to certain queries until all
solutions are found.

4.3 All at Once

The “all at once” calculus considers all paths in the proof tree at once. Thus,
the considered constraint store contains conjunctions as well as disjunctions.
Where “one at once” unfolds a query with only one of the alternatives at a time
(and then relies on backtracking for finding different alternatives), “all at once”
unfolds all possible alternatives simultaneously and adds them to the proof tree.
If a grouping construct occurs, it adds a dependency constraint to a certain
subtree of the proof tree. The evaluation may then continue at any node in the
proof tree. If this subtree is completely solved, the grouping construct can be
solved as well.

A Contribution to the Semantics of Xcerpt 267

〈tq〉∨
t∈T tq �S t ∨∨
(tc←Q)∈Pnongrouping

(tq �S tc ∧ 〈Q〉) ∨∨
(tc←Q)∈Pgrouping

(tq �S tc | 〈Q〉)

This approach has the advantage that higher order constructs are included
more naturally into the calculus. Instead of relying on external control for solving
higher order constructs, the dependency constraint can be treated by the rules
of the calculus.

In addition, the possibility to continue at any node in the proof tree gives rise
to interesting considerations about selection strategies. With a depth-first search,
the calculus would resemble “one at once” or SLD resolution. Different search
strategies might however be auspicious. A cost based A* search that tries to first
select such nodes that contribute most to the result could provide performance
benefits in practical applications, in particular in the context of the Web where
IO costs for remote resources are often considerably higher than for local or even
in-memory resources.

As the “all at once” approach works with both conjunctions and disjunctions
of contraints, a further interesting aspect is to integrate the evaluation of the rule
chaining with the evaluation of the simulation unification. Doing so might allow
optimisations of the evaluation, e.g. by interleaving chaining and unification
steps when feasible.

5 Related Work and Conclusion

This abstract gives a short overview over issues and problems of applying tech-
niques used in logic programming to the Web query language Xcerpt. Two dif-
ferent approaches for treating Xcerpt’s built-in higher level constructs all and
some have been presented.

The language Xcerpt is work in progress. A project website is located at
http://www.xcerpt.org. A comprehensive introduction into the language Xcerpt
with many examples can be found in [9]. The simulation unification algorithm
has first been presented at [10]. A declarative semantics in form of a model theory
in the style of classical logic is currently being worked on and first results have
been published in [11]. A prototype of Xcerpt exists and has been demonstrated
at [12].

Xcerpt is not the only rule-based query language for Web data. Most noteably,
the language UnQL [13] first introduced the concept of rule-based querying to
the XML world, but it does not provide important features like rule chaining
and is not based on logic programming.

The necessity of higher order predicates like setof and bagof in Prolog have
been discussed in numerous articles (see e.g. [14]). Also, a formal semantics
has been considered e.g. in [15]. However, such considerations in general do not
include support for higher order constructs into the calculus itself but instead
treat them as external predicates.

268 F. Bry, S. Schaffert, and A. Schroeder

References

1. Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the
Web. PhD thesis, University of Munich (2004)

2. Schaffert, S., Bry, F.: Querying the Web Reconsidered: A Practical Introduction
to Xcerpt. In: Extreme Markup Languages 2004, Montréal, Canada (2004)

3. W3C: XQuery: A Query Language for XML. (2001)
4. W3C: Extensible Stylesheet Language (XSL). (2000)
5. W3C: Web Ontology Language (OWL). (2003)
6. W3C: Resource Description Framework (RDF). (1999)
7. W3C: XML Schema Part 0: Primer; Part 1: Structures, Part 2: Datatypes. (2001)
8. Clark, J., Murata, M.: RELAX NG Specification, http://relaxng.org/spec-

20011203.html. (2001) ISO/IEC 19757-2:2003.
9. Bry, F., Schaffert, S.: A Gentle Introduction into Xcerpt, a Rule-based Query

and Transformation Language for XML. In: Proc. Int. Workshop on Rule Markup
Languages for Business Rules on the Semantic Web (RuleML’ 02). (2002) (invited
article).

10. Bry, F., Schaffert, S.: Towards a Declarative Query and Transformation Language
for XML and Semistructured Data: Simulation Unification. In: Proc. Int. Conf. on
Logic Programming. LNCS 2401, Springer-Verlag (2002)

11. Bry, F., Schaffert, S.: An entailment relation for reasoning on the web. In:
Proc. Int. Workshop on Rules and Rule Markup Languages for the Semantic Web
(RuleML’03). LNCS 2876, Sanibel Island, Florida, USA, Springer-Verlag (2003)

12. Berger, S., Bry, F., Schaffert, S., Wieser, C.: Xcerpt and visXcerpt: From Pattern-
Based to Visual Querying of XML and Semistructured Data. In: Proc. Intl. Con-
ference on Very Large Databases (VLDB03) – Demonstrations Track, Berlin, Ger-
many (2003)

13. Buneman, P., Fernandez, M., Suciu, D.: UnQL: A Query Language and Algebra
for Semistructured Data Based on Structural Recursion. VLDB Journal 9 (2000)

14. Warren, D.H.D.: Higher-order extensions to prolog: Are they needed? In Hayes-
Roth, M., Pao, eds.: Machine Intelligence. Volume 10. Ellis Horwood (1982)

15. Börger, E., Rosenzweig, D.: The mathematics of set predicates in prolog. In: Kurt
Godel Colloquium. (1993) 1–13

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 269 – 277, 2005.
© Springer-Verlag Berlin Heidelberg 2005

DialogEngines – Dialog Agents for Web-Based
Self Service Consulting

Oskar Bartenstein

IF Computer Japan, 5-28-2 Sendagi, Bunkyo-ku,
Tokyo 113-0022 Japan

oskar@ifcomputer.co.jp

Abstract. This industrial report discusses design, implementation, and
application of DialogEngines, a commercial WWW application service for
business-to-consumer web based self service consulting. DialogEngines
combines pseudo natural language dialog, recommendation, product presen
tation, virtual character rendering with animation and voice to achieve
responsive product consulting. The idea is to "help to buy" rather than "sell".
Briefly mentioned is a fielded consulting sales application.

1 Overview

Effective consulting is for any non-trivial product a key success factor to help customers
to make the right choice. To make websites responsive and effective to answer visitors'
questions and satisfy information needs, we developped DialogEngines:

270 O. Bartenstein

Intelligent animated conversational agents for Web based self-service consulting. The
position in CRM solutions is between human staffed support and keyword search
database driven web sites.

The customer accesses the web page as usual, the dialog on the web site is an
individual consulting session, much like a staff member of the company personally
taking care of the customer.

The agents use detailed product knowledge and dialog knowledge to allow
interested customers to explore offers and implicitly build product shortlists based on
their requirements.

The system is a commercial internet based URL-embeddable application service.
It integrates technologies from research areas including Emotion Engineering, Trust
Engineering, Natural Language Processing, Machine Learning, Case Based
Reasoning, Web Programming, and Software Engineering.

DialogEngines conduct goal-oriented consulting conversation about given subjects
with individual human users in pseudo natural language. Combining emotion
engineering and knowledge engineering, DialogEngines present interactive,
individual dialogue to web users.

The dialog uses knowledge about products, customers and knowledge about how to
conduct consulting dialogs.

The following sections discuss individual components, implementation and
applications.

 DialogEngines – Dialog Agents for Web-Based Self Service Consulting 271

2 Dialog

DialogEngines conduct goal-oriented consulting conversation about given subjects
with individual human users in pseudo natural language. The dialog serves three
purposes: first, to be friendly, second, to present a solution that satisfies the customers
requests, and third, to allow the user to explore the problem space as far as needed to
understand not only that a presented solution is good, but also to provide the trust that
alternative solutions are not as good.

2.1 Product Model

The product model consists of product specifications and properties.
The target domain of the dialog is an excerpt from an SQL, CSV or XML product

data base. The product knowledge defines the scope of the dialog.
Access to the product model beyond the specifications given in the product

knowledge base can be extended with words, phrases and conditions, which may be
domain specific. This includes access to domain expertise, i.e. mapping from common
natural language terms to expert jargon terms defined in the language of the product
knowledge base.

2.2 User Model

The user model reflects the result of exploration, understanding, finding, and
reassurance.

The dialog is between machine and an individual human user. User input to the
agent and user answers to questions by the agent give the data set which drives the
user model. Base assumption is that the user wants information about the domain and
a specific solution. DialogEngines does not work well with malicious users or in areas
outside of the scope of the product knowledge base.

2.3 Agent Model

The agent model details showing, suggestions, confirmations.
Agents can have different characteristics, not only age and sex, but also deeper

ones relevant for the progress of the user interaction. Modelled are how polite,
explanatory, extrovert, pushy and verbose the agent is. The Agent Model is
independent of its rendering in text, voice or animation.

2.4 Dialog Model

The dialog consists of repeated listening, understanding, problem solving, question
asking and result presentation actions. Dialog history and strategy, together of course
with the product solution space, define the flow of the dialog.

The dialog produces the control information for voice and animation. This is in
contrast to traditional animated web sites which present only pre-recorded canned
contents.

DialogEngines agents can take initiative and talk actively to the user.
DialogEngines agents can ask intelligent questions to the user, taking into account

product knowledge and the context of the conversation.

272 O. Bartenstein

2.5 Language Model

The language model deals with meaning, ambiguity, conflict resolution, and
understanding expressions.

DialogEngines understands user statements using a shallow natural language
processing model, the target product knowledge, and additional language knowledge.

Such additional knowledge is domain expertise and semantics for common
vocabulary. For example the word "small" will mean different things for different
businesses.

Heuristics are used to resolve ambiguities and contradictions. DialogEngines is
designed to be practical and useable: like search engines, which sometimes give
wrong answers or not all correct answers, DialogEngines language processing is not
guaranteed to be sound and complete.

DialogEngines agents make utterances to users according to a knowledge base of
example sentences, which can be answers, statements, greetings, questions, requests
for confirmation and more.

3 Recommendation

The recommendation component deals with individual preferences, personal taste,
and perception of value.

Recommendation is a domain specific optional component that guides the user
depending on additional knowledge about individual or general preferences. For
example, everything else being identic, one would recommend a bigger hotel room
over a small one.

Recommendation is independent of the process of the dialog that understands user
needs and presents possible answers. It only uses the result of the dialog.
Recommendation works like a traditional expert system. For example in the
applications detailed below, recommendation is essential to make a sensible proposal:
the dialog benefits from the deeper knowledge processing. In a synergy effect, a good
recommendation engine benefits from a user-friendly dialog front end, because it has
the potential to gain more goal oriented insight than e.g. a canned questionnaire.

4 Presentation

DialogEngines presents the result of the current dialog as a shortlist, table or similar.
The result of the current dialog is combined with vendor site policies and

converted to a lookup in the product knowledge base, then rendered in a user view.
Tabular presentations are useful for product shortlists or comparisons. A consulting
sales site will typically render photos and prices to the user, in addition to the data that
the vendor considers necessary and in addition to the information that was understood
to be requested by the customer during the dialog.

This combination is important to the essence of consulting, where both parties
inform each other of their needs and also advise the other party on issues that they
would have overlooked. A dialog without presentation of the result is technically of
course possible, but in practice too difficult to understand for the user. Visualization
of product specifications is a research area of its own and not further discussed here.

 DialogEngines – Dialog Agents for Web-Based Self Service Consulting 273

5 Animation

An animated character (sometimes called avatar) is emotion engineering impact
technology. With appearance, stature, facial expressions, and animated gestures, the
character conveys emotions and conversational clues that are essential to engaging
human interaction.

Rendering levels range from simple pictures over animated 2D cartoons to 3D ray
trace renderings of body scans of world famous performers.

DialogEngines uses an abstraction layer to generate animation from the ongoing
dialogue in real time and render it with the selected rendering technology and
character.

DialogEngines is compatible with a wide variety of animation technologies, e.g.
with animation renderers by MacroMedia, Microsoft and Nemesys and with with
characters developpe dby Microsoft and Nemesys (sample).

274 O. Bartenstein

6 Voice

6.1 Voice Recognition

Voice recognition can complement or replace character input of user questions.
Useful i.e. for intranet applications, CTI systems, customers with special needs, and
car navigation. Although we have experience with voice recognition technology by
IBM and NEC, it is difficult to recommend voice recognition for the general web
public today.

6.2 Voice Output

Voice output is an impact technology especially in combination with animated
character agents. DialogEngines can today reliably generate voice in real time and
render it in todays internet browsers in FM quality for technical purposes including
the consulting sales applications discussed here. Note that voice output can help to
understand the flow of a dialog and thus augment communication also with non-
verbal utterances, e.g. laughter. DialogEngines can generate abstract "voice" like this
just as spoken voice, limited in practice by the rendering capabilities of the text-to-
speech component and by the cost to build sufficiently fine grained knowledge bases
for the dialog.

7 Implementation

Internet based, modular, multi-client, multi-server, built on widely accepted
industry standards, DialogEngines is designed to be configurable for deployment with

 DialogEngines – Dialog Agents for Web-Based Self Service Consulting 275

information terminals ranging from standard PCs to mobile phones and car navigation
systems. The service is completely Internet based and hosted on a cluster of Linux
servers. DialogEngines server side and client side components use *.mss, MINERVA,
Java, JavaScript, and other software.

7.1 Technology

Server side DialogEngines is realized as a set of standalone demons and HTTP servlets
written in MINERVA and *.mss. MINERVA is a commercial ISO-Prolog compiler
hosted in Java. It is used for all natural language processing, understanding,
computation of proposals, memory based knowledge base handling, and XML data
exchange. DialogEngines makes heavy use of MINERVA libraries including regular
expression text processing, XML i/o and blackboards for fast memory based data
handling. *.mss is a Web-oriented rendering language companion product of
MINERVA, embedded in XML or HTML and used to produce the XML for internal
and HTML for external communication. From within MINERVA and *.mss, Java
libraries are used for system and network level integration.

Client side DialogEngines for PC/WWW deployment is realized in MINERVA to
drive the character animation, Java for system integration, and JavaScript as browser
control language. DialogEngines for PC/WWW is compatible with 128bit SSL and
does not require cookies, plugins, or any non-default browser settings. We use a very
carefully selected subset of browser capabilities to be compatible by design.
Extensive tests with browsers by Microsoft, Sun, Netscape, Opera and others
confirmed a very high level of interoperability.

7.2 Structure and Scalability

DialogEngines is hosted on a cluster of cooperating but otherwise independent
services. Compute-intensive tasks can thus be moved to dedicated or replicated

276 O. Bartenstein

servers if needed for high performance installations, and components like text-to-
speech engines can be replaced once better ones become available.

Internal communication makes extensive use of XML for its descriptive power and
added level of error detection. Communication between components is exclusively in
HTTP. Compared with e.g. direct internet socket communication, this restriction to
HTTP places considerable constraints on system design, however HTTP is the best
supported and most widely available protocol on the World Wide Web. The demand
on network bandwidth is moderate. Measurements show that routing times are more
important for comfortable use.

8 Applications

DialogEngines and its configuration variants was designed in response to needs in
online consulting by companies operating in financial services, human resources,
home entertainment, car driver support, news services, and fashion retail.

A prominent installation is fielded with Paris Miki, the largest optical retail
company in Japan, and third largest in the world.

At Paris Miki http://www.paris-miki.com, DialogEngines serves web shop users
with in-depth online consulting. The dialog components have access to the full
product knowledge base and to an integrated recommendation engine. In 2002, the
recommendation component won the Grand Prize of the Nikkei Information Systems
Award. The company reported that the recommendation component accounts for
about 10% of total sales.

 DialogEngines – Dialog Agents for Web-Based Self Service Consulting 277

9 Conclusion

We discussed DialogEngines, an interactive front end for recommendation of
complex consumer products using pseudo natural language dialog components
cooperating with backened problem solvers to conduct individual consulting.
 We detailed its implementation as a set of services build with MINERVA, a
commercial implementation of ISO Prolog in Java with extensions for scalable web
programming.
 We explained its commercial deployment on consumer oriented internet web sites
based on a cluster of Linux/Java servlet servers combined with rendering of animated
and voice-enabled virtual characters on industry standard web browsers.
The application service described in this industrial report is commercially available at
http://DialogEngines.com .

Acknowledgements

Many thanks go to my colleages and partners at IF Computer Japan for their exciting
contributions and their neverending willingness to build on my ideas; vice versa I am
very happy that they allowed me to expand on their ideas and use their amazing
software for this work.
 I am extremely grateful to our customers who accepted the challenge and the
budget to make this work a technical and commercial success.

References

1. DialogEngines http://DialogEngines.com
2. *.mss http://www.ifcomputer.co.jp/inap/inap2001/program/inap_bartenstein.ps
3. MINERVA http://www.ifcomputer.co.jp/MINERVA/

Towards Ubiquitous Maintenance – Defining
Invocation of Plant Maintenance Agents in Real

Workspace by Spatial Programming

Hiroki Takahashi1 and Osamu Yoshie2

1 Advanced Research Institute for Science and Engineering,
Waseda University, Kitakyushu-city, Fukuoka, Japan

taka@aoni.waseda.jp
2 Graduate School of Information, Production and Systems,

Waseda University, Kitakyushu-city, Fukuoka, Japan
yoshie@waseda.jp

Abstract. Recent progress of VR (Virtual Reality) technologies makes
it possible to realize the VR space that is synchronized with the real
space. We can hereby build virtual workspace through which a worker in
real workspace can automatically acquire and invoke appropriate plant
maintenance agents. We propose spatial programming which is a manner
of VR programming technique, locating various place-dependent agents
and web information in VR space, and also describe the interface between
agent world and real workspace as an application of spatial programming,
towards ubiquitous maintenance.

1 Introduction

In manufacturing systems, to acquire maintenance information and to diagnose
quickly and appropriately are important. However, most facilities of manufac-
turer’s factory have some secrecy and its maintenance data is prohibited from
sending externally. So, remote maintenance system has large difficulty there, es-
pecially it is served and shared with various manufacturers. We have presented
virtual community for plant engineers[1] or virtual plant to prevent this prob-
lem, by using plant maintenance agents which are served to each factory from
virtual plant. The advantage of this mechanism is that user does not need to
send diagnosis data to the external and the agent makes diagnosis process on
the computer which is in the factory.

Recently, by the progress of VR technologies, we can now realize the VR
space on a computer/network that is synchronized with the real space. Then
we can build virtual workspace which contains various programs such as agents
and which can work with real world. Basically, diagnosis procedures in the plant
depend on each target machine, that is, depend on the place. It is very efficient
if it becomes available that a worker can automatically get appropriate plant
maintenance agent which is required for one’s work of its place from our vir-
tual plant. This also means that the automatic agent service also indicates the

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 278–293, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Ubiquitous Maintenance 279

workers mission to do there, that is to say, he can automatically get appropriate
instruction there. We can regard those place-dependent works as declaratively
located processes, so introducing Prolog, which is one of the most popular declar-
ative languages, to our system is useful because of its declarative programming
ability.

We have also presented VR space description language[2, 3], which is a man-
ner of VR programming technique, locating various place-dependent programs to
VR space. This paper enhances the ability of linking VR space to real space and
tries to apply spatial programming to define plant maintenance agents’ world
which works with virtual plant on the web, towards ubiquitous maintenance.

2 Spatial Programming

Spatial programming, the main idea of this paper, is the place-dependent, declar-
ative programming in VR space.

In the real world, it is often the case that our action is basically place-
dependent. For example, if we are at the traffic intersection, which is represented
as ’intersection(cross).’, we acquire the signal information, which is stated
as ’signal(east, red).’, and decide ’stop’ or ’go’ (Fig. 1). But this process is
only at traffic intersection, so it is place-dependent. In manufacturing systems,
of course, there are many place-dependent information and its processing action
such as acquiring diagnosis data and its processing where various agents can
flourish, associated with the facility. So, it is natural that which plant mainte-
nance agents are required is place-dependent and user’s status-dependent. We
noticed this place-dependency and try to use VR space as the environment for
building such an agent world linked to real world. Construction of this agent
world begins in plain VR space initially, and constructor locates agent’s informa-
tion (strictly speaking, this is the conditions to summon agents) at appropriate
position. We call this manner spatial programming.

Spatially programmed VR space is presented as 3D virtual space of course,
and it can be linked to real space using generic position sensors, such as RF

intersection(cross
signal(east, red).
signal(north, gree

selling(books).

selling(clothes).

intersection(corner).

Fig. 1. Place-dependent Information in Real World

280 H. Takahashi and O. Yoshie

tag and its reader which we adopt. This is one of the advantages of spatial
programming. Once this link is established, a worker’s movement in real space
is reflected to VR space. If any place-dependent agent-summoner is located at
his position, he can get agents from virtual plant through some devices such as
portable PC or PDA (Personal Digital Assistant) and can see information by
HMD (Head Mounted Display) such as DataGlass21. Besides it, constructor can
also go around in 3D VR space and locate agent-summoner in the space. So it
is very intuitive.

Another merit of spatial programming is that it does not need to stop VR
space even while agent world’s constructor modifies the VR space, because
place-dependent description assures independency of descriptions for each ob-
ject (worker, facility, etc.) in the VR space, so modification of one object does
not give influence to other objects’ description.

Main VR System

VR Space Viewer
(Navigator) Communication

with
each worker
in real space
(cf. Figure 3)VR Space Viewer

(Navigator)

Fig. 2. System Composition of VR space

Worker's Device
(NotePC,PDA,etc.)

HMD (DataGlass2)

RF Tag Reader

Sensors
for
Diagnosis

Communication
with
VR Space
(cf. Figure 2)

Fig. 3. System Composition in Real Space

The composition of VR space system, that is, spatial programming environ-
ment is shown in Figure 2. Main VR system controls time progress of VR space
and place-dependent processes. Viewer shows VR space to the constructor with
3D computer graphics, and he can navigate in the space. The viewers are in-
dependent of the main VR system and they cooperate each other via network
communication, so several constructors can log on the VR space.

1 DataGlass2 is the trademark of Shimadzu Corporation.

Towards Ubiquitous Maintenance 281

The system composition of devices in real space used by worker is shown
in Figure 3. Each worker brings this set of devices and receives agent services.
Communication between each worker and VR space are established via network.

In the following sections, we describe how to realize the idea described above
and the implementation of place-dependent agent world in VR space.

3 Model of Place-Dependent Processing

In the spatial programming, the place-dependent agent-summoner is embedded
in the virtual space as virtual object. Agent invocation process is the interaction
between embedded summoner object and worker. We named this embedded
summoner object junction. And we regard worker and facility as kind of objects,
which have entities in real space. Our VR system can grasp the position of objects
(especiallyworkers) in the real space via position sensors and establish linkbetween
object in VR space and entity in real space. When a worker in real space approaches
the place where some junction is located in VR space, the mission of agent happens.
This corresponds to the interaction between object and junction which contact
each other in VR space.Then some mechanism of interaction is required.

Basically, a facility or worker in the manufacturing system has some status.
In this paper, we express these things as objects’ attributes (e.g. state of ’it is
vibrating’, state of ’he has a thermometer’ and so on). A request for agent also
depends on its and his attributes. Agent summoning process has two phases.
At first, interaction process must refer to objects’ (both worker’s and target
facility’s, but in some case one of them) attributes and must decide which agent
he requires, and next, delivers it to the worker.

At the former phase, we adopt blackboard model[4] for this attribute infor-
mation exchange. Each object has peculiar attributes. Object’s attributes are
organized to a blackboard, and junction’s decision rules that decide which agent
should be retrieved will be applied to it. An interaction occurs when an ob-
ject comes within the effective range of a junction, and is place-dependent and
object-attribute-dependent. So, if interactions occur here and there at the same
time, different blackboards should be required (Fig. 4). If the organization of
blackboard is finished, decision process starts and rules in the junction are ap-
plied to the organized blackboard. Each of satisfied rules in decision rules simply
enumerates the required agents. The result of decision which is a set of indicators
to required agents is written to the object’s peculiar attributes temporarily, and
then process goes to the next phase.

The latter phase, how to use agent, is object-attribute-dependent, that is,
agents’ actual invocation process varies due to the worker’s situation. For example,
if a worker has a sensor processing data is passed from the device, and if a worker
should get processing data via file on computer it should be read and passed
from file. So, object also has rules how to use agents which are acquired. And in
this phase, target object’s attributes which contain the result of interaction as
temporary attributes are written to the blackboard, and the rules are applied to it.
As the result of this, instructions for worker are composed and sent to the worker’s

282 H. Takahashi and O. Yoshie

Place-dependent

Target Object

Junction Attached
Object

Organization
Blackboard

Blackboard

Blackboard

Attributes

Attirbutes

Rules

Attributes

Rules

Attirbutes

Rules

Apply

Junction

Apply Target Object

Junction

Attributes
Apply

Fig. 4. Local Blackboard Model

device, and agents are appropriately summoned and do expected process on the
worker’s device. This invocation process is executed for each object.

The advantage of local blackboard mechanism is that description of object
and junction has high-level independency because object/junction-dependent
description is apart from each object’s and junction’s description.

We can say place-dependent work is like declaratively located process. In
fact, description of attributes on blackboard and decision rules in junction are
written declaratively. We adopt Prolog[6] to describe them. Prolog is one of the
most famous declarative programming languages, and is also used for artificial
intelligence, so it is very useful for our system. Of course, Prolog’s whole ability
is too great and our demand is not so high, but in the future, its potential is
very attractive.

In this system, attributes correspond to facts in Prolog and decision rules
correspond to rules. These are written declaratively and separately in the object
and junction, and they should be organized when interaction occurs. Prolog’s
declarative programming paradigm is suitable for this purpose.

We also adopt Java[7]2 language to process actual invocation of agents. Since
Java is very strong in network programming, agents are written in Java on the
virtual plant. So, it is proper to use Java in our system.

4 Description of Object and Junction

In this system, description of objects, junctions and the space is basically written
in XML (eXtensible Markup Language)[8].

XML is the meta-markup language for text documents. It can be used for
various fields with user defined tags, and XML documents can contain various

2 Java is the trademark of Sun Microsystems, Inc.

Towards Ubiquitous Maintenance 283

Shape

Behaviour

Shape

Behaviour

Interaction

Space Layout
Object

Object

Junction

Instanciate

Instanciate

Fig. 5. Configuration of VR Space Description

kinds of descriptions freely, such as Prolog programs. So, we can use XML as
description language of VR (which is also real) space and extend it also to be
containing description of interaction rules in Prolog and description of actual
agent’s control in Java.

Description of spatially programmed agent world contains two kinds of def-
initions. One is of objects in wide sense, such as object and junction located
in the space. The other is of VR space itself in which objects and junctions are
located. Objects and junctions are instanciated into the VR space when they are
located, following object oriented paradigm (Fig. 5). This section describes the
definition of object and junction. Definition of VR space and locating process
are described in the following section.

4.1 Description of Object

Object has the entity in the real space. So, some basic attributes are naturally
possessed by the object such as shape, position, velocity and so on.

Object also has the attributes which are described declaratively and can
be referred from junction. Attributes are classified into two types: permanent
attribute, and temporary attribute. Permanent attribute is never cleared and
always has some kind of value. Temporary attribute can be removed if it is no
longer necessary yet, so this is mainly used to pass the pointer of required agents
to the object.

Description of object has the following blocks (Fig. 6):
1. Shape Definitions
2. State Variables
3. Permanent Attributes
4. Temporary Attributes
5. Agent Applying Rules
6. Agent Invocation Functions
7. Update Function

’Shape Definitions’ block develops object’s shape. It is described by combi-
nation of primitives.

’State Variables’ block consists of state variables such as position, velocity,
temperature and so on. These are used in agent invocation functions or by the
whole VR system.

284 H. Takahashi and O. Yoshie

Object Definition

Permanent Attributes

Temporary Attributes

Agent Applying Rules

Agent Invocation
Functions

Invoke

Shape Definitions

State Variables

Apply

Blackboard

Update Function

Fig. 6. Description of Object

’Permanent Attributes’ and ’Temporary Attributes’ block contain declara-
tively described attributes of the object. Temporary attributes are writable from
the outer, and permanent attributes are only changed from agent invocation
functions. Description language of those blocks is Prolog.

’Agent Applying Rules’ block is to decide how to use the agents, and ’Agent
Invocation Functions’ block does preprocess of applying agents and compose and
send instructions to the worker’s device or facility’s controller in the real world.
The device receives those instructions and actually summons required agents
and invokes them obeying the instructions. The functions are written in Java[7].
Retrieved maintenance data should be often processed by in the facility’s and
worker specific way, so it is proper that this part of composition of instructions
is implemented in object, not in junction.

’Update Function’ is a function which updates object’s state in VR space cor-
responding to the object in the real world every moment. Detail of this function’s
role is described in the section 5.

4.2 Description of Junction

Description of junction has following blocks (Fig. 7):

1. Type and Range Definition
2. Agent Summon Rules
3. Interaction Functions

Towards Ubiquitous Maintenance 285

Junction can be classified into two location types and has two types of effec-
tive range.

One is ’Fixed’ location type junction. This type of junction is fixed in the
space, and is interested in only one object which comes into effective range.
Another location type is ’Attached’ type. This type of junction is attached to
specific object, and move with the object. This type of junction is interested in
two objects. One is attached object and another is the object which comes into
effective range. So, this type can be used as interaction between objects. Usually
diagnosis is done by a worker with target facility, so the latter type of junction
will be often used.

Junction Definition

Type & Range

Agent Summoning
Rules

Interaction Functions

Invoke

Apply to
Blackboard

Effect Object's
Attribute

Fig. 7. Description of Junction

Effective range is basically defined by radius. If an object comes into range,
junction is activated and indicates the agent summoning instructions to target
object. Effective range can be defined as ’contact’. Only attached type junction
can have this type of range. If an object contacts another object which has an
attached contact type junction, then the junction is activated and indicates the
agent summoning instructions to target object. In this case, junction’s targets
are both objects.

Junction has decision rules that decide which agents should be retrieved and
used by the object (strictly speaking, by the worker’s device in the real world).
The decision rules are described in the ’Agent Summon Rules’ block. These
rules are applied to organized blackboard which consists of the target objects’
attributes (if target is only one, organized blackboard has same contents as the
object’s attributes) when the interaction is occurred.

After the decision process is completed, appropriate function which composes
indicator of the required agents and basic instruction (which should be arranged
later by object specific way) of using them according to the result of decision.
The functions are defined in ’Interaction Functions’ block.

286 H. Takahashi and O. Yoshie

It is allowed that no agent will be summoned. This is used to give massage
such as warning to target object.

5 Interaction Process Between Object and Junction

The time of VR space is synchronized with real space and follows real time. To
synchronize, objects in the VR space must update their state every moment.
Basically in this system, system activates each object’s update function in every
time interval. So each object can update its own state (e.g. position, equipment
etc.) and can communicate with entity in real space (e.g. worker with portable
PC) every moment.

System also monitors physical relationship of objects and junctions and can
detect that an object is within the range of some junction or contacts another
object with junction. Process of system obeys following flow:

Do loop
{
1. While any object exists in junction’s

range (that is, the junction is
activated).

@{
1.1. Target object’s attributes are

written to blackboard and junction’s
rules are applied to it.

1.2. Junction invokes appropriate function
corresponding to the result of inquiry,
which gives required agents and its
instructions to temporary attributes
of objects.

1.3. Then, the object applies its rules to
its attributes. Appropriate function
in the object is invoked and composes
final instruction of agents and send it
to the device in the real world.

1.4. Object updates its own state and
removes temporary attributes.

}
2. do loop until all objects’ actions

are completed
{
2.1. Object updates its own state and

does other required action.
}
3. Clock of VR space is progressed.

}

Towards Ubiquitous Maintenance 287

6 Defining and Constructing VR Space

6.1 Description of VR Space

Now, we can define objects and junctions in the space for spatial programming.
In this section we describe the structure of the space appearing in manufacturing
systems where we and objects can go around, and how to define it.

'Warning'
(above head)

'MotorChk'
(working point)

'BearingChk'
(working point)

'Worker'

Motor

Bearing

Shaft

Fig. 8. Sample World

Our VR space fundamentally consists of path and rotary (Initially, no object
and junction is located). Path is a straight way that an object corresponding to
a worker or other movable object can move along. Rotary is a spot where an
object can turn around. Rotaries are connected with path. Rotary is also used
as a spot where a worker can access to a facility, because a worker who wants to
operate it will turn around there. Each rotary and path has a unique name for
system’s identification.

For example, consider a plant which has a motor. There are bearing, motor,
shaft and so on in this sample factory. Significant facility is motor, bearing and
shaft. Motor and bearing require periodic and unexpected maintenance, and
shaft is danger when a worker across below it. So, motor and bearing has working
point of diagnosis as junction which is named ’MotorChk’ and ’BearingChk’.
Shaft has ’Warning’ junction which warns to worker across below. The facilities’
location is indicated in Fig. 8.

At first, user should prepare the structure of the space such as path and
rotary. Then, the VR space will be defined as Fig. 8.User can navigate in this
space, and can locate object and junction. Next, user should locate objects and
junctions in the space to construct VR information world.

288 H. Takahashi and O. Yoshie

Path

Rotary

p1 p2

p3

r1 r2 r3

r4 r5 r6r7 r8

p4 p5 p6 p7

Fig. 9. Sample World’s Space Description

6.2 Construction of VR Space

If defining space is completed, we can navigate in it. The next step is locating
objects and junctions in it. User should locate objects of facilities in this factory
such as motor, bearing, shaft and so on. After locating objects of facilities is
completed, the user can define and attach junctions to appropriate objects. In
the plant example, the junction ’mc1’ is attached to ’m1’ and junction ’bc1’ is
attached to ’b1’. Next, user should define fixed type junction ’wr1’ and locate it
to appropriate position, crossing the shaft and path (Fig. 10). Lastly, user should
locate worker in the space, which is the avatar of worker in the real space.

Located objects are linked to appropriate entities in real space which have the
same identifiers as instance names of the objects. These links are automatically
established by the system. Then, the objects come to be able to update their
attributes, such as position, automatically with time progression.

The interaction process is designed like the following, for example. We con-
sider an interaction between worker and bearing. The interaction is diagnosis
of bearing. If the bearing has trouble and the worker has enough equipment to
maintain it, the interaction offers plant maintenance agents and the sequence of
agent procedures to him. Corresponding to the bearing’s vibration trouble, we
define the attributes and rules of objects and junction as below.

Attributes of instance ’w1’ from object ’Worker’:

working(ready).

objective(diagnosis).

equip(thermometer).

Attributes of object ’b1’:

sensor(vibration).

status(fault).

Towards Ubiquitous Maintenance 289

Rules of junction ’BearingChk’:

exec(diag(X, Y)) :-

object(X),

object(Y, attached),

attr(X, working(ready)),

attr(X, objective(diagnosis)),

attr(X, equip(thermometer)),

attr(Y, sensor(vibration)),

attr(Y, status(fault)).

exec(diag(X, Y)) :-

object(X),

object(Y, attached),

attr(X, working(ready)),

attr(X, objective(diagnosis)),

attr(X, equip(thermometer)),

attr(X, equip(vibration)),

attr(Y, status(fault)).

The former rule means that diagnosis should be done if target facility (bear-
ing) has vibration sensor and approaching object (this time, this is a worker)
equips thermometer, because vibration data and temperature data are required
for diagnosis of bearing. Predicate object/1/2 is a built-in predicate which
involves the instance name of object as its argument. Especially, if it takes ’at-
tached’ as its second argument, it indicates that the junction is attached to the
object. The latter rule means that approaching worker has both vibration sen-
sor and thermometer, so that diagnosis is available and should be done. Then,

Instance ’bc1’
of junction ’BearingChk’

Instance ’mc1’
of junction ’MotorChk’

Instance ’wr1’
of junction ’Warning’

Instance ’m1’
of object ’Moto

Instance ’b1’
of object ’Bearing’

Instance ’s1’
of object ’Shaft’

Fig. 10. Composed Sample Information World

290 H. Takahashi and O. Yoshie

if a worker approaches bearing and comes within the range of ’BearingChk’,
interaction occurs. Blackboard is organized as in the following:

attr(’w1’, working(ready)).

attr(’w1’, objective(diag)).

attr(’w1’, equip(thermometer)).

attr(’b1’, sensor(vibration)).

attr(’b1’, status(fault)).

exec(diag(X, Y)) :-

object(X),

object(Y, attached),

attr(X, working(ready)),

attr(X, objective(diagnosis)),

attr(X, equip(thermometer)),

attr(Y, sensor(vibration)),

attr(Y, status(fault)).

exec(diag(X, Y)) :-

object(X),

object(Y, attached),

attr(X, working(ready)),

attr(X, objective(diagnosis)),

attr(X, equip(thermometer)),

attr(X, equip(vibration)),

attr(Y, status(fault)).

Note that each attribute of objects is transformed by setting into predicate
attr/2. First argument of attr/2 is the instance name of object, and second
argument is attribute itself. This is automatically processed by the system when
the blackboard is organized.

Inside the system, inquiry ’exec(F).’ gets the answer F=diag(’w1’, ’b1’).
Then function diag(String X, String Y) written in Java is invoked and it
composes instructions of bearing diagnosis, e.g.

proc([temperature,[vibration, normal,

fft, peaksearch], do_diag]).

diag(’b1’).

The former predicate represents required agent names and the sequence of pro-
cedure. The latter predicate indicates the target of diagnosis. These instructions
are added to the worker’s temporary attributes by this function. When this
process is finished, the blackboard is abandoned.

Next, the phase of interaction process shifts to objects’ action. Now, the
worker’s attributes are:

Towards Ubiquitous Maintenance 291

working(ready).

objective(diagnosis).

equip(thermometer).

proc([temperature,[vibration, normal,

fft, peaksearch], do_diag]).

diag(’b1’).

Suppose the worker’s rule is:

exec(procdiag(Tgt,Seq)) :- diag(Tgt), proc(Seq).

The worker’s agent summon rule is applied to its attributes, and inquiry
’exec(F).’ gets the answer F=procdiag(’b1’, [temperature,[vibration,
normal, fft, peaksearch], do diag]). Then worker invokes function
procdiag(String Tgt, Vector Seq) written in Java. This function takes two
arguments, ’Tgt’ and ’Seq’. ’Tgt’ is the target of diagnosis and ’Seq’ is the se-
quence of agent invocation. This function composes and sends actual instructions
of invocation sequence of agents to the worker’s device in the real world, and
diagnosis process begins.

Bearing also does its action in the same way, but it does not have anything
to do, so it only updates its state.

This is a brief introduction of interaction design. Thus, construction of VR
space is completed. In this way, the VR space works as spatial programming
environment and now, it can also work as plant maintenance agents’ world.

In the next section, we describe how to present the VR space to the user.

6.3 Spatial Programming Environment with VR

Our VR space uses images each of which is associated with specific path or
spot to present realistic 3D space. The feature of our VR system is that the
real space and the VR space are linked and synchronized. So navigating in this
system should be made in realistic environment. Traditional ways to display VR
space use 3D modeling, texture mapping and so on. But those methods cost
very much. This also causes that rendering process requires very strong machine
power.

We adopt the image based rendering[9]. Image based rendering is developed
to reduce modeling cost for 3D objects in the space. This method uses a set of
real images alternatively and displays image interpolated from those images (Fig.
11). So, image database is very large but this can save human’s labor efficiently.
This method is especially effective for our VR system with spatial programming,
because the number of critical spots or ways is not so big and our movable ways
are limited. There is no need to prepare such a large database of images.

User can construct VR space while walking around in it. If he wants to locate
an object or junction, what is necessary is to click the button on the browser
and input the description of it. Of course, the description can be also loaded
from specified text file. After putting it on the VR space, it becomes available
to interact immediately without stopping the space.

292 H. Takahashi and O. Yoshie

Interpolation

Moving Path

Photograph on Database

Interpolated Image

Fig. 11. Image Based Rendering

A user can also interact or receive instructions or message, if user’s avatar
has appropriate attributes. User can add attribute freely to any object in sight.
This function also works for giving instructions to object.

7 Conclusions

This paper describes a way of defining invocation of plant maintenance agents
using VR techniques. The basic idea is spatial programming for place-dependent
works, one of declarative programming paradigm. This is elegantly achieved by
adopting Prolog to implement significant mechanism of spatial programming.
The idea is realized by interaction between worker object and junction which is
located in VR space as interface of giving place-dependent maintenance proce-
dure with agents to the worker in the real world. In this system, the VR space
should be linked to real space, and worker in real space can get various required
agents and instructions at real time. Spatial programming also helps a flexible
revision of VR space, because user can modify the VR space without stopping
or restarting it.

Thus, the VR space which is linked to real space can work as plant mainte-
nance agents’ world, and now, we are aiming to realize true ubiquitous mainte-
nance.

Acknowledgment. This work is partially supported by IMS project IRMA.

References

1. Osamu Yoshie, Kyoko Iino, Tatsuya Fukunaga, Nobuyoshi Sato ”Supplying High-
Quality Knowledge of Machine Diagnosis in Virtual Community,” Journal of the
Society of Plant Engineers Japan, Vol.12, (2001).

Towards Ubiquitous Maintenance 293

2. Osamu Yoshie, Hiroki Takahashi ”VSL-Virtual Space Description Language, and
its application to spatial programming,” The International Conference on Electrical
Engineering, (1999).

3. Tstsuya Inaba, Hiroki Takahashi, Kyoko Iino, Natsuko Hayashi, Osamu Yoshie,
”VSL-Trial for Describing Virtual Space in Logic and Its Application to Remote
Robot Operation,” International Conference on Applications of Prolog, (1999) pp.
50-53.

4. Stuart Russel, Peter Norvig, Artificial Intelligence, (Prentice Hall, 1995)
5. Osamu Yoshie, Hiroki Takahashi, Kinjiro Ito, Kageo Akizuki ”Building Integrated

Homepage by Illustration from Web- and XML- Centric Information Systems,” The
International Conference on Electrical Engineering, (2002).

6. Leon Sterling, Ehud Shapiro, The Art of Prolog. SECOND EDITION, (The MIT
Press, 1994)

7. The Source for JavaTM Technology. Available at
http://java.sun.com/.

8. Extensible Markup Language (XML) 1.0 (Second Edition). Available at
http://www.w3.org/TR/REC-xml.

9. E.S.Chen, gQuickTimeVR - An Image-Based Approach to Visual Environment Nav-
igation,” Computer Graphics, Proc. of ACM SIGGRAPH95, (1995) pp. 29-38.

A Pragmatic Approach to Pre-testing
Prolog Programs�

Christoph Beierle, Marija Kulaš, and Manfred Widera

Praktische Informatik VIII - Wissensbasierte Systeme, Fachbereich Informatik,
FernUniversität in Hagen 58084 Hagen, Germany

{beierle, marija.kulas, manfred.widera}@fernuni-hagen.de

Abstract. We present an overview on the AT(x) approach which is ca-
pable of automatically analyzing programs with respect to given tests
and a reference solution. In the context of small homework assignments
with precisely describable tasks, AT(P), a Prolog instance of the gen-
eral AT(x) framework, is able to find many of the errors usually made
by students and to communicate them in a manner understandable for
beginners in Prolog programming. The system is being used in distance
education where direct communication between students and tutors is
most of the time not possible.

1 Introduction

In distance learning and education, direct interaction between students and tu-
tors is (most of the time) not possible. While communication via phone, e-mail,
or newsgroups helps, there is still need for more direct help in problem solving
situations like programming. In this context, intelligent tutoring systems have
been proposed to support learning situations as they occur in distance educa-
tion. A related area is tool support for homework assignments. In this paper,
we will present a pragmatic approach to the automatic revision of homework
assignments in programming language courses. In particular, we show how with
the AT(P) system, exercises in Prolog can be automatically analyzed and tested
so that automatically generated feedback can be given to the student. We will
present an overview on AT(P) which is a Prolog instance of our more general
AT(x) framework. Whereas AT(x) is introduced in [BKW03], this paper provides
a more detailed description of the AT(P) functionalities.

2 WebAssign and AT(x)

The AT(x) framework is designed to be used in combination with WebAssign,
a general system for assignments and assessment of exercises for courses which

� The research reported here was partially supported by the Innovationsfond “Lern-
raum Virtuelle Universität” (LVU).

D. Seipel et al. (Eds.): INAP/WLP 2004, LNAI 3392, pp. 294–308, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

was developed by H.-W. Six and his group [BHSV99, Web03]. It provides support
with web-based interfaces for all activities occurring in the assignment process,

A Pragmatic Approach to Pre-testing Prolog Programs 295

e.g. for the activities of the author of a task, a student solving it, and a corrector
correcting and grading the submitted solution. In particular, it enables tasks
with automatic test facilities and manual assessment, scoring and annotation.
WebAssign is integrated in the Virtual University system of the FernUniversität
Hagen [LVU03].

From the students’ point of view, WebAssign provides access to the tasks to
be solved by the students. A student can work out his solution and submit it
to WebAssign. Here, two different submission modes are distinguished. In the
so-called pre-test mode, the submission is only preliminary. In pre-test mode,
automatic analyses or tests are carried out to give feedback to the student. The
student can then modify and correct his solution, and he can use the pre-test
mode again until he is satisfied with his solution. Eventually, he submits his
solution in final assessment mode after which the assessment of the submitted
solution is done, either manually or automatically, or by a combination of both.

While WebAssign has built-in components for automatic handling of easy-
to-correct tasks like multiple-choice questions, this is not the case for more
complex tasks like programming exercises. Here, specific correction modules are
needed. The AT(x) framework aims to analyze solutions to programming exer-
cises and is such a system that can be used as an automatic correction module
for WebAssign. Its main purpose is to serve as an automatic test and analysis
facility in pre-test mode.

Instances of the AT(x) framework have a task database that contains an entry
for each task. When a student submits a solution, AT(x) gets an assignment
number identifying the task to be solved and a submitted program written to
solve the task via WebAssign’s communication components. Further information
identifying the submitting student is also available, but its use is not discussed
here. Taking the above data as input, AT(x) analyzes the submitted program.
Again via WebAssign, the results of its analysis are sent as feedback to the
student (cf. Fig. 1).

Supervisor

core component
(in target language)

Student Student Student Student

background

(test queries,

reference solution)
test results

data analysis system

Java interface

WebAssign
user interface
user administration

Fig. 1. Structure of AT(x)

296 C. Beierle, M. Kulaš, and M. Widera

Besides its integration into WebAssign, AT(x) has also been coupled to
VILAB, a virtual electronic laboratory for applied computer science. VILAB is
a system that guides students through a number of (potentially larger) exercises
and experiments [LGH02].

3 An Example Session

Before we go into the description of the individual components of the AT(x)
system, we want to show an example execution for a Prolog homework task.
The task is described as follows:

Let N and M be integers with N ≤ M . Define a predicate between/3
such that a query between(X, N, M) is true if N is less or equal to M,
and X is an integer between N and M.

Let us assume that the following program is submitted:

between(X, N, M) :- var(X), integer(N),
integer(M), N =< M,
gen_list(N, M, X).

gen_list(N, N, [N|[]]) :- !.
gen_list(N, M, [N|R]) :- L is N + 1, gen_list(L, M, R).

Then the system’s output is the following:

The following query failed, though it should succeed:
between(10,10,20)

Therefore, your program violates the following property:
The lower bound N is between N and M

Wrong solutions were generated for the following query:

between(A,100,102)
The wrong solutions for this query are listed below:

between([100,101,102],100,102)

Solutions were overlooked for the following query:

between(A,100,102)
The overlooked solutions for this query are listed below:

between(100,100,102)
between(101,100,102)
between(102,100,102)

One interesting aspect of the AT(x) framework is the following: the system is
designed to perform a large number of tests. In the generated report, however,
it filters some of the detected errors for presentation. Several different filters
generating reports of different precision and length are available. In the example
above, a single representative for each kind of detected error was selected.

A Pragmatic Approach to Pre-testing Prolog Programs 297

4 Structure of the AT(x) Framework

The AT(x) framework consists of combining different tools. Interfaces to differ-
ent user groups (especially students and supervisors) have to be provided via
WebAssign. The design decisions caused by this situation are described in this
section.

4.1 Components of the AT(x) System

AT(x) is divided into two main components: the main work is done by the
analysis component. Especially in functional and logic programming, the used
languages are well suited for handling programs as data. The analysis compo-
nents of AT(P) (and also of AT(S), an instance of AT(x) for the functional
programming language Scheme, cf. [BKW03]) is therefore implemented in the
target language (i.e. the language the programs to be tested are written in).

A further component implemented in Java serves as an interface between
this analysis component and WebAssign. The reason for using such an interface
component is its reusability and its easy implementation in Java. The WebAssign
interface is based on Corba communication. A framework for WebAssign clients
implementing an analysis component is given by an abstract Java class. Instead
of implementing an appropriate Corba client for each of the AT(x) instances in
the individual target languages independently, the presented approach contains
a reusable interface component implemented in Java (that makes use of the
existing abstract class) and a very simple interface to the analysis component.

4.2 The Analysis Components

The individual analysis components are the main parts of the AT(x) instances.
They perform a number of tests on the students’ programs and generate ap-
propriate error messages. The performed tests and the detectable error types of
AT(P) are discussed in Sec. 5 and 6. Here, we concentrate on the (quite simple)
interface of this component.

The analysis component of each AT(x) instance expects to read an exercise
identifier (used to access the corresponding information on the task to be solved)
and a student’s program from the standard input stream. It returns its messages,
each as a line of text, at the component’s standard output stream. These lines
of text contain an error number and some data fields containing additional er-
ror descriptions separated by a unique identifier. The number and types of the
additional data fields is fixed for each error number.

4.3 Function and Implementation of the Interface Component

On the one hand, WebAssign provides a communication interface based on Corba
to the analysis components. On the other hand, the analysis components used
in AT(x) use a simple interface with textual communication via the stdin and
stdout streams of the analysis process. We therefore use an interface program
connecting the analysis component of AT(x) and WebAssign which performs the
following tasks:

298 C. Beierle, M. Kulaš, and M. Widera

– Starting the analysis system and providing an exercise identifier and the
student’s program.

– Reading the error messages from the analysis component.
– Selecting some of the messages for presentation.
– Preparing the selected messages for presentation.

The interface component starts the analysis system (via the Java class Run-
time) and writes the needed information into its standard input stream (which
is available by the Java process via standard classes). Afterwards, it reads the
message lines from the standard output stream of the analysis system, parses
the individual messages and stores them into an internal representation.

For presenting errors to the student, each error number is connected to a
text template that gives a description of this kind of error. An error message is
generated by instantiating the template of an error with the data fields provided
by the analysis component together with the error number. The resulting text
parts for the individual errors are concatenated and transferred to WebAssign
as one piece of HTML text.

For using this system in education it turns out that presenting all detected
errors at once is not the best action in every case. The interface component
therefore has the capability of selecting certain messages for output according
to one of the following strategies:

– Only one error is presented. This is especially useful in beginners courses,
since a beginner in programming should not get confused and demotivated
by a large number of error messages. He can rather concentrate on one
message and may receive further messages when restarting the analysis with
the corrected program.

– For every type of error occurring in the list of errors only one example is
selected for output. This strategy provides more information at once to ex-
perienced users. A better overview over the pathological program behaviour
is given, because all different error types are described, each with one rep-
resentative. This may result in fewer iterations of the cycle consisting of
program correction and analysis. The strategy, however, still hides the full
set of all test cases from the student and therefore prevents fine tuning a
program according to the performed tests.

– All detected errors are presented at once. This provides the complete overview
over the program errors and is especially useful when the program correc-
tion is done offline. In order to prevent fine tuning of a program according to
the performed tests, students should be aware that in final assessment mode
additional tests not present in the pre-test mode will be applied.

4.4 Global Security Issues

Security is an issue that is common to all instances of AT(x). It is therefore
addressed by the framework rather than by every individual instance. In [Wid04]
it is shown how authentification problems and denial of service attacks are dealt
with and by which means malicious code in submitted programs can be detected.

A Pragmatic Approach to Pre-testing Prolog Programs 299

Essentially, WebAssign already provides a filter ruling out denial of service and
unauthorized access. Malicious code in students’ solutions (e.g. file access, . . .)
is prevented by the known UNIX security mechanisms. A sandbox approach is
possible, but did not prove necessary so far.

5 Requirements for the Analysis Components

The heart of the AT(x) system is given by the individual analysis components
for the different programming languages. The intended use in testing homework
assignments rather than arbitrary programs implies some important properties
of the analysis components discussed here: it can rely on the availability of a
detailed specification of the homework tasks, it must be robust against non
terminating input programs and runtime errors, and it must generate reliable
output understandable for beginners.

The description for each homework task consists of the following parts:

– A textual description of the task. (This is essentially used in preparation of
the homework assignment, but not in the testing task itself.)

– A set of test cases for the task.
– Specifications of program properties and of the generated solutions. (This

applies especially for declarative languages like Prolog.)
– A reference solution. (This is a program which is assumed to be a correct

solution to the homework task and which can be used to judge the correctness
of the students’ solutions.)

This part of input is called the static input to the analysis component, because
it usually remains unchanged between the individual test sessions. A call to the
analysis system contains an additional dynamic input which consists of a unique
identifier for the homework task (used to access the appropriate set of static
input) and a program to be tested.

Now we want to discuss the requirements on the behaviour of the analysis
system in more detail. Concretizing the requirement of reliable output we want
our analysis component to return an error only if such an error really exists.
Where this is not possible (especially when non termination is assumed), the
restricted confidence should clearly be communicated to the student, e.g. by
marking the returned message as a warning instead of an error. For warnings
the system should describe an additional task to be performed by the student
in order to discriminate errors from false messages.

Runtime errors of every kind must be caught without affecting the whole
system. For instance, if executing the student’s program causes a runtime error,
this should not corrupt the behaviour of the other components. Towards this end,
our AT(P) and AT(S) implementations exploit the hooks of user-defined error
handlers provided by SICStus Prolog and MzScheme, respectively. An occurring
runtime error is reported to the student, and no further testing is done, because
the system’s state is no longer reliable.

For ensuring termination of the testing process, infinite loops in the tested
program must also be detected and interrupted. As the question whether an

300 C. Beierle, M. Kulaš, and M. Widera

arbitrary program terminates is undecidable in general, we chose an approxima-
tion that is easy to implement and guarantees every infinite loop to be detected:
a threshold for the maximal number of function calls1 (either counted inde-
pendently for each function or accumulated over all functions in the program)
is introduced and the program execution is aborted whenever this threshold
is exceeded. (In the presence of further looping constructs like while-loops in
imperative programming, a refined termination control is necessary.) As home-
work assignments are usually small tasks, it is possible to estimate the maximal
number of needed function calls and to choose the threshold sufficiently. The
report to the student must, however, clearly state the restricted confidence on
the detected non-termination.

6 Analysis of Prolog Programs

Annotation Tests. Due to the declarative character of Prolog, a variety of
tests can be performed on Prolog programs. Certain main properties of a pro-
gram can be tested by annotations. Our system AT(P) is based on the TSP
approach of H. Neumann [Neu98] where several kinds of Prolog annotations are
proposed, together with an algorithm for their validation with respect to a given
student’s program and a reference program. One general kind of annotation is a
positive/negative annotation. Such an annotation consists of a test query, a flag
whether this query should succeed or fail and a description of the property that
is violated if the query does not behave as expected. This description is reported
to the student together with the query and the intended result.

Example 1. Reconsider the predicate between/3 from Sec. 3. A possible error of
a student’s program is to allow for too large values X in a call between(X ,N ,M).
We can detect and explain that by an annotation test where

– the test query is set to “between(30, 10, 20)”,
– the success flag is set to expected failure,
– the error explanation text is “If X is greater than the upper bound M,

between(X,N,M) can not succeed”.

For instance, if this test fails, the system will generate the following output: The
following query succeded, though it should fail: between(30,10,20). Therefore,
your program violates the following property: If X is greater than the upper
bound M, between(X,N,M) can not succeed.

Mode Tests. Mode tests form the class of tests that is probably performed
most often by AT(P). Its aim is to check whether the given program (or more
precisely, the currently checked predicate in this program) behaves correctly for
all intended modes (i.e. combinations of input and output instantiations of the
predicate). Performing a mode test consists of the following steps:

1 In case of Prolog: predicate calls.

A Pragmatic Approach to Pre-testing Prolog Programs 301

1. Generate test queries for all intended modes of the tested predicate.
2. For each generated query perform the following steps independently:

(a) Evaluate the query with respect to the student’s program and collect all
generated results.

(b) Evaluate the query with respect to the reference program and collect all
generated results.

(c) Search for evidence for errors in the generated result lists.

The generation of test queries uses a list of fully instantiated terms that
should be provable by the tested predicate and a list of modes the predicate
should be applicable with. In the mode list the individual parameter positions
are marked as input or output parameter as usual: + denotes an input parameter
that must be instantiated, − denotes an output parameter that must not be
instantiated, and parameters marked with ? may be either way.

Example 2. Consider the well-known append/3 predicate as the tested predicate.

append([], L, L).
append([H|R1], L2, [H|R]) :- append(R1, L2, R).

Some example terms (provable goals) for this predicate are

append([], [a, b], [a, b]), append([a], [], [a]), append([a], [b, c], [a, b, c]).

Let the list of modes of append/3 be the following.2

append(?L1, ?L2,+L3), append(+L1,+L2, ?L3)

For the first example term and the first mode declaration we get the following
list of test queries:

append(L1, L2, [a, b]), append(L1, [a, b], [a, b]),
append([], L2, [a, b]), append([], [a, b], [a, b]) .

The other example terms and mode declarations are processed analogously.

Wrong and Missing Solutions. Another part of the test procedure consists of
the application of the student program to test queries and checking the resulting
substitutions with the reference program. The following steps of comparison are
performed:

– Solutions of a student’s program are reported as wrong solutions if they are
falsified by the reference program (i.e. if the query given by the solution fails
in the reference program).

2 In contrast to the usual mode declaration append(?Prefix , ?Suffix , ?Combined) found
e.g. in [SIC01], here we are not interested in the capability of append/3 to guess list
entries when they are not completely given as e.g. in the goal append(L1, [a, b], L).

302 C. Beierle, M. Kulaš, and M. Widera

– A solution of the reference program is reported as missing if it is not sub-
sumed by some solution of the student’s program. (It is not sufficient for
the student’s program to accept every solution generated by the reference
program. The student’s program must rather be able to generate all these
solutions.)

– For some of the test queries the number of expected solutions can be given
(completeness annotation), and the number of solutions generated by the
student’s program is compared with this specification.

Example 3. Consider the task of implementing a predicate perm/2 that is ful-
filled if both arguments are lists which are permutations of each other. Let the
analyzed test query be perm([a, b, c], L). Let further the programs generate the
following instantiations for L:

considered values
analyzed program [a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, a, b], [c, b, a]
reference solution [c, b, a], [c, a, b], [b, c, a], [b, a, c], [a, c, b], [a, b, c]

Because of comparing of the solution sequences as sets, the system can infer the
correctness of the analyzed program with respect to this query.

In case of an infinite number of solutions just a prefix is generated. The system
is still applicable to those tasks with infinite solution set if a natural order on the
solutions exists and therefore the generated solutions of the student’s program
and the reference program match. An example of a problem with natural order
is the generation of all prime numbers. In contrast, there is no single natural
order for generating all words over the alphabet Σ = {@,#, $}.

Redundant Solutions. Redundant solutions, i.e. solutions erroneously occur-
ring several times in the sequence of solutions, are detected by an algorithm
that interprets every repetition of a solution as an unintended one. If repeated
solutions are intended by the problem, these messages can be filtered out later.

This procedure turned out to be sufficient since in our context of homework
assignments the processed solution sequences are usually quite small.

Supervising Termination and Runtime Errors. The central part of the
Prolog analysis component is an original backtracking analyst [Neu98] that eval-
uates a test query with respect to a program and an expected number of answers,
creating a (partial) list of answers and a status report. A query shall be evalu-
ated two times, once with respect to the student’s program and once with respect
to the reference program. Both programs are held in memory in parallel using
different modules.

During the evaluation of a query in a module, its termination behaviour is
assessed by a meta-interpreter as follows. Goals for predicates defined in the mod-
ule are resolved, whereas goals for built-ins or imported predicates are passed
to the runtime system using timed-out call/1. The interpreter counts the num-
ber of resolutions and runtime calls. Upon exceeding the threshold, the current
evaluation of the query is aborted and evidence for an infinite loop is reported.

A Pragmatic Approach to Pre-testing Prolog Programs 303

The class of runtime errors contains all errors that are detected by the runtime
system and cause the immediate termination of the computation (unless they
are caught and processed as in our system). Runtime errors in Prolog programs
contain among others

– existence errors (e.g. a non-existing predicate was called)
– instantiation errors (e.g. performing a mathematical computation with unin-

stantiated arguments)
– resource errors (e.g. no more memory).

Test evaluations performed by AT(P) are supervised and runtime errors are
caught. If a runtime error occurs, the error message is passed to the student
via WebAssign and the remaining tests are canceled. This cancellation avoids
imprecise results for further tests caused by side-effects of the runtime error.

7 Examples: Partial Specifications of Program Properties

We will present concrete examples of specifications of program properties as they
can be expressed in our system. They are provided by the tutor and present a
powerful and very flexible means of expressing partial program specifications.

Factorial. Suppose in a Prolog course, the predicate fac/2 for computing the
factorial of a natural number has been introduced, using the calling pattern
fac(+N,?F), i.e., if N and F are such that F = N! then fac(N,F) holds provided
that the first argument is instantiated. Let us further assume that the following
homework assigment is given to the students: Define a predicate inv fac/2 that
computes both the factorial as well as its inverse, where at least one argument
must be instantiated.

Figure 2 gives a partial specification of inv fac/2. In line 2, modes/1 has a
list of two mode terms expressing the intended usage of inv fac/2. Together with
the example term given in line 3, the test queries inv fac(5,F), inv fac(5,120),
and inv fac(N,120) are automatically generated.

Line 4 contains a so-called completeness annotation (cf. Sec. 6). The general
form of a completeness annotation is

testcase(complete(+TestQuery, +Limit, +Op)).

which causes a check whether TestQuery produces a number N of solutions such
that N Op Limit holds, with Op ∈ {<, <=, =, >=, >}. Thus, line 4 specifies that
inv fac(N,1) has exactly 2 solutions (the factorial of both 0 and 1 yields 1).

Lines 5–17 contain four positive (5–12) and four negative (13–17) annotations.
In general, for a positive annotation

testcase(pos ann(+TestQuery, +Annotation)).

TestQuery should succeed. If it fails, Annotation is violated. For instance, if
the query inv fac(N, 720), fac(N, X), X = 720 fails, then the annotation
’inv fac(N,F) and fac(N,X) => F = X’ has been violated (lines 9-10). Note

304 C. Beierle, M. Kulaš, and M. Widera

% Import: fac/2 % 0
:- load files([library(’fac.pl’)], [compilation mode(assert all)]). % 1

modes([inv fac(+ N, ? F), inv fac(? N, + F)]). % 2

examples([inv fac(5,120)]). % 3

testcase(complete(inv fac(N,1), 2, =)). % 4

testcase(pos ann((inv fac(0, F), F = 1), % 5
’inv fac(0,F) => F = 1’)). % 6

testcase(pos ann((fac(6, F), inv fac(X, F), X = 6), % 7
’F > 1 and fac(N,F) and inv fac(X,F) => N = X’)). % 8

testcase(pos ann((inv fac(N, 720), fac(N, X), X = 720), % 9
’inv fac(N,F) and fac(N,X) => F = X’)). %10

testcase(pos ann((inv fac(5,F), fac(5,F)), %11
’inv fac(N,F) => fac(N,F)’)). %12

testcase(neg ann(inv fac(N,100), %13
’not fac(N,F) => not inv fac(N,F)’)). %14

testcase(neg ann(inv fac(N,0), ’not inv fac(N,0)’)). %15

testcase(neg ann(inv fac(N,-1), ’F < 0 => not inv fac(N,F)’)). %16

testcase(neg ann(inv fac(-1, F), ’N < 0 => not inv fac(N, F)’)). %17

Fig. 2. Specification of program properties for inv fac/2

modes([between(? X, + N, + M)]). % 1

examples([between(1,0,3)]). % 2

testcase(complete(between(X,100,102), 3, =)). % 3

testcase(complete(between(X,5,5), 1, =)). % 4

testcase(neg ann(between(X,6,5), ’If the lower bound N is greater % 5
than the upper bound M, between(X,N,M) can not succeed’)). % 6

testcase(pos ann(between(10,10,20), ’The lower bound N is % 7
between N and M’)). % 8

testcase(pos ann(between(20,10,20), ’The upper bound M is % 9
between N and M’)). %10

testcase(pos ann(between(20,20,20), ’N is between N and N’)). %11

testcase(neg ann(between(20,30,40), ’If X is less than the lower %12
bound N, between(X,N,M) can not succeed’)). %13

testcase(neg ann(between(30,10,20), ’If X is greater than the upper %14
bound M, between(X,N,M) can not succeed’)). %15

Fig. 3. Specification of program properties for between/3

A Pragmatic Approach to Pre-testing Prolog Programs 305

modes([subterm(+ SubTerm, + Term)]). % 1

examples([subterm(p(X), q(a,p(X),y,p(p(X))))]). % 2

testcase(pos ann(subterm(p(X), p(X)), % 3
’forall T: [atomic(T) or var(T) or compound(T)] => subterm(T,T)’)). % 4

testcase(neg ann(subterm(p(X), p(Y)), % 5
’var(X) and var(Y) and not X == Y => not subterm(p(X),p(Y))’)). % 6

testcase(neg ann(subterm(p(x), p(X)), % 7
’atomic(A) and var(X) => not subterm(p(A),p(X))’)). % 8

testcase(neg ann(subterm(p(x), p(q(x))), % 9
’T1 does not occur as substring in T2 => not subterm(T1,T2)’)). %10

Fig. 4. Specification of program properties for subterm/2

that the annotations are given as text strings, intended as error explanations for
the students.

Analogously, the test query in a negative annotation should fail. For instance,
if the query inv fac(N,100) succeeds, the annotation ’not fac(N,F) => not
inv fac(N,F)’ has been violated (lines 13-14).

Let us now suppose that the tutor wants the students to develop a more
general version of inv fac/2 where both of its arguments may be uninstantiated.
The specification of program properties given in Figure 2 can be adapted to this
modified task easily by just replacing line 2 by

modes([inv_fac(?_N, ?_F)]).

specifying the generalized mode situation.

Between. A partial specification of program properties of the predicate
between/3 (Sec. 3 and 6) is given in Figure 3. Note that here, the tutor has
choosen rather verbal annotations as error explanations, instead of more formal
ones as for inv fac/2.

Subterm. Let the following homework assignment be given: Define a pred-
icate subterm/2 with calling pattern subterm(+SubTerm,+Term) that holds if
SubTerm is a subterm of Term, where every term is a subterm of itself, and
a subterm of an argument of some term T is a subterm of T as well. For in-
stance, p(X) is a subterm of p(X) and of q(a,p(X),Y), but not a subterm of p(Y).
Figure 4 specifies various properties of subterm/2. If we want to extend the task
by requiring that in the case of multiple occurrences of SubTerm in Term the
predicate should succeed only once, we could adapt the partial program specifi-
cation of Figure 4 by adding the completeness annotation

testcase(complete(subterm(a, p(a,g(a,a),a)), 1, =)).

306 C. Beierle, M. Kulaš, and M. Widera

8 Implementation and Experiences

Both AT(P) and AT(S) are fully implemented and operational. The analysis
components run under the Solaris 7 operating system and, via their respective
Java interface components, serve as clients for WebAssign.

During the summer semester 2003, AT(P) was used in the framework of a
course on deduction and inference systems at the FernUniversität Hagen, and
both AT(P) and AT(S) are currently being used for a course on logic and func-
tional programming. Part of all programming exercises in the course are sup-
ported by the system, but not yet all of them. Thus, since currently the system
is available just for selected homework tasks, using the system means sending
in homeworks on two different ways (WebAssign for the selected available tasks,
“plain paper” sent in by mail or e-mail for the remaining tasks). Nevertheless,
two thirds of the students chose to use the system. Feedback from the students
was positive in general, mentioning both, a better motivation to solve the tasks,
and better insight in the new programming paradigm.

9 Related Work

In the area of testing and analysis of Prolog programs there have been many
proposals, ranging from theorem proving (eg. [Stä98]) to various forms of debug-
ging (eg. [Duc99]) and systematic testing. Here we shall only refer to proposals
with a strong declarative bias, i. e. using logical assertions (or annotations) for
representing and/or validating program properties. The proposals differ along
several axes: static or run-time analysis, restricting the target language or not,
expressiveness of the annotation language.

Some authors restrict the target language by throwing out “impure” predi-
cates. LPTP [Stä98] is an interactive theorem prover for a pure (no cut, var
or assert) subset of Prolog. LPTP’s language is a first-order logic, enriched
with connectives for success, failure and universal termination. GUPU ([Neu97],
[NK02]) is a teaching environment for a pure subset of Prolog. Before a student
is allowed to feed in some clauses for a predicate, a partial specification (as a
set of annotations) must be supplied. In GUPU the tutor supplies a reference
solution as well [NK02]. GUPU’s annotation language can express examples,
counter-examples and termination statements.

Yet other authors take the challenge of the “full” or standard Prolog lan-
guage. The first approach to validation of full Prolog seems to be the Advice
package [O’K84]. It was followed by a theoretical work [DM88] on static valida-
tion. Some current practical approaches, performing run-time validation, include
the language of annotations of the Ciao-Prolog [HPB99] and the Nope system
of annotations [Kul00]. The TSP system [Neu98], at the heart of our AT(P), per-
forms run-time validation of full Prolog, and its annotation language can express
examples, counter-examples, modi and numerical constraints on the number of
computed answers.

Whereas e.g. LPTP is a powerful theorem prover and GUPU is a fully in-
tegrated teaching environment, we would like to stress the fact that the aim

A Pragmatic Approach to Pre-testing Prolog Programs 307

of AT(P) is a different one. It is an approach to support Prolog programming
in distance education for beginners in logic programming. In such a context,
the AT(P) assumption to have a correct reference solution available and to
check the student’s program with respect to this reference solution (rather than,
say, with respect to a program-independent specification), seems to be justi-
fied. Furthermore, our particular system requirements of a completely WWW
based system without intensive interaction characteristics on the one hand and
the requirements for robustness with regard to program errors, runtime-errors,
non-termination, etc. on the other hand, led to the pragmatic approach of cou-
pling the analysis component AT(P) to WebAssign, thereby reusing WebAssign’s
communication and administration facilities.

10 Conclusions and Further Work

We have presented a brief overview on the AT(x) approach which is capable
of automatically analyzing programs with respect to given tests and a refer-
ence solution. In the framework of small homework assignments with precisely
describable tasks, AT(P) is able to find many of the errors usually made by
students and to communicate them in a manner understandable for beginners
in Prolog programming (in contrast to the error messages of most compilers).

There are other programming aspects that are not covered by AT(P). Ex-
amples are the layout of Prolog code, use of “imperative” programming style,
etc. While there are systems dealing with such aspects (e.g. enforcing a partic-
ular layout discipline), in our AT(P) approach they are currently handled by a
human corrector in the final assessement mode. Whereas it should not be too
difficult to extend AT(P) in this direction, our priority in the design of AT(P)
was the focus on program correctness by fully automated pre-testing of Prolog
programming assignments.

Acknowledgements. The basis for the analysis component of AT(P) is taken
from the TSP system, which was designed and implemented by Holger Neumann
[Neu98]. TSP offers a variety of different tests and turned out to be extremely
stable; the partial specifications presented in Sec. 7 were adapted from [Neu98].
We also thank the anonymous referees for helpful comments.

References

[BHSV99] J. Brunsmann, A. Homrighausen, H.-W. Six, and J. Voss. Assignments
in a Virtual University – The WebAssign-System. In Proc. 19th World
Conference on Open Learning and Distance Education, Vienna, Austria,
June 1999.

[BKW03] C. Beierle, M. Kulaš, and M. Widera. Automatic analysis of programming
assignments. In A. Bode, J. Desel, S.Ratmayer, and M. Wessner, editors,
DeLFI 2003. Proceedings der 1. e-Learning Fachtagung Informatik, volume
P-37 of Lecture Notes in Informatics (LNI), Bonn, 2003. Köllen Verlag.

308 C. Beierle, M. Kulaš, and M. Widera

[DM88] W. Drabent and J. Ma�luszyński. Inductive assertion method for logic pro-
grams. Theoretical Computer Science, 59:133–155, 1988.

[Duc99] M. Ducasse. Opium: An extendable trace analyser for prolog. J. of Logic
Programming, 39:177–223, 1999.

[HPB99] M. Hermenegildo, G. Puebla, and F. Bueno. Using global analysis, partial
specifications, and an extensible assertion language for program validation
and debugging. In K. Apt, V. Marek, M. Truszczynski, and D. S. War-
ren, editors, The Logic Programming Paradigm: A 25-Year Perspective.
Springer-Verlag, 1999.

[Kul00] M. Kulaš. Annotations for Prolog – A concept and runtime handling.
In A. Bossi, editor, Logic-Based Program Synthesis and Transformation.
Selected Papers of the 9th Int. Workshop (LOPSTR’99), Venezia, volume
1817 of LNCS, pages 234–254. Springer-Verlag, 2000.

[LGH02] R. Lütticke, C. Gnörlich, and H. Helbig. VILAB - a virtual electronic
laboratory for applied computer science. In Proceedings of the Confer-
ence Networked Learning in a Global Environment. ICSC Academic Press,
Canada/The Netherlands, 2002.

[LVU03] Homepage LVU, Fernuniversität Hagen,
http://www.fernuni-hagen.de/LVU/. 2003.

[Neu97] U. Neumerkel. A programming course for declarative programming with
Prolog. http://www.complang.tuwien.ac.at/ulrich/gupu/material/1997-
gupu.ps.gz, 1997.

[Neu98] H. Neumann. Automatisierung des Testens von Zusicherungen für Prolog-
Programme. Diplomarbeit, FernUniversität Hagen, 1998.

[NK02] U. Neumerkel and S. Kral. Declarative program development in Prolog with
GUPU. In Proc. of the 12th Internat. Workshop on Logic Programming
Environments (WLPE’02), Copenhagen, pages 77–86, 2002.

[O’K84] Richard A. O’Keefe. advice.pl. 1984. Interlisp-like advice package.
[SIC01] Swedish Institute of Computer Science. SICStus Prolog User’s Manual,

April 2001. Release 3.8.6.
[Stä98] Robert F. Stärk. The theoretical foundations of LPTP (a logic program

theorem prover). J. of Logic Programming, 36(3):241–269, 1998. Source
distribution http://www.inf.ethz.ch/˜staerk/lptp.html.

[Web03] Homepage WebAssign. http://www-pi3.fernuni-hagen.de/WebAssign/.
2003.

[Wid04] M. Widera. Testing Scheme programming assignments automatically. In
Trends in Functional Programming. Intellect, 2004. (to appear).

Author Index

Atzmueller, Martin 65

Barták, Roman 149
Bartenstein, Oskar 269
Baumeister, Joachim 16, 65
Baumgartner, Peter 1
Beierle, Christoph 294
Bohlin, Markus 166
Bry, François 258

Fukuda, Shuichi 227
Furbach, Ulrich 1

Geist, Ingolf 32
Geske, Ulrich 200
Gross-Hardt, Margret 1
Groth, Dennis P. 79

Heumesser, Bernd D. 245
Hopfner, Marbod 16

John, Ulrich 200

Keinänen, Misa 134
Kleemann, Thomas 1
Kulaš, Marija 294

Ludwig, Andreas 245

Matsuo, Yuya 116

Nanni, Mirco 98
Niemelä, Ilkka 134

Puppe, Frank 65

Raffaetà, Alessandra 98
Renso, Chiara 98

Sattler, Kai-Uwe 32
Schaffert, Sebastian 258
Schlenker, Hans 185, 215
Schroeder, Andreas 258
Seipel, Dietmar 16, 245
Shang, Xuequn 32
Shirahama, Kimiaki 116

Takahashi, Hiroki 278
Turini, Franco 98

Uehara, Kuniaki 116

Widera, Manfred 294
Winiwarter, Werner 47
Wolf, Armin 185

Yoshie, Osamu 278

	Frontmatter
	Knowledge Management and Decision Support
	Optimizing the Evaluation of XPath Using Description Logics
	Declaratively Querying and Visualizing Knowledge Bases in {\sc Xml}
	SQL Based Frequent Pattern Mining with FP-Growth
	Incremental Learning of Transfer Rules for Customized Machine Translation
	Quality Measures and Semi-automatic Mining of Diagnostic Rule Bases
	An Evaluation of a Rule-Based Language for Classification Queries
	Deductive and Inductive Reasoning on Spatio-Temporal Data
	Mining Semantic Structures in Movies
	Solving Alternating Boolean Equation Systems in Answer Set Programming

	Constraint Programming and Constraint Solving
	Effective Modeling with Constraints
	A Local Search System for Solving Constraint Problems of Declarative Graph-Based Global Constraints
	Realising the Alternative Resources Constraint
	Integrating Time Constraints into Constraint-Based Configuration Models
	Distributed Constraint-Based Railway Simulation

	Declarative Programming and Web-Based Systems
	Concurrent Engineering to Wisdom Engineering
	Web Services Based on {\sc Prolog} and {\sc Xml}
	A Contribution to the Semantics of Xcerpt, a Web Query and Transformation Language
	DialogEngines -- Dialog Agents for Web-Based Self Service Consulting
	Towards Ubiquitous Maintenance -- Defining Invocation of Plant Maintenance Agents in Real Workspace by Spatial Programming
	A Pragmatic Approach to Pre-testing Prolog Programs

	Backmatter

