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Abstract Factor screening means searching for the most important factors (or
inputs) among the many factors that may be varied in an experiment with a real
or a simulated system. This chapter gives a review of Sequential Bifurcation (SB),
which is a screening method for simulation experiments in which many factors may
be varied. SB is most efficient and effective if its assumptions are satisfied. SB was
originally studied back in 1990. This review first summarizes SB. Then it summa-
rizes a recent case study, namely, a supply-chain simulation with 92 factors where
SB identifies a shortlist with 10 factors after simulating only 19 combinations. The
review also references recent research. It ends with a discussion of possible topics
for future research.

1 Introduction

Factor screening (or briefly “screening”) means that the analysts are searching
for the most important factors among the many factors that can be varied in their
experiment. In practice, however, experiments with real-world systems usually can
vary only a few factors, whereas experiments with simulation models can indeed
vary hundreds or more factors (also see Kleijnen et al. 2005). In general, scien-
tists assume that effects are “sparse”; they do not wish to report that “everything
depends on everything else.” The scientists’ clients do not want to be “confused
by details.” Furthermore, philosophy of science exploits the parsimony principle
or Occam’s razor, which implies that a simpler explanation is preferred to a more
complex explanation—all other things being equal. The psychologist Miller (1956)
claims that people cannot handle more than “seven plus or minus two” factors when
processing information. Many simulation modelers assume that the Pareto principle
or 20-80 rule holds, i.e., only a few factors are really important (or “active”, as
some authors say). Many authors on simulation modeling (be it deterministic or ran-
dom simulation) mention the curse of dimensionality; see, e.g., the panel discussion
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reported by Simpson et al. (2004). Altogether, screening is necessary in realistic
simulation modeling. Unfortunately, practitioners do not yet apply screening meth-
ods; instead, they experiment with a few intuitively selected factors only. Hopefully,
this chapter contributes to a change of attitude.

A practical example may illustrate the need for screening.Bettonvil and Kleijnen
(1996) summarize a case study on the CO2 greenhouse effect, using a deterministic
simulation model with 281 factors (that simulation is also discussed by Kleijnen
et al. 1992). The politicians wanted to take measures to reduce the release of CO2;
they realized that they should start with legislation for a limited number of factors.
Another example will be summarized in Section 3.3.

A most efficient and effective screening method may be Sequential Bifurcation
(SB). After a slow start, SB has gained momentum in recent years—as the following
overview shows.

1. Bettonvil’s (1990) Ph.D. dissertation introduced SB.
2. Bettonvil and Kleijnen (1996) provide a summary of that dissertation (after expe-

riencing rather much delay, finding a publication outlet).
3. Recently, SB has attracted the attention of several researchers in the UK and

USA:

• Cheng (1997) further explores SB for random simulation; also see Cheng and
Holland (1999).

• Wan et al. (2006a) improve SB’s control of the type-I (or type-α) and type-
II (or type-β) error probabilities in discrete-event simulation. Next, Wan
et al. (2006b) extend their method to account for interactions between the
factors of the simulation model. Shen and Wan (2006) combine this approach
with classic fractional factorial designs. Finally, Xu et al. (2007) extend SB
to nonnormal distributions, namely, binary responses (outputs) of simulation
models for software reliability studies.

• Ankenman et al. (2006) develop a more efficient but also more complicated
SB variant based on “polytopes,” requiring repeated solution of a sequence of
Linear Programming (LP) problems.

• Kleijnen et al. (2006) summarize SB and apply SB to a practical discrete-
event simulation of a supply chain centered around the Ericsson company
in Sweden, involving 92 factors; they identify a shortlist with 10 factors
after simulating only 19 combinations. (This chapter updates the summary
in Kleijnen et al. 2006, and summarizes their case study.)

The rest of this chapter is organized as follows. Section 2 summarizes several
screening methods that may compete with SB. Section 3 summarizes SB, including
its assumptions. Section 3.1 gives an outline of the simplest type of SB. Section
3.2 covers some mathematical details of this simplest SB. Section 3.3 summarizes a
case study, namely, a supply-chain simulation for Ericsson in Sweden. Section 3.4
extends SB, accounting for two-factor interactions. Section 4 presents conclusions
and possible topics for future research. Many references are given to enable further
study of screening methods.
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2 SB’s Competitors

There are several types of screening designs. All these designs treat the simulation
model as a black box; i.e., the simulation model transforms observable inputs into
observable outputs, whereas the values of internal variables and specific functions
implied by the simulation’s computer modules are unobservable.

The importance of factors depends on the experimental domain—also called
the experimental area or experimental frame; see Zeigler et al. (2000). The users
should supply information on this domain, including realistic ranges of the indi-
vidual factors and limits on the admissible factor combinations (or “scenarios”);
e.g., factor combinations are admissible only if they add up to 100% because these
combinations represent chemical compositions (also called recipes). In practice,
user involvement is therefore crucial for the application of screening methods.

This section summarizes several design types that may be considered to compete
with SB (empirical comparisons of these various designs is beyond the scope of this
chapter).

2.1 Classic Two-Level Factorial Designs

Classic two-level factorial designs are often considered to provide screening designs;
these designs are detailed in many textbooks, e.g., Kleijnen (2008) and Myers
and Montgomery (2002). In particular, so-called resolution-III designs are often
called screening designs; see, e.g., Georgiou (2007) and Yu (2007). By definition,
a resolution-III design gives unbiased estimators of all the main effects or first-
order effects, provided a first-order polynomial is a “valid metamodel” (“adequate
approximation”) of the Input/Output (I/O) function that is implicitly determined by
the underlying simulation model. These designs require the simulation of at least
n = k + 1 factor combinations where k denotes the number of factors in the experi-
ment. In such a design, each factor has two values or levels; these levels may denote
quantitative or qualitative values. The case study reported in Section 3.3 has k = 92
factors, so at least 93 factor combinations would need to be simulated; simulating
one combination takes 40 minutes (after modification of the simulation code, which
originally took 3 hours per combination). Moreover, a random simulation model like
this case study requires replication of each combination to obtain an estimate of the
signal/noise ratio; i.e., if the noise (variance of the simulation output) is large com-
pared with the signal (the simplest signal is the factor’s main effect), then replication
(simulation with non-overlapping PseudoRandom Numbers, PRNs) is unavoidable.

Note: A different type of resolution-III design changes only one factor at a time.
In the supply-chain example, such a design still requires 93 combinations if not
more than two values per factor are simulated (simulation practitioners often study
three values per factor, when changing one factor at a time). Moreover, this approach
is less efficient; i.e., the variances of the estimated main effects are larger than the
variances resulting from the Design Of Experiments (DOE) literature.
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Note: A full-factorial design is often used by practitioners when the number of
factors is small. However, full factorials are impossible in screening studies; e.g., the
supply-chain example with its 92 factors would require 292 ≈ 5×1027 combinations.

Another class of designs called “conference designs” requires n = 2k combi-
nations; see Elster and Neumaier (1995). These designs are not practical screening
designs if the simulation model is expensive; i.e., a single run with the model takes
relatively much computer time.

2.2 Frequency Domain Experimentation (FDE)

Whereas classic designs keep the factor values constant during a simulation run,
FDE oscillates these levels during a run. More precisely, each factor has its own
oscillation frequency. FDE tries to find which input oscillations affect output oscil-
lations. Originally, Schruben and Cogliano (1987) proposed this approach. Sanchez
et al. (2006) apply FDE for second-order polynomial metamodels with an arbitrary
number of factors; they give an example of a kanban simulation with 34 factors.
Unfortunately, FDE requires rather complicated Fourier spectral analysis. Moreover,
FDE has not yet been applied to simulation models with hundreds of factors.

2.3 Supersaturated Designs

By definition, supersaturated designs have fewer combinations than factors: n < k.
These designs are not sequential, so they are relatively inefficient. Indeed, sequential
statistical procedures are known to require fewer observations than fixed-sample
(one-shot) procedures; see, e.g., Park et al. (2002). By definition, sequential designs
imply that observations are analyzed—so the data generating process is better
understood—before the next input combination is selected. This property implies
that the design depends on the specific underlying process (simulation model); i.e.,
the design is customized (tailored or application-driven, not generic; also see Klei-
jnen and Van Beers 2004 and Van Beers and Kleijnen 2008). Moreover, computer
experiments (unlike many real-world experiments) proceed sequentially. Neverthe-
less, sequential procedures may lose some efficiency; e.g., switching between the SB
procedure and the simulation model may be awkward. Recent discussions of super-
saturated designs are presented in Allen and Bernshteyn (2003), Gilmour (2006),
Li and Li (2005), Wu and Hamada (2000), Yamada et al. (2006), and Zhang
et al. (2007). Note that Tu and Jones (2003) also give a supersaturated design, but
they use Moving Least Squares instead of classic linear regression analysis.

2.4 Group-Screening Designs

Group-screening designs aggregate (or confound) individual factors into groups
so that k factors may be evaluated in n < k combinations. Consequently, these
designs are also supersaturated—but they are executed in two or more steps (stages).
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There are several types of screening designs. Examples are One-factor-At-a-Time
(OAT), Morris’s OAT, Cotter’s design, Andres’s Iterated Fractional Factorial Design
(IFFD), multi-stage group screening, and SB; see Andres (1997), Andres and
Hajas (1993), Campolongo et al. (2007), Campolongo et al. (2000), De Vos et al.
(2006), Morris (2006), Saltelli et al. (2004, 2005), and Schonlau and Welch (2006).
Note that Chipman (2006) gives a Bayesian analysis of screening experiments, but
Bayesian approaches are not further considered in this chapter. The following web
address gives access to a package (written in the R statistical software tool) that
implements Morris’s OAT.

http://cran.r-project.org/src/contrib/Descriptions/.
sensitivity.html

Different group-screening designs are based on different mathematical assump-
tions concerning the characteristics of their metamodels; e.g., their smoothness and
monotonicity. Reviewing the assumptions and procedures of all these designs is
beyond the scope of this chapter. This chapter focuses on SB because SB is a very
efficient and effective method if its assumptions are satisfied.

3 Sequential Bifurcation

SB uses the following metamodel assumptions, which will be detailed in the next
subsections; Assumption 1(b) may replace Assumption 1(a).

Assumption 1(a): a first-order polynomial is a valid metamodel.
Assumption 1(b): a first-order polynomial augmented with two-factor interac-

tions is a valid metamodel.
Assumption 2: all main effects have known signs and are nonnegative.
Assumption 3: there is “strong heredity” if Assumption 1(b) holds.

3.1 Outline of Simplest SB

As its name suggests, SB is a sequential procedure. Its first step aggregates all
factors into a single group, and tests whether or not that group of factors has an
important effect (this statistical test will be presented in Section 3.2). If that group
indeed has an important effect (which is most likely), then the second step splits
the group into two subgroups—bifurcates—and tests each of these subgroups for
importance. The next steps continue in a similar way; i.e., SB splits important sub-
groups into smaller subgroups, and discards unimportant subgroups. In the final
steps, all individual factors that are not in subgroups identified as unimportant are
estimated and tested—which terminates the procedure.

The simplest type of SB is based on Assumptions 1(a) and 2, which are now
detailed.

http://cran.r-project.org/src/contrib/Descriptions/
sensitivity.html
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Assumption 1(a) a valid metamodel is a first-order polynomial plus noise:

y = β0 + β1x1 + · · · + βk xk + e. (1)

In this equation, the factors x j ( j = 1, . . . , k) are standardized such that they
are either −1 or +1 (scaling in DOE is further discussed by Kleijnen 2008). This
scaling implies that the factors may be ranked (sorted) by

∣∣β j

∣∣; i.e., the most impor-
tant factor is the one with the largest absolute value of its main effect; the least
important factor is the one with the effect closest to zero. Note that the larger the
range of an original (untransformed) factor is, the larger the response difference and
hence the main effect of that factor is; also see the “unit cost” effects in Cheng and
Holland (1999). The noise e in (1) arises from both approximation error and the use
of PRNs. If the metamodel is valid, then this noise has zero mean: E(e) = 0.

To estimate the parameters in (1), it is most efficient to experiment with only two
levels per factor. In practice, it is important that these levels are realistic extreme
values; so the users of the underlying simulation model should provide these values.
Readers are also referred to the discussion on scaling in Wan et al. (2006a) and the
discussion on the experimental domain above, in Section 2.

Assumption 2 all main effects have known signs and are non-negative:

β j ≥ 0 ( j = 1, . . . , k).

Without Assumption 2, main effects within a (sub)group might cancel each other.
However, if Assumption 2 holds, then the analysts can define the two levels of an
individual factor such that changing the level from the standardized value −1 to +1
does not decrease the expected simulation output (i.e., that change either increases
the output or does not change it at all). An example is the M/M/1 model: if the arrival
rate increases, then the expected steady-state waiting time also increases; if the
queuing discipline changes from First-In-First-Out (FIFO) to Shortest-Processing-
Time-first (SPT), then the expected waiting time decreases; consequently, the level
−1 should correspond to SPT and the level +1 to FIFO.

Assumption 2 is related to the monotonicity of the I/O function. By definition, a
function w = f (x1, . . . , xk) is monotonically increasing if ∂w/∂x j > 0 for all j ,
for all values of x j ′ ( j, j ′ = 1, . . . , k; j �= j ′). Experience shows that Assumption
2 may be easily satisfied in practice; i.e., it is straightforward to define the upper
and lower level of each factor such that changing a factor from its lower to its upper
level does not decrease the expected response. For example, in the supply-chain
case study, some factors refer to transportation speeds: the higher these speeds, the
lower the Work In Process (WIP) and hence the lower the cost—which is the output
of interest in the screening experiment. More examples are given by other authors;
e.g., Lewis and Dean (2001) and Lim and Glynn (2006).

In unconstrained optimization, the function to be maximized or minimized is
usually assumed not to be monotonically increasing (otherwise, the maximum or
minimum would lie at the limits of the experimental area). This assumption may
still be compatible with the known signs assumption; i.e., switching the standardized
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factor values from −1 to +1 may increase the output, so this factor will be found to
have an important effect. However, a counterexample is an I/O function that is not
monotonic and happens to give roughly the same output values at the two observed
input levels −1 and +1; in this example, the factor effect seems to be zero and SB
eliminates this factor; also see Kleijnen (2008, pp. 162–163).

Nevertheless, if a particular case study does not satisfy Assumption 2 for a few
specific factors, then these factors should be treated individually; i.e., none of these
factors should be grouped with other factors in SB. For example, De Vos et al. (2006)
create some subgroups of size one in a multi-stage group-screening design; their
design is less efficient than SB, but it also uses aggregation. In general, treating
such factors individually is safer than assuming that the probability of cancellation
within a subgroup is negligible.

The efficiency of SB (measured by the number of simulated factor combinations
and hence simulation time) may be improved in the following ways.

• The individual factors are labeled such that factors are placed in increasing order
of importance; see Bettonvil (1990, p. 44). This labelling makes the important
factors clustered. To realize this labelling, it is crucial to utilize prior knowl-
edge of users and analysts about the real system being simulated. For example, if
the analysts conjecture that environmental factors are most important, then they
should place these factors at the end of their list of factors. Indeed, in the supply-
chain case study, Kleijnen et al. (2006) place the environmental factor “demand”
at the very end of the list with 92 individual factors; Section 3.3 returns to this
labelling.

• Similar factors are placed within the same subgroup. In the supply-chain study,
all “test yield” factors are grouped together; the conjecture is that if one yield
factor is unimportant, then all yield factors are likely to be unimportant too.

• Subgroups are split such that the number of factors for the first new subgroup is
a power of two; e.g., split the first 48 factors into a subgroup of 32 (= 25) factors
and a subgroup with the 16 remaining factors (so the important factors are placed
into the smallest subgroup, assuming the factors are sorted from unimportant to
most important). This splitting, however, is not recommended if it implies split-
ting up a group of related factors. In any case, splitting a subgroup into subgroups
of equal size (as some authors do) does not need to be optimal. Further discussion
is found in Bettonvil (1990, pp. 40–43).

The way SB proceeds may be interpreted through the following metaphor. Imag-
ine a lake that is controlled by a dam. The goal of the experiment is to identify the
highest (most important) rocks (actually, SB not only identifies, but also measures
the height of these “rocks”). The dam is controlled in such a way that the level
of the murky water slowly drops. Obviously, the highest rock first emerges from
the water. The most-important-but-one rock turns up next, etc. SB stops when the
simulation analysts feel that all the “important” factors are identified; once SB stops,
the analysts know that all remaining (unidentified) factors have smaller effects than
the effects of the factors that have been identified. This property of SB seems quite
important for its use in practice.
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Some reflection shows that the aggregated effect of a given subgroup is an upper
limit for the value of any individual main effect within that subgroup. Examples
will be given in the supply-chain study in Section 3.3. If the analysts must terminate
SB prematurely (e.g., because their computer breaks down or their clients get impa-
tient), then SB still allows identification of the factors with main effects larger than
the current upper limit.

SB is extended by Wan et al. (2006a), improving the control over the type-I
error rates (“false positives”), using either a two-stage approach or a fully sequential
approach. Theoretically, this control does not satisfy the classic statistical require-
ments concerning a prespecified experimentwise error rate and a prespecified power
for the final results—after all stages have been executed. Nevertheless, the numeri-
cal results look very promising.

SB is also extended to the so-called polytope method by Ankenman et al. (2006).
Their method is more efficient (requiring fewer combinations), but also more com-
plicated (requiring the solution of a LP problem after each additional observation).
Moreover they assume main effects only (no interactions). Note that the LP problem
arises because this method computes the Ordinary Least Squares (OLS) estimate
under the constraint stipulating that all regression coefficients be non-negative (see
Assumption 2 above).

3.2 Mathematical Details of Simplest SB

To explain some mathematical details of SB, the following additional notation
is used.
w( j);r : observed simulation output with the factors 1 through j set to their

high levels and the remaining factors set to their low levels, in replication r (with
j = 1, . . . , k and r = 1, . . . ,m with m > 1);
β j ′− j : sum of main effects of factors j ′ through j ; i.e.,

β j ′− j =
j∑

h= j ′
βh . (2)

A simple estimate (a complicated estimate is given by Ankenman et al. 2006) of this
group effect based on replication r is

β̂ j ′− j ;r = w( j);r − w( j ′−1);r

2
. (3)

Section 3.1 mentioned that SB starts with simulating the two most extreme sce-
narios; i.e., scenario 1 implies that all k factors are at their low levels, so x j = −1;
scenario 2 implies that all these factors are high, so x j = 1. If the metamodel in (1)
is valid, then

E(w(0)) = β0 − β1 − · · · − βk (4)
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and

E(w(k)) = β0 + β1 + · · · + βk, (5)

so

E(w(k))− E(w(0)) = 2(β1 + · · · + βk), (6)

which shows that the group effect estimator defined in (3) is unbiased.
Likewise it follows that the individual main effect β j is estimated through the

analogue of (3):

β̂ j ;r = w( j)r − w( j−1);r

2
. (7)

The replicates enable the estimation of the mean and the variance for each (aggre-
gated or individual) estimated effect; e.g., (7) gives

β̂ j =
∑m

r=1 β̂ j ;r

m
and s(β̂ j ) =

√∑m
r=1(β̂ j ;r − β̂ j )2

m(m − 1)
. (8)

This variance estimator allows variance heterogeneity of the simulation outputs, as
well as Common Random Numbers (CRN); also see the discussion on variance
heterogeneity and CRN in Kleijnen (2008).

To test the importance of the estimated (either aggregated or individual) main
effects statistically, SB uses a classic t statistic. Different scenarios probably pro-
duce observations with different variances, and may use CRN. SB applies a one-
sided test because SB assumes that all individual main effects are nonnegative. SB
uses a prespecified type-I error rate (e.g., α = 0.05) per test; i.e., SB does not adjust
for multiple testing. (Response Surface Methodology or RSM is also a sequential
procedure that does not control the type-I and type-II error rates over the whole pro-
cedure, but is much applied; see Kleijnen 2008 and Myers and Montgomery 2002.)
However, Wan et al. (2006a) do use multiple testing procedures in SB.

To verify (or validate) the shortlist resulting from SB, the effects of the “unim-
portant” factors may be tested through the following two scenarios, each simulated
m times:

i. Set all factors that SB declared to be unimportant at their low levels, while
keeping the important factors fixed (e.g., at their base levels).

ii. Switch all these unimportant factors to their high levels, still keeping the impor-
tant factors fixed.

Obviously, these two scenarios are not used in SB if verification fixes the
important factors at base values (coded as 0) that are not extreme values (coded
as either −1 or 1, which are used in SB). The difference between the outputs of
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these two scenarios may be tested through a t statistic; this difference is expected
not to differ significantly from zero if the factors are actually unimportant.

How SB proceeds sequentially is illustrated in the following case study. A formal
computer procedure for the SB steps is given by Wan et al. (2006a).

3.3 Case Study: Ericsson’s Supply-Chain Simulation

An example of the application of SB to a simulation with many factors is the follow-
ing case study. Originally, Persson and Olhager (2002) developed a supply-chain
simulation for the Ericsson company in Sweden, and simulated only nine factor
combinations. Kleijnen et al. (2006), however, revisit this simulation model and
distinguish k = 92 factors! (Moreover, they study two other variants of this supply
chain with fewer factors, which are not reported in this chapter.)

They replicate each combination m = 5 times. The first extreme scenario with
all 92 factors at their low levels gives the average output w(0) = 3,981,627. The other
extreme scenario with all factors at their high levels gives the average output w(92) =
34,013,832. So, the estimated group effect of all 92 factors is obtained from (2), (6),

and (8), and is β̂1−92 = (34,013,832 − 3,983,627)/2 = 15,016,102. The standard

error of this estimated group effect follows from (8), and turns out to be s(β̂1−92) =
42,051.18. So this effect is very significant; and in hindsight, fewer replicates might
have been simulated at this early stage; e.g., only m = 2 replicates would have shown
that one or more factors among the 92 factors must be important.

Next, SB divides the current group of 92 factors into two subgroups. The first
subgroup consists of all the 79 “decision” (or “controllable”) factors (labeled from 1
through 79); the other subgroup contains all 13 “environmental” factors. Simulation
of this scenario must give an expected output between the expected outputs of the
preceding extreme scenarios. Comparison of the simulation observations w(79) and

w(0) gives the estimated (sub)group effect β̂1−79. Similarly, comparison of w(92) and

w(79) gives β̂80−92. Thus, this step splits the total estimated effect β̂1−92 into its two
additive components. This step decreases the upper limit for any individual effect in
the first subgroup and the second subgroup respectively.

Kleijnen et al. (2006) give details on the successive SB steps for this case study.
SB does not split a subgroup any further when its estimated aggregated main effect
is not significantly positive; e.g., the estimated aggregated main effect of factors 50
through 79 turns out to be a small negative value.

In this case study, it turns out that SB stops after only 19 replicated observations
(combinations). The upper limit for the main effect of any remaining individual fac-

tor is then reduced to 87,759 (whereas β̂1−92 = 15,016,102). SB produces a shortlist
with only 10 factors; its most important factor is factor 92. Section 3.1 mentioned
that the SB efficiency improves when factors are labeled from least important to
most important; indeed, factor 92 turns out to be the most important factor and
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no factor labelled smaller than 43 is declared to be important. The most important
individual factor (namely, factor 92) has already been identified and estimated after
only six replicated observations.

3.4 SB with Two-Factor Interactions

This section summarizes SB for situations in which Assumption 1(a) is replaced by
Assumptions 1(b) and 3, which are detailed now.

Assumption 1(b) a valid metamodel is a first-order polynomial augmented with
two-factor interactions β j ′; j ( j ′ < j ; j ′ = 1, . . . , k − 1; j = 2, . . . , k) and noise:

y = β0 + β1x1 + · · · + βk xk + β1;2x1x2 + · · · + βk−1;k xk−1xk + e. (9)

The signs of these interactions are irrelevant (see below).
Assumption 3 if a factor has no important main effect, then this factor does not

interact with any other factor.
Assumption 3 is called the strong heredity assumption; see Wu and Hamada

(2000) and also Saltelli et al. (2005). Strong heredity is related to functional
marginality, which is discussed by Tsai et al. (2007).

Let w−( j) denote the mirror observation of w( j); i.e., w−( j) is the simulation out-
put with the factors 1 through j set to their low levels and the remaining factors set
to their high levels. For example, the analogues of (4) and (5) are for j = 48:

E(w−(49)) = β0 + (−β1 − · · · − β49)+ (β50 + · · · + β92)

+ (β1;2 + · · · + β48;49)+ (−β1;50 − · · · − β49;92)

+ (β50;51 + · · · + β91;92)

and

E(w(49)) = β0 + (β1 + · · · + β49)+ (−β50 − · · · − β92)

+ (β1;2 + · · · + β48;49)+ (−β1;50 − · · · − β49;92)

+ (β50;51 + · · · + β91;92),

so subtracting these two equations cancels all interactions. The analogue of (3)
gives the unbiased group estimator

β̂ j ′− j ;r = (w( j);r − w−( j);r )− (w( j ′−1);r − w−( j ′−1);r )

4
. (10)

The analogue of (7) gives the unbiased individual estimator

β̂ j ;r = (w( j);r − w−( j);r )− (w( j−1);r − w−( j−1);r )

4
. (11)
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In other words, SB enables the estimation of first-order effects unbiased by
two-factor interactions provided SB simulates the mirror combinations besides the
original combinations. Hence, the number of simulated combinations doubles. Wan
et al. (2006b) point out that—in the case of mirror observations—fewer replica-
tions per combination may be needed. They further state that the SB efficiency may
increase when applying CRN separately to all positive levels and negative levels
respectively.

SB with mirror scenarios may still give misleading results if (say) two factors
have unimportant main effects but their interaction is important. Therefore SB
assumes strong heredity (Assumption 3). If the analysts suspect that this assump-
tion is violated for a specific factor, then they should investigate that factor after the
screening phase.

SB with mirror observations does not enable estimation of individual interac-
tions, but it does show whether interactions are important—as follows. Estimate
the main effects from the original scenarios—ignoring the mirror scenarios. If the
analyses of the mirror observations and of the original observations give the same
conclusions, then interactions are unimportant. This happened, e.g., in the ecolog-
ical simulation reported in Bettonvil (1990) and Bettonvil and Kleijnen (1996). In
that study, the factor values change relatively little (larger changes give unrealistic
simulation outputs), so a first-order polynomial is adequate. In the supply-chain
study, however, interactions turn out to be important; see Kleijnen et al. (2006). (In
a follow-up experiment with the factors declared to be important in SB, the sizes of
the individual interactions are estimated from a resolution-V design, which by def-
inition enables the unbiased estimation of all the individual two-factor interactions;
details on resolution-V designs are given by Kleijnen 2008.) Note that the mirror
observations and the original observations may give different SB paths through the
list of individual factors.

4 Conclusions and Future Research

This chapter may be summarized as follows. There are different screening designs,
including resolution-III, supersaturated, and group-screening designs. This chapter,
however, focused on SB, and stated the various assumptions of SB. These assump-
tions may not be too restrictive in practice, as the Ericsson case-study illustrated.
If its assumptions are satisfied, then SB is a most efficient and effective screening
method.

There is a need for more research:

• It is a challenge to derive the number of replicates that control the overall proba-
bility of correctly classifying the individual factors as important or unimportant.
So far, SB applies a statistical test to each subgroup individually. (Furthermore,
SB may terminate “prematurely,” and yet estimate the most important factors—
instead of classifying all factors with effects that exceed a prespecified threshold.)



Factor Screening in Simulation Experiments 165

• It might be that the simulation of mirror factor combinations can be stopped as
soon as it seems that no interactions are important.

• After SB stops, the resulting shortlist of important factors should be validated.
(A procedure was proposed above.)

• Software needs to be developed that implements sequential screening of simu-
lation experiments. This software should generate an input file, once a partic-
ular design type (e.g., SB) has been chosen. Such a file can then be executed
sequentially and efficiently in batch mode; i.e., no human intervention is required
while the computer executes the sequential design. Furthermore, good computer
programming avoids fixing the inputs at specific numerical values within the
code; instead, the computer reads input values so that the program can be run
for many combinations of these values. (Of course, the computer should check
whether these values are admissible; i.e., do these combinations fall within the
experimental domain?) Such a practice can automatically provide a long list of
potential factors.

• A contest may be organized that challenges the experts in the different screening
methods to estimate the most important factors in a set of simulation models.
Such “testbeds” are popular in Mathematical Programming. Note that nobody is
expert in all screening methods.

• Multivariate output may consist of univariate outputs that require different SB
paths. This problem has not yet been touched in the literature!

Acknowledgments I thank Bert Bettonvil and Wim van Beers (both at Tilburg University) for
their comments on an earlier version.
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