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Preface

Welcome to the 6th International Workshop on Passive and Active Measurement,
held in Boston, Massuchusetts. PAM 2005 was organized by Boston University,
with financial support from Endace Measurement Systems and Intel.

PAM continues to grow and mature as a venue for research in all aspects
of Internet measurement. This trend is being driven by increasing interest and
activity in the field of Internet measurement. To accommodate the increasing
interest in PAM, this year the workshop added a Steering Committee, whose
members will rotate, to provide continuity and oversight of the PAM workshop
series.

PAM plays a special role in the measurement community. It emphasizes prag-
matic, relevant research in the area of network and Internet measurement. Its
focus reflects the increasing understanding that measurement is critical to effec-
tive engineering of the Internet’s components. This is clearly a valuable role, as
evidenced by the yearly increases in the number of submissions, interest in, and
attendance at PAM.

PAM received 84 submissions this year. Each paper was reviewed by three
or four Program Committee (PC) members during the first round. Papers that
received conflicting scores were further reviewed by additional PC members or
external reviewers (typically two). After all reviews were received, each paper
with conflicting scores was discussed extensively by its reviewers, until a con-
sensus was reached. The PC placed particular emphasis on selecting papers that
were fresh and exciting research contributions. Also, strong preference was given
to papers that included validation results based on real measurements. Even-
tually, out of the 84 submissions, 24 were accepted as full papers and 12 were
accepted as poster presentations. The accepted papers cover a wide range of
measurement areas, from topology and routing to wireless network and applica-
tion measurements. Also, the PAM 2005 program shows the truly diverse and
international identity of the network measurement community; the 36 accepted
contributions are from 13 different countries in North and South America, Asia,
Europe, and Oceania.

This year’s conference was held in Boston’s Back Bay, a lively neighborhood
in the heart of the city. Our location is close to many of the best attractions
Boston has to offer, and we hope that attendees found an opportunity to enjoy
some of them.

The workshop depended on the support of many people, whom we wish to
thank. The PC members worked long and hard to evaluate papers, write reviews,
and come to consensus on paper acceptance; this work took place under tight
deadlines.

We would like to thank Boston University for their support. Special thanks
go to Manish Jain at Georgia Tech, who prepared the conference webpage, ran
the online review system (CyberChair), and helped significantly in preparing the
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final proceedings. Many thanks also to George Smaragdakis at Boston Univer-
sity for helping with the conference website and with the local arrangements.
And we are grateful to Ellen Grady at Boston University for her work in local
arrangements, financial management, and registration. The PC Chair wishes to
acknowledge the authors of CyberChair, the software used to manage the review
process, for making their system publicly available.

We are very grateful to Endace Measurement Systems and to Intel for finan-
cial support that allowed us to keep registration costs low.

Finally, our thanks to all authors of submitted papers, to the speakers, and
to all the participants for making PAM 2005 a success!

We hope attendees enjoyed the PAM 2005 workshop, and had a pleasant stay
in Boston.

Mark Crovella (General Chair)
Constantinos Dovrolis (PC Chair)

Chadi Barakat, Nevil Brownlee, Mark Crovella,
Constantinos Dovrolis, Ian Graham, and Ian Pratt

(Steering Committee)
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On the Impact of Bursting on TCP Performance

Ethan Blanton1 and Mark Allman2

1 Purdue University
eblanton@cs.purdue.edu

2 ICSI/ICIR
mallman@icir.org

Abstract. Periodically in the transport protocol research community,
the idea of introducing a burst mitigation strategy is voiced. In this paper
we assess the prevalence and implications of bursts in the context of
real TCP traffic in order to better inform a decision on whether TCP’s
congestion control algorithms need to incorporate some form of burst
suppression. After analyzing traffic from three networks, we find that
bursts are fairly rare and only large bursts (of hundreds of segments)
cause loss in practice.

1 Introduction

Within the transport protocol research community, an idea that crops up peri-
odically is that of introducing bursting mitigation into the standard congestion
control algorithms. Transport protocols can naturally send line-rate bursts of
segments for a number of reasons (as sketched below). Studies have shown that
these line-rate bursts can cause performance problems by inducing a rapid build-
up of queued segments at a bottleneck link, and ultimately dropped segments
and a reduced transmission rate when the queue is exhausted.

In this paper we focus on the study of micro-bursts and exclude macro-
bursts from consideration. A micro-burst is a group of segments transmitted at
line rate in response to a single event (usually the receipt of an acknowledg-
ment). A macro-burst, on the other hand, can stretch across larger time scales.
For instance, while using the slow start algorithm [APS99], TCP1 increases the
congestion window (and therefore the transmission rate) exponentially from one
round-trip to the next. This is an increase in the macro-burstiness of the connec-
tion. The micro-burstiness, however, is unaffected as TCP sends approximately
2–3 segments per received acknowledgment (ACK) throughout slow start (de-
pending on whether the receiver employs delayed ACKs [Bra89, APS99]).

An example of naturally occurring bursting behavior is given in [Hay97],
which shows that TCP connections over long-delay satellite links with adver-
tised windows precisely tuned to the appropriate size for the delay and band-
width of the network path suffer from burst-induced congestion when loss occurs.

1 The measurements and discussions presented in this paper are in terms of TCP, but
also apply to SCTP [SXM+00] and DCCP’s [KHF04] CCID 2 [FK04], since they use
similar congestion control techniques.

C. Dovrolis (Ed.): PAM 2005, LNCS 3431, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 E. Blanton and M. Allman

Ideally, a TCP connection is able to send both retransmissions and new data
segments during a loss recovery phase [FF96]. However, if there is no room in
the advertised window, new segments cannot be sent during loss recovery. Upon
exiting loss recovery (via a large cumulative ACK), TCP’s window will slide
and a line-rate burst of segments will be transmitted. [Hay97] shows that this
burst — which is roughly half the size of the congestion window before loss —
can result in an overwhelmed queue at the bottleneck link, causing further loss
and additional performance sacrifice. [Hay97] also shows this bursting situation
to apply to a number of TCP variants (Reno [APS99], NewReno [Hoe96, FF96],
FACK [MM96], etc.). Finally, [Hay97] shows that bursts can impact TCP per-
formance, but the experiments outlined are lab-based and offer no insight into
how often the given situation arises in the Internet. In this paper we assess the
degree to which these micro-bursting situations arise in the wild in an attempt
to inform a decision as to whether TCP should mitigate micro-bursting. While
out of scope for this paper we note that [AB04] compares a number of burst
mitigation techniques. In addition to advertised window constraints discussed
above, micro-bursts can be caused by several other conditions, including (but
not limited to):

– ACK loss. TCP uses a cumulative acknowledgment mechanism that is ro-
bust to ACK loss. However, ACK loss causes TCP’s window to slide by a
greater amount with less frequency, potentially triggering longer than desired
bursts in the process.

– Application Layer Dynamics. Ultimately, the application provides TCP
with a stream of data to transmit. If the application (for whatever reason)
provides the data to TCP in a bursty fashion then TCP may well transmit
micro-bursts into the network. Note: an operating system’s socket buffer
provides a mechanism that can absorb and smooth out some amount of
application burstiness, especially in bulk transfer applications. However, the
socket buffer does not always help in applications that asynchronously obtain
data to send over the network.

– ACK Reordering. Reordered ACKs2 cause an ACK stream that appears
similar to a stream containing ACK loss. If a cumulative ACK “passes”
ACKs transmitted earlier by the endpoint, then the later ACK (which now
arrives earlier) triggers the transmission of a micro-burst, while the earlier
ACKs (arriving later) will be thrown away as “stale”.

The causes of bursting discussed above are outlined in more detail in [JD03] and
[AB04]. Also note that the causes of bursts are not TCP variant specific, but
rather apply to all common TCP versions (Reno, NewReno, SACK, etc.).

[JD03] also illustrates the impact of micro- and macro-bursts on aggregate
network traffic. In particular, [JD03] finds that these source-level bursts create

2 Reordered data segments can also cause small amounts of bursting, if the reordering
is modest. However, if the reordering is too egregious then false loss recovery will be
induced, which is a different problem from bursting. For a discussion of the issues
caused by data segment reordering, see [BA02, ZKFP03].
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scaling in short timescales and can cause increased queuing delays in interme-
diate nodes along a network path. In contrast, in this paper we concentrate on
characterizing bursts and determine the frequency of bursts. We then use the
analyzed data to inform a discussion on whether it behooves TCP to prevent
bursts from a performance standpoint, as proposed in the literature (e.g., in
[FF96, HTH01]).

We offer several contributions in this paper after outlining our measurement
methodology in § 2. First, we characterize observed, naturally occurring micro-
bursts from three networks in § 3. Next, we investigate the implications of the
observed micro-bursts in § 4. Finally, in § 5 we conclude with some preliminary
discussion into the meaning of the results from § 3 and § 4 as they relate to
the question of whether a burst mitigation mechanism should be introduced
into TCP.

2 Measurement Methodology

First, we define a “burst” for the remainder of the paper as a sequence of at
least 4 segments sent between two successive ACKs (i.e., a “micro-burst”). The
“magic number” of 4 segments comes from the specification of TCP’s congestion
control algorithms [APS99]. On each ACK during slow start, and roughly once
every 1–2 round-trip times (RTT) in congestion avoidance, TCP’s algorithms
call for the transmission of 2–3 segments at line-rate. Therefore, micro-bursts of
3 or fewer segments have been deemed reasonable in ideal TCP and are common
in the network. We consider bursts of more than 3 segments to be “unexpected”,
in that they are caused by network and application dynamics rather than the
specification of the congestion control algorithms. That is not to say that TCP is
in violation of the congestion control specification in these circumstances — just
that outside dynamics have caused TCP to deviate from the envisioned sending
pattern. These unexpected bursts are the impetus for the various proposals to
mitigate TCP’s burstiness, and therefore they are the focus of our study. We do
note that [AFP02] allows TCP to transmit an initial 4 segment burst when the
maximum segment size is less than 1096 bytes. However, this is not taken into
account in our definition of a burst since it is a one-time only allowance.

In principle, the above definition of a burst is sound. However, in analyzing
the data we found a significant vantage point problem in simply using the number
of segments that arrive between two successive ACKs. As shown in [Pax97] there
is a general problem in TCP analysis with matching particular ACKs with the
packets they liberate — even when the monitoring point is the end host involved
in the TCP connection. However, when the monitoring point is not the end
host the problem is exacerbated. Table 1 illustrates the problem by showing
the different order of events observed inside the TCP stack of the end host
and at our monitor point. In the second column of this example, two ACKs
arrive at the end host and each trigger the transmission of two data segments,
as dictated by TCP’s sliding window mechanism. However, the third column
shows a different (and frequently observed) story from the monitor’s vantage
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Table 1. Example of vantage point problem present in our datasets

Event Number End Host Monitor
0 ACKn+1 ACKn+1

1 DATAm+1 ACKn+2

2 DATAm+2 DATAm+1

3 ACKn+2 DATAm+2

4 DATAm+3 DATAm+3

5 DATAm+4 DATAm+4

point. In this case, the monitor observes both ACKs before observing any of
the data segments and subsequently notes all four data segments transmitted.
Using the notion sketched above, these four data segments would be recorded as
a burst when in fact they were not. This scenario can, for example, be caused by
ACK compression [Mog92]. If the ACKs are compressed before the monitor such
that they arrive within t seconds, where t is less than the round-trip time (RTT)
between the monitor and the end host, r, then the situation illustrated in table 1
will be found in the traces. An even thornier problem occurs when a group of
compressed ACKs arrives over an interval a bit longer than r. In this case, the
overlap between noting ACKs and data packets makes it nearly impossible to
untangle the characteristics of the bursts (or, even their presence).

We cope with this problem by accumulating the ACK information. For in-
stance, in table 1 since two ACKs without any subsequent data segments are
recorded our analysis allows up to 6 data segments to be sent before determining
a burst occurred. This heuristic does not always work. For instance, if 6 data
segments were observed between two subsequent ACKs in a trace file there is no
way to conclusively determine that 3 data segments were sent per ACK. The case
when the first ACK triggered 2 data segments and the second ACK triggered
4 data segments (a burst) is completely obfuscated by this heuristic. Another
problem is that ACKs could conceivably be lost between the monitor and the
end host which would likewise cause the analysis to mis-estimate the bursting
characteristic present on the network. In our analysis, if we note more than 3N
segments sent in response to N ACKs we determine a burst has been trans-
mitted. The length of this burst is simply recorded as the number of segments
noted. In other words, we do not attempt to ascribe some of the data segments
to each ACK. This is surely an overestimate of the size of the burst. However,
as will be shown in the following sections, this small vantage point problem is
unlikely to greatly impact the results because the results show that the differ-
ence between bursts of size M and bursts of size M ± x for some small value of
x (e.g., 1–10) is negligible. Therefore, while the numbers reported in this paper
are slight mis-estimates of the true picture of bursting in the network we believe
the insights are solid.

To assess the prevalence and impact of micro-bursting, we gathered four sets
of packet traces from three different networks. We analyze those connections
involving web servers on the enterprise network. That is, we focus on local web



On the Impact of Bursting on TCP Performance 5

Table 2. Dataset characteristics

Dataset Start Duration Servers Clients (/24s) Conns. Bogus
Anon 7/24/03 ≈26 hours 1,202 5,319 (4,541) 295,019 5,955 (2.0%)
LBNL 10/22/03 ≈11 hours 947 22,788 (19,689) 196,085 2,362 (1.2%)
ICSI1 1/4/04 ≈14 days 1 24,752 (21,571) 223,906 221 (0.1%)
ICSI2 9/18/04 ≈14 days 1 23,956 (20,874) 198,935 114 (0.1%)

servers’ sending patterns, rather than the sending patterns of remote servers
that are responding to local web clients’ requests. The characteristics of the four
trace files used in our study are given in table 2. The first trace, denoted Anon,
consists of roughly 26 hours of web traffic recorded near web servers at a biology-
related research facility that asked not to be identified. The tracing architecture
is, however, outlined in [MHK+03]. The second trace represents roughly 11 hours
of web server traffic at the Lawrence Berkeley National Laboratory (LBNL) in
Berkeley, CA, USA. The final two datasets represent requests to a single web
server at the International Computer Science Institute (ICSI), also in Berkeley,
during two different two week periods in 2004.

These packet traces are analyzed with a custom-written tool called conninfo,
which analyzes the data-carrying segments sent by web servers on the enterprise
network. Conninfo mainly tracks the number of data segments sent between two
subsequent pure acknowledgment (ACK) segments as sketched above. In addi-
tion to recording micro-burst sizes, conninfo also records which (if any) segments
within a burst are retransmitted. Finally, conninfo records several ancillary met-
rics such as the total data transfer size, the duration of the connection, etc.

Conninfo attempts to process each connection in the dataset. However, as
indicated in the last column of table 2, a small fraction of connections were
removed from each dataset. These connections exhibit strange behavior that
conninfo either does not or cannot understand; for example, several “connec-
tions” (which are perhaps some sort of attack or network probe) consist of a
few random data segments with noncontiguous sequence numbers. As the table
shows, the fraction of connections removed from further analysis is relatively
small and, therefore, we do not believe this winnowing of the datasets biases the
overall results presented in this paper.

3 Characterizing Bursts

In this section we provide a characterization of the bursts observed in the traces
we studied. Figure 1 shows the distributions of burst sizes in each of the datasets
in terms of both segments, bytes and time. Figure 1(a) shows that the distri-
bution of burst sizes when measured in terms of segments is similar across all
datasets. In addition, the figure shows that over 90% of the bursts are less than
15 segments in length. Figure 1(b) shows the burst size in terms of bytes per
burst. This distribution generally follows from the segment-based distribution if
1500 byte segments are assumed. While the LBNL and ICSI datasets are similar



6 E. Blanton and M. Allman

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

C
D

F

Burst length (segments)

Anon
LBNL
ICSI1
ICSI2

(a) Segments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5000  10000  15000  20000  25000  30000  35000

C
D

F

Burst length (bytes)

Anon
LBNL
ICSI1
ICSI2

(b) Bytes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-06  1e-05  0.0001  0.001  0.01  0.1  1

C
D

F

Burst length (seconds)

Anon
LBNL
ICSI1
ICSI2

(c) Time

Fig. 1. Distribution of burst sizes



On the Impact of Bursting on TCP Performance 7

in terms of byte-based burst size, the Anon distribution indicates smaller bursts.
Since we did not observe smaller bursts in the Anon dataset when measuring in
terms of segments, it appears that the segment sizes used in the Anon network
are generally smaller than at LBNL and ICSI. We generated packet size distri-
butions for all networks and there is a clear mode of 20% in the Anon dataset
at 576 bytes that is not present in either the ICSI or LBNL datasets. Other-
wise, the distributions of packet sizes are roughly the same, thus explaining the
discrepancy in figure 1.

Figure 1(c) shows the distribution of the amount of elapsed time covered by
each burst. This plot confirms that the vast majority of bursts happen within a
short (less than 10 msec) window of time. This is essentially a double-check that
our methodology of checking data between subsequent ACKs and our analysis
tool are both working as envisioned. While we found bursts that encompass a
fairly long period of time (over a second) these are the exception rather than
the rule and upon close examination of the time-sequence plots these look to
be artifacts of network dynamics mixing with application sending patterns that
are difficult to systematically detect. Therefore, we believe that our analysis
techniques are overall sound.
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Fig. 2. Distribution of bursts per connection

Next we turn our attention to the prevalence of bursts. Figure 2 shows the
distribution of the number of bursts per connection in our four datasets. The
figure shows that the burst prevalence is roughly the same across datasets. As
shown, over 75% of the connections across all the datasets experienced no bursts
of 4 or more segments. However, note that many of the connections that did not
burst could not because of the limited amount of data sent or because TCP’s
congestion window never opened far enough to allow 4 or more segments to be
transmitted.

Next we look beyond the on-the-wire nature of bursts and attempt to deter-
mine the root cause of the bursts. Table 3 shows the determined causes of the
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Table 3. Percentage of bursts triggered by the given root cause

Dataset Bursts Initial Exit Loss Stretch Window App. Unknown
Window Recovery ACKs Opening Pattern

Anon 274,880 1.8 0.2 26.3 5.0 17.0 49.6
LBNL 187,176 0.9 0.3 22.9 3.1 32.8 40.0
ICSI1 165,023 6.4 0.7 23.5 4.8 24.0 40.6
ICSI2 228,063 4.2 5.1 22.4 4.5 23.3 45.1

bursts found in each dataset. First, the second column of the table shows that
each dataset contains a wealth of bursts. Next, the third column of the table
shows that 1–6% of the bursts are observed in the initial window of data trans-
mission. The fourth column shows a similarly small amount of bursting caused
by the sender being limited by the advertised window during loss recovery and
then transmitting a burst upon leaving loss recovery (when a large amount of
the advertised window is freed by an incoming ACK). These first two causes of
loss account for a small fraction of the bursts, but the fraction does vary across
datasets. We have been unable to derive a cause for this difference and so ascribe
it to the heterogeneous nature of the hosts, operating systems, routers, etc. at
the various locations in the network.

The fifth column in table 3 shows that roughly 20–25% of the bursts are
caused by stretch ACKs (acknowledgments that newly ACK more than 2 times
the number of bytes in the largest segment seen in the connection). Stretch ACKs
arrive for a number of reasons. For instance, some operating systems generate
stretch ACKs [Pax97] in the name of economy of processing and bandwidth. In
addition, since TCP’s ACKs are cumulative in nature simple ACK loss can cause
stretch ACKs to arrive. Finally, ACK reordering can cause stretch ACKs due
to an ACK generated later passing an earlier ACK. The origin of each stretch
ACK is therefore ambiguous given our limited vantage point, and hence we did
not try to untangle the possible root causes.

The sixth column represents a somewhat surprising bursting cause that we
did not expect. From the server’s vantage point we observe ACKs arriving from
the web client that acknowledge the data transmitted as expected but that do
not free space in the advertised window — and, hence, do not trigger further
data transmission when the sender is constrained by the advertised window.
When an ACK that opens advertised window space finally does arrive a burst
of data is transmitted. This phenomenon happens in modest amounts (3–5% of
bursts) in all the datasets we examined.

The seventh column in the table shows the percentage of bursts caused by
the application’s sending pattern. We expected this cause of bursts to be fairly
low since our mental model of web transfers is that objects are pushed onto the
network as fast as possible. However, 17–33% of the bursts happened after all
transmitted data was acknowledged and no other bursting scenario explained
the burst, indicating that the data was triggered by the application rather than
being clocked out by the incoming ACKs. This could be explained by a persistent
HTTP connection that did not use pipelining [FGM+97] — or, which was kept
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open while the user was viewing a given web page and then re-used to fetch
another item from the same server.

Finally, the last column of the table is the most troubling in that it indicates
that we could not accurately determine the cause of 40–50% of the bursts across
all the datasets. Part of the future work in this area will be to develop additional
techniques to determine why this bursting is happening. However, the problem
is daunting in that we examined a large number of time-sequence plots for con-
nections containing the unknown burst causes and at times we could not figure
out why the burst happened ourselves — let alone design a heuristic to detect it!

4 Implications of Bursts

In this section we explore the implications of the bursting uncovered in the
last section on the TCP connections themselves. It is beyond our scope (and
data) to evaluate the implications the bursting has on competing traffic and the
network itself. Figure 3 shows the probability of losing at least one segment in
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Fig. 3. Probability of losing at least one segment in a burst as a function of burst size
(in segments)
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Table 4. Retransmission rates observed inside and outside bursts

Dataset Conns. Bursts Burst Loss Rate (%) Non-Burst Loss Rate (%)
Anon 4,233 69,299 70.9 41.2
LBNL 5,685 45,282 23.0 22.9
ICSI1 4,805 39,832 16.1 14.5
ICSI2 8,201 72,069 26.6 20.5

a burst as a function of the burst size (in segments) for each of our datasets.
The figure shows that for modest burst sizes (tens of segments or less) that the
probability of losing a segment from the burst is fairly low (roughly less than
5%). As the burst size increases, the likelihood of experiencing a drop within a
burst also increases. Bursts on the order of hundreds of segments in our datasets
are clearly doomed to overwhelm intervening routers and experience congestion.
One interesting note is in the shape of the plots. The Anon dataset shows a fairly
smooth ramp-up in the probability of loss in a burst as the burst size increases.
However, in both the LBNL and ICSI datasets there is a clear point at which
the chances of losing at least one segment in a burst jumps from less than 5%
to over 20% and often to 100%. In the LBNL dataset this happens when burst
size reaches approximately 60 segments and in the ICSI dataset when the burst
size reaches roughly 50 segments. These results may indicate a maximum queue
size at or near LBNL and ICSI that ultimately limits the burst size that can be
absorbed. The Anon network may be more congested than the ICSI or LBNL
networks and therefore the chances of a non-empty queue vary with time and
hence the ability to absorb bursts likewise varies over time. Alternatively, the
Anon results could indicate the presence of active queue management, whose
ability to absorb bursts depends on the traffic dynamics at any given point
in time.

The analysis above assesses the question of whether bursts cause some loss.
Next we focus our attention on the amount of loss caused by bursts. In other
words we address the question: is the loss rate higher when bursting than when
not bursting? Given the information at hand we cannot determine precise loss
rates and therefore use the retransmission rate as an indicator (understanding
that the retransmission rate and the loss rate can be quite different depend-
ing on loss patterns, TCP variant used, etc. [AEO03]). We first winnow each
dataset to connections that experience both bursting and retransmissions to al-
low for a valid comparison. This has the effect of making the reported rates
appear to be much higher than loss rates measured in previous network studies
(e.g., [AEO03]) because we are disregarding all connections that experienced no
loss. Table 4 shows the results of our analysis. When comparing this table with
tables 2 and 3 it is apparent that only a small minority of the connections from
each dataset contain both bursting and retransmissions. The table shows the
aggregate retransmission rate to be higher when connections are bursting than
when connections are not bursting. The change in the retransmission rate ranges
from nearly non-existent in the LBNL dataset to a roughly 75% increase in the
Anon dataset. The large increase in the Anon network agrees with the results
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presented above that the network is generally more congested and the bottleneck
queue closer to the drop point than the other networks we studied. Therefore,
bursts cause a large increase in the loss rates experienced in this network while
the other networks were better able to absorb the bursts.

5 Conclusions and Future Work

The work in this paper is focused on the impact of bursting on TCP connections
themselves. From the above preliminary data analysis we note that micro-bursts
are not frequent in TCP connections — with over 75% of the connections in
the three networks studied showing no bursting. When bursting does occur,
burst sizes are predominantly modest with over 90% of the bursts are less than
15 segments across the datasets we studied. Furthermore, in these modest bursts
the probability of experiencing loss within the burst is small (generally less than
5% across datasets). However, bursts of hundreds of segments do occur and such
large bursts nearly always experience some loss. We analyzed the cause of bursts
and found the two predominant known causes of bursting to be the reception
of stretch ACKs and application sending patterns. Unfortunately, our analysis
techniques also failed to find the cause of 40–50% of the bursts we observed. An
area for future work will be to further refine the analysis to gain further insights
into these unclassified bursts (however, as described in § 3 this is a challenging
task). Finally, we find an increase in the loss rate experienced within bursts with
the loss rate experienced outside of bursts. The increase ranged from slight to
approximately 75% depending on the network in question.

A key piece of future work is in understanding how the results given in [JD03]
relate to those given in this paper. That is, the preliminary results of this paper
indicate that micro-bursting is not likely to hurt performance, while [JD03] shows
that the network impact of bursting is non-trivial. Before applying a mitigation
to TCP to smooth or reduce bursts it would be useful to correlate the network
issues found in [JD03] with specific bursting situations. For instance, if only
particular kinds of bursting are yielding the scaling behavior noted in [JD03]
then mitigating only those bursting situations may be a desirable path forward.
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Abstract. We study the burstiness of TCP flows at the packet level. We
aggregate packets into entities we call “flights”. We show, using a simple
model of TCP dynamics, that delayed-acks and window dynamics would
potentially cause flights at two different timescales in a TCP flow— the
lower at the order of 5-10 ms (sub-RTT) and the higher at about 10 times
this value (order of an RTT seen by the flow). The model suggests that
flight sizes would be small at the lower timescale, regardless of the net-
work environment. The model also predicts that the network conditions
required for the occurrence of flights at the larger timescale are either
large buffers or large available bandwidths — both of which result in
a high bandwidth delay product environment. We argue that these two
conditions indicate that the TCP flow does not operate in a congestion
control region , either because the source of traffic is unaware of con-
gestion or because there is so much bandwidth that congestion control
is not required. We verify our model by passive Internet measurement.
Using the trace files obtained, we collect statistics on flights at the two
timescales in terms of their frequency and size. We also find the depen-
dence of the sizes and frequency of flights on the Internet environment in
which they occurred. The results concur strongly with our hypothesis on
the origins of flights, leading us to the conclusion that flights are effective
indicators of excess resource in the Internet.

1 Introduction

TCP is the dominant protocol in today’s Internet. It has been observed [1, 2]
that TCP sometimes sends packets in the form of deterministic aggregations.
The timescale at which this phenomenon occurs is at the RTT level, which
indicates that we should study it at the packet level in individual flows. We
consider the steady state characteristics of TCP at a packet level and investigate
the frequency with which TCP flows have recognizable structure that we can
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Fig. 1. Illustration of two aggregation levels. Packets may be aggregated into flights
at different time scales. At the lower time scale we see five flights, while at the higher
time scale we see two

label flight behavior. Fig. 1 shows a sequence of thirteen packets and we observe
deterministic behavior of packet aggregates at two time scales.

Definition 1. A small time scale flight (STF) is a sequence of packets whose
inter-arrival times differ by at most ‘T ’ percent, where ‘T ’ is a fixed threshold
value.

At the smaller time scale we look at inter-arrival times between single packets;
if the inter-arrival times are nearly identical then we say that the packets belong
to a single STF. However, observing packets at such a fine resolution obscures
the temporal relations that might exist between aggregations of packets. In other
words, there may be deterministic behavior between the STFs themselves. In the
figure, there are two groups of STFs, within which STFs have nearly identical
inter-arrival times.

Definition 2. A large time scale flight (LTF) is a sequence of aggregations of
packets whose inter-arrival times differ by at most ‘T ’ percent, where ‘T ’ is a
fixed threshold value.

By our definition, aggregations of STFs with nearly identical inter-arrival times
are defined to be LTFs. We recognize that the terms “small” and “large” are
relative. Both terms are with respect to the RTT seen by a flow. The inter-
arrival times between packets of an STF are on the order of 5-10 milliseconds
(sub-RTT), while the inter-arrival times between STFs are on the order of 40-
1000 milliseconds (order of RTT seen by the flow).

Flight behavior of TCP has been a matter of considerable debate. In fact
there is not even a standard terminology for the phenomenon; other names for
flight-like phenomena are bursts [3] and rounds [4], where “bursts” usually de-
scribe phenomena similar to our STFs and “rounds” usually describe phenomena
similar to our LTFs. While modeling TCP flows some authors simply assume the
flight nature of TCP [4, 5]. As far as we know, there are no published statistics on
flight behavior, and no studies investigating the correlation of flight occurrence
with the Internet environment in which TCP operates. Also, there do not seem
to be any algorithms for identifying the structure of TCP flows — the method
used in the only other work we are aware of in the area [6], is dependent on
visually classifying flows.

c
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1.1 TCP Model

Two facets of TCP design could potentially lead to flights, each one at a different
time scale.

1. Since many TCP implementations [1, 2] implement delayed-acks, a host may
send multiple packets for every ack it receives. Implementations of delayed-
acking vary in terms of the maximum delay (200-500 ms). Many implemen-
tations also require that there be a maximum of one outstanding un-acked
packet, nominally leading to acknowledgment of alternate packets. Transmis-
sion of such packets back to back at source could result in the observation of
STFs at the measurement point if the network delays are relatively constant.

2. TCP follows a window-based congestion control mechanism with self-clocking,
i.e., the window size changes and packets are transmitted only when acknowl-
edgments are received. If acknowledgments are received with relatively con-
stant inter-arrival times, it would give rise to STFs being sent with similar
inter-arrival times, i.e., LTFs.

Another phenomenon that may occur is that of constant-rate flows.

Definition 3. A constant-rate flow (CRF) is a large TCP flow in which aggre-
gations of two or three packets are observed with nearly identical spacing between
the aggregations.

From the definition of LTFs, it is clear that CRFs are nothing but large LTFs,
where we say that a flow is large if it has over 30 packets. Other names for such
flows are “rate-limited flows” and “self-clocked flows” [6].

From the above discussion, the origin of of STFs lies in the fact that delayed-
acks acknowledge a small sequence of packets (often alternate packets) resulting
in the back-to-back transmission of a small number of packets at the source. It
seems clear, therefore, that STFs would naturally be of small size regardless of
the network environment that the TCP flow in which they occur sees.

However, the question arises: what network environment would be conducive
to LTF behavior? We conjecture that LTFs of large size can exist only in high
bandwidth-delay product (BDP) regimes. The reason is that as long as no drops
occur, TCP increases its window size by some value depending on whether it is in
slow-start or congestion avoidance. Only if the network is able to absorb all the
packets in the congestion window of a TCP flow will acks be received at deter-
ministic times at the source, leading to transmission of packets at deterministic
times. The absorption may take place in two ways:

1. Suppose that the buffer sizes are large in the path of a flow and bandwidth is
limited. Then, regardless of congestion window size, the actual throughput
is bandwidth constrained. The large buffer size in effect absorbs the packets
and delays them so that the source does not see any drops. TCP is unable
to estimate the available bandwidth as it is blinded by the large buffer.
Fig. 2 depicts the case where there is a large buffer between the source and
destination. We have assumed, for illustration purposes, that the delay is
large enough to ensure that every packet is acked inspite of the delayed-ack
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(acks)
Dest

Fig. 2. Illustration of how large buffers in a bandwidth constrained path of a TCP
flow lead to LTFs. The congestion window at source gradually increases, but since the
buffer absorbs excess packets, the source does not know of the bandwidth constraint

Source

Dest
(acks)

Fig. 3. Illustration of how a large bandwidth and medium delay results in flights in
the slow-start phase of TCP. Large bandwidth implies that the source can increase
the congestion window to a large size without drops occurring. In this case flights are
indicative that congestion control is irrelevant since the network has a large available
bandwidth

implementation. The source is in congestion avoidance phase and reception
of an ack could result in either the source transmitting one packet or an
increase in window size with the source transmitting two packets. The source
never loses a packet and assumes that excess bandwidth is available. So the
window size continuously increases. TCP is thus blind to congestion in this
scenario.

2. Another possible scenario is when bandwidth is high and delay is moderate.
In such a case the link absorbs the packets, and large windows of packet
aggregations proceed through the network. There is no congestion in the
network and TCP congestion control is not required. This scenario is illus-
trated in Fig. 3 in the slow start phase. We could draw a similar diagram
for the congestion-avoidance phase.

We summarize our main hypotheses and the conjectures that we make in
Table 1.

S. Shakkottai, N. Brownlee, and k claffyc
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Table 1. Summary of our main hypothesis and the conjectures based on them

Hypothesis 1 STFs arise due to the implementation of delayed-acks.

Conjecture 1 The size of STFs are on the order of two or three packets

Conjecture 2 The frequency of STFs is independent of the network environment.

Hypothesis 2 LTFs arise due to window dynamics of TCP.

Conjecture 3 LTFs could be of large size (potentially several hundred packets)

Conjecture 4 The frequency of LTFs increases with increasing BDP.

1.2 Flights as Indicators of Excess Resource

Why should we study flights? What are they good for? Let us consider the
question in detail. Two assumptions that network designers traditionally make
are:

1. Link capacities are low and many users contend for their use. The expected
load is close to the capacity of the links. Hence the tremendous volume of
research on the “single bottleneck scenario”.

2. To handle demands close to the capacity, buffer sizes should be of the order
of the bandwidth-delay product of the link.

Usually such design gives rise to recommendations for large buffer sizes, which in
turn has given rise to high bandwidth infrastructure with huge buffer capacities.
If the usage assumptions were correct, neither of our two scenarios for flight
existence would exist, congestion control would be relevant, and the resource
on the Internet would be utilized at high efficiency. On the other hand, the
presence of flights is a symptom that we have over designed the Internet —
there are enormous resources, in terms of buffer sizes or link capacities, being
shared by remarkably few users. In other words, flights are a symptom that
TCP congestion control is having no effect, either due to hiding of congestion
by buffers, or because there is so much bandwidth that the packets sail through
the network. Consistent with the above is the fact that observations of packets
on 10 Mb/s Ethernet (for example those in the packet sequence plots in [1, 2])
show clear flight behavior.

1.3 Main Results

We use three different packet traces, all from OC-48 (≈ 2.5Gb/s) links, and call
them BB1-2002, BB2-2003 and Abilene-2002 [7]. Together these packet traces
represent a high diversity of IP addresses, applications, geographic locations
and access types. For instance, the BB1-2002 trace shows about 30% of bytes
destined for locations in Asia, with flows sourced from about 15% of all global
autonomous systems (AS). The BB2-2003 has even higher diversity with flows
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from about 24% of all global ASs. The Abilene-2002 trace has a large fraction
of non-web traffic. Since all three traces give nearly identical results, we provide
graphs from only one trace: BB1-2002.

We summarize our main results as follows:

1. We propose a simple threshold-based algorithm, which robustly identifies
the different time scale aggregation levels.

2. We verify our hypothesis of two distinct phenomena — delayed acks and
window dynamics — giving rise to two classes of packet behavior by studying
the statistics of each aggregation level.

3. We show how the algorithm naturally leads to a method of identifying CRFs
as large LTFs.

4. We further confirm Hypothesis 1 — delayed acks causing STFs — by veri-
fying Conjectures 1 and 2 — that STF sizes are on the order of two to three
packets and are independent of network conditions such as round trip time
(RTT), bandwidth and BDP. The observation on the size of STFs illustrates
that the source transmits a small number (usually 2 or 3) of back to back
packets resulting in an STF at the point of measurement.

5. We verify the Conjecture 4 — high BDP regimes permitting LTFs — by
studying the variation in LTF lengths as a function of BDP and showing
that LTFs that have a much larger number of packets occur at higher BDPs.

6. Finally, using the statistics on LTFs of large size, we verify Conjecture 3 —
LTFs can be of large size — and conclude that currently about 12-15% of
flows over thirty packets in length in the traces we study are not responding
to congestion control, either because the they are unaware of congestion or
because there is no congestion on their paths.

2 Algorithms

In this section we describe the algorithms we use for identification of flights.
We first consider the case of identifying STFs. Consider a sequence of packets
p1, p2, p3, with inter-arrival times (IATs) δ1 and δ2 between the first and second
pairs of packets, respectively. Then we consider the ratio g(δ1, δ2) = | δ2−δ1

δ1
|.

We decide whether a packet belongs to a particular STF depending on whether
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Fig. 4. Illustration of how we find STFs. We group packets 1 − 3 together as a 2-inter-
arrival time unit flight, and so on. The large gap between packets 3 and 4 appears as
a singleton
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Fig. 5. A sequence of packet pairs in which STFs do not capture complete information

g > T or g ≤ T , where T is a threshold value. We use the IAT as a measure
of the scale of the flight and call the units IAT units (IATU). Thus a flight
of 1 IATU means that the observed IAT was different from the preceding and
following IATs. An IATU of 2 would mean that two successive IATs were nearly
identical. Fig. 4 depicts two STFs, the first of size 2 IATU and the second of size
3 IATU. Our STF detection algorithm is as follows:

1. Start with IAT=constant, flight size=1;
2. Compare previous IAT with current IAT and

calculate g (as defined above).
3. If g is within threshold then

increment flight size by 1;
else if flight size >1 start a new
flight of size 0;
else start a new flight of size 1;

4. Set previous IAT <- current IAT;

The ‘else if’ line in our above algorithm means that an out-of-threshold IAT
indicates the end of a STF, but a sequence of out-of-threshold IATs indicates
consecutive 1-IATU STFs. The singleton shown in Fig. 4 indicates such behavior.
Our STFs may therefore have 2 packets (1 IATU), 3 packets (2 IATU), 4 packets
(3 IATU) and so on. Of course, a 1 IATU STF simply means that at the low
time scale, the algorithm did not observe any deterministic behavior.

However, the situation illustrated in Fig. 5 might occur. Here we see a se-
quence of packet pairs, which are identified by the above algorithm as distinct
STFs. But there deterministic behavior between packet pairs at a larger time
scale. We would like to have an algorithm that would identify such behavior and
aggregate all six packets as an LTF.

We observe that deterministic behavior in the larger time scale can potentially
occur only when the STF algorithm reports that the current IAT is different from
the previous one (if not, the current packet would be part of the current STF
and we update the STF size by one and proceed to the next packet). Also, since
we are interested in large timescales, we need to know if the current IAT is larger
than the previous IAT. So, if we keep the most recent large IAT in memory, we
may compare it to the current IAT and check if they are within a threshold of
each other. If they are, then we update the size of the current LTF by one. We
merely need to add the following lines to Step 3 of the LTF algorithm:

3. (continued) If current IAT > previous IAT then
compare current IAT with most recent large IAT;
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If g(current IAT, most recent large IAT) is
within threshold then increment LTF size by 1;
else if LTF size>1 start a new LTF of size 0;
else start a new LTF of size 1;
Set most recent large IAT <- current IAT;

Looking at Fig. 5 again, we see that the above extension would result in
the identification of the packet sequence as one LTF as desired. We remark at
this point that the choice of threshold value does not seem to be critical to
the algorithm. The reason for this observation is that the timescales of IATs for
STFs and LTFs are different. As mentioned in the introduction, the typical IATs
between packets of an STF are 5-10 ms, whereas the IATs between aggregations
of an LTF are about 10 times this. In our analysis we used several values of T
( 1
16 , 1

4 , 1
2 , 1, 2, 4 and 8) with nearly identical results.

3 Frequency and Size of Flights

In this section we show that our flight detection algorithm is successful and also
illustrate the fact that considering two aggregation levels of packets yields a clear
picture of TCP behavior. We ran the algorithm with different threshold values
on the packet traces and show only some illustrative graphs here.

We first consider the statistics of STFs in Fig. 6 and Fig. 7. Recall that the
unit of flight size is IATU. We can convert IATU in STFs into packets by recalling
that a 1 IATU STF is a packet whose leading and trailing IATs were different, a
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Fig. 6. Small timescale flight size distribution in IATU for BB1-2002. The left column
in each set of bars is for flows greater than 3 packets in length; the middle for those
greater than 50; and the right column is for flows greater than 100 packets in length.
We notice that flights are usually small (in terms of IATU and hence in packets)
irrespective of the number of packets in the flow
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Fig. 7. Number of small timescale flights for trace BB1-2002 on a per flow basis. The
left histogram is for flows greater than 3 packets in length, the middle for those greater
than 50 and the right histogram is for flows greater than 100 packets in length. We
notice that STFs are more common in flows with a larger number of packets

2 IATU STF has three packets and so on. Fig. 6 shows the distribution of STF
sizes. We see that regardless of the number of packets in the flow, STF sizes are
usually quite small — a size 7 IATU occurs in less than 1% of the STFs. Also,
we may easily calculate that the mean STF size is 2.5 packets regardless of the
number of packets in the flow.

Fig. 7 shows the distributions of number of STFs on a per flow basis. We see
that STFs are much more common in flows with a large number of packets.

We consider flight behavior at the timescale of the RTT seen by the flows in
Fig. 8 and Fig. 9. As we have just seen, the STFs of which the LTFs are composed
are an average of 2.5 packets in length. We may thus get an estimate of the
number of packets in an LTF by multiplying its IATU size by this number. Fig.
8 shows the size distribution of LTFs. The statistics are quite different from the
STF size distribution that we analyzed earlier. Flights are much more common
at the larger timescale. The graph follows a distribution that is proportional
to 1

LTF size . Thus, even at this timescale, decay of flight sizes is fairly quick.
Finally, we plot the distributions of number of LTFs on a per flow basis in Fig.
9. We see that as with STFs, LTFs are much more common in flows with a large
number of packets.

We draw the following conclusions from the flight statistics observed above:

1. Our initial hypotheses from our model of TCP were that there would be two
distinct aggregation levels at different timescales caused by delayed acks and
TCP window dynamics. The hypotheses are borne out by the fact that we
usually see short STFs, normally consisting of two or three packets, indi-
cating delayed acks. We also see much larger LTFs indicative of windows of
packets transmitted in pairs and triplets (i.e., as STFs) with similar spacings
between the aggregations.
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Fig. 8. Large timescale flight size distribution in IATU for BB1-2002. The left column
in each set of bars is for flows greater than 3 packets in length; the middle for those
greater than 50; and the right column is for flows greater than 100 packets in length.
We notice that the LTF size distribution varies proportionally to 1

LTF size
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Fig. 9. Number of large timescale flights for trace BB1-2002 on a per flow basis. The
left histogram is for flows greater than 3 packets in length, the middle for those greater
than 50 and the right histogram is for flows greater than 100 packets in length. We
notice that LTFs are more common in flows with a larger number of packets

2. Over 75% of flows having over 50 packets contain LTFs. We identify fairly
large LTFs of up to 16 IATUs, i.e., with an average of 40 packet or more, thus
verifying Conjecture 3 — that LTFs could potentially be large (and hence be
identified as CRFs). What we observe in such cases are aggregations of two
or three packets being transmitted at a constant rate. Thus, our algorithm
offers a simple means of identifying CRFs. If we consider a flow to be a CRF
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if it has over 30 packets in equally spaced aggregations, then about 12-15%
of flows are constant-rate flows. These flows are clearly not limited by PC
clock speed, as Brownlee and Claffy also observe in [8].

3. From the statistics on the number of flights seen in flows we conclude that
many flows are composed of fairly small deterministic packet aggregations
at the large timescale, which indicates that the congestion window in these
flows grows only up to 10-12 packets before feedback from the network causes
it to reduce. Thus, large time scale structure is lost with the growth of TCP
congestion windows.

4 Relationship with Network Environment

We now study the relation between flights and the characteristics of the path
that a flow traverses, namely the round trip time (RTT), the bandwidth and the
BDP. Our usage of the term RTT is to indicate the entire path delay inclusive
of queuing delays. We measure RTT by the syn-ack method whose validity has
been largely established in [9].

We first consider STFs. We already know that the majority of them are two
packets in size, irrespective of flow size. We would like to know if any network
characteristics affect STFs larger than two packets. If their origin has to do with
delayed acks, i.e., the source constrains them to be small, then the variation of
their occurrence with the network parameters should not be significant. In Fig.
10, we show a probability histogram (×100%) of STFs larger than two packets
in size in different RTT regimes. We see that the chance of seeing an STF larger
than two packets is about 1% regardless of the RTT.
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Fig. 10. Fraction of traffic having STFs larger than two packets in each RTT regime
for BB1-2002. The variation is about 0.4% indicating the independence of STFs and
RTT
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Fig. 11. Fraction of traffic having STFs in each bandwidth regime for BB1-2002. The
flat nature indicates that the probability of seeing an STF is independent of bandwidth
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Fig. 12. Variation of LTF sizes as a function of BDP for BB1-2002. The plot peaks
at high BDP. Note that the number of data points drops sharply after the peak, and
hence the graph ends here

We next examine the relation between STFs and bandwidth (Fig. 11). By
‘bandwidth’, we mean the total bytes transferred divided by the lifetime of the
flow. Here too the probability (×100%) of seeing at least one STF larger than two
packets in size for any particular bandwidth is nearly constant at 1%. We also
analyzed the frequency of seeing at least one STF with more than two packets
with regard to BDP and found that the probability (×100%) of this event too
was about 1%, with a variation of less than 0.5%.

We now study the variation of LTF sizes as a function of BDP, which we show
in Fig. 12. We see that on average, LTF sizes are higher at higher BDP. The
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graph peaks at 10 kb with an average LTF size of 5 (i.e. most flows in this regime
had LTFs consisting of of 12 or more packets). The number of available points
is small after the peak and the graph dips sharply. The above facts support
Conjecture 4 — high BDP is conducive to LTFs being large — since it means
that the network has the capacity to absorb the large windows of packets.

5 Conclusion

We studied deterministic temporal relations between TCP packets using several
packet traces, which were from different backbone fibers and represent a large
fraction of ASs and prefixes. Such traces give an indication of Internet traffic
characteristics, since phenomena occurring at the edges are reflected in tempo-
ral relations between packets at the measurement point. We studied aggregation
of packets at two time scales (of the order of 5-10 ms and 50-1000 ms) in order
to verify our hypothesis that two distinct facets of TCP structure should give
rise to two different types of temporal relations. In doing so we proposed a sim-
ple threshold algorithm for identification of flights. Our TCP model predicted
that high BDP environments would be conducive to CRFs. Such an environ-
ment could exist only if the network were over-provisioned — either in terms
of large buffers or large bandwidth — and hence CRFs are indicative of excess
resource in the network. Through statistics on flight sizes and frequency, we ver-
ified Conjectures 1 and 3 — that STFs should be short and LTFs can be long.
We then verified Conjectures 2 and 4 — that STFs should not depend on the
network environment, whereas LTFs should be benefited by large BDPs — by
studying the correlations between flights and different network parameters. We
thus showed that Hypothesis 1 and 2 — delayed-acks giving rise to STFs and
window dynamics giving rise to LTFs — are valid. We concluded that about
12 − 15% of Internet flows in our traces do not operate in a congestion control
region. In the future we would like to study how the occurrence of flights changes
over the years both on the backbone as well as access links, to understand flights
as indicators of excess network resource. Such a study would give us an idea of
whether congestion on the Internet has been increasing or decreasing over time.
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Abstract. While the Internet offers a single best-effort service, we re-
mark that (i) core backbones are in general over provisioned, (ii) end
users have increasingly faster access and (iii) CDN and p2p solutions
can mitigate network variations. As a consequence, the Internet is to
some extent already mature enough for the deployment of multimedia
applications and applications that require long and fast transfers, e.g.
software or OS updates. In this paper, we devise a tool to investigate
the stationarity of long TCP transfers over the Internet, based on the
Kolomogorov-Smirnov goodness of fit test. We use BitTorrent to obtain
a set of long bulk transfers and test our tool. Experimental results show
that our tool correctly identify noticeable changes in the throughput of
connections. We also focus on receiver window limited connections to
try to relate the stationarity observed by our tool to typical connection
behaviors.

1 Introduction

The current Internet offers a single best-effort service to all applications. As a
consequence, losses and delay variations are managed by end-hosts. Applications
in the Internet can be classified into two classes: elastic applications, e.g. web or
e-mail, that can tolerate throughputs and delays variations; and real time appli-
cations, that are delay sensitive (e.g. voice over IP) or throughput sensitive (e.g.
video-on-demand). With respect to the above classification, a common belief is
that the current Internet with its single best-effort service requires additional
functionality (e.g. DiffServ, MPLS) to enable mass deployment of real-time ap-
plications. Still, a number of facts contradict, or at least attenuate, this belief:
(i) recent traffic analysis studies have deemed the Internet backbone ready to
provide real-time services [15]; (ii) the fraction of residential users with high
speed access, e.g. ADSL or cable, increases rapidly; (iii) network-aware coding
schemes, e.g. mpeg4-fgs [7], combined with new methods of transmission like
peer-to-peer (p2p) techniques, e.g. Splitstream [5], have paved the way toward
the deployment of real-time applications over the Internet.

The above statements have lead us to investigate the variability of the ser-
vice provided by the Internet from an end connection point of view. As TCP is
carrying most of the bytes in the Internet [10], our approach is to concentrate on
long lived TCP connections. Bulk data transfers represent a significant portion
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of the current Internet traffic load, especially with p2p applications [2]. By ana-
lyzing bulk data transfers, we expect to better understand the actual interaction
between TCP and the Internet. This is important for future applications 1 and
also for CDN providers that rely on migrating traffic on the ”best path” from
central to surrogate servers [8]. CDN providers generally rely on bandwidth es-
timation tools, either proprietary or public tools [12] to perform path selection.
However, the jury is still out on the stationarity horizon provided by such tools,
i.e. how long will the estimation provided by the tool remain valid or at least
reasonable. In the present work, we propose and evaluate a tool that should help
solving these issue. The rest of this paper is organized as follows. In Section
2, we review the related work. In Section 3, we present our dataset. In Section
4, we present our tool to extract stationarity periods in a given connection. In
Section 5, we discuss results obtained on our dataset. Conclusions and future
work directions are presented in Section 6.

2 Related Work

Mathematically speaking, a stochastic process X(t) is stationary if its statistical
properties (marginal distribution, correlation structure) remain constant over
time.

Paxson et al. [17] have studied the stationarity of the throughput of short
TCP connections (transfers of 1Mbytes) between NIMI hosts. The major differ-
ence between this work and the present work is that we consider long bulk data
transfer (several tens of minutes) and our dataset is (obviously) more recent
with hosts with varying access capacity, whereas NIMI machines consistently
had good Internet connectivity. Other studies [4, 13] have concentrated on the
non stationarity observed on high speed link with a high number of aggregated
flows. They studied the time scales at which non stationarity appears and the
causes behind it. Also, recently, the processing of data streams has emerged as
an active domain in the database research community. The objective is to use
database techniques to process on-line stream at high speed (e.g. Internet traf-
fic on a high speed link). In the data stream context, detection of changes is a
crucial task [14, 3].

3 Dataset

Our objective is to devise a tool to assess the stationarity of TCP bulk data
transfers. To check the effectiveness of the tool, we need to gather samples, i.e.
long TCP transfers, from a wide set of hosts in the Internet. A simple way to
attract traffic from a variety of destinations around the world is to use a p2p
application. As we are interested in long data transfers, we used BitTorrent,

1 Our focus in the present work is on throughput, which is an important QoS met-
rics for some multimedia applications, e.g. VoD, but arguably not all multimedia
applications, a typical counter-example being VoIP.
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a popular file replication application [11]. A BitTorrent session consists in the
replication of a single large file on a set of peers. BitTorrent uses specific algo-
rithms to enforce cooperations among peers. The data transfer phase is based
on the swarming technique where the file to be replicated is broken into chunks
(typical chunk size is 256 kbytes) that peers exchange with one another. The
BitTorrent terminology distinguishes between peers involved in a session that
have not yet completed the transfer of the file, which are called leechers and
peers that have already completed the transfer, which are called seeds. Seeds re-
main in the session to serve leechers. Connections between peers are permanent
TCP connections. Due to the BitTorrent algorithms [11], a typical connection
between two hosts is a sequence of on periods (data transfers) and off periods
(where only keep-alive messages are transfered). Figure 1, where y axis values
are one second throughputs samples, depicts a typical one way connection of
approximately 14 hours with clear on and off phases.
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Fig. 1. A typical (one-way) BitTorrent
connection
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Fig. 2. Aggregate rate of the BitTorrent
application during the experiment

The dataset we have collected consists of connections to about 200 peers that
were downloading (part of) the file (latest Linux Mandrake release) from a seed
located at Eurecom. More precisely, a tcpdump trace of 10 Gbytes was generated
during a measurement period of about 44 hours. While the 200 connections are all
rooted at Eurecom, the 10 Mbits/s access link of Eurecom should not constitute
a shared bottleneck for two reasons. First, with BitTorrent, a client (leecher or
seed) does not send to all its peers simultaneously but only to 4 of them, for sake
of efficiency. Second, the total aggregate throughput remains in general far below
the 10 Mbits/s as shown in figure 2 while the average traffic generally observed
on this link (to be added to the traffic generated by our BitTorrent client to
obtain the total offered load for the link) exhibits an average rate around 1
Mbits/s with a peak rate below 2 Mbits/s.

To illustrate the diversity of these 200 peers, we have used the maxmind
service (http://www.maxmind.com/) to assess the origin country of the peers. In
table 1, we ranked countries based on the peers that originate from each of them.
Unsurprisingly, we observe a lot of US peers (similar observation was made in [11]
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Table 1. Origin countries of the 200 peers

Country # peers Country # peers Country # peers Country # peers
US 87 NL 4 BR 2 YU 1
UK 24 DE 3 LT 2 BE 1
CA 14 AU 3 CN 1 AT 1
FR 12 PE 3 NO 1 ES 1
IT 8 AE 3 SI 1 CH 1
SE 8 CL 2 TW 1
PL 7 PT 2 CZ 1

for a similar torrent, i.e. Linux Redhat 9.0) while the other peers are distributed
over a wide range of 27 countries (see http://encyclopedia.thefreedictionary.com/
ISO%203166-1 for the meaning of the abbreviations used in table 1).

Our objective is to study long bulk data transfers in the Internet. To obtain
meaningful samples, we extracted the on periods from the 200 connections, re-
sulting in a total of 399 flows. The algorithm used to identify off-periods is to
detect periods of at least 15 seconds where less than 15 kbytes of data are sent,
as BitTorrent clients exchange keep-alive messages at a low rate (typically less
than 1000 bytes per second) during periods where no data transfer is performed.
We further restricted ourselves to the 184 flows whose duration is higher than
1600 seconds (∼ 26.6 minutes), for reasons that will be detailed in section 4. We
call flow or initial flow an on-period and stationary flow a part of a flow that is
deemed stationary. For each flow, we generate a time series that represents the
throughput for each 1 second time interval. The average individual throughput of
these 184 flows is quite high, 444 kbits/s. Overall, these flows correspond to the
transfer of about 50 Gbytes of data over a cumulated period of about 224 hours
(the flows of duration less than 1600 seconds represent about 14 Gbytes of data).
Due to its size, we cannot claim that our dataset is representative of the bulk
transfers in the Internet. It is however sufficiently large to demonstrate the effec-
tiveness of our tool. It also shows that BitTorrent is a very effective application
to collect long TCP transfers from a variety of hosts in terms of geographical
location and access link speed (even if it is unlikely to observe clients behind
modem lines, as downloading large file behind a modem line is unrealistic).

4 Stationarity Analysis Tool

4.1 Kolmogorov-Smirnov (K-S) Test

Given two i.i.d samples X1(t)t∈{1,...n} and X2(t)t∈{1,...n}, the Kolmogorov-
Smirnov test enables us to determine whether the two samples are drawn from
the same distributions or not. The test is based on calculating the empirical
cumulative distribution functions of both samples and evaluating the absolute
maximum difference Dmax between these two functions. The limit distribution of
Dmax under the null hypothesis (X1 and X2 drawn from the same distribution)
is known and thus Dmax is the statistics the test is built upon. In the sequel
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of this paper, we used the matlab implementation of the K-S test with 95%
confidence levels.

4.2 K-S Test for Change Point Detection

Our objective is to detect stationary regions in time series, or equivalently to
detect change points (i.e. border points between stationary regions). We used
the K-S test to achieve this goal. Previous work as already used the K-S test to
detect changes [9, 3], though not in the context of traffic analysis.

The basic idea behind our tool is to use two back-to-back windows of size w
sliding along the time series samples and applying the K-S test at each shift of
the windows. If we assume a time series of size n, then application of the K-S
test leads to a new binary time series of size n − 2w, with value zero whenever
the null hypothesis could not be rejected and one otherwise. The next step is to
devise a criterion to decide if a ’1’ in the binary time series corresponds to a false
alarm or not. Indeed, it is possible to show that even if all samples originate from
the same underlying distribution, the K-S test (or any other goodness of fit test
[16]) can lead to spurious ’1’ values. The criterion we use to deem detection of a
change point is that at least wmin ≈ w

2 consecutive ones must be observed in the
binary time series. wmin controls the sensitivity of the algorithm. The intuition
behind setting wmin to a value close to w

2 is that we expect the K-S test to
almost consistently output ’1’ from the moment when the right-size window
contains about 25% of points from the ”new” distribution (the distribution after
the change point) up to the moment when the left-size window contains about
25% of points from the ”old” distribution. In practice, a visual inspection of
some samples revealed that using such values for wmin allows to correctly detect
obvious changes in the time series. Figure 3 presents an example on one of our
TCP flows time series (aggregated at a 10 seconds time scale - see next section
for details) along with the scaled binary time series output by the tool and the
change points (vertical bars). This example illustrates the ability of the test to
isolate stationary regions. Note also that the output of the binary time series
that represents the output of the K-S test for each window position (dash line
in figure 3) exhibits a noticeable consistency. This is encouraging as oscillations
in the output of the test would mean that great care should be taken in the
design of the change point criterion. As this is apparently not the case, we can
expect our simple criterion (wmin consecutive ’1’ values to detect a change) to
be effective.

4.3 K-S Test in the Presence of Correlation

We want to apply the K-S change point tool described in the previous section
to detect changes in the throughput time series described in section 3. However,
we have to pay attention that, due to the close loop nature of TCP, consecutive
one-second throughputs samples are correlated2. If all samples are drawn from

2 While correlation and independence are not the same, we expect that removing cor-
relation will be sufficient in our context to obtain some almost independent samples.
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the same underlying distribution, a simple heuristic to build an uncorrelated
time series out of a correlated time series is to (i) compute the auto-correlation
function of the initial time series, (ii) choose a lag l0 at which correlation is close
enough to zero and (iii) aggregate the initial time series over time intervals of size
l0. Specifically, let X(t)t∈{1,...n} be the initial time series. Its auto-correlation

function is AC(f) =
∑n−f

i=1 X̄(i+f)X̄(i)
nσ2

X̄

, where X̄(t) � X(t) − E[X] and σ2
X̄

is

the variance of X̄. AC(f) measures the amount of correlation between samples
located at positions t and t + f . If ever the time series is i.i.d., then |AC(f)|
should be upper bounded by 2√

n
for f > 1 [6]. For a correlated time series, we can

choose l0 such that ∀f > l0, |AC(f)| ≤ 2√
n
. We then generate the aggregate time

series Y (t)t∈{1,...� n
l0

�} where Y (t) =
∑(t+1)×l0

u=t×l0+1 X(u)
l0

. This method is however not
applicable to our TCP time series as changes in the network conditions prevent
us from assuming the same underlying distributions over the whole duration of
a flow.

To overcome this difficulty and be able to use the K-S test, we aggregate each
time series at a fixed value of l0 = 10. This means that we average the initial
time series over intervals of 10 seconds. As the average throughput of the flows
is 444 kbits/s, an average flow will send more than 400 packets (of size 1500
bytes) in a 10 second time interval, which is reasonably large enough for a TCP
connection to have lost memory of its past history (e.g. to have fully recovered
from a loss). To assess the level of correlation that persists in the time series after
aggregation at the 10 second time scale, we have computed, for each stationary
interval obtained with our tool, the autocorrelation function of the process in
this interval. We then derive the lag l0 after which the autocorrelation function
remains (for 95% of the cases) in the interval

[
− 2√

n
, 2√

n

]
. Figure 4 represents

the cumulative distribution function of l0. We notice that about 95% of the l0
values are below 5, which indicates that the ”remaining” correlation is of short
term kind only.
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Table 2. Change point detection tool performance in the presence of correlation

a w wmin % of cases with one Average number
detection in [450, 550] of detections

0.2 40 15 100 2.4
0.2 40 40 100 1
0.2 80 15 100 2.4
0.2 80 40 100 1.2
0.5 40 15 100 5.6
0.5 40 40 100 1.1
0.5 80 15 100 4.5
0.5 80 40 100 1.9
0.9 40 15 100 14.6
0.9 40 40 99 6.5
0.9 80 15 89.9 8
0.9 80 40 90.7 5.6

Based on the result of figure 4, one could however still argue that we should
continue further the aggregation of the time series for which the correlation is
apparently too large, say for l0 ≥ 3. Note however that the choice of the time
scale at which one works directly impacts the separation ability of the K-S test.
Indeed, as we use windows of w samples, a window corresponds to a time interval
of 10 × w seconds, and we won’t be able to observe stationary periods of less
than 10×w seconds. For example, the results presented in section 5 are obtained
with w = 40, which means that we won’t be able to observe stationary periods
of less than 400 seconds (∼ 6.7 minutes). Thus, there exists a trade-off between
the correlation of the TCP throughput time series that calls for aggregating over
large time intervals and the separation ability of the test that calls for having as
much small windows as possible.

A second reason why we have chosen to aggregate at a fixed 10 second time
scale value is that we expect our tool to be robust in the presence of short term
correlation. We investigate this claim in the next section, on synthetic data,
where we can tune the amount of correlation. While by no means exhaustive,
this method allows us to obtain insights on the behavior of K-S test in the
presence of correlation.

4.4 Test of the Robustness of the Tool with Synthetic Data

We consider a first-order auto-regressive process X with X(t) = aX(t − 1) +
Z(t),∀t{1, . . . n} where Z is a purely random process with a fixed distribution.
We choose two distributions for Z (leading to Z1 and Z2) to generate two samples
X1(t) and X2(t). We then form the compound vector [X1(t)X2(t)] and apply
the K-S change point test. We can vary the a parameter to tune the amount
of correlation and test how the K-S change point test behaves. Specifically, we
consider a ∈ {0.2, 0.5, 0.9} as these values roughly correspond to l0 values (as
defined in the previous section) equal respectively to 2, 5 and 20. With respect
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to the results presented in figure 4, we expect the K-S test to behave properly
for a ≤ 0.5 (i.e. l0 ≤ 5). In table 2, we present results obtained when Z1(t) and
Z2(t) are derived from normal distributions with respective means and variances
(0.4, 0.3) and (1.5, 1.5) where a given sample Z1(t) (resp. Z2(t)) is obtained
by averaging 10 independent samples drawn from the normal distribution with
parameters (0.4, 0.3) (resp. (1.5, 1.5)). The main idea behind this averaging phase
is to smooth X1(t) and X2(t) in a similar fashion that the throughput samples
are smoothed at a 10 second time scale in the case of our BitTorrent dataset. As
the transition between X1(t) and X2(t) is sharp thanks to the difference in mean
between Z1 and Z2, we expect that the change point tool will correctly detect it.
Now, depending on the correlation structure, it might happen that more change
points are detected. This is reflected by the results presented in table 2, where for
different values of a, w and wmin, we compute over 1000 independent trajectories,
the average number of detections made by the algorithm (without false alarm,
we should obtain 1) and the percentage of cases for which a change is detected in
the interval [450, 550] that corresponds to the border between X1(t) and X2(t)
in the compound vector [X1(t)X2(t)], each vector having a size of 500 samples.
When the latter metric falls below 100%, it indicates that the correlation is such
that our tool does not ncessarily notice the border between X1(t) and X2(t) any
more. From table 2, we note that such a situation occurs only for a = 0.9. Also,
when the amount of correlation increases, the average number of points detected
increases dramatically, as the correlation structure of the process triggers false
alarms as illustrated by the trajectory depicted in figure 5. For a given w value,
increasing the treshold wmin helps reducing the rate of false. Note that while
the results obtained here on synthetic data seem to be better for a criterion
wmin = 40, we used wmin = 15 on our dataset as it was giving visually better
results. A possible reason is the small variance of the throughput time series as
compared to the corresponding mean for our dataset. More generally, we note
that tuning w and wmin is necessary to tailor the tool to the specific needs of a
user or an application.
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4.5 Empirical Validation on Real Data

For the results obtained in this section and the rest of the paper, we used w = 40
as special care must be taken when using the K-S test for smaller values [16].
Also, we consider wmin = 15 as it visually gives satisfying results on our dataset.
In addition, to obtain meaningful results, we restrict the application of the tool
to time series with at 4 × w samples (the tool will thus output at least 2 × w
results), i.e. to flows that last at least 1600 seconds.

Our change point analysis tool can be easily validated with synthetic data.
However, we need to further check whether the results obtained on real traces
are reasonable or not. We thus applied our tool on our 184 flows to obtain
818 stationary flows. To assess the relevance of the approach, we proceeded
as follows: for any two neighboring stationary flows from the same flow, we
compute their means μ1 and μ2 and their standard deviations σ1 and σ2. We
then compute the ”jump in mean” Δμ = μ2−μ1

μ1
× 100 and ”jump in standard

deviation” Δσ = σ2−σ1
σ1

×100. We then break each stationary flows into two sub-
flows of equal size and compute their means μi

1 and μi
2 and standard deviations σi

1
and σi

2 (i = 1, 2). We can then define jumps in means and standard deviations
between two sub-flows of a given stationary flow. The latter jumps are called
intra jumps while the jumps between stationary flows are called inter jumps.
The idea behind these definitions is to demonstrate that the distributions of intra
jumps are more concentrated around their mean value than the distributions of
inter jumps. To compare those distributions, we used boxplot representations.
A boxplot of a distribution is a box where the upper line corresponds to the
75 percentile p̂0.75 of the distribution, the lower line to the 25 percentile p̂0.25
and the central line to the median. In addition, the p̂0.25 − 1.5 × IQR and
p̂0.75 + 1.5 × IQR values (IQR = p̂0.75 − p̂0.25 is the inter quantile range, which
captures the variability of the sample) are also graphed while the samples falling
outside these limits are marked with a cross. A boxplot allows to quickly compare
two distributions and to assess the symmetry and the dispersion of a given
distribution. In figure 6, we plotted the boxplots for the inter jump in mean
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(left side) and intra jump in mean (right side). From these representations, we
immediately see that the intra jump distribution is thinner than the inter jumps
distribution which complies with our initial intuition. Note also that the means
of the inter and intra jump distributions are close to zero as the Δμ definition
can result in positive or negative values and it is quite reasonable that overall,
we observe as much positive as negative jumps. Figure 7 depicts the boxplots
for the inter and intra jumps in standard deviations. The results are somehow
similar to the ones for jumps in mean although less pronounced and more skewed
toward large positive values.

5 Results on the BitTorrent Dataset

5.1 Stationary Periods Characterization

As stated in the previous section, the K-S change point tool has extracted 818
stationary flows out of the 184 initial flows. This means that, on average, a flow
is cut into 4.45 stationary flows. Figure 8 represents the cumulative distribution
functions (cdf) of the duration of stationary and initial flows. Stationary flows
have an average duration of 16.4 minutes while initial flows have an average
duration of 73 minutes.

Figure 9 represents the cumulative distribution functions of throughputs of
the stationary and initial flows. Overall, stationary flows tend to exhibit larger
throughputs than initial flows. Indeed, the mean throughput of stationary flows
is 493.5 kbits/s as compared to 444 kbit/s for the initial ones. This discrepancy
is an indication that the K-S change point test is working properly as it extracts
from the initial flows stationary periods where the throughputs significantly
differ from the mean throughput of the flow. The cdfs differ at the end because
whenever the K-S test exhibits a small period (relative to the flow it is extracted
from) with high throughput, it will become one sample for the cdf of stationary
flows, whereas it might have little impact for the corresponding sample for the
cdf of the initial flows (if the high throughput part only corresponds to a small
fraction of the initial flow).

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Durations (minutes)

C
D

F

Initial Flows
Stationary Flows

Fig. 8. CDFs of flows and stationary
flows durations

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput in kbits/s

C
D

F

Initial Flows
Stationary Flows

Fig. 9. CDFs of flows and stationary
flows throughputs



On the Stationarity of TCP Bulk Data Transfers 37

Using our tool, we can also investigate transitions between consecutive sta-
tionary periods. The left boxplot of figure 6 allows us to look globally at transi-
tions between stationary periods. From this figure, we can observe that most of
the changes result in jumps of the mean value that are less than 20% in absolute
values. This is encouraging for applications that can tolerate such changes in
their observed throughput since they can expect to experience quite long stable
periods, typically several tens of minutes (at least in the context of our dataset).
However, a lot of values fall outside the plus or minus 1.5×IQR interval, meaning
that some transitions are clearly more sharp than others.

5.2 The Case of Receiver Window Limited Connections

In a effort to relate the stationarity observed by our tool to the intrinsic char-
acteristics of the connections, we considered the case of receiver window limited
flows. A receiver window limited flow is a flow whose throughput is limited by
the advertised window of the receiver. The motivation behind this study is that
as receiver window limited flows are mostly constrained by some end hosts char-
acteristics (the advertised window of the receiver), they should exhibit longer
stationary periods than other flows. Indeed, the intuition is that those other
flows have to compete ”more” for resources along their path with side traffic,
which should affect their throughput, leading to change points.

We first have to devise a test that flags receiver window limited flows. We
proceed as follows. For each flow, we generate two time series with a granularity
of 10 seconds. The first time series, Adv(t) represents the advertised window of
the receiver while the second one, Out(t) accounts for the difference between
the maximum unacknowledged byte and the maximum acknowledged byte. The
second time series provides an estimate of the number of outstanding bytes on
the path at a given time instant. The Out(t) time series is accurate except during
loss periods. Note that the computation of Out(t) is possible since our dataset
was collected at the sender side, as the Eurecom peer in the BitTorrent session
was acting as a seed during the measurement period. A flow is then flagged
receiver window limited if the following condition holds:

∑N
t=1 1Adv(t)−3×MSS≤Out(t)≤Adv(t)

N
≥ 0.8

where N is the size of the two time series and MSS is the maximum segment size
of the path. The above criterion simply states that 80% of the time, the estimated
number of outstanding packets must lie between the advertised window minus
three MSS and the advertised window. By choosing a treshold of 80%, we expect
to be conservative.

Application of the test on our dataset leads us to flag about 13.7% of the
flows as receiver window limited. The next issue is to choose the non window
limited flows. We adopt the following criterion:

∑N
t=1 1Out(t)≤Adv(t)−3×MSS

N
≥ 0.9.
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Applying the above criterion, we obtained about 14.4% of non receiver window
limited flows. A straightforward comparison of the durations of the stationary
flows extracted from the flows of the two families (receiver window limited and
non receiver limited) is misleading as the duration of their respective connec-
tions is different. We thus use two other metrics. First, we compute the number
of stationary flows into which a flow is cut in each family. We obtain that the
receiver window limited flows are on average cut into 3.5 stationary flows while
non receiver window limited flows are cut into 4.5 stationary flows. The second
metric we consider is the relative size, in percentage, of the stationary flows with
respect to the size of flow they are extracted from for the two familied. Figure 10
represents the cumulative distribution functions of the percentages for the two
families. From this figure, we observe that receiver window limited stationary
flows are relatively larger than non receiver window limited ones in most cases.
Also, in figure 11, we plot the cumulative distributions of the throughput of
the stationary flows for both families. We conclude from figure 11 that receiver
window limited stationary flows exhibit significantly smaller throughputs values
than non receiver window limited ones. This might mean that receiver limited
flows correspond to paths with larger RTT than non receiver window limited
ones, as this would prevent these flows from achieving high throughput values.
This last point as well as our definition of window limited flows (we only con-
sidered around 28% of the flows of our dataset to obtain those results) would
clearly deserve more investigation.

6 Conclusion and Outlook

Internet Traffic analysis becomes a crucial activity, e.g. for ISPs to do trou-
bleshooting or for content providers and researchers that are willing to devise
new multimedia services in the Internet. Once information on some path has
been collected, its needs to be analyzed. The first step is to divide traces into
somewhat homogeneous period and to flag anomalies. In this paper, we concen-
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trate on the analysis of the service perceived by long TCP connections in the
Internet. We have developed a change point analysis tool that extracts stationary
periods within connections. We follow a non parametric approach and based our
tool on the Kolmogorov-Smirnov goodness of fit test. We validated our change
point tool in various ways on synthetic and operational datasets. Overall, the
tool manages to correctly flag change points as long as little correlation persists
at the time scale at which it is applied. We worked at the 10 second time scale,
which is a reasonable time scale for some multimedia applications such as VoD.
We also focused on receiver window limited connections to relate the stationarity
observed by our tool to typical connection behaviors.

As future work, we intent to pursue in this direction by correlating the sta-
tionarity periods with some other network events like RTT variations or loss
rates. We would also like to study the extent to which our tool could be used in
real time and to investigate how it could be tailored to the need of some specific
applications. It is also necessary to compare our tool with some other change
point techniques [1].
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Abstract. Well-known port numbers can no longer be used to reliably
identify network applications. There is a variety of new Internet appli-
cations that either do not use well-known port numbers or use other
protocols, such as HTTP, as wrappers in order to go through firewalls
without being blocked. One consequence of this is that a simple inspec-
tion of the port numbers used by flows may lead to the inaccurate clas-
sification of network traffic. In this work, we look at these inaccuracies
in detail. Using a full payload packet trace collected from an Internet
site we attempt to identify the types of errors that may result from port-
based classification and quantify them for the specific trace under study.
To address this question we devise a classification methodology that re-
lies on the full packet payload. We describe the building blocks of this
methodology and elaborate on the complications that arise in that con-
text. A classification technique approaching 100% accuracy proves to be
a labor-intensive process that needs to test flow-characteristics against
multiple classification criteria in order to gain sufficient confidence in
the nature of the causal application. Nevertheless, the benefits gained
from a content-based classification approach are evident. We are capable
of accurately classifying what would be otherwise classified as unknown
as well as identifying traffic flows that could otherwise be classified in-
correctly. Our work opens up multiple research issues that we intend to
address in future work.

1 Introduction

Network traffic monitoring has attracted a lot of interest in the recent past.
One of the main operations performed within such a context has to do with the
identification of the different applications utilising a network’s resources. Such
information proves invaluable for network administrators and network designers.
Only knowledge about the traffic mix carried by an IP network can allow efficient
design and provisioning. Network operators can identify the requirements of
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different users from the underlying infrastructure and provision appropriately.
In addition, they can track the growth of different user populations and design
the network to accommodate the diverse needs. Lastly, accurate identification
of network applications can shed light on the emerging applications as well as
possible mis-use of network resources.

The state of the art in the identification of network applications through traf-
fic monitoring relies on the use of well known ports: an analysis of the headers
of packets is used to identify traffic associated with a particular port and thus
of a particular application [1, 2, 3]. It is well known that such a process is likely
to lead to inaccurate estimates of the amount of traffic carried by different ap-
plications given that specific protocols, such as HTTP, are frequently used to
relay other types of traffic, e.g., the NeoTeris VLAN over HTTP product. In ad-
dition, emerging services typically avoid the use of well known ports, e.g., some
peer-to-peer applications. This paper describes a method to address the accurate
identification of network applications in the presence of packet payload informa-
tion1. We illustrate the benefits of our method by comparing a characterisation
of the same period of network traffic using ports-alone and our content-based
method.

This comparison allows us to highlight how differences between port and
content-based classification may arise. Having established the benefits of the
proposed methodology, we proceed to evaluate the requirements of our scheme
in terms of complexity and amount of data that needs to be accessed. We demon-
strate the trade-offs that need to be addressed between the complexity of the
different classification mechanisms employed by our technique and the resulting
classification accuracy. The presented methodology is not automated and may
require human intervention. Consequently, in future work we intend to study its
requirements in terms of a real-time implementation.

The remainder of the paper is structured as follows. In Section 2 we present
the data used throughout this work. In Section 3 we describe our content-based
classification technique. Its application is shown in Section 4. The obtained re-
sults are contrasted against the outcome of a port-based classification scheme.
In Section 5 we describe our future work.

2 Collected Data

This work presents an application-level approach to characterising network traf-
fic. We illustrate the benefits of our technique using data collected by the high-
performance network monitor described in [5].

The site we examined hosts several Biology-related facilities, collectively re-
ferred to as a Genome Campus. There are three institutions on-site that employ

1 Packet payload for the identification of network applications is also used in [4].
Nonetheless, no specific details are provided by [4] on the implementation of the
system thus making comparison infeasible. No further literature was found by the
authors regarding that work.
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Table 1. Summary of traffic analysed

Total Total
Packets MBytes

Total 573,429,697 268,543
As percentage of Total

TCP 94.819 98.596
ICMP 3.588 0.710
UDP 1.516 0.617

OTHER 0.077 0.077

about 1,000 researchers, administrators and technical staff. This campus is con-
nected to the Internet via a full-duplex Gigabit Ethernet link. It was on this
connection to the Internet that our monitor was placed. Traffic was monitored
for a full 24 hour, week-day period and for both link directions.

Brief statistics on the traffic data collected are given in Table 1. Other proto-
cols were observed in the trace, namely IPv6-crypt, PIM, GRE, IGMP, NARP
and private encryption, but the largest of them accounted for fewer than one
million packets (less than 0.06%) over the 24 hour period and the total of all
OTHER protocols was fewer than one and a half million packets. All percentage
values given henceforth are from the total of UDP and TCP packets only.

3 Methodology

3.1 Overview of Content-Based Classification

Our content-based classification scheme can be viewed as an iterative procedure
whose target is to gain sufficient confidence that a particular traffic stream is
caused by a specific application. To achieve such a goal our classification method
operates on traffic flows and not packets. Grouping packets into flows allows for
more-efficient processing of the collected information as well the acquisition of
the necessary context for an appropriate identification of the network applica-
tion responsible for a flow. Obviously, the first step we need to take is that of
aggregating packets into flows according to their 5-tuple. In the case of TCP,
additional semantics can also allow for the identification of the start and end
time of the flow. The fact that we observe traffic in both directions allows clas-
sification of all nearly flows on the link. A traffic monitor on a unidirectional
link can identify only those applications that use the monitored link for their
datapath.

One outcome of this operation is the identification of unusual or peculiar
flows — specifically simplex flows. These flows consist of packets exchanged be-
tween a particular port/protocol combination in only one direction between two
hosts. A common cause of a simplex flow is that packets have been sent to an
invalid or non-responsive destination host. The data of the simplex flows were
not discarded, they were classified — commonly identified as carrying worm and
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Table 2. Methods of flow identification

Identification Method Example
I Port-based classification (only) —

II Packet Header (including I) simplex flows
III Single packet signature Many worm/virus
IV Single packet protocol IDENT
V Signature on the first KByte P2P

VI first KByte Protocol SMTP
VII Selected flow(s) Protocol FTP

VIII (All) Flow Protocol VNC, CVS
IX Host history Port-scanning

virus attacks. The identification and removal of simplex flows (each flow con-
sisting of between three and ten packets sent over a 24-hour period) allowed the
number of unidentified flows that needed further processing to be significantly
reduced.

The second step of our method iteratively tests flow characteristics against
different criteria until sufficient certainty has been gained as to the identity
of the application. Such a process consists of nine different identification sub-
methods. We describe these mechanisms in the next section. Each identification
sub-method is followed by the evaluation of the acquired certainty in the candi-
date application. Currently this is a (labour-intensive) manual process.

3.2 Identification Methods

The nine distinct identification methods applied by our scheme are listed in Table
2. Alongside each method is an example application that we could identify using
this method. Each one tests a particular property of the flow attempting to
obtain evidence of the identity of the causal application.

Method I classifies flows according to their port numbers. This method rep-
resents the state of the art and requires access only to the part in the packet
header that contains the port numbers. Method II relies on access to the en-
tire packet header for both traffic directions. It is this method that is able to
identify simplex flows and significantly limit the number of flows that need to
go through the remainder of the classification process. Methods III to VIII
examine whether a flow carries a well-known signature or follows well-known
protocol semantics. Such operations are accompanied by higher complexity and
may require access to more than a single packet’s payload. We have listed the
different identification mechanisms in terms of their complexity and the amount
of data they require in Figure 1. According to our experience, specific flows may
be classified positively from their first packet alone. Nonetheless, other flows may
need to be examined in more detail and a positive identification may be feasible
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Fig. 1. Requirements of identification methods

classified at this stage will require inspection of the entire flow payload and we
separate such a process into two distinct steps. In the first step (Method VII)
we perform full-flow analysis for a subset of the flows that perform a control-
function. In our case FTP appeared to carry a significant amount of the overall
traffic and Method VII was applied only to those flows that used the standard
FTP control port. The control messages were parsed and further context was
obtained that allowed us to classify more flows in the trace. Lastly, if there are
still flows to be classified, we analyse them using specific protocol information
attributing them to their causal application using Method VIII.

In our classification technique we will apply each identification method in turn
and in such a way that the more-complex or more-data-demanding methods (as
shown in Figure 1) are used only if no previous signature or protocol method
has generated a match. The outcome of this process may be that (i) we have
positively identified a flow to belong to a specific application, (ii) a flow appears
to agree with more than one application profile, or (iii) no candidate application
has been identified. In our current methodology all three cases will trigger manual
intervention in order to validate the accuracy of the classification, resolve cases
where multiple criteria have generated a match or inspect flows that have not
matched any identification criteria. We describe our validation approach in more
detail in Section 3.4.

The successful identification of specific flows caused by a particular network
application reveals important information about the hosts active in our trace.

several applications making use of signatures. In future work, we intend to address
the exact question of what is the necessary amount of payload one needs to capture
in order to identify different types of applications.

2 The value of 1 KByte has been experimentally found to be an upper bound for the
amount of packet information that needs to be processed for the identification of

once up to 1 KByte of their data has been observed2. Flows that have not been
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Our technique utilises this information to build a knowledge base for particular
host/port combinations that can be used to validate future classification by test-
ing conformance with already-observed host roles (Method IX). One outcome
of this operation is the identification of hosts performing port scanning where
a particular destination host is contacted from the same source host on many
sequential port numbers. These flows evidently do not belong to a particular
application (unless port scanning is part of the applications looked into). For a
different set of flows, this process validated the streaming audio from a pool of
machines serving a local broadcaster.

Method IX can be further enhanced to use information from the host name
as recorded in the DNS. While we used this as a process-of-last-resort (DNS
names can be notoriously un-representative), DNS names in our trace did reveal
the presence of an HTTP proxy, a Mail exchange server and a VPN endpoint
operating over a TCP/IP connection.

3.3 Classification Approach

An illustration of the flow through the different identification sub-methods, as
employed by our approach, is shown in Figure 2. In the first step we attempt to
reduce the number of flows to be further processed by using context obtained
through previous iterations. Specific flows in our data can be seen as “child”
connections arising from “parent” connections that precede them. One such ex-
ample is a web browser that initiates multiple connections in order to retrieve
parts of a single web page. Having parsed the “parent” connection allows us to
immediately identify the “child” connections and classify them to the causal web
application.

A second example, that has a predominant effect in our data, is passive FTP.
Parsing the “parent” FTP session (Method VIII) allows the identification of
the subsequent “child” connection that may be established toward a different
host at a non-standard port. Testing whether a flow is the result of an already-
classified flow at the beginning of the classification process allows for the fast
characterisation of a network flow without the need to go through the remainder
of the process.
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If the flow is not positively identified in the first stage then it goes through
several additional classification criteria. The first mechanism examines whether
a flow uses a well-known port number. While port-based classification is prone
to error, the port number is still a useful input into the classification process
because it may convey useful information about the identity of the flow. If no
well-known port is used, the classification proceeds through the next stages.
However, even in the case when a flow is found to operate on a well-known
port, it is tagged as well-known but still forwarded through the remainder of the
classification process.

In the next stage we test whether the flow contains a known signature in its
first packet. At this point we will be able to identify flows that may be directed
to well-known port numbers but carry non-legitimate traffic as in the case of
virus or attack traffic. Signature-scanning is a process that sees common use
within Intrusion Detection Systems such as snort [6]. It has the advantage that
a suitable scanner is often optimised for string-matching while still allowing the
expression of flexible matching criteria. By scanning for signatures, applications
such as web-servers operating on non-standard ports may be identified.

If no known signature has been found in the first packet we check whether the
first packet of the flow conveys semantics of a well-known protocol. An example
to that effect is IDENT which is a single packet IP protocol. If this test fails we
look for well-known signatures in the first KByte of the flow, which may require
assembly of multiple individual packets. At this stage we will be able to identify
peer-to-peer traffic if it uses well known signatures. Traffic due to SMTP will
have been detected from the port-based classification but only the examination
of the protocol semantics within the first KByte of the flow will allow for the
confident characterisation of the flow. Network protocol analysis tools, such as
ethereal [7], employ a number of such protocol decoders and may be used to
make or validate a protocol identification.

Specific flows will still remain unclassified even at this stage and will require
inspection of their entire payload. This operation may be manual or automated
for particular protocols. From our experience, focusing on the protocol semantics
of FTP led to the identification of a very significant fraction of the overall traf-
fic limiting the unknown traffic to less than 2%. At this point the classification
procedure can end. However, if 100% accuracy is to be approached we envision
that the last stage of the classification process may involve the manual inspec-
tion of all unidentified flows. This stage is rather important since it is likely to
reveal new applications. While labour-intensive, the individual examination of
the remaining, unidentified, flows caused the creation of a number of new sig-
natures and protocol-templates that were then able to be used for identifying
protocols such as PCAnywhere, the sdserver and CVS. This process also served
to identify more task-specific systems. An example of this was a host offering
protocol-specific database services.

On occasion flows may remain unclassified despite this process; this takes
the form of small samples (e.g., 1–2 packets) of data that do not provide enough
information to allow any classification process to proceed. These packets used
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unrecognised ports and rarely carried any payload. While such background noise
was not zero in the context of classification for accounting, Quality-of-Service, or
resource planning, these amounts could be considered insignificant. The actual
amount of data in terms of either packets or bytes that remained unclassified
represented less than 0.001% of the total.

3.4 Validation Process

Accurate classification is complicated by the unusual use to which some protocols
are put. As noted earlier, the use of one protocol to carry another, such as
the use of HTTP to carry peer-to-peer application traffic, will confuse a simple
signature-based classification system. Additionally, the use of FTP to carry an
HTTP transaction log will similarly confuse signature matching.

Due to these unusual cases the certainty of any classification appears to be
a difficult task. Throughout the work presented in this paper validation was
performed manually in order to approach 100% accuracy in our results. Our
validation approach features several distinct methods.

Each flow is tested against multiple classification criteria. If this procedure
leads to several criteria being satisfied simultaneously, manual intervention can
allow for the identification of the true causal application. An example is the peer-
to-peer situation. Identifying a flow as HTTP does not suggest anything more
than that the flow contains HTTP signatures. After applying all classification
methods we may conclude that the flow is HTTP alone, or additional signature-
matching (e.g. identifying a peer-to-peer application) may indicate that the flow
is the result of a peer-to-peer transfer.

If the flow classification results from a well-known protocol, then the val-
idation approach tests the conformance of the flow to the actual protocol. An
example of this procedure is the identification of FTP PASV flows. A PASV flow
can be valid only if the FTP control-stream overlaps the duration of the PASV
flow — such cursory, protocol-based, examination allows an invalid classification
to be identified. Alongside this process, flows can be further validated against
the perceived function of a host, e.g., an identified router would be valid to relay
BGP whereas for a machine identified as (probably) a desktop Windows box be-
hind a NAT, concluding it was transferring BGP is unlikely and this potentially
invalid classification requires manual-intervention.

4 Results

Given the large number of identified applications, and for ease of presentation, we
group applications into types according to their potential requirements from the
network infrastructure. Table 3 indicates ten such classes of traffic. Importantly,
the characteristics of the traffic within each category is not necessarily unique.
For example, the BULK category which is made up of ftp traffic consists of both
ftp control channel: data on both directions, and the ftp data channel which
consists of a simplex flow of data for each object transferred.
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Table 3. Network traffic allocated to each category

Classification Example Application
BULK ftp
DATABASE postgres, sqlnet, oracle, ingres
INTERACTIVE ssh, klogin, rlogin, telnet
MAIL imap, pop2/3, smtp
SERVICES X11, dns, ident, ldap, ntp
WWW www
P2P KaZaA, BitTorrent, GnuTella
MALICIOUS Internet work and virus attacks
GAMES Half-Life
MULTIMEDIA Windows Media Player, Real

In Table 4 we compare the results of simple port-based classification with
content-based classification. The technique of port-analysis, against which we
compare our approach, is common industry practise (e.g., Cisco NetFlow or
[1, 2]). UNKNOWN refers to applications which for port-based analysis are not
readily identifiable. Notice that under the content-based classification approach
we had nearly no UNKNOWN traffic; instead we have 5 new traffic-classes de-
tected. The traffic we were not able to classify corresponds to a small number
of flows. A limited number of flows provides a minimal sample of the applica-
tion behavior and thus cannot allow for the confident identification of the causal
application.

Table 4 shows that under the simple port-based classification scheme based
upon the IANA port assignments 30% of the carried bytes cannot be attributed

Table 4. Contrasting port-based and Content-based classification

Classification Port-Based Content-Based
Type Packets Bytes Packets Bytes

As a percentage of total traffic
BULK 46.97 45.00 65.06 64.54

DATABASE 0.03 0.03 0.84 0.76
GRID 0.03 0.07 0.00 0.00

INTERACTIVE 1.19 0.43 0.75 0.39
MAIL 3.37 3.62 3.37 3.62

SERVICES 0.07 0.02 0.29 0.28
WWW 19.98 20.40 26.49 27.30

UNKNOWN 28.36 30.43 <0.01 <0.01

MALICIOUS — — 1.10 1.17
IRC/CHAT — — 0.44 0.05

P2P — — 1.27 1.50
GAMES — — 0.17 0.18

MULTIMEDIA — — 0.22 0.21
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to a particular application. Further observation reveals that the BULK traf-
fic is underestimated by approximately 20% while we see a difference of 6%
in the WWW traffic. However, the port-based approach does not only under-
estimate traffic but for some classes, e.g., INTERACTIVE applications, it may
over-estimate it. This means that traffic flows can also be misidentified under
the port-based technique. Lastly, applications such as peer-to-peer and mal-ware
appear to contribute zero traffic in the port-based case. This is due to the port
through which such protocols travel not providing a standard identification. Such
port-based estimation errors are believed to be significant.

4.1 Examining Under and Over-Estimation

Of the results in Table 4 we will concentrate on only a few example situations.
The first and most dominant difference is for BULK — traffic created as a
result of FTP. The reason is that port-based classification will not be able to
correctly identify a large class of (FTP) traffic transported using the PASV
mechanism. Content-based classification is able to identify the causal relationship
between the FTP control flow and any resulting data-transport. This means that
traffic that was formerly either of unknown origin or incorrectly classified may be
ascribed to FTP which is a traffic source that will be consistently underestimated
by port-based classification.

A comparison of values for MAIL, a category consisting of the SMTP, IMAP,
MAPI and POP protocols, reveals that it is estimated with surprising accuracy
in both cases. Both the number of packets and bytes transferred is unchanged
between the two classification techniques. We also did not find any other non-
MAIL traffic present on MAIL ports. We would assert that the reason MAIL is
found exclusively on the commonly defined ports, while no other MAIL trans-
actions are found on other ports, is that MAIL must be exchanged with other
sites and other hosts. MAIL relies on common, Internet-wide standards for port
and protocol assignment. No single site could arbitrarily change the ports on
which MAIL is exchanged without effectively cutting itself off from exchanges
with other Internet sites. Therefore, MAIL is a traffic source that, for quantify-
ing traffic exchanged with other sites at least, may be accurately estimated by
port-based classification.

Despite the fact that such an effect was not pronounced in the analysed
data set, port-based classification can also lead to over-estimation of the amount
of traffic carried by a particular application. One reason is that mal-ware or
attack traffic may use the well-known ports of a particular service, thus inflating
the amount of traffic attributed to that application. In addition, if a particular
application uses another application as a relay, then the traffic attributed to the
latter will be inflated by the amount of traffic of the former. An example of such
a case is peer-to-peer traffic using HTTP to avoid blocking by firewalls, an effect
that was not present in our data. In fact, we notice that under the content-based
approach we can attribute more traffic to WWW since our data included web
servers operating on non-standard ports that could not be detected under the
port-based approach.
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Table 5. Analysis method compared against percentage of UNKNOWN and correctly
identified data

Method UNKNOWN Data % Correctly Identified
I II III IV V VI VII VIII IX Packets Bytes Packets Bytes
• 28.36 30.44 71.03 69.27
• • • 27.35 30.33 72.05 69.38
• • • • 27.35 30.32 72.05 69.39
• • • • • 27.12 30.09 72.29 69.62
• • • • • • 25.72 28.43 74.23 71.48
• • • • • • • 19.11 21.07 80.84 78.84
• • • • • • • • 1.07 1.22 98.94 98.78
• • • • • • • • • <0.01 <0.01 >99.99 >99.99

Clearly this work leads to an obvious question of how we know that our
content-based method is correct. We would emphasise that it was only through
the labour-intensive examining of all data-flows along with numerous exchanges
with system administrators and users of the examined site that we were able
to arrive at a system of sufficient accuracy. We do not consider that such a
laborious process would need to be repeated for the analysis of similar traffic
profiles. However, the identification of new types of applications will require a
more limited examination of a future, unclassifiable anomaly.

4.2 Overheads of Content-Based Analysis

Alongside a presentation of the effectiveness of the content-based method we
present the overheads this method incurs. For our study we were able to iterate
through traffic multiple times, studying data for many months after its collection.
Clearly, such a labour-intensive approach would not be suitable if it were to be
used as part of real-time operator feedback.

We emphasise that while performing this work, we built a considerable body
of knowledge applicable to future studies. The data collected for one monitor
can be reapplied for future collections made at that location. Additionally, while
specific host information may quickly become out-of-date, the techniques for
identifying applications through signatures and protocol-fitting continue to be
applicable. In this way historical data becomes an a-priori that can assist in the
decision-making process of the characterisation for each analysis of the future.

Table 5 indicates the relationship between the complexity of analysis and the
quantity of data we could positively identify — items are ordered in the table
as increasing levels of complexity. The Method column refers to methods listed
in Table 2 in Section 3.

Currently our method employs packet-header analysis and host-profile con-
struction for all levels of complexity. Signature matching is easier to implement
and perform than protocol matching due to its application of static string match-
ing. Analysis that is based upon a single packet (the first packet) is inherently



52 A.W. Moore and K. Papagiannaki

less complex than analysis based upon (up to) the first KByte. The first KByte
may require reassembly from the payload of multiple packets. Finally, any form
of flow-analysis is complicated although this will clearly reduce the overheads of
analysis if the number of flows that require parsing is limited.

Table 5 clearly illustrates the accuracy achieved by applying successively-
more-complicated characterisation techniques. The correctness of classification
reported in Table 5 is computed by comparing the results using that method
and the results using the content-based methodology. Importantly, the quantity
of UNKNOWN traffic is not simply the difference between total and identified
traffic. Traffic quantified as UNKNOWN has no category and does not account
for traffic that is mis-classified. It may be considered the residual following each
classification attempt.

Table 5 shows that port-based classification is actually capable of correctly
classifying 69% of the bytes. Contrasting this value with the known traffic in
Table 4 further demonstrates that the mis-identified amount of traffic is rather
limited. Nonetheless, 31% of the traffic is unknown. Applying host-specific knowl-
edge is capable of limiting the unknown traffic by less than 1% and signature
and application semantics analysis based on the first packet of the flow provides
an additional benefit of less than 1%. It’s only after we observe up to 1 KByte of
the flow that we can increase the correctly-identified traffic from approximately
70% to almost 79%. Application of mechanism VII can further increase this per-
centage to 98%. In Table 2 we have listed example applications that are correctly
identified when the particular mechanism is applied.

In summary, we notice that port-based classification can lead to the positive
identification of a significant amount of the carried traffic. Nonetheless, it con-
tains errors that can be detected only through the application of a content-based
technique. Our analysis shows that typically the greatest benefit of applying such
a technique, unfortunately, comes from the most complicated mechanisms. If a
site contains a traffic mix biased toward the harder-to-detect applications, then
these inaccuracies may have even more adverse consequences.

5 Summary and Future Work

Motivated by the need for more accurate identification techniques for network
applications, we presented a framework for traffic characterisation in the presence
of packet payload. We laid out the principles for the correct classification of
network traffic. Such principles are captured by several individual building blocks
that, if applied iteratively, can provide sufficient confidence in the identity of
the causal application. Our technique is not automated due to the fact that a
particular Internet flow could satisfy more than one classification criterion or
it could belong to an emerging application having behaviour that is not yet
common knowledge.

We collected a full payload packet traces from an Internet site and compared
the results of our content-based scheme against the current state of the art —



Toward the Accurate Identification of Network Applications 53

the port-based classification technique. We showed that classifying traffic based
on the usage of well-known ports leads to a high amount of the overall traffic
being unknown and a small amount of traffic being misclassified. We quantified
these inaccuracies for the analysed packet trace.

We then presented an analysis of the accuracy-gain as a function of the
complexity introduced by the different classification sub-methods. Our results
show that simple port-based classification can correctly identify approximately
70% of the overall traffic. Application of increasingly complex mechanisms can
approach 100% accuracy with great benefits gained even through the analysis of
up to 1 KByte of a traffic flow.

Our work should be viewed as being at an early stage and the avenues for
future research are multiple. One of the fundamental questions that need in-
vestigation is how such a system could be implemented for real-time operation.
We would argue that an adapted version of the architecture described in [5],
which currently performs on-line flow analysis as part of its protocol-parsing
and feature-compression, would be a suitable system. Such an architecture over-
comes the (potential) over-load of a single monitor by employing a method
work-load sharing among multiple nodes. This technique incorporates dynamic
load-distribution and assumes that a single flow will not overwhelm a single
monitoring node. In our experience such a limitation is sufficiently flexible as to
not be concerning.

We clearly need to apply our technique to other Internet locations. We need
to identify how applicable our techniques are for other mixes of user traffic and
when our monitoring is subject to other limitations. Examples of such limitations
include having access to only unidirectional traffic or to a sample of the data.
Both these situations are common for ISP core networks and for multi-homed
sites. We already identify that the first phase of identification and culling of
simplex flows would not be possible if the only data available corresponded to a
single link direction.

We emphasise that application identification from traffic data is not an easy
task. Simple signature matching may not prove adequate in cases where multi-
ple classification criteria seem to be satisfied simultaneously. Validation of the
candidate application for a traffic flow in an automated fashion is an open issue.
Further research needs to be carried out in this direction. Moreover, we envision
that as new applications appear in the Internet there will always be cases when
manual intervention will be required in order to gain understanding of its nature.

Lastly, in future work we intend to address the issue of how much informa-
tion needs to be accessible by a traffic classifier for the identification of different
network applications. Our study has shown that in certain cases one may need
access to the entire flow payload in order to arrive to the correct causal applica-
tion. Nonetheless, if system limitations dictate an upper bound on the captured
information, then the knowledge of the application(s) that will evade identifica-
tion is essential.

A technical report describing the (manual) process we used is provided in [8].
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Abstract. Pure P2P applications are widely used nowadays as a file
sharing system. In the overlay networks, music and video files are the
main items exchanged, and it is known that the traffic volume is much
larger than that of classical client/server applications. However, the cur-
rent status of the P2P application traffic is not well known because of
their anonymous communication architectures. In particular, in cases
where the application does not use the default service port, and the com-
munication route and the shared file are also encrypted, the identification
traffic has not been feasible. To solve this problem, we have developed an
identification method for pure Peer-to-Peer communication applications,
especially for traffic for Winny, the most popular Peer-to-Peer applica-
tion in Japan, by using server/client relationships among the peers. We
will give some evaluation results for our proposed identification method.

1 Introduction

The Internet applications of end users are changing with the spread of high-
performance PCs connected, with broadband links, through the Internet. The
traffic volume is also increasing drastically increasing with the change in ap-
plications. In particular, the number of users of Peer-to-Peer (P2P) network
applications is increasing rapidly since the users are easily able to use network
resources over the overlay networks.

The characteristic feature of a pure P2P network is that it is a distributed
autonomous system which does not rely on a specific server for communications.

Because of this fact, such systems are expected to exhibit scalability in pro-
cessing power and load balancing at the end computers. However, the traffic
volume is becoming much larger than that of the previous Internet applications
and the bottlenecks in processing power are shifting from the end computers
to the network. In addition, traffic control is very difficult because there is no
administrator in the overlay networks and on account of the anonymous nature
of the traffic.

Consequently, we need to estimate the effect of P2P traffic to on other forms
of traffic in order to construct networks and manage them appropriately. When
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we start evaluating the P2P traffic, we need first to identify the P2P traffic in the
total Internet traffic. Much researches has been done to identify the application
traffic and evaluate its characteristics.

The service port number in TCP or UDP is often used as a method of iden-
tifying the application traffic, since major Internet applications have use their
well known service ports (0–1023) and the server has to use the TCP or UDP
port number as the identification number [1]. If the identification number is used
correctly by all applications, we can easily identify the application traffic.

Many P2P applications also have their default service port number, Gnutella
[2] (6346, 6347), Kazaa [3] (1214), BitTorrent [4] (6881–6889) and so on. In
consequence, many research studies for P2P traffic use the default service port
number identification methods in [5], [6] and [7]. However, some recent P2P
applications, WinMX [8] and Winny [9], do not use a default service port number,
which would allow their services to be identified. For these applications, this
identification method does not work well.

Signature matching identification methods [10], [11] are effective when the
applications exchange the specific characters in the payload of packets. This
traffic identification method is widely applied for Intrusion Detection Systems
(IDS) [12], [13] to manage traffic. In this method, every packet needs to be an-
alyzed and it requires huge computation power. In [14], the authors propose a
scalable signature matching identification system for P2P traffic, and compare
identification methods their application level signature matching method with
the default service port number identification method. In these signature match-
ing methods, the application signatures need to be updated with changing the
application protocols.

There is further difficult problem in the case of Winny, which is one of the
most popular pure P2P file sharing application in Japan. The payloads of the
packets are encrypted and the protocol details are also not disclosed. These facts
make it difficult to identify the Winny traffic since the signature matching is not
also useful for the an encrypted payload.

This paper proposes an improved default service port number identification
method specifically designed for pure P2P application traffic, to address the
above problems. In our method, the service port number may be identified even
in cases where the pure P2P applications do not use its their default service port
numbers. In the Internet communication, each connection is identified by a tuple
of the IP addresses, port numbers and a protocol number (TCP or UDP), and
many classical Internet applications play function only as a server or client in the
communications. In the classical client/server application, only one connection
or relationship is used between the entities involved in the communication. Pure
P2P peers, however, play function as both server and client between the peers,
and two kinds of connection need to be established. In our method, the pure
P2P traffic is identified by the patterns of connection to the server/client ports
among the communicating entities. To realize our proposed method, we adopt
active measurement and passive measurement for the pure P2P traffic. With
the combination of the measurement logs, the service port of a peer is identified
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through a series of steps. We adopt have apply the proposed method to the
Winny network and evaluate our proposed identification method.

The rest of this paper is structured as follows. In section 2 we briefly describe
the P2P application of Winny. Section 3 we describes our traffic measurement
method. In Section 4, describes our proposed traffic identification method, and
section 5 provides conclusions.

2 About Winny

In Japan, the famous well-known P2P file exchange applications, KaZaa [3],
emule [15] and BitTorrent [4], are rarely used since they cannot deal with
Japanese language characters in the key words for file searching or the file name.
WinMX [8] is the first P2P application for which is available Japanese language
characters may be used, though the application of a by applying the patch, and
so WinMX was the main file sharing application used until the appearance of
Winny.

Currently, Winny is one of the most popular P2P file sharing application in
Japan, since it was developed in Japan and the has a freenet-like [16] anonymous
architecture. About 200,000 peers always compose the Winny network, and be-
tween June 13 and October 23, 2004, we measured over 4,000,000 unique joined
peers which had a unique tuple of IP address and the service port from June 13
to October 23, 2004. (The measurement point is at Point A in Figure 1.)

Winny is a pure P2P application and does not depend on any central server
or super peer for file searching and sharing. The communication is encrypted,
the service port is different in each peer and the protocol is also not an open
one. This architecture makes it difficult for a network administrator to identify
the traffic. Winny is not a file exchange application but rather a file sharing
application. By setting some keywords for the file name, the peer always collects
the matching files. The file transfer technique also strengthens the anonymous
communication architecture. When a file is shared between two peers, the file
holder should transfer the file to the file receiver via an intermediate peer, so that
the two exchanging entities never know each other directly. In the intermediate
peer, the transferred file is locally cached as an encrypted one. A duplicate of the
file is also distributed to the receiving peer as the duplicate one. This architecture
results in an enormous volume of traffic as the size of shared files increases size.
In the Winny network, the shared files are mainly video files (mpeg, avi and
DVD ISO image) and the average shared file size is around 1GB. The Winny
network is composed of three kinds of networks/links, as described below.

1. Adjacent peer check/search network.
2. File search network.
3. File exchange network.

1. When a new Winny peer joins the Winny network, the peer needs to obtain
a pairs of data items, that is the IP address and service port number, of the other
peers which haves already joined the network. Then the new peer establishes and
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Fig. 1. Traffic measurement points

keeps maintains the links up to several hundred peers. The network comprises a
nearly random network.

2. Some of the links are selected as the file search network. In this network,
information is exchanged regarding who has a specified file and who wants it.

3. When file exchange conditions are satisfied, a separate route is established
via the other file sharing entity.

In these networks there is a server/client relationship between two peers
and many such networks are characterized by many access requests between
peersaccesses are always required among the peers to keep these networks. These
characteristics of networks give us hints as to how to identify Winny traffic.

3 Measurement Methods

We adopt a combination of active and passive measurements to identify Winny
traffic, and have two measurement points, as shown in Figure 1. At Point A, the
back-bone traffic is measured with by means of a passive measurement, while
Point B is placed inside the stub network and measures Winny traffic by acting
as a decoy peer with an active measurement.

The Point A (which collects data in log A) is in a switching hub which
is placed between an edge router of the Internet and an edge router of the
stub network. The link speed is the 100Mbps of full duplex Ethernet but the
transfer speed is restricted to 10Mbps at the edge router of the Internet for both
directions. We can measure the traffic in the switching hub without affecting the
backbone traffic itself by port mirroring. We measured the traffic for 24 hours,
from 0:00–24:00 on January 11, 2005 and found 2461 unique IP addresses of
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the stub network in the traffic log. The combined total traffic volume for both
directions was 166.1 GB.

We only logged information of the IP and TCP headers of all these packets.
We obtained limited information from the log, but we can reduce the log size
and still obtain enough information from it. We define a flow, in the following,
as a connection which has the same tuple of IP addresses, port numbers and a
protocol number (TCP) between the packet containing the SYN segment flag
and the that containing the FIN segment flag. In the measurement, some flows
were not evaluated since these flows had no SYN or FYN packet flag of packet
in the log. These flows are ignored in the evaluations.

At the point B (log B), the network speed is the 100Mbps of full duplex
Ethernet. We measured the traffic log for 13 days, from 0:00 January 5 to 0:00
January 17, 2005. We were able to directly measure the access log from/to the
peers in the Winny network at the Point B because the PC B belongs to the
Winny network, acting as a decoy peer. By repeatedly changing the point of
connection to the Winny network at short intervals, we were able to collect
about 40,000 of unique pairs of IP address and service port of the Winny peers
per one day by using 5 decoy peers. We used a different measuring period of the
log for each analysis.

Both traffic logs are necessary for our traffic identification method, and the
log A is used for the back-bone traffic evaluations. The detailed specifications of
the PCs are below.

[Point A: for the Back-bone traffic]

– The PC is a Dell PRECISION 450 with dual Xeon 3.2Ghz CPUs and the
main memory size is 2GB. The OS is FreeBSD.

– The traffic is measured by Snort version 2.0.

[Point B: for the Decoy peer traffic]

– The PC is a Dell PRECISION 450 with dual Xeon 3.2Ghz CPUs and the
main memory size is 2GB. The OS is Windows XP professional.

– The version of the Winny is Winny2β6.6.
– We run 5 Winny programs in parallel in the PC in each user session , and

the service port numbers is assigned are 10001–10005, respectively.
– Safeny [17] is used to disconnect all connections to/from the decoy peer after

10 seconds.
– All connections to the service port numbers are disconnected by a firewall

in the PC B so as not to transfer any files to the Winny network.
– The traffic is measured by Snort version 2.0.

4 Proposed Identification Method for Pure P2P Traffic

Traditional Internet applications, WWW, FTP, E-mail, etc, are based on the
client/server computing model. In thise computing model, each of the commu-
nication entitiesy is categorized by only one of the two roles, a server or a client.
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Fig. 2. Procedures of our proposed identification method 1

The server computer only supplies its service and the client computer only re-
ceives the service. When the communications start, the client computer accesses
the service port of server computer with using its client port, and the server
serves provides its service over the connection. Thus, only one identification of
the connection between them identification (a tuple of source/destination IP ad-
dresses, source/destination port numbers and protocol number) between them
is used in the communications. In pure P2P communications, however, one peer
plays acts as both a server and a client simultaneously in the communications
simultaneously, and there are two kinds of connections between the peers during
their communications. Our traffic identification method focuses on the access
relations to the ports among the peers.

4.1 Proposed Identification Method 1

The basic idea of our proposed identification method is a decoy peer which
collects all pairs of IP addresses and service ports of the Winny peers. However,
collecting all of these is difficult because of the restricted search capacity of the
decoy peers. Therefore, we need to find the missing Winny peers by using a
server/client relationship between the peers.

Figure 2 shows the procedures for our proposed identification method. We
place the Peer B as a decoy peer in the stub network whose IP address is
W.X.Y.Z and the service port numbers are assigned as 10001–10005 for each
decoy peer. The service ports and client ports are depicted by the circles beside
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the PCs. As soon as the decoy peer joins the Winny network, the peers in the
Winny network access the decoy peer and the decoy peer continuously accesses
the peers in the Internet to configure the overlay networks. Each arrow corre-
sponds to a connection made by one peer to another peers service port. Thus,
these accesses are measured in the PCs A and B, as shown in Figure 1. The
procedures are described below.

First we identify the service port number and IP address of the Winny peers
connected to the Internet. In the procedures (1) and (2), only log B is used.

(1) When the decoy peer B joins the Winny network, some of the Winny peers
in the Internet access the service port of the decoy peer B. The accesses
come from the client port, and we can only identify the IP address of the
Winny peers. In this connection, the decoy peer B functions as the server.
We add the IP addresses to database α (this applies peer a IP, peer b IP and
peer c IP).

(2) Using its client port, the decoy peer B accesses the service ports of the Winny
peers in the Internet. If the decoy peer B access the peers in database α, we
can identify the service port and IP address of the Winny peers (including
peers in the stub network). We add the IP addresses and service ports to
database β (this applies peer a IP:service port number, peer b IP:service port
number and peer c IP:service port number). In this connection, the peer B
functions as a client then the two relations are established between the two
peers.

Next, we identify the IP address and the service port number of the Winny
users in the stub network, and define “Winny” and “Port 0” peers in the following
procedures. Port 0 setting is originally prepared for the peers which are behind
the firewall or NAT, but many of the Port 0 users use the setting not to upload
any files to the other peers. This is because many shared files in the Winny
network are illegal and these files are also automatically shared. In addition, in
most cases a file is transferred via a “Winny” peer, and then such “Winny” peers
will unintentionally upload and cache these illegal files.

The procedures (3) and (4) use log A and database β.

(3) In the case of a node inside the stub network which accesses a service port
of a peer in database β, the node access has the capability of a Winny
peer. However, we define a Winny peer in the stub network as a peer which
accesses more than two peers in database β, to improve the identification
probability. In addition, in this case, the access is initiated by a node inside
the stub network, and the accessed port is a service port of the peer. Then,
we find that the source IP address node is a Winny peer and add its IP
address to database γ (this applies to peer C IP and peer D IP).

(4) The Winny peers in database β access the service ports of peers in database γ.
If more than two peers in database β access an identical IP address (database
γ) and port number in the stub network of IP and service port number may
be identified. We define the peer as “Winny” in the stub network, for the
following description, and add the peers to database δ (peer C IP:service
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Fig. 3. Relationship between databases of Winny peers

port number and peer D IP:service port number). However, some peers in
database β do not return to the peers in database γ by using their client
ports.

This is because some Winny peers do not prepare their service port in
their setting. We call these peers in the stub network, which do not open
their service port to the Winny networks, “Port 0” in the following, and add
their IP addresses to the database ε.

In the identification procedures (3) and (4), the peers may not be Winny
peers, but the probability of this is very low. This is because the value is factorial
of the number of port in the TCP or UDP header (less than 1/655362) and our
method also considers the port access direction.

From these procedures, (1)–(4), we can find the IP addresses and service
ports of Winny peers in the Internet and the stub network. Figure 3 shows the
relationship of the various databases of Winny peers. Using databases β, γ and
ε, we can select the Winny and Port 0 traffic from the log A with this improved
port number based application traffic identification method.

4.2 Proposed Identification Method 2

By extending the identification method proposed in the previous subsection,
we can find new Winny peers one after another (Figure 4). In the following
procedures, the service ports of Winny peers in the stub network play the same
role as the decoy peer in the previous subsection. These procedures are described
in below.
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Fig. 4. Procedures of our proposed identification method 2

(5) When the peers d accesses to the service ports of peers C and D, which are
not in database α, the peer d becomes newly found Winny peers. We add
its IP addresses to database α.

(6) When peers C or D uses their client ports to access peer d, the service port
of peer d is identified and the information is added to the database β . (Peer e
is also found by the same procedures.)

(7) From inside the stub network, peer E, which is not in databases δ and ε,
accesses the newly found peers of these service ports (peers d and e), and so
we identify their IP address and add them to database γ.

(8) If more than two peers in database β use their client ports to access peer E,
the IP address and service port of the peer in the stub network are identified
and the peers added to database δ. The “Port 0” peers are also found in
database γ and we add them to database ε.

By repeating above procedures, we can eventually find new Winny peers even
if these peers are not found in the first few implementations of the procedures.

The next section shows the results of analysis of our proposed methods.

5 Analysis Results

5.1 Analysis Results 1

To identify Winny peers in the stub network, we used two traffic logs in section 3.
First, we determined the same 24-hour measurement period for the point A and
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point B. The decoy peer is logged as “Winny” in the log A but we exclude it in the
analysis results of this subsection. Some “IP address:service port” combinations
in log B have not been identified as Winny peers in log A since a node address
and service port number are changing at that time. However, our identification
method ensures that the probability of false positive identification is small with
these procedures.

The number of peers identified in each step is follows.

(1) The number of unique IP addresses of Winny peers is 67,984 (database α).
(2) The number of unique pair of IP addresses and service port of Winny peers

is 45,873 (database β).
(3) The number of unique IP addresses of Winny peers in the stub network is 9

(database γ).
(4) The number of unique IP address and service port of Winny peers in the stub

network is 0 (database δ). The number of the Port 0 peers is 9 (database ε).
(5)–(8) We cannot additionally find additional Winny peers in the stub network

since there is no “Winny” peer in the stub network.

From (1) and (2), the service port of the decoy peer is accessed by many
Winny peers in the Internet, when the decoy peer joins the Winny network. In
the default setting of Winny, each peer has a few active file search connections
to the other peers, but each the peer previously searches for further connectable
peers to maintain the file search network. With these procedures, several hundred
peer search connections are always maintained by keeping, in each Winny peer,
the IP:service port number of other Winny peers (the default upper limit is
600.).

The number of IP addresses in (2) is lower than that in (1) since the infor-
mation of (1) comes from the connection of the service port of the decoy peer
but that in (2) is from the connection of the client port of the decoy peer into
the result of (1). This fact depends on the search capacity of the decoy peers
and the number of Port 0 peers, which do not have their own service port.

In (3), the Winny peers in the stub network (database γ) access 1–3216 peers
of the service port in database β in Table 1. In our procedures, peers D and F
are not identified as Winny peers since there are only one access to these peers.
Since a Winny peer regularly accesses to the service port of the other peers
to maintain the peer search connections, this identification method works well.
However, we cannot find “Winny” in the definition (4). No connection between
the service port of a Winny peer in the stub network and the client port of a
Winny peer in the Internet is ever established. This is because that Winny users
in the stub network will not upload any file to the other Winny peers.

Next we investigate the effect of the measurement period for log B. The
number of nodes identified does not vary but the number of identified flows is
different. A longer measurement period finds many IP addresses and service ports
of Winny peers in the Internet (database β), and many flows are also identified.
Comparing (e) with (h), (h) gave better results in spite of the fact that the
number of peers in database β is almost the same because earlyer logged peers
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Table 1. Number of accesses to database β peers from the stub network per day

Suspected peer A B C D E F G H I J K
Number of accesses 2446 623 166 1 1626 1 2753 2122 3216 3027 2899

Table 2. Relationship between log period at measurement point B and identified flows

Measurement period Databaseβ Identified peers Identified flows Av. flow size
(a) 0:00 Jan. 11 – 0:00 Jan. 12 45873 9 111064 32.4KB
(b) 0:00 Jan. 10 – 0:00 Jan. 11 48434 9 57872 78.1KB
(c) 0:00 Jan. 9 – 0:00 Jan. 11 84129 9 71525 67.5KB
(d) 0:00 Jan. 8 – 0:00 Jan. 11 114715 9 78074 64.1KB
(e) 0:00 Jan. 4 – 0:00 Jan. 11 215557 10 87450 61.5KB

(f) 12:00 Jan. 10 – 12:00 Jan. 12 84129 9 120042 46.7KB
(g) 0:00 Jan. 10 – 0:00 Jan. 12 110097 9 123589 48.2KB
(h) 0:00 Jan. 8 – 0:00 Jan. 14 213968 9 128486 47.7KB

were not joining the Winny network during the measurement period of the log A.
However, the differences in the number of identified flows between (g) and (h)
is small. This fact will depend on the connection period of each peer. In (a), (g)
and (h), the average flow size becomes small, because the additionally identified
flows are used for composing the Adjacent peer check/search network.

5.2 Analysis Results 2

As shown in the previous subsection, we found that there are no “Winny” peers
in the stub network except for the 5 decoy peers. We do have not shown whether
the proposed identification method 2 works effectively and need to evaluate
whether it does. We ran 5 Winny applications in the PC in parallel and treated
all the 5 peers as decoy peers in the previous subsection. However, for the next
set of evaluations we treated one of the decoy peers as the decoy peer, and the
others 4 peers is as general “Winny” peers in the following evaluations. By With
these analyses, we can find one decoy peer and 4 “Winny” peers in the stub
network. These 5 “Winny” peers are all treated as “Winny” in this subsection.
Note that the 5 decoy peers run on one PC and the relationships in Figure 3 are
different for the following results.

First, we determined the same 24-hour measurement period for point A and
point B. The number of identified peers in each step is as follows.

(1) The number of unique IP addresses of Winny peers is 19136 (database α).
(2) The number of unique pairs of IP addresses and service ports of Winny peers

is 13791 (database β).
(3) The number of unique IP addresses of Winny peers in the stub network is

11 (database γ).
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Table 3. Relation between the number of peers in databaseβ and the identified peers

No.of peer in databaseβ 10 100 1000 one docoy peer
Database α (old→updated) – → 39133 – → 46264 – → 46264 19136 → 51365
Database β (old→updated) 10 → 26740 100 → 31211 1000 → 31263 13791 → 34868

Database γ 5 8 10 10
Database δ 4 5 5 5
Database ε 4 7 9 9

(4) The number of unique IP address and service port of Winny peers in the
stub network is 5(database δ). The number of the Port 0peers is 9(database ε).

(5) The IP addresses of an additional 32229 peers are found and added to
database α by the Winny peer.

(6) The database β is also updated and the number of peers is 34868.
(7)–(8) All the “Winny” and “Port 0” peers in the stub network were identified

in the step (4): no additional peers are found in this step.

These “Winny” peers accesses the other peers much more than normal Winny
peers but we can show our procedures work well from this result.

Next, we investigate the effect of the size of database β. We change the size
from 10, 100, 1000 and 13791. These peers are the first accessed peers by the
decoy peer (one of the five decoy peers) from 0:00 Jan. 11. Table3 shows that the
relation between the numbers of peers in database β and the identified peers in
each database. In the case of 10 or 100 peers in database β, some Winny peers
are not identified. But, when 1000 peers were used, the results are almost same
as the “one decoy peer” case. This means that if there are many “Winny” peers
in the stub network, our identification performance will be improved.

6 Conclusion

We have proposed an identification method for pure P2P traffic, Winny, and
evaluated its the basic characteristics of it. Using the a decoy node, we identified
the IP address and service port of Winny peers and can select the identified
IP and service port number in the traffic log of the back-bone. Our identifi-
cation method will be effective for pure P2P applications which will appears
in the future since our methodits depends on the basic relationships among in
client/server computing in the Internet applications.

In the a stub network, the number of Winny users is small. We may not find
“Winny” traffic since the Winny users in the stub network are use Port 0. We
only a collect traffic log from the other stub networks which haves many Winny
users, even if search capacity of the decoy peer is current one, characteristics of
the traffic will be much clearly analyzed. The introduced identification method
is one of thean example, and we should improve the method with by analyzing
the access patterns among the peers. Our identification method depends on
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the access number of accesses of the decoy peers from by peers in the Winny
networks and the number of users in the stub network. ThenAs a result, some
flows may not be identified by our method. If we prepare many decoy peers or
there are many users in the stub network, our method improves the identification
performance of our method improves.

When we control traffic, we should need know the status and deal themman-
age it in real time. Our proposed procedure will require this improvement for
the usageapplication.
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Abstract. Peer-to-Peer (P2P) applications now generate the majority
of Internet traffic, particularly for users on ADSL because of flatrate
tarification. In this study, we focus on four popular P2P systems to
characterize the utilization, the performance and the evolution of P2P
traffic in general. We observe and compare the influence of each P2P
application over the traffic, and we evaluate the evolution of these P2P
systems over a year. Our analysis is based on ADSL traffic captured at
TCP level on a Broadband Access Server comprising thousands of users.
Thus, we characterize the P2P traffic and users, and we draw interesting
results on connectivity and cooperation between peers, localization of
sources, termination of connections and performance limitations. The
evolution of the traffic over the year allows us to see the dynamics of
the use of P2P systems. The difference between week days and week-end
days informs us about the behavior of P2P users.

1 Introduction

This study is based on TCP captures on ADSL, which are used to establish
general characteristics of P2P systems. The fact that we take into account only
ADSL traffic is important, because these users are predominantly present in P2P
traffic. Indeed 24 hours per day, unlimited connection is proposed by ISPs to the
ADSL customers. And as we shall see, P2P file sharing systems thus account for
more than 60% of the total ADSL traffic.

The originality of our measures lies in the fact that, firstly, we analyze all
the TCP flows of a regional ADSL concentrating point, secondly, we observe
only ADSL traffic (excluding modems 56k) which is more representative of P2P
utilization, and thirdly, the data collected is representative of general ADSL
users and not restricted to a specific class of users or hosts (e.g. a University or
a private network). Furthermore, our data include several thousands of users.

We shall differentiate systematically between the P2P users with the help of
a unique ADSL user identification. As noticed in [7], an analysis based on IP ad-
dresses can have a negative influence on the interpretation of the traces because
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of NATs (Network Address Translator) and dynamic IP addresses. Indeed, we
noticed a significant qualitative difference between graphs based on IP addresses
and those based on ADSL users.

In this study, we compare four popular P2P networks: eDonkey [2], BitTorrent
[1], FastTrack and WinMX [3].

The evolution over a year shows that the popularity of P2P networks is very
volatile, this popularity is also very dependent on the country.

Our flow level analysis enables us to describe volumetric properties, con-
nection duration, traffic pattern over time, host connectivity and geographical
location of peers. Then we map some of these experimental distributions into
classical statistical laws. Our packet level analysis allows us to clearly identify be-
ginning and termination of connections leading to some findings on performance
limitations. We mention here two interesting results:

– about 40% of connections are only connection reattempts, and it concerns
about 30% of peers;

– there are two main classes of peers: those contributing to most of the traffic
volumes, and the other. The first class affects strongly the main charac-
teristics of the P2P system, while the second one softly influences these
characteristics.

The remainder of the paper is organized as follows: Section 2 details the
methodology for our measurements. In Section 3, we elaborate some relevant
characteristics of P2P traffic, such as proportion of signaling traffic, comparison
of upstream and downstream volumes, connection duration, traffic pattern over
time, geographical distribution of peers and termination of connections. Section
4 deals with the number of connections a peer establishes. We summarize the
main results and conclude the paper in Section 5.

2 Capture Methodology and P2P Overview

2.1 Measurement Details

First of all, we detail our experimentation protocol. As shown in Figure 1, the
BAS1 collects the traffic issued from the DSLAM2 before forwarding it through
the POP3 to the France Telecom IP backbone. Our probe is located between a
BAS and the IP backbone. We draw attention to the fact that we capture all
TCP packets without any sampling or loss. We perform an analysis of the traffic
over week days and week-end days of September 2004 and we compare these
results with those computed over data recorded one year ago (in June 2003).

The identification of P2P protocols is done through a port analysis: a con-
nection is classified as a P2P protocol if one of its TCP ports is a standard port
of this protocol. We shall discuss the accuracy of this method in Section 2.2.

1 Broadband Access Server.
2 Digital Subscriber Line Access Multiplexer.
3 Point-Of-Presence.
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Fig. 1. ADSL architecture

Table 1. Distribution of protocol traffic over P2P traffic

June 2003 September 2004
Protocol Volume # Connections Volume # Connections
eDonkey 84% 96% 91% 93%

BitTorrent 0.8% 0.009% 6% 2.7%
Gnutella 0.8% 0.9% 1% 3.6%
WinMX 1.3% 0.06% 1% 0.08%
FastTrack 12% 1.8% 1% 0.01%

other protocols 1.1% 1.2% 0% 0.6%

We shall denote as local peers or users the ADSL hosts connected to the
observed BAS, and as non-local or distant peers the remainder of the hosts. The
upstream traffic will represent the packets transferred from local peers to the
backbone, and the downstream traffic those transferred from the backbone to
the local peers.

2.2 Overall P2P Overview

In our data, about 60% of the traffic lies on P2P ports in September 2004. It
represents a small drop compared to the proportion of traffic on P2P ports in
June 2003 which was about 65%.

In Table 1, we reported the distribution of the main P2P protocols over P2P
traffic. In September 2004, eDonkey is by far the most popular protocol in terms
of volume, BitTorrent is the second most popular and all the other protocols are
almost negligible in volume as compared to eDonkey.

The popularity of each P2P file sharing system is very variable among loca-
tion and time. According to [11] in October 2003, in Europe, eDonkey is over-
whelmingly popular whereas in U.S. FastTrack is the most popular followed
by WinMX. The evolution over time on our data shows that FastTrack lost its
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popularity in France (more than a year back, in June 2003, the proportion of
volume of FastTrack traffic was the second most important).

In the remainder of the paper, we shall discuss only the protocols eDonkey,
BitTorrent, FastTrack and WinMX, because of their popularity and the diversity
of their working processes.

As reported by Karagiannis et al. in [9] and [10], some of P2P traffic might use
non-standard port numbers so that we miss some traffic by restricting ourselves
to a port analysis. In [12], Sen et al. reported that an identification of P2P traffic
using application signatures could increase threefold the volume compared to a
port based identification. But in this study, we remark that on the one hand,
only Kazaa (using the FastTrack network) has a huge hidden traffic, and on the
other hand, eDonkey and BitTorrent peers use mainly standard ports. Indeed,
on the FastTrack network there is no limitation based on the port used by the
P2P application, and some users (in fact many users) might change it. But
on eDonkey network, the peers running their application on non-standard port
receive a Low ID when they connect to an eDonkey server while other peers get
a High ID. The High ID peers have no restrictions while Low ID peers can only
download from High ID peers, so that eDonkey peers are strongly encouraged
not to change the port number of their application. As we shall see, the main part
of P2P traffic in France is on eDonkey network, and the port based identification
of P2P protocols is relevant in this situation.

3 Characteristics of P2P Traffic

3.1 Signaling Traffic

P2P traffic can be split into two parts:

– the traffic generated strictly for downloading data,
– the traffic generated for maintaining the network and performing queries,

that we shall denote as signaling traffic.

We separate these two kinds of traffic according to a threshold of the volume
transmitted by each connection. In Figure 2, we plot the cumulative distribution
function of the volume of connections for each P2P protocol. Note that Figure 2
(a) informs us on the frequency of a connection size, whereas Fig 2 (b) indicates
the percentage of volume generated by the connections.

We choose a threshold of 20 kbytes for signalling traffic according to Figure
2 (a). A direct identification of signalling connections, as in [14], leads to an
average size of non-download streams of 16.7 kbytes, which is coherent with our
data.

As also observed in [13] and [6], the overwhelming part (more than 90%) of
P2P connections consists of signaling ones whereas they represent only a small
proportion of the volume transferred: eDonkey has the biggest proportion of
volume for signaling traffic with 6% (see Figure 2 (b)).
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Fig. 2. Volume of P2P Connections

3.2 Upstream Versus Downstream Volumes

User-Based Comparison. In our data, the amount of downstream traffic is
larger than the upstream traffic in terms of volume for each protocol. It means
that local peers (i.e. several thousands of users) tend to download more than they
upload on our observation point. This is a consequence of ADSL, which tends
to offer much lower outbound than inbound capacity, whereas overall download
and upload rates must be equal in a P2P file-sharing system .

On Figure 3, we have plotted a cloud of points representing for each eDon-
key user its downstream volume versus its upstream one. On the figure we can
identify the users contributing to big volumes (on the upper right corner), those
generating small volumes (above the diagonal, in the middle), and a certain num-
ber of peers having no upstream volume whereas they have some downstream
one (to be explained in section 3.6).

We analyze the behavior of these two kinds of users:

– peers having small volume, download files but upload very few, thus they
can have downstream-to-upstream ratio up to 1000;

– peers contributing to big volumes have comparable upstream and down-
stream volumes with a downstream-to-upstream ratio of about 1.2.

This is the case of eDonkey peers which represents the vast majority of peers,
and other P2P users have similar trends. The first class of users share few files,
or disconnect themselves after download. And the second class of users have to
stay connected to the P2P system for long periods to obtain high downstream
volume, thus they share files (at least those being downloaded).

By recalling that less than 10% of the users contribute to the most significant
part (98%) of the traffic (see also [13]), we can see that the non-cooperative
behavior of small volume users doesn’t disturb the balance of P2P system. The
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Fig. 3. Downstream volume versus upstream volume for each eDonkey peer

downstream-to-upstream ratio for overall P2P traffic is about 1.2 over our pool
of users, whereas the mean ratio is of 38.

In our analysis, we identified that about 20% of the peers are probably free-
riders (i.e. peers that do not share files) over the eDonkey network.

In [4] and [5], the number of free-riders on Gnutella network is evaluated at
70% and 42% in 2000 and 2001 respectively. Mechanisms like multi-part down-
load (now used by most P2P applications) allow peers to share already down-
loaded file chunks. This explains the reduction of the number of peers who do
not share data compared to previous studies.

Connection-Based Comparison. Most of the connections bring in a very
small proportion of the volume of each P2P network. Indeed, the connections
transferring less than 100 kbytes represent less than 8% of the traffic volume,
whereas they account for more than 90% of the connections (see Figure 2).

We explain this overwhelming number of small connections as follows:

– signalization generates a lot of small transfers,
– many transfers are interrupted,
– many peers attempt to connect to offline peers (see Section 3.6).

For BitTorrent, the distribution of transfer sizes is different. BitTorrent gen-
erates a higher proportion of big transfers, indeed there is no search process
included in this protocol, only the coordination of transfers is taken care of.
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We have approximated the observed distribution of transfer sizes by classical
statistical laws using Kolmogorov-Smirnov (K-S) goodness-of-fit test, and we
conclude that:

– eDonkey can be approximated by a lognormal distribution;
– FastTrack by a lognormal one, but the tails of the distribution (i.e. big

transfers) fits better a Pareto one;
– BitTorrent by a Weibull one.

To conclude this section, we mention that not only is the median volume per
connection very small (less than 1 kbyte) due to numerous small connections, but
so is the median volume per user (10 kbytes). The huge proportion of signaling
traffic induces a mean volume per connection of 10 kbytes. On the contrary, due
to some users contributing to large traffic volumes, the mean volume per user
per day amounts to 70 Mbytes.

3.3 Connection Duration

We present the cumulative distribution function of the connection duration in
Figure 4.

Connection durations are very long in view of their size. Indeed, more than
85% of the connections stay open for more than 10 seconds while more than 90%
of the connections comprise less than 20 kbytes. This reveals long idle periods
during the connections. These idle periods often encourage authors to consider
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Fig. 4. Connection Duration
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Table 2. Mean value of connection duration

eDonkey BitTorrent FastTrack WinMX
Signaling traffic 12s 22s 7s 13s

Non-signaling traffic 1436s 1670s 356s 2721s

as finished a connection after 5 seconds of inactivity as in [6] or filter out these
periods as in [14].

eDonkey and FastTrack connections are of shorter duration than BitTorrent
connections. BitTorrent encounters longer connection durations and also bigger
throughputs. We give the mean value of connection durations in Table 2.

As far as BitTorrent is concerned, a peer distributing or downloading a file
has a pool of 5 upload slots, i.e. only 5 other peers can download the file from
him. To ensure a certain fairness, these slots are reallocated periodically, but
the TCP connections are not closed. As a result, BitTorrent also encounters idle
times during the transfers and long connections.

The case of eDonkey is different: a file is splitted into chunks. With the most
popular eDonkey client (eMule), when a peer has finished to download a chunk,
it should wait for another chunk in a queue, but the TCP connection between
the peers stays open.

The difference between BitTorrent on the one hand and eDonkey and Fast-
Track on the other hand is confirmed by the connection duration distributions.
We find again that a lognormal law fits better eDonkey and FastTrack, whereas
BitTorrent’s connection durations fail to be well approximated by a classical law
(the K-S test doesn’t give a satisfactory answer).

3.4 Traffic Pattern over Time

In figure 5, we represent the traffic volume and the number of peers (transferring
more than one packet during the considered hour) for every hour of a week day
for eDonkey. The overall volume does not vary much throughout the day for
eDonkey: a small drop (about 20%) of transferred volumes is observed between
12pm (midnight) and 9am. This naturally correspond to a diminution of the
number of peers. This reduces the importance of time-of-day effect observed in
[13], [7] and [8], the following ideas explain why:

– the main part of the traffic volume is generated by a small proportion of
users (10%, see Section 3.2), and these users are permanently connected to
the P2P network,

– peers download very large files which accounts for long durations of connec-
tions to the P2P network.

A closer look at Figure 5 shows that the upstream traffic is more stable
than the downstream one. This is also a consequence of the nature of peers
involved in the eDonkey network. The peers contributing to big volumes and
permanently connected are responsible for the main part of downstream and
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Fig. 5. eDonkey Traffic Volume and Number of Peers over Time during a Week Day

upstream volumes, which are comparable. The other peers introduce a lot of
downstream traffic whereas they contribute in a smaller proportion to upstream
traffic.

For BitTorrent, the behavior is completely different. The connections are
actually longer and the receiver sees many on and off times during its transfer,
so the traffic pattern is a bit skewed. It is interesting to note that one year ago,
the time-of-day effect was clearly observable on BitTorrent’s traffic, as most of
the volume (85%) was usually transferred between 3p.m. and midnight in France.
With the increase of BitTorrent users, the traffic pattern is more regular over
the day.

In Figure 6, we expose the traffic volume and the number of active peers for
every hour of a week day for BitTorrent. From midnight to 5pm, the number of
peers is quite stable and so is the upstream volume. But it is surprising to see
downstream volume having high fluctuations. We explain this by the functionnig
system of BitTorrent: in [15], the model corresponding to a BitTorrent-like file-
sharing system states that the service capacity (e.g. the total throughput) grows
with the peers involved in the file-transfer, resulting in a very good response
to flash crowds (when many peers simultaneously ask for the same file). The
two peaks of downstream volume probably result from a sudden increase of the
number of distant BitTorrent peers. We can add that the file(s) corresponding
to this growth of peers should not be very big, indeed the peaks indicates that
the download time is less than two hours.

For FastTrack and WinMX, we observe a dynamic traffic pattern over the
day: users connect to these P2P networks mainly between 12am (noon) and
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Fig. 6. BitTorrent Traffic Volume and Number of Peers over Time during a Week Day

12pm (night) for week days and all day long during week-ends. We explain this
phenomenon as follows:

– the afternoons and evenings are high activity periods for ADSL activity
(during week days),

– users download shorter files with Kazaa or WinMX, hence the P2P applica-
tions can be used for shorter periods of time.

For week-end days, the traffic pattern is completely different. The whole
saturday and sunday morning are high activity periods for eDonkey transfers,
but they end at sunday noon! BitTorrent exhibits the same pattern but the
traffic distribution is more erratic.

3.5 Geographical Distribution of Peers

We locate the destinations of transfers over a week. We use a description field
of IANA database to establish this geographical information.

The geographical distributions show that most of the traffic (about 30%)
heads to and from France, followed by U.S. for eDonkey and BitTorrent. On the
FastTrack and WinMX networks, U.S. is the primary source and destination of
transfers.

We have to remark that these distributions are very sensitive to the activity
of the week. Indeed in June 2003, we reported a majority of eDonkey traffic
coming from Germany.
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Table 3. Distribution of the TCP-Flag of the last packet of connections

Flag of
last packet eDonkey BitTorrent FastTrack WinMX
NORMAL 20% 9% 15% 20%

SYN 21% 42% 39% 27%
FIN 6% 5% 4% 5%

PUSH 20% 16% 5% 20%
RESET 7% 11% 11% 9%
OTHER 23% 16% 25% 17%

The distinction of signalling traffic allows us to determine if the geographical
distribution of servers follows the distribution of peers. Our first analysis indi-
cates that the distributions are similar, but small differences can give interesting
conclusions: e.g. Belgium encounters more small connections than big ones: in-
deed the most popular eDonkey indexing server (with 800,000 peers connected
to Razorback 2 ) lies in Belgium.

3.6 Termination of Connections

In order to characterize the termination of connections, we expose in Table 3
the connections with a normal TCP-ending (four-way handshake, denoted as
“NORMAL”), and for the other connections, we observe the TCP-Flag of the
last packets.

Here all four protocols have similar trends: only few connections end normally.
We have identified that a P2P client disconnecting from the P2P network results
in sending a RESET packet, this accounts for many connections. We also observe
a high percentage of connections that end abnormally, e.g. by a PUSH.

But the main remark here is that 20 to 40% of connections are only connection
attempts (the last packet of these connections is a SYN). The peers involved
in these connections (about 30% of peers) receive connection requests whereas
they are no longer connected to the P2P network. This is observable in Figure 3
by looking at users who have no upstream volume whereas they have some
downstream one (the vertical line at the left side of the figure). We explain this
by the delay in forwarding the information on peer availability across the P2P
network. At present, we are further investigating this issue because it can have
some influence on P2P networks.

4 Connectivity of Peers

4.1 Local Peer Connectivity

Now, we study the number of distant hosts contacted by a local user during
a day, i.e. the connectivity of a local peer. Figures 7 (a) and (b) show these
data over a complete day and over periods of two minutes spanning the day,
respectively. The results of the two minutes period graph represent the number
of simultaneous connections by user.
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Fig. 7. Number of different IP addresses (X axis) connected to a local user

Firstly, the connectivity of eDonkey peers is greater. Indeed this protocol
generates a lot of connections between peers. Only 18% of the local eDonkey
peers contact a single peer, almost 50% of the local peers contact more than
10 other peers. Some eDonkey peers connect to more than 100,000 other peers,
which shows that we have a small number of eDonkey indexing servers among
the set of local peers.

The similarity of Figures 7 (a) and (b) tend to prove that peers establish
connections with other peers within periods of 2 minutes. Indeed, when a peer
begins to download a file, it tries to connect to all the peers having this file.

For BitTorrent, the downloading traffic presents a higher connectivity than
the signaling traffic: this is due to the information management, which is done
by a single tracker for each single file but the download is made from several
sources.

4.2 Distant Peer Connectivity

Now we investigate the connectivity of a non-local peer, i.e. the number of local
hosts connected to each distant peer. For this section, we can only distinguish
distant peers by their IP addresses. These results are computed over a pool of
1 Million distant peers, mainly eDonkey ones.

Only few local peers are connected to the same distant peer. We don’t see
any accumulation of connections on a distant IP address: traffic and requests
are well distributed over distant hosts.

eDonkey peers still have the densiest connectivity with 20% of the distant
peers being contacted by more than three local peers. For the three other pro-
tocols, about 80% of the distant peers are contacted only once by local peers.
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The previous analysis allows us to identify highly connected peers. In this para-
graph, we characterize the traffic of eDonkey peers which connect to more than
10,000 other peers during the day. We report about 130 peers with this property.
These peers encounter same mean of connections sizes than other peers. But the
mean downstream volume transfered amounts to 500MBytes per peer and the
upstream one to 340MBytes per peer. As most of the traffic is generated by these
peers, their cumulative distribution function of the tranfers sizes is very similar
to those exposed in Figure 2.

5 Conclusion

In this paper, we compare the performance and characteristics of four P2P appli-
cations. Our measurement methodology allows us to deeply analyze a complete
set of traffic traces stemming from all the users of a regional ADSL area. We
derive many results dealing with characteristics of connections (volume, dura-
tion, termination of connections), localization of peers, traffic pattern over the
day and connectivity of peers.

Our study indicates firstly that, even for P2P traffic, most of the connections
are very short and represent a small volume, and secondly that very few users
contribute to the most significant part of the traffic volume. The two kinds of
peers involved in P2P networks (i.e. those conributing to big volumes and the
other) strongly influence the functionning system of P2P file-sharing. We reveal
that even on a whole regional concentration point, users tend to download more
than they upload. We also find that local peers tend to contact many different
distant peers. Focusing on the packets sent at the termination of connections,
we detect that unsuccessful connection attemps represent a lot of connections,
and concern many users.

The persistency of our measures has allowed us to see a change of popularity
in P2P applications (FastTrack being overtaken by BitTorrent) and some changes
in the location of sources over a year.
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Abstract. Communities of interest (COI) have been applied in a variety of envi-
ronments ranging from characterizing the online buying behavior of individuals
to detecting fraud in telephone networks. The common thread among these ap-
plications is that the historical COI of an individual can be used to predict future
behavior as well as the behavior of other members of the COI. It would clearly be
beneficial if COIs can be used in the same manner to characterize and predict the
behavior of hosts within a data network. In this paper, we introduce a methodol-
ogy for evaluating various aspects of COIs of hosts within an IP network. In the
context of this study, we broadly define a COI as a collection of interacting hosts.
We apply our methodology using data collected from a large enterprise network
over a eleven week period. First, we study the distributions and stability of the
size of COIs. Second, we evaluate multiple heuristics to determine a stable core
set of COIs and determine the stability of these sets over time. Third, we evaluate
how much of the communication is not captured by these core COI sets.

1 Introduction

Data networks are growing in size and complexity. A myriad of new services, mobil-
ity, and wireless communication make managing, securing, or even understanding these
networks significantly more difficult. Network management platforms and monitoring
infrastructures often provide little relief in untangling the Gordian knot that many envi-
ronments represent.

In this paper, we aim to understand how hosts communicate in data networks by
studying host level communities of interest (COIs). A community of interest is a collec-
tion of entities that share a common goal or environment. In the context of this study,
we broadly define a community of interest as a collection of interacting hosts. Using
data collected from a large enterprise network, we construct community graphs repre-
senting the existence and density of host communications. Our hypothesis is that the
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behavior of a collection of hosts has a great deal of regularity and structure. Once such
structure is illuminated, it can be used to form parsimonious models that can become



the basis of management policy. This study seeks to understand the structure and nature
of communities of interest ultimately to determine if communities of interest are a good
approximation of these models. If true, communities of interest will be useful for many
purposes, including:

– network management - because of similar goals and behavior, communities will
serve as natural aggregates for management

– resource allocation - allocating resources (e.g., printers, disk arrays, etc.) by com-
munity will increase availability and ensure inter-community fairness

– traffic engineering - profiles of communal behavior will aid capacity planning and
inform prioritization of network resource use

– security - because communities behave in a consistent manner, departure from the
norm may indicate malicious activity

Interactions between social communities and the Web have been widely studied [1,
2]. These works have shown that the web exhibits the small world phenomena [3, 4],
i.e., any two points in the web are only separated by a few links. These results indi-
cate that digital domains are often rationally structured and may be a reflection of the
physical world. We hypothesize that host communication reflects similar structure and
rationality, and hence can be used to inform host management. In their work in net-
work management, Tan et. al. assumed that hosts with similar connection habits play
similar roles within the network [5]. They focused on behavior within local networks
by estimating host roles, and describe algorithms that segment a network into host role
groups. The authors suggest that such groups are natural targets of aggregated man-
agement. However, these algorithms are targeted to partitioning hosts based on some
a priori characteristic. This differs from the present work in that we seek to identify
those characteristics that are relevant. Communities of interest can also expose aberrant
behavior. Cortes et. al. illustrated this ability in a study of fraud in the telecommunica-
tions industry [6]. They found that people who re-subscribed under a different identity
after defaulting on an account could be identified by looking at the similarity of the new
account’s community.

This paper extends these and many other works in social and digital communities of
interest by considering their application to data networks. We begin this investigation in
the following section by outlining our methodology. We develop the meaning of com-
munities of interest in data networks and then explain how our data was collected and
pre-processed. While the data set that we analyze is limited to traffic from an enterprise
network, we believe that the methodology is more broadly applicable to data networks
in general. In Section 3 we present the results of our analysis and conclude the paper in
Section 4 with a summary and indication of future work.

2 Methodology

In this section we consider the methodology we applied to the COI study. First we
develop an understanding of what COI means in the context of a data network. Then we

84 W. Aiello et al.

explain how we collected the data from an enterprise network and what pre-processing
we had to perform on the data before starting our analysis.
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2.1 Communities of Interest

We have informally defined COI for a data network as a collection of interacting hosts.
In the broadest sense this would imply that the COI of a particular host consists of all
hosts that it interacts with. We call the host for which we are trying to find a COI the
target-host. We begin our analysis by exploring this broad COI definition, by looking
at the total number of hosts that target-hosts from our data set interact with. Thus in this
first step we only look at the COI set size and its stability over time.

Considering all other hosts that a target-host ever communicates with to be part of its
COI might be too inclusive. For example, this would include one-time-only exchanges
which should arguably not be considered part of a host’s COI. Intuitively we want to
consider as part of the COI the set of hosts that a target-host interact with on a regular
basis. We call this narrower COI definition the core COI.

In this work it is not our goal to come up with a single core COI definition. In-
stead, it is our expectation that depending on the intended application of COI, different
definitions might be relevant. For example, in a resource allocation application the rele-
vant COI might be centered around specific protocols or applications to ensure that the
COI for those applications receive adequate resources. On the other hand an intrusion
detection application might be concerned about deviations from some “normal” COI.
However, in order to evaluate our methodology, we do suggest and apply to our data
two example definitions of a core COI:

– Popularity We determine the COI for a group of target-hosts by considering a host
to be part of the COI if the percentage of target-hosts interacting with it exceeds a
threshold , over some time period of interest .

– Frequency A host is considered to be part of the COI of a target-host, if the target-
host interacts with it at least once every small time-period (the bin-size) within
some larger time period of interest .

Intuitively these two definitions attempt to capture two different constituents of a
core COI. The most obvious is the Frequency COI which captures any interaction that
happens frequently, for example access to a Web site containing news that gets updated
frequently. The Popularity COI attempts to capture interactions that might happen ei-
ther frequently or infrequently but is performed by a large part of the user population.
An example would be access to a time-reporting server or a Web site providing travel
related services.

From the COI definitions it is clear that the Popularity COI becomes more inclusive
in terms of allowing hosts into the COI as the threshold ( ) decreases. Similarly the
Frequency COI becomes more inclusive as the bin-size increase. For the Popularity
case where the threshold is zero, all hosts active in the period-of-interest are considered
to be part of the COI. Similarly, for the Frequency case where the bin-size is equal to
the period-of interest, all hosts in that period are included in the COI. When the period-
of-interest, , is the same for the two core COI definitions, these two special cases (i.e.,
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for the Popularity COI and for the Frequency COI), therefore produce
the same COI set.

Notice that the Popularity COI defines a core COI set for a “group” of hosts, where-
as the Frequency COI defines a per-host COI. We have made our core COI definitions

.
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in the most general way by applying it to “hosts”, i.e., not considering whether the
host was the initiator (or client) or responder (or server) in the interaction . While these
general definitions hold, in practice it might be useful to take directionality into account.
For example, the major servers in a network can be identified by applying the Popularity
definition to the percentage of clients initiating connections to servers. Similarly, the
Frequency definition can be limited to clients connecting to servers at least once in
every bin-size interval to establish a per-client COI.

In the second step of our analysis we drill deeper into the per-host interactions of
hosts in our data set to determine the different core COI sets. Specifically, we determine
the Popular COI and the Frequency COI from a client perspective and consider their
stability over time.

Ultimately we hope to be able to predict future behavior of hosts based on their
COIs. We perform an initial evaluation of how well core COIs capture the future be-
havior of hosts. Specifically, we combine all the per-host Client-Frequency COIs with
the shared Popularity COI to create an Overall COI. We construct this COI using data
from a part of our measurement period and then evaluate how well it captures host be-
havior for the remainder of our data by determining how many host interactions are not
captured by the Overall COI.

2.2 Data Collection and Pre-processing

To perform the analysis presented in this paper we collected eleven weeks worth of
flow records from a single site in a large enterprise environment consisting of more
than 400 distributed sites connected by a private IP backbone and serving a total user
population in excess of 50000 users. The flow records were collected from a number
of LAN switches using the Gigascope network monitor [7]. The LAN switches and Gi-
gascope were configured to monitor all traffic for more than 300 hosts which included
desktop machines, notebooks and lab servers. This set of monitored hosts for which we
captured traffic in both directions are referred to as the local hosts and form the focal
point of our analysis. In addition to some communication amongst themselves, the local
hosts mostly communicated with other hosts in the enterprise network (referred to as
internal hosts) as well as with hosts outside the enterprise environment (i.e., external
hosts). We exclude communication with external hosts from our analysis as our initial
focus is on intra-enterprise traffic. During the eleven week period we collected flow
records corresponding to more than 4.5 TByte of network traffic. In our traces we only
found TCP, UDP and ICMP traffic except for some small amount of RSVP traffic be-
tween two test machines which we ignored. For this initial analysis we also removed
weekend data from our data set, thus ensuring a more consistent per-day traffic mix.
Similarly, we also excluded from the analysis any hosts that were not active at least
once a week during the measurement period.

We provide an exact definition of client and server in the next section.
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Our measurement infrastructure generated unidirectional flow-records for moni-
tored traffic in 5 minute intervals or bins. A flow is defined using the normal 5-tuple of
IP protocol type, source/destination addresses and source/destination port numbers. We
record the number of bytes and number of packets for each flow. In addition, each flow
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record contains the start time of the 5 minute bin and timestamps for the first packet and
last packet of the flow within the bin interval. The collected “raw” flow-records need to
be processed in a number of ways before being used for our analysis:

Dealing with DHCP: First, because of the use of Dynamic Host Configuration
Protocol (DHCP), not all IP addresses seen in our raw data are unique host identifiers.
We use IP address to MAC address mappings from DHCP logs to ensure that all the
flow records of each unique host are labeled with a unique identifier.

Flow-record processing: The second pre-processing step involves combining flows
in different 5 minute intervals that belong together from an application point of view.
For example, consider a File Transfer Protocol (FTP) application which transfers a very
large file between two hosts. If the transfer span several 5 minute intervals then the flow
records in each interval corresponding to this transfer should clearly be combined to
represent the application level interaction. However, even for this simple well-known
application, correctly representing the application semantics would in fact involve as-
sociating the FTP-control connection with the FTP-data connection, the latter of which
is typically initiated from the FTP-server back to the FTP-client.

Applying such application specific knowledge to our flow-records is not feasible
in general because of the sheer number of applications involved and the often undocu-
mented nature of their interactions. We therefore make the following simplifying defi-
nition in order to turn our flows records into a data set that captures some application
specific semantics. We define a server as any host that listens on a socket for the pur-
pose of other hosts talking to it. Further, we define a client as any host that initiates
a connection to such a server port. Clearly this definition does not perfectly capture
application level semantics. For example, applying this definition to our FTP interac-
tion, only the control connection would be correctly identified in terms of application
level semantics. This client/server definition does however provide us with a very gen-
eral mechanism that can correctly classify all transport level semantics while capturing
some of the application level semantics.

To summarize then, during the second pre-processing step we combine or splice
flow-records in two ways: First, flow-records for the same interaction that span multiple
5 minute intervals should be combined. Second, we combine two uni-directional flow-
records into a single record representing client-server interaction.

To splice flow-records that span multiple 5-minute intervals, we use the 5-tuple of
protocol and source/destination addresses and ports. We deal with the potential of long
time intervals between matching flows by defining an aggregation time such that if the
time gap between two flow records using the same 5-tuple exceed the aggregation time,
the new flow-record is considered the start of a new interaction. If the aggregation time
is too short, later flow-records between these hosts will be incorrectly classified as a new
interaction. Making the aggregation time too long can introduce erroneous classification
for short lived interactions. We experimented with different values of aggregation time
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and found a value of 120 minutes provided a good compromise between incorrectly
splitting flows that fit together and incorrectly combining separate flows.

The 5-tuple is again used to combine two unidirectional flows into a single interac-
tion. For TCP and UDP, two flow-records are combined into a single record if the flows
are between the same pair of hosts and use the same port numbers in a swapped fashion



(i.e., the source port in one direction is the same as the destination port in the reverse di-
rection). For ICMP traffic, flow-records are combined if they are between the same pair
of hosts. The result of splicing two unidirectional flows together is an edge-record and
we present the data as a directed graph in which each edge represents a communication
between a client and a server and each node represents a unique host. The direction
of the edge represents client/server designation and the labels on the edge indicate the
number of packets and bytes flowing in each direction between the two nodes.

We evaluated the experimental error introduced by our flow-record processing as
follows. We consider a week subset of our total week data set for this evaluation.
We note that flows labeled with a client port number below 1024 and a server port
number above 1024 is highly likely to be incorrect for all but a few services (as it is
not consistent with the normal use of reserved ports), and the reverse (server port
1024, and client port 1024) are likely to be correct. We bound experimental error
by calculating the ratio of incorrect to correct labeled flows based on this heuristic
(after removing known services that violate this property, e.g., ftp-data, NFS traffic
through sunrpc). This approximation yields a 2.187% role assignment error for all
traffic, while the numbers for TCP and UDP are 2.193% and 2.181%, respectively.
Each instance of mis-interpreted directionality introduces an additional flow into the
data set. Hence, such errors do not change the structure of the community, but slightly
amplify a host’s role as a client or server.

Removing unwanted traffic: Since we are interested in characterizing the “useful”
traffic in the enterprise network the third pre-processing step involves removing all
graph edges for suspected unwanted traffic, such as network scans or worm activity.
Doing such cleaning with 100% accuracy is infeasible because unwanted traffic is often
indistinguishable from useful traffic. We use the following heuristics:

– TCP: We clean the data by removing all edges which do not have more than 3
packets in each direction. We chose the number three since a legitimate application
layer data transfer needs more than three packets to open, transfer and close the
TCP connection. This cleaning removes 16% of all edges indicating that a large
fraction of traffic in the monitored network does not complete an application-level
data transfer.

– UDP: We observe that there are two types of legitimate UDP uses. One is re-
quest/response type interaction such as performed by DNS and RPC. The other
is a long lived UDP flow as used by many streaming applications. In both cases we
expect an edge which performs a useful task to be associated with at least two pack-
ets, either in the same direction or in opposing directions. Therefore, we remove all
edges for which the sum of packets in both directions is smaller than 2.

– ICMP: We do not perform any cleaning on the ICMP data since a single ICMP
datagram is a legitimate use of ICMP.
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3 Results

In this section we present the COI analysis as applied to the enterprise data we collected.
After pre-processing, the final data set we used for the analysis consisted of 6.1 million
edge-records representing 151 local hosts and 3823 internal hosts and corresponding
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Fig. 1. (a) Scatterplot of 151 local hosts: Clients using the local host as a server and the local host
talking to servers as a client. (b) CCDF:local host communication for total 11 week period

to 2.6 TBytes worth of network traffic. We will characterize only the set of 151 local
hosts, but consider all their interactions, with both other local and internal hosts.

3.1 Community of Interest Set Size

First we evaluate the COI of the set of local hosts in our data set based on the broadest
definition of COI. Specifically we consider the number of other hosts that each local
host interact with. We look at the total number of such hosts and then do a breakdown
based on whether the target local host was acting as a client or a server.

We first perform this analysis for all hosts over the entire measurement period. Fig-
ure 1(a) shows a scatter plot of the in/out-degree of the set of 151 local hosts considering
all observed traffic. The Y-axis shows the number of clients connecting to the local host
acting as a server (i.e., in-degree). The X-axis shows the number of servers that the lo-
cal host connects to acting as a client (i.e., out-degree). Observe from Figure 1(a) that
most hosts act as both client and server over the observation period. Indeed for the total
traffic breakdown shown, all hosts act as both client and server during the measurement
period. The general observation that most hosts act as both client and server, hold when
data is analyzed on a per-protocol basis. Specifically, counting the number of hosts that
acted purely as clients on a per protocol basis we get only 3 for TCP, 2 for UDP and
1 for ICMP. Similarly, counting the number of hosts acting purely as servers on a per
protocol basis we get none for TCP, 2 for UDP and 5 for ICMP. Further, as indicated
by the density below the diagonal line, the majority of local hosts are mostly acting as
clients. For the plot shown, 111 hosts are below and 35 hosts above the diagonal line.
The implication of the simple observation that most hosts act as both clients and servers,
is that security schemes that rely on hosts acting exclusively as clients or servers, are
likely to be infeasible in current enterprise networks.
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Figure 1(b) shows the empirical Complementary Cumulative Distribution Function
(CCDF) of the number of machines that our local hosts communicate with for all traffic
over the entire 11 week measurement period. The “Local Host” curve corresponds to
the total number of hosts (either local or internal) that a particular local host interacts
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Fig. 2. CCDFs for the number of hosts communicated with on daily basis

with, whether as a client or as a server. The plot shows that each of the local hosts com-
municates with a fairly small community of other hosts even over a period of several
weeks. For example, 90% of the local hosts talks to fewer than 186 other hosts. Consid-
ering the client/server breakdown, the same holds true with local hosts interacting with
a fairly small number of servers and clients. The final 10% of the “Local Server” curve
shows that a small number of local machines acting as servers have higher numbers of
clients talking to them than the other 90% of the local servers. These machines most
likely correspond to “real” servers that serve a significant client population as opposed
to hosts that are servers on the basis of the protocol interaction only.

We next look at the COI of each host on a daily basis and examine the statistical
properties of these daily values over the complete observation period. First, Figure 2(a)
shows the CCDF of the maximum daily number of hosts that each local host commu-
nicates with over the entire eleven weeks. These maximum number per day CCDFs are
similar to those for the maximum over the entire measurement period, Figure 1(b), but
the numbers are lower (i.e., the curves are “shifted” to the left). For example, the 90th
percentile number for the “Local Host” curve in Figure 2(a) is only 77 compared with
186 for the same percentile in Figure 1(b). Also similar to Figure 1(b), there is an inflec-
tion at the 10% point in Figure 2(a) for the “Local Server” (and “Local Host”) curves
which is likely caused by “real” servers.

The relatively small sizes of the total number of hosts communicated with over the
entire period as well as the small per-day maximums for the vast majority of hosts,
suggest that a simple anomaly detection approach based on monitoring the normal COI
size, has the potential to detect abnormal activities like port scans and worm spreads.
These anomalies are often marked by a host communicating with a large number of
other machines within a very short time span.

Next we consider the variability of the per-day COI size for each local host over
the entire measurement period. Figure 2(b) shows the resulting CCDF of the normal-
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ized standard deviation (normalized by the mean for each local host). Note that some
of the variability is a result of hosts being inactive on some days, one contributing rea-
son being telecommuting users. Hosts for these users might either be inactive because



toring infrastructure. The graph shows that approximately 70% of the local hosts have
normalized standard-deviations in their per-day COI size that is less than . Assuming
that all of the traffic in our data set was indeed legitimate, this would mean a simplistic
approach to detect abnormal behavior for these hosts, based on a policy that restricts
“normal” per-day COI size to times the respective per-day means, would result in
false alarms being generated only 5% of the time. Note also from Figure 2(b) that the
standard deviation for the “Local Client” curve is less skewed than the “Local Server”
curve. This suggests that on a daily basis the number of servers which a local client
talks to, is more stable than the number of clients that talk to a local server. The impli-
cation of this is that network management policies derived from observations close to
the initiator of communication (client) is likely to be more stable than policies derived
from traffic close to the communication responder (server).

3.2 Core Communities of Interests

We next explore our two example core COI definitions Popularity and Frequency core
COIs and their interactions.
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Popularity COI: Recall that for the Popularity COI we consider a host to be part of
the COI for a group of target-hosts if the percentage of target-hosts interacting with it
exceeds a threshold over some period of interest . Here we identify the Popularity
COI of the local hosts from a client view point, for each of the weeks in our data
set (i.e., is one week). Figure 3 shows the size of the Popularity core COI set as a
function of the threshold for equally spaced weeks out of the total weeks, for
traffic across all protocols. The graphs shows the expected decline of the set size as one
progresses from a threshold of 0% (which would include all hosts) to a threshold of
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they are not being used, or in the case of notebooks, might not be visible to our moni-

100% at which point the size is expected to be very small as it would require all target-
hosts to communicate with each member of the set. We observe that the size of the core
COI set as a function of the threshold is very similar across the different weeks. This
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Fig. 4. Popularity COI: Union and intersection set size (a) As a function of threshold (b) As a
function of length of time window weeks ( )

suggests that, deviations from the Popularity COI size distribution, for a set of hosts
monitored over time, would be a strong indication of a network anomaly.

While the stability in the core COI set size is encouraging, we are also interested
in the stability and predictability of the core COI set membership. To evaluate this, we
determine the core COI set for each week in our data and then explore how the mem-
bership of these sets change over the measurement period. We do this by calculating
the union (the set of servers that belong to the core set in at least one week) and the
intersection (the set of servers that belong to the core set in every week) of the COI sets.
For any two sets the difference between the size of the union and intersection represents
a measure of the “churn” between the two sets - that is the total number of elements that
needs to be added or removed from one set to transform it to the other set. Therefore,
for a window of COI sets, the difference between the union and intersection of all the
sets, represents an upper bound on the churn between any two pairs in . By looking
at this bound we get a worst case estimate of how much the COI membership changes
over the time window ( ). By progressively increasing the length of the time window,
we determine how this worst case estimate changes over time.

Figure 4(a) depicts the sizes of the union and intersection of core COI sets for weeks
1 to 3, 1 to 6 and 1 to 11, as a function of the threshold for all traffic. For comparison
the core COI set size for week 1 is also shown. For all curves (i.e., for all time periods
considered), the difference between the union and intersection set sizes, i.e., the churn,
tends to decrease as the threshold increases. Figure 4(b) shows the same data, but in this
case we show the union and intersection set sizes for selected thresholds for increasing
time windows of interest ( to weeks), starting from week , i.e., 1 to 2 weeks,
1 to 3 weeks, etc. As expected, the union set size size increases and the intersection
set size decreases for a given threshold as the time window increases. Notice though
from Figure 4(b) that for any threshold, the union and intersection set sizes change in a
sub-linear fashion with increasing . In fact the intersection seems to flatten within 6 to
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8 weeks. While the union set size shows a continued small growth, the maximum union
set size, for the thresholds considered, did not increase beyond a factor of 2.5 over the
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Fig. 5. Overall Frequency COI: Union and intersection set size (a) As a function of bin size (b)
As a function of length of time window weeks ( )

entire time window of interest. The observed intersection behavior implies that servers
present in the Popularity COI in the first week, have a high probability of remaining in
the COI for the entire period. This holds true independent of the threshold. For exam-
ple for the 5% threshold, after the 11 weeks 66 of the initial 94 servers are still in the
intersection set. The relatively small growth of the union set implies that even though
servers are constantly added to the set, the number of additional servers added in a week
is low. Even for the 5% threshold, the number is low enough that applications requir-
ing “manual” verification of the status of new servers, i.e., whether they are legitimate
servers, would be feasible.

The above results indicate that rapid changes in the Popularity COI membership
would be an additional indication of anomalous network behavior. Note that this holds
true if a large number of popular servers are either rapidly added to or removed from
the COI set.
Frequency COI: We have also defined a core COI that captures the frequency of
interaction. Recall that our Frequency Core COI considers a host to be part of the COI
if a target-host interacts with it at least once in every time bin over some larger time
period of interest . To evaluate this core COI definition we calculated the Frequency
COI (client perspective) for each host for each week of our data (i.e., is one week)
for bin-size ( ) values 12, 24, 60 and 120 hours. For each week, we define the Overall
Frequency COI to be the union of all per-host Frequency COIs for a given bin-size. We
explore how the membership of this set changes over time.

Similar to the approach above for Popularity COI, we determined the union and
intersection of all the Overall Frequency COI sets for a specific time window of interest

. Figure 5(a) shows the size of the union and intersection sets for equal to 3 weeks,
6 weeks and 11 weeks, for different bin sizes. (Note that we did not include a bin size
of 120 hours for this plot as that would include all hosts that communicated in a week
as part of the core COI for the week, which would be too inclusive for a core COI.)
As a reference point, Figure 5(a) also shows the size of the Overall Frequency COI for
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the first week. As the bin size increases, the COI set becomes more inclusive and as



expected the set size (shown for week 1) increases as the bin size increase to 60 hours.
The same holds true for the union and intersection set sizes, i.e., for a particular size of

(e.g., 3 weeks), the size of both the union and intersection sets increase as the bin
size increases. Next consider how the union and intersection set sizes for a particular
bin size change for different values of . For example, for a bin size of 24 hours, we
see that the union set size increases as increases from 3 to 6 to 11 weeks, while the
intersection set size decreases for the same values of . Again this behavior is expected,
but it is interesting to note that this increase and decrease is not linear with respect to
the increase in . For example, doubling from 3 weeks to 6 weeks does not result
in doubling the union set size or halving the intersection set size. This is best shown
in Figure 5(b), which depicts the union and intersection set sizes for each value of
(1 week, 3 weeks, 6 weeks and 11 weeks).

The above behavior of the Overall Frequency COI as a function of increasing is
similar to the behavior of the Popularity COI as a function of increasing as shown
in Figure 4(b). As for the Popularity COI, the results for the Overall Frequency COI
indicate that rapid changes in the COI membership would be an indication of anomalous
network behavior.

Overall COI: Recall that the Popularity and Frequency COI definitions attempt to
capture different types of interactions that should be considered part of a core COI.
Above we explored the churn in the Popularity and Frequency COIs separately, and
focused on the churn in the membership of these sets. In contrast to this aggregate
view, another way to explore variability is to inspect how the ability to capture the
communication behavior for individual hosts is impacted by the churn in these COI
sets. This is the goal of the study described next.

The Popularity COI is a function of the threshold parameter ( ), while the Fre-
quency COI is a function of the bin-size ( ) as defined earlier. For this part of the study,
we computed, for a range of threshold,bin-size pairs, the Overall COI set for the first
week of our data by combining (using set union) the Overall Frequency COI with the
Popularity COI of the total local host set. Should this Overall COI accurately capture
the core interactions of the target hosts in subsequent weeks, then one would expect
that few of the target-hosts’ interactions would be with hosts not in this set. We define
interactions with hosts outside of the Overall COI to be out-of-profile.

For each local host we determined the number of out-of-profile interactions for sub-
sequent weeks of our data. We calculate a distribution of the out-of-profile interactions
across all hosts for each of the threshold,bin-size pairs. The results for this analysis
are shown in Figures 6(a) and (b) for 6 and 11 weeks respectively. The figures depict
the and percentiles for these distributions for a number of threshold values
and as a function of bin-size.

We had discussed in Section 2.1 the situations under which the Popularity and Fre-
quency COIs are identical. This explains why each set of curves ( , percentiles)
converge in the 120 hour bin-size value in Figures 6(a) and (b). It also explains the hor-
izontal lines (i.e., the cases where threshold is zero): in these latter cases the Popularity
COI already includes all servers, so the union with the Frequency COI does not add any
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members to the Overall COI, and the number of out-of-profile interactions is therefore
independent of the bin-size.
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Fig. 6. Out-of-profile interactions for Overall COI for different threshold values and as a function
of bin-size

The two horizontal lines in each figure correspond to the case where the threshold
is zero, i.e., where the Popularity COI includes all hosts that acted as servers in week 1.
From Figure 6(a), (the six week period), 50% of the local hosts ( percentile line),
had less than 6 out-of-profile interactions, while 90% of the local hosts ( percentile
line) did not exhibit more than 20 out-of-profile interactions over the entire period. The
corresponding numbers for the full 11 week period shown in Figure 6(b) are 10 and
31 out-of-profile interactions for 50% and 90% of the local hosts respectively.

Now we consider the impact of the Popularity COI set by looking at the graphs in
both figures for a fixed bin-size, (e.g., 60 hours). For this bin size, consider the 4 values
of the six week distributions (Figure 6(a)). Notice that there is a significant difference
between the case where the threshold is zero and the case where the threshold is 10%,
when compared to the difference between the 10% and 20% (or even 100%) points.
This also holds true for the 11 week distributions. This suggests that as the Popularity
set becomes more inclusive (i.e., as the threshold gets closer to zero), it contributes
more significantly to the Overall COI set. This seems to suggest that in this region the
Popularity set indeed captures the important infrequent interactions that should be part
of a host’s COI. The relatively small difference between the values of the out-of-profile
interactions for each set for thresholds between 10% and 100% seem to suggest that
the Overall Frequency COI already captures most of the servers that the Popularity set
would capture at such thresholds. This in turn suggests there may be significant overlap
between the servers that communicate with a larger fraction of clients and those that
interact frequently with clients, in our data set. Note that the increase in violations
going from 6 to 11 weeks, does not increase proportionally with the increase in time.

In summary the graphs show that an Overall COI derived from one week’s worth of
data is not sufficient to fully capture host interactions for subsequent weeks. However,
using the most inclusive variant of this COI definition (i.e., where threshold is zero
or where the bin size is 120), 90% of the hosts experienced on the average less than
3 violations per week (for the 11 week graph). Similarly, for the most restrictive COI
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we considered (i.e., equal to 100 and equal to 12), 90% of the hosts experienced



less than 9 violations per week over the 11 week period. Both rates are low enough that
they would not preclude COI derived application that require human involvement. In
fact, 50% of the hosts would only experience one third of these violations.

4 Conclusions

In this paper we presented our methodology and initial results for characterizing com-
munities of interest (COIs) for hosts communication in data networks. We presented
example definitions for COI that attempt to capture different characteristics of the un-
derlying communities. We explained how we collected our measurement data and the
pre-processing steps that were required before analysis. While this work is still matur-
ing our initial results indicate that:

– Hosts typically act as both clients and servers which implies that any management
applications or policies will have to explicitly deal with this.

– Using a very broad COI definition we saw similar distributions for the COI size
over daily and monthly timescales, suggesting some stability in the COI for the
community as a whole.

– COI definitions that represent core host interactions, showed significant stability of
the COI over timescales of several weeks.

– Core COIs calculated over a part of our measurement period were also able to
capture the actual host interaction in the remainder of the data fairly well.

We are continuing the presented work by moving from the presented aggregate COI
characterization to finer grained per-host characterization. Our ongoing work aims to
provide models that accurately capture host behavior. And our ultimate goal is to be able
to apply such models to the many challenging network management tasks presented in
the introduction.
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Abstract. Monitoring systems that can detect path outages and peri-
ods of degraded performance are important for many distributed appli-
cations. Trivial pair-wise probing systems do not scale well and cannot be
employed in large networks. To build scalable path monitoring systems,
two different approaches have been proposed in the literature. The first
approach [1], which we call the continuous or analogue model, takes real
measurement values and infers the performance metrics of unmeasured
paths using traditional (+, ×) algebra. The second approach [2], which
we call the Boolean model, takes binary values from measurements (e.g.,
whether the delay/loss of an end-to-end path is above a given threshold)
and infers the performance quality of unmeasured paths using Boolean
algebra. Both approaches exploit the fact that end-to-end paths share
network links and hence that the measurements of some paths can be
used to infer the performance on others. In this work, we are only in-
terested in detecting whether the performance of a path is below an ac-
ceptable level or not. We show that when the number of beacons (nodes
that can send probes and collect monitoring information) is small, the
Boolean model requires fewer direct measurements; whereas for a large
number of beacons the continuous model requires fewer direct measure-
ments. When the number of beacons is significantly large, however, there
is no difference in terms of the number of paths that we need to measure
directly in both models. We verify the results by simulations on inferred
network topologies and on real measurement data.

1 Introduction

Network dynamics may significantly affect the performance of distributed appli-
cations such as distributed system management, replicated services, and applica-
tion layer multicast [3]. Robust and efficient distributed systems therefore need
to adapt their behavior to environment changes. Loss rate monitoring systems
that can detect path outages and periods of degraded performance can both fa-
cilitate distributed system management (such as virtual private network (VPN)
or a content distribution network), and help build adaptive overlay applications,
e.g., streaming media [4].

Monitoring systems that target small networks [5] usually employ pair-wise
probing where each node probes the paths from itself to all other nodes. For
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a network monitoring system with nB beacons, the number of possible end-
to-end measurements is O(n2

B). Therefore, active end-to-end measurement in
such settings does not scale well and as a result cannot be deployed for complete
network-wide measurement. Furthermore, this approach generates highly redun-
dant measurements where many links in the network are repeatedly measured. It
is therefore important to have a scalable overlay monitoring system that does not
generate redundant information. Existing scalable network estimation systems
determine network characteristics by measuring end-to-end paths periodically.
To monitor a path, a node at one end of the path periodically sends probe packets
to the node at the other end. From the delay characteristics and delivery status
of these probe/acknowledgement packet pairs, the sending node can infer the
quality of the path. This method is similar to network tomography approaches
that infer the internal network characteristics based on end-to-end observations.
Network tomography has been extensively studied in the literature( [6] provides
a detailed survey). However, to the best of our knowledge, none of the existing
tomography works deal with minimizing the number of probes that need to be
sent in a tomography system.

Chen et al. [1] have shown that it is possible to reconstruct complete end-to-
end path properties exactly from the measurements of only a subset of paths.
The results in [1] are based on a linear algebraic analysis of routing matrices of
the monitoring systems where a routing matrix is the binary matrix that specifies
the links that occur in a given path. Since a maximal set of independent paths
can be used to recover any other path in the network, it is enough to monitor
only this set. The number of independent paths in a monitoring system, which is
the rank of the routing matrix, tends to be much smaller than the total number
of paths. A similar approach is given in [7] where only bounded estimations for
network paths can be achieved. Chua et al. [8] show that a significantly smaller
number of direct path measurements than that are required by the monitoring
systems of [1] can be used to approximate some network wide properties.

Padmanabhan et al. [9] studied the end-to-end packet loss rate experienced
by clients of the Web server at microsoft.com. They report that the correlation
between end-to-end loss rate and hop count is weak, which suggests that end-
to-end paths are dominated by a few lossy links. Furthermore, the end-to-end
loss rate is stable for several minutes. A notable feature of the model consid-
ered in [9] is that its parameters (the loss rates on the logical links) are not
statistically identifiable from the data (the server-to-clients loss rate), meaning
that there exist different sets of parameters that give rise to the same statistical
distribution of data. Although the model is not statistically identifiable, some
methods proposed in [9] are quite successful in identifying the lossiest links, both
in simulated and real networks. The underlying reasons behind the success of
the methods in [9] are the nature of link performance in the studied networks
[10]. In such networks, suppose that we can classify links as “good” or “bad”
with performance measures sufficiently far apart, then the performance experi-
enced along a network path will be bad only if one of its constituent links is
bad. Duffield et al. [10] calls this kind of link performance a separable perfor-
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mance and identifies many separable performance metrics of network links such
as connectivity, high-low loss model, and delay spike model.

A special case of separable performance, where links are either up or down,
has been widely studied in the literature [2, 11, 12]. In our previous work [2],
we showed that analogously to the work of Chen et al. [1], it is sufficient to
monitor only a subset of end-to-end paths to infer the connectivity of all end-to-
end paths in the network. The difference between [1] and our model is that our
model relies on Boolean (max,×) algebra instead of traditional (+,×) algebra
(which we also refer to as the “continuous model”). The end-to-end paths that
need to be monitored are those that form the basis of the row space of the
routing matrix in this Boolean algebra.

In this work, we compare the efficiency of the continuous and Boolean path
monitoring systems for separable performance metrics. Since we are only inter-
ested in the classification of links as “good” or “bad”, depending on whether
the metric of interest has exceeded or not a given threshold, the continuous and
Boolean models bring the same information. To obtain this same information,
however, they will need different sets of end-to-end measurements. Thus we want
to determine the system that uses fewer direct path measurements. Specifically,
we are interested in comparing the dimension of the basis of the vector space in
Boolean algebra for the Boolean model with the dimension of the basis of the
same vector space in traditional (+, ×) algebra for the continuous model. Our
main contributions are as follows.

– First, we show that the Boolean model in [2] can be used for other separable
performance metrics.

– Second, by simulations on Rocketfuel topologies [13], we show that for a
separable performance when the number of beacons is small, it is better to
use the Boolean model. On the contrary, when the number of beacons is
large, it is better to use the continuous model. However, when the number
of beacons is significantly large, both models result in the same number of
paths that need to be measured directly. We also provide some intuitive
explanations for the simulation results.

– Finally, we verify our results on the data set gathered by the NLANR’s AMP
infrastructure [14].

The remainder of this paper is organized as follows. We introduces the net-
work models and the basic algorithms in Section 2. We presents the numerical
comparison of the two models on Rocketfuel ISP topologies in Section 3. Eval-
uations of the performance of the models on the NLANR’s AMP active mea-
surement infrastructure are given in Section 4. Finally, we conclude the paper
in Section 5.

2 Network Model and Basic Algorithms

The network is modelled as an undirected graph G(V, E), where the graph nodes,
V, denote the network components and the edges, E , represent the communica-
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tion links connecting them. The number of nodes and edges is denoted by n = |V|
and e = |E|, respectively. Suppose there are nB beacons that belong to a single
or confederated overlay monitoring system. They cooperate to share an overlay
monitoring service, and are instrumented by a central authority. The set of all
beacons is denoted by VB . Furthermore, we use Ps,t to denote the path traversed
by an IP packet from a source node s to a destination node t. Let P be the set
of all paths between the beacons on the network and let np = |P|.

For a known topology G = (V, E) and a set of paths P, we can compute the
routing matrix D of dimension np × e as follows. The entry Dij = 1 if the path
Ps,t ≡ Pi, with i = (s, t), contains the link ej and Dij = 0 otherwise. A row of D
therefore corresponds to a path, whereas a column corresponds to a link. Note
here that if a column contains only zero entries, the link corresponding to that
column does not have any effect on the performance of the paths in P. We drop
these columns from the routing matrix to obtain a matrix of dimensions np ×nl,
where nl ≤ e is the number of links that are covered by at least one path in P.

Our performance model is as follows. During some measurement period, each
beacon sends a set of packets to each destination (chosen among other beacons).
When traversing link ej , each packet is subject to a performance degradation
(e.g. loss or delay) according to a distribution specified by a parameter φej

. If the
path Pi comprises links e1, ..., em, the performance degradation along the path
follows a composite distribution described by the parameters φi = {φe1 , ..., φem}.

2.1 Continuous (+, ×) Algebraic Model

In the continuous model [1], the performance parameters φ take values in R. Let
y ∈ R

np be a vector that represents a metric measured on all paths Pi ∈ P. y is
linearly related to the value x ∈ R

nl of that same metric over the links ej ∈ E .
For example, letting φi denote the packet loss probability on path Pi and φej

,
the corresponding probability on link ej , and assuming independence among loss-
events on links, the relation between the path-wise and link-wise loss probability
becomes

y = Dx =

⎡
⎣ nl∑

j=1

xjDij

⎤
⎦

1≤i≤np

, (1)

where yi = log(1 − φi) and xj = log(1 − φej ).
There are np = O(n2

B) equations in (1). However, in general the matrix D is
rank deficient, i.e., k = rank(D) < np. For the sake of simplicity, assume that
the first k rows of D form a basis of the row vector space R(D) of D. Because
every row vector di , i > k, of D can be represented as a linear combination of
the first k independent row vectors, we can write that di =

∑k
j=1 αjdj for some

αj , 1 ≤ j ≤ k. The metric yi of the path Pi can be obtained from y1, ..., yk as:
yi =

∑k
j=1 αjyj . Therefore, only k independent equations of the np equations

in (1) are needed to compute all elements of y, and as a result we only need
to measure k paths, which form a basis of R(D), to obtain the loss rate on all
paths [1].
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2.2 Boolean (max, ×) Algebraic Model

In the Boolean model [2], the values of the performance parameters φ are parti-
tioned into two subsets that we call “good” and “bad”. We call the link ej bad
if and only if its parameter φej

is bad and we call the path Pi = {e1, ..., em}
bad if and only if φi is bad. The partitions are called separable when a path is
bad if and only if at least one of its constituent links is bad. For example, in
the loss model LM1 of [9], good links have loss rates φej

uniformly distributed
between 0% and 1%; bad links have loss rates uniformly distributed between 5%
and 10%. Taking the threshold between good and bad path transmission rates
as 0.95, this model is separable if each path does not contain more than 5 links.

In a separable model, a path is bad if and only if at least one of its constituent
links is bad. If we use the variable yi to represent whether the path Pi is good
(yi = 0) or bad (yi = 1) and the variable xj is used to represent whether the
network link ej is good (xj = 0) or bad (xj = 1), we then have:

yi =
nl∨

j=1

xj · Dij for all i, (2)

where “∨” denotes the binary max operation, and “·” denotes the usual mul-
tiplication operation.

Let us now introduce some concepts of Boolean vector spaces that are useful
for the analysis of the Boolean model. Let D = {di}1≤i≤h be a set of binary
vectors of equal length, and let I = {1, ..., h} be the index set of D. A vector
span S can be defined on D as follows.

Definition 1. [Vector span] The vector span of D is

S = <D> = {
∨
i∈I

αi · di | αi ∈ {0, 1}, di ∈ D}

Vectors in D are called the generator vectors of S.
It was shown in [2] that each vector span <D> has a unique basis B, which

is the smallest set of vectors in D such that all other vectors in < D > can
be written as a linear combination of vectors in B. Let b = |B|, b is called the
dimension of <D>. Without loss of generality, we assume that the first b rows
of D form a basis of the row span < D > of D. Because every row vector di ,
i > b, of D can be represented by a linear combination of the first b independent
row vectors, we can write that di =

∨b
j=1 αj · dj for some αj . The value yi of

the path Pi can be obtained from y1, ..., yb as: yi =
∨b

j=1 αj · yj . Therefore, only
b independent equations of the np equations in (2) are needed to compute all
elements of y, and hence we only need to measure b paths, which form a basis
of <D>, to determine whether any path in the overlay system is good or bad.

2.3 A Brief Comparison of the Two Models

If we are only interested in the classification of end-to-end paths as “good” or
“bad”, the continuous and Boolean models bring the same information. However,
as we will show in this section, the two models use different algebraic structures,
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and as a result, they usually need different sets of end-to-end measurements to
obtain this same information.

General properties relating network topologies with the dependency between
measurement paths in the continuous and Boolean models are kept for future
work. In this section, we are interested in the conditions under which a set
of linearly dependent/independent vectors in the continuous model is depen-
dent/independent in the Boolean model and vice versa. The observations in
this section are useful to explain the results of our simulation and experimen-
tal studies in Sections 3 and 4. We first show that a linearly dependent set of
vectors in (+,×) algebra is not necessarily linearly dependent in Boolean al-
gebra and vice versa. This assertion can be verified in the following examples.
The set of four vectors: d1 = {1, 1, 1, 1}, d2 = {0, 0, 1, 1}, d3 = {1, 1, 1, 0} and
d4 = {0, 1, 0, 1} is linearly dependent in Boolean algebra as d1 = d2 ∨ d3 ∨ d4,
but is linearly independent in (+,×) algebra; whereas the set of four vectors:
d1 = {1, 0, 0, 1}, d2 = {0, 0, 1, 1}, d3 = {1, 1, 0, 0} and d4 = {0, 1, 1, 0} is linearly
dependent in (+,×) algebra as d1 = d2 + d3 − d4 but not in Boolean algebra.
It is not difficult to verify that for the Boolean model, the necessary and also
sufficient condition for a set of vectors to be dependent is that one vector has en-
tries of 1s at all the positions where other vectors have entries of 1s. Clearly, this
statement does not apply for the continuous model as shown in the first example.

3 Numerical Evaluations

We conducted a series of numerical studies in order to obtain a preliminary
comparison of the efficiency of the continuous and Boolean models in monitoring
end-to-end network properties. We perform our investigations on three backbone
ISP topologies with sizes ranging from small (Exodus: 80 nodes and 147 links)
to medium (Telstra: 115 nodes and 153 links), and large (Tiscali: 164 nodes and
328 links). For the sake of simplicity, we assume that all the ISPs use shortest
path routing to route traffic. In this section, we summarize our findings and
provide explanations for the results in the context of the Rocketfuel topologies.

Recall that n is the number of nodes in the network. In our experiments,
the number of beacons |VB | is varied from n/50 to n/2. We select the beacon
candidates randomly by picking a random permutation of the set of nodes in the
network. After building the routing matrix as in Section 2, we first calculate the
rank of the routing matrix D to obtain the number of end-to-end measurements
for the continuous model, and then use the PS algorithm in [2] to find the
number of end-to-end measurements for the Boolean model. For each topology,
we plot the percentage of independent paths returned by the PS algorithm (for
the Boolean model) and the rank of the matrix D (for the continuous model)
for different numbers of beacons.

Fig. 1 shows the results for the Exodus topology. We observe that for a small
number of beacons |VB | (less than 5%) the Boolean model requires fewer direct
measurements, whereas for a larger number of beacons |VB | (between 10%-40%)
the continuous model requires fewer direct measurements. However, when the
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Fig. 1. Percentage of paths that need to be measured directly for complete determina-
tion of the quality of all paths in the Exodus topology with 80 nodes and 147 links
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Fig. 2. Percentage of paths that need to be measured directly for complete determina-
tion of the quality of all paths in the Telstra topology with 115 nodes and 153 links

percentage of beacons is above 50%, both models require the same number of
direct measurements.

Similar observations can be found for the Telstra and Tiscali topologies, as
shown in Fig. 2 and 3, even though the exact percentages at which the two curves
representing the binary and continuous model cross are different in each topol-
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Fig. 3. Percentage of paths that need to be measured directly for complete determina-
tion of the quality of all paths in the Tiscali topology with 164 nodes and 328 links

ogy. The results suggest that although all topologies exhibit the same tendencies
for the number of direct measurements in the continuous and Boolean model, ex-
act results in each network are sensitive to the network topology. We also observe
that for all three topologies, the percentages of required direct measurements for
both continuous and Boolean models drop rapidly with the number of beacons
when the latter is small. However, these percentages decrease slowly when the
number of beacons is large. This observation suggests that the benefit of intro-
ducing additional beacons lessens with the increase of the number of beacons.

The above observations can be explained by the structure of a basis of a
vector space in (+,×) algebra and the basis of a vector span in Boolean algebra.
In the Boolean model, and contrary to the continuous model, if all links in a path
are also present in some other paths, then the first path is redundant because it
is a linear combination of the other paths. When the number of paths is small,
this situation frequently occurs in the studied ISP networks. In (+,×) algebra,
the rank of a matrix is upper bounded by the minimum of the number of rows
and columns in the matrix. Hence, when we initially increase the number of
paths (i.e., the number of rows) the dimension of the basis rapidly increases.
But when the rank of the matrix approaches the number of columns, which
stays almost constant, it increases only slowly. When there are a lot of paths,
both the Boolean vector span and continuous vector space have the same basis
that contains mostly unit vectors (vectors that have only one 1 entry).

4 Internet Evaluation

In this section, we compare the performance of the continuous and the binary
models on the data collected from the NLANR’s AMP (Active Measurement
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Project) [14] measurement infrastructure, which performs site-to-site active mea-
surements between campuses connected by high performance networks (most of
them at NSF-funded HPC-sites). The NLANR measurement infrastructure con-
sists of approximately 140 monitors and about 15,000 end-to-end paths. Each
monitor performs RTT, topology and throughput tests to all other monitors.
More details can be found at [14]. We have analyzed the data collected by AMP
on the 23rd of January, 2004. After grouping the common edges and nodes in all
end-to-end paths, we have a sample of 133 monitors and 17556 end-to-end paths
that cover 9405 nodes and 36674 directed edges. Note here that the number of
available monitors (133 monitors) is significantly smaller than the number of
nodes (9405 nodes) in the systems. The AMP system is therefore operating in
the regime where only a small percentage (below 1.4%) of nodes are used as
beacons. To evaluate the effect of the number of beacons on the two models, we
vary the number of beacons from 1 to 133, which corresponds to 0.01%-1.4%
of the total number of nodes. We then construct the routing matrix D and cal-
culate the rank of D to obtain the number of end-to-end measurements for the
continuous model. We also calculate the number of independent paths in the
Boolean model using the PS algorithm in [2]. The results are plotted in Fig. 4.

We observe that the results reflect the behaviors that we have already seen
for the Rocketfuel topologies. That is, in the regime where the percentage of
nodes that are used as beacons is very small (below 1% in this case) the Boolean
model requires fewer direct measurements if we are only interested in separable
“good” or “bad” performance of paths. However, the difference between the two
models is very small for this range, which can be explained by the fact that in
this case most of the end-to-end paths in the network are independent in both
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Table 1. Accuracy of the continuous and Boolean models. CV is the coverage rate and
FP is the false positive rate

Number of beacons The continuous model The Boolean model
2 CV = 99.7%, FP = 0.3% CV = 98.7%, FP = 0.9%

100 CV = 97.2%, FP = 3.4% CV = 95.6%, FP = 4.7 %

models. We suspect that the difference becomes more important, and in favor of
the continuous model, for larger numbers of beacons. Furthermore, for both the
continuous and Boolean models the percentage of direct measurements drops
rapidly as the number of beacons increases.

We also evaluate the accuracy of the two approaches on predicting the quality
of unmeasured paths. For this purpose, we proceed as follows. First, we fix the
number of beacons. We then determine the set of independent paths in the
continuous and Boolean models. We called these independent paths the directly
measured paths. Using performance data from these directly measured paths, we
calculate the performance on the unmeasured paths. That is, in the continuous
model, we calculate the loss rates on all unmeasured paths and compare them
against a loss threshold of 5%, which is the threshold between “tolerable loss”
and “serious loss” as defined in [15], to determine whether the path is good
or bad. In the Boolean model, we first determine the quality of the directly
measured paths and then calculate the quality on the unmeasured paths. We
compare the inferred results of the two models against the real measurement
data. The results are given in Table 1. We observe that both models achieve
a high coverage rate and a low false positive rate. The Boolean model is less
accurate than the continuous model because the Boolean model relies on the
assumption that the loss rates of network paths and links are separable, which
sometimes does not hold in practice.

5 Conclusion

In this paper, we have compared the performance of two end-to-end path mon-
itoring approaches. We show that when the number of beacons is small, the
Boolean model requires fewer direct measurements; but the difference appear to
be very small on real measurements. For a large number of beacons the contin-
uous model requires fewer direct measurements, and the different can be quite
significant. However, when the number of beacons is significantly large, there is
no difference in terms of the number of paths that we need to measure directly
in both models. We verify the results by simulations on existing ISP topologies
and on real measurement infrastructure.

We are currently working on various extensions of this work. First, we are in-
vestigating the influence of the structure of the routing matrix on the differences
between the number of probes required for the continuous and Boolean models.
Second, so far in this work we have taken the restriction that nodes in the mon-
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itoring systems can send probes only to other nodes in the monitoring systems.
However, since probes can be sent to many other nodes in the network, we are
investigating how sending probes to other nodes in the network would affect the
efficiency of the monitoring system in both the continuous and Boolean models.
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Abstract. In both active and passive network Internet measurements,
the IP packet has a number of important header fields that have played
key roles in past measurement efforts, e.g., IP source/destination ad-
dress, protocol, TTL, port, and sequence number/acknowledgment. The
16-bit identification field (IPID) has only recently been studied to de-
termine what information it might yield for network measurement and
performance characterization purposes. We explore several new uses of
the IPID field, including how it can be used to infer: (a) the amount of
internal (local) traffic generated by a server; (b) the number of servers
in a large-scale, load-balanced server complex and; (c) the difference be-
tween one-way delays of two machines to a target computer. We illustrate
and validate the use of these techniques through empirical measurement
studies.

Keywords: IPID field, one-way delay difference, traffic activity, load-
balanced server counting, estimation.

1 Introduction

In both active and passive network Internet measurements, the fundamental unit
of measurement - the IP packet - includes a number of important header fields
that have played key roles in past measurement efforts: IP source/destination
address, protocol, TTL, port, and sequence number/acknowledgment. The 16-
bit identification field (referred to here as the IPID field) has only recently been
used to determine what information it might yield for network measurement and
performance characterization purposes [3, 6, 9, 11, 7]. In this paper, we explore
several new uses of the IPID field, including how it can be used to infer: (a)

C. Dovrolis (Ed.): PAM 2005, LNCS 3431, pp. 108–12 , 2005.
c© Springer-Verlag Berlin Heidelberg 2005

0



Exploiting the IPID Field to Infer Network Path 109

the amount of internal (local) traffic generated by a server; (b) the number of
servers in a large-scale, load-balanced server complex and; (c) the difference
between one-way delays of two machines to a target computer. We illustrate and
validate the use of these techniques through empirical measurement studies.

The remainder of this paper is structured as follows. In the following section
we classify and discuss past work that has examined the use of the IPID field, and
place our current work in this context. In Section 3, we describe a technique to
infer the amount of a host’s traffic that remains internal to its local network, and
the complement amount of traffic that passes through a measured gateway link.
In Section 4, we describe a technique to identify the number of load-balancing
servers behind a single IP address. In Section 5, we introduce a technique to
infer the difference between one-way delays. Section 6 concludes this paper with
a discussion of future work.

2 Uses of the IPID Field

We begin with a brief description of the IPID field and the generation of IPID
values, and then classify previous measurement work, as well as our current
efforts, into three categories based on their use of the IPID field.

The 16-bit IPID field carries a copy of the current value of a counter in a host’s
IP stack. Many commercial operating systems (including various versions of
Windows and Linux versions 2.2 and earlier) implement this counter as a global
counter. That is, the host maintains a single IPID counter that is incremented
(modulo 216) whenever a new IP packet is generated and sent. Other operating
systems implement the IPID counter as a per-flow counter (as is done in the
current version of Linux), as a random number, or as a constant, e.g., with a
value of 0 ([3]).

2.1 Global IPID

In this paper, we only consider hosts that use a single global counter to determine
the IPID value in a packet. To infer whether a host implements a global IPID
counter, we probe the host from two different machines by sending http requests.
IPID values in the packets returned from the host can be obtained by running
tcpdump on the two probing machines separately. If the host uses a global IPID
counter, these replying IPID values will belong to a unique sequence. By syn-
chronizing the two probing machines, we are able to compare the replying IPID
values, as presented in Figure 1. This figure clearly shows that the IPID values of
the packets returned to the two probing machines belong to a unique sequence,
and consequently, we can infer that this host uses a global IPID counter.

Instead, if the host does not implement a global IPID counter we obtain
a different result. Figure 2 shows the result of a host implementing the IPID
counter as a per-flow counter. The IPID values of the replying packets to the
two different probing machines consist of two independent sequences, each cor-
responding to one probing machine. Note that the slopes of these two sequences
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are different because of the different speeds of the probing packets sent from the
probing machines.

Using this process, we probed the web-servers of the top 50 companies ranked
by Fortune magazine [1] and found that 18 (36%) of them have a global IPID
counter. Among the top 101 web sites ranked by PC Magazine [2], 40 of these
web sites were found to have a global IPID counter.

2.2 Classifications of Using IPID Fields

We can broadly classify previous efforts, as well as our current efforts, using
IPID sequences into three categories:
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Application 1: Measuring traffic activity. Suppose that we observe a subset
of the packets generated by a server, and consider the (i−1)-st and i-th observed
packets. Let T (i) denote the timestamp of the i-th packet and ΔIPID(i) the
difference between the IPID values of the (i − 1)-st and i-th packets1. In this
case,

∑n
i=1 ΔIPID(i) represents the number of packets sent by this server in the

interval (T (1), T (n)). The use of IPID values to infer the total amount of outgoing
server traffic is noted in [7]. We additionally note that, for stub networks with
a single outbound connection, this also allows us to infer the relative amount
of traffic sent to destinations within the network, and to destinations outside of
the network. From this single measurement point, we can thus infer one aspect
(local/remote) of the spatial distribution of traffic destinations. We consider this
approach in Section 3.

Application 2: Clustering of sources. These applications make use of the
fact that different hosts have independent (and thus generally different) IPID
values, and that IPID values are incremented for each outgoing IP packet sent by
a host. We denote the difference in the values of the IPID field of two successively
observed packets as ΔIPID. Thus, if we observe two packets generated by the
same host within a “short” interval of time, we will generally observe a small
ΔIPID value. By identifying small ΔIPID values among a set of IP packets that
were generated within a short interval of time from multiple sources, it is then
often possible to identify packets coming from the same source. It is important
to note that IPID-based source-identification is thus possible without actually
examining the source IP address, which itself may have been aliased. Router
alias detection [11], host alias detection and load-balanced multiplexed-server
counting [7], and NATed host counting [3] all exploit this observation. Our work
in Section 4 builds on initial suggestions in [7] by considering a specific algorithm
for identifying the number of servers behind a load-balancer using only observed
IPID values.

Application 3: Identifying packet loss, duplication and arrival order.
Since a packet generated later in time by a host will carry a larger IPID (modulo
216) than a packet generated earlier in time by that host, it is possible (after
solving the wrap-around problem) to determine the order in which packets are
generated by a host. Previous work on detecting packet reordering and loss
between a probing host and a router [9] and duplicate packet-detection and re-
ordering at a passive monitor [8] exploit this observation. In Section 5, we use
the fact that the IPID value of a packet generated in response to a received
packet indicates the order in which received packets arrived to develop a new
approach for inferring the absolute differences in one-way delays between a set
of machines and a target host.

Several technical challenges must be met when using IPIDs in measurement
studies. The most important regards wrap-around between two consecutively

1 We may obtain a negative value for ΔIPID(i) due to wrap-around. We address this
problem later in this paper.
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observed packets from the same source. Correction is easy if we know that only
a single wrap-around has occurred. With active probing techniques (where the
measurement point sends active probes to a host and observes the IPID of the
returned packet), multiple wrap-arounds can be avoided by choosing an appro-
priate probing interval. In a passive monitoring framework, a more sophisticated
method is needed to deal with multiple wrap-arounds, as discussed in the fol-
lowing section.

3 Outbound Traffic from a Server

In this section, we present a simple technique for measuring the outbound traffic
from a server (i.e., the number of packets sent by a server) by passively observing
the IPIDs of packets generated by that server at a gateway. The use of active
probes to infer the total amount of outgoing server traffic was suggested in [7].
Passive measurement avoids the overhead of active probing, and the attention
that active probing may bring (indeed, several of our active probing experiments
resulted in our measurement machines being black-listed at a number of sites!).
We will see shortly, however that it is valuable to augment passive probing by
occasionally sending active probes in order to handle IPID wrap-around.

Suppose that, at a gateway, we observe a subset of the packets generated by a
server, and consider the (i−1)-st and i-th packets observed. Let T (i) denote the
timestamp of i-th packet and ΔIPID(i) denote the difference between the IPID
values of the (i − 1)-st and i-th packets. In this case,

∑n
i=1 ΔIPID(i) represents

the total number of packets sent by this server during the interval (T (1), T (n)).
Furthermore, if the server accesses the larger Internet only through this gateway,
we know that all other packets generated between the (i−1)-st and i-th observed
packets must have been sent to destinations within the network - providing an
easy means to determine the amount of network-internal traffic being generated
by a server.

We performed experiments on several popular web servers in our campus.
One result is plotted in Figure 3. Since we could not instrument the server, we
validated our measurements using periodic active probes. As shown in Figure 3,
this result is consistent with that obtained using active probes. Figure 4 shows
the amount of network-internal traffic from the server as determined by our
proposed passive approach.

With a purely passive approach to measuring server activity, it can be difficult
to detect IPID wrap-around if the amount of traffic observed at the monitor point
is very small compared to the amount of network-internal traffic generated by
the server. Indeed, in our experiments, we observed popular web servers in our
campus that did not serve clients outside of our campus for long periods of time.
To solve this problem, we adopt a hybrid approach in which adaptively-activated
active measurement is used to supplement passive measurement. Specifically, we
use an Exponential Weighted Moving Average (EWMA) to estimate the rate of
IPID increase. Using this estimate, we can then estimate the next IPID wrap-
around time, T ∗(msec), and start a timer with that value. Whenever we observe
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a new packet before this timer expires, we reset the timer based on the current
estimated IPID rate. If the timer expires, we launch an active probe and reset
the timer. We are currently performing additional work to evaluate this hybrid
approach.
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4 Inferring Number of Load-Balancing Servers

If each load-balancing server behind a single IP address has an independent
global IPID counter, packets generated by one server have a sequence of IPID
values that differs from those generated by a different server. As discussed be-
low, using these observed IPID values, we can classify the packets into distinct
sequences, with the number of distinct sequences being an estimate for the num-
ber of servers. Figure 5 shows the observed IPID values of the packets generated
from a large commercial web server in response to the 5000 probing packets we
sent to the server.
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Fig. 5. IPIDs of the packets returned from the web server

We next describe an algorithm to classify the packet IPID sequences. Let
{I1, I2, . . . , I5000} be the set of IPIDs shown in Figure 5 and S the set of distinct
sequences. Initially, S = ∅. The first IPID I1 is appended to sequence S1 (namely,
S1 = {I1}) and S = S ∪ {S1}. For each following IPID Ij (2 ≤ j ≤ 5000), Ij is
compared to the tail element of all sequences in S. If the difference between Ij

and all of the tail elements is larger than a threshold T , a new sequence S|S|+1
is created and S|S|+1 = {Ij}. Additionally, S = S ∪ {S|S|+1}. Otherwise, Ij is
appended to the sequence whose tail element has the smallest difference with
Ij . Given T , the algorithm returns the number of sequences, i.e., |S|, and the
corresponding sequence sizes, i.e., the number of packets in each sequence.

Our algorithm will return a different number of sequences of different sizes
for different values of T . Ideally, the sequence sizes should be equal, with probing
packets being forwarded at equal rates to the servers. In practice, however, these
rates are close but not equal, due to the mixing of probing packets with other
traffic. For this experiment the interval between two successive probing packets
was set to 3ms to minimize these effects.
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To determine an appropriate T , we introduce two parameters: load balanc-
ing factor (LBF) and coefficient of variation (CV) of sequence size. We define
LBFT as LBFT = Pmin/Pmax, where Pmin (resp. Pmax) is the number of pack-
ets in the smallest (resp. largest) sequence returned by the algorithm with a
given T . Ideally, for a well balanced server, an appropriate T should produce a
LBFT very close to 1. The second parameter, CVT , is defined as CVT = σT /μT ,
where σT and μT are the standard deviation and the mean of the sequence sizes
respectively for a given T . Intuitively, an appropriate T results in a small CVT .

Figure 6 shows LBFT , CVT and the number of sequences as a function of
T . A T is appropriate when LBFT achieves the maximum and CVT achieves
the minimum. The figure indicates that a T ≈ 4000 is appropriate, resulting in
30 sequences. That is, we estimate that the web server has 30 load-balancing
servers. Table 1 shows the numbers of packets in these 30 sequences.

Table 1. Number of packets in classified sequences

162, 165, 180, 155, 156, 131, 188, 136, 178, 186
170, 162, 167, 228, 208, 193, 158, 177, 144, 169
145, 145, 168, 192, 177, 124, 173, 129, 202, 132

Based on this value of T , the algorithm described above divides the IPID val-
ues shown in Figure 5 into 30 sequences. We plot these 30 sequences in different
colors in Figure 7 where wraparounds of each sequence were removed by adding
64K to the values so that every sequence is always monotonically increasing.
We observe that the slopes of all of these 30 sequences are almost the same,
which suggests that each load-balancing server receives a comparative number
of probing packets.
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5 Inferring One-Way Delay Differences

In this section, we present a simple technique that uses the IPID field to infer the
differences in one-way delays from a set of GPS-synchronized probing sources
to an “IPID order capable” destination target. By “IPID order capable” we
mean that the destination has a global IPID counter and that wrap-arounds
can be detected. Importantly, we do not require the destination to be GPS-
synchronized. Such delay differences can be used to infer shared path segments
using recently developed network tomograpic techniques [10, 4, 5]. In addition,
if one of the sources is able to determine (or accurately estimate) the absolute
magnitude of its one-way delay to the destination, then all other nodes can
determine the absolute values of their one-way delays as well. Knowledge of
one-way delay can be valuable in many circumstances.

[10] presents a methodology for estimating one-way delay differences from
non GPS-synchronized (or coarsely synchronized) sources to common destina-
tions using a semi-randomized probing strategy and the packet arrival ordering
collected at destinations. Given GPS-synchronized source clocks, the determin-
istic probing strategy we study is considerably simpler. As in [10], the key idea
is for sources to send probes (e.g., ICMP echo packets) to a remote host, and use
the observed arrival ordering to infer path characteristics. Our approach differs
from [10] in the way we obtain arrival order information. In [10] all destination
machines must be instrumented. Using IPID, we are able to obtain the packet
arrival orders without instrumenting any destination machine. In the following,
we consider only two source nodes; the approach easily generalizes to the case
of additional source nodes.

Our goal is to infer the one-way delay difference from two GPS-synchronized
sources A and B to a destination D, i.e., the difference between path delays
dAD and dBD. Consider two packets p1 and p2 sent from A and B to D at the
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same time. If p1 arrives before p2, the IPID, I1, of the packet returned by D
in response to p1 will be smaller (modulo 216) than the IPID, I2, of the packet
responding to p2.

Fig. 8. Arriving orders of packets

We exploit this ordering of returned IPID values as follows. As illustrated
in Figure 8, A and B begin simultaneously probing D using different probing
intervals δA and δB , respectively. The nA-th packet sent from A arrives at D
between the (nB − 1)-st packet and the nB-th packet sent from B. If the delay
does not change significantly during the measurement interval, we have:

dBD + (nB − 1)δB ≤ dAD + nAδA ≤ dBD + nBδB

⇒ (nB − 1)δB − nAδA ≤ dAD − dBD ≤ nBδB − nAδA

Note that the difference between the upper- and lower-bounds depends on δB .
Thus by reducing δB , we can improve the accuracy of the inferred delay difference
dAD − dBD. We conjecture that we can extend these techniques to handle the
case of varying delays during the measurement interval as well.

We have validated the approach in a simple test scenario. In our experiments
we send ICMP echo packets from source machine A (at Unifacs, a university
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time

time
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in Brazil) and B (a machine at the University of Minnesota) to a destination
machine D at the University of Massachusetts. Machine A sends one packet per
second and machine B sends one packet every 3ms. Our measurements indicate
that the IPID-inferred delay difference, namely, dAD−dBD, is around 230ms. We
also send probes from A and B to a GPS-equipped machine, D′, at the University
of Massachusetts that was close to D. Based on the recorded data on D′, we can
measure dAD − dBD. Figure 9 shows the difference of the measured values and
the IPID-inferred values as a function of time. From the figure, one can see that
the inferred values are very close to the measured values. Furthermore, it should
be noticed that most of the differences are within 3ms for δB = 3ms. Figure 10
shows the relative error of the IPID-inferred values (I) to the measured values
(M), where the relative error is defined as (I − M)/M .
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Fig. 9. Difference of IPID inferred dAD − dBD and measured dAD − dBD
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Fig. 10. Difference of IPID inferred dAD − dBD and measured dAD − dBD

Table 2. Statistical results for several one-way delay inference experiments

Experiment Time of Mean of Standard deviation Mean of measured
ID day (EST)1 error2 (ms) of error, σ (ms) values, M̄ (ms) σ/M̄

1 2004-10-14 11pm 2.02 9.73 232.17 0.042
2 2005-01-14 9pm 3.37 18.57 354.49 0.052
3 2005-01-15 6am 3.53 22.27 361.14 0.062
4 2005-01-17 2pm 11.44 23.16 356.24 0.065
5 2005-01-17 5pm 9.53 20.38 361.11 0.056

1 The beginning time when an experiment was conducted.
2 error=|I − M |.
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Statistical results from the experiment shown in Figure 9 are presented in
the first line of Table 2, which includes the results of four other experiments.
This table contains a broad set of experimental scenarios. We run experiment
2 and 3 with δB = 4ms (Figure 8). Experiments 4 and 5 also used δB = 4ms
but during the busiest traffic hours. From the results we can see that during the
busiest hours the one-way delay inference error becomes larger. This effect is due
to the higher inter-packet jitter in our measures. Figure 11 depicts how higher
jitters affect inter-arrival times of A and B packets at D (Figure 8). A packet
from A is more likely to arrive between packets B1 and B2 than between packets
B2 and B3. Thus the probability that packets from A will arrive between two
given consecutive B packets increases with the jitter delay value. This problem
could be ameliorated by sending two A packets with smaller sending intervals,
i.e., a pair of A packets. These pairs can eliminate samples where both packets
in a pair arrived between two identical B packets (Figure 11(b)). Samples where
two packets of a pair interleaved with two B packets (Figure 11(c)) will produce
more accurate inferences.

6 Conclusions

In this paper, we explored several uses of the IPID field for inferring network path
and end-system characteristics. We classified previous IPID-related measurement
efforts into three general application areas, and showed that, by using the IPID
field, it is possible to infer: (a) the amount of internal (local) traffic generated
by a server; (b) the number of servers in a large-scale, load-balanced server
complex and; (c) the difference between one-way delays of two machines to a
target computer. We illustrated and validated the use of these techniques through
empirical measurement studies.

As with previous measurement techniques exploiting other packet header
fields, header fields (such as the TTL and IPID fields) can be exploited for
measurement purposes not initially envisioned in the design of IP. We hope that
our work will add to the toolkit of network measurement techniques. We also
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hope that future measurement studies can build on this work, and that additional
clever ways will be found to exploit the IPID field for measurement purposes.
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Abstract. We propose two methods to passively measure and monitor
changes in round-trip times (RTTs) throughout the lifetime of a TCP
connection. Our first method associates data segments with the acknowl-
edgments (ACKs) that trigger them by leveraging the TCP timestamp
option. Our second method infers TCP RTT by observing the repeating
patterns of segment clusters where the pattern is caused by TCP self-
clocking. We evaluate the two methods using both emulated and real
Internet tests.

1 Introduction

Round-trip time (RTT) is an important metric in determining the behavior of
a TCP connection. Passively estimating RTT is useful in measuring the the
congestion window size and retransmission timeout of a connection, as well as
the available bandwidth on a path [1]. This information can help determine
factors that limit data flow rates and cause congestion [2]. When known at a
network link along the path, RTT can also aid efficient queue management and
buffer provisioning. Additionally, RTT can be used to improve node distribution
in peer-to-peer and overlay networks [3].

Our work contributes two new methods to passively measure RTT at an inte-
rior measurement point. The first method works for bidirectional traffic through
a measurement point. It associates segments from the sending host with the
ACK segments that triggered their release from the sender. Our method uses
TCP timestamps to associate data segments with the acknowledgments that
trigger them. Since the other direction is easy—associating acknowledgments
with the data segments they acknowledge—we can obtain a three-way segment
association. Thus, we have a direct and simple solution that can collect many
RTT samples throughout the lifetime of the connection.

There is no guarantee that the network route is symmetric, so only one direc-
tion of flow may be available to the measurement point. We introduce a second
method to monitor a data stream and detect cyclical patterns caused by TCP’s
self-clocking mechanism. Because of self-clocking, a TCP connection’s segment
arrival pattern within one RTT is very likely to repeat in the next RTT. We use

C. Dovrolis (Ed.): PAM 2005, LNCS 3431, pp. 121–134, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



122 B. Veal, K. Li, and D. Lowenthal

algorithms that employ autocorrelation to find the period of the segment arrival
pattern, which is the RTT. As with our previous method, we can take samples
throughout the lifetime of a TCP session.

We show both methods to be accurate by evaluating them using both emu-
lated and real network traces. For the emulated traces, we tested RTT estimates
with network delays ranging from 15ms to 240ms, as well as with competing
traffic over a bottleneck link using 0–1200 emulated Web users. The average
RTT estimate for each delay tested was always within 1ms of the average RTT
reported by the server. The maximum coefficients of variation (standard devi-
ation/mean) were 3.79% for the timestamp based method and 6.69% for the
self-clocking based method. Average RTT estimates for the tests with compet-
ing traffic were all within 1ms for the timestamp based method and 5ms for the
self-clocking based method.

We also tested our RTT estimation methods with downloads from Internet
FTP servers. Out of seven servers, the maximum coefficient of variation was
0.11% for the timestamp based method. For five of those servers, all RTT esti-
mates for each server were within 1ms of each other using the self-clocking based
method, and their average estimates were within 2.2ms of the average estimates
from the timestamp based method.

2 Related Work

The method [4] uses segment association during the three-way handshake that
initiates a TCP connection, as well as during the slow start phase. This takes
advantage of the fact that the number of data segments sent can be easily pre-
dicted in advance. However, during the congestion avoidance phase, it is hard to
predict the RTT based on the number of segments. Our method can associate a
data segment with the ACK that triggered it, and thus it can follow changes in
the RTT throughout the lifetime of a TCP session.

There is a method [5] to associate, throughout the lifetime of a session (includ-
ing during congestion avoidance), a data segment with the ACK segment that
triggered it. This method first generates a set of all possible candidate sequences
of ACKs followed by data segments. Sequences that can be determined to violate
basic TCP properties are discarded. The method then uses maximum-likelihood
estimation to choose from the remaining possible sequences. This method is com-
plex and would be cumbersome to implement as a passive estimation method at
a device such as a router. Our method of using TCP timestamps to associate
segments is simpler and more direct.

A previous work [6] introduces a method to passively measure RTT by mim-
icking changes in the sender’s congestion window size. The measurement point
must accurately predict the type of congestion control used: Tahoe, Reno, or
NewReno. The accuracy of the estimate is affected by packet loss, the TCP win-
dow scaling option, and buggy TCP implementations. Our method avoids these
difficulties by directly detecting the associations between segments.
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3 TCP Timestamps

Both our RTT estimation methods use the TCP timestamp option. The original
purpose of the option was to estimate the RTT at the sender for the purpose
of deriving the retransmission timeout. The option adds two fields to the TCP
header: timestamp value (TSval) and timestamp echo reply (TSecr). TSval is
filled with the time at which the segment was sent, and TSecr is filled with the
TSval of most recently received segment, with some exceptions. If a segment is
received before a segment previous to it in the sequence arrives, leaving a hole,
then the timestamp of the segment previous to the hole in the sequence is echoed.
When this hole is filled by an out-of-order segment or a retransmission, the
timestamp of the segment that fills the hole is echoed rather than the timestamp
of a segment later in the sequence.

3.1 Timestamp Deployment

For timestamps to be useful for passive RTT measurement, the option should
have a wide deployment and its implementation should be consistent across
different hosts. We have developed a tool that can test the timestamp option
on remote Web servers. This tool was run on 500 servers taken from the Alexa
Global 500 list [7]. Of these, 475 servers responded to HTTP requests from our
tool.

The tool tests for timestamp deployment by sending SYN segments with the
timestamp option enabled and checking the SYN/ACK response for timestamps.
Of the 475 responding servers, 76.4% support the TCP timestamp option. We ex-
pect timestamp deployment to increase over time. Furthermore, the self-clocking
based RTT estimation method does not have to rely on TCP timestamps as the
time unit used to associate segments into clusters. Other time units are possible,
such as arrival time at the measurement point. We will address this possibility
in future work.

3.2 Implementation Consistency

The tool also tests for implementation consistency. It tests the exceptions to
echoing the most recent timestamp, described above. The tool sends three data
segments with the last two out of order in sequence. The server should indicate
the hole by sending a duplicate ACK with the timestamp of the first segment.
When the client sends the last segment that fills the hole, the server should echo
its timestamp. Of the servers tested that support TCP timestamps, 100% echoed
the correct timestamp in both cases.

Another possible implementation error is to echo the timestamps of only
data segments, disregarding ACKs that carry no data. Our tool tests for this
possibility by sending an HTTP request to the server, receiving a data segment,
sending an acknowledgment, and receiving more data. The congestion window
is throttled to one byte to ensure that one segment is sent at a time. The second
data segment from the server should echo the timestamp of the ACK and not
the timestamp of the HTTP request. Of the servers tested, 99.4% correctly echo
the timestamp of the the ACK.
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3.3 Timestamp Granularity

The granularity chosen for TCP timestamps is implementation dependent. A fine
granularity increases the accuracy and usefulness of both our RTT estimation
methods, as shall be explained in later sections. Our tool tests granularity by
sending data segments to the server at a known interval and then measuring the
difference between the timestamps of the ACKs the server sends in response.
Table 1 shows the distribution of timestamp granularity across the servers tested
that support the timestamp option.

Table 1. Distribution of timestamp granularity

Granularity Percent of Servers
500ms 0.6%
476ms 0.6%
100ms 36.9%
10ms 54.8%
1ms 7.2%

4 RTT Estimation Using Timestamps

Our first RTT estimation method method requires finding associations between
TCP segments at an interior point along the route between the sender and
receiver. The first segment in an association is a data segment from the sending
end of a TCP connection. The second is the ACK segment from the receiving
end that acknowledges receipt of the data segment. The third segment in the
association is the next data segment from the sender, which is triggered when it
receives the ACK. This assumes that the sender always has enough data ready
to fill the congestion window as soon as more room becomes available.

Since multiple data and ACK segments may be in transmission concurrently,
it is not obvious at an interior point which segments from one host have been
triggered by the other. For the interior point to recognize an association, a
segment must carry identification of the segment that triggered it. For the case
of a data segment triggering an ACK, the acknowledgment number carried by
the ACK is derived from the sequence number of the data segment. Thus the
interior point can associate the two segments. However, the sequence numbers of
ACK segments remain constant as long as the receiver sends no data. Because
of this, it is impossible to use the acknowledgment number of a data segment to
identify the ACK that triggered it.

The measurement point may use TCP timestamps instead of sequence num-
bers to associate segments. Timestamps are used only for association and not
for calculating the RTT. Both the sender and receiver of a TCP session echo
the most recently received timestamp, with minor exceptions in the cases of loss
and segment reordering. The measurement point records the timestamps, their
echoes, and arrival times of segments in each direction to estimate the RTT.
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Fig. 1. Association of segments using TCP timestamps

Figure 1 provides an example. The sender transmits a segment at time s1. It
arrives at the interior measurement point at time m1. The receiver responds with
an ACK at time r1 and echoes the sender’s timestamp, s1. The measurement
point recognizes s1 in both segments and makes an association. Upon receiving
the ACK, the sender transmits more data at time s2 and echoes the receiver’s
timestamp, r1. The measurement point receives this segment at time m2. It
recognizes r1 in both segments and forms an association. Having associated all
three segments, the measurement point estimates the RTT to be m2 − m1 .

4.1 Constraints

Timestamp Granularity. The granularity of timestamps depends upon the
TCP implementation of the sender. Even with a granularity as fine as 1ms, a
burst of segments sent in a short interval may carry the same timestamp. The
receiver may acknowledge parts of the burst at different times, but all the ACKs
would carry the same timestamp echo. It would be difficult for the interior point
to determine which data segments caused which ACKs. Since the first segment
carrying a timestamp may be associated safely with the first segment carrying
its echo, the algorithm only considers the first arriving segment with a particu-
lar timestamp and others with identical timestamps are discarded. However, a
coarser timestamp granularity increases the the number of segments with iden-
tical timestamps, and thus allows for fewer measurements to be taken.

A side effect of preventing associations with ACKs containing old timestamps
is that later ACKs containing the same timestamp echo as the discarded segment
may be used to make an association, leading to an overestimate. To prevent this
situation, only the first ACK with any particular timestamp echo is used to make
associations.

Packet Loss. When the receiver is missing data due to packet loss, it sends
duplicate ACKs. Since timestamp echoes are not updated when the receiver is
missing data, this problem is automatically eliminated by discarding associations
with ACKs that contain old timestamp echoes. However, when selective acknowl-
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edgments are enabled, overestimates can still occur. This problem is avoided by
not considering selective ACK segments (which are only produced when loss is
present), when making associations.

Interactive Sessions. This algorithm does not consider situations where the
sender has no new data available when it receives and ACK. Such sessions are
typically for interactive applications, such as ssh or telnet. Though not imple-
mented here, it should be possible to obtain RTT estimates for interactive ses-
sions based on some simple application heuristics. For example, in a typical
session, when a user types a key, the character is sent to the server. Then the
server echos the character back to the client to be displayed on the terminal. The
client then responds with an ACK. An interior measurement point could take
advantage of this to make an association for the three segments and estimate
the RTT.

It is still possible that the sender has some delay in sending more data during
a bulk transfer which could lead to an inflated RTT estimate at the measurement
point. To filter such measurements, we have devised a method that tracks current
maximum RTT for the session between the measurement point itself and each
of the two hosts. These RTTs would be taken for only data-ACK pairs to avoid
any possibility of sender delay. Any RTT estimates greater than the current sum
of the two maximum delays would be discarded as an inflated estimate. We plan
to evaluate this method as future work.

Asymmetric Routing. Though the RTT estimation algorithm requires both
data and ACKs, there is no guarantee that both directions of traffic will follow
the same route. However, it is still possible to obtain estimates using the second
algorithm described in the next section.

5 RTT Estimation Using Self-Clocking Patterns

Our second algorithm detects patterns in a bulk data stream caused by a mech-
anism in TCP known as self-clocking. Capturing ACKs from the receiver is
not required, so this algorithm maybe used for either asymmetric or symmetric
routes. With self-clocking, the bulk data sender produces more data each time
it receives an ACK, and the receiver sends an ACK each time it receives more
data. Because of this, the the spacing between bursts of segments is likely pre-
served from one round trip to the next. Although packet losses and competing
traffic could change the spacing and cause bursts to split or merge, the changes
do not always happen frequently, and the bursts tend to persevere for at least
a few round trips after each change. There may be multiple bursts of segments
per round trip, and their size and spacing generally repeat every RTT. This al-
gorithm detects the repetition of these burst-gap patterns to find the RTT. An
example of such a pattern is shown in Fig. 2.

Discrete autocorrelation measures how well a data set is correlated with itself
at an offset determined by the lag (l). If the correlation is strong, then the data
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Fig. 2. Burst-gap pattern caused by self-clocking

matches its offset closely. Figure 3 shows the autocorrelation strengths for the
data in Fig. 2. The strong correlation at 61ms corresponds closely to the RTT
(which is 60ms).

Our algorithm uses autocorrelation to make RTT estimates. The algorithm
repeats the RTT estimation once per measurement interval, T , which is supplied
as a parameter. During this interval, the number of packets that arrive with
timestamp t is stored in array P [t] ranging from 0 to T − 1. Once the count is
complete, the discrete autocorrelation A[l] is computed for each lag l from 1 to
l/2. The RTT estimate is computed as max(A).

This process is repeated to produce multiple estimates throughout the ses-
sion. The number of estimates depends upon the duration of the measurement
interval and the duration of the session. However, more estimates may be taken
by allowing measurement intervals to overlap.

5.1 Constraints

Timestamp Granularity. According to a theoretical limit known as the Ny-
quist period, it is only possible to measure RTTs at least twice the TCP times-
tamp granularity. For instance, if the granularity is 10ms, we can only detect
RTTs of at least 20ms. This is a problem with timestamp granularities of 100ms
or more. Although we do not explore it in this paper, a possible solution is to
use arrival times at the measurement point rather than TCP timestamps from
the sender.

Harmonic Frequencies. A consequence of a burst-gap pattern that repeats
every RTT is a strong autocorrelation at multiples of the RTT that is sometimes
stronger than that of the actual RTT. Rather than assuming that the strongest
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correlation corresponds to the RTT, the algorithm starts with the lag at the
strongest correlation, s, and compares it to A[ s

2 ], A[ s
3 ], A[ s

4 ], . . ., until a certain
limit is reached. If the correlation at the fractional lag is at least a certain
percent of the actual lag, then that lag is considered the RTT instead. The limit
of fractional lags and the percent of the maximum correlation are both provided
as parameters to the algorithm.

Measurement Interval. The measurement interval chosen places an upper
bound on the maximum RTT that can be measured. Autocorrelation becomes
unreliable at a lag of half the measurement interval, since two complete round
trips are needed to fully compare one round trip with its offset.

Delay Variation. While a smaller measurement interval may miss large RTTs,
a larger measurement interval decreases the amount RTT variation that can be
detected. If multiple strong correlations exist at different lags, this may indicate
different RTTs at different times within a measurement interval. Our algorithm
can report multiple candidate RTT estimates within an interval along with their
correlation strengths.

Noise Effects on Self-Clocking Patterns. Congestion caused by competing
traffic or other network conditions may disrupt the burst-gap pattern caused by
self-clocking. One consequence of this is a high correlation at very small lags.
This problem can be corrected by allowing a lower bound on the RTT to be
specified as a parameter. We evaluate the effects of competing traffic on our
algorithm in the next section.
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6 Evaluation of RTT Estimation Methods

To evaluate these two passive RTT estimation methods, we have implemented
them in a toolkit called TCPpet (TCP Passive Estimation Toolkit). Our imple-
mentations take traces captured by tcpdump and generate RTT estimates. The
implementation of the timestamp method takes a trace with bidirectional TCP
traffic and generates as many RTT estimates as the timestamp granularity will
allow.

The implementation of the self-clocking method can use a trace with bidirec-
tional or unidirectional traffic. Harmonic frequency detection is enabled for all
experiments. If 1

2 , 1
3 , or 1

4 of the lag having the strongest correlation has at least
75% of that correlation, it is taken as the RTT measurement. Note that 75%
is measured from the minimum correlation in the measurement interval, which
may be negative, instead of from zero. These values were chosen for good overall
performance with the FTP downloads described later. Additionally, RTTs are
assumed to be at least 10ms. Lags less than 10ms are not considered in order
to correct for strong autocorrelations caused by noise effects. Note that if the
Nyquist period is higher than 10ms, it becomes the minimum instead.

6.1 Emulation Test with a Single Flow

We have evaluated both RTT estimation methods with different network delays
over an emulated network. The network consists of four machines: a sender,
a receiver, and two routers, creating a three-hop route between the sender and
receiver. Both the sender and receiver have timestamp granularities of 1ms. NIST
Net [8] was used to add delay along the route by adding delay to both directions
of traffic on each of the two routers. Thus, there are a total of four sources
of delay along the route. If, for instance, a total round trip delay of 100ms is
desired, then a delay of 25ms is added to each of the four points.

Traces were taken with tcpdump on the router closest to the sender. These
traces were taken from the network interface that connects to the receiver’s
router, so that segments from the sender are delayed both before and after being
recorded by tcpdump.

TCP data transfers were generated by the ttcp utility, which has been in-
strumented to report RTT estimates from the server’s TCP implementation. All
transfers were 16MB of data generated by ttcp.

Figure 4 shows all the RTT estimates for a network trace with a 60ms delay.
Although the trace is longer, we only show the first 2 seconds for clarity. It
includes estimates made by the server as well those made by the two passive
estimation methods. A 250ms measurement interval was heuristically chosen for
the self-clocking method. We plan to find a general default measurement interval
as future work. As shown in the figure, nearly all the RTT measurements are
close to those reported by the server. Note that the first few estimates for the
server were influenced by preexisting state in the TCP implementation. After
the 1s mark, the server estimates level off throughout the duration of the trace.
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Fig. 4. RTT estimates for an emulated network trace with a 60ms delay

RTT estimates were taken for traces with 15, 30, 60, 120, and 240ms delays.
Figure 5 shows the average of all the RTT estimates reported by each method for
each trace. Here, a 500ms measurement interval was chosen for the self-clocking
estimation method to accommodate possible RTTs up to 250ms. As shown in
the figure, the averages are nearly identical. The largest coefficients of variation
(standard deviation/mean) occurred for the 15ms delay trace, which were 3.79%
for the timestamp based method and 6.69% for the self-clocking based method.

6.2 Emulation Test with Competing Flows

While the previous experiments show that our methods work well with different
delays, real networks have conditions such as bottlenecks and competing traffic.
The emulated network used previously was modified using NIST Net to limit
the segments sent from the sender to the receiver to 10mb/s with a queue length
of 13 packets. Delay was only added to the receiver side router, and it was set
to 30ms for either direction of traffic. Thus, there was a total 60ms delay for the
round trip.

To generate competing traffic, an Apache web server was run on the sender.
Surge [9] was run on the receiver to generate HTTP requests to be served by
the sender. Surge was configured with the default settings based on analyses
in [10]. Traces were generated with ttcp while Surge was concurrently generating
traffic. The traces were captured by tcpdump as described previously. A 250ms
measurement interval was chosen for the self-clocking based method.

Figure 6 shows average RTT estimates when Surge is generating requests
from 0, 200, 400, 600, 800, 1000, and 1200 emulated Web users. The error bars
show the standard deviation of each set of estimates. Note that the initial 1s
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Fig. 6. RTT estimates with competing traffic from emulated Web users

period of server RTT estimates for each trace is discarded because the initial
estimates were influenced by preexisting state in the TCP implementation.

The average RTT estimates from the timestamp based method are all within
1ms of that of the server. They are all within 5ms for the self-clocking method.
High loss and retransmission rates were the principle causes of variation in the
estimates, especially in the traces with 200 and 400 emulated users. In fact, for
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the self-clocking based method, 9.7% of the 250ms measurement intervals could
not produce RTT estimates because no segments arrived during that time. Other
intervals had one or two segments–too few to produce accurate estimates. We
are currently investigating why traces with more than 600 emulated users had
lower loss rates. Considering the severity of the effects of congestion, our average
RTT estimates were very accurate.

6.3 Real Network Tests

To evaluate our RTT estimation methods on real networks, we performed FTP
downloads from seven sites (Table 2). Traces were captured for the FTP data
streams on the client with tcpdump. A measurement interval of 500ms was cho-
sen for the self-clocking based method to accommodate possible RTTs up to
250ms. Note that RTT estimates for the servers’ TCP implementations are not
available since we do not have access to these machines. ICMP ping times were
captured for reference at a later date than the traces. The RTT for the Sun
server appears to have changed after the traces were taken. For the Intel server,
the 100ms timestamp granularity was too coarse, so no valid RTT estimate could
be produced. The Intel server also did not respond to ping requests.

Table 2. RTT estimates in ms for FTP downloads

Site Ping Timestamps Method Self-Clocking Method
Avg. Min. Max. Avg. Min. Max.

ftp10.us.freebsd.org 97.6 98.7 97.9 134.5 98.1 98.0 99.0
ftp.cs.washington.edu 59.7 62.0 60.7 87.0 60.0 60.0 60.0
ftp.cs.stanford.edu 62.4 65.3 64.0 99.9 65.1 65.0 66.0
ftp.jriver.com 60.5 75.3 60.6 101.6 75.7 40.0 150.0
docs-pdf.sun.com 90.7 52.2 51.7 61.4 50.0 50.0 50.0
ftp.cs.uiuc.edu 20.7 21.5 21.2 24.4 20.0 20.0 20.0
download.intel.com — 110.6 98.2 127.1 — — —

The estimates for the self-clocking based method were very accurate. With the
exception of one trace, the minimum and maximum estimates differed by at most
1ms. The maximum difference between the average self-clocking based estimate
and the average timestamp based estimate was 2.2ms for the Sun trace, which
had a high 10ms timestamp granularity. The 150ms estimate for JRiver trace
from the self-clocking based method was caused by a single missed harmonic
frequency. Similarly, the low 40ms was caused by two consecutive measurements
during a series of half-RTT bursts.

Despite some of the high maximum estimates for the timestamp based meth-
od, the number of large estimates were few. The highest coefficient of variation
was only 0.11% for the JRiver trace. While many of the other RTT estimates
from the timestamp based method are affected by a few outliers, estimates for
this trace have a more scattered distribution in both directions from the mean.
This suggests that our method is detecting actual small-scale variations in RTT
caused by conditions in the network route.
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Fig. 7. RTT estimates for Stanford FTP download

Figure 7 shows the passive RTT estimates for the FTP download from Stan-
ford as an example. Note that the timestamp based method is able to take many
samples, while samples from the self-clocking based method are limited by the
size of the measurement interval. All the estimates from the self-clocking based
method are either 65 or 66ms. Nearly all the estimates from the timestamps
based method are within 5ms of the average self-clocking estimate. Only two
estimates larger than 70ms exist, which were likely caused by sender delay.

7 Conclusions

We have presented two new methods for passive estimation of round-trip times
for bulk TCP transfers. These RTT estimations can be made at an interior point
along the network route. One method uses TCP timestamps to locate segments
from a bulk data sender that arrive one RTT apart, while the other detects
patterns caused by self-clocking that repeat every RTT. Both methods can be
used throughout the lifetime of a TCP session. The timestamp based method
can be used for symmetric routes, while the self-clocking based method works
for both symmetric and asymmetric routes.
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Detecting Duplex Mismatch on Ethernet
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Abstract. IEEE 802.3 Ethernet networks, a standard LAN environ-
ment, provide a way to auto-negotiate the settings of capacity (10, 100,
or 1000 Mb/s) and duplex (full- or half-). Under certain conditions de-
scribed below, the auto-negotiation protocol fails to work properly. The
resultant configuration problem, duplex mismatch, appears to be com-
mon; when this problem occurs, the connectivity is impaired, but not
completely removed. This can result in performance problems that are
hard to locate.

This paper describes a work in progress aimed at (i) studying the con-
dition of duplex mismatch in IEEE 802.3 Ethernet networks, (ii) produc-
ing an analytical model of duplex mismatch, (iii) validating the model,
(iv) studying the effects of duplex mismatch on TCP throughput, (v) de-
signing an algorithm for duplex mismatch detection using data from
active testing, and (vi) incorporating the detection algorithm into an
existing open-source network troubleshooting tool (NDT).

1 Introduction

Ethernet duplex mismatch is a condition that occurs when two devices commu-
nicating over an IEEE 802.3 Ethernet link (typically, a host and a switch) do
not agree on the duplex mode of the direct Ethernet connection between them;
the switch might operate as if the connection were full-duplex with the host
operating in half-duplex mode, or vice versa (section 2 describes the condition
in more detail). Duplex mismatch causes some packets to be lost (see section 3)
and, in many cases, leads to serious performance degradation (see section 4.2).
Section 5 discusses soft failures similar to duplex mismatch. Section 6 describes
an algorithm to detect a duplex mismatch condition by observing the behavior of
the network when test traffic is injected, and describes integrating the detection
algorithm into our existing network testing system.

2 Problem Description

The IEEE 802.3 Ethernet specifications [1] define a set of Media Access Control
(MAC) protocols that are the standard for Local Area Networks (LANs) used

� This work was supported by contract 467-MZ-401761 from the National Library of
Medicine.
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around the world. The original protocol was developed for communications over
shared media and uses the Carrier Sense Multiple Access with Collision Detec-
tion (CSMA/CD) protocol to arbitrate access to the shared media. That the
media is shared means that a host could either transmit or receive data at any
given time (in other words, devices operate in a half-duplex mode). Later en-
hancements define how devices can communicate over a wide variety of co-axial,
twisted-pair, and fiber-optic cables. The twisted-pair and fiber-optic cable pro-
tocols allow for development of switched network environments—enabling a de-
vice to simultaneously transmit and receive data (thus, operating in a full-duplex
mode). All IEEE 802.3-compliant implementations (10-, 100-, and 1000-Mb/s)
must support half-duplex operations and may support full-duplex operations.

2.1 Half-Duplex Ethernet Operation

To reliably operate in the half-duplex mode ([1], section 4.1), it is necessary
to specify how a device should operate when several devices attempt to trans-
mit simultaneously (a collision event is said to occur when this happens). The
CSMA/CD protocol is used to resolve collisions: in half-duplex mode, an inter-
face will monitor the Carrier Sense (CS) flag at all times to determine if any
device is transmitting data on the network; when the local device has data to
send, these data pass through one or more upper-layer protocols and finally ar-
rive at the local interface layer where they are encapsulated into an Ethernet
frame. The transmitting interface checks the CS flag and, if it is true, holds the
frame in the transmit queue. When the CS flag becomes false, an inter-frame
gap (IFG) timer is started. When this timer expires, the frame is transmitted
onto the network. While the frame is being transmitted, the interface moni-
tors the outgoing data to detect if another device has also started to transmit.
This Collision Detection (CD) algorithm improves network efficiency by stop-
ping transmissions when they are obviously corrupted. The CSMA/CD protocol
also prescribes a way to retransmit frames after the collision is detected.

Two types of collisions may be detected by the transmitting interface. A slot
time is defined as the time it takes to transmit the first 64 octets (512 octets
for 1000-Mb/s interfaces) of the frame. A normal collision will occur within
the slot time period, a late collision will occur from the end of the slot time
to the end of the frame. If no collision is detected within the slot time, the
transmitting interface is said to have captured the network. If a normal collision
is detected, an interface will halt its transmission, broadcast a jamming signal to
ensure the collision is detected by other devices, and then wait a pseudo-random
time before attempting to transmit again. A host that detects a late collision
will still stop transmitting its frame and discard the incoming frame. At speeds
up to 100 Mb/s, the standard does not make it mandatory to retransmit the
outgoing frame (this is implementation-specific); at 1000 Mb/s, the frame shall
be discarded. Late collisions should not occur on a properly operating network.

2.2 Full-Duplex Ethernet Operation

With the introduction of the 10BASE-T specification for 10-Mb/s twisted-pair
media ([1], section 14.1.2), full-duplex operation over switched network connec-
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tions became possible. In switched mode, a network link capable of transmitting
and receiving data simultaneously is dedicated to each device in the network.
This usually means that two twisted-pair copper or fiber-optic cables are used
create a bidirectional network link. This operating mode offers several advan-
tages over half-duplex operation: a device can transmit data whenever they are
available, thus improving performance; in addition, the need for CSMA/CD van-
ishes, thus simplifying the operation and making it ostensibly more robust.

When a device has data to send in full-duplex mode ([1], section 4.1), an
Ethernet frame is created and placed in the transmit queue. The frame at the
head of the queue is transmitted after the expiration of the IFG timer. Since
collisions are impossible, a higher throughput can be achieved; the interface can
also stop monitoring the CS and CD flags.

2.3 Auto-Configuration on Ethernet

In addition to operating in full- or half-duplex mode, the IEEE 802.3 specifi-
cations ([1], section 28.2) describe how a device can configure itself to operate
in an unknown environment by use of a negotiation protocol that detects the
capacity and duplex settings. The protocol uses an out-of-band pulse-code se-
quence based on the 10BASE-T link integrity test pulses. This string of closely
spaced pulses, the Fast Link Pulse (FLP) burst, encodes the operating modes
that each interface is capable of supporting into a Link Code Word (LCW).

The protocol operates thusly: at power-on, after a physical cable is con-
nected, or after a management command is received, the interface enters the
auto-negotiation phase. At this time, the interface starts sending FLP bursts to
the remote interface and listening for incoming FLP bursts. An old 10BASE-T-
only interface will begin sending only single Normal Link Pulses (NLP), indi-
cating it does not support the auto-negotiation function. The receiving interface
measures the interval between NLP pulses to differentiate between the NLP and
FLP bursts. If the FLP bursts are detected, then the Auto-Negotiate flag in
the Media Independent Interface (MII) control register is set to true and the
auto-negotiation process continues. If the FLP bursts are not detected, auto-
negotiation is disabled and the interface is brought up in its default state.

The default parameter settings ([1], section 22.2.4) determine how the inter-
face will operate if auto-negotiation fails (the interface will set the interface to
the highest possible speed and half-duplex).

Upon receipt of three consecutive and consistent LCWs, the receiving inter-
face will respond by setting the ack bit in the transmitted LCWs and the MII
control register to true. The receipt of three consecutive and consistent LCWs
with the ack bit set indicates that the peer interface has received the negoti-
ation parameters and is ready to complete the negotiation process. The mode
priority ([1], annex 28b.3) settings determine how the auto-negotiation process
determines which speed and duplex setting to use. This process prefers the high-
est performance capability that both interfaces support, so 100 Mb/s is preferred
over 10 Mb/s and full-duplex is preferred over half.

In addition to the auto-negotiation protocol, an auto-sense protocol ([1], sec-
tion 28.2.3.1) can detect 100BASE-TX, 100BASE-T4, and 10BASE-T interfaces
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that do not support the auto-negotiation protocol. In this situation, an interface
that receives an NLP signal will use the link integrity test functions to detect the
speed of the peer interface. While speed and media type (TX or T4) is detected,
only half-duplex operations are supported by this protocol.

Some older (or cheaper) network interface cards support only half-duplex
mode; most modern cards support both auto-negotiation and manual configu-
ration modes. It should be noted that the speed and duplex settings chosen by
an interface are never explicitly communicated to the peer interface. We believe
this lack of robustness makes the auto-negotiation protocol susceptible to errors
that can cause operational problems on real networks.

2.4 Duplex Mismatch

While auto-configuration makes connecting to the network easier, it can lead to
major performance problems when it fails, as it sometimes does [2]. If the two
sides of a Fast Ethernet connection disagree on the duplex mode (i.e., one is
using full- and the other is using half-), a duplex mismatch is said to occur.

A duplex mismatch can happen in one of these ways (among others), but the
symptoms seen by the hosts will be the same regardless of the cause:

1. One card is hard-coded to use full-duplex and the other is set to auto-
negotiate: the hard-coded side will not participate in negotiation and the
auto-negotiating side will use its half-duplex default setting;

2. The two cards are hard-coded to use different duplex modes;
3. Both cards are set to auto-negotiate, but one or both of them handles auto-

negotiation poorly [3, 4]; note that, in this case, the problem can occur spo-
radically and rebooting or resetting the interface on either side could clear
the condition.

3 Predicted Behavior

When duplex mismatch happens, a peculiar breakdown in communication oc-
curs. Denote the interface that thinks that the connection is in full-duplex mode
F and the interface that thinks that the connection is in half-duplex mode H.

3.1 Model of the Pattern of Layer-3 Packet Loss

Denote the propagation delay between H and F by δ (in seconds),1 the period
of time after starting to send during which H will retransmit in case of collision
by ξ (in seconds),2 and the capacity of the link by c (in bits/second). Let us
consider the two directions separately.

1 The standard requires that cables not exceed 100 m in length; this means that δ ≤
0.5 μs for 100-Mb/s Ethernet.

2 Note that ξ is determined by a specific interface card model. The standard guar-
antees that for 10- and 100-Mb/s Ethernet, ξ ≥ 512/c; for 1000-Mb/s Ethernet,
ξ = 4096/c = 4096/109 ≈ 4.1 μs.
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F → H Duplex mismatch can cause loss in this direction (but no extra delays
can be introduced, as F never delays frames in its transmit queue and never
retransmits frames). Suppose that a frame is being sent in this direction at time
tF . It will be lost if and only if it starts arriving at H while H is sending: i.e.,
there exists a frame of size m (in bits) sent by H at time tH such that

tH < tF + δ < tH + m/c. (1)

H → F Duplex mismatch can cause loss in this direction for three reasons:

(i) Non-recoverable collision loss. Suppose a frame of size m (in bits) is being
sent by H at time tH . This frame will be lost if and only if there exists a
frame sent by F at time tF such that

tH + ξ < tF + δ < tH + m/c. (2)

(ii) Buffer overrun loss. If the link F → H is not idle long enough for H to drain
its transmit queue, the queue will overflow and packets will be lost. If the
average rates at which F and H are sending are cF and cH , loss will always
happen if

cF + cH > c. (3)

Note: Since H can spend considerable time idle due to exponential back-off,3

buffer overrun loss can occur even if condition 3 does not hold.
(iii) Excessive collision loss. A frame will be lost if a collision occurs more than

16 times when H attempts to retransmit the frame.

In addition, delays can be introduced by H waiting for the network to go idle
before sending and by retransmitting. The more traffic goes in the F → H
direction, the more traffic going in the H → F direction will be delayed.

3.2 Manifestation of Duplex Mismatch in the Case of UDP

Using UDP per se imposes no particular sending schedule. For the purposes of
producing verifiable predictions made by our model, the case of Poisson streams
is considered in this section; this case is easy to analyze and, therefore, the
verification of the predictions will help validate the model.

Assume that two Poisson streams of frames are injected into the system for
transmission by the interfaces. The average rate of the streams are cF and cH (in
bits/second, as above). Since F never delays packets, the stream that leaves F
is Poisson. Let us consider the situation when cF � c and cH � c. In this case,
the stream leaving H is not disturbed to a large extent and can be approximated
by a Poisson stream.

Our model then predicts loss in F → H direction, pF , to be

pF =
cH

c
. (4)

3 For attempt n, the delay is a uniformly distributed pseudo-random integer between
0 and 2min(n,10) − 1, multiplied by slot time.
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In the H → F direction, since cF + cH � c, buffer overrun loss will never
occur (cf. condition 3). Excessive collision loss rate, (cF /c)16, will be negligible.
Further, denote the size of packets that leave H by m. We have:

pH =
cH

c
max

(
0, 1 − cξ

m

)
. (5)

Note: Formula 5 allows one to measure ξ externally by observing max(0, 1−cξ/m)
(the proportion of bits in frames sent by H that are transmitted later than
ξ seconds after start of frame transmission).

3.3 Manifestation of Duplex Mismatch in the Case of TCP

TCP is a reliable transport protocol that uses ack packets to control the flow
of data between two Internet nodes. Only unidirectional TCP data flows with
acks flowing in the opposite direction are considered. Denote the interface on
whose side the TCP sender is located S, and the interface on whose side the TCP
receiver is located R.4 In bulk transfer mode, a stream of MTU-sized packets
will go from S to R and a stream (with typically half as many packets per second
when delayed acks are used) of small packets containing TCP acks will go from
R to S. Acks are cumulative: if an ack is lost and a subsequent ack is delivered,
the same information is conveyed (and the effect of the missed increment of the
TCP congestion window is minimized). Denote the period of time it takes the
receiver to generate an ack, and for this ack to reach interface R, by Δ.

Since, with TCP, packets flow in both directions, there is a potential for
collisions and loss during normal TCP operation on a link with duplex mismatch.
Consider the case when TCP is not in a timeout state and congestion window
is not too small (at least a few packets). If the network path between the sender
and the receiver does not contain any tight links, then the arrival of several
back-to-back TCP data packets should cause a collision and a loss event will
occur.

For simplicity, consider two cases where a single duplex mismatch condition
exists on the last hop of the network path (e.g., next to the user’s computer):5

1. S = F , R = H: The interface R will obey the CSMA/CD protocol and
refrain from transmitting while a frame is being received. It will also detect
and re-transmit frames when collisions occur using the proper collision slot
time (defined in 2.1). The interface S will follow the full-duplex protocol
and transmit frames whenever they become available without checking for
frames on the receive circuit. Collisions will be ignored by S and the entire
packet transmission time m/c will always be used.

4 Note that S and R are not the sender and receiver, but rather the two interfaces
on the sides of a link with duplex mismatch. Often, S could be on the sender or R
could be on the receiver, but for both to be true, the network path would need to
consist of exactly one layer-2 hop.

5 Only data and ack packets from a single TCP flow are considered.
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When gaps between data packets are wider than Δ, ack packets will be
transmitted and will arrive at the sender for processing by the TCP stack.
When gaps between data packets are less than Δ, a collision could occur.
Consider the case during slow start when the congestion window (cwnd) on
the sender reaches four packets; the sender could have four data packets to
transmit back-to-back. After receiving two data packets, the receiver would
generate an ack. The interface R will receive this ack in time Δ, attempt
to transmit it to S, and find that S is currently transmitting the third data
packet, so R will delay the ack’s transmission. When this frame’s transmis-
sion completes, both R and S will wait an IFG time and simultaneously begin
to transmit (the fourth data packet and the ack packet) causing a collision
to occur. R will detect this collision and re-schedule another retransmission,
but S will continue to blindly send the entire frame. This frame will be dis-
carded by R as corrupted due to the collision. The sender will detect and
handle this loss event.

In general, whenever cwnd on the sender increases enough to allow for
a burst of at least four packets to arrive at the receiver, the ack generated
in response to the first or second data packet in the burst will allow the
next packet to be delivered, but will cause all subsequent packets in the
burst to be lost; the ack itself will be delivered to S after the burst. TCP
would thus suffer from both inability to raise cwnd and timeouts caused
by multiple packet losses in a single RTT (whenever cwnd becomes large
enough). Empirically, TCP infrequently enters slow start in this case, since
cwnd remains small enough; the goodput obtained is thus better than that
in case 2.

The large number of lost data packets will cause the receiver to generate
a large number of duplicate acks. Thus, the TCP source node will receive a
larger number of ack packets than would normally be expected in a delayed
ack environment.

2. S = H, R = F : Consider the case where a burst of packets arrives at S
so that the next frame is ready to begin transmission before the previous
frame ends. The first two data packets will arrive at the receiver, which will
generate an ack packet. This packet will be transmitted during the receipt
of the third data packet if Δ is small enough. The switch will detect the
collision and abort the data transer, but the ack packet will be lost. If
Δ < ξ, then the data packet will be resent by S; otherwise, it will be lost.
This loss of acks not only has a detrimental effect on TCP throughput by
reducing the number of increments of cwnd, but also creates a situation
when the last ack for a burst is not received, thus causing the sender to
timeout and reenter slow start.

The large number of lost ack packets will mean that the sender will see
fewer acks then would otherwise be expected (about one ack per burst).
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4 Validation of Predictions

To validate the model of section 3, we create the duplex mismatch condition
artificially, send test traffic, and compare the results with predictions.

4.1 Validation with UDP Streams

Since the loss pattern created by duplex mismatch is complex, it is easier to
analyze first the results with simple synthetic traffic consisting of UDP packets.
Our model makes the following predictions (see section 3.2):

1. Unidirectional traffic (in either direction) will not suffer any loss;
2. When a small amount of traffic is sent in each direction as a Poisson stream,

loss is given by formulae 4 and 5.

Our UDP tests were run with a program thrulay (using option -u), which
had UDP mode added for the purposes of conducting these experiments.6 A
duplex mismatch condition was artificially created between a Linux host and
an Ethernet switch with mii-tool. A series of bidirectional 10-second UDP
tests were conducted between the host with the duplex mismatch condition and
another host connected to the same Ethernet switch. Both hosts were connected
at 100 Mb/s. The host without duplex mismatch was connected using full duplex.
The sending rate was varied from 1 Mb/s to 9 Mb/s on each side in 1-Mb/s
increments; 81 tests were run.

The results of these experiments are presented in figures 1 and 2. In figure 1,
the line predicted by equation 4, on which data points are expected to fall, is
shown; as can be seen, the match is quite good. In figure 2, data points for
any given value of cH are expected (in accordance with equation 5) to fall on
a horizontal line, which generally agrees with the observations. Prediction 2
thus holds. In might be of interest that indirectly, the value of ξ (inherent in
the Ethernet implementation of the HP switch we used in this experiment) is
measured here and it appear that the value is quite small—perhaps as small as
allowed by the standard.7

In addition, we conducted tests in each direction without opposing traffic; no
loss was observed during these tests, thus verifying prediction 1.

Formula 4 was only proven for cH � c and cF � c. However, empirically
(data not presented in this paper), this formula extends to values of cF /c as
large as 0.3 or even 0.4 and values of cH/c as large as 0.5.

6 Many network testing programs allow the use of a UDP mode. However, we found
no program that would generate a Poisson streams of packets that are sent with no
correlation with operating system’s time slice boundaries. Our tool can use a busy-
wait loop on the TSC timing register to effect a true Poisson stream. The program
is made freely available at http://www.internet2.edu/~shalunov/thrulay/.

7 The best match for the value of the term max
(
0, 1 − cξ

m

)
is about 0.93. For these

tests, we had m = 1518 B; therefore, ξ was large enough to cover about 106 B of
each packet.
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Fig. 1. Loss probability pF in the stream in F → H direction as a function of cH , the
rate of the stream going in the opposite direction. The prediction is based on equation 4

Fig. 2. Loss probability pH in the stream in H → F direction as a function of cH , the
rate of the stream
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4.2 Validation with TCP Streams

To validate the model developed in section 3.3, two types of tests were run.
One test used a pseudo-TCP stream consisting of a stream of UDP packets sent
back to back, with a small stream returning in the opposite direction; the other
involved actual TCP streams.

The ttcp test program was modified to perform these experiments. The
modifications involved having one host send a stream of 50 UDP packets to
another. Each packet contained a unique sequence number. The receiver was
modified to return a small UDP packet for every second packet received. This
simulates the typical mode of operation of the delayed ack algorithm found
in TCP implementations. This returned packet contained a unique sequence
number and a copy of the data packet sequence number that generated this
ack. As before, the mii-tool program was used to force one link into different
normal and mismatch states. The raw data was captured using the tcpdump
command.

An analysis of the resulting traces showed that there were two different mis-
match behaviors and two flavors of each behavior. These behaviors match the
predicted models described in section 3.3.

One behavior is when S = H and R = F . In this situation, most of the return-
ing ack packets are lost. Even though the receiver is generating and transmitting
them, only the final ack packet is recieved by the sender. The rest are lost due
to collisions with the arriving data packets. Depending on how late collisions are
handled, the data packets may be retransmitted or discarded. Thus, two flavors
of this behavior are observed.

The second behavior is when S = F and R = H. In this situation, the arriving
data packets are discarded due to collisions. The ack packets are delayed due to
numerous retransmission attempts. When the receiver’s local link is mismatched,
Δ is small, so the first ack is given back to the interface while data packet 3 is
being received. As predicted in section 3.3, data packets 4, 5, 6, 7 and 8 are lost
due to collisions as this frame is retransmitted over and over. Eventually, the
retransmit delay increases to a point where several data packets do get through,
causing more acks to be generated. These acks are queued behind the first ack
and can only be transmitted after a successful transmission (or if the maximum
retransmission count is exceeded).

A slightly different flavor of this behavior occurs when the mismatch link is
not the last link in the path. In this case the first collision will occur when the
ack has propagated back along the path to the point of the mismatch. In the
tests, the sender and receiver roles were exchanged but no changes were made to
the link with duplex mismatch. This resulted in data packets 6, 7, 8, 9, and 10
being lost. This shift exactly matches the extra time needed for the ack to
propagate back along the network path to the mismatched switch port.

For comparison purposes, the normal full-duplex and half-duplex operating
conditions were also tested. No exceptional loss or delay values were recorded.

While this simple test can demonstrate how the returning ack packets can
collide with data packets, it does not explain the complex dynamics of a real TCP
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Fig. 3. TCP trace with duplex mismatch, S = F and R = H

flow. We need to capture the retransmission and congestion control dynamics to
more completely describe the TCP behavior.

To examine the various normal and mismatch cases, a series of tests were run
using the existing NDT client/server program. The client’s link was configured
using the mii-tool program to simulate the expected configuration: where the
NDT server is properly configured but the client may have a mismatch condition.
The results of these test are described below.

Figure 3 shows the mismatch case with S = F . We begin the trace after the
NDT server has successfully sent several packets and a timeout occurred. Fol-
lowing the retransmission, an ack is received causing the rwin value to increase
and allowing more data to be sent. Two data packets are transmitted, and, fol-
lowing an RTT, the acks are returned. Note that after two RTTs a hole appears
due to a lost packet. The sender continues to inject new packets as ack arrive.
After three duplicate acks have arrived, the sender retransmitts the missing
data packet. The receipt of this packet fills in the hole and causes a large jump
in rwin. This process repeats for the entire 10 second test time.

The result is that throughput is limited by cwnd and the RTT of the end-to-
end path. Slight variations in packet arrival times can cause multiple packets to
be lost at the client. This increases the probability of a TCP rto event, further
decreasing in throughput.

When the mismatch condition is reversed such that S = H, an even greater
impact is seen on TCP throughput. As noted above, this condition will result
in ack packets being discarded. A typical trace shows that the NDT server
sends several back-to-back packets to the receiver. These packets are received,
but the returning ack is lost. The lack of an ack prevents the sender from
sending more packets into the network, thus preventing any more acks from
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being generated. The connection stalls until the TCP rto event occurs. This
causes the sender to resend what it thought were lost packets. When the first
retransmitted data packet is received, the receiver recognizes it as a duplicate
and immediately sends a duplicate ack. This ack causes two more packets to
be sent, another duplicate and a single new packet. When the receiver receives
the duplicate data packet, it sends another duplicate ack, which collides with
the third data packet. Thus, the ack is lost, but the data packet is successfully
received after a small delay. The loss of this ack causes another rto event to
occur, starting the entire process over again. TCP throughput in this situation
is limited by the numerous rto events.

5 Soft Failures Similar to Duplex Mismatch

Our goal is to develop a duplex mismatch detection algorithm that treats the
network as a black box. Both false positives and false negatives must be consid-
ered. A particularly harmful and insidious mode of false positive would be the
characterization of another soft failure condition as duplex mismatch: not only
would users waste their time not solving their real problem, but they might,
while responding to perceived duplex mismatch diagnostics, change settings to
introduce duplex mismatch in a network that previously did not have one. For
example, when a copper twisted-pair cable is subtly damaged, cross-talk can oc-
cur; i.e., a signal transmitted on one wire induces a spurious signal on another.
Bit corruption during bidirectional transmission that occurs thusly could be
confused with duplex mismatch. Chief differentiators of cross-talk from duplex
mismatch are:

1. Cross-talk can affect unidirectional traffic; duplex mismatch cannot;
2. Duplex mismatch occurs deterministically; cross-talk corrupts bits randomly.

6 Detecting Duplex Mismatch in NDT

While other packet losses can cause the number of duplicate ack packets to
increase, the asymmetric throughput results are not observed. Thus we believe
that the combination of these two conditions is a reliable indicator of duplex
mismatch.

The Network Diagnostic Tool (NDT) [5] is an open-source software program
that uses a client/server approach to detect common network problems. The
server process communicates with a Java-based client program to generate a
series of TCP unidirectional data flows. The server also captures Web100 data
allowing it to delve into the depths of the TCP connection. By analyzing this
data, it is possible to determine if a duplex mismatch condition existed over
some portion of the network path.

The original NDT duplex mismatch detection heuristic was created after run-
ning a series of experiments in a testbed network environment. This environment
was expanded to encompass a campus network. This heuristic used the amount
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of time the connection spent in the congestion window limited case, the num-
ber of packets retransmitted per second, and the throughput predicted by the
MTU/RTT

√
p formula. A later modification was made to ignore cases when the

client was located behind a tight link (cable modem or DSL circuit).
A new algorithm that takes advantage of the analytical model described in

this paper has now been incorporated into the NDT tool. Web100 [6] variables
can be used to perform duplex mismatch detection thusly: The NDT server
generates two test streams sequentially, one on each direction, to measure TCP
throughput. Each stream is monitored to determine the path capacity. Thus, we
have two TCP throughput measurements and an estimate of the tight link in
the end-to-end path.

Duplex mismatch causes major disruptions to a TCP flow. The generation
and transmission of ack packets in direct response to received data packets
increases the probability of a collision. Once this happens, either the data or
the ack packet will be lost and the other delayed by the CSMA/CD algorithm.
However, TCP is a reliable transport protocol, so it will retransmit lost data
packets. These retransmission will cause the receiver to generate more duplicate
acks per data packet compared to one delayed ack for every other data packet.

The Web100 variables are captured on the NDT server only in the case where
the NDT server is sending data to the client. The two duplex mismatch cases
can now be examined.8

If the client is the receiver and the mismatch condition is such that R = H,
then numerous data packets will be lost. The original transmission and an subse-
quent retransmissions will cause the Web100 DataPktsOut counter to increment.
In addition, the loss of individual packets will cause the client to generate a large
number of duplicate acks. The Web100 AckPktsIn counter will be incremented
every time a new or duplicate ack is received. Thus, the ratio of data packets
transmitted vs ack packets received will skew away from 2:1 towards more acks.
As noted above, throughput will be a function of cwnd and RTT.

If the client is the receiver, R = F , and S = H, then numerous ack packets
will be lost. In addition, a large number of packets will be retransmitted and
a large number of timeouts will occur. This will skew the data packet vs ack
packet ratio in the opposite direction from that described above. Thus, a ratio
of more than 2:1 is expected. TCP throughput will be dramatically affected due
to the large number of rto events.9

This means that we can create a reliable duplex mismatch detection algorithm
by combining the asymmetric throughput with the skewed ack:data packet ratio.

At present, we are collecting data to validate these predictions and results.
NDT servers at several locations are gathering data from production environ-
ments. We will analyze the log files produced and compare the results with the
observations from the NDT administrator. Our presentation will describe the
results of this effort.

8 In each case, the TCP flow in the opposite direction will exhibit the other mismatch
behavior.

9 The NDT tool will display both conditions as it runs two unidirectional tests.
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7 Conclusions

Duplex mismatch is an insidious condition, undetectable with such simple net-
work operation tools as ping. It can affect a user’s performance for weeks or
months before it is detected. A model of duplex mismatch is described and a
detection algorithm is proposed. The algorithm is implemented in the NDT.
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Abstract. Topology discovery systems are starting to be introduced in
the form of easily and widely deployed software. However, little consid-
eration has been given as to how to perform large-scale topology dis-
covery efficiently and in a network-friendly manner. In prior work, we
have described how large numbers of traceroute monitors can coordinate
their efforts to map the network while reducing their impact on routers
and end-systems. The key is for them to share information regarding the
paths they have explored. However, such sharing introduces considerable
communication overhead. Here, we show how to improve the communi-
cation scaling properties through the use of Bloom filters to encode a
probing stop set. Also, any system in which every monitor traces routes
towards every destination has inherent scaling problems. We propose cap-
ping the number of monitors per destination, and dividing the monitors
into clusters, each cluster focusing on a different destination list.

1 Introduction

We are starting to see the wide scale deployment of tools based on traceroute [1]
that discover the Internet topology at the IP interface level. Today’s most exten-
sive tracing system, skitter [2], uses 24 monitors, each targeting on the order of
one million destinations. Other well known systems, such as RIPE NCC TTM [3]
and NLANR AMP [4], conduct a full mesh of traceroutes between on the order
of one- to two-hundred monitors. An attempt to scale either of these approaches
to thousands of monitors would encounter problems from the significantly higher
traffic levels it would generate and from the explosion in the data it would collect.
However, larger scale systems are now coming on line.

If a traceroute monitor were incorporated into screen saver software, following
an idea first suggested by Jörg Nonnenmacher (see Cheswick et al. [5]), it could
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lead instantaneously to a topology discovery infrastructure of considerable size,
as demonstrated by the success of other software distributed in this manner,
most notably SETI@home [6]. Some network measurement tools have already
been released to the general public as screen savers or daemons. Grenouille [7]
was perhaps the first, and appears to be the most widely used. More recently
we have seen the introduction of NETI@home [8], and, in September 2004, the
first freely available tracerouting monitor, DIMES [9].

In our prior work [10], described in Sec. 2 of this paper, we found that stan-
dard traceroute-based topology discovery methods are quite inefficient, repeat-
edly probing the same interfaces. This is a concern because, when scaled up, such
methods will generate so much traffic that they will begin to resemble distributed
denial of service (DDoS) attacks. To avoid this eventuality, responsibly designed
large scale systems need to maintain probing rates far below that which they
could potentially obtain. Thus, skitter maintains a low impact by maintaining a
relatively small number of monitors, and DIMES does so by maintaining a low
probing rate. The internet measurement community has an interest in seeing
systems like these scale more efficiently. It would also be wise, before the more
widespread introduction of similar systems, to better define what constitutes
responsible probing.

Our prior work described a way to make such systems more efficient and less
liable to appear like DDoS attacks. We introduced an algorithm called Double-
tree that can guide a skitter-like system, allowing it to reduce its impact on
routers and final destinations while still achieving a coverage of nodes and links
that is comparable to classic skitter. The key to Doubletree is that monitors
share information regarding the paths that they have explored. If one monitor
has already probed a given path to a destination then another monitor should
avoid that path. We have found that probing in this manner can significantly
reduce load on routers and destinations while maintaining high node and link
coverage.

This paper makes two contributions that build on Doubletree, to improve the
efficiency and reduce the impact of probing. First, a potential obstacle to Dou-
bletree’s implementation is the considerable communication overhead entailed in
sharing path information. Sec. 3 shows how the overhead can be reduced through
the use of Bloom filters [11]. Second, any system in which every monitor traces
routes towards every destination has inherent scaling problems. Sec. 4 examines
those problems, and shows how capping the number of monitors per destination
and dividing the monitors into clusters, each cluster focusing on a different des-
tination list, enables a skitter-like system to avoid appearing to destinations like
a DDoS attack. We discuss related and future work in Sec. 5.

2 Prior Work

Our prior work [10] described the inefficiency of the classic topology prob-
ing technique of tracing routes hop by hop outwards from a set of monitors
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towards a set of destinations. It also introduced Doubletree, an improved probing
algorithm.

Data for our prior work, and also for this paper, were produced by 24 skit-
ter [2] monitors on August 1st through 3rd, 2004. Of the 971,080 destinations
towards which all of these monitors traced routes on those days, we randomly
selected a manageable 50,000 for each of our experiments.

Only 10.4% of the probes from a typical monitor serve to discover an interface
that the monitor has not previously seen. An additional 2.0% of the probes
return invalid addresses or do not result in a response. The remaining 87.6% of
probes are redundant, visiting interfaces that the monitor has already discovered.
Such redundancy for a single monitor, termed intra-monitor redundancy, is much
higher close to the monitor, as can be expected given the tree-like structure of
routes emanating from a single source. In addition, most interfaces, especially
those close to destinations, are visited by all monitors. This redundancy from
multiple monitors is termed inter-monitor redundancy.

While this inefficiency is of little consequence to skitter itself, it poses an
obstacle to scaling far beyond skitter’s current 24 monitors. In particular, inter-
monitor redundancy, which grows in proportion to the number of monitors, is
the greater threat. Reducing it requires coordination among monitors.

Doubletree is the key component of a coordinated probing system that signif-
icantly reduces both kinds of redundancy while discovering nearly the same set
of nodes and links. It takes advantage of the tree-like structure of routes in the
internet. Routes leading out from a monitor towards multiple destinations form
a tree-like structure rooted at the monitor. Similarly, routes converging towards
a destination from multiple monitors form a tree-like structure, but rooted at
the destination. A monitor probes hop by hop so long as it encounters previously
unknown interfaces. However, once it encounters a known interface, it stops, as-
suming that it has touched a tree and the rest of the path to the root is also
known.

Both backwards and forwards probing use stop sets. The one for backwards
probing, called the local stop set, consists of all interfaces already seen by that
monitor. Forwards probing uses the global stop set of (interface, destination) pairs
accumulated from all monitors. A pair enters the stop set if a monitor visited
the interface while sending probes with the corresponding destination address.

A monitor that implements Doubletree starts probing for a destination at
some number of hops h from itself. It will probe forwards at h + 1, h + 2,
etc., adding to the global stop set at each hop, until it encounters either the
destination or a member of the global stop set. It will then probe backwards at
h − 1, h − 2, etc., adding to both the local and global stop sets at each hop,
until it either has reached a distance of one hop or it encounters a member of
the local stop set. It then proceeds to probe for the next destination. When it
has completed probing for all destinations, the global stop set is communicated
to the next monitor.

The choice of initial probing distance h is crucial. Too close, and intra-monitor
redundancy will approach the high levels seen by classic forward probing tech-
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niques. Too far, and there will be high inter-monitor redundancy on destinations.
The choice must be guided primarily by this latter consideration to avoid having
probing look like a DDoS attack.

While Doubletree largely limits redundancy on destinations once hop-by-hop
probing is underway, its global stop set cannot prevent the initial probe from
reaching a destination if h is set too high. Therefore, we recommend that each
monitor set its own value for h in terms of the probability p that a probe sent h
hops towards a randomly selected destination will actually hit that destination.
Fig. 1 shows the cumulative mass function for this probability for skitter monitor
apan-jp. For example, in order to restrict hits on destinations to just 10% of

  0.00

  0.10

  0.20

  0.30

  0.40

  0.50

  0.60

  0.70

  0.80

  0.90

  1.00

 0  5  10  15  20  25  30  35  40

cu
m

ul
at

iv
e 

m
as

s

path length

Fig. 1. Cumulative mass plot of path lengths from skitter monitor apan-jp

initial probes, this monitor should start probing at h = 10 hops. This distance
can easily be estimated by sending a small number of probes to randomly chosen
destinations.

For a range of p values, Doubletree is able to reduce measurement load by
approximately 70% while maintaining interface and link coverage above 90%.

3 Bloom Filters

One possible obstacle to successful deployment of Doubletree concerns the com-
munication overhead from sharing the global stop set among monitors. Tracing
from 24 monitors to just 50,000 destinations with p = 0.05 produces a set of
2.7 million (interface, destination) pairs. As 64 bits are used to express a pair of
IPv4 addresses, an uncompressed stop set based on these parameters requires
20.6 MB. This section shows that encoding the stop set into a Bloom filter [11]
can reduce the size by a factor of 17.3 with very little loss in node and link cover-
age. Some additional savings are possible by applying the compression techniques
that Mitzenmacher describes [12]. Since skitter traces to many more than 50,000
destinations, a skitter that applied Doubletree would employ a larger stop set.
Exactly how large is difficult to project, but we could still expect to reduce the
communication overhead by a factor of roughly 17.3 by using Bloom filters.

A Bloom filter encodes information concerning a set into a bit vector that
can then be tested for set membership. An empty Bloom filter is a vector of all
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zeroes. A key is registered in the filter by hashing it to a position in the vector
and setting the bit at that position to one. Multiple hash functions may be used,
setting several bits set to one. Membership of a key in the filter is tested by
checking if all hash positions are set to one. A Bloom filter will never falsely
return a negative result for set membership. It might, however, return a false
positive. For a given number of keys, the larger the Bloom filter, the less likely
is a false positive. The number of hash functions also plays a role.

To evaluate the use of Bloom filters for encoding the global stop set, we
simulate a system that applies Doubletree as described in Sec. 2. The first mon-
itor initializes a Bloom filter of a fixed size. As each subsequent monitor applies
Doubletree, it sets some of the bits in the filter to one. A fixed size is necessary
because, with a Bloom filter, the monitors do not know the membership of the
stop set, and so are unable to reencode the set as it grows.

Our aim is to determine the performance of Doubletree when using Bloom
filters, testing filters of different sizes and numbers of hash functions. We use the
skitter data described in Sec. 2. A single experiment uses traceroutes from all
24 monitors to a common set of 50,000 destinations chosen at random. Hashing
is emulated with random numbers. We simulate randomness with the Mersenne
Twister MT19937 pseudorandom number generator [13]. Each data point rep-
resents the average value over fifteen runs of the experiment, each run using a
different set of 50,000 destinations. No destination is used more than once over
the fifteen runs. We determine 95% confidence intervals for the mean based, since
the sample size is relatively small, on the Student t distribution. These intervals
are typically, though not in all cases, too tight to appear on the plots.

We first test p values from p = 0 to p = 0.19, a range which our prior work
identified as providing a variety of compromises between coverage quality and
redundancy reduction. For these parameters, the stop set size varies from a low
of 1.7 million pairs (p = 0.19) to a high of 9.2 million (p = 0). We investigate
ten different Bloom filter sizes: 1 bit (the smallest possible size), 10, 100, 1,000,
10,000, 100,000, 131,780 (the average number of nodes in the graphs), 279,799
(the average number of links), 1,000,000, 10,000,000 and, finally, 27,017,990.
This last size corresponds to ten times the average final global stop set size
when p = 0.05. We test Bloom filters with one, two, three, four, and five hash
functions. The aim is to study Bloom filters up to a sufficient size and with a
sufficient number of hash functions to produce a low false positive rate. A stop
set of 2.7 million pairs encoded in a Bloom filter of 27 million bits using five hash
functions, should theoretically, following the analysis of Fan et al. [14–Sec. V.D],
produce a false positive rate of 0.004.

3.1 Bloom Filter Results

The plots shown here are for p = 0.05, a typical value. Each plot in this section
shows variation as a function of Bloom filter size, with separate curves for varying
numbers of hash functions. The abscissa is in log scale, running from 100,000
to 30 million. Smaller Bloom filter sizes are not shown because the results are
identical to those for size 100,000. Curves are plotted for one, two, three, four,
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and five hash functions. Error bars show the 95% confidence intervals for the
mean, but are often too tight to be visible.

Fig. 2 shows how the false positive rate varies as a function of Bloom filter
size. Ordinate values are shown on a log scale, and range from a low of 0.01% to
a high of 100%. The figure displays two sets of curves. The upper bound is the
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Fig. 2. Bloom filter false positive rate

false positive rate that one would obtain from a Bloom filter of the given size,
with the given number of hash functions, encoding the global stop set at its final
size, and presuming that any possible key is equally likely to be tested. This is
an upper bound because the number of elements actually in the stop set varies.
The first monitor’s Bloom filter is empty, and it conducts the most extensive ex-
ploration, never obtaining a false positive. Successive monitors encounter higher
false positive rates, and the value that results from an experiment is the rate
over all monitors. The false positive rate should also differ from the theoretic
bound because all keys are not equally likely. We would expect a disproportion-
ate number of set membership tests for interfaces that have high betweenness
(Dall’Asta et al. work [15] point out the importance of this parameter for topol-
ogy exploration).

Looking at the upper bounds, we see that false positives are virtually guar-
anteed for smaller Bloom filters, up to a threshold, at which point false positive
rates start to drop. Because of the abscissa’s log scale, the falloff is less dramatic
than it might at first appear. In fact, rates drop from near one hundred percent
to the single digit percentiles over a two order of magnitude change in the size
of the Bloom filter, between 2.8 × 105 and 2.7 × 107. The drop starts to occur
sooner for a smaller number of hash functions, but then is steeper for a larger
number of hash functions.

Based on an average of 2.7 × 106 (interface, destination) pairs in a stop set,
we find that the decline in the false positive rate starts to be perceptible at a
Bloom filter size of approximately 1/10 bit per pair encoded, and that it drops
into the single digit percentiles at approximately ten bits per pair encoded. This
translates to a range of compression ratios from 640:1 to 6.4:1.
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Looking at the experimental results, we find, as we would expect, that the
false positive rates are systematically lower. The experimental curves parallel
the corresponding upper bounds, with the false positive rate starting to decline
noticeably beyond a somewhat smaller Bloom filter size, 1.3 × 105, rather than
2.8×105. False positive rates are below one percent for a Bloom filter of 2.7×107

bits. We would expect to find variation in performance over the same range, as
the subsequent figures bear out.

The main measure of performance for a probing system is the extent to which
it discovers what it should. Fig. 3 shows how the node and link coverage varies as
a function of Bloom filter size. The ordinate values are shown on linear scales, and
represent coverage proportional to that discovered by skitter. A value 1.0, not
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Fig. 3. Coverage when using Bloom filters

shown on these scales, would mean that application of Doubletree with the given
Bloom filter had discovered exactly the same set of nodes or links as had skitter.
The introduction of Doubletree, however, implies, as we found in our prior work,
a reduction in coverage with respect to skitter, and this is irrespective of whether
Bloom filters are introduced or not. The straight horizontal line labeled list in
each plot shows the coverage that is obtained with a list of (interface, destination)
pairs instead of a Bloom filter, and thus no false positives. For the parameters
used here, p = 0.05 and 50,000 destinations, the coverage using a list is 0.924 for
nodes and 0.823 for links.

The lowest level of performance is obtained below a Bloom filter size of 105,
the point at which the false positive rate is at its maximum. Note that the
lowest level of performance is not zero coverage. The first monitor conducts
considerable exploration that is not blocked by false positives. It is only with
subsequent monitors that a false positive rate close to one stops all exploration
beyond the first probe. Baseline coverage is 0.857 for nodes and 0.636 for links.

The goal of applying Doubletree is to reduce the load on network interfaces
in routers and, in particular, at destinations. If the introduction of Bloom fil-
ters were to increase this load, it would be a matter for concern. However, as
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Fig. 4. Redundancy on 95th percentile interfaces when using Bloom filters

Fig. 4 shows, there seems to be no such increase. For both router interfaces and
destinations, these plots show the 95th percentile of redundancy, representing
the extreme values that should prompt the greatest concern. Ordinates are plot-
ted on linear scales. The ordinates in Fig. 4(a) specify the gross redundancy on
router interfaces: that is, the total number of visits to the 95th percentile inter-
faces. In Fig. 4(b), the ordinates specify the inter-monitor redundancy on the
95th percentile destinations: that is, the number of monitors whose probes visit
the given destination, the maximum possible being 24.

That Bloom filters seem to add no additional redundancy to the process is
a good sign. It is also to be expected, as false positive results for the stop set
would tend to reduce exploration rather than increase it, as Fig. 3 has already
shown. However, it was not necessarily a foregone conclusion. False positives
introduce an element of randomness into the exploration. The fact of stopping
to explore one path artificially early could have the effect of opening up other
paths to more extensive exploration. If this phenomenon is present, it does not
have a great impact.

4 Capping and Clustering

The previous section focused on one potential obstacle to the successful deploy-
ment of the Doubletree algorithm for network topology discovery: the communi-
cation overhead. This section focuses on another: the risk that probe traffic will
appear to destinations as a DDoS attack as the number of monitors scales up.
Doubletree already goes some way towards reducing the impact on destinations.
However, it cannot by itself cap the probing redundancy on all destinations.
That is why we suggest imposing an explicit limit on the number of monitors
that target a destination. This section proposes a manner of doing so that should
also reduce communication overhead: grouping the monitors into clusters, each
cluster targeting a subset of the overall destination set.
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As we know from our prior work, Doubletree has the effect of reducing the
redundancy of probing on destinations. However, we have reason to believe that
the redundancy will still tend to grow linearly as a function of the number
of monitors. This is because probing with Doubletree starts at some distance
from each monitor. As long as that distance is not zero, there is a non-zero
probability, by definition of p (see Sec. 2), that the monitor, probing towards a
destination, will hit it on its first probe. There is no opportunity for the global
stop set to prevent probing before this first probe. If there are m monitors
probing towards all destinations, then the average per-destination redundancy
due to these first probes will tend to grow as mp. To this redundancy will be
added any redundancy that results from subsequent probes, though this would
be expected to grow sublinearly or even be constant because of the application
of Doubletree’s global stop set.

There is a number of approaches to preventing the first probe redundancy on
destinations from growing linearly with the number of monitors. One would be
to only conduct traceroutes forward from the monitors. However, as discussed
in our prior work, this approach suffers from considerable inefficiency. Another
approach would use prior topological knowledge concerning the location of the
monitor and the destination in order to set the initial probing distance so as
to avoid hitting the destination. Such an approach indeed seems viable, and is
a subject for our future work. However, there are numerous design issues that
would need to be worked out first: Where would the topology information be
stored, and how frequently would it need to be updated? Would distances be cal-
culated on the basis of shortest paths, or using a more realistic model of routing
in the internet? Would there still be a small but constant per-monitor proba-
bility of error? A simpler approach, and one that in any case could complement
an approach based on topology, is to simply cap the number of monitors that
probe towards each destination.

If we are to cap the number of monitors per destination, we run the risk of
reduced coverage. Indeed, the results presented here show that if skitter were
to apply a cap of six monitors per destination, even while employing all 24
monitors and its full destination set, its node coverage would be 0.939 and its
link coverage just 0.791 of its normal, uncapped, coverage. However, within a
somewhat higher range of monitors per destination, the penalty associated with
capping could be smaller. Our own experience has shown that in the range up
to 24 monitors, there is a significant marginal utility in terms of coverage for
each monitor added. We also find that the marginal utility decreases for each
additional monitor, a phenomenon described in prior work by Barford et al. [16],
meaning that a cap at some as-yet undefined point would be reasonable.

Suppose, for the sake of argument, that skitter’s August 2004 level of 24
monitors per destination is sufficient for almost complete probing of the network
between those 24 monitors and their half million destinations. If that level were
imposed as a cap, then it would suffice to have 806 monitors, each probing at the
same rate as a skitter monitor, in order to probe towards one address in each of
the 16.8 million potential globally routable /24 CIDR [17] address prefixes. Most
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Fig. 5. Coverage when capping and clustering

of the additional discovery would presumably take place near the new monitors
and new destinations, rounding out an overall map of the network.

If capping is a reasonable approach, then the question arises of how to assign
monitors to destinations. It could be done purely at random. Future work might
reveal that a topologically informed approach provides better yield. However, one
straightforward method that promises reductions in communication overhead
is to create clusters of monitors within which all monitors target a common
destination set. This would allow the Doubletree global stop sets to be encoded
into Bloom filters, as described in Sec. 3, and shared within each cluster. There
would be no need to share between clusters, as no destinations would overlap.

We evaluate capping and clustering through experiments similar to those de-
scribed in Sec. 3. Using the same data sets as described in Sec. 2, we cap the
number of monitors per destination at 6. This means that each monitor traces to-
wards 1/4 of the destinations, or 12,500 destinations per monitor. We investigate
the effects on redundancy and coverage of the capping. We also investigate the
difference between capping with and without the clustering of monitors around
common destination sets.

Experiments for clustering and capping employ the methodology that is de-
scribed in Sec. 3. However, for capping, six monitors are chose at random for
each destination. For clustering, six monitors and 12,500 destinations are chosen
at random for each cluster. Each monitor appears in only one cluster, and each
destination appears in only one cluster.

4.1 Capping and Clustering Results

In these plots, we vary Doubletree’s single parameter, p, over its entire range,
from p = 0 to p = 1, with more measurements being taken in the range p < 0.2,
where most change occurs. The abscissa is in linear scale. Error bars, where
visible, show the 95% confidence intervals for the mean.

Fig. 5 shows how the average node and link coverage varies as a function
Doubletree’s parameter p. The ordinate values are shown on linear scales, and
represent coverage proportional to that which is discovered by skitter. A value
of 1.0 would mean that application of the given approach had discovered exactly
the same set of nodes or links as had skitter.
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Fig. 6. Redundancy on 95th percentile interfaces when capping and clustering

The straight horizontal line labeled capped skitter in each plot shows the
coverage that is obtained by a hypothetical version of skitter in which each
destination is assigned to just six monitors. The lines show the cost of capping
skitter at this level, as already discussed. The straight horizontal line labeled
clustered skitter in each plot shows what would be obtained by skitter if its
monitors were to be divided into four clusters. In both plots, the results are very
close. Clustered skitter has slightly better coverage than capped skitter, so there
is a small effect of promoting exploration due to restricting the global stop sets
to within clusters.

The curve labeled classic DT in each plot shows how uncapped, unclustered
Doubletree performs, and can be compared to the curves labeled capped DT and
clustered DT. As for skitter, the coverage for capping and clustering is slightly
better than for simply capping. While it appears that capping imposes significant
coverage costs when compared to an uncapped version, these plots alone do not
tell the entire story. To better understand the tradeoff we need to look at the
redundancy plots as well.

Fig. 6 show the 95th percentile of redundancy for internal interfaces and des-
tinations, in the same manner as in Fig. 4. Fig. 6(b) is of particular interest,
because the purpose of capping is to constrain redundancy on destinations. We
see that the maximum redundancy for the 95th percentile destination is indeed
maintained at six. But this was a foregone conclusion by the design of the ex-
periment. Much more interesting is to compare the parameter settings at which
both uncapped and capped Doubletree produce the same redundancy level. To
obtain a redundancy of six or less on the 95th percentile destination, uncapped
Doubletree must operate at p = 0.015. Capped Doubletree can operate at any
value in the range 0.180 � p � 1.

If the goal is to maintain a constant level of redundancy at the destinations,
the performance, in terms of coverage, of capped and uncapped Doubletree is
much closer than it initially appeared. Capped Doubletree can use a value of
p = 0.800 to maximise both its node and link coverage, at 0.920 and 0.753,
respectively. Uncapped Doubletree must use a value of p = 0.015, obtaining
values of 0.905 and 0.785. Capping, in these circumstances, produces a slightly
better result on nodes and a slightly worse on on links.
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If destination redundancy results similar to capping can be obtained simply
by operating at a lower value of p, then what is the advantage of capping? As dis-
cussed earlier, there is a penalty associated with conducting forward traceroutes
starting close to the monitor. The same router interfaces are probed repeatedly.
We see the effects in Fig. 6(a). The gross redundancy on the 95th percentile
router interface is 510 visits for uncapped Doubletree at p = 0.015. It is 156
for capped Doubletree at p = 0.800. Additional benefits, not displayed in plots
here, come from reduced communication costs. If Bloom filters are used to com-
municate stop sets, and monitors are clustered, then filters of a quarter the size
are shared within sets of monitors that are a quarter the size, compared to the
uncapped, unclustered case.

5 Conclusion

This paper addresses an area, efficient measurement of the overall internet topol-
ogy, in which very little related work has been done. This is in contrast to the
number of papers on efficient monitoring of networks that are in a single ad-
ministrative domain (see for instance, Bejerano and Rastogi’s work [18]). The
two problems are extremely different. An administrator knows their entire net-
work topology in advance, and can freely choose where to place their monitors.
Neither of these assumptions hold for monitoring the internet with screen saver
based software. Since the existing literature is based upon these assumptions,
we need to look elsewhere for solutions.

Some prior work has addressed strategies for tracing routes in the internet.
Govindan and Tangmunarunkit [19] proposed the idea of starting traceroutes
far from the source, and incorporated a heuristic based on it into the Mercator
system. No results on heuristic’s performance have been published.

A number of papers have examined the tradeoffs involved in varying the
number of monitors used for topological exploration of the internet. As previously
mentioned, Barford et al. [16] found a low marginal utility for added monitors
for the purpose of discovering certain network characteristics, implying that a
small number of monitors should be sufficient. However, Lakhina et al. [20] found
that this depends upon the parameters under study, and that small numbers of
monitors could lead to biased estimates. These biases have been further studied
by Clauset and Moore [21], Petermann and De Los Rios [22], and Dall’Asta et
al. [15]. Guillaume and Latapy [23] have extended these studies to include the
tradeoff between the number of monitors and the number of destinations.

We believe that, employing the heuristics described here, a system such as
skitter can be safely extended to a more widely deployed set of monitors, or a
system such as DIMES could safely increase its rate of probing. The next prudent
step for future work would be to test the algorithms that we describe here on an
infrastructure of intermediate size, on the order of hundreds of monitors. We have
developed a tool called traceroute@home that we plan to deploy in this manner.
While we have seen the potential benefits of capping and clustering, we are not
yet prepared to recommend a particular cluster size. Data from traceroute@home
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should allow us better to determine the marginal benefits and costs of adding
monitors to clusters.

We also plan further steps to reduce communication overhead and increase
probing effectiveness. One promising means of doing this would be to make use
of BGP [24] information to guide probing. We are collaborating with Bruno
Quoitin to incorporate his C-BGP simulator [25] into our studies.
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Abstract. At present, link layer topology discovery methodologies rely
on protocols that are not universally available, such as SNMP. Such
methodologies can only be applied to a subset of all possible networks.
Our goal is to work towards a generic link layer topology discovery
method that does not rely on SNMP. In this paper, we will present a new
link layer topology discovery methodology based on variable packet size
capacity estimation. We will also discuss the problems that arose from
preliminary testing where different brands of network cards affected the
capacity estimates used to detect serializations. As a result, topologically
equivalent links fail to be classified as such by the capacity estimation
tool. To circumvent this issue, non-VPS methods of capacity estimation
that utilise back to back packet pairs have been investigated as a cali-
bration technique.

1 Introduction

Most topology discovery research focuses on the network (or IP) layer, dealing
with host machines and routers. At present, there are a number of tools that can
successfully perform topology discovery in this capacity. By contrast, there are
few effective topology discovery tools that operate at the link layer. Most existing
tools utilise the Simple Network Management Protocol (SNMP) to perform link
layer topology discovery [1][2][3]. This is an effective and straightforward method
but it requires that SNMP agents are running on every node in the target network
and that the appropriate access strings are known. This is not always possible.
Other tools that operate at the link layer are manufacturer specific and, as a
result, are even more restricted than SNMP-based tools. The goal is to create
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a methodology for generic link layer topology discovery that does not rely on
SNMP.

Despite the lack of tools to automate the discovery process, knowledge of a
network’s topology at the link layer is important. Large scale Ethernet networks
linked by switches are becoming increasingly commonplace and it is difficult for
network operators to accurately keep track of all the devices in their network. A
link layer topology discovery tool could form part of a larger network manage-
ment suite that would create and maintain an accurate picture of the network’s
topology. The maintenance portion of the suite would be particularly useful for
spotting unauthorized devices and machines being added to the network, and for
troubleshooting by identifying failing link layer devices. The discovery portion
could be used to check for bottlenecks and redundancy (or a lack thereof), or to
generate a map of the network, which is very difficult to do manually for a large
network.

The lack of link layer topology discovery tools is due to the inherent trans-
parency of the link layer. Link layer devices cannot be communicated with,
queried, or interacted with by a remote computer (except via SNMP). This
means there is no direct way of discovering the existence of these devices. How-
ever, this does not rule out the use of a less direct method. An indirect method
would rely on the link layer devices affecting the performance of the network in
a manner that is detectable and consistent.

Fortunately, one particular class of link layer device imparts a detectable
effect upon any link in which such devices are present. Prasad, Dovrolis, and
Mah’s paper [4] on the effect of store and forward switches on variable packet
size (VPS) capacity estimation tools showed that switches caused VPS capacity
estimation tools to consistently underestimate link capacity. This effect can be
used to detect not only the presence of store and forward switches, but also
the quantity of switches and their capacities in the measured link. This effect is
limited to store and forward devices so the focus of the remainder of this paper
will be on this particular class of devices. In modern Ethernet networks, store
and forward switches are the most common type of link layer device so limiting
the scope to switches only is not unreasonable. Other link layer devices, such
as hubs, require a different method to discover and are the subject of future
research.

Initial testing showed that link layer topology can be inferred from VPS
capacity estimates, but it also introduced a more practical difficulty with the
methodology. Different brands of network interface cards cause VPS capacity
estimation tools to provide different estimates for otherwise equivalent links.
This is due to each brand of card having a slightly different processing delay for
differently sized packets, which appears as a variation in the initial serialization
delay at both ends of the link. To alleviate this problem, we have attempted
to use non-VPS capacity estimation techniques as a means of calibrating the
topology discovery system so that the variation in delay at the network cards is
factored out.
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The paper is organised as follows. Section 2 introduces variable packet size
capacity estimation and describes the underlying theories and techniques asso-
ciated with it. The effect of switches on VPS tools and how that effect can be
used to generate link layer topology information will also be discussed. Section 3
presents the results of putting the theory into practice. The practical problems
that arose from testing are described in Sect. 4 and the solutions we have inves-
tigated are detailed in Sect. 5. Section 6 concludes the paper with a discussion
of the current state of the methodology and future work in the area of link layer
topology discovery.

2 Variable Packet Size Capacity Estimation

Variable packet size (VPS) capacity estimation techniques utilize the relationship
between packet size, serialization delay, and capacity. The basic premise is that
serialization delay is proportional to the size of the packet being sent. The larger
the packet, the longer the serialization delay. The capacity of a link is the rate
at which bits can be inserted onto the physical medium and, hence, is directly
related to serialization delay. By measuring round trip times for different sized
packets, it is possible to calculate the ratio of change in packet size to change in
serialization delay. This ratio will describe the capacity of the measured link.

A potential problem with the VPS method is the possibility of other delays,
such as queuing, increasing the round trip time by a significant amount. The
potential effects of queuing are presented in Fig. 1. Any queuing is going to result
in a round trip time measurement that is not solely affected by serialization delay.
As such, an accurate capacity estimate cannot be made based on such skewed
round trip time measurements. To alleviate this, for each packet size numerous
packets are sent and the minimum round trip time is assumed to have been
unaffected by queuing or other delays. This technique has been standard in VPS
capacity estimation since pathchar [5]. VPS capacity estimation tools typically
allow the user to specify the number of packets to be sent for each packet size. In
situations where it is difficult to observe a minimum RTT, the number of probes
may be increased to compensate.

Propogation and processing delays are assumed to be constant. For the pro-
pogation delay, a change would normally indicate a change in path requiring
restarting of the topology discovery process. In the test network used, the dis-
tances are only tens of meters at most so the propogation delay is negligable.
The processing delay is assumed to be deterministic and constant. This has held
true for the switches we have tested, but not the end stations as we will discuss
in section 4.

Tools that use the VPS methodology to generate capacity estimates include
Van Jacobson’s pathchar [5], Mah’s pchar [6], and Downey’s clink [7]. Each tool
uses the same basic algorithm. A packet size is selected at random from a series
of possible packet sizes. A packet of that size that will generate a response from
the destination machine is created and sent. The round trip time for the packet
is then recorded. Once a packet from each possible size has been sent a certain
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Fig. 1. This graph shows the complete results of a typical pchar probe of a link. 32
packets were sent at each packet size and each packet size was 32 bytes apart. Note
the differences in round trip times between equally sized packets, often around half a
millisecond for many of the smaller packet sizes. These differences are often caused by
queuing. Taking the minimum round trip time at each packet size produces a smooth
straight line which describes the capacity of the link

number of times (this is usually specified by the user), the minimum round trip
time is calculated for each packet size. Using linear regression, the gradient of a
line that shows packet size versus round trip time can be calculated. Inverting
that gradient will give the estimated capacity of the link.

One major flaw with variable packet size capacity estimation is the fact that
such a method will significantly underestimate the capacity of any link that
contains store and forward link layer devices. As described in a paper by Prasad,
Dovrolis, and Mah [4], this effect is due to each store and forward device adding
an extra serialization into the link that is not accounted for by the capacity
estimation tool (see Fig. 2). VPS tools use the TTL field of a packet to determine
the number of hops in a link but link layer devices do not decrement the TTL
counter due to their transparency. From the perspective of the VPS tool, each
hop only contains one serialization, regardless of how many switches might be
present. However, the round trip time is multiplied by the number of extra
unnoticed serializations, making the link appear a lot slower than it really is.

For example, a link between two machines contains two store and forward
switches. Both the switches and the Ethernet adaptors on the machines are
operating at the same capacity. This link contains three serialization delays:
one at the originating host, and one for each switch. Each serialization delay
increases the round trip time of a packet sent across the link. Hence, the round
trip time for the link is approximately three times what it would be if there
were no switches in the link. This makes the gradient of the packet size versus
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Fig. 2. A demonstration of the effect of a switch on a link between two hosts. At
the network layer, it appears that the hosts are directly connected. At the link layer,
a switch basically splits the hop into two, creating an extra serialization delay. Since
VPS tools operate at the network layer, they do not take that serialization into account
when making capacity estimates, resulting in underestimation

round trip time line three times what it would normally be. This gradient, when
inverted, would produce a capacity estimate one-third the value of the nominal
capacity.

Although, this underestimation effect is a problem for capacity estimation, it
provides information regarding the presence of store and forward devices. If the
nominal capacity is known (or accurately estimated by another method) prior
to calculating a VPS capacity estimate, the degree of underestimation can be
used to infer the number of extra serializations and, as a result, the number of
link layer devices, within the link. The equation to convert a capacity estimate
into a quantity of serializations is:

Serializations =
nominal capacity

estimated capacity
(1)

Using the above equation gives the number of serializations including the original
serialization at the sending host. This equation works best when all the devices
are operating at the same capacity. If some of the serialization delays are of
different lengths, it is no longer a simple case of comparing the VPS estimate to
the nominal capacity. Fortunately, most Ethernet switches have capacities that
make it easier to detect the differing serialization delays.

The serialization delay of a 10 Mbps device is ten times that of a 100 Mbps
device. This relationship also holds between 100 Mbps devices and 1 Gbps de-
vices. As it is unlikely that a single hop will contain ten switches of the same
capacity, it is reasonable to assume that every ten serializations suggested by a
VPS estimate are actually a single serialization for a lower capacity device. By
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doing this, it is possible to quantify the capacities of the switches in the link, as
well as the number of switches. For example, if a VPS estimate suggests that a
link contains 11 100 Mbps serializations, it is more likely that the link contains
one 100 Mbps serialization and a single 10 Mbps serialization. Such assump-
tions work in practice because the capacities of Ethernet devices all differ by
a factor of 10. This would not be as straightforward if devices had capacities
of 5 Mbps, 14 Mbps, 37 Mbps, 96 Mbps, and 112 Mbps, as opposed to Ethernet
where 10 Mbps, 100 Mbps and 1 Gbps are the most common device capacities.
The assumption that there will be no more than ten switches in any given net-
work layer hop does not always hold true in practice. In such cases, it may be
possible to use contextual information such as topology information regarding
neighbouring links or prior knowledge of the network layout to correctly classify
links with many switches.

Using the method described above, it is possible to create a tool that probes
links using a VPS capacity estimation algorithm, infers the number of serializa-
tions in the link using the above equation and calculates the number of switches
present in those links. Rather than adapt an existing VPS capacity estimation
utility, such as pchar, a Python implementation of the VPS algorithm called
pychar was written to perform the probing of links. This has the advantage of
providing a tool that supports easy modification and expansion to suit the spe-
cific purposes of this project. pychar is also designed to be integrated into a
future topology discovery suite in an efficient and straightforward manner. py-
char is capable of using either ICMP or UDP to perform the probing, at least
one of which should be available on any Ethernet network.

3 pychar Results

Using the WAND emulation network [8], the performance of the pychar tool
and the validity of the underlying theory has been tested. The test network
(see Fig. 3) consists of seven host machines, all running Linux 2.4.20. Three
of the host machines are using Mikrotik 4 port Intel Pro100 Ethernet cards,
while the remaining four are using single port DSE Realtek 8139 based Ethernet
cards. All the cards are operating at 100 Mbps. The machines are connected via
three Gigabyte brand 5-port mini switches which are also operating at 100 Mbps.
Hence, all the links have a nominal capacity of 100 Mbps. Each machine is within
a single transport layer hop of each other, but the number of switches in each link
is between one and three. There are no hosts directly connected without at least
one switch between them. It is significant that all the devices at both the link
and network layers are operating at the same capacity, creating a straightforward
situation for initial testing. There is very little traffic operating on this network
at any given time, making it easy to gather minimum round trip time data that
is free of queuing delays.

Table 1 contains the results of sending probes from Machine 1 to all the other
machines in the test network. What these results show is that the basic theory
does prove to be correct in practice and that it is possible to approximate the
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Fig. 3. The topology of the test network

number of switches in any of the links using the technique described earlier. The
serialization estimates are not perfect, as there is a fractional component to each
of the estimates seen in the table. This is not an issue in this case, as there is
prior knowledge that all the devices are operating at the same capacity so any
fractional remainders can be ignored. In an environment where device capacities
are more varied, this could become a problem. This situation will be discussed
in Sect. 4.

Table 1. The results of sending pychar probes from Machine 1 to all the other machines
in the test network. When rounded to the nearest whole number, the estimated number
of serializations is equal to the actual number of serializations. This is ideal in situations
where all the serialization delays are the same length

Destination Estimated Nominal Estimated Actual
Machine Capacity (Kbps) Capacity (Kbps) Serializations Serializations

5 31704 100000 3.15 3
10 24124 100000 4.15 4
18 30708 100000 3.26 3
19 44640 100000 2.24 2
21 23540 100000 4.25 4
22 30764 100000 3.25 3

It is also important that topologically equivalent links, i.e. links that contain
the same number of serializations, produce equivalent capacity estimates when
probed by pychar. Table 2 presents pychar estimates for a number of different
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Table 2. pychar estimates for a selection of the two switch links in the test network.
The “From” column displays the machine number of the sending host and the “To”
column describes the receiving host. The letter in parentheses beside each machine
number represents the type of network card used by that host. M represents a Mikrotik
card whereas R represents a Realtek card. The rightmost column contains estimates
calculated where DAG cards were placed at both ends of the link to perform the timing.
This is discussed more in Sect. 5

From To Standard pychar pychar Estimate Using
Estimate (Kbps) DAG Cards (Kbps)

1 (M) 5 (M) 31726 49970
5 (M) 1 (M) 31860 50023
10 (M) 5 (M) 31689 50023
1 (M) 18 (R) 30721 50010
10 (M) 18 (R) 30707 50036
18 (R) 21 (R) 29786 49984
21 (R) 18 (R) 29738 49931
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Fig. 4. A graphical illustration of different estimates provided by pychar for topolog-
ically equivalent links. Each link depicted in the graph contains two switches but the
slopes of the lines are different, resulting in different capacity estimates

two switch links in the test network. The results show that topologically equiva-
lent links are producing different capacity estimates when probed by pychar. A
graphical view of this situation is presented in Fig. 4. Again, this is not an issue
in this particular case as it is known that all the devices are operating at the
same capacity. However, this problem will need to be dealt with to successfully
create a generic link layer topology discovery tool.
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4 pychar Problems

One problem with variable packet size capacity estimation is that the estimates
produced are not exactly what one might expect for any given link. For exam-
ple, given the theory of underestimation due to extra serializations presented
earlier in this paper, it is expected that a link with a nominal capacity of
100000 Kbps that contains three serializations would produce a capacity esti-
mate of 33333 Kbps (one third of the nominal capacity). Looking at Table 1,
it is apparent that the three links that match this profile give slightly different
estimates - 31704 Kbps, 30708 Kbps, and 30764 Kbps respectively.

This becomes significant when there is the possibility of higher capacity de-
vices being present in the link. A 1 Gbps serialization is one-tenth that of a
100 Mbps device. This means that a serialization quantity estimate of 3.25 for a
link with a nominal capacity of 100 Mbps, as seen in Table 1, not only suggests
three 100 Mbps devices, but also two 1 Gbps devices (and another five 10 Gbps
devices, if one has reason to believe devices of such a capacity might be present).
As a result, the slight difference between the ideal estimate and the actual esti-
mate can cause pychar to erroneously detect high capacity devices. In situations
similar to the test network, where there is prior knowledge that all the devices
are the same capacity, this is not a problem and the fractional component can
be rounded off and ignored. However, most topology discovery takes place in an
unknown environment so such an assumption cannot be made.

Table 2 highlights another problem that arose from the initial testing of
pychar. Some links, despite having the same number of switches present, produce
capacity estimates that vary. The links can be divided into three groups based on
the capacity estimate given by pychar. One group contains links from a host with
a Mikrotik Ethernet card to another host with a Mikrotik Ethernet card, one
contains links from a host with a Realtek Ethernet card to a host with another
Realtek card, and the final group consists of links that have a Realtek card at
one end and a Mikrotik card at the other. In the latter case, it does not matter
which is the sending host. The important factor is that there are two different
cards involved.

This effect is explained by the notion that different brands of network in-
terface card take different amounts of time to put the packet onto the wire,
depending on the size of the packet. Equally sized packets have slightly different
round trip times depending on the network interface cards involved in the link.
For Mikrotik card to Mikrotik card links, smaller sized packets have compara-
tively longer round trip times. Similarly, larger sized packets have longer round
trip times on Realtek to Realtek links. As a result, the variation in gradients
as seen in Fig. 4 occurs. This variation in slope translates into a variation in
capacity estimate. There can be a difference in excess of 1 Mbps between two
estimates for topologically equivalent links, which can be enough to suggest the
presence of an extra 1 Gbps serialization. The uncertainty is great enough that
links that are identical from a topological standpoint can be classified as different
by pychar simply due to different network interface cards in the end nodes.
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5 Possible Solutions

The difficulty in trying to eliminate the variation in capacity estimates for topo-
logically equivalent links is that the variation in minimum round trip times for
any given packet size is very small. For example, the difference between minimum
RTTs for a 288 byte packet on the two switch links described in Fig. 4 is only
20 microseconds. This is the difference in processing time for the packet on two
different Ethernet adaptors. The difference in RTTs is consistent across multiple
tests so the problem cannot be resolved by increasing the number of probes.
Instead, solutions that eliminate the processing time of the network cards from
the serialization estimates must be considered.

5.1 Hardware Measurement

The first possible solution investigated involves using DAG passive measurement
cards to capture timestamps immediately after the packets have been transmit-
ted. Designed to capture and record details of every packet passing through
them, DAG cards are GPS synchronized network monitoring cards capable of
timestamping at a better than 100 nanosecond resolution [9]. By placing DAG
cards at each end of a link, the network card serializations can be bypassed,
eliminating the variability that causes topologically equivalent links to produce
different capacity estimates under pychar. DAG cards also offer more precise
timing than the operating system based timing used by pychar.

If two hosts, X and Y, are both connected to DAG cards, as seen in Fig.
5, and a packet is sent between them, the outgoing timestamp is generated at
DAG 1 rather than at Host X. When the packet reaches DAG 2, an incoming
timestamp is generated. Host Y sends a response packet back to Host X which is
timestamped again as it passes through each of the DAG cards on the way back.
If the difference between the DAG 2 timestamps (the turnaround time at Host
Y) is subtracted from the difference between the DAG 1 timestamps, which is
effectively the round trip time minus the initial serialization delay, the result is
the round trip time for the packet travelling from DAG 1 to DAG 2. The hosts
are removed from the round trip time calculation without altering the link in
any significant way.

The results of probing some two switch links using dual DAG cards are pre-
sented in the rightmost column in Table 2. Instead of the 1 Mbps difference
between estimates for links that had different network interface card configura-
tions, the difference is reduced to less than 100 Kbps. Hence, using DAG cards
reduces the problems caused by different network cards to a negligible level. Ap-
plying this solution requires that there be a DAG card connected to both ends
of every probed link. It is neither practical nor economic to deploy DAG cards
on every host in a network of non-trivial size. However, deploying a single DAG
card on the host that would be initiating all the pychar probes remains practi-
cal. This will allow for much more accurate and consistent capacity estimation
due to the increased timing precision. It will also eliminate any variation at the
sending end of the link, meaning that only the receiving network card will affect
the pychar estimates. This means that there will only be two groups of links in
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Fig. 5. This diagram demonstrates how DAG cards can be used to eliminate the effects
of the network interface cards. Connecting both ends of a link to DAG cards means
that timestamps can be captured after the initial serialization delays, removing any
hardware variability from the round trip time measurement
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Fig. 6. A graphical illustration of how placing DAG cards at each end of a link can
eliminate the variability in pychar estimates. The links depicted above are the same
links seen in Fig. 4. On this occasion, each link produces exactly the same slope and,
as a result, exactly the same capacity estimate

the test network instead of three: links that have a Mikrotik card at the receiving
end and links that have a Realtek card at the receiving end.

5.2 Two Packet Probing

Another approach to factoring out the effects of different network interface cards
involves the use of a different type of probe prior to running pychar to calibrate
the system and provide a reference point that includes the adverse effect of the
Ethernet card present at the receiving end of the link. To do this, an estimation
technique that does not underestimate capacity due to the presence of switches
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but is affected by the network interface card is needed to provide a base estimate.
This base estimate will act as a replacement for the nominal capacity required
for the serialization calculation described above. As a result, this would also
remove the need for the nominal capacity of the link to be known in advance.

Capacity estimation techniques that use back to back packets to estimate
link capacity are typically unaffected by the presence of switches in the link [10].
Rather than using round trip times as the metric upon which the capacity esti-
mates are based, these techniques involve sending two response-seeking packets
back to back to the target machine and using the distance between the two re-
sponse packets to calculate a estimate of link capacity. Similar to VPS capacity
estimation techniques, back to back packet methods generate their estimate by
inverting the slope of the packet size versus the distance between response pack-
ets line. Different back to back packet techniques apply the varying packet size
differently.

The three back to back packet methods that will be investigated are packet
pairing, packet tailgating and a leading packets method. Packet pairing involves
sending two packets of the same size back to back across a link. The idea is that
the trailing packet will queue behind the first packet at the link bottleneck but
will not be able to catch up any further, so that upon arrival the gap between the
two packets is equal to the serialization delay at the bottleneck. Under packet
tailgating, the packet doublet consists of a packet that will vary in size and a
trailing packet that is always very small in size. This technique has is similar
conceptually to packet pairing. By contrast, a leading packet doublet is made
up of a small fixed size leading packet and a variable size trailing packet. Un-
like packet pairing and packet tailgating, the leading packets method is not a
recognised capacity estimation technique and is a variation on packet tailgating
created for the purposes of this project. The gap between the two packets is due
to the longer serialization time of the second (larger) packet, but it includes the
cumulative serializations of all devices on the link. The numbers produced by
this method should be not be seen as capacity estimates. However, the leading
packets method may produce results that describe characteristics of the link that
the other two methods do not.

A prototype Linux kernel module has been written to enable experimentation
with back to back packet theories. A kernel module was used because initial
testing with a Python script has shown that a user space application requires
too much overhead when sending packets, making it virtually impossible to send
packets in an optimal back to back manner. Specifically, the aim is to investigate
if there is any useful relationship between estimates produced by back to back
packet methods and estimates produced by VPS methods that allows the variable
effects of network cards to be factored out. Packet size selection is performed in
the same manner as in pychar: random selection without replacement from a list
of possible sizes. In the case of packet pairing, both packets are created to be
the selected size. Under packet tailgating and the leading packets method, the
first and trailing packets are set to be the selected size, respectively. To prevent
inaccuracies due to queuing, each packet size is used multiple times, as in pychar,
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and the minimum distance between packets is used as the metric for each packet
size.

None of these back to back methods have proven effective in eliminating the
turnaround time at the receiving end of the link. Although there is not enough
space for a detailed discussion of the results produced by those techniques here,
they were either too inconsistent or failed to exhibit the effects of the receiving
network card. As a result, the major problem with this technique remains un-
resolved. Until it is, it is not possible to produce a generic link layer topology
discovery tool that uses variable packet size capacity estimation techniques to
gather information about each link.

6 Future Work and Conclusion

The results produced when using dual DAG cards show that a tool such as pychar
can be used for link layer topology discovery in more heterogenous environments,
provided the variation in Ethernet adaptor serialization delay can be factored
out.

While placing DAG cards at the end of every link in a network is impractical,
it may still be possible to create a viable hardware-based solution. A device
that can be inserted at each end of link could run pychar and discover the link
layer topology between two such devices. Because the devices will all have the
same hardware (and possibly DAG cards doing the timing) variation in network
interface card is non-existent. The device can simply account for the known
effects of the particular brand of card it uses, if necessary. The only drawback
to such an approach is that only a single link can be dealt with at any given
time, rather than an entire network. Probing multiple links will require manual
movement of the devices to the appropriate endpoints.

However, even without hardware assistance, the progress that has been made
up to this point still has some more specific uses. If a network is known to contain
switches that are all the same capacity (our test network being a prime example,
see Fig. 3), then simply rounding the serialization estimates will produce the
correct results. Such a network is usually small enough that link layer topology
discovery is not necessary but there may be some occasions where pychar could
prove useful, especially for troubleshooting.

A number of further practical issues with the pychar-based technique not
addressed in this paper will require future work. This includes finding a method
for detecting cut-through devices such as hubs. Also, this paper has not de-
tailed how the link layer information will be combined to create a topology map.
Some rudimentary thought has been given to this problem without settling on
a comprehensive solution. Finally, the emulated network that pychar has been
tested on is very homogeneous with regard to operating systems, host hardware,
and both the capacity and manufacturer of the switches. Further testing on
more varied networks will be required to reveal problems similar to the network
interface card problem. However, all these outstanding issues are irrelevant if the
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problem with differing serialization delays on the network interface cards cannot
be resolved.

The next step for the VPS-based link layer topology discovery project is to
investigate other measurement techniques that might be able to provide infor-
mation that will allow the effects of the network interface cards to be factored
out. At this stage, given the failure of back to back packet capacity estimation
methods to provide such information, we do not know of any techniques that
might be of use for this purpose. However, that seems the only way forward for
a software-based solution that utilizes VPS capacity estimation.

Although variable packet size capacity estimation appears to be a viable
tool for inferring link layer topology information, it is susceptible to the effects
of different varieties of network interface cards. Back to back packet capacity
estimation techniques have proven ineffective in factoring out these effects. As a
result, although pychar can provide link layer topology information under specific
conditions, it is currently not a viable link layer topology discovery technique in
a generic environment.
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Abstract. The development of veracious models of the Internet topol-
ogy has received a lot of attention in the last few years. Many proposed
models are based on topologies derived from RouteViews [1] BGP table
dumps (BTDs). However, BTDs do not capture all AS–links of the Inter-
net topology and most importantly the number of the hidden AS–links
is unknown, resulting in AS–graphs of questionable quality. As a first
step to address this problem, we introduce a new AS–topology discovery
methodology that results in more complete and accurate graphs. More-
over, we use data available from existing measurement facilities, circum-
venting the burden of additional measurement infrastructure. We deploy
our methodology and construct an AS–topology that has at least 61.5%
more AS–links than BTD–derived AS–topologies we examined. Finally,
we analyze the temporal and topological properties of the augmented
graph and pinpoint the differences from BTD–derived AS–topologies.

1 Introduction

Knowledge of the Internet topology is not merely of technological interest, but
also of economical, governmental, and even social concern. As a result, discovery
techniques have attracted substantial attention in the last few years. Discovery
of the Internet topology involves passive or active measurements to convey infor-
mation regarding the network infrastructure. We can use topology abstraction to
classify topology discovery techniques into the following three categories: AS–,
IP– and LAN–level topology measurements. In the last category, SNMP–based
as well as active probing techniques construct moderate size networks of bridges
and end-hosts. At the IP–level (or router–level), which has received most of the
research interest, discovery techniques rely on path probing to assemble WAN
router–level maps [2,3,4]. Here, the two main challenges are the resolution of IP
aliases and the sparse coverage of the Internet topology due to the small number
of vantage points. While the latter can be ameliorated by increasing the number
of measurement points using overlay networks and distributed agents [5, 6, 7],
the former remains a daunting endeavor addressed only partially thus far [8, 9].
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AS–level topology discovery has been the most straightforward, since BGP rout-
ing tables, which are publicly available in RouteViews (RV) [1], RIPE [10] and
several other Route Servers [11], expose parts of the Internet AS–map. However,
the discovery of the AS–level topology is not as simple as it appears.

The use of BTDs to derive the Internet AS–level topology is a common
method. Characteristically, the seminal work by Faloutsos et al. [12] discov-
ered a set of simple power–law relationships that govern AS–level topologies
derived from BTDs. Several followup works on topology modeling, evolution
modeling and synthetic topology generators have been based on these simple
power–law properties [13,14,15]. However, it is well–known among the research
community that the accuracy of BTD–derived topologies is arguable. First, a
BGP table contains a list of AS–paths to destination prefixes, which do not
necessarily unveil all the links between the ASs. For example, assume that the
Internet topology is a hypothetical full mesh of size n, then from a single van-
tage point, the shortest paths to every destination would only reveal n − 1 of
the total n(n−1)/2 links. In addition, BGP policies limit the export and import
of routes. In particular, prefixes learned over peering links1 do not propagate
upwards in the customer-provider hierarchy. Consequently, higher tier ASs do
not see peering links between ASs of lower tiers. This is one reason BTD–based
AS–relationships inference heuristics [16] find only a few thousands of peering
links, while the Internet Routing Registries reveal tens of thousands [17]. Lastly,
as analyzed comprehensively in [18], RV servers only receive partial views from
its neighboring routers, since the eBGP sessions filter out backup routes.

The accuracy of AS–level topologies has been considered previously. In [19]
Chang et al. explore several diverse data sources, i.e. multiple BTDs, Looking
Glass servers and Internet Routing Registry (IRR) databases, to create a more
thorough AS–level topology. They report 40% more connections than a BTD-
derived AS–map and find that the lack of connectivity information increases for
smaller degree ASs. Mao et al. [20] develop a methodology to map router–graphs
to AS–graphs. However they are more concerned with the methodology rather
then the properties of the resulting AS–graph. Finally, in [21] Andersen et al.
explore temporal properties of BGP updates to create a correlation graph of
IP prefixes and identify clusters. The clusters imply some topological proximity,
however their study is not concerned with the AS–level topology, but rather with
the correlation graph.

Our methodology is based on exploiting BGP dynamics to discover additional
topological information. In particular we accumulate the AS–path information
from BGP updates seen from RV to create a comprehensive AS–level topol-
ogy. The strength of our approach relies on a beneficial side–effect of the prob-
lematic nature of BGP convergence process. In the event of a routing change,
the so-called “path exploration” problem, [22], results in superfluous BGP up-
dates, which advertise distinct backup AS–paths of increasing length. Labovitz

1 “Peering links” refers to the AS–relationship, in which two ASs mutually exchange
their customers’ prefixes free of charge.
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Table 1. Example of a simple BGP–update sequence that unveils a backup AS–link
(2828 14815) not seen otherwise

Time AS–path Prefix
2003-09-20 12:13:25 (withdrawal) 205.162.1/24
2003-09-20 12:13:55 10876-1239-2828-14815-14815-14815-14815-14815 205.162.1/24
2003-09-20 12:21:50 10876-1239-14815 205.162.1/24

et al. [22] showed that there can be up to O(n!) superfluous updates during BGP
convergence. We analyze these updates and find that they uncover a substantial
number of new AS–links not seen previously. To illustrate this process, consider
the simple update sequence in Table 1, which was found in our dataset. The
updates are received from a RV neighbor in AS10876 and pertain to the same
prefix. The neighbor initially sends a withdrawal for the prefix 205.162.1/24,
shortly after an update for the same prefix that exposes the unknown to that
point AS–link 2828–14815, and finally an update for a shorter AS–path, in which
it converges. The long AS–prepending in the first update shows that the adver-
tised AS–path is a backup path not used at converged state. We explore the
backup paths revealed during the path exploration phenomenon and discover
61.5% more AS–links not present in BTDs.

2 Methodology

Our dataset is comprised of BGP updates collected between September 2003
and August 2004 from the RV router route-views2.oregon-ix.net. The RV
router has multihop BGP sessions with 44 BGP routers and saves all received
updates in the MRT format [1]. After converting the updates to ASCII format,
we parse the set of AS–paths and mark the time each AS–link was first observed,
ignoring AS–sets and private AS numbers. There are more than 875 million an-
nouncements and withdrawals, which yield an AS–graph, denoted as G12, of
61,134 AS–links and 19,836 nodes. Subscript 12 in the notation G12 refers to the
number of months in the accumulation period. To quantify the extent of addi-
tional information gathered from updates, we collect BTDs from the same RV
router on the 1st and 15th of each month between September 2003 and August
2004. For each BTD we count the number of unique AS–links, ignoring AS–sets
and private AS–numbers for consistency. Figure 1 illustrates the comparison.
The solid line plots the cumulative number of unique AS–links over time, seen
in BGP updates. Interestingly, after an initial super–linear increase, the number
of additional links grows linearly, much faster than the corresponding increase
observed from the BTDs. At the end of the observation window, BGP updates
have accumulated an AS–graph that has 61.5% more links and 10.2% more nodes
than the largest BTD–derived graph GBTD

12 , which was collected on 08/15/2004.
The notable disparity suggests that the real Internet AS topology may be dif-
ferent from what we currently observe from BTD–derived graphs, and merits
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Fig. 1. Number of unique AS–links observed in BGP updates vs BTDs

further investigation. To gain more insight in the new information we analyze
the temporal and topological properties of the AS–connectivity.

3 Temporal Analysis of Data

Identifying temporal properties of the AS–connectivity observed from BGP up-
dates is necessary to understand the interplay between the observation of AS–
links and BGP dynamics. In particular, we want to compare the temporal prop-
erties of AS–links present in BTDs with AS–links observed in BGP updates. To
do so, we first introduce the concept of visibility of a link from RV. We say that
at any given point in time a link is visible if RV has received at least one update
announcing the link, and the link has not been withdrawn or replaced in a later
update for the same prefix. A link stops been visible if all the prefix announce-
ments carrying the link have been withdrawn or reannounced with new paths
that do not use the link. We then define the following two metrics to measure
the temporal properties of AS–links:

1. Normalized Persistence (NP) of a link is the cumulative time for which a
link was visible in RV, over the time period from the first time the link was
seen to the end of the measurements.

2. Normalized Lifetime (NL) of a link is the time period from the first time to
the last time a link was seen, over the time period from the first time the
link was seen to the end of the measurements.

The NP statistic represents the cumulative time for which a link was visible
in RV, while the NL represents the span from the beginning to the end of the
lifetime of the link. Both are normalized over the time period from the first time
a link was seen to the end of the measurements to eliminate bias against links
that were not seen from the beginning of the observation.
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Fig. 2. Distribution of Normalized Persistence and Normilized Lifetime of AS–links
seen between September 2003 and January 2004 in BGP updates

To calculate the NP and NL statistics, we replicate the dynamics of the RV
routing table using the BGP updates dataset. We implement a simple BGP
routing daemon that parses BGP updates and reconstructs the BGP routing
table keeping per–peer and per–prefix state as needed. Then for each link we
create an array of time intervals for which the link was visible and calculate the
NP and NL statistics. Unfortunately, the BGP updates cannot explicitly pinpoint
the event of a session reset between RV and its immediate neighbors. Detection
of session resets is necessary to flush invalid routing table entries learned from
the neighbor and to adjust the NP and NL statistics. We implement a detection
algorithm, described in the Appendix, to address the problem.

We measure the NP and NL statistics over a 5–month period, from Septem-
ber 2003 to January 2004, and plot their distributions in Figure 2. Figure 2(a)
demonstrates that NP identifies two strong modes in the visibility of AS–links.
At the lower end of the x axis, more than 5,000 thousand links have NP ≤ 0.2,
portraying that there is a significant number of links that only appear during
BGP convergence turbulence. At the upper end of the x axis, almost 35,000
links have an NP close to 1. The distribution 2(b) of the NL statistic is even
more modal, conveying that most of the links have a high lifetime span. At the
end of the 5–month period, BGP updates have accumulated a graph G5 that we
decompose into two parts. One subgraph, GBTD

5 , is the topology seen in a BTD
collected from RV at the end of the 5–month period and the second subgraph is
the remaining G5 − GBTD

5 . Table 2 shows the number of links with NP ≤ 0.2,
0.2 < NP < 0.8 and NP ≥ 0.8 in GBTD

5 and in G5 − GBTD
5 . Indeed, only 0.2%

of the links in GBTD
5 have NP ≤ 0.2, demonstrating that BTDs capture only the

AS–connectivity seen at steady–state. In contrast, most links in G5−GBTD
5 have

NP ≤ 0.2, exhibiting that most additional links found with our methodology
appear during BGP turbulence.
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Table 2. Normalized Persistence in GBTD
5 and G5 − GBTD

5

GBTD
5 G5 − GBTD

5

NP ≤ 0.2 65 (0.2%) 6891 (57.5%)

0.2 < NP < 0.8 1096 (3.2%) 1975 (16.5%)

NP ≥ 0.8 33141 (96.6%) 3119 (26.0%)

4 Topological Analysis of Data

Ultimately, we want to know how the new graph is different from the BTD
graphs, e.g. where the new links are located, and how the properties of the graph
change. A handful of graph theoretic metrics have been used to evaluate the
topological properties of the Internet. We choose to evaluate three representative
metrics of important properties of the Internet topology:

1. Degree Distribution of AS–nodes. The Internet graph has been shown to
belong in the class of power–law networks [12]. This property conveys the
organization principle that few nodes are highly connected.

2. Degree–degree distribution of AS–links. The degree–degree distribution of the
AS–links is another structural metric that describes the placement of the
links in the graph with respect to the degree of the nodes. More specifically,
it is the joint distribution of the degrees of the adjacent ASs of the AS–links.

3. Betweenness distribution of AS–links. The betweenness of the AS–links de-
scribes the communication importance of the AS–links in the graph. More
specifically, it is proportional to the number of shortest paths going through
a link.

One of the controversial properties of the Internet topology is that the de-
gree distribution of the AS–graph follows a simple power–law expression. This
observation was first made in [12] using a BTD–derived AS–graph, later dis-
puted in [23] using a more complete topology, and finally reasserted in [24] using
an augmented topology as well. Since our work discovers substantial additional
connectivity over the previous approaches, we re–examine the power–law form
of the AS–degree distribution. For a power–low distribution the complementary
cumulative distribution function (CCDF) of the AS–degree is linear. Thus, after
plotting the CCDF, we can use linear regression to fit a line, and calculate the
correlation coefficient to evaluate the quality of the fit. Figure 3 plots the CCDF
of the AS–degree for the updates-derived graph, G12, and for the correspond-
ing BTD-derived graph, GBTD

12 . Due to the additional connectivity in G12, the
updates–derived curve is slightly shifted to the right of the GBTD

12 curve, without
substantial change in the shape. Figures 4 and 5 show the CCDF of the AS–
degree and the corresponding fitted line for G12 and GBTD

12 , accordingly. The
correlation coefficient for GBTD

12 is 0.9836, and in the more complete AS–graph
G12 it slightly decreases to 0.9722, which demonstrates that the AS–degree dis-
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Fig. 3. CCDF of the AS–degree for the updates–derived AS–graph (G12) and the
largest BTD–derived AS–graph (GBTD
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Fig. 4. CCDF of the AS–degree for the largest BTD–derived AS–graph (GBTD
12 ) and

linear regression fitted line

tribution in our updates–derived graph follows a power–law expression fairly
accurately.

We then examine the degree–degree distribution of the links. The degree–
degree distribution M(k1, k2) is the number of links connecting ASs of degrees
k1 and k2. Figure 6, compares the degree–degree distributions of the links in the
full G12 graph and of the links present only in updates, G12 −GBTD

12 . The overall
structure of the two contourplots is similar, except for the differences in the areas
of links connecting low-degree nodes to low-degree nodes and links connecting
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Fig. 5. CCDF of the AS–degree for the updates–derived AS–graph (G12) and linear
regression fitted line

medium-degree nodes to medium-degree nodes (the bottom-left corner and the
center of the contourplots). The absolute number of such links in G12 − GBTD

12
is smaller than in G12, since G12 − GBTD

12 is a subgraph of G12. However, the
contours illustrate that the ratio of such links in G12−GBTD

12 to the total number
of links in G12 − GBTD

12 is higher than the corresponding ratio of links in G12.
Figure 7 depicts the contourplot of the ratio of the number of links in GBTD

12
over the number of links in G12 connecting ASs of corresponding degrees. The
dark region between 0.5 and 1.5 exponents on the x and y axes, signifies the
fact that BGP updates contain additional links, compared to BTDs, between
low and medium-degree ASs close to the periphery of the graph.

Finally, we examine the link betweenness of the AS–links. In graph G(V, E),
the betweenness B(e) of link e ∈ E is defined as

B(e) =
∑
ij∈V

σij(e)
σij

,

where σij(e) is the number of shortest paths between nodes i and j going through
link e and σij is the total number of shortest paths between i and j. With this
definition, link betweenness is proportional to the traffic load on a given link
under the assumptions of uniform traffic distribution and shortest–path routing.
Figure 8 illustrates the betweenness distribution of G12 and of GBTD

12 and reveals
that our updates–constructed graph yields more links with small betweenness.
Links with small betweenness have lower communication importance in a graph
theoretic context, demonstrating that our methodology unveils backup links and
links used for local communication in the periphery of the graph.

Overall, our topological analysis shows that our augmented graph remains a
power-law network and has more links between low and medium–degree nodes
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Fig. 8. Distribution of the link betweenness of G12 compared to GBTD
12

and more links of lower communication importance compared to BTD–derived
graphs.

5 Conclusions

In this work we exploit the previously unharnessed topological information that
can be extracted from the most well–known and easily accessible source of Inter-
net interdomain routing data. We evidence that the Internet topology is vastly
larger than the common BTD–derived topologies and we show how an unde-
sired aspect of the interdomain architecture can be used constructively. We find
that our substantially larger AS–graph retains the power–law property of the
degree distribution. Finally, we show that our method discovers links of small
communication importance connecting low and medium–degree ASs, suggesting
AS–links used for backup purposes and local communication in the periphery of
the Internet.

Closing, we highlight that our work is a step forward showing a large gap
in our knowledge of the Internet topology. For this reason, we pronounce the
need to focus more on the perpetual problem of measuring Internet topology
before accepting far–reaching conclusions based on currently available AS–level
topology data, which are undeniable rich but substantially incomplete.
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Appendix

Detection of Session Resets

The problem of detection of BGP session resets has also been addressed by
others. In [25] Maennel et al. propose a heuristic to detect session resets on AS–
links in arbitrary Internet locations by monitoring BGP updates in RV. We are
concerned with a seemingly less demanding task: detection of session resets with
immediate neighbors of RV. Our algorithm is composed of two components. The
first detects surges in the BGP updates received from the same peer over a short
time window of s seconds. If the number of unique prefixes updated in s are
more than a significant percent p of the previously known unique prefixes from
the same peer, then a session reset is inferred. The second component detects
periods of significant inactivity when a threshold t is passed from otherwise
active peers. We combine both approaches and set low thresholds (t = 4mins,
p = 80%, s = 4secs) to yield an aggressive session reset detection algorithm.
Then, we calculate NP and NL over a period of a month with and without
aggressive session reset detection enabled. We find that the calculated statistics
are virtually the same with less then 0.1% variation. Implying that the short
time scale of the lifetime of session resets does not affect the span of the NP and
NL statistics. Hence, we leave out the detection of session resets in the remaining
NP and NL measurements.
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Abstract. The growth of wireless LANs has brought the expectation
for high-bitrate streaming video to wireless PCs. However, it remains
unknown how to best adapt video to wireless channel characteristics as
they degrade. This paper presents results from experiments that stream
commercial video over a wireless campus network and analyze perfor-
mance across application, network and wireless link layers. Some of the
key findings include: 1) Wireless LANs make it difficult for streaming
video to gracefully degrade as network performance decreases; 2) Video
streams with multiple encoding levels can more readily adapt to degraded
wireless network conditions than can clips with a single encoding level; 3)
Under degraded wireless network conditions, TCP streaming can provide
higher video frame rates than can UDP streaming, but TCP streaming
will often result in significantly longer playout durations than will UDP
streaming; 4) Current techniques used by streaming media systems to
determine effective capacity over wireless LAN are inadequate, resulting
in streaming target bitrates significantly higher than can be effectively
supported by the wireless network.

1 Introduction

The combination of the decrease in price of wireless LAN access points (APs)
and the increase in wireless link capacities has prompted a significant increase
in the number of wireless networks in homes, corporate enterprise networks, and
academic campus networks. The promise of up to 54 Mbps capacity1 from a
wireless AP means that users now expect to see applications such as streaming
video that require high bitrates running seamlessly from wired media servers to
wireless media clients.

Although much is already known about wireless LANs and the individual
components of the wireless LAN environment that make the delivery of high-
demand applications over wireless a challenge, there has been little effort to

1 IEEE 802.11g.

C. Dovrolis (Ed.): PAM 2005, LNCS 3431, pp. 189–202, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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integrate measures of wireless link layer performance with streaming media ap-
plication layer choices. Such knowledge can facilitate the redesign of streaming
media systems to account for the trend towards a wireless last hop to clients.
Moreover, a better understanding of the impact of wireless LAN transmission
characteristics on streaming media is valuable to network practitioners concerned
with providing adequate wireless LAN coverage and discovering trouble spots in
network performance.

Previous work [8] has shown that streaming products such as RealNetworks
and Windows Streaming Media make important decisions concerning the char-
acteristics of the video stream prior to streaming the video to a client. These
decisions are based on estimates of the underlying network characteristics ob-
tained from network probes. However, it remains unclear which wireless channel
characteristics, such as frame loss rate, signal strength, or link layer bitrate, are
the most useful for streaming media strategies that improve the performance
of a streaming video by adapting video transmission choices to current wireless
network conditions.

A primary goal of this investigation is to correlate wireless link layer behavior
and network layer performance with streaming media application layer perfor-
mance. Application layer measurement tools [6] were combined with commer-
cially available network layer measurement tools and publicly available IEEE
802.11 measurement tools to conduct wireless experiments and integrate the
measurement results. Seeking to characterize the impact of wireless network con-
ditions on streamed video performance, this active measurement study considers
four hypothesis:

1. Wireless LANs make it difficult for streaming video to gracefully adapt when
network conditions degrade. This investigation attempts to uncover specific
characteristics of streams to poor locations that could trigger streaming
server adjustments to improve video transmission quality. Increasing per-
formance in poor locations is critical since a streaming wireless client with
bad performance can negatively impact other wireless clients connected to
the same AP [1].

2. Videos encoded with multiple levels can stream better than videos encoded
with only a single level when wireless LAN conditions are poor. Commercial
media encoders allow videos to be encoded with one or more target bitrate
levels. When streaming, the server determines which encoding level to use
based on feedback from the client regarding the client end-host network
conditions. A video with multiple levels of encoding should make better use
of a wireless LAN with limited capacity than a video with a single level of
encoding.

3. TCP is more effective than UDP for streaming video over wireless LANs.
Commercial media players typically let the client select the streaming trans-
port protocol. UDP is often selected due to lower overhead and jitter. How-
ever, recent work [4, 5, 11] suggests TCP and TCP-like protocols can be at
least as effective and potentially more effective at providing higher quality
video to clients under poor network conditions.
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4. Current techniques used by streaming media systems to estimate available
capacity to a wireless LAN client are inadequate for providing the best video
performance. Some commercial media players use packet-pair techniques [10]
to estimate the capacity along the flow path prior to starting the streaming
of the video to the client [8]. However, packet-pair was not designed for
wireless networks where changes in transmission conditions cause mid-stream
wireless capacity changes. By measuring frame errors and signal strength at
the data link layer during wireless streaming experiments, changes in the
wireless environment can be correlated with changes in video performance,
and facilitate the development of better wireless capacity estimators.

2 Methodology

2.1 Tools

The unique aspect of this investigation is the concurrent use of measurement
tools at multiple levels in the network protocol stack to evaluate streaming media
performance over wireless LANs. This section discusses the tools employed in
this study. For reference, the layer corresponding to each tool and examples of
some of the performance measurements available from each tool are listed in
Table 1.

Table 1. Measurement Tools

Layer Tools Performance Measures
Application Media Tracker Frame rate, Frames lost, Encoded bitrate

Network UDP Ping, Wget Round-trip time, Packet loss rate, Throughput
Wireless Typeperf, WRAPI Signal strength, Frame retries, Capacity

At the application layer, the WPI Wireless Multimedia Streaming Lab has
experience measuring video client and server performance [4, 6, 8, 12]. An inter-
nally developed measurement tool, called Media Tracker [6], streams video from
a Windows Media Server, collecting application layer data specific to streaming
video including: encoding data rate, playout bitrate, time spent buffering, video
frame rate, video frames lost, video frames skipped, packets lost and packets
recovered.

For network layer performance measures such as round-trip time and packet
loss rate along the stream flow path, UDP ping, an internally developed tool, was
used. Preliminary experiments revealed that because the standard ICMP ping
provided by Windows XP waits for the previous ping reply or a timeout before
sending out the next ping packet, a constant ping rate could not be maintained in
some poor wireless conditions where 10 second and longer round-trip times were
recorded. Thus, a customized ping tool using application-layer UDP packets was
built to provide constant ping rates, ping intervals configurable in milliseconds,
and configurable ping packet sizes.
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At the wireless data link layer, a publicly-available library, called WRAPI
[2] was enhanced to collect information at the wireless streaming client that in-
cludes: signal strength, frame retransmission counts and failures, and information
about the specific wireless AP that handles the wireless last hop to the client.
Additionally, typeperf, a performance monitoring tool built-in to Windows XP,
collected processor utilization and network data including data received bitrate
and the current wireless target capacity.

Although the above four tools were deployed concurrently on the wireless
streaming client, baseline measurements indicated these tools consume only
about 3% of the processor time. Given that streaming downloads consumed
about 35% of processor time, the assumption is the measurement tools do not
significantly effect the performance of the streaming downloads to the wireless
clients.

2.2 Experiment Setup

This investigation conducts a series of experiments where video clips are streamed
from a Windows Media Server over a wired campus network to a wireless stream-
ing client at pre-determined locations in the WPI Computer Science Department
building. As Figure 1 shows, the wireless portion of the WPI campus network
is partitioned from the wired infrastructure. Thus, the assumption is that all
video streams traverse the same network path except for the last two hops from
a common exit off the wired campus LAN to a wireless AP and from the AP
to the streaming client. The media server runs Windows Media Service v9.0 as
part of the Windows Server 2003 Standard Edition, and the wireless client re-
sides on a Dell laptop with a Centrio mobile CPU running Windows XP sp1
and an IEEE 802.11g wireless network adaptor based on the Broadcom2 chipset.
The WPI wireless LAN uses Airespace3 APs and provides IEEE 802.11 a/b/g
wireless service for all the experiments.

Two distinct video clips, known as Coast Guard and Paris, were used in this
study. Both clips were encoded to run at 352× 288 resolution and 30 frames per
second. Both clips run for approximately two minutes.4 Coast Guard is a high-
motion video clip (5.4% skipped macro blocks) with a camera panning scene of
a moving Coast Guard cutter. Paris is a low-motion video clip (41.2% skipped
macro blocks) with two people sitting and talking with some rapid motion from
two small objects in the scene.

Windows Media Server selects the streaming rate based upon the encoded
bitrate of the layers in the video clip and an estimate of available capacity for
the bottleneck link along the flow path. During this investigation, two distinct
versions of each video were streamed to every client location: a single level version
of the video encoded at 2.5 Mbps to stress the wireless link; and a multiple level
version that includes eleven encoding layers such that the streaming server has

2 http://www.broadcom.com/
3 http://www.airespace.com/
4 The median duration of video clips stored on the Internet [7] is 2 minutes.
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Fig. 1. WPI Campus Network

the opportunity to do media scaling to dynamically choose the encoded clip
to stream based on perceived network capacity. To compare the performance
of standard streaming protocol choices, each of the four videos instances was
streamed using TCP and repeated using UDP.

2.3 Experiment Design

At the beginning and the end of each experimental instance, the client down-
loaded a large file using wget, a publicly-available HTTP/FTP download appli-
cation,5 to estimate the effective throughput of a TCP bulk transfer. Thus, each
experiment consisted of an initial bulk download, eight different video downloads
(2 clips (Paris and Coast Guard) × 2 versions (Single Level and Multiple Level)
× 2 transport protocols (UDP and TCP)) and a final bulk download. While
each video was streamed, the client initiated UDP ping requests to determine
round-trip time and packet losses. The UDP ping requests were 200 milliseconds
apart, with 1350-byte packets for the single level video and 978-byte packets for
the multiple level video. The choice of packet sizes came from the observation
that 90% of the packets are 1350 bytes and 978 bytes for single level and multiple
level video, respectively. While streaming, measurement data was also collected
by WRAPI, typeperf and Media Tracker at the client side on a stationary laptop.

Clearly, wireless networking transmission performance is dependent on cur-
rent network conditions. To reduce the variability in the network conditions, all
the experiments were conducted during the Winter Break (December 23-25, 2004
and December 29-30, 2004) in the Computer Science Department on the WPI
campus. During these testing periods, there was only occasional network activity
and virtually no other wireless users in the Computer Science department. Each
experiment was repeated five times at three distinct locations on three different
floors in the Computer Science department. Thus the results come from a total

5 http://www.gnu.org/software/wget/wget.html
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of 45 experimental runs that include 360 video streams. On each floor, an AP
was selected to interact with the client laptop. Then, preliminary experiments
were conducted to find three laptop reception locations for each AP, representing
good, fair, and bad reception locations. It turned out to be difficult to make a
clear distinction between bad and fair locations due to high variability in the
signal strength at fair and bad locations.

3 Results

3.1 Data Collected

Ten data sets were removed from the 360 video streaming runs due to wire-
less connection failures that caused abnormal streaming terminations. Thus, 350
video instances (see Table 2) are included in the analysis of the results.

Table 2. Data Collected

TCP Streaming UDP Streaming Total
Multiple Level Video 86 85 171
Single Level Video 89 90 179

Subtotal 175 175 350

Comparison of the two clips, Paris and Coast Guard, with analysis similar to
the other experimental factors presented in Section 3.2-3.4, produced no statisti-
cally significant differences in performance. This suggests that the differences in
motion between the low-motion Paris video and the high-motion Coast Guard
video did not impact performance over a wireless network. Thus, all subsequent
analysis combines the data obtained for both clips for each of the categories in
Table 2.

3.2 Categorization

Figure 2 depicts the throughput obtained versus signal strength for all the
streaming and bulk download instances. The streaming data and the bulk down-
load data are separately fit with logarithmic functions. The root mean square
value of the deviation of the data from the fitted function6 are 0.49 Mbps and
1.47 Mbps for streaming throughput and bulk downloading throughput, respec-
tively. Note, there is a “cliff” where throughput degrades suddenly when the
signal strength is between -70 dBm and -80 dBm.

To provide a clearer picture of streaming video behavior, the experiments
were classified by the average signal strength recorded for a download from the
server to the instrumented video client. For the remainder of the analysis, the
experiments are categorized in one of three distinct regions: “Bad” locations (less

6 The stdfit reported from the gnuplot fit function.
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than -75 dBm); “Edge” locations (between -75 and -70 dBm); and “Good” loca-
tions (greater -70 dBm).7 This classification facilitates focusing on understanding
the performance differences between the Good and the Bad locations. Figure 3
shows a cumulative distribution function (CDF) of the average signal strengths
gathered and depicts the Good, Edge and Bad regions, with approximately 1/3
of the data points in each region.

3.3 Single Level Encoding Versus Multi-level Encoding

As described in Section 2.1, both video clips were encoded twice, once at a single,
high-bandwidth encoded level and again with multiple encoded levels. Figure 4
and Figure 5 provide CDFs to compare the impact of the server having multiple
encoding levels versus only a single encoding level for wireless streaming. These
figures indicate that when the client is at a Good location, the number of encoded
levels has little effect on the average video frame rate and the coefficient of
variation of the video frame rate. Since a Good wireless connection can generally
support both the single level and the highest level in the multiple level clip, the
stream does not need to be scaled to a lower bitrate.

However, at Bad locations, multiple level encoding provides better streaming
performance than single level encoding. More than 2/3 of the time, the multiple
level clip has a higher frame rate than the single level clip, and the multiple level

7 The variance in signal strength is about the same for both Good and Bad locations.
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clip has a median frame rate of 22 frames per second compared to a median of
11 frames per second for the single level clip.

3.4 TCP Streaming Versus UDP Streaming

Figures 6-10 provide CDFs to compare the impact of choosing TCP versus UDP
when streaming videos to clients at Good and Bad wireless locations. These
figures show that at Good wireless locations, the choice of TCP or UDP has
little effect on the average and coefficient of variation of frame rate. However,
Figure 6 demonstrates that at Bad wireless locations, streams received by TCP
streaming clients have a higher median frame rate (24 fps) than streams received
by UDP streaming clients (15 fps). Moreover, the TCP streams have a higher
frame rate about 2/3 of the time. Similarly, in Figure 7 the TCP streams have a
lower median variation in frame rate than the UDP streams, and for 2/3 of the
Bad locations TCP streams have a lower variation in frame rate than the UDP
streams.

TCP video streams may be able to achieve better application frame rates
under Bad conditions than UDP because when the wireless layer loses data,
TCP retransmits the data and allows it to be played. However, without built-in
retransmissions, UDP does not automatically recover lost data. The inter-frame
dependencies in video can cause loss rates as low as 3% to result in up to 30%
of application frames being unplayable [3]. Figure 8 graphs the CDF of wireless
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Fig. 7. Coefficient of Variation of Application Frame Rate for TCP and UDP Streams

layer retry fraction for upstream (from the client to the server) data and Figure 9
shows a CDF of network ping loss rates. Under Bad conditions, approximately
1/3 of all wireless layer frames need to be retransmitted and when the same
wireless frame is retransmitted too many times, the wireless layer drops the
frame and this yields network ping packet loss. Under Bad wireless conditions,
nearly 1/3 of the time the network loss rate is about 15%.

The CDF for round-trip times in Figure 10 demonstrate that UDP pack-
ets suffer significant delays. Since the CDF of network ping packet loss rates
measured for these UDP streams do not rise nearly as swiftly as the round-trip
times in Figure 10, the conjecture is that the downstream wireless AP queues are
large. Previous experience with Windows Streaming Media UDP streams [6, 8]
suggests that excessively high average round-trip times occur when the initial
UDP streaming stage uses a high data rate to fill the playout buffer. In Bad
wireless situations, the downstream AP queue grows excessively long and the
AP is never able to drain the queue since the actual wireless layer capacity is
limited by degraded capacity and wireless layer retries.

In the presence of loss, the TCP stream may take longer to play out the
same length video due to retransmissions. Severe loss causes TCP timeouts that
delay video playout further. Figure 11 illustrates this behavior where total ap-
plication playout duration (including buffering and playout) has been normal-
ized by dividing it by the encoded (real-time) playout duration. In this figure, a
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normalized duration of one8 indicates that the clip playout was the same length
as the encoded duration, while a 2 implies the clip took twice as long to play
as the encoded duration. At Bad locations, TCP streaming can take signifi-
cantly longer to playout than UDP streaming. For pre-recorded clips, it is not
unreasonable to consider a stream duration extended by more than 10% to be
unacceptable to users. Using this criteria, approximately 40% of the TCP Bad
streams in Figure 11 are unacceptable.

4 The Challenges of Streaming over Wireless

Upon connection, video servers select an encoded send bitrate based on client
feedback on network performance. Past work [8] indicates Windows Streaming
Media uses a packet-pair technique [10] to estimate the bottleneck link capacity
on the streamed path. Near the “cliff” in wireless performance, it is likely that a
client will indicate an optimistically high average capacity that causes the video
server to select a high encoding level. Figure 12 captures this phenomenon via a
scatter-plot of the average encoding rate versus average wireless capacity both
averaged over the duration of the video run. Points below the diagonal represent
runs where the average encoding rate chosen for streaming is below the average
capacity reported by the wireless network.

A conservative measure of effective capacity is the TCP-Friendly rate, namely,
the data rate does not exceed the maximum rate of a conformant TCP connec-
tion under the same network conditions. The TCP-Friendly rate, T Bps, for a
connection can be computed by [9]:

T =
s

R
√

2p
3 + trto(3

√
3p
8 )p(1 + 32p2)

(1)

with packet size s, round-trip time R and packet drop rate p. TCP retransmission
timeout trto is set to four times round-trip time by default. For each video clip
for each run, Equation (1) is used to compute the TCP-Friendly rate (T ), using
a packet size (s) of 1350 bytes for the single level video and 978 bytes for the
multiple level video, and the loss rate (p) and round-trip time (R) obtained from
the corresponding ping samples.

Figure 13 shows a scatter-plot of the average encoding rate and average wire-
less network capacity both averaged over the video duration. Points above the
diagonal line represent video runs in which the average encoding rate chosen for
streaming are above the average effective capacity that can be supported by the
wireless network. The preponderance of points above the diagonal line suggest
the video streaming rate chosen is quite often higher than the capacity that the
wireless network can effectively support. This results in the application stream-
ing rate being too high to be supported by the network. Under such cases, when

8 Note, the data points are all above one since the playout invariably includes at least
one, initial buffering stage of about 10 seconds.
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the video is streamed over UDP, the result is a reduced frame rate and when the
video is streamed over TCP, the result is a longer playout duration.

Videos encoded with multiple levels provide modest performance improve-
ment by enabling the video streaming rate to more easily adapt to the effective
network capacity after streaming has commenced. This is depicted in Figure 14
and Figure 15 which show scatter-plots similar to Figure 12 and Figure 13, re-
spectively, but broken down by multiple and single encoding levels. In Figure 15,
the cluster of points in the bottom left corner of the graph are cases where the
multiple level clips are able to stream at an average encoded rate closer to the
capacity that the wireless network can effectively support.

This data suggests a need for more effective techniques to estimate the effec-
tive capacity for wireless networks to facilitate better choices for video encoding
and streaming rates.
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5 Conclusions and Future Work

This investigation reinforces the notion that IEEE 802.11 wireless networks can
support streaming of high-quality video to wireless clients at high signal strength
reception locations. Under such good conditions, nearly all video clips in this
study played out at high frame rates. Moreover, server choices of multiple ver-
sus single encoding levels and TCP versus UDP streaming did not significantly
impact performance at good locations. However, these experiments produce a
noticeable cliff such that throughput drops off suddenly when signal strength
degrades below -75dBm. The bad wireless environment for those experiments
at the bottom of this cliff can be characterized by nearly 50% more retries for
wireless MAC layer frames and median packet loss rates over 5%. Under such
bad wireless environments, multiple level videos adapt better to volatile wire-
less conditions than videos encoded only at a single level. Under bad conditions,
multi-level videos consistently had higher frame rates with a median of 24 ap-
plication frame per second, approximately double the median application frame
rate of single level videos.

At bad client locations, TCP streamed videos usually recorded higher frame
rates than UDP streamed videos. For the TCP streams, the median of 24 appli-
cation frames per second, was approximately 50% higher than the UDP median.
The conjecture is that TCP retransmissions reduce network packet loss rates
that yield more playable frames than UDP when wireless conditions are bad.
Unfortunately, this higher TCP frame rate comes at a price, significantly longer
video playout durations. Nearly 20% of the TCP streamed videos to bad client
locations had the two-minute video clip produce four minute playout durations.
Approximately 40% of these TCP videos had playout durations considered to
be intolerable. While UDP streams also experienced extensions in playout du-
rations under bad conditions, only 25% of the UDP durations were intolerable
and no UDP playout reached a doubled duration in this investigation.

The effective capacities reported by the wireless MAC layer are significantly
below the capacity the wireless MAC layer is expected to support, and the
measured encoding rate for the streaming video, while lower than the wireless
capacity, is higher than the effective capacity. The use of multiple encoding lev-
els in a video clip partially alleviates this problem, but significant improvements
to streaming performance under bad wireless conditions may require new tech-
niques that identify and adapt to challenging wireless transmission situations.

Understanding packet and frame burst loss behavior is also critical to improv-
ing multimedia streaming encoding mechanisms designed to protect, correct or
conceal video frame errors. Unfortunately, our tool set was unable to capture
error bursts across layers. Developing measurement techniques to capture error
bursts during real streaming events remains an important item for future re-
search. Another missing component to improving the strategies used by video
servers to adjust to volatile wireless network conditions is a better understanding
of when and how a video server decides to do media scaling. Ongoing research
is to measure the media scaling reaction of media players to changes in wireless
network conditions.
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Finally, two other commercial applications, Real Media and QuickTime, are
also major contributors to streaming Internet traffic. However these servers prob-
ably behave differently than Media Player and investigations with customized
measurement tools for these two application suites are also possible future work.
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Abstract. This paper studies the problems related to mobile connectiv-
ity on a wireless environment with Mobile IPv6, specially the handover,
which is the most critical part. The main goal of this paper is to develop
a structured methodology for analyzing 802.11/IPv6/MIPv6 handovers
and their impact on application’s level. This is accomplished by captur-
ing traffic on a testbed and analyzing it with two applications developed
for this purpose. The analysis covers passive and active measurements.
This methodology is applicable for measuring improvements on handover
(such as Fast Handovers for Mobile IPv6, Hierarchical Mobile IPv6 or
802.11 handover).

1 Introduction

A great interest exists among users, in being on-line, permanently and without
wires. On the last years, wireless technologies have improved and made cheaper.
With WLAN (IEEE 802.11) [1] as one of the most used, it is possible to provide
connectivity and bandwidth in a cheap and easy way.

This technology is able to provide ”nomadism”to the Internet, in other words,
an user can be connected to the Internet using WLAN, but he can’t move,
change his point of attachment and maintain his network connections. For that
reason, IETF has designed Mobile IP, which, jointly with WLAN, provides this
capability to the Internet (this is commonly known as mobility). In this paper,
we focus on active and passive measurements using Mobile IPv6 with 802.11b.

The most critical part of these technologies is the handover. It is important to
note that during this phase, the mobile node (MN) is not able to send or receive
data, and some packets may be lost or delayed (due to intermediate buffers).
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Technology) under contract FEDER-TIC2002-04531-C04-02 and the CIRIT (Cata-
lan Research Council) under contract 2001-SGR00226.

C. Dovrolis (Ed.): PAM 2005, LNCS 3431, pp. 203–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



204 A. Cabellos-Aparicio et al.

This lack of connectivity can affect some applications, especially streaming or
real-time, which do not have retransmission mechanisms.

This paper focuses on measurements (active and passive) of the WLAN/
IPv6/ MIPv6 handover. Our goal is to study the handover in a real testbed
using two different approaches. First, using passive measurements, analyzing the
handover latency (the time where the mobile node is not able to send and receive
data). Our aim is to compare layer 2, layer 3 and MIPv6 handover, and to find
bottlenecks. Secondly, with active measurement; our goal is to study the effects
of the handover on traffic sent or received by applications, studying differences
depending on flow directions, packet losses, one-way delays and IPDV (IP Delay
Variation).

Several papers focus on the same topic, [5] uses a mathematical model to
study the handover latency but it does not take into account the wireless han-
dover, [4] studies the Mobile IPv6 (and others) handover with a simulator, [2]
makes an empirical analysis of the 802.11 handover, and, finally, [3] studies the
WLAN/Mobile IPv6 handover in a real testbed proposing a new algorithm to
improve the handover latency. Our paper goes further, analyzing bottlenecks,
comparing the layer 2 and layer 3 handover and studying the effects suffered by
the applications.

The reminder of this paper is organized as follows: section 2 and 3 are a sum-
mary of IEEE 802.11 and Mobile IPv6. Our measurement scenario is presented
in section 4. In section 5 we propose an active and passive measurement method-
ology for handovers, in section 6 we present the results obtained in our handover
analysis and finally, section 7 is devoted to the conclusions of the paper.

2 IEEE 802.11

This protocol is based on a cellular architecture, where the system is divided
into cells. Each cell (Base Service Set or BSS) is managed by a Base Station
(commonly known as Access Point or AP). WLAN can be formed by a single
cell (or even by none, in ”ad-hoc” mode) but, usually is formed by a set of cells,
where AP’s can communicate trough a backbone (Distribution System or DS).
All this entities, including different cells, are viewed as a single 802.11 LAN from
upper layers (in the OSI stack).

AP’s announce their presence using ”Beacon Frames” that are sent periodi-
cally. When a STA desires to associate to an AP, it has to search for one (scan).
Scan can be performed using two different methods, either passive scanning,
where STA ”listens” for a ”Beacon Frame” (which includes all related informa-
tion to get associated), or active, where STA sends ”Probe Requests” frames,
expecting to receive ”Probe Response” sent by AP’s.

Once a STA has found an AP, and decided to join it, it will go through the
”Authentication Process”, which is the interchange of security information be-
tween the AP and the STA. When the STA is authenticated, it will start the
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”Association Process”, AP and STA will exchange information about capabilities
and allow the DS to know about the current position of the station. Only after
the association process is completed, the STA is able to transmit and receive
data frames.

If the signal received by the STA degrades (possibly because has moved away
from the AP) the handover procedure starts. First, STA must find a new AP; this
is accomplished using ”scan” (described previously). When a new AP is found
and the STA decides to join it, it must ”Reauthenticate” and ”Reassociate”.

3 Mobile IP

Mobile IP was designed by IETF in two versions Mobile IPv4 [8] and Mobile IPv6
(MIPv6) [9]. The main goal of the protocol is to allow mobile nodes to change its
point of attachment to the Internet while maintaining its network connections.
This is accomplished by keeping a fixed IP address on the mobile node (Home
Address or HAd). This address is unique, and, when the mobile node is connected
to a foreign network (not its usual network) it uses a temporal address (Care-of
Address or CoA) to communicate, however, it is still reachable through it’s HAd
(using tunnels or with special options in the IPv6 header). In this paper, we
focus in MIPv6, although the tools developed can be easily migrated to MIPv4,
FastHandovers for Mobile IPv6 [10], or other handover improvements.

MIPv6 has three functional entities, the Mobile Node (MN), a mobile device
with a wireless interface, the Home Agent (HA), a router of the home network
that manages localization of the MN, and, finally the Correspondent Node (CN),
a fixed or mobile node that communicates with the MN.

The protocol has four phases:

1. Agent Discovery: The MN has to discover if it is connected to the home
network or to a foreign one. For this purpose uses ”Router Advertisements”
[11], those messages are sent periodically by all IPv6 routers and include
information for client autoconfiguration. Using this information, the MN
obtains a CoA.

2. Registration: The MN must register its CoA to the HA and to CN’s. This
way, they know ”who” is the MN (HAd) and ”where” it is (CoA). Some
messages related to this phase are ”Binding Update” (BU) and ”Binding
Acknowledgment” (BA).

3. Routing and Tunnelling: MN establishes a tunnel with the HA (if it is nec-
essary), and it is able to receive and send data packets (using the tunnel, or
directly).

4. Handover: MN changes its point of attachment. It must discover in which
network it is connected (phase 1) and register its new CoA (phase 2). During
this phase, some data packets (sent or received by the MN) can be lost or
delayed due to incorrect MN location.
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4 Measurement Scenario

This section describes the practical part surrounding the setup of a measurement
scenario for networking tests. Also describes the different hardware and software
used for all the tests shown in this paper.

4.1 Network Topology

Testbed’s main reason is to compute Mobile Node handover latencies, the testbed
in detail can be seen in Figure 1, there are all the different parts of the scenario.
To avoid external interferences, this testbed is isolated from outside networks,
all the input and output traffic on the testbed’s network interfaces is controlled.
Having this isolation, but without the lack of external access, the scenario has
two parallel networks, the control network and the actual testing network, as
highlighted on the figure. This is important because with uncontrolled sources
of traffic all the delays will be miscalculated.

Fig. 1. Measurement scenario simplified structure

This testbed gives the tests all the privacy needed, this way, once the tests
are prepared, no foreign agents are able to interfere with them. At the same
time, the path followed by the packets is long enough to consider the possible
clock skew too small to have any negative impact on the results.

Regarding synchronization, the testbed is configured to use four NTP (Net-
work Time Protocol) sources [12], two of them belonging to a private network,
Stratum 1 servers connected to a GPS source each. The other two sources are on
the outside network and are as far as 3 hops away from the testbed. All the NTP
traffic is routed through a parallel network (with the local NTP servers) where
there isn’t any other traffic. It is possible to access those remote NTP servers
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through the control network which can use external time sources. The NTP
statistics shows that, with this setup, we obtain 1ms of measurement accuracy.

In order to confirm our synchronization accuracy, we made a simple test; we
sent several ARP broadcast packets in our measurement network, those packets
were captured on all the machines involved in our tests, and the timestamps
were compared. The maximum difference among those timestamps agreed with
the threshold stated by NTP.

4.2 Hardware and Software Equipment

Depending on the testbed description, all the machines involved on the tests are
using the GNU/Linux Debian Sid distribution. Depending on the role of each
computer, the hardware and the kernel varies accordingly:

– Access Points/Routers (AP): this testbed has two access points, each one
with two wireless cards, one for communicating with the MN and the other
one to monitor (capture frames). Those cards have the Atheros Chipset
(802.11g) in 802.11b compatibility mode. The configured kernel is the 2.4.26.

– Mobile Node (MN): this mobile node uses a Cisco Aironet 350 card (802.11b)
for wireless connectivity, here the kernel is 2.4.26 with MIPv6 1.1 [14] patch
for Mobile IPv6 support.

– Home Agent (HA)/Correspondent Node (CN): the last two important hosts
on the scenario have similar configuration with the 2.4.26 kernel patched the
same way as the Mobile Node for Mobile IPv6 capabilities.

5 Methodology

This section is devoted to the description of the methodology developed for this
paper. As our goal is to analyze the handover, we chose several tools which
permit to measure the desired network parameters. Those tools are:

1. MGen/DRec, NetMeter [15]: for the active measurement part.
2. Ethereal [13] and PHM Tool (Passive Handover Measurement) [6]: for pas-

sive measurements.

Both applications depicted here: NetMeter’s handover analysis module and
PHM Tool are developed under the same code base. Their main goal is to analyze
the Ethereal files and obtain for PHM Tool the handover latencies and for the
NetMeter’s part the packet losses and delays at application level.

The same capture is used for both solutions, the monitoring infrastructure
is set up on the Access Points, given that is the only way of detecting all the
handover latencies. Both captures (each on one access point) are merged (as they
really represent the same traffic flow) and the data is analyzed.

The following subsection enumerates the set of tests prepared for this paper,
following with the description of the passive analysis and later the paper focuses
on the study of the active part.
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5.1 Tests

For a good analysis of the handover, is necessary to build up a good set of tests.
In this paper we ran a set of 16 tests, each 5 minutes long, from where extracted
a set of 63 valid handovers.

Half the tests had the generated traffic from the Correspondent Node to the
Mobile Node, while the other half was on the opposite direction.

Moreover, each direction of the tests where split as follows:

– 64Kbps Traffic: this flow simulates with UDP the properties of VoIP traffic
under IPv6, there are sent 34 packets per second with 252 bytes of payload
as stated on [7].

– 1Mbps Traffic: due to the low rate needed for VoIP the other tests are done on
a higher packet rate, so the impact of a different bandwidth can be studied.
This time there were 94 packets per second with a payload size of 1300 bytes
per packet.

The VoIP simulation was chosen because all the traffic constraints of such
technology are well known and will be easy to determine the user impact of the
handover on such traffic regarding delays and packet losses.

5.2 Passive Handover Measurements (PHM)

Our main goal is to measure the handover latency or, in other words, the amount
of the time where a MN is not able to send or receive data. This duration has
several components, the amount of time spent by layer 2 (802.11b in our case) in
scanning for a new AP, authenticate and re-associate to it, time used by IPv6 on
connecting to the new network and, finally, the amount of time spent by MIPv6
in registering it’s new CoA to HA and CN’s.

The developed application ”PHM Tool” monitors the signaling messages in
both AP of our testbed. We capture all packets sent or received by their wireless
interface. Handovers are ”forced”attenuating the signal sent by the AP. The MN
realizes this (it detects that the signal quality is poor) and tries to search for a
new AP. In our testbed we do not have external interferences, and thus, the MN
changes to the other AP.

When a set of handovers have been carried out, the captured packets are
processed off line using ”PHM”, which analyzes the signaling messages providing
results.

5.3 Active Handover Measurements

Usually, pure Active Measurements, have an end-to-end approach. The basis of
such tests is to generate a synthetic flow travelling through the network under
test. This paper proposes a new method for enhancing the Active Measurement
framework. Our approach is based on a mixed use of Passive and Active Mea-
surement systems. The whole point is to generate the Active flow and measure
the typical end-to-end parameters. This flow is captured at its destination, but
also at the Access Point (using typical capture software such as Ethereal [13]).
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Once the tests are finished, the captured data is converted to the standard
XML language for network packets (PDML [16]), this file is processed by our
analysis tool, which will convert the data to a standard MGen file. This approach
permits to calculate partial data delays, that’s because the stored timestamps
passed to the MGen file are taken from the monitoring machine (which is the
actual Access Point on the testbed). Our solution can be used on a wide variety
of scenarios on general network measurement systems.

Focussing now on the paper’s tests, our method is to isolate the parameters
computation on the wireless data flow from the wired one. This way, is possible
to isolate all the handover incidences without taking into account the other parts
of the tests. Besides, another possible use of the testbed on such conditions is to
model the impact on the user’s perception of the packet losses and bigger delays
caused by the handover, this time with the end to end results.

6 Results

This section describes the results obtained from the tests discussed on the pre-
vious section. First the discussion focuses on the passive set of handovers for
analysing its duration and all the parts throughout the process, later the analy-
sis of the active results and the user level performance are shown.

6.1 Passive Handover Measurements

The whole system was tested doing a set of handovers, capturing all the signaling
messages and processing them off line using PHM.

Table 1. Numerical results obtained using PHM (ms)

Mean Std. Dev.

Scan 257.224 108.007

Authentication 2.733 1.183

Association 1.268 0.311

IPv6 1836.413 430.196

Registration (HA) 3.914 1.017

Registration (CN) 9.262 4.881

Total time 2107.82 450.619

The table 1 (results in milliseconds) show the results obtained with our ap-
plication and are a detailed version of the handover latency, and reveal time
between two consecutive signaling messages. Wireless handover is detailed and
we can see that the scan phase is the longest one; the MN uses in average 257ms
to find a new AP. The whole 802.11 handover (Scan, Authentication and Asso-
ciation) represents 12% of the total handover latency.
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Fig. 2. Handover from CN to MN with 1Mbps traffic

The second phase is the time spent by IPv6 to realize that it is attached to a
new network, and obtain a new CoA. IPv6 uses more than one second because
it has to perform DAD (Duplicate Address Detection) and to realize that its old
default router (the previous AR) it is unreachable [11]. For this last action, the
MN has a timeout, if this was set to a very low value (less than one second)
the MN, while communicating, would be sending ”Router Solicitation” messages
constantly trying to know if its default router is present or not. In our testbed,
this timeout was set to its minimum value. This part is 87% of the total time.

The Mobile IPv6 handover is also detailed, the first part (Registration HA)
is the time spent by the MN to indicate to the HA its new location, the second
part (Registration CN) is the time used by the MN to announce its new point of
attachment to the CN. It takes more time just because authentication between
MN and CN includes more messages. This part is 1% of the total handover
latency. This time is related to the round-trip time to the HA and to the CN.

We can conclude that in an 802.11/IPv6/MIPv6 handover, most part of the
time is due to IPv6 (87%), and specifically, due to ”Neighbor Unreachability
Detection”, the algorithm used to detect if the default router is present or not.

6.2 Active Handover Measurements

Once the analysis of the low level handover is finished, the next step on our
study is to analyze the traffic’s impact on user level, here the most important
parameters are: packet losses and delays. As will be discussed, another important
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Fig. 3. Handover from MN to CN with VoIP traffic

result depicted here is the differences on the results regarding the traffic direction,
from the CN to the MN or the other way around.

A - Packet Losses

To compute packet losses is a straight forward problem having the first and the
last packet involved on the handover, which are provided by the capture on the
access point.

Either Figure 2 and 3 have the packet’s sequence number on the x-axis and
the delay (in milliseconds) on the y-axis.

Figures 2 and 3 show two different handovers, the first one represents the
flow going from the Correspondent Node to the Mobile Node, and the other one
the opposite flow direction. Both handovers have similar duration, but, different
packet losses (due to different rates) as shown in the table 2.

Table 2 shows the summary of mean and standard deviation of packet losses
per handover on the whole set of tests done. As can be seen the higher is the
packet rate higher is the packet’s loss. The mean duration for the handovers
treated on this part (at application’s level) is 1,98 sec, which is slightly different

Table 2. Packet Losses

Mean Std. Dev.

64Kbps 1Mbps 64Kbps 1Mbps

MN -> CN 65.80 162 9.78 16.97

CN -> MN 61.71 207.21 17.54 65.90
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from the value given on the passive analysis, that’s because of a different set of
analyzed handovers.

B - Flow Directions

Regarding the effects suffered by a traffic flow when it is send from the MN to
the CN or vice versa table 2 doesn’t show any difference. However, figures 2 and
3 show that the handover has slight differences.

When the MN is sending packets to the CN and a handover starts, it stops
immediately while searching for a new Access Point, those packets are buffered
at Layer 2 by the wireless drivers. After the 802.11 handover is finished, the
MN starts to send those buffered packets as fast as it can, but they are lost
because they are sent to the old Access Router. Only after the MIPv6 handover
is finished, the packets flow correctly to the CN. Figure 3 shows this behavior,
packets marked as ”End-to-End delay”(those are the packets that arrive correctly
to the CN) reveal the handover gap while packets marked as ”MN to AP delay”
(not all those packet arrive correctly to the CN) show that during the handover
some of them are buffered and sent after the 802.11 handover is finished with
a higher delay, specifically the maximum delay is the duration of the wireless
handover.

The MN’s buffer may seem useless, but, in fact, is very effective in case of an
802.11 handover. In this case, the MN is not changing its default router, it doesn’t
need to send a Binding Update indicating a new location, it is just changing it’s
AP. The buffer will store packets that otherwise would be lost, those packets
will be sent correctly (but with a higher delay) when the MN regains Layer 2
connectivity.

In the case that the CN is the source (figure 2) of the traffic flow the han-
dover behaves differently. The CN sends packet constantly (it is connected to
an Ethernet), when the handover starts, all those packets are lost because they
are sent to the incorrect Access Router. Only after the MIPv6 handover part is
finished, the CN realizes of the new location of the MN and sends the packets
to the correct address.

C - QoS Parameters Consideration

Under a QoS environment, as stated above, there are other important parame-
ters which highlight the level of provided QoS. Those parameters are the One
Way Delay (OWD) and the Inter Packet Delay Variation (IPDV). Much
discussion is possible on this subject, but only for the sake of simplicity, the study
will be limited to the handovers studied on the previous figures, the statistically
representative study is left as future work. The goal is to see if the QoS param-
eters are kept under those handovers. This is accomplished by taking near three
seconds worth of packets before the handover and calculate the OWD, the IPDV
and the same after it. With this is possible to see if there are grave variation
of the above parameters when the Access Point signal’s quality decreases just
before the handover, or instead, if when associated to the new Access Point the
system’s convergence time to the new configuration causes any more problems.
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Table 3. OWD and IPDV

OWD (ms) IPDV (ms)

Before After Before After

VoIP 54.08 53.25 0.0125 0.0096

1Mbps 63.58 28.51 7.2566 -0.0011

The overall results for the displayed handovers can be seen on table 3, the
results are very clear, when there is low traffic on the wireless link (VoIP), the
loss of connectivity before the handover, hardly affects the packet delays, the
same holds true for the system recovery once the handover is finished.

Another result, though, is the case when the link is more overloaded (1Mbps),
where is easy to see the increment on the delivery delays of the flow, the reason
is the loss of link quality on the wireless link, although the system’s recovery is
pretty fast and reliable. The same results can be seen on Figures 2 and 3.

7 Conclusions

This paper analysis focuses on all levels involved in the handover process, from
802.11 handover until application’s level. That’s why we designed a testbed and
developed two applications to make active and passive handover measurements.

Passive measurements are intended to compute the handover latency in order
to find bottlenecks and to compare layer 2, layer 3 and MIPv6. In the other hand,
we expect to compute important parameters such as delay, IPDV and packet
losses with active measurements in order to analyze the impact at application’s
level forced by such handovers.

Passive results show that an 802.11/IPv6/MIPv6 handover takes 2.107 sec-
onds in average. The 802.11 part is 12% of the total time; most of this time is
spent searching for a new AP. The IPv6 part is the longest one, takes 87% of
the total time, the MN has to realize that its previous default router is no longer
reachable and switch to the new one. Finally, the MIPv6 part is 1% of the total
time.

Summarizing all the obtained results for the active measurement, the han-
dover as is doesn’t forbids the QoS on low bandwidths in terms of one way delay.
The problem, though, is uncovered by the packet losses (which is proportional to
the handover latency), where its value, depending on the packet’s rate is about
63 losses per handover (VoIP), which is unbearable for a proper quality voice
transmission. The only solution for this matter is to improve the handover times,
that is, to improve Mobile IPv6, or change it to better protocols such as Fast
Handovers.

Mixing both worlds (passive and active measurements paradigm) opens up
a new set of possibilities for analyzing all the different aspects of the handover.
We plan to extend this handover analysis, using the same methodology, to other
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protocols such as Mobile IPv4, Fast Handovers for Mobile IPv6, Hierarchical
Mobile IPv6 or some IEEE 802.11 handover improvements. We also want to
extend the methodology in order to know, exactly, how many packets, and which
packets have been lost or delayed in a given handover phase, this will be useful
for protocols such as Fast Handovers that uses intensively buffering.
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Abstract. In this paper we describe a distributed passive measurement
infrastructure. Its goals are to reduce the cost and configuration effort per
measurement. The infrastructure is scalable with regards to link speeds
and measurement locations. A prototype is currently deployed at our
university and a demo is online at http://inga.its.bth.se/projects/dpmi.
The infrastructure differentiates between measurements and the analysis
of measurements, this way the actual measurement equipment can focus
on the practical issues of packet measurements. By using a modular
approach the infrastructure can handle many different capturing devices.
The infrastructure can also deal with the security and privacy aspects
that might arise during measurements.

1 Introduction

Having access to relevant and up-to-date measurement data is a key issue for
network analysis in order to allow for efficient Internet performance monitoring,
evaluation and management. New applications keep appearing; user and proto-
col behaviour keep evolving; traffic mixes and characteristics are continuously
changing, which implies that traffic traces may have a short span of relevance
and new traces have to be collected quite regularly.

In order to give a holistic view of what is going on in the network, passive
measurements have to be carried out at different places simultaneously. On this
background, this paper proposes a passive measurement infrastructure, consist-
ing of coordinated measurement points, arranged in measurement areas.

This structure allows for a efficient use of passive monitoring equipment in
order to supply researchers and network managers with up-to-date and relevant
data. The infrastructure is generic with regards to the capturing equipment,
ranging from simple PCAP-based devices to high-end DAG cards and dedicated
ASICs, in order to promote a large-scale deployment of measurement points.

The infrastructure, which currently is under deployment at our university,
was designed with the following requirements in mind:

1. Cost. Access to measurement equipment should be shared among users, pri-
marily for two reasons: First, as measurements get longer (for instance for
detecting long-range dependent behaviour) a single measurement can tie
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up a resource for days (possibly weeks). Second, high quality measurement
equipment is expensive and should hence have a high rate of utilization.

2. Ease of use. The setup and control of measurements should be easy from the
user’s point of view. As the complexity of measurements grows, we should
hide this complexity from the users as far as possible.

3. Modularity. The system should be modular, this to allow independent devel-
opment of separate modules. With separate modules handling security, pri-
vacy and scalability (w.r.t. different link speeds as well as locations). Since
we cannot predict all possible uses of the system, the system should be
flexible to support different measurements as well as different measurement
equipment.

4. Safety and Security. Measurement data should be distributed in a safe and
secure manner, i.e. loss of measurement data should be avoided and access
to the data restricted.

To solve these requirements we came up with an infrastructure consisting of
three main components, Measurement Point (MP), Consumer and Measurement
Area (MAr). The task of the MP is to do packet capturing, packet filtering, and
distribute measurement data. The approach to the second design requirement
was to use a system with a web interface. Through this interface users can add
and remove their desired measurements. The MAr then handles the communica-
tion with the MPs. The cost for implementing this architecture is not very high,
compared to a normal measurement setup you need two additional computers
and an Ethernet switch of suitable speed, and this basic setup can grow as the
requirements change.

There are several other monitoring and capturing systems available, here we
describe only a few.

CoralReef [1] is a set of software components for passive network monitoring,
it is available for many network technologies and computer architectures. The
major difference between CoralReef and our infrastructure is that CoralReef
does not separate the packet capturing and analysis as we do. Furthermore, the
CoralReef trace format does not include location information as our does.

IPMON [2] is a general purpose measurement system for IP networks. IP-
MON is implemented and deployed by Sprint. IPMON separates capturing from
analysis, similar to our infrastructure. On the other hand, the IPMONs store
traces locally and transfer them over a dedicated link to a common data repos-
itory. The repository is then accessed by analyzers.

Gigascope [3] uses a similar approach as IPMON, by storing captured data
locally at the capturer. This data is then copied, either in real time or during
off-peak hour, to a data warehouse for analysis. It uses GSQL as an interface to
access the data.

The IETF has (at least) two work groups that are relevant for this work;
Packet Sampling (PSAMP) [4] and IP Flow Information Export (IPFIX) [5].
PSAMP works on defining a standard set of capabilities for network elements to
sample subsets of packets by statistical and other methods. Recently an Internet
draft was published [6], which describes a system at a higher level than our in-
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frastructure, but they are very similar and our system could benefit by adjusting
somewhat to the PSAMP notation. The IPFIX group is interesting since they
deal with how to export measurement data from A to B, thus it is interesting
with regards to consumers.

In Section 2 we will discuss the components and how they interact. This
is followed by Section 3 where we describe how the system handles rules and
filters. In Section 4 we discuss privacy and security related to the infrastructure.
In Section 5 we describe two cases where the system has been deployed. In
Section 6 we describe some of the ongoing and future work. And in Section 7 we
conclude the paper.

2 Components

The three main components in the infrastructure will be described in the follow-
ing subsections.

2.1 Measurement Point

In Figure 1 the components of a schematic MP are shown. This is the device
that does the actual packet capturing. It is managed from a Measurement Area
Controller (MArC) and transfers the captured data to consumers attached to
the Measurement Area Network (MArN). The MP can either be a logical or a
physical device. A logical MP is simply a program running on a host, whereas a
physical MP could either use a dedicated computer or custom hardware in order
to create high-speed high-performance MPs.

Wire-
tap

Receiver
Sender

Receiver

Controller

NIC

MArN

Control

Data

Link Under Test

CI

CI

Time
Synchronization

Client

Fig. 1. Schematic overview of a MP

A MP can tap one or more links; each link is tapped via a wiretap. For
full-duplex Ethernets, a wiretap has two outputs, one for each direction. These
are connected to separate capture interfaces (CI). A receiver listens to a CI and
filters the packets according to the filter rules stated by the MArC. If the CI
hasn’t timestamped the packet the receiver will do so. The packets are then
delivered to the sender, which is responsible for sending the captured packets
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to the appropriate consumers. Such a measurement frame can contain several
packets, where the number of packets is controlled by the maximum transfer
unit (MTU) of the MArN. Each MP also has a controller that is responsible
for the configuration of the MP and the communication with the MArC. A
time synchronization client (TSC) is used to keep all the MPs with in a MAr
synchronized, which can be done using a dedicated device or a simple NTP
server.

The filter rules used by the receiver specify, in addition to packet properties,
a consumer and the amount of the packet to be captured (currently the upper
limit is 96 bytes). For each frame that passes the filter, the MP attaches a cap-
ture header (Figure 2). In this header, we store a CI identifier, a MP identifier,
a timestamp when the packet was captured (supporting an accuracy of picosec-
onds), the packet length, and the number of bytes that actually were captured.
The filters are supplied to the MP from the MArC, and they will be discussed
in Section 3. Once a packet matches a filter, it is stored in a buffer pending
transmission. Once the buffer contents reaches a certain threshold the buffer is
transmitted using Ethernet multicast. This way, it is simple to distribute frames
to several consumers in one transmission. The duplication of data is done by the
MArN. This approach will also reduce the probability of overloading the MArN,
and hence preventing loss of measurement frames as far as possible. However, in
order to detect frame loss each measurement frame is equipped with a sequence
number that is checked by the consumer upon reception. If a measurement frame
is lost it is up to the consumer to handle this particular loss and notify the
MArC. Given this information the MArC can take actions to prevent future
losses. Actions can be to alter filters as well as requesting additional switching
resources inbetween the MPs and the Consumers. The current implementation
only notifies the consumer “user”, who has to take appropriate actions.

CI

MAMPid

Time

Time Length

CapLen

Fig. 2. Capture Header

The capture header enables us to exactly pinpoint by which MP and on what
link the frame was captured, which is vital information when trying to obtain
spatial information about the network’s behaviour. This also enables us to use
several MPs to measure a single link, which is interesting when the measurement
task of a link speed becomes too great for a single MP to handle. This would
require a device that is capable of distributing the packets such that the wiretap
feeds different MPs in a round robin approach.
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2.2 Measurement Area

In Figure 3 an example of a MAr is shown. The MAr provides a common point of
control for one or more MPs. It uses a dedicated network in between MPs and the
MAr subsystems for reasons of performance and security. A MAr consists of the
following subsystems: a MArC, a time synchronization device (TSD), a MArN
and at least one consumer and one MP. The MArC is the central subsystem
in a MA. It supplies the users with a GUI for setting up and controlling their
measurements. It also manages the MPs by supplying filters and by keeping
track of their status. The TSD supplies all the MPs in the MA with a common
time and synchronization signal. It can utilize the existing Ethernet structure to
the MPs, or it can utilize some other network to distribute the time signal.

MP1

MP2

MP3

MArN
Switch

MArC

Time Synchronization Device

Switch
Cn

Consumer1

Consumer2

SMArFilter

Users/SMA

Control

Data

MArN
Consumer-Network

Fig. 3. Simple overview of a MA with three MPs, four consumers, one MArC and a
time synchronization unit

The capacity of the MArN should be such that it can handle the peak rate
of the measured traffic. Assume that a MP monitors a 10Base-T link, with a
frame rate of 800 fps where each frame is 1500 bytes long (≈ 9.6 Mbps). From
each frame we collect 96 bytes, add a capture header of 36 bytes and store the
data in a measurement frame, see Figure 4. Given a MArN MTU of 1500, a
measurement frame can contain 1480 bytes of measurement data, consisting of
capture headers and frames, the remaining 20 bytes are used by a measurement
header (MH). In the current example we can store 11 frames in each measurement
frame (11 ∗ (36 + 96) = 1452 ≤ 1480 bytes), causing the MP to send only
800/11 ≈ 72 fps into the MArN, see Figure 5. If the monitored link would have a
frame rate of 14000 fps, each frame would only be 85 bytes long (≈ 9.6 Mbps), the
measurement frame would contain 12 frames (12∗(36+85) = 1452 ≤ 1480 bytes),
yielding a frame rate of 14000/12 ≈ 1167 fps. However, if the MArN MTU was
9000, the measurement frame could contain 74 frames, yielding a frame rate of
189 fps.
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CH CH Frame j+nFrame j+1 CH Frame j+2 ...MH

MTU MArN

36 0-1500

Fig. 4. Measurement frame encapsulation

... ... ... ... Captured frames

Measurement frames

t

Fig. 5. After capturing N frames one measurement frame is sent from the MP

A consumer that attaches to the MArN should not request more data than the
link that it is attached to can handle. For instance a consumer C1 is the recipient
of two measurement streams, S1 and S2, each generating 1272 measurement
frames per second. As long as the total frame rate of S1 and S2 is less or equal
to the capacity offered by link and switch there should be no problems, but if the
consumer desires to get full frames it might run into problems quite fast, since the
MP adds a capture header to each captured frame potentially generating more
traffic than it captures. The current implementation addresses this problem by
having a maximum capture size of 96 bytes. The MArC also provides the user
with an estimation of the frame rate on the links that the MPs are monitoring,
giving the user an indication of the amount of traffic that his consumer might
receive.

The example in Figure 3 contains a consumer network (CN). It is placed on
a separate switch to minimize processing required by the MArN, thus enabling
additional consumers to be easily connected to the MArN, for instance new
probes, analyzers etc. to be evaluated in parallel. If the number of consumers is
low, the MArN switch might handle them directly, and no CN switch is necessary.
This would be the normal setup, see Figure 6. In Figure 7 a minimal MAr is
shown. In both cases the MPs are using a separate network for the time signal
distribution.

2.3 Consumer

A consumer is a user-controlled device that accepts packets according to the
format specified by the system. A consumer should filter the content of the
measurement frame that it receives, since the MP merges multiple user requests
some filters will capture packets that match several requests. Such a joint filter
might not perfectly match the desired frame description; this is discussed in the
following section.
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3 Filters and Rules

A user supplies rules to the MArC. These rules describe what data the user
desires to collect, where the data should be collected, when the data should be
collected and where to send the data. The MArC uses this information to create
filters that the MPs understand. The filters that the MP uses are a combination
of all the user supplied rules, combined in such a manner that all requests are met
in a best effort style. The MArC keeps track of the MPs and their capabilities,
thus it knows how many filters a MP can handle before it runs into performance
problems. The MArC also monitors the performance of the MArN and reject
user rules that could cause performance problems within the MArN. If a MP is
to obtain a filter list that would push it into a region of potential performance
problems, the MArC will alter the filters in order to minimize the number of
filters. By doing this the load on the MP is kept at a reasonable level, but this
approach requires the consumers to do some filtering of their own. Hence, it is
up to the user to supply the desired Consumer with a filter. The filters within a
MP are arranged in such a manner that no packet is reported twice by the MP.

Let’s give a simple example, we have one MP and two consumers C1 and C2.
Initially we have two rules (using BPF syntax):
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R1 {tcp host A.a} which sends its data to C1.
R2 {ip net A} which targets C2

Here two approaches are possible; the first during low load would have the fol-
lowing filters sent to the MP:

F1 {tcp host A.a}→ M1
F2 {ip net A}→ C2

Here M1 is a multicast address that C1 and C2 listens to. If the load on the MP
approaches a high level then only one filter would be sent to the MP

F1 {ip net A}→ M1

In this case the C1 consumer would need to perform filtering in order to select
the TCP segments of host A.a. By default a consumer should always filter the
measurement data that it receives, ensuring that it passes a correct stream to
the analysis/storage entity.

4 Privacy and Security Issues

A MP will see all the traffic passing on a link that it is tapping, which can be
viewed as a intrusion of privacy. Furthermore, since the majority of the network
protocols used today were not designed with security in mind, user credentials
might pass on the link and be clearly visible to the MP. This can be an intrusion
of privacy and should require special care on behalf of the measurement system
and its users. If the data collected from the system is only intended for internal
use, it might be enough that all users and the network-owner have agreed to
that their traffic can be monitored to allow for measurements. However, if the
data is to be shared with researchers in other organizations, the data should be
deprivatized. Deprivatization [7] can be done on various levels, from the removal
of parts in the application data to the removal of all network data. We believe
that the system should minimize the alternation of the captured data and leave
the anonymization to the consumers. If the MP would anonymize the data, e.g.
through scrambling of addresses [8], some consumers such as intrusion detection
systems or charging systems might not be able to operate anymore. However, if
the system does deprivatization by default, this should be done in the MPs. If
address scrambling is utilized, this causes problems when the user specifies the
measurement rules. If the unscrambled address was used, the user will obtain
scrambled addresses matching his requirement and then it is possible to reverse-
engineer the scrambling system. If the scrambled address was used, the user
would need to know how to create that scrambled address. Probably, the first
method should be chosen. In that case, the only person that is capable of reverse-
engineering the packet trace is the user requesting the trace, since he knows
both scrambled and unscrambled address. Now, if the packet trace is stolen, the
thief cannot match packets to individual hosts/users unless he has access to a
descrambler and the scrambling key.
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Privacy issues will probably have to be addressed by specialized consumers.
For instance, we have two consumers, a intrusion detection system (IDS) and a
link utilization estimator (LUE). The IDS needs undistorted information. The
LUE could on the other hand use deprivatized data, but since the MP will not
send two copies of the same packet there is a problem. It is probable that a
network owner would like to have control of the information that leaves his net-
work, so it would be easier for the network owner to supply an export consumer
that deprivatizes the data according to his own policies, which might not meet
the particular desires of the user. For our own measurements, the agreement we
made with the system owner was the following: The MPs are only allowed to
capture headers, not user payload. Furthermore, the data leaving a consumer
may only be in statistical form, or deprivatized in such a manner that it is im-
possible to reverse-engineer the data to obtain information that allows you to
identify a particular individual.

MA1-MArC

MA1-SMAfilter

MA2-MArC

MA2-SMAfilter

SMAConsumer1

SMArC

SMAConsumer2

Users

Control
Data

Fig. 8. Example of a SMAr

From a security point of view, all components in the system should be pro-
tected from unauthorized access. The simplest way to do this is to have the sys-
tem operating on a separate network, with no connection to any other networks.
This would however be expensive and unpractical in measurements distributed
over a wide area. The solution to this it to utilize Super Measurement Areas
(SMAr), see Figure 8. SMAr’s are used to connect to MAr’s at different loca-
tions using existing infrastructure. A SMAr can be seen as a MAr at a higher
level, the MAr’s MP becomes SMArFilters (specialized consumers that attach
to the MArN), the MArs consumers are called SMArConsumers. Between the
SMArFilters and SMArConsumers TCP is used to provide reliable communica-
tion. The MPs and the MArN need to be protected from unauthorized access,
both physical and logically. Physical protection of the MAr subsystems is the
first requirement in giving logical protection; the consumers and the MArC need
to be protected from intrusions via their connection to the users.
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5 Examples of Use

As of writing two MAr have been implemented and used. One is available online
via http://inga.its.bth.se/projects/dpmi and is mainly used in a controlled envi-
ronment. The second MAr consisted of two measurement points each monitoring
a gigabit link on a campus network. In both cases only one physical consumer
was used, but it was sufficient to handle up to eight logical consumers. Examples
of consumers are: estimation of traffic distribution (at link, network, transport
and application level); link utilization; packet inter arrival time; communication
identification; and bottleneck identification [9]. At the time of writing we are
preparing a third MAr to be deployed in an ISP network, where it will initially
be used for bottleneck identification. In Figure 9 we visualize the result from a
analyzer that identifies bottlenecks. It uses two consumers to estimate the link
bit rate over a given time intervall, these are then transferred to a database
which is accessed by the visualizer that estimates the bottleneck.
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Fig. 9. Example of a consumer: Visualization of a bottleneck through bitrate histogram
difference plots (c.f. [9])
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Fig. 10. User interface for adding rules

In Figure 10 the MArC (prototype) interface for adding a rule is shown. In
this implementation all tasks are done manually, the goal was to develop the MP
not the MArC. The following filtering options are availible, the MASK fields are
used to mask the packet value.

– CI: Physical interface identifier.
– VLAN TCI: VLAN number and priority.
– ETH TYPE: Ethernet type.
– ETH SRC/DST: Ethernet source/destination address.
– IP PROTO: IP payload type.
– IP SRC/DST: IP source/destination address.
– SRC/DST PORT: Transport protocol source/destination port numbers (if

applicable).
– DESTADDR: What Ethernet address should receive the measurement data?
– TYPE: Which type of transport should the MP use? Ethernet, UDP or TCP.
– CAPLEN: How much of each captured frame should we store?
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FilterID is a number that specifies in which order the MP should check its filters,
starting with number zero. Index will indicate which fields that are used in the
rule specification. For instance if we wish to collect all packets caught on a specific
CI the index would be 512, and the CI field would hold a string identifying the
CI. If we would like to capture IP packets caught on a specific CI, index would
be 640, ETH TYPE=2048 and CI a string specifying the interface.

6 Ongoing and Future Work

Initial experiences with the system are encouraging, and development of con-
sumers is currently ongoing. The experience of the demo has indicated that the
MP’s software needs to be changed in such a manner that the MPs periodically
flush their measurement buffers, in order to prevent consumers from waiting
long times. We are considering a modification of the system so that the MArC
supplies the consumers automatically with the information that they need with
regards to filters and multicast addresses.

To handle the increased link speeds, new devices with better timestamping
accuracy are needed. Even if we can obtain this accuracy, a single device will
probably run into problems when measuring such a link. Hence another task
would be to investigate how to distribute the measurement task of a link onto
several MPs. Compression of frame data is also considered to be implemented,
this would could enable us to do full frame capturing without requiring a MArN
that is more powerful that the observed link. We also need to evaluate the
performance of a MArN.

The infrastructure is being considered as a part of the EuroNGI WP.JRA.4.3
[10] Measurement tool. This tool will support traffic generation, measurement,
analysis and visualization.

7 Conclusions

In this paper we have presented a distributed passive measurement infrastruc-
ture, which has separate components for packet capturing, control and analysis.
We discussed how the system deals with multiple users and their request for
data. Since the infrastructure is passive we addressed the security and privacy
issues associated with this. Furthermore, we gave examples of current usage and
future work.
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Abstract. This paper presents lambdaMON - a novel approach to passive 
monitoring of very high performance optical networks based on dense 
wavelength division multiplexing (DWDM). The approach offers very 
attractive cost/benefit scaling properties, which are further refined by 
introducing state-of-the-art transparent fiber switching equipment. The rapid 
pace at which we intend to implement lambdaMONs opens new opportunities 
to apply passive monitoring facilities for debugging, troubleshooting and 
performance analysis of novel protocols and applications. To the best of our 
knowledge, this is the first attempt at designing a passive monitoring facility for 
optical networks. We report detailed architectural parameters, measurements 
and experience from laboratory tests and initial field deployment. 

1   Introduction 

Optical networking, based upon dense wavelength division multiplexing (DWDM), is 
rapidly becoming the technology of choice for the high-performance networking 
community, as well as major national and international commercial network 
providers. 

Optical networking uses individual light rays (also referred to as colors, 
wavelengths, carriers, or channels) to carry very high-performance point-to-point 
connections over long distances. The capabilities offered by optical networking 
fundamentally challenge traditional means of time division multiplexed IP services, 
which have dominated the development of the Internet for the past two decades.  

Traditional circuit-based provisioning, such as OC3/OC12 leased lines, ATM, 
MPLS, or virtual private networks (VPN) are rapidly being replaced by fiber optic 
communication channels, or lambdas. The opportunities for improving connectivity 
and performance between regions, countries, or very demanding end user 
communities, such as the high energy physics research community, are tremendous.  
At present, it is difficult to imagine the full impact that DWDM technology might 
have for end-to-end networking, especially when used to support very sensitive and 
demanding 10-Gigabits/second and quality-of-service aware user applications. 
                                                           
1  This work was supported by the U.S. National Science Foundation Collaborative Agreement 

ANI-0129677 (NLANR/MNA, 2002) with subcontract to the University of Waikato in New 
Zealand. 
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With networks being rolled out at a rapid pace, new protocols being developed and 
field tested, and new applications emerging, the stakes for success are high and the 
risks that have to be taken by the research community are substantial. A readily 
available monitoring facility is highly desirable as a means to locate, debug, 
troubleshoot and resolve potential problems. In this regard, passive systems have a 
unique advantage: they explore the network as is, without interfering with the 
actual traffic data pattern as generated by end systems or as modified through 
intermediate devices, such as switches and routers. In addition, passive monitoring 
systems present an excellent means to understand and address issues at network layers 
two to seven.  

In this paper we present lambdaMON – a new passive monitoring technology that 
enables the debugging and troubleshooting of applications and protocols that operate 
over long-distance DWDM networks. While the lambdaMON is fundamentally a new 
passive network monitoring technology, it preserves the traditional means to precisely 
collect and analyze workload and performance characteristics of edge, access, and 
backbone network links. 

The rest of the paper is organized as follows. In the next section we provide a brief 
overview of traditional passive monitoring systems, their advantages and 
shortcomings. In section 3 we look at the specifics of DWDM technology as deployed 
in the field today and determine the point of instrumentation for lambdaMONs. In 
section 4 we outline the constraints for the lambdaMON architecture. Section 5 looks 
at implementation challenges. Section 6 summarizes the achievements in architecting 
and designing lambdaMONs. 

2 Traditional Passive Monitoring Systems 

Passive network monitors interoperate with the live network at the link level (see 
Figure 1). They are considered a vendor independent means of gathering data as they 
do not depend on features that would otherwise have to be provided by active network 
equipment operating as routers, switches, hubs or end systems [1]. Operating at the 
medium dependent physical layer, these OCxMON systems are equipped with link 
layer specific network measurement cards (NMCs), which reimplement all layer one 
and two functions, such as deserialization, packetization and various packet 
encapsulations, and then pass the data on to analysis-specific functions, such as 
arrival time stamping, selective filtering and payload discard or flow state analysis. 
Such functions are executed by reconstructing and accessing information that is 
specific to network layers three to seven. If real-time analysis applications are used, 
the monitor may deliver a complete solution by means of a graphical user interface. 

The biggest strength of passive monitoring technology (i.e., link layer dependency) 
is at the same time, also one of its biggest weaknesses. Every emerging technology 
advance demands that a new set of PC cards (NMCs) be developed in order to support  
a compatible interface to the network link. Passive network monitors are, by design, 
lower-cost devices, and their implementation is hence based on off-the-shelf 
components. Therefore NMCs are typically designed and implemented after a given 
link layer technology has been rolled out in the field, and as a result they are generally 
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Fig. 1. Classic OCxMON monitoring setup 

available only for the second half of the life cycle of any high-performance 
(backbone) link layer technology. This means that the use of passive monitors, so far, 
has been restricted to traffic and workload characterizations of mature networks. 

While passive monitors are extremely powerful once deployed in the field, their 
widespread use faces some steep resistance for both cost and technology reasons. Being 
a per-link facility limits their deployment to dedicated research environments for cost 
reasons, thus preventing them from becoming a more general-purpose operational 
network facility. Examples of larger scale deployment include the infrastructures 
operated by NLANR/MNA and CAIDA. Perhaps the largest known infrastructure in a 
commercial setting is operated by Sprint ATL’s IPMON research group. In addition to 
the financial obstacles, the process for installing fiber optic splitters still presents a 
technical hurdle for most users new to passive monitoring, and misconfigurations are 
frequent. At best, the monitor will be unable to collect data on one or both of its 
interfaces. At worst, the network link itself will be unable to operate, or remain 
intermittent and unreliable – unacceptable for any type of network operations. 

As a result of these obstacles, passive monitors have never been used for locating, 
debugging, troubleshooting and eliminating end-user application, protocol, and 
performance problems. For a random end-user or problem the chances of one (or 
more) passive monitors being present, available, and accessible along an end-to-end 
networking path are very small. 

3   DWDM Optical Networks 

DWDM harnesses a spectrum of lambdas within the third optical window (1520 to 
1620 nanometers) for long-distance high-performance data transmission. This 
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spectrum has been chosen for its low attenuation and for its ability to amplify signals 
at the optical level without the need for regeneration, which would otherwise force a 
technically expensive optical-electrical-optical conversion. 

Major amplification technologies in use today are erbium doped fiber amplifiers 
(EDFA) and Raman pump lasers. Unlike EDFAs, which can be purchased and 
integrated as modules into the fiber path, Raman amplifiers use the entire long-
distance fiber span as a medium, with the pump laser located at the receiver of the 
optical transmission line. Due to the way these amplifiers work, the third optical 
window has been subdivided into the C (1520 to 1560 nanometers) and L (1565 to 
1620 nanometers) bands. With the use of EDFAs, fibers spans of up to 600 kilometers 
(375 miles) can be achieved. EDFAs combined with Raman amplifiers will reach up 
to 2000 kilometers (1250 miles) for production use. 
The use of lambdas within the C and L bands has been standardized by the 
International Telecommunication Union – Telecommunication Standardization Sector 
(ITU-T). ITU-T Recommendation G.694 defines a grid of wavelengths rooted at 
1552.52 nanometers (193.1 THz). The spacing between carriers is implementation 
dependent and includes 200 GHz, 100 GHz, 50 GHz, and 25 GHz options. The choice 
of grid spacing controls the number of channels that can be supported by any single 
channel. For instance, with a 50 GHz grid, up to 80 channels can be supported in the  
C band. Due to the modulation noise band and necessary isolation between channels, 
a 50 GHz grid limits the digital carrier signaling frequency to about 20 GHz. For 
technical reasons it is unlikely (but not impossible – see [6]) that carriers beyond 
OC192/10-Gigabit-Ethernet will be deployed on a 50 GHz grid any time soon. 
     DWDM networks are presently built in a static setup as single-vendor single-
product implementations. The simplest configuration will involve a  pair  of   DWDM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. DWDM terminal with lambdaMON setup 
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terminals operating at either end of a bidirectional long distance fiber (see Figure 2). 
A DWDM terminal supports access to the individual carrier wavelengths by means of 
a transponder, which supports the connection of traditional carrier class equipment 
(SONET OC12, OC48, OC192) or local area networking gear (such as 1-Gigabit and 
10-Gigabit Ethernet devices). 

The transponder converts a traditional SONET/SDH or Ethernet LAN PHY signal 
via a G.709/G.975 encoder by employing a Reed-Solomon (RS[239,255]) forward 
error correction (FEC) code to lower the expected bit error rate (BER) on the 
transmission link. The use of FEC supports the operation of longer fiber spans 
without the need for regeneration, which in turn makes the entire system significantly 
more cost effective. The G.709 encoded signal operates at an approximately 7 per- 
cent higher rate relative to the original 10 Gigabit carrier and is launched via a laser at 
a specified wavelength into the first stage multiplexer (MUX). It is this signal that the 
lambdaMON will pick up once the signal has passed through additional, but optional, 
stages of multiplexers and amplifiers (AMP), but before entering the dispersion 
compensation unit (DCU). 

For the inbound direction, all lambdas will pass through one or more stages of the 
demultiplexer (DEMUX), with a single channel (still G.709 encoded) eventually 
reaching the decoding section of the transponder, where it will be converted back into 
the original SONET/SDH or Ethernet LAN PHY signal. 

All of the passive modules forming a DWDM terminal, such as MUX, DEMUX 
and DCU, introduce a device dependent attenuation, typically between 5 dB and 10 
dB. However, the operating range of transmitters, receivers and other parts of the 
system is typically limited to between +5 dBm and -20 dBm. Therefore, signals will 
have to be strengthened at least once within the terminal, which is the role of 
preamplifiers (PRE AMP). 

The point of instrumentation at a DWDM terminal requires a fully multiplexed, 
non-dispersed signal that is strong enough to tolerate the additional attenuation 
introduced by the fiber optic splitter and lambdaMON components, such as the 
tunable channel filter (TCL). Therefore, the exact location to instrument is the right-
hand side of any DCU and past any preamplifiers in the direction of light travel (see 
Figure 2). 

DWDM transmission lines can be built from just one, or two independent, fiber 
runs. In the event of a fiber cut, the DWDM system will, within a defined period of 
time, automatically switch from the primary fiber to the secondary. Since protection 
switching is handled at the line amplifier section of a DWDM terminal or device, the 
lambdaMON architecture is not affected by whether the network owner chooses to 
operate in protected mode or not. 

Since modern DWDM sites are built in a modular fashion, similar components as 
are presently found in DWDM terminals will also be present at optical line amplifier 
(OLA), regenerator (REGEN) or optical add/drop multiplexer (OADM) sites. The 
lambdaMON architecture fundamentally permits deploying monitors at any of those 
DWDM sites, however, since passive monitors are best operated remotely with a 
legacy network connection, there is not much point in placing them at OLA or 
REGEN sites. OADM sites are very similar in nature to DWDM terminals and will 
support the proposed architecture. 
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4   lambdaMONs 

A lambdaMON is a bidirectional 10 Gigabits/second device capable of collecting 
and analyzing packet header data at line rate from any one (at a time) of the 
active wavelength carriers at a single DWDM link. 

A multi-feed lambdaMON, or lambdaMON node, is an advanced 
configuration permitting a lambdaMON to monitor any one (at a time) of a 
number of DWDM links at a given location. 
 

Fig. 3. Multi-feed lambdaMON or lambdaMON node 

Our design for lambdaMONs and lambdaMON nodes is driven by the following 
considerations: 

1. We are keen to break the technology dependency cycle that lets passive monitors 
miss the first 18 months of the life cycle of any high performance network link 
layer technology. 

2. We want to demonstrate the utility of passive monitoring systems for 
troubleshooting and debugging of networks, applications and protocols. Such a 
facility is critical within the first year or two after network rollout, much less once 
the network is mature. 

3. We want to retain the ability to collect and analyze workload profiles of mature 
networks. 
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4. We believe that there is no strict need for a static association between network 
links and monitors. It appears that the community would rather have a passive 
monitoring facility available on demand, and possibly on short notice, if and when 
such a requirement arises. 

5. We believe that the success of passive monitoring technologies has been 
hampered by cost considerations as well as technical obstacles. We can break 
those constraints by designing a readily available facility central to the network. 

Based on those constraints, we derive our lambdaMON architecture as follows: 

1. Make best use of existing OC192MON technology, which permits loss free data 
capture and real-time analysis at 10 Gigabit LAN/WAN PHY and OC192c 
Packet-over-SONET network links. 

2. Address the per-link constraint (and associated costs) of traditional OC192MON 
deployment by designing a system that will permit dynamically tuning into any 
one (at a time) of the active lambdas at a given DWDM link. 

3. Increase the coverage on a given optical infrastructure by introducing a 
transparent fiber switch to tap into multiple DWDM links at a site (see Figure 3). 

4. Retain the option to increase analysis power by introducing additional 
lambdaMONs to the fiber switch in the future. As opposed to a static per-DWDM-
link setup, this arrangement will permit the analysis of multiple lambdas at a 
single DWDM link, if required. 

5   Technical Challenges 

DWDM is still an emerging technology and some of the equipment in the field today 
may not easily support passive fiber splitters, and the resulting engineering effort may 
turn out to be prohibitive to consider the installation and operation of lambdaMONs. 
As an alternative, existing one percent monitoring ports, which appear to be a 
standard feature with most equipment, can be used in replacement for the fiber tap. 
The advantage is that equipment in the field will not experience any service disruption 
when installing lambdaMONs; however, on the downside, the signal levels are too 
low for the operation of fiber optic transceivers and other passive optical equipment. 
Therefore, the signal levels will need to be amplified by an EDFA first, which causes 
an overall increase in costs. First field tests have shown that signal levels at one 
percent monitoring ports vary, and a single stage amplifier may or may not be 
sufficient to increase the signal power level in such a way that a commercially 
available G.709 transponder can be operated reliably at the expected BER. 

Tunable channel filters (TCL) are just becoming commercially available for field 
deployment, and are restricted to operating in either the C or the L band. In addition, 
the selection of filters that support stable operation on a 50 GHz grid is presently very 
small. Field tests have shown that TCLs come at an affordable price and work reliably 
to the full satisfaction of the project. 

It appears to be attractive, from a cost point of view, to integrate G.709 
transponders into OC192MONs. Even though there is some loss of flexibility, the cost 
reductions are significant, specifically in a large scale rollout, like in a distributed 
infrastructure.  
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6   Conclusion 

We have successfully carried out laboratory tests using a C band setup simulating a 
total of 600km of long distance fiber terminated by a pair of CISCO 15808 terminals. 
We amplified signals from the one percent monitoring ports in both the transmit and 
receive directions via a CISCO 15501 EDFA and successfully transferred 1.4 
Terabytes of data over the course of several hours with varying packet sizes and data 
loads without incurring any bit errors or packet drops. 

Our next step, at the time of publication, is to stage a phase 2 prototype of the 
lambdaMON, which will involve a full setup of the lambdaMON node in Los 
Angeles, with the active support of CENIC. Such a node may include OC48MON 
monitoring equipment right from the start, as there are a number of links that are of 
particular interest to us. 

We are also looking at expanding the passive measurement node concept to 
traditional SONET-based networking. It is expected that we will continue to publish 
our progress via the project’s Web site [7]. 
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Abstract. Round trip times (RTTs) play an important role in Internet measure-
ments. In this paper, we explore some of the ways in which routing policies impact
RTTs. In particular, we investigate how routing policies for both intra- and inter-
domain routing can naturally give rise to violations of the triangle inequality with
respect to RTTs. Triangle Inequality Violations (TIVs) might be exploited by
overlay routing if an end-to-end forwarding path can be stitched together with
paths routed at layer 3. However, TIVs pose a problem for Internet Coordinate
Systems that attempt to associate Internet hosts with points in Euclidean space
so that RTTs between hosts are accurately captured by distances between their
associated points. Three points having RTTs that violate the triangle inequality
cannot be embedded into Euclidean space without some level of inaccuracy. We
argue that TIVs should not be treated as measurement artifacts, but rather as nat-
ural features of the Internet’s structure. In addition to explaining routing policies
that give rise to TIVs, we present illustrating examples from the current Internet.

1 Motivation

Since round trip times (RTTs) play an important role in Internet measurements, it is
important to have a good understanding of the underlying mechanisms that give rise
to observed values. Measured RTTs are the result of many factors — “physical wire”
distance, traffic load, link layer technologies, and so on. In this paper, we explore a
class of factors that are often ignored — the ways in which routing policies can impact
minimum RTTs.

In particular, we investigate how routing policies for both intra- and inter-domain
routing can naturally give rise to violations of the triangle inequality with respect to
RTTs. The existence of Triangle Inequality Violations (TIVs) impact two areas of current
research, one positively, and the other negatively. For overlay routing [1], TIVs represent
an opportunity that might be exploited if the layer 3 routed path can be replaced with one
of lower latency using a sequence of routed paths that are somehow stitched together in
the overlay. On the other hand, TIVs pose a problem for any Internet Coordinate System
(ICS) [2,3,4,5,6,7,8] that attempts to associate Internet hosts with points in Euclidean
space so that RTTs between hosts are accurately captured by distances between their
associated points. The problem is simply that any three points having RTTs that violate
the triangle inequality cannot be embedded into Euclidean space without some level of
inaccuracy, since their distances in Euclidean space must obey this inequality. We feel
that current work on Internet Coordinates too often treats TIVs as measurement artifacts,
either ignoring them entirely or arguing that they are not important. We have come to

C. Dovrolis (Ed.): PAM 2005, LNCS 3431, pp. 236–250, 2005.
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the opposite conclusion — we feel that TIVs are natural and persistent features of the
Internet’s “RTT geometry” and must somehow be accommodated. We illustrate how
TIVs can arise from routing policies and present illustrating examples from research
networks in the Internet. Our measurement results are consistent with those reported in
PAM 2004 [9], and indicate that the commercial Internet is even more likely to exhibit
such policy-induced TIVs.

2 A Bit of Notation

A metric space is a pair M = (X, d) where X is a set equipped with the distance
function d : X → +. For each a, b ∈ X the distance between a and b is d(a, b),
which satisfies the properties, for all a, b, c ∈ X ,

(anti-reflexivity) d(a, b) = 0 if and only if a = b,
(symmetry) d(a, b) = d(b, a),
(triangle inequality) d(a, b) ≤ d(a, c) + d(c, b).

A quasi-metric space (X, d) satisfies the first two requirements of a metric space, but the
triangle inequality is not required to hold. This paper argues that Internet RTTs naturally
form a quasi-metric space, with routing policies being an important, but not sole, factor
in the violation of the triangle inequality.

A Triangle Inequality Violation (TIV) is simply a triple (a, b, c) that violates the
triangle inequality. It is not hard to see that for any TIV, there must be one edge that is
longer than the sum of the other two edges.

Suppose that M1 = (X1, d1) is a quasi-metric space, and M2 = (X2, d2) is a
metric space. Every one-to-one function φ from X1 to X2 naturally defines a metric
space called the embedding of M1 in M2 under φ, defined as φ(M1) = (φ(X1), d2).
We normally abuse terminology and simply say that φ embeds X1 into X2, We will be
interested in the case where X1 is a finite set, X2 is n with the standard notion of
Euclidean distance, d2(x, y) = ‖x − y‖ =

√∑
1≤i≤n (xi − yi)2.

The number of possible embeddings is quite large. In addition, the accuracy of an
embedding can be measured in various ways, as is outlined in [10]. In this paper, we
will not focus on any particular embedding, nor on any particular notion of accuracy. We
simply note that any TIV embedded into Euclidean space must involve some “distortion”
since the triangle inequality will hold on the embedded points. Although one might
attempt to embed RTT distances into a non-Euclidean space (such as [11]), by far the
most common techniques are Euclidean.

3 Routed Paths Versus Round Trip Time

Most data paths are determined by dynamic routing protocols that automatically update
forwarding tables to reflect changes in the network. Dynamic routing never happens
without some kind of manual configuration, and we will refer to routing protocol con-
figuration as implementing routing policy. The Internet routing architecture is generally
described as having two levels [12] — Interior Gateway Protocols (IGPs) are designed
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to route within an autonomously administered routing domain, while Exterior Gateway
Protocols (EGPs) route between such domains. In this section we explore the ways in
which routing policies can give rise to data paths that violate the triangle inequality with
respect to delay.

Intra-domain routing is typically based on finding shortest paths with respect to
configured link weights. The protocols normally used to implement shortest path routing
are RIP, OSPF, or IS-IS. We note that Cisco’s EIGRP [13] presents a slightly more
complex routing model, and in addition some networks actually use BGP for intra-
domain routing. Nevertheless, for simplicity we will investigate here only how shortest
path routing can give rise to TIVs.

In order for there to be no TIVs in shortest path routing, the link weights must be
consistent with the actual link delays. However, delay is just one of the many competing
demands in the design of intra-domain routing. So the disagreement between the link
weight assignment and the actual link delay will cause structural TIVs in the intra-domain
case.

We now consider how inter-domain routing can introduce triangle inequality viola-
tions (TIVs).
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Fig. 1. Nodes 1, 2 and 3 form a TIV due to Hot
Potato Routing. The numbers on the edges rep-
resent link propagation delay

Fig. 2. Nodes 1 and 2 share a “private peering
shortcut” that cannot be used to transit traffic
between nodes 2 and 3

Hot potato routing [14] refers to the common practice of sending inter-domain traffic
towards the closest egress point. Consider two ASes presented as large ovals in Fig. 1.
We inspect the “triangle” formed by nodes 1, 2, and 3. The upper AS has two egress
points, A and B, the first of which is closer to node 1, while the second is closer to node
2. Node 3 is in the lower AS and is closer to egress C. Note that hot potato routing will
result in asymmetric routing between nodes 2 and 3. Traffic from 3 to 1 and 2 will always
exit the lower AS at egress point C, whereas traffic from 2 to 3 will exit the upper AS at
egress point B. The distance matrix for the nodes 1, 2, and 3, all calculated as “round
trip” distance, is

d 1 2 3
1 0 4 8
2 4 0 13
3 8 13 0

Here we see that 13 = d(2, 3) > d(2, 1) + d(1, 3) = 12, and so this represents a TIV.
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Lest the reader think that the problem is asymmetric routing alone, we now show
how economic relations between networks can give rise to TIVs even when routing is
symmetric. Private peering links are common routing shortcuts used to connect ISPs.
Fig. 2 presents five ASes, the upper AS representing a large transit provider, the middle
two ASes representing smaller providers, and the lower two ASes representing cus-
tomers. The directed arrows represent customer-provider relationships pointing from a
provider to a customer. The bi-directional arrow between the lower ASes represents a
private peering [15] link. This link transits only traffic between the lower two ASes,
and is not visible to the providers above. (This type of peering is very common on the
Internet.) Traffic between nodes 1 and 2 uses this link for a round trip path cost of 2.
Traffic between nodes 3 and 1 goes through border router E for a round trip path cost of
4. However, traffic between nodes 2 and 3 must go up and down the provider hierarchy
for a round trip path cost of 28!. Here we see that 28 = d(2, 3) > d(2, 1)+ d(1, 3) = 6,
so this represents a TIV.

TIV can also be caused by traffic flowing through three independent AS paths between
a triple of nodes, where at least some AS along one path is not in the other two paths.
This usually happens due to multi-homing [16] and because peering relationship is a
bilateral agreement and typically not transitive [17]. In this case, there is absolutely no
reason to believe that triangle inequality must hold. We will see some examples of this
type of TIV in section 4.

In fact, the interaction between inter-domain and intra-domain routing can also in-
troduce TIVs. This type of TIV applies to the majority of systems that use end-to-end
measurement results. This interaction often makes it very difficult to classify the root
cause of an observed TIV.

The current inter-domain routing protocol, BGP, conveys only AS-level paths infor-
mation. Nothing is learned about the actual router-level path within an AS. Therefore,
when BGP makes a decision based on the shortest AS path, nothing can be inferred
about the actual router-level path. An example of this is shown in Fig. 3.
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Fig. 3. When choosing the AS-level path be-
tween nodes a and b, BGP prefers AS 4 1 to
AS 3 2 1, although the router-level path along
AS4 is much longer

Fig. 4. A TIV caused by the interaction between
hot-potato routing and intra-domain TIV

More complicated interactions are also possible. Fig. 4 shows an example of a TIV
caused by both hot-potato routing and intra-domain TIV. Routers r1, r2 and r3 form
an intra-domain TIV, and AS1 uses hot-potato routing between egress points a and r2,
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and b and r3. So the path between b and c (b r3 r1 c) exhibits a much longer RTT than
the paths between a and b, and a and c (a r2 r1 c). We can see that sometimes the
intra-domain behavior of the intermediate AS may change the existence of TIV through
interaction with inter-domain routing.

4 Case Study: The Global Research and Education Network
(GREN)

We define GREN (c.f. [9]) to be all the Autonomous Systems reachable from the Abi-
lene network (AS11537), because we can reach almost all the research and education
networks in the world from Abilene, and Abilene has no direct upstream commercial
provider [18]. Fig. 5 illustrates the connectivity of most component networks of GREN.
We study GREN instead of the commodity Internet because GREN is a relatively more
open and transparent network, and we can understand its global structure more easily.
In addition, a large percentage of PlanetLab nodes are hosted in GREN networks.

Backbone research
networks
External peering
Point−of−Presence

External peering
connection
Planned backbone
research network

APAN

Clara

DANTE

Internet2

(CA*net 4)

(Abilene)

Keys

Fig. 5. The connectivity of most component networks of GREN

We take a BGP table dump (on 19 July 2004 at 12:00 GMT) from Oregon Internet
Exchange (OIX), a RouteViews server which directly peers with Abilene, and study how
GREN is inter-connected. We observe that quite a few commercial ASes are involved
to glue together bits of GREN. According to the BGP behavior of each AS, we were
able to classify all the 1203 GREN ASes into 30 commercial ASes and 1173 research
ASes (details omitted). The particular reasons for ‘leaking’ these commercial ASes into
GREN are still under further investigation, although we have seen that some are leaked
in for very legitimate reasons.

4.1 Examples of Internal TIVs

We obtained the router-level topology [19] and IS-IS weights from a monitor box inside
the GEANT backbone (the multi-gigabit pan-European research network managed by
DANTE), as shown in Fig. 6. We also measured the minimum RTT values between all
pairs of GEANT backbone routers using their looking glass interface [20]. The RTT
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Fig. 6. The topology of GEANT backbone. Thick lines represent OC-192 10Gbps fast backbone
links, and other lines represent slower links of various speeds. The numbers in the circles represent
the IS-IS weights assigned to the links

measurements are taken 100 times for each pair (50 times starting from each end of the
pair), and the minimum is used in our calculations. Our goal in this experimental work
is to study the structural causes of TIV, therefore we take the minimum measurement to
avoid biases in the results due to high variations in RTTs. The measurements are spread
out into an 8 hour period, both to smooth out the variations in RTT caused by network
conditions, and for rate limiting purposes. The experiment is repeated three times a day
for a week from 12 August 2004 to 18 August 2004, so we had 21 RTT matrices. There
are 23 backbone routers in the GEANT AS, so each matrix is 23x23 in size. We then
obtained the final RTT matrix by taking the minimum measurement of each pair. Out of
all the 1771 distinct triangles formed by triples of backbone routers, we observed 244
TIVs . This represents a significant 13.8% TIV inside the GEANT network.

When examined closely, it is observed that the TIVs in the GEANT network are
mainly caused by the link weights disproportional to the link delay. For example (see
Fig. 7), Slovakia has two OC-48 links to Czech Republic and Hungary, respectively.
But their purpose is just to provide access for the Slovakia SANET, not to transit traffic
between Czech and Hungary. So the weights on these two access links are intentionally
set quite high, so that the traffic from Czech to Hungary would go via an alternative path
through Germany and Austria, where the links are backbone OC-192 links with lower
weights. When we look at the RTTs between the three nodes, however, the RTT between
Czech and Hungary is much larger than the sum of the other two RTTs, causing a TIV.

We then looked at the Abilene network. Abilene publishes their router configuration
files online [21], so we obtained their router-level topology and IS-IS weights from their
website, as shown in Fig. 8. To verify that their published configuration file is up-to-date,
we ran traceroute between directly connected nodes to see that every configured link is
actually operational. The configuration data matches very well with the verification. We
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then run the same measurements to collect the minimum RTT data between all pairs of
Abilene backbone routers for the same whole week. Each measurement run takes around
8 hours, so we ran the experiments 3 times per day from 12 August 2004 to 18 August
2004, and obtained 21 matrices. There are only 11 backbone routers in Abilene, so each
matrix is 11x11 in size. The minimum RTT between each pair of nodes is then taken to
compute TIVs. We observed 5 TIVs out of all the 165 triangles. This represents 3.03%
TIV inside the Abilene network.

We learned from the Abilene operators that the link weights are assigned according
to geographic distance. As geographic distance is in a Euclidean space, we should expect
the triangle inequality to always hold. The reality is, however, that even in an ideally
designed network like this, TIV can still occur. On close inspection, we can see that all
the TIVs are caused by traffic flowing through independent paths between the triple of
nodes (e.g. between Indianapolis, Atlanta and Washington). Although geographically the
path is shorter, behavior of the intermediate routers (e.g. load, processing delay, priority
of traffic, or queuing delay) can affect the end-to-end RTT measurement. However,
compared with GEANT, the violations are much less significant in terms of the r metric
(defined in [9] as r = a

b+c ∗ (1 + (a − (b + c))), where a, b and c are the three edges of
the triangle and a is the longest edge), as shown in Fig. 9.

4.2 Examples of External TIVs

To illustrate the effect of hot-potato routing on TIV, we picked three PlanetLab nodes
from JANET (UK), BELNET (Belgium) and NYSERNet (USA), respectively. We run
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traceroute from each node to the other two nodes to construct the exact path taken by
data packets, as shown in Fig. 10. Here we use solid lines to represent a single direct link,
and dotted lines to represent a few hops in the middle. We abstract out only the important
routers along the paths. We can see that because of hot-potato routing, the traffic from
node C to GEANT always goes through the New York router in Abilene. Similarly
the GEANT network uses hot-potato routing as well for traffic going to Abilene. The
primary link that is causing the problem in this case is the link between NL in GEANT
and Chicago in Abilene. This link has a much longer RTT than the NY-to-NY peering
link, but is preferred in hot-potato routing to route traffic from NL to Abilene. The end
result is that the round-trip path between B and C is asymmetric and much longer than
necessary, causing a TIV. We checked that the measurements we obtained with traceroute
are within 0.25% error of the minimum RTT value taken during the first week of June
2004 (as mentioned in the dataset in [10]), so we use these RTT measurements in the
figure for illustration.

To illustrate the effect of private peering shortcut on TIV, we picked three PlanetLab
nodes from JANET (UK), DFN (Germany) and CERNET (China). We run traceroute
from each node to the other two to construct the AS-level data path. We then use traceroute
to collect RTT data once every 10 minutes between the triple for a 24 hour period on 18
August 2004, and the minimum RTT value is used to demonstrate the TIV. As shown in
Fig. 11, the paths between pairs of nodes are symmetric, and there is a private peering
shortcut between JANET and CERNET. DFN does not know about this private peering
shortcut, so it has to go up the hierarchy tree to communicate with CERNET. This causes
a TIV between the three nodes. This AS-level graph corresponds remarkably well with
the theoretical analysis shown in Fig. 2.

To illustrate the effect of independent AS paths on TIV, we picked three PlanetLab
nodes from Russia, Hong Kong and the UK. The AS-level paths between the three nodes
are shown in Fig. 12. Here we ignore the router-level paths within individual ASes, as
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these are insignificant. What is of interest in this case is the complicated AS-level paths
packets take between these three nodes. By independent, we mean that the intermediate
ASes are independently engineered and that parts of the AS-paths do not overlap with
any other. This is caused by the BGP import and export policies of the ASes involved,
and can be explained by the economic incentives of inter-connecting networks [17]. As
the minimum RTT measurements between the three nodes vary drastically from week to
week in our earlier dataset [10], there are no representative values. However, the common
observation is that they all show TIVs between these nodes. So we use the values of a
particular measurement in the figure as illustration.
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4.3 Examples of End-to-End TIVs

To show an example of end-to-end TIV caused by the interaction between intra-domain
and inter-domain routing, we picked three nodes from JANET (UK), HEANet (Ireland)
and RedIRIS (Spain), respectively. As not all the domains have PlanetLab nodes in
this case, we use Looking Glass nodes instead whenever necessary. We ran traceroute
between the triple, and collected the data once every 10 minutes for a 24 hour period on
18 August 2004. The minimum RTT values between each pair of nodes are then chosen
from the dataset. This time, however, we want to see how exactly the path affects TIV,
so we use the minimum RTT observation to break the RTT down into segments with one
RTT per link (or a set of links if the links are topologically unimportant). The detailed
break-down of RTT values is shown in Fig. 13.
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Here, we can see that there is actually a link between the UK router in GEANT and
the IE router, but its weight is set to be quite high so it is not used in routing. If we
used this link on the path from node C to A, then there would not be a TIV between
the triple even though there is a private peering link between JANET and HEANet. This
illustrates that just looking at the inter-domain structure of the network is not sufficient
to determine whether a TIV will occur or not. The behaviors of the intermediate ASes
are also important. It is the interaction between intra-domain TIV and private peering
shortcut that causes a TIV to occur in this case.

4.4 TIVs in PlanetLab Measurements

To illustrate that TIV is not uncommon in real-world measurements, we took a week’s
PlanetLab RTT measurement trace from [22] from 13 September 2004 to 19 September
2004. The pair-wise RTT data were collected on consecutive 15-minute periods, and we
take the median RTT value from each measurement. Thus for each day in this period
there were 96 matrices of RTT measurements, and the size of each matrix is 399 × 399.
Over the week we therefore had 672 such matrices. We then take the minimum RTT
value of all the matrices for each pair, and construct a final RTT matrix. Some entries in
the final matrix have no values due to unsuccessful measurements, so we denote those
by ‘NaN’. In calculating triangles, we discard any triangle that has ‘NaN’ as one of its
edges.

We classify all the PlanetLab nodes into research and commercial nodes by looking
at whether the IP address of the node matches any prefix in the GREN (i.e. Abilene) BGP
table. To be on the safe side, we also manually check the list of nodes that are classified as
being commercial nodes. In this way, of all the 399 PlanetLab nodes as of 16 September
2004, we identified 327 nodes as research nodes and 72 nodes as commercial ones.
This means that 82% of the hosts are in the GREN, a slight decrease from the 85% we
observed in [9].

Notice that the names of the PlanetLab nodes are not accurate indications of whether
the node is research or commercial. For example, HP Labs (AS71) has a few PlanetLab
nodes under the domain hpl.hp.com, but they are reachable from Abilene, and so are
in fact research nodes. Conversely, the Computer Science and Artificial Intelligence Lab
of MIT has a few PlanetLab nodes under the domain csail.mit.edu, but CSAIL
(AS40) uses Cogent (AS174) as its upstream provider for connections, and so these
nodes are in fact commercial nodes.

We classify all the triangles into ‘R.R.R’ with all research nodes, ‘C.C.C’ with all
commercial nodes, and ‘mixed’ with a mixture of nodes. We use the r metric as defined
in [9] to illustrate the amount of TIVs. Of all the 2537992 valid triangles formed by
the 399 nodes, there were 467328 TIVs, so this represents 18.4% TIV in PlanetLab
measurements. Table 1 shows the detailed break-down of TIVs by category for the
node-by-node matrix. Fig. 14 shows the CDF distribution of r values for each category,
when zoomed in to the area around r = 1. We can see that ‘R.R.R’ triangles behave the
best. There are the fewest number of TIVs, and the TIVs are all quite small in magnitudes.
‘C.C.C’ and ‘mixed’ triangles behave very similarly, and both have a higher percentage
of TIVs and much bigger r values.
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Table 1. A detailed break-down of TIVs by
category for the node-by-node matrix

Category Total TIVs Percentage
R.R.R 1704809 282164 16.6%
C.C.C 9678 2306 23.8%
Mixed 823505 182858 22.2%
All 2537992 467328 18.4%

Table 2. A detailed break-down of TIVs by
category for the site-by-site matrix

Category Total TIVs Percentage
R.R.R 263062 52170 19.8%
C.C.C 966 227 23.5%
Mixed 119945 26084 21.8%
All 383973 78481 20.4%

−3 1 10

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

R

C
D

F

R.R.R
C.C.C
mixed

Fig. 14. The CDF distributions of r values for the three categories of triangles formed by PlanetLab
nodes, when zoomed in to areas around r = 1

However, there are a few problems with using the node-by-node matrix. When we
look at the r values close to 1, we can see that most of those corresponding triangles have
two nodes physically located in the same site with a very small RTT value between them
(typically <1ms). This makes the r value very vulnerable to measurement artifacts,
as measurement error can often be much bigger than 1ms. So if we do not filter out
those triangles, then our measured TIV percentage is not accurate. We have also seen
some absurd RTT values (e.g. >3000ms), and triangles with one edge having those RTT
values usually have huge r values. We suspect the high RTT values are due to a few
nodes being overloaded, so we want to filter out those as well to get an accurate measure
of TIV magnitude. For these reasons, we want to get a site-by-site matrix, where we
pick a representative node for each site.

In our initial approach, we noted that all the nodes that belong to a physical site are
located within the same ‘/24’ prefix, so we picked one node from each ‘/24’ prefix which
has the most number of non-NaN measurements that are less than 1500ms. However,
we also noticed that sometimes not all the nodes in the same ‘/24’ prefix are physically
located together. For example, the Internet2 PlanetLab nodes are physically scattered
across the Abilene backbone and co-located with Abilene backbone routers, and so the
RTTs between them are typically more than 10ms. Therefore, we decided to use physical
closeness and the behavior of the nodes as the main criteria for grouping nodes into sites.
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For each node (i.e. the pivot node), we first pick out all the nodes that have sub-
millisecond RTT to that node. Within the group, we then check each pair-wise RTT
to make sure it is either sub-millisecond or NaN. Then, we calculate the Correlation
Coefficient (CC) between the pivot node and every other node, and throw away nodes
that have CC < 0.99. In calculating CC, we use the standard definition on the two
row vectors of the RTT matrix, but we modify it slightly so we treat NaN entries as
perfect matches with the corresponding entries. Finally, for each remaining node in the
group, we also search through the node list and add into the group any node that has
the same ‘/24’ prefix as this node but NaN in the RTT matrix. This accounts for nodes
in the same physical location but was down during the measurement period. By using
the above procedure, we were able to reduce the 399 nodes into 168 ‘sites’, with 140
research ‘sites’ and 28 commercial ‘sites’. Again we picked out the ‘best’ node from
each site, and calculate TIVs on the reduced 168 × 168 matrix. This time, we observed
78481 TIVs out of all 383973 valid triangles. Table 2 shows the detailed break-down of
TIVs by category for the site-by-site matrix.

We expected the ‘R.R.R’ triangles to behave the best, as it is very likely that traffic
between them is only transited through GREN. In GREN, the networks are not driven
purely by commercial relationships and are very cooperative in general, and the GREN
inter-domain routing policies are often configured to use shortest path even if it violates
economic provider-to-customer relationship. For example, RENATER2 (AS2200), the
French research network, has a direct peering connection with APAN-Korea (AS9270),
constructed under the TEIN2 project. Although RENATER2 is a customer of GEANT
(AS20965), it still exports this private peering link to GEANT so the shortest path can
be used. (Actually the European Commission is funding part of the TEIN2 project, so
this private peering is logically peering with both RENATER2 and GEANT. GEANT
can also reach APAN-Korea through Abilene and APAN-Japan, but the path is much
longer.) In the commercial world, however, paths are often inflated due to economic
reasons [23,24]. Thus, we would expect a higher percentage of TIVs between commercial
PlanetLab nodes than between research ones. When there is a mixture of nodes, traffic
between a research and a commercial node tends to go through the commercial Internet,
so in a mixed triangle there are at least two paths between nodes through the commercial
Internet. This makes the mixed case a lot like the ‘C.C.C’ case.

5 Conclusion

Although Internet routing policies play an important role in the global observed round-
trip-times, we also want to emphasize that routing policy is not the only thing that
contributes to TIVs. We have already seen that the private peering connection between
JANET and CERNET is not giving too much savings on the RTT measurements. This
relates to the Layer 2 technology used on this peering link. There is also the fact that the
earth is a sphere, not a plane, so triangles on the surface of earth can go around the earth
and do not have to satisfy the triangle inequality (although currently there are only very
few fast links through continental Europe to Asia). Even as we are finishing this paper,
we have heard that the South American research network is being re-structured and
connected to GEANT directly, and the AMPATH network, which used to connect Brazil



Internet Routing Policies and Round-Trip-Times 249

to Abilene, is being decommissioned. This would mean that temporarily all research
traffic from Brazil to Abilene will need to go through GEANT, essentially traversing
through the Atlantic twice. In particular, we have verified that traffic from Brazil to
Mexico goes along this very much stretched path through GEANT and Abilene. This
illustrates that the structural planning of the network can bring about unexpected TIVs
as well.

In conclusion, TIVs are not just data collection artifacts, they can be structurally
persistent as a result of routing policies (as well as many other factors). Both intra-
domain routing policies and inter-domain routing policies, and the interactions between
them, can cause structural TIVs. TIVs present an opportunity for overlay routing, but
they make Internet Coordinate embeddings less accurate.
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Abstract. A traffic matrix represents the load from each ingress point to each
egress point in an IP network. Although networks are engineered to tolerate some
variation in the traffic matrix, large changes can lead to congested links and poor
performance. The variations in the traffic matrix are caused by statistical fluctua-
tions in the traffic entering the network and shifts in where the traffic leaves the
network. For an accurate view of how the traffic matrix evolves over time, we
combine fine-grained traffic measurements with a continuous view of routing, in-
cluding changes in the egress points. Our approach is in sharp contrast to previous
work that either inferred the traffic matrix from link-load statistics or computed it
using periodic snapshots of routing tables. Analyzing seven months of data from
eight vantage points in a large Internet Service Provider (ISP) network, we show
that routing changes are responsible for the majority of the large traffic varia-
tions. In addition, we identify the shifts caused by internal routing changes and
show that these events are responsible for the largest traffic shifts. We discuss the
implications of our findings on the accuracy of previous work on traffic matrix
estimation and analysis.

1 Introduction

The design and operation of IP networks depends on a good understanding of the offered
traffic. Internet Service Providers (ISPs) usually represent the traffic as a matrix of load
from each ingress point to each egress point over a particular time interval. Although
well-provisioned networks are designed to tolerate some fluctuation in the traffic matrix,
large variations break the assumptions used in most designs. In this paper, we investigate
the causes of the traffic matrix variations. Identifying the reasons for these disruptions
is an essential step toward predicting and planning for their occurrence, reacting to them
more effectively, or avoiding them entirely.

The traffic matrix is the composition of the traffic demands and the egress point
selection. We represent the traffic demands during a time interval t as a matrix V (·, ·, t),
where each element V (i, p, t) represents the volume of traffic entering at ingress router i
and headed toward a destination prefix p. Each ingress router selects the egress point for
each destination prefix using the Border Gateway Protocol (BGP). We represent the BGP
routing choice as a mapping ε from a prefix to an egress point, where ε(i, p, t) represents

C. Dovrolis (Ed.): PAM 2005, LNCS 3431, pp. 251–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the egress router chosen by ingress router i for sending traffic toward destination p. At
time t each element of the traffic matrix T M is defined as:

T M(i, e, t) =
∑

p∈P :ε(i,p,t)=e

V (i, p, t). (1)

where P is the set of all destination prefixes.
Figure 1 presents a simple network with one ingress router i, two egress routers e

and e′, and two external destination prefixes p1 and p2. Given traffic demands V (i, p1, t)
and V (i, p2, t) and a prefix-to-egress mapping ε(i, p1, t) = ε(i, p2, t) = e, the traffic
matrix for this network is T M(i, e, t) = V (i, p1, t) + V (i, p2, t) and T M(i, e′, t) = 0.

e

i

e’

p1

V(i,p2,t)V(i,p1,t)

p2

V(i,p1,t) + V(i,p2,t)
TM(i,e,t) =

Fig. 1. Example of traffic matrix

Fluctuations in the traffic demands and changes in the prefix-to-egress mapping cause
the traffic matrix to vary. This paper considers the natural question: what are the causes
of large variations in the traffic matrix?

Most previous work on measuring [1–4] and analyzing traffic matrices [5, 6] has
assumed that the prefix-to-egress mapping ε is stable. However, relying on periodic
snapshots of routing data runs the risk of associating some traffic measurements with
the wrong elements in the traffic matrix, obscuring real variations in the traffic. In this
paper, we study how changes in ε impact the traffic matrix. A previous analysis of five
traces of 6–22 hours in duration on the Sprint network [7] shows that most BGP routing
changes do not lead to large traffic shifts. However, given that large traffic variations are
infrequent (yet significant) events, we believe that longer traces are necessary to draw
meaningful conclusions. Our previous work [10] shows that internal routing can cause
ε to change for a large number of prefixes at the same time, which can potentially cause
a large traffic shift. Neither [7] nor [10] study the significance of traffic shifts caused by
routing relative to regular traffic fluctuations, which is the topic of this paper.

In this paper, we study the impact of routing changes on the traffic matrix over a
seven-month period in a tier-1 ISP network. Using Cisco’s Sampled Netflow feature [8]
and feeds of internal BGP (iBGP) messages, we compute the traffic demands V and the
prefix-to-egress mapping ε for eight ingress routers. Joining these two datasets allows
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us to construct a detailed view of the variation of the traffic matrix over time. We also
collect measurements of the intradomain routing protocol [9] in order to identify the
changes in ε that were caused by internal network events, using the algorithm described
in [10]. Our analysis shows that:

1. Although the likelihood of large traffic fluctuations is small, big changes do
sometimes occur. In any given ten-minute time interval, less than 0.02% of the
traffic matrix elements studied have a traffic variation of more than 4 times the
normal traffic variations. However, some elements vary by more than 4 times the
normal variations several times a week.

2. Most routing changes do not cause much variation in the traffic matrix. Previous
studies [7, 11] have shown that routing changes typically do not cause large traffic
shifts; most BGP routing changes affect destination prefixes that receive very little
traffic.

3. Routing changes are responsible for many of the large traffic shifts: 58.6% of
instances where a traffic matrix element fluctuated by more than 10 times the normal
variation for that element could be explained by a BGP routing change.

Although routing changes usually do not affect much of the traffic, many of the
large traffic shifts are triggered by routing changes. Large traffic shifts caused by rout-
ing are rare, but important events. After introducing our measurement methodology in
Section 2, we identify the causes of the big variations in Section 3. Section 4 discusses
the implications of our results on other studies of traffic matrices. Section 5 concludes
the paper.

2 Measuring Traffic Matrix Variation

Studying the variation of traffic matrix elements over time requires collecting fine-
grained measurements of traffic and routing. We analyze data collected from a tier-
1 ISP network for 173 days from March to September 2004. We collect data from
eight aggregation routers that receive traffic from customers destined to peers and other
customers. The eight routers are located in major Points of Presence (PoPs) that are
spread throughout the United States.

We compute eight rows of the traffic matrix, considering all traffic from these eight
ingress aggregation routers to all of the egress PoPs. This section describes how we com-
pute the prefix-to-egress mapping ε(i, p, t) from the BGP data and the traffic demands
V (i, p, t) from the Netflow data. Once we have computed ε and V , we use Equation 1
to compute the elements of the traffic matrix TM(i, e, t). The BGP monitor and the
Netflow collection servers are NTP-synchronized, allowing us to use the timestamps to
join the two datasets.

2.1 Prefix-to-Egress Mapping

A BGP monitor collects internal BGP update messages directly from each vantage point.
Configured as a route-reflector client of each vantage point, the BGP monitor receives
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updates reporting any change in the best BGP route at each router for each destina-
tion prefix. The monitor records each BGP update with a timestamp at the one-second
granularity.

A single network event, such as a failure or policy change, can lead to a burst of
BGP updates messages as the routers explore alternate paths. Rather than studying the
details of routing convergence, our analysis focuses on the changes from one stable
route to another. Similar to previous studies [10, 11], we group the BGP updates for the
same destination prefix that have an interarrival time of 70 seconds or less. Our analysis
considers the stable route that existed before the flurry of updates and the new stable
route that exists at the end.

Based on an initial BGP table dump and a sequence of BGP updates, we generate
the prefix-to-egress mapping ε(i, p, t) for any given time. The egress point corresponds
to a PoP rather than a specific router. We associate each egress router with a PoP based
on the router name and configuration data.

2.2 Traffic Demands

Every vantage point has the Cisco’s Sampled Netflow feature [8] enabled on all links
that connect to access routers and exports flow records to a collection server at the same
location. The collection server samples the flow records using the technique presented
in [12] in order to reduce processing overhead, and computes 10-minute aggregated
traffic volumes for each destination prefix. We use these aggregated reports to extract
V (i, p, t) for each vantage point i and destination prefix p at every 10-minute interval.
Consequently, a reference to a time t indicates the end of a 10-minute interval.

Because of sampling, the volumes V (i, p, t) are random quantities that depend on
the sampling outcomes. Through a renormalization applied to the bytes reported in
sampled flow records, the quantities V (i, p, t) are actually unbiased estimators of the
volumes of the original traffic from which they were sampled, i.e., their average over all
possible sampling outcomes is the original volume. The standard error associated with an
aggregate of size V is bounded above by

√
k/V for some constant k that depends on the

sampling parameters [12]. For the parameters employed in the current case, k < 21MB.
Note that the standard error bound decreases as the size of the aggregate increases. This
property aligns well with our focus on the largest changes in traffic rates: these are the
most reliably estimated. As an example, for a 10-minute aggregate of traffic at a rate of
10 MB per second, the standard error due to sampling is no more than 6%.

Even though the traffic data is divided into 10-minute intervals, our 70-second group-
ing of BGP updates is important for cases when path exploration crosses the boundary
between two ten-minute intervals. This ensures that we focus our analysis on stable
changes of ε. If the mapping ε(i, p, t) changes more than once in a 10-minute interval,
then we cannot distinguish the volume of traffic affected by each of them individually.
Therefore, we exclude those cases from our analysis by ignoring intervals with prefixes
that have more than one stable routing changes in that bin; this excludes 0.05% of the
(i, e, t) tuples from our study. We also exclude all traffic for the small number of flows
that had no matching destination prefix in the BGP routing tables or update messages;
we verified that these flows corresponded to an infinitesimal fraction of the traffic.
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3 Causes of Large Traffic Variations

In this section, we explore the contributions of changes in the traffic demands V and
prefix-to-egress mapping ε to the variations in the traffic matrix elements TM. Our
analysis shows that, although most changes in ε have a small effect on the traffic matrix,
many of the large variations in the traffic matrix are caused by changes in ε. Also, we
show that, while most changes in ε are caused by external routing events, the small
number of internal routing events are more likely to cause larger shifts in traffic.

3.1 Definition of Traffic Variations

Figure 2 shows an example of how two traffic matrix elements (with the same ingress
point i) change over the course of a day. The total traffic entering at the ingress point
varies throughout the day, following a typical diurnal cycle. For the most part, the
traffic TM(i, e1, t) has the same pattern, keeping the proportion of traffic destined to e1
relatively constant. For most of the day, no traffic travels from ingress i to egress point
e2. The most significant change in the two traffic matrix elements occurs near the end
of the graph. The traffic leaving via egress point e1 suddenly decreases and, at the same
time, traffic leaving via egress point e2 increases. This shift occurred because a routing
change caused most of the traffic with egress point e1 to shift to egress point e2. The
egress point e2 also starts receiving traffic that had previously used other egress points
(not shown in the graph), resulting in an increase for e2 that exceeds the decrease for
e1. In the meantime, the total traffic entering the network at ingress i remained nearly
constant.

The traffic experiences other relatively large downward spikes (labeled as load vari-
ation). These spikes may very well be associated with a routing change in another AS in
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the Internet that caused traffic to enter at a different PoP (this kind of traffic variation was
called an “ingress-shift anomaly” in [6]). In this paper, we analyze traffic shifts caused
by routing changes experienced by our network. Finding a signature of routing-induced
traffic variations for one network is an important first step to infer other traffic variations
that are caused by routing changes in other networks.

To analyze these kinds of traffic fluctuations, we define the variation of a traffic
matrix element at an interval t as:

ΔTM(i, e, t) = TM(i, e, t) − TM(i, e, t − 1).

3.2 Changes in Traffic Demands Versus Egress Points

The variation of a traffic matrix element (ΔTM ) is composed of the load variation (ΔL),
which represents volume fluctuations on the traffic demands V , and the routing shifts
(ΔR), which accounts for changes in the prefix-to-egress mapping ε:

ΔTM(i, e, t) = ΔL(i, e, t) + ΔR(i, e, t)

ΔL(i, e, t) represents the change in the volume of traffic for all destination prefixes
that did not change their egress point from the previous time interval (i.e., ε(i, p, t) =
ε(i, p, t − 1) = e):

ΔL(i, e, t) =
∑

p ∈ P :
ε(i, p, t) = e

ε(i, p, t − 1) = e

V (i, p, t) − V (i, p, t − 1)

Fluctuations in the traffic demands may occur for a variety of reasons, such as changes
in user or application behavior, adaptations caused by end-to-end congestion control, or
even routing changes in other domains.

The routing variation ΔR(i, e, t) considers the destination prefixes that shifted to
egress point e during time interval t or shifted from e to another egress point in t:

ΔR(i, e, t) =
∑

p ∈ P :
ε(i, p, t) = e

ε(i, p, t − 1) �= e

V (i, p, t) −
∑

p ∈ P :
ε(i, p, t) �= e

ε(i, p, t − 1) = e

V (i, p, t − 1)

Note that if a routing change occurs within the time interval t, we associate all of the
traffic associated with that prefix in that time interval with the new egress point.

Not all traffic matrix elements carry the same volume of traffic, and the volume of traf-
fic from an ingress to an egress PoP varies over time. How do we judge if a change in the
traffic is “large”? There is no absolute standard: one approach might be to judge the size of
the change in traffic matrix element relative to the average traffic for that element. How-
ever, this is not useful here, because the traffic process itself is non-stationary. It has daily
and weekly cycles, as well as level shifts resulting from routing changes. The relative
changeΔTM(i, e, t)/TM(i, e, t) (orΔTM(i, e, t)/ max(TM(i, e, t), TM(i, e, t−1)))
seems appealing. However, this metric places too much emphasis on large relative
changes to small values; for example, a traffic matrix element with 1 kbit/sec might
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easily experience a 50% relative change in traffic without having any significant ef-
fect on the network. An alternative metric would be the absolute change ΔTM(i, e, t).
However, a shift of (say) 10 MB/sec may be significant for one ingress point but not for
another. Another option would be to normalize the value of ΔTM(i, e, t) by the total
traffic entering ingress point i at time t, which would capture changes in the fraction of
the incoming traffic that uses a particular egress point. However, this metric depends on
the “current” traffic demand at ingress i (which could be low at certain times) and may
not accurately reflect the strain imposed on the network by the traffic change. Another
extreme approach would be to consider the capacity of the network, and define as large
any traffic shift that causes a link to be overloaded. Besides being difficult to compute,
this metric is too closely tied to the current design of the network, and is not useful
for most typical applications of the traffic matrix such as capacity planning or anomaly
detection. Instead, we want a metric that captures properties of the traffic matrix itself,
such as how large the traffic changes are relative to the normal variations of traffic matrix
elements.

For that, we should consider what type of process we observe, namely, a difference
process. Over short time periods, we can approximate the traffic with a linear process
yt = α + βt + xt, where xt is a zero-mean stochastic process, with variance σ2. We
observe the differences Δyt = yt − yt−1, which will form a stationary process, with
mean β and variance 2σ2. Thus we can approximate the difference process by a stationary
process, and measure deviations from the mean, relative to the standard deviation of
this process. We measure 2σ(i, e)2 on the traffic variation process ΔL(i, e, ·) (using the
standard statistical estimator), and use this to normalize the traffic variations, i.e. we then
observe ΔL̃(i, e, t) = ΔL(i, e, t)/

√
2σ(i, e), and ΔR̃(i, e, t) = ΔR(i, e, t)/

√
2σ(i, e).

If the variance of the process xt was time dependent, it might make sense to use a
moving average to estimate the process variance at each point in time, i.e. σ(i, e, t)2,
and use this to normalize the traffic variations. We tried such an approach, but it made
little difference to the results, and so we use the simpler approach described above.

Figure 3 presents a scatter plot of Δ ˜TM(i, e, t) versus ΔR̃(i, e, t) for all the valid
measurement intervals t. The high density of points close to zero shows that large traffic
variations are not very frequent (99.88% of the traffic variations are in the [−4, 4] range).
Points along the horizontal line with ΔR̃(i, e, t) = 0 correspond to traffic variations that
are not caused by routing changes, whereas points along the diagonal line correspond
to variations caused almost exclusively by routing changes. Points in the middle are
caused by a mixture of routing changes and load variation. Figure 3 shows that both
load and routing are responsible for some big variations. Routing changes, however, are
responsible for the largest traffic shifts. Indeed, one egress-point change made a traffic
matrix element vary more than 70 times the standard deviation.

3.3 Internal Versus External Routing Changes

The prefix-to-egress mapping ε may change because of either internal or external rout-
ing events. External routing changes represent any changes in the set of egress points
that an AS uses to reach a destination prefix. For example, in Figure 1, the neighbor AS
might withdraw the route for p2 from the router e, resulting in a change in ε. External



Fig. . Scatter plot of Δ ˜TM versus ΔR̃ for all traffic matrix elements over the seven-month period

routing changes may be caused by a variety of events, such as an internal routing change
in another domain, a modification to the local BGP routing policy, or a failure at the edge
of the network. In contrast, internal routing changes stem from changes in the routing
inside the AS, due to equipment failures, planned maintenance, or traffic engineering.
These events affect the prefix-to-egress mapping because the intradomain path costs play
a role in the BGP decision process through the common practice of hot-potato routing.

When selecting a best BGP route, a router first considers BGP attributes such as
local preference, AS path length, origin type, and the multiple exit discriminator. If
multiple “equally good” routes remain, the router selects the route with the “closest”
egress point, based on the intradomain path costs. Since large ISPs typically peer with
each other in multiple locations, the hot-potato tie-breaking step almost always drives
the final routing decision for destinations learned from peers, although this is much less
common for destinations advertised by customers. In the example in Figure 1, an internal
link failure might make router i’s intradomain path cost to e suddenly larger than the
path to e′. This would change the prefix-to-egress mapping for p2, causing a shift in
traffic from egress point e to e′. Using the methodology described in [10], we identified
which changes in ε were caused by internal events.

Figure 3 shows the cumulative distribution functions of ΔR̃ caused by hot-potato
routing and by external BGP changes. For comparison, we also present the cumulative
distribution function (CDF) of a normal distribution, which is drawn from randomly gen-
erated Gaussian data with standard deviation equal 1, because ΔR̃ has been normalized
to have standard deviation equal 1. Although the routing events are rare (only 0.66%

258 R. Teixeira et al.

3



Traffic Matrix Reloaded: Impact of Routing Changes 259

10
−2

10
−1

10
0

10
1

10
2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

size of Δ relative to normal variations

C
D

F

hot potato
eBGP      
normal    

Fig. 4. Cumulative distribution function of ΔR̃ caused by hot-potato routing and eBGP

of non-zero Δ ˜TM are caused by eBGP changes and 0.1% by hot-potato changes), this
result shows that there are significant cases where these events are big, to very big. In
particular, approximately 5% of traffic shifts caused by hot-potato routing are at least one
order of magnitude bigger than normal variations.A single internal change is more likely
to affect a large number of destination prefixes [10], including the popular destinations
receiving large amounts of traffic.

We analyzed the source of traffic variation for individual traffic matrix elements, and
saw that the likelihood of changes in the prefix-to-egress mappings can vary significantly
from one ingress router to another. Figures 6 and 5 present the same data as in Figure 3
for two sample traffic matrix elements (Note that the axis are different across the two
graphs.). Some traffic matrix elements have no traffic variation caused by routing changes
(Figure 5), whereas other have few very large egress shifts (Figure 6). We computed the
percent of the traffic matrix elements (i, e) that have large to very large traffic shifts. We
define large as more than 4 times the normal traffic variations for (i, e) and very large
more than 10 times. Approximately 25% of ingress-egress pairs (i, e) in our study have
no large traffic variation, and the vast majority of them (85.7%) have no very large traffic
variation. The differences across the traffic matrix elements have two main explanations:

– Size of traffic matrix element. Some traffic matrix elements carry little traffic. Most
of the traffic from an ingress router exits the network at few egress PoPs, because of
hot-potato routing. For instance, most of the traffic entering in San Diego is likely to
stay in the west cost. Therefore, the traffic element San Diego to New York carries
very little traffic at any time.
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– Impact of internal events. The likelihood of hot-potato routing changes varies
significantly from one ingress point to the other [10], depending on the location in
the network and the proximity to the various egress points. For our eight ingress
points, the fraction of BGP routing changes caused by internal events varies from
1% to 40%. As a result, the likelihood of large traffic shifts caused by hot-potato
routing varies significantly from one traffic matrix element to another.
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Fig. 5. Scatter plot of Δ ˜TM versus ΔR̃ for a traffic matrix element that have no routing-induced
traffic variations over the seven-month period

Out of the traffic matrix elements that do experience large traffic variations 15% have
an average of more than one large traffic variation per week. The small percentage of
elements that experience large traffic variations combined with the low frequency large
shifts per element may lead to the incorrect conclusion that these events are irrelevant.
However, if we consider the network-wide frequency of large traffic shifts, these events
happen fairly often.To show this, we have counted the number of10-minute measurement
intervals for which at least one of our eight vantage points experienced a large traffic
variation. On average, the network experiences a large traffic variation every four and
half hours. Large traffic variations caused by routing changes happen every 2.3 days,
and very large routing-induced traffic variations happen every 5.9 days. If our analysis
considered all of the PoPs in the network, the overall frequency of large traffic variations
would be even higher.



Traffic Matrix Reloaded: Impact of Routing Changes 261

-60

-40

-20

0

20

40

60

80

-60 -40 -20 0 20 40 60 80

ΔR
 r

el
at

iv
e 

to
 n

or
m

al
 v

ar
ia

tio
ns

ΔTM relative to normal variations

Fig. 6. Scatter plot of Δ ˜TM versus ΔR̃ for a traffic matrix element that has few very large routing-
induced traffic shifts over the seven-month period. One traffic shift was over 70 times normal traffic
variations!

4 Implication for Traffic Matrix Studies

Our analysis on traffic matrix variations has important implications for the results of
previous measurement studies.

Differences across vantage points: The results in Section 3 show that the likelihood
of changes in the prefix-to-egress mappings can vary significantly from one ingress
router to another. In particular, some ingress points may be much more susceptible to
hot-potato routing changes than others [10], making analysis of routing stability very
dependent on where the data are collected. For example, the study in [11] showed that
popular destination prefixes do not experience BGP routing changes for days or weeks
at a time. In addition to studying RouteViews and RIPE BGP feeds, the analysis in-
cluded iBGP data from two of the eight routers used in our current study. In our analysis,
these two routers did not experience many hot-potato routing changes. Had the analy-
sis in [11] analyzed a router that experiences several hot-potato routing changes a day,
the conclusions might have been quite different. In fact, hot-potato routing changes can
affect a large number of prefixes [10], both popular and not, so we might reasonably
expect popular destinations to experience changes in their egress points. A prelimi-
nary analysis across all eight vantage points confirms that popular destination prefixes
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have more BGP instabilities from vantage points that experience more hot-potato routing
changes.

Choice of metrics in studying unlikely events: The analysis in Section 3 shows that
large changes in the traffic matrix elements occur relatively infrequently. In addition,
most changes in the prefix-to-egress mapping do not lead to large traffic shifts, consistent
with the results in [7]. Yet, these two results do not imply that routing changes are not a
significant contributor to large changes in the traffic matrix elements. In fact, the opposite
is true. A small number of routing changes are indeed responsible for a relatively large
fraction of the (few) large traffic shifts. In addition, long traces are necessary to draw
conclusions about infrequent (yet significant) events. The study in [7] draws on five
traces of 6–22 hours in duration, outside of the maintenance periods where operators
made planned changes to the internal network, making it difficult to conclude definitively
if large traffic shifts occur and whether routing contributes to them.

Errors from ignoring egress changes in traffic matrix analysis: Previous work on
measuring and analyzing traffic matrices has assumed that routing is stable, in part
because fine-grained routing data is sometimes difficult to collect. Most of the work on
traffic matrix estimation [1, 2, 4] assumes that there are no changes in the prefix-to-egress
mapping or the intradomain paths between the ingress and egress points. Even work on
direct measurement of the traffic demands [5, 13] has used only daily routing snapshots,
although the work in [7] is a notable exception. Using out-of-date routing information
runs the risk of associating some traffic measurements with the wrong elements in the
traffic matrix. In some cases, the routing changes might lead to second-order effects
on the traffic (e.g., by causing congestion or increasing the round-trip time) that may
appear in the data, but the primary affect of the traffic moving to a different egress point
is obscured—as is the reason for the variation in the traffic. In addition, changes in the
prefix-to-egress mapping may cause large fluctuations in multiple traffic matrix elements
at the same time, which would be obscured if the traffic matrix is computed or analyzed
without regard for routing changes. In our ongoing work, we plan to quantify the errors
in the traffic matrix computed using daily snapshots, similar to the approach in [7] but
focusing specifically on routing changes that have a large affect on multiple traffic matrix
elements.

Dependence on network design, traffic, and goals: The results of any traffic matrix
analysis, including ours, depend on the details of the network under study. For example,
large ISP networks handle high volumes of aggregated traffic, which may experience
much smaller statistical fluctuations in the traffic. In addition, a large ISP network con-
nects to its peers and many of its customers in multiple locations in the network, increas-
ing the likelihood that destination prefixes are reachable via multiple egress points. This
makes an ISP network much more likely to experience changes in the prefix-to-egress
mapping over time. Together, these two factors tend to make routing changes have a
larger relative influence on the traffic matrix in ISP networks than in other kinds of
networks. Even within a single network, the fluctuations in the traffic matrix may vary
from one ingress point to another, due to hot-potato routing changes or the particular
senders and receivers connected to that router. Identifying metrics that isolate each of
these effects would be very helpful in deepening our fundamental understanding of what
causes fluctuations in traffic matrices.
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5 Conclusion

Our study shows that large traffic variations, while unusual, do sometimes happen.
Although most routing changes typically do not affect much traffic, routing is usually a
major contributor to large traffic variations. This implies that network operators need to
design the network to tolerate traffic variations that are much larger than typical statistical
fluctuations in the incoming traffic. In addition, research on traffic engineering and
anomaly detection should take into account the impact of routing on the traffic matrix.
Since both the traffic demands V and the prefix-to-egress mapping ε are necessary to
compute an accurate traffic matrix, we believe it is more accurate to operate on V and ε
directly, rather than simply on T M.

This work has implications for both the research and network operations communi-
ties. Researchers should consider the impact of changes in the prefix-to-egress mapping
when analyzing the traffic matrix. Ignoring these changes might lead to wrong conclu-
sions about traffic matrix stability. Operators need to provision for traffic variations that
are much larger than normal traffic fluctuations. In addition, operators often need to
diagnose the cause of a large surge in traffic. Our work shows that the routing system is
one important place they should look for explanations.

As future work we plan to quantify the inaccuracies introduced in studies of routing
and traffic stability when changes in ε are ignored. We are also studying the duration
of the traffic shifts. If traffic shifts are short-lived, then network operators should just
over-provision to tolerate them. If they are long-lived, however, adapting the routing
protocol configuration may be a better approach for alleviating congestion.
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Abstract. We present measurements of stream lifetimes for Internet
traffic on a backbone link in California and a university link in Auckland.
We investigate the consequences of sampling techniques such as ignoring
streams with six or fewer packets, since they usually account for less
than 10% of the total bytes. We find that we often observe large bursts
of small ‘attack’ streams, which will diminish the integrity of strategies
that ‘focus on the elephants’. Our observations further demonstrate the
danger of traffic engineering approaches based on incorrect assumptions
about the nature of the traffic.

1 Introduction

Over the last few years there has been considerable interest in understanding
the behaviour of large aggregates of Internet traffic flows. Flows are usually
considered to be sequences of packets with a 5-tuple of common values (protocol,
source and destination IP addresses and port numbers), and ending after a fixed
timeout interval when no packets are observed. For example, Estan and Varghese
[1] proposed a method of metering flows which ensures that all packets in elephant
flows, i.e. those that account for the majority of bytes on a link, are counted,
while packets in less significant flows may be ignored.

In contrast, streams are bi-directional 5-tuple flows, ending after a dynamic
timeout interval of at least 10s and terminating after a quiet period of ten times
their average packet inter-arrival time. Brownlee and Murray [2] investigated
stream lifetimes, using a modified NeTraMet [3] meter. By using streams rather
than flows, NeTraMet is able to measure various stream distributions at regu-
lar intervals (typically five or 10 minutes) over periods of hours or days. In [4]
Brownlee and Claffy used this methodology to observe stream behaviour at UC
San Diego and Auckland, where about 45% of the streams were dragonflies last-
ing less than two seconds. However, there were also many streams with lifetimes
of hours to days, and those tortoises carried 50% to 60% of the link’s total bytes.

At U Auckland, we use NeTraMet to measure Internet usage (bytes in and out
for each user). In recent years the character of our Internet traffic has changed;
the total volume has steadily grown, and we now see frequent network-borne
attacks. Such attacks frequently appear as short time intervals during which we
see large numbers of dragonfly streams. With our production NeTraMet rulesets
(meter configuration files), attacks like address scans can give rise to tens of
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thousands of flows. Such large bursts of flows tend to degrade the performance
of our measurement system.

To minimise the effect of bursts of ‘attack’ streams, we investigated a strategy
similar to that proposed by Estan and Varghese [1]. To do that we modified
NeTraMet to ignore streams carrying K or fewer packets. That, however, posed
the question of choosing a value for K.

In this paper we present some observations of stream lifetimes on a tier 1
backbone in California, which are consistent with earlier work by Brownlee and
Claffy [4], and compare them with similar recent observations at Auckland.

We present measurements of the varying population of active streams at
Auckland and compare that with the packet rate, using data gathered at one-
second intervals over several days.

We investigate the proportion of the total bytes accounted for by streams
with K or fewer packets, so as to help determine a suitable value for K. We
often see measurement intervals when a high proportion of the total traffic is
carried in dragonfly streams; for such intervals there are few elephant streams.

Lastly, we show that ignoring streams with six or fewer packets can provide
effective usage monitoring for U Auckland.

2 Methodology, ‘Overall’ Traffic Observations

2.1 Understanding Flows and Streams

Traffic Flows were first defined in the seminal paper by Claffy, Polyzos and
Braun [5]. A CPB flow is a set of packets with common values for the 5-tuple (IP
protocol, Source and Destination IP Address and Port Number), together with
a specified, fixed inactivity timeout, usually 60 seconds. Note that a CPB flow is
unidirectional, with the 5-tuple specifying a direction for the flow’s packets. CPB
flows are widely used, providing a convenient way to summarise large volumes
of Internet traffic data.

The IETF’s RTFM architecture [6] provided a more general definition of a
traffic flow. RTFM flows are bidirectional, with any set of packet attribute values
being allowed to specify a flow. For example, an RTFM flow can be as simple as
a CPB flow, or something more complex such as “all flows to or from network
192.168/16.”

NeTraMet is an RTFM traffic measuring system that implements an extended
version of RTFM flows. Streams were introduced to NeTraMet as a way of col-
lecting data about subsets of a flow. For example, if we specify a flow as “all
packets to/from a particular web server,” then NeTraMet can recognise a stream
for every TCP connection to that server, and build distributions of their sizes,
lifetimes, etc.

NeTraMet’s ability to handle streams in real time allows us to produce stream
density distributions (e.g. lifetime and size in bytes or packets) over long periods
of time – eight hours or more – while maintaining stream lifetime resolution
down to microseconds. Furthermore, NeTraMet can collect such distributions at
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5-minute intervals for days, without needing to collect, store and process huge
packet trace files.

Although streams are bidirectional, that only means that NeTraMet main-
tains two sets of counters, one for each direction of the stream. If the meter can
only see one direction of the stream, one set of counters will remain at zero. Bidi-
rectional streams are, however, particularly useful for security analysis, where we
need to know which attack streams elicited responses from within our network!

2.2 Streams in NeTraMet

From our earlier study of stream lifetimes [4] we know that a high proportion of
traffic bytes are carried in tortoise streams. We modified the NeTraMet meter to
use this fact to cache flow matches for each stream. The meter always maintains
a table of active streams; when a new stream appears it is matched so as to
determine which flow(s) it should be counted in. The set of matching flows is
cached in the stream table, so that later packets can be counted in their proper
flows without requiring further matching; we find that for most rulesets, average
cache hit rates are usually well above 80%.

Since NeTraMet is now based on stream caching, it is straightforward to
collect distributions of byte, packet and stream density, using a set of bins to
build histograms for a range of stream lifetimes. We use 36 bins to produce
distributions for lifetimes in a log scale from 6 ms to 10 minutes, and read these
distributions every ten minutes.

Streams are only counted when they time out, so longer-running streams do
not contribute to our distributions directly. Instead we create flows for them,
so that they produce flow records giving the number of their packets and bytes
every time the meter is read. From those 10-minute flow records we construct
two more decades of logarithmic bins, producing lifetime distributions from 6
ms to 30,000 seconds (roughly 8 hours), i.e. nearly seven decades.

2.3 Tier-1 Backbone in California, December 2003

Fig. 1 gives an overview of traffic on a tier-1 OC48 backbone in California over
Friday, 6 December 2003. Only one direction is shown, the other direction had
about one-quarter the traffic volume. There is a clear diurnal variation from
about 450 to 700 Mb/s. Most of the traffic is web (upper half of bars) or non-
web TCP (lower half), plus a background level of about 50 Mb/s of UDP and
other protocols.

Fig. 2 shows the stream density vs lifetime (upper left traces) for every 10-
minute reading interval. There is little variation, and about 95% of all streams
have lifetimes less than ten seconds. The lower right traces, however, show stream
byte density vs lifetime. Again there is little variation, but only 60% of the bytes
are carried by streams with lifetimes less than 1000 s. In other words, most
streams are short but the bulk of the bytes are carried in long-running streams.
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Fig. 1. Stacked-bar plot of traffic on an OC48 backbone in California
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Fig. 2. Stream lifetimes for traffic on a tier-1 backbone in California

2.4 U Auckland Gateway, October 2004

Fig. 3 shows the traffic on U Auckland’s 100 Mb/s Internet gateway for Friday-
Saturday 1-2 October 2004. There is only around 15 Mb/s of traffic, and it
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Fig. 3. Stacked-bar plot of traffic on the U Auckland (100 Mb/s) gateway
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Fig. 4. Stream lifetimes for traffic on the U Auckland (100 Mb/s) gateway at ten-
minute intervals for Friday, 1 October 2004

is rather bursty, probably because the total rate is low. During the day web
traffic dominates, especially on Friday. In the evenings there are periods of high
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non-web TCP usage when we update local mirrors for databases outside New
Zealand.

Fig. 4 shows the stream density vs lifetime as for fig. 2. Here the stream
lifetime and byte densities vary greatly, again reflecting the low traffic levels at
Auckland. Stream lifetimes are similar at Auckland and California, with 70% to
95% of the streams again lasting less than 10 seconds. However, at Auckland
up to 60% of the bytes are carried in streams lasting only 10 seconds; probably
reflecting the high proportion of web traffic at Auckland.

3 Streams and Packets at Auckland

We modified NeTraMet to write the packet rate and number of active streams
and flows to a log file every second. Fig. 5 shows the packet rate (lower trace)
and number of active streams (upper trace) for each second during Friday 1 and
Saturday 2 October 2004.

Fig. 5. Packet rate and number of active streams at one-second intervals at Auckland
for Friday 1 October 2004

The diurnal variation in stream numbers generally follows the variation in
packet rate, i.e. it rises from about 0600 to 0900, falls from about 1700 to 2000,
then rises again in the evening. Unlike the packet rate, however, the number of
streams rose while the traffic rate fell around midnight on Friday 1 Oct 04. That
rise was not repeated over the weekend; it appears to have been a one-off event
(e.g. a database replication job copying many tiny files) rather than part of the
diurnal pattern.
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At regular three-hour intervals we see a short, high step in the number of
streams. Our network security team were well aware of this; they are investi-
gating. We believe that such steps are caused by some sort of network attack.
Similarly, every day at 1630 we see a bigger spike. We have also observed other,
less regular, spikes taking the number of active streams as high as 140,000. Fig. 6
shows more detail for two of these spikes.
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Fig. 6. Details of fig. 5 showing spike in streams at 1633, and step at 2120

4 Usage Metering at Auckland

For usage accounting at Auckland we want to ignore streams with K or fewer
packets. To help select a K value, we plotted distributions of byte density vs
stream size (packets). Fig. 7 shows distributions for inbound (lower traces) and
outbound (upper traces) byte-percentage distributions for ten-minute sample
intervals from three hours from 2100 on Friday 1 October 2004. For most of
those intervals it seems that we could ignore streams with six or fewer packets in
either direction. However, there is one outbound trace, for the interval ending at
2120, which has 29% of its bytes in streams with only one or two packet. Fig. 6
shows that at 2120 the number of active streams had risen sharply.

Table 1 shows that the interval ending at 2120 had two unusual features:
a high inbound UDP traffic rate, and a low outbound non-web TCP traffic
rate. We examined the ten intervals with their highest proportion of bytes in
short streams. Few of those had low outbound non-TCP rates, but all had high
UDP inbound rates. We hypothesise that the step in streams was caused by
an inbound address or port scan, i.e. a flood of single-packet UDP streams.
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Fig. 7. Byte density vs packets in stream for three hours at Auckland, from 2100 on
Friday, 1 Oct 2004

Table 1. Inbound and outbound traffic rates (Mb/s) for various Kinds of traffic on
Friday 1 October 2004

Inbound rate UDP non-web web SSL other

2110 0.15 2.91 8.85 0.51 0.03
2120 1.66 2.23 10.15 0.52 0.04
2130 0.21 1.37 9.86 0.50 1.09

Outbound rate UDP nonweb web SSL other
2110 0.10 1.47 3.31 0.73 0.03
2120 0.10 0.92 3.34 0.850 0.03
2130 0.10 3.71 3.54 0.859 0.07

Although few of those inbound UDP probe packets elicited any response, those
that did increased the proportion of bytes in small streams enough to dominate
the outbound traffic.

Since U Auckland has about five times as many inbound traffic bytes as
it does outbound, we plotted the total (inbound+outbound) byte-percentage
distributions for every ten-minute interval over 1-2 October 2004, producing
fig. 8. We often see intervals when the short streams contribute a significant
proportion of the total link bytes, suggesting that we should not simply “focus
on the elephants” for our usage measurements.
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Fig. 8. Total (inbound+outbound) byte density vs packets in stream at Auckland, 1-2
October 2004

5 Ignoring Short Streams at Auckland

Our observations in section 4 suggest that on our link, intervals when traffic is
dominated by short streams are caused by network attacks (plagues of dragon-
flies). Although we need to know about those for security monitoring, they are
less important for usage accounting. We decided to try metering while ignoring
streams with six or fewer packets (total in both directions).

We ran the meter with K = 6 for five days, using our normal ‘usage account-
ing’ ruleset. All five days were similar (including regular three-hourly spikes and
a daily spike at 1640); fig. 9 shows the packet rate (lower trace), active streams
(middle trace) and flows (upper trace) for every second of Thursday, 7 Octo-
ber 2004. The packet rate and streams traces are similar to those in fig. 5; the
number of flows is stable and tracks the packet rate.

Fig. 10 shows the three hours from 2200 in more detail. The number of active
flows rises steadily as new flows appear, and falls rapidly when flows are read
every ten minutes, allowing the meter to recover flow table space for newly-
inactive flows. The ‘sawtooth’ behaviour, clearly visible in the plot, is thus an
artifact of the RTFM architecture. (The important point here is that when we
ignore small flows, the average number of active flows remains stable over long
periods, minimising the load on the flow data collection system.)

Fig. 10 also shows that when the number of active streams increases sharply
(showing spikes and steps), the number of flows is not affected. That supports
our hypothesis that such ‘attack’ increases are caused by bursts of short-lived
streams.
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Fig. 9. Packet rate, active streams and active flows at one-second intervals at Auckland
for Thursday, 7 October 2004. Our NeTraMet meter used K = 6, i.e. streams with six
or fewer packets were not matched to flows

Fig. 10. Detail of fig. 9 showing spike and steps in streams, and sawtooth variation in
flows
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measured using K = 6, i.e. ignoring streams with six or fewer packets

To verify our estimate that ignoring streams with six or fewer packets would
exclude between 5% and 10% of the total bytes, we modified NeTraMet so as
to collect distributions of the ignored packets and bytes as a function of stream
size. One day of typical ‘ignored’ data, collected at 5-minute sample intervals, is
shown in fig. 11.

The ‘ignored packet’ percentage (upper trace) generally varies between about
2.5% and 8%. Furthermore, its average varies inversely with the average packet
rate, suggesting that small (dragonfly) streams provide a more or less constant
background all the time, with their ‘ignored’ percentage more obvious when the
packet rate is low.

For about 95% of our sample intervals, between 0.5% and 2% of the bytes were
ignored (lower trace). In the other 5% of the intervals we saw large spikes in the
packet rate and in the number of active streams, as shown earlier in fig. 9. During
those spikes, 10% to 30% of the bytes were ignored. Overall, the percentage
of bytes ignored is acceptably low, with high ‘ignored byte’ percentages only
occurring during attack events.

6 Conclusion

At Auckland we see frequent bursts of incoming ‘attack’ streams, which can
dominate the traffic mix on our Internet gateway. We believe that traffic engi-
neering and accounting approaches that ignore streams with six or fewer packets
(K = 6) means that in the long term only about 2% of our total bytes are not
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measured as ‘user’ traffic. In return we achieve a significant reduction in the
number of flows we have to create, read, store and process.

However, for some traffic mixes, this sampling bias against small flows can
radically warp the inferences one makes about the aggregate traffic.

We are continuing our investigation of stream behaviour, especially that relat-
ing to the ‘attack streams’ (plague of dragonflies) events. We have not observed
these on the California backbone link, where traffic levels are much higher and
there is more statistical mixing, but such ‘attack streams’ probably do appear
there.

An alternative approach is the adaptive one proposed in [7], which adapts
its sampling parameters to the traffic in real time That approach avoids the
bias against small flows and should give a true picture of the actual traffic load,
within its sampling limitations. Our approach, however, may be more useful for
accounting applications, since we are not sampling. Instead we preserve detail
for all the larger streams (which we can bill to a user) while ignoring the small
‘attack’ streams (which are overhead, not billable to a user).

6.1 Future ork

We are continuing to investigate the plague of dragonflies events at Auckland.
We would like to improve our network attack detection ability by recognising
and reporting frequently-occurring attack patterns. The ability to summarise
large groups of small streams would also reduce the number of packets we ignore
in our traffic monitoring.

At this stage it is clear that NeTraMet can handle our network’s data rate
at 100 Mb/s. We are confident that this can be done – without having to use
sampling techniques – at 1 Gb/s.

6.2 The Need for Ongoing Measurements

At U Auckland we use NeTraMet for usage accounting and traffic analysis,
Snort 1 and Argus 2 for security monitoring, and MRTG 3 for traffic engineering.
Each of these tools is specialised so as to perform its intended function well, but
there is little overlap between the tools. Indeed, when an unusual event occurs
on the network, it can be useful to have data from many tools, providing many
different views of that event.

We believe, therefore, that every large network should collect traffic data on
an ongoing basis, using several different tools. The work required to support such
monitoring is well justified by the ability it provides to investigate incidents soon
after they occur. In addition, the understanding gained about the network, its
traffic, and the ways that traffic changes over time, provides a sound basis for
long-term improvements in the network’s performance and in service to it’s users.

1 Security Monitoring, http://www.snort.org/
2 Network Auditing, http://www.qosient.com/argus/
3 Traffic Rate Monitoring, http://people.ee.ethz.ch/ oetiker/webtools/mrtg/

W
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Abstract. We analyze delays of traceroute probes, i.e. packets that elicit ICMP
TimeExceeded messages, for a full range of probe sizes up to 9000 bytes as ob-
served on unloaded high-end routers. Our ultimate motivation is to use traceroute
RTTs for Internet mapping of router and PoP (ISP point-of-presence) level nodes,
including potentially gleaning information on equipment models, link technolo-
gies, capacities, latencies, and spatial positions. To our knowledge it is the first
study to examine in a reliable testbed setting the detailed statistics of ICMP re-
sponse generation.

We find that two fundamental assumptions about ICMP often do not hold in
modern routers, namely that ICMP delays are a linear function of packet size and
that ICMP generation rate is equal to the capacity of the inteface on which probes
are received. The primary causes of these violations appear to be optimizations
that suppress size dependence, e.g. buffer carving, and rate-limiting of internal
ICMP packet and bit rates. Our results suggest that the linear model of packet
delay as a function of packet size merits revisiting for many situations, especially
for packets over 1500 bytes. Our findings also suggest possibilities of developing
new techniques for bandwidth estimation and router fingerprinting.

1 Introduction

Remote network mapping is usually done via active measurement. Generally a measure-
ment host sends packets that trigger ICMP replies from routers, and the reply information
is integrated into a map. ICMP time exceeded, echo reply and port unreachable responses
are commonly elicited for this purpose.

An ICMP reply carries binary (“host is alive”), discrete (“9 hops away”) and temporal
(“replied in 15 ms”) data. The last of these, per-hop delay (in the form of round trip
time or RTT), is potentially the richest source of information about a router. However,
extracting the useful components from a delay value is difficult, since not only are the
delay summands unavailable but even their statistics and their dependence on other
factors are unknown.

In the common linear model, packet delay is split into three summands, with one
being proportional to packet size. Specifically, the delay, d, is modeled as follows:

d = ax + b + ξ (∗)

where a and b are positive real constants, x is the size of the packet or frame, and ξ
is a positive random variable (“residual delay”) that can be arbitrarily close to 0. This

C. Dovrolis (Ed.): PAM 2005, LNCS 3431, pp. 278–291, 2005.
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representation implies that d = ax + b is a tight lower bound for all observed delays.
Most network spectroscopy and bandwidth estimation experts assume that delay is a
linear function of packet size, [1] [2] [3].

Our main goal in this study is to test the validity of this linear model, at least with
respect to delays seen in ICMP responses (we do not cover forwarding delay in this
study). Our underlying motivation is to find ways of using traceroute RTTs to:

– construct router and PoP-level Internet maps [4] [5]
– obtain metric maps with link latencies and capacities
– enable user-level path diagnosis [6]
– improve the integrity of variable-size bitrate estimation tools [7]; and
– fingerprint routers.

For example, one approach to identifying a PoP would be to look at traceroute paths
that branch between backbone and access routers. Given that the routing to external
destinations is common among all routers within a PoP, return paths to the monitor will
be the same. One could thus use the topological closeness of forward paths together with
the numeric closeness of RTTs to identify interfaces that belong to the same PoP. We
recognize that this aggregation technique requires precise knowledge of typical latencies
across a PoP, as well as how often and for how long ICMP TimeExceeded generation
can be delayed.

A typical traceroute covers 14–20 hops [8], and during a traceroute all but the last
hop responds with an ICMP TimeExceeded packet. The last hop responds with an ICMP
EchoReply or ICMP PortUnreachable. We will discuss properties of delays obtained
from TimeExceeded packets in detail. We hope to report on destination-based (EchoRe-
ply, PortUnreachable) ICMP delays in the future.

The rest of the paper is organized as follows. We review previous work in Sec.2. The
description of our testbed and experiment design is in Sec.3. In Sec.4 we present our
results, and Sec.5 contains discussion and conclusions.

2 Previous Work

Although the need for precise and detailed measurement of packet delays is recognized
by the networking community, equipment constraints render it challenging, and the
literature on this topic is scant. In particular, few researchers have access to high-precision
(sub-microsecond precision) capture cards or to high performance routers representative
of those deployed in Tier-1 ISP backbones.

Further, most previous work does not focus on ICMP delays, per se, but rather on
separating forwarding (that is, router transit) delays from queueing delays [9] or delays
caused by network distance [10]. Bovy, et al., estimated the forwarding delay of three
office-class routers to be 224 μs per 100-byte packet per hop [10]. A wide variety of
work in bandwidth estimation, much of it surveyed in [11] and [12], also assumes that
delays are amenable to linear modeling.
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Researchers from Sprint’s Advanced Technology Laboratory (ATL) did several stud-
ies of instrumented operational routers in a setup close to ours [13], [14], [9], and support
the claim that queueing delay in a well-provisioned network is small enough to effec-
tively allow VOIP deployment [15].

A Light Reading test of Cisco, Juniper and Foundry measured forwarding delays at
line rate (100% load) [16].

Govindan and Paxson [17] and Anagnostakis et al.[18] also study ICMP generation
times, concluding that ICMP-based RTTs do not tend to include excessive (slow path)
delays. Timing jitter in the network around routers complicates the attribution of these
delays, but their value (0.1–0.3 ms) is comparable to those in [10] and to ours.

The goal of [18] is to infer link latencies and queueing from ICMP timestamp differ-
ences at both ends of a link (see also [6])1. The authors found routers (5 in 20 studied)
with 95th percentiles of ICMP Timestamp delay around 10 ms; 2 had 95th percentiles at
80 ms. Remote link estimation is quite daunting in the face of such high uncertainty. For
comparison, more than 99.6% of our TimeExceeded delays up to 9000 bytes are under 1
ms, except a few (0.4%) that are rate-limited by Juniper routers to incur approximately
10 ms delays.

Donnelly [20] and Mochalski et al.[21] demonstrate a piecewise linear size depen-
dence for router/switch transit times, which shows a noticeable rate change at 512 bytes.
This phenomenon is similar to our ICMP delay rate discontinuities occurring around
1500 bytes.

To the best of our knowledge, precision timestamping matching modern router speeds
is available only with Dag cards from the Waikato group [22] and Endace [23]. The
latest models (4.xx) can reach sub-microsecond accuracy when synchronized to GPS or
CDMA [20] [24].

Some of the available studies use the now older model (3.xx) of Dag cards, with 5–6
μs precision [13] and 53-byte uncertainty with respect to the portion of the packet that
is timestamped. Despite these limitations, the results obtained in [9], [13], and [14] have
served as inspiration for this work.

3 Data Collection

We collected our measurements in CAIDA’s high-speed testbed [25] [12] which includes
(Fig.1): two IBM eServers (running FreeBSD 4.8); a Dell Gigabit Ethernet switch;
Juniper, Cisco and Foundry routers; an OC48 link between the Juniper and Cisco; and
Gigabit Ethernet links between all other devices. The testbed’s path MTU is 9000 bytes.
We tap both links at the Cisco router (OC48 and gigE) using NetOptics splitters, and
capture packets with Dag cards. The Foundry router doubles as a 16-port switch that
connects all equipment in the lab to the Internet and to CAIDA’s production network via
100 M Ethernet.

We perform traceroutes on herald or post, and use CoralReef [26] utilities to
capture, process, and extract delays from packets. A command line on herald of:

traceroute -q 4 -M 2 -m 3 -w 2 -P udp -t 64 post 214

1 [19] suggests using traceroute delays for both purposes.
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juniper
oc48

highdell

herald

cisco foundry

post

Fig. 1. Lab diagram. Equipment (clockwise): IBM eServer herald, Dell PowerConnect 5212
switch, Juniper M20 router, Cisco 12008 router, Foundry BigIron 8000 router/switch, IBM eServer
post, Links: oc48 (Juniper to Cisco); GigabitEthernet (all other links). For details, see [12] (this
volume)

specifies series of 4 probes (q) to hops 2 (M) through 3 (m), using a timeout of 2 sec
(w), UDP2 (P), TOS of 64 (t) and packet size 214 bytes. Its output looks like (numbers
from real data):

2 cisco-oc48 0.221 ms 0.154 ms 0.254 ms 0.168 ms
3 foundry 0.217 ms 0.226 ms 0.230 ms 0.227 ms

Our experiments combine UDP and ICMP traceroutes with 9 TOS values (0, 1, 2, 4,
8, 16, 32, 64, 128), and sizes 64-9000 bytes, for a total of 160866 (2*9*8937) traceroutes,
each probing 2 hops with 4 packets at each hop. The router configuration guarantees that
the return path for an ICMP packet is symmetric with the forward path.

Traceroute dynamics determine the intervals between probes in our experiments
(Fig.2). We call a time lag between two successive packets targeting the same interface
an interprobe gap (IPG). When traceroute probes one hop, it sends the next packet
immediately after receiving an ICMP TimeExceeded for the previous packet. These
probes succeed each other within a few hundred microseconds (under 1 ms). The next
traceroute command will probe the same hop after an OS scheduling quantum (10 ms)
and after probing a subsequent hop (several milliseconds); in that case, the probes are
separated by 10-20 ms. When a TimeExceeded is not generated or is lost before the
source host receives it (the loss is in fact very rare in our experiments) the traceroute
script waits for a 2-second timeout. This gap can affect the delay of the packet that
follows, e.g. through route cache latency if the address has been flushed from the cache.

Parameter Scan. We walk the experiment design space (NS packet sizes, NP proto-
cols, ND destinations, NT TOSes, etc.) using a pseudo-random scan. Scanning of other
parameters (hop number, packets/hop) is a part of typical traceroute operation. We take
the product of dimensions m = NSNP NDNT . . . and find a prime p > m. Then we
find a primitive root r mod p near

√
p, and try all combinations of parameter values as

follows. For experiment k, 1 ≤ k ≤ m, we use ak = rk mod p in mixed-radix notation
to get indices S (index for size), P (index for protocol), D (index for destination):

2 Recall that traceroute sends UDP or ICMP packets, but always gets back ICMP. Our data
contains half UDP and half ICMP probes. The analysis presented here does not distinguish
between UDP and ICMP probes, or between TOS values.
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Fig. 2. Clustering of interprobe gaps for the Cisco router (OC48 and gigE): microsecond range,
10–20 ms, 2 sec. The higher fraction of 2-sec gaps on the Cisco gigE (upper curve) is caused by
the Juniper not generating some ICMP messages

S = akmodNS , P = [ak/NS ]modNP , D = [ak/(NSNP )]modND, etc. (ak ≤ m)

Example. For two packet sizes (NS = 2) and two protocols (NP = 2), m = NSNP = 4
and p = 5; r = 3 is a possible choice of a primitive root. Combinations of packet size
(e.g. (40, 1500) indexed by (0,1)) and protocol ((UDP, ICMP) indexed by (0,1)) follow
each other in sequence3 (31, 32, 33, 34)mod5 = (3, 4, 2, 1) = (11, 00, 10, 01)2, where
11 corresponds to (ICMP, 1500), and so on.

This approach, inspired by turbo codes [27] and Monte-Carlo integration techniques,
is robust against outages, whether at the beginning (Dag cards warming up) or at the
end (too small capture interval, disk space). All parameter values appear close to the
start of experiment (as opposed to with a lexicographic scan), which allows us to debug
problems with each dimension or value, e.g. too high chance of a timeout.

Table 1 presents a description of the data in terms of destinations, experiment dura-
tion, number of traceroutes and number of probes (packets). The second half of the table
is a breakdown of the probes by interprobe gap (IPG). The longer duration of the second
(PCJ) experiment is due to a higher level of ICMP non-generation on Juniper (12140 or
2% of all probes) which results in more occurrences of the 2-sec timeouts. This extra
10K (12140-2310) of timeouts increases the experiment duration by about 5.5 hours. In
addition, Juniper’s generation bitrate of TimeExceeded (at 8 ns/bit) is the slowest of all
three routers (Table 2). ICMP bitrate limiting causes many packets in the 7000–9000
byte range (73K or 11%) to arrive more than 1 ms later than the previous probe. This lag
applies to packets 2–4. Packet 1 is always delayed by an OS scheduling quantum of 10
ms, which explains the large number of packets (about 25% of the total) in the 10-100

3 In this special case, one can read parameters from the two rightmost bits of rkmodp.
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Table 1. Experimental data and intereprobe gaps

Code Source Destination Date Start End Traceroutes Packets sent
HCF herald Cisco, Foundry 2004-09-10 00:00 02:00 160866 1287 K
PCJ post Cisco, Juniper 2004-09-12 00:30 08:00 160866 1287 K

Code Source Dest. i/face IPG<1ms 1–10ms 10–100ms 0.1–1s IPG>1s Total
HCF herald Cisco OC48 482546 20 158587 0 2310 643463
HCF herald Foundry gigE 477557 539 160747 0 2310 641153
PCJ post Cisco gigE 482570 19 148733 1 12140 643463
PCJ post Juniper OC48 389211 72793 157178 1 12140 631323

ms bin. The drop rate (non-generation) for the Foundry is under 0.4%, and the Cisco
returns all 643464 probes, i.e. has 0% drop rate.

4 Results

Table 2 provides a lower bound for size dependence parameters from equation d =
ax + b: a (slope) and b (intercept) of TimeExceeded delay. We apply the O(N) linear
programming (LP) algorithm of [28] to delays observed at the Cisco and Juniper OC48
interfaces for all packet sizes, and to those at the Cisco and Foundry gigE interfaces
separately for ranges ≤ 1500 and > 1500. This latter choice is based on the fact that
these gigE interfaces have different ICMP generation rate for packet sizes under 1500
and over 1500 bytes.4

Each linear fit has a slope and an intercept. The slope is in ns/bit (not μs/byte), to
match the gigE rate, 1 ns/bit. The intercept at 0 and the values of ax + b at three packet
sizes (x =40, 1500, and 9000 bytes) are the minimum delays including deserialization
(but not serialization)5 and ICMP generation.

The only router/probe type with ICMP generation rate equal to link rate is the Foundry
TimeExceeded at over 1500 bytes; others have smaller or larger slopes. Note that small
slopes a for packets under 1500 bytes can trick variable packet size (VPS) tools [7]
into capacity overestimation, whereas slower-than-link rates (higher values of a) can
result in underestimation. This situation is similar to the underestimation caused by
extra serialization delays at Layer 2 switches that are invisible to traceroute [29].

Delays through the Juniper router are special in several respects (Fig.3). The mini-
mum delay of the TimeExceeded packets grows stepwise by approximately 4.033 μs per
64-byte cell for sizes 64–320 bytes: d = 4.033�x/64 + 31�μs where �x� is the smallest
integer greater or equal to x. This formula is similar to that for ATM delays from [30],
although the fixed cost (which for 64-byte packets is 128 μs, an equivalent of almost
40 KB at the OC-48 wire speed) is much higher than ATM’s encapsulation cost. This

4 We did not pinpoint a precise byte value for this boundary; it may be router-dependent. Also,
the Cisco OC48 interface produces slightly different linear fits for packet size ≤ 1500 and >
1500, but since their relative difference is under 0.1%, we provide and discuss only the single
fit of Cisco OC48 delays across the full range of packet sizes.

5 Recall that Dag cards timestamp at the beginning of a packet [20].
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Table 2. Linear fit of lower bound on TimeExceeded delay

Router Slope Lower bound (μs)
(ns/bit) 0 40B 1500B 9000B

Cisco OC48, all 0.732 18.41 18.64 27.19 71.10
Juniper OC48, all 8.091 122.63 125.22 219.72 705.18
Cisco GE ≤ 1500 0.320 18.88 18.98 22.72 (41.93)
Cisco GE > 1500 1.313 (6.66) (7.08) 22.42 101.19
Foundry ≤ 1500 -0.075 29.87 29.84 28.97 (24.48)
Foundry > 1500 0.996 (15.90) (16.22) 27.85 87.59
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Fig. 3. (a) Minimum TimeExceeded delay from Juniper (left) with a staircase of 64-byte segments,
4 μs steps and an 8-μs jump at 320 bytes; (b) TimeExceeded delay from Juniper (right) showing
about 30 μs of extra delay for an interprobe gap (IPG) of 2 sec. Three bands of delays result from
the three ranges of interprobe gaps: light-colored band for IPG < 1ms, medium dark band for IPG
between 1ms and 1s, and dark band for IPG ≥ 1s

cell rate would result in an average bitrate of 7.877 ns/bit, or 127 Mbps. However, the
experimental curve jumps by an extra cell’s worth of delay right after 320, 3712 and
7104 bytes (which are separated by 3392 bytes, or 53 64-byte cells). As a consequence,
the slope in the linear programming-based lower bound is somewhat higher. That is, 54
cells worth of delay per 53 cells of size equals 8.026 ns/bit, but the LP estimate from
Table 2 is 8.091 ns/bit, which may imply a 0.8% error in 4.033 μs cell time. Fig.3a
shows a close-up for packets under 1600 bytes. The staircase of minimum delays starts
under the line y = 4.033x/64 + 32 (recall that �x� < x + 1) but crosses over the line
between 320 and 321 bytes. The 8-μs jump at 320 bytes and the accumulated discrep-
ancy with the straight line (12 μs over 9000 bytes interval) can potentially be measured
by traceroute-like tools, even though individual 4μs-steps may be hard to discern from
network noise.

The Juniper router also delayed widely spaced (interprobe gap of 2s) packets by
about 30 μs compared with closely spaced packets of the same size. This delay could be
due to route cache flushing. The delay pattern in Fig.4 (bottom) which holds for 2400
(0.4%) probes rate-limited to 10 ms (packets 2–4 in some traceroutes) has a prominent
negative trend that could potentially be used for fingerprinting.
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Fig. 4. TimeExceeded message delay from Juniper OC48. Values over 10 ms (top) and 9–10
ms (bottom). Values between 9–10 ms reveal unusual size dependence of ICMP TimeExceeded
generation delay when ICMP is rate-limited to 100 packet per second (one packet in 10 ms)

Fig. 5. TimeExceeded message delay from Cisco OC48. Compare with Fig.6 where each cluster
of interprobe gaps is in its own panel

Figs. 5 and 6 show the dependence of ICMP delays on packet size for the Cisco OC48
interface, separated into three sets by interprobe gap (time between traceroute packets):
under 1 ms, 1ms–1s, over 1 s. The actual distibution of the longer lulls clusters around 10
ms (kernel scheduling quantum) and 2 sec (traceroute timeout), both described in Sec.3
(Fig.2). Probes delayed by 10–20 ms span a wider range of ξ (reflected in the width of
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Fig. 6. TimeExceeded message delay from Cisco OC48. Panels from top to bottom: delay for
interprobe gap of over 1 sec, 1 ms–1 sec and under 1 ms. The position of the curve in the top panel
reflects about 20 μs of extra delay (presumably route cache warm-up) beyond the lower bound of
all delays, which is indicated by the solid line. The bottom panel shows some additional scattering
of delays (possibly from rate limiting) for closely-spaced packets under 3000 bytes

Fig. 7. TimeExceeded message delay from Cisco GigE. Panels from top to bottom: delay for
interprobe gap of over 1 sec, 1 ms–1 sec, and under 1 ms. There is a rate change near 1500 bytes.
However, unlike the Foundry data, the slope under 1500 bytes is positive, albeit smaller than the
slope over 1500 bytes. The position of the curve in the top panel reflects about 20 μs of extra delay
(presumably route cache warm-up) beyond the lower bound of all delays, which is indicated by
the solid line. The bottom panel shows some additional scattering of delays (possibly from rate
limiting) for closely-spaced packets under 4500 bytes
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Fig. 8. TimeExceeded message delay from Foundry. The delay slope for packets under 1500 bytes
is a small negative number (see Tab. 2)
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Fig. 9. Histogram of residual TimeExceeded delay. Positions of the maxima are similar for packets
under and over 1500 bytes, suggesting that residual delay ξ is not strongly dependent on size

the middle strip in Fig. 6) than probes sent immediately after the previous probe, but
at the same time many of them are close to the linear lower bound (dashed line at the
bottom of the strip). On the other hand, probes sent after the 2-second timeout always
encounter an extra delay of about 20 μs. The banding of ξ here and in Figs. 7, 8, and 9
may be due to route cache flushing and other state lost after certain time intervals. We
observed similar dependence on the duration of the lull between the previous packet and
the current probe for Juniper (Fig.3b) and Foundry routers (Fig.8). To give an idea of the
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Table 3. Statistics of residual delay ξ for ICMP TimeExceeded (generation time in excess of
delays attributed to packet size) on Cisco and Foundry’s gigE line cards

Router Packet Packet Delay (μs)
Size Count avg 95% 99% max

Cisco ≤ 1500 103463 2.598 6.199 20.504 296.593
Cisco > 1500 540000 2.252 5.484 18.835 281.096
Foundry ≤ 1500 103073 4.364 3.338 31.233 1537.800
Foundry > 1500 538087 4.996 3.815 31.948 1492.500

average density of points in these bands, Fig.9 shows a histogram of residual delay ξ, i.e.
the delay less the lower bound of delay shown in Table 2 for sizes below and above 1500
bytes (partial Radon transform [30]). Note that this summary histogram suggests (but
does not prove) the stationarity of ξ with respect to packet size. While this stationarity is
typically assumed, our preliminary results show that it at best only approximately holds.

A common assumption in network research is that an idle router processes packets
with minimum possible delay [31]. Our experimental setup guarantees that no cross-
traffic is present and that routers process probes one at a time. Table 3 presents statistics
(average, 95%, 99% and maximum for the whole datasets without groupings by inter-
probe gap) for the residual delay ξ, i.e. ICMP generation time in excess of linear lower
bound ax + b (where Table 2 shows the slope a and intercept b). We can summarize the
data as follows: Cisco and Foundry gigE interfaces process TimeExceeded with no more
that 6 μs of extra delay (over the size-dependent lower bound) in 95% of cases; however,
for 1% of packets the extra delay is between 20 and 300 μs on the Cisco and 30–1500
μs on the Foundry. Despite piecewise linearity of the lower bound, the statistics of ξ are
close to each other for packets with sizes under and over 1500 bytes.

5 Discussion, Conclusions, Future Work

We demonstrated that a linear model of ICMP delay is an approximation (like Newtonian
mechanics) that breaks down for packet sizes over 1500 bytes. That so many measure-
ment techniques rely on this assumption is a pressing issue as providers like Abilene,
Geant, Switch are already supporting 9000-byte transparent paths, and the global Inter-
net transition toward these larger packet sizes is only a matter of time. With a 1500-byte
ICMP delay rate discontinuity at all three routers6, and with packet forwarding (as op-
posed to ICMP message generation delay) having a similar break in linearity at 1500
bytes for at least one router (as our work in progress shows), we can safely say that there
is commonly disparate treatment of packets under versus over 1500 bytes. Designers of
bandwidth estimation and other measurement tools [12] must be aware of this reality.

We find that for all packet sizes (under and over 1500 bytes):

– delays above the minimum are not necessarily due to queueing. For example we
observed that Juniper delays some closely spaced traceroute packets by 9–10 ms

6 For Juniper, the delay rate discontinuity appears for EchoReply and PortUnreachable but not
for TimeExceeded, for which there is no global rate change at 1500 bytes.
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(Fig.4). However, our measurements of Cisco and Foundry’s gigE interfaces (Table
3) show that for most (95%) probes the extra delay is within a few microseconds,
and it is within 300 μs for Cisco (and 1.5 ms for Foundry) over the whole sample,
which is negligible for many applications.

– buffer carving [32] can lead to “non-physical” size-delay dependence which can
appear faster than link rate or decrease with packet size. Such buffering can also
make loss rates size-independent [33].

The negative slope for the Foundry data in Fig. 8 could possibly be caused by the
router zeroing out the rest of a 1500 byte buffer after a smaller packet arrives, when this
operation is slower than the link’s line rate. We emphasize that this is only speculation,
and have not investigated this issue further.

Surprisingly, we found that the ICMP rate can differ by two orders of magnitude up
or down from the link rate, depending on router and ICMP type. This ambiguity suggests
that capacity estimates by ICMP-based tools [7] [34] [35] may need to make heavy use
of router and even interface fingerprinting, rather than just filtering and fitting as if ‘all
RTT data are created equal’.

We found that Juniper’s TimeExceeded processing is based on 64-byte cells (Fig.3a).
We plan to investigate whether the 48-byte cell7 granularity of the Cisco documented in
[32] is present in our data.

Our analysis shows that ICMP delay can depend on packet size and header fields in
various non-intuitive ways, including:

– different growth rates under and over 1500 bytes (piecewise linearity, Fig.7,8)
– jumps or drops (discontinuity, Fig.3)
– stepwise growth, e.g. each 64 bytes (Fig.3)
– negative (decreasing) slope with respect to packet size (Fig. 4, 8, Table 2)
– internal tasks can postpone packet scheduling by fixed delays (clustering in distinct

“bands”) on an absolutely empty device (Fig. 8, 9)
– warming up caches can cause significant (20-30 μs) extra latency for widely spaced

probes, e.g., an interprobe gap of seconds (Fig. 6, 5, 7, 8)

Table 4 summarizes our main results and lists three cases of linearity of message
generation delay with respect to packet size (fully linear, linear with a break, stepwise
linear with jumps) observed for the three router types studied. In contrast with preva-
lent assumptions used by some rate estimation tools, none of our studied routers has
a TimeExceeded generation rate equal to the line rate of the inbound link for packets
under 1500 bytes. One router has an ICMP rate that is 20 times slower than its line rate
(the ratio of generation rate to line rate is 0.05, Table 4). Other routers use optimizations
that create an illusion of a faster ICMP rate at the expense of increasing minimal ICMP
delay. These properties can facilitate remote device/link fingerprinting. Taken together,
our results indicate surprisingly different attitudes of router vendors (from restrictive
to receptive to acceptive) with regard to ICMP Time Exceeded messages. Our work in
progress suggests that many of these attitudes apply to other ICMP messages too.

7 “The Fabric Interface ASIC is set up to segment the packet into 48-byte cells.” [32].
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Areas for further investigation include confirming details on the phenomena men-
tioned above, as well as forwarding delays, payload dependent delays, cross-traffic ef-
fects, rate estimates based on optimization technique of [30], and independence tests.

Table 4. Observed behavior of routers responding with ICMP TimeExceeded messages

Property Juniper OC48 Cisco OC48 Cisco GigE Foundry GigE
Message generation linearity steps w.jumps linear piecewise piecewise
Min.latency, all packets ≥ 64B 128 μs 19.4 μs 19.4 μs 29.2 μs
Generation rate/Line rate, ≤ 1500B 0.05 1.37 3.1 negative
ICMP non-generation rate 2% 0% 0% 0.4%
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Abstract. With the lack of end-to-end QoS guarantees on existing networks, ap-
plications that require certain performance levels resort to periodic measurements
of network paths. Typical metrics of interest are latency, bandwidth and loss rates.
While the latency metric has been the focus of many research studies, the band-
width metric has received comparatively little attention. In this paper, we report
our bandwidth measurements between PlanetLab nodes and analyze various trends
and insights from the data. For this work, we assessed the capabilities of several
existing bandwidth measurement tools and describe the difficulties in choosing
suitable tools as well as using them on PlanetLab.

1 Introduction

The lack of end-to-end QoS and multicast support in the underlying best effort network-
ing infrastructure has spurred a trend towards providing application level intermediaries
such as web-caches and service replicas to mitigate the performance issues. It is not
only important to provide intermediary services but also to connect the end-clients to
the intermediary that can meet the client QoS requirements and provide the best perfor-
mance. For instance, web applications might want to select the nearest content cache
while the online multiplayer game players might want to choose the least loaded game
server. There also have been attempts to build overlays by connecting application level
intermediaries for composable and personalized web and media services. Normally, such
services have QoS requirements such as bandwidth and delay. Hence, building and main-
taining such overlays requires periodic or on-demand measurement of end-to-end paths.
Motivated by these trends, there have been significant research studies on active and
passive network measurement techniques, and measurement studies from many large
scale networks [1]. Clearly, periodic or on-demand measurement of all possible network
paths will incur a high overhead and is inefficient. Thus a key concern is the development
of scalable measurement and inference techniques which require minimum probing and
yet provide the required measurement accuracy.

The primary network metrics of interest are end-to-end latency, bandwidth and loss
rates while application level metrics are HTTP response times, media streaming rates,
and so on. Many studies have focused on scalable network distance estimation, mainly
using the triangular inequality heuristic [17]. However, similar triangular inequality does
not apply to bandwidth, and hence it is much more difficult to identify the nodes that
provide the maximal bandwidth without probing to each node.

C. Dovrolis (Ed.): PAM 2005, LNCS 3431, pp. 292–305, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Although there is a plethora of bandwidth measurement techniques, there have been
only a few large-scale bandwidth or bottleneck capacity measurement studies. In fact,
most of these studies are in conjunction with the validation of a new bandwidth mea-
surement tool. New bandwidth measurement tools continue to be developed, aiming
for better accuracy with faster measurements. In this paper, we present results from a
large scale bandwidth measurement study on the PlanetLab infrastructure. Our goals
are (i) to understand the bandwidth characteristics of network paths connecting Plan-
etLab nodes and (ii) to ultimately obtain insights into potential trends that will enable
scalable bandwidth estimation. We primarily focus on the first goal in this paper. We do
not develop a new bandwidth estimation tool nor evaluate and compare the accuracy of
various tools. Rather, we assess the capabilities of a number of available tools from a
PlanetLab deployment standpoint and report our findings in the hope that it will help
other researchers to make an informed choice of a tool.

In the next section, we describe our methodology and the tools we assessed for this
study, followed by an analysis of the data we collected. Section 3 concludes the paper.

2 Measurement Study

PlanetLab is an attractive platform for bandwidth measurement as it is an open, globally
distributed network service platform with hundreds of nodes spanning over 25 countries.
PlanetLab has gained the status of the de facto standard for conducting large scale
Internet experiments. Although the interdomain connectivity of the PlanetLab hosts may
not represent the global Internet [2], the characterization of PlanetLab topology is still
of utmost importance for designing experiments on PlanetLab and drawing informed
conclusions from the results. Several measurement studies have been conducted on
PlanetLab topology, mostly focusing on the connectivity and the inter-node latency. In
this paper, we study the bottleneck capacity between the PlanetLab nodes.

2.1 Methodology

Our methodology consisted of deploying the bandwidth1 measurement tool on a selected
set of responsive nodes on PlanetLab using standard PlanetLab tools and then executing
a script to run the measurements. The collected data is then shipped back to a central
node on our site for analysis.

We performed two sets of measurements at two different time periods. The first set
(referred to as Set 1 in rest of the paper) was measured and collected starting in August
of 2004, and the second (referred to as Set 2) in January of 2005. Between the two
measurements periods, PlanetLab went through a major version change. The second set
of experiments were performed after the version 3 rollout on PlanetLab.

Although there are over 500 deployed nodes on PlanetLab, only a little over half the
nodes consistently responded when we started the measurement process. A crucial first
step was to select a tool; we describe the selection process below. Conducting pair-wise
latency measurements for a few hundred nodes is a relatively quick process for which

1 We use the terms bandwidth and capacity inter-changeably throughout the paper.
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measurements can be run in parallel and finishes in the order of minutes. However,
pair-wise capacity measurements for a few hundred nodes needs to be well coordinated
because the capacity measurement tools often do not give accurate results when cross
traffic is detected. Thus the measurement process for all pairs can take much longer and
is of the order of days to even weeks.

There are a large number of bandwidth measurement/estimation tools available,
with several new tools recently introduced. This in itself is an indication that accurate
bandwidth measurement/estimation remains a hard problem even after many years of
research and there is room for further improvements [9]. For the details of the various
tools and their measurement accuracy, please use our bibliography or available survey
articles [15,18]. For the purposes of our study, our goal was to find a reasonably accurate
but low overhead tool that is easily deployable on the PlanetLab platform. Note that the
purpose of this study is not to do an accuracy comparison of these tools. After some
narrowing of the choices, we evaluated the following tools as described below.We merely
present our experiences with different tools in the evaluation process.

We were hesitant to use per-hop capacity estimation tools as they generate excessive
probing traffic overhead. Moreover, we could not build pathchar [10] or pchar [14] as
they can not be built on newer Linux systems. Currently, PlanetLab runs kernel version
2.4.22, but pathchar supports up to 2.0.30 and pchar up to 2.3. When we tested Clink [5]
on PlanetLab, the experiment were simply “hung" without making any progress. We
suspect this is also because of a Linux version compatibility issue.

As for end-to-end capacity estimation tools, bprobe [3] works only on SGI Irix.
SProbe [21, 22] is an attractive tool as it only requires to be run on the source machine,
and hence can measure capacities to hosts where the user does not have account access. In
addition, SProbe is included in the Scriptroute [23] tool that runs as a service on PlanetLab
hosts. One key feature of SProbe is that when it detects cross traffic, instead of making a
poor estimate of the capacity, it does not report any value. When we ran SProbe between
PlanetLab hosts, less than 30% of the measurements returned the capacity estimate. The
authors of the tool had a similar experience on their trials with Napster and Gnutella peers.
As we have access to all the PlanetLab hosts, we can deploy and run pathrate [4]. Unless
the network hosts are down or we could not login to the hosts for various reasons, we
were able to measure capacity between PlanetLab nodes using pathrate. It was the only
capacity estimation tool we could successfully run and obtain estimates on PlanetLab.

We also tested several available bandwidth estimation tools. Similar to bprobe,
cprobe [3] does not run on Linux. One of the most popular tools is pathload [8]. When
we tested pathload on PlanetLab nodes however, we ran into an invalid argument error
on connect. This very issue was also recently brought up in PlanetLab user mailing
list. We were able to run IGI (Initial Gap Increasing) [7] without any run-time errors.
However, the tool showed poor accuracy with high variance in the estimation of the same
pair on sequential attempts, and also reported unusually high estimates (ten times larger
than the estimated capacity by pathrate). Spruce [24] has shown to be more accurate than
pathload and IGI. However, Spruce requires the knowledge of the capacity of the path
to estimate available bandwidth. We also tested pathChirp [19] and it ran successfully
with reasonable accuracy in our first set of measurements performed in August 2004.
However, after the version 3 rollout of PlanetLab, pathChirp, along with STAB [20],



Measuring Bandwidth Between PlanetLab Nodes 295

Table 1. End-to-end capacity statistics

Set 1 Set 2

Number of nodes 279 178
Measurement period 8/11/04∼9/6/04 1/5/05∼1/18/05
PlanetLab version version 2 version 3

Number of pairs 12,006 21,861
Minimum capacity 0.1 Mbps 0.3 Mbps
Maximum capacity 1210.1 Mbps 682.9 Mbps
Average capacity 63.44 Mbps 64.03 Mbps
Median capacity 24.5 Mbps 91.4 Mbps
Standard deviation 119.22 Mbps 43.78 Mbps

developed by the same authors of pathChirp, failed to work on PlanetLab. After a few
chirps, the tool stops running and hangs. We are communicating with the authors of
pathChirp to resolve the issue.

In our future work, we are planning to test tools such as ABwE [16], CapProbe [11],
pathneck [6], and MultiQ [12].

2.2 Measurement Analysis

For the first set of measurements, we show the capacity measurements from pathrate
(version 2.4.0) as it was the only capacity estimation tool we were able to successfully
run in a consistent manner. Each pathrate run on average took approximately 30 minutes.
Pathrate returns two estimates, a high estimate and a low estimate, for bottleneck capacity
between a pair of source and destination nodes. In the first experiment pathrate returned
negative values for low capacity estimate in certain measurements. When we reported
this to the authors of the pathrate tool, they kindly debugged the calculation error and
the modified version (v2.4.1b) was used in the second set of measurements. To avoid
this calculation error, we only report the high capacity estimate of the pathrate in this
paper.

The first set of measurements was initiated on August 11th, 2004 and completed
on September 6th, 2004. The second set was measured between January 5th, 2005 and
January 18th, 2005. On our first attempt in August 2004, we tried measuring capacities
between all PlanetLab nodes of the then nearly 400 nodes. However, many of the nodes
did not respond consistently, and many of the pathrate capacity estimates were not
returned. Ultimately, in the first set, we collected bottleneck capacity data on 12,006
network paths from 279 nodes. In the second set of experiments performed in January of
2005, we prefiltered 178 nodes (and no more than two nodes per site) that consistently
responded. It could be one of the reasons why the experiments were finished in a shorter
time compared with the first set of measurement experiments. In the second set of
measurement we managed to collect data on 21,861 paths.

We first look at the statistics of the end-to-end capacity over all paths (source-
destination node pairs) measured. It is important to note that given two nodes A and
B, capacity measurements in both directions, i.e., source destination node pairs (A,B)
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Table 2. End-to-end capacity distribution

Set 1 Set 2Capacity (C)
Number of paths Percentage (%) Number of paths Percentage (%)

C < 20 Mbps 4013 33.42 6733 30.8
20 Mbps ≤ C < 50 Mbps 4246 35.37 1910 8.74
50 Mbps ≤ C < 80 Mbps 674 5.61 1303 5.96

80 Mbps ≤ C < 120 Mbps 2193 18.27 11744 53.72
120 Mbps ≤ C < 200 Mbps 207 1.72 139 0.64
200 Mbps ≤ C < 500 Mbps 392 3.27 21 0.096

500 Mbps ≤ C 281 2.34 11 0.05
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Fig. 1. Bandwidth capacity for all pairs measured

and (B,A) may not both be available. Table 1 shows that the average bandwidth between
PlanetLab hosts is nearly 64 Mbps. Table 2 shows the distribution, Figure 1 visualizes this
distribution (notice the different scaling of y-axis between two subfigures) and Figure 2
shows the cumulative distribution function (notice the different scaling of x-axis between
two subfigures). On further analysis, we observed that when certain nodes were the source
or the destination, the bandwidth measured was very low. In the first set of measure-
ments for instance, for paths with freedom.ri.uni-tuebingen.de as the source, the average
bandwidth was 4.61 Mbps. We noticed a similar behavior in the second set as when 200-
102-209-152.paemt7001.t.brasiltelecom.net.br was the source, the average capacity was
0.42 Mbps and when it was the destination, the average capacity was 0.41 Mbps. On the
other hand, when planetlab1.eurecom.fr was the destination, the average bandwidth was
3.85 Mbps, with the path from planetlab1.inria.fr having 199.2 Mbps of bandwidth.With-
out this measurement of 199.2 Mbps, the average bandwidth with planetlab1.eurecom.fr
as the destination is 2.13 Mbps. We also noticed nodes with high average bandwidth.
For instance, measurements from planet1.ottawa.canet4.nodes.planetlab.org showed an
average of 508.46 Mbps.
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Fig. 2. Cumulative distribution function of bandwidth capacity

Table 3. Capacity by regions (Mbps)

Destination
Source North America South America Asia Europe Oceania

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

North America 60.67 66.28 8.34 0.41 55.74 60.8 71.78 68.11 N/A 79.64
South America 7.94 0.42 106 N/A N/A 0.43 6.1 0.41 N/A 0.4

Asia 69.13 55.15 N/A 0.41 73.5 62.36 72.28 42.94 N/A 99.52
Europe 69.94 66.43 30.67 0.4 61.38 47.54 74.82 66.69 N/A 13.15
Oceania N/A 37.25 N/A 0.4 N/A 22.54 N/A 7.03 N/A 50.9

Some PlanetLab nodes have imposed outgoing bandwidth limit, ranging from 500
Kbps to 10 Mbps. We observed interesting interplay between the traffic shaper for band-
width limiting and the pathrate probing scheme. In some cases we measured end-to-end
capacity of 100 Mbps even though the source was bandwidth limited to 500 Kbps. We
are further exploring this interaction.

The standard deviation for the second set is much smaller than the first set. We believe
the prefiltering of the nodes for the second set is the main reason as the nodes that showed
extremely low or high capacities in the first set were relatively unstable, and could have
been removed from our second experiments. In the second set, we have limited the
number of nodes per site to at most two nodes, and hence we have less number of high
capacity local paths than the first set. We can also observe that in the second set, more
than 99% of the paths show the capacity of less than 120 Mbps.

Table 3 shows the capacity measured region by region. We categorize each node into
five regions: North America, South America, Asia, Europe, and Oceania. In our first
measurement set we did not have any node from the Oceania region part of PlanetLab.
On other entries of the table with N/A, no estimates were returned. There were only two
nodes from Brasil in South American region in the second set, and as mentioned earlier,
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Table 4. Asymmetry factor distribution

Set 1 Set 2Asymmetry factor (α)
Number of pairs Percentage (%) Number of pairs Percentage (%)

α < 0.01 132 6.08 1843 21.49
0.01 ≤ α < 0.05 395 18.19 3237 37.74
0.05 ≤ α < 0.1 165 7.6 817 9.52
0.1 ≤ α < 0.2 243 11.19 880 10.26
0.2 ≤ α < 0.5 328 15.1 1111 12.95

0.5 ≤ α 909 41.85 870 10.14
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Fig. 3. Cumulative distribution function of asymmetry factor

capacities of the path to and from these nodes were very low. One might think that pairs
between the same region will have higher capacity than those for inter-regions. The table
however does not show any strong confirmation of that belief. It is also interesting to
see that although the paths from Asia to Oceania show high capacity, the same cannot
be said for the reverse direction.

We now investigate whether the paths between PlanetLab hosts are symmetric in
terms of capacity. For the first set, among 12,006 measurements, only 2,172 pairs (4,344
measurements) reported capacity estimates in both directions, and for the second set,
8,758 pairs (17,516 measurements) out of 21,861 measurements returned estimates for
both directions. To understand the path asymmetry, we define asymmetry factor between
two nodes i and j, αi,j , as follows:

αi,j =
|BWi,j − BWj,i|

max(BWi,j , BWj,i)

where BWi,j is the bottleneck bandwidth from node i to node j.
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Table 5. Comparison of End-to-end capacity statistics of common node pairs in Sets 1 and 2

Set 1 Set 2

Number of common pairs 3,409
Measurement period 8/11/04∼9/6/04 1/5/05∼1/18/05
PlanetLab version version 2 version 3

Minimum capacity 0.1 Mbps 0.5 Mbps
Maximum capacity 1014.1 Mbps 152.6 Mbps
Average capacity 55.79 Mbps 71.09 Mbps
Median capacity 24.3 Mbps 97.3 Mbps
Standard deviation 109.94 Mbps 39.32 Mbps

When the capacity of the forward path equals the capacity of the reverse path (i.e.,
complete symmetry), the asymmetry factor is zero. A high asymmetry factor implies
stronger asymmetry.

The distribution of the asymmetry factor for both sets are reported in Table 4 while the
CDF is plotted in Figure 3. In the first set, only 132 pairs (6%) showed α of less than 0.01
and 692 pairs (32%) are less than 0.1. Although about 60% of the pairs have asymmetry
factor below 0.5, there are a significant number of pairs with high asymmetry factor. We
further investigated the reason for high asymmetry in 328 pairs that have α larger than
0.5. The PlanetLab imposed artificial bandwidth limit was reason for asymmetry in 189
of these pairs.

In the second set however, surprisingly large portion of the paths showed high sym-
metry. Nearly 60% has the asymmetry factor of less than 0.05. We believe that the main
reason is, as shown in Table 2, more than half of the capacity estimates were between
80 and 120 Mbps.

Temporal Analysis. Since the measurements from Set 1 and Set 2 were done almost
5 months apart, the obvious question to ask is whether the data suggests significant
changes in the PlanetLab infrastructure during this period. Note that we already know
of two significant changes - the PlanetLab software version was upgraded to version 3
and the pathrate tool was upgraded to a new version. To answer the above question, we
computed the common source-destination node pairs between the two sets and analyzed
the bandwidth measurements. We found 128 common nodes in the two sets and 3,409
common source-destination node pair measurements.

The summary statistics of the measured capacity for these node pairs common to both
measurement sets are given in Table 5. There are some interesting differences between
the two sets, which could be caused by infrastructure changes, measurement errors or
both. The average capacity between the measured node-pairs increased to 71 Mbps
from 55 Mbps, as did the minimum measured bandwidth, implying an upgrade of the
infrastructure on average. An interesting point to note is that the maximum capacity
between any node pair decreased significantly from 1 Gbps to 152 Mbps. This could
have been due to stricter bandwidth limits imposed on PlanetLab nodes. In the first set,
the capacity between the nodes planetlab1.cse.nd.edu and planetlab2.cs.umd.edu were
measured to be 1 Gbps, which in the second set is now close to 100 Mbps. We were



300 S.-J. Lee et al.

unable to determine whether this is due to an infrastructure change, imposed bandwidth
limit or measurement error. Diagnosing the causes for these measurement changes is
future work.

While the stated goal of this work was not to verify accuracy of the pathrate tool
(this has been done by other researchers in earlier work), we mentioned earlier that in
some of the measurements in Set 1, the low estimate of bandwidth reported by pathrate
were found to be negative and the authors of pathrate rectified this in the subsequent
release. Although the negative values do not affect any of our presented results as we
use the high estimate of the bandwidth, it is interesting to note that with the new version
of pathrate, of the 3,409 measurements, no negative low estimates were observed in Set
2, while there were 93 negative measurements in Set 1.

The capacity distribution of the 3,409 common node pairs is given in Table 6. The
biggest changes are in the paths with capacity between 20 Mbps and 50 Mbps and those
with capacity between 80 Mbps and 120 Mbps. From the data presented it seems that
significant number of paths were upgraded from the first band (20∼50 Mbps) to the
second band (80∼120 Mbps) in the time between our measurements.

As mentioned earlier, given two nodes A and B in this common set, capacity mea-
surements in both directions, i.e., source destination node pairs (A,B) and (B,A) may
not both be available. Of the 3,409 source-destination node pairs common to sets 1 and
2, 661 node pairs (i.e., 1,322 measurements) had bandwidth measurements in both di-
rections and hence the asymmetry metric could be computed for these. The asymmetry
factor distribution is tabulated in Table 7. Again, the second set of experiments show a
significantly reduced asymmetry than the first set.

Correlation Study. We now study the correlation between bandwidth and latency. Be-
fore we report the result of this study, we explain the motivation of attempting to relate
the delay with bandwidth.As mentioned in Section 1, our ultimate goal is to gain insights
into potential correlation that will enable scalable bandwidth estimation. For example, to
find a node whose path from a given node has the largest capacity, instead of performing
bandwidth estimates to all the nodes, can we do the probing to just a small number of
nodes (five for instance)? Since measuring latency can be done with less probing over-
head with quick turnaround time than measuring bandwidth, there already exist tools
that perform scalable network distance estimation [26]. With these tools available and

Table 6. End-to-end capacity distribution of common node pairs in Sets 1 and 2

Set 1 Set 2
Capacity (C)

Number of paths Percentage (%) Number of paths Percentage (%)

C < 20 Mbps 1041 30.54 909 26.66
20 Mbps ≤ C < 50 Mbps 1491 43.74 103 3.02
50 Mbps ≤ C < 80 Mbps 105 3.08 180 5.28
80 Mbps ≤ C < 120 Mbps 587 17.22 2205 64.68
120 Mbps ≤ C < 200 Mbps 37 1.09 12 0.35
200 Mbps ≤ C < 500 Mbps 86 2.52 0 0.00

500 Mbps ≤ C 62 1.82 0 0.00
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Table 7. Asymmetry factor distribution of common node pairs in Sets 1 and 2

Set 1 Set 2Asymmetry factor (α)
Number of pairs Percentage (%) Number of pairs Percentage (%)

α < 0.01 65 9.83 145 21.94
0.01 ≤ α < 0.05 167 25.26 299 45.23
0.05 ≤ α < 0.1 57 8.62 86 13.01
0.1 ≤ α < 0.2 64 9.68 70 10.59
0.2 ≤ α < 0.5 83 12.56 48 7.26

0.5 ≤ α 225 34.04 13 1.97
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Fig. 4. Bandwidth/delay correlation

latency values easily in hand, if there is any relationship or trend between latency and
bandwidth, we can scalably estimate network bandwidth without excessive bandwidth
probing. That is the main motivation of this trend analysis. Note also that using capacity,
instead of available bandwidth, is more appropriate as the values of available bandwidth
vary with time, and unless the measurement of bandwidth and latency are done at the
same period, the analysis could be meaningless.

For the latency measurement, we initially used the all pair ping data.2 However, due
to some missing ping data, there was little overlap between the available ping data and
collected bandwidth measurement. Hence we also used the RTT measurements from
pathrate. The resulting trends from ping and RTT measures from pathrate are quite
similar, and hence we only present the results based upon the pathrate RTT latency.

We used two metrics for studying the bandwidth and latency correlation. The first
metric, called relative bandwidth correlation metric, captures the ratio of maximum
bandwidth path and bandwidth to the closest node. For a given host (nodei), using the

2 We obtain this from http://www.pdos.lcs.mit.edu/˜strib/pl_app/
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Fig. 5. Cumulative distribution function of bandwidth/delay correlation

latency data, we find the host that has the minimum latency (nodeminLat). Similarly,
using the capacity measurements, we find the host that provides the maximum bandwidth
(nodemaxBW ). The relative bandwidth correlation penalty metric for nodei is then
defined as the ratio of the maximum bandwidth (BWi,maxBW ) and the bandwidth from
nodei to nodeminLat (BWi,minLat). This metric takes values greater than or equal to
1.0. The closer this metric is to 1.0, we consider the correlation between latency and
bandwidth to be stronger. We plot this metric and its cumulative distribution in Figures 4
and 5.

We see from the figure that latency and bandwidth are surprisingly quite correlated,
especially in the second set. On further analysis with the CDF for the first set, we notice
that for about 40% of the nodes, the bandwidth to the closest node is roughly 40% smaller
than the actual maximum bandwidth. Our preliminary investigations reveal one of the
primary reasons for this behavior is the imposed bandwidth limit. In some cases, the
capacities to even the nearby nodes are quite less than the maximum bandwidth as they
have bandwidth limits. For instance, in the Set 1, in lots of cases the node with highest
capacity is planetlab1.ls.fi.upm.es which did not have any imposed bandwidth limit.

For the second set on the other hand, we see that about 90% of the closest nodes has the
capacity that is nearly equal to the maximum bandwidth. We must remember however,
that the roundtrip time measurement was performed by pathrate itself. Tools such as
Netvigator [26] that perform network distance estimation typically uses traceroute or
ping, and those tools may return different values. We can further test the correlation
between bandwidth and latency using these tools.

We also used the Spearman rank correlation coefficient [13], which is commonly
used instead of the Pearson’s correlation coefficient, when the two sets of data come
from different distributions. In Figure 6, we rank all the node pairs based on both band-
width and latency. We plot the bandwidth rank versus the latency rank. If there is good
correlation, we expect the points to be clustered along the y = x diagonal line. How-
ever, using the Spearman coefficient we did not find any such correlation. The value of
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Fig. 6. Bandwidth/delay correlation using rank correlation

Spearman coefficient for sets 1 and 2 are 0.027 and 0.138 respectively based on the data
presented in these figures. We believe that the degree of rank-order correlation is higher
between closeby nodes and it decreases as distance between nodes increases. Hence, the
low value of Spearman might be due to its computation over all the possible
nodes. We plan to evaluate other rank-order correlation coefficients in this context.

3 Summary and Conclusions

In this paper, we presented a large scale measurement study of end-to-end capacity of
paths between PlanetLab nodes. Our contributions are two-fold in that in addition to
presenting the analysis of the data we collected from two sets of experiments, we also
described the issues with the deployment of a number of bandwidth measurement tools
on the PlanetLab platform. The measurement work is ongoing, but even with the data
we have collected so far, there are a number of interesting conclusions one can draw.
Foremost, we verified our intuition that network paths connecting PlanetLab nodes are
highly heterogeneous in the capacity values and in planning PlanetLab experiments, one
needs to take this into account. The capacity of paths may have an order of magnitude
difference even when they are sourced from the same node and similarly for the same
receiver. Paths between two nodes do not necessarily show capacity symmetry.According
to PlanetLab policy, bandwidth limits on outgoing traffic have been implemented. But
we observed violations of the policy, which could have been due to the inaccuracy of the
tool itself and we are investigating this further. In attempting to draw insights for scalable
bandwidth estimation, we studied the correlation between latency and bandwidth of a
path. Our preliminary results are promising and we plan to investigate this further.

One of our future work includes modifying the SProbe tool to keep attempting
measurements until a valid estimate is made. We can then measure the bandwidth to
nodes outside PlanetLab as SProbe does not require user access to destination hosts.

coefficient
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We also plan to periodically measure the all pair bandwidth between planet-lab hosts
and make it available to public. Although there exists a running service that measures
bandwidth between PlanetLab nodes,3 it uses Iperf [25] that measures achievable TCP
throughput, which is not necessarily raw capacity or available bandwidth.
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Abstract. In this paper we present results of a series of bandwidth estimation
experiments conducted on a high-speed testbed at the San Diego Supercomputer
Center and on OC-48 and GigE paths in real world networks. We test and compare
publicly available bandwidth estimation tools: abing, pathchirp, pathload, and
Spruce. We also tested Iperf which measures achievable TCP throughput. In the
lab we used two different sources of known and reproducible cross-traffic in a fully
controlled environment. In real world networks we had a complete knowledge of
link capacities and had access to SNMP counters for independent cross-traffic
verification. We compare the accuracy and other operational characteristics of the
tools and analyze factors impacting their performance.

1 Introduction

Application users on high-speed networks perceive the network as an end-to-end connec-
tion between resources of interest to them. Discovering the least congested end-to-end
path to distributed resources is important for optimizing network utilization. Therefore,
users and application designers need tools and methodologies to monitor network con-
ditions and to rationalize their performance expectations.

Several network characteristics related to performance are measured in bits per sec-
ond: capacity, available bandwidth, bulk transfer capacity, and achievable TCP through-
put. Although these metrics appear similar, they are not, and knowing one of them
does not generally imply that one can say anything about others. Prasad et al. [1] pro-
vide rigorous definitions of terms used in the field, survey underlying techniques and
methodologies, and list open source measurement tools for each of the above metrics.

By definition [1], end-to-end capacity of a path is determined by the link with the
minimum capacity (narrow link). End-to-end available bandwidth of a path is determined
by the link with the minimum unused capacity (tight link). In this study our goal is to
test and compare tools that claim to measure the available end-to-end bandwidth (Table
1). We did not test tools that measure end-to-end capacity.

Candidate bandwidth estimation tools face increasingly difficult measurement chal-
lenges as link speeds increase and network functionality grows more complex. Consider
the issue of time precision: on faster links, intervals between packets decrease, rendering
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Table 1. Available bandwidth estimation tools

Tool Author Methodology

abing Navratil [2] packet pair
cprobe Carter [3] packet trains
IGI Hu [4] SLoPS
netest Jin [5] unpublished
pathchirp Ribeiro [6] chirp train
pipechar Jin [7] unpublished
pathload Jain [8] SLoPS
Spruce Strauss [9] SLoPS

packet probe measurements more sensitive to timing errors. The nominal 1 μs resolution
of UNIX timestamps is acceptable when measuring 120 μs gaps between 1500 B packets
on 100 Mb/s links but insufficient to quantify packet interarrival time (IAT) variations
of 12 μs gaps on GigE links. Available bandwidth measurements on high-speed links
stress the limits of clock precision especially since additional timing errors may arise
due to the NIC itself, the operating system, or the Network Time Protocol (designed to
synchronize clocks of computers over a network) [10].

Several other problems may be introduced by network devices and configurations.
Interrupt coalescence improves network packet processing efficiency, but breaks end-
to-end tools that assume uniform per packet processing and timing [11]. Hidden Layer
2 store-and-forward devices distort an end-to-end tool’s path hop count, resulting in
calculation errors [12]. MTU mismatches impede measurements by artificially limiting
path throughput. Modern routers that relegate probe traffic to a slower path or implement
QoS mechanisms may also cause unanticipated complications for end-to-end probing
tools. Concerted cooperative efforts of network operators, researchers and tool develop-
ers can resolve those (and many other) network issues and advance the field of bandwidth
measurement.

While accurate end-to-end measurement is difficult, it is also important that band-
width estimation tools be fast and relatively unintrusive. Otherwise, answers are wrong,
arrive too late to be useful, or the end-to-end probe may itself interfere with the network
resources that the user attempts to measure and exploit.

1.1 Related Work

Coccetti and Percacci [13] tested Iperf, pathrate, pipechar and pathload on a low speed
(≤ 4 Mb/s) 3 or 4 hop topology, with and without cross-traffic. They found that tool
results depend strongly on the configuration of queues in the routers. They concluded
that in a real network environment, interpreting tool results requires considerable care,
especially if QoS features are present in the network.

Strauss et al. [9] introduced Spruce, a new tool to measure available bandwidth,
and compared it to IGI and pathload. They used SNMP data to perform an absolute
comparison on two end-to-end paths that both had their tight and narrow links at 100
Mb/s. They also compared the relative sensitivity of the tools on 400 paths in the RON
and PlanetLab testbeds. The authors found that IGI performs poorly at higher loads, and
that Spruce was more accurate than pathload.
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Hu and Steenkiste [4] explored the packet pair mechanism for measuring available
bandwidth and presented two measurement techniques, IGI and PTR. They tested their
methods on 13 Internet paths with bottleneck link capacities of ≤ 100 Mb/s and compared
the accuracies to pathload using the bulk data transmission rate (Iperf ) as the benchmark.
On some paths all three tools were in agreement with Iperf, while on others the results
fluctuated. Since the authors did not have any information about true properties and state
of the paths, the validity of their results is rather uncertain.

Finally, Ubik et al. [14] ran ABwE (a predecessor to abing) and pathload on two paths
on the GEANT network, obtaining one month of hourly measurements. The measured
paths consisted of at least 10 routers, all with GigE or OC-48 links. Measurements from
both tools did not agree. These preliminary results await further analysis.

Our study takes one step further the testing and comparing publicly available tools
for available bandwidth estimation. First, we considered and evaluated a larger number
of tools than previous authors. Second, we conducted two series of reproducible labora-
tory tests in a fully controlled environment using two different sources of cross-traffic.
Third, we experimented on high-speed paths in real networks where we had a complete
knowledge of link capacities and had access to SNMP counters for independent cross-
traffic verification. We compare the accuracy and other operational characteristics of the
tools, and analyze factors impacting their performance.

2 Testing Methodology

From Table 1 we selected the following tools for this study: abing, pathchirp, pathload,
and Spruce. For comparison we also included Iperf [15] which measures achievable
TCP throughput. Iperf is widely used for end-to-end performance measurements and
has become an unofficial standard [16] in the research networking community.

We were unable to test cprobe [3] because it only runs on an SGI Irix platform and we
do not have one in our testbed. We did not include netest in this study since in our initial
tests this tool inconsistently reported different metrics on different runs and different
loads. We excluded pipechar [7] after tests on 100 Mb/s paths and IGI [4] after tests on
1 Gb/s paths since they were unresponsive to variations in cross-traffic.

2.1 Bandwidth Estimation Testbed

In collaboration with the CalNGI Network Performance Reference Lab [17], CAIDA
researchers developed an isolated high-speed testbed that can be used as a reference
center for testing bandwidth estimation tools. This resource allows us to test bandwidth
estimation tools against known and reproducible cross-traffic scenarios and to look
deeply into internal details of tools operation. We also attempt to offer remote access to
the lab to tool developers wishing to further refine and enhance their tools.

In our current testbed configuration (Figure 1), all end hosts are connected to switches
capable of handling jumbo MTUs (9000 B). Three routers in the testbed end-to-end path
are each from a different manufacturer. Routers were configured with two separate
network domains (both within private RFC1918 space) that route all packets across a
single backbone. An OC48 link connects a Juniper M20 router with a Cisco GSR 12008
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Fig. 1. Bandwidth Estimation Testbed. The end-to-end path being tested traverses three routers and
includes OC48 and GigE links. Tool traffic occurs between designated end hosts in the upper part of
this figure. Cross-traffic is injected either by additional end hosts behind the jumbo-MTU capable
GigE switches or by the Spirent SmartBits 6000 box (lower part of figure). Passive monitors tap
the path links as shown to provide independent measurement verification

router, and a GigE link connects the Cisco with a Foundry BigIron 10 router. We use
jumbo MTUs (9000 B) throughout our OC48/GigE configuration in order to support
traffic flow at full line speed [18].

Bandwidth estimation tools run on two designated end hosts each equipped with
a 1.8 GHz Xeon processor, 512 MB memory, and an Intel PRO/1000 GigE NIC card
installed on a 64b PCI-X 133 MHz bus. The operating system is the CAIDA reference
FreeBSD version 4.8.

Our laboratory setup also includes dedicated hosts that run CoralReef [19] and
NeTraMet [20] passive monitor software for independent verification of tool and cross-
traffic levels and characteristics. Endace DAG 4.3 network monitoring interface cards on
these hosts tap the OC-48 and GigE links under load. CoralReef can either analyze flow
characteristics and packet IATs in real time or capture header data for subsequent anal-
ysis. The NeTraMet passive RTFM meter can collect packet size and IAT distributions
in real time, separating tool traffic from cross-traffic.

2.2 Methods of Generating Cross-Traffic

The algorithms used by bandwidth estimating tools make assumptions about character-
istics of the underlying cross-traffic. When these assumptions do not apply, tools cannot
perform correctly. Therefore, test traffic must be as realistic as possible with respect to
its packet IAT and size distributions.
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In our study we conducted two series of laboratory tool tests using two different
methods of cross-traffic generation. These methods are described below.

Synthetic Cross-Traffic. Spirent Communications SmartBits 6000B [21] is a hardware
system for testing, simulating and troubleshooting network infrastructure and perfor-
mance. It uses the Spirent SmartFlow [22] application that enables controlled traffic
generation for L2/L3 and QoS laboratory testing.

Using SmartBits and SmartFlow we can generate pseudo-random, yet reproducible
traffic with accurately controlled load levels and packet size distributions. This traffic
generator models pseudo-random traffic flows where the user sets the number of flows in
the overall load and the number of bytes to send to a given port/flow before moving on to
the next one (burst size). The software also allows the user to define the L2 frame size for
each component flow. The resulting synthetic traffic emulates realistic protocol headers.
However, it does not imitate TCP congestion control and is not congestion-aware.

In our experiments we varied traffic load level from 100 to 900 Mb/s which cor-
responds to 10-90% of the narrow GigE link capacity. At each load level, SmartFlow
generated nineteen different flows. Each flow had a burst size of 1 and consisted of
either 64, 576, 1510 or 8192 byte L2 frames. The first three sizes correspond to the
most common L2 frame sizes observed in real network traffic [23]. We added the jumbo
packet component because high-speed links must employ jumbo MTUs in order to
push traffic levels to line saturation. While [23] data suggest a tri-modal distribution of
small/medium/large frames in approximately 60/20/20% proportions, we are not aware
of equivalent published packet-size data for links where jumbo MTUs are enabled. We
mixed the frames of four sizes in equal proportions.

Packet IATs (Figure 2(a)) ranged from 4 to more than 400 μs. We used passive
monitors CoralReef and NeTraMet to verify the actual load level of generated traffic
and found that it matched the requirements within 1-2%.

Fig. 2. SmartBits and tcpreplay cross-traffic packet inter-arrival times
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Playing Back Traces of the Real Traffic. We replayed previously captured and
anonymized traffic traces on our laboratory end-to-end path using a tool tcpreplay [24].
This method of cross-traffic generation reproduces actual IAT and packet size distri-
butions but is not congestion-aware. The playback tool operated on two additional end
hosts (separate from the end hosts running bandwidth estimation tools) and injected the
cross-traffic into the main end-to-end path via GigE switches.

We tested bandwidth estimation tools using two different traces as background cross-
traffic:

– a 6-minute trace collected from a 1 Gb/s backbone link of a large university with
approximately 300-345 Mb/s of cross-traffic load;

– a 6-minute trace collected from a 2.5 Gb/s backbone link of a major ISP showing
approximately 100-200 Mb/s of cross-traffic load.

Neither trace contained any jumbo frames. Packet sizes exhibited a tri-modal distri-
bution as in [23]. Packet IATs (Figure 2(b)) ranged from 1 to 60 μs.

We used CoralReef to continuously measure tcpreplay cross-traffic on the labora-
tory end-to-end path and recorded timestamps of packet arrivals and packet sizes. We
converted this information into timestamped bandwidth readings and compared them to
concurrent tool estimates. Both traces exhibited burstiness on microsecond time scales,
but loads were fairly stable when aggregated over one-second time intervals.

3 Tool Evaluation Results

In this section we present tool measurements in laboratory tests using synthetic, non-
congestion-aware cross-traffic with controlled traffic load (SmartFlow) and captured
traffic traces with realistic workload characteristics (tcpreplay). In Section 4 we show
results of experiments on real high-speed networks.

3.1 Comparison of Tool Accuracy

Experiments with Synthesized Cross-Traffic. We used the SmartBits 6000B device
with the SmartFlow application to generate bi-directional traffic loads, varying from
10% to 90% of the 1 Gb/s end-to-end path capacity in 10% steps. We tested one tool at
a time. In each experiment, the synthetic traffic load ran for six minutes. To avoid any
edge effects, we delayed starting the tool for several seconds after initiating cross-traffic
and ran the tool continuously for five minutes. Figure 3 shows the average and standard
deviation of all available bandwidth values obtained during these 5 minute intervals for
each tool at each given load.

Our end-to-end path includes three different routers with different settings. To check
whether the sequence of routers in the path affects the tool measurements, we ran tests
with synthesized cross-traffic in both directions. We observed only minor differences
between directions. The variations are within the accuracy range of the tools and we
suspect are due to different router buffer sizes.

We found that abing (Figure 3a) reports highly inaccurate results when available
bandwidth drops below 600 Mb/s (60% on a GigE link). Note that this tool is currently
deployed on the Internet End-to-End Performance Monitoring (IEPM) measurement
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Fig. 3. Comparison of available bandwidth measurements on a 4-hop OC48/GigE path loaded
with synthesized cross-traffic. For each experimental point, the x-coordinate is the actual available
bandwidth of the path (equal to the GigE link capacity of 1000 Mb/s minus the generated load).
The y-coordinate is the tool reading. Measurements of the end-to-end path in both directions are
shown. The dash-dotted line shows expected value from SmartBits setting

infrastructure [25] where the MTU size is 1500 B, while our high-speed test lab uses a
jumbo 9000 B MTU. We attempted to change abing settings to work with its maximum
8160 B probe packet size, but this change did not improve its accuracy.

We looked into further details of abing operating on an empty GigE path. The tool
continuously sends back-to-back pairs of 1478 byte UDP packets with a 50 ms waiting
interval between pairs. abing derives estimates of available bandwidth from the amount
of delay introduced by the "network" between the paired packets. abing puts a timestamp
into each packet, and the returned packet carries a receiver timestamp. Computing the
packet IAT does not require clock synchronization since it is calculated as a difference
between timestamps on the same host. Since these timestamps have a μs granularity,
the IAT computed from them is also an integer number of μs. For back-to-back 1500 B
packets on an empty 1 Gb/s link (12 Kbits transmitted at 1 ns per bit) the IAT is between 11
and 13 μs, depending on rounding error. However, we observed that every 20-30 packets
the IAT becomes 244 μs. This jump may be a consequence of interrupt coalescence or
a delay in some intermediate device such as a switch. The average IAT then changes
to more than 20 μs yielding a bit rate of less than 600 Mb/s. This observation explains
abing results: on an empty 1 Gb/s tight link it reports two discrete values of available
bandwidth, the more frequent one of 890-960 Mb/s and occasional drops to 490-550
Mb/s. This oscillating behavior is clearly observed in time series of abing measurements
(Figure 4) described below.
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Another tool, Spruce (Figure 3d), uses a similar technique and, unsurprisingly, its
results are impeded by the same phenomenon. Spruce sends 14 back-to-back 1500 B
UDP packet pairs with a waiting interval of 160-1400 ms between pair probes (depending
on some internal algorithm). In Spruce measurements, 244 μs gaps between packet pairs
occur randomly between normal 12 μs gaps. Since the waiting time between pairs varies
without pattern, the reported available bandwidth also varies without pattern in the 300-
990 Mb/s range.

Results of our experiments with abing and Spruce on high-speed links caution that
tools utilizing packet pair techniques must be aware of delay quantization possibly
present in the studied network. Also, 1500-byte frames and microsecond timestamp
resolution are simply not sensitive enough for probing high-speed paths.

In SmartBits tests, estimates of available bandwidth by pathchirp are 10-20% higher
than the actual value determined from SmartBits settings (Figure 3b). This consistent
overestimation persists even when there is no cross-traffic. On an empty 1 Gb/s path this
tool yields values up to 1100 Mb/s. We have as yet no explanation for this behavior.

We found that results of pathload were the most accurate (Figure 3c). The discrepancy
between its readings and actual available bandwidth was <10% in most cases.

The last tested tool, Iperf, estimates not the available bandwidth, but the achievable
TCP throughput. We ran Iperf with the maximum buffer size of 227 KB and found it
to be accurate within 15% or better (Figure 4e). Note that a smaller buffer size setting
significantly reduces the Iperf throughput. This observation appears to contradict the
usual rule of thumb that the optimal buffer size is the product of bandwidth and delay,
which in our case would be (109 b/s) x (10−4 s) ∼ 12.5 KB. Dovrolis et al. discuss this
phenomenon in [26].

Experiments with Trace Playbacks. The second series of laboratory tests used pre-
viously recorded traces of real traffic. For these experiments we extracted six-minute
samples from longer traces to use as a tcpreplay source. As in SmartBits experiments,
in order to avoid edge effects we delayed the tool start for a few seconds after starting
tcpreplay and ran each tool continuously for five minutes.

Figure 4 plots a time series of the actual available bandwidth, obtained by computing
the throughput of the trace at a one-second aggregation interval and subtracting that from
the link capacity of 1 Gb/s. Time is measured from the start of the trace. We then plot
every value obtained by a given tool at the time it was returned.

As described in Section 2.2, we performed tcpreplay experiments with two different
traces. We present tool measurements of the University backbone trace, which produced
a load of about 300 Mb/s leaving about 700 Mb/s of available bandwidth. The tool
behavior when using the ISP trace with a load of about 100 Mb/s was similar and is not
shown here.

In tests with playback of real traces, abing and Spruce exhibit the same problems
that plagued their performance in experiments with synthetic cross-traffic. Figure 4a
shows that abing returned one of two values, neither of which was close to the expected
available bandwidth. Spruce results (Figure 4d) continued to vary without pattern.

pathchirp measurements (Figure 4b) had a startup period of about 70 s when the
tool returned only a constant value. The length of this period is related to the tool’s
measurement algorithm and depends on the number of chirps and chirp packet size
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Fig. 4. Comparison of available bandwidth tool measurements on a 4-hop OC48/GigE path loaded
with played back real traffic. The X-axis shows time from the beginning of trace playback. The
Y -axis is the measured available bandwidth reported by each tool. The dotted line shows the actual
available bandwidth that was very stable on a one-second aggregation scale

selected for the given tool run. After the startup phase, pathchirp’s values alternate
within 15-20% of the actual available bandwidth.

The range reported by pathload (Figure 4c) slightly underestimates the available
bandwidth by <16%.

Iperf reports surprisingly low results when run against tcpreplay traffic (Figure 4e).
Two factors are causing this gross underestimation: packet drops requiring retransmission
and a too long retransmission timeout of 1.2 s (default value). In the experiment shown,
the host running Iperf and the host running tcpreplay were connected to the main end-to-
end path via a switch. We checked the switch’s MIB for discarded packets and discovered
a packet loss of about 1% when the tool and cross-traffic streams merge. Although
the loss appears small, it causes Iperf to halve its congestion window and triggers a
significant number of retransmissions. The default retransmission timeout is so large it
consumes up to 75% of the Iperf running time. Decreasing the retransmission timeout
to 20 ms and/or connecting the tcpreplay host directly to the path bypassing the switch
considerably improves Iperf ’s performance. Note that we were able to reproduce the
degraded Iperf performance in experiments with synthetic SmartBits traffic when we
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essentially zero overhead

flooded the path with a large number of small (64 B) packets. These experiments confirm
that ultimately the TCP performance in the face of packet loss strongly depends on the
OS retransmission timer.

3.2 Comparison of Tool Operational Characteristics

We considered several parameters that may potentially affect a user’s decision regarding
which tool to use: measurement time, intrusiveness, and overhead. We measured all these
characteristics in experiments with SmartBits synthetic traffic where we can stabilize
and control the load.

We define tool measurement time to be the average measurement time of all runs at
a particular load level. On our 4-hop OC-48/GigE topology, the observed measurement
durations were: 1.3 s for abing, 11 s for Spruce, 5.5 s for pathchirp, and 10 s for Iperf
independent of load. The pathload measurement time generally increased when the
available bandwidth decreased, and ranged between 7 and 22 s.

We define tool intrusiveness as the ratio of the average tool traffic rate to the available
bandwidth, and tool overhead as the ratio of tool traffic rate to cross-traffic rate (Figure
). pathchirp, abing, and Spruce have low overhead, each consuming less than 0.2%

of the available bandwidth on the GigE link and introducing practically no additional
traffic into the network as they measure. pathload intrusiveness is between 3 and 7%. Its
overhead slightly increases with the available bandwidth (that is, when the cross-traffic
actually decreases) and reaches 30% for the 10% load. As expected, Iperf is the most
expensive tool both in terms of its intrusiveness (74-79%) and overhead costs. Since
it attempts to occupy all available bandwidth, its traffic can easily exceed the existing
cross-traffic.

5
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4 Real World Validation

Comparisons of bandwidth estimation tools have been criticized for their lack of vali-
dation in the real world. Many factors impede if not prohibit comprehensive testing of
tools on production networks. First, network conditions and traffic levels are variable
and usually beyond the experimenters’ control. This uncertainty prevents unambigu-
ous interpretation of experimental results and renders measurements unreproducible.
Second, a danger that tests may perturb or even disrupt the normal course of network
operations makes network operators reluctant to participate in any experiments. Only
close cooperation between experimenters and operators can overcome both obstacles.

We were able to complement our laboratory tests with two series of experiments in
the real world. In both setups, the paths we measured traversed exclusively academic,
research and government networks.

Experiments on the Abilene Network. We carried out the available bandwidth mea-
surements on a 6 hop end-to-end path from Sunnyvale toAtlanta on theAbilene Network.
Both end machines had a 1 Gb/s connection to the network and sourced no traffic except
from running our tools. The rest of links in the path had either 2.5 or 10 Gb/s capacities.

We chose not to test Spruce on the Abilene Network since this tool performed poorly
in our laboratory experiments1. We ran pathload, pathchirp, abing, and Iperf for 5 min
each, in that order, back-to-back. We concurrently polled the SNMP 64-bit InOctect
counters for all routers along the path every 10 s and hence knew the per-link utilization
with 10 s resolution. We calculated the per-link available bandwidth as the difference
between link capacity and utilization. The end-to-end available bandwidth is the mini-
mum of per-link available bandwidths. During our experiments, the Abilene network did
not have enough traffic on the backbone links to bring their available bandwidth below 1
Gb/s. Therefore, the end machines’ 1Gb/s connections were both narrow and tight links
in our topology.

Figure shows our tool measurements and SNMP-derived available bandwidth.
Measurements with pathload, pathchirp, and Iperf are reasonably accurate, while abing
readings wildly fluctuate in the whole range between 0 and 1000 Mb/s.

The discrepancy between Iperf measurements and SNMP-derived values reflects
tool design: Iperf generates large overhead (>70%) because it intentionally attempts
to fill the tight link. Consequent readings of SNMP counters indicate how many bytes
traversed an interface of a router during that time interval. They report total number of
bytes without distinguishing tool traffic from cross-traffic. If a tool’s overhead is high,
then available bandwidth derived from SNMP data during this tool run is low. At the
same time, since tools attempt to measure available bandwidth ignoring their own traffic,
a high-overhead tool will report more available bandwidth than SNMP. Therefore, Iperf
shows a correct value of achievable TCP throughput of ∼950 Mb/s while concurrent
SNMP counters account for Iperf ’s own generated traffic, and thus yield less than 200
Mb/s of available bandwidth.A smaller discrepancy between pathload and SNMP results
reflects pathload’s overhead (∼10% per our lab tests).

1 We tested Spruce in the other series of real network experiments, see subsection on SDSC-
ORNL paths below

6
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Fig. 6. Real world experiment conducted on the Abilene network. The dashed line shows the
available bandwidth derived from SNMP measurements. See explanations in the text

Experiments on SDSC-ORNL Paths. In the second series of real-world experiments
we tested abing, pathchirp, pathload, and Spruce between our host at SDSC (running
CAIDA reference FreeBSD version 4.8) and a host at Oak Ridge National Lab (running
Red Hat Linux release 9 with a 2.4.23 kernel and Web100 patch [27]). These experiments
are of limited value since we did not have concurrent SNMP data for comparison with
our results. However, we had complete information about link capacities along the paths
which at least allows us to distinguish plausible results from impossible ones. We include
these experiments since they present first insights into the interplay between the probing
packet size and the path MTU.

The two paths we measured are highly asymmetric. The SDSC-ORNL path crosses
CENIC and ESNet, has a narrow link capacity of 622 Mb/s (OC12) and MTU of 1500
bytes. The ORNL-SDSC path crosses Abilene and CENIC, has a narrow link capacity
of 1 Gb/s and supports 9000-byte packets end-to-end. Both paths remained stable over
the course of our experiments and included OC12, GigE, 10 GigE, and OC192 links.
Under most traffic scenarios, it seems highly unlikely for the 10 Gb/s links to have less
than 1 Gb/s of available bandwidth. Lacking true values of available bandwidth from
SNMP counters for absolute calibration of tool results, we assume that the narrow link
is also the tight link in both our paths.

We ran each tool using either 1500 or 9000 byte packets. abing, pathchirp, and
pathload support large probe packet size as an option2. Spruce uses a hardcoded packet
size of 1500 bytes; we had to trivially modify the code to increase the packet size to
9000 B. Table 2 summarizes our results while a detailed description is available in [28].

2 The abing reflector has a hardcoded packet size of 1478 bytes.
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Table 2. Summary of wide-area bandwidth measurements (“f”= produced no data)

Direction Path Capacity, Probe Packet Tool readings (Mb/s)
MTU Size abinga pathchirp pathload Spruce

SDSC to 622 Mb/s (OC12), 1500 178 / 241 543 >324 296
ORNL 1500 9000 f / 664 f 409 – 424 0

ORNL to 1000 Mb/s (GigE), 1500 727 / 286 807 >600 516
SDSC 9000 9000 f / 778 816 846 807

a Sender at SDSC for 1st value and at ORNL for 2nd value.

abing has a sender module on one host and a reflector module on the other host
and measures available bandwidth in both directions at once. We found that its behavior
changed when we switched the locations of sender and reflector. abing with 9000 B
packets did not return results from SDSC to ORNL (“f” in Table 2). We could see that the
ORNL host was receiving fragmented packets, but the abing reflector was not echoing
packets. In the opposite direction, from ORNL to SDSC, abing with 9000 B packets
overestimates the available bandwidth for the OC12 path (reports 664 Mb/s on 622
Mb/s capacity). Note that almost the factor of 3 difference in GigE path measurements
with 1500 B packets (727 and 286 Mb/s) may be due to different network conditions
since these tests occurred on different days.

pathchirp produced results on both paths when run with 1500 B packets and on the
GigE path with 9000 B packets, but failed on the OC12 path with large packets. There
does not appear to be any significant advantage to using large packets over small ones.
Variations between consequent measurements with the same packet size are sometimes
greater than the difference between using large and small packets.

In tests with 1500 B packets, on both paths pathload reports that results are limited
by the maximum host sending rate. With 9000 B packets, this tool yielded available
bandwidth estimates for both paths, but issued a warning “actual probing rate [does not
equal] desired probing rate” for the OC12 path.

Spruce performed poorly in experiments with small packets from SDSC to ORNL,
reporting wildly fluctuating values of available bandwidth. Tests with 9000 B packets in
this direction always produced 0 Mb/s. However, in the ORNL to SDSC direction, its
readings were more consistent and on par with other tools.

We suspect that fragmentation is responsible for most of the problems when probing
packet size and path MTU mismatch. While using large packets to measure high-speed
links is beneficial, more work is necessary to consistently support large packets and to
reduce failures and inaccuracies stemming from fragmentation.

5 Conclusions and Future Work

Our study is the first comprehensive evaluation of publicly available tools for available
bandwidth estimation on high-speed links. We conducted testing in the lab and over
research networks. We found that pathload and pathchirp are the most accurate tools
under conditions of our experiments.



Comparison of Public End-to-End Bandwidth Estimation Tools on High-Speed Links 319

Iperf performs well on high-speed links if run with its maximum buffer window
size. Even small (∼1%) but persistent amounts of packet loss seriously degrade its
performance. Too conservative settings of the OS retransmission timer further exacerbate
this problem.

Results of our experiments with abing and Spruce caution that tools utilizing packet
pair techniques must be aware of delay quantization possibly present in the studied
network. Also, 1500 byte frames and microsecond timestamp resolution are not sensitive
enough for probing high-speed paths.

Despite the revealed problems, experimenting with available bandwidth estimating
tools using large packets is worthwhile, considering the importance of using large packets
on high-speed links.

We demonstrated how our testbed can be used to evaluate and compare end-to-
end bandwidth estimation tools against reproducible cross-traffic in a fully controlled
environment. Several bandwidth estimation tool developers have taken advantage of our
offer of remote access to the testbed to conduct their own tests. We plan to use what
we have learned from our testing methodology to conduct monitoring efforts on both
research and commodity infrastructure.
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Abstract. Accurate traffic classification is the keystone of numerous network
activities. Our work capitalises on hand-classified network data, used as input to
a supervised Bayes estimator. We illustrate the high level of accuracy achieved
with a supervised Naı̈veBayes estimator; with the simplest estimator we are able
to achieve better than 83% accuracy on both a per-byte and a per-packet basis.

1 Introduction

Traffic classification enables a variety of other applications and topics, including Quality
of Service, security, monitoring, and intrusion-detection that are of use to researchers,
accountants, network operators and end users. Capitalising on network traffic that had
been previously hand-classified provides us with training and testing data-sets. We use a
supervised Bayes algorithm to demonstrate an accuracy of better than 66% of flows and
better than 83% for packets and bytes. Further, we require only the network protocol
headers of unknown traffic for a successful classification stage.

While machine-learning has been used previously for network-traffic/flow classifi-
cation e.g., [1], we consider our work to be the first that combines this technique with
the use of accurate test and training data-sets.

2 Experiment

In order to perform analysis of data using the Naı̈veBayes technique, appropriate in-
put data is needed. To do this, we capitalised on trace-data described and categorised
in [2]. This classified data was further reduced, and split into 10 equal time intervals
each containing around 25,000–65,000 objects (flows). To evaluate the performance of
the Naı̈veBayes technique, each dataset was used as a training set in turn and evalu-
ated against the remaining datasets, allowing computation of the average accuracy of
classification.

Traffic Categories. Fundamental to classification work is the idea of classes of traffic.
Throughout this work we use classes of traffic defined as a common group of user-
centric applications. Other users of classification may have both simpler definitions,
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e.g., Normal versus Malicious, or more complex definitions, e.g., the identification of
specific applications or specific TCP implementations.

Described further in [2], we consider the following categories of traffic: BULK
(e.g., ftp), DATABASE (i.e., postgres, etc.), INTERACTIVE (ssh, telnet), MAIL (smtp,
etc.), SEVICES (X11, dns), WWW, P2P (e.g., KaZaA, . . . ), ATTACK (virus and worm
attacks), GAMES (Half-Life, . . . ), MULTIMEDIA (Windows Media Player, . . . ).

Importantly, the characteristics of the traffic within each category are not necessarily
unique. For example, the BULK category which is made up of ftp traffic, consists of
both the control channel, which transfers data in both directions, and the data channel
consisting a simplex flow of data for each object transferred. The assignment of categories
to applications is an artificial grouping that further illustrates that such arbitrary clustering
of only-minimally-related traffic-types is possible with our approach.

Objects and Discriminators. Our central object for classification is the flow and for
the work presented in this extended-abstract we have limited our definition of a flow to
being a complete TCP flow — that is all the packets between two hosts for a specific
tuple. We restrict ourselves to complete flows, those that start and end validly, e.g., with
the first SYN, and the last FIN ACK.

As noted in Section 1, the application of a classification scheme requires the parame-
terisation of each object to be classified. Using these parameters, the classifier allocates
an object to a class, due to their ability to allow discrimination between classes. We
refer to these object-describing parameters as discriminators. In our research we have
used 249 different discriminators to describe traffic flows, these include: flow duration
statistics, TCP Port information, payload size statistics, fourier transform of the packet
interarrival time discriminators — a complete list is given in [3].

3 Method

Machine Learned Classification. Here we briefly describe the machine learning (ML)
approach we take, a trained Naı̈veBayes classifier, along with a number of the refinements
we use. We would direct interested readers to [4] for one of many surveys of all ML
techniques.

Several methods exist for classifying data and all of them fall into two broad classes:
deterministic and probabilistic classification. As the name suggests, deterministic clas-
sification assigns data points to one of a number of mutually-exclusive classes. This is
done by considering some metric that defines the distance between data points and by
defining the class boundaries. On the other hand, the probabilistic method classifies data
by assigning it with probabilities of belonging to each class of interest.

We believe that probabilistic classification of Internet traffic, and our approach in
particular, is more suitable given the need to be robust to measurement error, to allow
for supervised training with pre-classified traffic, to be able to identify similar character-
istics of flows after their probabilistic class assignment. We believe that the method be
tractable and understood, and be able to cope with the unstable-dynamic nature of Inter-
net traffic and that the method allow identification of when the model requires retraining.
Additionally, the method needs to be available in a number of implementations.
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Naı̈ve BayesianClassifier. The main approach that is used in this work is the Naı̈veBayes
technique described in [5]. Consider a collection of flows x = (x1, . . . , xn), where each
flow xi is described by m discriminators {d

(i)
1 , . . . , d

(i)
m } that can take either numeric

or discrete values. In the context of the Internet traffic, d
(i)
j is a discriminant of flow xi,

for example it may represent the mean interarrival time of packets in the flow xi. In this
paper, flows xi belong to exactly one of the mutually-exclusive classes described in Sec-
tion 2. The supervised Bayesian classification problem deals with building a statistical
model that describes each class based on some training data, and where each new flow y
receives a probability of getting classified into a particular class according to the Bayes
rule below,

p(cj | y) =
p(cj)f(y | cj)∑

cj

p(cj)f(y | cj)
(1)

where p(cj) denotes the probability of obtaining class cj independently of the observed
data, f(y | cj) is the distribution function (or the probability of y given cj) and the
denominator acts as a normalising constant.

The Naı̈veBayes technique that is considered in this paper assumes the independence
of discriminators d1, . . . , dm as well as the simple Gaussian behaviour of them. The
authors understand that these assumptions are not realistic in the context of the Internet
traffic, but [5] suggest that this model sometimes outperforms certain more complex
models.

4 Naı̈ve Bayes Results

Our experiments have shown that the Naı̈veBayes technique classified on average 66.71%
of the traffic correctly. Table 1 demonstrates the classification accuracy of this techinique
for each class. It can be seen from this table, that SERVICES and BULK are very well
classified, with around 90% of correctly-predicted flows. In comparision to other re-
sults, it could be concluded that most discriminator distributions are well separated in
the Euclinean space.

Table 1. Average accuracy of classification of Naı̈veBayes technique by class and Probability that
the predictive class is the real class

WWW MAIL BULK SERV DB INT P2P ATT MMEDIA GAMES
Accuracy (%) 65.97 56.85 89.26 91.19 20.20 22.83 45.59 58.08 59.45 1.39

Probability (%) 98.31 90.69 90.01 35.92 61.78 7.54 4.96 1.10 32.30 100.00

At this stage, it is important to note why certain classes performed very poorly.
Classes such as GAMES and INTERACTIVE do not contain enough samples, therefore,
Naı̈veBayes training on these classes is not accurate or realistic. ATTACK flows were
often confused with the WWW flows, due to the similarity in discriminators.
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Alongside accuracy we consider it important to define several other metrics describ-
ing the classification technique. Table 1 shows how traffic from different classes gets
classified — clearly an important measure. However, if a network administrator were
to use our tool they would be interested in finding out how much trust can be placed in
the classification outcome. Table 1 also shows the average probability that the predicted
flow class is in fact the real class, e.g., if flow xi has been classified as WWW, a measure
of trust gives us a probability that xi is in reality WWW.

A further indication of how well the Naı̈veBayes technique performs is to analyse the
volume of accurately-classified bytes and packets. The results obtained are: 83.98% and
83.93% of packets and bytes, respectively, were correctly classified by the Naı̈veBayes
technique described above. In contrast port-based classification achieved an accuracy
of 71.02% by packet and 69.07% by bytes (from [2]). Comparing results in this way
highlights the significant improvement of our Naı̈veBayes technique over the port-based
classification alone.

5 Conclusions and Further Work

We demonstrate that, in its simplest form, our probabilistic-classification is capable
of 67% accuracy per-flow or better than 83% accuracy both per-byte and per-packet.
We maintain that access to a full-payload trace, the only definitive way to characterise
network applications, will be limited due to technical and legal restrictions. We illustrate
how data gathered without those restrictions may be used as training input for a statistical
classifier which in turn can provide accurate, albeit estimated, classification of header-
only trace data.
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Abstract. A number of key areas in IP network engineering, management and 
surveillance greatly benefit from the ability to dynamically identify traffic flows 
according to the applications responsible for their creation. Currently such 
classifications rely on selected packet header fields (e.g. destination port) or 
application layer protocol decoding. These methods have a number of shortfalls 
e.g. many applications can use unpredictable port numbers and protocol 
decoding requires high resource usage or is simply infeasible in case protocols 
are unknown or encrypted. We propose a framework for application 
classification using an unsupervised machine learning (ML) technique. Flows 
are automatically classified based on their statistical characteristics. We also 
propose a systematic approach to identify an optimal set of flow attributes to 
use and evaluate the effectiveness of our approach using captured traffic traces.  

1   Introduction 

Over recent years there has been a dramatic increase in the variety of applications 
used in the Internet. Besides the ‘traditional’ applications (e.g. email, web) new 
applications have gained strong momentum (e.g. gaming, P2P). The ability to 
dynamically classify flows according to their applications is highly beneficial in a 
number of areas such as trend analysis, network-based QoS mapping, application-
based access control, lawful interception and intrusion detection. 

The most common identification technique based on the inspection of ‘known port 
numbers’ suffers because many applications no longer use fixed, predictable port 
numbers. Some applications use ports registered with the Internet Assigned Numbers 
Authority (IANA) but many applications only utilise ‘well known’ default ports that 
do not guarantee an unambiguous identification. Applications can end up using non-
standard ports because (i) non-privileged users often have to use ports above 1024, 
(ii) users may be deliberately trying to hide their existence or bypass port-based 
filters, or (iii) multiple servers are sharing a single IP address (host). Furthermore 
some applications (e.g. passive FTP) use dynamic ports unknowable in advance. 

A more reliable technique involves stateful reconstruction of session and 
application information from packet contents. Although this avoids reliance on fixed 
port numbers, it imposes significant complexity and processing load on the 
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identification device, which must be kept up-to-date with extensive knowledge of 
application semantics, and must be powerful enough to perform concurrent analysis 
of a potentially large number of flows. This approach can be difficult or impossible 
when dealing with proprietary protocols or encrypted traffic. The authors of [1] 
propose signature-based methods to classify P2P traffic. Although these approaches 
are more efficient than stateful reconstruction and provide better classification than 
the port-based approach they are still protocol dependent. 

Machine Learning (ML) automatically builds a classifier by learning the inherent 
structure of a dataset depending on the characteristics of the data. Classification in a 
high dimensional attributes space is a big challenge for humans and rule-based 
methods, but stochastic ML algorithms can easily perform this task. The use of 
stochastic ML for traffic classification was raised in [2], [3] and [4]. However, to the 
best of our knowledge no systematic approach for application classification and 
evaluation has been proposed and an understanding of possible achievements and 
limitations is still lacking. We propose a detailed framework for self-learning flow 
classification based on statistical flow properties that includes a systematic approach 
of identifying the optimal set of flow attributes that minimizes the processing cost, 
while maximizing the classification accuracy. We evaluate the effectiveness of our 
approach using traffic traces collected at different locations in the Internet. 

2   Related Work 

Previous work used a number of different parameters to describe network traffic (e.g. 
[1], [5], [6]). The idea of using stochastic ML techniques for flow classification was 
first introduced in the context of intrusion detection [2]. The authors of [7] use 
principal component analysis and density estimation to classify traffic into different 
applications. They use only two attributes and their evaluation is based on a fairly 
small dataset. In [3] the authors use nearest neighbour and linear discriminate analysis 
to separate different application types (QoS classes). This supervised learning 
approach requires an a-priori knowledge of the number of classes. Also, it is unclear 
how good the discrimination of flows is because in [3] the sets of attributes are 
averaged over all flows of certain applications in 24-hour periods. In [4] the authors 
use the Expectation Maximization (EM) algorithm to cluster flows into different 
application types using a fixed set of attributes. From their evaluation it is not clear 
what influence different attributes have and how good the clustering actually is.  

3   ML-Based Flow Classification Approach and Evaluation 

As initial input we use traffic traces or capture data from the network. First we 
classify packets into flows according to IP addresses, ports, and protocol and compute 
the flow characteristics. The flow characteristics and a model of the flow attributes 
are then used to learn the classes (1). Once the classes have been learned new flows 
can be classified (2). The results of the learning and classification can be exported for 
evaluation. The results of the classification would be used for e.g. QoS mapping, 
trend analysis etc. We define a flow as a bidirectional series of IP packets with the  
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Fig. 2. Intra-class homogeneity 

same source and destination address, port numbers and protocol (with a 60 second 
flow timeout). Our attribute set includes packet inter-arrival time and packet length 
mean and variance, flow size (bytes) and duration. Aside from duration all attributes 
are computed in both directions. We perform packet classification using NetMate [8], 
which supports flexible flow classification and can easily be extended with new flow 
characteristics. For the ML-based classification we use autoclass [9], an 
implementation of the Expectation Maximization (EM) algorithm [10]. EM is an 
unsupervised Bayesian classifier that automatically learns the ‘natural’ classes (also 
called clustering) inherent in a training dataset with unclassified cases. The resulting 
classifier can then be used to classify new cases (see [4], [9]). 

For the evaluation we use the Auckland-VI, NZIX-II and Leipzig-II traces from 
NLANR [11] captured in different years at different locations. Because the learning 
process is slow we use 1,000 randomly sampled flows for eight destination ports (FTP 
data, Telnet, SMTP, DNS, HTTP, AOL Messenger, Napster, Half-Life), which results 
in a total of 8,000 flows. Finding the combination of attributes that provides the most 
contrasting application classes is a repeated process of (i) selecting a subset of 
attributes, (ii) learning the classes and (iii) evaluating the class structure.  

We use sequential forward selection (SFS) to find the best attribute set because an 
exhaustive search is not feasible. The algorithm starts with every single attribute. The 
attribute that produces the best result is placed in a list of selected attributes SEL(1). 
Then all combinations of SEL(1) and a second attribute not in SEL(1) are tried. The 
combination that produces the best result becomes SEL(2). The process is repeated 
until no further improvement is achieved. To assess the quality of the resulting classes 
we compute the intra-class homogeneity H. We define C and A as the total numbers 
of classes and applications respectively. If Nac is the number of flows of application a 
that fall into class c and Nc is the total number of flows in class c Hc is defined as:  

max( | 0 1)ac
c

c

N
H a A

N
= ≤ ≤ −   (0<H≤1)  (1) 

For each trial H is the mean of Hc for 0≤c≤C-1 and the objective is to maximize H to 
achieve a good separation between different applications. For the evaluation we assume 
a flow’s destination port defines the application. This may be incorrect (as stated 
initially) but we assume it is true for a majority of the flows. Unfortunately public 
available traces do not contain payload information usable for verification.  
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For each trace (and for two different parts of Auckland-VI) the best set of attributes 
found is different and the size varies between 4-6 (see Fig.2.). We rank the attributes 
according to how often they appear in the best set: forward packet length mean, 
forward/backward packet length variance, forward inter-arrival times mean and 
forward size (75%), backward packet length mean (50%), duration and backward size 
(25%). Clearly, packet length statistics are preferred over packet inter-arrival time 
statistics for the ports we use. The average maximum H is 0.87±0.02 but H greatly 
differs for different ports (e.g. 0.98±0.01 for Half-Life but only 0.74±0.14 for HTTP). 

4   Conclusions and Future Work 

We have proposed a framework for ML-based flow classification based on statistical 
flow properties, identified a systematic approach of identifying an optimal set of flow 
attributes and evaluated the effectiveness of our approach. The results show that some 
separation of the applications can be achieved if the flow attributes are chosen 
properly. We plan to evaluate our approach with a larger number of flows and more 
applications (e.g. audio/video streaming). We hope to get traces that contain payload 
information usable for verifying the actual applications. We also plan to experiment 
with more attributes (e.g. idle time, burstiness) and possibly use payload information 
in a protocol independent way. Furthermore the precision of the resulting classifier 
and the classification performance has not yet been evaluated. 
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Abstract. This extended abstract present findings on measured TCP
performance of a range of network stacks. We have found that there are
significant differences between the TCP implementations found in Linux,
FreeBSD, OpenBSD and Windows XP.

1 Introduction

Implementations of a protocol vary in many respects, including how well they
perform. There are several reasons for this variation. When implementing an
Internet protocol, the programmer will refer to the protocol’s specifications, for
example its RFC. These specifications are normally written in English and may
be ambiguous. Some aspects of the protocols behaviour may be left to the im-
plementor. Even with a very tightly specified protocol, implementations do not
always correctly meet the specification. This may be due to logic errors or misin-
terpretations of the specification. In some cases decisions are made that violate
the specification to gain better performance.

In 1997 Paxson analysed TCP by writing a tool to automatically analyse a
large amount of trace data he had available [1]. This was successful in finding
implementation problems in a range of TCP variants of the time. However, the
tool has a serious limitation: the code needs to be updated and hand crafted for
every TCP implementation that is studied.

Previous work looking at TCP performance has looked at specific types of
congestion control [2], sometimes under specific conditions such as a mobile ad
hoc network [3], a lossy radio link [4] or ATM [5]. Studies comparing variants of
TCP have also been performed, for example comparing New Reno and Vegas and
Westwood+ [6]. Paxson’s research involved TCP stacks from 1997: Solaris 2.4,
NetBSD 1.0, Linux 1.0, Windows 95, Windows NT and others. TCP has evolved
significantly in the past 7 years; this paper focuses on TCP implementations
used in 2004 and 2005.

We hypothesise that todays TCP implementations will perform correctly un-
der congestion regardless of their BSD lineage, in contrast to Paxson’s findings.

� NLANR Measurement and Network Analysis Group (NLANR/MNA)is supported
by the National Science Foundation (NSF) under cooperative agreement no. ANI-
0129677.
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Further, we believe that TCP implementations have diversified sufficiently that
there are significant differences in measured performance between implemen-
tations, whether of BSD lineage or not. We use a test-bed network called the
WAND Emulation Network which is described in the next section. Some mea-
sured TCP performance results are presented in Sect 3.

2 Emulation Network

The WAND Network Research Group has built a network of 24 machines dedi-
cated to network testing. Machines are configured so there is a control network
connecting the machines to the control machine and an emulation network which
is configured by changing patch panels. Each machine has one Ethernet card con-
nected to the control network, and one Ethernet card connected to the emulation
network, which has four ports in the case of router machines. This allows arbi-
trary network topologies to be created between machines at a maximum speed
of 100Mbit/s.

All machines are connected through one central switch to a control machine
as well as having serial connections to the same machine. To simulate link delay
and bandwidth limits, FreeBSD Dummynet [7] routers are used.

The control machine is able to install operating system images onto the ma-
chines on the emulation network in less than five minutes, making it possible
to test a variety of different operating systems in a short time span. Images of
Linux, FreeBSD, OpenBSD, Solaris and Windows XP are available.

It is possible to write scripts that run commands on the machines on the
emulation network and send their output back to the control machine. This
makes it possible to design, execute and record tests on the control machine.

3 TCP Performance

The following tests have been performed with the following operating systems:
Linux, FreeBSD, OpenBSD and Windows XP with Service Pack 2.

3.1 Bidirectional Random Loss

This section presents a study of TCP performance under random loss in both di-
rections; that is, both data and acknowledgement packets are dropped randomly
using a uniform model. Random loss is interesting to study because Lakshman
and Madhow [8] report that random loss is a simple model for transient conges-
tion and of interest in the context of networks with multimedia traffic.

Figure 1 shows the topology used in this test. The bottleneck link is config-
ured to have a propagation delay of 100ms and bandwidth limited at 2Mb/s.
Router R1 drops packets randomly using Dummynet’s packet loss rate option.
The goodput over a single TCP stream from host H1 to H2 is measured. Goodput
is the amount of data successfully read from the TCP socket by the application
at the receiving end of a TCP connection. Hosts H3 and H4 are unused. Each
test lasted 60 seconds.
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Fig. 1. Test network setup

Table 1. TCP performance during 5% bidirectional loss

TCP Implementation Min Mean Max SD

Linux 2.6.10 164.3 213.9 287.6 22.7
Linux 2.4.27 153.8 207.4 248.7 22.8
FreeBSD 5.3 136.7 176.2 225.0 17.1
FreeBSD 5.2.1 128.7 162.8 219.0 19.5
Windows XP SP2 89.9 137.3 191.0 21.6
OpenBSD 3.5 63.8 117.9 166.8 22.1

Table 1 shows recorded performance in kilobits per second under 5% random
loss. The four numbers in the table are recorded goodput: minimum, mean, max
and standard deviation. For each network stack, the test was run 100 times. All
tests were run with kernel parameters with their defaults. Increasing the buffer
sizes of any of the stacks studied made little difference, even though Windows
XP defaults to only 8kB (compared to up to 64kB on other operating systems).
While there is variation from run to run, it is small compared to the mean.
Measurements with SACK turned on and off showed that SACK increases per-
formance by just over 5% in this scenario.

3.2 Reverse Path Congestion

The test network topology is the same as presented in the previous section in
Fig. 1. No artificial loss is added by routers R1 or R2 but host H4 sends data
over a single TCP stream to host H3. The TCP stream from host H1 to host
H2 is measured. The buffer sizes on routers R1 and R2 are set to 8 packets, the
bottleneck link is set at 2Mb/s with 50ms delay. This allows R2 to be congested
by the TCP stream from H4 to H3 which has the effect of congesting the acks
of the measured TCP stream. H3 and H4 use Linux 2.4.27 while the operating
system on H1 and H2 vary. The stacks are configured as in Sect. 3.1 apart from
the size of the TCP socket buffers. The TCP socket buffer size for both receive
and send buffers are set to 64kB for all network stacks in the test.

Table 2 shows the measured goodput at host H2 in kilobits per second. The
variation between stacks is not as large as in the previous section but there is
still a significant difference of 32% between the lowest and highest.
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Table 2. TCP performance during reverse path congestion

TCP Implementation Min Mean Max SD

Linux 2.4.27 1220 1296 1375 33.3
FreeBSD 5.3 1128 1242 1366 52.8
FreeBSD 5.2.1 1099 1205 1289 48.6
Windows XP 906 1024 1152 58.5
OpenBSD 3.5 1273 1352 1438 40.4

4 Summary

This abstract shows that there is a large difference between the measured per-
formance of the TCP stacks studied: Linux, FreeBSD, OpenBSD and Windows
XP. During bidirectional random loss, the Linux TCP stack is able to obtain
the most goodput by quite a long way. In this scenario OpenBSD is only able
to achieve just over half the goodput that was measured with Linux 2.4 and
2.6 kernels while Windows XP achieves just 64% of the goodput measured with
Linux. Windows XP is additionally limited by its default TCP window sizes,
which are very small by today’s standards.

Further analysis of these results is not presented because of the lack of space
available.
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Abstract. While several algorithms have been created to actively mea-
sure the end-to-end available bandwidth of a network path, they require
instrumentation at both ends of the path, and the traffic injected by
these algorithms may affect the performance of other applications on
the path. Our goal is to apply the self-induced congestion principle to
passive traces of existing TCP traffic instead of actively probing the
path. The primary challenge is that, unlike active algorithms, we have
no control over the traffic pattern in the passive TCP traces. As part
of the Wren bandwidth monitoring tool, we are developing techniques
that use single-sided packet traces of existing application traffic to mea-
sure available bandwidth. In this paper, we describe our implementation
of available bandwidth analysis using passive traces of TCP traffic and
evaluate our approach using bursty traffic on a 100 Mb testbed.

1 Introduction

Available bandwidth is typically measured by actively injecting data probes
into the network. The active approach often produces accurate measurements,
but it may cause competition between application traffic and the measurement
traffic, reducing the performance of useful applications. Most of these active al-
gorithms rely on UDP traffic to probe the path for available bandwidth, however
applications typically use TCP traffic. Because UDP and TCP traffic may be
packet-shaped differently along the same path, measurements made with UDP
traffic may not reflect the actual bandwidth available to TCP applications. Fur-
thermore, these available bandwidth algorithms require instrumentation on both
ends of the path, which may not always be possible.

Our goal is to use passive traces of existing TCP traffic instead of actively
generating the traffic being used to measure available bandwidth. By monitoring
the traffic that an application generates, we can calculate the available band-
width even when the application has not generated sufficient traffic to saturate
that path. Our available bandwidth measurements can be used by an application
already generating traffic to determine if it can increase its sending rate, by net-
work managers who are interested in observing traffic, capacity planning, SLA
monitoring, etc., or by central monitoring systems[1, 2] that store measurements
for future use or use by other applications.
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Because our approach uses existing application traffic to measure available
bandwidth, the monitored traffic is not an additional burden on the path and
experiences the same packet shaping issues affecting applications. To achieve the
necessary accuracy and avoid intrusiveness, our passive monitoring system uses
the Wren packet trace facility [3] to collect kernel-level traces of application traf-
fic and analyzes the traces in the user-level. Our trace facilities can be deployed
on one or two end hosts or on a single packet capture box, which is an advantage
over tools that must be deployed on both ends of the path.

This paper describes how to apply the self-induced congestion principle to
passive traces of application traffic, a task complicated because we have no con-
trol over the application traffic pattern. We describe an algorithm for applying
the self-induced congestion principle to passive, one-sided traces of TCP traffic
and demonstrate that our algorithm produces measurements that are responsive
to changes in available bandwidth.

2 Background

Available bandwidth describes what portion of the path is currently unused by
traffic. More precisely, available bandwidth is determined by subtracting the
utilization from the capacity of the network path [4, 5]. In practice, available
bandwidth may also be affected by traffic shapers that allow some traffic to
consume more or less bandwidth than other traffic can consume.

The basic principle of the self-induced congestion (SIC) technique is that if
packets are sent at a rate greater than the available bandwidth, the queuing
delays will have an increasing trend, and the rate the packets arrive at the
receiver will be less than the sending rate. If the one-way delays are not increasing
and the rate the packets arrive is the same as the sending rate of the packets,
then the available bandwidth is greater than or equal to the sending rate. Tools
that utilize this concept [6, 7, 8, 9] probe the network path for the largest sending
rate that does not result in queuing delays with an increasing trend because this
sending rate reflects the available bandwidth of the path.

Proposed improvements to the TCP protocol have set a precedent for mea-
suring available bandwidth on a single end host. Paced Start (PaST)[10] incorpo-
rates the self-induced congestion principle into the TCP protocol to reduce the
amount of time taken before transitioning into the congestion avoidance phase.

3 Passive One-Sided SIC Implementation

Our one-sided passive SIC implementation uses the timestamps of data and ACK
packets on the sending host to calculate the round trip times (RTT) and the
initial sending rates of the stream of packets. Our implementation is similar to
the pathload [8], which uses trends in one-way delays to determine the available
bandwidth.

We group packets together into streams and identify the trend in RTTs of
each packet group. We impose the condition that grouped packets are the same
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size so that all packets we consider have experienced the same store-and-forward
delays at the links along the path. Because congestion window size often deter-
mines the sending rate of the TCP application, we also ensure that all packets
grouped together have the same congestion window size. The number of packets
in each group is determined by the congestion window size. For each stream
of packets, we calculate the RTTs of each packet, calculate the initial sending
rate, and determine if there is an increasing trend in the RTTs. We group sev-
eral streams together and try to identify the maximum value for the available
bandwidth. For each group, the stream with the largest sending rate and no
increasing trend determines the available bandwidth.

To emulate traffic generated by on-off applications, we created traffic gener-
ators that send 256K messages with a variable delay. The variable delay causes
the throughput of the generators to oscillate.

Figure 1 presents the results of applying our passive SIC approach to one-
sided traces of two traffic generators. In the left graph, the average throughput of
the traffic generator is 65 Mbps on an uncongested LAN. The traffic generator
was run on a 100 Mb testbed with varying amounts of cross traffic present.
This graph shows distinct bands that demonstrate our algorithm can detect the
changes in the amount of available bandwidth.

The second traffic generator was designed to send out bursts of messages with
varying throughput. In this experiment, there is 20 Mbps of cross traffic present
for the first 15 seconds and 40 Mbps of cross traffic present for the last 15 sec-
onds. In the right graph in Fig. 1, the line represents the throughput of the traffic
generator and the points are the measurements produced by our passive algo-
rithm. Notice how the third peak does not reach the true available bandwidth,
but our algorithm is still able to produce an accurate measurement. This graph
shows that our SIC algorithm is able to measure the available bandwidth using
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Fig. 1. The left graph shows how our SIC algorithm is responsive to changes in available
bandwidth. The right graph demonstrates our SIC algorithm’s ability to accurately
measure the available bandwidth even when TCP throughput is ramping up



336 M. Zangrilli and B.B. Lowekamp

one-sided traces of application traffic with on-off communication patterns, even
when the application traffic throughput is less than the available bandwidth.

4 Conclusion

We have described the implementation of a passive available bandwidth tech-
nique based on the self-induced congestion principle. Our preliminary evaluation
of our one-sided passive SIC technique is quite promising and shows that we can
obtain valid available bandwidth measurements in congested environments using
bursty application traffic.

We are continuing to evaluate our one-sided passive SIC algorithms. We are
interested in qualifying what types of traffic patterns are best suited for our algo-
rithm to produce valid measurements, and performing more detailed analysis on
the affects of traffic burstiness, bottlenecks, and delayed ACKs on the accuracy
of our algorithm’s measurements.
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1 Introduction

The complexity of network systems and the heterogeneity of end systems will
make networks increasingly difficult to manage. To understand the operational
details of networks it is imperative that sufficient information on their behavior
is available. This can be achieved through network measurement.

Passive network measurement systems typically collect packet traces that
are then stored in trace databases. To extract information on the state of the
network, the traces are searched and post-processed. In our work, we envision
two extensions to this approach:

– Distributed Measurement Nodes. To provide a richer set of network
management applications and traffic profiling capabilities, traffic is collected
and correlated from multiple measurement nodes.

– Preprocessing of Trace Data. Scalability in distributed measurement
is a key problem. The aggregate bandwidth of trace data from multiple
measurement nodes can easily overwhelm a conventional database system.
To alleviate this problem, we preprocess packet traces on the measurement
node and perform simple statistics collection online.

The basic architecture of our measurement system is shown in Figure 1. In
this paper, we discuss how to implement the packet capture and online prepro-
cessing functions of this system on a network processor. Network processors are
software programmable system-on-a-chip multiprocessors that are optimized for
high bandwidth I/O and highly parallel processing of packets. We use the In-
tel IXP 2400 [1] network processor for our proposed measurement system. The
IXP 2400 contains eight multi-threaded microengines for packet processing along
with an XScale core processor to perform control plane related functions.

The measurement node performs three functions:

– Packet Capture and Header Parsing: Each packet is parsed to deter-
mine the sequence of headers that are present. This allows the consideration
of nested protocol headers as well as different header sizes due to options.

– Anonymization: To ensure the privacy of network users, IP addresses are
anonymized online on the network processor during trace collection.

– Online Queries and Statistics Collection: Packet traces can be pre-
processed on the measurement node to reduce the load on the centralized
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Fig. 1. Network Measurement Architecture

collection system. If traffic statistics match a particular query, a response is
pushed from the measurement node.

2 Related Work

Traditionally, two approaches have been taken towards network measurement:
active and passive.In the active approach (e.g., NLANR’s AMP and Surveyor),
a sender and/or receiver measure and record the traffic that they send/receive,
obtaining end-to-end (e.g., path) characteristics.

In the passive approach, measurements are taken at a given point in a network
and are typically used to characterize local properties of the network and its
traffic. Traces of packets passing through a passive measurement point can be
analyzed for traffic mix (e.g., protocol or application), or flow size and burstiness.
The passive measurement projects that are most closely related to our proposed
efforts here are Sprint’s IPMON project [2], AT&T’s Gigascope project [3] and
NLANR’s passive measurement efforts [4].

None of these efforts, however, leverage the use of network processors, which
allow customized online queries. In this context the use of network processors is
particularly crucial as complex centralized post-processing and storage of traffic
traces can be off-loaded into the measurement node.

3 IP Address Anonymization

To ensure that no private information is revealed in a network trace, the IP
source and destination addresses need to be anonymized. The main constraint
on the anonymization algorithm is that it should be “prefix-preserving.” Thus,
some information on network-level characteristics of the measured traffic can be
preserved across the anonymization step.

It is desirable to perform anonymization as early in the collection process as
possible. By anonymizing header fields on the measurement node itself instead
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of external post-processing, it is less likely that unanonymized data is leaked.
This requires the anonymization process to operate at a speed that can keep up
with the link rates of the measurement node. This sort of online anonymiza-
tion, however, cannot be achieved with current prefix-preserving anonymization
algorithms ([5] and [6]), since they are computationally intensive.

We have developed a novel prefix-preserving anonymization algorithm, called
TSA (top-hash subtree-replicated anonymization) [7], that addresses this prob-
lem by computing all necessary cryptographic functions offline. An IP address
is anonymized by making a small number of accesses to a set of lookup tables
in memory.
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4 Measurement Node Prototype

The prototype implementation of the proposed measurement system is based
on the IXP2400 network processor platform. The data flow and allocation of
tasks to the underlying NP components is shown in Figure 2. The data path
bumps incoming traffic from Port 0 to Port 1 and vice versa. Once a packet has
successfully proceeded through the data path, it is enqued to the measurement
part of the system. If this queue is full, the packet is dropped and no measurement
tasks are performed on it. Thus, the measurement path is designed to have
a minimal impact on the performance of the network processor in the data
path. In the measurement path, packet headers are collected, IP addresses are
anonymized, statistics are updated, and a ”measurement packet” (which contains
the packet headers and some meta data) is generated for each packet observed,
and transmitted from Port 2.

The measurement system was simulated on the simulator for the IXP 2400
network processor. Simulation traffic consisted of unidirectional 60 byte TCP/IP
packets over Ethernet. We were able to sustain a transmit rate of up to 1120Mbps
(∼900,000 packets per second) on the measurement port (Port 2). The measure-
ment node was also tested on the Radisys ENP-2611 board [8], on a network
access link of the University of Massachusetts. The node was observed to be
functional at data rates of up to 140,000 packets per second.
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5 Future Work

We are exploring an extension to the current measurement prototype that allows
collection of online statistics and the implementation of queries to the measure-
ment node. The key research question is what traffic statistics to collect and
how this information can be accessed through the query interface. This issue is
closely related to the capabilities of the underlying hardware.

We propose to implement simple counting functions on the microengines and
leave more complex processing to the Xscale control processor. In particular, we
consider collection of packet counts, layer 3 and 4 protocol distributions, counts
of packets with special significance (e.g., TCP SYN packets). These statistics can
be further extended to gather more information through (1) per-flow statistics,
(2) window-based statistics, and (3) multi-resolution counters. In all three cases
there is a tradeoff between memory requirements and accuracy.

For the query interface we consider two possible types of queries. Queries
that “pull” information from the measurement node are comparable to those
done on conventional packet trace collections. The query is sent to the system
and the appropriate information is retrieved and sent in response. With the
online operation of our system another type of query is possible. “Push” queries
are such that they continuously monitor the packet stream. When a particular
condition is matched, a response is triggered.

Finally, it is necessary to obtain accurate time information for timestamping.
We are currently in the process of integrating a GPS receiver with the IXP2400
to operate an NTP-style clock synchronization mechanism on the Xscale control
processor.
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Abstract. We have proposed a new TCP version, called ImTCP (Inline measure-
ment TCP), in [1]. The ImTCP sender adjusts the transmission intervals of data
packets, and then utilizes the arrival intervals of ACK packets for the available
bandwidth estimation. This type of active measurement in a TCP connection (in-
line measurement) is preferred because it delivers measurement results that are as
accurate as active measurement, even though no extra probe traffic is injected into
the network. In the present research, we combine a new capacity measurement
function with the currently used measurement method to enable simultaneous
measurement of both capacity and available bandwidth in ImTCP. The capacity
measurement algorithm is essentially based on the packet pair technique, but also
consider the estimated available bandwidth values for data filtering or data cal-
culation, so that this algorithm promises better measurement results than current
packet-pair-based measurement algorithms.

Extended Abstract

The capacity of an end-to-end network path is the maximum possible throughput that
the network path can provide. Traffic may reach this maximum throughput when there
is no other traffic along the path. The available bandwidth indicates the unused band-
width of a network path, which is the maximum throughput that newly injected traffic
may reach without affecting the existing traffic. The two bandwidth-related values are
obviously important with respect to adaptive control of the network. In addition, these
two values are often both required at the same time. Although network transport proto-
cols optimize link utilization according to capacity, congestion is also avoided by using
the available bandwidth information. For routing or server selection in service overlay
networks, information about both capacity and available bandwidth offers a better selec-
tion than either capacity or available bandwidth information alone. For example, when
the available bandwidth fluctuates often and the transmission time is long, the capacity
information may be a better criterion for the selection. However, when the available
bandwidth appears steady during the transmission, then the available bandwidth should
be used for the selection. Moreover, the billing policy of the Internet Service Provider
should be based on both the capacity and the available bandwidth of the access link they
are providing to the customer.

Several passive and active measurement approaches exist for capacity or available
bandwidth. Active approaches are preferred because of their accuracy and speed. How-
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ever, sending extra traffic onto the network is a common disadvantage that is shared by
all active measurement tools.

We propose herein an active measurement method that does not add probe traffic to
the network. The proposed method uses the concept of “plugging" the new measure-
ment mechanism into an active TCP connection (inline measurement). Passive inline
measurement appeared in TCP Westwood [2], in which the sender checks the ACK
packet arrival intervals to infer the available bandwidth. We herein introduce ImTCP
(Inline measurement TCP), a Reno-based TCP that deploys active inline measurement.
The ImTCP sender not only observes the ACK packet arrival intervals, but also actively
adjusts the transmission interval of data packets, just as active measurement tools use
probe packets. When the corresponding ACK packets return, the sender utilizes the ar-
rival intervals thereof to calculate the measurement values. The measurement algorithm
in ImTCP combines the available bandwidth and capacity measurement algorithms.
The available bandwidth measurement algorithm utilizes Self Loading Periodic streams
(SLoPS) proposed in [3]. However, SLoPS is changed so that the algorithm can be ap-
plied to inline measurement. The available bandwidth algorithm is described in detail
in [4]. The measured values of available bandwidth are then used to supplement the
packet pair technique to deliver a better capacity estimation than traditional packet pair
based techniques.

We insert a measurement program into the sender program of TCP Reno to create
an ImTCP sender. The measurement program is located at the bottom of the TCP layer.
When a new data packet is generated at the TCP layer and is ready to be transmitted,
the packet is stored in an intermediate FIFO buffer. The measurement program decides
the time at which to send the packets in the buffer. The program waits until the number
of packets in the intermediate buffer is sufficient to form a packet stream for available
bandwidth measurment and a packet pair for capacity measurement, in each RTT. After
sending packets required for measurement, the program then passes all data packets
immediately to the IP layer while waiting for the corresponding ACK packets. The
measurement program does not require any special changes in the TCP receiver program,
except that an ACK packet must be sent back for each received packet. Therefore,
delayed ACKs must be disabled at the TCP receiver; otherwise ImTCP will not perform
measurement properly.

The principle of the packet-pair-based measurement technique for capacity is that,
if the packet pairs are transmitted in a back-to-back manner at the bottleneck link (the
link of smallest capacity bandwidth in the network path) and the time interval until they
reach the receiver remains unchanged, then the capacity of the bottleneck link C (which
is also the capacity of the network path) is calculated as:

C =
P

Gap
(1)

where P is the packet size and Gap is the arrival time dispersion of the two packets at
the receiver. The packet pairs are referred to as the C-indicator. Their time dispersion
indicates the exact capacity value. If the packet pair is cut by packets from other traffic,
then its dispersion can not be used to calculate capacity via Equation (1).

Current packet-pair-based measurement techniques have various mechanisms for
determining C-indicators from packet pair measurement results. Some tools assume a
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high frequency of appearance of the C-indicator, and so search for the C-indicator from a
frequency histogram (Pathrate [5]) or a weighting function (Nettimer [6]). CapProbe [7]
repeatedly sends packet pairs until it discovers a C-indicator, based on the transmission
delay of the packets. However, as shown in the following equation, when the available
bandwidth is small, the C-indicator does not appear frequently. Thus, current existing
tools may not discover the correct capacity.

Let δ be the time space of the packet pair when it arrive at the bottleneck link. We
then assume that the links before the bottleneck link do not have a noticeable effect
on the time space, so that δ is the approximate time interval in which the sender sends
the packets. During the time of δ, the average amount of cross traffic that arrives at the
bottleneck link, which is denoted as L, is

L = δ · (C − A) (2)

where A is the available bandwidth at the time the packet pair is sent. We can see that
when A is small, L is large, which means that the probability for a packet pair to pass the
bottleneck link without being cut by the traffic of another packet is low. In other words,
the available bandwidth of the path is an important factor in measuring the capacity.
Based on the above observation, we develop a new capacity measurement algorithm,
which exploits the advantage of awareness of the available bandwidth of ImTCP.

From Equation (2) we can estimate that the dispersion of the packet pair when leaving
the bottleneck link is:

Gap =
P + L

C
=

P + δ · (C − A)
C

Therefore, the capacity can be calculated as:

C =
P − δ · A

Gap − δ
(3)

There is a problem with current capacity measurement tools when every packet pair
that passes the bottleneck link is cut by other packets, due to either a heavy load or
constant and aggressive cross traffic at the bottleneck link. In this case, CapProbe will
spend an extremely long time searching for C-indicators, and Pathrate and Nettimer
will deliver incorrect estimations. Equation (3) introduces some important prospects,
including ways to overcome the above problem:

– We can calculate the capacity bandwidth without the existence of C-indicators,
assuming that the available bandwidth value is known.

– The measurement does not require δ as the smallest value that the sender can create.
Any two TCP data packets that are sent in an appropriately small interval can be
exploited for the calculation. This is a very important advantage because more data
can be collected for the capacity search.

– We can discuss the statistical confidence of the measurement results based on the
value of the variance of the calculated data.

We present a simulation of packet pair measurement as an example explaining Equa-
tion (3). We perform a simulation of packet pair measurements over 50 seconds on a
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Fig. 1. Results calculated using Equation (1) and (3)

network path for which the available bandwidth is 15 Mbps during the time. The back-
ground traffic is made up of an UDP packet flow. The UDP packet size is 500 KB. The
correct capacity of the path is 80 Mbps. In Figure 1, the “Raw data" graph shows the
measurement results calculated using Equation (1), and the “Proposed method" graph
shows the results obtained by using Equation (3). We can conclude that Equation (3)
provides a better result for capacity because the calculated data concentrate at the correct
value of capacity (80 Mbps).
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Abstract. IPv6 provides an expanded address space to satisfy the fu-
ture Internet requirements. In this paper we compare and analyze one-
month measurements of the end-to-end IPv6 delay and hopcount between
26 testboxes of the RIPE TTM project with the corresponding parts in
IPv4 network. By comparing IPv6 and IPv4 paths, we focus on prob-
lems that are only present in the IPv6 paths. In those poorly performing
IPv6 paths, we run traceroute with the path maximum transmission unit
(MTU) discovery to identify the problems and their causes.

1 Introduction

IPv6 is the next generation IP protocol to replace the current IPv4. IPv6 pro-
vides an expanded address space, and supports new Internet applications that
require advanced features to provide services like real-time audio. However, IPv6
is still in its infancy and is rarely used. Because the network performance di-
rectly influences the user experience in many applications, such as online chat-
ting and games, the poor IPv6 performance certainly limits its deployment. To
qualify the IPv6 infrastructure, it is interesting to compare the IPv6 and IPv4
measurements under the current network situations. Specifically, for each source-
destination pair, i.e. between 26 textboxes of RIPE NCC TTM project [1], we
collect routing and one-way delay information using IPv4 and IPv6 versions of
traceroute and delay measurements, and compare the routing and delay data on
a path-by-path basis. By comparing IPv6 and IPv4 paths, we focus on problems
only present in the IPv6 paths, and run traceroute with path MTU discovery to
identify the causes.

2 Measurement Results

2.1 Statistical Results of Delays, IP Delay Variation and Hopcount

Statistical Results of Source-Destination Delays. Real-time applications
will not perform well if the end-to-end delays between the communicating parties
exceed a certain QoS delay threshold. For example, in case of VoIP, to maintain
the high quality of voice, packets need to be received within about 150 millisecond
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(ms). The importance of Internet delay for providing QoS triggered us to examine
the congestion-free delay of each pair as a function of time. The congestion-free
delay is computed as the minimum end-to-end IPv4 and IPv6 delay. We repeated
the experiments to calculate the average delay of each pair. The delay can depend
on the geographical distance. The results show that 37% of the IPv6 paths and
39% of the IPv4 paths have a minimal delay less than 10 ms, while 88% and
92% less than 50 ms, respectively. We also found that 25% of the IPv6 paths
and 32% of the IPv4 paths have an average delay less than 10 ms, while 86%
and 90% less than 50 ms, respectively.

IP Delay Variation. The one way IP delay variation (ΔD) is defined in RFC
3393. Low IP delay variation is important for applications requiring timely de-
livery of packets. For each source-destination pair, we compute ΔD for both
IPv6 and IPv4 paths, from which we constructed the pdf (probability density
function) of the IPDV. We categorize four main classes: Class 1 is a typical dis-
tribution. It is a symmetrical distribution with short tails. Class 1 has 97.5% of
the delay variation smaller than +/- 20 ms. To isolate high quality connections,
a subclass 1b is introduced, which contains plots with less than +/- 1 ms of delay
variation. Class 1 is characteristic for a good quality in transmission. Class 2 is
similar to Class 1 except that there are many variations exceeding 20 ms; Class
3 is a symmetric distribution with more than one peak, which is mainly caused
by path switching. We observed that only about 18% of IPv6 traffic are of class
1b, while about 31% in IPv4; about 60.2% of IPv6 traffic are of class 1, while
about 69% in IPv4; about 34.7% of IPv6 traffic are of class 2, while about 24.4%
in IPv4; about 5.1% of IPv6 traffic are of class 3, while about 6.7% in IPv4. The
experiments confirm that compared to IPv4, IPv6 paths suffer from a larger de-
lay variation, which has a significant impact on the real-time application since
more buffering in the end host is required.

Statistical Results of Hopcounts. The pdf of hopcounts (H) in Internet con-
tributes to our understanding of the Internet’s topological structure. All tracer-
oute IP paths were converted to AS paths from the RIPE Whois database. In the
traceroute data from the remaining boxes a total of 630 most dominant paths
have been determined. From the pdf of the hopcount of those paths shown in
Figure 1.a, we found that both IP hopcount and AS hopcount in IPv6 are alike
their corresponding parts in IPv4. The interesting distinguishing factor between
AS hopcounts and IP hopcounts lies in the ratio α = E[H]

var[H] . For IPv6 and IPv4,
we found approximately α ≈ 1 in the IP level, while α ≈ 2 in the AS level,
respectively. These observations suggest that, to first order, the IP hopcount
might be close to a Poisson random variable as explained in [2], while the AS
hopcount behaves differently.

2.2 Comparison of IPv6 Delays and IPv4 Delays

For each source-destination pair, we compare the IPv6 and IPv4 delay data on a
path-by-path basis. Figure 1.b shows the scatter plot of the IPv6 delays versus



Hopcount and E2E Delay: IPv6 Versus IPv4 347

Fig. 1. (a) The hopcount distribution in the experiments; (b) Distribution of IPv6/IPv4
one-way delay; and (c) Distribution of IPv6/IPv4 hop

the IPv4 delays, where IPv6 delay is on the Y-axis while IPv4 delay on the X-
axis. Each data point corresponds to a pair of peers. In Figure 1.b, following the
idea from [3], the data points are approximately classified into three groups by
R, the ratio of the IPv6 over the IPv4 one-way delay: group A for the European
pairs with equal R (0.8≤ R ≤1.25) or small R (R<0.8); group B for the continent
pairs (Europe-Japan, Europe-USA and USA-Japan) with equal or small R; and
group C for the pairs with large R (R>1.25). The results indicate that compared
with IPv4 paths about 54% of pairs are of group A, about 10% of group B, while
about 36% of group C.

These poorly performing IPv6 paths (shown in the group C) consisted of
several test-boxes located in different European counties (like UK, IT and NL).
The large delay ratios might be a result of high level of IPv4 commitment and
relatively low level of IPv6 responding in Europe. We repeat the experiments
with the IP level hopcount. The results shown in Figure 1.c indicate that most
IP level hopcounts are alike in IPv6 and IPv4.

2.3 Traceroute Results

For those 229 selected IPv6 paths whose IPv6:IPv4 delay ratios R are large,
we run traceroute to identify specific problems and their causes. Many IPv6
networks use tunnels. Traceroute6 is one of the many tools used to obtain the
quality of connectivity in a route. The experiments show that it is common for
IPv6 paths to traverse different ASes than their IPv4 counterparts. The results
also suggest that many problems lie in routing (e.g., 20 paths suffered routing
loops, where 10 are native paths, while another 10 went through tunnels). The
poor performance in IPv6 might be due to some poorly configured tunnels that
disregard the underlying topologies. Tunnels are useful during the early stages of
IPv6 deployment, but poorly configured tunnels lead to performance problems.
In addition to the traceroute measurements, we use path MTU discovery to
identify IPv6-in-IPv4 tunnels in those poorly performing IPv6 paths. The Tunnel
discovery Tool allows us to detect an IPv6 tunnel by measuring the MTU over an
entire path, since a drop in MTU at an intermediate router indicates a possible
tunnel entry point. About 48.8% of those selected IPv6 paths went through
native paths, while about 26.2% went through IPv6-in-IPv4 tunnels, about 21.3%
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went throught Generic Routing Encapsulation tunnels; and about 3.8% used
BSD tunnels. We expect that a decrease in the delay is possible because of the
continuous improvements of IPv6 paths: the IPv6 in IPv4 tunnels are replaced
with native IPv6 paths, and the IPv6 forwarding capability of routers in the
path is improved. However, for those about 49% IPv6-native paths, we could
not assert the precise causes of the poor performance.

3 Conclusion

Although IPv6 will replace IPv4 in the future, it is expected that IPv4 and
IPv6 hosts will coexist for a substantial time during the steady migration from
IPv6 to IPv4. To qualify the IPv6 infrastructure, it is interesting to compare the
IPv6 and IPv4 measurements under the current network situations. Specifically,
for each source-destination pair, we have collected the routing and delay infor-
mation using both the IPv4 and the IPv6 versions of the traceroute and delay
measurements, and have compared the delay data on a path-by-path basis. We
have focused on problems that were only present in the IPv6 paths, and have
run traceroute with path MTU discovery for identifying the causes. From our
experiments, we can draw the following conclusions:

– Concerning the IP delay variation, our results suggest that compared to IPv4,
IPv6 paths suffer from a larger delay variation, which has a significant impact
on the real-time application since it might increase the cost of buffering in
the end host;

– Compared with IPv4 paths, about 36% of the IPv6 paths are suffering from
a significantly larger delay;

– The poorly performing IPv6 paths might be due to some badly configured
tunnels that disregard the underlying topologies.

Acknowledgement. We are grateful to Henk Uijterwaal and Mark Santcroos for
the use of the RIPE NCC TTM data.
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Abstract. Emerging network monitoring infrastructures capture packet-
level traces or keep per-flow statistics at a set of distributed vantage
points. Today, distributed monitors in such an infrastructure do not co-
ordinate monitoring effort, which both can lead to duplication of effort
and can complicate subsequent data analysis. We argue that nodes in
such a monitoring infrastructure, whether across the wide-area Inter-
net, or across a sensor network, should coordinate effort to minimize
resource consumption. We propose space-efficient data structures for use
in gossip-based protocols to approximately summarize sets of monitored
flows. With some fine-tuning of our methods, we can ensure that all flows
observed by at least one monitor are monitored, and only a tiny fraction
are monitored redundantly. Our preliminary results over a realistic ISP
topology demonstrate the effectiveness of our techniques on monitoring
tens of thousands of point-of-presence (PoP) level network flows. Our
methods are competitive with optimal off-line coordination, but require
significantly less space and network overhead than naive approaches.

1 Introduction

In monitoring applications ranging from wide-area traffic monitoring to event
detection in sensor networks to surveillance by a set of pan/tilt/zoom cameras
located at distributed vantage points, a growing challenge involves appropriate
coordination of the activities of the individual monitors. In the applications
above, monitors are resource-constrained, and thus it is essential to minimize
the effort monitors expend on monitoring tasks. For example, when any of a
set of monitors may perform a monitoring task equivalently well, a cost-saving
strategy is to elect a single leader to perform the job. Of course, such a leader
election process must be efficient, must be robust to losses and failures, and
must err on the side of conservatism to ensure that all observable activities
are monitored by at least one monitor. Avoiding duplication of effort has a
secondary advantage for applications in which observed data is subsequently
aggregated and processed, since complications associated with the presence of
duplicate observations are avoided. In this work-in-progress paper, we consider
the problem of minimizing duplication of effort in distributed event monitoring
in which monitors are connected by a high-speed network. While we believe that
both the statement of our problem and our methods are much more broadly
applicable, we focus here exclusively on wide-area network traffic monitoring.
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Wide-area Network Monitoring: Current technology to monitor network
traffic by passively collecting flows or samples or logging packet headers either
compromises router performance or incurs high costs due to costly measurement
infrastructure. We argue that a brute force, non-adaptive approach to monitoring
network traffic misses an opportunity to better manage resource consumption.
Instead, we advocate a lower-cost alternative, i.e. developing scalable techniques
to coordinate and distribute the monitoring effort. For example, if the monitoring
effort can be distributed in such a way that each monitor monitors only a small
subset of network flows, substantial savings can be achieved in terms of storage
and processing overhead. Our work attempts to achieve the above goal without
introducing too much control traffic overhead.

We assume a passive network monitoring infrastructure comprised of mul-
tiple monitoring systems, that coordinate to monitor network traffic traversing
through them. Such systems are not expected to be ubiquitous or directly inte-
grated into routers but are specially equipped with traffic capture and storage
capabilities. We assume that: all monitors can communicate with all other moni-
tors periodically, the monitors have sufficient memory to perform the monitoring
functionality, and the monitors can compute the set of monitors on the route of
a flow. We model the incoming traffic at monitors as a datastream consisting of
items in the form of key-value pairs. Here, the key is taken to be a network flow
at the Point of Presence (PoP) level, i.e. an ingress/egress pair, and the value is
the size of each packet in bytes.

Problem Statement and Contribution: Let S denote a set of events, let
M = {m1, m2, . . . mK} be a set of monitors, and let Vi ⊆ S be the set of events
(flows) observable by mi. Now let Li denote the set of events monitored by mi.
Our objective is: Minimize

∑
i |Li| subject to

⋃
i Li = S and ∀i, Li ⊆ Vi.

In other words, monitors must monitor only flows they can observe, all ob-
servable flows must be monitored at least once, and the goal is to minimize du-
plication of effort. In the next sections, we describe our approach to this problem
using Bloom filter-based summarization techniques to coordinate between a set
of network monitors, quantify the cost, and present simulation results.

2 Coordination Algorithms

We now provide a brief overview of our data structures, algorithms and key
results; full details and the analysis are in [5]. Each monitor locally maintains
two data structures. The first is a lookup table of active flows marked either
as actively monitored or monitored by someone else. The second is a counting
Bloom filter, that approximately represents the set of active flows at a network
monitor. Our approach starts by having each monitor represent the set of flows it
is currently monitoring with a counting Bloom filter [1], a compact randomized
data structure that supports lookup operations on keys. With a Bloom filter,
lookups for inserted keys are always correct, but lookups for keys not present in
the filter may yield a false positive, with a tunable false positive probability p.
Full details are in [2]. Monitors use a simple gossiping protocol to periodically
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Fig. 1. Performance analysis of monitoring approaches

disseminate their Bloom filters to all other monitors in the system. Use of Bloom
filters not only reduces the size of the summaries by orders of magnitude as
compared to a full-fidelity representation but also keeps the network overhead
of gossiping the summaries to other monitors manageable.

On the arrival of a new flow (whether new to the system or due to a route
change), a monitor checks if it is the first monitor on the flow’s route. If so, it
inspects the Bloom filters of other monitors along the route. If the flow appears to
be monitored elsewhere, it leaves the flow for the appropriate monitor. Otherwise,
the monitor creates new state for the flow and maintains the state from that
time onward. If the monitor is not first on the route, then it is not initially
responsible for monitoring that flow. However, the approximate nature of the
summaries makes them vulnerable to errors in the form of false positives, i.e., a
flow is not actually monitored by a monitor but its summary reflects that it is.

The simple, but elegant solution to this potential problem is a central con-
tribution of our work: we eliminate false positives by applying an idea of self-
inspection: if a given monitor finds that an observable flow produces a false
positive in its own Bloom filter, then it immediately starts to monitor that flow.
The cost of this method is a small amount of redundant monitoring: in the event
that two or more Bloom filters have a match on a given flow, they must all mon-
itor that flow (redundantly). Our analysis in [5] shows that for a flow traversing
j monitors using Bloom filters with false positive probability p, the expected
number of monitors that will monitor the flow using our method is (1−p)j +pj.

3 Experimental Results

We simulated deployment of our monitoring infrastructure over one of the PoP
level topologies generated by Rocketfuel [4]. The topology consisted of 36 PoPs,
producing 1296 origin-destination (OD) pairs. Next, we made use of inferred
backbone link weights [3] to run Dijkstra’s single-source shortest path algorithm
at all PoPs to determine the route from one PoP to any other PoP. To create a
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plausible distribution of network flows between PoPs in our topology, for all PoP
pairs, we compute a value lij that is the fraction of flows which originate at PoP i
and terminate at PoP j. Using a gravity model, we take lij ∝ Pi×Pj , where Pi is
the population of node i, and normalize lij = PiPj∑

PiPj
to ensure

∑
i,j lij = 1. We

simulated our proposed network monitoring technique with 50,000 network flows
distributed amongst different PoP pairs using the gravity model, and compared
the following three different monitoring approaches.

– Brute force: Each monitor monitors every flow that is visible to it.
– Optimal: Each monitor is given full information about the workload, and

the flow is assigned to the least loaded monitor on its route.
– Bloom filter: Monitors have no prior information, flows arrive one by one,

and our proposed methods do the online assignment of flows to monitors.

Figure 1 plots the number of flows monitored for each approach and at each
of the 36 monitors. Our online Bloom filter approach is nearly as good as the
offline optimal in terms of overall load reduction and load balance, and signif-
icantly improves worst-case load over the brute force approach. Using a simple
back-of-the-envelope calculation (omitted for lack of space), we estimate that an
unoptimized version of our approach affords more than a factor of two memory
savings on average, and more than a factor of five at the worst case monitor
in this scenario. Unlike brute force, our methods have an extra cost associated
with data exchange to ensure continuous monitoring of all visible flows under
route changes and to maintain load balance. In a naive all-pairs exchange of
Bloom filters, the total aggregate traffic load is 3.24 MB (200 KB per pair) in
our simulation setup.

Future work: Our ongoing work involves experimental evaluation, validation
and refinement of our methods over large, realistic datasets. Along with addi-
tional evaluation, key considerations that we intend to further investigate in
the full version of the paper are: further reducing network overhead when peri-
odically exchanging summaries, refining load balancing mechanisms to improve
their robustness, and specifying how data structure parameters can be set auto-
matically.
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Abstract. The increasing popularity of Peer-to-Peer (P2P) networks
has led to growing interest in characterizing their topology and dynam-
ics [1, 2, 3, 4], essential for proper design and effective evaluation. A com-
mon technique is to capture topology snapshots using a crawler. How-
ever, previous studies have not verified the accuracy of their captured
snapshots. We present techniques to measure the inaccuracy of topology
snapshots, quantify the effects of unreachable peers and crawling speed,
and explore the impact of snapshot accuracy on derived characteriza-
tions.

1 Introduction

The accuracy of captured snapshots by P2P crawlers can be significantly affected
by both the duration of a crawl and the ratio of unreachable peers. Determining
the accuracy of captured snapshots of a P2P system is fundamentally difficult
because a perfect reference snapshot for comparison is not available. The desired
characterization of P2P systems determines the granularity and type of collected
information in each snapshot, in the form of a tradeoff between the duration of
a crawl and the completeness of the captured snapshot. For example, studying
churn only requires a list of participating peers, and a crawler can gather this
information from a subset of all peers with reasonable accuracy. In contrast,
to study the overlay topology a captured snapshot should include all edges of
the overlay; this requires the crawler to directly contact every peer, otherwise a
connection between two unvisited peers would be missed.

To study snapshot accuracy, we developed a fast and efficient Gnutella
crawler, called Cruiser, that is able to capture a complete snapshot of the
Gnutella network in around 5 minutes with six off-the-shelf desktop PCs. Previ-
ous studies typically crawled their target P2P systems in 30 minutes to two hours
(e.g., [5, 4]), despite crawling significantly smaller networks. Cruiser achieves this
significant reduction in crawl time as follows: (i) it leverages several features of
modern Gnutella, including its semi-structured topology and efficient new hand-
shake mechanism; (ii) it substantially increases the degree of concurrency during
the crawling process by deploying a master-slave architecture and allowing each
slave crawler to contact hundreds of peers simultaneously. More details on the
design and evaluation of Cruiser may be found in our tech report [6].
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Fig. 1. Semi-Structured Topology
of Modern Gnutella

We briefly describe the key features of mod-
ern Gnutella [7, 8] that are used by Cruiser.
The original Gnutella protocol had limited
scalability due to its flat overlay. To address
this limitation, most modern Gnutella clients
implement a two-tiered network structure by
dividing peers into two groups: ultrapeers
and leaf peers. As shown in Fig. 1, each ul-
trapeer neighbors with several other ultra-
peers within a top-level overlay. The major-
ity of the peers are leaves that are connected to the overlay through a few ultra-
peers. Those peers that do not implement the ultrapeer feature can only reside
in the top-level overlay and do not accept any leaves. We refer to these peers as
legacy peers. We also refer to the legacy peers and ultrapeers collectively as the
top-level peers.

Also, modern Gnutella clients implement a special handshaking feature that
enables the crawler to quickly query a peer for a list of its current neighbors.
Previous crawlers relied on other features of the Gnutella protocol, namely Ping-
Pong messages, to retrieve this information, but these techniques were less effi-
cient.

3 Accuracy of Captured Snapshots

We consider three effects that can impact the accuracy of topology snapshots.
First, we consider unreachable peers which, for one reason or another, cannot
be crawled. Second, we consider how much accuracy can be maintained while
cutting short the duration of crawls. Finally, we consider the impact of the
crawler’s speed.

Unreachable Peers: A non-negligible subset of contacted peers in each crawl
time out (15–24%), prematurely drop (6–10%) or refuse TCP connections (5–
7%). Peers are unreachable when they have already left the system (i.e., de-
parted), they are located behind a firewall (or NATed), or they receive SYN
packets at too high a rate (i.e., overloaded). Departed and firewalled peers
are noted in previous studies; however we find many unreachable peers are over-
loaded, refusing and accepting TCP connections sporadically over a short period
of time (i.e., within a single minute they alternate repeatedly). Unreachable ul-
trapeers can introduce the following errors in a captured snapshot: (i) including
departed peers, (ii) omitting branches between unreachable ultrapeers and their
leaves, and (iii) omitting branches between two unreachable top-level peers. To
minimize these errors, it is important to quantify what portion of unreachable
peers were departed versus firewalled or overloaded. Unfortunately, there is no
reliable test to firmly verify the status of unreachable peers among the three
possible scenarios, since overloaded, firewalled, and departed peers may or may
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not reply to SYN packets. However, we found that repeatedly attempting to
connect to peers which have timed out is unlikely to ever meet with success,
even after attempting for several hours. This suggests that those peers, at least,
are firewalled.

Impact of Crawling Duration: To examine the impact of crawl duration on
the accuracy of captured snapshots, we modified Cruiser to stop the crawl after
a specified period. Shorter crawls allow us to capture back-to-back snapshots
more rapidly, which increases the granularity for studying churn. We performed
two back-to-back crawls and repeated this process for different durations. We
define δ+ and δ− as the number of new and missing peers in the second snapshot
compared to the first one, respectively (normalized by the total number of peers
in the first crawl). Figure 2(a) presents the sum δ = δ+ + δ− as well as the
total number of discovered peers as a function of the crawl duration. During
short crawls (the left side of the graph), δ is high because the captured snapshot
is incomplete, and each crawl captures a different subset. As the duration of
the crawl increases, δ decreases, indicating that the captured snapshot becomes
more complete. Increasing the crawl length beyond four minutes does not de-
crease δ any further, and achieves a marginal increase in number of discovered
peers. This figure reveals a few important points. First, there exists a “sweet
spot” for the crawl duration beyond which crawling has diminishing returns if
the goal is simply to capture the population. Second, the change of δ = 0.08 is
an upper-bound on the distortion due to the passage of time as Cruiser runs.
Third, for sufficiently long crawls, Cruiser can capture a relatively accurate snap-
shot. The relatively flat values of delta for longer crawls suggest that a small
but significant fraction of the network is unstable and turns over quickly. For
shorter durations, the standard deviation of the peers discovered is small, since
the size of the discovered topology is limited by the crawl’s duration. For longer
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durations, the standard deviation is larger and measures the actual variations
in network size.

Impact of Crawling Speed: To examine the impact of crawling speed on the
accuracy of captured snapshots, we decreased the speed of Cruiser by reducing
the number of parallel connections that each slave process can open. Figure 2(b)
depicts the error in between snapshots from back-to-back crawls as a function
of crawl duration. The first snapshot was captured with the maximum speed
and serves as a reference, whereas the speed (and thus duration) of the second
snapshot has changed. The duration of the second snapshot is shown as the x
value. This figure clearly demonstrates that the accuracy of snapshots decreases
significantly for longer crawls.
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Fig. 3. Observed top-level degree distributions
in a slow and a fast crawl

Impact of Snapshot Accuracy
on Derived Characterization:
To show the effect this error has
on conclusions, in Fig. 3 we show
the observed degree distribution of
a fast crawl versus a crawl limited
to 60 concurrent connections. The
slow crawl distribution looks simi-
lar to that seen in [4]1, which lead
to the conclusion that Gnutella
has a two-piece power-law degree
distribution. If we further limit the
speed, the distribution begins to

look like a single-piece power-law, the result reported by earlier studies [9, 5].
To a slow crawler, peers with long uptimes appear as high degree because many
short-lived peers report them as neighbors. However, this is a misrepresentation
since these short-lived peers are not all present at the same time.

4 Conclusion

In this extended abstract, we have developed techniques for examining the accu-
racy of topology snapshots captured by peer-to-peer crawlers, including demon-
strating that earlier conclusions may be incorrect and based on measurement
artifacts.
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1 Introduction

Accurate timestamps on both the sender and the receiver side are crucial for
one-way delay (OWD) measurements. Traditionally, the methods of (i) peering
with NTP servers, and (ii) connecting to a time source directly, have been used
to maintain the accuracy of a measurement system clock. However, it has became
clear that such methods suffer from errors to different extents.

In this paper, we introduce the hardware OWAMP [1] timestamper (HOTS),
which generates extremely precise clock information for OWAMP test packets
on both the sender and the receiver side. Compared with traditional methods,
HOTS offers the following advantages: (i) the generated timestamp can be ex-
tremely precise because HOTS accepts an external 10-MHz signal as well as
the 1PPS signal as input, and (ii) HOTS bypasses all of the software process-
ing, thus minimizing possible errors. We also present the early results of OWD
measurements that we made using this timestamper.

DAG [2] is a similar measurement instrument which also uses hardware to
generate timestamps for a packet. However, this product is only designed to
record the arrival timestamp of a packet and cannot be used to measure OWD.

2 Methodology

2.1 OWAMP Overview

The one-way active measurement protocol (OWAMP) is designed to measure
one-way delay, jitter or packet loss. It consists of two inter-related protocols:
OWAMP-Control and OWAMP-Test. OWAMP-Control is used to initiate, start
and stop test sessions and to fetch their results, while OWAMP-Test is used to
define the format of the test packets.

OWAMP test packets are transmitted in UDP datagrams. The header of the
packets includes an 8-byte “Timestamp” field where the sender inserts the clock
information when an OWAMP test packet is sent.

2.2 HOTS

Simply speaking, HOTS is a packet over SONET (POS) network interface card
(NIC) which has a function to generate timestamps for outgoing or incoming
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packets destined for a specific port. Because it uses a PCI bus, HOTS can be
used on most of the PCs.

HOTS has three I/O ports: one bidirectional SC connector and two mini-
BNC jacks. The SC connector is used to send and receive packets, just as a
normal SC connector does. The two mini-BNC jacks are used to obtain clock
information from an external source such as a GPS or CDMA receiver.

HOTS can accept two kinds of signal as input: a 1PPS signal and a 10-MHz
signal. The precision of the generated timestamp depends on the accuracy of the
provided signals. In our measurements, we used two kinds of GPS receiver to
generate these signals: the HP 58503A and the TymServe 2100. Both of them
can generate extremely precise clock information.

HOTS maintains two clock-related counters: C1 and C2, which respectively
hold the seconds and the fractions of a second based on the two kinds of external
signals. The counters are operated as follows.

1. When reset (or the interface becomes up), both counters are cleared to zero.
2. In operational mode, C2 is incremented based on the external 10-MHz signal.
3. When the 1PPS signal is received, C1 is incremented and C2 is cleared to

zero.

Sender Behavior. When HOTS is used on the sender side, it works as follows.

1. When receiving a packet from the upper layer (usually the driver program),
HOTS checks whether this packet is a UDP datagram and is destined for a
specific port.

2. If it is, HOTS generates a timestamp (ts) based on the two clock counters,
inserts the timestamp into the “Timestamp” field of the packet, recalculates
the UDP checksum based on the original one and the new timestamp, and
then sends the packet to the physical link.

3. If the packet is not a UDP packet or is not destined for a specific port, HOTS
does nothing apart from sending the packet to the physical link.

Receiver Behavior. When used on the receiver side, HOTS behaves as follows.

1. When receiving a packet from the physical link, it checks whether this packet
is a UDP datagram and is destined for a specific port.

2. If it is, HOTS generates a timestamp (tr), and passes the timestamp to the
upper layer as well as the received packet. How the timestamp is passed
to the upper layer depends on the users. In our measurements, we directly
recorded (in the driver program) the timestamp in the body of the OWAMP
test packet for simplicity. We also cleared the UDP checksum so that the
datagram would not be dropped in the UDP processing because of inconsis-
tent UDP checksums.

3. If the packet is not a UDP datagram or the port number is not a specific
one, HOTS simply passes the received packet to the upper layer as other
NICs would.



360 Z. Shu and K. Kobayashi

The OWAMP program on the receiver side will receive the packet in the
user-space by normal socket API and the OWD can be calculated by

D = tr − ts (1)

HOTS works with both IPv4 and IPv6 OWAMP test packets.

3 One-Way Delay Measurements

3.1 Measured Network

We made OWD measurements on the APAN-JP network, which is part of the
Asia-Pacific Advanced Network [3]. The topology of the measured network is
shown in Fig. 1. PC1 and PC2 were the two end hosts between which we sent
and received OWAMP test packets. These hosts were located at our institute
in Tokyo and a data center in Fukuoka, respectively. There were five routers
between the two hosts. The major distances between the two hosts were the 30
km between our institute and downtown Tokyo, and the 900 km between Tokyo
and Fukuoka.

Fig. 1. Topology of the measured network

We periodically sent and received four kinds of test packet: packets of either
64 bytes or 1400 bytes in IPv4 or IPv6. All of these packets were sent once per
second.

3.2 Measurement Results

Some early results for the IPv4 packets are shown in Fig. 2. From this graph, we
can see that the OWD for the IPv4 64-byte packets was usually about 10.7ms,
and the OWD for the IPv4 1400-byte packets was several milliseconds longer.
For IPv6, the results were similar to those for IPv4 packets.

3.3 Adaptation for Other OWAMP Implementation

HOTS can be easily used in other OWAMP software, such as the implementation
from Internet2 [4], to perform highly precise measurements with the following
modifications.

– Specify the negotiated port numbers of the test packets on both the sender
and the receiver side before transmitting a test packet.

– On the receiver side, use the hardware-generated timestamp when calculating
the OWD.
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4 Conclusion and Future Work

Highly precise OWD measurement is a challenge because of the difficulty of elim-
inating errors in process to obtain an accurate timestamp and other overheads.
In this paper, we introduced HOTS - a hardware packet timestamper that we
developed to measure OWD. HOTS can generate extremely precise clock infor-
mation for OWAMP test packets provided an accurate time source such as a
GPS or CDMA receiver. We presented the results of a preliminary OWD mea-
surement that we did on the APAN-JP network to show its effectiveness.
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Abstract. We propose a practical technique for the identification of lossy network
links. Our scheme is based on a function that computes the likelihood of each link
to be lossy. This function mainly depends on the number of times a link appears
in lossy paths and on the relative loss rates of these paths. Preliminary simulation
results show that our solution achieves accuracy comparable to statistical methods
(e.g. Bayesian) at significantly lower running time.

1 Introduction and Related Work

Most loss inference techniques [1, 2, 3, 4, 5] attempt to deduce link loss rates from end-
to-end measurements. Active techniques [1, 2] infer link loss by actively probing the
network, while passive techniques [3, 4, 5] estimate packet loss by observing the evo-
lution of application traffic. Passive measurements do not require coordination among
end points, introduce no additional traffic, and hence, are easier to deploy and do not
perturb the state of the network. Depending on the method used to infer packet loss, pas-
sive techniques can be further divided to analytical [3, 5] and heuristic [4]. Analytical
techniques detect higher percentage of lossy links while techniques based on heuristics
have an advantage on execution speed and resource consumption.

The insight behind this paper is that users care more about finding lossy links affecting
the performance of their applications, than finding the exact loss rate of these links. Based
on this, we present COBALT, a heuristics-based inference algorithm that detects with
high probability the lossy links affecting applications’ performance. COBALT assigns
a confidence level to each link —the higher the confidence, the higher the probability
that the link is lossy. The confidence level of a link depends on the lossy paths the link
belongs to and how lossy are those paths compared to all the paths in the network.

Preliminary simulation results show COBALT’s accuracy to be on par with the an-
alytical methods while its running time is ten times faster. When compared to heuristic
methods such as SCFS [4], COBALT infers 20% more truly lossy links, at the expense
of higher percentage of false positives. However, the number of false positives decreases
as the number of measurement points increases. The low running time of COBALT
makes it possible to run the algorithm iteratively with smaller data sets. Each iteration of
the algorithm provides new link confidence levels and previous results are incorporated
using an exponential moving average. We sketch how this real-time variant of COBALT
works and argue how it can track the variability in link loss characteristics.
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2 Algorithm

Before presenting the details of our method, we briefly introduce the network model we
used. In our model clients are connected to servers through a network whose topology is
known a-priori. Clients connect and exchange data with the servers using any TCP-based
protocol such as FTP or HTTP. We collect a trace of all the packets sent and received by
each server. Using these traces, we calculate the loss rate of the path between the server
and each client as the ratio of the retransmitted packets to the total number of packets sent
by the server. This metric overestimates the actual loss rate, due to the retransmission
strategy used by TCP, however our goal is not to estimate the exact link loss rates so this
metric is used simply as an estimate of the path loss rate.

COBALT starts by separating lossy from non-lossy paths. Paths with loss rate higher
than a user-configurable threshold T are labeled as bad while the remaining paths are
labeled as good. The threshold T corresponds to a loss rate above which application
performance is disrupted. The default value of T has been set to 1%.

Following path classification, links are categorized depending on the number of good
paths they belong to. This approach is similar to the one followed in SCFS and is based
on the intuition that lossy links dominate the end-to-end path loss rate. If a path contains
a lossy link then the path’s loss rate will be at least equal to the link’s loss rate. Thus,
a lossy link cannot be part of a good path. To make COBALT less susceptible to path
loss rate estimation errors, we classify a link as good (non-lossy) only if it belongs to at
least s good paths. To give a concrete example, if T is set to 2% and link l belongs to
a path with estimated loss rate equal to 1.9%, it is difficult to draw conclusions about
the probability of the link to be really lossy or not. If on the other hand l belongs to s
paths with loss rate less than T we can assume with higher confidence that l is a good
link. The parameter s, defined as the sensitivity of the algorithm, depends on the size of
the network (i.e. number of hosts and paths) and is user configurable. Higher values of
s give higher confidence that the identified links are truly lossy. At the same time the
number of false positives increases because some good links might be classified as lossy
if they don’t participate in s paths.

After excluding the links found in good paths, COBALT computes the confidence
levels for the remaining links. The confidence level cfd(l) for a link l in a network N is
computed as:

cfd(l) = Kt(l) · avl(l)
avp(N)

(1)

In the formula above, avl(l) is the average loss rate of all paths that l belongs to,
while avp(N) is the average loss rate among all bad paths in the network. t(l) denotes
the number of times l is found in lossy paths and finally K is a constant, with value
greater or equal to one. Intuitively, a link is bad if it participates in paths whose loss rate
is much higher than the average loss rate of all network paths. This effect is covered by
the fraction in Equation 1. Second, we can have higher confidence that a link is bad if it
belongs to many bad paths. This second effect is covered by the Kt(l) term in Equation
1. If K is close to one, then t(l) is of little significance in the computation of cfd(l).
The greater the value of K the higher the importance of t(l). We use an exponential
function of t(l) so small differences in the number of lossy paths a link belongs to will
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create large difference in confidence level simplifying the final selection of the most
problematic links. More details on how K should be selected will be discussed in future
work.

As its last step, COBALT ranks the links by their confidence levels. The links with
the highest confidence levels are the most likely to be problematic.

2.1 Real-Time Algorithm

While existing passive loss inference techniques can detect chronically lossy links, recent
results [6] indicate that link characteristics tend to remain stable for only small period of
times (approx. 20 minutes). Unfortunately, the running time of current inference methods
makes them inappropriate for short timescale changes. Simply put, data analysis requires
more time than the time in which link characteristics remain stable. For example, the
running time of the Bayesian method in our experiments was 60 minutes for 30 seconds
of simulated traffic.

In order to infer network characteristics in a timely manner, while minimizing the
storage and computational needs, we propose a real-time variant of our original algo-
rithm. Specifically, we compute the confidence level for each link in short time intervals
where the amount of data is small. We then combine the new confidence with our previ-
ous knowledge of a link’s state, the confidence level estimated at the previous interval,
to infer the current conditions.

The online algorithm works similarly to its offline variant but uses an exponential
moving average formula to compute the confidence level of a link l:

cfdti+1(l) = (1 − w) · cfdti−1(l) + w · cfdti
(l) (2)

where cfdti−1(l) the confidence level computed by the previous measurements and
cfdti

(l) the confidence level computed by the most recent data. w is an aging variable
(0 ≤ w ≤ 1) controlling the convergence time of the algorithm. If w is close to one, the
algorithm will converge faster but it will be more susceptible to oscillations since new
data will have more weight. An interesting point in our method is that the value of w
might not be constant across all links or even for estimates made for the same link. Its
exact value is a function of two parameters:

– The amount of time between two successive runs of the algorithm. If this interval
is long, taking into account the temporal link characteristics, the significance of the
previous confidence levels decreases, as they reflect an obsolete network image.
Hence, in this case the value of w should approach its upper limit. In contrast, if the
interval is small then the value of w should be close to zero.

– The number of packets received between ti−1 and ti. Since our method is based on
statistics, the larger the sample the more confident we are about the outcome of our
analysis. Therefore, as the number of received packets increases, w should approach
one.

3 Simulation Results

We used ns-2 to simulate our network of clients and servers. The simulated network
topologies were created using BRITE’s two-level hierarchical topologies [7]. The net-
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Table 1. Comparison of four passive lossy link inference methods

work consists of 800 nodes and about 1400 links. We randomly chose 100 clients out
of a pool of 250 to download a large file from the server using HTTP. We also picked a
fraction f of the links to be lossy. We then randomly assigned a loss rate to each of the
lossy links from a configurable range of loss rates. We used a bimodal loss model, where
good links, have a loss rate between 0 − 0.5%, and bad links have loss rate between
1.0− 3.0%. This model represents a challenging case for inference algorithms since the
difference in loss rates between good and bad links is not significant. We further assume
that packet losses are independent.

We compare COBALT to three other methods: Random Sampling [3], Bayesian
with Gibbs Sampling [3] and the SCFS algorithm proposed by Duffield [4]. Given the
difference of COBALT to previous techniques we need to redefine coverage and false
positives in terms of the algorithm’s parameters. In our evaluation, a correctly identified
lossy link is one whose confidence level exceeds a threshold Tlossy . Thus, non-lossy
links whose confidence level exceed this threshold count as false positives. The value of
Tlossy used in the experimental evaluation is equal to K, the constant used in Equation 1.

For every experiment presented in this section, we ran the algorithm three times,
each time with a different topology. The reported confidence level is the average of the
confidence levels obtained over the three executions. We noticed little or no variation
on the outcome over the three runs. We choose K to be 3/2, the sensitivity s of the
algorithm is 3, while T is equal to 0.01. For random sampling, the mean link loss rate
is chosen over 500 iterations. If the mean exceeds the loss rate threshold of bad links,
the link is said to be lossy. Similarly, for the Bayesian method, the "burn in" period in
Gibbs sampling is chosen as 1000 iterations, and links are marked lossy if 99% of the
samples found are above the loss rate threshold.

A comparison of COBALT with the three other methods is shown in Table 1. The
results on this table are based on measurements from a single server. It is evident that
COBALT provides the best coverage at the expense of a relatively high false positive
rate compared to SCFS. SCFS has the lowest false positive rate but its coverage drops
dramatically when lossy links are not rare. The Bayesian method finds about 70% of the
truly lossy links with false positive rate close to 20%. Finally, random sampling fails to
identify more than 30% of the lossy links, while at the same time the number of false
positives is very high. Our findings about the Bayesian and random sampling methods
are different from the results presented by Padmanabhan et al in [3]. This is because we
used a different link loss model in which the loss margin between good and lossy links
is narrow. Furthermore, Padmanabhan et al used random tree topologies while we use
Internet-like topologies.

Figure 1(a) illustrates the performance of COBALT and Bayesian when multiple
servers are used. In this scenario, traces from all the servers are combined and both algo-

Fraction of Lossy Link 5% 10% 20%
Number of Bad Links 64 105 224

R B S C R B S C R B S C
Correctly Identified 13 37 39 43 30 75 51 81 46 140 57 144
False Positives 20 12 4 14 62 23 9 24 100 45 15 54
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Fig. 1.

rithms run over the aggregate collected data. Notice that by using ten servers, randomly
distributed across the network, COBALT improves its coverage and almost eliminates
the false positives observed in the previous table.

Figure 1(b) shows the running time of Bayesian, SCFS and our approach as the
fraction of lossy links increases. The execution time of the heuristics-based methods,
SCFS and COBALT, is almost ten times faster than the Bayesian method with Gibbs
sampling.

4 Future Work

We are currently evaluating COBALT across a wider range of simulated topologies in
networks with thousands of nodes. We are also evaluating the real-time variant of the
algorithm, in terms of its accuracy, execution time, and responsiveness to loss models
that change over time.

The biggest challenge is to evaluate our method in the Internet. We are currently
collecting and analyzing traces from two campus networks with thousands of users. This
analysis will allow us to explore the loss patterns these users experience and provide
insights about the actual lossy links in the Internet.
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Abstract. The tasks of measurement and data transport are often
treated independently, but we believe there are benefits to bringing them
together. This paper proposes the simple idea of a transport agent to en-
capsulate useful data within probe packets in place of useless padding.

1 Introduction

Overlay networks have become a popular vehicle for introducing network ser-
vices. Oftentimes, to drive its services, an overlay network infers characteristics
of the network via application-layer probes. For example, nodes in RON [1],
Detour [2], and Pastry [3] regularly ping their neighbors to check availability
and/or measure latency. MediaNet [4] uses available bandwidth [5] estimations
to determine along which paths to forward media streams.

For the most part, the measurement and transport aspects of overlay networks
are treated independently. Themeasurement service is a black box used by the over-
lay to make decisions. But the fact that measurement traffic is in addition to trans-
port traffic imposes an extra burden on the network. While not a problem for a sin-
gle overlay under normal conditions, as congestion and/or the number of overlay
networks in use increases, measurement traffic begins to influence the total traffic.

To reduce the overhead of measurement traffic, we propose the following sim-
ple idea: merge the task of network measurement with the task of data transport.
In many cases, measurement traffic consists largely of null padding just meant to
consume bandwidth for timing purposes. This is the case when measuring avail-
able bandwidth, for example [5]. To avoid this wasted bandwidth, the transport
layer can replace null padding with user payloads available from other streams.

While others have proposed cooperative measurement services [6, 7, 8], or
observed that network characteristics can be inferred passively [9], no one has
proposed merging the tasks of measurement and transport. In this extended
abstract, we outline the design and preliminary implementation of a transport
agent that provides TCP and UDP-like transport along with an enhanced API
for sending measurement probes.

2 Probe-Aware Transport Agent

The two goals of our probe-aware transport agent are: (i) to minimize the band-
width that measurement tools consume and (ii) to allow probe traffic to be
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responsive to congestion conditions. It is desirable that the API and the end-to-
end semantics of user traffic (TCP and UDP) remain intact so that no changes
are required to existing applications. Only measurement tools should be required
to use the socket API extensions to set encapsulation and dispatch policy for
their probes.

The challenge is how to maintain the same measurement accuracy while de-
creasing the probe bandwidth. The critical observation is that the null padding,
which dominates probe packets, can be reused without sacrificing the tool’s ac-
curacy. The actual pad bytes are irrelevant to the measurement algorithm which
means that probe packets can encapsulate user traffic if it is available. This ap-
proach satisfies the first goal. To address the second goal, we observe that probing
schemes usually do not care about the absolute timing of probe packets but only
about the relative timing between packets. Therefore, it should be possible to
briefly delay certain probe packets without degrading the tool’s accuracy. For
example, the transport agent can delay the first packet of a packet train as long
as it preserves the inter-packet timing and records the actual departure times.

There is an important trade-off between bandwidth efficiency and the time-
liness of probe/user packet transmission. The bandwidth optimization achieved
depends directly on how often probes encapsulate user traffic. Congestion con-
ditions will increase this frequency, since it is more likely that user traffic will
be buffered and available when probe packets are sent. Thus, probes consume
less bandwidth as congestion increases. To improve the optimization under non-
congested conditions, we can briefly delay certain probe packets, as directed by
the measurement tool, when no user data is available. Conversely, we can delay
a user packet when the application would allow it. For example, TCP already
delays data to send it in larger chunks.

Socket API Extensions: Our probe-aware transport API extends the BSD-style
socket API to define additional flags that affect the way packets are sent, either
per-packet or per-session; these flags are presented in Table 1.

Probe packets are sent with the PAD PKT [x ] flag enabled. This states that
the provided data should be sent with an additional x bytes of padding. Thus, if a
probe tool wants to send d bytes of data (i.e., the byte content it wants delivered
to the peer tool, such as control information) with x bytes of padding, it would
pass only the d bytes to send, along with the flag PAD PKT [x ]. The transport
agent will transport a packet of size d + x bytes, and will attempt to use the
x bytes portion of the packet to encapsulate user traffic. When the packet is
actually sent, it is timestamped by the transport agent, and timestamped again
when it is received. A separate function is used by tools to acquire the times.

The DELAY [t ] flag can be used to delay the packet up to t ms, to increase the
chances of encapsulating user data; otherwise the packet is queued for immediate
departure. Note that this flag can be applied to either user or probe traffic. For
example, to send a probe that waits up to 100 ms would require flags PAD PKT[x ]
| DELAY [100].
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Table 1. Probe-Aware Transport API flags

send flags
PAD PKT [s] Probe packet that requires s bytes padding.
DELAY [t] Packet can be delayed up to t ms.
PKT FOLLOWS This packet is not the last packet of a train (others follow).

per-session flags
SINGLE PKT Packets should not be encapsulated.
WAIT CONGESTION Packets under congestion control.
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Fig. 1. Overview of a probe-aware transport agent

Finally, the PKT FOLLOWS flag is used to indicate that the packet is part of a
train, and should not be sent until all packets are available (i.e., a subsequent
packet is submitted without this flag). Thus, the entire train may be delayed (by
the first packet), but all packets in the train are sent back-to-back.

We also provide two session-level flags. If for some reason encapsulation
should be avoided, users can establish sessions using the flag SINGLE PACKET.
Probe packets sent in such a session will not encapsulate other packets, and user
packets will not be encapsulated by probes. Thus, our transport API semantics
reverts to the standard semantics when this flag is set.

Additionally, we provide the flag WAIT CONGESTION to subject sessions to con-
gestion control. By default, STREAM sessions have this flag enabled (to conform
to TCP semantics), but DGRAM sessions can specify it as well. This allows probe
packets, which are often sent as datagrams, to be accounted for in the congestion
window. However, the implementation is non-standard in that we must consider
the DELAY and PKT FOLLOWS flags when doing congestion accounting.

Figure 1 depicts our preliminary probe-aware transport agent which exchanges
traffic between two IP endpoints. The transport agent would sit normally on top
of IP; our current implementation tunnels over UDP. Internally, the transport
agent multiplexes user and probe streams into one packet stream with uniform
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congestion control, as in the Congestion Manager [10], and encapsulates user
traffic in probe packets, unless explicitly disallowed by SINGLE PACKET flags.

For example, consider a measurement tool (session P2 in Figure 1) that pe-
riodically sends a probe packet consisting of 10 bytes of control data and 990
bytes of padding. Before the transport agent sends the packet out, it attempts
to find user data to fill the 990 available bytes from candidate TCP sessions B1,
B2 and UDP packet streams D1, D2. If any of them have bytes waiting in their
buffers, then up to 990 bytes of user traffic will be encapsulated in the probe.

We have run preliminary experiments with real traffic on Emulab1 that
demonstrated bandwidth savings up to 95% during congestion conditions, i.e.,
most of the probe traffic piggy-backed on top of user traffic during that period.
We are in the process of completing a fully functional implementation and mod-
ifying a number of measurement tools to run on top of our transport agent. We
intend to run wide-area experiments with real traffic on PlanetLab2 and continue
our performance measurements in the controlled setting of Emulab.
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