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Foreword 

GERAD celebrates this year its 25th anniversary. The Center was 
created in 1980 by a small group of professors and researchers of HEC 
Montreal, McGill University and of the Ecole Polytechnique de Montreal. 
GERAD's activities achieved sufficient scope to justify its conversion in 
June 1988 into a Joint Research Centre of HEC Montreal, the Ecole 
Polytechnique de Montreal and McGill University. In 1996, the Uni-
versite du Quebec ä Montreal joined these three institutions. GERAD 
has fifty members (professors), more than twenty research associates and 
post doctoral students and more than two hundreds master and Ph.D. 
students. 

GERAD is a multi-university center and a vital forum for the develop
ment of operations research. Its mission is defined around the following 
four complementarily objectives: 

• The original and expert contribution to all research fields in 
GERAD's area of expertise; 

• The dissemination of research results in the best scientific outlets 
as well as in the society in general; 

• The training of graduate students and post doctoral researchers; 

• The contribution to the economic community by solving important 
problems and providing transferable tools. 

GERAD's research thrusts and fields of expertise are as follows: 

• Development of mathematical analysis tools and techniques to 
solve the complex problems that arise in management sciences and 
engineering; 

• Development of algorithms to resolve such problems efficiently; 

• Application of these techniques and tools to problems posed in 
related disciplines, such as statistics, financial engineering, game 
theory and artificial intelligence; 

• Apphcation of advanced tools to optimization and planning of large 
technical and economic systems, such as energy systems, trans
portation/communication networks, and production systems; 

• Integration of scientific findings into software, expert systems and 
decision-support systems that can be used by industry. 
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One of the marking events of the celebrations of the 25th anniver
sary of GERAD is the pubUcation of ten volumes covering most of the 
Center's research areas of expertise. The list follows: Essays and 
Surveys in Global Optimization, edited by C. Audet, P. Hansen 
and G. Savard; Graph Theory and Combinatorial Optimization, 
edited by D. Avis, A. Hertz and O. Marcotte; Numerical Methods in 
Finance, edited by H. Ben-Ameur and M. Breton; Analysis, Con
trol and Optimization of Complex Dynamic Systems, edited 
by E.K. Boukas and R. Malhame; Column Generation, edited by 
G. Desaulniers, J. Desrosiers and M.M. Solomon; Statistical Modeling 
and Analysis for Complex Data Problems, edited by P. Duchesne 
and B. Remillard; Performance Evaluation and Planning Meth
ods for the Next Generation Internet, edited by A. Girard, B. Sanso 
and F. Vazquez-Abad; Dynamic Games: Theory and Applica
tions, edited by A. Haurie and G, Zaccour; Logistics Systems: De
sign and Optimization, edited by A. Langevin and D. Riopel; Energy 
and Environment, edited by R. Loulou, J.-P. Waaub and G. Zaccour. 

I would like to express my gratitude to the Editors of the ten volumes, 
to the authors who accepted with great enthusiasm to submit their work 
and to the reviewers for their benevolent work and timely response. 
I would also like to thank Mrs. Nicole Paradis, Francine Benoit and 
Louise Letendre and Mr. Andre Montpetit for their excellent editing 
work. 

The GERAD group has earned its reputation as a worldwide leader 
in its field. This is certainly due to the enthusiasm and motivation of 
GERAD's researchers and students, but also to the funding and the 
infrastructures available, I would like to seize the opportunity to thank 
the organizations that, from the beginning, believed in the potential 
and the value of GERAD and have supported it over the years. These 
are HEC Montreal, Ecole Polytechnique de Montreal, McGill University, 
Universite du Quebec ä Montreal and, of course, the Natural Sciences 
and Engineering Research Council of Canada (NSERC) and the Fonds 
quebecois de la recherche sur la nature et les technologies (FQRNT). 

Georges Zaccour 
Director of GERAD 



Avant-propos 

Le Groupe d'etudes et de recherche en analyse des decisions (GERAD) 
fete cette annee son vingt-cinquieme anniversaire. Fonde en 1980 par 
une poignee de professeurs et chercheurs de HEC Montreal engages dans 
des recherches en equipe avec des collegues de PUniversite McGill et 
de TEcole Polytechnique de Montreal, le Centre comporte maintenant 
une cinquantaine de membres, plus d'une vingtaine de professionnels de 
recherche et stagiaires post-doctoraux et plus de 200 etudiants des cycles 
superieurs. Les activites du GERAD ont pris sufRsamment d'ampleur 
pour justifier en juin 1988 sa transformation en un Centre de recherche 
conjoint de HEC Montreal, de PEcole Polytechnique de Montreal et de 
rUniversite McGill. En 1996, TUniversite du Quebec ä Montreal s'est 
jointe ä ces institutions pour parrainer le GERAD. 

Le GERAD est un regroupement de chercheurs autour de la discipline 
de la recherche operationnelle. Sa mission s'articule autour des objectifs 
complementaires suivants : 

• la contribution originale et experte dans tons les axes de recherche 
de ses champs de competence; 

• la diffusion des resultats dans les plus grandes revues du domaine 
ainsi qu'aupres des differents publics qui forment I'environnement 
du Centre; 

• la formation d'etudiants des cycles superieurs et de stagiaires post-
doctoraux; 

• la contribution ä la communaute economique ä travers la resolution 
de problemes et le developpement de coffres d'outils transferables. 

Les principaux axes de recherche du GERAD, en allant du plus theo-
rique au plus applique, sont les suivants : 

• le developpement d'outils et de techniques d'analyse mathematiques 
de la recherche operationnelle pour la resolution de problemes com
plexes qui se posent dans les sciences de la gestion et du genie; 

• la confection d'algorithmes permettant la resolution efRcace de ces 
problemes; 

• I'application de ces outils ä des problemes poses dans des disciplines 
connexes ä la recherche operationnelle telles que la statistique, I'in-
genierie financiere, la theorie des jeux et Pintelligence artificielle; 

• Tapplication de ces outils ä Toptimisation et ä la planification de 
grands systemes technico-economiques comme les systemes energe-
tiques, les reseaux de telecommunication et de transport, la logis-
tique et la distributique dans les industries manufacturieres et de 
service; 
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• Pintegration des resultats scientifiques dans des logiciels, des sys-
t ernes experts et dans des syst ernes d'aide ä la decision transferables 
ä Pindustrie. 

Le fait marquant des celebrations du 25^ du GERAD est la publication 
de dix volumes couvrant les champs d'expertise du Centre. La liste suit : 
Essays and Surveys in Global Optimization, edite par C. Audet, 
P. Hansen et G. Savard; Graph Theory and Combinatorial Op
timization, edite par D. Avis, A. Hertz et O. Marcotte; Numerical 
Methods in Finance, edite par H. Ben-Ameur et M. Breton; Analy
sis, Control and Optimization of Complex Dynamic Systems, 
edite par E.K. Boukas et R. Malhame; Column Generation, edite par 
G. Desaulniers, J. Desrosiers et M.M. Solomon; Statistical Modeling 
and Analysis for Complex Data Problems, edite par P. Duchesne 
et B. Remillard; Performance Evaluation and Planning Methods 
for the Next Generation Internet, edite par A. Girard, B. Sanso et 
F. Vazquez-Abad; Dynamic Games : Theory and Applications, 
edite par A. Haurie et G. Zaccour; Logistics Systems : Design and 
Optimization, edite par A. Langevin et D. Riopel; Energy and En
vironment, edite par R. Loulou, J.-P. Waaub et G. Zaccour. 

Je voudrais remercier tres sincerement les editeurs de ces volumes, les 
nombreux auteurs qui ont tres volontiers repondu ä I'invitation des edi
teurs ä soumettre leurs travaux, et les evaluateurs pour leur benevolat 
et ponctualite. Je voudrais aussi remercier Mmes Nicole Paradis, Fran-
cine Benoit et Louise Letendre ainsi que M. Andre Montpetit pour leur 
travail expert d'edition. 

La place de premier plan qu'occupe le GERAD sur I'echiquier mondial 
est certes due ä la passion qui anime ses chercheurs et ses etudiants, 
mais aussi au financement et ä Pinfrastructure disponibles. Je voudrais 
profiter de cette occasion pour remercier les organisations qui ont cru des 
le depart au potentiel et ä la valeur du GERAD et nous ont soutenus 
durant ces annees. II s'agit de HEG Montreal, PEcole Polytechnique de 
Montreal, PUniversite McGill, PUniversite du Quebec ä Montreal et, 
bien sür, le Conseil de recherche en sciences naturelles et en genie du 
Canada (CRSNG) et le Fonds quebecois de la recherche sur la nature et 
les technologies (FQRNT). 

Georges Zaccour 
Directeur du GERAD 
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Preface 

GERAD is an Operations Research center founded in 1980 that brings 
together the top universities in Montreal: HEC Montreal, Ecole Poly-
technique de Montreal, McGill University, and Universite du Quebec ä 
Montreal. It is organized across several research teams. The Gencol 
team is one of the oldest and best known. Led by Jacques Desrosiers 
and Frangois Soumis, it also includes Jean-Frangois Cordeau, Guy De-
saulniers, Michel Gamache, Odile Marcotte, Gilles Savard, and Mar-
ius M. Solomon. The late Martin Desrochers was the first Ph.D. stu
dent. The group originally focused on the vehicle routing problem with 
time windows and then expanded their focus to more complex resource 
constrained vehicle routing and crew scheduling problems. 

During these 25 years the team's efforts resulted in important aca
demic, scientific, commercial, and industrial benefits. The academic 
spin-off consists of support offered to scores of Ph.D. and master stu
dents, analysts, and post-doctoral and visiting researchers. The scientific 
advances include numerous publications, many in premier journals and 
widely used survey papers. Overall, the Gencol group made significant 
advances in the integer programming column generation area. It is with 
the excitement of having participated in these developments and the 
modesty of being only a small part of the research community that we 
welcome the advancements described in the chapters of this book. 

The book starts with A Primer in Column Generation by Jacques 
Desrosiers and Marco E. Lübbecke. It introduces the column generation 
technique in integer programming settings. The relevant theory and the 
more advanced ideas necessary to solve large-scale practical problems 
are illustrated with a variety of examples. 

In the second chapter, Shortest Path Problems with Resource Con
straints^ Stefan Irnich and Guy Desaulniers offer a comprehensive sur
vey of the problems used to cast the subproblem in most vehicle routing 
and crew scheduling applications solved by column generation. The fol
lowing two chapters are dedicated to the Vehicle Routing Problem with 
Time Windows. Brian Kallehauge, Jesper Larsen, Oli B.G. Madsen, and 
Marius M. Solomon focus on the methodological evolution, including cut
ting planes, parallelism, acceleration strategies for the master problem 
and novel subproblem approaches. Emilie Danna and Claude Le Pape, 
Branch-and-Price Heuristics: A Case Study on the Vehicle Routing 
Problem with Time Windows, illustrate the benefits of using hybrid 
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branch-and-price and heuristic solutions to rapidly produce good integer 
solutions. This technique along with stabilization methods proposed to 
improve the efficiency of the column generation process are revisited in 
the next chapter by Hatem Ben Amor and Jose M. Valerio de Carvalho 
in the context of Cutting Stock Problems, The authors also explore 
the links between the extended Dantzig-Wolfe decomposition and the 
Gilmore-Gomory model. 

The following three chapters deal with air and maritime transporta
tion applications. Large-scale Models in the Airline Industry are pre
sented by Diego Klabjan. He examines models involved in strategic 
business processes as well as operational processes. The former address 
schedule design and fleeting, aircraft routing, and crew scheduling, while 
the latter models cope with irregular operations. Then, Marielle Chris
tiansen and Bj0rn Nygreen describe Robust Inventory Ship Routing by 
Column Generation. They consider an actual integrated ship scheduling 
and inventory management problem where the transporter has the re
sponsibility to keep the inventory level of a single product at all plants 
within predetermined limits without causing production stopages due to 
missed transportation opportunities or variability in sailing time. Next, 
Mikkel M. Sigurd, Nina L, Ulstein, Bj0rn Nygreen, and David M. Ryan 
discuss the design of a sea-transport system for Norwegian companies 
who rely heavily on maritime transportation in Ship Scheduling With 
Recurring Visits and Visit Separation Requirements. The model deter
mines the optimal fleet composition, including the potential investment 
in new ships, the ship routes and their visit-schedules when transport 
tonnage is pooled over all participating companies. 

The next three chapters deal with production environments. First, 
Dennis Huisman, Raf Jans, Marc Peeters, and Albert P.M. Wagelmans 
propose Combining Column Generation and Lagrangian Relaxation. The 
authors focus on using Lagrangian relaxation to either directly solve the 
LP relaxation of the Dantzig-Wolfe master problem or to generate new 
columns. They illustrate their ideas with an application in lot-sizing 
and comment on applications in other areas. Second, Sylvie Gelinas 
and Frangois Soumis propose Dantzig-Wolfe Decomposition for Job Shop 
Scheduling. They present a flexible formulation capable of handling sev
eral objectives. In this context, each subproblem is a single machine 
sequencing problem with time windows. Third, Marjan van den Akker, 
Han Hoogeveen, and Steef van de Velde survey Applying Column Gen
eration to Machine Scheduling. In particular, they illustrate the success 
of column generation methods when the main objective is to divide the 
jobs across the machines. 
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The final chapter by Frangois Vanderbeck is on Implementing Mixed 
Integer Column Generation. He reviews how to set-up the Dantzig-Wolfe 
reformulation, adapt standard MIP techniques to the column generation 
context (branching, preprocessing, primal heuristics), and deal with spe
cific column generation issues (initialization, stabilization, column man
agement strategies). 

We think that this book offers an insightful overview of the state-of-
the-art in integer programming column generation and its many appli
cations, and we certainly hope that it will serve as a good reference for 
the novice as well as the experienced column generation user. 

Finally, we would like to thank all the contributors for their fine work. 

GUY DESAULNIERS 

JACQUES DESROSIERS 

MARIUS M . SOLOMON 



Chapter 1 

A PRIMER IN COLUMN GENERATION 

Jacques Desrosiers 
Marco E. Lübbecke 

A b s t r a c t We give a didactic introduction to the use of the column generation 
technique in linear and in particular in integer programming. We touch 
on both, the relevant basic theory and more advanced ideas which help 
in solving large scale practical problems. Our discussion includes em
bedding Dantzig-Wolfe decomposition and Lagrangian relaxation within 
a branch-and-bound framework, deriving natural branching and cutting 
rules by means of a so-called compact formulation, and understanding 
and influencing the behavior of the dual variables during column gener
ation. Most concepts are illustrated via a small example. We close with 
a discussion of the classical cutting stock problem and some suggestions 
for further reading. 

!• Hands-on experience 
Let us start right away by solving a constrained shortest path problem. 

Consider the network depicted in Figure 1.1. Besides a cost Cij there is a 
resource consumption tij attributed to each arc (i, j) € A, say a traversal 
time. Our goal is to find a shortest path from node 1 to node 6 such 
that the total traversal time of the path does not exceed 14 time units. 

(1,1) 

{^ij, tij K. 

Figure 1.1. Time constrained shortest path problem, (p. 599 Ahuja et al., 1993). 
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One way to state this particular network flow problem is as the integer 
program (1.1)-(1.6). One unit of flow has to leave the source (1.2) and 
has to enter the sink (1.4), while flow conservation (1,3) holds at all 
other nodes. The time resource constraint appears as (1.5). 

(1.1) 

(1.2) 

i = 2,3,4,5 (1.3) 

(1.4) 

(1.5) 

(1.6) 

An inspection shows that there are nine possible paths, three of which 
consume too much time. The optimal integer solution is path 13246 of 
cost 13 with a traversal time of 13. How would we find this out? First 
note that the resource constraint (1.5) prevents us from solving our prob
lem with a classical shortest path algorithm. In fact, no polynomial time 
algorithm is likely to exist since the resource constrained shortest path 
problem is A/"7^-hard. However, since the problem is almost a short
est path problem, we would like to exploit this embedded well-studied 
structure algorithmically. 

1.1 An equivalent reformulation: Arcs vs. paths 
If we ignore the complicating constraint (1.5), the easily tractable 

remainder is X = [xij — 0 or 1 | (1,2)-(1.4)}. It is a well-known result 
in network flow theory that an extreme point Xp — {xpij) of the polytope 
defined by the convex hull of X corresponds to a path p e P in the 
network. This enables us to express any arc flow as a convex combination 
of path flows: 

E 

z^ := m i n 

sub jec t t o 

{iJ)eA 

( i j )eA 

Xij y ^ Xji ^̂ ^ U l -

^ Xi6 = l 

i: {i,6)eA 

/ J Hj^ij S 14 
ihJ)eA 

Xij = 0 or 1 {iJ)eA 

Xij 

peP 

Y^\ = l (1.8) 
peP 

Ap>0 peP. (1.9) 



1 A Primer in Column Generation 3 

If we substitute for x in (1.1) and (1.5) we obtain the so-called master 
problem: 

z^ = mm'^\ ^ CijXpij\\p (1.10) 

peP 

subject to 2_\ X-/ %^TO '̂ p ^ 14 (1-11) 

J2Xp = l (1.12) 

peP 

Ap>0 peP (1.13) 
Y^ XpijXp = Xij {ij) G A (1.14) 
peP 

Xij = 0 or 1 (iJ) e A. (1-15) 
Loosely speaking, the structural information X that we are looking for a 
path is hidden in "p G P." The cost coefficient of Xp is the cost of path p 
and its coefficient in (1.11) is pathp's duration. Via (1.14) and (1.15) we 
exphcitly preserve the hnking of variables (1.7) in the formulation, and 
we may recover a solution x to our original problem (1.1)-(1.6) from a 
master problem's solution. Always remember that integrality must hold 
for the original x variables. 

1.2 The linear relaxation of the master problem 
One starts with solving the linear programming (LP) relaxation of the 

master problem. If we relax (1.15), there is no longer a need to hnk the x 
and A variables, and we may drop (1.14) as well. There remains a prob
lem with nine path variables and two constraints. Associate with (1.11) 
and (1.12) dual variables TTI and TTQ, respectively. For large networks, 
the cardinality of P becomes prohibitive, and we cannot even explicitly 
state all the variables of the master problem. The appealing idea of col
umn generation is to work only with a sufficiently meaningful subset of 
variables, forming the so-called restricted master problem (RMP). More 
variables are added only when needed: Like in the simplex method we 
have to find in every iteration a promising variable to enter the basis. 
In column generation an iteration consists 

a) of optimizing the restricted master problem in order to determine 
the current optimal objective function value z and dual multipliers 
TT, and 
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Table 1.1. ] 

I tera t ion 

BBO.l 
BB0.2 
BB0.3 
BB0.4 
BB0.5 
Arc flowi 

BBO: T h e linear p rogramming relaxation 

Master Solution 

2/0 = 1 
yo = 0.22, Ai246 = 0.78 

Al246 = 0.6, Al356 = 0.4 
Al246 = Ai3256 = 0.5 
Al3256 = 0.2,Ai256 — 0.8 

?: a:i2 = 0.8, x i s = 0:32 = 

Z TTo 
100.0 100.00 

24.6 100.00 
11.4 40.80 

9.0 30.00 
7.0 35.00 

0.2,0^25 = X56 ~-

of the master problem 

TTl 
0.00 

- 5 . 3 9 
- 2 . 1 0 
- 1 . 5 0 
- 2 . 0 0 

- 1 

c* p Cp 

- 9 7 . 0 1246 3 
- 3 2 . 9 1356 24 

- 4 . 8 13256 15 
- 2 . 5 1256 5 

0 

Up 

Is" 
8 

10 
15 

b) of finding, if there still is one, a variable Xp with negative reduced 
cost 

Cp Y^ CijXpij - TTi j ^ tijXpij j - TTO < 0. (1.16) 

The implicit search for a minimum reduced cost variable amounts to 
optimizing a subproblem^ precisely in our case: A shortest path problem 
in the network of Figure 1.1 with a modified cost structure: 

c* = min > (cin — 7Titin)xii — TTQ. (I-IT) 
(1 .2H1 .4 ) , (1 .6 )^ .^ /^^ ''" '' ^ ' 

Clearly, if c* > 0 there is no improving variable and we are done with the 
linear relaxation of the master problem. Otherwise, the variable found 
is added to the RMP and we repeat. 

In order to obtain integer solutions to our original problem, we have 
to embed column generation within a branch-and-bound framework. We 
now give full numerical details of the solution of our particular instance. 
We denote by BBn.i iteration number i at node number n (n = 0 repre
sents the root node). The summary in Table 1.1 for the LP relaxation 
of the master problem also lists the cost Cp and duration tp of path p, re
spectively, and the solution in terms of the value of the original variables 
X. 

Since we have no feasible initial solution at iteration BBO.l, we adopt 
a big-M approach and introduce an artificial variable yo with a large 
cost, say 100, for the convexity constraint. We do not have any path 
variables yet and the RMP contains two constraints and the artificial 
variable. This problem is solved by inspection: yo = 1̂  ^ — 100, and the 
dual variables are TTO = 100 and TTI = 0, The subproblem (1.17) returns 
path 1246 at reduced cost c* ~ -97, cost 3 and duration 18. In iteration 
BBO.2, the RMP contains two variables: yo and Ai246' An optimal 
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solution with z = 24.6 is yo — 0.22 and A1246 = 0.78, which is still 
infeasible. The dual variables assume values TTQ = 100 and TTI = —5.39. 
Solving the subproblem gives the feasible path 1356 of reduced cost 
—32.9, cost 24, and duration 8. 

In total, four path variables are generated during the column genera
tion process. In iteration BB0.5, we use 0.2 times the feasible path 13256 
and 0.8 times the infeasible path 1256. The optimal objective function 
value is 7, with TTQ = 35 and TTI — —2. The arc flow values provided at 
the bottom of Table 1.1 are identical to those found when solving the 
LP relaxation of the original problem. 

1.3 Branch-and-bound: The reformulation 
repeats 

Except for the integrality requirement (1.6) (or 1.15) all constraints 
of the original (and of the master) problem are satisfied, and a subse
quent branch-and-bound process is used to compute an optimal integer 
solution. Even though it cannot happen for our example problem, in 
general the generated set of columns may not contain an integer feasible 
solution. To proceed, we have to start the reformulation and column 
generation again in each node. 

Let us first explore some ''standard" ways of branching on fractional 
variables, e.g., branching on X12 = 0.8. For X12 — 0, the impact on the 
RMP is that we have to remove path variables A1246 and A1256, that 
is, those paths which contain arc (1,2). In the subproblem, this arc is 
removed from the network. When the RMP is re-optimized, the artificial 
variable assumes a positive value, and we would have to generate new 
A variables. On branch X12 = 1, arcs (1,3) and (3,2) cannot be used. 
Generated paths which contain these arcs are discarded from the RMP, 
and both arcs are removed from the subproblem. 

There are also many strategies involving more than a single arc flow 
variable. One is to branch on the sum of all flow variables which currently 
is 3.2. Since the solution is a path, an integer number of arcs has to be 
used, in fact, at least three and at most flve in our example. Our freedom 
of making branching decisions is a powerful tool when properly applied. 

Alternatively, we branch on X13 + X32 = 0.4. On branch X13 + X32 = 0, 
we simultaneously treat two flow variables; impacts on the RMP and the 
subproblem are similar to those described above. On branch X13 + X32 > 
1, this constraint is first added to the original formulation. We exploit 
again the path substructure X, go through the reformulation process via 
(1.7), and obtain a new RMP to work with. Details of the search tree 
are summarized in Table 1.2. 



COLUMN GENERATION 

Table 1.2. Details of the branch-and-bound decisions 

Iteration Master Solution TTO TTl 7r2 

B B l : BBO and xis + 0̂ 32 = 0 
BBl. l yo - 0.067, A1256 = 0.933 
BBl.2 Big-M increased to 1000 

yo = 0.067, Ai256 - 0.933 
BBl.3 Ai2456 = 1 

11.3 100 -6.33 

71.3 
14 

1000 
1000 

-66.33 -
-70.43 -

-57.3 
0 

12456 14 14 

B B 2 : BBO and 0̂ 13 + X32 > 1 
BB2.1 Ai246 — Ai3256 ~ 0.5 9 
Arc flows: a;i2 = xi^ = X2A = X2^ = x^2 -

B B 3 : BB2 and 0:12 = 0 

BB3.1 Ai3256 - 1 15 
BB3.2 Ai3246 = 1 1 3 
B B 4 : BB2 and 0:12 - 1 

BB4.1 yo = 0.067, A1256 = 0.933 111.3 
Infeasible arc flows 

15 
• a:46 -

15 
13 

100 

-0.67 3.33 
: X56 = 0.5 

0 0 
0 0 

-6.33100 

0 

-2 
0 

0 

13246 13 13 

At node BBl, we set xis + X32 = 0. In iteration BBl.l , paths 1356 
and 13256 are discarded from the RMP, and arcs (1,3) and (3,2) are 
removed from the subproblem. The resulting RMP with yo = 0.067 
and Ai256 = 0.933 is infeasible. The objective function assumes a value 
z = 11.3, and TTQ = 100 and TTI = —6.33. Given these dual multipliers, 
no column with negative reduced cost can be generated! 

Here we face a drawback of the big-M approach. Path 12456 is fea
sible, its duration is 14, but its cost of 14 is larger than the current 
objective function value, computed as 0.067M + 0.933 x 5. The con
stant M = 100 is too small, and we have to increase it, say to 1000. (A 
different phase I approach, that is, minimizing the artificial variable yo? 
would have easily prevented this.) Re-optimizing the RMP in iteration 
BB1.2 now results in ^ = 71.3, yo = 0.067, A1256 = 0.933, TTQ = 1000, 
and TTl == —66.33. The subproblem returns path 12456 with a reduced 
cost of -57.3. In iteration BBl.3, the new RMP has an integer solution 
Ai2456 =" 1? with z = 14, an upper bound on the optimal path cost. The 
dual multipliers are TTO = 1000 and TTI = —70.43, and no new variable is 
generated. 

At node BB2, we impose X13 + X32 > 1 to the original formulation, 
and again, we reformulate these x variables in terms of the A variables. 
The resulting new constraint (with dual multiplier 7T2) in the RMP is 
Zlp€p(^pi3 + ^p32)Ap > l.From the value of {xpis + XpS2) we learn how 
often arcs (1,3) and (3,2) are used in path p. The current problem at 
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node BB2.1 is the following: 

min lOOyo + 3Ai246 + 24Ai356 + 15Ai3256 + 5Ai256 

subject to: I8A1246 + 8A1356 + IOA13256 + 15Ai256 < 14 [TTI] 

Al356 + 2Ai3256 ^ 1 [^2] 

yo + Ai246 + Ai356 + Ai3256 + A1256 = 1 [^o] 

yo, Ai246, Ai356, Ai3256, A1256 > 0 

From solving this linear program we obtain an increase in the objective 
function z from 7 to 9 with variables A1246 = A13256 = 0.5, and dual 
multipliers TTQ — 15,7ri = —0.67, and 7r2 = 3.33. The new subproblem is 
given by 

"̂̂  "̂  . ^ P^^ . ^ y ] (̂ Ü - ^lUj)Xij - TTo - 7r2(xi3 + X32). (1.18) (1.2)-(L4), (1.6) , ^ 

For these multipliers no path of negative reduced cost exists. The solu
tion of the flow variables is X12 = X13 — X24 = X25 = X32 = X46 — X^Q — 
0.5. 

Next, we arbitrarily choose variable a::i2 = 0.5 to branch on. Two 
iterations are needed when X12 is set to zero. In iteration BB3.1, path 
variables A1246 and A1256 are discarded from the RMP and arc (1,2) 
is removed from the subproblem. The RMP is integer feasible with 
Ai3256 == 1 at cost 15. Dual multipliers are TTQ — 15,7ri = 0, and 7r2 = 0. 
Path 13246 of reduced cost —2, cost 13 and duration 13 is generated 
and used in the next iteration BB3.2. Again the RMP is integer feasible 
with path variable A13246 = 1 and a new best integer solution at cost 13, 
with dual multipliers TTQ = 15, TTI — 0, and 7r2 — 0 for which no path of 
negative reduced cost exists. 

On the alternative branch X12 — 1 the RMP is optimal after a single 
iteration. In iteration BB4.1, variable X13 can be set to zero and variables 
^̂ 13565 1̂32565 and Ai3246 are discarded from the current RMP. After the 
introduction of an artificial variable 7/2 in the second row, the RMP is 
infeasible since 7/0 > 0 (as can be seen also from the large objective 
function value z — 111.3). Given the dual multipliers, no columns of 
negative reduced cost can be generated, and the RMP remains infeasible. 
The optimal solution (found at node BB3) is path 13246 of cost 13 with 
a duration of 13 as well. 

2. Some theoretical background 
In the previous example we already saw all the necessary building 

blocks for a column generation based solution approach to integer pro
grams: (1) an original formulation to solve which acts as the control 
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center to facilitate the design of natural branching rules and cutting 
planes; (2) a master problem to determine the currently optimal dual 
multipliers and to provide a lower bound at each node of the branch-
and-bound tree; (3) a pricing subproblem which explicitly reflects an 
embedded structure we wish to exploit. In this section we detail the 
underlying theory. 

2.1 Column generation 
Let us call the following linear program the master problem (MP). 

4 / p — mn^c^A^- (1.19) 
jeJ 

subject to y^ajAj > b (1.20) 
jeJ 

Xj > 0, je J. (1.21) 

In each iteration of the simplex method we look for a non-basic variable 
to price out and enter the basis. That is, given the non-negative vector 
TT of dual variables we wish to find a j G J which minimizes Cj :— 
Cj~7T^3.j, This exphcit pricing is a too costly operation when \J\ is huge. 
Instead, we work with a reasonably small subset J' C. J oi columns— 
the restricted master problem (RMP)—and evaluate reduced costs only 
by implicit enumeration. Let A and TT assume primal and dual optimal 
solutions of the current RMP, respectively. When columns aj, j E J, are 
given as elements of a set A^ and the cost coefficient Cj can be computed 
from 3ij via a function c then the subproblem 

c* \= min{c(a) - Tr̂ a | a G ^ } (1.22) 

performs the pricing. If ĉ  > 0, there is no negative Cj, j G J, and the 
solution A to the restricted master problem optimally solves the master 
problem as well. Otherwise, we add to the RMP the column derived 
from the optimal subproblem solution, and repeat with re-optimizing 
the RMP. The process is initiahzed with an artificial, a heuristic, or a 
previous ( '̂warm start") solution. In what regards convergence, note that 
each a G vA is generated at most once since no variable in an optimal 
RMP has negative reduced cost. When dealing with some finite set A (as 
is practically always true), the column generation algorithm is exact. In 
addition, we can make use of bounds. Let z denote the optimal objective 
function value to the RMP. When an upper bound n > Yl,jeJ ^j holds 
for the optimal solution of the master problem, we have not only an 
upper bound z on z'^p in each iteration, but also a lower bound: we 



1 A Primer in Column Generation 9 

cannot reduce z by more than K times the smallest reduced cost c*: 

z + K.c' <ZMP <Z. (1.23) 

Thus, we may verify the solution quality at any time. In the optimum 
of (1.19), ĉ  == 0 for the basic variables, and z — z\^p. 

2.2 Dantzig-Wolfe decomposition for integer 
programs 

In many applications we are interested in optimizing over a discrete 
set X, For X — {yi e.IjW Dx. > d} 7̂  0 we have the special case of in
teger hnear programming. Consider the following {original or compact) 
program: 

z"" — minc^x (1.24) 

subject to ^ x > b (1.25) 

x e X (1.26) 

Replacing X by conv(X) in (1.24) does not change z'^ which we assume 
to be finite. The Minkowski and Weyl theorems (see Schrijver, 1986) 
enable us to represent each x € X as a convex combination of extreme 
points {xplp^p plus a non-negative combination of extreme rays {xr}reR 
of conv(X), i.e., 

X - ^ XpXp + Y^XrXr, I ] Ap = 1, A € R[f' + '^' (1.27) 
peP reR peP 

where the index sets P and R are finite. Substituting for x in (1.24) and 
applying the linear transformations Cj = c^Xj and â  = Axj, j E P U R 
we obtain an equivalent extensive formulation 

z* := min \ J CpXp + y j CrXr 
peP reR 

subject to y^ dipXp + y . ar Ar > b 
peP reR 

peP 

A > 0 

peP r&R 

(1.28) 

(1.29) 

(1.30) 

(1.31) 

(1.32) 

(1.33) 
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Equation (1.30) is referred to as the convexity constraint. When we relax 
the integrahty of x, there is no need to hnk x and A, and we may also 
relax (1.32). The columns of this special master problem are defined by 
the extreme points and extreme rays of conv(X). We solve the master 
by column generation to get its optimal objective function value z\^p. 
Given an optimal dual solution TT and TTQ to the current RMP, where 
variable TTQ corresponds to the convexity constraint, the subproblem is 
to determine mmj^p{cj — TT^BJ — TTQ} and minj^/^{cj — Tr^aj}. By our 
previous linear transformation and since TTQ is a constant, this results in 

c" ~ min{(c^ - 7r^A)x - TTQ | x G X}. (1.34) 

This subproblem is an integer linear program. When ĉ  > 0, there is 
no negative reduced cost column, and the algorithm terminates. When 
c* < 0 and finite, an optimal solution to (1.34) is an extreme point Xp of 
conv(X), and we add the column [ĉ Xp, (Ax^)^, 1]̂  to the RMP. When 
ĉ  — —oo we identify an extreme ray x̂ . of conv(X) as a solution x G X 
to (c^ - 7r*^)x = 0, and add the column [c^x^, (Ax^)^ 0]* to the RMP. 

Prom (1.23) together with the convexity constraint we obtain in each 
iteration 

z^c^ <ZIJP<Z, (1.35) 

where z — Tr̂ b + TTQ is again the optimal objective function value of the 
RMP. Since z\ip < ^*, z + c* is also a lower bound on z'^, In general, z 
is not a valid upper bound on z^., except if the current x variables are 
integer. The algorithm is exact and finite as long as finiteness is ensured 
in optimizing the RMP. 

The original formulation is the starting point to obtain integer solu
tions in the x variables. Branching and cutting constraints are added 
there, the reformulation as in Section 1,1 is re-applied, and the process 
continues with an updated master problem. It is important to see that 
it is our choice as to whether the additional constraints remain in the 
master problem (as in the previous section) or go into the subproblem 
(as we will see later). 

Pr icing out the original x variables. Assume that in (124) 
we have a hnear subproblem X = {x G M!j: | i^x > d} 7̂  0 . Column 
generation then essentially solves the linear program 

minc^x subject to Ax > b, Dx > d, x > 0. 

We obtain an optimal primal solution x but only the dual multipliers TT 
associated with the constraint set Ax > b. However, following an idea of 
Walker (1969) we can also retrieve the dual variables cr associated with 
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Dx > d: It is the vector obtained from solving the hnear subproblem 
in the last iteration of the column generation process. This full dual 
information allows for a pricing of the original variables, and therefore 
a possible elimination of some of them. Given an upper bound on the 
integer optimal objective function value of the original problem, one can 
eliminate an x variable if its reduced cost is larger than the optimality 
gap. 

In the general case of a linear integer or even non-linear pricing sub-
problem, the above procedure does not work. Poggi de Aragao and 
Uchoa (2003) suggest to directly use the extensive formulation: If we 
keep the coupling constraint (1.32) in the master problem, it suffices 
to impose the constraint x > e, for a small e > 0, at the end of the 
process. The shadow prices of these constraints are the reduced costs of 
the X vector of original variables. Note that there is no need to apply 
the additional constraints to already positive variables. Computational 
experiments underline the benefits of this procedure. 

Block diagonal structure. For practical problems Dantzig-Wolfe 
decomposition can typically exploit a block diagonal structure of J9, i.e.. 

D -

/D^ 

\ 

D^ 
\ 

K, i 

> d = 
d2 

Uv 
(1.36) 

Each X^ = {D^-K^ > d^,x^ > 0 and integer}, k e K \= {I,,,, ,n}, 
gives rise to a representation as in (1.27). The decomposition yields n 
subproblems, each with its own convexity constraint and associated dual 
variable: 

- / c * c^* := min{(c''^ - n'A ifewfc 
^0 e x''}, keK. (1.37) 

The superscript k to all entities should be interpreted in the canonical 
way. The algorithm terminates when c^* > 0, for all keK, Otherwise, 
extreme points and rays identified in (1.37) give rise to new columns to be 
added to the RMP. By linear programming duality, z = Tr̂ b -f- X^^^i TTQ , 
and we obtain the following bounds, see Lasdon (1970): 

k=l 

(1.38) 
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(a) (b) 

Figure 1.2. Schematic illustration of the domains of master and subproblem X. 

2.3 Useful working knowledge 

When problems get larger and computationally much more difficult 
than our small constrained shortest path problem it is helpful to know 
more about mechanisms, their consequences, and how to exploit them. 

Infeasible paths. One may wonder why we kept infeasible paths in 
the RMP during column generation. Here, as for the whole process, we 
cannot overemphasize the fact that knowledge about the integer solution 
usually does not help us much in solving the linear relaxation program. 
Figure 1.2 illustrates the domain of the RMP (shaded) and the domain 
X of the subproblem. In part a), the optimal solution x, symbolized 
by the dot, is uniquely determined as a convex combination of the three 
extreme points of the triangle X, even though all of them are not feasible 
for the intersection of the master and subproblem. In our example, in 
iteration BB0.5, any convex combination of feasible paths which have 
been generated, namely 13256 and 1356, has cost larger than 7, i.e., is 
suboptimal for the linear relaxation of the master problem. Infeasible 
paths are removed only if needed during the search for an integer so
lution. In Figure 1.2 (a), x can be integer and no branch-and-bound 
search is needed. 

In part b) there are many ways to express the optimal solution as a 
convex combination of three extreme points. This is a partial explana
tion of the slow convergence [tailing off) of linear programming column 
generation. 

Lower and upper bounds. Figure 1.3 gives the development of 
upper [z) and lower (z -f- c*) bounds on z^^p in the root node for our 
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100 

13 

Iterations 

Figure 1.3. Development of lower and upper bounds on ZMP in BBO. 

Table 1.3. Multipliers at for the flow conservation constraints on nodes i E N. 

nodei 1 2 3 4 5 6 
(Ji 29 8 13 5 0 - 6 

small constrained shortest path example. The values for the lower bound 
are 3.0, —8.33, 6.6, 6.5, and finally 7. While the upper bound decreases 
monotonically (as expected when minimizing a linear program) there is 
no monotony for the lower bound. Still, we can use these bounds to 
evaluate the quality of the current solution by computing the optimality 
gap, and could stop the process when a preset quality is reached. Is 
there any use of the bounds beyond that? 

Note first that UB = ^ is not an upper bound on z'^. The cur
rently (over all iterations) best lower bound Lß , however, is a lower 
bound on z'^p and on z'^. Even though there is no direct use of LB 
or UB in the master problem we can impose the additional constraints 
LB < c^x < UB to the subproblem structure X if the subproblem 
consists of a single block. Be aware that this cutting modifies the sub-
problem structure X, with all algorithmic consequences, that is, possible 
compHcations for a combinatorial algorithm. In our constrained short
est path example, two generated paths are feasible and provide upper 
bounds on the optimal integer solution 2:*. The best one is path 13256 of 
cost 15 and duration 10. Table 1.3 shows the multipliers cr̂ , i = 1 , . . . , 6 
for the fiow conservation constraints of the path structure X at the last 
iteration of the column generation process. 
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Therefore, given the optimal multipher TTI — —2 for the resource con
straint, the reduced cost of an arc is given by cij = Cij — ai + GJ — UJITI^ 

{ij) e A, The reader can verify that C34 = 3 - 13 + 5 - (7)(-2) = 11. 
This is the only reduced cost which exceeds the current optimality gap 
which equals to 15 — 7 = 8. Arc (3,4) can be permanently discarded 
from the network and paths 1346 and 13456 will never be generated. 

Integrality property. Solving the subproblem as an integer pro
gram usually helps in closing part of the integrality gap of the master 
problem (Geoffrion, 1974), except when the subproblem possesses the 
integrality property. This property means that solutions to the pricing 
problem are naturally integer when it is solved as a linear program. This 
is the case for our shortest path subproblem and this is why we obtained 
the value of the linear relaxation of the original problem as the value of 
the linear relaxation of the master problem. 

When looking for an integer solution to the original problem, we need 
to impose new restrictions on (1.1)-(1.6). One way is to take advantage 
of a new X structure. However, if the new subproblem is still solved as 
a linear program, z^p remains 7. Only solving the new X structure as 
an integer program may improve z'^p. 

Once we understand that we can modify the subproblem structure, 
we can devise other decomposition strategies. One is to define the X 
structure as 

y ^ tijXij < 14, Xij binary, (i, j ) e A (1.39) 

SO that the subproblem becomes a knapsack problem which does not 
possess the integrality property. Unfortunately, in this example, z^p 
remains 7. However, improvements can be obtained by imposing more 
and more constraints to the subproblem. An example is to additionally 
enforce the selection of one arc to leave the source (1.2) and another one 
to enter the sink (1.4), and impose constraint 3 < Yl(ij)eA ^u ^ 5 on the 
minimum and maximum number of selected arcs. Richer subproblems, 
as long as they can be solved efficiently and do not possess the integrality 
property, may help in closing the integrahty gap. 

It is also our decision how much branching and cutting information 
(ranging from none to all) we put into the subproblem. This choice 
depends on where the additional constraints are more easily accommo
dated in terms of algorithms and computational tractability. Branching 
decisions imposed on the subproblem can reduce its solution space and 
may turn out to facilitate a solution as integer program. As an illus-
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Table 1.4- Lower bound cut added to the subproblem at the end of the root node. 

Iteration 
BB0.6 
BB0.7 

Master Solution 
Al3256 — 1 

Al3246 = 1 

z 
15 
13 

TTO 

15 
13 

TTl 

0 
0 

c* 
- 2 

P 
13246 

Cp 

13 
Up 

13 
UB 

15 
13 

LB 
13 
13 

tration we describe adding the lower bound cut in the root node of our 
small example. 

Imposing the lower bound cut c*x > 7. Assume that we have 
solved the relaxed RMP in the root node and instead of branching, we 
impose the lower bound cut on the X structure, see Table 1.4. Note 
that this cut would not have helped in the RMP since z = c^x — 7 al
ready holds. We start modifying the RMP by removing variables A1246 
and Ai256 as their cost is smaller than 7. In iteration BB0.6, for the 
re-optimized RMP A13256 = 1 is optimal at cost 15; it corresponds to a 
feasible path of duration 10. UB is updated to 15 and the dual multi
pliers are TTQ == 15 and TTI = 0. The X structure is modified by adding 
constraint c^x > 7. Path 13246 is generated with reduced cost —2, cost 
13, and duration 13. The new lower bound is 15 — 2 = 13. On the down
side of this significant improvement is the fact that we have destroyed 
the pure network structure of the subproblem which we have to solve as 
an integer program now. We may pass along with this circumstance if 
it pays back a better bound. 

We re-optimize the RMP in iteration BB0.7 with the added variable 
Ai3246- This variable is optimal at value 1 with cost and duration equal 
to 13. Since this variable corresponds to a feasible path, it induces a 
better upper bound which is equal to the lower bound: Optimality is 
proven. There is no need to solve the subproblem. 

Note that using the dynamically adapted lower bound cut right from 
the start has an impact on the solution process. For example, the first 
generated path 1246 would be eliminated in iteration BB0.3 since the 
lower bound reaches 6.6, and path 1256 is never generated. Additionally 
adding the upper bound cut has a similar eff'ect. 

Acceleration strategies. Often acceleration techniques are key 
elements for the viability of the column generation approach. Without 
them, it would have been almost impossible to obtain quality solutions 
to various apphcations, in a reasonable amount of computation time. 
We sketch here only some strategies, see e.g., Desaulniers et al. (2001) 
for much more. 
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The most widely used strategy is to return to the RMP many neg
ative reduced cost columns in each iteration. This generally decreases 
the number of column generation iterations, and is particularly easy 
when the subproblem is solved by dynamic programming. When the 
number of variables in the RMP becomes too large, non-basic columns 
with current reduced cost exceeding a given threshold may be removed. 
Accelerating the pricing algorithm itself usually yields most significant 
speed-ups. Instead of investing in a most negative reduced cost column, 
any variable with negative reduced cost suffices. Often, such a column 
can be obtained heuristically or from a pool of columns containing not 
yet used columns from previous calls to the subproblem. In the case of 
many subproblems, it is often beneficial to consider only few of them 
each time the pricing problem is called. This is the well-known partial 
pricing. Finally, in order to reduce the tailing off behavior of column gen
eration, a heuristic rule can be devised to prematurely stop the linear 
relaxation solution process, for example, when the value of the objective 
function does not improve sufficiently in a given number of iterations. 
In this case, the approximate LP solution does not necessarily provide a 
lower bound but using the current dual multipliers, a lower bound can 
still be computed. 

With a careful use of these ideas one may confine oneself with a non-
optimal solution in favor of being able to solve much larger problems. 
This turns column generation into optimization based heuristics which 
may be used for comparison with other methods for a given class of 
problems. 

3. A dual point of view 
The dual program of the RMP is a relaxation of the dual of the master 

problem, since constraints are omitted. Viewing column generation as 
row generation in the dual, it is a special case of Kelley'scutting plane 
method from 1961. Recently, this dual perspective attracted consid
erable attention and we will see that it provides us with several key 
insights. Observe that the generation process as well as the stopping 
criteria are driven entirely by the dual multipliers. 

3.1 Lagrangian relaxation 
A practically often used dual approach to solving (1.24) is Lagrangian 

relaxation^ see Geoffrion (1974). PenaHzing the violation of Ax > b via 
Lagrangian multiphers TT > 0 in the objective function results in the 
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Lagrangian subproblem relative to constraint set Ax > b 

L(7r) ~ minc^x - n^Ax - b). (1.40) 

Since L(7r) < min{c^x - 7r^(Ax - b) | Ax > b ,x G X} < ^*, L(7r) is a 
lower bound on z'^. The best such bound on z'^ is provided by solving 
the Lagrangian dual problem 

£ : -maxL(7 r ) . (1.41) 
7r>o 

Note that (1.41) is a problem in the dual space while (1.40) is a problem 
in X. The Lagrangian function I/(7r), TT > 0 is the lower envelope of 
a family of functions linear in TT, and therefore is a concave function 
of TT. It is piecewise linear with breakpoints where the optimal solu
tion of Z/(7r) is not unique. In particular, L{7r) is not differentiable, but 
only sub-differentiable. The most popular, since very easy to implement, 
choice to obtain optimal or near optimal multipliers are subgradient algo
rithms. However, let us describe an alternative computation method, see 
Nemhauser and Wolsey (1988). We know that replacing X by conv(X) 
in (1.24) does not change z'*' and this will enable us to write (1.41) as a 
linear program. 

When X = 0 , which may happen during branch-and-bound, then 
C = oo. Otherwise, given some multipliers TT, the Lagrangian bound is 

J —00 if (c^ - 7r^A)xr < 0 for some r e R 

1 ĉ Xp — 7T^{Axp — b) for some p Q P otherwise. 

Since we assumed z* to be finite, we avoid unboundedness by writing 
(1.41) as 

maxminc^Xü — Tv^iAxr, — h) such that (c^ - 7T^A)xr > 0, Vr G R. 
7r>o peP ^ ^ ^ ^ 

or as a linear program with many constraints 

C — max TTo 

subject to7r^{Axp — h) + TTQ < c*Xp, p e P 

TT^Axr < c^Xr, r e R 

7 r > 0 . 

(1.42) 

The dual of (1.42) reads as the linear relaxation of the master problem 
(1.28)-(1.33): 

£ = min y ^ ĉ XpAp -f- Y^ c^x^A^ (1-43) 
peP TGR 
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subject to V^ AxpXp + 2_\ AxrXr > b Y^ Ap (1-44) 
peP reR peP 

Y^Xp = l (1.45) 
peP 

A > 0. (1.46) 

Observe that for a given vector n of multipliers and a constant TTQ, 

L(7r) = (TT̂ b + TTo) + min (c^ - 7T^Ä)X -7TO = Z + C^, 
xGconv(X) 

that is, each time the RMP is solved during the Dantzig-Wolfe decompo
sition, the computed lower bound in (1.35) is the same as the Lagrangian 
bound, that is, for optimal x and n we have z* = c^x = L{7r). 

When we apply Dantzig-Wolfe decomposition to (1.24) we satisfy com
plementary slackness conditions, we have x G conv(X), and we satisfy 
Ax > b. Therefore only the integrality of x remains to be checked. The 
situation is different for subgradient algorithms. Given optimal multi
pliers TV for (1.41), we can solve (1.40) which ensures that the solution, 
denoted Xyr, is (integer) feasible for X and TT^{AXJ^ — b) ==0. Still, 
we have to check whether the relaxed constraints are satisfied, that is, 
AXTJ; > b to prove optimahty. If this condition is violated, we have to re
cover optimality of a primal-dual pair (x, TT) by branch-and-bound. For 
many applications, one is able to slightly modify infeasible solutions ob
tained from the Lagrangian subproblems with only a small degradation 
of the objective value. Of course these are only approximate solutions 
to the original problem. We only remark that there are more advanced 
(non-linear) alternatives to solve the Lagrangian dual like the bundle 
method (Hiriart-Urruty and Lemarechal, 1993) based on quadratic pro
gramming, and the analytic center cutting plane method (Goffin and 
Vial, 1999), an interior point solution approach. However, the perfor
mance of these methods is still to be evaluated in the context of integer 
programming. 

3.2 Dual restriction/Primal relaxation 
Linear programming column generation remained "as is" for a long 

time. Recently, the dual point of view prepared the ground for technical 
advances. 

Structural dual information. Consider a master problem and its 
dual and assume both are feasible and bounded. In some situations we 
may have additional knowledge about an optimal dual solution which 
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we may express as additional valid inequalities F^n < f in the dual. To 
be more precise, we would like to add inequalities which are satisfied by 
at least one optimal dual solution. Such valid inequalities correspond 
to additional primal variables y > 0 of cost f that are not present in 
the original master problem. From the primal perspective, we therefore 
obtain a relaxation. Devising such dual-optimal inequalities requires (but 
also exploits) a specific problem knowledge. This has been successfully 
applied to the one-dimensional cutting stock problem, see Valerio de 
Carvalho (2003); Ben Amor et al. (2003). 

Oscillation. It is an important observation that the dual variable 
values do not develop smoothly but they very much oscillate during 
column generation. In the first iterations, the RMP contains too few 
columns to provide any useful dual information, in turn resulting in non 
useful variables to be added. Initially, often the penalty cost of artificial 
variables guide the values of dual multipliers (calls this the heading-in 
effect Vanderbeck, 2004). One observes that the variables of an optimal 
master problem solution are generated in the last iterations of the process 
when dual variables finally come close to their respective optimal values. 
Understandably, dual oscillation has been identified as a major efficiency 
issue. One way to control this behavior is to impose lower and upper 
bounds, that is, we constrain the vector of dual variables to lie "in a box" 
around its current value. As a result, the RMP is modified by adding 
slack and surplus variables in the corresponding constraints. After re-
optimization of the new RMP, if the new dual optimum is attained on 
the boundary of the box, we have a direction towards which the box 
should be relocated. Otherwise, the optimum is attained in the box's 
interior, producing the global optimum. This is the principle of the 
Boxstep method (Marsten, 1975; Marsten et al., 1975). 

Stabilization. Stabilized column generation (see du Merle et a l , 
1999; Ben Amor and Desrosiers, 2003) offers more ffexibility for control-
hng the duals. Again, the dual solution TT is restricted to stay in a box, 
however, the box may be left at a certain penalty cost. This penalty 
may be a piecewise linear function. The size of the box and the penalty 
are updated dynamically so as to make greatest use of the latest avail
able information. With intent to reduce the dual variables' variation, 
select a small box containing the (in the beginning estimated) current 
dual solution, and solve the modified master problem. Componentwise, 
if the new dual solution lies in the box, reduce its width and increase 
the penalty. Otherwise, enlarge the box and decrease the penalty. This 
allows for fresh dual solutions when the estimate was bad. The update 
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could be performed in each iteration, or alternatively, each time a dual 
solution of currently best quality is obtained. 

3.3 Dual aspects of our shortest path example 
Optimal primal solutions. Assume that we penahze the violation 
of resource constraint (1.5) via the objective function with the single 
multiplier TTI < 0 which we determine using a subgradient method. Its 
optimal value is TTI — —2, as we know from solving the primal master 
problem by column generation. The aim now is to find an optimal integer 
solution X to our original problem. From the Lagrangian subproblem 
with TTi we get L[—2) = 7 and generate either the infeasible path 1256 
of cost 5 and duration 15, or the feasible path 13256 of cost 15 and 
duration 10. The important issue now, left out in textbooks, is how to 
perform branch-and-bound in that context? 

Assume that we generated path 1256. A possible strategy to start the 
branch-and-bound search tree is to introduce cut X12+X25+X56 < 2 in the 
original formulation (1.1)-(1.6), and then either incorporate it in X or 
relax it (and penalize its violation) in the objective function via a second 
multipher. The first alternative prevents the generation of path 1256 for 
any value of TTI. However, we need to re-compute its optimal value 
according to the modified X structure, i.e., TT̂  — —1.5. In this small 
example, a simple way to get this value is to solve the linear relaxation 
of the full master problem excluding the discarded path. Solving the 
new subproblem results in an improved lower bound L(—1.5) = 9, and 
the generated path 13256 of cost 15 and duration 10. This path is 
feasible but suboptimal. In fact, this solution x is integer, satisfies the 
path constraints but does not satisfy complementary slackness for the 
resource constraint. That is, 7ri(^/^ •^^^t^jrr^j —14) = —1.5(10—14) 7̂  0. 
The second cut 0:13 + X32 + X25 + X^Q < 3 in the X structure results in 
TTi = —2, an improved lower bound of L{—2) = 11, and the generated 
path 1246 of cost 3 and duration 18. This path is infeasible, and adding 
the third cut X12 + 0:24 + X^Q < 2 in the subproblem X gives us the 
optimal solution, that is, TTI = 0, L(0) = 13 with the generated path 
13245 of cost 13 and duration 13. 

Alternatively, we could have penahzed the cuts via the objective func
tion which would not have destroyed the subproblem structure. We en
courage the reader to find the optimal solution this way, making use of 
any kind of branching and cutting decisions that can be defined on the 
X variables. 

A box method. It is worthwhile to point out that a good deal of 
the operations research literature is about Lagrangian relaxation. We 
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can steal ideas there about how to decompose problems and use them 
in column generation algorithms (see Guignard, 2004). In fact, the com
plementary availabihty of both, primal and dual ideas, brings us in a 
strong position which e.g., motivates the following. Given optimal mul
tipliers TT obtained by a subgradient algorithm, one can use very small 
boxes around these in order to rapidly derive an optimal primal solu
tion X on which branching and cutting decisions are applied. The dual 
information is incorporated in the primal RMP in the form of initial 
columns together with the columns corresponding to the generated sub-
gradients. This gives us the opportunity to initiate column generation 
with a solution which intuitively bears both, relevant primal and dual 
information. 

Table 1.5. A box method in the root node with —2.1 < TTI < —1.9. 

Iteration Master Solution z TTQ 
BoxBBO.l yo = 1,S2 = 14 73.4 100.0 
BoxBBO.2 Ai256 = 1,51 = 1 7.1 36.5 
BoxBBO.3 Ai3256 = 0.2, Ai256 = 0.8 7.0 35.0 
Arc flows: a;i2 = 0.8,a:i3 = 0:32 — 0.2,0:25 = X^Q 

TTl 

-1 .9 
-2 .1 
-2 .0 
= 1 

c* 
-66.5 

-0 .5 
0 

P Cp 
1256 5 
13256 15 

Up 

15 
10 

UB 
-
7.1 
7 

LB 
6.9 
6.6 
7 

Alternatively, we have applied a box method to solve the primal mas
ter problem by column generation, c.f. Table 1.5. We impose the box 
constraint —2.1<7ri<—1.9. At start, the RMP contains the artificial 
variable yo in the convexity constraint, and surplus (51 with cost coeffi
cient 1.9) and slack (52 with cost coefficient 2.1) variables in the resource 
constraint. 

In the first iteration, denoted BoxBBO.l, the artificial variable yo = 1 
and the slack variable 52 = 14 constitute a solution. The current dual 
multiphers are TTQ = 100 and TTI = —1.9. Path 1256 is generated (cost 
5 and duration 15) and the lower bound already reaches 6.9. In the 
second iteration, A1256 = 1 and surplus si = 1 define an optimal solution 
to the RMP. This solution provides an upper bound of 7.1 and dual 
multiphers are TTQ = 36.5 and TTI = —2.1. Experimentation reveals that 
a smaller box around n = —2 results in a smaller optimality gap. The 
subproblem generates path 13256 (cost 15 and duration 10) and the 
lower bound decreases to 6.6. Solving the RMP in BoxBBO.3 gives us 
an optimal solution of the linear relaxation of the master problem. This 
can be verified in two ways: The previous lower bound values 6.9 and 
6.6, rounded up, equal the actual upper bound z = 7; and the reduced 
cost of the subproblem is zero. Hence, the solution process is completed 
in only three iterations! The box constraint has to be relaxed when 
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Table 1.6. Hyperplanes (lines) defined by the extreme points of X, i.e., by the indi
cated paths. 

p 1246 1256 12456 13246 13256 132456 1346 13456 1356 
line 3 -47r 5 - TT 14 13 + TT 15 + 47r 24 + 57r 16 - 37r 27 + TT 24 + 67r 

-4 - 3 - 2 - 1 

Lagrangiaii multiplier TT 

Figure L4- Lagrangian function L(7r). 

branch-and-bound starts but this does not require any re-optimization 
iteration. 

Geometric interpretation. Let us draw the Lagrangian function 
L(7r), for TT < 0, for our numerical example, where TT = TTI. Since the 
polytope X is bounded, there are no extreme rays and I/(7r) can be 
written in terms of the nine possible extreme points (paths). That is, 
L{TX) — miup^p Cp + (14 —tp)7r, where Cp and tp are the cost and duration 
of path p, respectively. Table 1.6 lists the hues (in general, hyperplanes) 
defined by p G P, with an intercept of Cp and a slope of 14 — tp. We have 
plotted these lines in Figure 1.4. 

Observe that for ix given, the line of smallest cost defines the value 
of function I/(7r). The Lagrangian function L(7r) is therefore the lower 
envelope of all lines and its topmost point corresponds to the value C of 
the Lagrangian dual problem. 

If one starts at TT — 0, the largest possible value is L(0) = 3, on the 
fine defined by path 1246. At that point the slope is negative (the fine 
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is defined by 3 — 47r) so that the next multipher should be found on 
the left to the current point. In Dantzig-Wolfe decomposition, we found 
7r(= TTi) = - 9 7 / 1 8 ^ - 5 . 4 . This result depends on big M : The exact 
value of the multiplier is (3 — M ) / 1 8 . For any large M , path 1356 is 
returned, and here, L(—97/18) — —25/3, a lesser lower bound on L(7r). 

The next multiplier is located where the two previous lines intersect, 
that is, where 3 - 47r = 24 + GTT for TT ^ - 2 . 1 . L ( -2 .1 ) = 6.6 for path 
13256 with an improvement on the lower bound. In the next iteration, 
the optimal multiplier value is at the intersection of the lines defined 
by paths 1246 and 13256, that is, 3 - 47r =- 15 + 47r for TT = - 1 . 5 . 
For that value, the Lagrangian function reaches 6.5 for path 1256. The 
final and optimal Lagrangian multiplier is at the intersection of the lines 
defined by paths 13256 and 1256, that is, 15 + 47r = 5 - TT for TT = —2 
and therefore L{—2) — 7. We can now see why the lower bound is not 
strictly increasing: The point associated with the Lagrangian multiplier 
moves from left to right, and the value of the Lagrangian function is 
determined by the lowest line which is hit. 

The Lagrangian point of view also teaches us why two of our methods 
are so successful: When we used the box method for solving the linear 
relaxation of the master problem by requiring that TT has to lie in the 
small interval [ -2 .1 , -1 .9] around the optimal value TT — —2, only two 
paths are sufficient to describe the lower envelope of the Lagrangian func
tion L['K), This explains the very fast convergence of this stabilization 
approach. 

Also, we previously added the cut c^x > 7 in the subproblem, when we 
were looking for an integer solution to our resource constrained shortest 
path problem. In Figure 1.4 this corresponds to removing the two lines 
with an intercept smaller than 7, that is, for paths 1246 and 1256. The 
maximum value of function L(7r) is now attained for TT = 0 and L(0) = 
13. 

4. On finding a good formulation 

Many vehicle routing and crew scheduling problems, but also many 
others, possess a multicommodity fiow problem as an underlying basic 
structure (see Desaulniers et al., 1998). Interestingly, Ford and Fulkerson 
(1958), suggested to solve this "problem of some importance in applica
tions" via a "specialized computing scheme that takes advantage of the 
structure": The birth of column generation which then inspired Dantzig 
and Wolfe (1960) to generalize the framework to a decomposition scheme 
for linear programs as presented in Section 2.1. Ford and Fulkerson had 
no idea "whether the method is practicable." In fact, at tha t time, it 
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was not. Not only because of the lack of powerful computers but mainly 
because (only) linear programming was used to attack integer programs: 
"That integers should result as the solution of the example is, of course, 
fortuitous" (Gilmore and Gomory, 1961). 

In this section we stress the importance (and the efforts) to find a 
''good" formulation which is amenable to column generation. Our ex
ample is the classical column generation application, see Ben Amor and 
Valerio de Carvalho (2004). Given a set of rolls of width L and integer 
demands n̂  for items of length £i^ i E I the aim of the cutting stock 
problem is to find patterns to cut the rolls to fulfill the demand while 
minimizing the number of used rolls. An item may appear more than 
once in a cutting pattern and a cutting pattern may be used more than 
once in a feasible solution. 

4.1 Gilmore and Gomory (1961, 1963) 

Let R be the set of all feasible cutting patterns. Let coefficient air 
denote how often item i G / is used in pattern r E R, Feasibility of r 
is expressed by the knapsack constraint Ylii^i^irU ^ L, The classical 
formulation of Gilmore and Gomory (1961, 1963) makes use of non-
negative integer variables: Â  reffects how often pattern r is cut in the 
solution. We are first interested in solving the linear relaxation of that 
formulation by column generation. Consider the following primal and 
dual linear master problems Pes and J^cs'? respectively: 

{Pes)-- ZreR^r 

L^r^R^^'^ "^ — ^^' ^ G i 
Ar > 0, reR 

{Des)' m^xJ^.^jTiiTTi 
J2iei^ir^i ^ 1 ' reR 

TTi > 0, i e I . 

For i E I^ let TT̂  denote the associated dual multiplier, and let Xi count 
the frequency item i is selected in a pattern. Negative reduced cost 
patterns are generated by solving 

min 1 -^^niXi = max^TT^X^ such that ^ 
iei iei iei 

This pricing subproblem is a knapsack problem and the coefficients of 
the generated columns are given by the value of variables x ,̂ i G / . 

Gilmore and Gomory (1961) showed that equality in the demand con
straints can be replaced by greater than or equal. Column generation is 
accelerated by this transformation: Dual variables TT̂ , i G / then assume 
only non-negative values and it is easily shown by contradiction that 
these dual non-negativity constraints are satisfied by all optimal solu
tions. Therefore they define a set of (simple) dual-optimal inequalities. 
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Although Pes is known to provide a strong lower bound on the opti
mal number of rolls, its solution can be fractional and one has to resort 
to branch-and-bound. In the literature one finds several tailored branch
ing strategies based on decisions made on the A variables, see Barnhart 
et al. (1998); Vanderbeck and Wolsey (1996). However, we have seen 
that branching rules with a potential for exploiting more structural in
formation can be devised when some compact formulation is available. 

4,2 Kantorovich (1939, 1960) 

From a technical point of view, the proposal by Gilmore and Gomory is 
a master problem and a pricing subproblem. For precisely this situation, 
Villeneuve et al. (2003) show that an equivalent compact formulation 
exists under the assumption that the sum of the variables of the master 
problem be bounded by an integer K, and that we have the possibility to 
also bound the domain of the subproblem. The variables and the domain 
of the subproblem are duphcated K, times, and the resulting formulation 
has a block diagonal structure with K. identical subproblems. Formally, 
when we start from Gilmore and Gomory's formulation, this yields the 
following formulation of the cutting stock problem. 

Given the dual multipliers TT̂ , i 6 / , the pricing subproblem can alter
natively be written as 

min xo - Y^TTiXi (1.47) 

subject to yj^2^i ^ L^o (1-48) 
iei 

xoG{0, l} (1.49) 

Xi G Z+i G / , (1.50) 

where XQ is a binary variable assuming value 1 if a roll is used and 0 
otherwise. When xo is set to 1, (1.50) is equivalent to solving a knapsack 
problem while if XQ = 0, then Xi = 0 for all i E I and this null solution 
corresponds to an empty pattern, i.e., a roll that is not cut. 

The constructive procedure to recover a compact formulation leads to 
the definition of a specific subproblem for each roll. Let K := { 1 , . . . , ẑ :} 
be a set of rolls of width L such that Y^^^^^i Â  < AC for some feasible so
lution A. Let x^ = (XQ, {xf)i^j)^k G K, be duplicates of the x variables, 
that binary variable assuming value 1 if roll k is used and 
0 otherwise, and xf, i G / is a non-negative integer variable counting 
how often item i is cut from roll k. The compact formulation reads as 
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follows: 

min ^ xl 
keK 

subject to y j xf >niiel 
keK 

^iix'l < Lx'^k e K 
iei 

a:ge{0,l}fceK 

x'l e Z+k e K, i e I, 

(1.51) 

(1.52) 

(1.53) 

(1.54) 

(1.55) 

which was proposed already by Kantorovich in 1939 (a translation of 
the Russian original report is Kantorovich (I960)). This formulation 
is known for the weakness of its linear relaxation. The value of the 
objective function is equal to Yli^j^i/L, Nevertheless, a Dantzig-Wolfe 
decomposition with (1.50) as an integer program pricing subproblem (in 
fact, K identical subproblems, which allows for further simplification), 
yields an extensive formulation the linear programming relaxation of 
which is equivalent to that of Pes- However, the variables of the compact 
formulation (1.55) are in a sense interchangeable, since the paper rolls 
are indistinguishable. One speaks oi problem symmetry which may entail 
considerable difficulties in branch-and-bound because of many similar 
and thus redundant subtrees in the search. 

4.3 Valerio de Carvalho (2002) 

Fortunately, the existence of a compact formulation in the ''reversed" 
Dantzig-Wolfe decomposition process by Villeneuve et al. (2003) does 
not mean uniqueness. There may exist alternative compact formulations 
that give rise to the same linear relaxation of an extensive formulation, 
and we exploit this freedom of choice. 

Valerio de Carvalho (2002) suggests a very clever original network-
based formulation for the cutting stock problem. Define the acyclic 
network G = (A ,̂ A) where A/" = { 0 , 1 , . . . , L} is the set of nodes and the 
set of arcs is given by A = {{u,v) e N x N \ v-u = ii,\/i e I}U{{u,v) \ 
u G A^\{L}}, see also Ben Amor and Valerio de Carvalho (2004). Arcs 
link every pair of consecutive nodes from 0 to L without covering any 
item. An item i E / is represented several times in the network by arcs 
of length V — u = £{, A path from the source 0 to the sink L encodes a 
feasible cutting pattern. 
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The proposed formulation of the cutting stock problem, which is 
pseudo-polynomial in size, reads as 

m i n 2; 

subject to ^ Xu^u-^e^ > ni 
(W,W+4)GA 

y ^ xo^v = z 
io,v)eA 

/ ^ Xuv ~ / ^ Xyu — U t' G {1 , . 

i,v)eA {v,u)eA 

Y^ XuL = Z 
iu,L)eA 

Xuv € Z^{u,v) e A, 

iel 

. . , L - 1 } 

(1.56) 

(1.57) 

(1.58) 

(1.59) 

(1.60) 

(1.61) 

Keeping constraints (1.57) in the master problem, the subproblem is X = 
{(x, 2:) satisfying (1.58)-(1.61)}. This set X represents flow conservation 
constraints with an unknown supply of z from the source and a matching 
demand at the sink. Given dual multipliers iVi^ i E I associated to the 
constraint (1.57), the subproblem is 

min z- V 7iiXu,u+£^' (1.62) 
1.58-1.61 ^ ^ ' ' 

(u,u+ii)eA 

Observe now that the solution (x, z) = (0,0) is the unique extreme point 
of X and that all other paths from the source to the sink are extreme 
rays. Such an extreme ray r E R is represented by a 0-1 flow which 
indicates whether an arc is used or not. An application of Dantzig-Wolfe 
decomposition to this formulation directly results in formulation Pcs^ 
the linear relaxation of the extensive reformulation (this explains our 
choice of writing down Pes in terms of extreme rays instead of extreme 
points). Formally, as the null vector is an extreme point, we should add 
one variable Ao associated to it in the master problem and the convexity 
constraint with only this variable. However, this empty pattern makes 
no difference in the optimal solution as its cost is 0. 

The pricing subproblem (1.62) is a shortest path problem defined on a 
network of pseudo-polynomial size, the solution of which is also that of a 
knapsack problem. Still this subproblem suffers from some symmetries 
since the same cutting pattern can be generated using various paths. 
Note that this subproblem possesses the integrality property although 
the previously presented one (1.50) does not. Both subproblems con
struct the same columns and Pes provides the same lower bound on the 
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value of an optimal integer solution. The point is that the integrality 
property of a pricing subproblem, or the absence of this property, has 
to be evaluated relative to its own compact formulation. In the present 
case, the linear relaxation of Kantorovich's formulation provides a lower 
bound that is weaker than that of Pcs-^ although it can be improved by 
solving the integer knapsack pricing subproblem (1.50). On the other 
hand, the linear relaxation of Valerio de Carvalho's formulation already 
provides the same lower bound as Pes- Using this original formulation, 
one can design branching and cutting decisions on the arc flow variables 
of network G to get an optimal integer solution. 

Let us mention that there are many important applications which 
have a natural formulation as set covering or set partitioning problems, 
without any decomposition. In such models it is usually the master 
problem itself which has to be solved in integers (Barnhart et al., 1998). 
Even though there is no explicit original formulation used, customized 
branching rules can often be interpreted as branching on variables of 
such a formulation. 

5, Further reading 
Even though column generation originates from linear programming, 

its strengths unfold in solving integer programming problems. The si
multaneous use of two concurrent formulations, compact and extensive, 
allows for a better understanding of the problem at hand and stimulates 
our inventiveness in what concerns for example branching rules. 

We have said only little about implementation issues, but there would 
be plenty to discuss. Every ingredient of the process deserves its own 
attention, see e.g., Desaulniers et al. (2001), who collect a wealth of 
acceleration ideas and share their experience. Clearly, an implementa
tion benefits from customization to a particular application. Still, it is 
our impression that an off'-the-shelf column generation software to solve 
large scale integer programs is in reach reasonably soon; the necessary 
building blocks are already available. A crucial part is to automatically 
detect how to "best" decompose a given original formulation, see Van-
derbeck (2004). This means in particular exploiting the absence of the 
subproblem's integrality property, if applicable, since this may reduce 
the integrality gap without negative consequences for the linear mas
ter program. Let us also remark that instead of a convexification of the 
subproblem's domain X (when bounded), one can explicitly represent all 
integer points in X via a discretization approach formulated by Vander-
beck (2000). The decomposition then leads to a master problem which 
itself has to be solved in integer variables. 
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In what regards new and important technical developments, in addi
tion to the stabihzation of dual variables already mentioned, one can find 
a dynamic row aggregation technique for set partitioning master prob
lems in Elhallaoui et al. (2003). This allows for a considerable reduction 
in size of the restricted master problem in each iteration. An interesting 
approach is also proposed by Valerio de Carvalho (1999) where variables 
and rows of the original formulation are dynamically generated from the 
solutions of the subproblem. This technique exploits the fact that the 
subproblem possesses the integrality property. For a presentation of this 
idea in the context of a multicommodity network flow problem we refer 
to Mamer and McBride (2000). 

This primer is based on our recent survey (Lübbecke and Desrosiers, 
2002), and a much more detailed presentation and over one hundred 
references can be found there. For those interested in the many column 
generation applications in practice, the survey articles in this book will 
serve the reader as entry points to the large body of literature. Last, but 
not least, we recommend the book by Lasdon (1970), also in its recent 
second edition, as an indispensable source for alternative methods of 
decomposition. 
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Chapter 2 

SHORTEST PATH PROBLEMS 
WITH RESOURCE CONSTRAINTS 

Stefan Irnich 
Guy Desaulniers 

Abstract In most vehicle routing and crew scheduling applications solved by col
umn generation, the subproblem corresponds to a shortest path problem 
with resource constraints (SPPRC) or one of its variants. 

This chapter proposes a classification and a generic formulation for 
the SPPRCs, briefly discusses complex modeling issues involving re
sources, and presents the most commonly used SPPRC solution meth
ods. First and foremost, it provides a comprehensive survey on the 
subject. 

!• Introduction 
For more than two decades, column generation (also known as branch-

and-price when embedded in a branch-and-bound framework) has been 
successful at solving a wide variety of vehicle routing and crew schedul
ing problems (see e.g. Desrosiers et al., 1995; Barnhart et ah, 1998; De
saulniers et a l , 1998), and most chapters in this book). In most of these 
applications, the master problem of the column generation method is a 
(possibly generalized) set partitioning or set covering problem with side 
constraints, where most of the variables, if not all, are associated with 
vehicle routes or crew schedules. These route and schedule variables are 
generated by one or several subproblems, each of them corresponding 
to a shortest path problem with resource constraints (SPPRC) or one of 
its variants. The SPPRC has contributed to the success of the column 
generation method for this class of problems for three main reasons. 
Firstly, through its resource constraints, it constitutes a flexible tool for 
modeling complex cost structures for an individual route or schedule, as 
well as a wide variety of rules that define the feasibility of a route or a 
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( 4 , 7 ) 

[ 9 , 1 5 ] 

( 1 2 , 2 ) ( 4 , 3 ) 

[ 8 , 1 2 ] 

Figure 2.1. A small SPPRC example 

schedule. Secondly, because it does not possess the integrality property 
(i.e., there may be a positive gap between its optimal value and that 
of its linear relaxation) as discussed in Desrosiers et al. (1984), the col
umn generation approach can derive tighter bounds than those obtained 
from the linear relaxation of arc-based formulations. Thirdly, there exist 
efficient algorithms at least for some important variants of the SPPRC. 

The SPPRC was introduced in the Ph.D dissertation of Desrochers 
(1986) as a subproblem of a bus driver scheduling problem. It consists 
of finding a shortest path among all paths that start from a source node, 
end at a sink node, and satisfy a set of constraints defined over a set of 
resources. A resource corresponds to a quantity, such as the time, the 
load picked-up by a vehicle, or the duration of a break in a work shift, 
that varies along a path according to functions, called resource exten
sion functions (REFs). A REF is defined for every arc in the network 
and every resource considered. It provides a lower bound on the value 
that the corresponding resource can take at the head node of the corre
sponding arc, given the values taken by all the resources at its tail node. 
The resource constraints are given as intervals, called resource windows, 
which restrict the values that can be taken by the resources at every 
node along a path. Such a constraint is defined for every node in the 
network and every resource considered. 

Figure 2.1 provides an SPPRC example that involves the resource 
time. The source and sink nodes are denoted by s and t, respectively. 
Each arc (i^j) bears a two-dimensional vector: The first component Uj 
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provides the travel time (duration) of using the arc, while the second 
Cij indicates the cost associated with it. Given a value Ti taken by the 
resource at a node i [Ti is said to be the visiting time at node i), the 
R E F for an arc (i, j ) is defined as fij{Ti) = Ti + tij^ i.e., it computes 
the [earliest) arrival time at node j when starting at node i at time T^. 
The resource window [ai,?)^] associated with each node i is specified in 
brackets beside it. It indicates at what time node i can be visited. If 
the arrival time of a path ending at a node i exceeds hi^ then this path 
is deemed infeasible. Otherwise, it is feasible even if its arrival time 
precedes ai since waiting at a node is allowed, that is, the visiting time 
at node i can be greater than the arrival time at this node. 

In the example of Figure 2.1, three paths link the source node s to 
the sink node t. The first path Pi — (5 ,1 , t ) , denoted by the sequence of 
nodes visited, is resource-feasible since it is possible to find visiting times 
along that path which satisfy all resource constraints. Indeed, setting 
Tg = 0 (the only feasible value at node 5), it is easy to see that the 
arrival times (Ti = 8 and T^ = 12) at nodes 1 and t provided by the 
appropriate REFs {fsi{Ts) and fuiTi)) are all feasible with respect to 
the resource windows. The second path P2 = (<5,2,t) is also resource-
feasible. However, waiting is needed at node 2 since the arrival time 
provided by /s2(0) = 5 is smaller than a^ — 9. In this case, the visiting 
time T2 can be set at 9, and the subsequent visiting time Tt at 11, 
respectively. Finally, the third path P3 = (5, 3, t) is not resource-feasible 
since, along that path, Tg == 0, T3 > /s3(0) — 12, and the earliest arrival 
time at node t is ht{^2) = 16. Hence, the resource window [9,15] at 
node t cannot be met. Since the cost of Pi (3-f-7 = 10) is smaller than the 
cost of P2 (5 + 6 = 11), the former path is optimal with respect to cost. 
However, path P2 has a smaller earliest arrival time at node t. If the 
network in Figure 2.1 were only a sub-network within a bigger network, 
then extending path P2 to a node could be feasible but extending Pi 
could be infeasible. 

This gives us a first glance at the core of SPPRC's difficulty. The 
SPPRC is very close to a multi-criteria problem. In the following we 
will consider both criteria, time and cost, as resources. Paths are un-
comparable when one path is better than a second path in one criterion 
and worse in another criterion. Resource constraints make it necessary 
to consider all uncomparable paths that arrive at a node, since resource 
constraints might forbid extending any subset of these paths but allow 
an extension of the others. 

The two-resource SPPRC, better known as the shortest path prob
lem with time windows (SPPTW), was first studied in Desrosiers et al. 
(1983, 1984). The resource cost is unconstrained while the resource time 
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is restricted by corresponding time windows. Desrochers (1986) general
ized the SPPTW to the case with several resources. Since then, several 
variants of the SPPRC have appeared in the literature. For instance, 
loachim et al. (1998) proposed the SPPTW with time dependent linear 
costs at the nodes and Dumas et ah (1991) the SPPTW with pickups 
and deliveries. 

The contribution of this chapter is three-fold. Firstly, it presents a 
classification of the SPPRC variants and provides a generic SPPRC for
mulation that includes all variants studied so far (Section 2). Secondly, 
it discusses non-trivial modeling issues for the SPPRC (Section 3). Fi
nally, it surveys the most important papers on this subject, namely, 
those introducing a new variant of the SPPRC (Section 2) or proposing 
an interesting methodological contribution (Section 4). 

2. Classification of the SPPRCs 
The intention of this section is to provide a generic formulation for a 

comprehensive class of shortest path problems with resource constraints 
presented in the literature so far. Variants of the SPPRC, which we con
sider, are extensions of the classical shortest path problem, where the 
cost is replaced by multi-dimensional resource vectors, which are accu
mulated along paths and constrained at intermediate nodes. Different 
types of SPPRCs can be classified by 

(i) the way in which resources are accumulated, leading to different 
definitions of resource feasible paths, 

(ii) the existence of additional path-structural constraints excluding 
specific paths, e.g., non-elementary paths, 

(iii) the objective, 

(iv) and the underlying network. 

We state all SPPRCs on a digraph G = {V,A), where V and A are 
non-empty sets of nodes and arcs, respectively. A path P — ( e i , . . . , e^) 
is a finite sequence of arcs (some arcs may occur more than once) where 
the head node of ê  G A is identical to the tail node of e^+i G A for 
alH = 1 , . . . ,p — 1, For the sake of convenience, we assume that G is 
simple so that a path can be written as P = ('̂ ô̂ '̂ i?»• • j'^p) with the 
understanding that (vi-i^Vi) G A holds for all i G { 1 , . . . ,p}. The length 
of this path is p. 
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2,1 Resource feasible pa ths 

The description of feasible paths provides a basis for the generic defi
nition of the SPPRC. In the following, we distinguish between feasibility 
w.r.t. resources and feasibility w.r.t. path-structural constraints. This 
section focuses on the first aspect while path-structural constraints are 
discussed in the next section. 

Resource constraints can be formulated by means of {minimal) re
source consumptions and resource intervals (e.g., the travel times tij and 
time windows [a ,̂ hi] in the SPPTW). Let R be the number of resources. 
A vector T -= ( r \ . . . , r ^ ) ' ^ G M^ is called a resource vector and its 
components resource variables (remark: x~^ denotes the transposed vec
tor to the vector x). T is said to be not greater than (i.e., dominates) 
5 = ( S \ . . . , 5^)"^ G M^ if the inequahty T < S' holds for all compo
nents i = 1 , . . . , i?. We denote this hy T < S. For two resource vectors a 
and h the interval [a, h] is defined as the set {T G M^: a <T <h}. 

Resource intervals, also called resource windows,, associated with a 
node i G y are denoted by [ai^^hi] with ai^^hi G M^, ai < hi. The 
changes in the resource consumptions associated with an arc {i^j) G 
A are given by a vector fij = {flA!^_i of so-called resource extension 
functions (REFs). A REF flj: R^ —> M depends on a resource vector 
Ti G M^, which corresponds to the resource consumption accumulated 
along a path from s to i, i.e., up to the tail node i of arc (i, j ) . Hence, 
the result fij{Ti) G M^ can be interpreted as a resource consumption 
accumulated along the path (5, . . . , i , j ) . "Classical" SPPRCs, hke the 
SPPTW presented in the introduction, only consider REFs of the form 

n^{T,) = Tl + t\^ (2.1) 

where t[- are constants associated with the arc (i, j ) . Classical REFs are 
separable by resources, i.e., there exist no interdependencies between 
different resources. The more general definition of REFs provides a 
powerful instrument for modeling practically relevant resource interde
pendencies. 

Instead of giving an implicit MlP-formulation for the SPPRC, we 
state the resource constraints by considering individual paths. The rea
son for this is that node repetitions within a path (which are allowed 
in our path definition) prohibit to model resource consumptions by in
dividual resource variables associated with a node. For a given path 
P = (fo, t 'l , . •., 'î p), one has to refer to the p+l different positions i = 
0 , 1 , . . . ,p. A path P is resource-feasible if there exist resource vectors 
Ti G [avi.by.] for all positions i == 0 , 1 , . . . ,p such that fv^,v^^l{Ti) < T^+i 
holds for ah i = 0 , . . . ,p — 1. T{P) is defined as the set of all feasible 
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resource vectors at the last node Vp oi P =• {VQ,VI, ... ,Vp), i.e., 

for a l H - : 0 , . . . , p - l } . (2.2) 

Let J-'{u^ v) be the set of all resource-feasible paths from a node n to a 
node V. Note that P e T{u, v) holds if and only if T{P) i=- 0 . 

2,2 Path-structural constraints 
Path-structural constraints can model further requirements concern

ing the feasibility of paths, which are not covered by resources. Such 
additional requirements might either be an integral part of a feasible 
path's definition or be implied by branching rules, which come up in 
the context of branch-and-price and require modifications of the pricing 
problem. Sometimes, these modifications cannot be handled by simply 
removing some arcs or nodes of the underlying network. In order to 
specify those constraints, we need some definitions. An elementary path 
is a path in which all nodes are pairwise different. Contrarily, a cycle is 
a path {vo^vi^,,, ^ Vp) of length p > 1 having VQ = Vp. We call any cycle 
of length less than or equal to A: a k-cycle. 

The following SPPRC variants have been proposed in the literature 
and defined according to path-structural constraints. Let Q be the set 
of all paths feasible with respect to these constraints. 

For the elementary SPPRC (ESPPRC), Q = {elementary paths}. On 
acyclic graphs, all paths are elementary so that SPPRC and ESPPRC 
coincide. In general (i.e., for networks with cycles), the ESPPRC has 
been identified to be ATP-hard in the strong sense (Dror, 1994) and has 
been first studied and solved by Beasley and Christofides (1989). In 
many vehicle routing applications the pricing problem is an ESPPRC. 
Feillet et al. (2004); Chabrier (2002); Rousseau et al. (2003) solved ESP
PRC pricing problems in the context of the vehicle routing problem 
with time windows (VRPTW). These approaches are known for their 
very tight lower bounds computed by the LP-relaxation of the VRPTW 
set-partitioning master program. 

For the SPPRC, Q = {all paths}, that is, no path-structural con
straints are imposed. The SPPRC occurs as a subproblem in numerous 
vehicle and crew scheduhng problems which are most of the time formu
lated over acyclic time-space networks (see Desrosiers et al., 1984; Vance 
et al., 1997; Desaulniers et al., 1998; Gamache et al., 1999)). 

Since the ESPPRC is very hard to solve (in some cases it is pro
hibitively hard), classical solution approaches for vehicle routing prob
lems which are formulated over cyclic graphs are also based on the corre-
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spending non-elementary SPPRC, because it can be solved using pseudo-
polynomial algorithms (see Section 4.1). Influential contributions which 
rely on this idea were Desrosiers et al. (1986); Desrochers et al. (1992); 
Desrosiers et al. (1995). However, while solving the enclosing problem by 
branch-and-price, this subproblem relaxation sometimes leads to weak 
lower bounds and possibly impractical large branch-and-bound trees. 

For the SPPRC with k-cycle elimination (SPPRC-fc-cyc), 
Q = {/c-cycle-free paths}. A compromise between solving the ESPPRC 
and the SPPRC is to forbid cycles of small length. Several examples of 
VRPTW instances, e.g., taken from the benchmark library of Solomon 
(1987), show that cycle elimination for small values of k can substan
tially improve the master program lower bounds. This justifies an ad
ditional effort to eliminate cycles (compared to solving a pure SPPRC) 
while the corresponding ESPPRC is practically impossible to solve. The 
case k — 2 was first analyzed by Houck et al. (1980) and used in the 
VRPTW context by Kolen et al. (1987); Desrochers et al. (1992). Irnich 
and Villeneuve (2003) recently proposed an algorithm for the general 
case of /c > 2. 

For the SPPRC with forbidden paths (SPPRCFP), g = {all paths} \ 
f̂orbidden where f̂orbidden IS a set of forbidden paths. This set is implicitly 

defined as the set of all paths that contain at least one element of a 
finite set of pre-specified sub-paths. Villeneuve and Desaulniers (2000) 
introduced this type of SPPRC which occurs two-fold in the context 
of branch-and-price. First, in some applications one wants to branch 
so that a route or schedule is excluded from the (restricted) master 
program (see Desaulniers et al., 2002b; Arunapuram et a l , 2003). This 
makes it necessary to also exclude the corresponding path from being 
generated by the SPPRC pricing procedure. Second, some constraints 
might be impossible or very hard to model with resources. Instead of 
considering them directly, one iteratively solves relaxed SPPRCs to get 
tentative solutions, which are excluded from the SPPRC by means of 
forbidden paths as long as not all constraints are respected. Examples 
of hard-to-model constraints stem from aircrew scheduling applications, 
see e.g. Fahle et al. (2002). 

Two additional types of constraints, precedence constraints and pair
ing constraints^ are important in the pickup and delivery context. Given 
two nodes i, j G F , a path P fulfills the (i, j)-pairing constraint if node i 
occurs as often as node j in P (possibly P contains none of them). 
A path P fulfills the (i, j)-precedence constraint if P contains no sub-
path connecting j with i. The SPPRC with pickups and deliveries (SP-
PRCPD) is a subproblem of the vehicle routing problem with time win
dows, pickups and deliveries (see Dumas et al., 1991; Desaulniers et al., 
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2002a). In this problem, transportation requests i G / must be satisfied 
where a request requires a pickup at an origin i'^ and a dehvery at a des
tination i~, Consequently, the SPPRCPD contains an (i"^,i~)-pairing 
and an (i+, i~)-precedence constraint for each request i G / . 

In a branch-and-price context, each node and each arc represent a 
(possibly empty) sequence of tasks, where a task (e.g., a flight leg, a 
train segment, or a crew pairing) is associated with a set partitioning 
constraint in the master problem. A task can be part of several sequences 
and can therefore be represented by several nodes and arcs. For any path 
P = iy^^vi^,,. ^Vp) there is a (uniquely defined) task sequence W(P) 
given by the concatenation of the sequences of tasks of t'o, ('̂ o '̂̂ i)) '^b 
(t;i, 1^2),..., (t'p-i, fp), Vp, All of the above path-structural constraints 
might also be formulated w.r.t. the task sequences. For instance, the 
task-ESPPRC considers only paths P for which W (P) does not contain 
task repetitions or the task-SPPRC-2-cyc does not allow paths having a 
2-cyclein W{P), 

Several branching rules proposed in the hterature impose additional 
constraints on how two given tasks have to be covered by the paths. The 
branching rules of Ryan and Foster (1981) decide whether two tasks i 
and j are covered by the same path or by different paths. Hence, one 
branch is simply an (i, j)-pairing constraint. The other branch is an 
(i^jy anti-pairing constraint which forbids tasks i and j to be together 
in W{P), i.e., ^ = {P: i ^ W[P) or j ^ W{P)], Similarly, the inter
task constraints (introduced in Desrochers and Soumis (1989)) decide 
whether two given tasks i and j are performed consecutively or not. In 
this case, an {i^j)-follower constraint guarantees on one branch that, for 
each path P E. Q^ W(^P) contains task i followed by task j or none of 
these tasks. On the other branch, an {i^ j)-non-follower constraint only 
allows paths P G ̂  for which W[P) does not contain task i followed by 
task j . 

Summing up the definitions of resource feasibihty and path-structural 
constraints, we know that the set J^ = [J^^Y{J^{S^V) f) Q) contains all 
feasible paths to a one-to-all SPPRC problem. 

2.3 Objectives and generic SPPRC formulation 
The objective of the SPPRC is formulated by means of a resource 

vector at the last nodes of feasible paths. Recall that in general, for 
a single path P E T there exist many feasible choices for the resource 
vectors T G T{P). Problems whose objective depends only on a sin
gle resource, called cost resource, are normally one-to-one shortest path 
problems with a source node s and a sink node t. They can be formulated 



2 Shortest Path Problems with Resource Constraints 41 

as follows: 

( min T^'^A . (2.3) 
\Ter(p) J 

mm 
PeT{s,t)ng \Ter(p) 

Computing the minimum cost of a path P = {VQ^ . ̂ . ̂ Vp) requires the de
termination of feasible resource vectors To,. •., Tp along the path. Simi
larly to the feasibility problem T{P) ^ 0 discussed above, this can be a 
hard problem. In contexts with time windows, Dumas et al. (1990) opti
mized the cost of a given path for time-dependent convex inconvenience 
costs at all nodes. 

A much more general formulation of the SPPRC is based on consider
ing the set of Pareto-optimal resource vectors. For a given set M C M^, 
an element m € M is Pareto-optimal ii x ^ m holds for all x G M, x 7̂  
m. It means that none of the cones x^ for x G M, x 7̂  m contain a 
Pareto-optimal point m, where a cone T"- is defined as {5 G M^: 5 > 
T}. For t; G y , let PO{v) be the set of Pareto-optimal vectors in 
UpGJ^(s,i;)na^(^)* ^^^ SPPRC can be formulated as follows. 

Generic SPPRC: Find for each node v eV and for each 
Pareto-optimal resource vector T G PO{v) one feasible (rep
resentative) s-v-pdith P G J^{s^ v) DQ having T G T{P), 

For the sake of convenience, we call the representative path P a Pareto-
optimal path. Since ah solutions to a problem xninmeM Oi^ • m for a 
non-negative weight vector a G R:^, a / 0 are Pareto-optimal points 
of M, the generic SPPRC formulation also solves all problems of the 
form 

min f min a^T] (2.4) 
PeHs,t)nG \Ter{P) ) 

for any weight vector a G M^. Problem (2.3) is a special case of (2.4). 

2A Properties of r{P) 
We will now study properties of the set T(P) for a fixed path P — 

(i;o, f 1 , . . . , t'p) under different assumptions concerning the REFs. Know
ing T[P^ and its structure is essential to (efficiently) resolve the following 
two basic tasks: 

• Given a path P . Is P resource feasible, i.e., P G T{y{)^Vy) or not? 

• Given the prefix P' — (t'o, • . . , '^p-i) of P = (t'o, • . . , 'Up_i, i;p), com
pute r ( P ) using r ( P O . 

Furthermore, compact implicit representations of T(P) are substantial 
for checking if a path P (or any of its extensions) is or might be a Pareto-
optimal path. For instance, efficient dominance checks in the context of 
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dynamic programming are based on representing T(P) by either using 
a single Pareto-optimal point T{P) or a function gp{') to describe the 
set of Pareto-optimal points in T{P)^ see Section 4.1. 

Before discussing different cases, we state the following universal prop
erty: I fTG r ( P ) thenr^n[a^p,6^J C r ( P ) , i.e., the set r ( P ) contains 
the cone, restricted to the resource interval, generated by each point in 
this set. 

Classical SPPRC and non-decreasing REFs, In the classical 
SPPRC the set T{P) has a simple representation as a cone restricted by 
[^vp-) bvp]' Let Pi — (t'o^ - • 5 ^i)^ i — 0 , . . . ,p be the prefix of P of length i. 
Each set T(P^) has a unique cone-defining element T{Pi) G T{Pi) such 
that 7{Pi) = T{PiY n [a^.^hy.] holds. The resource vector T{Pi) can be 
recursively computed by 

r(Po) = â o and 

T{Pi) = max{a^.,/^._^,^.(r(Pi_i))} for all i G { l , . . . , p } . 

The same is true when all REFs are non-decreasing functions, meaning 
that each flATl^Tf^... ,T^^) is a non-decreasing function in one vari
able T^^ when the other R—1 components are kept fixed. Under these 
assumptions T{P) is still a cone. Formula (2.5) computes T{P) with 
T{PY n [a^ ,̂ 6^J - r{P) efficiently. 

As a consequence, the generic SPPRC formulation can be simplified 
as follows. 

Generic SPPRC vv̂ ith non-decreasing REFs: Find for 
each node v ^ V one feasible representative s-t'-path P G 
J^{s, v)r\g for which T{P) is Pareto-optimal in {T{Q): Q G 

Formulation (2.4) can then be re-written as minp^jr(^gi)^ga^T{P). 

Linear REFs. If the REFs are hnear but not necessarily non-
decreasing, it is easy to see that T{P) is a bounded polyhedron. The 
description of the polyhedron T(P) (e.g., by its extreme points) can get 
more and more complicated the longer the path P is (see loachim et al., 
1998) and Section 4.1.2). 

For instance, consider the path P = (1,2), R — 2 resources, resource 
intervals [ai,6i] = [0,1]^ and [a^M] = [0,1] x [-1,1] and the REF 
fi2{Tl,Tl) = \TI,T1 ~ Tl), It is easy to see that T{P) is {{Tl,T^) G 
[0,1] X [-1,1]: r | > -Tl). There exists no element T G T{P) such that 
T{P) C r^ holds. Note that all vectors T = (A, -A) for A G [0,1] are 
Pareto-optimal points of T[P), 



2 Shortest Path Problems with Resource Constraints 43 

General REFs. For arbitrary REFs, checking whether P e J^{u, v) 
or equivalently T(P) ^- 0 holds or not can be an A/'P-hard prob
lem. A known A/'P-complete problem is the binary knapsack lower 
bound feasibihty problem (KLBFP) (see Nemhauser and Wolsey, 1988): 
Does there exist a feasible solution with profit at least lb for a given 
lower bound lb to the knapsack problem max^^^^p^Xi; Yl^=i ^i^i ^ C'̂  
X G {0,1}^? One can easily transform this decision problem into an SP-
PRC with three resources: Negative profit, weight, and decision. Let 
G = {V^A) be a line graph with nodes V = {0 ,1 , . . . ,n} and arcs 
A - {(0,1), (1,2), (2 ,3) , . . . , ( n - 1 , n)}. Let [ao, 6o] = [0,0] x [0, C] x [0,1], 
[a^, b^] = [-00, -lb] X [0, C] X [0,1], and [a ,̂ bi] = [-oo, 0] x [0, C] x [0,1] be 
the resource windows at all nodes i G F \ {0, n}. Define the REFs to be 
fi-iAv^ u», x) = (p, w, 0) for a; = 0, and /z-i,i(p, w, x) = {p-pi,w + Wi, 0) 
for X j^O, The answer to the KLBFP is ''yes" if and only if T{P) j^ 0 
for the path P == ( 0 , 1 , . . . , n). 

2*5 Underlying network 

The SPPRCs can also be differentiated according to whether or not 
their underlying network is acyclic or cyclic. The existence of cycles 
implies that there exist infinitely many different paths in G (not neces
sarily feasible w.r.t. resource and path-structural constraints). Thus, the 
SPPRC might be unbounded. In the following, we exclude these cases 
from our consideration. 

The following discretization of G = (V, A) formally makes the underly
ing network acyclic. If there exists at least one non-decreasing resource r 
(i.e., flj{Ti) -Tl >0, or t^^ > 0 in the classical SPPRC with /[̂ -(T )̂ = 
T[ +1[- for all (i, j ) G A, e.g., the resource time in many apphcations) it 
is possible to transform {V^ A) into an acyclic time-space network. Each 
node t' G V̂  is replaced by several copies copy^(f),... ,copy^(f) corre
sponding to a time discretization of the resource interval for r. Nev
ertheless, this transformation is only a formal device, e.g., used in the 
unified model of Desaulniers et al. (1998). Cycles of the original network 
correspond with paths visiting two or more copies of the same original 
node. Solving the ESPPRC in G is, therefore, equivalent to solving an 
SPPRC with task-cycle eUmination in the discretized network. 

3, Modeling issues 

The modeling of standard constraints like capacity constraints, path 
length restrictions and time windows is obvious from the introduction. 
Other simple examples can be found in Vance et al. (1997); Gamache 
et al. (1999); Desaulniers et al. (1999). This section wih, therefore, focus 
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Table 2.L Resource intervals and REFs for task-related constraints. 
Constraint 

(/c,£)-pairing 

(/c, ^)-anti-pairing 

(/c,^)-precedence 

(/c,^)-pairing 
and precedence 

(/c,^)-foIlower 
and 
(/c, ^)-non-follower 

Type Resource interval 

for alH e y 

R= 

R^ 

R^ 

R=^ 

Ä^ 

[0,0] for i = s,t 
[-M,M] ioxieV\{s,t} 

[0,0] for i :== s 
[0, M] for i = k, [-M, 0] for i = 
[-M.,M] for ieV\{s,k,£} 

[0,1 - 6ik] 

[0,0] for i=^ s,k,t 

[ -1 , -1] for z = ^ 
[-1,1] for a lHG V\{s,t,k,£} 

[l{W{s)),l{W{s))\ ioYi = s 
[0, TV] for z e F \ {s} 

REF 
flj(Ti) 
for all (ij) G A 

Ti + 6ik - (5i£ 

77 + Sik - Sie 
i 

T[ + 6u 

Ti + <5i£ — oik 

(see equation (2.6)) 

on non-trivial modeling issues, provide examples and give references to 
some relevant literature. 

In some applications, one wants to model exact resource consumptions 
instead of minimal resource consumptions. For the SPPTW it means 
that waiting is not allowed so that the arrival time at each node is 
always identical to the visiting time. In general, the inequahties in (2.2) 
defining a resource-feasible path P = {VQ^ t'l, • • •, t'p) have to be replaced 
by T[^i = fy^^y (Ti),By R^ (resp. R-) we denote the resources which 
force an equality (resp. inequality) in (2.2). However, as suggested in 
Gamache et al. (1998), a resource r 6 R^ might equivalently be replaced 
by two resources ri ,r2 € R- where the resource intervals and REFs 
for ri are identical to those for r while those for r2 are [tt[^,6[^] = 
[-bl-al] and ^^T, ) = -fl^if^,... ,fr\-ir\f[+\.. .,fi') (the 

symbol refers to the case with the ri and r2 resources). 
Section 2.2 has provided several examples of path-structural con

straints. Most of them can be modeled with additional resources (one 
for each constraint) in a standard SPPRC. For the ESPPRC, Beasley 
and Christofides (1989) proposed to add to R- an additional resource 
ry for each node v G V. (For a compact notation, we use the Kronecker-
symbol with Sij ~ 1 Hi = j , and 6ij = 0, otherwise.) The resource 
intervals are defined as |a^", 6[''] = [0,1 - 6si] for all i e V and the REFs 
by fljm) = Tl^ + 5iy for all (i, j ) G A,^ 

Table 2.1 gives an overview of how (anti-)pairing constraints, prece
dence constraints, and (non-)follower constraints can be modeled by 
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means of resources. In this table, M is a sufficiently large positive in
teger. For the first group (pairing, anti-pairing, and precedence) we 
assume that a single task is associated with each node. Note that the 
modeling proposed for the (A;,^)-pairing and precedence constraints is 
equivalent to the set component proposed by Dumas et al. (1991) for 
the SPPRCPD. 

If a single task is associated with each node, follower and non-follower 
constraints simply imply the removal of some of the arcs (see e.g. 
Desrochers and Soumis (1989)). Therefore, we present these constraints 
for the case that sequences of tasks are associated with arcs and nodes. 
We assume that tasks are numbered from 1 to Â ,̂ the last task of any 
non-empty task sequence W{') is denoted by l{W{')), For empty task 
sequences one defines/(VF(0)) - 0 . 

All follower and non-follower constraints can be modeled with a single 
resource r, where T[ G { 1 , . . . , N} means that the last task of the task 
sequence of the current path (5 , . . . ^Vi) was the one with number T[, 
T[ = 0 means that the current path has an empty task sequence. The 
definition of the corresponding REFs is: 

T[ iiW{ii,j),j)=0 

l{W{{i,j),j)) iiT[^O,W{{i,j),j)^0, 

and (7;^W^((^,i),j)) feasible 

l{W{{i,j),j)) iiT[ = O,W{{i,j),j)^0, 

and W[{i^j)^j) feasible 

— 1 otherwise. 

The strength of the non-classical REF concept is that it allows mul
tiple resources to depend on each other. In several applications such as 
the aircrew pairing problem Vance et al. (1997), the cost of a path de
pends on several resources. A second example of non-trivial dependent 
REFs stems from the capacity constraints of the VRPTW with simulta
neous pickups and deliveries^ see Min (1989); Desaulniers et al. (1998). 
Here, each customer i eV\{s^t} has demanded for delivery qf and for 
pickup g?. A vehicle of capacity Q starts at the depot s with the entire 
delivery demand of the tour loaded. It services each customer (pickup 
after dehvery) so that the vehicle reaches the final depot t having the en
tire pickup demand on board. A feasible path (route) is one in which the 
pickups of already visited nodes plus the deliveries of the following cus
tomers do not exceed the vehicle capacity on any arc traveled. The fea
sibility problem is modeled with two dependent resources rp, rmax ^ R~^ 
where the resource variable T^ ^ is demand already picked (directly after 
node i) and Tl""^"" is the maximum load in the vehicle on the path from s 

fim = { 
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to i. Obviously, one has [a[^6[^] = [a[^^^6[^^^] = [0, Q] for oil i e V 
and fl^{Tl""Xr^"") = T^"" + gj for all {ij) G A. For the maximum 
load, one has non-hnear but non-decreasing REFs flj^''''{Tl^^T['^^'') = 
max{T^ ^ + Qjj j\̂ max -f.. g^}. it means that the maximum load at node j 
(following node i) is either the entire pickup demand at the end of the 
path, computed by T̂  ^ + ^^, or results from the maximum load on the 
sub-path (0 , . . . , i) to which the delivery of j has to be added. 

The modeling of other non-linear resource consumptions is straight
forward, e.g., soft time windows (see Dumas et al., 1990), load-dependent 
travel costs or time-dependent travel times (connections (i, j ) with dif
ferent travel durations depending on the time of the day). Complex 
schedule regulations and their modeling can be found in Desaulniers 
et al. (1997); Vance et al. (1997). 

Another non-trivial example of dependent resources is the computa
tion of the minimal waiting time for an SPPTW path. With the notation 
for the SPPTW given in the introduction, the total waiting time along 
path P = (t'o, t^i, . . . , t'p) is given by Tp — TQ — J2^=i U-i.i- Desaulniers 
and Villeneuve (2000) showed that three resources with non-decreasing 
REFs are enough to compute both the earliest arrival time and the min
imal waiting time (or equivalently, an associated waiting cost). 

4. Solution methods 
This section describes different methodologies developed for solving 

the SPPRCs, namely, dynamic programming which has been used exten
sively, Lagrangean relaxation, constraint programming, and heuristics. 
It also presents a graph modification approach for the SPPRCFP. 

4.1 Dynamic programming and labeling 
algorithms 

Dynamic programming solution approaches for the SPPRC system
atically build new paths, starting from the trivial path P = (5), by 
extending paths one-by-one into all feasible directions. Their efficiency 
depends on the ability to identify and discard paths which are not use
ful either to build a Pareto-optimal set of paths or to be extended into 
Pareto-optimal paths. Discarding non-useful paths is achieved by a dom
inance sub-algorithm based on dominance rules, which strongly depend 
on the path-structural constraints and the properties of the REFs. 

For the sake of efficiency, paths in the dynamic programming algo
rithms are encoded by labels. Paths sharing a common prefix are rep
resented by using a single chain of labels for their common prefix. This 
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is implemented with the help of a tree data structure in which a label 
corresponding to path P = {VQ, . . . ^Vp^i^Vp) is directly linked back to 
the label of the prefix path {VQ^ . . . ^Vp-i) (see e.g. Ahuja et al., 1993, 
for an introduction to labeling algorithms). Beside encoding the path it
self, the label typically stores a representation of T'(P), e.g., given by the 
unique resource vector T{P) in case of non-decreasing REFs. In loachim 
et al. (1998) a more complex representation of T{P) is stored in the la
bels, while Irnich and Villeneuve (2003) store additional (compressed) 
information to accelerate the dominance algorithm. 

In order to formalize the above ideas, we need some definitions. For 
a given path P = {vo^^i^ - - ^'^p) we call v{P) = Vp the resident node 
of P. A path P = ( '̂o '̂̂ i, • • • )'̂ p) is a feasible extension of path Q = 
{wo,wi,,,,,Wq) ii{Q,P) = {wo,.^,,Wq,vo,.,.jVp) G J^{wo,Vp)ng, The 
set of all feasible extensions is £{Q) = {P: (Q, P) G J^{wo,v{P)) D Q}, 

Labehng algorithms rely on the manipulation of two sets. The first 
set U is the set of unprocessed paths^ which have not yet been extended. 
The second set V is the set of useful paths. Useful paths P e V 
have already been processed. They have been identified to be Pareto-
optimal or might be prefixes of Pareto-optimal paths (note that Pareto-
optimal paths might have prefixes which are not Pareto-optimal, see 
Section 4.1.2). Both sets, U and P , change dynamically in the course of 
the labeling algorithm. 

One can identify two basic procedures invoked by the labeling algo
rithm (see the pseudo-code below). In the path extension step an unpro
cessed path Q eU is chosen, all feasible extensions (Q, v) with v eV are 
constructed and added to W, while Q itself is removed from U. Thus, the 
extension step replaces one element of U by all of its feasible one-node 
extensions. Once processed, an element is transferred to the set P . If 
possible, the dominance algorithm reduces the sets U and V. Its goal 
is to accelerate the overall labeling procedure by limiting the number of 
necessary extension steps. 

The path extension step and the dominance algorithm maintain the 
following invariant: The useful paths V and all extensions of unpro
cessed paths U together contain a solution of the SPPRC, Recall from 
Section 2.3 that an SPPRC solution is not necessarily unique since it 
contains representatives taken from a set of desired solutions, e.g., one 
path for each Pareto-optimal resource vector. Therefore, let S be the 
set of all diff'erent solutions of an SPPRC, where each element <S G S is 
a set of paths, e.g., Pareto-optimal paths. The above invariant is 

35 G E: 5 C {(Q, p):QeU,Pe £{Q)} U V, (2.7) 
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The algorithm is initiahzed with U — {PQ} and V — 0 where PQ = {s) 
is the trivial path. Each path P = {VQ^vi^,.. ^Vp) 6 ^ results from an 
extension of PQ? i-e., ('^i, • • • ,'î p) G f(Po)- Hence, condition (2.7) holds 
for the initialization. Obviously, the path extension step also maintains 
the invariant. The crucial point is to define dominance rules in such a 
way that the dominance algorithm also respects (2.7). We focus on that 
aspect in Section 4.1.2. By doing so, the algorithm finally terminates 
with an 5 C P for some <S € S. In a post-processing filtering step 
Pareto-optimal solutions can be extracted from P . 

Generic Dynamic Programming S P P R C Algorithm { 
(* Initialize *) 
SET U = {{s)} and P - 0 
WHILE U-i^0 DO 

(* Path extension step *) 
CHOOSE a path Q eU and REMOVE Q from U 
FORALL arcs {v{Q),w) G A of the forward star of v{Q) DO 

IF (Q, w) e T{s, w) n g THEN ADD (g, w) to u 
ADD g to P 
(* Dominance step *) 
IF (* any condition *) 

APPLY dominance algorithm to paths from U öV ending 
at some node v 

(* Filtering step *) 

FILTER V, i.e., identify a solution S CV 

} 

Several remarks should be made. 

1 If one performs path extension steps only, but no dominance steps, 
the result is "P = ^ , i.e., the algorithm computes all feasible paths. 

2 The path extension step leaves the freedom to choose paths Q eU 
according to different processing strategies. These path selection 
strategies can lead to label setting or label correcting algorithms 
depending on the underlying network and the REFs. These issues 
will be discussed in Section 4.1.1. 

3 The dominance algorithm can be applied at any time in the course 
of the algorithm. In order to keep the effort small, it makes sense 
to delay the dominance algorithm to a point when there is a chance 
to remove several of the paths at the same time, before they are 
processed in the path extension step. 

The dominance rules strongly depend on the problem at hand. 
Section 4.1.2 discusses the impact of different path-structural con
straints and classical, non-decreasing, special or general REFs. 
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4 There exist efficient algorithms for the filtering step to identify, 
e.g., Paretp-optimal paths (see Bentley, 1980; Kung et al., 1975). 

4.1.1 Label setting and label correcting algorithms. The 
defining property of a label setting algorithm is that those labels chosen 
to be extended (in the path extension step) are kept until the end of 
the labeling process. They will not be identified as discardable in sub
sequent calls of the dominance algorithm. Labeling algorithms that do 
not guarantee this behavior are called label correcting algorithms. The 
general ideas of label setting as well as label correcting algorithms in 
the context of the one-dimensional shortest path problem (SPP) are, for 
instance, explained in the book of Ahuja et al. (1993). 

An acyclic network G = (V, A) naturally gives rise to label setting 
algorithms if. paths are treated (that is, chosen and extended) accord
ing to a topological order of their resident nodes. More precisely, the 
above generic algorithm loops over the topologically sorted nodes v — 
5, ̂ '2) • • • 5 v\Y\, applies the dominance algorithm to the paths {P G UUV : 
v{P) = v} resident at the current node i;, and extends those paths who 
survive the dominance process into all feasible directions. 

It is possible to mimic an acyclic network for the treatment of labels if 
the resource consumptions for at least one resource r are strictly positive, 
i.e., flj{Ti) -T[ > 0 holds for all (i, j ) E A and all Ti G [a^,6^]. In 
this case, the labeling algorithm chooses unprocessed paths Q eU with 
minimum (or ''small") T{QY for extension first. It is guaranteed that 
paths Q already treated only produce extensions (Q, P) with r ( Q , Py > 
T{Qy, Hence, newly generated paths cannot enforce the ehmination of 
already treated paths. Desrochers and Soumis (1988) used the concept 
of generahzed buckets to identify paths with small value T{QY, 

Label correcting algorithms solve shortest path instances with neg
ative arc lengths. The existence of negative resource consumptions 
fL(Ti) — T[ for an arc (i,j) and all resources r (i.e., negative tlj for 
the classical SPPRC) means that the strategy of treating paths in a 
strictly increasing ord er of their resource vectors has to be replaced by 
a more flexible processing strategy. The well-known Ford-Bellman label 
correcting algorithm for the SPP adds newly generated labels to the end 
of a queue and extends labels one-by-one starting with the label cur
rently at the top of the queue. Powell and Chen (1998) have presented a 
more sophisticated generalized label correcting strategy for the SPPRC, 
which is directly applicable to the general SPPRC case. 

4.1.2 Dominance rules and dominance algorithms. Ef
ficient dominance rules have been described for the SPPRC, ESPPRC 
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and SPPRC-Zc-cyc with non-decreasing REFs. Recall that in these cases 
each path P 6 T{s^ v) has a unique resource vector T[P) G T{P), which 
is the only Pareto-optimal point of T{P), 

Dominance rules identify paths Q to be non-useful in the following 
sense: Q is neither necessary to describe the set of Pareto-optimal solu
tions PO[v{Q))^ nor feasible extensions Q' G £{Q) lead to paths (Q, Q') 
necessary to construct PO[v{Q')), Such a path Q can be discarded. 
Typically, dominance rules identify non-useful paths by comparing T{Q) 
and £{Q) with the corresponding values T{P) and £{P) of paths P res
ident at node v{P) = v{Q). We discuss the cases SPPRC, ESPPRC, 
SPPRC-2-cyc, and SPPRC-/c-cyc with non-decreasing REFs in detail. 

SPPRC. Given two different paths P,Q eUUV,v{P) = v{Q) with 
T{P) < T{Q)^ the dominance algorithm can discard path Q while keep
ing P, which results from the following two arguments. First, T{P) < 
T{Q) means that T{Q) is not necessary to represent Pareto-optimal 
paths ending at v{Q). Second, one has to investigate possible extensions 
of Q, The fact T{P) < T{Q)^ the absence of any path-structural con
straints and the non-decreasing REF imply £{P) 2 £{Q)' Therefore, 
any Q' G £{Q) fulfills (P,QO ^ ^ and T{P,Q') < T{Q,Q'), There do 
not result any Pareto-optimal resource consumptions from extensions 
of Q which could not have been built using extensions of P . Hence Q 
can be discarded. 

Note that dominance rules are sensitive to the occurrence of paths 
with identical resource vectors. Therefore, one has to distinguish be
tween dominance and discarding dominated paths. Two paths P^Q E 
^ (5 , v) with r ( P ) = T{Q) dominate each other but only one of these two 
can be eliminated (while the other one is kept). (Irnich and Villeneuve, 
2003) propose techniques to resolve ambiguity and analyze them for the 
SPPRC and SPPRC-A:-cyc cases. 

ESPPRC. In presence of path-structural constraints, the relation 
r ( P ) < T{Q) does not necessarily imply the relation £{P) 'D £{Q). For 
the ESPPRC, the reason is that paths P e G can only be extended to 
nodes not already visited. We denote the set of visited nodes by V{P). 
A restricted dominance rule for the ESPPRC allows to discard path Q 
if r ( P ) < T{Q) and V{P) C V(Q) since both conditions together imply 
£{P) D £{Q). Beasley and Christofides (1989) modeled the sets V{P) 
for paths P G ̂  by one additional resource for each node of V. 

Feillet et al. (2004) improved the idea of Beasley and Christofides. 
They interpreted the set V{P) differently as the ''set of nodes which 
cannot be visited any more^\ By analyzing the resource vector T{P) 
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path Q: s - 1 
path P: s - 2 - 1 

path s - 2 -1 
ath Pi: s - 1 - 2 -1 

pathQ': s- 1 -t 
path5: s - 2 - l - t 

path s - 2 
path s - 1 - 2 

[ 1, 4 ] 

Figure 2.2. Example of an SPPTW with 2>cycle elimination. 

they identified additional unvisited nodes which are impossible to reach 
(e.g., because of current time, time window constraints and non-negative 
travel times). These nodes are added to the set V{P) to form the set 
V{P), As a result, the above dominance rule based on the "extended" 
sets V{P) can eliminate more paths. 

SPPRC-2-cyc. An informal description of a dominance rule for 
the 2-cycle elimination case is the following: Keep only a Pareto-best 
path Pi and a second-best path P2 which is extended from a different 
predecessor node. For any path P = (i;o,..., Vp-i^ Vp) with p > 1, the 
node Vp-i is called the predecessor node and denoted pred(P). It is 
easy to see that the SPPRC dominance rule applies to paths P, Q, 
v{P) =^ v{Q)^ T{P) < T{Q) having identical predecessor nodes. Kohl 
(1995); Larsen (1999) showed that if £{P) does not contain the one-
node path (pred(P)), i.e., the dominating path P cannot be extended 
to its predecessor node, the SPPRC dominance rule also remains valid. 
Contrarily, given three different paths Pi, P2, Q. v{Pi) — v{P2) — v{Q)^ 
r (P i ) , r (P2) < r (Q) with different predecessors pred(Pi) ^ pred(P2), 
one can discard path Q while keeping Pi and P2. The proof of this rule 
is based on the fact that pred(Pi) 7̂  pred(P2) implies £{Pi) U £{P2) 2 
SiQ). 
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An example of an SPPTW with 2-cycle elimination is shown in Fig
ure 2.2 and illustrates the two above-mentioned dominance rules. 

First, at node 1 the paths P and Q fulfill T{P) < T{Q). Since 
pred(P) ^ pred((5) it is not allowed to eliminate Q, This is substantial 
because the dominated path Q = (5,1) is a prefix of the Pareto-optimal 
path Pi = (5, l ,2,t) at the sink t. The path-structural constraints im
ply that some dominated paths, like Q, are still useful paths. Second, 
path Q' at node t can be discarded because the two dominating paths Pi 
and P2 have different predecessor nodes (alternatively, because P2 and 
Q' have the same predecessor node). 

SPPRC-/c-cyc, Handhng the /c-cycle ehmination case for /c > 3 
needs sophisticated data structures (see Irnich and Villeneuve, 2003). In 
essence, the dominance rule efficiently checks whether 

£{Q)C [j £{P) (2.8) 

PeVUU: T{P)<T{Q)MP)=v{Q) 

holds, i.e., all extensions of dominating paths cover the extensions of Q, 
A path Q for which (2.8) holds can be discarded. There exists a finite 
representation of the right hand side of (2.8), which uses up to {k — 1)!^ 
vectors (so-called set forms) with (2) entries. Moreover, these set forms 
can be used to efficiently encode and update the relation (2.8) so that the 
evaluation of (2.8) can be performed in constant time. From a complexity 
point of view, the main result of this dominance rule is that the maximum 
number of paths stored in V UU grows by a factor a{k) compared to 
the classical SPPRC. The factor a{k) is independent of the size of the 
underlying network and bounded by a{k) < k{k — 1)!^. 

S P P T W T C . Another case where efficient dominance rules have 
been described is the shortest path problem with time windows and 
time costs (SPPTWTC)(see loachim et a l , 1998). An SPPTWTC in
stance is uniquely defined by the SPPTW data, i.e., travel costs QJ, 
travel times i^j, and time windows Ictj^ 6j], together with arbitrary node 
costs Wj € M (positive as well as negative) for the nodes j E V, Visit
ing the node j at time T̂ "̂̂ ^ causes additional time costs or profits of 
WjTj^^^, Hence, depending on the sign of Wj it is advantageous to visit 
node j as early or as late as possible. When negative and positive time 
costs occur together at the nodes of a path, the determination of fea
sible visiting times Tj^^^ with minimum overall cost is an optimization 
problem in itself. 

Formally, the SPPTWTC is a two-resource problem with a resource 
time and a time-dependent resource cost The REFs for time are given 
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Figure 2.3. Example of an S P P T W T C : Travel t ime and travel cost are given as 

pairs {tij,Cij) for each arc ( i , j ) , t ime windows [ai,6i] and linear node costs Wi are 
given for each node i, pa ths ending at node t are P i = (s, 0 , 1 , ^), P2 — (s , 0, 2, t), and 
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Figure 2.4- Piecewise linear cost functions representing T{P) for the paths Pi 

(s, l , t ) , P2 = (s,2,t) , and ft = (5,3,t). 
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by flp^Tf'"^^) = Tl'"^^ + Uj and for cost by /f/^H^ji^^ T[^'^) - T;̂ ^^^ + 
Cij+WjTj^^^. This is a (minor) extension of the REF concept of Section 2 
because f^j^^^ depends on a resource variable Tj^^^ of the node j (and 
not only on resource variables Ti at node i). Figure 2.3 shows a small 
SPPTWTC example. Next to each node, the resource space (a time-cost 
diagram) shows the set T{P) for each of the feasible paths P. Obviously, 
T{P) is a bounded polyhedron. 

Dominance rules for the SPPTWTC were proposed by loachim et al. 
(1998). Although presented differently, their main ideas are the follow
ing. The set T{P) is determined by its lower envelope, which is a piece-
wise linear (cost) function fp(T^^^^) with a maximum oi p + 1 pieces 
when P has length p (in the following we use T = ĵ time^ r^^^^ func
tion fp{T) is convex and only its first strictly decreasing part is relevant 
for dominance (since the objective is to find the minimum-cost path, the 
nonnegative slope segments are useless (see loachim et al., 1998, p. 196). 
Hence, the relevant piecewise linear cost function is 

"̂"̂  ' \ / * , forT>argminT/p(r) 

with the minimum /* — min^/p(T). Simple update formulas allow to 
compute gp{T) from gp'{T) when P' is the prefix path of P = {P\v), 
A path Q can be discarded if there exists paths P i , . . . , P/̂  ending at 
V = v{Q) = v{Pi) = . . . = v{Pk) with T{Qr C U t i ^ ( ^ z ) ' (for a 
set X the symbol X^ denotes the set [Jxex^^)- '̂ '̂ ^^ dominance rule 
can be implemented by computing the minimum cost function Gy (T) = 
minp gp{T) over all paths P ending at node v. Each path Q with v{Q) — 
V which does not contribute to the minimum cost function Gy{T) can 
be discarded. Figure 2.4 shows the situation for the three paths Pi, P2, 
and P3 ending at node t from the above example. All paths Pi, P2, 
P3 contribute to GtiT)^ which is composed of four pieces imposed by 
gp,{T) for T G [5,9), gp,{T) for T G [9,13.3], gp,{T) for T G [13.3,17], 
and gPi{T) for T G [17,20]. None of the paths are dominated by the 
other paths. 

4*2 Lagrangean relaxation 

The constrained shortest path problem (CSPP) is a speciahzed s-t-
SPPRC with independent additive resource consumptions along arcs. 
The resource consumption is constrained only as a whole and not by in
dividual resource intervals. The objective is to find a least-cost 5-t-path 
with resource consumptions within a pre-specified interval. Among oth
ers, Beasley and Christofides (1989); Borndörfer et al. (2001) proposed to 
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solve the CSPP with Lagrangean relaxation for computing lower bounds 
and a tree search procedure exploiting these computed lower bounds. 
For the remainder of this section we assume that the underlying net
work G = (y, A) is acyclic. 

For a formal description of the CSPP, consider R different resources 
including cost as the last resource R with cost matrix C = (cij) = 
{t^j). For the remaining resources, let 7^ - {tlj) e M(^-I )X|^I be the 
resource consumption matrix with non-negative consumptions t[- for r = 
1 , . . . , i? - 1. The REFs are flj{Ti) = Ti + t\^ for all r - 1 , . . . , i? 
and (i, j ) G ^4, and the resource accumulation is Tj — fij{Ti) whenever 
arc {ijj) is traversed. Lower bounds / G R^"^ and upper bounds u G 
R^~^ on the overall accumulated resource consumptions are implied by 
defining [as,6s] = [0,0, [at^bf] = [/,n], and [ai^bi] — [0,u] at all other 
node i E V \ {s^t}. For a given path P and its incidence vector x G 
{0,1}I^I, the resource consumption is TZx and the cost is c^x. P is 
feasible if / < TZx < u holds. Borndörfer et al. (2001) have added a 
goal value 5 G [/, î ] for the resource consumption TZx to the formulation 
of Beasley and Christofides (1989). Slack and surplus variables ZJ^^Z-

measure the deviation of TZx from g^ which is penahzed by P4-,P- G 
R^~^ The CSPP can be stated as follows: 

^̂ ĉspp = niin c^ x + pLz^ + p^z^ (2.9a) 

subject to Ix — Cs — et (2.9b) 

nx + z+- z-^g (2.9c) 

{z.,z^)<{u-g,g-l) (2.9d) 

xe {0,1}I^I, ^_,^+GMfo (2.9e) 

Cost (2.9a) is a combination of accumulated travel costs and the penalty 
for the deviation oiTZx from g. Flow conservation constraints (2.9b) are 
given by means of the arc-node incidence matrix / G {—1,0, l } ' ^ ' ^ ! ' 
and unit vectors 65, ê  G {0,1)1^1. They guarantee that {(^, j ) : Xij = 1} 
forms a path in the acychc network G. Constraints (2.9d) bounds the 
slack and surplus variables so that / < TZx < u is ensured. 

A Lagrangean relaxation of (2.9) can be obtained by relaxing the 
resource consumption constraints (2.9c). Let TT G M^~^ be an associated 
dual price vector. The Lagrangean dual of (2.9) is max^^j^^-i ZBCSPF{^) 

where the Lagrangean subproblem decomposes into the following two 
parts: 

^DCSPP(^) - P{7r) + B{7v) + TT^g (2.10a) 

with P{n) = min(c^ - TT'^TVJX^ 
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Ix = es-eu xe {0,1)1^1 (2.10b) 

and B{7T) = min(pj - 7r^)z^ + (pi + 7r"^)^_, 

0<z-<u-g, 0<z^<g-L (2.10c) 

The first part (2.10b) is an SPP, which can be solved with a label set
ting algorithm (see Ahuja et al., 1993). The second part (2.10c) is a 
minimization problem defined over a box, which is trivial to solve by 
inspection of the signs of the components of {pj. — TT^) and {pZ + TT^). 

High quality solutions for the above Lagrangean dual formulation can 
be computed with any subgradient optimization method, e.g., a coordi
nate ascent method as in Borndörfer et al. (2001). The same authors 
proposed to use such a dual solution TT* and the dual solution of (2.10b) 
obtained for TT =: TT* (i.e., a distance vector (/i^(7r*))^^\/) to compute 
so-called Lagrangean distance labels: 

^^(^*) =: /i^(7r*) - /i,(7r*) + Bin'') + / T T * , for ah VEV, 

These labels are very useful to prune the search tree because of the fol
lowing property. Let x^ G {0, l} '^! and x^ G {0, l } ' ^ ' be path incidence 
vectors of an s-v-pdith and a i;-t-path, respectively. If x = x-̂  + x^ is a 
feasible CSPP path and TT* G R^~^ a Lagrangean multiplier vector, then 

^cspp(^) > 9v{r^n + (c^ - TT* ^7^)x2 (2.11) 

where ^CSPP(^) denotes the cost of path x. The inequality means that 
if the right-hand side is non-negative then there exists no prefix path x^ 
such that x^+x^ has a negative (reduced) cost. Consequently, one should 
implement a tree search for finding negative (reduced) cost CSPP paths 
in G by systematically building t;-t-paths x^ starting at the sink node 
t. A tentative path x^ can be discarded if the right-hand side of (2.11) 
becomes non-negative. Note* that additional constraints that could not 
be considered in (2.9) can always be taken into account in the search 
phase. 

4.3 Constraint programming 
Constraint programming (CP) relies on a model which is defined by 

a set of variables, each with an initial domain, and a set of constraints. 
A CP approach is composed of a search mechanism to explore the solu
tion space,, a domain reduction algorithm for each constraint that tries 
to remove inconsistent values from the domains of the variables involved 
in that constraint, and a propagation algorithm that propagates these 
domain changes amiong the constraints. It allows to consider a wide 
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spectrum of constraints (algebraic and non-algebraic), including some 
that cannot be modeled using resources or simple path-structural con
straints: For instance, an employee cannot work more than 8 hours in 
every 24-hour period. Within column generation approaches, CP has 
recently been used to tackle the SPPRC on an acyclic network (de Silva, 
2001; Fahle et a l , 2002) and the ESPPRC (Rousseau et a l , 2003). In 
both cases, the goal is solely to find at least one feasible path with a 
negative (reduced) cost. This goal is modeled as a constraint (the cost 
of a feasible path must be negative), yielding a constraint satisfaction 
problem. 

Fahle et al. (2002) considered an SPPRC on an acyclic network where 
a task, defined by a starting and an ending time, is associated with each 
node. They proposed a model where a boolean variable is associated 
with each node. Such a variable is set to true if the corresponding node 
is part of the path currently built. In this case, we will say that the node 
is selected. Additional variables are also used to specify, for instance, the 
minimal amount of rest to assign after each task. Their model includes 
simple constraints such as the boolean variables associated with two 
nodes whose tasks must be performed concurrently cannot be set at true 
simultaneously, or the total duration of the tasks associated with the 
selected nodes cannot exceed the maximum worked time in a schedule. 
Given a set of selected nodes, these two types of constraints can be used 
to fix some boolean variables to false. 

In de Silva (2001), a different CP model is used. It involves variables to 
indicate the successor node next[t] of each node t and variables to specify 
the amount of accumulated resource consumptions at each node. Nodes 
with next[t] = t are not included in the current path. Path constraints 
model resource consumptions along the selected (partial) path, e.g., for 
the reduced cost, total working time, etc. Each time that a successor 
node is selected, the propagation algorithm is invoked, i.e., constraints 
are verified by solving an SPP for every unselected node of the underlying 
network. For instance, one can exclude a node (i.e., set next[t] == t) if 
the value of the path with the shortest worked time and passing through 
that node t and all selected nodes exceeds the maximum total worked 
time. A similar decision propagation based on the (reduced) cost of 
a path can also be executed. So-called goals^ e.g., based on reduced 
cost shortest path computations, control how new tasks are added to 
the current partial path. The search tree is usually explored until a 
prespecified number of negative cost paths are found or until a time 
limit is reached. 

For the ESPPRC, Rousseau et al. (2003) used a similar model with 
variables for the successor node and variables for the accumulated re-
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source consumptions. Some of the constraints they consider are: AH 
successor nodes must be different, no subtours are allowed, lower bounds 
provided by the resource REFs must be respected, the (reduced) cost of 
a feasible path must be negative. For verifying this last constraint, the 
authors compute a lower bound by solving an assignment problem. The 
choice of the next variable to branch on in the search tree is made in 
such a way to construct a path from the source to the sink node. 

4,4 Heuristics 
Even with sophisticated solution methods, solving an SPPRC instance 

might still be very time-consuming. In the column generation context, 
solving SPPRCs to proven optimality is only necessary to show that no 
negative reduced cost paths exist in the last pricing step. In preceding 
iterations it is sufficient to approximately solve the SPPRC, i.e., to com
pute any negative reduced cost feasible paths. That is the point where 
heuristics for the SPPRC come into play. In addition, they might be ap
plied when the entire column generation problem is treated heuristically. 
In the following, we distinguish between three major areas of application 
for heuristics: Pre-processing^ dynamic programming^ and direct search. 

Classical pre-processing techniques eliminate arcs and reduce the re
source intervals (see e.g. Desrochers et al., 1992). The heuristic version 
of this idea is to solve a given SPPRC instance on a hierarchy of re
stricted networks, where each of the restricted networks contains only a 
limited number of arcs, e.g., defined by the p > 0 "nearest neighbors" of 
each node. Starting with the smallest p-nearest-neighbor network, one 
solves the associated SPPRC, and if no solution is found, one contin
ues with the next p. This idea has been used in many implementations 
(e.g. Dumas et al. (1991); Savelsbergh and Sol (1998); Larsen (1999); 
Irnich and Villeneuve (2003)). Another idea is to replace some of the 
resources by less accurate resources to get an easier-to-solve SPPRC 
network. Gamache et al. (1999) gave the example where a restricted 
network measures time rounded up to the nearest hour while the exact 
global network uses minutes. 

Dynamic programming heuristics are based on the techniques of Sec
tion 4.1 but heuristically accelerate the computation. For the VRPTW, 
Larsen (1999) used a so-called forced early stop rule to quit from the 
dynamic program when an adequate number of negative reduced cost 
columns has been found and a pre-defined number of labels has been 
generated. Chabrier (2002) tried to solve the ESPPRC by using the 
standard path extension step (i.e., not extending a path to a node al
ready visited) with the stronger SPPRC dominance rule (i.e., only the 
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resource vectors are compared but not the visited nodes). Clearly, this 
procedure is quick but might fail to detect any negative reduced cost 
path. Therefore, he proposed to iteratively apply a dynamic program
ming procedure which combines the ESPPRC extension step with a grad
ually parametrizable dominance rule. A parameter DomLevel (between 
0 and (X)) defines the length of a path after which the ESPPRC domi
nance rule is apphed. If the partial path is shorter, the heuristic SPPRC 
dominance rule is applied. Larger values of DomLevel make the mod
ified dynamic programming procedure substantially faster. The case 
DomLevel — 0 corresponds with the exact ESPPRC and is expected 
to be quite slow (especially for non-adjusted dual variables). Hence, 
starting with a large value for DomLevel^ the dynamic programming 
algorithm with the modified dominance rule is iteratively applied with 
decreasing values of DomLevel until a negative reduced cost path is found 
(or the ESPPRC is solved exactly). 

Finally, direct search heuristics are mainly based on local search. Such 
improvement procedures start from a given feasible path P and delete, 
insert, or replace nodes or exchange arcs in order to find an improving 
feasible path P ' with smaller reduced cost. Note that after solving the 
restricted master program, the basic variables provide a set of paths 
with reduced cost 0 from which an improvement algorithm might start. 
Successful column generation applications which use these techniques 
can be found in Savelsbergh and Sol (1998); Xu et al. (2003). 

4,5 A graph modification approach for the 
SPPRCFP 

The graph modification approach for the SPPRCFP defined on a 
given network G — (V, Ä) is not a solution method in itself but a 
method that manipulates G to obtain a new network G' = (V'^A^) 
from which all forbidden paths are removed while the other paths of 
G are still feasible. One can then apply any of the proposed meth
ods for the SPPRC to the network G' to solve the given SPPRCFP. 
Formally, let H be the set of forbidden sub-paths and let f̂orbidden = 
{(P, Q, PO • P^ Q^ P' paths, Qen}so that ^ - { all paths} \ f̂orbidden 
is the set of all feasible paths for the SPPRCFP. The approach of Vil-
leneuve and Desaulniers (2000) merges the original graph G with the 
state graph of a finite automaton, which identifies the infeasible sub-
paths in H. We illustrate the procedure by an example in which G is 
given in Figure 2.5(a) and H - {(1, 2,4), (2,1), (2, 3,1)}. 

The approach works in two stages. First, the algorithm of Aho and 
Corasick (1975) is used to construct the state graph S — (T 5̂, A^) of a 
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Figure 2.5. (a) Example network G = {V]A) for the SPPRCFP. (b) State 
graph S — {Vs^As) of a finite automaton which identifies the sub-paths of H = 
{(1, 2,4), (2,1), (2,3,1)}. "•" stands for any label v ^V except those corresponding to 
the other out-arcs of the same node, (c) Resulting SPPRCFP network G' — {V', A'), 
node 12 corresponds with node 2 of the original network and node 23 with node 3. 

finite automaton, which processes the nodes of a path P to detect the 
first sub-path in 7i it contains. The nodes (states) in Vs correspond 
to the prefixes of the sub-paths in H^ i.e., Vs = {0,1,12,124,2,21, 
23,231} in the example (see Figure 2.5(b)). Each time that a node 
of P is processed, the automaton performs a state transition. Possible 
transitions are represented by labeled arcs. There is an arc (^1,^2) ^ As 
labeled with v e V {v represents a possible node of P) that connects 
two different states zi and Z2 ii zi ^ Ti and Z2 = [a{zi)^v)^ where cr{zi) 
is the longest (possibly empty) suffix of zi for which (^a{zi)^v) G Vs> 
Further loops, i.e., (124,124), (231,231), and (21,21) guarantee that 
once a forbidden sequence has been detected, the automaton stays in 
the corresponding state. The remaining transitions connect a state zi 
back to the initial state 0, The states z e H indicate that a forbidden 
path has been detected. 

Second, the original graph G has to be merged with the state graph S 
to produce a new graph G^ = (y\A^). Prefixes ^ G V̂ - of length 1 
are identified with the nodes of V, The new node set V consists of all 
original nodes V a,nd all nodes of V̂ - except the state 0 and the states 
z e H, In the example, the new node set V is {s, 1, 2, 3, 4,12, 23, t}. 
In order to get the new arc set A\ one has to join the sets A and 
{{z^ z') e As: z^z^ e V'} and to perform three operations: 

(i) remove all loops of the arc set As] 
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(ii) remove from the original arc set A the first arc of each sub-path 
in 7i] 

(iii) replace each transition (z, 0) of the finite automaton by a set of 
arcs (z^v) with v e V such that (z^v) ^ Vs but (^X{z)jv) G A 
where X{z) denotes the last node of the prefix z. 

In the example, all loops and the arcs (1,2), (2,1) and (2,3) are re
moved while the arc (23,4) replaces the transition (23,0). The new 
digraph G' = {V\ A') is depicted in Figure 2.5(c). A node z in V' repre
sents the node X{z) in V so that paths in G' are in correspondence with 
paths in G, For instance, the path (s, 1,12,23,2,4, t) corresponds with 
the feasible path (5,1,2,3, 2,4, t) of the original network. 

5, Conclusions 

This survey has highlighted the richness of the SPPRC. In particular, 
it showed its great flexibility to incorporate a wide variety of constraints, 
yielding numerous SPPRC variants as well as diversified solution meth
ods. We have given a new classification scheme and a generic formu
lation, which integrates the special purpose SPPRC formulations pre
sented in the literature so far. Future research on the SPPRC will focus 
on developing more efläcient exact and heuristic algorithms for some of 
the most difficult SPPRCs such as the ESPPRC or the SPPRC with gen
eral REFs. Additionally, with the application of column generation to a 
wider class of vehicle routing and crew scheduling problems, one should 
expect new variants of the SPPRC that will require the adaptation of 
existing solution methods or the development of new ones. 
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VEHICLE ROUTING PROBLEM WITH 
TIME WINDOWS 
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Jesper Larsen 
Oli B.G. Madsen 
Marius M. Solomon 

Abstract In this chapter we discuss the Vehicle Routing Problem with Time Win
dows in terms of its mathematical modeling, its structure and decom
position alternatives. We then present the master problem and the 
subproblem for the column generation approach, respectively. Next, 
we illustrate a branch-and-bound framework and address acceleration 
strategies used to increase the efficiency of branch-and-price methods. 
Then, we describe generalizations of the problem and report computa
tional results for the classic Solomon test sets. Finally, we present our 
conclusions and discuss some open problems. 

!• Introduction 
The vehicle routing problem (VRP) involves finding a set of routes, 

starting and ending at a depot, that together cover a set of customers. 
Each customer has a given demand, and no vehicle can service more 
customers than its capacity permits. The objective is to minimize the 
total distance traveled or the number of vehicles used, or a combination 
of these. In this chapter, we consider the vehicle routing problem with 
time windows (VRPTW), which is a generalization of the VRP where the 
service at any customer starts within a given time interval, called a time 
window. Time windows are called soft when they can be considered non-
biding for a penalty cost. They are hard when they cannot be violated, 
i.e., if a vehicle arrives too early at a customer, it must wait until the 
time window opens; and it is not allowed to arrive late. This is the case 
we consider here. 
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The remarkable advances in information technology have enabled 
companies to focus on efficiency and timeliness throughout the sup
ply chain. In turn, the VRPTW has increasingly become an invalu
able tool in modeling a variety of aspects of supply chain design and 
operation. Important VRPTW applications include deliveries to super
markets, bank and postal deliveries, industrial refuse collection, school 
bus routing, security patrol service, and urban newspaper distribution. 
Its increased practical visibility has evolved in parallel with the develop
ment of broader and deeper research directed at its solution. Significant 
progress has been made in both the design of heuristics and the devel
opment of optimal approaches. 

In this chapter we will concentrate on exact methods for the VRPTW 
based on column generation. These date back to Desrochers, Desrosiers 
and Solomon (1992) who used column generation in a Dantzig-Wolfe 
decomposition framework and Halse (1992) who implemented a decom
position based on variable splitting (also known as Lagrangean decompo
sition). Later, Kohl and Madsen (1997) developed an algorithm exploit
ing Lagrangean relaxation. Then, Kohl, Desrosiers, Madsen, Solomon 
and Soumis (1999); Larsen (1999); Cook and Rich (1999) extended the 
previous approaches by developing Dantzig-Wolfe based decomposition 
algorithms involving cutting planes and/or parallel platforms. Kalle-
hauge (2000) suggested a hybrid algorithm based on a combination 
of Lagrangean relaxation and Dantzig-Wolfe decomposition. Recently, 
Chabrier (2005); Chabrier, Danna and Le Pape (2002); Feillet, Dejax, 
Gendreau and Gueguen (2004); Irnich and Villeneuve (2005); Rousseau, 
Gendreau and Pesant (2004) have proposed algorithms based on en
hanced subproblem methodology. Advancements in master problem ap
proaches have been made by Danna and Le Pape (2005); Larsen (2004). 

This chapter has the following organization. In Section 2 we describe 
the mathematical model of the VRPTW and in Section 3 we discuss 
the structure of the problem and decomposition alternatives. Next, Sec
tions 4 and 5 present the master problem and the subproblem for the col
umn generation approach, respectively. Section 6 illustrates the branch-
and-bound framework, while Section 7 addresses acceleration strategies 
used to increase the efficiency of branch-and-price methods. Then, we 
describe generalizations of the VRPTW in Section 8 and report compu
tational results for the classic Solomon test sets in Section 9. Finally we 
present our conclusions and discuss some open problems in 10. 
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2. The model 

The VRPTW is defined by a fleet of vehicles, V, a set of customers, 
C, and a directed graph Q, Typically the fleet is considered to be homo
geneous, that is, all vehicles are identical. The graph consists of |C| + 2 
vertices, where the customers are denoted 1,2,... ,n and the depot is 
represented by the vertices 0 ("the starting depot") and n + 1 ("the re
turning depot"). The set of all vertices, that is, 0 , 1 , . . . , n-(-1 is denoted 
J\f. The set of arcs, v4, represents direct connections between the depot 
and the customers and among the customers. There are no arcs ending 
at vertex 0 or originating from vertex n + 1. With each arc (i , i) , where 
i ^ j^ we associate a cost Cij and a time tij^ which may include service 
time at customer i. 

Each vehicle has a capacity q and each customer i a demand di. Each 
customer i has a time window [ai^hi] and a vehicle must arrive at the 
customer before hi. If it arrives before the time window opens, it has to 
wait until ai to service the customer. The time windows for both depots 
are assumed to be identical to [ao,&o] which represents the scheduling 
horizon. The vehicles may not leave the depot before ao and must return 
at the latest at time 6n+i-

It is assumed that g, a ,̂ 6̂ , d̂ , QJ are non-negative integers and tij 
are positive integers. Note that this assumption is necessary to develop 
an algorithm for the shortest path with resource constraints used in the 
column generation approach presented later. Furthermore it is assumed 
that the triangle inequality is satisfled for both cij and tij. 

The model contains two sets of decision variables x and s. For each 
arc (i, j ) , where i 7̂  j , i / n + 1, j ^ 0, and each vehicle k we define 
Xij]^ as 

{1, if vehicle k drives directly from vertex i to vertex j , 

0, otherwise. 

The decision variable Sik is defined for each vertex i and each vehi
cle k and denotes the time vehicle k starts to service customer i. In 
case vehicle k does not service customer i, sik has no meaning and con
sequently it's value is considered irrelevant. We assume ao = 0 and 
therefore 5o/c = 0, for all k. 

The goal is to design a set of routes that minimizes total cost, such 
that 

• each customer is serviced exactly once, 

• every route originates at vertex 0 and ends at vertex n + 1, and 
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• the time windows of the customers and capacity constraints of the 
vehicles are observed. 

This informal VRPTW description can be stated mathematically as a 
multicommodity network flow problem with time windows and capacity 
constraints: 

m i n ^ ^ ^ CijXijk s.t, (3.1) 

I ] I ] ^ Ü ^ = 1 ViGC, (3.2) 
keVjeM 

^ di Y^ Xijk <q \/k eV, (3.3) 
ieC jeAf 

J2xojk = l VfcGV, (3.4) 
jeJ\f 

Y^ Xihk - Yl ^^^J^ = ^ "iheC.WkeV, (3.5) 
leAf jeAf 

Y,Xi,n+i.k = l VfceV, (3.6) 
ieM" 

Xijk{sik + Uj - Sjk) < 0 Vi, j G Af, Vfc G V, (3.7) 

ai < Sik <bi Vi G AT, Vfc G V, (3.8) 
Xijk € {0,1} Vi, j G AT, Vfc G V. (3.9) 

The objective function (3.1) minimizes the total travel cost. The con
straints (3.2) ensure that each customer is visited exactly once, and (3.3) 
state that a vehicle can only be loaded up to it's capacity. Next, equa
tions (3.4), (3.5) and (3.6) indicate that each vehicle must leave the 
depot 0; after a vehicle arrives at a customer it has to leave for another 
destination; and finally, all vehicles must arrive at the depot n + 1. The 
inequalities (3.7) establish the relationship between the vehicle depar
ture time from a customer and its immediate successor. Finally con
straints (3.8) affirm that the time windows are observed, and (3.9) are 
the integrality constraints. Note that an unused vehicle is modeled by 
driving the "empty" route (0,n + 1). 

The model can also incorporate a constraint giving an upper bound 
on the number of vehicles, as is the case in Desrosiers, Dumas, Solomon 
and Soumis (1995): 

^J2'^^Jk<\V\ VfcGV, VjGAA (3.10) 
keVjeAf 
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Note also that the nonhnear restrictions (3.7) can be hnearized as: 

Sik + tij - Mij{l - Xijk) < Sjk Vi, j G A/", Vfc G V. (3.11) 

The large constants Mij can be decreased to max{6i+t^j —a^}, (z, j) G A, 
For each vehicle, the service start variables impose a unique route 

direction thereby eliminating any subtours. Hence, the classical VRP 
subtour elimination constraints become redundant. Finally, the objec
tive function (3.1) has been universally used when solving the VRPTW 
to optimality. In the research on heuristics it has been common to min
imize the number of vehicles which may lead to additional travel cost. 

The VRPTW is a generalization of both the traveling salesman prob
lem (TSP) and the VRP. When the time constraints (3.7) and (3.8)) 
are not binding the problem relaxes to a VRP. This can be modeled by 
setting â  = 0 and 6̂  = M, where M is a large scalar, for all customers 
i. If only one vehicle is available the problem becomes a TSP. If sev
eral vehicles are available and the cost structure is: CQJ — 1^ j E C and 
Cij = 0, otherwise, we obtain the bin-packing problem. Since trips be
tween customers are "free", the order in which these are visited becomes 
unimportant and the objective turns to "squeezing" as much demand as 
possible into as few vehicles (bins) as possible. In case the capacity con
straints (3.2) are not binding the problem becomes a m-TSPTW, or, if 
only one vehicle is available, a TSPTW. 

3, Structure and decomposition 
A closer look at the above model reveals that only the assignment con

straints (3.2) are coupling the vehicles while the remaining constraints 
are dealing with each vehicle separately. This strongly suggests the use 
of Lagrangean relaxation (LR) or decomposition, for example Dantzig-
Wolfe (DWD), to break up the overall problem into a subproblem for 
each vehicle and a master problem. To date, the most successful de
composition approaches for the VRPTW cast the subproblem as a con
strained shortest path structure. The master problem is an integer pro
gram whose solution cannot be obtained directly, so its LP relaxation is 
solved. The column generation process alternates between solving this 
hnear master problem and the subproblem. The former finds new mul
tipliers to send to the latter which uses this information to find new 
columns to send back. A lower bound on the optimal integer solution 
of the VRPTW model is obtained at the end of this back and forth 
process. This is then used within a branch-and-bound framework to ob
tain the optimal VRPTW solution. If the vehicles are identical, as we 
have assumed here, all subproblems will be equivalent and therefore it 
is necessary to only solve one. The master problem and the subproblem 
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will be discussed in more detail in Sections 4 and 5, respectively. The 
complete column generation process is described in Section 1, while the 
subproblem forms the subject of Section 2. 

In addition, other LRs are possible but not promissing. One may 
consider relaxing the time and capacity constraints (3.3), (3.7) and (3.8). 
This yields a linear network flow problem which possesses the integrality 
property. The corresponding bound can be calculated very fast, but is 
not likely to be very strong unless capacity is not binding and time 
windows are very narrow (see Desrosiers, Dumas, Solomon and Soumis, 
1995). Relaxing only the capacity or time window constraints also does 
not seem sensible since the relaxed problem is not generally easier to 
solve than the original. 

Desrochers, Desrosiers and Solomon (1992) were the first to apply 
DWD with a free number of vehicles. The assignment constraints were 
considered the coupling constraints, while the subproblem was a shortest 
path problem with resource constraints. Relaxing the same constraint 
set and applying LR was first proposed by Kohl and Madsen (1997). 
Desrosiers, Sauve and Soumis (1988) have used a similar relaxation to 
calculate a lower bound for the minimum fleet size for the m-TSPTW. 

Jörnsten, Madsen and S0rensen (1986) suggested solving the VRPTW 
by variable sphtting (later called Lagrangean decomposition, or LD). In 
follow-up work, Halse (1992) described three different variable splitting 
methods where ^jXijk was replaced by yik in constraint set (3.2) and 
possibly (3.3). In turn, the constraint yik — ^j^ijk was introduced 
and Lagrangeanly relaxed. The problem decomposes into two problems, 
one in the x- and s-variables and the other in the y-variables. The 
former problem is further decomposed by vehicle and it is a shortest 
path problem with resource constraints. The latter is an assignment-
type problem. Specifically, the approaches are: 

• VSl: Keep constraints (3.2) and (3.3) in the y-problem. This 
represents a generalized assignment problem (GAP) and the x/s-
problem becomes a shortest path problem with time windows 
(SPPTW). The GAP has the special structure where ah right hand 
sides in (3.3) are identical and di does not depend on fc. 

• VS2: Keep constraints (3.2) in the y-problem. The y-problem be
comes a "Semi assignment" problem (SAP) consisting of constraints 
(3.2) only. The x/s-problem is equivalent to a shortest path prob
lem with time windows and capacity constraints (SPPTWCC). 
The SAP is easily solvable and possesses the integrality property. 
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• VS3: Keep constraints (3.2) in the y-problem and constraints (3.3) 
in both the y- and the a:/5-problem. The y-problem is a GAP and 
the x/s-problem constitutes a SPPTWCC. 

In the LD master problem, whose role is to find multipliers to the 
relaxed equation relating x and y, the number of multipliers is larger 
than in the LR considered above. This clearly makes the master problem 
more difficult. Also the subproblems are no longer identical since the LD 
multipliers depend on both customer and vehicle. Note that only VSl 
and VS2 have been implemented. 

We now define LB(VSl), LB(VS2) and LB(VS3) as the best lower 
bounds obtainable from the three variable splitting approaches, respec
tively. It can be shown that the previous LR and the DWD yield the 
same lower bound LB(LR/DWD). Provided that the vehicles are iden
tical, Kohl (1995) has derived the following results: 

LB(VS3) > LB(VSl), 

LB(VS3) > LB(VS2), 

LB(LR/DWD) - LB(VS2). 

There exist instances for which LB(VS3) > LB(VSl). He further showed 
that LB(VS2) = LB(VS3) under some weak supplementary conditions. 
This is surprising because it implies there is no additional gain to be 
derived from solving two hard integer problems (the SPPTWCC and 
GAP) instead of just one (the SPPTWCC). However, in the more general 
case where vehicles have different capacities it might be possible that the 
VS3 model yields a better bound than VS2. 

To conclude, in VRPTW case, the variable splitting methods men
tioned above generally provide similar lower bounds to those obtained 
from the ordinary LR or DWD. 

A. The master problem 

The column generation methodology has been successfully applied to 
the VRPTW by numerous researchers. It represents a generalization of 
the linear DWD since the master problem and the subproblem are integer 
and mixed-integer programs, respectively. Often the master problem is 
simply stated as a set partitioning problem on which column generation 
is applied, thereby avoiding the description of the DWD on which it 
is based. To gain an appreciation for different cutting and branching 
opportunities compatible with column generation, here we present the 
master problem by going through the steps of the DWD based on the 
multicommodity network flow formulation (3.1)-(3.9). 
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The column generation approach exploits the fact that only constraint 
set (3.2) links the vehicles together. Hence, the integer master problem 
is defined through (3.1)-(3.2) and (3.9), that is, it contains the objective 
function, the assignment of customers to exactly one vehicle and the 
binary requirement on the flow variables. The rest of the constraints and 
(3.9) are part of the subproblem which has a modified objective function 
that decomposes into \V\ independent subproblems, one for each vehicle. 
In the rest of this section we will focus on the linear master problem 
(3.1)-(3.2). Branching, necessary to solve the integer master problem, 
will be discussed in Section 6. 

Let V^ be the set of feasible paths for vehicle k^ k eV, Hence, p eV^ 
corresponds to an elementary path which can also be described by using 
the binary values x -̂ , where rr̂ - = 1, if vehicle k goes directly from 
vertex i to vertex j on path p, and x -̂̂  — 0, otherwise. Any solution 
x^A to the master problem (3.1)-(3.2) can be written as a non-negative 
convex combination of a finite number of elementary paths, i.e., 

4 = E 4pyp ^k e ^^ (̂̂ '•̂ •) e - '̂ (3-12) 

E r f ^ l VfcGV, (3.13) 

y j > 0 VfeGV, ypeVK (3.14) 

Using x^jp we can define the cost of a path, c^, and the number of times 
a customer i is visited by vehicle /c, a^, as: 

4= Yl 4 4 P '̂ ^ € V, Vp G V^ 
ihJ)eA 

J2 ^ijp Vfce V, ViGAT, VpeT^^ 
jeMu{n+i} 

Now we can substitute these values into (3.1)-(3.2) and arrive at the 
revised formulation of the master problem: 

min5] J2 4yi •̂̂ •' (3-15) 
keVpeV'^ 

E E <yp = 1 ^̂  ̂  ̂ ' (3.16) 
keVpev^ 

Y,yp= 1 ^fcev, (3.17) 
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y^ > 0 Vfc G V, Vp G P ^ (3.18) 

The mathematical formulation (3.15)-(3.18) is then the hnear relaxation 
of a set partitioning type problem with an additional constraint on the 
total number of vehicles and a set of convex combination constraints. 

In the usual case of a single depot and a homogeneous fleet of vehicles 
with the same initial conditions for all vehicles, all V^ are identical, that 
is, V^ = V^ k e V, Furthermore, the networks for the subproblems 
are also identical. Therefore constraints (3.17) can be aggregated. By 
letting Up = YlkeV Vp^ ^^^ index k can be eliminated from the formulation 
(3.15)-(3.18). The resulting model given below is the classical hnear 
relaxation of the set partitioning formulation: 

min y ^ Cpyp s,t,^ (3.19) 

^aipVp^l yieC, (3.20) 
pev 

yp>0 VpGP. (3.21) 

In the column generation methodology, the set of columns in the linear 
master problem is limited to only those that have already been generated, 
hence the term restricted master problem. It consists of finding a set of 
minimum cost paths among all paths presently in the master problem. 
The restricted master problem can mathematically be stated as; 

min 2 , ^pVp ^'i'^ (3.22) 
peV 

Y^üipVp^l \/ieC, (3.23) 
pev 

yp>0 VpGP^ (3.24) 

Each decision variable i/p counts the number of times path p is used. 
This is not necessarily integer, but can be any real number in the inter
val [0; 1]. The set V^ contains all the paths generated, aip denotes the 
number of times customer i is serviced on path p, and, Cp is the cost of 
the path. The parameter aip should in principle be either 0 or 1, but 
since the subproblem is relaxed (see Section 5) it can take larger integer 
values. 

Solving the restricted master yields a solution y = (yi, 7/2? • • • ? y\v'\) 
which might be integer but this is not guaranteed. If it is integer, a feasi
ble but not necessarily optimal solution to the VRPTW has been found. 
In addition to the primal solution, a dual solution </> = (01, (/)2,..., (ß\c\) 
is also obtained. 
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Figure 3.1. Number of labels generated in the subproblem wrt. the iteration number 
for the Dantzig-Wolfe method and the bundle method on the Solomon instance R104 
with 100 customers (from Kallehauge, 2000). 
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(b) Stabilized cutting-plane algorithm. 

Figure 3.2. The Euclidian distance between the current dual variables and the opti
mum dual variables. Observe the different scales. 
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An initial start for the restricted master problem is often the set of 
routes visiting a single customer, that is, routes of the type depot-z-
depot (cf. Section 8). When the optimal solution to the restricted master 
problem is found, the simplex algorithm asks for a new variable (i.e. a 
column/path p E V\ V) with negative reduced cost. Such a column is 
found by solving a subproblem, sometimes called the pricing problem. 
For the VRPTW, the subproblem should solve the problem "Find the 
path with minimal reduced cost." Solving the subproblem is in fact an 
implicit enumeration of all feasible paths, and the process terminates 
when the optimal objective of the subproblem is non-negative (it will 
actually be 0). 

It is not surprising that the behavior of the dual variables plays a piv
otal role in the overall performance of the column generation principle 
for the VRPTW. It has been observed by Kallehauge (2000) that dual 
variables do not converge smoothly to their respective optima. Assume 
that the paths (0, i, n+1) are used to initialize the algorithm. Figure 3.1 
illustrates the instability of the column generation algorithm compared 
to the stabilized cutting-plane algorithm presented in the above paper. 
Furthermore, Figure 3.2 illustrates the effect of the size of the multi
pliers on the computational difficulty of the SPPTWCC subproblems. 
Whereas the multipliers are large in the Dantzig-Wolfe process, they 
are small in the cutting-plane approach. This problem originates in the 
coordination between the master problem and the subproblem. 

Finally, in many routing problems the optimal solution remains un
changed even if overcovering rather than exact covering of customers is 
allowed. Due to the triangle inequality in the VRPTW, overcovering will 
always be more expensive than just covering and therefore an optimal 
solution will always be one where each customer is visited exactly once. 
The advantage of allowing overcovering is that the linear relaxation of 
the Set Covering Problem is easier to solve than that of the Set Parti
tioning Problem, and this will in turn lead to the computation of good 
estimates of the dual variables. 

5, The subproblem 
In the column generation approach for the VRPTW, the subprob

lem decomposes into |V| identical problems, each one being a shortest 
path problem with resource constraints (time windows and vehicle capac
ity). More specifically, the subproblem is an Elementary Shortest Path 
Problem with Time Windows and Capacity Constraints (ESPPTWCC), 
where elementary means that each customer can appear at most once in 
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the shortest path. It can be formulated as: 

i€j\fjeAf 

^diY^ Xij < q, 

ieAf jeN 

Si + tij - Mij{l - Xij) < Sj Vi, j € 

Q-i ^ Si < hi VJ € A/", 

.xi^€{0,l} \/i,jeM 

M, 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

Constraint (3.26) is the capacity constraint, constraints (3,30) and 
(3.31) are time constraints, while constraint (3.32) ensures integrahty. 
The constraints (3.27), (3.28) and (3.29) are flow constraints resulting 
in a path from the depot 0 to the depot n + 1. When solving the 
ESPPTWCC as the subproblem in the VRPTW, cij is the modified 
cost of using arc (i, j ) , where QJ = cij — ixi. Note that while QJ is a 
non-negative integer, Cij can be any real number. 

This subproblem does not posses the integrality property, and there
fore solving it as a Hnear mixed-integer programming problem will po
tentially result in a reduction of the integrality gap between the optimal 
solution of the LP-relaxed version of the VRPTW and the optimal inte
ger solution to the problem. 

Since the ESPPTWCC is NP-hard in the strong sense (see Dror, 1994; 
Kohl, 1995), the usual approach has been to slightly alter the problem by 
relaxing some of the constraints. In particular, allowing cycles changes 
the problem to the Shortest Path Problem with Time Windows and 
Capacity Constraints (SPPTWCC). Since arcs can now be used more 
than once (and customers may therefore be visited more than once), the 
decision variables xij and si are replaced by X\A and s\. The variable x-̂ -
is set to 1 if the arc (i, j) is used as the /'th arc on the shortest path, and 0 
otherwise, and the variable s\ is set to the start of service at customer i as 
customer number i, where / G £ = {1, 2 , . . . , |£j}, \C\ = [^n+i/mint^jj. 
The SPPTWCC can now be described by the following mathematical 
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model: 

min J ] ] ^ ^ Cijxij, s.t. (3.33) 
lec ieJ\fj&Af 

E E 4 = 1' (3-34) 
ieAfjeAf 

E E 4 - E E ^ ' 7 ' ^ 0 Vi€£-{1}, (3.35) 
ieAfjeAf ieAfjeAf 

E^^EE4^5' (3-36) 
iec lec j€Äf 

E ^ O i = l, (3.37) 
jeJ\r 

E 4 ' - E 4 = 0 ^heCyieC-{l}, (3.38) 

EE<n+i-=l, (3.39) 

s\ + tij -K{1 -x\j) < s] yi, j eÄfyieC- {1}, (3.40) 

ai<s\< hi Vi G N, (3.41) 

xl̂ . €{0,1} Vi,j€Ar. (3.42) 

In this formulation, (3.34) forces the first arc to be used only once, 
while (3.35) states that arc / can only be used provided that arc / — 1 
is used. The remaining constraints are the original constraints (3.3) 
to (3.9) extended to include the additional superscript / and the changes 
related to its inclusion. Note that (3.34) is redundant as it is covered 
by (3.37), but it has been kept in the model as to indicate the origin 
node. 

This problem can be solved by a pseudo-polynomial algorithm de
scribed in Desrochers, Desrosiers and Solomon (1992). This and ah 
other current approaches are based on dynamic programming. Even 
though negative cycles are possible, the time windows and the capacity 
constraints prohibits infinite cycling. Note that capacity is accumulated 
every time a customer is serviced in a cycle. If the distance used to com
pute the cost of routes satisfies the triangle inequality, the optimal so
lution contains only elementary routes. Solving the SPPTWCC instead 
of the ESPPTWCC augments the size of the set of admissible columns 
generated for the master problem. Consequently the lower bound on the 
master problem may decrease. A slight improvement can be obtained 
by implementing 2-cycle ehmination in the solution process which dates 
back to Kolen, Rinnooy Kan and Trienekens (1987). 
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While the SPPTWCC relaxation was at the time a computational 
necessity, the ESPPTWCC has recently been tackled directly Work on 
this problem and /c-cycle elimination, where /c > 3, proved very suc
cessful in expanding the scope of the VRPTW problems solved. Even 
though the ESPPTWCC continues to be regarded as difficult to solve 
when time windows are wide, two research groups have recently used 
it directly in VRPTW optimal algorithms. Chabrier (2005); Chabrier, 
Danna and Le Pape (2002), and independently Feillet, Dejax, Gendreau 
and Gueguen (2004) have extended the dynamic programming approach 
of Desrochers, Desrosiers and Solomon (1992) to the ESPPTWCC by 
adapting the path dominance rule. They then incorporated several 
heuristic modifications to make the algorithm much faster. Chabrier 
(2005) and Chabrier, Danna and Le Pape (2002) obtained lower bounds 
superior to those based on the SPPTWCC resulting in excellent com
putational results to be described in Section 9. A different approach 
that has not yet been tried on the VRPTW is presented in Dumitrescu 
and Poland (2003). The authors compare three scaling techniques and a 
standard label-setting method. They show that integrating preprocess
ing information within the label-setting method can be very beneficial 
in terms of both memory and run time. Further improvements of the 
label-setting method can be obtained by using Lagrangean relaxation. 

Instead of dealing with the computational burden of the ESPPTWCC 
or the weakened lower bound provided by the SPPTWCC, one could 
consider a middle of the road approach. That is, disallow cycles of 
small length. As discussed above, cycle elimination corresponding to 
k = 2 has been a common technique. In the SPPTWCC-fc-cyc, paths 
with cycles of length of at most k are eliminated. The case k > 3 has 
been considered by Irnich and Villeneuve (2005) with encouraging results 
presented in Section 9. Recently Rousseau, Gendreau and Pesant (2004) 
have presented results where Constraint Programming is used to solve 
the subproblem. Taking into account the difference in computer power, 
the authors conclude that their approach is not any faster than that of 
Desrochers, Desrosiers and Solomon (1992). 

6. Branch-and-bound 
The column generation approach does not automatically guarantee 

integer solutions and often the solutions obtained will indeed be frac
tional. Therefore a branch-and-bound framework has to be established. 
The calculations are organised in a branching tree. For the VRPTW only 
binary strategies have been proposed in the literature although it should 
be noted that it is generally not difficult to come up with non-binary 
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branching trees for the problem. The branching decisions are generahy 
based on considerations related to the original 3-index flow formulation 
(3.2)-(3.9). The column generation process is then repeated at each 
node in the branch-and-bound tree. 

6.1 Branching on the number of vehicles 

Branching on the number of vehicles was originally proposed by 
Desrochers, Desrosiers and Solomon (1992). If the number of vehicles is 
fractional we introduce a bound on the number of vehicles. Note that 
this branching strategy does not require that the flow and time variables 
of the original model be computed. 

This branching rule can be implemented fairly easily and only concerns 
the master problem. We denote the flow over an arc by fij and this is 
the sum of all flows over that arc, that is fij — X /̂̂ ŷ xijk^ The fij values 
can easily be derived from the solution of the master problem. When 
we branch on the number of vehicles, two child nodes are created, one 
imposing on the master problem, parent node the additional constraint 
YljeC f^j — Rl while the other forcing J2jeC f^j — L̂ J' where / is the 
fractional sum of all variables in the master problem. 

Note that branching on the number of vehicles is not necessarily 
enough to obtain an integer solution as it is possible to derive solutions 
where the sum of the vehicles is integer, but yet there are fractional 
vehicles driving around the network. 

6.2 Branching on flow variables 

Branching on a single variable Xijk is possible only if each vehicle 
can be distinguished. In column generation this can be achieved by 
solving the subproblem for each vehicle individually and by introducing 
an additional constraint in the master problem 

J ^ t/p - 1 V/c € V 
pePk 

where Pk is the set of routes generated for each vehicle k and i/p is the 
binary variable indicating whether route p is used. 

Since most cases described in the literature assume a homogeneous 
fleet, it doesn't make sense to branch on individual vehicles. Instead, 
branching can be done on sums of flows, that is either on ^ • Xijk or on 
Ylk^ijk (equivalent to fij). Branching on Ylj^ijk results in a diff'erent 
subproblem for each vehicle, even though the vehicles are identical. That 
is because imposing ^ • Xijk ~ 1 forces customer i to be visited by vehicle 
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fc, while Ylij ̂ ijk — 0 implies that customer i is assigned to any vehicle 
but k. 

The standard practice has been to branch on ^ ^ Xijk since the branch
ing decision can easily be transfered to the master problem and sub-
problem. This was proposed independently by Halse (1992); Desrochers, 
Desrosiers and Solomon (1992). When ^ ^ Xijk = 1, customer j succeeds 
customer i on the same route, while if ^ ^ Xijk = 0, customer i does not 
immediately precede j . If there is more than one candidate for branch
ing, that is, there are several fractional variables, we would generally like 
to choose a candidate that is not close to either 0 or 1 in order to make 
an impact. When selecting among the nodes to branch on, a common 
heuristic is to branch on the variable maximizing Cij{mm{xijk^ 1 — Xijk}) 
using a best-first strategy In order to create more complex strategies the 
branching schemes can be applied hierarchically, such as first branching 
on the number of vehicles and then on J2k ^u^' ^^ mixed. 

6.3 Branching on resource windows 
Branching on resource windows was first proposed by 

Gehnas, Desrochers, Desrosiers and Solomon (1995) and is presently the 
only alternative to branching on flow variables. In the VRPTW model 
resource windows can be interpreted as either the time windows or the 
capacity constraints. We will only discuss branching on time windows, 
as capacity is significantly less constraining in many cases. In Gelinas, 
Desrochers, Desrosiers and Solomon (1995) only branching on time win
dows was used. 

Branching on time windows results in splitting a time window into 
two smaller ones. Branching has to be done in such a way that at least 
one route is infeasible in each of the two sub-windows. 

In order to branch on time windows three decisions have to be taken: 

1) How should the node for branching be chosen? 

2) Which time window should be divided? 

3) Where should the partition point be? 

In order to decide on the above issues, we define feasibility intervals 
[/[,ii[] for all vertices i e Af and ah routes r with fractional flow. /[ is 
the earliest time that service can start at vertex i on route r, and ?x[ is 
the latest time that service can start, that is, [/[,t̂ ^] is the time interval 
during which route r must visit vertex i to remain feasible. 



3 VRPTW 83 

The intervals can easily be computed by a recursive formula. Addi
tionally we define 

Li= max [ID, 
rractional routes r 

Ui = min {ul}, 
fractional routes r 

ieN, 

ieN. 

(3.43) 

(3.44) 

If Li > Ui at least two routes (or two visits by the same route) have 
disjoint feasibility intervals, i.e., the vertex is a candidate for branching 
on time windows. We can branch on a candidate vertex i by dividing the 
time windows [a ,̂ bi] at any integer value in the open interval [C/̂ , Li[. It 
should be noted that situations can arise where there are no candidates 
for branching on time windows, but the solution is not feasible. 

Three different strategies were proposed by Gelinas, Desrochers, Des-
rosiers and Solomon (1995) aiming at the elimination of cycles, the min
imization of the number of visits to a customer i and the balancing of 
flow in the two branch-and-bound nodes. 

After having chosen the candidate vertex i for branching, an integer 
t E [Ui^Li[ has to be selected in order to determine the division. Here t 
is chosen in order to divide the time window of the customer such that 
1) the flow is balanced and 2) the time window is divided as evenly as 
possible. 

7. Acceleration strategies 

7,1 Preprocessing 
The aim of preprocessing is to narrow the solution space by tight

ening the formulation before the actual optimization is started. This 
can be done by flxing some variables, reducing the interval of values a 
variable can take and so on. In the VRPTW, the time windows can be 
narrowed if the triangle inequality holds. Accordingly, Kontoravdis and 
Bard (1995) propose the following scheme. The earhest time a vehicle 
can arrive at a customer is by arriving straight from the depot and the 
latest time it can leave is by going directly back to the depot. Hence, 
for each customer i, its time window can be strengthened from [a ,̂ bi] to 
[maxjao + toz, a^}, min{6n+i - U,n+i, bi}]-

A further reduction of the time windows can be achieved by the 
method developed by Desrochers, Desrosiers and Solomon (1992). The 
time windows are reduced by applying the following four rules in a cyclic 
manner. The process is stopped when one whole cycle is performed with
out changing any of the time windows. The four rules are: 
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1) Minimal arrival time from predecessors: 

ai = max • 
W) 

ja/, min |6/,min{ai + t i / } | j . 

2) Minimal arrival time to successors: 

ai — max < a/, min I 6/, min{aj — '̂ /j} r r• 

3) Maximal departure time from predecessors: 

hi = min |6/ , max ja/, max{&^ + t ^ j | | . 

4) Maximal departure time to successors: 

hi = min < 6/, max < a/, max{6j — tij} ? >. 

The first rule adjusts the start of the time window to the earliest time 
a vehicle can arrive coming straight from any possible predecessor. In a 
similar fashion, the second rule modifies the start of the time window in 
order to minimize the excess time spent before the time windows of all 
possible successors open if the vehicle continues to a successor as quickly 
as possible. The two remaining rules use the same principles to adjust 
the closing of the time window. With respect to capacity, an arc (i, j ) 
can obviously be removed if di + dj > q, 

7.2 Subproblem strategies 
A well known strategy for accelerating column generation is to return 

many negative marginal cost columns to the master problem. Even 
though in principle only one needs to be returned, several can be if they 
are available. Computational tests conducted by Kohl (1995); Larsen 
(1999) confirm the benefits of this approach. 

7.3 Master problem strategies 
Along with the novel perspectives on the subproblem solution de

scribed in 5, master problem acceleration strategies have been key to the 
evolution of VRPTW approaches over the last few years. One approach 
is to accelerate the solution at the root node of the branch-and-bound 
tree by using a local search method to generate a set of initial columns. 
This helps the column generation process get a fast increase in the quality 
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of the dual variables. It has been implemented by numerous researchers 
and has finally been discussed in the literature by Danna and Le Pape 
(2005). The authors use a local search method based on the savings 
algorithm incorporating time windows which produces a set of routes 
better than the trivial depot-customer-depot ones. Furthermore, local 
search is used along with a MIP solver throughout the branch-and-price 
process to generate good integer solutions fast. Two different heuristics, 
a local search method based on large neighborhood search and a guided 
tabu search, were tested and proved beneficial, especially on Solomon's 
Rl and RCl problem classes. 

Two new approaches have been suggested by Larsen (2004, 1999). 
First, during the execution of the branch-and-price a large number of 
columns are generated and many of these only participate in a few com
putations and will not be used afterwards. If kept, each column will 
increase computing time when solving the relaxed set partitioning prob
lem and when adjusting the upper bounds on variables due to branching 
decisions. Therefore Larsen (2004) suggests to keep track of how long a 
column is part of a basis. If it does not participate in a basis for a given 
number of branch-and-bound nodes it is removed from the model. This 
was also suggested by Desaulniers, Desrosiers and Solomon (2002) where 
it was also noted that a certain number of nonbasic columns should re
main in the problem. Larsen (2004) reports that deleting columns that 
have not been part of the basis for the last 20 branch-and-bound nodes 
outperforms the code without column deletion by a factor of 2.5 aggre
gated over 27 instances. 

The second acceleration approach is to stop the algorithm for the 
SPPTWCC before it completes. Computations can be stopped as soon 
as at least one route with negative cost has been generated. This ap
proach is denoted "forced early stop" in Larsen (1999) and results in 
dramatic running time reductions, especially for problems with large 
time windows. For these, the values of the dual variables at the begin
ning of the procedure will however be of poor quality. Only when the 
subproblem proves optimality it cannot be stopped prematurely. 

7A Cutting planes 
The barebone column generation methodology for solving the VRPTW 

is part of the popular approach for solving difficult integer programming 
problems by relaxing the integrality constraints of the original problem. 
Typically, the optimal solution to the relaxed problem is not feasible 
for the original problem and branch-and-bound is used in order to get 
integer solutions. 
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Cutting planes has been proposed to improve the polyhedral descrip
tion of the relaxed problem in order to get an integer solution or at 
least narrow the integrality gap. Kohl, Desrosiers, Madsen, Solomon 
and Soumis (1999) suggested three cuts in order to tighten the LP for
mulation of the VRPTW problem. As these cuts are only introduced at 
the root node, this is not a branch-and-cut approach, where cuts can be 
introduced at any node of the search tree. 

The method is based on subtour elimination constraints and comb in
equalities transferred from the TSP, and 2-path cuts. To detect subtour 
elimination constraints, a separation algorithm by Crowder and Pad-
berg (1980) was implemented. With respect to the comb inequalities, 
only combs with 3 teeth and 2 nodes were detected. The separation algo
rithm was a primitive enumeration scheme. Neither of these constraints 
had a large impact on tightening the bound. 

A new idea introduced by Kohl, Desrosiers, Madsen, Solomon and 
Soumis (1999) was the inclusion of 2-path cuts. The basis of this set of 
cuts is the subtour ehmination inequality in the strong form: x{S) > 
k{S)^\/S C C, where x{S) is the flow leaving the set 5, and k{S) is 
the minimum number of vehicles needed to service the customers in S. 
Determining k{S) is not an easy task, but using the triangle inequality 
on the travel times we have that ^i C ^2 =r̂  k{Si) < fc(S'2). Sets S that 
satisfy x{S) < 2 and k{S) > 1 must now be found. As k{S) is an integer, 
k{S) > 1 implies k{S) > 2. So we need to identify sets S that require at 
least two vehicles to be serviced, but are currently serviced by less than 
two. 

For a set 5, two checks have to be performed: 1) k{S) > 1 and 2) can 
the customers be serviced by a single vehicle? The first check is easy, but 
the second requires the solution of the TSPTW feasibility problem. Since 
this problem is NP-hard the separation algorithm can only be applied 
to small sets. This is done heuristically using a simple greedy algorithm 
based on Laporte, Nobert and Desrochers (1985). 

The 2-path cuts outperformed the branch-and-price method without 
2-path cuts. The proportion of the integrality gap closed by the 2-path 
cuts varies from 100% to 10% in a few cases. Overall 12 new unsolved 
Solomon instances were closed. 

Cook and Rich (1999) extended the above 2-path cut approach to k-
path cuts involving the solution of a VRPTW with (A; - 1) customers as 
part of the separation algorithm. The authors performed experiments 
with /c up to 6. For larger /c, the percentage of the integrality gap 
that is closed is of course larger, but the separation algorithm requires 
substantially more time and therefore it is not evident that it is preferable 
to use k larger than 2. 
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Recently, Bard, Kontoravdis and Yu (2002) have proposed a branch-
and-cut algorithm for the arc formulation of the VRPTW. This devel
opment parallels the initial uses of this technique for the VRP (Naddef 
and Rinaldi, 2002). Based on the results obtained by Mak (2001), a new 
arc formulation of the VRPTW is presented in Kallehauge and Boland 
(2004). In this formulation the time and capacity restrictions are mod
eled using infeasible path elimination constraints (IPECS). This new 
class of inequalities can be viewed as a strengthening of the IPECS de
scribed in Ascheuer, Fischetti and Grötschel (2000), Ascheuer, Fischetti 
and Grötschel (2001); Bard, Kontoravdis and Yu (2002) and can also 
be incorporated at the master problem level in the path formulation 
considered in this chapter. 

Another line of research involves valid inequalities derived from the 
precedence relationships established by the time windows. That is, if 
a set of customers is served by the same vehicle, the associated time 
windows create a precedence structure among the corresponding nodes 
(Ascheuer, Fischetti and Grötschel, 2001). In Kallehauge and Boland 
(2004), two classes of valid inequalities for the precedence-constrained 
asymmetric traveling salesman polytope (Balas, Fischetti and Pulley-
blank, 1995) are transferred to the VRPTW. 

8- Generalizations of the VRPTW model 
The methods considered in this chapter can be generalized and ap

plied to a number of related problems as discussed by Desrosiers, Dumas, 
Solomon and Soumis (1995). Here we will concentrate on routing gener
alizations and show how a number of more complex routing problems can 
be modeled based on the framework introduced in the previous sections. 

8.1 Non-identical vehicles 
In the general case vehicles may differ with respect to travel time, 

travel costs, capacity and possibly other characteristics. We define a class 
of vehicles as a set of identical vehicles. There may be a cost associated 
with the vehicles of a particular class, and there may be bounds on their 
availability as well. These bounds are modeled in to the master problem 
as supplementary constraints. 

The subproblem must be solved separately for each class of vehicles. 
The marginal costs of the arcs originating at the depot of the subproblem 
for a particular vehicle class must be modified by the simplex multiplier 
of the constraints on the availability of this class in the master problem. 
One can chose to solve one or more of the subproblems between each 
master iteration. The LP optimaHty criterion is that no subproblem 
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generates columns with negative reduced costs. It is likely to be efficient 
to branch on the number of vehicles of a particular class if this number 
is fractional. 

A special case occurs if vehicles do not differ with respect to traveling 
time, travel cost and time windows, but only have different capacities 
and possible availability and fixed costs. This problem is clearly solv
able as described above, but it can also be transformed into the identical 
vehicle problem described earlier in this chapter. The advantage of this 
transformation is that only one subproblem must be solved at each it
eration. To illustrate how the transformation works consider a problem 
with two classes of vehicles, with vehicle capacities qi and q2 respectively, 
where qi < q2' The fixed costs of using the vehicles are ci and C2, respec
tively. Two extra nodes are inserted in parallel between the depot and 
the customers and any path must go through exactly one of these nodes. 
The two arcs from the depot to the new nodes are priced ci and C2, 
respectively. If node 1 is chosen, the capacity is reduced by 2̂ — Qi since 
the resource window of node 1 starts at this quantity. Since the resource 
window of the depot is [0, ̂ 2]? a path going through node 1 cannot service 
customers with accumulated demand of more than 2̂ ~~{(l2 — qi) — qi- If 
there are bounds on the availability of the vehicles, these are inserted in 
the master problem and the simplex multipliers modify the cost of the 
two new arcs between the depot and the new nodes. 

8-2 Multiple depots 
If the vehicles are based at different depots, one subproblem must 

be solved for each depot. Constraints on the availability of vehicles at 
a particular depot are kept in the master problem, and the associated 
simplex multiplier modifies the cost of arcs originating at the depot. This 
is equivalent to the general non-identical vehicle case discussed above. 

One may assume that the vehicles are allowed to finish their routes 
at a depot different from the one the vehicles started, but that the num
ber of vehicles starting and ending at any depot remains constant. In 
this particular case it is sufficient to solve one subproblem. One extra 
node per depot is created "before" the customers and one "after" the cus
tomers. For each depot there will be a constraint r in the master problem 
requiring the number of vehicles housed at. that depot be kept constant. 
The right hand side will be zero, and the left hand side coefficient (r,p) 
will be 1 if route p starts at the depot associated with constraint r and 
ends at another depot, —1 if the route starts at another depot and ends 
at the depot associated with constraint r, and zero otherwise. The cor
responding simplex multipliers modify the cost of arcs originating at the 
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depot (with opposite sign). It is also easy to introduce different fixed 
costs associated with the vehicles housed at the depots. 

8.3 Multiple or soft time windows 
Customers may have several (disjoint) time intervals in which they 

can be serviced, A vehicle arriving between two time windows must 
wait until the beginning of the next time window. This doesn't truly 
complicate the problem since the usual dominance criterion in the sub-
problem remains valid. A vehicle arriving at a particular node at time 
ti can do everything a vehicle arriving at time 2̂ can, provided that 
h < t2. 

If there exist a cost c{si) dependent on the time si service at customer 
i begins, the time window is said to be soft. If the cost is non-decreasing 
with increasing time this is not problematic, since the dominance criteria 
remain valid. The most general case where c{si) is a general function is 
not efficiently solvable. loachim, Gelinas, Desrosiers and Soumis (1998) 
present an algorithm for the hnear case. 

9. Computational experiments 
Almost from the first computational experiments, a set of problems 

became the test-bed for both heuristic and exact investigations of the 
VRPTW. Solomon (1987) proposed a set of 164 instances that have 
remained the leading test set ever since. For the researchers working on 
heuristic algorithms for the VRPTW a need for bigger problems made 
Homberger and Gehring (1999) propose a series of extended Solomon 
problems. These larger problems have as many as 1000 customers and 
several have been solved by exact methods. 

9*1 The Solomon instances 
The test sets reflect several structural factors in vehicle routing and 

scheduling such as geographical data, number of customers serviced by 
a single vehicle and the characteristics of the time windows (e.g., tight
ness, positioning and the fraction of time-constrained customers in the 
instances). Customers are distributed within a [0,100]^ square. 

The instances are divided into 6 groups (test-sets) denoted Rl, R2, 
CI, C2, RCl and RC2. Each of the test sets contain between 8 and 12 
instances. In Rl and R2 the geographical data is randomly generated by 
a random uniform distribution. In the test sets CI and C2 the customers 
are placed in clusters, and finally in the RCl and RC2 test-sets some 
customers are placed in clusters while others are placed randomly. In 
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the test sets Rl, CI and RCl the scheduhng horizon is short permitting 
approximately 5 to 10 customers to be serviced on each route. The R2, 
C2 and RC2 problems have a long scheduling horizon allowing routes 
with more than 30 customers to be feasible. This makes the problems 
very hard to solve exactly and they have not been used until recently 
to test exact methods. The time windows for the test sets CI and C2 
are generated to permit good, maybe even optimal, cluster-by-cluster 
solutions. For each class of problems the geographical position of the 
customers is the same in all instances whereas the time windows are 
changed. 

Each instance has 100 customers, but by considering only the first 25 
or 50 customers, smaller instances can easily be generated. It should be 
noted that for the RC-sets this results in the customers being clustered 
since the clustered customers appear at the beginning of the file. Travel 
time between two customers is usually assumed to be equal to the travel 
distance plus the service time at the predecessor customer. 

9.2 Computational results 
This section reviews the results obtained by the best exact algorithms 

for the VRPTW. All are based on the column generation approach. The 
tables 3.1 through 3.6 present the solutions for the six diflferent sets of 
the Solomon instances that have been solved to optimality. Column K 
indicates the number of vehicles used in the optimal solution while the 
column "Authors" give reference to the first publication (s) of the optimal 
solution for the problem: Kohl, Desrosiers, Madsen, Solomon and Soumis 
(1999) (KDMSS), Larsen (1999) (L), Kallehauge, Larsen and Madsen 
(2000) (KLM), Cook and Rich (1999) (CR), Irnichand Villeneuve (2005) 
(IV), Chabrier (2005) (C), and Danna and Le Pape (2005) (DLP). It 
should be noted that Desrochers, Desrosiers and Solomon (1992) prior 
to Kohl, Desrosiers, Madsen, Solomon and Soumis (1999) solved 50 of 
the 87 Solomon problems with narrow time windows, but with different 
travel times. Whereas all the above mentioned papers compute the travel 
times using one decimal point precision and truncation, time and cost 
is computed differently in Desrochers, Desrosiers and Solomon (1992). 
Furthermore, solutions to all CI instances were reported for the first 
time by Kohl and Madsen (1997), who used a Lagrangian relaxation 
approach. 

As discussed in Cordeau, Desaulniers, Desrosiers, Solomon, and Soumis 
(2002), the optimal algorithm of Kohl, Desrosiers, Madsen, Solomon 
and Soumis (1999) solved 69 of the 87 Solomon benchmark short hori
zon problems to optimality. Eleven additional problems were solved by 
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Table 3.1. Optimal solutions for the Rl instances. 

Problem 

R101.25 
R101.50 
RlOl.lOO 
R102.25 
R102.50 
R102.100 
R103.25 
R103.50 
R103.100 
R104.25 
R104.50 
R104.100 
R105.25 
R105.50 
R105.100 
R106.25 
R106.50 
R106.100 

K 

8 
12 
20 

7 
11 
18 
5 
9 

14 
4 
6 

11 
6 
9 

15 
5 
8 

13 

Dist. 

617.1 
1044 

1637.7 
547.1 

909 
1466.6 
454.6 
772.9 

1208.7 
416.9 
625.4 
971.5 
530.5 
899.3 

1355.3 
465.4 

793 
1234.6 

Authors 

KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
CR+L 
KDMSS 
KDMSS 
IV 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
CR+KLM 

Problem 

R107.25 
R107.50 
R107.100 
R108.25 
R108.50 
R108.100 
R109.25 
R109.50 
R109.100 
R110.25 
R110.50 
RllO.lOO 
R111.25 
R111.50 
Rill.100 
R112.25 
R112,50 
R112.100 

K 

4 
7 

11 
4 
6 

5 
8 

13 
5 
7 

12 
4 
7 

12 
4 
6 

Dist. 

424.3 
711.1 

1064.6 
397.3 
617.7 

441.3 
786.8 

1146.9 
444.1 

697 
1068 

428.8 
707.2 

1048.7 
393 

630.2 

Authors 

KDMSS 
KDMSS 
CR+KLM 
KDMSS 
CR+KLM 

KDMSS 
KDMSS 
CR+KLM 
KDMSS 
KDMSS 
CR+KLM 
KDMSS 
CR+KLM 
CR+KLM 
KDMSS 
CR+KLM 

Larsen (1999); Cook and Rich (1999); Kallehauge, Larsen and Madsen 
(2000). Recently, Irnich and Villeneuve (2005) were successful in closing 
three additional instances. Four 100-customer instances are still open. 

As also reported in Cordeau, Desaulniers, Desrosiers, Solomon, and 
Soumis (2002); Larsen (1999); Cook and Rich (1999); Kallehauge, Larsen 
and Madsen (2000) also provided exact solutions to 42 of the 81 Solomon 
long horizon problems. Since then, Irnich and Villeneuve (2005); Chabrier 
(2005); Danna and Le Pape (2005) have solved an additional 21 instances, 
leaving 18 problems still unsolved. 

10- Conclusions 

In this chapter we have highlighted the noteworthy developments 
for optimal column generation approaches to the VRPTW. To date, 
such methods incorporating branching and cutting on solutions obtained 
through Dantzig-Wolfe decomposition are the best performing algorithms. 
Valid inequalities have proved an invaluable tool in strengthening the LP 
relaxation for this class of problems. 
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Table 3.2. Optimal solutions for the CI instances 

Problem 

C101.25 
C101.50 
ClOl.lOO 
C102.25 
C102.50 
C102.100 
C103.25 
C103.50 
C103.100 
C104.25 
C104.50 
C104.100 
C105.25 
C105.50 
C105.100 

K 

3 
5 

10 
3 
5 

10 
3 
5 

10 
3 
5 

' 10 
3 
5 

' 10 

Dist. 

191.3 
362.4 
827.3 
190.3 
361.4 
827.3 
190.3 
361.4 
826.3 
186.9 

358 
822.9 
191.3 
362.4 
827.3 

Authors 

KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 

Problem K 

C106.25 3 
C106.50 5 
C106.100 10 
C107.25 3 
C107.50 5 
C107.100 10 
C108.25 3 
C108.50 5 
C108.100 10 
C109.25 3 
C109.50 5 
C109.100 10 

Table 3.3. Optimal solutions for the RCl instances. 

Problem 

RC101.25 
RC101.50 
RClOl.lOO : 
RC102.25 
RC102.50 
RC102.100 : 
RC103.25 
RC103.50 
RC103.100 : 
RC104.25 
RC104.50 
RC104.100 

K 

4 
8 

Dist. 

461.1 
944 

15 1619.8 
3 
7 

351.8 
822.5 

14 1457.4 
3 
6 

11 
3 
5 

332.8 
710.9 
1258 

306.6 
545.8 

Authors 

KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
CR+KLM 
KDMSS 
KDMSS 
CR+KLM 
KDMSS 
KDMSS 

Problem 

RC105.25 
RC105.50 
RC105.100 
RC106.25 
RC106.50 

• RC106.100 
RC107.25 
RC107.50 

[ RC107.100 
RC108.25 
RC108.50 
RC108.100 

Dist. Authors 

191.3 KDMSS 
362.4 KDMSS 
827.3 KDMSS 
191.3 KDMSS 
362.4 KDMSS 
827.3 KDMSS 
191.3 KDMSS 
362.4 KDMSS 
827.3 KDMSS 
191.3 KDMSS 
362.4 KDMSS 
827.3 KDMSS 

K 

4 
8 

15 
3 
6 

3 
6 

12 
3 
6 

11 

Dist. 

411.3 
855.3 

1513.7 
345.5 
723.2 

298.3 
642.7 

1207.8 
294.5 
598.1 

1114.2 

Authors 

KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 

KDMSS 
KDMSS 
IV 
KDMSS 
KDMSS 
IV 

Recent advances have stemmed from work on parallel implementa
tions of the overall approach, acceleration strategies, primarily at the 
master problem level, and the subproblem. Solving the subproblem as 
a ESPPTWCC or a SPPTWCC-fe-cyc has shown to be very beneficial 
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Table 3.4- Optimal solutions for the R2 instances. 

Problem 

R201.25 
R201.50 
R201.100 
R202.25 
R202.50 
R202.100 
R203.25 
R203.50 
R203.100 
R204.25 
R204.50 
R204.100 
R205.25 
R205.50 
R205.100 
R206.25 
R206.50 
R206.100 

K 

4 
6 
8 
4 
5 

3 
5 

2 
2 

3 
4 

3 
4 

Dist. 

463.3 
791.9 

1143.2 
410.5 
698.5 

391.4 
605.3 

355 
506.4 

393 
690.1 

374.4 
632.4 

Authors 

CR+KLM 
CR+KLM 
KLM 
CR+KLM 
CR+KLM 

CR+KLM 
IV+C 

IV+C 
IV 

CR+KLM 
IV+C 

CR+KLM 
IV+C 

Problem 

R207.25 
R207.50 
R207.100 
R208.25 
R208.50 
R208.100 
R209.25 
R209.50 
R209.100 
R210.25 
R210.50 
R210.100 
R211.25 
R211.50 
R211.100 

K 

3 

1 

2 
4 

3 
4 

2 
3 

Dist. 

361.6 

328.2 

370.7 
600.6 

404.6 
645.6 

350.9 
535.5 

Authors 

KLM 

IV+C 

KLM 
IV+C 

CR+KLM 
IV+C 

KLM 
IV+DLP 

Table 3.5. Optimal solutions for the C2 instances. 

Problem 

C201.25 
C201.50 
C201.100 
C202.25 
C202.50 
C202.100 
C203.25 
C203.50 
C203.100 
C204.25 
C204.50 
C204.100 

K 

2 
3 
3 
2 
3 
3 
2 
3 
3 
1 
2 
3 

Dist. 

214.7 
360.2 
589.1 
214.7 
360.2 
589.1 
214.7 
359.8 
588.7 
213.1 
350.1 
588.1 

Authors 

CR+L 
CR+L 
CR+KLM 
CR+L 
CR+KLM 
CR+KLM 
CR+L 
CR+KLM 
KLM 
CR+KLM 
KLM 
IV 

Problem 

C205.25 
C205.50 
C205.100 
C206.25 
C206.50 
C206.100 
C207.25 
C207.50 
C207.100 
C208.25 
C208.50 
C208.100 

K 

2 
3 
3 
2 
3 
3 
2 
3 
3 
2 
2 
3 

Dist. 

214.7 
359.8 
586.4 
214.7 
359.8 

586 
214.5 
359.6 
585.8 
214.5 
350.5 
585.8 

Authors 

CR+L 
CR+KLM 
CR+KLM 
CR+L 
CR+KLM 
CR+KLM 
CR+L 
CR+KLM 
CR+KLM 
CR+L 
CR+KLM 
KLM 
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Table 3.6. Optimal solutions for the RC2 instances. 

Problem 

RC201.25 
RC201.50 
RC201.100 
RC202.25 
RC202.50 
RC202.100 
RC203.25 
RC203.50 
RC203.100 
RC204.25 
RC204.50 
RC204.100 

K 

3 
5 
9 
3 
5 
8 
2 
4 

3 
3 

Dist. 

360.2 
684.8 

1261.8 
338 

613.6 
1092.3 
326.9 

490.122 

299.7 
444.2 

Authors 

CR+L 
L+KLM 
KLM 
CR+KLM 
IV+C 
IV+C 
IV+C 
IV+C 

C 
DLP 

Problem 

RC205.25 
RC205.50 
RC205.100 
RC206.25 
RC206.50 
RC206.100 
RC207.25 
RC207.50 
RC207.100 
RC208.25 
RC208.50 
RC208.100 

K 

3 
5 
7 
3 
5 

3 
4 

2 

Dist. 

338 
630.2 
1154 
324 
610 

298.3 
558.6 

269.1 

Authors 

L+KLM 
IV+C 
IV+C 
KLM 
IV+C 

KLM 
C 

C 

Nevertheless, 25% of Solomon's problems are still unsolved. Additional 
research in each of these areas should lead to further advances. We 
expect that the further study of polyhedral structures, paralellism, ac
celeration strategies, and the subproblem will constitute the backbone of 
research in this area for the next several years. Master problem acceler
ation methods relying on local search heuristics is just beginning. Other 
strategies may consider the principle of stabilization for column gener
ation discussed in du Merle, Villeneuve, Desrosiers and Hansen (1999) 
for the VRPTW. Speedup factors of 1 to 10 were achieved by using 
stabilized column generation on the airline crew pairing problem which 
closely related to the VRPTW. 

Decomposition algorithms are also easily adaptable to other settings. 
This is because they comprise modules, such as dynamic programming, 
that can handle a variety of objectives. Lateness, for one, is becoming an 
increasingly important benchmark in today's supply chains that empha
size on time deliveries. Moreover, they can be run as optimization-based 
heuristics by means of early stopping criteria. 

We hope that this chapter has shed sufficient light on current devel
opments to lead to exciting further research. 
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Chapter 4 

BRANCH-AND-PRICE HEURISTICS: 
A CASE STUDY ON THE VEHICLE 
ROUTING PROBLEM WITH 
TIME WINDOWS 

Emilie Danna 
Claude Le Pape 

Abstract Branch-and-price is a powerful framework to solve hard combinatorial 
problems. It is an interesting alternative to general purpose mixed in
teger programming as column generation usually produces at the root 
node tight lower bounds (when minimizing) that are further improved 
when branching. Branching also helps to generate integer solutions, 
however branch-and-price can be quite weak at producing good integer 
solutions rapidly because the solution of the relaxed master problem is 
rarely integer-valued. In this paper, we propose a general cooperation 
scheme between branch-and-price and local search to help branch-and-
price finding good integer solutions earlier. This cooperation scheme 
extends to branch-and-price the use of heuristics in branch-and-bound 
and it also generalizes three previously known accelerations of branch-
and-price. We show on the vehicle routing problem with time win
dows (Solomon benchmark) that it consistently improves the ability of 
branch-and-price to generate good integer solutions early while retaining 
the ability of branch-and-price to produce good lower bounds. 

!• Introduction 
Column generation is a powerful framework to solve hard optimization 

problems. It operates with a master problem that consists of a linear 
problem on the current set of columns, and a subproblem that iteratively 
generates improving columns. In case the master problem contains in
tegrality constraints on some of its variables, column generation and 
branch-and-bound are combined: This is called branch-and-price, see 
Barnhart et al. (1998) for a general introduction. Branch-and-price pro-
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vides the user both with a lower bound (when minimizing, as assumed 
throughout this paper) and integer solutions. Branch-and-price is known 
for providing tight lower bounds but it has sometimes difficulties to gen
erate rapidly good solutions because the linear relaxation of the master 
problem rarely has an integer solution. 

Local search (Aarts and Lenstra, 1997; Voß et al., 1999) is a com
pletely different optimization technique with opposite properties. Local 
search algorithms use operators to define a neighborhood around a given 
solution or set of solutions. This subregion of the search space is then 
explored to iteratively generate better solutions and various strategies 
such as metaheuristics are used to move from one neighborhood to the 
next so as to escape local minima. Local search algorithms are notori
ously effective at generating quickly excellent solutions. However, they 
do not provide the user with a lower bound on the objective. Hence 
the difference between the solution obtained and the optimal solution 
cannot be estimated and the user does not know if more time should be 
devoted to reach a better solution. 

In this paper, we present a general cooperation scheme between 
branch-and-price and local search that improves the ability of branch-
and-price to generate good integer solutions early while retaining the 
abihty of branch-and-price to produce tight lower bounds. 

In order to test this general hybrid scheme, we apply it to the vehicle 
routing problem with time windows (VRPTW). A number of indus
trial optimization problems are variations of the vehicle routing problem 
(VRP), which can be summarized as follows: Given a set of customers 
that each demand some amount of goods, a set of vehicles with given ca
pacity that must start from and return to a depot, and known distances 
between all customers and the depot, and every pair of customers, the 
objective is to establish for each vehiclenn an ordered list of customers to 
visit so as to minimize the overall distance travelled and sometimes the 
number of vehicles needed. A classical additional constraint is to specify 
time windows that restrict the time of the day at which each customer 
can be served: This defines the vehicle routing problem with time win
dows. Cordeau et al. (2002) review different methods to solve it. Among 
exact methods, branch-and-price has recently been apphed with success 
to this problem, see for example Desrochers et al. (1992); Kohl et al. 
(1999); Larsen (1999); Cook and Rich (1999); Kallehauge et al. (2001); 
Irnich (2001); Rousseau et al. (2002); Chabrier et al. (2002); Chabrier 
(2003); Irnich and Villeneuve (2003). Local search algorithms are also 
popular for solving the VRPTW, see for example Roch at and Tail-
lard (1995); Homberger and Gehring (1999); Gambardella et al. (1999); 
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Branch-and-price Generation of 
integer solutions 

Figure 4.1. Cooperation scheme. 

Cordeau et al. (2001); De Backer et al. (2000); Bräysy and Gendreau 
(2003a,b). 

The remainder of the paper is organized as fohows. Section 2 presents 
our general cooperation scheme between branch-and-price and local 
search. Section 3 details how our general scheme is applied to the vehi
cle routing problem with time windows. Section 4 gives computational 
results and discusses why our hybrid scheme works. Finally, Section 5 
summarizes our conclusions. 

2. General cooperation between 
branch-and-price and local search 

2,1 Description of the algorithm and discussion 
Figure 4.1 presents our cooperation scheme between column genera

tion and local search. The left hand side of the figure shows the usual 
relaxed master problem and subproblem of branch-and-price. Note that 
the subproblem could be solved by any optimization technique. On the 
right hand side two components for obtaining integer solutions are speci
fied. First, a mixed integer programming (MIP) solver is called regularly 
on the master problem with the current set of columns without relaxing 
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the integrality constraints. If the MIP solver is called at the root node 
of the branch-and-price tree, the best integer solution found so far is 
used as the first solution of the MIR If the MIP solver is called at a 
node further down the branch-and-price tree, the best integer solution 
found so far might not be valid for the branching decisions taken at 
that node, hence it cannot always be used as a first solution. The effort 
spent on solving the MIP is controlled with a time or node limit. When 
this limit is reached, the exploration of the branch-and-price tree is re
sumed. Secondly, local search is also called regularly to solve the master 
problem, its initial solution being the best integer solution found so far. 
Unlike the MIP solver, local search is not restricted to combining ex
isting columns: Local search may not only provide better combinations 
of existing columns, but it may also introduce new columns. Hence the 
columns generated are more diverse which is likely to accelerate pricing, 
for example because it has thus greater chances to overcome degeneracy. 

The strength of our hybrid scheme is diversification by means of dif
ferent algorithms for solving the same problem. Branch-and-price obvi
ously benefits from local search that is more effective at finding feasible 
solutions. But in turn, local search benefits from branch-and-price that 
provides it with diverse initial solutions. Indeed, the main difficulty of 
local search algorithms is to escape local minima. To overcome this dif
ficulty, the strategy of various metaheuristics is to attempt to control a 
series of moves that increase the value of the objective function in order 
to reach a different and more promising region of the solution space. 
There exist even simpler diversification schemes that restart the same 
algorithm from the same initial solution but with different random seed 
initiahzation (see for example Alt et al., 1996, for a theoretical study 
of this strategy) or build a new initial solution as different as possible 
from the current local optimum in order to explore a hopefully differ
ent region of the solution space. In all cases, diversification is achieved 
at the cost of increasing the objective function. On the contrary, in 
our cooperation scheme, the mathematical programming component is 
a non-deteriorating diversification scheme for local search. Indeed, the 
upper bound for the master problem and the MIP cutoff are always up
dated with the value of the best feasible solution found so far. Hence, 
when the MIP solver finds a new integer solution or when the solution of 
the relaxed master problem is integer, it is by construction an improve
ment on the last local optimum found by local search: Diversification is 
achieved and the objective function is improved at the same time. This 
strategy has nonetheless a computational cost: solving a MIP is more 
expensive than classical diversification schemes. 
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Branch-and-price is an exact method, so it will in the end find the op
timal integer solution. Therefore our cooperation scheme is not so useful 
when exploring the branch-and-price tree to optimality. However, this 
complete exploration may find good integer solutions only late in the 
computation. Our cooperation scheme helps to find good integer solu
tions at an earlier stage, which has numerous advantages. First, the user 
can stop optimizing as soon as satisfied with the quality of the integer 
solution found and use the truncated exploration of the branch-and-price 
tree as a powerful heuristic that also provides tight lower bounds. Next, 
good upper bounds are helpful to solve the subproblem more eflFectively, 
for example by allowing to eliminate arcs from the shortest path sub-
problem in the VRPTW case, see for example Hadjar et al. (2001); Irnich 
and Villeneuve (2003). A good upper bound may also reduce the num
ber of iterations between master problem and subproblem at each node: 
Computing the so-called Lagrangean lower bound (LLB) while solving 
a tree node might allow to terminate the column generation process at 
that node before optimality, i.e. as soon as LLB is greater than the upper 
bound known so far, see for example Desrosiers and Lübbecke (2004). 
Finally, knowing a good upper bound early might help to explore only a 
relatively small number of nodes in the branch-and-price tree. Given a 
fixed branching strategy, a best-first exploration strategy guarantees that 
only the children nodes of a node with a lower bound smaller than the 
optimal objective value have to explored. In this sense, best-first search 
guarantees that a minimum number of nodes are explored. Knowing a 
good upper bound does not allow us to improve on this number. How
ever, best-first search can fail to produce good integer solutions until the 
very end of the tree exploration, this is why other exploration strategies 
such as depth-first search are often preferred, although they lead to a 
higher number of explored nodes. Our cooperation scheme allows the 
user to choose a tree exploration strategy such as best-first search that 
explores a small number of nodes because our scheme doesn't rely only 
on branching to generate integer solutions. 

2.2 Related work 

The first algorithms related to the cooperation scheme just described 
are the so-called mixed integer programming heuristics, such as pivot-
and-complement introduced by Balas and Martin (1980) or the diving 
heuristics described in Bixby et al. (2000). These heuristics are used in 
branch-and-bound (and branch-and-cut) to generate good integer solu
tions by taking heuristic decisions outside of the exploration of the tree 
when branching has difficulties in finding integer solutions. Our cooper-
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ation scheme between branch-and-price and local search can be seen as 
a generalization to branch-and-price of this use of heuristics in branch-
and-bound in so far as it achieves the same goal (generating integer 
solutions early without interfering with the tree exploration strategy) 
and new columns are also introduced while generating integer solutions. 

Our cooperation scheme also relates to the three following accelerating 
strategies for branch-and-price reviewed in Desaulniers et al. (2002): Us
ing local search to generate initial primal and dual solutions, generating 
further integer solutions for the master problem by rounding to 1 or to 
the next integer the fractional variables of its continuous relaxation, and 
post-optimizing with local search the best known integer solution after 
a given time limit. Our cooperation scheme is a generalization of these 
accelerating strategies for the two following reasons. First, in our coop
eration scheme, local search is called throughout the branch-and-price 
search and not only at the beginning or at the end of the optimization 
process. As explained in the previous section, this allows for fruitful 
interactions between the two components. Secondly, any local search 
method can be used in our cooperation scheme—Not just simple round
ing techniques. Very effective domain-specific heuristics can be used, as 
we will show on the vehicle routing problem with time windows. 

Finally, it should be mentioned that another existing strategy for com
bining local search and branch-and-price is to solve the subproblem with 
a local search algorithm. In our cooperation scheme, the local search al
gorithm generates new columns when solving the master problem. New 
columns can also be generated by directly solving the subproblem with 
a local search algorithm, as described for example in Savelsbergh and 
Sol (1998); Xuet al. (2003). 

2.3 Parameters settings 
A fair amount of tuning can be required so as to know when and for 

how long MIP and local search should be called. It obviously depends on 
the problem, but here are a few basic rules. Solving completely the MIP 
formulation of the master problem is time consuming so a time or node 
limit should be set and the MIP solver should preferably be called when 
we guess it has a good chance to find an improved integer solution, for 
example when the integrality gap between the best known integer solu
tion and the value of the current continuous relaxation is high, or when 
the number of integer-infeasible variables in the relaxed master problem 
is small. Local search should be called for post-optimization at least 
each time a new integer solution is found by MIP or when the continu
ous relaxation of the master problem is integer. If local search turns out 
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to find significantly more solutions than mathematical programming, it 
may be called more often, using as first solutions not only the solutions 
found by mathematical programming but also some of the solutions pre
viously found by local search itself, A simple adaptive scheme can be 
used, decreasing or increasing the frequency and the computation time 
allotted to MIP and local search according to their respective success 
rates. 

3, Application to the vehicle routing problem 
with time windows 

We now present the specific branch-and-price model and the heuristics 
we used for applying the general cooperation scheme just described to 
the vehicle routing problem with time windows. 

3.1 Branch-and-price model and solution 
techniques 

We used the following common model (Cordeau et al., 2002) where 
each column corresponds to a feasible route. Let { 1 , . . . , n} be the set of 
customers. For each feasible route r, let Xr be the variable defined by: 

J 1 if route r is used in the solution 

0 otherwise 

and let ĉ  be the cost of route r. The VRPTW 

min y ^ CrXr s.t. 
reR 

y SirXr = 1, Vi = 1, . . . 
reR 

Xr e {0,1}, yr eR 

is then written 

,n 

as: 

(4.1) 

(4.2) 

(4.3) 

where R is the set of all feasible routes with respect to the capacity and 
time windows constraints, and öir == 1 if customer i is visited by route 
r, and 0 otherwise. 

3.1.1 Decomposition into master problem and subproblem. 
The first difficulty of this model is that the number of feasible routes 

grows exponentially with the number of customers. We hence use column 
generation to generate columns on the fly. The model is decomposed 
into a master problem and in a subproblem. The master problem is 
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formulated as: 

imn2_]^CrXr s.t. (4-4) 

reR 

V^ Sij^Xr = 1, Vz = l , . . . , n (4-5) 
reR 

X ^ G { 0 , 1 } , "ireR (4.6) 

where R is the set of already generated columns. We solve in fact the 
continuous relaxation of the master problem, replacing (4.6) with the 
constraints 

Q<Xr<l, ^reR. (4.7) 

The subproblem is the following: 

n 

m i n Cr- — y^ TTiÖir 
reR ^-^ 

where (TT )̂̂ ]̂̂  is the dual price associated with (4.5). The subproblem is 
to be interpreted as a constrained shortest path problem on the original 
graph, where each arc (i, j ) is valued by its original cost (distance) minus 
the dual value 7̂^ associated with its starting extremity i. 

3.1.2 Branch-and-price and branching strategy. The sec
ond difficulty of this model is that, as stated in (4.6), Xr variables must 
take integer values in feasible solutions. Therefore the problem is solved 
with branch-and-price: 

1 Start with an initial pool of columns, for example generated by a 
simple heuristic. 

2 Solve the continuous relaxation of the master problem, replac
ing (4.6) with (4.7). 

3 Solve the subproblem with the dual values updated at step 2, and 
attempt to generate several constrained shortest paths with nega
tive reduced costs. 

4 Iterate steps 2 and 3 until no more new routes with negative re
duced cost can be generated. 

5 If the solution of the continuous relaxation of the master problem 
is not integer, branch and iterate steps 2 and 3 at each node. 
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We use the following branching rule on arcs. Let x* be the optimal 
solution of the relaxed master problem after the last subproblem itera
tion at the current node. If x* is integer, no branching is necessary. If a;* 
is not integer, let to = {io = depot, i i , i25 • • • ̂  V+i = depot} be the route 
such tha t XtQ is the variable with most fractional value in x*. X̂ Q < 1, 
hence for each k G { 1 , . . . , p } , there exist other routes that cover i^ and 
take a non-zero value in x*. For each route t such that xj" > 0 and that 
shares at least one node with to, there exists q G { 1 , . . . ,p} such that t 
covers iq but does not take arc {iq^iq^i) or arc (ig_i,i^). Indeed, every 
route in T is unique, hence t and to can have a common subsequence of 
nodes but necessarily differ from each other by at least one arc (which ini
tial or final extremity may be the depot). So, we enumerate the columns 
already generated and choose the first route t such that x^ > 0 and that 
shares at least one node with to- Then we choose (i^, ig+i) as branching 
arc where q G { ! , . . . , p} is the smallest index such that {iq^iqj^i) ^ t 
(or we choose arc {io = depot, i i ) if {iq^iqj^i) ^ tMq £ {!,... ,p})- The 
child nodes are then created as follows. In one branch, arc {iq^iqj^i) is 
forbidden. In the other branch, iq and i^+i are allowed to be taken in 
a route only if they are linked by arc {iq^iqj^i). In other words, in the 
second branch, every arc {iq^r) with r ^ iqj^i and every arc (s,ig-|_i) 
with s ^ iq are forbidden. This branching rule is very practical because 
it is easy to incorporate in the master problem and in the subproblem. 

3.1.3 Solv ing t h e subprob lem. The subproblem is solved 
with dynamic programming, with an adaptation of the label-based al
gorithm described in Desrochers (1988) so as to solve the elementary 
constrained shortest path problem. Details are given in a previous joint 
work with Alain Chabrier, see Chabrier et al. (2002); Chabrier (2003). 
The same idea was developed independently in Feillet et al. (2004). The 
motivation for generating only elementary constrained shortest paths in 
the subproblem is the following. If the distance used to compute the cost 
of routes conforms to the triangular inequality, then the optimal solution 
contains only elementary routes, whether cycles are allowed in the sub-
problem or not. Solving the non-elementary constrained shortest path is 
easier, so most column generation models in the literature allow cycles to 
be generated in the subproblem and sometimes add some mechanisms to 
partially eliminate non-elementary routes or improve the lower bound, 
see for example Houck et al. (1980); Kohl et al. (1999); Cook and Rich 
(1999); Irnich (2001); Irnich and Villeneuve (2003). These mechanisms 
are instrumental in solving instances with large time windows or with a 
large horizon because these instances are only loosely constrained by the 
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numerical data: It is entirely possible to build non-elementary routes 
and even to traverse cycles several times in the same route. 

In short, the label-based algorithm used to solve the subproblem de
velops as follows. Partial paths starting from the depot and visiting a 
number of customers are built. As in a typical dynamic programming 
algorithm, dominated partial paths are gradually eliminated: If partial 
path pi and partial path p2 both end at the same customer i, biat pi 
arrives sooner at i, has smaller accumulated demand, and is less expen
sive than P25 then partial path p2 can be eliminated. Indeed, for every 
extension of p2 to a complete path, pi could be extended in the same 
way and its extension would be less expensive than the extension of p2-
However, this dominance rule is no longer valid if we want to compute 
only elementary paths. Indeed, if the aforementioned extension of p2 
visits some customers that were already visited before i in pi, then pi 
cannot be extended in the same way as p2 because it would lead pi to 
visit these customers twice. We therefore change the dominance rule 
into the following: If partial path pi and partial path p2 both end at 
the same customer i, but pi arrives sooner, has smaller accumulated de
mand, is less expensive than p2^ and if the set of customers visited by pi 
is a subset of the customers visited by p2^ then partial path p2 can be 
eliminated. Refinements of this dominance rule are described in more 
details in Chabrier et al. (2002); Chabrier (2003). This implementation 
of elementary shortest path allowed us to solve to optimality 17 instances 
that were previously open (Chabrier et al., 2002; Chabrier, 2003), 9 of 
which have now been solved also by Irnich (2001); Irnich and Villeneuve 
(2003). 

3.1.4 Acceleration strategies. Various well-studied accel
erations of the above branch-and-price model allowed us to improve 
computational times. In particular, (4.5) is replaced by a set covering 
inequality: 

^SirXr>l, Vi = l , . . . , n . (4.8) 

reR 
As a consequence, integer solutions may cover some customers more 
than once, especially at the beginning of the branch-and-price process. 
Therefore, each time the MIP solver finds a new integer solution or the 
relaxed master problem produces an integer solution, we use a greedy 
heuristic that iteratively removes each customer visited more than once 
from all routes except from the route from which its removal would yield 
the smallest cost saving. This allows us to improve the integer solution 
and the resulting columns are also added to the column pool. 
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3.2 Heuristics 
3.2.1 Building an initial solution. Heuristics are used for 
two different purposes. A first heuristic is used to build an initial so
lution. This initial solution can be as simple as the trivial solution 
"one customer per route". In our cooperation scheme and in the pure 
local search scheme, we start with the solution generated with the sav
ings heuristic (Clarke and Wright, 1964; Paessens, 1988) adapted to the 
problem with time windows. 

Heuristics are secondly used to improve on a given solution. We used 
two local search algorithms, a relatively simple one and a more sophisti
cated one. Our computational results will demonstrate the effectiveness 
of our cooperation scheme with these two different examples of local 
search, which leads us to think that our cooperation scheme is likely to 
be applied successfully in different settings. This will also allow us to 
show that even a simple local search algorithm can improve the ability 
of branch-and-price to generate good integer solutions early. 

3.2.2 Large neighborhood search. We first implemented a 
Large Neighborhood Search (LNS) scheme based on constraint program
ming as described in Shaw (1998). Large Neighborhood Search proceeds 
by iteratively fixing some variables of the problem to their value in the 
current solution and solving a smaller subproblem on the rest of the vari
ables. For the VRPTW, this amounts to removing a set of customers 
from the current solution and inserting them back again to build a better 
solution. First a small number of customers are released. If no better 
solution is found during a given number of iterations, the subproblem is 
enlarged, that is more customers are released simultaneously, see Shaw 
(1998) for details. 

LNS turned out to be too slow for neighborhoods consisting of more 
than 20 customers. Therefore, in our pure LNS algorithm, we also use a 
restart mechanism for further diversification. When the size of the LNS 
neighborhood reaches 20, a quite different and possibly worse solution 
is built by an insertion heuristic. The customers are inserted in the 
"orthogonal" order of the current best solution: The first customer of 
each route is inserted, then the second customer of each route, etc. Each 
customer is inserted in its least expensive insertion point and additional 
routes are opened as needed. In the end, some customers are randomly 
moved from one route to another. The obtained solution is used as the 
next starting point for a new complete run of LNS. 

3.2.3 Guided tabu search. In the second phase of our work, 
we decided to use a highly effective implementation of local search for 
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vehicle routing problems: ILOG DISPATCHER. The neighborhood used 
in this case is the union of all possible 2-OPT (Croes, 1958; Lin, 1965), 
Or-OPT (Or, 1976), Relocate (insert a customer in another route), Ex
change (swap two customers of two different routes), and Cross moves 
(exchange the ends of two routes). The exact implementation is de
tailed in De Backer et al. (2000) and in Hog Dispatcher User's Manual 
(2002). As for metaheuristics, we use in this case guided tabu search 
which is a mix of guided local search (GLS) and tabu search. Its im
plementation is described in De Backer et al. (2000); Ilog Dispatcher 
User's Manual (2002). GLS introduced by Voudouris (1997) is a meta-
heuristic that helps hill-climbing algorithms to escape local optima. It 
relies on optimizing an adaptively modified cost function based on the 
original cost function, but penahzing features that appear often in a so
lution. At each iteration, the penahzed objective is first optimized using 
the hill-climbing algorithm. The penalized objective is then modified, 
increasing or decreasing the penalty of features according to their cost 
and to the number of iterations during which they have been penalized. 
This long-term memory mechanism enables to diversify the search. 

However, in the cooperation scheme, the solutions found by the MIP 
solver or when the solution of the relaxed master problem is integer 
already ensure the long-term diversification of the local search compo
nent. A mechanism for short-term diversification is nonetheless needed 
and this is ensured by tabu search. Tabu search (Glover and Laguna, 
1997) is a well-known effective metaheuristic. Basically, it escapes local 
optima by forbidding during a certain number of iterations (the tabu 
tenure) properties of moves recently performed or solutions recently vis
ited, unless a certain aspiration criterion is validated—For example, the 
moves lead to a better solution than the best known solution so far. If 
the tabu tenure corresponds to a small number of iterations, this is a 
short-term memory mechanism. 

De Backer et al. (2000) show that, as implemented in ILOG DIS
PATCHER for vehicle routing problems, Guided Tabu Search performs 
better than either simple Guided Local Search or simple Tabu Search. 

4. Computational results 

4.1 Benchmark 
All computational testing described in the next sections have been 

performed on the well-known Solomon VRPTW instances introduced in 
Solomon (1987), on which exact and heuristic methods for solving the 
VRPTW are often tested. We adopted the conventions used by most ex
act methods: The objective is to minimize overall distance independently 
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of the number of vehicles used; distances and travehng times are deter
mined by the Euchdean distance rounded downward at the first decimal 
place. The Solomon benchmark comprises two series of instances: 

• series 1, the vehicle capacity is limited and the planning horizon is 
rather short; 

• series 2 has vehicles with larger capacity and a longer planning 
horizon, which allows more customers to be served by the same 
route. 

Hence, instances of series 1 are easier to solve because they are less 
combinatorial: The total number of feasible routes for these instances is 
smaller than for instances in series 2. Literature has so far concentrated 
on series 1, with some notable exceptions: Larsen (1999); Cook and Rich 
(1999); Kallehauge et a l (2001); Irnich (2001); Chabrier et al. (2002); 
Chabrier (2003); Irnich and Villeneuve (2003)—See Cordeau et al. (2002) 
for a general survey. Solomon instances are further divided in three 
groups: For "R" instances, customers are geographically randomly dis
tributed; for "C" instances, customers are geographically clustered; and 
for "RC" instances, customers are alternatively random and clustered. 
Each instance is a 100-customer problem, from which a smaller problem 
is constructed taking into account only the first 50 customers. 

Tables 4.1 and 4.2 give the solutions with which we will compare our 
results in Sections 4.3 and 4.5. These reference solutions are the best 
results known to us, taken from the literature or our own experiments 
(see next section for a precise description of our methods), as indicated in 
the Origin column. Solutions marked with * have been proved optimal. 
When the optimum is not known, we take the best known lower bound 
for series 1 (indicated in italics). But as no good lower bound is known 
for the open instances of series 2, we take the best known upper bound 
instead. The number of vehicles corresponding to each upper bound is 
given in parentheses. 

4.2 Methods 
Recall that the approaches compared are: 

1 Our cooperation scheme between branch-and-price and local search 
(BP+LNS, BP+DISPATCHER). The MIP solver is called every 4 
minutes with a 1-minute time hmit. The local search algorithm is 
called for 10 seconds every 2 minutes and after a new and better 
integer solution has been found by branch-and-price. If the local 
search algorithm finds a new solution during a run, it is called 
immediately thereafter, again for 10 seconds. This very simple 
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adaptive scheme allows us to call the local search algorithm more 
often if it succeeds, without slowing down too much the completion 
of the optimality proof after the optimal solution has been reached. 

2 Almost the same branch-and-price method as in the hybrid scheme, 
but used without local search. The minor differences with the 
branch-and-price and MIP scheme used in the cooperation are 
twofold: 

• The MIP solver is called more often (every 3 minutes instead 
of every 4 minutes) with the same 1-minute time limit for 
each run, so as to compensate for the lack of other heuristics 
to generate integer solutions. 

• In "BP r', the initial pool of columns is the trivial solu
tion built with one customer per route. In "BP 2", branch-
and-price starts from the solution generated with the savings 
heuristic, as in the hybrid scheme. 

3 The same local search method as in the hybrid scheme (LNS or 
ILOG DISPATCHER), but used alone. 

The parameters were chosen experimentally. We found out that it was 
more effective to call the MIP solver often and with a small time limit 
than less often with a longer time limit because failures of the MIP solver 
to produce new integer solutions appeared to come from the inexistence 
of improving columns rather than from the inability of the solver to 
optimize successfully the MIP model. Note that the allocation of time 
limits and call frequencies to the different components of the hybrid 
scheme renders the execution of the overall algorithm non-deterministic 
and computer-dependent. Yet such an allocation does make sense when, 
as is often the case in practice, the main objective is to obtain the best 
possible result in limited CPU time. 

All results were obtained with a one hour time limit for each instance, 
on a Pentium IV-1.5 GHz with 256 Mb of RAM, using ILOG CPLEX 
8.1.0, ILOG SOLVER 5.3 and ILOG DISPATCHER 3.3. 

4.3 Quality of integer solutions 
We now present the main results for the methods we have just de

scribed. Table 4.3 shows the quality of solutions obtained by each al
gorithm on each series of the Solomon benchmark, for 50-customer and 
100-customer instances. The quality of solutions obtained by each al
gorithm is measured as the mean relative deviation (in %) between the 
reference solution of Tables 4.1 and 4.2, and the upper bound obtained 
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Table 4-3. Quality of solutions obtained. 

A l g o r i t h m 

B P 1 

B P 2 

P u r e L N S 

P u r e D I S P A T C H E R 

B P + L N S 

B P + D I S P A T C H E R 

N u m b e r of 
c u s t o m e r s 

50 
100 

50 
100 

50 
100 

5 0 
100 

50 
100 

50 
100 

C I 

0 . 0 0 
0 . 0 0 

0 . 0 7 
0 . 2 9 

0 . 0 0 
0 . 0 0 

0 . 0 0 
0 . 0 9 

0 . 0 0 
0 . 0 0 

O.OO 
0 . 0 0 

Me; 

R l 

0 . 1 5 
2 . 4 0 

0 . 2 5 
2 . 3 7 

0 . 1 1 
2 . 9 6 

0 . 0 3 
1.06 

0 . 0 0 
1.70 

0 . 1 2 
1.47 

au r o l a t 

R C l 

1.15 
6 . 1 7 

1,32 
6 .05 

0 . 2 0 
3 . 9 3 

0 .12 
2 . 3 6 

0 . 2 5 
3 .62 

0 . 5 1 
4 . 4 6 

ive (lev 

C 2 

0 . 7 4 
6 .50 

0 . 6 8 
7 .80 

0 . 0 0 
2 . 6 1 

0 . 4 0 
0 . 0 0 

0 .12 
3 . 0 4 

0 . 7 5 
0 . 2 6 

i a t i o u 

R 2 

3 . 7 3 
8 .63 

3 .12 
7 .76 

1.69 
5 .85 

0 . 8 9 
0 .62 

3 .27 
6 . 0 8 

1.15 
4 . 1 3 

(%) 
R C 2 

2 .05 
5 .26 

2 . 5 0 
5 .60 

1.25 
7 . 1 8 

1.13 
1.66 

0 . 3 8 
3 . 9 3 

0 . 3 6 
2 56 

Al l 

1.33 
4 . 7 7 

1.32 
4 . 8 6 

0 . 5 6 
3 . 7 4 

0 . 4 2 
0 . 9 4 

0 . 7 5 
3 . 0 7 

0 . 4 8 
2 . 1 7 

N u u i h e r of t i u i e s 
o p t i u i a l i t y is 

r e a c h e d ( a u d prcive 

4 0 ( 3 7 ) 
17 ( 1 5 ) 

4 1 ( 3 7 ) 
17 ( 1 5 ) 

41 (-) 
12 (-) 

33 (-) 
13 (-) 

4 7 ( 3 4 ) 
19 ( 1 5 ) 

4 5 ( 3 8 ) 
20 ( 1 6 ) 

d ) 

by this algorithm. Recall that on series 2 the reference solutions are 
possibly sub-optimal upper bounds, hence the numbers given for this 
series are not necessarily upper bounds for the distance to the optimal 
solution. Table 4.3 also gives the number of instances for which each 
algorithm reaches and also proves (in parentheses) optimality. Recall 
that only pure branch-and-price and our cooperation scheme are able to 
produce optimality proofs. Note for comparison purposes that there are 
56 instances in each 50-customer and 100-customer category. The opti
mal solution is known for 53 instances of the 50-customer category, and 
38 instances of the 100-customer category. Figures 4.2 through 4,4 show 
the evolution of solution quahty over time for all 100-customer instances. 

Our first conclusions from this experimental data are the following. 
Combining local search and branch-and-price is consistently more eflfec-
tive than branch-and-price alone at obtaining good feasible solutions. 
On all series, on 100-customers and 50-customer instances, both our 
hybrids combining branch-and-price and local search (LNS or ILOG 
DISPATCHER) are as eff'ective as or, in most cases, more effective 
than branch-and-price alone. The improvement obtained by combining 
branch-and-price and local search is most often correlated with the per
formance of the local search algorithm used alone. As expected, our sim
ple LNS algorithm performs worse than the more sophisticated guided 
tabu search from ILOG DISPATCHER. In the same way, the cooperation 
scheme combining branch-and-price and LNS is outperformed in most 
series by the cooperation scheme combining branch-and-price and ILOG 
DISPATCHER. However, even a simple local search algorithm such as 
LNS can improve significantly the performance of branch-and-price. 

On the contrary, for pure branch-and-price algorithms, starting from a 
pool of columns built by a simple heuristic ("BP 2") does not consistently 
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improve on the same algorithm starting from a trivial solution ("BP 1"). 
Our tentative explanation is that the simple savings heuristic is not 
powerful enough to foster a significant diff"erence in performance. 

Let us examine a few examples of the 100-customer instances for more 
specific remarks. On series Rl, RCl and most significantly RC2, our co
operation scheme between branch-and-price and LNS outperforms both 
pure LNS and the two variants of pure branch-and-price. This illus
trates the useful interaction between the two components of the hybrid 
scheme, each optimizing the solutions found by the other component. On 
series RC2, branch-and-price outperforms pure LNS and our cooperation 
scheme performs nonetheless better than both. This shows the robust
ness of our cooperation scheme. Note that although BP+DISPATCHER 
significantly improves on pure branch-and-price BP 1 and BP 2, it does 
not give quite as good results as ILOG DISPATCHER used alone: ILOG 
DISPATCHER is especially effective at providing rapidly very good solu
tions for all series, hence it is difficult to outperform. But our cooperative 
scheme has nonetheless the advantage of additionally providing the user 
with a tight lower bound on the objective. 

4.4 What component finds integer solutions in 
the cooperation scheme? 

Let us now give more detailed results for each component of our hybrid 
scheme (branch-and-price and local search) so as to better understand 
why they succeed in finding good integer solutions early. Tables 4.4 and 
4.5 show for each component of the cooperation scheme the number of 
times it succeeds in finding a new and better solution, divided by the 
number of times this component was called (column %s for success), 
or divided by the total number of integer solutions found by all com
ponents (column %c for contribution). Statistics are aggregated for 
100-customer instances of Solomon series 1 and 2. 

Table 4-4- Integer solutions found with the cooperation BP+LNS. 

Component 

Relaxed master problem integer 
MIP 
Multiple visits heuristic 
Total LNS 
... when optimizing a solution found by: 

Branch-and-price 
LNS 

Series 
%s 

0.01 
5.92 

62.96 
27.22 

85.00 
21.12 

1 
%c 

4.65 
7.90 
7.90 

79.53 

23.72 
55.81 

%s 

0.01 
7.96 

80.00 
29,03 

64.70 
24.63 

Series 2 
%c 

1.85 
7.40 
7.40 

83.33 

20.37 
62.96 
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Table 4-5. Integer solutions found with the cooperation BP+DISPATCHER. 

Component 

Relaxed master problem integer 
MIP 
Multiple visits heuristic 
Total ILOG DISPATCHER 
. . . when optimizing a solution foui 

Branch-and-price 
ILOG DISPATCHER 

id by: 

%s 

0.04 
5.40 

35.71 
24.84 

63.73 
18.58 

Series 1 
%c 

11.81 
7.27 
6.81 

74.09 

26.36 
47.72 

%s 

0.09 
3.75 

45.83 
35.05 

50.54 
32.38 

Series 2 
%c 

7.14 
2.38 
4.36 

86.11 

18.25 
67.85 

The "Multiple visits heuristic" line refers to the greedy heuristic trans
forming a solution of the set covering formulation into a set partitioning 
solution, as described at the end of Section 3.1. It is mostly useful at the 
beginning of the optimization process: Afterwards, the upper bound is 
too tight to allow for customers to be visited more than once. Both our 
local search algorithms work on a model where each customer is visited 
exactly once. Therefore, the multiple visits heuristic cannot improve so
lutions found by local search. The line "Local search... when optimizing 
a solution found by branch-and-price" refers to the results of local search 
starting from a solution found when the relaxed master problem was in
teger, or from a solution found by the MIP solver, or from the output 
of the multiple visits heuristic optimizing a solution found by the two 
former methods. 

On all series, local search finds the majority of solutions: The good 
results of our cooperation scheme are naturally obtained first thanks 
to the great ability of local search to find good feasible solutions. The 
success rate of local search is much higher when starting from a solution 
found by branch-and-price than when starting from a solution found by 
local search itself. This illustrates the diversification mechanism: When 
branch-and-price finds a solution, it is far from the last local search local 
optimum, hence it is more likely to be improved by local search. 

4.5 Quality of lower bounds 

In this section, we compare the ability of each method to provide 
lower bounds and evaluate whether our cooperative algorithms retain 
the ability of branch-and-price to generate good lower bounds. Recall 
that local search algorithms do not provide lower bounds nor optimality 
proofs. 

Table 4.6 gives the mean relative deviation between the lower bound 
obtained by each studied algorithm and the reference solutions of Ta
bles 4.1 and 4.2 on the 100-customers instances of Solomon series 1 and 
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Table 4'6- Quality of lower bounds (100-customer instances). 

Instances Series 1 Series 2 

BP 1 -0.76% -0.34% 
BP 2 -0.77% -0.37% 
BP+LNS -0.77% -0.34% 
BP+DISPATCHER -0.75% -0.33% 

series 2. Recall that, on series 1, reference solutions are either opti
mal solutions or possibly sub-optimal lower bounds, therefore Table 4.6 
does not indicate for this series upper bounds on the distance between 
the lower bounds obtained and the optimum. Note also that on several 
instances (1 instance in series 1, 15 instances in series 2), none of the al
gorithms studied produces a lower bound on the objective: The one-hour 
time limit is too short to terminate pricing at root node. These instances 
are not taken into account for the computation of the mean relative de
viation in Table 4.6. The overall conclusion of Table 4.6 is that both of 
our hybrids between branch-and-price and local search (LNS or ILOG 
DISPATCHER) retain the ability of branch-and-price to generate good 
lower bounds. Note also from Table 4.3 that our cooperation scheme 
between branch-and-price and local search produces approximately the 
same number of optimality proofs as pure branch-and-price. 

4.6 Proof of optimality for previously unsolved 
instances 

We finally present result for two previously open instances which we 
solved to optimahty: R211 and RC204, both with 50 customers. Note 
that R211.50 was recently solved independently to optimality, as re
ported in Irnich and Villeneuve (2003). Table 4.7 gives for each instance 
the minimal distance and the corresponding number of vehicles. Ta
ble 4.8 gives the time in seconds needed to reach the optimal solution 
(^opt) and subsequently prove optimality (Ttotal)? and the number of 
nodes explored in the branch-and-price tree (nodes). We provide re
sults for pure branch-and-price (BP 1 and BP 2) and for our coopera
tion scheme between branch-and-price and local search (BP-I-LNS and 
BP+DISPATCHER). 

Note that BP-I-DISPATCHER is the only algorithm that solved in
stance RC204.50 to optimality. BP-f-LNS reached the optimal solution 
of RC204.50 but was not able to prove optimality within a week of 
CPU time. Pure branch-and-price (BP 1 and BP 2) also failed to solve 
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Table 4 • '^' Optimal values for two previously open 

Instance 

Cost 
Number of vehicles 

R211.50 

535.5 
3 

instances. 

Table ^,8. Proof of optimality for two previously open instances. 

R211.50 
Algorithm Topt Ttotai 

BP 1 115,100 196,868 
BP 2 103,600 126,648 
B P + L N S 214,100 300,184 
B P + D I S P A T C H E R 25,900 94,411 

nodes 

257 
85 

281 
85 

RC204.50 
Tljpt T'total 

152,100 
50,200 84,059 

RC204.50 

444.2 
3 

nodes 

1 

RC204.50 to optimality when given a week of CPU time. On this prob
lem with a long horizon and large time windows, it appears to be ex
tremely time consuming to compute interesting elementary constrained 
shortest paths. On the contrary, ILOG DISPATCHER succeeds in find
ing near-optimal routes within a reasonable time and branch-and-price 
can then find the optimal solution and prove optimality. This illustrates 
the fact that diversification for generating solutions but also individual 
columns is a key point of our cooperation scheme. 

BP-hDISPATCHER solves R211.50 to optimality faster than pure 
branch-and-price. The acceleration is especially visible when comparing 
the time needed to reach the optimal solution, but the total time includ
ing the optimality proof is also reduced. Note however that BP-hLNS 
slows down the resolution and explores more nodes that BP 2. The phe
nomenon is witnessed for BP 1. Recall that our branching strategy is 
not fixed: The branching arc depends on the pool of columns already 
generated, this is why the number of nodes explored can vary from one 
branch-and-price variant to the next. 

5, Conclusion 

In this paper we introduced a new general strategy for combining 
local search and branch-and-price. We showed with extensive compu
tational experiments on the vehicle routing problem with time windows 
that our cooperation scheme consistently improves the ability of pure 
branch-and-price to find good integer solutions early, while retaining the 
ability of branch-and-price to generate good lower bounds. The quality 
improvement of integer solutions generated is most often correlated with 
the effectiveness of the local search algorithm used, but significant im-
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provements can be obtained even with a simple local search algorithm. 
It remains to be seen if our cooperation scheme will be applied success
fully to different and more complex problems. We believe nonetheless 
that our results on a quite difficult problem and with two local search 
algorithms of varied effectiveness are encouraging. 

Our cooperation scheme generalizes three previously known accelera
tions for branch-and-price and can be applied to any branch-and-price 
model. It can also be seen as the generalization to branch-and-price of 
the use of heuristics in branch-and-bound. However, unlike most inter
esting heuristics for branch-and-bound, it is not domain-independent: A 
specific local search algorithm tailored to the problem at hand has to be 
written each time a different branch-and-price model is to be solved. We 
believe nonetheless tha t it is a step toward extending existing advanced 
strategies from branch-and-bound to branch-and-price. 
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Chapter 5 

C U T T I N G STOCK P R O B L E M S 

Hatem Ben Amor 
Jose Valerio de Carvalho 

Abstract Column generation has been proposed by Gilmore and Gomory to solve 
cutting stock problem, independently of Dantzig-Wolfe decomposition. 
We survey the basic models proposed for cutting stock and the corre
sponding solution approaches. Extended Dantzig-Wolfe decomposition 
is surveyed and applied to these models in order to show the links to 
Gilmore-Gomory model. Branching schemes discussion is based on the 
subproblem formulation corresponding to each model. Integer solutions 
are obtained by combining heuristics and branch-and-price schemes. 
Linear relaxations are solved by column generation. Stabilization tech
niques such as dual-optimal inequalities and stabilized column gener
ation algorithms that have been proposed to improve the efficiency of 
this process are briefly discussed. 

!• Introduction 
The cutting stock problem (CSP) was one of the problems identified by 

Kantorovich in his paper entitled "Mathematical methods of organizing 
and planning production", that first appeared in 1939, in Russian, and 
was later pubhshed in Management Science (1960). The problem consist 
of determining the best way of cutting a set of large objects into smaller 
items. There are large potential economic savings resulting from the 
optimization of this kind of problems. CSPs are encountered in a wide 
variety of industrial applications, such as in the steel, wood, glass and 
paper industries, and in service sector applications, such as cargo loading 
and logistics. 

In this paper, we focus on one-dimensional problems. Since Gilmore 
and Gomory proposed the use of column generation (CG) to solve its 
linear programming (LP) relaxation (Gilmore and Gomory, 1961, 1963), 
several solution approaches for this problem were based on algorithms 
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using column generation complemented by heuristics. The nineties mark 
a turning point in this field: several algorithms combining column gen
eration and branch and bound were proposed to solve the CSP. It was 
also recognized that those algorithms were also useful to solve instances 
with many items of many different sizes, yielding a low average demand, 
a problem that is usually denoted as the bin packing problem (BPP) 
or the Binary Cutting Stock Problem (BCSP). In this problem, items 
are assigned to bins in such a way that the capacity of the bins is not 
exceeded and the number of bins is minimized. 

The one-dimensional CSP and BPP are essentially the same problem, 
even though, under Dyckhoff's system (Dyckhoff, 1990), they were clas
sified as 1/V/I/R and 1/V/I/M, respectively. The reason that possibly 
motivated the use of a different classification for them was that different 
solution methods had been traditionally used to address them. 

Literature reviews often include not only the CSP and the BPP, but 
also other problems closely related to them, as knapsack, vehicle loading 
and pallet loading problems, as well as many others. Examples are 
Sweeney and Paternoster (1992); Dowsland and Dowsland (1992). The 
book by Dyckhoff and Finke (1992) identifies more than 700 papers on 
Cutting and Packing, and classifies them. An annotated bibliography 
was proposed by Dyckhoff et al, (1997). Many papers refer to case 
studies where column generation is used to get solutions for real world 
applications in the aluminum industry (Stadtler, 1990; Helmberg, 1995), 
in the steel industry (Valerio de Carvalho and Guimaraes Rodrigues, 
1995), in the paper industry (Goulimis, 1990), and in the forest industry 
(Sessionset a l , 1988, 1989). 

The aim of this paper is to provide a comprehensive overview on math
ematical programming models for the CSP and the BPP, and to show 
their links to the Gilmore-Gomory model using extended Dantzig-Wolfe 
decomposition. It reviews recent solution methodologies for the exact 
solution of CSP and BPP, using branch-and-price, and discusses branch
ing schemes based on the subproblem formulation corresponding to each 
model. Stabilization techniques, such as dual-optimal inequalities and 
stabilized column generation algorithms, that can be used to speed the 
convergence of column generation, are also presented. 

This paper is organized as follows. In Section 2, we review the cutting 
stock models introduced by Kantorovich and by Gilmore and Gomory, a 
model based on arc-fiows, and an acyclic network based multicommodity 
fiow (MCF) model. We also comment on the quality of the bounds that 
result from their linear programming relaxations. Models with strong 
linear programming relaxations are of crucial importance in solving in
teger programming problems. When extended to integer programming 
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problems, Dantzig-Wolfe decomposition is a tool that can be used to ob
tain stronger bounds. We discuss the application to Cutting Stock. In 
Section 3, we address the integer solution of cutting stock problems, us
ing heuristics and column generation combined with branch and bound. 
We review the main issues, several branching schemes, and comment on 
computational results. In Section 4, we show that stabilization tech
niques can improve the behavior of column generation for solving the 
Hnear programming relaxation of the Gilmore-Gomory model. In Sec
tion 5, we present some extensions of the one-dimensional cutting stock 
problem and, in Section 6, some directions for future research. 

2. Mathemat ica l p rogramming models 

The one-dimensional CSP consists of determining the smallest number 
of rolls of width W that have to be cut in order to satisfy the demand 
of m clients with orders of bi rolls of width Wi^i = 1, 2 , . . . , m. W^ wi 
and 6i (i = 1 , . . . , m) are assumed to be positive integers. 

2.1 Kantorovich model 

Kantorovich (1960) introduced the following mathematical program
ming model for the CSP to minimize the number of rolls used to cut all 
the items: 

K 

mm 

K 

i n ^ x g (5.1) 

^x^^>bu i = l , . . . , m (5.2) St 

m 

Y,mx\<W4. fc-l,...,i^ (5.3) 
2 = 1 

a : § - O o r l , / c - l , . . . , K (5.4) 

xf > 0 and integer , i = 1 , . . . , m, /c = 1 , . . . , K (5.5) 

where K is a known upper bound on the number of rolls needed, XQ = 1, 
if roll k is used, and 0, otherwise, and x^ is the number of times item i 
is cut in roll k. Constraints (5.2) enforce the satisfaction of the demand 
for the items, and constraints (5.3) guarantee that the items cut in a roll 
do not exceed its capacity. The latter group shall be called the knapsack 
constraints. Indeed, when XQ = 1, (5.3) is exactly a knapsack constraint 
with capacity W\ and when XQ = 0, (5.3) is a knapsack constraint with 
capacity 0 (i.e. all variables xf equal 0 and the fcth bin is not used). 
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A lower bound for the integer optimum can be obtained from the 
solution of the linear programming relaxation, which results from sub
stituting the two last constraints for 0 < XQ < 1 and x^ > 0, respectively. 
This bound can be very weak. It is equal to the minimum amount of 
space that is necessary to accommodate all the items, f ^ ^ x biWi/W]^ 
and can be very poor for instances with large waste. In the limit, as W 
increases and all the items have a size Wi = [W/2 + IJ, the integer opti
mal value is Yl^i ^̂  whereas the lower bound approaches (1/2) J2^i ^̂  
(Martello and Toth, 1990). This is a drawback of the model. However, 
computational experiments show that the instances with very small loss 
have linear relaxations that are the most difficult to solve exactly (Ben 
Amor, 1997). Furthermore, its solution space has symmetry. Different 
solutions to the model, with the same cutting patterns swapped in differ
ent rolls, will correspond to the same global cutting solution. Branching 
directly on individual XQ— variables or x^— variables will not ehminate 
the current fractional solution. This means that any efficient branching 
has to make decisions independently from index /c, unless some symme
try breaking rule is used. 

2.2 Gilmore-Gomory model 
Gilmore-Gomory proposed a model in which the possible cutting pat

terns are described by the vector uA^ — (a^ . . . , a ? , . . . , a^)-^, where the 
element a^ represents the number of items of width Wi obtained in cut
ting pattern p, A cutting pattern p is vahd if 

m 

J ] a> ,<W, (5.6) 
1=1 

a^ > 0 and integer. (5.7) 

Define P as the set of all feasible patterns and let Â  be a decision vari
able that denotes the number of rolls cut according to cutting pattern p, 
for all p ^ P, The CSP is modelled as follows: 

m i n ^ A ^ (5.8) 
peP 

^^^a\\^>hu i = l , 2 , . . . , m (5.9) 
peP 

Â  > 0 and integer, Vp G P. (5.10) 

The number of columns in formulation (5.8)-(5.10) may be very large 
even for moderately sized problems. As it is usually impractical to enu
merate all the columns, Gilmore and Gomory proposed column gen-
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m 

m 

üiWi < W 

üi > 0 and integer, 
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eration to solve its LP relaxation (Gilmore and Gomory, 1961). The 
problem is initialized with a set of cutting patterns (for instance, each 
one with multiple copies of the same item in quantities \W/wi\^\/i)^ 
and the dual information is used to price the columns out of the master 
problem. Let ix — (TTI, . . . ^T^m) be the dual variables associated to the 
constraints (5.9), and TT the dual optimal solution at a given column gen
eration iteration. The "most attractive" column is given by the solution 
of the following knapsack problem: 

71 

(5.11) 

(5.12) 

(5.13) 

which corresponds to finding the column A"̂ ^̂  with the minimum re
duced cost Cmin = 1 — TTA"̂ "̂ — minp^p(l — TtA^), If the reduced cost is 
negative, the column is added to the restricted master problem, which is 
re-optimized; otherwise, the current solution solves the linear relaxation 
of (5.8)-(5.10). 

A lower bound can be easily calculated at any iteration, using duality. 
In matrix form, the dual of the CSP is max{7r6: TTA^ < l,7r > 0}. As 
seen, 1 - TTA"̂ ^̂  < 1 - TTA^, Vp G P, which is equivalent to {it/ixA'^'^) 
AP < 1, \/p e P. This means that (7r/7f74"̂ '̂̂ ) is a feasible solution to 
the dual of the CSF (with all vahd columns enumerated). The value of 
this feasible dual solution, {7r/7tA^^^)b. is a lower bound to the value of 
the primal problem zip^ and is equal to the value of the optimal current 
solution, 7f6, divided by the optimal value of the knapsack subproblem, 
TtA"^^ (see also Farley, 1990). 

This bound can also be obtained using Lagrangean duality. Let Cp be 
the reduced cost of variable Xp and K be an upper bound on YlpeP "^P ^^ 
the optimahty of the linear relaxation of (5.8)-(5.10). The Lagrangean 
function of the linear relaxation of the problem is 

b^TT+^CpXp, 

peP 

Using Ap > 0 and Cp > Cmin (Vp E P), we have 

b^Tt + ^ CpXp > b^Tt + Cmin Yl ^P' 
peP peP 
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Then given that 0 ^ X p̂GP ̂ p — -^ and Cmin ^ 0? we deduce the following 
relation 

peP 

From Lagrangean duality, we have 

Zip > MinA>o b^Tt + ^ CpXp, 
peP 

Hence, we obtain 
b^Tt + KCmin < Zip, 

The leftmost term of this relation is called the Lagrangean bound. Sub
stituting the optimal value of the linear relaxation of CSP zip to K 
(actually, zip is equal to the optimal value of YlpeP^p)^ "^^ obtain the 
alternative expression of Farley's bound z/{l — Cmin) where z = b^it. 

This bound can be used to cut-off the tails of column generation pro
cesses. However in practice, it does rarely cut more than one iteration 
(Ben Amor, 1997). This may be explained as follows. In order to have 
z/{l — Cmin) close to ^, Cmin should be closc enough to 0 which is more 
likely to happen for the very last CG iterations. 

Farley's lower bound may be improved in the case of BCSP (Ben 
Amor, 1997). The same idea can be generalized in the following way. 
Let U = {i: Wi > W/2} the set of items that need to be cut in separate 
bins. Pi C P {i E U) the set of patterns corresponding to such items, 
and Pjrf — Ui^uPi, The Lagrangean function of the linear relaxation may 
be written as 

ieUpePi peP\Pu 

For each i E U^ Qmin is the corresponding minimum reduced cost. Not
ing that for i € U, EpeP^ ^P ^ ^ '̂ ^^^ J2peP\Pu ^P "^ ^^P ~ ^ieu ^i^ ^^ 
analogous reasoning to the one above leads to the improved lower bound 

1 Cmin 

Since 6̂  > 0 and Qmin ^ Cmin {i E U)^ this bound is better than Farley's 
bound. A more general bound may be obtained by using Com'm^ the 
minimum reduced cost among variables corresponding to patterns p € 
P\Pu, The bound is expressed as 

im'm Co min j 

1 "~ Co min 
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The bound given by the optimal solution of the LP relaxation of 
Gilmore-Gomory's model is known to be very tight. Most of the one-
dimensional cutting stock instances have gaps smaller than one, and 
we say that the instance has the integer round-up property, but there 
are instances with gaps equal to 1 (Marcotte, 1985, 1986), and as large 
as 7/6 (Rietz and Scheithauer, 2002). It has been conjectured that all 
instances have gaps smaller than 2, a property denoted as the modified 
integer round-up property (Scheithauer and Terno, 1995). 

2,3 Decomposition of Kantorovitch formulation 
Applying standard Dantzig-Wolfe decomposition principle to the lin

ear relaxation of Kantorovitch formulation (5.1)-(5.5) leads to a lower 
bound that is weaker than the one implied by Gilmore and Gomory 
formulation (see Section 2.4). Alternatively, one can apply extended 
Dantzig-Wolfe decomposition using either a convexification or a dis
cretization approach (see Vanderbeck, 2000b; Ben Amor, 2002). We 
apply both approaches to show that, although there exists a subtle dif
ference between the two formulations that are obtained, they both lead 
to the same continuous bound which is the same as the one implied by 
Gilmore and Gomory formulation. 

CSP has a block-diagonal structure and gives raise to |i^| subprob-
lems. Define the set of integer feasible points of subproblem k {k — 
l , . . . , i ^ ) , 

x^ integer, XQ G {0,1} 

and let Ck be the convex hull of Sk^ 
First, all subproblems are identical. Hence, we can use a single set of 

integer feasible points of subproblems 

S = Ix — (xo, . . . , Xra)^' 2^ ^^^^ - ^ ^ 0 ' X > 0, X integer, 

xoe{0, l} 
z=l 

and its convex hull C, 
Note that S and C are bounded. If the binary component XQ of X takes 

the value 0, all other components equal 0; this is the empty pattern. 
When it takes value 1, any feasible pattern (including the empty one) 
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may be represented by the values of the other components. Because the 
number of used rolls is minimized, the empty pattern will never be part 
of the solution with component XQ = 1, Let PQ ^̂ iid P denote the set of 
all feasible patterns and the set of nonempty patterns, respectively. In 
a same manner we define f̂ o and fi the set of all feasible patterns and 
the set of nonempty patterns that are extreme points of C, The index 0 
is associated with the empty pattern in Po and rio-

We first present the convexification approach. In Kantorovitch for
mulation, constraints (5.3) can be replaced with x^ G Ck while keeping 
the same integer solutions set for the whole problem. Being {x^ — 
{xpi)i:=^i^^^^^rn]pe^o ^^^ ^^^ ^f extreme points of C, any point x^ in Ck can 
be expressed as a convex combination of these points: 

x'^ 

It is worth to point out at this level that the new constraint x^ G Ck 
takes into account integrality requirements whereas the kth constraint 
of (5.3) does not. 

Substituting in (5.1)-(5.5), we obtain the formulation (Ben Amor, 
1997; Vance, 1998) 

K 

min 
penk=i 

K 

^^YlYl ^Pi^i - ^̂ ' 2 - 1,..., m (5.15) 
peQk=l 

J2^P = h fc-l,.-.,i^ (5.16) 
peQo 

A J > 0 , VpG^o, fc = l , . . . , i ^ (5.17) 

x^ = Y1 ^J^^' ^^ integer, fc - 1 . . . , K. (5.18) 
peQ 

A slightly different formulation can be obtained by applying the dis
cretization approach. Let {x^ = (^pz)i=i,.-,m}pGFo be the set of all points 
of S (we use the same notation since the set of extreme points of C is 
included in S). Any x^ G Sk is written as a binary convex combination 
of all elements of S: 

x'^ 
pePo pePo 
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Substituting in (5.1)-(5.5), we obtain the formulation 

K 

^i^EE'^p (5.19) 
pePk=i 

K 

' ' E E ""P^^P ^ ^̂ ' i = 1,.. ,̂ m (5.20) 
pePk=i 

E ^ ' ^ 1 ' A: = 1 , . . . , K (5.21) 
pePo 

A ^ > 0 , VpGPo, /c = l . . . , K (5.22) 

A^ G {0,1}, Vp € Po, A: - 1 • . . , i^ (5.23) 

where integrahty may equivalently be required for variables x^. 
In order to eliminate the symmetry due to identical subproblems, an 

aggregation procedure is used to obtain index fc-free formulations. We 
present it in a general manner that may be applied to any other IP 
problem. Define the integer variables Xp for p G O (or G P) as 

K 

Ap-E^J- (5.24) 
k=l 

Such variable counts in fact the number of rolls cut owing to a nonempty 
pat tern p, and the number of unused rolls when p = 0. Replacing in 
either formulation, index k disappears from the objective function and 
covering constraints. Computing a A^-solution from a A^-solution is 
always possible. We have in fact a transportation problem with |{p: Xp > 
0} | + 1 supply {= Xp when Ap > 0 and K — Y2q:^o ^Q when p = 0) nodes 
and K demand (— 1) nodes. This problem is feasible if and only if 
Ylpefio^P ~ ^ (^^ YlpePo^P ~ ^ ) which follows trivially from (5.16) 
(or (5.21)) and (5.24). 

As a consequence, in the discretization approach, integrality may be 
required for variables Xp (p G P) leading to the formulation of Gilmore 
and Gomory (5.8)-(5.10). In the convexification approach, the formula
tion obtained: 

minY^Ap (5.25) 

pe^ 

^^"^XpiXp >bi, i : - l , . . . , m (5.26) 
peQ 

Y^ Xp = K (5.27) 
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Xp > 0, Vp E fio (5.28) 

K 

/ c = l 

Â  > 0, ypeno, k = i,,,,,K (5.30) 
x^ = Y1 ^P^^' ^ integer, fc - 1 , . . . , i^. (5.31) 

is basically different from the one of Gilmore and Gomory. It considers 
a subset of the set of columns used in (5.8)-(5.10) and integrality is still 
required for variables x^. 

Linear relaxations obtained by dropping integrality constraints are 
solved by column generation. If n is the dual optimal solution of the 
restricted master problem at some column generation iteration, the re
duced cost of any column x^ is 1 — Xll^i ^^^p^• Since this objective 
function is hnear, minimizing it over S will produce an extreme point of 
C (or eventually a boundary point of C). Computing the most attrac
tive column aims at finding the minimum reduced cost column, that is 
an integer feasible knapsack solution, is equivalent to solving a knapsack 
problem which is the same subproblem as (5.11)-(5.13) of Gilmore and 
Gomory formulation. 

It is important to note that only feasible points that are extreme 
points (or on the boundary) of C = conv(S') can be generated by solving 
the knapsack problem. Integer feasible points of S that are interior to 
C are not needed for linear relaxation optimality and both formulation 
lead to the same LP bound. 

The extreme points are enough to produce an integer solution of 
CSP if branching decisions are taken on x^-variables (convexification 
approach) while keeping the same subproblem, whereas they are not 
sufficient if decisions are taken directly on A-variables (discretization ap
proach) without altering the subproblem structure. This is illustrated by 
the following example (Ben Amor, 1997). Let the CSF having roll length 
W = 6^ two items of lengthes wi — 2 and W2 — 3 with corresponding 
demands 6i = 4 and 62 = 3. The feasible patterns that may be gener
ated are (3,0) and (0, 2). The empty pattern (0, 0) cannot be generated 
by the subproblem and may be trivially taken into account.The optimal 
solution consists of using patterns (3,0), (0,2) and (1,1) exactly once. 
But the last pattern is an interior point to the set of feasible patterns 
and will never be generated without modifying the subproblem. How
ever, this pattern can be expressed as a convex combination of extreme 
pattern as follows: (1,1) - (1/6) (0,0) + (1/3) (3,0) + (1/2)(0,2). Even 
though this can be generalized, symmetry still remains a critical issue 
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loss 

Figure 5.1. Graph and a cutting pattern. 

when dealing with branching schemes based on x^-variables. The ways 
of obtaining an integer solution to CSP are addressed later in the paper. 

2A Arc-flow model 

Valerio de Carvalho (1999) proposed an arc-flow model for the integer 
solution of BPP and CSF. A valid packing solution to a single bin (or 
a cutting pattern) can be modelled as the problem of finding a path 
in an acyclic directed graph, G — (V̂ , ^ ) , with V — {0,1, 2 , . . . , VF} 
and A = {(i^j): 0 < i < j < W and j — i — Wd for every d < m}, 
meaning that there exists a directed arc between two vertices if there 
is an item of the corresponding size. Consider additional arcs between 
(/c, fc + 1), A; — 0 , . . . , PF — 1, corresponding to unoccupied portions of the 
bin. There is a packing in a single bin if and only if there is a path 
between vertices 0 and W, The lengths of the arcs in the path define 
the item sizes to be packed. 

EXAMPLE 5.1 Figure 5.1 shows the graph associated with an instance 
with bins of capacity W = b and items of sizes 3 and 2. In the same 
figure, a path is shown that corresponds to 2 items of size 2 and 1 unit 
of loss. 

Shapiro (1968) used this kind of formulation to model the knapsack 
problem as the problem of determining the longest path in a directed 
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graph. Likewise, it can be used to model BPP and CSP. If a solution 
to a single bin corresponds to the flow of one unit between vertices 0 
and W^ a path carrying a larger flow will correspond to using the same 
packing solution in multiple bins. 

By the flow decomposition properties (see Ahuja et al., 1993), non-
negative flows can be represented by paths and cycles. The graph G is 
acyclic, and any flow can be decomposed in directed paths connecting 
vertex 0 to vertex W. A solution with integer values of flow in every arc, 
can be transformed into an integer solution to the BPP or the CSP. 

The problem is formulated as the problem of determining the mini
mum flow between vertex 0 and vertex W with additional constraints 
enforcing that the sum of the flows in the arcs of each item size must be 
greater than or equal to the value required. Decision variables x^j, asso
ciated with the arcs deflned above, correspond to the number of items of 
size j — i placed in any bin at the distance of i units from the beginning 
of the bin. The number of variables is 0{mW). The model is as follows: 

St Y^ ij — 2L^ ^jk = < 
U,k)eA 

min 2: 

'-Z, i f j = 0 

0, i f j = l , . . 
,Z, ifj=:W 

/ , ^k.k-hwd^^d^ ( i = = l , 2 , . 

(k,k+Wd)eA 

xij >o, V(i,j) eA 
Xij integei r, y{ij)eA. 

.,W-1 

. ,m 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

If we apply Dantzig-Wolfe decomposition to (5.32)-(5.35) keeping 
(5.32) and (5.34) in the master problem, the subproblem defined by 
(5.33) and (5.35) is a flow problem with a solution space that corre
spond to the valid flows between vertex 0 to vertex W. 

Actually, the variable z can be seen as a feedback arc from vertex W to 
vertex 0 (could also be denoted as xwo) and the solutions to the subprob
lem as circulation flows, which include a path between vertices 0 and W 
and the arc xwo- There is a one-to-one correspondence between circula
tions and paths. If we see the subproblem solutions as circulations, the 
subproblem constraints deflne a homogeneous system, and is unbounded. 
Therefore, the corresponding polyhedron has a single extreme point, the 
null solution, and a finite set of extreme rays, which are the directed cir
culations, each corresponding to a valid pattern. The subproblem will 
only generate extreme rays, and the substitution of the patterns in (5.32) 
and (5.34) results in the Gilmore-Gomory model (5.8)-(5.10), which is a 



5 Cutting Stock Problems 143 

nonnegative linear combination of the patterns, with no convex combina
tion constraint. Since the subproblem has the integrahty property, both 
original and decomposed formulations have the same LP bound. Finally, 
note that either convexification or discretization approaches results lead 
to Gilmore and Gomory formulation. 

2.5 An acyclic capacitated network based MCF 
model 

Ben Amor (1997) considers feasible patterns as paths in an acyclic 
capacitated network (see Figure 5.2 for an illustration). First since the 
order in which items are cut on a roll has no effect on the cost function, 
items are ordered in non-increasing order of length, i.e. Wi < Wi^i^ i = 
l , . . . , m — 1. Each roll has a corresponding subnetwork. A pair of 
Active origin and destination depots represent the start (o(/c))and end 
{d{k)) nodes of a path (pattern) in subnetwork (roll) fc (fc == 1 , . . . , K). 
To item (client) i corresponds a set of Ui = [W/wi\ nodes h^^.^^im 
and a supplementary node io. Two types of arcs are used within this 
set of nodes: (i ,̂, iy+i) {v = 1 , . . . , n̂  — 1) and (i^, io) {v = 1^,,. ^ Ui). 
Any path (pattern) visiting item i, begins with node ii and leaves at 
node ZQ. An inter-task arc joining item i and item j (j > i) exists if 
Wi -f- Wj < W, Such an arc starts at node io and ends at nodes j i . 
The first, respectively the last, arc of a path takes the form (o(fc),ii) 
(i = 1 , . . . , m), respectively (io, d{k)) (i = 1 , . , . , m). An additional arc 
(o(A;),(i(fc)) corresponds to the empty pattern. To represent a feasible 
pattern, a path R has to respect the knapsack constraint YlieR^^ — ^ ' 
A resource is used to compute the load of a roll at each node of the 
network. Arcs of types (o(/c),ii) (i = l , . . . , m ) , {jojh)^ and {iyjiv+i) 

Itemm 

Figure 5.2. An acyclic network for CS P. 
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(i» = 1 , . . . ,nf — 1) have resource consumption wi. Other arcs have 0 
resource consumption. An upper hmit of W on the resource amount 
used up to any node, except the origin o(A:), is imposed. Let Â  the set 
of task nodes, i.e. N = U]^i{iy, v = 0 , . . . , n^}, and Aj^ the set of arcs 
corresponding to subnetwork k. To each arc (i, j ) G Ak we associate a 
binary variable x^-. CSP is then formulated as a multicommodity flow 
problem where the number of nonempty paths (patterns) is minimized. 

K m 

^i^EE4^b'i (5-37) 

> bi^ i = 1 , . . . ,m (5.38) 

Z_, -owj-^^ k = l,...,K (5.39) 
{o(k),j)eAk 

Y^ x%- J2 4 = 0' Vi€iV, ^ = l,...,X (5.40) 

4 ( t ) = l. k=l,.^.,K (5.41) 
{i,d(k))eA'= 

k = l,...,K (5.42) 

{i,j)eAK (5.43) 

The objective function (5.37) aims at minimizing the number of nonempty 
paths (patterns). Each constraint (5.38) requires that the number of 
items i cut on all rolls satisfy the demand bi and constraints (5.39)-(5.41) 
enforce flow conservation for each commodity k while requiring that 1 
unit of flow be shipped from o{k) to d{k). Finally, (linear) constraints 
(5.42) ensure that capacity limit for any used roll is not overpassed and 
constraints (5.43) require that all variables be binary. 

Applying either the convexification or the discretization approach of 
extended Dantzig--Wolfe decomposition to this formulation, followed by 
commodity aggregation as in Section 2.3, leads to Gilmore and Gomory 
model, with a capacitated shortest path as subproblem. Integrality may 
equivalently be required either for A-variables or x^-variables. It is more 
natural and easier to develop a branching scheme based on x^-variables. 
However, there is a major issue here, symmetry between rolls, that must 
be taken in account. Branching schemes developed for several models 
are discussed later in the paper. 



5 Cutting Stock Problems 145 

Formulation (5.37)-5.43 may be seen as a disaggregated form of Kan-
torovitch formulation (5.1)-(5.4). In the latter case, when branching 
constraints based on original variables are added to the master problem 
(and the corresponding dual variables added to arc costs in the sub-
problem), only patterns that are extreme points of the knapsack feasible 
domain may be generated (see Section 2.3). However in the former case, 
all patterns are extreme points of the subproblem feasible domain (5.39)-
(5.43). And hence, adding branching constraints based on the original 
variables to the master problems is sufficient to generate any feasible 
pattern that may be needed in an optimal integer solution. 

The binary case, i.e. all demands hi equal 1 and any item may not 
be cut more than once on a pattern, present an interesting particularity. 
Each item is represented by a single node and must be visited exactly 
once by a single path. This allows the aggregation of all commodities 
and index k is no longer needed in the formulation. As a consequence, 
the corresponding branching becomes simpler as will be seen later. 

3, Integer solutions 
Up to the nineties, it was recognized that it was not easy to combine 

column generation with tools to obtain integer solutions to the CSP. We 
quote the final comments in Gilmore (1979): 

"A linear programming formulation of a cutting stock problem results 
in a matrix with many columns. A linear programming formulation of 
an integer programming problem results in a matrix with many rows. 
Clearly a linear programming formulation of an integer cutting stock 
problem results in a matrix that has many columns and many rows. It 
is not surprising that it is difficult to find exact solutions to the integer 
cutting stock problem." 

Therefore, up to the nineties, much research has been devoted to the 
development of heuristics, most of them are based on column generation, 
when integer solutions for the CSP were searched. 

3.1 Heuristics 
Gilmore and Gomory (1961) suggest a rounding procedure to obtain 

integer solutions for the CSP. After solving the linear programming re
laxation of their column generation model, rounding up the fractional 
variables guarantees a heuristic solution of value ZH'- ^H ^ -^LP + ^^ 
where ^LP is the optimum of the LP relaxation. As, in the CSP, the 
values of the demands are generally high, the integer solutions thus ob
tained are of good quality. 

Rather than simply rounding up, more elaborate heuristics based on 
column generation were also devised to improve effectiveness. Wäscher 
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and Gau (1996) present an extensive computational study with a com
parison of several heuristics. The most effective are based on procedures 
that involve variable fixing (using different strategies) and the solution 
of residual problems: after finding the optimal solution of the Gilmore-
Gomory model, some of the fractional optimal values are fixed (rounded 
up or down), thus satisfying an integer part of the demand. The re
maining unsatisfied demand yields a CSP instance with integer demands, 
called the residual problem. When only few items are left unsatisfied, 
the residual problem is much smaller than the original CSP, and can be 
tackled with an exact bin packing algorithm; otherwise, heuristics are 
used. The solution for the original problem is the combination of the 
patterns that were fixed with the solution of the residual problem. 

In extensive computational experiments with instances with average 
demands of 10 and 50, the optimal solutions were found in almost all 
cases. However, when the average demand is very low, as in the BPP, 
where it can be close to one or even equal to one, the optimal variables 
are often a fraction of unity, and it may not be so easy for heuristics to 
find good solutions for the residual problems. In this case, it is possible to 
resort to other combinatorial enumeration techniques (see, for instance, 
Martello and Toth, 1990 or Scholl et al., 1997). 

The First Fit Decreasing (FFD) and the Best Fit Decreasing (BFD) 
heuristics are often used to build solutions for the BPP, and for the CSP. 
They can be used to obtain starting solutions for column generation, to 
solve residual problems, and also to get upper bounds in the nodes of 
the search tree, when looking for an integer solution for the problem. 

In these heuristics, the items are sequentially assigned to bins accord
ing to the following rules. In the FFD heuristic, the largest unplaced 
item is assigned to the bin with smallest index already used that has 
a sufficient remaining capacity; if there is none, a new bin is started. 
In the BFD heuristic, the largest unplaced item is assigned to the bin 
with smallest remaining capacity, but still sufficient to accommodate the 
item; if there is none, a new bin is started. Both these heuristics have 
an absolute performance ratio of 3/2, i.e., ZH < 3/2 ^*, where 2:* is the 
value of the optimum (Simchi-Levi, 1994). 

To obtain starting solutions for column generation, some authors re
sort to pseudo-polynomial heuristics, based on the solution of a series of 
knapsack problems. These are greedy procedures that iteratively select 
the best cutting pattern using the items in a list. Initially, the list has 
all the items; at each iteration, the items in the knapsack solution are 
removed, and the process is repeated until the list is exhausted. Their 
computation time is not significant in the framework used, and they gen
erally provide better starting solutions, with, at least, some very good 
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cutting patterns, even though the last patterns may be very poor. Two 
examples will be given. In both cases, the heuristics do favor the choice 
of knapsack solutions with larger items in the first iterations, leaving the 
smaller items, which should be easier to combine, to the last iterations. 

Vanderbeck (1999) solves a knapsack problem that finds, among the 
solutions with maximum capacity usage, the one that is lexicographically 
smaller when considering a solution vector where the items are ordered 
by non-increasing sizes. Valerio de Carvalho (2003) uses a knapsack 
problem with weights Wj equal to the item sizes, and profits pj = (l — 
{j — l)/n)wj^ j = 1 , . . . ,n. The values of the profits were chosen to 
be diff'erent from the item sizes to avoid having a subset-sum problem, 
which is, in practice, difficult to solve (Martello and Toth, 1990). 

3,2 Branch-and-price 
In the nineties, several attempts to combine column generation with 

branch-and-bound succeeded in obtaining the optimum integer solution 
of larger instances of some integer programming and combinatorial op
timization problems. This technique has been denoted as branch-and-
price. Stronger LP models and good quality lower bounds are of vital 
importance when using LP based approaches to solve integer problems. 
Branch-and-price also proved to be a useful framework for the solution 
of quite large instances of both CSP and BPP, that other combinatorial 
enumeration branch-and-bound algorithms failed to solve to optimality. 

In branch-and-price, it is desirable to ensure compatibility between the 
restricted master problem and the subproblem. First, the branching rule 
should not induce intractable changes in the structure of the subproblem. 
Desirably, it should remain the same optimization problem both during 
the solution of the LP relaxation and the branch-and-price phase. The 
second issue is symmetry. Branching strategies should be devised that 
partition the solution space in mutual exclusive sets, which are explored 
in different nodes of the branch-and-bound search tree. Symmetry is 
detrimental, because the same solution may exist (in a different form) 
in several different nodes of the branch-and-price tree. Other issues are 
also important to obtain more robust algorithms. Balanced partition 
rules should be selected: the branching constraints should partition the 
solution set evenly among subtrees. It is also desirable to select the 
branching constraints so that stronger decisions are taken at lower levels 
of the branch-and-bound tree. Most applications of branch-and-price 
are for problems with binary variables (for a review, see Barnhart et al., 
1998 and Desaulniers et al., 1998). Finally, note that the CSP has general 
integer variables, not restricted to be binary. 
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The strategy of imposing branching constraints directly on the vari
ables of the reformulated model poses the following difficulty: a column 
that is restricted by a branching constraint in the master problem may 
turn out to be the most attractive column generated by the subproblem. 
To deal with this problem, some authors keep track of the columns al
ready present in the master problem that must not be regenerated. The 
subproblem has to be solved by an enumeration scheme that rejects the 
forbidden columns (Degraeve and Schräge, 1999; Degraeve and Peeters, 
2003; Belov, 2003). To cope with this difficulties, Desrosiers et al. (1995) 
argue that, for most integer programming problems, the best strategy to 
combine column generation with branch-and-bound is to use branching 
constraints based on the variables of the original model. 

3.3 Branching schemes 
Branching strategies are related to the original formulation that is 

decomposed to produce the IP master problem, or at least to the kind of 
subproblem used to generate columns. For CSP, there are three possible 
original formulations: Kantorovitch formulation (5.1)-(5.4), the arc-flow 
formulation (5.32)-(5.36), and the MCF formulation (5.37)-(5.43). 

Kantorovitch formulation 
Even if it appears to be more natural, efficiency of branching on vari

ables x^ is compromised due to the symmetry between rolls. For in
stance, fixing any XQ to 1 or 0, meaning that roll k is used or not, has no 
effect on the problem because all rolls are identical. Once the number of 
rolls (or a lower and/or upper bound) at optimality is known, one may 
fix XQ variables corresponding to these rolls to 1 and others to 0, so that 
many variables are eliminated from the problem. Moreover, bounding 
any x^ (A; — 1 , . . . , K, i — 1 , . . . , m) by any integer value does not elimi
nate any fractional solution because such a solution may be retrieved by 
using another roll k for item i. 

The solution of CSP is composed of patterns and each pattern is 
composed of a set of items to be cut together on a same roll. Hence 
at items level, the information that is useful to build a solution should 
give either a set of items to be/not to be cut on a same set of rolls, or a 
maximum or/and minimum numbers of copies of an item to be cut on a 
set of rolls. 

Vance's rule. Vance (1998) first proposed a straightforward branch
ing scheme based on integrality requirements on variables x^ in model 
(5.14)-(5.18) where no rule is used for symmetry breaking between rolls. 
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This strategy suffers however from the symmetry between rolls, as said 
before, and was beaten by a quite complex branching strategy based on 
Gilmore and Gomory model variables for medium size problems. This 
latter strategy is based on the total flow of columns containing a certain 
minimum number of copies of items from a set S. It suffers two major 
drawbacks: there is no guarantee on the size of S and the subproblem is 
no longer a knapsack since many additional variables are needed. Con
sequently, it should become untractable even for small depth nodes of 
the branching tree. An improving strategy is based o the use of maxi
mal patterns, but it amounts to branching directly on Xp variables. The 
structure of the subproblem can be preserved for one branch thanks 
to a specialized algorithm and is highly aflFected for the other branch 
(even the maximal pattern property is lost). This last strategy has been 
successfully used to solve medium size problems. 

Vanderbeck's rule. Vanderbeck (1999) compared several branch
ing schemes and suggested the use of one that is based on the bi
nary representation of the cutting pattern columns of the Gilmore-
Gomory model. The binary representation of a column A^ is a 0-1 
vector A^ with size m' = Yl^Li '^di with m^ = \\og2{l^^^ + 1)], where 
If^^ = min(6^, [PF/i(;^J) is the upper bound on the number of copies 
of item d in a cutting pattern, which is limited by the demand for 
item d and the size of the roll. We will denote the elements of A^ 
as a^. A: = 1 , . . . , m^ dropping the index p, for the sake of clarity. The 
binary representation is such that the number of items produced for 
order d is ad = YJj'S^ ^"^Sd+i' d.= l,,,,,m, where p^ == 1 + Y!^Z\ rrij. 

Given a fractional solution of Gilmore-Gomory model, it is always 
possible to find subsets of rows O and P c { l , . . . , m ' } , and a subset of 
columns 

P = {peP: aj, - 0, Vfc G O and 4 = l̂ Vfc G P} 

such that Q̂  = X] ^p Â  is fractional. The branching constraints are: 

XI GP '̂ ^ — 1"̂ ^ ^^^ ^üGP ^^ — L̂ -l • ^̂  ^̂  ^̂  possible to identify sets, 
such that | 0 | + |P | = 1, the branching rule leads to very easy modifica
tions in the subproblem, both iri the left and in the right branches. This 
branching scheme has been used along with a combination of heuristics 
(the best of BFD, FFD, and a pseudopolynomial) and Martello and Toth 
(1990) lower bounds. Experiments with CSP instances, where the values 
of the demands are large, show that the procedure is quite robust and 
powerful. However, when demands are very small, as in the BPP, it may 
be necessary to select sets with | 0 | + |P | > 2, leading to a subproblem 
that is no longer a knapsack problem, but an extended knapsack prob-
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lern with new extra binary variables, needed to identify the attractive 
columns correctly. Computational experiments show results comparable 
to the ones obtained with the arc-flow model for the instances under 
study. 

Arc-flow model 

The arc-flow model provides a branching scheme for a branch-and-
price algorithm for the CSP that preserves the structure of the sub-
problem, which is as a longest path problem in an acyclic digraph with 
modified costs, that can be solved using dynamic programming.Valerio 
de Carvalho (1999) implemented a column generation algorithm based 
on a master problem with variables of the arc-flow model. It starts with 
a subset of arcs corresponding to an initial solution, and new arcs are 
added to the original formulation if they belong to an attractive path 
and are not already used. In the arc-flow model, there are flow conser
vation constraints for the nodes. If the new arcs are incident into nodes 
not previously considered, new constraints are explicitly added to the 
formulation. When an arc-flow variable xij takes a fractional value a, 
branching constraints of the following type are imposed: xij < [a\ and 
Xij > la]. 

The model has symmetry, because difl'erent paths may correspond 
to the same cutting pattern. Reduction criteria are used to eliminate 
some arcs, reducing symmetry, but still keeping all the valid paths. Af
ter this operation, in instances with a small average number of items 
per bin, which happen to be rather difficult instances, the symmetry is 
low, and its undesirable effects are not so harmful. Computational re
sults show the optimal solutions of all the bin packing instances of the 
OR-Library (see Beasley, 1990). These instances have demands of few 
items of each size. For example, the larger instances, of the t501 class, 
have about 200 different item sizes and a total of 501 items, yielding an 
average demand of about 2.5. 

A different strategy is to use a master problem with the columns of 
the reformulated model of Gilmore-Gomory and branching constraints 
based on the arc-flow variables, which are explicitly added to the for
mulation (Ben Amor, 1997; Valerio de Carvalho, 1999). This strategy, 
used in Alves and Valerio de Carvalho (2003), eliminates symmetry and 
preserves the structure of the subproblem, as follows. Any column of 
Gilmore-Gomory's model involves a unique set of arc-flow variables, if 
we consider that items are placed by decreasing value of width. Branch
ing constraints imposed on a given arc-flow will constrain the value of a 
deflnite set of columns of the reformulated model. Penalties and prizes 
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resulting from branching constraints of the type greater-than-or-equal-to 
or less-than-or-equal-to, respectively, only affect the reduced cost of the 
corresponding arc in the subproblem. 

Let G^ and H^ be the sets of branching constraints corresponding 
to the left and the right branches, respectively, at a given node w of 
the branch-and-bound tree, and let Gf-,. C G^ and Hf.,. C if^ be 
the sets of branching constraints imposed on the specific arc (i, j ) . Let 
TT̂/, d = l , . . . , m , be the dual variables associated with the demand 
constraints, and /i and u the vectors of dual variables associated with the 
branching constraints. The reduced cost of variable Xij at node w is Cij = 
TTd — YlieG"^ 1^1 ~^ JLieH"^ ^^' where d is the item that corresponds to 
arc (̂ , j ) . Only the costs change, and the subproblem structure remains 
unchanged. It may be solved using dynamic programming as a knapsack 
problem that only selects cutting patterns with items placed by non-
increasing width. 

This branching scheme can be easily extended to branching constraints 
based on sets of arcs incident on a given node. In this case, the dual 
variable of a branching constraint acts on all arcs in the set. Neverthe
less, the computational burden is heavier for instances with larger values 
of roll widths. 

MCF model 
Integrality may be required equivalently either for variables x^-, A ,̂ 

or Ap. In the first two cases symmetry is very harmful to branching 
scheme efficiency. Ben Amor (1997) proposed a branching scheme based 
on aggregating arc fiow variables 

K 

k=l 

that count the number of columns (rolls) using arc (i, j ) . These variables 
must be integer for any.integer solution to CSP. Hence, for any solution 
such that Xij = a is fractional for some arc (i, j ) one creates two nodes by 
adding either the constraint Xij < [a\ or the constraint Xij > \a] to the 
original formulation. The dual variables associated to these constraints 
will aflFect the arc costs in the subproblem at each column generation 
iteration and the subproblem structure remains unchanged. Since all 
columns (patterns) are extreme points of the subproblem, any column 
that is needed to attain integer optimahty can be generated in this way. 

However, because a node may be visited by more than one path in 
an optimal integer solution, one can obtain a fractional solution {Xp 
fractional) while all Xij are integer. In this case, there exists at least 
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one item i for which an associated node is visited more than once in 
the solution. A new item with demand equal to 1 is created while the 
demand of i is decreased by 1. The master problem covering constraints 
are modified following these changes. The worst case happens when all 
items are completely disaggregated and the problem becomes a BCSP 
where all items have demand equal to 1. In this case the branching 
scheme using aggregated flow variables is convergent since 

Xije{Q,l], V ( i , j ) ^ A p G { 0 , l } , V p . 

This branching scheme preserves the structure of the subproblem as 
a constrained shortest path and decisions are directly enforced in the 
subproblem while the master problem size remains unchanged. Con
straints of the type xij — 0 simply amount to removing the arc from 
the subproblem. On the other hand, the constraints of the type xij — 1 
amount to removing all arcs out of node % and all arcs into node j except 
arc (i, j ) . It was successfully used to solve the vehicle routing problem 
with time windows using branch-and-price (Desrochers et al., 1992) and 
proved to be efficient for BCSP. The main difficulty in BCSP is the so
lution of the linear relaxation by column generation. But this may be 
done as efficiently as for the corresponding CSP by aggregating identical 
size items. 

Branching on aggregated ffow variables has many interesting prop
erties. First, it allows the use of several score functions to choose the 
branching variable. Scores take into account the weights of items. Lower 
bounds and preprocessing procedure of Martello and Toth (1990) can be 
extended to the problems obtained at each branch-and-bound node. The 
experiments carried out show that no disaggregation has been necessary 
and the branching scheme turns out to be efficient for usually used test 
problems. Even for the binary case, branching on aggregated flow vari
ables turns out to be very efficient. Also flxing several variables at once 
proved to be efficient in a depth flrst strategy and no backtracking has 
shown to be necessary. This is due to the fact that nearly all solved 
problems have the integer round-up property, i.e. the optimal integer 
value is obtained by rounding up the linear relaxation optimal value. 

General comments 
An efficient branching scheme for column generation should have a 

smaller tree than the one resulting from branching directly on A-variables. 
The rules of Vanderbeck and Vance have the drawback of signiflcantly 
modifying the subproblem structure. Moreover, the number of possi
ble branching nodes is very high. Branching scheme based on MCF 
model has the advantage of preserving a constrained shortest path as 
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subproblem. Possible disaggregation may lead to subproblem of larger 
size deeper in the branching tree which breaks the rule that deeper in the 
branching tree, subproblems and desirably master problems should be
come easier to solve. Compared to this method, the branching strategy 
based on the arc-flow model presents the advantage that no disaggrega
tion is needed. Moreover, both strategies allow using more sophisticated 
branching rules based on xij variables. Besides all these intrinsic dif
ferences, all branching schemes lead to efficient solution of classical test 
problems. This is due to the fact that these problems have zero gap, the 
use of depth first strategy, and the use of several heuristics. 

4, Stabilization 
Column generation processes are known to have a slow convergence 

and degeneracy difficulties. There are often large oscillations in the val
ues of the dual variables from one iteration to the next. Primal degener
acy also arises: in many iterations, adding new columns to the restricted 
master problem does not help to improve the objective value. Recent 
computational experiments show that these problems can be mitigated 
using dual-optimal inequalities and stabilization methods. 

From the dual standpoint, column-generation processes can be viewed 
as dual cutting-plane algorithms (Kelly, 1961), in which the restricted 
set of variables used to initialize the restricted master problem provides a 
first relaxation of the dual space. Clearly, better heuristics for the start
ing solution provide tighter relaxations. Then, at each iteration, dual 
feasibility cuts are added to the model to eliminate the previous unde-
sired dual solution. The dual-space relaxation is successively tightened, 
until a feasible dual solution to the entire problem is found. 

Consider the LP relaxation of the CSP, min{cx: Ax = 6, x > 0}, 
where the columns of A correspond to valid cutting patterns, whose 
dual is max{7r6: IT A < c}. The following inequalities are a family of 
dual-optimal inequalities (Ben Amor et al., 2003) meaning that they are 
valid inequalities for the optimal dual space of the CSP. Any optimal 
dual solution will obey: 

-TTz + J^TT, < 0 , Vi, 5, (5.44) 
ses 

for any given width Wi^ and a corresponding set S of items, indexed 
by s, such that YlseS^s ^ '^i- Intuitively, from the primal point of 
view, these columns mean that an item of a given size Wi can be split, 
and used to fulfill the demand of smaller orders, provided the sum of 
their widths is smaller than or equal to the initial size. 
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If we add at initialization time a set of dual-optimal inequalities to 
the dual problem, TTD < d, we get the following primal-dual pair: 

min 
St 

ex + dy 
Ax + Dy ^ 
x,y > 0 

^b 
max nb 
*̂ TTA < c 

TTD <d 

The motivation for the use of dual-optimal inequalities is the follow
ing: the dual space is restricted during all the column generation pro
cess to get a better convergence. From the primal point of view, new 
columns are added to the master problem. By combining these columns 
with already generated columns, the master problem implicitly considers 
patterns corresponding to columns that have not been generated yet by 
the subproblem. As a consequence, the primal objective decreases faster 
without the need to generate those columns. The added columns allow 
not only for covering items of set S in (5.44) with item i but also for 
implicitly taking into account columns resulting from the use of larger 
sets S. For example, combining two columns corresponding to pairs 
(Si, 2i) and (52,12) with l^il = \S2\ = 2 and 22 G ̂ i results in a column 
corresponding to the pair (53,^1) where S3 — (^i \ {̂ 2}) U ^2 has its 
cardinality equal to 3. Being taken into account implicitly, the corre
sponding column need not to be added to the master problem (see Ben 
Amor, 2002). 

Even though the primal space is relaxed, it is always possible to re
trieve a valid solution for the original CSF with the same cost. Obviously, 
it will be an optimal solution for the original problem. Valerio de Car-
valho (2003) provides an algorithm to drive the y variables to 0, when 
they take a positive value in the optimal solution, to achieve that pur
pose. Basically, the algorithm amounts to picking selected valid cutting 
patterns in the optimal solution, and to performing the splitting opera
tion defined by the dual-optimal inequalities. 

It is interesting to see that, in the space of the arc-flow variables, 
the dual-optimal inequalities correspond to cycles where exactly one arc 
(the one corresponding to item i in (5.44)) is traversed in the direction 
opposite to its orientation. Combining a path and a cycle produces a 
new valid path. Actually, the algorithm to retrieve a solution to the 
original problem is not needed, if a perturbation technique is used, that 
amounts to giving a cost of s > 0 to the cycles (Ben Amor et al., 2003). 

Valerio de Carvalho (2003) used only dual-optimal inequalities ob
tained from sets S of small cardinahty (l^l < 2). From the sets of cardi
nality 1, there are the inequalities —TTf-f-Tr̂ +i < 0 , i = = l , . . . , m — 1. From 
sets of cardinahty 2, only one inequality of the type — TT̂  -|- TTJ + TT/̂  < 0, 
was used for each value of i. It is selected using the smallest index j (cor-
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responds to largest width Wj)^ if such value exists, for which there is a fc 
such that Wi > Wj +Wk, Therefore, the total number of dual-optimal in
equalities is kept small (less than 2m), Computational experiments show 
a sensible reduction in the number of columns generated and degenerate 
iterations. The savings are more impressive in larger, more difficult in
stances, when there is an explosion in the number of possible columns. 
For some instances, the speed-up factor is approximately 4.5, and the 
percentage of degenerate iterations falls from approximately 39.8% to 
about 8.5%. Ben Amor (2002) conducted a similar study on the classi
cal test problems and another set of more difficult test problems. Results 
show an impressive reduction in the master problem cpu time and espe
cially the number of column generation iterations. 

Even better results can be obtained if one uses deep dual-optimal in
equalities that cut portions of the dual optimal space, but preserve, at 
least, one dual optimal solution (Ben Amor et al., 2003). If a dual-
optimal solution for the problem, TT*, is known in advance, the following 
stabilized primal and dual problems can be used: 

min ex — 
St 

cx - (^* -A)7 / i + (^* + A)y2 
Ax-yi-\-y2 = b 
x>0, yi>0, y2>0 

max 
St 

ixh 
7TA<C 

TT 
_ ^ 
A < TT < 7f*+A. 

where A > 0 G 
The stabihzed dual problem is constructed in such a way that the dual 

solution is restricted to a non-empty box strictly containing the known 
optimal dual solution. The stabilization method amounts to penalizing 
dual variables when they lie outside the predefined box, and enforces the 
selection of a valid optimal primal solution of the original problem (see 
Ben Amor, 2002). Computational experiments were run with instances, 
denoted as triplets (Beasley, 1990), because the optimal solution has 
exactly three items per bin, which fulfill exactly its capacity. If an in
stance of the CSP has no loss at optimality, the solution TT* = Wi/W^ 
i 6 / , is an optimal dual solution, because assigning these values to 
the dual constraints YLiei ^ip^i — 1 simply replicates the knapsack con
straint used to build the feasible patterns, and the corresponding dual 
objective function reaches the optimal value ^^i biWi/W (Ben Amor, 
1997). The computational results are impressive. The speed-up factor 
is approximately 10. 

Computational results also show that convergence for different equiva
lent primal models is similar provided that their dual optimal spaces are 
equally restricted. Ben Amor et al. (2003) compares two models for the 
CSP problem: in the first, the aggregated CSP, items of the same size 
were aggregated in the same constraint, as is usually done, while, in the 
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second, the binary disaggregated CSP, items are considered in separate 
constraints, but dual inequalities impose equal dual values for items of 
the same size. The number of column generation iterations, the master 
problems cpu times, and the number of columns generated in both cases 
is remarkably similar, even though the models have very different sizes 
of mater problems and subproblems. 

Finally a proximal stabihzed column generation algorithm proved to 
be very efficient in solving CSP linear relaxation (Ben Amor, 2002). The 
key issue is that the dual vector TT* defined above is a good initial solution 
for difficult problems (those ones with very small loss), and even it is 
not very close to a dual optimal solution for other problems, it may still 
have the nice property that the distribution of its components is close 
to the one of an optimal solution. 

5, Extensions 
One extension of the CSF is the multiple size lengths cutting stock 

problem (MLCSF) and its counterpart, the variable sized bin packing 
problems (VSBFF). They are variants of the standard problem in which 
large objects of different capacities are allowed. The arc flow model can 
also be extended to formulate these problems. Using a Dantzig-Wolfe 
decomposition, one obtains the machine balance problem formulation 
of Gilmore-Gomory (Valerio de Carvalho, 2002). A branch-and-price 
algorithm for a version with limited availability of the bins, based on a 
master problem with columns of the reformulated model and branching 
constraints based on the arc-flow variables, proved to be adequate for 
both the MLCSF and the VSBFF (Alves and Valerio de Carvalho, 2003). 

Again, the advantage of aggregating items of the same size into a single 
group, as well as of the aggregation of bins, reducing symmetry, enables 
solving in a few seconds all the VSBFF instances proposed in (Monaci, 
2002), in which a combinatorial enumeration algorithms failed to solve 65 
out of the 300 instances within a time limit of 900 seconds. The larger 
instances have a maximum of 5 different types of bins and up to 500 
items. Other classes of instances with about 25 different item sizes and 
14 different bin capacities were also solved in, on average, one second, 
approximately. The algorithm has been applied to MLCSF instances, 
proposed in (Belov, 2003), which uses a forbidden columns dynamic 
programming enumeration scheme, providing comparable results; it was 
able to solve 44 out of 50 instances with 4 different types of bins with 
capacities ranging from 5000 to 10000. 

Another extension of the one-dimensional CSF is a version in which 
the number of setups is minimized. It is a problem of great practi-
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cal importance, because there are usually significant setup cost associ
ated to changing from one cutting pattern to another. This problem 
is much more complex than the classical one-dimensional CSP, because 
additional binary variables are needed to indicate when a given cutting 
pattern is selected, and the resulting model has much larger duality 
gaps. Therefore, most approaches are based on heuristics. Vanderbeck 
(2000a) developed a branch-and-price-and-cut algorithm, and applied it 
to instances with up to 32 item sizes. Computational results show that 
optimal solutions were obtained in 12 out of 16 instances, while in the 
remaining, solutions were found within one unit of optimality. 

6. Future research 
The stabilization of the solution of the LP relaxation of the CSF 

produces impressive results. Instances with a much larger number of 
different item sizes can now be tackled, and their LP solutions and the 
corresponding bounds found in reasonable time. The application of sim
ilar ideas to the branch-and-price phase requires further investigation. 
The experience with the CSP also shows that it may be worthwhile to 
investigate and characterize the structure of the dual optimal space of 
other integer-programming and combinatorial-optimization problems. 

Models with original variables provide additional insight, that can 
be used to derive more balanced and powerful branching rules, as the 
ones that result from hyperplane branching, and primal cuts expressed 
in terms of the original variables. Many integer programming and com
binatorial optimization problems can be represented as pure network 
models, or network models with side constraints. Branch-and-price with 
branching constraints based on the variables of the original model seem 
to be a promising approach for this type of problems. 
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Chapter 6 

LARGE-SCALE MODELS IN T H E 
AIRLINE I N D U S T R Y 

Diego Klabjan 

Abstract Operations research models are widely used in the airhne industry. By 
using sophisticated optimization models and algorithms many airlines 
are able to improve profitability. In this paper we review these mod
els and the underlying solution methodologies. We focus on models 
involving strategic business processes as well as operational processes. 
The former models include schedule design and fleeting, aircraft rout
ing, and crew scheduhng, while the latter models cope with irregular 
operations. 

!• Introduction 
In the United States the Airhne Deregulation Act of 1978 gave the 

airlines much more commercial freedom to compete. Since then, to lever
age demand with capacity or sit inventory, the airlines have pioneered 
revenue management. Among other breakthroughs, to offer a variety 
of itineraries, major airlines have developed the so-called hub-and-spoke 
networks. On the other hand, to improve profitability they use sophis
ticated tools for reducing cost. In recent years, the raise of low-fare, 
no-frill airhnes such as Southwest in the U.S. and Ryanair in Europe 
put additional pressure on the remaining carriers. To keep low fares, the 
airlines must maintain low cost per airline-sit-mile. This is commonly 
achievable through contract renegotiations and by using enhanced mod
eling and optimization techniques. 

Since the 1950s the airlines are using operations research models in 
solving their complex planning and operational problems. These mod
els have become increasingly complex. On the one hand, the airlines 
have become larger (through mergers or expending service) resulting 
into large-scale models. On the other hand, the continuing pressure to 
increase profitability resulted into more ''accurate" models and better 
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solution methodologies. For example, an excess crew cost of several per
cent was acceptable a decade ago but it is not today. In many cases, 
by using state-of-the-art crew scheduling decision support systems the 
excess cost has been pushed below one percent. Large-scale models have 
become computationally tractable due to algorithm, hardware, and soft
ware advances. 

On the algorithmic front the most notable advance has been the in
troduction of column generation. In column generation, a model is given 
implicitly and is dynamically updated in order to improve the incumbent 
solution. Such an approach enables handling of the entire large-scale 
problem and at the same time it reduces the computational burden. 

In this paper we review large-scale linear mixed integer models that 
are frequently encountered and used in the airline industry. We also out-
hne in Section 2 the underlying methodologies for solving these models. 
We start in Section 3, by explaining business processes in airhne plan
ning and operations. In Section 4 we present models that concern the 
passenger service. Models for schedule planning and fleeting are given 
in Section 4.1, then we review aircraft scheduling in Section 4.2, and at 
the end we discuss crew scheduling in Section 4.3. For every problem we 
discuss planning and operational models. Recent trends are presented 
in Section 5. 

2. Solution methodologies for large-scale models 

Here we briefly overview three most common techniques for solving 
large-scale linear mixed integer models: branch-and-price, Lagrangian 
relaxation, and Benders decomposition. We start with branch-and-price. 

Large-scale linear programs are often solved by delayed column gen
eration. In this algorithm, at every iteration, only a subset of columns 
is considered. The problem with only a subset of columns is called the 
restricted master problem. In every iteration of the algorithm, flrst the 
restricted master problem is solved and let ix be the optimal dual vector, 
which for ease of discuss we assume it exists. Next the so called suh-
problem is solved. In subproblem solving we identify a set S of columns 
with the lowest reduced cost with respect to TT. If we cannot find a col
umn with negative reduced cost, then we stop since TT is an optimal dual 
solution to the original problem and together with the optimal primal so
lution to the restricted master problem we have an optimal primal/dual 
pair. Otherwise, we append columns in S to the restricted master prob
lem and the entire procedure is iterated. When the restricted master 
problem includes too many columns after several iterations, columns 
with large reduced cost are removed from the restricted master problem. 
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Frequently the most computationally intensive step in delayed column 
generation is subproblem solving since it needs to scan many columns 
and typically it is a complex task to generate a single one. When columns 
correspond to constrained paths in a network, an efficient algorithm 
known as constrained shortest path is often employed, (Desrosiers et ah, 
1995; Desaulniers et al., 1998). In this case, the task is to find the 
cheapest cost s — t path (reduced cost in delayed column generation 
framework) among all paths with certain properties. We explain the 
algorithm by an example. Assume we want to find a shortest path with 
respect to the reduced cost in a network subject to the duration and the 
number of arcs in paths being below a given number. By duration we 
mean that every arc has an associated transit time and the duration of 
a path is the sum of transit times along the path. We introduce label 
vectors, which in this case have 3 coordinates. The first one corresponds 
to the reduced cost, the second one to the duration, and the last one to 
the number of arcs. With every node we associate a set of label vectors. 
For example, a label vector (—45,134,4) at node i corresponds to an 5 —i 
path with reduced cost -45, duration 134, and 4 arcs. The constrained 
shortest path algorithm uses the same framework as standard shortest 
path algorithms. Suppose the algorithm selects a node i for scanning. 
The constrained shortest path algorithm next scans all neighbors j of i 
and all label vectors A: = (/ci, fc2, fcs) at i. Each label vector k is updated 
by traversing the arc (i,j) and the updated label vector is appended 
to node j . In our example, the label update means that the new label 
vector has /cs + 1 as the third component, ^2 plus the transit time of arc 
(i, j ) as the second component, and ki plus the 'reduced cost' of arc (i, j ) 
as the first component. The key observation is that under some realistic 
assumptions label vectors Jha t are dominated can be discarded. If we 
have two label vectors fc, k at node j and k < k component-wise, then 
the s — j path corresponding to k is not going to be part of the shortest 
path. The efficiency of the algorithm depends heavily on the frequency 
at which dominance occurs. Note that if there is no dominance, the 
algorithm simply enumerates all paths. It turns out that dominance 
occurs often in practice and therefore the algorithm is computationally 
efficient. Two alternative algorithms for subproblem solving in presence 
of constrained shortest paths are sketched in Section 4.3. 

Branch'and-price is a branch-and-bound algorithm, where LP relax
ations at every node are solved by delayed column generation. Since 
subproblems are often combinatorial in nature, the standard variable 
dichotomy is not appropriate. When columns correspond to constrained 
paths in a network, the following branching strategy is frequently used. 
Let r, s be two adjacent nodes, which are selected based on the in-
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cumbent LP solution. Then in one branch only paths where node s 
immediately follows node r are considered. This is easily reflected in 
the network by removing all arcs from r, except the (r, s) arc. On the 
other branch we forbid all paths where s does follow r, which is captured 
by removing the (r, s) arc. This branching rule produces more balanced 
tree. Since LP relaxations tend to be computationally intensive, only 
few branch-and-bound nodes are evaluated. For this reason, a common 
strategy is to use depth-first search and abort after the first integer so
lution is obtained. An excellent survey on branch-and-price is given by 
Barnhart et al. (1998a). 

Another common technique is Lagrangian relaxation^ (Geoffrion, 1974; 
Fisher, 1981, 1985; Martin, 1999). Suppose we can partition constraints 
into "easy" and "difficult" constraints. The concept behind is that if the 
difficult constraints are removed, the resulting problem is easily solvable. 
In Lagrangian relaxation, every difficult constraint gets a linear penalty 
and it is moved to the objective function. The resulting problem is called 
the Lagrangian relaxation and it is a function of the penalties. Let us 
assume that we have a maximization problem. For any given values of 
penalties, the Lagrangian relaxation is computationally easy. It is easy 
to see that it always provides an upper bound on the optimal solution. 
The goal now is to find the best upper bound, i.e. to minimize the 
Lagrangian relaxation over all possible penalties. This is the Lagrangian 
dual problem, which is a nonlinear optimization problem. In practice it 
is solved by variants of the subgradient algorithm. One drawback of 
this approach is that there is no guarantee to find feasible solutions. 
They have to be constructed heuristically during the execution of the 
subgradient algorithm. The algorithm is very appealing since it is easy 
to implement and it handles complex (difficult) side constraints. 

The Benders decomposition^ (Benders, 1962; Minoux, 1986), is well 
suited for mixed integer programs with linking integer variables. It re
quires that for any fixed value of integer variables, the resulting problem 
is an LP, where the constraint matrix is often block diagonal. The algo
rithm at every iteration solves a mixed integer program (restricted mas
ter problem) with a single continuous variable that provides a bound on 
the optimal solution. Next the linear program resulting from the origi
nal problem by fixing integer variables to the values from the restricted 
master problem is solved. The optimal dual vector to this LP provides 
a Benders cut, which is added to the restricted master problem and the 
procedure is repeated. The same framework can be used for convex 
problems. 
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Figure 6.1. Business processes (M&E^maintenance and engineering). 

Another technique, called constraint programming, is paving its way 
to the large-scale linear programming. In this chapter we do not discuss 
constraint programming and relevant literature. 

3, Airline planning and day of operations 
In this section we review typical business processes used by combi

nation airlines, Figure 6.1. While every airline has its own processes 
and its own organization names, most of the airlines follow the depicted 
processes and terminology. The time frames can very significantly. 

Long term fleet and manpower planning consists of making strategic 
decisions with respect to the number of aircraft and the fleet decompo
sition, and cockpit crew manpower planning. In fleet planning consid
erations such as the airline's mission (e.g.. Southwest has a single fleet 
that allows relatively simple and efficient operations), aircraft utilization, 
route structure, cargo/passenger mix, etc., are taken into account. 

The schedule development phase typically starts 12 months before the 
day of operations and it lasts up to 9 months. In the flrst phase the air
line establishes the service plan., which is the set of services to operate in 
a given market. The service plan is either daily for domestic operations 
and weekly for international, long-haul service. The marketing group 
considers several factors such as trafl&c forecasts, status of competing 
carriers, internal resources, and marketing initiatives. Marketing initia
tives are approved by upper management and involve decisions such as 
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entering a new market. The designed service plan typically does not di
vert substantially from the current schedule. Following the service plan, 
the scheduling group generates a detailed flight schedule^ i.e. a flight 
departure and arrival time. The flight schedule has to obey a set of 
operating constraints, e.g. maintenance planning, and given generic re
sources such as the number of aircraft. The schedule is then published. 
Next is capacity planning or fleeting. In fleeting an equipment type is 
assigned to each flight subject to available resources such as the num
ber of aircraft. The goal of the fleet assignment model is to maximize 
profit. The schedule together with the sit capacity is then input to the 
computer reservation system (CRS). The produced fleeting solution is 
then evaluated with a profltability evaluation model and potential im
provements are fed back to the schedule development group for possible 
minor adjustments. The schedule development phase and fleeting are 
discussed in Section 4.1. 

Once the equipment types are assigned, aircrafl routing and crew 
scheduling follow. In aircraft routing, called also maintenance routing, 
which is discussed in Section 4.2, a specific tail number is assigned to each 
flight subject to maintenance constraints. The objectives are usually in
centives such as throughs and robustness. The goal of crew scheduling, 
see Section 4.3, is to assign crew members to individual flights in or
der to minimize the crew cost and maximize various objectives related 
to contractual obligations, quality of hfe, and crew satisfaction. Crew 
schedules have to satisfy complex regulatory and contractual rules. Po
tentially crew planners detect unfavorable connections and give feedback 
to schedule and fleet planners. The crew scheduling process typically 
starts three months before the day of operation and it is constantly up
dated until a few weeks before the day of operations. 

Only minor changes to fleeting, aircraft routes and crew schedules are 
made during the last few weeks before the day of operations. To better 
match demand with capacity, some airlines perform dynamic fleet and 
aircraft swaps, known also as demand driven dispatch or D*̂  for short, 
(Berge and Hopperstad, 1993; Talluri, 1996; Clark, 2000). If preferential 
bidding is used, approximately one month before the day of operations, 
crews bid for their monthly crew assignments and only minor changes 
such as two way trip swaps are performed in the last few weeks. 

Throughout the strategic planning processes pricing and yield or rev
enue management are actively involved. In revenue management, the 
airline controls the sit inventory by adjusting fare prices, setting over
booking limits, and making decisions at any given time about selling 
particular fare classes on a given passenger itinerary. Since models and 
solution methodologies in revenue management and pricing are substan-
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tially different than'the remaining models resulting from the aforemen
tioned processes, they are not discussed here (see e.g. van Ryzin and 
Talluri, 2002, for a survey on revenue management). We also do not 
discuss the cargo side of planning and operations. 

The actual day of operations, called also execution scheduling^ consists 
of making final minor adjustments to the flight schedule (e.g., adjust ar
rival times based on the daily wind forecast), executing the pre-planned 
schedule (e.g., file the flight plan) and rescheduling for irregular opera
tions or disruption management The latter is carried out by operations 
controllers, which are typically located in the airline operations control 
center (see e.g. Clarke et al., 2002). Most frequent sources of irregular 
operations are weather, unscheduled maintenance, congestion, crew un
availability, security problems, etc. Disruption management is composed 
of three processes. When an irregular operation occurs, first the aircraft 
are rerouted, which is called aircraft recovery. In this stage in addition 
to rerouting the aircraft, decisions on delaying and canceling fiights are 
made. Next is the crew recovery process^ where crews are assigned new 
crew itineraries. The controllers can use original, standby, and reserve 
crews. At the end is the passenger reaccommodation process., where pas
sengers are rerouted to alternative itineraries. Clearly the new schedule 
must conform to all regulatory and contractual rules. While the air
lines often impose more stringent rules in planning, in operations they 
typically use precise rules. Contractual rules for operations are usually 
different from those in planning. 

4. Models for passenger service 

In this section we focus on the passenger side of planning and opera
tions. 

4,1 Schedule planning and fleeting 

For most of the airhnes schedule planning is a manual process mostly 
driven by marketing requirements. On the other hand, decision sup
port tools for fleeting are common. There are only few manuscripts on 
schedule planning but there is vast hterature on fleeting. Since research 
papers that address schedule planning, cover fleeting as well, we start 
with fleeting. 

The basic fleet assignment model (FAM), called also the leg-based 
fleet assignment model, is to find an optimal assignment of equipment 
types to fiights. The input consists of a list of fiights, which are given by 
the destination/origin station (airport) and departure/arrival time, a set 
of equipment types and the corresponding number of aircraft for each 
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equipment type. Since each equipment type has its own sit capacity, on a 
given flight the equipment type decision can produce low load factor (lost 
revenue of using too large sit inventory) or a potential spill of passengers 
to competitors if the realized demand is higher than the sit capacity of 
the assigned equipment type. The typical objective function consists of 
the variable and fixed cost of operating a flight by a given equipment 
type and an estimate of potential revenue. 

Next we formally describe the FAM, see e.g. Abara (1989); Hane et al. 
(1995). First we define the flight time-space network. The network has 
a node (u, i) for each time when an arrival or departure of leg i occurs 
at station u. If an event corresponds to a departure, then let ti be the 
departure time of flight i. If it corresponds to an arrival, then ti is the 
arrival time of flight i plus the minimum plane turn time (the so-called 
ready time). We assume that the activity times ti are ordered in time, 
i.e. t i < 2̂ < ^3 •' • < t/, where / is the number of activities at the station. 
There is a flight arc {(u, i), (v^j)} for each leg that departs at station 
u at time ti and arrives at station v at time tj. In addition there are 
ground arcs {(?i, i), (ii, i + 1 ) } for each u and i, where we assume that we 
have a wraparound arc between the last and first node of the day. Each 
station has exactly one wraparound arc. 

The model has two types of variables, the fleet assignment variables x 
and the ground arc variables y. For each leg i and for each fleet k there 
is a binary variable Xik^ which is 1 if and only if leg i is assigned to fleet 
fc. For each ground arc g and for each fleet k we deflne a nonnegative 
variable ygk that counts the number of planes in fleet k on the ground 
in the time interval corresponding to g. Let et be a fixed time typically 
corresponding to a time with low activity, e.g. 3 am. The FAM model 
reads 

min ^ CikXik 
ieA 
keK 

^Xik^l ieA (6.1) 
keK 

X] î/c - X^ Xik + yo(v)k - yi{v)k ==0 V eV, ke K (6.2) 
ieO{v) iei{v) 

Y^Vgk + Yl^ik-^^ fc € K (6.3) 
gew ieM 

y > 0, X binary. 

where 
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I{v) : set of flight arcs to node v A : set of all flight arcs 

0{v) : set of flight arcs from node v F : set of nodes 

M : set of flights in the air at et K : set of all fleets 

W : set of ground arcs containing et o{v) : ground arc from node v 

hk : number of aircraft in fleet k i{v) \ ground arc to node v 

Cik : cost of assigning fleet k to leg i. 

Constraints (6.1) require that each leg is assigned to exactly one fleet, 
(6.2) express the flow conservation of aircraft, and (6.3) assure that we 
do not use more aircraft than there are in a fleet. 

This basic FAM model is relatively easily solvable even for large 
flight networks by commercial integer programming solvers, (Hane et al., 
1995). The model can be enhanced by incorporating some aircraft main
tenance and crew requirements, (Clarke et al., 1996; Rushmeier and Kon-
togiorgis, 1997), explicitly modeling aircraft routes, (Barnhart et al., 
1998b), and incorporating departure time decisions, (Rexing V, 2000; 
Desaulniers et al., 1997b; Belanger et al., 2003). The biggest drawback 
of this model is the revenue component of the objective function. In a 
multi-leg passenger itinerary a capacity decision on a flight effects the 
number of passengers spilled from the itinerary and therefore the revenue 
contribution of other flights. Kniker (1998) explores several alternatives 
to compute the cost component c but none of them captures network 
effects accurately. Therefore the model has to be augmented to capture 
multi-leg passenger itineraries. 

For ease of discussion we assume that every passenger itinerary has 
a single fare and we assume that passengers are not recaptured, i.e. if 
the booking demand exceeds the sit inventory on a given flight, the non-
booked passengers are not captured on airline's alternative itineraries. 
Under these assumptions we next present the passenger mix models which 
decides how many booked passengers to have in any itinerary given a 
flxed leg sit inventory. Let P be the set of all itineraries. The fare of 
itinerary p G P is denoted by fp and let Ci be the available sit inventory 
of leg i. Let Wpyp ^ P he the decision variable that counts the number 
of booked passengers on itinerary p. The model for the optimal number 
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of booked passenger reads 

max y2 fp^P 
peP 

/ . ' ^ p < Ci for every leg i (6-4) 

^^P Wp<Dp peP (6.5) 

w integer. 

Here i E p represents that leg i is part of itinerary p. For every p ^ Pj 
the unconstrained demand is denoted by Dp and it can be obtained 
either by a direct O — D (origin-destination) forecasting method or by 
segregating leg based demand forecasts. Constraints (6.4) impose the sit 
capacity hmits and (6.5) meet the forecasted demand. Enhancements 
and generahzations of this model are given in Kniker (1998). 

A fleet assignment model that captures O — D itineraries, called the 
origin-destination fleet assignment models is obtained by combining the 
leg based FAM and the passenger mix model. The only required modifi
cation is to replace the right-hand side of (6.4) by YlkeK ^k^ik^ where Ck 
is the sit capacity of equipment type fc. While the leg based FAM is rel
atively easily solvable, this is not the case for the 0 — D fleeting model. 
The number of variables and therefore constraints in this model can be 
as high as 200,000. (Note that in the presence of multiple fare classes 
per itinerary, (6.5) are no longer the simple upper bound constraints.) 

Barnhart et al. (2002b); Kniker (1998) solve the model by branch-
and-price. The pricing step is not computationally intensive and it is 
done by a simple scan routine, i.e. there is no need for solving the con
strained shortest path problem. They report computational times of 
several hours just to find the first integer solution. Indeed, even solving 
the LP relaxation of the model takes 2 hours and half for a realistic 
model consisting of 70,000 itineraries and approximately 2,000 legs. The 
authors enhance the solution methodology by employing sophisticated 
preprocessing techniques and valid inequalities. In order to improve 
tractability, Barnhart et al. (2002a) develop an alternative model. In
stead of having decision variables that assign single legs to a fleet, the 
new model requires decision variables that assign a subset of legs to 
a fleet. Thus the assignment flight leg variables are grouped together. 
Clearly considering all possible subsets of legs is not tractable, however, 
the authors show that by carefully selecting subsets, the resulting model 
is tractable. Another alternative formulation to O — D fleeting is pre
sented in Jacobs et al. (1999), where the underlying model is solved by 
Benders decomposition. 
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Next we discuss models that incorporate schedule design decisions. 
Until recently, algorithms for schedule design and fleeting were mostly 
iterative in nature, (Berge, 1994; Marsten et al., 1996; Etschmaier and 
Mathaisel, 1985). Given a schedule, first demands are estimated by a 
schedule evaluation model. Next the FAM is solved by using the com
puted demands and the resulting solution is evaluated. In order to mod
ify the schedule, fiights for addition or deletion are identified. The profit 
resulting from addition or deletion of these fiights is then estimated and 
based on the resulting profit a subset of these fiights is selected for addi
tion and deletion. These fiights are then added to the schedule and the 
procedure is repeated. 

Recently models that consider fieeting or aircraft routes, and schedule 
design decisions simultaneously emerged. Most of them are still iterative 
as they dynamically generate passenger itineraries and evaluate sched
ules, however, given a subset of itineraries, the decision of which fiights 
to use and the fieeting decision are made simultaneously. Lettovsky et 
al. (1999) give a model that can construct a schedule from scratch. As 
part of the input are service frequencies, origin-point of presence, and 
demand information. The model then generates a schedule that maxi
mizes revenue subject to basic operational constraints. Their objective 
function is nonlinear since they use a logit-based market-share model. 
They solve the model by Benders decomposition (no details are given in 
their publication). Lohatepanont and Barnhart (2002) present a linear 
model that given a set of mandatory and optional fiights, selects a sub
set of optional fiights that maximizes total revenue. They use the O — D 
fieeting model and augment it with optional fiights. The nonlinear re
lation in fiight demands is taken into account by solving several models 
iteratively and adjusting demands based on the incumbent solution. In 
each iteration the model is solved by branch-and-price. Yan and Tseng 
(2002); Yan and Wang (2001) present a similar model but they solve it 
by Lagrangian relaxation. They relax all constraints except fiow con
servation constraints of passenger and aircraft. Erdmann et al. (2001) 
present an approach for scheduling fiights of charter carriers. They go a 
step further since they explicitly model aircraft routes. They solve the 
model by branch-and-price. 

Antes (1997) presents common business processes used by the airlines 
in schedule planning. Berdy (2002) gives an excellent review on nuts-
and-bolts of route generation. These two manuscripts do not present 
mathematical models. 
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4.2 Aircraft routing 
4.2.1 The planning stage. In tactical planning after each 
flight has an assigned equipment type, the aircraft routing problem fol
lows. In this stage each individual aircraft or tail number is assigned 
to each flight in a given time period. Note that the fleeting solution 
decomposes the flight schedule and therefore there is an aircraft routing 
problem for every fleet (e.g. Boeing 737-300 and 737-400 fleets yield two 
separate routing problems). 

In addition to the assignment requirement that each flight must be 
assigned a unique tail number, the routes should not use more than the 
available number of aircraft and they must meet maintenance require
ments. In the U.S., the FAA requires four types of checks. The A-checks 
or line maintenance are routine checks (visual inspection of major sys
tems), which have to be performed approximately every 65 block hours 
and a certain number of take-offs. Durations of A-checks are typically 
from 3 to 10 hours and they are usually performed during the night. 
B-checks are typically done once in several months and they require de
tailed visual inspection. For C- and D-checks an aircraft is taken out of 
service for a month and they are done once every one to four years. Since 
these two check are spaced at large intervals, they do not pose schedul
ing difficulties. For this reason aircraft routing solutions consider only 
A- and B-checks. Maintenance checks can only be performed at specific 
maintenance stations, which are typically separate for each fleet. In or
der to decrease unscheduled maintenance events, many airlines impose 
more stringent maintenance requirements, e.g. A-checks every 40 block 
hours and even frequent more stringent checks. In addition to these 
regulatory maintenance rules, some airlines impose equal utilization of 
aircraft, called also the big cycle constraint. 

It is extremely difficult to assign a single cost attribute to an aircraft 
routing solution. Some airlines consider the routing problem as a pure 
feasibility problem. Often a value of a routing solution is a weighted sum 
of several attributes such as the contribution from throughs (the benefit 
of offering certain non-stop connections) and robustness measures to 
possibly decrease occurrences of unexpected events. 

In the planning stage, typically several weeks or months in advance, 
first generic aircraft routes are constructed during a rolling time hori
zon. This is the aircraft rotation problem. These generic routes satisfy 
short maintenance requirements such as A-checks but do not consider, 
for example, B-checks and aircraft positions at the beginning of the time 
horizon. Only a few weeks or even days before the day of operations, the 
actual tail numbers are assigned to each flights, i.e. the aircraft assign-
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ment problem is solved. The assignment follows generic routes as much 
as possible but it takes into account longer maintenance requirements 
and the actual aircraft position at the beginning of the horizon. 

Both problems are modeled either as a multicommodity flow problem 
or a partitioning/packing problem. Next we present a partitioning for
mulation from Barnhart et al. (1998b) for the rotation problem, which 
assumes a rolling time horizon and only checks that have to be done 
periodically and the period is shorter than the time horizon. 

Suppose we are given a flight schedule (of a single equipment type) in 
a time horizon. A string is an ordered sequence of flights that originates 
and terminates at a maintenance station. The arrival station of a flight 
in a string is equal to the departure station of the next flight in the string 
and the connection times are longer than or equal to the minimum plane 
turn time. In addition, a string is maintenance feasible, e.g. the sum of 
the block times of the flights in the string is less than the one imposed by 
A-checks and the number of flights in a string is less than the maximum 
number of takeoffs between two A-checks. An augmented string is a 
string with the maintenance time interval attached to the end of it. The 
maintenance is assumed to start as soon as possible and it lasts for 
the duration of the required check. For example, if an aircraft arrives 
at 4pm local time and the maintenance cannot start before 8pm, it is 
assumed that the maintenance indeed starts at 8pm and lasts for the 
required period. Let S be the set of all augmented strings. A decision 
variable Xg is 1 if augmented string s G 5 is in an aircraft route and 0 
otherwise. To combine augmented strings together, we need ground arc 
variables at maintenance stations MS^ which is similar to the FAM. As 
in Section 4.1, we deflne ground arcs 2/f(̂ ), yo[v) fo^ v ^V. V corresponds 
to activities at stations in MS and ready time is defined based on the 
termination time of augmented strings. The model reads 

min 2 . c.sXs 
ses 

y Xs — 1 for every flight i (6.6) 

jeO{v) ei{v) 
jes jes 

Yy9 + J2'^sXs<b (6.8) 
gew ses 

y > 0, X binary. 



176 COL UMN GENERA TION 

Here Cg is the cost of augmented string 5, 6 is the number of aircraft 
in the fleet, and Vg counts how many times augmented string s crosses 
time et, where et is defined as in the FAM. Constraints (6.6) require that 
each flight be assigned to a string, flow balance at maintenance stations 
is guaranteed by (6.7), and (6.8) is the plane count constraint. Note that 
due to the flow balance constraints, strings can always be concatenated 
into an aircraft rotation. The big cycle constraint can be modeled in 
the similar way as the subtour elimination constraints in the traveling 
salesman problem (see Barnhart et al., 1998b, for details). Additional 
constraints such as capacities at the maintenance stations can easily be 
embedded. Barnhart et al. (1998b) solve this model by branch-and-price. 
The subproblem is solved by a constrained shortest path algorithm. For 
every maintenance requirement there is a label, i.e. we must maintain a 
label for block hours and number of takeoffs, and we must use labels for 
any nonlinear cost component. If the big cycle constraint is imposed, 
then row generation is required as well since this implies an exponential 
number of additional constraints. 

Cordeau et al. (2001); Mercier et al. (2003) model the aircraft assign
ment problem as a multicommodity network flow with nonlinear resource 
constraints. The resource constraints model maintenance requirements. 
The model is solved by a combination of Benders decomposition and 
branch-and-price. The pricing problem is solved by a constrained short
est path algorithm. Sriram and Haghani (2003) use the multicommod
ity formulation as well. They model maintenance requirements as linear 
constraints and therefore their formulation is very complex. The solution 
methodology is a heuristic based on local search. 

Clarke et al. (1997) consider the aircraft rotation problem. They mod
eled it as an Eulerian tour with side constraints. The side constraints 
capture maintenance requirements. Since the Eulerian tour problem is 
equivalent to the traveling salesman problem on the line graph, they 
actually solve the traveling salesman problem. This transformation en
ables them to capture the big cycle constraint as the subtour elimination 
constraints. The model is solved by Lagrangian relaxation, where the 
maintenance and subtour constraints are relaxed. The underlying mas
ter problem then becomes a simple assignment problem. 

Feo and Bard (1989); Daskin and Panayoyopoulos (1989) model the 
assignment problem as the set partitioning problem. In such a formu
lation each aircraft route corresponds to a column in the formulation. 
The former work solves the underlying model heuristically. They flrst 
generate a set of routes for each aircraft independently. Next they solve 
the resulting partitioning problem by a greedy heuristic to obtain the so
lution. Daskin and Panayoyopoulos (1989) rewrite the formulation as a 
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set packing model. One family of constraints require that each flight is in 
a route and the other one that each route is selected at most once. They 
solve the model by Lagrangian relaxation, where the latter constraints 
are relaxed. 

Paoletti et al. (2000) give details on aircraft rotation and assignment 
at Alitalia. The rotation problem is solved äs an assignment problem, 
where maintenance requirements are not considered. They maximize 
the throughs value and the aircraft turn times. The assignment problem 
is solved a day before the day of operations and is considerably more 
complex. It tries to follow the solution from the assignment problem as 
much as possible. Their model is string based but it has several addi
tional operational constraints. They employ a constraint programming 
approach. 

A completely different framework is given by Gopalan and Talluri 
(1998); Talluri (1996). They approach the rotation problem from a com
binatorial point of view. They model the problem as the Eulerian tour 
problem. The former work considers 3-day maintenance checks and they 
show that if only these checks are required, the problem is polynomially 
solvable. The 4-day checks are addressed in the latter manuscript. In 
this case the problem becomes NP-hard and they propose several heuris
tics. In both cases the maintenance requirement means that an Eulerian 
tour must visit certain nodes (maintenance stations) every 3 or 4 arcs 
since their arcs correspond to lines of flying (day's activity of an aircraft). 

4.2.2 D a y of operat ions . In this section we cover the execu
tion part of aircraft routing. In a day of operations, due to unexpected 
events such as inclement weather or unscheduled maintenance, new air
craft routes have to be found. 

As is the case in the planning stage, two types of models are found: 
The multicommodity ones and set partitioning models. The solution 
methodologies are either local search techniques or integer programming 
heuristics. 

Early work on aircraft recovery is presented in Jarrah et al. (1993). 
They model the recovery problem on a time-space network. They con
sider cancellations and delays separately, i.e. for each one of them they 
have a different model. The underlying network is a pure minimum 
cost network optimization model and thus it does not include any side 
constraints. Yan and Young (1996); Yan and Lin (1997) consider de
lays, cancellations, and aircraft ferrying in a single multicommodity flow 
model with side constraints. They solve the model by Lagrangian re
laxation. A quadratic programming formulation is presented by Cao 
and Kanafani (1997a,b). The underlying model is a multicommodity 
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flow model with side constraints, however side constraints are moved to 
the objective function with quadratic penalty terms. Thengvall et al, 
(2000, 2003) present a multicommodity network flow model with side 
constraints. In the former, they solve the model with a commercial in
teger programming software while in the second they apply the bundle 
algorithm after relaxing the flight covering constraints. The former work 
introduces a new objective of deviation from the original schedule and 
they consider only minor disruptions. In most of the instances the LP 
relaxation gives an integer solution and if this were not the case, they 
use rounding to obtain a feasible solution. The delays are modeled by 
introducing several copies of a single flight, each one with a different de
parture time. Bard et al. (2001) present a similar model but they focus 
more on airport closures or reduced slot capacity (e.g., when the ground 
delay program is in effect). 

In large disruptions it takes longer to return back to normal operations 
and therefore maintenance constraints become an issue. Partitioning for
mulations, where variables correspond to complete routes, are used in 
this case. L0ve et al. (2002) present a local search heuristic approach 
for solving the problem. They minimize total delay, number of can
cellations, and the number of aircraft swaps. Argüello et al. (1997a); 
Argüello et al. (1997b) present the underlying set partitioning formu
lation, which is then solved by the greedy randomized adaptive search 
procedure. Rosenberger et al. (2001) give a similar set partitioning for
mulation. Their decision variables correspond to flight cancellations and 
they have binary variables that assign an aircraft route to a speciflc tail 
number. The basic constraints are to assign each aircraft to a route (fer
rying, diversions, and over-flying are allowed) and that each flight must 
be either covered by a route or cancelled. They model slot availability 
as well. The solution methodology consists of flrst selecting a subset 
of routes and then flnding a solution over these routes by means of a 
commercial integer programming solver. 

4,3 Crew scheduling 
4.3,1 The planning stage. In tactical planning, after the 
aircraft routes are obtained, crew scheduling is next. Crew scheduling 
itself is decomposed into two processes. 

In the crew pairing phase crew pairings or itineraries are obtained. A 
pairing is a sequence of flights, where the destination station of a flight 
in the sequence corresponds to the origin station of the next flight. In 
addition, the origin station of the flrst flight and the destination station 
of the last flight must correspond to the same crew base. In the crew 
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pairing stage, a pairing is not assigned to a particular crew member. 
The crew pairing problem is to find a least cost subset of pairings that 
partition all flights. 

After pairings are obtained for a given time period (typically a month), 
individual crew members are assigned to these pairings. Rostering is a 
common process outside of North America. Given crew preferences for 
individual pairings and patterns, an assignment of pairings to crew mem
bers is sought in rostering. The objective consists of meeting as many 
preferences as possible and to minimize potential costs. The bidline pro
cess is commonly used by North American carriers. This process consists 
of first generating bidlines (generic monthly assignments) and then crew 
members based on seniority bid for bidlines. A third alternative is pref
erential bidding^ where individual rosters are constructed sequentially 
(seniority imphes the order) based on individual preferences. 

Crew pairing A duty is a subsequence of a pairing that comprises 
a working day of a crew. Connection times within a duty, called sit 
connections, are short (35 minutes to a few hours) whereas connection 
times between duties, called layovers or rests, are much longer (10 hours 
and more). A pairing must satisfy many regulatory rules. To name just 
a few of them, there is a minimum sit and rest time, the elapsed time and 
the flying time of a duty is upper bounded, and there is the comphcated 
8-in-24 rule imposed by the FAA. In addition to these rules, union rules 
complicate pairing structure even further (maximum number of days in 
a pairing, more complex duty elapsed times). On top of all this, the 
cost of a pairing is usually nonlinear. Often the cost of a pairing is the 
maximum of tree quantities: A fraction of the pairing elapsed time, sum 
of duty costs in the pairing, and the number of duties times the minimum 
guaranteed pay. Linear terms capture hotel and meal expenses. The cost 
of a duty is the maximum of three terms as well: A fraction of the flying 
time, a fraction of the elapsed time, and the minimum guaranteed pay. 
Some airlines offer a fixed salary to crews and therefore their objective 
is to minimize the number of crews. 

Most often the problem is modeled as the set partition problem with 
side constraints. Let P be the set of all pairings and for a p G P let Cp 
be the cost of pairing p. The model reads 

min N . CpXp 
pep 

2_] Xp = ^ ioY every leg i 

'^^P X binary, 



180 COL UMN GENERA TION 

where Xp is 1 if pairing p is selected and 0 otherwise. In practice side 
constraints are added, which most often model equal use of resources. 
For example, if at crew base ch there are only a given number of crews, 
then 

icb< Y. 
Xp ^ UQI) 

is added, where Scb is the set of all pairings starting at crew base cb and 
Icb^ '^cb ai'e the lower, upper bound on the number of available crews at 
c6, respectively. Other typical side constraints are to balance pairings 
across crew bases with respect to cost, the number of days of pairings, 
or the number of duties. 

This problem is computationally challenging for the following two rea
sons. Each pairing has complex feasibility rules and cost structure. In 
addition, the number of pairings even for a medium size problem is 
enormous. Fleets with 200 flights can have billions of pairings. For this 
reason, whenever there is a repetition of flights in the time horizon, the 
crew pairing optimization is performed in three steps. In the flrst step 
the so called daily problem is solved. This is the crew problem solved 
over a single day time horizon and it is assumed that every flight is op
erated every day. Once a daily solution is repeated over the real time 
horizon, some pairings become infeasible (called broken pairings). The 
operational legs of these pairings are then considered in the weekly excep
tions problem^ (Barnhart et al., 1996). The final solution then consists 
of daily pairings without the broken pairings and the pairings from the 
weekly exceptions problem. The weekly exceptions problem is a special 
case of the so called weekly problem^ where pairings from the end of the 
horizon wrap around to the beginning of the horizon. The main distinc
tion between a daily problem and a weekly problem is that in the former 
problem a pairing cannot cover the same leg more than once while this 
is allowed in the latter problem. When transitioning from one (monthly) 
work schedule to another, the dated problem needs to be solved to ac
count for pairings that span both months. In the dated problem, flights 
on speciflc dates are given and they have to be partitioned by pairings. 

A standard approach is to view pairings as constrained paths in either 
the flight network, (Minoux, 1984; Desaulniers et al., 1999), or the duty 
period network, (Lavoie et al., 1988; Anbfl et al., 1994; Vance et al., 1997; 
Desaulniers et al., 1997a). The flight network has a node associated with 
each departure and arrival. There is a flight arc connecting each depar
ture node of a flight with the arrival node of the same flight. In addition, 
there are connection arcs between any two arrival and departure nodes 
with the arrival station of the first flight being equal to the departure 
station of the second flight and the connection time is within legal hmits, 
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i.e. the time is either between the minimum and maximum sit connec
tion time or between the minimum and maximum rest time. In addition, 
the network has two artificial nodes s and t. Node s is connected to ev
ery departure node of a flight that can start a pairing. Similarly, every 
arrival node of a flight that can end a pairing is connected to node t. 
Every pairing is an 5 — t path in the flight network. Due to various 
pairing feasibility rules that cannot be embedded in the flight network, 
every s — t path is not necessarily a pairing. The duty period network 
is constructed in a similar way except that flight arcs are replaced by 
duty periods and connection arcs correspond to legal rest connections. 
It is assumed that duties are enumerated beforehand. The duty period 
network captures more feasibility rules since all duty legality rules are 
embedded in the network, however, it requires much more storage. 

The literature on crew pairing optimization is abundant with Barnhart 
et al. (2003) providing more details and surveying the literature. Here 
we focus only on branch-and-price related aspects and we survey only 
branch-and-price related hterature. In branch-and-price type algorithms 
subproblem solving is done on either of the two networks. There are 
three approaches to find a low reduced cost pairing (subproblem solving). 
The first one, pioneered in the context of urban transit by Desrochers 
and Soumis (1989), is by constrained shortest path, (Anbil et al., 1994; 
Vance et al., 1997; Desaulniers et al., 1997a). In this approach a label is 
maintained for every feasibility rule that is not embedded in the network, 
e.g. 8-in-24 rule, elapsed time rules, etc. In addition, if the cost of 
a pairing is nonlinear, then each component in the maximum needs to 
have a separate label. If the duty period network is used, fewer labels are 
needed as many rules are already satisfied in the duty construction phase. 
For U.S. domestic carriers, the number of labels on the flight network 
can be as high as 20. A second approach is used in the commercial crew 
pairing solver from Carmen Systems, (Gaha and Hjorring, 2003). Their 
approach is based on finding the k th shortest path. They find a shortest 
path on the current network. If the path is not feasible, they modify the 
network so that the obtained path is no longer a path in the network. 
Once a feasible path is found, it corresponds to a fc th shortest path in 
the original network for a A:. The third approach is to perform a depth-
first search enumeration of pairings on a network, (Marsten, 1994; Anbil 
et al., 1998; Klabjan et a l , 2001b; Makri and Klabjan, 2004). Since 
there are too many pairings, the search has to be truncated by, for 
example, not considering all the duties and all connection arcs. Another 
enhancement is by prunning the search earlier due to some lower bounds 
on the reduced cost, (Anbfl et al., 1998; Makri and Klabjan, 2004). 
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Crew pairing branch-and-price algorithms employed tailored branch
ing rules, which are based on the branching rule designed for set parti
tioning, (Ryan and Foster, 1981). The most widely used rule is to branch 
on follow-ons. In this branching rule, two flights r, s are selected and 
branching follows the scheme presented in Section 2. Follow-on branch
ing is used in Anbil et al. (1998); Vance et al. (1997); Anbil et al. (1994); 
Desaulniers et al. (1997a). An alternative branching rule, called timeline 
branching is proposed in Klabjan et al. (2001b). In timehne branching 
two flights r, s are selected and a connection time t. In one branch the 
rule requires that only pairings with the connection time between r and 
s less than t are considered and the other branch considers only pairings 
with the connection time larger than or equal to t. 

Reserve crew planning and training scheduling is discussed in Sohoni 
and Johnson (2002a,b); Sohoni et al. (2003). Klabjan et al. (2001a) 
present a model and solution methodology to solve the weekly crew 
pairing problem that is not based on the traditional daily/weekly ex
ceptions paradigm. All of the related material presented so far relates 
to scheduling of cockpit crews. The flight attendant problem, (Day and 
Ryan, 1997; Kwok and Wu, 1996), is similar except that several flight 
attendants are required to cover a flight. These problems tend to be 
larger since the flight attendants are cross qualifled but, on the other 
hand, the feasibility rules are computationafly easier. 

Bidline process, rostering, and preferential bidding Once a set 
of pairings is obtained that covers all flights in a month, these pairings 
and additional tasks such as reserve crew duties and flight training, are 
next assigned to individual crews. The problem decomposes further, not 
only based on the equipment type, but also based by the crew member 
rank (such as Captain, First Officer). 

Feasibility rules in rostering are even more complicated than the pair
ing feasibility rules. The rules are imposed either by a regulatory agency 
such as the FAA, the airline itself, and there are contractual rules. Some 
of the basic requirements are: Limits on the rest time between two tasks, 
Hmits on a working period (working week) between 4 to 8 days, limits on 
the number of monthly and yearly block hours. Then there are restric
tions with respect to task coverage, e.g. one captain and one first officer 
for a given task, two captains and one first oflficer for simulator training, 
etc. Rules involving several rosters are common as well, e.g. some crew 
members prefer to fly together (married couples) and language restric
tions. 

In rostering several objectives are possible. From the airline perspec
tive, minimizing open time or unassigned activities is important. Open 
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time consists of tasks that are not assigned to regular crews but they are 
covered either by reserve crews or overtime is used. Clearly these two 
options are costly to the airline. If the number of block hours of a crew 
member is larger than a certain limit, the airline has to additionally pay 
the crew member for the overtime. Therefore the airline's interest is in 
minimizing the overtime pay. The third objective of the airline is to op
timize assignments to training on simulators. These type of training is 
mandatory and very expensive. The airline also tries to produce rosters 
that are equitable across crew members, e.g. the crew members should 
have equal flying time and the number of off days. On the other hand, 
crew members have their own goals and preferences. Each member has 
its own preferences such as starting duties early in the morning, favoring 
certain pairings, etc. A quality roster must meet as many preferences as 
possible. Additional details on rostering rules and examples are given in 
Kohl and Karisch (2004). 

The rostering problem can be modeled in the following way, (Gamache 
and Soumis, 1998; Gamache et al., 1999; Kohl and Karisch, 2004). Let 
the decision variable Xg be one if roster s is selected for crew member k. 
The model reads 

minCgX^ (6.9) 

y j Xg > Ui for every task i (6.10) 
keK 

y Xg = l for every crew member k (6.11) 
s 

X binary, (6.12) 

where c^ is the cost of assigning roster s to crew member /c, and Ui is the 
number of crew members that are required for task i. Equations (6.10) 
guarantee task coverage and (6.11) assign a roster to every crew mem
ber. Rules that involve several rosters have to be explicitly modeled by 
adding cuts at the subproblem level, hence better controlling the gener
ated columns. 

Similarly to the crew pairing approach, there exists an underlying 
network such that a roster is a path in this network but not necessarily 
the other way around, (Gamache et al., 1998). To exploit individual 
preferences, it is actually convenient to construct a network for every 
individual crew member. This leads to branch-and-price approaches. 
Gamache et al. (1998); Gamache and Soumis (1998) are the first ones to 
describe a branch-and-price algorithm. An important observation from 
their work is that it is beneficial to construct crew rosters for individual 
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crew members that are disjoint with respect to tasks. Subproblem solv
ing is performed by constrained shortest path. Kohl and Karisch (2004); 
Kharraziha et al. (2003) use k th shortest path in subproblem solving 
and they present a general modeling language to capture feasibility rules 
and objectives. The same modeling language is used also in their crew 
pairing optimizer, (Gaha and Hjorring, 2003). To warm start the algo
rithm, they construct rosters heuristically. Day and Ryan, 1997 describe 
cabin crew rostering at Air New Zealand in their short-haul operations. 
The problem is solved by first assigning off days and it is followed by 
assigning pairings and other tasks. This two phase approach simplifies 
the problem but it can lead to suboptimal solutions. In each phase they 
employ branch-and-price. 

Many pure heuristic approaches to rostering have been developed by 
various airlines. They can be found in various proceedings of The Airline 
Group of the International Federation of Operational Research Societies 
(AGIFORS) meetings. A detailed description of a simulated annealing 
heuristic approach is given in Lucie and Teodorovic, 1999. 

Gamache et al. (1998) give an approach to preferential bidding. Their 
methodology consists of producing individual rosters sequentially one 
by one in a given order (e.g. seniority). Suppose rosters for the first 
k — \ crew members have already been obtained. The roster for the 
k th crew members is obtained by solving (6.9)-(6.12) with the following 
changes. The objective function considers only rosters of crew member k. 
Equations (6.10) are included only for those tasks that are not covered 
by the first fc ~ 1 crew members. There is (6.11) constraint for every 
non assigned crew member. Clearly only rosters feasible to unassigned 
crew members are considered. The model produces an optimal roster for 
crew member k and at the same time it guarantees a feasible solution 
for the remaining unassigned members. If there are m crew members, 
then m models are solved. To improve the execution time, each model 
is relaxed to allowing fractional solutions to rosters of crew members 
/c -h 1, fc -h 2 , . . . , m. They further improve the algorithm by adding cuts. 
Achour et al., 2003 enhance this work by combining branching decisions 
and cuts. 

The literature on the bidline process is hmited. Jarrah and Diamond 
(1997) present a heuristic approach to the bidline process. A crew plan
ner sets parameters, e.g. the length of a working period, number of off 
days. If the parameters are restrictive enough, there are not many rosters 
to consider and the resulting set partitioning model is solved by explic
itly enumerating all rosters. If there are too many rosters to consider, 
they employ a local search heuristic. A simulated annealing heuristic to 
the bidline process is given in Campbell et al. (1997). 
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4.3.2 Day of operat ions . In disruption management, the crew 
recovery problem follows aircraft recovery The input to the problem 
are the new aircraft routes together with the new departure times and 
flight cancellations. In crew recovery new crew assignments have to be 
obtained. Depending on the airline, non disrupted crew members can be 
involved in the reassignment or not. But clearly the number of such crew 
member should be minimized. Another objective is to return back to the 
original crew schedule as soon as possible. Then there is the objective 
of minimizing the cost, which can consist of the direct salary based cost, 
uncovered flight cost, crew deadheading, etc. In crew recovery standby 
and reserve crews can be used but the latter are costly. 

Teodorovic and Stojkovic (1990) develop a sequential approach based 
on a dynamic programming algorithm, using the first-in-first-out prin
ciple to minimize the crews' ground time. Wei and Yu (1997) present a 
heuristic-based framework for crew recovery Song et al. (1998) present a 
multicommodity integer network flow model and a heuristic search algo
rithm to solve it. Stojkovic et al. (1998) present a column generation ap
proach similar to the one used for crew pairing problems. Lettovskyet al, 
(2000); Lettovsky (1997) base their column generation approach on the 
rostering model. They give details on how to quickly generate promis
ing pairings. Stojkovic and Soumis (2001) incorporate flight scheduling 
decisions into the crew recovery nonlinear multicommodity flow model. 
Together with new crew assignments, their model produces new depar
ture times. The model is solved by branch-and-price, where the subprob-
lem is solved by constrained shortest path. Stojkovic and Soumis (2003) 
expand this model by allowing crews to split, i.e., if a first oflicer and 
a captain in planning are assigned to cover a given flight, the recovered 
schedule might keep the first officer at the same flight but it is paired 
with a different captain. 

5, Recent advances 
In recent years models and optimization based methodologies that in

tegrate the three planning areas started to emerge. Integration of aircraft 
routing and crew pairing is discussed in Cohn and Barnhart (2002); Klab-
jan et al. (2002); Cordeau et al. (2001); Mercier et al. (2003). Solving the 
combined fleeting and aircraft routing model, (Barnhart et al., 1998b), 
has already been discussed in this chapter. Barnhart et al. (1998c) take 
the first step towards a model for integrating fieeting and crew pair
ing. All of this integration efforts are in an early stage and most of 
the methodologies are not yet suited for large-scale problems. Another 
obstacle in adopting these models by the airlines is that they require 
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changes in business processes. Legacy carriers are notorious for their 
unwilhngness to change their internal processes. On the other hand, 
smaUer, mostly low-cost carriers are more flexible and open to business 
process reengineering, (Garvin, 2000). This fact goes hand in hand with 
the current inability of solving large-scale integrated models. Clearly the 
airlines have to follow and embrace the advances in modeling and algo
rithms, and the researchers have to improve decision support systems to 
be more tractable. 

The other emerging trend is in robustness. It is well documented that 
customer complaints, delays, and flight cancellations were on a rise every 
year from 1996 until 2000. They reached the top in summer 2000, where 
it even caught attention by the Congress. In early 2001 tactical mod
els that embed robustness emerged. These models do not necessarily 
produce a cost/profit optimal solution but a suboptimal solution that 
fares better in operations under uncertainty. On the crew pairing side, 
approaches by Schaefer et al. (2000); Ehrgott and Ryan (2001); Yen and 
Birge (2000); Chebalov and Klabjan (2002) provide robust solutions. Ro
bust fleeting solutions are discussed in Rosenberger et al. (2004); Kang 
and Clarke (2003); Listes and Dekker (2003). Ageeva (2000) presents 
an approach to robust airline routing. A robust approach to passengers 
rerouting in disruption management is given by Karow (2003). While 
many sources of frequent disruptions (congestion being the dominant 
one) have abated since the events of September 11, new ones are pop
ping up (increased security measures). Nevertheless, delays have been 
drastically reduced due to a substantially lower demand and therefore 
the airlines have lost poise for robust solutions. However, the airline 
industry is recovering and not far in the future the demand will be at 
the pre September 11 level. So even though robust solutions have lost 
appeal in the industry, the researchers are seeing this direction as the 
next big step in improving profitability and customer satisfaction. 
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Chapter 7 

ROBUST INVENTORY SHIP ROUTING 
BY COLUMN GENERATION 

Marielle Christiansen 
Bj0rn Nygreen 

Abstract We consider a real integrated ship scheduling and inventory manage
ment problem. A fleet of ships transports a single product between 
production and consumption plants. The transporter has the responsi
bility for keeping the inventory level within its limits at all actual plants, 
and there should be no need to stop the production at any plants caused 
by missing transportation possibihties. 

Due to uncertainties in sailing time, we introduce soft inventory con
straints and artificial penalty costs to the underlying model. The model 
is solved by a column generation approach. By introducing some model 
adjustments, the problem decomposes into a routing and scheduling 
subproblem for each ship and an inventory management subproblem for 
each port. The columns in the master problem represent ship schedules 
and port call sequences. 

!• Introduction 
In several sectors in the shipping industry, the transporter often has a 

twofold responsibility. In this segment large quantities are transported, 
and normally considerable inventories exist at each end of a sailing leg. 
This is the case for transportation of, for instance, cement, chemicals 
and natural hquid gas (LNG). In some situations, the transporter has 
both the responsibility for the transportation and the inventories at the 
sources and the destinations. We consider a planning problem where 
a single product is transported. The problem is based on a real plan
ning problem for Norsk Hydro ASA, which is the main transporter of 
ammonia in Europe. 

This planning problem involves the design of a set of minimum cost 
routes and schedules for a given fleet of heterogeneous bulk ships that 
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service a set of ports one or several times during the planning period. The 
transporter owns plants located near ports. These plants produce the 
product at the sources called loading ports and consume the product at 
the destinations called unloading ports. Inventory storage capacities are 
given in all ports, and there exist information about the consumption 
or production rates of the transported product. The ships transport 
this product from loading ports to unloading ports and if the product 
is loaded and unloaded in time, neither production nor consumption 
will be interrupted. Since the transporter owns the plants and controls 
the inventories both at the sources and destinations, the inventory costs 
do not come into play. In contrast to most ship scheduling problems, 
the number of calls at a given port during the planning period is not 
predetermined, neither is the quantity to be loaded and unloaded in 
each port call, A more detailed presentation of the real problem can be 
found in Christiansen (1999). 

The shipping industry is concerned with uncertainty in time consump
tion at the ports and at sea due to strikes and mechanical problems at 
the ports and bad weather at sea. There will be a stochastic realization 
of the final plan, but still we base our model on deterministic planning. 
However, stochastic conditions can be partly considered in various ways 
even in deterministic models, such that it is easier to realize the plan. 
We introduce a pair of soft inventory bounds within the hard inventory 
bounds to reduce the possibility of violating the inventory bounds at the 
plants. Thus, the soft inventory bounds can be violated at a penalty, 
but it is not possible to exceed the storage capacity or drop below the 
lower inventory bound. These penalty costs will be incorporated into 
the optimization model in order to try to force the solution away from 
its inventory bounds and get more robust schedules. 

In our near cooperation with Hydro, we have experienced that the 
company regards the use of soft inventory constraints as positive in or
der to generate more robust routes. This means that the inventory 
levels at the ports are kept further away from their inventory bounds 
in the mathematical model. In some planning situations, it is possible 
to achieve more robust routes without a large increase in transportation 
costs and sometimes without an increase at all. Even when the com
pany studied different routes manually, they operated with explicit soft 
inventory bounds and reported the inventories outside the soft inventory 
bounds. 

The purpose of this chapter is to present the real planning problem 
and the column generation solution approach while focusing on how to 
generate robust plans. 
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In Section 2, we discuss some research reported in the hterature on 
integrated ship scheduhng and inventory management. Section 3, gives 
a description of the real integrated ship scheduhng and inventory man
agement problem with focus on the uncertainty aspects. An arc flow 
formulation of the problem is presented in Section 4. Then, in Section 5, 
the solution approach is described. A few computational results are 
given in Section 6. Finally, some conclusions follow in Section 7. 

2. Related research within integrated ship 
scheduling and inventory management 

The studied ship planning problem is an example of an integrated time 
constrained routing and inventory management problem. Christiansen 
(1999) gives an arc flow formulation of the problem and shows how the 
problem can be transformed to a decomposed formulation by introduc
ing some important model adjustments. Then the model can be solved 
successfully by a Dantzig-Wolfe decomposition (column generation) ap
proach for real instances of the problem. Christiansen and Nygreen 
(1998a) present the overall solution method, while the same authors in 
Christiansen and Nygreen (1998b) give a detailed description of the re
sulting subproblems from the Dantzig-Wolfe decomposition. Another 
solution approach to the same ship planning problem was developed by 
Flatberg et al. (2000). They have used an iterative improvement heuris
tic combined with an LP solver to solve this problem. The solution 
method presented consists of two parts. Their heuristic is used to solve 
the combinatorial problem of flnding the ship routes, and an LP model 
is used to find the starting time of service at each call and the loading or 
unloading quantity. Computational results for real instances of the plan
ning problem are reported. However, no comparisons in running time 
or solution quality of the results in Flatberg et al. (2000); Christiansen 
and Nygreen (1998a) exist. 

Generally, ship routing and scheduling problems have been shown 
some attention in the literature, see for instance the surveys by Ronen 
(1983, 1993); Christiansen, Fagerholt and Ronen (2004) or the chapter 
on maritime transportation by Christiansen et al. (2004). 

However, there exist only a few other research studies reported in 
the literature on integrated ship scheduling and inventory management. 
Fox and Herden (1999) describe a MIP model to schedule ships from 
ammonia processing plants to the agricultural market in Australia. The 
ammonia processing plants corresponds to the unloading ports in the 
planning problem described in this chapter, and at these plants the am
monia is further processed into different fertilizer products. The objec-
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tive is to minimize freight, discharge, and inventory holding costs while 
taking into account the inventory, minimum discharge tonnage, and ship 
capacity constraints. The multi-period model is solved by commercial 
optimization software. An inventory routing problem similar to the one 
described here, but with multiple products is presented by Ronen (2002). 
A MIP model for the problem is formulated. Two approaches for solving 
the shipments planning problem were used. The additional complexity 
introduced by considering multiple products required separation of the 
shipments planning stage from the ship scheduling stage. In addition, 
there, the time dimension is discrete (daily resolution), and ship voyages 
have a single loading and a single unloading port. Finally, combined 
ship scheduling and inventory management problems for the coal indus
try are studied by Shih (1997); Kao, Chen and Lyu (1993); Liu and 
Sherali (2000). However, integrated routing and inventory problems for 
other transportation modes are well discussed in the literature; and the 
recently published paper by Kleywegt, Nori and Savelsbergh (2004) gives 
a short and updated review on such problems. 

As described, ship scheduling is associated with a high degree of un
certainty. However, few ship scheduling contributions take this issue 
explicitly into account. Christiansen and Fagerholt (2002) study a ship 
scheduling problem, where the ports are closed for service at night and 
during the weekends. In addition, the loading and/or unloading of car
goes may take several days. This means that a ship will stay idle much 
of the time in port, and the total time in port will depend on the ship's 
arrival time. The objective is to find robust schedules that are less likely 
to result in ships staying idle in ports during the weekend, and to im
pose penalty costs for arrivals at risky times (i.e. close to weekends). 
The computational results show that the robustness of the schedules is 
increased at the price of increased transportation costs. 

Flexibility, as well as robustness, are two important properties in ship 
scheduling. The flexibility aspect is considered in Fagerholt (2001) by 
introducing soft time windows outside the originally hard ones to a ship 
scheduling model. The motivation for introducing soft time windows in
stead of hard ones is that by allowing controlled time window violations 
for some cargoes, it may be possible to obtain better schedules and sig-
niflcant reductions in transportation costs. To control the time window 
violations, inconvenience costs for servicing cargoes outside their time 
windows are imposed. 
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3, The real robust integrated ship scheduUng 
and inventory management problem 

We consider an integrated ship scheduling and inventory management 
problem that is based on a real planning problem for Norsk Hydro ASA. 
A single product is produced at sources, and we call the associated ports 
loading ports. Similarly, the product is consumed at certain destinations 
and the corresponding ports are called unloading ports. Inventory stor
age capacities are given in all ports, and the planners have information 
about the production and consumption rates of the transported prod
uct. We assume that these rates are constant during the planning period. 
In contrast to most ship scheduling problems, the number of calls at a 
given port during the planning period is not predetermined, neither is 
the quantity to be loaded or unloaded in each port call. The production 
or consumption rate and inventory information at each port, together 
with ship capacities and the location of the ports, determine the number 
of possible calls at each port, the time windows for start of service and 
the range of feasible load quantities for each port call. 

If the product is loaded and unloaded in time at the sources and desti
nations, respectively, neither production nor consumption will be inter
rupted. The planning problem is therefore to find routes and schedules 
that minimize the transportation cost without interrupting production 
or consumption. The transporter owns the plants and controls the in
ventories both at the sources and the destinations, so the inventory costs 
do not come into play. The transporter operates a heterogeneous fleet of 
ships. The ships have different cost structure, load capacity and specific 
ship characteristics. 

In addition, the shipper trades ammonia with other operators to better 
utilize the fleet and to ensure the ammonia balance at its own plants. 
This issue is taken into account in the implemented version of the model, 
but disregarded in this presentation. 

Some ships are owned by the company and others are chartered. Time 
charter rates exist for all ships. In the short-term, it is of no interest 
to plan a change of the fleet size, so the time charter costs have no 
influence on the planning of optimal routes and schedules. Therefore, 
we are concerned with the operations of a given number of ships within 
the planning period. 

EXAMPLE Figure 7.1 a) shows an artificial, simphfied case consisting of 
five ports and two ships in the beginning of the planning period (Time 
= 0). Each potential port call is indicated by a node (i,m), where i is 
the port number and m the call number in the port. The first call to 
a port has m = 1, the second call has m — 2, and so forth. We see 
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Port MIDI'S " i-oading in port / 
calls NLiKliî  at call number m 0 - Unloading in port / at 

call number m 

a) Time=0 b) Time = 3 

c) Time=9 d) Time-15 

Figure 7.1. A solution for the ship planning problem with 5 ports and 2 ships. 

that Port 1 can be called three tiraes during the planning period. We 
have three loading ports and two unloading ports. Port 5 is the initial 
point for Ship 1. Ship 2 is empty at sea at the beginning of the planning 
period and starts service at port call (2,1) after some time. At Time 
= 3, we see from Figure 7.1 b) that Ship 1 has loaded up to its capacity 
at port cah (5,1) before saihng to port call (3,1). Ship 2 loaded to its 
capacity at port call (2,1) before sailing toward port cah (3,2). In the 
time interval [3,9], see Figures 7.1 b) and c), the load onboard Ship 1 
has been unloaded at port cah (3,1). Then the ship has continued to 
port call (4,1) to load up to the capacity of Ship 1. In the same time 
interval Ship 2 has sailed towards Port 3 and the ship has been waiting 
for some time in order to start unloading. In the time interval [9,15], 
see Figures 7.1 c) and d). Ship 1 sails towards Port 1 and unloads the 



7 Robust Inventory Ship Routing 203 

Inventory level 

Max 

Min 

Ship 2 is 
unloading as 
early as possible 
at port call (3,2) 

m=l m=2 m=2 

Ship 2 is 
unloading as late 
as possible at 
port call (3,2) 

Arrival 
time 

Time window 

Figure 7.2. The inventory level at Port 3 during the planning period. 

load onboard at port call (1,1). It leaves port call (1,1) in the end of 
the planning period. In the same time interval, Ship 2 has unloaded half 
of its load at port call (3, 2) before it continued to port call (1, 2). Ship 
2 unloads the rest of the quantity on board at port caU (1,2) after Time 
= 15. For this ship, two unloading ports are called in succession. Port 
call (1,3) is not visited by any ship in the planning period. 

Port 3 is called several times during the planning period. The solid, 
grey line in Figure 7.2 shows the inventory level for Port 3 during the 
planning period. Ship 2 unloads half of its load at port call (3, 2) as soon 
as possible. Here it is important to ensure that the inventory level does 
not exceed the maximum one when the unloading ends and that it is not 
under minimum inventory level when the unloading starts. When the 
inventory is within its bounds at arrival and departure, we know that it 
is within its bounds at all other times. 

Regardless of the rest of the planning problem and deviating from the 
example in Figure 7.1, the broken line in Figure 7.2 illustrates another 
extreme situation where Ship 2 starts the service at Port 3 as late as 
possible. Here, the inventory level is not allowed to be under the mini
mum inventory level when the unloading starts. From these two extreme 
scenarios for the inventory levels, we can derive the feasible time window 
for port call (3, 2) given that the rest of the planning problem remains 
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Inventory level at port / A Penalty cost 
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Figure 7,3. a) The inventory level and b) penalty costs for a loading port. 

unchanged. In general the time windows for each port call can be derived 
from the inventory information. D 

As mentioned, the shipping industry is especially concerned with un
certainty in saihng times and time consumption at the ports due to 
bad weather at sea and mechanical problems at the ports. To take the 
uncertainty into account in a deterministic model, the minimum and 
maximum inventory levels can be adjusted so that the absolute levels 
cannot be reached in the planning model The possibility of exceeding 
the absolute levels in reality is reduced with increased adjustments in 
the deterministic model. 

Instead of adjusting the inventory bounds, we keep the old inventory 
bounds and introduce another pair of soft bounds. At a given model 
penalty it is possible to violate these soft inventory bounds, which we 
call alarm levels. The constraints for not exceeding the alarm levels 
become soft inventory constraints. However, we have still the hard in
ventory capacity constraints. In Figure 7.3 a), we see the inventory level 
during the planning period for a production port. The hard inventory 
(storage) interval is given by [SMNi-iSMXi]-) while the alarm interval is 
[^MNi'i'^MXi]' From the figure, we see that at m = 1 the ship arrives 
late such that the inventory level is above the upper alarm level and 
will be penahzed. Similarly, at m = 2 the ship arrives early and load 
such a quantity that the inventory level is below the lower alarm level 
at departure. 

It is more critical to come too late to a port than too early. If you 
come too late, the storage is full in a production port, and the company 
has to stop the production. However, if you come too early and start 
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Figure 7.4- a) The inventory level and b) penalty costs for an unloading port. 

loading, the storage gets empty during the loading such that the optimal 
load quantity cannot be loaded. In such a situation, the actual ship must 
wait to start service until there is sufficient amount of product in storage. 
From Figure 7.3 b), we see that the artificial penalty costs for passing 
the lower alarm levels in a production port is less than exceeding the 
upper alarm levels. This comes from the fact that the capacity of the 
storages are more critical than the capacity of the ships. 

As shown in Figure 7.3 b), we expect a linear penalty cost func
tion, and the costs are increasing with the amount of violation. The 
unit penalty costs are adjusted for each port due to diff'erent produc
tion/consumption rates, inventory bounds and alarm levels. For in
stance, large unit penalty costs can be associated to ports with a large 
production rate, low storage capacity or alarm levels close to the inven
tory bounds, and small unit penalty costs to ports with some flexibility. 

Figure 7.3 b) shows one possible cost function. Today, the company 
operates with alarm levels and associated costs in their regular planning, 
and the process of calibrating values on those costs has taken time. The 
penalty cost function and the alarm levels have to be determined in 
relation to each other. This means that changes of alarm levels would 
influence the penalty cost function, because the feasible interval of values 
for alarm levels changes. In addition, it is important that the penalty 
cost function is not too steep. That would simply imply that the hard 
inventory bounds are moved to the alarm levels. 

In Figure 7.4, we see the inventory level during the planning period 
for an unloading (consumption) port and the associated artificial penalty 
costs as a function of the inventory level. 
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In Figure 7.4 a), we see that the unloading port is called three times 
during the planning period. In contrast to a production port, it is here 
important to ensure that the inventory level is not under minimum when 
unloading starts, and not above maximum when the unloading has fin
ished. 

For an unloading port, see Figure 7.4 b), the lower inventory level is 
most critical, and the penalty cost function has largest gradient at the 
lower alarm interval. 

In reality, we have more flexibility than what has been modeled. In 
the model, we operate with fixed average speed. For a given practical 
situation, the transporter may be able to increase this speed to reach a 
port in time at an additional cost. This issue is not explicitly modelled, 
but the introduction of penalty costs approximately covers the increased 
costs. 

4. An arc flow formulation 

The integrated ship scheduling and inventory management problem 
will be formulated as a deterministic cost minimization problem. The 
notation is based on the use of lower-case letters to represent subscripts 
and decision variables, and capital letters to represent constants. Capital 
letters are also used as literal subscripts to define mnemonic composite 
letters defining either variables or constants. 

For simplicity, we disregard the initial and end conditions for the ge
ographical position for each ship, the load onboard each ship and the 
inventory levels in the mathematical model. In this presentation of the 
model, we are not emphasizing an efficient model with regard to ex
cluding redundant variables and constraints and reducing the variable 
bounds. 

In the mathematical description of the problem, let J\f be the set of 
ports indexed by i and j . Further, let V be the set of available ships 
indexed by v. Each port can be called several times during the planning 
period, and Mi is the set of possible calls at port i indexed by m and n. 
The set of nodes in the flow network represents the set of possible port 
calls, and each such port call is specified by (i, m), i G A/*, m G Mi, Not 
all ships can visit all ports, so we specify fiow networks for each ship v. 
Here, the set Av contains all feasible arcs for ship v^ which is a subset 
of {(i, m) I i G A/*, m G Mi] x {(i, m) | i G A/*, m G Mi], 

The time required to load or unload one unit of a cargo at port i is 
given by Tqi, Tsijv represents the sailing time from port i to port j with 
ship V. Let ^TMNimiTMXim] denote the arrival time window associated 
with port call (i^m). This time window can be calculated based on other 
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data in the model, such as the inventory conditions. See Figure 7.2 in 
Section 3. In addition, for some port calls the time windows might be 
explicitly given. In some ports, there is a minimum required time, TBI^ 
between a departure of one ship and the arrival of the next ship, due to 
small port area or narrow channels from the port to the pilot station. 

Each (2,m) a variable quantity interval given by [QMNim^ QMXimv]^ 
where QMNim is the minimum quantity to be (un)loaded at port call 
(i, m) given that the port is called, while Quximv is the maximum quan
tity to be (un)loaded at port call (i, m) for ship v. The capacity of ship 
V is given by VCAPV 

The levels of the inventory (or storage) have to be within a given 
interval at each port [SMNi^SMXi]- To increase the robustness of the 
generated plans, we introduce a lower alarm interval [SMNi^^MNi] and 
an upper alarm interval [AMXi^SMXi] with unit penalty costs of Cp^ 
and Cp^ if the inventories are within these intervals when a ship arrives 
for (un) loading. 

The production rate Ri is positive if port i is producing the product, 
and negative if port i is consuming the product. Further, constant li 
is equal to 1 if i is a loading port and —1 if i is an unloading port. 
From this information, the set Äf can be divided into a set of loading 
(pickup or production) ports, A/"p, and a set of unloading (delivery or 
consumption) ports, Njj, 

The total variable sailing cost, Cyijy^ that includes port, channel and 
fuel oil costs, corresponds to a sailing from port i to port j with ship v. 

The following arc flow formulation involves two types of binary vari
ables. The arc flow variable Ximjnv^ î  € V, {i^m^j^n) G Av equals 
1 if ship V sails from port call ( i ,m) directly to port call ( j , n) and 0 
otherwise, and the slack variable wim^ i E Af^m e Mi is equal to 1 if 
no ship takes port call [i^m)^ and 0 otherwise. Also for other routing 
and scheduling problems, introduction of such slack variables has been 
favorable, e.g. Desaulniers et al. (1998). 

In addition we use the following continuous variables. The time vari
able tirri) i € yV, m G Mi represents the time at which service begins 
at port cafl (i^m). Variable hmv^ v e V^ i E Af^ m e Mi gives the 
total load onboard ship v just after the service is completed at port call 
(i, m) , while variable qvimv^ v eV, i E Af^ m e Mi represents the quan
tity loaded or unloaded at port call (i, m) , when ship v visits (z, m) . The 
variable Sim{sEim)^ i ^ M^ m E Mi represents the inventory level when 
service starts (ends) at port call [i^m)^ while Ci1'^{al^ represents the 
amount the inventory level is below(above) the alarm inventory levels; 

AMNI^AMXI)' 
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The objective and constraints in the arc flow formulation of the prob
lem are as follows: 

min Y^ Yl CvijvXimjnv + Y Yl ^^Pi'^im + ^I^Am)^ (^-l) 
veV {i,mJ,n)eAv ieAf meMi 

Subject to: 
• Constraints regarding port visits and ship routes: 

Yl^ YL ^^^j^^ + ^^^ "^1' yi eAf, me Mi, 
veVjeAfneMj 

(7.2) 

Wim - ^i(m-i) > 0, \/i eJ\f, me Mi\{l}, 

= 0, WveV, ieAf, me Mi, (7.3) 

(7.4) 

• Constraints regarding the arrival times: 

(^'l + '^<^'^^;-^A < 0, ^v e V, {i,m,j,n) € A , (7.5) ^imjnv 

TMNI < Um < TMXI, Vi e A/", me Mi, 

tim ~ ^i{m-l) "I" •^Bi'^im 

. ~Ylvev'^Qi^Vi{m-l)v J 
> Tßi, ^i eJ\f, me Mi, 

(7.6) 

(7.7) 

• Constraints regarding the quantities on the ships: 

Ximjnvynmv + IjQvjnv - Ijnv) = 0, "iv e V, {%, m,j, u) G Av, (7.8) 

kmv- Y X^"^C'ylPi;^imjnt; < 0, "iv eV, ieM,me Mi, (7.9) 

jeNneMj 

QVimv 
- Y Yl QMXimvXimjnv < 0, V^ G V, i eJ\f, m e Mi, (7.10) 

jeAfneMj 
Y ^y^rnv + QMNimmm > QMNim, ^l e M, me Mi, (7.11) 
vev 

• Constraints regarding the inventory conditions in the ports: 

'iim-D + [" ? y f ^ ! . T ^ " " ' \ i - '^rn = 0, Vi € AT, m € M^ (7.12) 

SEim + Xl(^i - RiTQi)qvimv " Sim ==0, \/i e M, m e Mi, (7.13) 

Sim - al^ < Amxi. Vi eMp, me Mi, (7.14) 

SEim - (4m ^ ^MXi, Vi G ND, ru G Mi, (7.15) 
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SEim + ci~^ > -AMNi^ Vi G A/'p, m G Mi, (7.16) 

"̂ im + o.~^ > AMNi^ Vi G A/b, m G X i , (7.17) 

a^rn < -^MM - ^MiVz, Vi G A ,̂ mE Mi, (7.18) 

a+^ < SMXi - AMXÜ Vi G A/', me Mi, (7.19) 

• Sign and integrality constraints: 

o^imjnv ^ {0,1}, \/v G V, {i,mj,n) G A , (7.20) 

G {0,1}, ViGA/", mG^^^, (7.21) 

Um^ Sim, SEim, d^rn^ CL^^ > 0, Vi G A/", m G A^i , (7.22) 

îm ,̂ qvimv > 0, V̂ ; G V, i G A/", m G Ai^ (7.23) 

The objective function (7.1) minimizes the total costs. Constraints 
(7.2) ensure that each port call is visited at most once. Constraints 
(7.3) describe the flow on the sailing route used by ship v. If no ship 
is visiting port call {i,m), we say that this port call is visited by a 
''dummy ship". The highest call numbers will be assigned to dummy 
ships in constraints (7.4), if not all port calls are visited in a specified 
port. Constraints (7.5) take into account the timing on the route. The 
time windows are given by constraints (7.6). If no ship is visiting port 
call {i,m), we will get an artificial start time within the time windows 
for a dummy ship. These artificial start times are used in the inventory 
balances. Constraints (7.7) prevent service overlap in the ports and 
ensure the order of real calls in the same port. A ship must complete 
its service before the next ship starts its service in the same port. The 
relationship between the binary flow variables and the ship load at each 
port call are described by constraints (7.8). Constraints (7.9) give the 
ship capacity at the port calls. Constraints (7.10) and (7.11) are the load 
bound constraints. From constraints (7.12), we find the inventory level 
at any port call (i, m) from the inventory level upon arrival at the port in 
the previous call {i,m — 1), adjusted for the (un)loaded quantity at the 
port call and the production/consumption between the two calls. From 
constraints (7.13) we calculate the departure inventories from the arrival 
inventories, adjusted for the (un)loaded quantities and the production 
or consumption from arrival to departure. 

The general inventory limit and alarm quantity constraints at each 
port call are given in (7.14)-(7.19). Finally, the formulation involves 
binary and sign requirements (7.20)-(7.23) on the variables. 

In this formulation, we have some non-linear constraints. See how 
these constraints are hnearized in Christiansen (1999). 
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5, A column generation approach 
Due to the complexity of the model (7.1)-(7.23), only smaU sized 

data instances can be solved directly to optimality by use of standard 
commercial optimization software. 

Therefore, a column generation approach is developed to solve the 
problem. First, in Section 5.1 we give a reformulation such that the 
model decomposes in an appropriate way. Then the mathematical for
mulation of the master problem in the Dantzig-Wolfe decomposition ap
proach is presented in Section 5.2. Columns are generated and included 
in the master problem iteratively and the column generation is described 
in general terms in Section 5.3. These columns are generated by solv
ing two types of subproblems; a ship routing and scheduling problem 
for each ship and an inventory management problem for each port. In 
Section 5.4, we describe the solution process of the subproblems. We 
focus on the inventory management subproblems to describe the effects 
on the algorithm when taking the uncertainty into account. Finally, in 
Section 5.5, we discuss the integer requirements and briefly comments 
on the algorithm for solving the integer part of the problem. Due to the 
generation of columns in the Dantzig-Wolfe decomposition approach, it 
is often called a column generation approach. 

5.1 Model reformulation 
If we try to decompose the model (7.1)-(7.23) directly, it does not 

separate due to the starting time tim and the load quantity qvimv vari
ables. These variables are needed in both types of subproblem; the ship 
scheduling and the inventory management subproblems. This issue is re
solved by introducing new time and quantity variables, such that we get 
variables for each (i, m, z;)-combination {tyimv and qvimv) and each port 
call {tim and Qim) and introducing coupling constraints to the problem 
as follows: 

(1 - Wim) U - Yl^^^^^ ^ 0 , ^ieM, me Mi, 
vev / 

y ^ qvimv = 0, yieM, me Mi. 
vev 

(7.24) 

(7.25) 

We need the first parenthesis in (7.24) since the model (7.1)-(7.23) 
gives positive time values, Umj for dummy port calls, and we want all 
tvimv equal to zero for such calls. At most one tyimv can be positive for 
each (i^m)^ so the upper bounds of (7.6) can be reformulated as: 
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tv 

jeAfneMj Vv G V, ieJ\f, me Mi, (7.26) 

We also need sign constraints for the newly introduced variables: 

tvimv > 0, \fv eV, ieÄf.me M^ (7.27) 
Qim > 0, yieAf, meMi, (7.28) 

With these new variables we are able to rewrite some of the previous 
constraints. In (7.5) we transform tim and tjn to tyimv and tyjnvi while 
we transform Y^^^^qvimv to qim in (7.7), (7.11)-(7.13). 

After this reformulation, the constraint set can be split into three 
groups. This makes it possible to solve the planning problem by a col
umn generation approach. The first constraint group consists of (7.2), 
(7.24) and (7.25). These constraints are the common constraints where 
we synchronize the ship dependent variables and the port variables. 
These constraints constitute the master problem. The second constraint 
group consists of the ship routing constraints (7.3), (7.5), (7.8)-(7.10) 
and (7.26). None of the ship constraints include interaction between the 
ships, so these constraints constitute separate routing problems for each 
ship where the time windows and load on board the ship are considered. 
The port inventory constraints describe the inventory management for 
each port because there exists no interaction between the ports, and 
they are based on the last group of constraints (7.4), (7.6)-(7.7) and 
(7.11)-(7.19). 

5.2 The master problem 
According to the column generation approach, we use variables in the 

master problem corresponding to ship schedules and port call sequences 
instead of using the original variables from the arc-flow formulation. 
This transformation is well described in Christiansen (1999). 

Let TZv be the set of ship schedules, indexed by r for ship v. Schedule r 
includes information about the geographical route, where Ximjnvr is set 
equal to 1 if the corresponding variable, Ximjnv) in the arc flow model 
has the value 1 for schedule r. In addition, the following information 
is given for each [v.j) combination: The number of visits, 0 or 1, at 
port call {i,m), Aimvr^ the load quantity of each port call, Qvimvr^ and 
the starting time of each port call Tyiravr- No quantity and starting 
time information is given for "dummy calls". The transportation cost 
for sailing schedule r by ship v is CMVvr-

A possible way to serve a port without any references to particular 
ships, is called a port call sequence, Si constitutes the set of sequences 
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for port i indexed by s. The value of Wims is 1 if port call (i,m) in 
sequence s is served by a dummy ship and 0 otherwise. The values of 
QPirns and Tpims represent the load quantity and starting time for port 
call (i,m) in sequence s, respectively. These two last values are set to 
zero for port calls with dummy ships. This enables us to remove {1—Wim) 
in (7.24). The sum of the penalty costs for exceeding the alarm levels in 
port i by sequence s is CMPIS-

Now let variable Vvr^ v e V, r G 7̂ ^ be 1 if ship v selects schedule r, 
and let variable Zis^ i G A/*, s G 5^ be 1 if port i is served by sequence 
s. If all schedules and all sequences were known, we could solve our 
planning problem by solving the following master problem (7,29)-(7.37) 
instead of the arc flow formulation (7.1)-(7.23). 

min y y CMVvrVvr + 
J2 Jl CMPisZis. (7.29) 

veVreUy ieAf seSi 
Subject to: 

Y^ ^ AiravrVvr + Y^ ^^rns^is = 1, Vi G A/", m G > ( i , (7.30) 
veVreUy seSi 

Yl Yl QyimvrVvr - ^j QPirnsZis = 0, \/ieJ\f, me Mi, (7.31) 
veVreUy seSi 

YJ X ^ TvimvrVvr " Yl ^Pims^is = 0, ^ieAf, me Mi, (7.32) 
veVreUv seSi 

J2yvr = h Vt; G V, (7.33) 
reUv 

J2zis = l, yieAf, (7.34) 
seSi 

Vvr > 0, yveV, re Uy, (7.35) 

Zis > 0, Vi G A/", 5 G Si, (7.36) 

Y2 ^imjnvrVvr ^ {0,1}, V̂ ; G V, {i,mj,n) e Ay. (7.37) 
relZy 

The objective function (7.29) minimizes the transportation costs and 
the artificial inventory penalty costs for exceeding the alarm levels. Un
like usual vehicle routing problems solved by a column generation ap
proach, the master problem includes additional coupling constraints for 
the load quantities and starting times to synchronize the ship sched
ule and port inventory aspects in addition to the usual visit constraints 
(7.30). These coupling constraints are given in (7.31) and (7.32). The 
convexity rows for the ships and ports are given in constraints (7.33) and 
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(7.34). The integer requirements are defined by (7.37) and correspond 
to declaring the original flow variables as binary variables. 

5.3 Column generation 
If all feasible ship schedules and port call sequences are known, then we 

get the optimal solution by solving the master problem. However, for real 
instances of the ship planning problem it is time consuming to generate 
all these schedules and sequences, and the number of such schedules and 
sequences would result in too many columns when solving the models. 
Instead, we solve the LP-relaxation of the restricted master problem 
which only differs from the continuous original master problem by having 
fewer variables. First, an initial restricted master problem is solved. 
Then some new columns are added to the restricted master problem. 
These columns correspond to ship schedules and port call sequences with 
least reduced costs in the solution of the master problem. This means 
that the dual values from the solution of the restricted master problem 
are transferred to the subproblems. The subproblems are solved, and 
ship schedules and port call sequences are generated. The restricted 
master problem is reoptimized with the added new columns, resulting 
in new dual values. This procedure continues until no columns with 
negative reduced costs exist, and no improvements can be made. At 
that point all the feasible solutions in the original master problem have 
been implicitly evaluated. A continuous optimal solution is then attained 
for both the original and the restricted master problem. 

In the column generation we need symbols and values for the dual 
variables. The following dual variables Dy^^, DQ^^ , ÜTim^ Dyy and 
Dzi are defined for constraints (7.30)-(7.34). Now we are able to write 
the reduced costs for yyr and Zis as follows: 

^ MVvr — ̂ MVvr "" / ^ / ^ ^imvr-I^Vim ~ / ^ / ^ Qvimvr-^Qim 
ieAfmeMi ieMmeMi 

" Z_^ Z^ "^yirnvrDTim " Dyy, (7.38) 

CMPIS = CMPIS — 2^ ^imsDvim + 2 ^ QpimsDQim 

meMi meMi 

+ 2 ^ TpimsDrim - Dzi^ (7.39) 
meMi 
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5,4 The subproblems 
The subproblems are formulated as shortest path problems and solved 

by specific dynamic programming algorithms on generated networks for 
each ship and each port. 

In the subproblems, we discretize the possible load quantity intervals 
to obtain an easier structure of the subproblems. This means that in
stead of declaring the load quantity as a continuous variable, we just 
allow these variables to have a few discrete values. In the ship net
works we use a separate node for each possible load quantity, while we 
in the port networks use a separate node for each possible cumulative 
load quantity. Still, the arrival time is declared as a continuous variable 
in the node network. Compared to the networks for the shortest path 
problem with time windows, see Desrosiers et al. (1995), with a node 
for each call, we get networks where each call is represented by several 
nodes. The number of calls to a port and the load quantity at each 
call are still unknown, and the inventory constraints remain active in 
the model. See Christiansen and Nygreen (1998a) for a justification of 
discretizing the possible load quantity interval for the real ship planning 
problem. 

In this section, we want to show how the soft inventory constraints 
aff'ect the subproblems. As mentioned, just the port subproblem is in
fluenced by the soft inventory constraints, so we just describe this type 
of subproblem here. A detailed description of the ship subproblem can 
be found in Christiansen and Nygreen (1998b). 

5.4.1 The inventory management problem for port i. 
The inventory management problem (or port subproblem) can be sep
arated into a problem for each port due to the fact that no constraint 
covers more than one port, and that the costs related to the ports are a 
sum of costs for each port. So we study the inventory management prob
lem for one port i. The formulations for a loading port and an unloading 
port have a number of small differences. We will here only consider a 
loading (production) port, so we therefore assume that i G Np when
ever the formulation for a loading port differs from an unloading port. 
Before we continue the discussion of the port subproblems, we rewrite 
the objective function for port i. 

Since the port call sequences with load and time information are not 
given in advance, we can represent the minimum reduced cost for port 
i, (7.39), in terms of the original variables, wim^^ qim â nd Ura- Each time 
the subproblem is solved, the dual variables have fixed values, so we 
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write the objective function for the port subproblem as: 

min y 
meMi 

-DyimWim + DQimqim + DTimt im^im 
(7,40) 

If we compare (7.39) and (7.40), we see that the optimal value of (7.40) 
differs from the reduced cost of the corresponding port call sequence with 
—Dzi' Since this term does not vary with different solutions for port i, it 
is excluded in the optimization. The resulting sequence is incorporated 
as a new column in the master problem if the value of (7.40) is less than 
Dzu 

Before we continue, we need to take the mentioned discretization of 
the cumulative load quantities into account. Since the girn~variables 
only take values in a discrete set, the same is true for the cumulative 
(un)loading in a port. Let Vim indexed by p or g be the set of subscripts 
referring to a possible cumulative (un) loaded quantity before call num
ber m in port 2, and let the corresponding quantity be Qimp- From the 
initial inventory, the production/consumption rate and inventory capac
ity it is possible to calculate upper and lower bounds for the cumulative 
(un)loading during the planning period. 

In the shortest path network for port i, we use nodes indexed by the 
port number, i, the call number, m, and an index, p, for the cumulative 
quantity (un)loaded before the call. In addition to nodes for different 
cumulative quantities before each call, we also need nodes, end-nodes^ 
for all possible cumulative quantities during the planning period. These 
end-nodes are drawn as squares in Figure 7.5. The arcs that end in the 
end-nodes are called end-arcs. 

Figure 7.5 shows a port network with a minimum of two and a max
imum of three calls. A possible sequence may consist of nodes 1, 2, 9, 
16 loading 15, 40 and 40 units at the three calls, while a sequence with 
two calls consists of the nodes 1, 5 and 13. 

In the shortest path network where each node contains information 
about the cumulative amount (un)loaded in the corresponding port be
fore the service in this node, the amount (un)loaded in a node is given 
on the arc out of the node. 

The following constraints, with qim instead of Yly^^^;qvimvj from the 
arc flow formulation describe the feasible region of the port subproblems: 
(7.4), (7.6)-(7.7) and (7.11)-(7.19). 

From Figure 7.5, we see that constraints (7.4) and (7.11) are taken 
care of in the network. To be able to distinguish between different nodes 
for the same call number, we redefine some of the variables: tpimp (used 
for tim) is the time for start of service in node (i, m, p) and qpimpnq (used 
for qim) is the amount (un)loaded in node (i^m^p) when the next node 
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m=\ m=2 m=3 m=4 

Figure 7.5. Port network. 

to visit is {i^n^q). The alarm levels at arrival in a node are called â  
(used for ct^^) and ctf^^ (used for al^). 

We use the equalities in (7.13) to eliminate the variable SEim from 
the formulation. Since the total amount (un)loaded before we arrive in 
a node is known, we are able to express the inventory level at arrival in 
a node, spimp (used for Sim)^ in the the following way, when the level in 
the beginning of the planning period is Qsn' 

Spimp = QsTi - hQimp + Ritpimp, ^^ ^ Mi, p G Vr, (7.41) 

All gpimpng^variables are equal to the difference between the cumula
tive quantities in the nodes corresponding to {i-^m^q) and (i^n^p). 

QPimpnq — ^inq ^i imp-j Vm G Mi, p G Vim 

We Mi, qeVin-
(7.42) 

After substituting these new variables into the formulation and also 
using (7.41)-(7.42) to eliminate spi^p and qpimpnq^ we are able to rewrite 
(7.7) and (7.6) as: 

i'Pimq 

^Pi{m-l)pj 
> 

Tpi + TqiQimq 

~ l-QiQi{m-l)p \ 
ymeMi, q^peVir^ (7.43) 
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TMNI < tpimp < TMXI, ym e Mi, p e Vi^ 
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(7.44) 

The remaining constraints can after some manipulation be written as: 

tpimp < -pr{SMXi - QsTi + UQ 
R 

'^Pimp ^ T-> 
Hi 

imp J) 

SMNi - QsTi + IiQimp+ 

Vm eMu pe Vim^ (7.45) 

ymeMu q^peVim, (7.46) 

''Pimp = ^ ^ ^ 

^Pimp 

0, AMNI - QsTi 

'T'J-iUJimp ~~ I^i^Pim^p 

0, QsTi - AMXI 

~J-iQim.p + -t^iipimp 

"imeMu peVim, (7.47) 

V m e M , peVim^ (7.48) 

The constraints we have left for this shortest path problem after the 
network has been constructed are therefore the following ones: Minimum 
time between nodes, (7.43), time windows for arriving in a node, (7.44) 
and (7.45), and earliest arrival time in a node depending on the leaving 
arc, (7.46). 

We rewrite the objective (7.40) once more, partly with the new vari
ables but without any use of new summation signs, before we write the 
non-linear expressions (7.47)-(7.48) into the new objective. 

min y 
meMi 

^Pi^Pimp + ^Pi^Pimp ^Vim'^im 

\-L^QimQPim,pnq "r J^Tim^'Pim.p 
(7.49) 

We now let the binary variable xpimpnq be 1 if the arc from (i, m^p) to 
(z, n, q) is used in the shortest path. The ''call" number representing the 
end of the planning period is numbered n = \Mi\ + 1. End-arcs that go 
from nodes with m < \Mi\ to n = \Mi\ + 1 represent situations where 
Wik =^ 1 iov m < k < n. By use of xpimpnq^ (7.42) and (7.47)-(7.48), we 
can eliminate wim, qpimpnq, ^^pimp ^^^ ̂ 'pimp ^^^^ ^^^ objective function 
and get: 

- - E E E E ̂ Pi 
meMi peVim ^ > ^ q^Vin 

max 
0, AMNI - QsTi + 
•/•i^iTTip -t^i^Pmp 

^Pim^pnq 
(7.50) 

+ E E E E c 
meMi peV^m n>m qeVin 

+ E 

max 
^^QsTi - AMXI-

•^iWimp ~r -^if^Pim-p 
^Pim^pnq 

/ ^ / ^ / ^ •l-^Tim^Pim,p^Pim.pnq 

(7.51) 

(7.52) 
meMi peVim n>m qeVin 
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+ 
meMi peVim n>m qeVin 

+ X] 5Z XI X ( ~ X ^^'^ 1 ^Pirnpnq^ (7.54) 
meMi peVim qeVin n=\Mi\ + l \ k=m+l / 

The final objective function for the port subproblem, (7.50)-(7.54), is 
written with five terms. This function has to be minimized subject to 
the time constraints (7.43)-(7.46). The three first terms (7.50)-(7.52) 
of the objective depend on the nodes and the arrival times in the nodes. 
The next two terms (7.53)-(7.54) depend on the arcs used out of the 
nodes. The coefficients in the three last terms (7.52)-(7.54) depend on 
the dual variables in the master problem, so they will change from one 
master iteration to the next. Constraints (7.46) are used in each port 
subproblem and they are special in the sense that one part of the arrival 
time window in a node depends on the arc used out of the node. This 
makes the port shortest path problems slightly harder to solve. However, 
since all the port networks are acyclic, these shortest path problems are 
easy to solve. 

Since the terms (7.50)-(7.52) depend hnearly or piecewise linearly on 
the continuous start time variable, tpimp^ the dynamic programming for
mulas become piecewise hnear functions of time, tpimp- By minimizing 
over the arcs into each node, we obtain a piecewise linear cost func
tion with possible steps. The cost function is nonincreasing because we 
use the costs of beginning within time tpimp^ Introduction of inventory 
penalty costs increases the number of linear pieces in the cost function, 
so the computational time is expected to increase slightly when consid
ering alarm levels. See Christiansen and Nygreen (1998b) for a detailed 
discussion of the dynamic programming solution method for the case 
without alarm levels and penalty costs. 

5.5 Integer requirements and the integer 
solution approach 

The generation of columns for the master problem continues until no 
negative reduced costs found in the subproblems exist, and no improve
ments can be made^ A continuous optimal solution is then attained. 

For each ship, the solution is regarded as integer feasible if all partly 
used routes (y^^ > 0) for a given ship visit the same set of port calls 
in the same order. This means that the underlying fiow variables must 
be binary, and constant Ximjnvr gives information about the number of 
times ship v sails directly from port call (i, m) to port call (j, n) on route 



7 Robust Inventory Ship Routing 219 

r. These binary requirements to the underlying flow variables are given 
in (7.37). 

We see that the final solution may consist of several positive y-values 
for the same ship, representing the same geographical route by having 
the same values (0 or 1) on the Ximjnvr-^onstd^nts^ but they may diff'er 
in start time and/or load quantity. The convex combination of columns 
for each ship, by using the y-weights, gives the start time and the load 
quantity of each port call. For each ship, all partial used routes satisfying 
(7.37) give the same transportation costs, so the convex combination of 
the costs has the same costs. The calculation of the transportation costs 
becomes correct. 

The binary requirements (7.37) also imply that all positive port vari
ables give the same number of calls in each port. We can therefore treat 
Zis as an ordinary continuous variable in respect of integer number of 
calls in the ports. A convex combination of columns for each port, by us
ing the ^-weights, gives the start time, load quantity and penalty costs. 
The resulting start time and load quantity involve no problems, but let 
us consider the penalty costs once more. 

The total penalty costs for a port i is the sum of the calculated penalty 
costs for the partial used sequences {zis > 0); YlseS- ^MPis^is- Each 
CMPIS consists of the calculated penalty costs for each call in sequence 
s for port i. This means that we calculate the penalty for each sequence 
and use a convex combinations of those. In order to be correct, we 
should first take a convex combination of the arrival times for each call 
and then use these times in (7.47)-(7.48) to calculate the alarm quantity 
and penalty. 

In treating the zis variables as continuous, we overestimate the penalty 
costs. Since these costs are artificial and here used to force the solution 
away from the inventory bounds, we accept the approximate calculation 
of the penalty costs. 

So by introducing soft inventory constraints, we include no new in
teger requirements to the model. The LP-relaxed solution approach 
described in this section is embedded in a branch-and-bound search. In 
each branch-and-bound node, the existing feasible columns remain in 
the matrix and new columns are generated until no improvements of 
the continuous solution are possible. The integer requirements can be 
achieved by branching on the underlying structure. We change the sub-
problems, and by this the networks, dynamically such that we exclude 
solutions not permitted because of the last branching. Branching enti
ties are combinations of arcs and nodes in the networks and the time 
window widths. The different branching entities are further described in 
Christiansen and Nygreen (1998a). 
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Table 7.1. A few computational results 

Instance 

Relative TW-width 
Soft inv.constraints 

IP-value 
Transportation cost 
Penalty cost 
Over estimation 

BB-nodes 
# port columns 
# ship columns 

IIa 

8 
No 

54.9 
54.9 

(22.7) 
-

1 
143 
133 

l ib 

Yes 

64.3 
54.9 
9.2 
0.2 

5 
221 
219 

I2a 

15 
No 

54.5 
54.5 
(8.1) 

-

3 
195 
205 

I2b 

Yes 

56.7 
54.9 
1.7 
0.1 

15 
522 
787 

I3a 

28 
No 

53.9 
53.9 

(18.1) 
-

35 
1521 
1976 

I3b 

Yes 

54.5 
54.1 
0.2 
0.2 

15 
1004 
1241 

I4a 

40 
No 

53.5 
53.5 

(18.8) 
-

157 
7135 
9169 

I4b 

Yes 

54.0 
54.0 
0.0 
0.0 

99 
5002 
6067 

6, Computational results 
Here, we present a few results from a real planning problem in Europe. 

The problem is solved by the column generation approach described in 
Section 5 by combining a commercial subroutine library for mathemat
ical programming with user written code. The library has been used 
to solve the master problem while the shortest path algorithms and the 
branch-and-bound algorithm are user-written. 

In Table 7.1, we give results for a case of the planning problem for 
Northern Europe. The case consists of 3 ships and 11 ports. Some ports 
can be called only once, while others can at most be called five times 
during the planning period. The length of the planning period in this 
case is one month. Here, we want to focus on the structural effects 
of introducing soft inventory constraints into the problem, so we limit 
ourselves to present one case from the real planning problem. 

In order to examine how the widths of the time windows influence 
the use of penalties, we run the case with four different sets of time 
window widths. The instance with widest time window width reflects 
the real planning problem best, while the others have artificially tight 
time windows. We give the average time window width in percentage of 
the planning period length. These percentages express the widths after 
they have been reduced in a preprocessing phase. We present results 
with average time window widths from 8% to 40%. 

Each of the instances in Table 7.1 is run with and without soft in
ventory constraints, and we report the objective values, the number of 
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nodes in the branch-and-bound tree and the number of generated ship 
and port columns for both objective types. 

In Table 7.1, we give information about the integer objective values 
in row "IP-value." These values decrease with increasing time window 
width, as cheaper routes may be found. In addition, we see that the ob
jectives increase by including the soft inventory constraints. However, 
this cost increase becomes less with increased time window width, be
cause the feasible region has increased and there is more flexibility built 
into the model. 

Further on, we split the objective value into (1) the transportation 
costs for the ships, (2) the correctly calculated, artificial penalty costs 
for violating the soft inventory constraints and (3) the over estimation 
of the penalty costs for the I?b-instances. The sum of the two last cost 
rows give the approximate penalty costs used in the solution approach. 
The calculated penalty costs are given in parentheses for the instances 
(I?a) run without soft inventory constraints, as well. In general more 
expensive route pat tern is found, when we include the soft inventory 
constraints. The penalty costs decreases with increased time windows 
for the instances with soft inventory constraints. For the I4b-instance 
no penalty costs occur at all. We see that the diff'erence in the correct 
cost calculation and the cost calculation chosen is limited for all except 
for one instance; I3b. For that instance the penalty costs and the over 
estimation is equal. However, the over estimation is limited compared 
to the calculated penalty costs for the instances where the soft inventory 
constraints are not included in the optimization. 

For all, except instance IIa, we had to call branch-and-bound. The 
same branching strategy is used in solving all the instances. In the table, 
we specify the number of nodes explored in the branch-and-bound tree 
until the search is completed. From the number of nodes we see that 
there are no evident increase in computational burden by including the 
soft inventory constraints. 

7. Concluding remarks 
This ship planning problem is an integrated multi pickup and delivery 

problem with time windows and a multi inventory management problem. 
Time constrained routing problems solved by a Dantzig-Wolfe de

composition approach, typically, decompose into a subproblem for each 
vehicle. In contrast, this ship planning problem decomposes into a sub-
problem for each ship and a subproblem for each port, and the master 
problem includes additional couphng constraints to synchronize the ship 
schedules and port inventory aspects. 
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The main objective in this planning situation is to keep the inventory 
level within its bounds at all actual ports, so there should be no need 
to stop the production at any ports due to full or empty inventories 
caused by missing transportation possibilities. The shipping industry is 
concerned with uncertainties in sailing time and time consumption at 
port. To reduce the possibility of violating the inventory constraints in 
practice, we introduce soft inventory constraints. This means that we 
introduce artificial penalties to the underlying model for violating the 
soft inventory constraints. In this way, we try to force the solution away 
from its inventory bounds and get more robust routes. 

We saw that the inventory constraints could be transformed into time 
windows for start of service at a port call, when we introduced networks 
for the ship routing subproblem and the port inventory management 
subproblem. Similarly, soft time windows replace the soft inventory 
bound. 

The soft time windows can easily be incorporated into the solution 
approach. In the port subproblem, we search for port call sequences 
with least reduced cost. Before introducing the soft time windows, these 
cost functions were found to be piecewise linear and non-increasing over 
the start time, due to continuously declared start times and the dual 
information from the time coupUng constraints. For each port call, the 
penalty cost function is also piecewise linear over the start time, with 
up to three pieces. The structure of the existing cost function and the 
new penalty cost contribution is similar, so the soft time windows can 
easily be incorporated into the subproblem. 

The master problem gets additional cost terms in the objective func
tion representing the artificial penalty costs. Appropriate penalty costs 
are associated with each port call sequence, and a convex combination of 
port call sequences for each port gives the start time, load quantity and 
penalty costs for each port call. The penalty costs are calculated in an 
approximate way to avoid the introduction of new integer requirements. 
Technically, there is no problem introducing new integer requirements, 
but the computational time would increase. The computational results 
show that the over estimation of penalty costs is limited compared to 
the calculated penalty costs for the instances where the soft inventory 
constraints are not included in the optimization. Therefore, we regard 
the approximate penalty costs as acceptable. 

When we introduce the soft inventory constraints into the model, we 
see from the computational results that more expensive route patterns 
are found to reduce the penalty costs as much as possible. For illus
tration purposes, we run some instances of the planning problem with 
artificial tight time windows. The instances with widest time window 
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width describes the real planning problem best. We saw that the penalty 
costs decreases with increased time window, because the feasible region 
has increased and there is more flexibility built into the model. 
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Chapter 8 

SHIP SCHEDULING WITH RECURRING 
VISITS AND VISIT SEPARATION 
REQUIREMENTS 

Mikkel M. Sigurd 
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Bj0rn Nygreen 
David M. Ryan 

Abstract This chapter discusses an appHcation of advanced planning support in 
designing a sea-transport system. The system is designed for Norwegian 
companies who depend on sea-transport between Norway and Central 
Europe. They want to achieve faster and more frequent transport by 
combining tonnage. This requires the possible construction of up to 15 
new ships with potential investments of approximately 150 mill US dol
lars. The problem is a variant of the general pickup and delivery prob
lem with multiple time windows. In addition, it includes requirements 
for recurring visits, separation between visits and limits on transport 
lead-time. It is solved by a heuristic branch-and-price algorithm. 

1» In t roduct ion 

Increased pressure on road networks and increasing transport require
ments make companies look for new transport solutions. This spurred 
an initiative to create a new liner shipping service. The initiative came 
from a group of Norwegian companies who need transport between loca
tions on the Norwegian coastline and between Norway and The European 
Union. While few producers on the Norwegian coast have sufficient load 
to support a cost efficient, high frequency sea-transport service, they 
can reduce costs and decrease transport lead-time by combining their 
loads on common ships. They agreed upon a tender (transport offer) 
which was proposed to a number of shipping companies. The tender 
specifies the number of cargos per week and time constraints for pickup 
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and delivery. It also states the requirements regarding ship-types and 
loading and unloading techniques. For rapid handling, all goods must 
be transported in containers. Finally the tender specifies the yearly 
payment each company will make to be part of this transportation sys
tem. Today there are neither ships nor harbour facilities to support the 
proposed solution. Thus, major investments are necessary. Estimates 
indicate that investments in ships alone, can amount to about 150 mill 
US dollars. We present a model which calculates an optimal solution to 
the requirements in the tender. The model includes selection of an opti
mal fleet composition, ship routing and visit-schedules. The problem is 
formulated as a set partitioning model and solved by a heuristic branch-
and-price algorithm. The next section presents the system requirements 
in more detail. In Section 3 the problem is compared to other fleet de
sign and routing problems. Our choice of master and pricing problem 
is presented in Sections 4 and 5. The branching strategy is described 
in Section 6. Section 7 presents results, while Section 8 conclude with 
some remarks on the model choice and on the results. 

2. Problem description 
In this section we will first take a closer look at the ship requirements, 

and then describe requirements pertaining to customers transport de
mand. 

To achieve fast transport, it is necessary to limit both the travel time 
and the loading and unloading time. Faster ships can substantially de
crease the travel time. While traditional cargo ships travel at about 16 
knots, cargo ships can be designed to travel at up to 25 knots. With this 
speed a ship can travel from Trondheim to Rotterdam in 35 hours. This 
represents a reduction in travel time of about 20 hours compared to tra
ditional cargo ships. Although higher speed increases variable costs, as 
fuel consumption for ships increase exponentially with speed, this may be 
outweighed by a reduction in the number of required ships, reduced in
ventory costs and the need to satisfy customers' lead-time requirements. 
Combining tonnage leads to an increased number of port visits. To limit 
the loading and unloading time, ships need to use a roll-on roll-off tech
nology. This means that cargo is rolled onto the ships by trucks and not 
lifted by cranes. The existing fieet of ships serving the North-Sea region 
cannot adopt this technology. Therefore the system requires construc
tion of new ships. The shipping companies have in collaboration with 
the customers proposed a number of candidate ship-types. It is possi
ble to construct any number of each candidate ship-type. The candidate 
ships vary in cost, capacity and speed. Some ships have properties which 
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Table 8.1. Alternative visit-patterns for a customer with three visits per week and 
at least one day in-between visits. 

nr 

1 
2 
3 
4 
5 
6 
7 

Mon 

X 
X 
X 
0 
0 
0 
0 

Tue 

0 
0 
0 
X 
X 
X 
0 

Wed 

X 
X 
0 
0 
0 
0 
X 

Thu 

0 
0 
X 
X 
X 
0 
0 

Fri 

X 
0 
0 
0 
0 
X 
X 

Sat 

0 
X 
X 
X 
0 
0 
0 

Sun 

0 
0 
0 
0 
X 
X 
X 

prevent them from visiting particular harbours. The constructed ships 
win be used in full by the system. The fixed weekly cost of a ship covers 
crew costs, financial costs and maintenance costs. The financial cost of 
a ship equals the depreciation cost from constructing the ship. The vari
able cost depends mainly on the fuel consumption, which is calculated 
as a function of the travel distance and speed. 

The tender includes transport of 68 cargos per week between 21 har
bours, 20 in Norway and one in Rotterdam. The total transport volume 
is approximately 2000 containers weekly. All customers specify a pickup 
port and a delivery port, a weekly load and a frequency. The frequency 
states the number of shipments per week. The weekly load is distributed 
evenly among the shipments. For each shipment, there can be single or 
multiple time-windows for pickup and for delivery. If, for example a 
cargo can be collected between Monday and Wednesday but only within 
the opening hours of the port, there will be three time windows, one 
for each day. The maximum lead-time from pickup to delivery limits 
the time from when a cargo is picked up until it is delivered. Lead-
time requirements apply to perishable goods such as fish and to goods 
where customers require rapid delivery. Customers with multiple vis
its per week, can demand a minimum time between visits or limit the 
number of visits during a given number of days. If a customer requires 
at least one day between visits in the pickup port and a ship visits on 
Monday, then visits on Sunday and Tuesday are forbidden. Table 8.1 
shows the seven feasible visit-patterns for a customer with three cargos 
and at least one day in-between service. If the customer instead requests 
not more than two visits per three days, there are 21 additional feasible 
visit-patterns. It is possible to enumerate all feasible visit-patterns for 
customers with separation requirements for the visits. If desired, this 
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Figure 8.1. An example showing how extending the planning period from one week 
to two weeks can improve the solution. 

can also be done for customers without requirements for separation of 
visits. 

To facilitate planning, companies want a weekly recurring visit-schedule^ 
similar to a bus-schedule. The visit-schedule must state the day when 
each visit is made, but does not restrict the time of day for making the 
visit. This implies that the same visit-pattern will be repeated each 
week for each customer. The visit-schedule is not given a priori, so the 
shipping companies must decide on an optimal visit-schedule which com
plies with the customers requirements. Let a route denote a sequence of 
pickup and delivery visits on given days made by a particular ship-type. 
A recurring visit-schedule can be met by a set of weekly recurring routes, 
as cyclic routes with the duration of one week will visit the same cus-
tomer(s) on the same day each week. Alternatively, ships can use cyclic 
routes with a longer duration than one week. Then the requirement 
for weekly recurring visit-patterns at each customer must be fulfilled by 
combining routes. For example, if the route length is two weeks, two 
ships can alternate on visiting the same customers every second week. 
Figure 8.1 illustrates how it is possible to reduce costs by 50% by allow
ing two-week routes instead of one-week routes. Figure 8.1(a) depicts 
a problem instance with four harbours. The most southerly harbour is 
Rotterdam and the other three harbours are on the Norwegian coastline. 
The three Norwegian harbours must be visited once a week to pick up 
cargo bound for Rotterdam. The numbers on the edges indicates the 
length of the edge in hours of sailing. Thus the route shown in 8.1(b) 
takes 250 hours ^ 10.5 days and it covers all visits. Thus two ships sail
ing this route, starting one week apart will cover all visits in every week. 
On the other hand, if the maximum route length is set to one-week, the 



8 Ship Scheduling With Recurring Visits 229 

three routes shown in Figure 8.1(c)-8.1(e) are required to cover ah visits, 
which means using an additional ship. 

The duration of the routes wih be a multiple of the length of the re
curring visit-schedule, which is one week. Ship owners suggest a sensible 
duration for routes should be two weeks. This is therefore used in the 
further description. With a two week planning period, the planning pe
riod includes two weekly visit-schedules. After two weeks, the plan is 
repeated. The ships travel on two week cyclic routes and visit the depot 
at least once during this time. The ships can be anywhere on their route 
at the start of the planning period. 
Based on the tender and on the candidate ship-types, the mathematical 
model produces: 

• a fleet of ships, 

• a published and fixed visit-schedule, 

• a recurring route for each ship. 

The model takes into account requirements for: 

• separation of visits to the same customer, 

• time-windows (multiple) for pickup and delivery, 

• visits on same days each week, 

• lead-time from pickup to delivery. 

The properties of the routes are: 

• start and end at the same harbour, 

• maximum route length (in weeks), 

• time for each visit, 

• load always less than ship capacity, 

• lead-time from pickup to delivery must be met, 

• time window constraints must be met, 

• port/ship compatibihty must be met. 

Unlike bus scheduling, the ships do not return back to the "garage" at 
regular intervals. However, one harbour is special and will be used as a 
depot. The southernmost harbour, Rotterdam, receives and sends large 
quantities of goods from and to Norwegian harbours. Since Rotterdam 
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is relatively far away from Norway, we can safely assume that optimal 
routes never bring goods destined for Norway, to Rotterdam and back 
to Norway. Thus, after unloading and before reloading, ships will be 
empty in this harbour. Because of the large portion of cargo destined 
for Rotterdam, all ships will travel from Norway to Rotterdam at least 
once during a planning period. Hence, Rotterdam is used as the depot 
for all ships. Ships can leave from the depot at any time during the 
week. The ships are allowed to visit the depot again within the route, 
but they need to return to the depot and discharge all cargo within the 
maximum route duration. It is possible to include additional depots, 
in particular, if the assumption that ships will always be empty in the 
depot still holds. 

The model assumes deterministic transport demand. This is based on 
data from each of the collaborating companies. The sensitivity of the 
solution to changes in demand is further discussed in Section 8. 

3. Similar problems in the literature 

3.1 Sea-transport 
Ship scheduling and fleet planning often involves decisions which rep

resent large monetary values. Constructing or acquiring a ship costs 
millions of US dollars and daily operation costs amounts to thousands 
of dollars. Improved utilization and fleet planning can lead to great 
benefits. This should motivate the use of decision support. Accord
ing to Ronen (1993), optimization based decision support was not often 
applied in the shipping industry before 1993. This lack of interest, (Ro
nen, 1983), explains as a result of strong traditions for other planning 
methods as well as a range of operational factors in which sea transport 
problems differs from vehicle routing problems. In a more recent re
view Christiansen, Fagerholt and Ronen (2004) report on an increase in 
the number of studies for maritime transport planning. As most of the 
studies consider industrial and tramp shipping, the literature on liner 
shipping problems is still sparse. This does not reflect the development 
in global capacity in finer shipping, which was nearly doubled from 1991 
to 1995. 

Most liner shipping problems consider fieet size and mix in addition 
to fleet deployment. Cho and Perakis (1996) present models for routing 
and fleet design in a liner shipping problem. They present a LP model 
for a problem with a fixed fleet of ships and a set of candidate routes. 
This becomes an IP problem when the number of ships is allowed to vary. 
The IP problem minimizes the costs of satisfying customers demand by 
assigning ships to routes. The candidate routes are suggested by the 
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planners. In a later application Powell and Perakis (1997) expand on 
the issue of fleet deployment and include penalties for days when ships 
are idle. Fagerholt (1999) describes another model for a liner shipping 
system. Because of limited total route duration, all routes are generated 
a priori. Then, from a set of predefined alternative ships, the least costly 
ship is assigned to each route and set partitioning is used to select among 
the routes. The limitation to all three approaches is that they only work 
on relatively constrained problems. In contrast to the former studies, 
Rana and Vickson (1991) present a profit maximization model which 
constructs routes of favourable visits and selects routes from this set. 
They apply a Lagrange decomposition approach to solve the problem. 
By relaxing the demand constraints, the problem is decomposed into one 
problem for each ship. 

Christiansen (1999) describes another decomposition approach to solve 
an industrial shipping problem with transport of only one bulk product, 
but it also involves managing inventory held at the ports. Therefore, it 
includes decisions on both load quantity and routes. The solution ap
proach uses Dantzig-Wolfe decomposition. Suggestions for routes and 
load quantities are generated in a subproblem. The master problem se
lects routes that minimize cost while controlling inventory levels. This 
problem is solved by a heuristic branch-and-bound algorithm with gen
eration of new columns when needed. 

3.2 Related problems 
Similar problems to the liner shipping problem are found in freight 

transport, train scheduling and in the airline industry. Such problems 
are often referred to as service network design problems, see Crainic and 
Laporte (1997). 

The demand requirements with sets of legal visit-patterns at each 
customer are similar to those given in periodic VRP (PVRP) problems. 
Cordeau, Gendreau and Laporte (1997) present the currently known best 
heuristic for the PVRP. However, as their method uses the fact that all 
routes in the P V R P last for only one day and also do not have pickup 
and delivery, their method is not directly relevant to our problem. 

4* Mathematical model formulation 
The model constructs a fleet of ships, a visit-schedule and routes. 

A Dantzig-Wolfe decomposition is applied to formulate a set partition
ing problem which is in turn solved by a branch-and-price algorithm. 
Desrosiers et al. (1995) reports that this approach has been successfuUy 
applied to numerous routing and scheduling problems while Barnhart et 
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al. (1998) discuss how this method can be used to solve various classes 
of integer models. 

The decomposition gives a master problem and a pricing problem. The 
master problem selects, from a set of candidate routes, routes which 
minimize the cost of satisfying customers requirements. With a huge 
number of possible routes only a subset of routes can be included in the 
master problem. New routes are generated in the pricing problem and 
added to the master problem. Dual values from the master problem are 
used to modify the objective function of the pricing problem to encourage 
new routes for poorly serviced cargoes. With delayed column generation, 
new routes are generated throughout the branching process. When no 
improving routes can be found the algorithm terminates. As further 
described in Section 5, heuristic methods are used to solve the pricing 
problem. This gives a heuristic branch-and-price algorithm. 

The system must service a given number of cargos. Each cargo has an 
origin and a destination node. There may be time window constraints 
on pickup and delivery and possibly lead-time constraints for dehvery 
of the cargo. Since new ships will be constructed, ship characteristics 
are not fixed. In theory, both speed and capacity of the ships could be 
modelled as continuous variables. However, shipping companies prefer 
some standardization. Therefore speed and capacity are modelled as 
stepwise functions. This results in a finite number of ship-types. There 
is no limit on the number of ships of each type, 

4.1 The master problem 
The master problem selects routes from a subset of all routes. Re

call that a route is a sequence of pickup and delivery visits on given 
days made by a particular ship-type. There are two ways to model the 
composition of routes for the planning problem. One approach is to 
construct routes which last for the duration of the planning period in 
the pricing problem. This way, only complete routes are selected in the 
master problem and selecting a route also involves using a ship. Alter
natively, a collection of shorter routes can be proposed to the master 
problem. Then a sequence of shorter routes for each ship are selected 
in the master problem. This requires additional constraints on the daily 
utilization of unique ships. Both approaches have been tested. The 
approach with complete routes gave better results. Therefore only this 
approach is further described. 

The plan for one planning period is repeated at the end of the period. 
With complete routes which last for the duration of the planning period, 
a ship travels exactly one route. A ship can be anywhere on its route 
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at the beginning of the planning period. In other words, a route which 
start from the depot on day d in the planning period will wrap around 
and finish on day d — 1 \n the planning period. Let S denote the set of 
ship-types 5, and TZ^ denote the set of candidate routes r for ship-type 
s. With complete routes, the cost of using a ship can be included in the 
cost for the route, C^, and calculated in the pricing problem. 

Let the variable z^ be one if route r, with ship-type 5, is used. There 
are no restrictions on how many times each ship-type can be used, so 
diff'erent routes which use the same ship-type can be selected simulta
neously. However, a particular route r can only be used once, as each 
visit can only be made once, so z^ € {0,1}. The master problem selects 
routes z^ to minimize system costs, while ensuring that all requests are 
served. The cost minimization objective is given in (8.1). 

min^}_^CX- (8.1) 
seSreR^ 

Each customer requires one or more shipments per week between its 
pickup port and its delivery port. The cargos which belong to one cus
tomer are identical in terms of load, lead-time requirements, origin and 
destination. Let Q denote the set of all ports, and g denote a partic
ular pickup or dehvery port. Note that ports are customer-specific so 
that different ports may correspond to the same geographical location. 
The term "harbour" refers to a particular geographical location. A visit-
pattern gives the legal days d of visit at port g in compliance with the 
separation requirements for the port. Each port g must be visited ac
cording to one of its feasible visit-patterns. Since customers want weekly 
recurring visits a one-week visit-pattern is repeated for each week in the 
planning period. With a one week recurring visit-schedule and a two 
week planning period, each visit-pattern consist of 14 days. Let V de
note the set of all days in the planning period. Within these 14 days, a 
weekly pattern is repeated two times. Let V^ denote the set of feasible 
patterns p for port g. The first week d = { 1 , . . . , 7} of a visit-pattern 
with visits on Tuesday, Thursday and Saturday, can be expressed by: 
{M^gi^... ^M^y} = [ 0 1 0 1 0 1 0 ] . The variable u^ is one when pattern 
p is used for port g, B^^^ is one when route r with ship s visits port g 
on day d. Restriction (8,2) requires that if a route visits port g on day 
d, then a visit-pattern p with a feasible visit on day d must be selected. 

Y,Y.^ldr4-J2^9d^' = ^ "^^eg, deV. (8.2) 
ses reR^ peV9 

These pattern matching constraints can be reformulated as partition
ing constraints by replacing the service pattern M^^, by the "inverse". 
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The "inverse" representation is: {M^^,,.. ,M^7} = [ 1 0 1 0 1 0 1 ] . In 
addition, restriction (8.4) ensures that exactly one pattern is used for 
each customer. This requirement also ensures that all cargos are served 
exactly once. The master problem can now be expressed as: 

m i n ^ ^ C'^z'^ (8.3) 

subject to 

Y.ul = l ygeg, (8.4) 
peV9 

J2T.^Ur4+YlMP^,uP = l ygeg, d€V, (8.5) 

<6{0 ,1} VsG<S, reW, (8.6) 
uPgE {0,1} ygeg, per. (8.7) 

The combination of routes selected in the master problem must visit 
each port on days which comply with a feasible visit-pattern for the 
port. Selecting a visit-pattern fulfills both the requirement for weekly 
recurring visits and for separation of visits. In addition, it ensures that 
all cargos from/to the port are collected or delivered. Since pickup and 
delivery restrictions are fulfilled in all routes which are proposed by the 
pricing problem, it is sufficient with a pattern restriction in either the 
pickup port or the delivery port for each customer to ensure that all 
shipments are made. In this system the customers want both regular 
departures and arrivals of goods and therefore most customers specify 
separation requests in both pickup and delivery ports. 

Constraints (8.4) and (8.5) have dual variables iTg and Sgd respectively. 
Since constraint (8.4) does not involve the route variable z^^ only the dgd 
duals infiuence costs in the pricing problem. 

5, The pricing problem 
When solving the master problem using delayed column generation, 

columns must be added during the branching process. Finding or gen
erating suitable columns to add to the master problem is known as the 
pricing problem. Only columns with negative reduced costs are added 
to the master problem, since only these may go into the basis. 

The reduced cost of a route equals the violation of the corresponding 
constraint in the dual linear program. Thus, the reduced cost ĉ ,V of 
route r E R^ is: 

7^7r,5 _ ^is _ Y " ^ \ ^ JDS r 
^s,r ~ ^ r ^ Z^ -^gdr^gd' 

geG dev 



8 Ship Scheduling With Recurring Visits 235 

Adding a negative reduced cost column corresponds to adding a vio
lated inequality in the dual linear program. If no negative reduced cost 
column exists, the optimal solution of the restricted master problem is 
also optimal for the complete master problem. The pricing problem 
consists of finding one or more legal routes with negative reduced cost. 

The pricing problem is represented in a directed graph with edge 
weights. For each pickup (or delivery) port g and for each day d, cre
ate a node i, where i = f{g^d). Furthermore, add a depot node 0 and 
add edges from the depot node to all pickup nodes and from all delivery 
nodes to the depot node. Also add edges between all feasible node pairs. 
A node pair (i, j ) is feasible if there is sufficient time to visit i before 
visiting j given the time windows of i and j . The cost C^ of a route r 
sailed by ship 5, consists of a fixed cost and a sailing cost. The fixed 
cost is independent of how we use the ship. The sailing cost, however, 
is proportional to the distance traveled by the ship. Both costs depend 
on the ship-type used. 

The sailing cost can be assigned to edges going into the visits. Given 
a dual vector S , the value of dual ög^ can be subtracted from the edge 
going into node i = f{g^d). In this graph, the reduced cost of a route 
equals the length of the path in the graph consisting of a sequence of 
nodes corresponding to the visits on the route in that order. 

To allow routes to wrap around the to the beginning of the planning 
period, append a copy of the network, less the depot node, to the end 
of the horizon. Add arcs from all delivery nodes in this network to the 
original depot node. Then solve one subproblem for each ship-type and 
for each day in the planning period. 

Since the reduced cost of a route is equal to the length of the path 
in the above graph, the pricing problem can be solved as a shortest 
path problem with additional constraints that disqualify illegal routes. 
This problem is commonly known as a resource constrained shortest path 
problem (RCSP). In our case the additional constraints will make sure 
that all routes comply with the capacity, pickup and delivery, time-
windows, lead-time and visit-pattern requirements which are described 
in Section 2. 

Several methods have been proposed to solve the resource constrained 
shortest path problem, see Mehlhorn and Ziegelmann (2000). However, 
when dealing with non-additive "difficult" constraints like "pickup before 
delivery", "time windows", and "visit-patterns" only dynamic program
ming algorithms have been used to solve the problem. Dumas, Desrosiers 
and Soumis (1991) were the first to propose a dynamic programming al
gorithm for the pickup and delivery problem with time windows used in 
a column generation setting like this. 
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We solve the resource constrained shortest path problem with a heuris
tic two Phase algorithm. First, we use the fact that most cargos go 
between Rotterdam and ports on the Norwegian coastline. Because of 
this, we can assume that all ships will visit Rotterdam at least once in 
a planning period, either to pickup cargo, to deliver cargo or both. As 
explained in Section 2, since Rotterdam is relatively far away from the 
Norwegian ports we can assume that a ship unloads all cargo whenever 
it visits Rotterdam and does not carry cargo between two Norwegian 
ports through Rotterdam. 

Following our assumptions, a route is comprised by a number of tours 
starting and ending with an empty ship in Rotterdam. Phase I of the 
algorithm will generate these tours and Phase II will collect the tours 
into complete routes. The fixed cost of using a ship of type s, is added in 
Phase IL A heuristic dynamic programming algorithm is used to solve 
Phase I and a /c-shortest path algorithm with a feasibility check is used 
to solve Phase II. The two phases are described in detail below. 

5.1 Creating tours 
Creating good legal tours is the main part of the pricing problem. 

With a planning period of two weeks the problem involves 272 visits 
on 10 different ship-types. This is more than similar algorithms have 
been able to solve. Running an exact dynamic programming algorithm 
on problem instances of this size is too time-consuming because of the 
combinatorial complexity. A heuristic dynamic programming algorithm 
is designed in order to make the problem practically solvable. 

The basic idea of the algorithm is similar to previously proposed dy
namic programming algorithms for solving resource constrained shortest 
path problems, see Dumas, Desrosiers and Soumis (1991). We start with 
an empty ship in Rotterdam and extend the route to each of the ports. 
For every visit, we create a new label which contains all relevant infor
mation on the route so far. We check that candidate visits do not make 
the route illegal, i.e. we check that; 

• We do not deliver a cargo that has not yet been picked up. 

• We do not visit Rotterdam with any cargos bound for other ports. 

• The ship has available capacity for picking up the cargo. 

• The visit is made within an open time window. If there is a later 
time window, we wait. 

• The visit is consistent with a visit-pattern for this node, especially 
if the same visit has been made previously on this route. 
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• We still have time to deliver all onboard cargos within their lead-
time and within the planning period. (This corresponds to solving 
a travelling salesman problem with time windows by complete enu
meration for the earliest cargos). 

If any of the constraints are violated, the route is not extended to 
make the visit. As stated, the number of states created in the dynamic 
programming algorithm has to be pruned further in order to run the 
algorithm in practice. Thus, a number of heuristic constraints that the 
routes must satisfy are added. For each visit we check that: 

• The waiting time is no more than 12 hours. We enforce this rule 
since good routes will not have long periods of waiting in ports. 

• All cargos on the ship bound for a particular harbour are delivered 
when a ship visits the harbour. We enforce this rule since we 
expect that good routes will unload the cargos as soon as possible 
to make room for picking up more cargo. 

• The route should not change direction more than five times on the 
Norwegian coast line. We enforce this rule since we expect that 
good routes will not make too many detours. 

• All deliveries can be made without changing directions, if the route 
has already changed direction five times. 

These additional constraints help prune away unpromising routes while 
running the dynamic programming algorithm. However, many routes 
will comply with these constraints, so additional pruning is needed. For 
this purpose the algorithm is constrained to a limited subsequence of 
visits for every state we create. For a given state, we list all possible 
visits we can make next. Each visit is assigned a score based on the route 
so far and on the best continuation of the route. Instead of creating new 
states for all possible next visits, we pick the three best scoring pickups 
and the three best scoring deliveries and create states only for those. The 
score equals the reduced cost of the visit in question plus the minimum 
reduced cost of delivering the cargos on board after this visit. Thus, the 
best subsequences of a given visit may change in every pricing iteration 
since the dual variables have changed. Also, the best subsequences of a 
visit may be different depending on which day we make the visit, since 
we have a different dual variable for every visit for every day of the 
planning period. 

We use dominance to further reduce the number of dynamic program
ming states. If two states are placed on the same node and have made 
the same number of pickup and deliveries and one state has arrived there 
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day 21 

Figure 8.2. An auxiliary graph representing tours. 

before the other with a lower reduced cost and one has been at least as 
far north as the second state, the second state is removed. This is done to 
remove unpromising routes that are similar, but inferior, to other routes 
at an early stage. Whenever the ship visits the depot, it has created a 
complete, legal tour. If the tour has negative reduced cost, it is saved 
in our pool of tours. The tours are not added directly as columns in the 
master problem, since they are typically much shorter than the planning 
period. Instead, tours from the tour pool are combined to create full 
length routes, which are added to the master problem. 

5.2 Combining tours 
Given a pool of tours created by our dynamic programming algorithm 

described above, the pricing problem is reduced to combining one or 
more tours into legal, full length routes. This is done by running a 
/c-shortest path algorithm on an auxiliary graph, which is defined as 
follows: 

• For every day in the planning period, we add a node in the auxihary 
graph. The nodes constitute a time-line. 

• For every node, we add an edge from the node to the next node 
on the time line. The edge weights are 0 on these edges. We do 
not add an edge going out of the last node. 

• For every tour found in Phase 1, we add an edge from the node 
corresponding to the start time to the node corresponding to the 
end time of the tour. The edge weights are calculated in every 
column generation iteration as the reduced cost of the tours. 

The graph layout is shown in Figure 8.2. The weights on the edges 
representing the tours equal the reduced cost of the tours. Minimum 
reduced cost combinations of tours can be found by a shortest path 
algorithm on the graph in Figure 8.2 with node i as source and node 
i + 21 as target. To handle tours that cross the end of the planning 



8 Ship Scheduling With Recurring Visits 239 

period (e.g. a tour that starts on day 18 and ends on day 4), another 21 
nodes are added to represent day 1 to 21 in the next planning period. 

Combining tours with conflicting visit-patterns gives infeasible routes. 
Conflicting visit-patterns occur if tours visit the same customer on days 
which do not match any legal visit-pattern. A constrained shortest path 
algorithm can be used to find a legal minimum cost combination of 
tours. Since we wish to return more than one combination in every 
pricing iteration, a constrained /c-shortest path algorithm can be used to 
solve the pricing problem. 

Traditionally, this problem has been solved by a dynamic program
ming algorithm, where states are expanded by combining tours, whilst 
checking that the combination of tours are legal with respect to the 
visit-patterns. However, checking whether two tours have contradicting 
visit-patterns is rather time consuming. Furthermore, most tour com
binations will be legal. For these reasons, the time-consuming check is 
not performed in the A:-shortest path algorithm. Instead we first run 
an unconstrained fc-shortest path algorithm as proposed by Carlyle and 
Wood (2003) to find a number of shortest paths which may or may not 
be legal. This algorithm first identifies the shortest path. Then it re
turns ah paths which are within a factor of 1 -f- £ of the shortest path for 
some specified e. This is done by enumerating subpaths while checking 
if candidate subpaths can be extended to paths of acceptable length. 
Afterwards, a rather expensive visit-pattern check examines the routes, 
starting with the cheapest route and continuing until the desired number 
of legal routes has been found. Whenever an illegal combination of tours 
appears, this combination is inserted into a data structure which allows 
fast lookups. If the same tour combination appears in a later pricing 
iteration, it can be discarded without running the expensive check. In 
fact, the fast lookup can also be done in the fc-shortest path algorithm, 
to avoid combinations, which have already been found illegal. A tree 
data structure with a sorted sequence of tour-numbers as keys is used to 
provide the fast lookups. 

The running time of the fc-shortest path algorithm depends on the 
number of paths to return. Therefore, only a small number of paths 
are returned early in the convergence. If there are too few legal paths 
within these paths, the number of paths to return is increased and the 
algorithm is re-run. In practice, the fc-shortest path algorithm by Carlyle 
and Wood (2003), combined with a post-check and a fast lookup data 
structure performs very efficiently. 

Both the Phase I algorithm which creates tours and the Phase II 
algorithm which combines the tours are run for every ship-type and every 
day in every pricmg iteration. The fixed cost of using a particular ship-
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type is added to the cost of each route in Phase IL Once a tour has been 
added to the tour pool, it is never removed. Hence, all generated tours 
are available for the tour combining algorithm in later pricing iterations. 

6, Finding integer solutions 
The optimal solutions to the linear relaxation of the master problem 

will generally not be integer. This means that in the optimal solution 
to the relaxed problem, more than one route variable at fractional value 
cover the transport of some cargo. Constraints (8.5) which include route 
and pattern variables ma}/ also permit the transport of some cargo by 
pattern variables at fractional values. The pattern variables will be in
teger in solutions where all the route variables are integer. If all pattern 
variables are integer, the resulting problem is a general pickup and de
livery problem with time-windows. While it is hard to rank patterns, 
problem knowledge can be used to identify desirable routes. Therefore, 
the branching scheme works on the route variables, driving them towards 
integer values. This will simultaneously give integer pattern variables. 

6.1 Branching on pairs of visits 
We apply the branching strategy proposed by Ryan and Foster (1981) 

which has proven successful in a number of set partitioning applications. 
Recall that a row in the constraint matrix correspond to a particular 
visit on a given day. Following the Ryan-Foster branching strategy, it 
is possible to choose two rows k and / in the matrix such that the sum 
of route variables where the corresponding visits occur consecutively is 
strictly between 0 and 1. This corresponds to choosing two visits (ni, di) 
and (712,(̂ 2)5 where a visit is defined by a pickup (or delivery) n̂  of a 
cargo group and a day dj. Given two visits, on the first branch, demand 
that the pickup (or delivery) ni on day di is followed by the pickup (or 
delivery) 712 on day d2> On the second branch, demand that the two 
visits are not made consecutively on those specific days. 

The master problem changes on both branches, since we must remove 
variables which violate the branching restriction. On one branch we 
must remove all route variables which make one of the two visits ni on 
di or 722 on (i2, but not both. On the other branch we must remove all 
route variables which make both visits ni and 712 consecutively on the 
specified days. The variables are not permanently removed, but rendered 
inactive, so that they can be easily put into the master problem again in 
other branches of the branch-and-bound tree, To prevent generating and 
adding violating variables to the master problem, the pricing problem 
needs to be changed. In any node in the branch-and-bound tree, the pric-
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ing problem must reflect the restrictions of the branch. Phase II of the 
pricing algorithm works on a pool of tours, represented by edges in a di
rected acyclic graph. To avoid generating routes violating the branching 
constraints, all tours which violate the constraints are removed. Again, 
the tours are not really removed, but merely hidden so that they can be 
easily restored in other branches of the branch-and-bound tree. We do 
not branch on consecutive depot visits. All branching decisions are im
posed within the tours which means that the branching decisions do not 
restrict the combination of tours which is done in Phase II of the pric
ing algorithm. However, it is necessary to prevent generating new tours 
which violate branching constraints. Hence, the dynamic programming 
algorithm, which constitutes Phase I of the pricing algorithm, checks if 
any branching constraints are violated when building the tours, discard
ing the violating tours. 

6,2 Using problem information in branching 
Although the above branching strategy will work for any choice of vis

its (ni,(ii), {n2^d2)-> the performance of the branching strategy is much 
improved by selecting a sensible pair of consecutive visits. This is guided 
by knowledge of the problem and by information from the fractional so
lutions to the master problem. For every pair of rows in our constraint 
matrix (i.e. for every pair of days and every pair of pickup/deliveries) a 
score is calculated based on this information. In a depth first strategy 
we branch on the pair of rows with best score. 

As mentioned, the score is based on knowledge of the problem instance 
and information from the fractional solution at hand. The information 
from the problem instance tells us whether two consecutive visits fit 
well together. For example, if the visits are far apart in either time or 
geography, the visits receive a low score, which implies that the visits do 
not fit well together. More specifically, for a visit in node ni on day di 
followed by a visit in n2 on day d2 the following factors are used in the 
score calculation: 

• A penalty proportional to the distance between ni and n2. 

• A penalty proportional to the time difference di-d^ less the average 
travel time from ni to n2. 

• A penalty if the direction of cargos does not fit. For example, if 
ni is a pickup of a cargo bound for a harbour north of ni and n2 
lies south of ni, the ship will need to go south to n2 and then go 
north later on. Such detours are penalized. There are 14 cases 
similar to the above where the directions of two cargos do not fit 
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and where making the visits consecutively gives a detour. In aU 
cases the penalty is proportional to the length of the detour. 

The choice of visits to branch on should also be guided by the frac
tional solution at hand, since routes with high fractional values in an 
optimal LP-solution are likely to be good routes in an IP-solution as 
well. The sum of fractions is calculated for every day and every consec
utive pair of visits. The sum of fractions for a particular visit pair is 
the sum of the values of the route variables that make both these visits 
on these days. The sum of fractions is added to the score, so that a 
high sum of fractions results in a higher score. This is based on the 
assumption that routes chosen in the optimal solution to the relaxed 
master problem are similar to the routes in an optimal solution to the 
IP master problem. 

As stated, the pair of visits with the highest score is selected for 
branching. This pair constitutes visits which we think are likely to be 
made consecutively on a route. On the first branch these visits must be 
made consecutively on two specific days and on the other branch they 
can not be made consecutively. Since we pick pairs of visits which fit 
well together, we will follow the first branch most often, which is the 
stronger of the two since it fixes the two visits together. 

7, Computational results 
The heuristic branch-and-price algorithm described in Section 6 has 

been implemented and tested on test instances based on data provided 
by the collaborating companies. As could be expected, our results show 
that there are substantial savings in making two-week planning periods 
compared to one-week planning periods. The best solution found using 
a one-week planning period requires 15 ships and has an objective value 
of 20.28, whereas the best solution found using a two-week planning 
period only requires 13 ships and has an objective value of 17.67 per 
week. This constitutes a saving of 14.8%. In Table 8.2 we show some 
details of the performance of the branch-and-price algorithm on the two 
test instances. 

The two week planning period is advantageous compared to the one 
week planning period because it allows a greater fiexibility in the length 
of the tours. Where all the tours in the one week planning period are 
between 5 and 7 days long, the tours of the two week planning period 
are between 4 and 13 days long. Hence in the two week planning period 
each ship make either a single long tour, two medium tours or a short 
tour and a longer tour. In the one week planning period all ships make 
medium length tours. 
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No. of constraints 
No. of columns 
No. of B&B-nodes 
No. of pricing itr. 
CPU time (sec.) 

Best solution found 
No. of ships 
Cost pr. week 

1 week instance 
624 

1624 
45 

124 
440 

15 
20.28 

2 week instance 
1170 

10128 
107 
565 

40 576 

13 
17.67 

Table 8.2. The table shows details of running the branch-and-price heuristic on the 
test instances based on data provided by the collaborating companies. 

8. Concluding remarks 
We have chosen to solve the problem using column generation. An

other approach would be to enumerate all possible combinations of fea
sible visit-patterns in all ports. This would give a finite number of alter
native visit-schedules. For each visit-schedule one could solve a pickup 
and delivery problem with time windows and with lead-time as the only 
additional requirement. Unfortunately, the number of visit-schedules 
renders this approach impractical. The problem has 78 ports each with 
an average of 7.1 alternative patterns. This gives about 78̂ --̂  (10^^) alter
native visit-schedules or problems to solve. Various heuristic approaches 
could also be used. However, most would have difficulties incorporating 
the separation of visits, recurring visits and lead-time constraints. Since 
these restrictions require considering all routes simultaneously. 

Demand is modelled as fixed. This is realistic, as the companies will 
have to pay for the requested capacity irrespective of whether or not 
they use it. Likewise the shipping company must guarantee a minimum 
transport capacity to each partner. It is likely that unused capacity will 
be traded among the partners and also sold to customers outside the 
system. This way there can be room for some variations in the load. 
The shipping companies need to consider whether they assume a net 
increase in total transport load and thus want to use ships with surplus 
capacity. 
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Chapter 9 

C O M B I N I N G C O L U M N G E N E R A T I O N 
A N D L A G R A N G I A N R E L A X A T I O N 

Dennis Huisman 
Raf Jans 
Marc Peeters 
Albert P.M. Wagelmans 

Abstract Although the possibihty to combine column generation and Lagrangian 
relaxation has been known for quite some time, it has only recently 
been exploited in algorithms. In this paper, we discuss ways of com
bining these techniques. We focus on solving the LP relaxation of the 
Dantzig-Wolfe master problem. In a first approach we apply Lagrangian 
relaxation directly to this extended formulation, i.e. no simplex method 
is used. In a second one, we use Lagrangian relaxation to generate 
new columns, that is Lagrangian relaxation is applied to the compact 
formulation. We will illustrate the ideas behind these algorithms with 
an apphcation in lot-sizing. To show the wide applicability of these 
techniques, we also discuss applications in integrated vehicle and crew 
scheduling, plant location and cutting stock problems. 

!• Introduction 
In this chapter we consider (mixed) integer programming problems in 

minimization form. Obviously, lower bounds for such problems can be 
computed through a straightforward calculation of the LP relaxation. 
Dantzig-Wolfe decomposition and Lagrangian relaxation are alternative 
methods for obtaining tighter lower bounds. The key idea of Dantzig-
Wolfe decomposition (Dantzig and Wolfe, 1960) is to reformulate the 
problem by substituting the original variables with a convex combina
tion of the extreme points and a linear combination of the extreme rays 
of the polyhedron corresponding to a substructure of the formulation. 
Throughout the paper, we will assume that this polyhedron is bounded. 
Therefore, only the extreme points are needed. This substitution results 
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in the master or extended formulation, which contains the hnking con
straints from the original compact formulation and additional convexity 
constraints. When solving the LP relaxation of the master problem, 
column generation is used to deal with the large number of variables. 
Starting with a restricted master problem which contains only a small 
subset of all columns, we generate the other columns when they are 
needed. This is done by solving a so called pricing problem in which one 
or more variables with negative reduced costs are determined. After each 
execution of the pricing procedure, we calculate the optimal value of the 
LP relaxation of the restricted master problem, VRDW- This provides 
an upper bound on the optimal value of the Dantzig-Wolfe relaxation, 
VDWt which itself is a lower bound for the optimal IP value vp. When 
a simplex algorithm is used to solve the restricted master problem, we 
obtain optimal values of the dual variables corresponding to the linking 
and convexity constraints. These values are used in the pricing problem 
to check if we can generate new columns with negative reduced cost. If 
we find such columns, we add them to the relaxed master problem and 
reoptimize, otherwise we have found the optimal value of the Dantzig-
Wolfe relaxation VDW- This value will usually be tighter than ^p, the 
value of the LP relaxation of the original compact formulation. 

In Lagrangian relaxation, the complicating constraints are dualized 
into the objective function. Given a specific vector of positive multi
pliers /, the Lagrangian relaxation problem always gives a lower bound, 
^LR{1)J on the optimal IP value vp. The Lagrangian dual problem con
sists of finding the maximum lower bound: VLD =" max^>o VLR{1)' Typi
cally, the latter problem is solved using an iterative procedure, where in 
subsequent iterations, the Lagrangian multiplier vector I is updated and 
we solve a new Lagrangian problem with these updated multipliers. In 
this chapter we focus on the subgradient method (Fisher, 1985, e.g.) for 
approximating the optimal multipliers, although more advanced meth
ods such as the bundle method (Lemarechal, Nemirovskii and Nesterov, 
1995, e.g.) or the volume algorithm (Barahona and Anbil, 2000) exist. 

There exists a strong relationship between Dantzig-Wolfe decompo
sition and Lagrangian relaxation. It is well known that when the La
grangian relaxation is obtained by dualizing exactly those constraints 
that are the linking constraints in the Dantzig-Wolfe reformulation, the 
optimal values of the Lagrangian dual, VLD^ ^^^ the LP relaxation of 
the Dantzig-Wolfe reformulation, VDW^ a,re the same. In fact, one for
mulation is the dual of the other (Geoffrion, 1974; Fisher, 1981). Fur
thermore, the optimal dual variables A for the linking constraints in the 
master problem correspond to optimal multipliers / for the dualized con
straints in the Lagrangian relaxation (Magnanti, Shapiro and Wagner, 
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1976). Moreover, the subproblem that we need to solve in the column 
generation procedure is the same as the one we have to solve for the 
Lagrangian relaxation except for a constant in the objective function. 
In the column generation procedure, the values for the dual variables 
are obtained by solving the LP relaxation of the restricted master prob
lem, whereas in the Lagrangian relaxation, the Lagrangian multipliers 
are updated by subgradient optimization. 

Both approaches have advantages and disadvantages. Lagrangian re
laxation provides a lower bound on the optimal IP value vp at each 
iteration of the subgradient algorithm, but no primal solution is avail
able. In many applications, the dual information is used in a heuristic 
fashion to obtain a primal solution. On the other hand, column genera
tion directly provides a primal solution at each iteration, which can be 
used to construct feasible solutions for the MIP in a rounding heuris
tic. Further, the Lagrangian lower bound can be computed without 
much difficulty at each step of the column generation process. There are 
also differences in the computational implementation and convergence 
behaviour. The subgradient algorithm is usually stopped after a fixed 
number of iterations, without the guarantee of having found the opti
mal value VLD (Fisher, 1985). However, the subgradient optimization 
for updating the Lagrangian multipliers is computationally inexpensive 
and easy to implement. The simplex optimization of the master prob
lem, on the other hand, is computationally expensive and a tailing-off 
effect, i.e. slow convergence towards the optimum in the final phase of 
the algorithm, is generally observed (Barnhart et al., 1998; Vanderbeck 
and Wolsey, 1996). The use of problem specific information can guide 
the choice of the Lagrangian multipliers and can lead to a faster conver
gence, whereas we do not have the same freedom in the column genera
tion approach where the master problem provides the values of the dual 
variables. 

In this chapter we will discuss how the relationship between Dantzig-
Wolfe decomposition and Lagrangian relaxation can be exploited to de
velop improved algorithms combining the strengths of both methods. We 
discuss two ways in which the two techniques can be combined efficiently. 
To be more specific, Lagrangian relaxation can be applied to the master 
problem to approximate the optimal values of the dual variables or it 
can be used on the original compact formulation of the problem to gen
erate good columns. However, notice that we will only discuss column 
generation within the framework of DW decomposition, but it can also 
be considered as a general LP pricing technique. For the combination 
of column generation and Lagrangian relaxation within this framework, 
we refer to Löbel (1998); Fischetti and Toth (1997). In order to explain 
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the general principles within the framework of DW decomposition in 
Section 2, we use the example of capacitated lot-sizing. In Sections 3-5, 
other applications and their specific implementation issues are discussed. 

2. Theoret ical framework and basic approaches 

2 A Prel iminaries 

We will illustrate the basic approaches for combining column genera
tion and Lagrangian relaxation using the Capacitated Lot-Sizing Prob
lem (CLSP). In this problem we determine the timing and level of pro
duction for several items on a single machine with limited capacity over 
a discrete and finite horizon. For a more comprehensive description, we 
refer to Kleindorfer and Newson (1975) or Trigeiro, Thomas and Mc-
Clain (1989). Let P be the set of products { 1 , . . . , n} with index i and 
T the set of time periods { 1 , , . . , TTI} with index t. We have the following 
parameters: da is the demand of product i in period t; SQ, vci and hci 
are the set up cost, variable production cost and holding cost for product 
i, respectively; vti is the variable production time for product i and capt 
is the capacity in period t. There are three decision variables: xu is the 
amount of production of product i in period t] su is the inventory level 
of product i at the end of period t; yu = 1 ii there is a set up for product 
i in period t, yu = 0 otherwise. The mathematical formulation of the 
CLSP is then as follows: 

min ^ Y^isciyu + vcixu + hciSu) (9.1) 

subject to Si^t-i + Xit = dit + su Vi E P.Wt e T, (9.2) 

xit < Myu Vi eP.yte r , (9.3) 

J2^^i^^t < capt V t e r , (9.4) 
ieP 

yu G {0,1}, Xit > 0, Sit > 0, 5̂ ,0 - 0 yieP.yteT, (9.5) 

The objective function (9.1) minimizes the total costs, consisting of 
the set up cost, the variable production cost and the inventory holding 
cost. Constraints (9.2) are the inventory balancing constraints: Inven
tory left over from the previous period plus current production can be 
used to satisfy current demand or build up more inventory. Constraints 
(9.3) are the set up forcing constraints: If there is any positive produc
tion in period t, a set up is enforced. In order to make the formula
tion stronger, the ^big M' is usually set to the minimum of the sum of 
the remaining demand over the horizon and the total production which 
is possible with the available capacity. Next, there is a constraint on 
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the available capacity in each period (9.4). Finally, there are the non-
negativity and integrality constraints (9.5). We let VLS and VLS denote 
the optimal objective value for problem (9.1)-(9.5) and its LP relaxation, 
respectively. 

Decomposition approaches for this problem hinge on the observation 
that when we disregard the capacity constraints (9.4), the problem de
composes into an uncapacitated lot-sizing problem for each item i. Let 
S^ be the set of feasible solution for subproblem i: S^ — {{xit^yu^Sit) \ 
(9.2), (9.3), (9.5)} and S = U G P ^ " - In the Dantzig-Wolfe decomposi
tion, we keep the capacity constraints in the master problem and add a 
convexity constraint for each item (Manne, 1958; Dzielinski and Gomory, 
1965)). The new columns represent a production plan for a specific item 
over the full time horizon. Let Qi be the set of all extreme point pro
duction plans for item i; Zij is the new variable representing production 
plan j for item i] cij is the total cost of set up, production and inventory 
for production plan j for item i and Tijt is the capacity usage of the 
production in period t according to plan j for item i. The LP relaxation 
of a restricted master problem then looks as follows: 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

where Qi is a subset of Qi. Additional columns (variables) are generated 
when they are needed, using the information of the optimal dual variables 
^t (^ 0) and TTi of the capacity and convexity constraints, respectively. 
In the pricing problem, we check for each item i if we can generate a 
new column by solving the following subproblem: 

rc*(A,7r)=: min y^\sciyit+vciXit + hciSit)-Y^vtiXitXt-7ri. (9.10) 

If such a column with negative reduced cost is found, we add it to the 
restricted master problem, reoptimize this problem and perform another 
pricing iteration; otherwise we have found the optimal Dantzig-Wolfe 
bound, VDWLS-

In Lagrangian relaxation, the capacity constraints (9.4) are dualized in 
the objective function with non-positive multipliers / = {/i, 2̂? • • • ^ Im}' 

VRDWLS = mm 2 ^ 2 ^ Cij< 
'^PjeQi 

subject to V^ V^ '^ijt^ij ^ capt 

'^PjeQi 

y Zij = 1 \/i E P^ 

jeQi 

Zij > 0 yieP, Vj G Q^. 

Hj 

yteT, 



252 COL UMN GENERA TION 

VLRLs{l) = ^ min V" y^isciyu + vcixu + hciSu) 
^ '̂ ' ^ iePteT 

+ Y^lticapt-Y^vtiXity (9.11) 
teT \ ieP / 

Note that we use here non-positive Lagrangian multiphers in order 
to show the similarity with the non-positive dual variables A. The La
grangian problem also decomposes into single item uncapacitated lot-
sizing problems. For each item i we have the following subproblem: 

We see that the subproblem of calculating the minimum reduced cost 
(9.10) in the Dantzig-Wolfe decomposition and the subproblem in the La
grangian relaxation (9.12) are identical, except for a constant in the ob
jective function. The solution of the Lagrangian dual problem gives the 
maximum lower bound VLDLS = max/<o VIRLS{1)' In iterative steps, the 
multipliers are updated in order to attain this Lagrangian dual bound. 
Let X = (x^x, Xĵ25 • • • 5 ^im' • • •' ^ni' ^n2^ • ' ' ' ^nm) ^^ '̂̂ ^ optimal pro
duction quantities for the Lagrangian problem (9.11) with multipliers l^ 
at iteration fc, then the following standard subgradient update formulas 
(Fisher, 1981) result in a new vector of multipliers l^'^^: 

l^^' - min 10,1^ + ßk leapt -J^^^i^it) ) t - 1 , . . . ,m, (9.13) 

22teTi^^Pt-z2ieP^^i^it) 

Equation (9.14) determines the step-size, where 0 < a < 2 and the 
value ub is an upper bound on v^s-

During column generation, the value of the restricted master problem 
^RDWLS provides an upper bound on the optimal Dantzig-Wolfe relax
ation value VDWLS' However, a lower bound can be easily calculated as 
well. Let rc*(A,7r) be the minimum reduced cost for subproblem i with 
the current optimal dual variables A and TT, then 

^ r c * ( A , TT) + VRDWLS < VDWLS < VRDWLS- (9.15) 
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This lower bound is actually equal to the Lagrangian lower bound 
using the current optimal dual variables A as multipliers: 

ieP teT 

ieP ieP ieP teT 

ieP 

where in the final step, equivalence between XIZGP '̂ ^ + ^teT ^tcapt and 
^RDWLS follows from LP duality. This lower bound was already pro
posed by Lasdon and Terjung (1971) who used column generation to 
solve a large production scheduling problem. It has also been discussed 
for other specific problems such as discrete lot-sizing and scheduling 
(Jans and Degraeve, 2004), machine scheduling (Van den Akker, Hurkens 
and Savelsbergh, 2000), vehicle routing (Sol, 1994), a multicommod-
ity network-flow problem (Holmberg and Yuan, 2003) and the cutting 
stock problem (Vanderbeck, 1999). A general discussion can be found in 
Wolsey (1998); Martin (1999). Vanderbeck and Wolsey (1996) provide 
a slight strengthening of this bound. The bound can be used for early 
termination of the column generation procedure, reducing the tailing-off" 
efi'ect. For IP problems with an integer objective function value, we can 
also stop if the value of this lower bound rounded up is equal to the 
value of the restricted master problem rounded up. 

2*2 Using Lagrangian relaxation on the 
extended formulation 

Instead of using the simplex algorithm to obtain the optimal dual vari
ables of the (restricted) master problem, one can also use Lagrangian 
relaxation to approximate these values. Cattrysse et al. (1993); Jans 
and Degraeve (2004) apply this technique for solving a variant of the 
capacitated lot-sizing problem. A similar integration of Dantzig-Wolfe 
decomposition and Lagrangian relaxation is also used for the generalized 
assignment problem (Cattrysse, Salomon and Van Wassenhove, 1994), 
and integrated vehicle and crew scheduling which is the topic of Sec
tion 3. 

In order to approximately solve the LP relaxation of the restricted 
master problem (9.6)-(9.9), we dualize the capacity constraint (9.7) into 
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the objective function (9.6) with non-positive multiphers It: 

VLR-RDw{l) = m i n ^ ^ cijZij 

teT \ i^Pj^Q, J 

(9.17) 

subject to ^ Zij = 1 \/ie P, (9.18) 

Zij > 0 Vi G P, Vj G Qi, (9.19) 

The problem decomposes into subproblems per item that are easy 
to solve, because taking the column with the lowest total cost for each 
item results in the optimal solution. The optimal Lagrangian multipliers 
are iteratively approximated via a standard subgradient optimization 
procedure. At the end of a subgradient phase, the Lagrangian multipliers 
It are an approximation of the optimal dual variables A^ Next, the 
optimal dual variable ni of the convexity constraint for item i can be 
approximated by the value pi as follows: 

Pi = min Cij - Y^ ItTijt . (9.20) 
jeQi \ ^^rj. J 

The Lagrangian multipliers It and pi can be used to generate new 
columns in the pricing subproblem (9.10). The new columns are added 
to the restricted master problem and in a subsequent step the optimal 
dual variables A and IT for the updated restricted master problem are 
again approximated by Lagrangian relaxation. 

Given the Lagrangian multipliers It and p^, we can still compute a 
lower bound: 

^ r c * ( / , p ) +VLR.-RDW{1) < VDWLS' (9.21) 
ieP 

This can again be proven by starting from the Lagrangian relaxation 
^LRLs{l) (9.11), which gives a valid lower bound for any / < 0: 

VLRLS{1) = ^VLRLSA^^) " X^Pi + X ] P̂  + X ] ^tCapt 
ieP ieP ieP teT 

= Yl ^̂ *̂(̂ 'P) + ^P^ + Y1 ^^^^P^ 
ieP ieP teT 
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tcapt 
ieP ieP^^^^ \ teT / teT 

ieP 

What are the advantages of approximating the optimal dual variables 
by Lagrangian relaxation instead of computing them exactly with a sim
plex algorithm? Bixby et al. (1992); Barnhart et al. (1998) note that 
in case of alternative dual solutions, column generation algorithms seem 
to work better with dual variables produced by interior point methods 
than with dual variables computed with simplex algorithms. The latter 
give a vertex of the face of solutions whereas interior point algorithms 
give a point in the center of the face, providing a better representation 
of it. From that perspective, Lagrangian multipliers may also provide a 
better representation and speed up convergence. Computational exper
iments from Jans and Degraeve (2004) indicate that using Lagrangian 
multipliers indeed speeds up convergence and decreases the problem of 
degeneracy, Lagrangian relaxation has the additional advantage that 
during the subgradient phase possibly feasible solutions are generated. 
The subgradient updating is also fast and easy to implement. Finally, 
this procedure eliminates the need for a commercial LP optimizer. 

2*3 Using Lagrangian relaxation on the compact 
formulation 

This approach is based on the observation that when the Lagrangian 
relaxation is obtained by dualizing exactly those constraints that are 
the linking constraints in the Dantzig-Wolfe reformulation, the same 
subproblem results. Consequently, the solutions generated by the La
grangian subproblems can also be added as new columns to the master 
problem. This was first proposed by Barahona and Jensen (1998) for a 
plant location problem and by Degraeve and Peeters (2003) for the cut
ting stock problem. These applications are discussed in Sections 4 and 
5, respectively. It has also been applied successfully to the capacitated 
lot-sizing problem (Degraeve and Jans, 2003), that is used again to illus
trate the technique. The procedure essentially consists of a nested double 
loop. In the outer loop, optimal dual variables for the restricted master 
problem (9.6)-(9.9) are obtained by the simplex method. In the inner 
loop, the Lagrangian subproblem of the compact formulation (9.11) is 
solved during several iterations, each time with dual variables which are 
updated with a subgradient optimization procedure. A generic proce
dure is depicted in Figure 9.1. 
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Initialization 

1. Solve master:v „ 

2. Get dual variables X: 
Solve pricing problem 

6. Add new 
columns 

YES 

5. Solve Lagrangian problem 

4. Update 
Lagrangian multipliers / 

3. Compute Lagrangian 
bound: v^^(/) 

Figure 9.1. Outline of algorithm. 

After initialization, the LP relaxation of the restricted master problem 
(9.6)-(9.9) is solved (Box 1). Next the optimal dual variables A and TT 
are passed to the pricing problem (9.10), which is then solved to find 
a new column (Box 2). If the reduced cost is non-negative for each 
subproblem, then the Dantzig-Wolfe bound VDW is found. Otherwise, 
the inner loop starts (Box 3), where in the first iteration the Lagrangian 
bound VLR{1) (9.11) is computed, using the optimal dual variables of 
the restricted master problem. This bound is then compared with the 
objective value of the restricted master problem VRDW- ^OT a pure 
integer programming problem with integer coefficients in the objective 
function, the procedure terminates if both values rounded up are equal, 
and the Dantzig-Wolfe bound equals [t̂ D̂V̂ l̂ — \^LR{1)]' For a mixed 
integer programming problem, the algorithm may be terminated, if the 
difference between both values is smaller than a pre-specified percentage. 
Other stopping criteria could also be checked. For instance, Barahona 
and Jensen (1998) stop the inner loop after a fixed number of iterations. 
If no stopping criteria are satisfied, then the Lagrangian multipliers are 
updated using subgradient optimization (Box 4). The value ub in (9.14) 
is an upper bound on VLD^ and therefore, ub can be set equal to the LP 
bound of the last solved restricted master problem VRJJW^ since VRDW ^ 
^DW == VLD' Next the algorithm proceeds with solving a new Lagrangian 
problem, with the updated multipliers (Box 5). The Lagrangian bound 
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is computed again and the inner loop continues, until a stopping criterion 
is met. Next, we switch back to the outer loop. We add to the restricted 
master problem the columns with negative reduced costs (obtained in 
Box 2) and the ones generated in the inner loop if they are not yet 
present (Box 6). 

The main advantage of this procedure is that the LP relaxation of 
the master problem does not need to be solved each time to get new 
dual variables necessary for pricing out a new column. Solving the LP 
relaxation to optimality is computationally much more expensive than 
performing an iteration of the subgradient optimization procedure. At 
each subgradient iteration, a new column is found and these columns are 
expected to be "good" because the Lagrangian multipliers prices converge 
towards the optimal dual variables of the LP relaxation of the restricted 
master problem. A second advantage is that we can stop the column 
generation short of proving LP optimality of the master problem, be
cause the Lagrangian relaxation provides lower bounds on the optimal 
LP value. Barahona and Jensen (1998) mention this fact as the main 
motivation for performing a number of subgradient iterations between 
two consecutive outer loop iterations. This procedure tries to combine 
the speed of subgradient optimization with the exactness of the Dantzig-
Wolfe algorithm. In addition, the procedure provides a primal solution 
on which branching decisions or rounding heuristics can be based, which 
is not the case if only subgradient optimization is used. Computational 
results from Degraeve and Jans (2003) indicate that this method speeds 
up the column generation procedure. With this hybrid method, it takes 
about half the time to find the lower bound compared to the traditional 
method. 

3. Application 1: Integrated vehicle and crew 
scheduling 

In this section we discuss the application of a combined column gen-
eration/Lagrangian relaxation algorithm to the integrated vehicle and 
crew scheduling problem. Vehicle and crew scheduling are two of the 
most important planning problems in a bus company. After a short 
problem description, we present a formulation for the integrated prob
lem (in case of multiple-depots) to which we apply the approach outlined 
in Subsection 2.2. Some interesting, recent references on the integrated 
problem are Frehng (1997); Haase, Desaulniers and Desrosiers (2001); 
Freling, Huisman and Wagelmans (2003) for the single-depot case, and 
Gaffi and Nonato (1999); Huisman, Freling and Wagelmans (2003) for 
the multiple-depot case. 
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3,1 Problem description 
The multiple-depot vehicle and crew scheduling problem (MD-VCSP) 

can be defined as follows. Given a set of trips within a fixed planning 
horizon, it minimizes the total sum of vehicle and crew costs such that 
both the vehicle and the crew schedule are feasible and mutually compat
ible. Each trip has fixed starting and ending times, and can be assigned 
to a vehicle and a crew member from a certain set of depots. Further
more, the travelling times between all pairs of locations are known. A 
vehicle schedule is feasible if (1) all trips are assigned to exactly one 
vehicle, and (2) each trip is assigned to a vehicle from a depot that is 
allowed to drive this trip. From a vehicle schedule it follows which trips 
have to be performed by the same vehicle and this defines so-called vehi
cle blocks. The blocks are subdivided at relief points^ defined by location 
and time, where and when a change of driver may occur and drivers 
can enjoy their break. A task is defined by two consecutive relief points 
and represents the minimum portion of work that can be assigned to a 
crew. These tasks have to be assigned to crew members. The tasks that 
are assigned to the same crew member define a crew duty. Together the 
duties constitute a crew schedule. Such a schedule is feasible if (1) each 
task is assigned to one duty, and (2) each duty is a sequence of tasks 
that can be performed by a single crew, both from a physical and a legal 
point of view. In particular, each duty must satisfy several complicating 
constraints corresponding to work load regulations for crews. Typical ex
amples of such constraints are maximum working time without a break, 
minimum break duration, maximum total working time, and maximum 
duration. 

3*2 Mathemat ica l formulation 

Let Â  =^ {1, 2 , . . . , n} be the set of trips, numbered according to in
creasing starting time. Define D as the set of depots and let s^ and 
t^ both represent depot d. Furthermore, for the crew we distinguish 
between two types of tasks, viz., trip tasks corresponding to trips, and 
dh-tasks corresponding to deadheading. A deadhead is defined as a pe
riod that a vehicle is moving in time or space without passengers. E^ is 
the set of deadheads between two trips i and j . 

We define the vehicle scheduhng network G^ — (F^, A^), which is 
an acychc directed network with nodes V^ = Â^̂  U {5^,t^}, and arcs 
A^ ^E'^yj [s^ X N^) U {N^ X t^). Note that Â ^ is the subset of Â  that 
can be serviced by depot d, since it is not necessary that all trips can be 
served from each depot. Let cf^ be the vehicle cost of arc (i, j ) G A^, 
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Furthermore, let K^ denote the set of duties corresponding to depot 
d and /^ denote the crew cost of duty k e K^^ respectively. Moreover, 
K^{i) denotes the set of duties covering the trip task corresponding to 
trip i G N^^ which means that we assume that a trip corresponds to 
exactly one task. K^{i^j) denotes the set of duties covering the d/i-tasks 
corresponding to deadhead (i, j ) G A^, Decision variable yf, indicates 
whether an arc (i, j ) is used and assigned to depot d or not, while xf 
indicates whether duty k corresponding to depot d is selected in the 
solution or not. The multiple-depot vehicle and crew scheduling problem 
(MD-VCSP) can be formulated as follows. 

min^ E 4yi + J2Ilfk4 (9.22) 

subject to V E yfj ""1 Vi G Â , (9.23) 

J2 E 4 = 1 îeTV, (9.24) 

E 4 - E yß = 0 ^deD, Vi € iV^ (9.25) 

E ^' - E yi = o WeD,^ie N^ (9.26) 
keK'i{i) j : {i,j)€.A'' 

E 4 - 4 = 0 "^dG D, V(i, j) G A'', (9.27) 
keK''{i,j) 

xf e {0,1} w eD, yke K'^, (9.28) 
46(0,1} \/d€D,^ii,j)eA'^. (9.29) 

The objective is to minimize the sum of vehicle and crew costs. The 
first three sets of constraints, (9.23)-(9.25), correspond to the formula
tion of the vehicle scheduling problem. Notice that in this formulation 
constraints (9.24) are redundant. However, it is useful to have these 
constraints when we relax constraints (9.25), as will be done in the algo
rithm. Constraints (9.26) assure that each trip task will be covered by 
a duty from a depot if and only if the corresponding trip is assigned to 
this depot. Furthermore, constraints (9.27) guarantee the link between 
vehicles and crews. That is, a vehicle performs deadhead (i, j ) if and 
only if the corresponding d/i-task is assigned to a driver from the same 
depot. 

Notice that this formulation is already an extended one. We would 
obtain a similar formulation, if we would apply Dantzig-Wolfe decompo-
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sition on a compact formulation of this problem. Desrosiers et al. (1995) 
show how such a transformation can be applied on the multicommodity 
flow problem with resource constraints, which has as special case all kind 
of vehicle and crew scheduHng problems. 

3,3 Algorithm 
Below we flrst give a schematic overview of a combined column gen-

eration/Lagrangian relaxation algorithm to solve the MD-VCSP. After
wards, we discuss the steps related to Lagrangian relaxation (1,2 and 4) 
in more detail. For details about the other steps, we refer to Huisman, 
Freling and Wagelmans (2003). 

STEP 1 Find an initial feasible solution and take as initial set of columns 
the duties in that solution. 

STEP 2 Solve a Lagrangian dual problem with the current set of columns 
approximately, i.e. perform some subgradient optimization steps to up
date the multipliers. This gives a lower bound for the current restricted 
master problem. 

STEP 3 Modify multipliers to prevent that columns are generated twice. 

STEP 4 Generate columns (duties) with negative reduced cost and up
date the set of columns. 

STEP 5 Compute an estimate of a lower bound for the (full) master 
problem. If the gap between this estimate and the lower bound found in 
Step 2 is smah enough (or another termination criterion is satisfied), go 
to Step 6; otherwise, return to Step 1. 

STEP 6 Construct feasible solutions by applying a Lagrangian heuristic. 

To approximate the optimal value of the restricted master problem 
in Step 1, we use the relaxation of model MD-VCSP, where the equal
ity signs in the constraints (9.25)-(9.27) are first replaced by "greater-
than-or-equal" signs. These constraints are subsequently relaxed in a 
Lagrangian way. That is, we associate non-negative Lagrangian mul
tipliers /̂ ,̂ Af, jif^ with constraints (9.25), (9.26), (9.27), respectively. 
Then the optimal solution of the remaining Lagrangian subproblem can 
be obtained by inspection for the x variables and by solving a large 
single-depot vehicle scheduling problem (SDVSP) for the y variables. 

The values of the Lagrangian multipliers obtained after applying a 
subgradient algorithm can be used to generate new columns. However, 
to assure that all columns in the current restricted master problem have 



9 Combining Column Generation and Lagrangian Relaxation 261 

non-negative reduced costs such that the corresponding duties will not 
be generated again in the pricing problem, we use an additional pro
cedure (Step 3) to update the Lagrangian multipliers after solving the 
Lagrangian relaxation. This can be done with a greedy heuristic, that 
modifies these multipliers i j such a way that columns in the current 
restricted master problem K^ have non-negative reduced costs and the 
value of the Lagrangian function does not decrease. We denote /^ as 
the reduced cost of column k G K^, which is equal to 

fk- T. ^i- E 4 ' (9-30) 
ieN{k4) {i,j)eA{k4) 

where N{k^ d) and A{k^ d) are the set of trip tasks and d/i-tasks in duty 
k from depot (i, respectively. The heuristic is described below (see also 
Freling, 1997; Carraresi, Girardi and Nonato, 1995): 

for each column k e K^ with /^ < 0; 
fd 

^'^ \N{k^d)\l\A{k^d)\'' 
for each trip task i € N{k,d): Xf := \f + ö\ 

for each d/i-task (i, j ) G A{k^d)\ ji^j := ji^j + 5\ 

update the reduced costs for all columns / G K and I > k. 

Finally, we will discuss Step 4, where we compute an estimate of a 
lower bound for the master problem given a lower bound for the current 
restricted master problem. The latter bound, denoted by $'(/^, A,/i), is 
obtained in Step 1. Then the expression: 

^'{K,X,ß) + Y, E ™in(/fc'0) (9-31) 

is a lower bound for the (full) master problem for each vector {n^ A, /LX). 
This can be proven in a similar way as in Subsection 2.2. Therefore, we 
will skip this proof here. 

Notice, however, that we do not calculate this lower bound in each 
iteration, since for generating new columns it is not necessary to calculate 
the reduced costs for all of them. Therefore, we estimate this bound 
in each iteration by taking only into account the reduced costs of the 
columns that we actually add to the master problem. This estimate 
can be used to stop the column generation part of the algorithm earlier 
without exactly obtaining a lower bound. 
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Table 9.1. Computational results MD-VCSP. 

# trips 

# iter. 
cpu m. 
cpu p. 
cpu t. 

# found 

gap (%) 

80 

17.4 
154.7 
148.7 
317.5 

10 

5.37 

100 

25.2 
403.9 
510.7 
942.3 

10 

5.31 

160 

36.8 
982.8 

3529.8 
4721.3 

4 

5.75 

200 

39.5 
1641.5 
4769.5 
6675.0 

2 

6.52 

3,4 Some results 
The algorithm presented in the previous subsection has been used 

to solve several problem instances arising from real-world applications 
as well as randomly generated instances. In Table 9.1 we summarize 
some of the results for randomly generated instances with two depots 
(see Huisman, Freling and Wagelmans, 2003). We report the average 
number of iterations of the column generation algorithm, and the av
erage computation times for the master problem (cpu m.) and pricing 
problem (cpu p.), respectively. Furthermore, we give the total average 
computation time for computing the lower bound (cpu t.). These aver
ages are computed over the instances for which a lower bound is found 
within 3 hours of cpu time on a Pentium III 450MHz personal computer 
(128MB RAM). Therefore, we also report the number of instances (out 
of 10) for which we actually found a lower bound. In the remainder 
of the table, we report the average gaps between the lower and upper 
bounds. Notice that all computation times are mentioned in seconds. 

In Table 9.1, we only provide results for instances up to 200 trips, 
since for larger instances we were not able to compute a lower bound 
within 3 hours computation time. The average gaps between the fea
sible solutions and the lower bound are about 5% for those instances. 
However, for large instances we can still use the suggested algorithm to 
compute feasible solutions by terminating the lower bound phase after a 
maximum computation time and then continue with Step 5. In practice, 
this is already quite satisfactory. Therefore, these types of algorithms 
can be used to solve practical problem instances in an integrated way. 

4, Application 2: Plant location 
Barahona and Jensen (1998) apply the procedure described in Sub

section 2.3 to a plant location problem with minimum inventory. Given 
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a set N of customers, each requiring a set of parts Di C P^i E N^ where 
P denotes the set of all parts, and a set of M possible locations, the ob
jective is to minimize the total costs such that every customer is served, 
a bound on the total number of warehouses is not exceeded and a service 
criterion is met. The total costs consist of a fixed costs / j , for j G M, if a 
warehouse is opened at location j , a transportation cost Cij if customer i 
is served from warehouse j , and an inventory cost hjk^ if part k is stored 
in warehouse j . A part must be stored in a warehouse if a customer, 
requiring that part, is assigned to the warehouse. The service criterion 
implies that a given percentage of the total demand must be delivered 
within a certain time limit. Let yj be 1, if warehouse j is opened, and 
0 otherwise, let Xij be 1 if customer i is assigned to warehouse j , and 0 
otherwise, and let Zjk be 1, if part k must be stored in warehouse j , and 
0 otherwise. Then the model can be stated as follows. 

min Y^ fjVj + J2Y^ «̂î 'i + 5] Z] î̂ Ĵfc 
jeM i&N jeM jeM keP 

subject to 2_. ^ij — 1 yi E N, 
jeM 

/ , / J dij^ij ^ )̂ 
ieN jeM 

Yl % - ^^ 
jeM 

Xij < Vj Vi € N, \/j e M, 

Xij < Zjk Vi € N, Vj EM, \/kE Di, 

Xij, yj,Zjk € {0,1} Vi € A ,̂ Vj EM, ykE P. 

(9.32) 

(9.33) 

(9.34) 

(9.35) 

(9.36) 

(9.37) 

(9.38) 

The objective (9.32) is to minimize the total costs, i.e. the sum of 
fixed costs for opening warehouses, transportation and inventory costs. 
Constraints (9.33) impose that every customer must be assigned to one 
location. Constraint (9.34) is the service criterion, i.e. suppose that 
the company would like that 95% of the demand can be served within 
two hours, then t equals 95% of the total demand and dij is equal to 
the demand of customer i, if the travel time between i and j is less 
than two hours, and 0 otherwise. Constraint (9.35) implies that at most 
L locations can be opened. Constraints (9.36) and (9.37) define the 
relations between the variables, i.e. a customer can only be assigned 
to a warehouse, if the warehouse is open (9.36), and, if customer i is 
assigned to a warehouse, then all parts Di of customer i must be present 
in the warehouse (9.37). 
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The Dantzig-Wolfe reformulation consists of implicitly considering ev
ery possible assignment of customers to locations. Hence, the objective 
function and constraints of (the LP relaxation of) the master problem 
correspond to (9.32)-(9.35) and the original variables are replaced by a 
convex combination of the extreme points of the polytope defined by 
(9.36)-(9.38). Barahona and Jensen (1998) show that the pricing prob
lem is equivalent to a minimum cut problem. They observed that the 
convergence of the Dantzig-Wolfe algorithm is very slow for this prob
lem and that the lower bound obtained by adding the reduced cost of 
the columns that price out to the value of the current restricted master 
problem, is very poor in the first iterations of the Dantzig-Wolfe algo
rithm and improves only slowly. After solving the LP relaxation of the 
current restricted master problem, they perform a fixed number of sub-
gradient iterations on the original problem to improve the bound, using 
the master problem's optimal dual variables as starting values for the 
subgradient procedure. Next, all columns are added to the LP relaxation 
of the restricted master problem, which is then re-optimized. If the new 
optimal objective value and the Lagrangian lower bound are close to each 
other, then a heuristic is apphed to obtain an integer solution. They are 
able to obtain good solutions for problems with about 200 locations, 200 
parts and 200 customers within about one hour of computation time on 
a RS6000-410, using OSL (IBM Corp., 1995) to solve the LPs. 

5. Application 3: Cutting stock 

Degraeve and Peeters (2000) use a combination of the simplex method 
and subgradient optimization to speed up the convergence of the col
umn generation algorithm of Gilmore and Gomory (1961) for the one-
dimensional cutting stock problem (CSP). This procedure is used to 
compute the LP relaxation at every node of the branch-and-price tree 
of the algorithm described in Degraeve and Peeters (2003). The CSP 
can be defined as follows. Given an unlimited stock of a raw material 
type of length c and a set of n items with widths wi^,.. ^Wn and de
mands d i , . . . ,cfn, cut as few raw material types as possible, such that 
the demand is satisfied and the total width of the items cut from a raw 
material type does not exceed its length c. Let P be the set of all feasible 
cutting patterns, or 

P=LeZl: Y^WiPi<c\. (9.39) 
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Let Zp be the number of times pat tern p is selected in the solution, 
then the Gilmore and Gomory formulation can be stated as follows: 

minY^Zp (9.40) 
peP 

subject to / J p z ^ p > di Vi € 1 , . . . ,n , (9,41) 

peP 

Zpe { 0 , 1 , 2 , . . . } \fpeP, (9.42) 

The objective function (9.40) minimizes the total number of cut raw 
material, whereas constraints (9.41) are the demand constraints and con
straints (9.42) the integrahty and non-negativity restrictions. The LP 
relaxation of (9.40)-(9.42) can be solved by column generation, where 
the pricing problem is a bounded knapsack problem, if one does not al
low that the number of items present in a cutting pat tern exceeds the 
demand, i.e. Pi < di. 

Using the procedure described in Subsection 2.3, Degraeve and Peeters 
(2000) are able to achieve a substantial reduction in required CPU time 
to solve the LP relaxation of (9.40)-(9.42). Like Barahona and Jensen 
(1998), they use a hmit on the number of subgradient iterations in the 
inner loop of Figure 9.1, but, in addition, the inner loop is interrupted, if 
a new column has non-negative reduced cost, or if the Lagrangian bound 
rounded up equals the master problem's objective value rounded up, as 
explained earher in Figure 9.1. If this last condition holds, the Dantzig-
Wolfe lower bound is found. Otherwise, all different columns generated 
in the inner loop are added to the restricted master problem. First it 
is checked if the value of the best Lagrangian lower bound rounded up 
is equal to the value of the new restricted master problem rounded up. 
Then, the algorithm can be terminated, otherwise the next iteration of 
the outer loop continues. 

Table 9.2 presents the results of the computation times for cutting 
stock instances with 50, 75 and 100 items for 4 different width inter
vals given in the first row, in which the item widths are uniformly dis
tributed. The demand is uniformly distributed with an average of 50 
and the raw material length equals 10000. The experiments were run 
on a Dell Pentium Pro 200Mhz P C (Dell Dimension XPS Pro 200n) 
using the Windows95 operating system, the computation times are av
erages over 20 randomly drawn instances and given in seconds. The 
LPs are solved using the industrial LINDO optimization library version 
5.3 (Schräge, 1995). The columns labelled "DW" present the traditional 
Dantzig-Wolfe algorithm and the columns labelled "CP" present the re
sults of the combined procedure of Figure 9.1. We observe that the 

file:///fpeP
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Table 9.2. Computational results, Cutting Stock Problem. 

int 
n 

50 
75 
100 

[1,2500] 
DW 

0.44 
1.14 
3.19 

CP 

0.21 
0.47 
0.84. 

[1,5000] 
DW 

1.47 
4.82 
15.96 

CP 

0.52 
1.12 
2.05 

[1,7500] 
DW 

0.67 
4.26 
14.78 

CP 

0.46 
1.14 
3.99 

[1,10000] 
DW 

0.14 
0.53 
1.65 

CP 

0.10 
0.27 
0.73 

reduction in CPU time is higher, when the number of items is higher, 
and can be as high as a factor 8. 

6, Conclusion 

We discussed two ways to combine Lagrangian relaxation and column 
generation. Since this combination has not been used quite often, there 
are many interesting research questions open. For example, should we 
use another method to approximate the Lagrangian dual, e.g. a multi
plier adjustment method? Furthermore, when implementing such algo
rithms one has to make decisions with respect to issues such as column 
management. 

In the first method, we used Lagrangian relaxation to solve the ex
tended formulation. Therefore, no simplex method was necessary any
more, which has several advantages. First of all, it decreases the prob
lem of degeneracy and speeds up the convergence. Furthermore, master 
problems with a larger number of constraints are most often faster solved 
with Lagrangian relaxation than with a LP solver. We showed this by 
solving the multiple-depot vehicle and crew scheduling problem. 

In the second method, Lagrangian relaxation was used to generate 
new columns. It is an effective method to speed up convergence of the 
Dantzig-Wolfe column generation algorithm. The method seems to be 
quite robust, since it gives good results on three totally different prob
lems, and this without much fine-tuning of the parameters. Several issues 
can be further investigated. For example, how many subgradient itera
tions do we allow in the inner loop of Figure 9.1? This is also related to 
the number of columns that we want to add in an inner loop: All new 
columns, the ones with negative reduced cost or only the ones with the 
most negative reduced cost? Adding more columns leads possibly to a 
faster convergence, but larger restricted master problems are also more 
difficult to solve. Do we initialize the multipliers in the Lagrangian re
laxation part with the best Lagrangian multipliers of the previous step, 
with the optimal dual variables provided by the simplex algorithm for 
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the current restricted master problem, or some combination? Clearly, 
there are ample opportunities for research into the effective combination 
of column generation and Lagrangian relaxation. 
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Chapter 10 

DANTZIG-WOLFE DECOMPOSITION 
FOR JOB SHOP SCHEDULING 

Sylvie Gelinas 
Frangois Soumis 

A b s t r a c t This chapter presents a formulation for the job shop problem based 
on Dantzig-Wolfe decomposition with a subproblem for each machine. 
Each subproblem is a sequencing problem on a single machine with time 
windows. The formulation is used within an exact algorithm capable of 
solving problems with objectives Cmax, T'max, as well as an objective 
consistent with the Just-In-Time principle. This objective involves an 
irregular cost function of operation completion times. Numerical re
sults are presented for 2 to 10 machine problems involving up to 500 
operations. 

1. Introduction 
The job shop problem is a classical scheduhng problem (French, 1982) 

that consists of scheduling n jobs on m machines. A single machine pro
cesses one job at a time and a job is processed by one machine at a time. 
Processing of one job on one machine is called an operation. The length 
of an operation is fixed; once begun, an operation may not be inter
rupted. The sequence of machines is known for each job. This sequence 
defines precedence constraints between the operations. The sequence of 
jobs on each machine must be determined so as to minimize a function 
of the operation completion times. This chapter considers problems in 
which jobs do not necessarily involve operations on all machines, but 
only on a subset of machines. This problem is occasionally referred to 
as the general job shop problem. 

The problems considered in this chapter can be classified using the clas
sical notation such as (J|ri,di|Cmax), {J\n,di\Tmax) and {J\ri,di\JlT). 
The job shop problem is NP-hard in the strong sense (Rinnooy Kan, 
1976; Garey and Johnson, 1979) and is one of the hardest problems to 
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solve in practice. The most successful exact algorithms use a branch and 
bound procedure. See McMahon and Florian (1975); Lageweg, Lenstra 
and Rinnooy Kan (1977), Barker and McMahon (1985); Carlier and 
Pinson (1989), and Brucker, Jurisch and Sievers (1994). 

Three branching schemes are generally used: conflict resolution in the 
disjunctive graph (Roy and Sussman, 1964), generation of active sched
ules (Giffler and Thompson, 1960), and time oriented branching (Marten 
and Shmoys, 1996). The conflict resolution scheme produces a complete 
schedule at each node of the branch tree; schedules thus produced may, 
however, violate the machine constraints. Two descendants are obtained 
by selecting two operations in conflict and imposing an order on them. 
In the generation of active schedules scheme, schedules are constructed 
sequentially from the root of the tree to a terminal node. A node of 
the branch tree is associated with a feasible schedule for a subset of op
erations. Barker and McMahon (1985), by contrast, propose a scheme 
that obtains a feasible schedule for all operations at each node of the 
branch tree. This procedure branches by rearranging operations in a 
critical block to yield an improved schedule. The head-tail adjustment 
proposed by Brinkkotter and Bruckner (2001) is also of this type. 

A lower bound may be obtained by relaxing the machine constraints 
for all machines except one, to yield m scheduling problems on a sin
gle machine with time and precedence constraints (n|r^,(i2,prec|Cmax)-
While this problem is NP-hard, even large instances of it may be solved 
efliciently (Carlier, 1982; McMahon and Florian, 1975). The maximum 
value found for the m problems gives a lower bound for the job shop 
problem. Lageweg, Lenstra and Rinnooy Kan (1977) discuss this bound, 
as well as many others obtained by relaxing one or more aspects of the 
scheduling problem on one machine. Balas, Lenstra and Vazacopou-
los (1995) propose an improvement that considers delayed precedence 
constraints between operations. They used the resulted bound within 
the shifting bottleneck heuristic of Adams, Balas and Zawack (1988). 
Brucker and Jurisch (1993) obtain a bound derived from two-job schedul
ing problems. Problems are solved in polynomial time using a graphical 
method. Numerical results show that the bound obtained in this way is 
superior to that obtained from single-machine scheduling problems if the 
ratio between the number of machines and the number of jobs is large. 

Other authors propose a relaxation of the problem based on a math
ematical formulation. Fisher (1973) uses Lagrangian relaxation to solve 
problems with min-sum type objectives. He dialyzes the machine con
straints and conserves precedence constraints. This method is tested 
on eight problems involving up to five jobs and four machines. Hoit-
omt et al. (1993) present an augmented Lagrangian approach for the 
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weighted quadratic tardiness job shop problem. They obtained feasible 
solutions within 4% of their respective lower bounds for 125-145 job 
problems with 1 to 3 operations per job. Fisher et al. (1983) propose 
two aggregate-constraint formulations for the objective Cmax, in which 
either the precedence or machine constraints are grouped into a linear 
combination. While these formulations yield a better bound than those 
obtained from single-machine scheduling problems or Lagrangian relax
ation, the effort required discourages any search beyond the root of the 
search tree. 

Currently available exact methods are not capable of solving large-
scale problems. Carher and Pinson (1989) solved the famous 10-machine, 
10-job problem of Muth and Thompson (1963), more than 25 years af
ter its pubhcation. Applegate and Cook (1991) have solved some 150, 
225-operation problems using many families of cutting phases and some 
good heuristics to find feasible solutions. However, some problems of 
150, 200, 225-operations stayed unsolved. Brucker et al. (1994) have 
solved problems having up to 300 operations on a Sun 4/20 workstation. 
Optimal solutions of some of these problems require close to five days of 
CPU time. 

In view of the difficulty of the job shop problem, algorithms should be 
developed to address the special structure of the problems encountered 
in industry. This chapter describes an efficient exact algorithm to solve 
problems with many jobs and few operations per job. Such problems 
appear more and more frequently in manufacturing, where increasingly 
versatile machines are capable of processing jobs with few changes per 
machine. The real problems from Pratt & Witney presented in Hoitomt 
et al. (1993) have this property (1 to 3 operations per job). 

Most algorithms are designed to minimize the total length of opera
tions (Cmax) a.nd are poorly adapted to other objectives. In practice, 
however, other objectives such as minimizing inventory costs or penal
ties arising from delivery delays are frequently more interesting. While 
the objective Tmax has been examined in the context of the one-machine 
scheduling problem, it has received httle attention with regard to the 
general job shop problem. Furthermore, the literature contains virtu
ally no discussion on exact methods for irregular functions of comple
tion times. This chapter discusses objectives such as. the total length 
of operations (Cmax)? the maximum tardiness (T^ax) and an objective 
consistent with the Just-In-Time principle. 

The algorithm presented here is of the branch and bound variety. A 
lower bound is obtained using Dantzig-Wolfe decomposition, (Dantzig 
and Wolfe, 1960). Unlike Fisher, we use a primal approach and relax 
precedence constraints rather than machine constraints. A primal ap-
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proach yields faster convergence; furthermore, precedence constraints 
play a reduced role in problems involving few operations per job. The 
solution to the master problem provides a lower bound for the job shop 
problem, which is incorporated into a branching scheme based on con
flict resolution. This formulation can be adapted to several objectives, 
including irregular functions of completion times. This is not the case 
for the aggregate-constraint formulation of Fisher et al. (1983), which 
is only valid for minimizing Cmax-

The Dantzig-Wolfe decomposition was used for parallel machine sched
uling problems by van den Akker et al. (1995) and Chen and Powell 
(1999a,b, 2003). This scheduhng problem does not involve precedence 
constraints and is simpler than the job shop scheduling problem. The 
column generation algorithms proposed by these authors are straightfor
ward translations of the algorithm for vehicle routing problems presented 
by Desrochers et al. (1992). The present chapter proposes a column gen
eration algorithm for a more complex problem. 

More references on methods using constraint programming, meta-
heuristics, neural networks, can be found in surveys on the job shop 
scheduhng problem by Blazewicz et al. (1996) and Join and Meeron 
(1999). More recent work using constraint propagation was presented 
by Dorndorf et al. (2000, 2002). 

2. Mathematical formulation 
We consider n jobs (index j ) , m machines (index i) and N operations 

(indices u^ v). Let pu be the time required for operation u^ iu the machine 
on which operation u is to be carried out, Vu the earliest time at which 
operation u may begin and du the latest time at which operation u may 
end. 

Precedence relations are contained in the set 

A = {(?i, v)\u and v are successive operations of the same job, 

and u preceeds v} 

and pairs of operations carried out on machine i are contained in set 

Bi = {{'̂ ) v} \ u y^ v^ and iu = iv =" i}) i = 1 , . . . , m. 

The job shop problem is formulated using a min-max type objective 
function. We consider a function gu{Cu) of completion time Cu for op
eration u. We assume that the function gu{Cu) is piecewise hnear, but 
not necessarily monotone. We define ^max, a variable that takes the 
maximum value of the quantities gu{Cu) for all operations u. 

We define the following variables, 
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Cu* completion time for operation Uj u = 1^... jN^ 

^max» cost of the solution. 

The job shop problem can be formulated as follows. 

min^max (10.1) 
S.t. •gm^x>9u{Cu) U=1,,,,,N, (10.2) 

Cu<Cy-py {u,v)eA, (10.3) 

ru+Pu<Cu<du u = l,.,,N, (10.4) 

Cu<Cv-pvyCv< Cu -Pu {u,v} e Bi, i ==: l , . . . , m . (10.5) 

We minimize a min-max type function of the operation completion 
times (10.1)-(10.2) under precedence constraints (10.3), time constraints 
(10.4) and machine constraints (10.5). The machine constraints are dis
junctive and require that two operations carried out on the same machine 
may not occur at the same time. These constraints make the problem 
non-linear and hence difficult to solve. The next section reformulates 
the job shop problem using Dantzig-Wolfe decomposition. 

3, Decomposition 
We have formulated the job shop problem as a non-linear problem 

with disjunctive constraints. Relaxing the precedence constraints yields 
a problem that is separable by machine. Each problem corresponds to 
a single-machine scheduling problem whose solution provides a lower 
bound on the job shop problem. This idea is apphed within the frame
work of Dantzig-Wolfe decomposition. 

Constraints used to compute the objective (10.2), as well as the prece
dence constraints (10.3), are left in the master problem. The time con
straints (10.4) and machine constraints (10.5) are transferred to the sub-
problems. Each subproblem generates schedules for one machine. The 
master problem selects a convex combination of the generated schedules 
that satisfies the precedence constraints. The Dantzig-Wolfe decompo
sition provides the optimal solution for a linear problem, and for the job 
shop problem, it provides a lower bound. This bound is better than that 
obtained by ignoring the precedence constraints, because of the exchange 
of information between the master problem and the subproblems. 

3.1 Master problem 
The following notation is used in the master problem formulation. 

Clii set of schedules that satisfy the time constraints (10.4) and machine 
constraints (10.5) for machine i, i — 1, . . . ,m, 
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C!^i completion time for operation u in schedule /i, u = 1,...,A^, 

Hfi : variable associated with schedule /i, V/i E Hi, i — 1 , . . . , m. 

The master problem is then: 

s.t. 

mmpmax 

E yhCu< E yhCl:-Pv y{u,v)€A, 

E y/i = 1 i = l , . . . ,m, 
heüi 

Vh > 0, v/i e Oi, i = l, 

(10.6) 

(10.7) 

(10.8) 

(10.9) 

, m. 
(10.10) 

The master problem is formulated using variables associated with 
schedules for a single machine. Its objective is to find a convex com
bination of schedules for each machine such that the precedence con
straints (10.8) are satisfied and the cost (10.6)-(10.7) is minimized. The 
convex combination constraints are given by (10.9) and (10.10). 

The set of schedules for machine i is not convex, because of the ma
chine constraints (which are disjunctive). This set contains a polytope 
for each ordering; each point in a polytope corresponds to a schedule 
for the ordering associated with the polytope. Polytopes are bounded, 
because of the time windows and have a finite number of extreme points 

Machine 1 Machine 2 

Jobl / O-

Job 2 

2 
[0,8] 

\ / 
I I 

3 

\ [0,8] / 

2] \ 
~2 

[2, 10] 

-^, ^ ( 4 

\ [2,10]/ 

Figure 10.1. A job shop problem. 
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Figure 10.2. Schedules for machine 1. 

and no extreme rays. The master problem obtains schedules as convex 
combinations of points in the set fi^. These schedules belong to the con
vex envelope of f̂ ,̂ but not necessarily to the set Q^i itself. Conv(n^), 
the convex envelope of f]̂  is the convex combination of a finite set of 
extreme points; the union of the finite number of orderings on machine 
i of the finite set of extreme points of the polytope for this ordering. 
Because Vti C Conv(n^), Dantzig-Wolfe decomposition provides a lower 
bound for the job shop problem. 

A job shop problem with two jobs, two machines and four operations 
is illustrated in Figure 10.1. All operations last two units of time. Job 
processing may begin at time 0, and must be completed by time 10. 
Figure 10.2 illustrates all feasible schedules for machine 1, which make up 
two polytopes associated either with the ordering 1-3 or the ordering 3-1. 
Each point in the set corresponds to a schedule for these two operations. 
The convex envelope of this set contains schedules that may be selected 
in the solution of the Dantzig-Wolfe decomposition. 

Since there is a large number of sequences for each machine, it is 
impossible to enumerate all of them in a job shop problem unless the 
number of operations on each machine is very small. There is an even 
greater number of extreme schedules, which represent extreme points of 
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schedule polytopes for all sequences. The master problem considers only 
a subset of schedules for each machine. New schedules are generated by 
subproblems as necessary. 

3.2 Subproblems 

Subproblem Si finds the schedule at minimum marginal cost for ma
chine i. Dual variables for the master problem are denoted as follows: 

7̂ i > 0 -u = 1 , . . . , A/', Constraints for computing the objective (10.7), 

(^uv ^ 0 (u^v) G A, Precedence constraints (10.8), 

Â  i = 1 , . . . , m. Convexity constraints (10.9). 

Column /i* of minimum reduced cost Ch* for subproblem Si is such that 

c/.* = min̂  1 Y.^^Su{Cli)+ J2 Yl ^^^^^ 
(^lilin^i u\iu=iv\{u,v)eA 

~ 2^ Z ^ ^vuC^ - Xi 
u\iu=i v\(v,u)eA 

(^w|z-u=z u\iu=i \v\{u,v)eA v\{v,u)eA 

E (7«5u(C^) + «̂ «C )̂ = mm 
u\iu=i 

> - Xi 

>-Xi 

where Wu = Ev\iu,v)eA^uv - Ev\{v,u)eA^vu 
and g'^iCli) = -fu9u{Cll) + WuCt u=l,,,,,N, 

Subproblem Si is formulated as follows: 

min E g'uiCu) (10.11) 

u\iu=i 

s.t. ru-\-pu<Cu<du u\iu^i, (10.12) 

Cu <Cy-pvVCy<Cu~Pu {u, ^} G A- (10.13) 

This subproblem is a sequencing problem on a single machine with 
time constraints and an objective of minimizing a piecewise linear func
tion of the completion times: n\ru^du\Ylgu{Cu)' The problem is difficult 
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because the cost function is irregular (the weights Wu may be positive or 
negative and the function gu{Cu) is an irregular function). This problem 
is solved using a dynamic programming algorithm. A dynamic program
ming state is associated with a set of operations X and cost function 
Gx{t)' The function Gxif) gives the minimum cost of a feasible sched
ule that carries out all operations of X and ends at the latest at time 
t. The functions Gx{t) are evaluated by stages. At stage /c, functions 
are evaluated for sets having k operations, using function values for sets 
containing (fc — 1) operations. Details of the algorithm may be found in 
Gelinas and Soumis (1997). 

At each iteration of the Dantzig-Wolfe algorithm, the master problem 
is solved using the simplex algorithm. The solution provides the values 
of the dual variables, which are then used in the subproblems to obtain 
new schedules, that is, new columns for the master problem. Columns 
are added to the master problem if their marginal cost is negative, giving 
rise to a new iteration. The procedure terminates when each subproblem 
generates a column with nonnegative marginal cost. The solution to the 
master problem is then the optimal solution for all columns, whether or 
not they are considered explicitly. 

3,3 Branching 
Dantzig-Wolfe decomposition provides a lower bound for the job shop 

problem. Although the solution satisfies the precedence and time con
straints, it may violate the machine constraints because Qi C Conv(f2^). 
If all machine constraints are satisfied, the solution is optimal for the job 
shop problem. Otherwise, there are operations carried out concurrently 
on the same machine. In this case, a pair (n, v) of operations that conflict 
on one machine is selected and two new problems are created by impos
ing an order on these operations: either operation u is carried out before 
operation v^ or operation v is carried out before operation u. The new 
problems are solved using Dantzig-Wolfe decomposition and this process 
continues until the branching tree has been thoroughly explored. The 
lower bound may be used to prune branches from the tree. 

To respect the order imposed by the branching, precedence constraints 
are added between operations carried out on one machine. These con
straints are easily handled in the subproblem solution. Dynamic pro
gramming states that do not satisfy constraints are not constructed. 
The subproblem then becomes a sequencing problem on a single ma
chine with time and precedence constraints (n | r̂ ,̂ d^, prec | ^ 9u{Cu)) -

An optimal schedule for the job shop problem of Figure 10,1, with the 
objective Cmax̂  is illustrated in Figure 10.3. The optimal schedule ends 
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Figure 10.3. Optimal solution for objective On 

at time 6. For this example, the Dantzig-Wolfe solution combines two 
schedules for each machine 

Ci 
- 0 . 5 

0,5 

+ 0.5 

+ 0.5 

This solution is infeasible because operations 1 and 3 are carried out 
concurrently on machine 1, and operations 2 and 4 are carried out 
concurrently on machine 2. An optimal, feasible solution is then ob
tained using the branching tree. Finally, note that, for this example, 
the Dantzig-Wolfe decomposition provides a lower bound of 5, while an 
approach ignoring the precedence constraints would provide a bound 
of 4. 

3.4 Cmax objective 

The present formulation can be used to model problems with objec
tives of type Cmax if we set gu{Cu) = Cw The master problem then 
becomes: 

s.t. Cn 

min Cmax 

u 1 N 

constraints (10.1 

(10.14) 

(10.15) 

(10.9) and (10.10). 

Another formulation, providing a better bound in the linear relaxation 
of the Dantzig Wolfe decomposition, has been developed for this specific 
objective. In this formulation, the objective is a function of the weighted 
mean completion time for each operation. The order of operations is 
not the same in the generated schedules. Some schedules for machine 
i may have operation u as their final operation, while others may have 
operation v y^ u diS their final operation. The mean completion time for 
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operations u and v may be far smaller than the mean completion time 
for all operations on machine i. 

It would be better to express makespan constraints as a function of 
the completion time for each machine. To accomplish this, a fictitious 
operation is added for each machine, i.e., u = N + l,N + 2^.,.^N + m. 
We set pN-^i = 0, TN+i =" m^Xy^ii^^iVu + Pu^ dN+i = max^|^^^^ d^, i = 
1 , . . . , m and require that the operation N + i he the last carried out on 
machine i. 

Constraints (10.15) of the master problem are then replaced by 

Cmax>X^y/.C^ u = N + l,,,,,N + m. (10.16) 

A dual variable 7̂  is defined for each machine. The objective of sub-
problem Si is to minimize the weighted sum of the operation completion 
times (n | ru^du^pvec \ J2^u^u) where 

u \ iu = i and u < N^ 

u = N + i. 

The cost function is also irregular in the operation completion times and 
the same dynamic programming algorithm described in Section 3.2 can 
be applied. 

With this formulation, the Dantzig-Wolfe solution for the problem 
illustrated in Figure 10.1 has a cost of 6. 

This solution, which is optimal for the Dantzig-Wolfe decomposition, has 
the same cost as the optimal solution of the job shop problem. 

4. Implementation issues 
An exact algorithm for the job shop problem has been implemented 

using three types of objectives: 

C'max* We set gu{Cu) = Cu and modify the formulation as described in 
Section 3.4. 
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Tmax' We set gu{Cu) = inax{Cu — c^ ,̂0} where d^ is the latest time at 
which operation u may terminate and not be late. 

JIT (Just-In-Time): We set gu{Cu) — \Cu — d'u\ where d̂^ is the desired 
termination time for operation u, A penalty is paid if operation u 
terminates before or after time d^. Different penalty costs can be 
used for earliness and tardiness without increasing the complexity 
of the solution approach. 

The algorithm uses Dantzig-Wolfe decomposition and a branching 
strategy based on conflict resolution. It implements several exact and 
heuristic rules to accelerate the solution process. 

4.1 Overview 

An upper bound ŝup is provided as an input to the optimization 
algorithm. This bound may be obtained using heuristic methods. A 
three-step procedure is executed at each branching node. 

The first step tightens time windows [ru^du] using the upper bound, 
the precedence constraints of the problem, those imposed by the branch
ing procedure, and others that can be deduced from rules. Problem fea
sibility tests are carried out. If such tests conclude that the problem is 
infeasible, the node is abandoned. 

The second step computes a solution to the relaxed job shop problem 
obtained from the Dantzig-Wolfe decomposition. Two cases are possible: 

• The solution process is completed with the proof that no solution 
for the relaxation is possible. In this case, there is no solution to the 
job shop problem at the current node, and the node is abandoned. 

• A solution is found for the relaxation; the process is halted, al
though optimality is not necessarily obtained. While a solution of 
the relaxation satisfies time and precedence constraints of the job 
shop problem, it may violate the machine constraints. If the pro
cess is stopped prior to optimality, the cost of the solution is not 
a lower bound for the current node. A lower bound, however, is of 
little interest because its cost is necessarily inferior to the Zsup and 
is not sufficient to eliminate the node at this stage. In fact, any 
solution to the relaxation has a cost less than 2:sup as it satisfies the 
time constraints that were tightened using the value of z^up — 1-

The third step apphes a heuristic to calculate a solution that satisfies 
all constraints of the job shop problem, using the solution obtained in 
step 2. Once again, two cases are possible: 
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• A solution is found for the job shop problem. In this case, the upper 
bound is adjusted. Furthermore, branching nodes that have been 
solved to optimality and that have a lower bound greater than or 
equal to the new upper bound are eliminated. If the current node 
cannot be eliminated, the three-step procedure for processing a 
branching node is restarted with the new value of ŝup-

• No solution to the job shop problem is found. In this case, a pair 
of operations that conflict on one machine is selected. Two new 
problems are created by imposing an order on these two operations. 

The branching tree is explored depth-first to find feasible solutions 
as quickly as possible. The advantage of proceeding in this way is that 
the operation time windows can be tightened, reducing the number of 
dynamic programming states. The following sections contain further 
details on the steps of the algorithm. 

4,2 Preprocessing of the branching nodes 
Before starting the solution process at a branching node, rules are 

applied to find precedence constraints and tighten time windows. An 
efficient implementation of these rules is described in Brucker, Jurisch 
and Sievers (1994); Carlier and Pinson (1990). In addition, the feasibil
ity of each single-machine sequencing problem is verified, using calls to 
subproblems if necessary. 

Precedence constraints 
Let Succ(i/) denote the set of operations that must be carried out on 

machine iu after operation u^ and Prec('u) the set of operations that must 
be carried out on machine iu before operation u. Operation v G Prec(u) 
if and only ii u E Succ(t'). 

Precedence relations may be deduced from simple rules. In particular, 
V G Succ('u) if u 7̂  -?;, iu — iy Q̂ d̂ if one of the following conditions holds: 

• The relation u —^ v is imposed by the branching. 

• By the time constraints, operation v cannot be carried out before 
operation u: Ty + py + Pu > dw 

• The relation u —^ v may be obtained by transitivity: 3w \ u e 
Succ(tt;) and w G Succ(t'). 

Other precedence constraints are deduced from more complex rules 
involving blocks of operations carried out on the same machine. Let X 



284 COL UMN GENERA TION 

be a subset of operations to be carried out on the same machine. Let 
rx = miuy^x ry, dx = m^Xy^x dy and px = YlvexPv 

• If there is a set X of operations that must be carried out on machine 
iu^ such that u ^ X and 

min{rx, Vu} +Pu+Px > dx, 

then all operations in X must precede operation u, that is, u G 
Succ(t') for all v E: X. 

• If there exists a set X of operations that must be carried out on 
machine iu^ such that u ^ X and 

rx +Pu+Px > max{(ix, du}, 

then operation u must precede all operations in X, that is, v G 
Succ(ii) for all v E X, 

The problem is not feasible if the precedence constraints induce a 
cycle, that is, if there exists u, v such that u G Succ(^') and v G Succ(n). 

Time constraints 
The time intervals [r̂ i,(î ]̂ are tightened using the upper bound ŝup? 

the precedence constraints of the job shop problem and the precedence 
constraints among operations carried out on the same machine. 

The new earliest time TU to begin operation u is the largest of the 
following quantities: 

• di. - Vi,. -

r 

• Pu - '̂ sup + 1, (JIT objective), 

ry +Pv, ^v: {v,u) G A, 

m miuyexry + J2y^xPv^ MX: X C Prec('a). 

The new latest time du to terminate operation u is the smallest of the 
following quantities: 

• du, 

1, (Cmax objective), 

^ d'^ + Zsup - 1, (JIT, Tmax objectives), 

• dy - py, Mv: {u,v) G A, 

• max^;ex dy - YlvexPv^ \/X: X C Succ(i^). 

The problem is infeasible if an operation u can be found such that r^ + 
Pu > du> 
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4.3 Processing at a branching node 
Dantzig-Wolfe decomposition is applied to the job shop problem as

sociated with the current node. 

Master problem 
At each iteration of the Dantzig-Wolfe algorithm, the master prob

lem calls the subproblems to receive columns with negative marginal 
cost. In the case at hand, subproblems are solved using a computa
tionally intensive dynamic programming algorithm. It is not necessary 
to solve subproblems exactly to obtain columns with negative marginal 
cost, especially during the initial iterations. Subproblems are solved 
heuristically by limiting the number of dynamic programming states. 

The limit on the number of states is controlled by a parameter passed 
to the subproblems from the master problem. The subproblem returns 
a boolean value indicating whether the state space has been explored 
completely or only partially. The master problem increases the limit if 
no further columns are generated or if the objective does not increase 
sufficiently. The optimal solution is found when all subproblems are 
solved exactly and generate no further columns. 

As discussed in Section 4.1, the problem is not necessarily solved to 
optimality. Before raising the limit on the number of dynamic program
ming states, the feasibility of the relaxed master problem is verified. If 
the problem is feasible, column generation terminates and the heuristic 
search for a feasible solution to the job shop problem begins immediately 
(Section 4.4). 

Subproblem 
The subproblem is a sequencing problem on a single machine, (n | r̂ ,̂ 

du^ prec I Yl 9ui^u)) ^ ^^^ is solved by dynamic programming. States are 
eliminated using both exact and heuristic criteria. 

Exact criteria ensure that eliminated states cannot lead to an optimal 
solution. Only states that satisfy the precedence constraints are con
structed. Several of these states are eliminated using rules based on the 
time constraints. These rules are given in Gelinas and Soumis (1997), 
Other states are eliminated using bounds. The dual variable Â  of the 
master problem provides an upper bound on the cost of a schedule on 
machine i that may improve the solution to the master problem. A lower 
bound is computed for the cost of schedules constructed from a dynamic 
programming state. The state is eliminated if the lower bound is not 
promising. 
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Finally, states are eliminated using a heuristic criterion if their number 
exceeds the limit passed from the master problem. This criterion is based 
on the quality and feasibility of a state. States with a good lower bound 
and those that appropriately place operations that must terminate early 
are retained. When states are eliminated using the heuristic criterion, 
the subproblem solution may not be optimal, and the master problem is 
so notified. 

4*4 Branching node post-processing 

The Dantzig-Wolfe solution satisfies time and precedence constraints 
at a cost less than the upper bound Zgup- This solution will be used 
as a starting point for another solution that also satisfies the machine 
constraints. 

The disjunctive graph G — (y, (7 U D) associated with the job shop 
problem will be used in this regard. The nodes of the graph correspond to 
operations, including two fictitious operations representing the beginning 
and end of operations, V = { 0 , 1 , . . . , A/", *} . Execution times pu are 
associated with nodes of the graph. Arcs of the graph fall into two 
types. The set C of conjunctive arcs includes precedence arcs; arcs (0, u) 
where u is the first operation of a job; and arcs {u^ *) where u is the last 
operation of a job. The set D contains disjunctive arcs representing pairs 
of operations processed on the same machine. The arc pair {(n, t»), (̂ ', u)] 
is said to be resolved if one of the two arcs is selected and the other 
rejected. In selecting (̂ ,̂ t'), we require that operation u be performed 
before operation f, which corresponds to the addition of a precedence 
constraint (conjunctive arc) in the graph G. 

Some disjunctive arc pairs are resolved at the current node using rules 
stated in Section 4.2. To obtain a feasible solution, the rest of the dis
junctive arcs are resolved temporarily, according to the order of the 
operations in the relaxed solution. 

u.-^v if Y. y^^u< E y^^v' 

A longest path problem with time windows is then solved from node 0 
to all other nodes. If the arrival time at each node is such that the 
operation may be carried out within the specified time interval, then a 
feasible solution has been found with a cost below the upper bound. The 
upper bound is then updated. 
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Local search 
The solution obtained to the longest path problem is then improved 

by inverting a disjunctive arc that has been resolved temporarily. Of 
interest are the arcs that belong to the longest path (if the solution is 
feasible) or to an infeasible path (if the solution is infeasible). The time 
gain obtained locally by inverting the disjunctive arcs is calculated. Let 
(n*, t'*) be the arc yielding the maximal gain. If this gain is positive, the 
arc is inverted and the longest path problem is solved on the new graph. 
The process terminates when there is no further local improvement. 

JIT objective 
A further stage occurs when a feasible solution is found for the ob

jective JIT. The solution to the longest path algorithm places the op
erations as early as possible within the time windows [ru^du]- A better 
solution can be obtained by delaying operations so that they end as 
close as possible to the desired termination time. The maximum tardi
ness Tmax of an operation with respect to its desired termination time 
is calculated in the feasible solution. The time windows are then tem
porarily tightened in such a way that this maximum tardiness is not 
exceeded: [r̂ ,̂ mm{du^ <̂^ + rmax}]; and a longest path problem is solved 
by pulling node * back toward the other nodes in the graph. The upper 
bound for the job shop problem is adjusted using this new solution. 

4.5 Branching strategies 
If no solution is found using the procedure described in Section 4.4, 

branching occurs on a pair of operations that are carried out on the same 
machine and in conflict in the relaxed solution. 

When there are many candidates when selecting a pair, we use the 
following rules: 

• reduce the set of candidates to a set of pairs in conflict on the 
longest path found in Section 4.4 if this set is not empty, 

• select the earliest scheduled pair in the set of candidates. 

5* Experimentation 
Numerical experiments were conducted using the Dantzig-Wolfe al

gorithm implemented in C on a HP9000/735 computer. The following 
sections describe the test problems and present the results obtained. 
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5.1 Test problems 
Problems with ten machines and up to 500 operations were generated 

and solved using Cmax? ^max â nd JIT objectives. Problem sizes are 
described in Table 10.1. 

Table 10.1. Sizes of the job shop problem instances. 

Number 
of machines 

10 
10 
10 
10 

Number 
of jobs 

250 
100 
30 
10 

Number of 
operations 

2 
3 
5 
10 

per job 
Total number 
of operations 

500 
300 
150 
100 

A problem is constructed as follows. First, the number of machines, 
the number of jobs, and the number of operations per job are established. 
For each operation, a machine is selected at random in such a way that no 
job has two operations on the same machine. The length of an operation 
is generated uniformly in the interval [1,100]. The times r̂ ^ are initialized 
to zero; the times du are initialized to a large value (co). To select 
the desired completion times for jobs and their mutually compatible 
operations, a feasible schedule is constructed using decision rules. The 
operation that can begin earliest is placed first. In the case of a tie, 
the operation in that job having the most outstanding work is selected. 
The completion time T for this schedule is used to generate times d'^^. 
Let ui, U25 • • •) ̂ n, be the operations in job j , in order. Times d'^ are 

generated in the interval [Y^j^LiPukJ^^h ^̂  addition, we set 

^uk ~ ^uk-i-i ~ Puk+i '> /c == rij - 1 , . . . , 1. 

The data d^ are ignored for the objective Cmax- If ^max is to be min
imized, we desire that the processing of job j terminate no later than 
time d'^^ . If JIT is to be minimized, we desire that the processing begin 

at time d'^^ — Y^LiPu^ ^^d continue without stopping until time d'^^ . 
Ten problems are generated for each problem size, for a total of 40 job 

shop problems. Of particular interest are the job shop problems with 
many jobs and few operations per job. Such problems are easy to solve 
with the objective Cmax because machines can operate without stopping. 
The schedule constructed using decision rules is optimal for all problems 
having 30 jobs or more. Therefore, we only present results for 10-job 
problems using the objective Cmax-
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An upper bound is provided for the optimization algorithm. The 
schedule obtained with decision rules provides an upper bound for the 
objective Cmax- This bound is from 7% to 21% greater than the cost of 
the optimal solution for, 10-job problems. For T^ax and JIT, the upper 
bound is taken to be the optimal value plus 20%. (The optimal value 
is known because the algorithm has already been executed once using 
a large value as upper bound.) Future applications of the algorithm 
will require a heuristic procedure to produce a feasible solution for the 
objectives Tmax and JIT. The cost of this solution will be an upper 
bound that should be no more than 20% from the optimal solution. 

5,2 Numerical results 
This section first presents results for specific steps of the algorithm. It 

then presents results for the job shop problems and analyzes the behavior 
of the algorithm with different initial upper bounds. 

Solution of the Dantzig-Wolfe decomposition 
The relaxed job shop problem is generally not solved to optimality for 

the first branching node. The value of the lower bound that could be 
obtained from Dantzig-Wolfe decomposition was obtained in a separate 
calculation. Table 10.2 gives the lower bound and the cost of the optimal 
solution for 10- and 30-job problems. Since the dynamic programming 
algorithm requires too much memory for the 100- and 200-job problems, 
optimal solutions are not obtained for them. 

The lower bound is fairly distant from the optimal solution at the 
top of the branching tree, which provides justification for the solution 
approach presented here. We don't use much effort to get exact solu
tions to the Dantzig-Wolfe relaxation at the top of the tree. The job 
shop problem becomes more highly constrained at the lower level of the 
tree, as branching decisions are taken and feasible solutions are found. 
So, lower bounds become easier to get by exactly solving the Dantzig-
Wolfe relaxation and are of better quality. This bound eliminates nodes 
associated with these more constrained problems. 

On the other hand, the Dantzig-Wolfe solution is very useful for find
ing feasible solutions at each node of the branching tree, and is used to 
establish the order of operations in a schedule constructed heuristically. 

Dynamic programming 
Subproblems are solved using a dynamic programming algorithm. 

Two statistics are particularly germane as measures of the problem dif
ficulty: the number of states and the number of labels. A state is asso-
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Table 10.2. Lower bound from Dantzig-Wolfe decomposition. 

Oper 

30x 5 

10x10 

^ m a x 

DW 

1 -^ 
-
-
-
-
-
-
-
-
-_ 

717.9 
792.0 
750.0 
742.8 
825.0 
625.6 
689.3 
743.2 
841.0 
747.0 

Opt] 
^\ 
-
-

" 
-
-
-
-
-

-J 
~ 7 9 2 | 

867 
810 
845 
885 
728 
811 
840 
855 
766 

J- max 

DW 
164.0 
127.0 
99.6 

285.1 
67.0 

159.1 
72.7 

112.7 
91.6 

134.0 
14.5 
53.1 
0.0 
2.4 

78.6 
14.8 
10.9 
26.1 
24.9 
36.6 

Opt 
174 
156 
205 
346 

67 
188 
121 
199 
218 
146 
80 
69 
6 

99 
221 

90 
109 
108 
95 

119 

JIT 

DW 
135.4 
109.3 
117.7 
285.2 
133.2 
159.1 
87.1 

114.5 
127.6 
134.0 
69.2 

106.6 
79.0 
75.7 
97.2 
60.9 
68.6 
70.5 
79.6 

1 102.7 

Opt 
~235~ 

197 
220 
346 
196 
188 
152 
199 
278 
153 
172 
172 
155 
167 
266 
162 
166 
190 
207 
208 

ciated with a set of operations. A cost function is associated with each 
state. The cost function is piecewise hnear and represented by a hst of 
labels, one label per piece. At iteration k of the dynamic programming 
algorithm, all states associated with sets of k operations are considered. 
In a job shop problem with 10 machines, 100 jobs and 3 operations per 
job, there are a total of 300 operations and an average of 30 operations 
per machine. Consider a subproblem with 30 operations. At iteration 10 
of the dynamic programming algorithm, there are a possible Cfg states, 
that is more than 30 milHon states. While exact criteria can eliminate 
states, the number of them that remain to be considered in an exact 
procedure may be very large. The proposed algorithm uses heuristic 
criteria to eliminate states. 

Table 10.3 gives the average and maximum number of states con
structed in one iteration of the dynamic programming algorithm during 
the solution of the job shop problems. In all dynamic programming iter-
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Table 10.3. Dynamic programming statistics. 

Oper 

250x 2 
lOOx 3 
30x 5 
1 0 x l o | 

^ m a x 

1 States 
Avg Max 

1 3.9 15 

Labels 1 
Avg Max 

2.1 231 

-tmax 

States 
Avg Max 

11.8 16 
11.0 233 
6.5 133 

1 3.6 16 

Labels 1 
Avg Max 

2.8 51 
2.7 42 
2.0 27 
2.1 241 

1 JIT 
1 States 
Avg Max 

11.3 16 
9.3 120 
5.2 109 

1 3.5 18 

Labels 
Avg Max 

2.6 59 
2.7 47 
2.2 34 
2.4 31 

ations in all problems solved, no more than 233 states (i.e., a very small 
number) were constructed. This was sufficient, however, to find a feasi
ble solution to the relaxed job shop problem or prove that no solutions 
exists. 

To prove that there are no solutions to the relaxed problem, the sub-
problems must be solved exactly. The implementation of the algorithm 
increases the limit on the number of states until no further elimina
tion occurs using heuristic criteria. While such a procedure may require 
that a large number of states be considered, this did not occur in the 
numerical experiments conducted for this study. Two reasons may ex
plain this. First, the relaxed job shop problem is almost always feasible 
when Dantzig-Wolfe decomposition is applied. Rules applied in the pre
processing stage help to identify infeasible job shop problems. If the 
node is not eliminated using these rules, a solution is usually found to 
the decomposition. Second, when the relaxation has no solution, the 
subproblems are highly constrained and states are eliminated using ex
act criteria that are highly effective under the circumstances. 

The table also gives the mean and maximum number of labels required 
to represent the cost function attached to a state. The number of labels 
increases with the number of operations and with the width of the time 
windows (Gelinas and Soumis, 1997). Larger numbers of labels imply 
greater calculations and manipulations in the dynamic programming al
gorithm. The average number of labels per state was low in problems 
solved for this study. 

Elimination of nodes in branching tree 
Figure 10.4 illustrates the branching tree obtained for one of the 250-

job problems using the objective Tmax- Nodes are numbered in the order 
in which they were explored. The value of the initial upper bound is 432. 
The relaxed job shop problem is not solved to optimality for the initial 
nodes; a lower bound of 360 is obtained at the fifth node. Going down 
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0 
Infeasible 

UB = 432 ^ O ; 

Infeasible 

.0 
Q)^ UB = 412 

B = Infeasible 

UB = 403 ( 8 

LB = 360 
6 ) UB = 363 

Infeasible 

0" XB = 360 
UB = 363 

LB = 360 
UB = 360 

Figure 10.4- Branching tree. 

the tree, feasible solutions are found with respective costs of 412, 403, 
363 and finally 360. Nodes 7, 6 and 5 are then eliminated using the 
lower bound. While exploration continues from node 4, the new nodes 
are found to be infeasible when the rules from the pre-processing stage 
are apphed. This tree contains 11 explored nodes, four nodes ehminated 
in the preprocessing stage and three nodes eliminated by the Dantzig-
Wolfe solution. 

Table 10.4 gives the percentage of nodes eliminated during solution of 
the various job shop problems using the three objectives. 

Tot: percentage of the nodes ehminated. 

Pre: percentage of the nodes ehminated in the pre-processing stage. 

Table 10.4- Percentage of eliminated branching nodes. 

Oper 

250x 2 
lOOx 3 
30x 5 
10x10 

Tot 

1 
-
-

51 

^ m a x 

Pre DW 

- 1 
-
_ 

47 4 

Tot 
82 
78 
63 
51 

-'max 

Pre 
21 
21 
35 
48 

DW 
61 
57 
28 

3 

Tot 
57 
53 
54 
51 

JIT 

Pre 
43 
41 
43 
48 

DW 
14 
12 
11 
3 
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D W : percentage of the nodes eliminated by the Dantzig-Wolfe solution. 

Percentages of the eliminated nodes, both overall and by the Dantzig-
Wolfe solution, were observed to be higher for problems having few oper
ations per job. The decomposition proposed here is more appropriate for 
problems of this type. The master problem selects convex combinations 
of schedules for a single machine so as to satisfy precedence constraints. 
It ignores disjunctive constraints for problems of sequencing on a single 
machine. A solution to the relaxed problem may differ significantly from 
a feasible solution to the job shop problem if there are many precedence 
constraints. 

Results for the job shop problems 
The algorithm was used to solve all job shop problems using the three 

objectives. Only one problem, with objective JIT, was not solved to 
optimality. Results are presented in Tables 10.5, 10.6 and 10.7. These 
tables contain the following information: 

M a x Work: maximum total processing time on a single machine 

= max^=i,...,^{^^|.^^^p^}. 

U B : upper bound. 

Opt: cost of the optimal solution, or of the best solution if optimahty 
is not attained. 

Ut i lMach: percentage utilization of machines. Let T be the value of 
C'max in the optimal solution. The mean percentage utilization 
(Avg) and maximum percentage utilization (Max) of the machines 
are calculated for the interval [0 , r ] . 

I t e r D W : total number of iterations in the Dantzig-Wolfe algorithm. 

B B : total number of nodes explored in the branching tree. 

Cpu: CPU time in seconds. It indicates the time required to solve the 
master problem (TM), the subproblems (TS), and the total time 
(TT) . 

All problems were solved in less than 20 minutes for the objectives 
C'max and Tmax; most problems were solved in less than one hour for the 
objective J IT. Two 100-job problems required much more CPU time for 
the J IT objective; one of these problems was not solved to optimality. 
In fact, the J IT objective is more difficult to optimize as it is sensitive 
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Table 10.5. Numerical results for the objective On 

Oper 

10x10 

MaxWork 

wr 
652 
750 
673 
679 
599 
610 
706 
677 
682 

UB 

~96Ö" 
982 
960 
937 
1016 
780 
896 
975 
945 
873 

Opt 

"T92" 
867 
810 
845 
885 
728 
811 
840 
855 
776 

UtilMach 

Avg 

"eTg" 
60.4 
62.1 
62.8 
56.8 
66.1 

61.5 
63.8 

63.9 
64.0 

Max 

~W2 
75.2 
92.6 
79.6 
76.7 
82.3 
75.2 

84.0 
79.2 

87.9 

IterDW 

775" 
1340 
1218 
2568 
1195 
555 
2138 

6048 

3039 
311 

BB 

~im 
310 
286 
622 
248 
122 
530 
1555 
852 
66 

Cpu (sees) 
TM 

IW 
194 
164 
529 
235 
73 
329 
927 
387 
38 

TS TT 

7 120 
12 216 
10 184 
28 574 
16 258 
4 82 
20 366 
50 1026 
20 435 
3 42 

to operations that end late or begin too early in the schedule. The cost 
of the solution using Tmax is a lower bound for JIT. 

Table 10.5 indicates the maximum operation time on a single ma
chine (MaxWork). In fact, this number is a lower bound for Cmax- The 
precedence constraints cause waiting times on the machines, so that the 
cost of the optimal solution is well above this bound. The percentage 
utilization of the machines decreases when changing the objective from 
C'max to Tinax ^nd to JIT. The objective Cmax produces better machine 
utilization because the optimal schedule compresses operations on the 
bottleneck machine as much as possible. When the objective JIT is 
used, it may be advantageous to create waiting times on machines, so 
that operations begin and end at the desired times. 

The algorithm spends most of its time solving the master problem. 
Little time is spent solving subproblems because the number of dynamic 
programming states is restricted. The difference between the total time 
(TT) and time spent solving the master problem (TM) and the subprob
lems (TS) is accounted for by pre- and post-processing at the branching 
nodes. 

Behavior of the algorithm using different starting val
ues 

Table 10.8 presents results obtained using various starting values of 
the upper bound for the objective JIT. The algorithm was executed 
once using an upper bound of 1000. Later executions used tighter upper 
bounds, at 20%, 10% and 5% of the optimal value. With an improved 
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Table 10.6. Numerical results for the objective Tm 

Oper 

250x 2 

lOOx 3 

30x 5 

10x10 

UB 

594 
269 
129 
225 
410 
432 
219 
250 
542 
480 
250 
236 
276 
300 
128 
255 
249 
203 
254 
98 
209 
188 
246 
416 
81 
226 
146 
239 
262 
176 
96 
83 
8 

119 
266 
108 
131 
130 
114 
143 

Opt 

495 
224 
107 
187 
341 
360 
182 
208 
451 
400 
208 
196 
230 
250 
106 
212 
207 
169 
211 
81 
174 
156 
205 
346 
67 
188 
121 
199 
218 
146 
80 
69 
6 
99 
221 
90 
109 
108 
95 
119 

UtilMach 
Avg 

77.7 
72.8 
78.0 
77.3 
77.4 
76.5 
75.7 
78.0 
76.7 
80.1 
72.7 
69.9 
74.6 
73.3 
83.5 
76.0 
75.2 
72.1 
66.8 
68.6 
71=5 
68.9 
65.2 
52.9 
64.9 
70.1 
74.9 
74.0 
70.8 
61.5 
53.7 
53.3 
54.3 
52.3 
50.8 
58.6 
54.8 
51.8 
55.5 
55.7 

Max 

87.2 
98.4 
99.2 
97.2 
99.9 
95.8 
99.4 
95.5 
98.2 
92.0 
96.9 
93.1 
92.7 
91.3 
98.1 
98.0 
92.6 
96.3 
94.2 
98.8 
90.1 
91,6 
94.4 
77.0 
95.6 
97.2 
97.8 
85.4 
90.3 
92.5 
68.6 
66.3 
81.0 
66.4 
68.6 
73.0 
67.0 
68.2 
68.8 
76.5 

IterDW 

17~ 
10 
45 
62 
45 
91 
61 
202 
28 
71 
339 
470 
297 
91 
693 
161 
105 
89 
35 
148 
417 
406 
123 
132 
377 

2175 
406 
221 
1001 
391 
2206 
82 
116 

2204 
1925 
1426 
753 

3184 
1478 
303 

BB 

F 
1 
11 
9 
3 
11 
10 
37 
1 
1 

103 
163 
77 
18 
318 
37 
18 
29 
2 
31 
177 
173 
42 
51 
126 
877 
138 
67 
280 
102 
442 
16 
15 
375 
364 
279 
149 
703 
326 
50 

Cpu (sees) 
TM 

8~ 
4 
46 
62 
40 
84 
106 
723 
26 
53 
639 
839 
474 
170 
878 
393 
153 
182 
28 
346 
113 
103 
61 
58 
66 
315 
101 
69 
244 
89 
481 
8 
10 
513 
514 
247 
147 
586 
240 
51 

TS 

~TÖ~ 
3 
15 
21 
17 
48 
22 
90 
13 
32 
50 
61 
45 
18 
60 
29 
17 
14 
6 
23 
12 
10 
5 
5 
7 
41 
9 
7 
31 
10 
22 
1 
1 
26 
31 
12 
8 
33 
14 
3 

TT 

18~ 
8 
65 
86 
61 
138 
136 
835 
41 
87 
715 
938 
532 
190 

1031 
429 
174 
200 
35 
375 
136 
122 
68 
65 
83 
469 
120 
81 
293 
107 
518 
10 
12 
550 
556 
269 
159 
641 
264 
56 
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Table 10.7. Numerical results for the objective JIT. 

Oper 

250x 2 

lOOx 3 

30x 5 

10x10 

UB 

~594~ 
269 
329 
321 
410 
432 
255 
305 
542 
480 
320 
294 
305 
326 
280 
255 
249 
249 
254 
336 
282 
237 
264 
416 
236 
226 
183 
239 
334 
184 
172 
172 
155 
167 
266 
162 
166 
190 
207 
208 

Opt 

495 
224 
274 
267 
341 
360 
212 
254 
451 
400 
266 
245 
254 
271 
233 
216* 
207 
207 
211 
280 
235 
197 
220 
346 
196 
188 
152 
199 
278 
153 
143 
143 
129 
139 
221 
135 
138 
158 
172 
173 

UtilMach 
Avg 

76.3 
70.5 
72.6 
73.5 
70.3 
72.1 
72.2 
75.8 
69.1 
76.9 
66.6 
66.8 
72.1 
70.8 
75.6 
70.2 
73.9 
68.3 
65.3 
62.6 
64.2 
66.2 
58.7 
53.8 
58.0 
62.0 
71.7 
68.9 
63.5 
58.7 
48.5 
47.9 
46.6 
50.3 
41.8 
53.1 
48.2 
48.0 
50.5 
48.1 

Max 

85.6 
95.3 
92.3 
92.3 
90.8 
90.3 
94.8 
92.8 
88.4 
88.4 
88.7 
89.0 
89.5 
88.1 
88.8 
90.5 
91.1 
91.2 
92.0 
90.2 
80.8 
88.0 
85.0 
78.3 
85.5 
86.0 
93.6 
79.5 
80.9 
88.3 
62.0 
59.6 
69.5 
63.9 
56.5 
66.0 
59.0 
63.2 
62.6 
66.0 

IterDW 

286 
271 
88 
366 
105 
380 
824 
992 
171 
293 

8453 
723 
665 
423 
485 

21148 
466 
2341 
363 
357 

11310 
976 
219 
349 
429 
1338 
755 
642 
937 
721 

4240 
723 
59 
722 
1766 
2136 
601 
2187 
5054 
671 

BB 

3Ö~ 
9 
13 
41 
5 
66 
183 
163 
10 
25 

2156 
176 
139 
79 
121 

5000 
111 
645 
46 
7 

3281 
300 
50 
103 
108 
503 
172 
165 
280 
157 
766 
131 
3 

129 
313 
416 
91 
338 
1081 
106 

Cpu (sees) 
TM 

749 
107 
99 
392 
137 

1052 
448 
1234 
367 
726 

16629 
1339 
1203 
992 
680 

23159 
793 
2240 
241 
328 
2903 
200 
117 
102 
61 
242 
163 
133 
237 
134 

1102 
125 
38 
132 
495 
507 
126 
549 
1157 
88 

TS 

176 
70 
29 
117 
43 
206 
137 
306 
88 
153 

1397 
106 
100 
83 
64 

1958 
64 
202 
36 
65 
322 
25 
8 
14 
7 
28 
14 
14 
27 
13 
44 
6 
1 
7 
26 
21 
5 
29 
59 
6 

TT 

959 
242 
149 
579 
193 
1333 
960 
1753 
475 
911 

18926 
1506 
1353 
1096 
774 

30542 
897 
2758 
298 
404 
3437 
247 
128 
121 
77 
329 
200 
162 
283 
163 

1173 
137 
40 
144 
531 
542 
135 
590 
1253 
98 

* : Not optimal 
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Table 10.8. Behavior of the algorithm using different starting values for the objective 
JIT. 

Oper 

250x 2 

lOOx 3 

30x 5 

'̂ sup -

BB 
~43~ 
15 
7 
67 
3 

134 
176 
163 
4 
1 

401 
276 
216 
99 
107 
921 
189 
332 
96 
25 
418 
247 
158 
59 
91 
600 
572 
289 
305 
305 

= 1000 

Cpu 
1368 
388 
343 
1286 
499 
2337 
4082 

7073 
294 
773 
4375 
5478 
3385 
1752 

1073 
7434 

2336 

3606 

1346 
1150 

482 
372 
324 
147 
173 
528 
679 
319 
430 
664 

'̂ sup — 

BB 

~^ör 
9 
13 
41 
5 
66 
183 
163 
10 
25 

2156 
176 
139 
79 
121 
-

Ill 
645 
46 
7 

3281 

300 
50 
103 
108 
503 
172 
165 
280 
157 

1.20zopt 

Cpu 
959 
242 
149 
579 
193 
1333 
960 
1753 
475 
911 

18926 
1506 
1353 
1096 
774 
-

897 
2758 

298 
404 
3437 
245 
128 
121 
77 
329 
200 
162 
283 
163 

^sxxp ~ 

BB 
^ 5 ~ ~ 
59 
5 
45 
1 
55 
113 
231 
10 
24 
346 
97 
170 
104 
25 
811 
69 
220 
58 
27 
226 
108 
111 
44 
57 
151 
241 
65 
233 
66 

l.lOZopt 

Cpu 
443" 
429 
46 
343 
68 
746 
701 
1976 

279 
524 
1642 

748 
990 
770 
245 
5235 
457 
1223 

375 
305 
258 
100 
221 
76 
55 
105 
262 
79 
258 
61 

'̂ sup -

BB 
~w 
19 
5 
19 
1 
51 
49 
98 
6 
15 
273 
329 
70 
75 
135 
165 
51 
199 
21 
18 
217 
121 
36 
11 
148 
178 
43 
109 
144 
15 

= l.OS^opt 

Cpu 
59r 
100 
29 
137 
28 
535 
288 
774 
143 
339 
1784 

4308 
486 
715 
486 
1002 

407 
967 
123 
150 
240 
66 
57 
28 
103 
121 
55 
86 
142 
15 

bound, time windows may be narrower. Furthermore, the branching tree 
is smaller and solution time is faster. 

Some exceptions, however, can be observed. The algorithm presented 
here searches the branching tree using a depth first strategy and com-
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Table 10.. continued 

Oper 

10x10 

'̂ sup ~ 

BB 
^706" 
91 
36 
145 
645 
890 
158 
1332 
1072 
61 

OÖÖÖ 

Cpu 

l^ee" 
135 
124 
233 
1112 
989 
242 
1610 
1243 
136 

^sup — 

BB 
^66~ 
131 
3 

129 
313 
416 
91 
338 
1081 
106 

1.202:opt 

Cpu 
1173 
137 
40 
144 
531 
542 
135 
590 
1253 

98 

'̂ sup ~ 

BB 
"648"" 
85 
23 
140 
383 
239 
114 
159 
904 
70 

= l.lÔ opt 

Cpu 

nie 
96 
41 
184 
691 
265 
198 
183 
968 
48 

'̂ sup — 

BB 
~619" 
33 
21 
119 
125 
407 
64 
349 
1322 

18 

1.05zopt 

Cpu 
987 
36 
14 
162 
243 
505 
75 
443 
1326 
18 

putes feasible solutions using a heuristic. If good solutions are found 
along the initial branches explored, the algorithm gives good results re
gardless of the starting value. The converse is true as well: even with 
a good starting value, it is possible to select a bad search direction and 
explore many nodes before finding good solutions. This seems to have 
been the case for the two 100-job problems that are very difficult to solve 
starting from a value situated 20% from the optimal value. These two 
problems were solved much more easily using a different starting value. 

Such exceptions apart, better bounds generally yield better results. 
One possible fruitful approach could be to develop effective heuristic 
methods for finding good upper bounds before the optimization methods 
are called upon. Interestingly, however, the algorithm managed to solve 
all problems in reasonable times, even with very poor bounds. 

6- Conclusion 

This study has presented a formulation of the job shop problem that 
uses Dantzig-Wolfe decomposition. This approach breaks down the 
problem of coordination between machines and procedures to construct 
a schedule for each machine. In this way, an efficient algorithm may be 
applied to each problem component. Exchange of information between 
the master problem and the subproblems produces better lower bounds 
than approaches that treat each machine independently. 

The algorithm presented here uses Dantzig-Wolfe decomposition and a 
branching strategy based on conflict solution procedure. We measure the 
effort provided at each stage of the resolution. While the optimal value 



10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 299 

of the Dantzig-Wolfe decomposition is a lower bound for the job shop 
problem, this bound is not efficient (especially for the initial branching 
nodes). Importantly, good bounds for the job shop problem are difficult 
to obtain, even with other formulations. Therefore, rather than putting 
considerable effort into finding lower bounds, this approach settles for a 
solution whose cost falls below the upper bound. Such a solution forms 
the basis of a heuristic schedule construction method for the job shop 
problem. 

Subproblems in the decomposition are solved using dynamic program
ming. This technique is rarely used in sequencing problems because the 
number of states grows too quickly. The approach presented here ap
plies this technique successfully by controlling the size of the state space 
to be explored. Even when only a small number of states are explored, 
the dynamic programming algorithm produces good schedules for the 
master problem. 

The algorithm has been tested on 10-machine problems using three 
objectives: Cmax, ^max and an objective consistent with the Just-In-
Time philosophy. Interesting problems for the objective Cmax have as 
many jobs as machines. There exist methods that are better than ours at 
solving such problems. Nevertheless, the present algorithm has solved 
problems involving 10 jobs and 10 operations per job in less than 20 
minutes each. 

This algorithm is particularly efficient for problems involving many 
jobs and few operations per job. Such problems arise frequently in in
dustry, as machines are increasingly versatile and jobs are processed with 
few changes of machine. Objectives other than Cmax (such as minimiza
tion of delivery delays or storage periods) in fact appear to be more 
interesting in practice. Most existing methods consider the objective 
Cmax ŝ nd are poorly adapted to other objectives, especially when these 
objectives involve irregular functions of the operation completion times. 
The algorithm described here can handle such objectives. Finally, prob
lems of up to 500 operations were solved using an objective consistent 
with a Just-In-Time approach. 
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Chapter 11 

A P P L Y I N G C O L U M N G E N E R A T I O N T O 
M A C H I N E S C H E D U L I N G 

Marjan van den Akker 
Han Hoogeveen 
Steef van de Velde 

Abstract The goal of a scheduling problem is to find out when each task must 
be performed and by which machine such that an optimal solution is 
obtained. Especially when the main problem is to divide the jobs over 
the machines, column generation turns out to be very successful. Next 
to a number of these 'partitioning' problems, we shall discuss a num
ber of other problems that have successfully been tackled by a column 
generation approach. 

!• Introduction 
In this chapter we discuss the apphcation of the technique of column 

generation to scheduhng problems. Scheduling problems appear in for 
instance production facilities, where the goal is to find an optimal allo
cation of scarce resources to activities over time (Lawler, Lenstra, Rin-
nooy Kan and Shmoys, 1993). The scarce resources are usually called 
machines, and the activities are called tasks or jobs; the basic scheduling 
problem is then to find for each of the tasks an execution interval on one 
of the machines that are able to execute it, such that all side-constraints 
are met. Obviously, this should be done in such a way that the resulting 
solution, which is called a schedule, is best possible, that is, it minimizes 
the given objective function. 

Although the technique of column generation has been around since 
the early sixties, its first application to a machine scheduling problem 
is of a much later date. As far as we know, it was first used by Marjan 
van den Akker. She wanted to solve single-machine scheduling problems 
with an additive objective function by using polyhedral combinatorics. 
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To this end, she formulated such a problem as an integer linear pro
gramming problem using a time-indexed formulation, which is based on 
binary variables Xjt that indicate whether a job j {j = 1 , . . . , n) starts 
at time t (t = 0 , . . . , T). The solution to the LP-relaxation turned out 
to give a very strong lower bound for the small-sized problem instances, 
but at that time (1994), it was not possible to solve the LP-relaxation for 
a larger sized problem using the conventional techniques. To alleviate 
this problem, she reformulated the problem by Dantzig-Wolfe decompo
sition and solved it by column generation. She presented these results 
at a conference in Giens (France) and compared the performance of col
umn generation to solving the time-indexed formulation with CPLEX, 
Robert Bixby, the man behind CPLEX, was in the audience, and he 
obviously was not happy hearing that CPLEX was not able to solve all 
the instances. Therefore, he offered to try to solve some of the instances 
using CPLEX. The outcome was as follows: Bixby could solve the LP 
instances using the CPLEX barrier method on a very fast computer 
but still this required more computation time than column generation. 
Bixby sportingly admitted defeat and wrote to Marjan that she did not 
even need to buy a better computer to solve these instances. 

After this initial success of column generation, attention shifted to
wards parallel machine scheduling problems with an additive objective 
function, A parallel machine scheduling problem consists of two parts: 
Determine for each job which machine should execute it, and given this 
decision, find an optimal schedule for each of the resulting single-machine 
problems. If the difficulty of the problem lies in dividing the jobs over 
the machines, that is, if it is easy to find an optimum solution given 
the set of jobs to be executed by each machine, then the problem can 
be modelled as an integer linear programming problem in the following 
way. First, enumerate all relevant subsets of jobs that can be assigned to 
a single machine and then formulate it as a set covering problem, where 
each job should be contained in exactly one subset of jobs. Obviously, 
column generation seems to be an attractive technique to solve the LP-
relaxation, as explicitly enumerating all relevant subsets is not a feasible 
approach. This was discovered by three groups independently. After 
these initial results, many follow-up papers have been written, dealing 
with extensions. 

Finally, we discuss a number of problems that have been tackled by 
using a combination of constraint satisfaction and column generation. 
Here we solve a linear programming problem using column generation 
to find out whether there can exist a feasible schedule. The problems 
discussed here have an objective function of the min max type, whereas 
the problems discussed in the other sections are of the sum type. 
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Since we are dealing with a large variety of problems, we introduce the 
necessary notation in the section in which the problem is described. Here 
we use the three-field notation scheme introduced by Graham, Lawler, 
Lenstra and Rinnooy Kan (1979), to denote scheduling problems. The 
remainder of this chapter is organized as follows. Since the parallel 
machine scheduling problem leads to a more HraditionaF column gener
ation model than the single machine scheduling problem, in Section 2 
we discuss the parallel machine scheduling problem with the objective 
of minimizing total weighted completion time. We describe here how 
to formulate it as an integer linear program and how to solve the LP-
relaxation using column generation. We also show how to use this in a 
branch-and-bound algorithm. We discuss and compare the implemen
tations by Van den Akker, Hoogeveen and Van de Velde (1999); Chen 
and Powell (1999a). In Section 3 we briefly discuss a number of simi
lar problems that can be solved in a similar way. In Section 4 we look 
at the time-indexed formulation for single-machine scheduling problems 
and show how the LP-relaxation of this formulation can be solved using 
column generation. Moreover, we study a column generation formulation 
for a flow shop scheduHng problem, which can also be obtained from the 
time-indexed formulation. Finally, in Section 5 we discuss how column 
generation can be combined with constraint satisfaction. 

2. Column generat ion for P\\ YlwjCj 

We start with describing the archetypal result in the area of parallel 
machine scheduling that is solved using column generation. In Section 3 
we will see that similar results can be derived for many more problems. 

2,1 Prob lem description 

The problem P| | "^WjCj is described as follows. There are m identi
cal machines. M i , . . . , Mm^ available for processing n independent jobs, 
J i , . . . , Jn. Job Jj (j = 1 , . . . , n) has a processing requirement of length 
Pj and a weight Wj. Each machine is available from time zero onwards 
and can handle no more than one job at a time. Preemption of jobs is 
not allowed, that is, once started, the execution of the job must continue 
on the same machine until it has been completed. Hence, a schedule can 
be specified by just specifying the completion times, which we denote 
by C i , . . . , Cni it is feasible if no job starts before time zero and if there 
are at most m jobs being executed at the same time. Given these com
pletion times, we can then find a feasible machine allocation, such that 
no machine processes more than one job at a time and no job starts 
processing before time zero. The objective is to find a schedule with 
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minimum total weighted completion time Yll^i^j^j- "^^e problem is 
A^P-hard in the strong sense when the number of machines is part of 
the problem instance. Smith (1956), has shown that the single-machine 
problem is solvable in 0 (n log n) time. This algorithm is based on the 
observation that there exists an optimal schedule with the following two 
properties: 

(i) The jobs are processed contiguously from time zero onwards, 

(ii) The jobs are sequenced in order of non-increasing ratios Wj/pj. 

Since in the parallel machine case the machines are independent of each 
other as soon as the jobs have been partitioned, we know that there exists 
an optimal schedule in which each machine executes the jobs that have 
been assigned to it in order of non-increasing order of Wj/pj without 
any unnecessary idle time. This implies that the difficulty of solving 
this problem comes from finding an optimal division of the jobs over the 
machines. One way to achieve this is by applying dynamic programming; 
this can be implemented to run in 0{n{Yl^^^pj)'^~^^ time and space. 
Especially the space requirement becomes unmanageable when m or 
Yl^=iPj increase. 

To overcome this problem, we present a branch-and-bound procedure, 
where the lower bound comes from solving the LP-relaxation of a suitable 
integer linear programming problem through column generation. This 
approach has been applied by two groups of researchers: Van den Akker, 
Hoogeveen and Van de Velde (1999); Chen and Poweh (1999a). The only 
difference is in the branch-and-bound procedure; we will discuss both 
procedures in Section 2.5. 

Anticipating the branch-and-bound procedure by Van den Akker et 
al., we derive an execution interval for each job. The execution interval 
of a job Jj is (j = 1 , . . . , n) is specified by a release date rj , before which 
it cannot be started, and a deadline dj, at which it has to be finished. 
We can derive initial release dates and deadlines from the following two 
characteristics that an optimal schedule is known to possess: 

(iii) No machine becomes idle before the latest start time of a job. 
Therefore, the last job on any machine is completed between time 
Hmin = YJj=lVj/^^ - {m- l ) p m a x / m a n d i^max = E j ^ l ^ j / ^ + 

(m - l)pmax/m, where pmax = maxi<j<nPj. 

(iv) If Wj > Wk and pj < pk-, where at least one of the inequalities 
is strict, then there exists an optimal schedule in which job Jj is 
started no later than job Jk-

Property (iii) yields for each job an initial deadline dj — Yll^^iVkl'^ + 
(m — l)pj/m. We use Property (iv) to derive tighter release dates and 
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deadlines in the root node, and more effectively, in the nodes of the 
branch-and-bound tree (see Subsection 2.5.1). Since Property (ii) de
crees that each machine executes the jobs in order of non-increasing 
Wj/pj ratios, we reindex the jobs such that 

!fÜ > !f̂  > . . . > !f̂ . 
Pi ~ P2 ~ ~ Pn' 

to avoid trivialities, we assume that n> m. We define Vj as 

Vj = {Jk\k < j , Wk > Wj.pk < Pj} 

and Sj as 
Sj = {J'k \k> j,Wk< Wj.pk > Pj}. 

Accordingly, there is an optimal schedule in which all jobs in the set Vj 
start no later than job Jj, Hence, if \Vj\ > m, then we may conclude 
that at least \Vj\ — m + l jobs belonging to Vj are completed at or before 
the starting time of Jj^ from which we can derive an earliest starting 
time. In a similar spirit, we can tighten the deadline of Jj. 

2.2 ILP formulation 

As we have argued above, we have solved the P\\ X]j=i ^j^j pi*oblem 
when we have found the optimal assignment of the jobs to the machines. 
We define a machine schedule as a string of jobs that can be assigned 
together to any single machine. Let ajs be a constant that is equal to 1 
if job Jj is included in machine schedule s and 0 otherwise. Accordingly, 
the column (ais , . . , ,aris)"^ represents the jobs in machine schedule s. 
Let Cj{s) be the completion time of job Jj in s; Cj{s) is defined only if 
ajs = 1. Because of Property (ii) above and the reindexing of the jobs, 
they appear in s in order of their indices without any idle time between 
their execution. Hence, we have that Cj{s) = X1A)=I ^ksPk- So the cost 
Cg of machine schedule s is readily computed as 

3 = 1 j=l 

X ^ o^ksPk 
.k=l 

We call a machine schedule s feasible if TJ + pj < Cj{s) < dj for each 
job Jj included in s. Let S be the set containing all feasible machine 
schedules. We introduce variables Xg {s =^ 1^.,, ^\S\) that assume value 
1 if machine schedule s is selected and 0 otherwise. The problem is 
then to select m machine schedules, one for each machine, such that 
together they contain each job exactly once and minimize total cost. 
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Mathematically, we have to determine values XQ that solve the problem 

min 2_. Cs^s 
ses 

subject to 

Ê  Xs = m^ (11.1) 
seS 

V ^ a j g X s ^ l , for each j = 1 , . . . ,n , (11-2) 
ses 

Xs G {0,1}, for each 5 G 5. (11.3) 

We obtain the linear programming relaxation by replacing conditions 
(11.3) by the conditions Xg > 0 for all s E S; we do not need to enforce 
the upper bound of 1 for Xg, since this follows immediately from the 
conditions (11.2). We solve the LP-relaxation using column generation. 
The initial set S of columns can be generated heuristically, after which 
we add columns with negative reduced cost, if these exist. 

2,3 The pricing algorithm 
We describe next the approach by Van den Akker, Hoogeveen and 

Van de Velde (1999). This is identical to the approach by Chen and 
Powell (1999a), except that Van den Akker et al. take the additionally 
generated release dates and deadlines into account. 

In our problem, the reduced cost ĉ  of any machine schedule s is given 
by 

n 
Cg — Cs — XQ — 2_^ ^j^jsi 

where Ao is the given value of the dual variable corresponding to con
dition (11.1) and Al , . . . . An are the given values of the dual variables 
corresponding to conditions (11.2). To test whether the current solution 
is optimal, we determine if there exists a machine schedule s E S with 
negative reduced cost. To that end, we solve the pricing problem of find
ing the machine schedule in S with minimum reduced cost. Since AQ is a 
constant that is included in the reduced cost of each machine schedule, 
we essentially have to minimize 

Cs - 2^Xjajs - 2_^ ^js 
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subject to the release dates and the deadhnes of the jobs and Proper
ties (i) and (ii). 

Our pricing algorithm is based on dynamic programming. It uses a 
forward recursion, where we add the jobs in order of increasing index. Let 
Fj (t) denote the minimum reduced cost for all feasible machine schedules 
that consist of jobs from the set { J i , . . . , Jj} in which the last job is 
completed at time t. Furthermore, let P{j) = Yli^iPk- Fô ^ ̂ he machine 
schedule that reahzes -Fj(t), there are two possibihties: Either Jj is not 
part of it, or the machine schedule contains Jj, As to the first possibility, 
we must select the best machine schedule with respect to the first j — I 
jobs that finishes at time t; the value of this solution is Fj-i{t), The 
second possibility is feasible only if Vj+pj < t < dj. If this is the case, 
then we add Jj to the best machine schedule for the first j — 1 jobs that 
finishes at time t — pj] the value of this solution is Fj-i{t — pj) + Wjt — Xj. 
The initialization is then 

^ ^ f-Ao, if j = 0 and t = 0, 
I oo, otherwise. 

The recursion is then for j = 1 , . . . ,n, t = 0 , . . . ,min{P(j), maxi</c<j d^} 

Fj{t) = \ iivj+pj <t<dj, (11.4) 

\Fj-i{t), otherwise. 

After we have found Fn{t), for t = 0 , . . . , X^?=i Pj, we can compute the 
optimal solution value as 

F* = min F„(t). 

Accordingly, if F* > 0, then the current linear programming solution 
is optimal. If F* < 0, then it is not, and we need to introduce new 
columns to the problem. Candidates are associated with those t for 
which Fn{t) < 0; they can be found by backtracking. 

2.4 A special type of fractional solution 
Let now x* denote the optimal solution to the linear programming 

relaxation of the set partitioning formulation and let S* denote the set 
containing all columns s for which x* > 0. If x* is integral, then x* 
constitutes an optimal solution for P| | X]?=i '^j^ji ^^^ ^^ ^^^ done. 

There exists one further case in which we do not have to apply branch-
and-bound to find an optimal integral solution; this case occurs if for all 
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jobs Jj {j = 1 , . . . ,n) the completion time Cj{s) is equal to Cj in each 
5 6 5*. This special case plays a crucial role in the branch-and-bound 
algorithm of Van den Akker et al. 

THEOREM 11.1 If Cj{s) =^ Cj for each job Jj {j = l , . . . , n ) and for 
each s with x^ > 0, then the schedule obtained by processing Jj in the 
time interval [Cj — pj^ Cj] {j = 1 , . . . , n) is feasible and has minimum 
cost. 

If X* is fractional and does not satisfy the conditions of Theorem 11.1, 
then we need a branch-and-bound algorithm to find an optimal solution. 
We present two such algorithms in the next section. 

2.5 Two branch-and-bound algorithms 
It is well known that applying branch-and-bound in combination with 

column generation makes sense only if it is possible to prevent a column 
from being generated by the pricing algorithm when this column does 
not satisfy the constraints issued by the branching strategy. Van den 
Akker, Hoogeveen and Van de Velde (1999); Chen and Powell (1999a), 
present two alternative branching strategies in which the solution space 
is partitioned by imposing constraints on the columns that can easily 
be incorporated into the pricing algorithm. We will first discuss their 
algorithms and then compare these. 

2.5.1 Branching on the execution interval. We start with 
the branch-and-bound algorithm by Van den Akker et al. If we have a 
fractional optimal solution that does not satisfy the conditions of Theo
rem 11.1, then there is at least one job Jj for which 

J2 Cj{s)x: > mm{Cj{s) \ x*, > 0} = Cf"; 
ses* 

we call such a job Jj a fractional job. Our branching strategy is based 
on partitioning the execution interval (see Carlier, 1987). In each node 
of the branch-and-bound tree, we first identify the fractional job with 
smallest index, and, if any, then create two descendant nodes: One for 
the condition that Cj < CJ^^^ and one for the condition that Cj > 
^min _|_ 2̂  rpĵ ^ ß^g^ condition essentially specifies a new deadline for Jj 
by which it must be completed, which is smaller than its current deadline 
dj. For the problem corresponding to this descendant node, we therefore 
set dj <— Cj^^^, Since the jobs in Vj start no later than Jj and dj — pj is 
the latest possible start time of Jj , we must have that each Jk G Vj is 
completed by time dj — pj + pk^ which may be smaller than its current 



11 Applying column generation to machine scheduling 311 

deadline dk. Hence, we let dk ^— min{d/c,dj —pj +Pk} for each Jk G Vj. 
Since we have Vk C Vj for each job J^ G Pj , updating the deadline of 
job Jk will not lead to any further updates. 

The second condition specifies a release date C^^^ + 1 -- pj before 
which Jj cannot be started, which is larger than its current release date 
Tj, For the problem corresponding to this descendant node, we therefore 
set Tj = C^^^ + 1 — Pj, Since the jobs in Sj start no earlier than Jj , we 
can possibly increase the release dates of these jobs as welL For each 
Jk G <Sj, we let Vk ̂ ^ meixlrk^rj}. Hence, this partitioning strategy not 
only reduces the feasible scheduling interval of Jj—It may also reduce 
the feasible scheduling intervals of the jobs in Vj and Sj. 

The nice thing of this partitioning strategy is that either type of con
dition can easily be incorporated in the pricing algorithm without in
creasing its time or space requirement: We can use exactly the same 
recursion as before. 

The update of the execution intervals may result in an infeasible 
instance, which implies that we can prune this node. Since deciding 
whether there exists a schedule that respects all release dates and dead
lines is AT'P-complete, we only check a necessary condition for feasibility. 
If the instance corresponding to the current node fails this check, then we 
can prune the corresponding node and backtrack. To apply the check, 
we replace the deadlines dj by due dates dj (j = 1 , . . . , n); there exists 
a schedule obeying the release dates and deadlines if and only if the 
outcome value of the optimization problem P\rj\L^neix is smaller than or 
equal to zero. We compute a lower bound (see Vandevelde, Hoogeveen, 
Hurkens and Lenstra, 2004, for an overview) for PlTnlLm^x 

and conclude 
infeasibility if this lower bound is positive. 

It may also be that the current set of columns »S, which was formed 
while solving the linear programming relaxation in the previous node, 
does not constitute a feasible solution, due to the new release dates and 
deadlines. We work around this problem in the following way. We first 
remove the infeasible columns that are not part of the current solution 
to the linear programming relaxation. As to the infeasible columns that 
are currently part of the linear programming solution, we consider these 
as 'artificial variables', which we make unattractive by increasing their 
costs with some big value M, after which we can continue with our 
column generation algorithm. 
2.5.2 Branching on the immediate successor. The second 
branching rule that we discuss is due to Chen and Powell (1999a). Here 
we use that a schedule is fully characterized when we know for each 
job its immediate predecessor and its immediate successor on the same 
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machine; we introduce two dummy jobs Jo and Jn+i to model the case 
that a job is the first or last one on a machine. The number of machines 
that is used is then equal to the number of immediate successors of 
dummy job JQ. 

Given a solution of the linear program, we can compute for each pair 
of jobs Ji and Jj^ with i < j the value yij as 

Vij — / J ^s) 

where Sij denotes the subset of the columns in which job Ji is an imme
diate predecessor of job Jj, We have the following theorem. 

THEOREM 11.2 / / the solution of the linear programming formulation 
in a node leads to an integral set of yij values, then the corresponding 
solution is optimal for this node. 

If we encounter fractional values yij^ then we branch on the one that 
is closest to 0.5; we impose the constraint of yij = 0 in the first branch, 
and we require yij = 1 in the second branch. In both nodes, we remove 
the columns that do not satisfy the constraint. If the remaining set of 
columns does not constitute a feasible solution, then we can apply some 
heuristic to find a schedule that satisfies all branching conditions, after 
which we can add the corresponding machine schedules to the column 
set. Unfortunately, we need to adjust the pricing algorithm to find the 
columns with minimum reduced cost that satisfy the branching condi
tions. We change the dynamic programming algorithm by recording the 
identity of the job that completes at time t. 

Let Fj{t) denote the minimum reduced cost for ah feasible machine 
schedules in which Jj is the last job, which is completed at time t. Fur
thermore, let B{j) (j =: 1 , . . . , n, n+1) denote the index set that contains 
the indices of the jobs that are allowed as immediate predecessors of job 
Jj\ here B{n + 1) refers to the jobs that can finish last. To find the value 
Fj(t)^ we have to find the minimum of Fi{t — pj) over all i G -ß(j), to 
which we add the cost of completing job Jj at time t. After we have 
found Fn{t) for all relevant values of t, we can compute the optimal 
solution value as 

F* = min FAt), 
Hnnn<t<HmaxJeB(n+l) 

Accordingly, if F* > 0, then the current linear programming solution 
is optimal. If F* < 0, then it is not, and we need to introduce new 
columns to the problem. Candidates are associated with those j , t for 
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which Fj{t) < 0, where j is to restricted to the indices in the set B{n+1)] 
these can be found by backtracking. 

Note that the adjustment of the dynamic programming algorithm has 
increased its running time by a factor 0{n), 

2.6 Comparing the two algorithms 
In this subsection, we compare the two algorithms with respect to their 

running times and with respect to implementation issues. Unfortunately, 
no study has been undertaken so far to compare the running times of 
both algorithms; therefore, we provide only general remarks with respect 
to this point. 

An obvious advantage of the algorithm by Van den Akker et al. is 
that the running time of the pricing algorithm is not affected by the 
branching scheme, whereas it now requires 0{ii?Yll=i'Pj) time in the 
algorithm by Chen and Powell. A further advantage of the branching 
scheme used by Van den Akker et al. is that release dates and deadlines 
of other jobs can be strengthened using the sets Vj and 5 j , which implies 
that a node not only can get pruned because of the lower bound, but 
also because of its infeasibility with respect to the release dates and 
deadlines. Unfortunately, this yields the clear disadvantage that, if it 
is unclear whether a node corresponds to a feasible schedule, then it 
is required to work with infeasible machine schedules that are made 
unattractive by adding a penalty term to their cost. 

An advantage of the algorithm by Chen and Powell is that it is easier 
to implement, since in each node of the branch-and-bound tree it is 
possible to find a set of columns that constitute a feasible solution. 

Overall, we expect that on average the algorithm by Van den Akker et al. 
will be faster than the algorithm by Chen and Powell, but that it can 
be more sensitive with respect to 'bad' instances. We should keep in 
mind though, as reported by Van den Akker et al., that solving the LP-
relaxation the first time is the bulk of the work. Hence, there is more to 
be gained by solving the initial LP-relaxation, than by speeding up the 
branch-and-bound algorithm. 

3. Related results 
A similar approach as used for the P\\Y1 ^j^j problem can be applied 

to a number of related parallel machine scheduling problems. Van den 
Akker, Hoogeveen and Van de Velde (1999); Chen and Poweh (1999a), 
extend the result of the previous section in two directions, which are 

• problems with additive objective functions that have all jobs in 
the relevant part of the schedule sequenced according to some pri-
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ority rule. Problems that fall in this category are the problem 
of minimizing the weighted number of late jobs, which is denoted 
by P\\ ^WjUj^ and total weighted late work, which is denoted by 

• parallel machine problems with non-identical machines. 

We discuss these extensions in the next two subsections. After that, we 
describe some other related results that have appeared in the literature 
since then. We only indicate the major differences with the approach 
used to solve the P\\ Y^WjCj problem. 

3.1 Problems P\\ J2 ̂ jUj and P\\ ^ WjVj 

These problems are defined as follows. Again, there are m parallel 
identical machines M i , . . . , Mm to process n jobs Ji , • . . , Jn? where job 
Jj (j = 1 , . . . , n) has processing time pj and weight Wj, Moreover, each 
job Jj has a due date dj (j = 1 , . . . , n) by which it ideally should be com
pleted. In both cases jobs are not penalized as long as they are completed 
at or before their due dates. If a job is completed after its due date, that 
is, Cj > dj^ then it is called late, C/j (j = 1 , . . . , n) is an indicator func
tion that gets the value 1 if Jj is late, and 0, otherwise. The late work 
of Jj is defined as the portion of work of Jj that is performed after its 
due date dj. Accordingly, we have that Vj = minjpj, max{0, Cj — dj}]. 

For either problem, there is an optimal schedule in which each machine 
first performs the on-time jobs in order of non-decreasing due dates and 
then the late jobs in any sequence (Lawler and Moore, 1969; Potts and 
Van Wassenhove, 1992). The late jobs appear thus in the irrelevant part 
of the schedule, and in fact it does not matter if, when, and by what ma
chine the late jobs are executed. These problems are therefore equivalent 
to maximizing Xl?=i ^ji^ ~ ^j)^ ^^e weighted number of on-time jobs, 
and jyj=i^j{Pj ~ ^')? ^^^ total weighted on-time work. These prob
lems lend themselves much better for the column generation approach, 
since the pricing algorithm needs to focus then only on the on-time jobs. 
These complementary problems then boil down to determining values Xs 
s e S that solve 

max y . c-s^s 
ses 

subject to 

'^js Jl^j < 1, for each j = 1 , . . . ,n, (11-5) 
ses 

and conditions (11.1) and (11.3). The only difference, except for the 
computation of the cost Cg, is that only the (partially) on-time jobs will 
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be present in one of the selected machine schedules. Relaxing the inte
grality constraints we are left with a linear programming problem that 
can be solved using column generation. The pricing algorithm maximizes 
the reduced cost, which can be achieved by applying dynamic program
ming, where the jobs are added in order of non-decreasing due date. In 
the dynamic programming algorithm, a job will only be included if it is 
(partially) on-time; we can incorporate release dates and deadlines. 

To find an optimal integral solution, we can again use one of the two 
branch-and-bound algorithms described in Section 2.5. We refer to Chen 
and Powell (1999a); Van den Akker and Hoogeveen (2004), for details. 

3.2 Non-identical machines 

If the machines are not identical, then the processing time of Jj de
pends on the machine Mi that executes it. There are two variants: 
Uniform and unrelated machines. In the first case, each machine has 
a given speed Si (i = 1 , . . . , m), and the time needed to process job Jj 
on machine Mi is equal to pij — Pj/si (i = 1 , . . . , m; j = 1 , . . . , n). In 
the latter case the processing times can take any value. This implies, 
however, that in the latter case the priority rule is not equal for all ma
chines for the objective of minimizing total weighted completion time. 
This can be easily overcome, though, by working with a different set of 
machine schedules for each machine. Let S{i) denote the set of feasible 
machine schedules for machine Mi {i — l , . . . , n ) . We need to adjust 
the formulation given in Section 2.2 only slightly in case of non-identical 
machines. The problem then becomes 

m 

m i n ^ X] ^̂ ^̂  

subject to 

1=1 ses{i) 

y ^ Xg — 1, for each i == 1 , . . . ,m, (11.6) 
ses{i) 

2_] / J cijsXs — 1, for each j = 1 , . . . , n, 
i=l seS{i) 

Xs E {0,1}, for each s € S{i)^ i = 1 , . . . , m. 

For the pricing algorithm, we need to perform the recursion m times, 
one time for each machine separately. Accordingly, the pricing algorithm 
runs in 0[nY^^i Y^l=iPij) time. Obviously, it is worth-while to reduce 
the set of eligible machines for each job by preprocessing. 
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To find an integral solution, we must apply branch-and-bound. The 
branch-and-bound algorithm of Chen and Powell can still be applied. 
The branch-and-bound algorithm by Van den Akker et al. cannot be 
applied anymore, but this can now be replaced by a forward branching 
strategy where jobs are assigned to machines; this branching strategy 
can easily be combined with column generation. 

3.3 Common due date problems 
In case of a common due date problem jobs are penalized when they 

are not completed exactly at their due date, which is common to all 
jobs. This objective function is motivated by the 'just-in-time' philos
ophy. Van den Akker, Hoogeveen and Van de Velde (2002), consider 
the single-machine problem with the objective of minimizing the total 
weighted deviation of the completion times from the common due date, 
which is denoted by d. The cost of completing job Jj {j == 1 , . . . , n) at 
time Cj is then equal to aj{d — Cj) if Cj < d\ it amounts to ßj{Cj — d) 
if Cj > d, where aj and ßj are given. It is well-known that in case of a 
large common due date there exists an optimal schedule in which some 
job is completed exactly at time d; the common due date is considered 
to be large, if ignoring the unavailability of the machine before time 
zero does not afi'ect the optimum solution. Under these circumstances, 
a schedule consists of an early and a tardy part, which comprises all 
jobs that are executed before and after the due date, respectively. It is 
easily proven that, given the jobs that are in the early part, it is opti
mal to execute these in order of non-decreasing c^j/pj ratio, such that 
the last one is completed at time d. Similarly, the jobs in the tardy 
part must be executed in order of non-increasing ßj/pj ratio, where the 
first job starts at time d. Van den Akker, Hoogeveen and Van de Velde 
(2002), report that a straightforward appUcation of column generation, 
in which both pricing problems are solved independently through a dy
namic programming algorithm like the one used to solve P\\ Y^'WjCj is 
able to solve problems with up to 60 jobs. But this performance can be 
improved to solve problems with up to 125 jobs by combining column 
generation with Lagrangean relaxation. The main key to this success 
is not to solve both pricing problems independently, but to retain the 
constraint that the total processing time of the jobs in the early and 
tardy part must sum up to Yll^riPj' Without this constraint we can 
only conclude that the LP-relaxation has been solved to optimality if 
there is neither a miachine schedule for the early part nor for the tardy 
part with negative reduced cost. If we retain it, however, then we can 
stop column generation if there are no two machine schedules, one for 
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the early and one for the tardy part, with total processing time equal 
to X)j=iPj wi^h total reduced cost smaller than zero. Since the total 
processing of the machine schedule is kept in the state-variable used in 
the dynamic programming algorithm, the constraint that the total pro
cessing time must be equal to Yll=iPj ^^ easily verified and provides no 
computational burden. Van den Akker et al. show how to derive an in
termediate lower bound during the column generation process of solving 
the LP-relaxation. This can be used in a number of ways to speed up 
the process of solving the LP-relaxation; for details we refer to Van den 
Akker et ah Quite unexpectedly, the solution to the LP-relaxation was 
always integral in all of their computational experiments; they show by 
example that this is no structural result. 

Chen and Powell (1999b), generalize the above problem to the case 
with m > 2 parallel identical machines. They solve the LP-relaxation 
through a standard implementation and apply branch-and-bound to find 
an optimal solution, where they branch on the immediate successor. In 
their computational experiments they report that instances with up to 
60 jobs are solvable, where the hardest instances are the ones with 2 
machines. 

3.4 Common due window problems 

Chen and Lee (2002), generalize the common due date problem to 
a common due window problem. In this case, the completion of a job 
is penalized only if it falls outside this window, which we denote by 
[(ii,(i2]- There are m parallel identical machines to execute the jobs. 
The objective is to minimize total cost, where the cost of completing 
job Jj is equal to aj{di — Cj) if Cj < di and ß{Cj — d^) if Cj > ^2, 
where aj and ßj are given. In contrast to the previous subsection, we do 
not assume that di is large. Therefore, we cannot guarantee that there 
exists an optimal schedule in which a job is completed at time di or (i2, 
but in that case the first job must start at time zero. We partition each 
machine schedule into three parts: 

• an early partial schedule, in which the last job completes at or 
before time di. The jobs in this part must be scheduled in non-
decreasing order of aj/pj ratio; 

• a fully tardy partial schedule, in which the first jobs start at or after 
time ti2- The jobs in this part must be scheduled in non-increasing 
order of ß/pj ratio; 

• a middle partial schedule. 
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Here an early or fully tardy partial schedule can be empty. The ILP 
formulation is such that we search for at most m partial schedules of 
each type, such that for each early partial schedule that ends at time ti 
there exists a middle partial schedule that starts at time ti, and such 
that for each middle partial schedule that ends at time 2̂ there exists 
one fully tardy partial schedule that starts at time 2̂-

We find a lower bound by solving the LP-relaxation through column 
generation. Here we need to find the early (fully tardy, middle) partial 
schedule with minimum reduced cost, which can be solved through a 
dynamic programming approach. Note that we do not have to solve a 
separate pricing problem for each possible value of ti and ^2. This lower 
bound is then used in a branch-and-bound algorithm where we branch 
on the immediate predecessor. 

3,5 Scheduling with set-up times 
Chen and Powell (2003), have investigated an extension of the prob

lems P\\ Y^WjCj and P\\ Yl^j^j involving set-up times. The jobs are 
divided into several families, which roughly have the same characteris
tics. Before the start of a new job a set-up time is required, unless the 
consecutive jobs belong to the same family. The set-up times can be 
either sequence dependent or sequence independent. 

We only work out the problem of minimizing total weighted comple
tion time subject to sequence dependent set-up times; the other prob
lems can be attacked in a similar fashion. Again, we work with machine 
schedules, which correspond to a given subset of the jobs and the or
der in which they are to be executed by a machine; we explicitly need 
the ordering, since finding an optimal order for a given set of jobs is a 
hard problem. Our ILP formulation refiects that we look for m machine 
schedules containing each job exactly once with minimum total cost. 

If we solve the LP-relaxation using column generation in the standard 
way, then we need to generate machine schedules in which each job is 
contained at most once, and the constraint that 'each job is contained 
at most once' makes the problem intractable. Therefore, we disregard 
this constraint and generate machine schedules in which a job can be 
contained more than once; after all, these columns will not appear in 
an integral solution. We can find such a column through dynamic pro
gramming, where we use state-variables fj{t) that indicate the minimum 
reduced cost of completing job j at time t. In our branch-and-bound al
gorithm we branch on the immediate successor. A similar approach 
occurs in Subsection 4.1. 
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3.6 Scheduling jobs and maintenance activities 
Lee and Chen (2000), have studied another extension of the problem 

PW^'^jCj in which maintenance is required. Each machine needs to 
be maintained once in the period [0,r], which requires t time units. 
Lee and Chen (2000), study two variants of this problem, depending 
on the capacity of the repair facility, which is either assumed to be one 
or infinite. Note that T is an upper bound on the completion of the 
maintenance; jobs can be completed after time T, 

If the capacity of the repair facility is infinite, then the machine sched
ules are independent except for the jobs that they contain. Any machine 
schedule then consists of two subsets of jobs with a maintenance activ
ity in between, where the jobs within one subset are in order of non-
increasing Wj/pj ratio. Just like in the previous subsection, we allow 
any job to be part of both subsets of the same machine schedule; we can 
then solve the LP-relaxation using column generation. We use this as a 
lower bound in our branch-and-bound algorithm, in which we branch on 
the immediate successor. 

The constraint that just one machine can be maintained at a time 
yields an additional dependency between two machine schedules. With
out loss of generality, we assume that the machines are maintained in 
order of their index. Since the machines are no longer identical, we use 
a different set of machine schedules for each machine, where we add a 
series of constraints in our ILP-formulation that decree that the comple
tion times of the maintenance activities are at least t time units apart 
between two consecutive machines. We can then solve the LP-relaxation 
using column generation in the same fashion as for the case with an infi
nite capacity of the repair facility. When we apply a branch-and-bound 
algorithm in which we branch on the immediate successor, we run the 
risk that we do not end up with a feasible solution to the original prob
lem, albeit that Lee and Chen (2000), report that this never happened 
in their computational experiments. If this might occur, though, then 
we can find an optimal, feasible solution by branching on the execution 
interval. 

4. Time-indexed formulation 
We describe next the scheduling problems to which column generation 

was applied the first time, which are the problems that can be formu
lated using a time-indexed formulation. Time-indexed formulations for 
machine scheduling problems have received a great deal of attention; not 
only do the linear programming relaxations provide strong lower bounds, 
but they are good guides for approximation algorithms as well (see Hall, 
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Schulz, Shmoys and Wein, 1997). Unfortunately, a time-indexed for
mulation yields a large ILP-formulation. Van den Akker, Hurkens and 
Savelsbergh (2000), have shown how Dantzig-Wolfe decomposition tech
niques and column generation can be applied to alleviate to some extent 
the difficulties associated with the size of time-indexed formulations. In 
the next subsection, we discuss their approach. After that we study a 
Dantzig-Wolfe reformulation for the flow-shop scheduling problem with 
earliness, tardiness and intermediate inventory holding cost developed 
by Bülbül, Kaminsky and Yano (2001). 

4.1 Single-machine scheduling 

A time-indexed formulation is based on time-discretization, i.e., time 
is divided into periods, where period t starts at time t — 1 and ends 
at time t. The planning horizon is denoted by T, which means that 
we consider the time-periods 1,2, . . . , r . Consider any single-machine 
scheduling problem in which the jobs are independent and the objective 
function is of the sum type. Using binary variables Xjt that indicate 
whether job job j {j = 1 , . . . , n) starts in time period t {t = 1 , . . . , T — 
Pj -h 1), we get the following ILP-formulation: 

j = i t=i 

subject to 

V^ Xji = 1 for each j = 1,.. .n, (11.7) 
t=i 

n t 

Y^ J2 ^js < 1 for each t=:: 1,...,T, (11.8) 
j = l s=t-pj + l 

Xjt G {0,1} for each j = 1 , . . . ,n; t = 1 , . . . ,T — pj + 1, 

where Cjt is equal to the cost that job j contributes to the objective 
function when it starts in time period t. The assignment constraints 
(11.7) state that each job has to be started exactly once, and the capacity 
constraints (11.8) state that the machine can handle at most one job 
during any time period. 

We apply Dantzig-Wolfe decomposition to the LP-relaxation of the 
above model. We obtain the reformulation by representing the polytope 
P given by the capacity constraints (11.8) and the nonnegativity con
straints as the convex hull of its extreme points. Since the constraint 
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Figure ILL The network N for a 2-job example. 

matrix of P is an interval matrix^ the extreme points are integral, and 
therefore, they represent schedules. As the assignment constraints (11.7) 
are not involved in the description of P , jobs do not have to be started ex
actly once in such a schedule. Therefore, we call these ps endo-schedules. 

Let x^ {k — l , . . . , i ^ ) be the extreme points of P, Any x e P 
can be written as J2k=^i ^k^^ ^̂ ^ some nonnegative values Â  such that 
Ylk^i /̂c = 1- Using this, we can reformulate the LP-relaxation of the 
time-indexed formulation with decision variables A/̂ . The cost coefficient 
of \k is then equal to the cost of the pseudo-schedule x^] the constraint 
that each job j {j = l , . . . , n ) is started exactly once then becomes 
X /̂c=i ^jk^k — I5 where Ujk denotes the number of times that job j is 
started in pseudo-schedule x^, Finally, we have the convexity constraint 
stating that the sum of the lambda's is equal to one, and of course, the 
nonnegativity constraints. 

We solve the LP-relaxation through column generation, where we de
termine interesting pseudo-schedules. Pseudo-schedule x^ is character
ized by the binary variables x^ ,̂ which indicate whether job j starts at 
time t. Given the dual variables TTJ (j = 1 , . . . ,n), corresponding to the 
reformulated assignment constraint for job j , and a, corresponding to 
the convexity constraint, we find that the reduced cost Ck of the variable 
\k is given by 

n T-pj + 1 

^^^^ Yl {cjt-^j)x%-a, (11.9) 

Ignoring the constant a, we see that the pricing problem can be solved as 
finding a shortest path in a network N. This network N has a node for 
each of the time periods 1,2,..., T+\ and two types of arcs: Process arcs 
and idle time arcs. For each job j and each period t, with t < T — pj -}-1, 
there is a process arc from t io t + pj representing that the machine 
processes job j during the time periods t , . , . , t + pj — 1. Moreover, there 
is an idle time arc from t to t + 1 (t = 1 , . . . , T). 

If we set the length of the arc referring to starting job j in time period 
t equal to Cjt — TTJ, for all j and t, and we set the length of all idle time 
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arcs equal to 0, then the reduced cost of the variable \k is precisely 
the length of path P^ minus the value of dual variable a. Therefore, 
solving the pricing problem corresponds to finding the shortest path in 
the network Â  with arc lengths defined as above. Since the network is 
directed and acyclic, the shortest path problem, and thus the pricing 
problem, can be solved in 0{nT) time by dynamic programming. 

Van den Akker, Hurkens and Savelsbergh (2000), show that this col
umn generation approach can be combined with polyhedral combina
torics. Here the goal is to strengthen the lower bound obtained from the 
LP-relaxation by adding inequalities that are violated by the current, 
fractional optimum but that are valid for the integral optimum. Van 
den Akker, Hurkens and Savelsbergh (2000), show the following general 
result for any LP-problem obtained through Dantzig-Wolfe decomposi
tion. 

THEOREM 11.3 If for an LF-problem obtained by Dantzig-Wolfe decom
position the pricing problem can be solved for arbitrary cost coefficients, 
i,e., if the algorithm for the solution of the pricing problem does not de
pend on the structure of the cost coefficients, then the addition of a valid 
inequality dx < do in terms of the original variables does not complicate 
the pricing problem. 

The computational results are somewhat disappointing, in the sense 
that improving the quality of the lower bound by adding valid inequal
ities takes quite some. To find an optimal integral solution, we can 
apply branch-and-bound, where we can add valid inequalities in each 
node. Here we use a forward branching strategy, that is, we build a par
tial schedule from left to right, such that we can find a lower bound in 
each node by solving the corresponding LP-relaxation through column 
generation. 

4.2 Flow shop scheduling 

Bülbül, Kaminsky and Yano (2004), consider a fiow shop scheduling 
problem with earliness, tardiness, and intermediate inventory holding 
cost. In a fiow shop each job must be processed by all of the m ma
chines, starting at machine 1, after which it moves to machine 2, etc.; 
the time needed to move from one machine to the next is negligible, but 
in the application studied by Bülbül et al. intermediate products have 
to be conserved, which cost is measured by the intermediate inventory 
holding cost. The earliness and tardiness cost are defined on basis of the 
completion time on machine m. Finally, each job j has a release date 
rj at which it becomes available; the holding cost is computed from this 
time on. 
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For a given schedule a we use Cij to denote the time at which job j 
{j = 1 , . . . , n) finishes on machine i {i = 1, • •., ^ ) , and we use qij to 
denote the time that job j spends in the queue before machine i. We 
compute the cost of schedule a as 

n m n n 

j=l i=2 3 = 1 j=l 

where hij is the holding cost per time unit for job j in the queue of 
machine i, and where aj and ßj are the earliness and tardiness cost of 
job j . 

We formulate this problem as an LP with variables Cij and qij. To 
this formulation we apply Dantzig-Wolfe decomposition, where we put 
the constraints connecting the completion times of job j (j = 1 , , . . ,m) 
on the different machines in the master problem, whereas we put the 
constraints involving one machine at a time in the subproblem. Another 
way to formulate the problem is to use a time-indexed formulation. Since 
this time-indexed formulation has the same Dantzig-Wolfe reformulation 
as the formulation in terms of completions times, we can show that the 
optimal value of the LP-relaxation of the Dantzig-Wolfe reformulation 
is at least equal to the value of the LP-relaxation of the time-indexed 
formulation. For small instances, we can solve the latter to optimality 
using CPLEX, and it turns out that the heuristic approach that we use 
to solve the former yields comparable bounds much faster. 

To apply the Dantzig-Wolfe reformulation for the model defined in Cij 
and Qij variables, we must for each machine i {i =^ 1 , . . . , m) enumerate 
all feasible schedules af^ which are expressed in completion times Ĉ -̂, 
{j = 1 , . . . ,n). We then have to select one schedule total per machine 
(which can be a convex combination of a number of schedules af)^ such 
that the constraints stating that the jobs visit the machines in the right 
order are satisfied. Obviously, we apply column generation to avoid the 
full enumeration of the single-machine schedules. For machines 1 to m—1 
the pricing problem boils down to a problem of the form l | r j | ^WjCj^ 
whereas for machine m the pricing problem has the structure of problem 
l | r j | Yli^j^j'^ßj'^j)' Hence, all pricing problems are strongly A^P-hard. 
To solve the subproblems we apply a heuristic by Bülbül, Kaminsky 
and Yano (2001), which is based on a time-indexed formulation that 
is relaxed to an assignment problem. We further determine additional 
columns in the column generation step by applying local improvement to 
the already generated single-machine schedules. To speed up the process, 
a whole number of other engineering tricks is applied. To obtain a good 
heuristic solution, we use the information present in the near-optimal 
fractional solutions. 
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5* Column generation and constraint satisfaction 
In this section we discuss a number of problems that are solved by 

applying a constraint satisfaction approach; this is suitable if the objec
tive function is of the min max kind, like the makespan (which is the 
case in the problems we discuss below). In a first step, the minimization 
problem is transformed into a feasibility problem by asking the question 
whether there exists a feasible solution with value no more than T; the 
minimization problem is then solved by applying binary search over T, 
Because of the upper bound T on the makespan we can then derive ex
ecution intervals [vj^dj] for each job j {j = l , . . . , n ) , which then are 
narrowed by applying techniques from constraint satisfaction (we refer 
to Baptiste, Le Pape and Nuijten (2001), for details). If it is not possible 
to decide the feasibility problem now, then we check another necessary 
condition, which is based on linear programming. 

5.1 Resource constraint project scheduling 
The main difference between scheduling problems and resource con

strained project scheduling problems is that there are no machines but 
resources, which can be renewable or non-renewable^ where a resource is 
called renewable, if it is required during the execution of a task, which 
does not 'consume' it. Brucker and Knust (2000), look at a standard 
problem in which n jobs have to be scheduled. Each job j has a pro
cessing time pj (j = 1 , . . . , n), and preemption is not allowed. Executing 
job j requires rjk units of each renewable resource k (fc — 1 , . . . ,r) of 
which there are R^ units available at any point in time. Moreover, there 
are precedence constraints, which decree that a job cannot start until 
a given set of predecessors has been completed. The goal is to find a 
schedule with minimum makespan, which is equal to the completion time 
of the job that finishes last. Brucker and Knust (2000), solve this prob
lem by first applying constraint satisfaction, like described above. If a 
decision has not been reached yet, the authors check another necessary 
condition. This condition checks whether it is possible to get all the work 
done while respecting the execution intervals and, partly, the precedence 
constraints; it can be checked by solving a linear programming problem. 
Hereto, we sort all release dates and deadlines in a combined list and 
partition the time horizon accordingly into a set of intervals. For each 
interval we derive all sets of jobs that can be executed simultaneously 
in this time interval, and for each such set we include a variable that 
indicates the amount of time during which this set is executed. Then we 
combine all intervals into one LP. Here we have for each job a constraint 
that decrees that the total amount of work done on this job is at least 
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equal to the processing time, and for each interval we have a constraint 
that the total time spent on processing the subsets corresponding to this 
interval is no more than the size of the interval; we check whether this LP 
admits a feasible solution. Note that a ^ e s ' answer does not necessarily 
lead to a feasible, preemptive schedule, because of the precedence con
straints between jobs that are executed in different sets. We turn this 
LP-formulation into an equivalent optimization problem in which we 
minimize the total penalty, where a penalty term is added to measure 
the amount of work on a job that is not executed. We solve this problem 
through column generation. Here, we have to find for each interval the 
subsets of independent jobs with negative reduced cost. Since this is 
an independent set problem, which is intractable, we apply branch-and-
bound to solve it (see Baar, Brucker and Knust, 1998, for details). If the 
outcome of the LP-formulation does not decide the feasibility problem, 
then we can apply a branch-and-bound algorithm with a branching rule 
in which the execution interval of a job is spht (see Carher, 1987); we can 
apply the combination of constraint satisfaction and linear programming 
in each node. 

Note that it is not necessary to apply constraint satisfaction at all to 
solve this problem. Brucker, Knust, Schoo and Thiele (1998), present a 
branch-and-bound algorithm for the optimization version of the resource 
constrained project scheduhng problem defined above, where the lower 
bound is determined by solving a similar LP like the one above, without 
execution intervals, and with the objective of minimizing the total time 
that all subsets are processed; this LP-problem is again solved using 
column generation. The clear advantage of applying constraint satis
faction first is that the execution interval gets split up, which makes it 
easier to solve the pricing algorithm. Brucker and Knust (2000), do not 
present an elaborate comparison of both methods, but they remark that 
4t confirms the conclusions of Klein and Scholl (1999), who reported 
that destructive methods are often superior to constructive approaches'. 

In a follow-up paper Brucker and Knust (2003), apply their approach 
of combining constraint satisfaction and linear programming to an ex
tended version of the basic resource-constrained project scheduling prob
lem. In this more general problem activities can be executed in diff'erent 
modes^ which may result in a different use of resources and a differ
ent processing time. Furthermore, there are minimum and maximum 
time-lags associated with each precedence constraint, which bound the 
difference in starting time between the two corresponding activities. Fi
nally, there are also non-renewable resources involved, which makes sense 
in this setting, since jobs can be carried out in different modes. The 
objective is again to minimize the makespan. It turns out that the 
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same approach can be applied, but we need to pay special attention to 
the possibility of processing activities in a different mode. In our LP-
formulation for a given time interval, we conclude that a given subset of 
operations can be executed at the same time if they satisfy the prece
dence constraints, the capacity constraints, if no job occurs in two or 
more different modes, and if the remaining quantity of each of the non
renewable resources is sufficient for processing the remaining activities 
in the mode that requires the minimum of that resource. Brucker and 
Knust (2003), report that this approach leads to very promising results. 

5.2 Scheduling a transportation robot 
A further contribution by Brucker and Knust (2002), in this field con

cerns their work on the problem of scheduling a transportation robot in 
a job shop scheduling problem. In a job shop problem each job consists 
of a number of operations that have to be carried out in a given order 
by a prespecified machine. When an operation in a job has been com
pleted, then this job has to be moved to the machine that executes the 
next operation. This moving around is carried out by a robot, which 
can transport only one job at a time. Brucker and Knust look at the 
problem that remains when the order in which each machine executes 
the operations of the different jobs is given: We have to find an opti
mal schedule for the robot. We model this by considering the robot as 
a single machine. The tasks that it has to execute correspond to the 
moving of a job in between the execution of two consecutive operations 
of this job; if the corresponding operations are Oi and Oj^ then we call 
this task Tij. The processing time of Tij is put equal to the time needed 
to transport the job between the corresponding machines. There is a 
generalized precedence constraint between each pair of tasks Tij and Tjk 
and associated with it is a minimum time-lag of size pj, such that Oj 
can be processed in between. Similarly, if Oi is a direct predecessor of 
Oj on the same machine, where Oi and Oj belong to different jobs, then 
we introduce a generalized precedence constraint between the tasks Tki 
and Tjk^ where Oh is the direct predecessor of Oi and Ok is the direct 
successor of Oj in the job, with a minimum time-lag of size pi -f-pj. Since 
the robot may have to travel empty to a machine to pick up some job, 
we have a sequence-dependent set-up time: If task Tj^ follows some task 
Tfii^ then a minimum time Sij has to elapse between the completion of 
Tfii and the start of Tj/^, where Sij is equal to the time needed to travel 
between the machines executing Oi and Oj. Finally, to cope with the 
beginning 0^ and ending operation O^ of a job, we introduce a release 
date (tail) for the first (last) task corresponding to this chain. The re-
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lease date is equal to the earliest possible completion time of O^, and 
the tail has size pe- Our goal is to minimize the maximum delivery time^ 
which is equal to the completion time of a task on the machine plus 
its tail (which is zero, if undefined); this maximum delivery time then 
corresponds to the makespan of the job shop schedule. 

We start by applying the constraint satisfaction techniques, which 
gives us execution intervals that must be satisfied to get a schedule with 
maximum delivery time no more than T. We then proceed with an addi
tional feasibility check using column generation; the approach used here 
resembles the approach used in the time-indexed formulation. We split 
up the precedence constraints such that we obtain a number of chains 
(which have at most one predecessor and successor), which contain each 
task, and a remaining set of precedence constraints. Our ILP formulation 
is based on identifying for each chain a feasible schedule for this set of 
jobs (taking into account the time-lags and the execution intervals) that 
can be combined into a feasible schedule for the whole instance, that is, 
these so-called chain-schedules must respect the remaining precedence 
constraints and the capacity of the machine. Each chain-schedule is 
encoded by denoting for each time-interval [t — 1, t] whether a job is be
ing processed and by denoting the completion times of the jobs in the 
chain-schedule. We apply column generation to solve the LP-relaxation, 
where we have to identify interesting chain-schedules in each iteration. 
Brucker and Knust (2002), show that the pricing problem can be solved 
to optimality using dynamic programming. 

The partitioning of the precedence constraints into chains is not unique. 
In fact, if we let each chain consist of only one task (and keep all prece
dence constraints explicitly), then we obtain a time-indexed formulation. 
It is easy to show that the LP-relaxation of the above formulation dom
inates the LP-relaxation of the time-indexed formulation. 
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Chapter 12 

IMPLEMENTING MIXED INTEGER 
COLUMN GENERATION 

Frangois Vanderbeck 

Abstract We review the main issues that arise when implementing a column 
generation approach to solve a mixed integer program: setting-up the 
Dantzig-Wolfe reformulation, adapting standard MIP techniques to the 
context of column generation (branching, preprocessing, primal heuris
tics), and dealing with issues specific to column generation (initializa
tion, stabilization, column management strategies). The description of 
the different features is done in generic terms to emphasize their ap
plicability across problems. More hand-on experiences are reported in 
the literature in application specific context, f.i., see Desaulniers et al. 
(2001) for vehicle routing and crew scheduling applications. This paper 
summarizes recent work in the field, in particular that of Vanderbeck 
(2002, 2003). 

Introduction 
The Dantzig-Wolfe reformulation approach is an application of a de

composition principle: one chooses to solve a large number of smaller size 
and typically well-structured subproblems instead of being confronted to 
the original problem whose size and complexity are beyond what can be 
solved in reasonable time. The approach is well suited for problems 
whose constraint set admits a natural decomposition into sub-systems 
representing well known combinatorial structure. 

Consider a mixed integer problem of the form: 

zMiP = min c{x,y) 

[MIP] s.t. A{x, y) > a 

B{x,y)>h 

x > 0 

yeW 

(12.1) 

(12.2) 

(12.3) 

(12.4) 

(12.5) 
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where A e Q^x(^+^), B e Q ^ X ( ^ + P ) , are rational matrices and c E 
Q(n+p)^ a G Q^ and b G Q ^ are rational vectors. This structure encom
passes cases in which the problem has 

1 Difficult Constraints: A{x^ u)^^represents difficult constraints. 
B{x^y) > b represents a more tractable combinatorial subproblem 
tha t can be solved much more efficiently than the global prob
lem. A classic example is the Traveling Salesperson Problem (TSP) 
where sub-system B represents 1-tree constraints while sub-system 
A stands for degree-2 constraints at each node. However, the word 
"efficiently" needs not necessarily mean polynomially solvable. 

2 Linking Constraints: B{x.^ y) ^ b has a block diagonal structure 
while A{x^ y) > ct represents linking constraints. An example is the 
Cutting Stock Problem (CSP) where B defines a feasible way to 
cut each wide paper roll into products of smaller width (a knap
sack subproblem for each wide roll) and A defines product demand 
covering constraints. 

3 Mul t ip l e Sub-Sys t ems: A{x^y) > a and B{x^y) > b represent 
each a more tractable sub-system (possibly having its own block di
agonal structure) and the difficulty arises from having them simul
taneously. An example is the Capacitated Multi-Item Lot-Sizing 
(CMILS) problem, where there is a subsystem associated with each 
item defining a single-item lot-sizing problem and a subsystem as
sociated with each period defining a knapsack capacity constraint. 

They are alternative ways to take advantage of such problem struc
ture to compute efficiently strong dual bounds around which an efficient 
exact optimization approach can be developed: Lagrangian relaxation 
(Geoffrion, 1974), cutting plane approach (Crowder et al., 1983), and 
variable redefinition (Martin, 1987) are such techniques, 

1. Dantzig-Wolfe reformulation 
The Dantzig-Wolfe reformulation approach is a special form of variable 

redefinition. It can be presented using the concept of generating sets: 
For each sub-system on which the decomposition is based, one defines 
a finite set of generators from which each subproblem solution can be 
generated. The variables of the reformulation shall be the weights of the 
elements of these generating sets. 

Saying that G^ is a generating set for subproblem 

X ^ = {{x, y): Bix, y)>b,x>0,ye W}. (12.6) 
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means that 

I oeGB J geGB 

Set G^ is typically large but finite even if X ^ is not. R^ represents spe
cific restrictions on the weights A ,̂ including cardinality and integrality 
restrictions. 

This framework encompasses various definitions of D-W reformula
tion. In the classic convexification approach, the generating set is de
fined as the set of extreme points and rays of conv(X^). An alternative 
approach is to base the decomposition on a property that integer poly
hedral can be generated from a finite set of feasible integer solutions 
plus a non-negative integer linear combination of integer extreme rays 
(Nemhauser and Wolsey, 1988). This is the discretization approach of 
Vanderbeck (2002). It generalizes to Mixed Integer Programs, by apply
ing discretization in the integer variables (in the y-space) while convexi
fication is used for the continuous variables. In Table 12.1, we specify the 
definition of G^ and R^ for each of the above cases. Vanderbeck (2002) 
discusses other possible definitions of generating sets. In Table 12.1, we 
assume boundedness of the subproblem X^ and a single block in ma
trix B to simphfy the notation (the generalization to the unbounded 
case is straightforward, the case of a block diagonal subsystem is treated 
below). 

The reformulation based on subproblem B takes the form: 

M{B) = min\ 5 ] ( cp )A , : J^ {Ag)\g > a,X e R^\. (12.7) 
I geGB geGB J 

Due to its large number of variables the linear relaxation of the reformu
lation is solved using a delayed column generation technique. Then, the 
reformulation is commonly called the master program while the slave is 
the pricing subproblem. For M(ß) , the pricing subproblem takes the 
form 

C^(7r) = min{(c- nA)g: g G G"}. (12.8) 

where TT are dual variables associated with constraints YlgeG^(^9)^9 — 
a. The procedure starts by solving a master LP restricted to a sub
set of columns. While the subproblem returns negative reduced cost 
columns, they are added to the linear program that is re-optimized. The 
intermediate master LP values are not vahd dual bounds. However, a 
Lagrangian dual bound can readily be computed from the subproblem 
value: applying Lagrangian relaxation to M, dualizing the A constraints 
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Table 12.1. Definitions of G and R under convexification and discretization ap
proaches. 

Convexification: 

G^ = {{x,y) e M!|:xN^; {x,y)= extreme point of conv(X^)} 

R^ = {X>0: ZgeGB A, = 1, E . eG- V'^ ^ ^'} 

Discretization for an IP: 

r G^ = {yeW: By>b} 

\R^ = { A : ZgeGB Â  = 1, A, € N V5 € G"} 

Discretization for a MIP: 

f G^ = pvo^yX^ - { y e W: B{x,y) > 6,x > 0} 

S^{y) = {x e M!f:: x is an extreme point of B{x^ y) > b} 

G^ = {{x,y) €RlxW:yeG^,xe S^{y)} 

G'^iy) = {g = {xs,y'): y'= y e G^,x^ e S^{y)} 

[R^ = {X-- EgeGB \ = 1, E,eGB(,) A, € N Vy G G^} 

with weights TT > 0 yields a vahd bound of the form 

L(7r) = 7ra + /(C^(7r)) (12.9) 

where function /(.) takes a form that varies with the definition of the 
cardinahty restrictions in R^ (Vanderbeck, 2003). In the case of a single 
subproblem taking the form of a bounded integer polyhedron, /(C^('^)) 
simply equals C^('7r)- Upon completion of the column generation proce
dure, this Lagrangian bound equals the master LP value. This column 
generation algorithm is embedded in a branch-and-bound procedure to 
solve the integer problem. The overall algorithm is known as Branch-
and-Price, 

The interest of the reformulation is twofold. First, it leads to a so
lution method implementing the desired decomposition of the problem 
and exploiting our ability to solve the subproblem. Second, it often leads 
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to strong dual bounds: Lagrangian duality theory (Geoffrion, 1974) tells 
us that the master LP (under a standard definition of the generating 
set) is equivalent to the Lagrangian dual defined by dualizing the mas
ter constraints, itself equivalent to solving an LP on the intersection 
of the master constraints and the convex hull of the MIP subproblem 
polyhedron. For M(S) , this writes 

Z^(^) - min{c(x, y): A{x, y) > a, (x, y) G conv(X^)}. (12.10) 

Thus, Z p̂̂ P < Z^^^^ < Z^^P. The first inequality is typically strict un
less X^p = conv(X^) (that is when the subproblem has the ^'integrality 
property"). In the latter case, although the Dantzig-Wolfe decomposi
tion approach gives a dual bound equal to the standard LP relaxation 
of the MIP, it might be worthwhile: beyond the motivation of working 
with a specialized subproblem solver, it may allow to avoid symmetry 
(as developed below in the case of multiple identical subsystems); it also 
provides a good strategy for introducing variables dynamically (if the 
original MIP formulation is itself large scale, as in Briant and Naddef, 
2004), 

In a standard D-W reformulation, the definitions of G^ and R^ ensure 
that 

PROPERTY 1 The master linear programming relaxation offers a dual 
hound which is equal to the Lagrangian dual value (12.10): i.e,, we must 
have 

I (x,y) ^ J ] ^A,: A G i?fp I - conv(X^); 

PROPERTY 2 The master program (12.7) is a valid mixed integer refor
mulation of the original MIP problem (12.2)-(12.1). 

However, in extensions of the D-W reformulation principle, one might 
consider generating set definitions where these properties are relaxed as 
discussed in Section 3. 

When matrix B is block diagonal 

B 

f B^ 0 . . . 0 \ 
0 B^ ,., 0 

(12.11) 

\ 0 0 .,, B"^ J 

with K non-identical blocks, one defines a generating set G for each 
A: = 1 , . . . , K. But, when the blocks are identical, i.e. B^ — B^ — - - - = 
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B^ ^ one only needs to define one generating set G^ — G^ . The weights 
associated with the generators can then be aggregated, 

K 

^9-J2^9 ^9eG^ (12.12) 
k=l 

and the cardinahty constraint in the associated restriction set R^ be 
written as 

Y^ Xg = K. (12.13) 
geGB 

Then, there is a third benefit in working with the D-W reformulation: 
it does not suffer from the drawback of symmetry present in the origi
nal formulation. Indeed, in the original formulation, variables must be 
indexed by k and a given solution can be represented in several ways 
by permuting the k indexing. This is quite harmful when it comes to 
enforcing integrality through branching constraints. 

A distinction is to be made between convexification and discretiza
tion approaches that relates to the expression of the integrality restric
tions. With the former one must translate the master solution in the 
space of the original variables to express and enforce integrality. As a 
consequence, when there are multiple identical sub-systems, one cannot 
aggregate weights using (12.12) and the reformulation suffers from the 
same symmetry drawback as the original formulation. The discretization 
approach, offers a true integer programming reformulation with which 
it is easier to implement some branching schemes as we shall see. 

In most applications, cardinahty constraints (12.13) can be relaxed to 
either a < or a > constraint (whether K = 1 or K > 1) as the combina
torial relaxation yields the same optimum value. This is in particular the 
case when 0 G G^. A generahzation is to write the cardinality constraint 
in the form: 

L^ < 5 ] Â  < [7^ (12.14) 
geGB 

where L^ and U^ define a lower and an upper bound on the number of 
generators that can be used from subproblem B, They have an econom
ical interpretation: for instance in a vehicle routing problem they stand 
for the minimum and maximum number of vehicles that must/can be 
used. 

Formulation (12.7) assumes a simple Lagrangian relaxation of a sub
system A while B are being kept as hard constraints. However, one can 
treat both sub-systems as hard constraints by duplicating variables and 
dualizing constraints that enforce equality of the copies: this variable 
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splitting approach implements a Lagrangian decomposition (Guignard, 
2004). Then, the master takes the form 

lgeG-4 ^ ^ geGB ^ ^ 

: ^ 5 A , ^ = ^ 5 A , ^ A ^ G Ä ^ A ^ € Ä ^ | (12.15) 
g^G^ geGB ) 

and the dual bound is 

Z^J^" '̂̂ ) - min{c(x, y): (x, y) G conv(X^) H conv(X^)}. (12.16) 

In the sequel, unless said otherwise, we assume a simple Lagrangian 
relaxation with B as the sub-system. 

2. Choosing a solver for the master 
There are alternatives to solving the master LP with the revised sim

plex algorithm. Seen in the dual space, the latter amounts to applying 
a cutting plane algorithm known as Kelley's method (Kelley, 1960; Ch
eney and Goldstein, 1959); the column generation subproblem is then to 
be seen as a separation routine generating cuts. Other approaches are 
known to have better performance: the bundle method (Lemarechal, 
1998) and ACCPM (Goffin and Vial, 2002) are cutting plane algorithms 
for the dual of the master that differ from Kelley's cutting plane method 
by the choice of proposal that is made to the subproblem solver. 

In Kelley's method, the dual solution that is returned to the sub-
problem is the point that optimizes the current restricted master linear 
program. In the bundle method the proposal is the point that optimizes 
a modified objective over the restricted master polyhedron: a quadratic 
term that penalizes the norm of the deviation to the current best dual so
lution, TT, is included in the objective to stabilize the search {ii is the dual 
solution that gave the best Lagrangian. bound value). In ACCPM, the 
proposal is the analytic center of the localization set defined by the re
stricted master polyhedron intersected with a cut on the objective value 
(defined by the best Lagrangian bound). The latest version of ACCPM 
(du Merle and Vial, 2002) includes a proximal term hke in the bundle 
method to enhance stabihty. 

Another alternative to the simplex algorithm is the interior point 
method that is readily available in most commercial MIP solvers. Ap
plied to the dual it has the benefit of (approximately) computing dual 
prices centered in the optimal face when the dual admits many alterna
tive optimum solutions (as it often happens)—Before translating it into 
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an extreme solution. Such "centered dual solutions" may help in stabiliz
ing the column generation procedure. Finally, a sub-gradient algorithm 
is an alternative that exhibits slow convergence but requires little com
putations at each iteration. It is often used when one is happy with an 
approximate dual solution of the master LP. The sub-gradient algorithm 
also provides a candidate primal solution in the convex hull of generated 
subproblem solutions, but it may violate the master constraints (Briant 
et ah, 2004). 

3, Options in setting-up the D-W reformulation 
Given an application, there are typically many ways of formulating it 

as a MIP and selecting sub-systems on which the D-W decomposition 
is based. The quality of the resulting dual bounds can be compared 
theoretically using Lagrangian duahty theory (Geoffrion, 1974). But, for 
practical purposes, the important consideration is the trade-off between 
the duality gap observed on practical data sets and the computational 
time required to solve resulting master and subproblems. 

The options are: 

• To adopt a tighter or looser definition of a sub-system. Some con
straints can go in either sub-system A oi B OY be duplicated in 
both. ImpHcit constraints (cuts) can also be added. In particular, 
one can enforce bounds on subproblem variables that are induced 
by constraints that are not in the subproblem. Columns whose 
coefficients take value within the bounds implied by master con
straints are called proper. Vanderbeck (2002) also defines strongly 
proper columns whose component values satisfy bounds implied 
by using probing techniques in the master. Including extra restric
tions in a subproblem may make it much harder to solve but may 
yield better dual bounds. The opposite trade-off consists in relax
ing the subproblem to ease its solution while weakening the dual 
bounds. This can be viewed as a form of state-space-relaxation— 
A classical technique in dynamic programming—See Gamache et 
al. (1999) for an example of its use in a column generation context. 
Such relaxation can be exploited just to provide a warm start, or 
to implement a primal-dual heuristic for the subproblem. 

• To base the reformulation on one or several sub-systems: a La
grangian relaxation approach yields reformulation (12,7) while a 
Lagrangian decomposition approach yields reformulation (12.15). 
Although the latter yields a theoretically stronger dual bound, the 
master program is typically much harder to solve: the number of 
duahzed constraints (12.15) is often large and each restricted mas-
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ter typically admits many alternative dual solutions (a degeneracy 
that causes a large number of iterations in the column generation 
procedure). Moreover the theoretically better dual bound may 
in practice be not significantly better than the bound given by 
simple Lagrangian relaxation (Monneris, 2002). Guignard (2004) 
proposes to aggregate variables in order to reduce the number of 
dualized constraints (12.15); in some case the same quahty dual 
bound can be obtained with aggregate representation of the link 
between the subsystems. 

• To reformulate a sub-system (say A), improving its formulation, ei
ther instead of treating it as a subproblem (while decomposition is 
performed based on a second sub-system {B) as in Michel (2003)) 
or before applying D-W decomposition (as in Thizy, 1991). One 
might have a formulation of the convex-hull of subproblem A solu
tions: for instance, as a network flow problem equivalent to solving 
the subproblem by dynamic programming (Martin, 1987). Or one 
might know cutting planes describing the integer polyhedron A, 
However, the size of such explicit reformulation is often too large. 
Then an approximate improved formulation can be used: for in
stance by aggregating variables (as in van Vyve, 2003) or by adding 
only a subset of cuts. The formulation can also be improved dy
namically, using a cutting plane algorithm, which, combined with 
the column generation procedure, leads to a branch-and-price-and-
cut algorithm. 

• To disaggregate a sub-system, say 5 , that has a block diagonal 
structure or treat it as a single block. As discussed in Vanderbeck 
(2003), this does not affect the quahty of the final dual bound as 
conv(X^) = ®k=i conv(X^ ). But intermediate dual bounds can 
be better with the aggregated approach. (However, one can work 
with a disaggregate master while adopting the Lagrangian bound 
computation and the column generation strategy of the aggregate 
approach.) On the other hand, aggregation influences the effi
ciency of the master solver: the disaggregate formulation typically 
requires fewer iterations (because the disaggregate columns can 
be recombined in different imphcitly defined aggregate columns); 
but solving a disaggregate master can be more costly computa
tionally (in particular, when the master is solved using the bundle 
method, solving the disaggregate form of the quadratic master is 
much harder than the aggregate form). 
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4. Branching scheme 
In a branch-and-bound algorithm, the branching scheme consists in 

partitioning the solution space into sub-spaces so as to cut off the cur
rent fractional solution while ensuring that all feasible integer solutions 
are included in one of the sub-spaces. In a branch-and-price algorithm 
one can fall back to this standard scheme by using a convexification ap
proach. Then, one returns to the space of the original variables (x,y) 
to check integrality and derive branching constraints (Villeneuve et al., 
2003). 

Alternatively, with the discretization approach, one has a mixed inte
ger programming D-W reformulation and branching can be implemented 
by partitioning the generating sets, G = G^UG^^ and enforcing separate 
cardinality constraints (12.14) on each subset: 

so as to eliminate infeasible fractional solutions for which ^^ZqeGiv) ^^ ^ ^ 
for some y E Gp. The recursive partition of the generating set shall be 
pursued until the integrality constraints "^g^Q^iy) ^g ^ ^ ^^^ ^^^ fo^ 
all y G Gp , The scheme seems to call for associating a subproblem with 
each subset of generators G^ and G^. This, of course, quickly gets out of 
hand due to the exponentially increasing number of subsets. Instead, the 
pricing subproblem associated with G is amended to model correctly the 
reduced cost of generators from any subsets. The resulting modifications 
to the pricing subproblem range from amending the objective coefficients 
to adding new variables and constraints that may destroy the initial 
combinatorial structure and make the subproblem less tractable. 

In practice, the separation of the generating set shall define a tru^ 
partition G — G U {G\G), Branching is implemented by choosing G 
such that "^ ^Q^g = (^ ^ ^ and by adding a disjunctive branching 
constraint 

Y^Xg <la\ or ^ A , > [ a l . (12.17) 

ged ged 

An indicator variable I g saying whether or not the generated column 

belongs to G is added to the pricing subproblem. Its cost equals the dual 
value of the branching constraint. MIP constraints can be necessary to 
define I g in terms of the existing subproblem variables while in the 
simplest case I g is equal to an existing subproblem variable. Thus, sets 
G must be carefully chosen, making a trade-off between the efficiency of 
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the branching scheme and the difficulties resulting from the subproblem 
modifications (Vanderbeck, 2000). 

Branching on a single A^ variable corresponds to choosing G to be 
a singleton. This is typically a poor choice on both regards: it yields 
an unbalanced branch-and-bound tree and requires heavy modifications 
to the subproblem. Instead, the most aggregate definitions of G that 
yield the most balanced tree are also the^asiest to accommodate in the 
subproblem. The simplest definition is G = G, enforcing integrality of 
the number of generators used from a sub-system: 

R u l e l : E < ; € G ^ 9 € N . 

For instance, in a column generation approach to the facility location 
problem, this rule enforces 0 — 1 decisions on opening facilities. The 
next easiest rule that does not yield any subproblem modification is to 
branch on existing binary variables: say yi G {0,1} is a subproblem 
variable then define G = {g ^ G\ yi =^ 1} and enforce 

Rule 2: E , e G : , . = i A , e N . 

Then, lQ = yi. 
Next consider an integer variable of the subproblem, say y^ G N, with 

bounds Ik ^ Vk ^ '^k' It admits a binary decomposition: 

Uoĝ fcJ 
yj,^ Y^ 2^ykj with y/cj G {0,1} Vj. 

One can branch on these binary components starting with the heaviest: 

R u l e s : E , e G : j„,=i ^g € N. 

The modification to the subproblem consists in introducing the binary 
components either dynamically as they arise in branching constraints 
(one replaces yk using yi, ^ y'^ + Y/ilj "^^Vkl with y'^ G N, y^ < 
2^ — 1 and bounds Ik ^ yk ^ '^^k must be explicitly enforced on the new 
expression of yk)\ or statically by reformulating the subproblem as a 0— 1 
program. 

Both Rule 2 and 3 can sometimes be enforced directly in the sub-
problem rather than being set as a master constraint. This results in 
a stronger dual bound. When the upper bound [aJ of branching con
straint (12.17) is equal to zero, no generators can be chosen in G and 
the subproblem solution space can be redefined to yield G\G. Symmet
rically, when the lower bound \a\ of (12.17) equals the upper bound U 
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of the cardinality constraint (12,14), all the generators must be chosen 
in G and the subproblem solution space can be redefined accordingly. 

When the master solution remains fractional beyond these simplest 
rules, one can branch on pairs {s^t) of binary variables or binary com
ponents introduced for Rule 3: 

Rule 4: E ^ G G : y.=^,=i \ ^ N. 

This rule generalizes a branching scheme attributed to Ryan and Foster 
(1981). It admits special cases where it can be implemented directly 
in the subproblem while it normally requires to introduce a new binary 
variable in the subproblem, say Ig = yst- Specifically, there are four 
distinct cases: 

1 When [_a\ = 0, the constraint yg + ŷ  < 1 is added to the subprob
lem. 

2 When [aJ > 0, yst is introduced in the subproblem along with the 
constraint yst >ys + yt-^^' 

3 When [a] = (7, the constraint ys = yt is added to the subproblem. 

4 When \a] <U ^ yst is introduced in the subproblem along with the 
constraints yst < ys and yst < yt-

Columns present in the master that do not satisfy the new subproblem 
constraints must be deleted. Vanderbeck (2003) presents this rule in a 
more general context and defines two more special cases. 

The above rules may not suffice to generate a solution that obey the 
integrality restrictions. Then one shall pursue branching by implement
ing rules based on subset G defined by fixing more than 2 column com
ponents. Worst case results and subproblem modifications are given in 
Vanderbeck (2000). However, for many applications, the above rules suf
fice to ensure integer solutions: either theoretically—For instance when 
the master is a set partitioning problem—Or in practice—For example, 
most instances of the cutting stock problems can be solved by combining 
these basic branching rules with primal heuristics (Perrot, 2004). 

Choosing specific components (or pairs) on which to branch is done 
according to branching priorities associated with variables of the original 
formulation. Which of the disjunctive branch is explored first depends on 
the priorities defined for original variables. A tree search strategy (best 
bound first, depth first, least discrepancy, . . . ) must be selected. The 
above hierarchy of rules along with a best bound first strategy focuses 
on improving dual bounds.. However, if the goal is to obtain incum
bent integer solution quickly, branching rules yielding an unbalanced 
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tree may be appropriate along with a depth first or a least discrepancy 
search strategy. One might even consider branching by rounding-up Â  
if backtracking is not expected (or in a rounding heuristic). 

The distinction between convexification and discretization approaches 
is mostly a matter of presentation framework. The discretization has an 
apparent drawback: it requires 

E Xgen WyeG^ (12.I8) 

although an integer solution can be obtained for which this isn't true: 
the current solution in A may be fractional, while its translation in the 
original variables y is not. This is in particular the case in applications 
where the subproblem is a shortest path problem: as we know from 
the flow decomposition theorem, the arc flow y can be integer while 
the path flows A are fractional. Thus one could say that the condition 
(12.18) is too strict and might lead to continue on branching when it 
is not necessary. This misfortune can easily be avoided by checking 
integrality using the convexification conditions YlqeG^ V^^d ^ ^^ while 
implementing branching with the goal of enforcing (12.18), 

On the other hand, the convexification approach has its drawbacks 
too. With the plain implementation defined in Table 12.1, branching 
constraints are always implemented in the master and are therefore du
alized. While, with the discretization approach, special cases can be 
detected automatically where branching can be enforced directly in the 
subproblem. Then, the branching constraints are part of the polyhedron 
that is convexified yielding a better Lagrangian dual bound. However, 
this apparent drawback of the convexification approach can be circum
scribed in an application specific context by recognizing, in the master, 
constraints that concern the subproblem variables only and can therefore 
be placed in the subproblem. It is equivalent to redefining the D-W refor
mulation from the original formulation at each node of the branch-and-
bound tree (Villeneuve et al., 2003). We could call this approach the "dy
namic convexification approach", it reproduces the subproblem modifi
cations of the discretization approach. Thus, the discretization approach 
can be understood as a way to implement implicitly/automatically the 
redefinition of the D-W reformulation at each branch-and-bound node 
with no need to do it explicitly/manually. While the convexification 
approach is normally static but can be reseted at each node. 

The second drawback of the convexification approach arises when the 
sub-system on which the decomposition is based has a block diagonal 
structure, as it is often the case. Even if these blocks are identical, the 
convexification approach requires to associate different variables with 
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each block to enforce ^ ^^k y^Xg € W Vfc, which results in symme
try. Again, this drawback can be overcome: by introducing auxiliary 
aggregate variables, y = J2 Yl ^Q^^ V^^g on which to branch. Again, 
this remark reveals what the discretization approach does implicitly: it 
permits to branch on auxiliary variables. Even when diagonal blocks 
are not identical but are similar, it is worthwhile branching on sets 
G C G = U^^G^ to avoid symmetry. 

Note that when these two drawbacks of the convexification approach 
cumulate, i.e. when you have a branching constraint that could go in the 
subproblem in the presence of multiple blocks, the manipulations that 
need to be done under convexification to compensate for them become 
difficult to implement. For instance, consider implementing Rule 4 in 
the presence of multiple identical blocks. Thus, our view is that the 
discretization approach provides a theoretical framework in which it is 
more natural to formulate branching constraints. In particular, any 
branching rule implemented in the convexification framework can be 
implemented in the discretization framework in the same way but the 
converse is not true. The same conclusion holds for adding cutting planes 
for the master. 

5, Preprocessing and variable fixing 
Standard preprocessing techniques (Savelsbergh, 1994) can also be 

used in a column generation approach. Not directly on the column gen
eration re-formulation that is only known implicitly through the solu
tion of subproblems, but in the solution space of the original formulation 
(12.2)—(12.1), which is also that of the subproblem variables. Bounds 
on subproblem variables can be tightened not only based on subproblem 
constraints but also on the basis of their input in the master constraints. 
Tighter bounds might permit to eliminate redundant constraints (in the 
subproblem or in the master) or to prove infeasibility. The reduced cost 
fixing techniques permit to strengthen subproblem variable bounds fur
ther. Preprocessing can also be used to estimate the range of dual price 
values: this dual information is helpful for a warm start of the column 
generation procedure. 

When the sub-syst em is made of blocks (12.11), preprocessing can 
be used to derive bounds on aggregate variables (x,y) = Y^k^ii^^^V^)^ 
which in turn implies bounds on the disaggregate variables (x^, y^). The 
useful formulation where standard preprocessing can be applied is there
fore: 

minc(x,y) (12.19) 
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A{x,y)>a (12.20) 

ß ^ ( x ^ / ) > & Vfc = l , . . . , / s : (12.21) 
K 

(x,y) = ^ ( x ^ / ) (12.22) 
/ c = l 

o</^<(x^/)<u^ vfc=i,...,K 
0 < / < (x,y) < u , (12.23) 

Using constraints (12.20) to strengthen bounds (/,n) and constraints 
(12.21) to strengthen bounds (/^,'u^), one can then combine these 
strengthening through constraints (12.22). 

Formulation (12.19)-(12.23) does not need to be generated exphcitly, 
but these impHcit relations can be exploited for preprocessing. As it is 
standard, the lower bound on a variable Xj with positive coefficient aij 
in > constraints Ai can be improved if it violates 

and similarly for other coefficient sign and constraint sense and for 
(x^, y^) in the B^ constraints. Then, combining aggregate and disaggre
gate bounds can result in further strengthening if one of the following 
relations is violated: 

k=l k=:l 

When the diagonal blocks are identical, (/^, u^) = (/, u) V/c = 1 , . . . , K, 
the above procedure simplifies: one only needs to preprocess one sub-
block and the strengthening through combining aggregate and disaggre
gate bounds takes the form 

k>k-{U- l)üi, üi <Ui- {L- l)li, 

k > Lli, Ui < Uui, 

where (L, U) are the bounds of the cardinality constraint (12.14). These 
relations are tested iteratively until no variable bounds can be improved. 
For integer variables, bounds are rounded to their integer parts. 

If an incumbent integer solution INC is available, it can be shown to 
dominate solutions where a variable takes value within restricted range: 
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if a dual bound conditional to such restriction is available that takes value 
greater than INC. Lagrangian bound (12.9) can be made conditional to 
restricted range {I'^u') on subproblem variables: 

L{TT\1'^u') = Tia + min{(c — TiÄ){x^y): B{x^y) > 6, 

l'<{x,y)<u'}. (12.24) 

Thus, further bound strengthening for integer variables i/i can be achieved 
as follows: 

while L(7r|/' = I + e^{ui — li)^u) > INC, reset Ui := ui — 1, 

while I/(7r|/, u^ = u — e^{ui — k)) > INC, reset k := k + 1, 

where ê  is the ith unit vector. The reduced cost indicates which variable 
bound is candidate for such strengthening (Vanderbeck, 2003). 

This so-called "variable fixing" scheme is computationally costly since 
it requires solving a subproblem for each test. However, a dual bound 
on the subproblem value is sufficient to define a valid test. Thus, in 
practice, one may solve a relaxed subproblem: for instance, a combi
natorial relaxation of constraints B{x^y) > b yields a trivial bound. A 
linear relaxation of the subproblem can yield a stronger bound (if the 
subproblem has the integrality property this bound has the same qual
ity as (12.24)—This is the case when the subproblem is a shortest path 
problem). Yet another strategy is to dualize constraints B{x^ v) ^ b and 
apply a dual heuristic (such as several steps of a sub-gradient method) 
to estimate the Lagrangian prices. 

When variable bounds cannot be further strengthened, constraint re
dundancy and infeasibility can be tested. The improved bounds on sub-
problem variables shall be used in the definition of the generating set. 
They guarantee that only proper columns shall be generated. However, 
this can make the subproblem much harder to solve. Take the two di
mensional knapsack problem for example. The unbounded version can 
be solved in pseudo-polynomial time by dynamic programming while 
the bounded version is strongly NP-hard. For the single-item lot-sizing 
problem the uncapacitated version is polynomial while the capacitated 
case is NP-hard. Nevertheless it might be worth enforcing subproblem 
variable bounds since the D-W reformulation yields a better dual bound 
then. 

Applying preprocessing to the dual of (12.19)-(12.23) allows to es
timate the dual prices. This LP dual is a valid dual problem for the 
mixed integer program (12.2)--(12.1) or (12.7). However, the bounds on 
dual prices are not vahd bounds for the Lagrangian dual (12.10). They 
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merely provide estimates of dual price values. Take the example of the 
cutting stock problem. The primal LP takes the form: 

^Vk' ^Xik> di Vi, Y^ WiXik < Wyk Vfc, Xik > 0, y/. G [0,1] > 
k k i ) 

where Xjk is the number of pieces of product i cut in wide-roll A:, while 
Uk is 1 if wide-roll k is used. Its dual writes 

max < ^ diTTi - ^i^k • (^kW - î /c < 1 Vfc, TT̂  - wiak < 0 
[ i k ^ 

\/ik,Tii,Pk,(^k > 0 >. 

It can be solved trivially through preprocessing: cr/. < 1 -f- Vk/W =^ TT̂  < 
Wi/W{l -f- Uk)] the objective is maximized by setting the TT̂ 'S equal to 
those upper bounds and u^ = 0 ^ik because K > J2i^idi/W, Thus 
7Ti = Wi/W solves the dual LP. These values provide good estimates 
for starting up the column generation procedure but do not define valid 
upper bounds on the Lagrangian dual solution. 

6. Initialization 
The generalized simplex algorithm used to solve the column genera

tion formulation must be started with a feasible primal solution. It can 
be constructed heuristically. Alternatively, one can introduce artificial 
columns and combine phase 1 and phase 2 of the simplex method: at 
the end of phase 2, if artificial columns remain in the primal solution, 
their cost is increased and one returns to phase 2. Artificial columns 
remain useful to restart column generation after adding branching con
straints. They also stabilize the column generation procedure. Dual 
methods need not be started with a primal feasible solution but they 
can benefit anyway from a warm start. 

There are various ways to set artificial variables in the D-W refor
mulation from the most aggregate to the least: one can define a single 
artificial column, or one for each subproblem (representing the sort of 
solutions expected from this subproblem) or one for each master con
straint (which offers an individual control on dual prices). In defining 
artificial column coefficients, one tries to feed the model with relevant 
information concerning the order of magnitude of the data: after the 
pre-processing phase, one has estimates of the maximum and minimum 
value that can be assumed by master constraint LHS, either globally or 
for a single subproblem solution; these values can be used to set artificial 
column coefficients. 
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Dual: < 

In the primal, artificial columns act as slack variables that transform 
the hard constraints into soft ones: minimizing their cost amounts to 
minimizing the constraints' violations. In the dual of the master pro
gram, artificial columns define cuts (in the same way as regular columns 
do). Let us look for instance at the primal dual pair for the LP relaxation 
of (12.7) augmented with artificial columns associated with individual 
master constraints (indexed by i). The artificial columns are defined by 
their cost, constraint coeflficient and upper bound: (c, ä, {1)̂ . 

fminX]̂ ^^%A^ + X].QP̂  

Primah<(X:^^^A^ = l 

A^>0 ^geG 

[0 < Pi < Ui Vi 

max YJI (^i^i - (^ + Y,i^i^i 

^ i CLigiTi - a >Cg Mg eG 

äiTTi <Ci + h>i Vi 

TTz, î z > 0 Vi. 

It appears that the artificial column cost over its constraint coefficient, 
Ci/äi^ defines an upper bound on the dual variable TT̂  that can be over
ruled (when Ui > 0) at a cost defined by the upper bound Ui, In the same 
way, more aggregate definitions of artificial columns define generalized 
upper bounds on dual prices. Modifying their definition dynamically is 
a way to control dual variables. A general presentation of the primal-
dual interpretation of modifications done to the master can be found in 
Briant et al. (2004)—It relies on Fenchel duality. 

At a branch-and-price node other than the root, the pool of already 
generated columns offers a natural set for initialization, once the columns 
that do not satisfy branching constraints are eliminated, but it might be 
too large. Selecting only the columns that were potentially active at the 
parent node (i.e. with zero reduced cost) offers a good filter. 

An intelligent initialization of the restricted master program offers a 
warm start It might be worthwhile working harder at initialization. 
One can generate an initial set of columns based on the above dual price 
estimates. In turn, dual price estimates can be refined further using 
a truncated version of the master solver: for instance, perform a few 



12 Implementing Column Generation 349 

tailing-off 

yo-yo (due to bang-bang behavior of dual var.) 

300 400 900 1000 

Figure 12.1. Illustration of the convergence of a simplex-based column generation 
approach on the TSP instance eil76 of the TSPLIB: the upper (resp. lower) curve 
gives the primal (resp. dual) bound at each iteration. 

pivots of the simplex or several iterations of a sub-gradient algorithm 
with a subproblem optimized over the existing columns. The spirit is 
to avoid using the computationaUy costly procedure (whether it is the 
exact solution of the subproblem or that of the restricted master) while 
the problem knowledge is approximative. This strategy has sometimes 
proved helpful (Caprara et al., 2000). However, the exact method (for 
the master or the subproblem) is often very quick at the outset (because 
of the simplicity of initial master formulation or subproblem objective) 
and using approximate procedures does not always translate in big time 
savings. 

7. Stabilization 
The standard method for solving the LP relaxation of D-W reformula

tion, i.e. using the simplex algorithm with dynamic pricing of variables, 
suffers from several drawbacks as illustrated in Figure 12.1: (i) a slow 
convergence (a phenomenon called the ^^tailing-off effect'^ in reference 
to the long convergence tail); (ii) the first iterations produce irrelevant 
columns and dual bounds due to poor dual information at the outset 
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(let us call this the heading-in effect)^ (iii) degeneracy in the primal and 
hence multiple optimal solutions in the dual: one can observe that the 
restricted master solution value remains constant for several iterations 
(which can be called the plateau effect); (iv) instabihty in the dual 
solutions that are jumping from one extreme value to another (the bang-
bang effect)] the distance between the dual solution at an intermediate 
iteration fc, TT ,̂ and an optimum dual solution, TT*, does not necessarily 
decrease at each iteration, i.e., one can have ||7r̂  — ^*|| > \\7V^~^ — 7r*||; 
{v) likewise, the intermediate Lagrangian dual bounds (12.9) do not con
verge monotonically (the yo-yo effect). 

Stabilization techniques have been developed to reduce these draw
backs (a review is given in Lübbecke and Desrosiers (2004)). Vignac 
(2003) classifies them into 4 categories according to the mechanism that 
is used: (i) defining bounds on dual prices (the dynamic boxes of Marsten 
et al., 1975), (ii) smoothing dual prices that are returned to the subprob-
lem (Neame, 1999) takes a convex combination of the current master 
dual solution and that of the previous iterate, Wentges (1997) takes a 
convex combination of the current dual solution and the dual solution 
that yielded the best Lagrangian bound), (iii) penalizing deviation from 
a stability center, usually defined as the dual solution that gave the best 
Lagrangian bound value (as in the bundle method of Lemarechal (1998)), 
(iv) working with interior dual solution rather than extreme dual solu
tions (as in the solution method ACCPM of Goffin and Vial, 2002, or 
in Rousseau et al. (2003), where the center of the dual optimal face is 
computed approximately). These can be combined into hybrid methods 
(du Merle et a l , 1999; Neame, 1999; du Merle and Vial, 2002). 

These techniques often have an intuitive interpretation in the primal 
space of the A variables (Briant et al., 2004). The basic techniques (dy
namic boxstep and smoothing) can be implemented within the linear 
programming framework. Observe that using simplex re-optimization 
after adding a column rather than optimization from scratch can bring 
some form of stabilization toward the previous primal solution (whether 
this is desirable or not). Other techniques, such as penalizing deviation 
from a stability center, can be tuned to remain usable within the hnear 
programming context (by choosing the Li norm for instance). Other
wise, an alternative master solver (as presented in Section 2) must be 
used. It is only by using a different master solver (such as bundle or 
ACCPM) that one can get theoretical convergence rate better than that 
of the simplex-method. 

There are basic tips to reduce instability. One should avoid including 
redundant constraints in the master as they create degeneracy. In par
ticular, one should use inequality constraints rather than equalities when 



12 Implementing Column Generation 351 

this combinatorial relaxation yields the same solution. This also bounds 
the dual variables to positive values. Including the original variable in 
the master problem, as proposed in Poggi de Aragao and Uchoa (2003), 
can yield harmful redundancy. A more aggregate formulation of master 
constraints can bring stabihty (Perrot, 2004). 

Basic stabilization can be obtained by managing artificial columns 
dynamically to control dual variables along with an intelligent initial
ization of the restricted master program that allows to alleviate the 
heading-in effect (Briant et al., 2004). The next easy step is to use a 
form of smoothing of dual prices. The more advanced stabilization tech
niques, in particular the hybrid methods, require intensive parametriza-
tion (which may hide the logic). They can be seen as barely attempting 
to mimic the behavior of alternative dual price updating methods such 
as an interior point solver, the bundle method or ACCPM. They are 
attempt at getting the benefits of these alternative approaches while 
staying in the Simplex world. Therefore, their theoretical convergence 
rate is that of the simplex method. When instability is problematic be
yond the use of basic procedures, one should consider methods based on 
non-differentiable convex optimization that really bring a different logic. 

In a branch-and-price algorithm however the exact solution of the 
master LP might not always be needed. A node can sometimes be cut 
by bound before reaching optimality of the master LP. The convergence 
tail can also be truncated by branching early. 

8, Column re-optimization and post-processing 
Re-optimizing existing columns before calling on the oracle subprob-

lem to generate new columns, has proved to be a successful strategy: for 
instance, Savelsbergh and Sol (1995) apply a local search heuristic to 
active columns. It can be used as an alternative to a multiple column 
generation strategy: instead of introducing several columns of negative 
reduced cost at a given iteration, return only one but scan the others in 
the re-optimization phase after updating the dual prices. 

Re-optimization can be somewhat formalized using the concept of 
base-pattern of Vanderbeck (2002). If the generating set defines our 
universe, base-patterns are the aggregate states resulting from some sort 
of projection/mapping onto a smaller size universe. In a sense a base-
pattern summarizes the main properties of the columns/generators that 
are mapped onto it. It can be viewed as a seed for the generation of all 
the columns that are represented by it. To re-optimize a column, one 
can compute the best reduced cost column that can be obtained from its 
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base-pattern, assuming that this re-optimization is much cheaper than 
solving the subproblem. 

For example for the capacitated multi-item lot-sizing problem, the 
setup solution y to the discrete setup subproblem represents a base pat
tern for all associated production levels x. Then, re-optimizing x for 
a fixed y involves solving a shortest path subproblem. For the cut
ting stock problem, a cutting pattern defines a partition of the wide-roll 
where cut pieces can be replaced by an assortment of smaller items. The 
re-optimization can be heuristic. 

Both examples call upon the concept of exchange vectors. An ex
change vector is a valid perturbation: added to a feasible column, it 
gives rise to another feasible column (see Vanderbeck, 2002, for a for
mal definition). Exchange vectors define dual cuts (Valerio de Carvalho, 
2002); handling exchange vectors implicitly through re-optimization is 
the equivalent of using a cutting plane procedure rather than setting all 
cuts a priori in the dual master formulation. It can be called after a few 
master simplex iterations and not wait until the restricted master LP is 
re-optimized. 

The column generation literature includes discussions on what could 
be dominant/redundant columns (a review is given in Lübbecke and 
Desrosiers (2004)). Since columns for the master primal are cuts for 
its dual, one can turn to the well-defined concepts of redundant dual 
constraints versus facet defining constraints to characterize columns. A 
more pragmatic concept that can be imported in column generation is 
that of lifting: the idea is to apply post-processing to subproblem solu
tions to increase column coefficients in master constraints (assuming ''>" 
constraints) to their maximum feasible value (feasibility being defined 
by the subproblem constraints). 

A sequential lifting procedure consists in enumerating each master 
constraint i with zero dual price TT̂  = 0 and solve the auxiliary subprob
lem 

max{Ai(x, y): B{x, y) > 6, (c - T^A){X, y) < C(^), x > 0, y G N} 

where ("(TT) is defined in (12.8). Alternatively, it can be formulated in 
terms of variables representing variations from the current subproblem 
solution. Lifting is a practical approach when this auxiliary subproblem 
is trivial: for instance, in the cutting stock apphcation, it consists in 
filling-up the knapsack with zero profit items. 

9, Primal heuristics 
The column generation approach is also a natural setting for deriving 

good primal solutions to a combinatorial problem: the decomposition 
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principle can be exploited in greedy, local search or math-programming 
based heuristics. The price coordination mechanism of the Dantzig-
Wolfe approach brings the global view that may be lacking when local 
search or constructive heuristics are applied directly to the original prob
lem formulation (these latter approaches are often qualified as myopic). 

There are examples of decomposition based heuristics in the literature 
that range from the simplest to the latest heuristic paradigm: a standard 
heuristic is to initialize the master with a set of heuristically generated 
columns and to solve the MIP master problem restricted to that initial 
set. Alternatively, on can use the columns generated while solving the 
master LP (approximately or exactly) to define the restricted master 
IP. However, there is typically no guarantee that such a static restricted 
set of columns holds a feasible integer solution. Methods that dynami
cally generate further columns needed for the integer solution avoid such 
drawback. 

A rounding heuristic can be implemented by iteratively selecting in 
the master LP solution the branching variable that is closest to its integer 
part and rounding it. Variables that are currently integer can be fixed 
first. It is important to use pre-processing to adapt the subproblem 
to the residual master problem. The definition of branching variable is 
not tuned to improving dual bounds as in Section 4: on can round Â  
variables as in Vanderbeck (1999) or the underlying original variables as 
in Elhedhh and Goffin (2004). 

A generic greedy heuristic for the master consists in generating it
eratively the columns that have the smallest ratio of cost per unit of 
constraint satisfaction, take it in the solution and reiterate for the resid
ual master problem (this requires generating columns that are proper 
for the residual problem). 

The local search paradigm can be implemented by exchanging columns 
in a restricted pool over which the restricted integer master program is 
solved (heuristically or exactly). Examples of meta-heuristic based on 
decomposition can also be found in the literature. Taillard (1999) pro
posed an Adaptive Memory Programming heuristic for the vehicle rout
ing problem based on managing a pool of columns representing feasible 
routes: columns with a history of being present in good solutions are 
iteratively selected that are suitable for the residual problem; if no more 
columns are available, remaining customers are being introduced in an 
existing route if feasible or new routes are generated for them. 
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10, Automated reformulation 
Implementations of column generation based solution methods that 

are reported in the literature have been developed for a specific appli
cation. These algorithms are building on general purpose features such 
as the ideas reviewed herein. They are therefore amenable to a generic 
solver for decomposable MIPs. If such generic solvers were not proposed, 
it is because of the belief that there remain mandatory manual steps in 
the process of implementing a column generation code: the user must 
define the reformulation, the form taken by a column and its reduced 
cost, the user must say how the subproblem is modified after branch
ing; he must define the form of intermediate Lagrangian bounds for its 
problem. Once the user has all that defined then he can use the tool-box 
offered by Abacus (Thienel, 1995), BCP (Ladänyi et al., 1998), Mae
stro (Chabrier, 2003), or Minto (Savelsbergh and Nemhauser, 1991) to 
ease the implementation. Then, generic parts of the code can easily be 
adapted for re-use in other applications. 

However, it is possible to automatize the reformulation, letting a code 
apply the Dantzig-Wolfe decomposition based on the original formula
tion and the user indication of what constraints must be duahzed. All 
further modifications resulting from branching or adding cuts in the 
master for instance can be taken into account automatically too. Van-
derbeck (2003) presents a framework for representing a MIP in an ag
gregate/implicit way from which the column generation reformulation 
can easily be generated automatically along with the subproblem and 
Lagrangian bound expressions. A prototype "black-box" column gener
ation generic solver for MIP, named BaPCod^ was developed along these 
principles. The underlying idea is simple: start with the most general 
form assumed by a decomposable MIP, write the formulas for its D-W 
reformulation, and code them. All simpler problems will be special cases. 
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