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Wolfgang Hörmann, Josef Leydold, Jack P. C. Kleijnen,
Pierre L’Ecuyer, François Panneton, Andrew F. Seila,
Sally Brailsford, Steffen Straßburger, Thomas Schulze,
Richard Fujimoto, Shing Chih Tsai, Barry L. Nelson,
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Preface

This Festschrift honors George Samuel Fishman, one of the founders of the field of
computer simulation and a leader of the disciplines of operations research and the
management sciences for the past five decades, on the occasion of his seventieth
birthday. The papers in this volume span the theory, methodology, and application
of computer simulation.

The lead article is appropriately titled “George Fishman’s Professional Career.”
In this article we discuss George’s contributions to operations research and the man-
agement sciences, with special emphasis on his role in the advancement of the field
of simulation since the 1960s. We also include a brief personal biography together
with comments by several individuals about the extraordinary effect that George has
had on all his students, colleagues, and friends.

The second article, titled “A Conversation with George Fishman,” is the transcript
of an extended interview with George that we conducted in October 2007.

In the article titled “Computer Intensive Statistical Model Building,” Russell
Cheng studies resampling methods for building parsimonious multiple linear regres-
sion models so as to represent accurately the behavior of the dependent variable in
terms of the smallest possible subset of explanatory (independent) variables. The
author shows how bootstrap resampling can be used not only for rapid identification
of good models but also for efficient comparison of competing models.

The next article is titled “Patchwork Distributions.” In this article, Soumyadip
Ghosh and Shane Henderson consider a class of multivariate probability distribu-
tions that can be used to model a finite-dimensional random vector when the user
has specified all the marginal distributions of the random vector, the covariance
matrix of the random vector, and the probabilities that the random vector lies in
certain regions.

Peter Glynn and Eunji Lim examine the foundations of the batch-means method
for steady-state simulation analysis in their article titled “Asymptotic Validity of
Batch Means Steady-State Confidence Intervals.” Although the large-sample valid-
ity of many implementations of the batch-means method requires that the target out-
put process must satisfy a functional central limit theorem, in this article the authors
establish the validity of the batch-means method for Harris-recurrent Markov pro-
cesses that satisfy a weaker (nonfunctional) central limit theorem.

v
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In the article titled “Efficient Modeling of Delays in Discrete-Event Simula-
tion,” Jim Henriksen considers the problem of efficiently implementing four types
of delays that are commonly encountered in simulation modeling, with a detailed
discussion of the solution approach provided by the delay-modeling algorithms that
have been developed for the SLX simulation language.

In the article titled “Sampling from Linear Multivariate Densities,” Wolfgang
Hörmann and Josef Leydold develop an efficient acceptance-rejection algorithm for
generating a vector of dependent random variables whose joint density is linear with
a domain that is bounded and symmetric about a point; and ultimately the authors
extend their algorithm to generate random vectors from concave differentiable den-
sities over point-symmetric domains.

Jack Kleijnen’s article, “Factor Screening in Simulation Experiments: Review
of Sequential Bifurcation,” provides an overview of factor-screening methods for
simulation experiments with special emphasis on sequential bifurcation, a method
that is particularly effective in certain types of large-scale simulation studies.

“F2-Linear Random Number Generators,” by Pierre L’Ecuyer and François
Panneton, is the ninth article in this volume. This article reviews various construc-
tion methods for random-number generators based on linear recurrence modulo 2,
examines their theoretical properties, describes the relevant computational tools and
algorithms, and ends with comparisons based on various qualitative criteria. The F2-
linear class contains many long-period random-number generators—including the
Tausworthe, generalized feedback shift register (GSFR), twisted GSFR, Mersenne
twister, WELL, and xorshift generators.

The tenth article is titled “Opportunities and Challenges in Health Care Simula-
tion.” In this article Andrew F. Seila and Sally Brailsford review successful applica-
tions of simulation in health care, examine the suitability of simulation models and
methods for the analysis of health-care systems, and explore the reasons for the lack
of adoption of simulation as a “routine” tool for health-care systems analysis. The
authors end with an insightful list of ideas aimed at promoting wider adoption of
simulation in health care.

In the eleventh article, “Future Trends in Distributed Simulation and Distributed
Virtual Environments,” Steffen Straßburger, Thomas Schulze, and Richard Fujimoto
report the main results of a peer study of current trends in distributed simulation
and distributed virtual environments. The survey assesses the current state of this
methodology, its relevance to simulation practice, and the research challenges that
must be addressed so as to facilitate the widespread use of this methodology in
industry and government as well as in research organizations.

In “Combined Screening and Selection of the Best with Control Variates,” Shing
Chih Tsai, Barry L. Nelson, and Jeremy Staum formulate ranking-and-selection pro-
cedures with screening that exploit point estimators based on the method of control
variates to gain greater statistical efficiency. Compared with previous ranking-and-
selection procedures that incorporate screening and selection of the best alternative,
substantial improvements in performance are achieved by the new procedures.

In the final article, “Optimal Linear Combinations of Overlapping Variance Esti-
mators for Steady-State Simulation,” Tûba Aktaran-Kalaycı, Christos Alexopoulos,
David Goldsman, and James R. Wilson seek to estimate the variance parameter of a
simulation output process using optimal linear combinations of variance estimators
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based on the methods of overlapping batch means and standardized time series.
From the latter estimators they derive asymptotically valid confidence intervals for
both the mean and variance parameter of the target process.

We thank the authors who have contributed to this volume, especially for their
forbearance throughout the lengthy process of completing this book. Special thanks
go to Yvonne Smith (Georgia Tech), who produced the transcription of our interview
with George, and to Carolyn Ford at Springer, who so ably supervised the production
of this book. We are also indebted to Fred Hillier (Stanford University) and Gary
Folven (Springer) for patiently guiding us through the entire process.

Atlanta, GA, USA Christos Alexopoulos
Atlanta, GA, USA David Goldsman
Raleigh, NC, USA James R. Wilson
March 2009
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George Fishman Receives the INFORMS Simulation Society’s Lifetime
Professional Achievement Award from R. G. Sargent (2003)



George Fishman’s Professional Career

Christos Alexopoulos, David Goldsman, and James R. Wilson

Abstract In this lead article for Advancing the Frontiers of Simulation: A Festschrift
in Honor of George Samuel Fishman, we survey briefly George’s professional
career, summarizing his most significant contributions to the disciplines of opera-
tions research and the management sciences. We give special emphasis to George’s
remarkable accomplishments in helping to lay the foundation for the field of com-
puter simulation and advancing that field over the past five decades.

1 A Brief Biography

George Fishman was born to Louis and Gertrude Fishman on July 3, 1937, in
Everett, Massachusetts. Eight months later his father died of cancer, leaving his
mother to bring up George and his six-year-old sister Estelle. He spent his early
years in the West End of Boston near the Longfellow Bridge. In 1950, his family
moved first to Roxbury and then a year later to Chelsea. George graduated from
Chelsea High School in 1955 and matriculated that fall at the Massachusetts Institute
of Technology (MIT). Unsure of his commitment to engineering, he took a leave of
absence in November 1956 and spent the next ten months working for the Whiting
Milk Company in Charlestown, Massachusetts. The nightly experience of lifting and
pouring 100 forty-quart jugs of heavy cream into a tank for bottling was enough to
convince George that college was worth completing. He completed his course work
in December 1959 and was graduated from MIT in 1960 with a bachelor of science
degree in economics.

While awaiting decisions from graduate schools, George spent January through
August 1960 working as a research assistant at MIT for Professors Morris Adelman,
E. Cary Brown, and Robert Solow of the Economics Department, and also for
Professor Ithiel deSola Pool, chair of the Political Science Department. In many
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2 C. Alexopoulos et al.

respects, George’s experience as a research assistant during the winter, spring, and
summer of 1960 persuaded him that research was his preferred career path.

In the fall of 1960, George enrolled in the Ph.D. program of the Department
of Economics at Stanford University, serving as research assistant to Professors
Kenneth Arrow and Marc Nerlove. In the spring of 1962, he was invited to be
a summer intern in the Logistics Department of the RAND Corporation in Santa
Monica, California. The latter opportunity turned out to be fortuitous. In the summer
of 1962, George was offered a full-time position as a research analyst at RAND, and
he left Stanford with a master’s degree in economics.

RAND was an exceptionally stimulating place, and the decision to go there was
not hard for George to make. In the early 1960s, RAND’s Logistics Department
could have easily staffed several university-level departments in operations research.
During the 1950s, RAND had been in the forefront of new developments in mathe-
matical programming, Monte Carlo simulation, and discrete-event simulation, top-
ics in which George had limited experience prior to joining RAND. In December
1963, Murray Geisler, then chair of the Logistics Department, asked George to ref-
eree a RAND report on statistical aspects of simulation. After reading the review,
Geisler encouraged George to examine the many outstanding statistical issues in
simulation. During the next seven years at RAND, George wrote a collection of
publications with a focus on estimating the statistical accuracy of simulation results.
Several of these papers were coauthored with Philip Kiviat, who at that time was
actively engaged with Harry Markowitz in the development of the SIMSCRIPT II
simulation programming language. The collaboration with Kiviat gave George a
considerably broader understanding of the component parts of simulation method-
ology: modeling, computer languages, and statistical considerations.

By 1967, George had decided that a university setting would work best for
his research interests. He enrolled in the Biostatistics Program at the University
of California, Los Angeles (UCLA), from which he received a Ph.D. degree in
March 1970. Shortly thereafter he and his young wife, Sue, moved to New Haven,
Connecticut, where he joined the Administrative Sciences Department at Yale Uni-
versity as an associate professor and associate director of the Health Services
Research Training Program in Yale’s Institution for Social and Policy Studies. At
that time, Yale’s Administrative Sciences Department had an exceptionally accom-
plished operations research faculty, including Gordon Bradley, Eric Denardo, Matt
Sobel, Harvey Wagner, and Ward Whitt.

The RAND experience, especially the collaboration with Kiviat, had provided
George with an excellent preparation for teaching a graduate-level course in sim-
ulation. The notes from this course led to his book Concepts and Methods in Dis-
crete Event Simulation (Fishman 1973). George’s scholarly work now broadened
to encompass pseudorandom number generation, random variate generation, and a
new way to analyze sample path data based on the theory of regenerative processes.

In July 1974, George, Sue, and their children, Becky and Matt, moved to Chapel
Hill, North Carolina, where George had accepted a professorship at the Univer-
sity of North Carolina (UNC) in its recently established Curriculum in Opera-
tions Research and Systems Analysis. His work on several areas of simulation



George Fishman’s Professional Career 3

methodology continued, with special emphasis on decision rules for how to make
the batch-means method of analysis statistically valid in practice.

Although Sue had grown up in a small Mississippi town, George’s New England
roots made the warm North Carolina summers more of a challenge for him. To the
family’s delight, George received and accepted an invitation from Matt Sobel to
spend part of the summer of 1976 at the Ecology Center of the Marine Biological
Laboratory in Woods Hole, Massachusetts, to study the harvesting of elephants in
African national parks. The problem called for mathematical and statistical model-
ing and was of sufficient interest to Dan Botkin, a principal researcher at the Center,
to warrant a return the next summer. George found that Woods Hole was a delightful
place to do research and spend summers.

Grants from the North Carolina Sea Grant program allowed George and his fam-
ily to repeat the experience closer to home in the summers of 1978 and 1979 at the
UNC Marine Research Laboratory in Morehead City, North Carolina, and the U.S.
National Marine Fisheries Laboratory in Beaufort, North Carolina. The challenge
was to formulate a policy for optimally determining the opening date for shrimp
fishing in North Carolina intercoastal waters.

In January 1981, George became chair of the Curriculum in Operations Research
and Systems Analysis at UNC. University resources for academic program devel-
opment were relatively plentiful in the early 1980s; and during George’s ten-year
tenure as chair, the program grew in reputation within UNC, nationally, and inter-
nationally. Its core faculty, originally consisting of David Rubin, Jon Tolle, and
George, was enhanced by the recruitment of Vidyadhar Kulkarni, Scott Provan,
Sandy Stidham, and Mark Hartmann. In 1987, UNC acknowledged this growth in
size and reputation by elevating the Curriculum in Operations Research and Systems
Analysis to the status of the Department of Operations Research within the UNC
College of Arts and Sciences.

Scott Provan gives a concise summary of George’s contributions to the growth of
the Operations Research program and the development of its faculty.

[George] joined UNC in 1974, having been hired specifically to form the nucleus for oper-
ations research as an academic discipline within the College of Arts and Sciences. He
originally occupied the sole funded position in an interdisciplinary program whose fac-
ulty included members from mathematics, statistics, biostatistics, computer science, and
business. George was tenacious in his development of the program, and worked from a
crystal-clear vision of its mission within the college. UNC took a farsighted position in
those years of encouraging high-quality graduate programs to flourish and draw top-flight
faculty and students, and George took excellent advantage of that. I joined the program in
1982 precisely because the research atmosphere was so exciting. Under his chairmanship
the program gained 3.5 more funded faculty lines, and in 1987 it became a full-fledged
department. George chaired the department until 1990, all the time continuing to garner
international acclaim for his own research in simulation theory.

It is safe to say that George single-handedly built the OR program into a nationally-
respected and intellectually vibrant department during his tenure. He was relentless in his
pursuit of resources, and I was constantly surprised at what he could coax out of the college
for a program of our size. Just as significantly, he was able to shield the faculty from many
distractions that make it difficult to pursue high-quality research by maintaining a consistent
set of expectations and boundaries. I always said that he was a great guy to be behind, and
a tough one to be in front of.
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Vidyadhar Kulkarni, the current chair of the Department of Statistics and
Operations Research at UNC adds a personal touch.

Professor Fishman acted as my academic mentor: I learned how to write research papers
and research grants under the helpful advice of George. He served as a role model of an
effective chairman that helped me later. I was truly amazed at his ability of time manage-
ment: his research productivity did not diminish one bit during his tenure as the chairman.
I have found myself using his administrative strategies many times during my own stint as
a chairman. I am thankful to him for all that I learned from him.

George is now retired, but comes to the department regularly and provides the most
enjoyable and erudite conversational company during our lunches. He is still a valuable
resource for research problems that I continue to mine regularly. I wish him a long and
productive life.

David Rubin, a professor of operations research with a primary appointment in
UNC’s Kenan-Flagler Business School offers a view from a slightly different angle.

When George Fishman arrived at UNC in 1974, the Curriculum in Operations Research and
Systems Analysis had control of one full position (George’s) and two half positions that
were joint in the mathematics and statistics departments. In addition, there were roughly
eight “affiliated” faculty, like me, whose home appointments were in business, computer
science, economics, and statistics. Six years later, when George became Curriculum Chair,
he had control of only 2.5 faculty positions. I remember often being asked exactly what a
curriculum was at UNC. My stock answer: “It’s either a nascent or stillborn Department,
and only time will tell.” George’s almost ten years as chair were a time of great growth
and success for operations research at UNC. Under his able and forceful leadership, the
Curriculum became the Department of Operations Research, home to 5.5 faculty members
at the end of his term.

The early 1980s saw a shift in George’s focus toward the application of the Monte
Carlo method to networks, especially the development of efficiency-improvement
(variance-reduction) techniques for estimating reliability and the distribution of
maximal flow. In 1986 he began writing the text Monte Carlo: Concepts, Algo-
rithms, and Applications (Fishman 1996), followed by Discrete-Event Simulation:
Modeling, Programming, and Analysis (Fishman 2001).

In 2001, George retired from UNC; however, thanks to the generosity of the
department chair, Vidyadhar Kulkarni, George was able to maintain a shared office
in the department. Fortuitously, his office mate from 2001 through the summer of
2008 was Charles Dunn, whom George had as a student at Yale over thirty years
earlier. Since the fall of 2008, Sandy Stidham, a friend and colleague for at least as
long, has been his office mate. It was the convenience of this space that made possi-
ble publication of his latest book, A First Course in Monte Carlo (Fishman 2005).

Sandy Stidham succeeded George as department chair in 1990. Sandy provides
a keen insight into George’s leadership style and its effect on all his colleagues.

After I came to North Carolina, it soon became apparent to me that, under George’s lead-
ership, the Curriculum in Operations Research and Systems Analysis at UNC-CH had
achieved a status that is rare in academic life: it was an interdisciplinary, interdepartmental
program with an independent budget and dedicated faculty lines, which had maintained vital
connections with other academic units through joint faculty positions. Just as important, and
just as rare, was the collegiality of the faculty, the mutual respect among its members, and
the close, congenial relations between the faculty and students.
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Soon after I joined the faculty in 1986, the Curriculum attained departmental status as
the Department of Operations Research. George continued to provide steady leadership as
Chair of the Department until 1990. I like to call it “leadership by encouragement.” One of
George’s favorite phrases has always been “I encourage you to . . ..” More than a rhetorical
device, it was an emblem of his leadership style: he encouraged his colleagues to see things
the way he saw them. Because he always thought through his own decisions with logic and
sensitivity, the rest of us (almost always) ended up seeing things the same way.

While devoting himself to the growth and flourishing of OR at UNC-CH, George main-
tained an active research program and a growing international reputation in the fields of
discrete-event simulation and Monte Carlo. When these subjects come up during conver-
sations with friends, I have found myself saying (with pride): “My friend and colleague,
George Fishman, is the preeminent expert on simulation and Monte Carlo, and I encour-
age you to look at his books, Monte Carlo: Concepts, Algorithms, and Applications and
Discrete-Event Simulation: Modeling, Programming, and Analysis.”

During our mutual retirement, George and I have made a habit of going out for coffee
about once a week. We discuss music, politics, religion, economics, and, of course, the joys
of grandchildren. The friendship that has developed between us is, and will continue to be,
one that I cherish.

During the course of his career, George has made major contributions in lay-
ing the foundations for the field of computer simulation and in advancing that
field. From 1972 to 1974, he served as the chair of the College on Simulation
and Gaming of The Institute of Management Sciences (TIMS), an organization
subsequently named TIMS/College on Simulation and later renamed the Simula-
tion Society of the Institute for Operations Research and the Management Sci-
ences (INFORMS). From 1978 to 1980, George served as the representative of
TIMS/College on Simulation and Gaming on the Board of Directors of the Winter
Simulation Conference. Moreover, from 1978 to 1987, he served as the founding
editor of the Simulation Department of the journal Management Science. From
the perspective provided by the passage of almost three decades, it is now clear
that George’s service as founding editor of the Simulation Department of Man-
agement Science was critical to the establishment and initial advancement of the
simulation literature as we know it today. It can be argued that this develop-
ment coupled with George’s own research contributions to the simulation literature
were two of the key factors in the survival of the field of simulation as a sepa-
rate, recognizable subject with its own body of relevant theory, methodology, and
applications.

From 1989 to 1992, George served on the Editorial Advisory Board of ACM
Transactions on Modeling and Computer Simulation, a flagship publication of the
Association for Computing Machinery. Further, over the years, George served on
numerous committees of professional societies and international conferences.

George has received numerous forms of professional recognition for his remark-
able contributions to simulation and the larger disciplines of operations research and
the management sciences over the past five decades. In 1990 he received the Dis-
tinguished Service Award from TIMS/College on Simulation. For his book Monte
Carlo: Concepts, Algorithms, and Applications (Fishman1996), he received two
awards—the Frederick W. Lanchester Prize from INFORMS in 1996, and the Out-
standing Simulation Publication Award from the INFORMS Simulation Society
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in 1997. In 2003 George was elected a Fellow of INFORMS. In 2004 George
received the INFORMS Simulation Society’s Lifetime Professional Achievement
Award (LPAA), the highest honor given by that organization. This award recognizes
major contributions to the field of computer simulation that are sustained over a
professional career, with the critical consideration being the total impact of those
contributions on the field.

In a supporting letter for the LPAA nomination, Russell Cheng (University of
Southampton) wrote:

Discrete-event simulation has seen substantial growth both in terms of its theoretical base
and in terms of its huge range of application. Professor Fishman has been at the forefront of
these developments. On a worldwide basis, I would rank him in the top few in terms of both
range and the scholastic quality of his contributions, many of which have been seminal.

John Charnes (Senior Vice President, Bank of America) concurred:

When I look at Prof. Fishman’s vita, I am amazed that he has done so much. With contri-
butions to research in so many different fields, mentorship of so many students, and service
to the profession in so many ways, he is certainly qualified to be awarded the LPAA.

2 Contributions to Computer Simulation

George is a scholar and researcher of the first rank, a stimulating colleague, a
thoughtful mentor, and a steadfast friend to those individuals fortunate enough to
have worked with him. Over the course of a career spanning five decades, George
has made fundamental contributions to both the theory and practice of simulation,
dissemination of knowledge, service to the profession, and the advancement of the
status of the field. In the sections that follow, we give a synopsis of George’s impact
on the field of computer simulation.

2.1 Contributions to Research

George has made numerous groundbreaking contributions to the following methods
for simulation output analysis:

• the spectral method;
• the autoregressive method;
• the regenerative method; and
• the batch-means method.

Moreover, George has made seminal contributions to the following areas within the
field of simulation:

• efficiency-improvement (variance-reduction) techniques;
• estimation of network performability measures;
• pseudorandom number generation; and
• random variate generation.
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Although George’s first archival journal article (Fishman 1964) and his first book
(Fishman 1969) were in the field of economics, much of his subsequent work
focused on simulation analysis methodology and the design of efficient simulation
experiments. In the rest of this section, we survey George’s contributions in the areas
listed above.

2.1.1 Spectral Method

George’s first major contribution to simulation output analysis was the develop-
ment with Phil Kiviat of the spectral method (Fishman and Kiviat 1967). The
name of this method is based on the following property of a stationary stochas-
tic process, presumably generated by a simulation in steady-state operation: if we
compute the power spectrum of the process (that is, the Fourier cosine transform
of the associated autocovariance function), then the power spectrum evaluated at
frequency zero is equal to the variance parameter of the process (that is, the sum
of the autocovariances at all lags). Moreover, the variance of the sample mean is
asymptotically equal to the variance parameter divided by the sample size as the
sample size increases. Hence, for large sample sizes, the estimation of the vari-
ance parameter and the construction of a valid confidence interval for the steady-
state mean reduces to the estimation of the power spectrum of the process at zero
frequency.

As formulated by Fishman and Kiviat (1967), the spectral method for simu-
lation analysis estimates the variance parameter (and hence the variance of the
sample mean) by a weighted average of estimators of the autocovariance function,
with appropriately chosen weights. The methodology was revisited in the early
1980s by Heidelberger and Welch (1983), and its relationship to the methods of
nonoverlapping and overlapping batch means is discussed by Welch (1987). This
variance-estimation approach has regained attention recently with the development
of wavelet-based methods for estimation of the power spectrum (Lada and Wilson
2006).

2.1.2 Autoregressive Method

In Fishman (1971) and Fishman (1973), George pioneered the autoregressive method
for simulation output analysis. This technique is based on the following properties:

• A mixed autoregressive–moving average (ARMA) process of order (p, q) (where
0 ≤ p, q < ∞) that is stationary and invertible often provides an adequate
model for many time series encountered in practice—including many simulation-
generated times series.

• A stationary invertible ARMA(p, q) process can be approximated in quadratic
mean to any prespecified accuracy by a stationary autoregressive (AR) process of
sufficiently large order p′ (that is, an AR(p′) model).
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George formulated a comprehensive method for determining an appropriate order of
the pure autoregressive model as an approximation to a given simulation-generated
process and for estimating the coefficients of that model. A simplified variant of
the autoregressive method has resurfaced recently as a key ingredient of automated
batch-means methods for simulation analysis (Steiger et al. 2005, Lada et al. 2008,
Tafazzoli et al. 2008).

2.1.3 Regenerative Method

George’s next fundamental contribution to simulation analysis was the estimation
of steady-state means and quantiles based on the regenerative method (Fishman
1974a, Fishman and Moore 1979, Seila 1976). If a stationary stochastic process has
the regenerative property, then the process has regeneration points defined by tran-
sitions out of a distinguished state—for example in a stable single-server queueing
system, a regeneration point occurs each time an arriving customer finds the system
empty and thus triggers a transition out of the empty-and-idle state. At each regen-
eration point, the probabilistic mechanism governing the evolution of the process
is restarted independently of the previous history of the process. The regenerative
property enables us to obtain independent and identically distributed blocks of data
on which to apply relevant central limit theorems. By coincidence, Crane and Igle-
hart (1974a, b) published similar results on the regenerative method for simulation
analysis simultaneously with Fishman (1974a); in fact, all three papers appeared
in the January 1974 issue of Operations Research. George relates the following
story:

A copy of my technical report on the regenerative method was sent to Gerry Lieberman,
Chair of the Operations Research Department at Stanford University. Interestingly, a copy
of a technical report from Stanford University, authored by Don Iglehart and Michael Crane
and describing a similar methodology arrived at Yale University one week later. Appar-
ently, the Stanford group and I had been working on the same problem, unaware of the
other’s work.

Since the appearance of these seminal papers on the regenerative method, hundreds
of papers have been published on this approach to the analysis of simulation output.

2.1.4 Batch Means Method

George’s pathbreaking contributions to the batch-means method for simulation anal-
ysis were motivated by the difficulties that arise in practical applications of the
regenerative method. In general, it can be difficult to identify regeneration points
in a simulation-generated output process. Moreover, even when such regeneration
points can be identified, their recurrence frequency may be so small that an excessive
simulation run length is required to accumulate a sufficiently large number of com-
plete regenerative cycles so as to estimate long-run average performance measures
with acceptable precision.

Although the method of batch means was known to the simulation community
since the early 1960s (Conway1963), George’s groundbreaking work on this method
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in the 1970s (Fishman 1978a, b) provides the first comprehensive batch-means
procedure for computing valid confidence intervals for the steady-state mean. In par-
ticular, the discussion on pp. 245–246 of Fishman (1978a) explains how a perusal of
the plot of the batch means can give good insights into the effect of the simulation’s
initial condition, as well as the approach to independence and normality of the batch
means with increasing batch size.

In the early 1990s, George revisited the method of batch means with the develop-
ment of ABATCH and LBATCH, two implementations of the batch-means method
that yield not only a consistent estimator of the variance parameter but also asymp-
totically valid confidence intervals for the steady-state mean as the batch size and
the number of batches both tend to infinity at suitable rates (Fishman and Yarberry
1997). ABATCH and LBATCH are the only batch-means algorithms that require
O(n) time and O(log2 n) space for the total sample size n accumulated with each
additional iteration of the overall procedure. Although linear time complexities are
known for algorithms based on fixed batch and sample sizes, the dynamic setting
of the ABATCH and LBATCH algorithms offers an important additional advan-
tage not present in static approaches: as the analysis evolves with the availability
of additional data, ABATCH and LBATCH allow the user to assess visually and
quantitatively how the batch-means estimate of the variance parameter converges to
the desired limiting value, in linear computation time and sublinear space (that is,
computer memory). Such direct assessment enables the user to gauge the quality of
the variance estimate and the confidence interval for the mean.

Peter Glynn (Stanford University) applauds George’s contributions in this area,
while also crediting him as a codeveloper of the regenerative method.

[George] played a major role in providing a rigorous analysis of the method of batch means,
and in developing practical implementations of the method. Given the important role of this
output analysis procedure in the steady-state simulation setting, this stands as a significant
accomplishment. But this is only one of several fundamental contributions to the output
analysis problem. George also introduced the regenerative method (along with Don Igle-
hart), and developed means of producing confidence bounds that are non-asymptotic (and
are thereby guaranteed to hold for any fixed sample size). Each of these contributions has
stimulated an extensive amount of follow-on research.

2.1.5 Efficiency-Improvement (Variance-Reduction) Techniques

Throughout his professional career, George has had a particular interest in meth-
ods to improve the efficiency of simulation experiments. In Fishman (1968), he
addressed the relationship between the computing budget and the accuracy and pre-
cision of the resulting simulation-based estimators. In Fishman (1974b), George
laid the foundation for the use of common random numbers and antithetic variates
to improve the efficiency of estimation of linear simulation metamodels, thereby
anticipating the correlation-induction strategy of Schruben and Margolin (1978) and
all the follow-up work on correlation-induction strategies for simulation metamodel
estimation. In his groundbreaking papers on efficiency-improvement techniques for
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the simulation of Markov chains (Fishman 1983a, b; Fishman and Huang 1983),
George anticipated the recent explosive growth in the use of Markov Chain Monte
Carlo (MCMC) (Gilks et al. 1996), especially in the implementation of Bayesian
statistical methods. George’s work on efficiency-improvement techniques in the
1970s and early 1980s were precursors to his influential contributions on network
reliability estimation and his work in the 1990s. Fishman and Rubin (1992a, b)
and Fishman et al. (1992) exploit the availability of bounds on the underlying
distribution (prior information) to obtain best- and worst-case bounds on the vari-
ance and coefficient of variation of the corresponding Monte Carlo–based estima-
tors. Fishman and Kulkarni (1992) describe necessary and sufficient conditions for
MCMC sampling to perform more efficiently than Monte Carlo sampling based on
independent trials.

2.1.6 Network Reliability

In the early 1980s, George focused much of his research on the development of
Monte Carlo sampling plans for estimating performability measures of networks
whose components have random characteristics (e.g., lengths, durations, and capac-
ities). This development was funded by a research grant from the Air Force Office
of Scientific Research and spanned a period of about ten years. The sampling plans
developed by George and his collaborators typically use bounds on the measures
under study to construct conditional distributions defined on a subset of the sys-
tem’s state space. The resulting estimators are unbiased, have substantially smaller
variance than estimators based on standard Monte Carlo and equal computing effort
(encompassing sample size and sampling time), and have bounded relative error as
the sample size grows; see, for example, Fishman (1986a, b; 1989b, c). Although
bounds existed since the early 1970s (Frank and Frisch 1970, Van Slyke and Frank
1972), they did not permit the construction of effective sampling distributions.

Fishman (1986a) and Fishman (1986b) are landmark papers on the problem of
computing network reliability with binary state components. In Fishman (1986b),
George exploits bounds based on disjoint minimal path sets and minimal cut sets. In
Fishman (1986a), he takes advantage of bounds on the coefficients of the polynomial
reliability function when all components have equal reliabilities.

To estimate the distribution of two-terminal maximum flow in networks with
discrete arc capacities, George and his collaborators achieve striking increases in
estimator efficiency by exploiting bounds based on minimal paths and cuts (Fishman
1987a, b; Fishman 1989a, c; Alexopoulos and Fishman 1991, 1993). An alternative
approach is proposed by Fishman and Shaw (1989) and Alexopoulos and Fishman
(1992) in which the bounds result from iterative partitions of the system state space,
and the corresponding estimators are based on a combination of importance and
stratified sampling. The work of George and his coauthors in this area is referenced
prominently in the handbook chapter by Ball et al. (1995).

Concerning George’s work on Monte Carlo–based analysis of network performa-
bility, Peter Glynn offers the following perspective.
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He has made fundamental contributions to the development of special-purpose methods
for efficiently computing various performance measures in the stochastic networks context.
This class of networks arises naturally in many applied settings, and is of great practical
interest. The tools that George has developed in this setting make possible computations
that would be difficult (or perhaps even impossible) if attacked using naı̈ve algorithms.

2.1.7 Generation of Pseudorandom Numbers and Variates

George has authored three widely cited studies of pseudorandom number generators
(Fishman and Moore 1982, 1986; Fishman 1990) and six papers on random variate
generation. In the latter area, the paper by Fishman and Moore (1984) is worthy of
special mention. Although the alias method of Walker (1977) is the most frequently
cited approach for generating samples from a discrete distribution in bounded time,
it fails to provide a monotonic functional dependence of each generated sample on
the corresponding random number, a fundamental property required by the methods
of common random numbers and antithetic variates. The cutpoint method of Fish-
man and Moore overcomes this limitation of the alias method, is easier to under-
stand, and shows how to ensure a fixed bound on variate-generation time regardless
of the number of points in the distribution.

Pierre L’Ecuyer (Université de Montréal) talks about the influence that George’s
random number generation work had on his career.

My first and closest encounter with his work was his papers with Louis R. Moore on search
and evaluation of linear congruential generators. These papers had a very strong influence
on my own work on uniform random number generators, especially at the earliest stages.
In particular, the figure of merit I adopted to select the famous combined [linear congruen-
tial generator] of my 1988 CACM paper was taken from these papers. In their 1982 JASA
paper, they introduced a normalized spectral test measure which has become the standard
for the theoretical evaluation of linear congruential and multiple recursive random number
generators.

In the above quotation, L’Ecuyer (1988) is the article referred to as the “1988 CACM
paper”; and Fishman and Moore (1982) is the article referred to as the “1982 JASA
paper.”

2.2 Dissemination of Knowledge and Advancement of the Field

Of course, many of us in the simulation community have grown up on George’s
simulation texts. George authored one monograph on the application of spectral
methods in econometrics, three books on discrete-event simulation and two books
on the Monte Carlo methodology.

His first simulation text, Concepts and Methods in Discrete Event Digital Simu-
lation (Fishman 1973), served as the state-of-the-art reference for many researchers.
Barry Nelson (Northwestern University) relates the following story that summarizes
the value of this text.
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For me, personally, George’s work joins the work of Jim Wilson as having the most impact
on the direction of my own career. To illustrate this point, I want to single out his 1973
book Concepts and Methods in Discrete Event Digital Simulation. I first encountered this
book in Bruce Schmeiser’s office when I was a graduate student at Purdue in 1981. Bruce
used this book as a reference for his IE680 class, and it was this material (along with Bruce)
that persuaded me to stay for my Ph.D. rather than leave Purdue after my M.S., as originally
planned. The book was already out of print, but I made it a priority to find a copy, and I even-
tually obtained one from a used book store for $10 (perhaps the highest value per dollar of
any purchase I have ever made!). In addition to being one of the first comprehensive books
on simulation, covering modeling, programming, and analysis, Concepts and Methods in
Discrete Event Digital Simulation was the first formal mathematical treatment of “analysis
methodology” that I encountered. For many years after I left Purdue, it was one of the first
books I pulled from my shelf when I tackled a new research problem.

His second simulation text, Principles of Discrete Event Simulation, appeared in
1978. This text incorporated the methodological advancements in simulation output
analysis during the 1970s and, most importantly, contained SIMSCRIPT II.5 codes
for computing point and confidence interval estimates based on the regenerative and
batch-means methods.

In 2001, George published Discrete-Event Simulation: Modeling, Programming,
and Analysis. Of particular import are the excellent chapter on efficient execution
of simulation programs (appropriately entitled “Search, Space, and Time”) and the
chapter on output data analysis. In addition to the description and implementation of
sequential methods based on batch means, the latter chapter contains an enlightening
discussion regarding the potential deleterious effects of the initialization bias inher-
ent in steady-state simulation experiments on the validity of confidence intervals
obtained by the method of replication/deletion. This discussion directly inspired the
paper by Alexopoulos and Goldsman (2004), recipient of the INFORMS Simulation
Society’s Outstanding Simulation Publication Award in 2007.

The monograph Monte Carlo: Concepts, Algorithms, and Applications (Fishman
1996), winner of the Frederick W. Lanchester Prize from INFORMS in 1996, as well
as the INFORMS Simulation Society’s Outstanding Simulation Publication Award
in 1997, is perhaps the tour de force of George’s career.

Stunningly complete and comprehensive, the text is a must-read for anyone in
the field. In fact, the book has found great use in a number of wide-ranging fields:
operations research and industrial engineering, mathematics, probability and statis-
tics, computer science, financial engineering, and physics, just to name a few. The
book is unparalleled in scope and content; yet, remarkably, it is a self-contained
piece that requires little previous exposure to the field. It begins with a number of
methods for estimating volumes and counts, including classical (but difficult) prob-
lems involving network reliability, multidimensional integration, sensitivity analy-
sis, bounds for simultaneous confidence intervals, estimation of the expected value
of the ratio of random variables, and sequential estimation. The book then presents
an encyclopedic discussion on random variate generation techniques. Not only does
the list encompass the “usual” random variables; it also includes problems involv-
ing the generation of points constrained by interesting geometric shapes including
convex polytopes—thus making the book tremendously useful for researchers in
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mathematical optimization. The text goes on to discuss methods such as correlated
sampling, control variates, importance sampling, and stratified sampling to increase
sampling efficiency. These topics are in the spirit of Hammersley and Handscomb
(1964), albeit at a more-rigorous and more-modern level. A particularly significant
chapter is that on random tours, encompassing random walks (and generalizations
thereof) on a variety of domains. The book devotes a chapter to simulation out-
put analysis—how should one report the results of an experiment in a statistically
rigorous way? The text is in fact the first to treat sequential, commercially useful
output analysis methods (LBATCH and ABATCH). The tome concludes with a
state-of-the-art treatment on pseudorandom number generation, in which we see
how to generate the underlying uniform random variates that drive the stochastic
simulation. The overall result is that the book is a beautiful compendium covering
everything that one needs to know about the Monte Carlo method; the Lanchester
Prize certainly underscores this obvious fact.

The primary target of his 1996 book on Monte Carlo methods is, of course,
researchers. This realization led George to author the primer A First Course on
Monte Carlo (Fishman 2005), for purposes of exposing the methodology to a wider,
less-mathematically sophisticated audience. The main contributions of this text are
the simplicity of the exposition, the detailed algorithmic description of the various
techniques, the plethora of real-world examples from various application areas, and
the inclusion of “hands-on” exercises that enable the reader to try the techniques
and identify the most-effective ones for the underlying problems.

2.3 Development of Software

George and Louis Moore developed comprehensive computer programs for evalu-
ating the performance of random-number generators using statistical and geometric
tests. In addition, George and Stephen Yarberry developed and implemented the
only sequential batch means algorithms (LBATCH and ABATCH) that run in lin-
ear time and logarithmic space. The algorithms in the LABATCH.2 package have
been used by numerous researchers in the operations research and computer science
communities. The LABATCH.2 package is available online via

www.or.unc.edu/˜gfish/labatch.2.html .

3 George’s Academic Family Tree

George has a distinguished academic pedigree. His doctoral research advisor was
Dr. Robert Jennrich, who is currently a Professor in the Department of Mathematics
at UCLA. In reverse chronological order, one path of George’s academic ancestry
includes Paul Hoel, Dunham Jackson, Edmund Landau, Georg Frobenius, Lazarus
Fuchs, Ernst Kummer, Karl Weierstrass, Friedrich Bessel, Christoph Gudermann,

www.or.unc.edu/~gfish/labatch.2.html
http://www.or.unc.edu/~gfish/labatch.2.html
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and Carl Gauss. A second path can be traced directly to Nicolaus Copernicus and a
third path originates from Georgios Gemistos Plethon, a Greek neoplatonist philoso-
pher from Constantinople.

George served on many doctoral dissertation committees both as an advisor and
reader. He advised the following students:

• Andrew F. Seila, dissertation: “Quantile estimation methods in discrete event
simulations of regenerative systems,” Operations Research, UNC (1976).

• Veena G. Adlakha, dissertation: “Starting and stopping rules for data collection
in queueing simulations,” Operations Research, UNC (1979).

• Louis R. Moore, dissertation: “Quantile estimation in regenerative processes,”
Statistics, UNC (1979).

• Bao-Sheng Huang, dissertation: “Antithetic sampling method: A variance reduc-
tion technique in computer simulation,” Operations Research, UNC (1980).

• Kenneth J. Risko, dissertation: “Binomial population selection procedures for
fixed unequal sampling costs,” Statistics, UNC (1982).

• Tien-Yi Shaw, dissertation: “Monte Carlo methods for reliability analysis of
stochastic flow networks,” Operations Research, UNC (1988).

• Christos Alexopoulos, dissertation: “Maximum flows and critical cutsets in
stochastic networks with discrete arc capacities,” Operations Research, UNC
(1988).

• L. Stephen Yarberry, dissertation: “Incorporating a dynamic batch size selection
mechanism in a fixed-size batch means procedure,” Operations Research, UNC
(1993).

• M. Cristina Arguelles, dissertation: “Exploiting special structure to enhance effi-
ciency of manufacturing simulation,” Operations Research, UNC (1997).

Currently, Andy Seila is a professor emeritus in the Department of Management
Information Systems of the Terry College of Business at the University of Georgia.
Veena Adlakha is a professor in the Management Department of the Merrick School
of Business at the University of Baltimore. Lou Moore is a senior operations
researcher with the RAND Corporation in Santa Monica, California. From 1980
to 2000, Bao-Sheng Huang worked for Bell Labs, where he became a distinguished
member of the technical staff and technology consultant for his contributions in the
areas of network modeling and simulation; and since 2004 he has served as direc-
tor of systems engineering for Wide Area Network Design Laboratory (WANDL).
Kenneth J. Risko is a senior manager in the regulatory and capital markets consult-
ing practice for the financial services industry at Deloitte & Touche LLP. Danny
Shaw is an operations research specialist in the Operations Research and Devel-
opment Department of the SAS Institute Inc. Christos Alexopoulos is an associate
professor in the H. Milton Stewart School of Industrial and Systems Engineering at
the Georgia Institute of Technology and the director of the Modeling and Simulation
Research and Education Center at Georgia Tech. L. Stephen Yarberry is currently
the chief information officer at Practice Plus/Arkansas Health Group and chief infor-
mation security officer at Baptist Health in Little Rock, Arkansas. In addition, he
owns Yarberry & Associates, a management and telecommunications consulting
company; and he serves as an adjunct professor at both Webster University and



George Fishman’s Professional Career 15

the University of Central Arkansas. Cristina Arguelles Tasker is a client business
manager with i2 Technologies in London.

Despite his heavy administrative duties and research agenda, George was a
resourceful teacher and a wonderful academic advisor. Veena Adlakha comments
on George’s dedication to his students.

I have always considered it as a great honor and privilege to have had Dr. George Fishman as
my Ph.D. thesis advisor. Working with him as his research assistant and as his student was a
great learning process. His office was always open and he always had time for his students—
whether to debug a program, improve the flow of logic, or simply answer a question. Dr.
Fishman was unrelenting in his demand for hard work and perfection, but he always guided
his students with patience. I recall vividly how he made me rewrite the first chapter of my
thesis seven times. It was only when I would write my own research papers later that I
appreciated the effect that his persistence had on improving my writing abilities.

Being Dr. Fishman’s student certainly had its perks. In 1979 I attended the ORSA/TIMS
conference with Dr. Fishman, where I received several job offers even though I was not
seeking a job at the time, no doubt simply because I was Dr. Fishman’s student.

Dr. Fishman was a very gracious man and became a good family friend. I wish nothing
but the best for George in his well-deserved retirement.

Stephen Yarberry offers a similarly memorable view of what it means to be one
of George’s former students.

While George pushed his students to excel, he never had higher expectations of us than he
had for himself. He was so much more than just an advisor and a mentor—he was, and still
is, my friend. I count it a honor and a privilege to have received tutelage from a man whom
many refer to as the father of our field.

4 Recapitulation

George Fishman is remarkable not only for his exceptional level of scholarly pro-
ductivity sustained over five decades but also for this long-standing dedication to
the advancement of the professions of simulation, operations research, and the man-
agement sciences. David Rubin gives the following assessment of George’s contri-
butions from the perspective of a faculty colleague and frequent collaborator.

While shepherding the curriculum/department, George maintained his very active scholarly
career. I need not recount here the list of monographs, texts and journal articles he wrote, nor
the roster of Ph.D. theses and MS expository papers he directed over the past 40+ years. He
recently commented to me about how much he enjoyed doing joint research with colleagues
who had skills complementary to his own. I was a beneficiary of that outlook. It was my
great pleasure to be a coauthor with him on four of those journal articles. George’s work
in simulation led him to questions about the size of samples needed to guarantee specified
precision in estimating quantities whose exact distributions were unknown. He recognized
that there were optimization problems at the base of these questions, I knew something
about structured optimization problems, and a fruitful collaboration ensued.

For almost 35 years I have been fortunate to count George among my colleagues, men-
tors, and special friends. On the occasion of this Festschrift, I wish him many more happy
and productive years.

Andy Seila (University of Georgia) gives what is perhaps the best high-level
summary of George’s professional achievements over the past five decades.
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In order to understand George’s contributions to the field of simulation, you have to go
back to the early 1970s and examine the status of computing in general and simulation in
particular. At that time, two processes were developing that would have a profound influence
on the development of simulation as a tool for systems analysis: computers were becoming
powerful enough—both in raw size and speed, and in the availability of compilers and other
tools—to move simulation from a niche tool to one that would be available to engineers,
statisticians and scientists with a modest amount of training. Discrete event simulation mod-
eling tools such as SIMULA, SIMSCRIPT II.5, GPSS, and GASP were widely available and
relatively easy to use. At the time, the focus was on modeling methodology, and analysis
of output data (as well as input data) was an ad-hoc process. George had the insight to see
that, in order for simulation to become a tool that managers would use with confidence,
reliable statistical methodology had to be developed. This is the area in which George
made his initial contribution and continues to contribute. Thanks to his work and that of
others who were influenced by him, we now have a foundation of statistical methodology
for the analysis of simulation output data that enables practitioners to compute estimates
of performance measures and, more importantly, to assess the usefulness of the estimates.
The combination of modeling methodology and data analysis methodology, contributed by
George, has provided the fuel to power the explosion in simulation applications we have
seen in the past three decades.

On a more personal level, we (the authors of this paper) can trace virtually
every line of research we have pursued individually or collectively over the past
three decades back to George’s seminal papers and books on computer simulation
that are surveyed in this article. More important, however, is that many others in
the international simulation community spanning several generations of academics,
practitioners, and researchers acknowledge a similar debt to the intellectual heritage
they received from George Fishman.

References

Adlakha, V. G., and G. S. Fishman. 1982. Starting and stopping rules for simulation using a priori
information. European Journal of Operations Research 10:379–394.

Alexopoulos, C., and G. S. Fishman. 1991. Characterizing stochastic flow networks using the
Monte Carlo method. Networks 21:775–798.

Alexopoulos, C., and G. S. Fishman. 1992. Capacity expansion in stochastic flow networks. Prob-
ability in the Engineering and Informational Sciences 6:99–118.

Alexopoulos, C., and G. S. Fishman. 1993. Sensitivity analysis in stochastic flow networks using
the Monte Carlo method. Networks 23:605–621.

Alexopoulos, C., and D. Goldsman. 2004. To batch or not to batch? ACM Transactions on Modeling
and Computer Simulation 14(1):76–114.

Ball, M. O., C. J. Colburn, and J. S. Provan. 1995. Network reliability. In Handbooks of Operations
Research and Management Science: Network Models, eds, M. O. Ball, T . L. Magnanti, C. L.
Monma, and G. L. Nemhauser, Chapter 11. Amsterdam: Elsevier Science Publishers B.V.

Cohen, M.-D., and G. S. Fishman. 1980. Modeling growth-time and weight-length relationships in
a single year-class fishery with examples for North Carolina pink and brown shrimp. Canadian
Journal of Fisheries and Aquatic Sciences 37:1000–1011.

Conway, R. W. 1963. Some tactical problems in digital simulation. Management Science 10:
47–61.

Crane, M. A., and D. L. Iglehart. 1974a. Simulating stable stochastic systems I: General multiserver
queues. Journal of the ACM 21(1):103–113.



George Fishman’s Professional Career 17

Crane, M. A., and D. L. Iglehart. 1974b. Simulating stable stochastic systems II: Markov chains.
Journal of the ACM 21(1):114–123.

Fishman, G. S. 1964. Price behavior under alternative forms of price expectations. Quarterly
Journal of Economics 78:281–298.

Fishman, G. S. 1967. Problems in the statistical analysis of simulation experiments: The
comparison of means and the length of sample records. Communications of the ACM
10:94–99.

Fishman, G. S. 1968. The allocation of computer time in comparing simulation experiments. Oper-
ations Research 16:280–295.

Fishman, G. S. 1969. Spectral Methods in Econometrics. Cambridge, Massachusetts: Harvard
University Press.

Fishman, G. S. 1971. Estimating sample size in computer simulation experiments. Management
Science 18:21–38.

Fishman, G. S. 1973. Concepts and Methods in Discrete Event Digital Simulation. New York: John
Wiley & Sons.

Fishman, G. S. 1974a. Estimation in multiserver queueing simulations. Operations Research
22:72–78.

Fishman, G. S. 1974b. Correlated simulation experiments. Simulation 23:177–180.
Fishman, G. S. 1978a. Principles of Discrete Event Simulation. New York: John Wiley & Sons.
Fishman, G. S. 1978b. Grouping observations in digital simulation. Management Science

24:510–521.
Fishman, G. S. 1983a. Accelerated accuracy in the simulation of Markov chains. Operations

Research 31:466–487.
Fishman, G. S. 1983b. Accelerated convergence in the simulation of countably infinite state

Markov chains. Operations Research 31:1074–1089.
Fishman, G. S. 1986a. A Monte Carlo sampling plan for estimating reliability parameters and

related functions. Networks 17:169–186.
Fishman, G. S. 1986b. A Monte Carlo sampling plan for estimating network reliability. Operations

Research 34:581–594.
Fishman, G. S. 1987a. Maximum flow and critical cutset as descriptors of multistate systems with

randomly capacitated components. Computers and Operations Research 14:507–520.
Fishman, G. S. 1987b. The distribution of maximum flow with applications to multistate reliability

systems. Operations Research 35:607–618.
Fishman, G. S. 1989a. Monte Carlo estimation of the maximal flow distribution with discrete

stochastic arc capacity levels. Naval Research Logistics Quarterly 36:829–849.
Fishman, G. S. 1989b. Estimating the s-t reliability function using importance and stratified sam-

pling. Operations Research 37:462–473.
Fishman, G. S. 1989c. Monte Carlo, control variates and stochastic ordering. SIAM Journal on

Scientific and Statistical Computing 10:187–204.
Fishman, G. S. 1990. Multiplicative congruential random number generators with modulus 2β : An

exhaustive analysis for β = 32 and a partial analysis for β = 48. Mathematics of Computation
54(189):331–344.

Fishman, G. S. 1996. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer-
Verlag.

Fishman, G. S. 1999. An analysis of Swendsen-Wang and related sampling methods. Journal of
the Royal Statistical Society, Series B, 61:623–641.

Fishman, G. S. 2001. Discrete-Event Simulation: Modeling, Programming, and Analysis. New
York: Springer-Verlag.

Fishman, G. S. 2005. A First Course in Monte Carlo. Belmont, California: Duxbury.
Fishman, G. S., and B. D. Huang. 1983. Antithetic variates revisited. Communications of the ACM

26:964–971.
Fishman, G. S., and P. J. Kiviat. 1967. Spectral analysis of time series generated by simulation

models. Management Science 13:525–557.



18 C. Alexopoulos et al.

Fishman, G. S., and V. G. Kulkarni. 1992. Improving Monte Carlo efficiency by increasing vari-
ance. Management Science 38:1432–1444.

Fishman, G. S., and L. R. Moore. 1979. Estimating the mean of a correlated binary sequence with
an application to discrete event simulation. Journal of the ACM 26:82–94.

Fishman, G. S., and L. R. Moore. 1982. A statistical evaluation of multiplicative congruential
random number generators with modulus 231 − 1. Journal of the American Statistical Associa-
tion 77:129–136.

Fishman, G. S., and L. R. Moore. 1984. Sampling from a discrete distribution while preserving
monotonicity. The American Statistician 38:219–223.

Fishman, G. S., and L. R. Moore. 1986. An exhaustive analysis of multiplicative congruential
random number generators with modulus 231 − 1. SIAM Journal on Scientific and Statistical
Computing 7:24–45.

Fishman, G. S., and D. S. Rubin. 1992a. Bounding the variance in Monte Carlo experiments.
Operations Research Letters 11:243–248.

Fishman, G. S., and D. S. Rubin. 1992b. Evaluating best-case and worst-case coefficients of vari-
ation when bounds are available. Probability in the Engineering and Informational Sciences
6:309–322.

Fishman, G. S., and T. Shaw. 1989. Evaluating reliability of stochastic flow networks. Probability
in the Engineering and Informational Sciences 3:493–509.

Fishman, G. S., and L. S. Yarberry. 1997. An implementation of the batch means method.
INFORMS Journal on Computing 9:296–310.

Fishman, G. S., B. Granovsky, and D. S. Rubin. 1992. Evaluating best-case and worst-case
variances when bounds are available. SIAM Journal on Scientific and Statistical Computing
13:1347–1361.

Frank, H., and I. T. Frisch. Analysis and design of survivable networks. IEEE Transactions on
Communications COM-18:501–519.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter. 1996. Markov Chain Monte Carlo in Practice.
London: Chapman & Hall.

Hammersley, J. M., and D. C. Handscomb. 1964. Monte Carlo Methods. London: Chapman and
Hall.

Heidelberger, P., and P. D. Welch. 1983. Simulation run length control in the presence of an initial
transient. Operations Research 31:1109–1144.

L’Ecuyer, P. 1988. Efficient and portable combined random number generators. Communications
of the ACM 31:742–749 and 774.

Lada, E. K., and J. R. Wilson. 2006. A wavelet-based spectral procedure for steady-state simulation
analysis. European Journal of Operational Research 174:1769–1801.

Lada, E. K., N. M. Steiger, and J. R. Wilson. 2008. SBatch: A spaced batch means procedure for
steady-state simulation analysis. Journal of Simulation 2(3):170–185.

Schruben, L. W., and B. H. Margolin. 1978. Pseudorandom number assignment in statistically
designed simulation and distribution sampling experiments. Journal of the American Statistical
Association 73:504–525.

Seila, A. F. 1976. Quantile estimation methods in discrete event simulations of regenerative sys-
tems. Ph.D. diss., Curriculum in Operations Research and Systems Analysis, University of
North Carolina–Chapel Hill.

Steiger, N. M., E. K. Lada, J. R. Wilson, J. A. Joines, C. Alexopoulos, and D. Goldsman. 2005.
ASAP3: A batch means procedure for steady-state simulation analysis. ACM Transactions on
Modeling and Computer Simulation 15(1):39–73.

Tafazzoli, A., J. R. Wilson, E. K. Lada, and N. M. Steiger. 2008. Skart: A skewness- and
autoregression-adjusted batch-means procedure for simulation analysis. In Proceedings of the
2008 Winter Simulation Conference, eds. S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jeffer-
son and J. W. Fowler, pp. 388–395. Piscataway, New Jersey: IEEE.

Van Slyke, R. M., and H. Frank. 1972. Network reliability analysis: Part I. Networks 1:279–290.



George Fishman’s Professional Career 19

Walker, A. J. 1977. An efficient method for generating discrete random variables with general
distributions. ACM Transactions on Mathematical Software 3(3):253–257.

Welch, P. D. 1987. On the relationship between batch means, overlapping batch means and spectral
estimation. In Proceedings of the 1987 Winter Simulation Conference, eds. A. Thesen, H. Grant
and W. D. Kelton, pp. 320–323. Piscataway, New Jersey: IEEE.



A Conversation with George Fishman

Christos Alexopoulos, David Goldsman, and James R. Wilson

Abstract The following are excerpts from an extended conversation between the
authors and George Fishman that was recorded over the period October 25–26,
2007.

1 Education and Early Career

This section concentrates on George’s education and his experiences in industry
prior to his academic career. The speakers are indicated by the initials of their first
names.

C: Good morning, George. We are very pleased to see you. This is part one of
your interview, and we’d like to start with your educational background.

G: In the early 1950s, there was considerable interest in science and technology,
and high school students were not immune from that enthusiasm. Those who did
well in technical subjects were often encouraged to go into sciences or engineering.
Because I was living in Chelsea, Massachusetts, MIT was the closest university
that had a good reputation in both disciplines and I decided that I would like to
go there. Of course, it became clear that if I was going to have an interview, I
had to know what field I wanted to enter. For reasons that still elude me today, I
chose aeronautical engineering. The admissions interview committee included an
admissions officer and a single faculty member. We had a long discussion about
my interests, my grades, my extracurricular activities, etc., and then they asked me
what I saw myself going into. I said “aeronautical engineering.” Immediately the
faculty member’s eyes lit up. It turned out that he was in that department. At that
moment I was sunk because I knew nothing about aeronautical engineering except
that it had to do with airplanes and avionics. Although I thought I had flunked the
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interview, I was admitted shortly thereafter. No more than four or five months after
matriculating, I decided that engineering was not my true interest.

Economics was something that I always liked and at that point in time MIT had
the leading Department of Economics in the United States. Paul Samuelson was
the reigning authority with a widely adopted introductory textbook in economics.
I enjoyed the economics courses that I took but, in order to graduate from MIT at
that time, one was required to take a minimum of about 60% of one’s courses in
either science or engineering. Therefore, I also took a wide spectrum of science and
engineering courses. These included quantum physics with a well-known physicist,
John Slater. Although I’ve had zero use for this course during the last fifty years,
it was more enjoyable than one might think to learn about Schrödinger’s equation
everyday for six months. [Laughter.]

My principal engineering courses were in electrical engineering, and that’s where
I learned about networks. Instructors in both economics and electrical engineering
encouraged us to take probability theory and statistics. I received my degree from
MIT in Course XIV, and my diploma reads economics, political science, and elec-
trical engineering. [Laughter.] Technically, it’s all three of those, but I focused on
economics.

D: They are really all in the same physical location?
G: No, most lower-level economics courses were taught on the main MIT cam-

pus. More advanced ones were offered at the Sloan School, some distance away. I
would leave a main-campus class immediately after the bell rang and in ten minutes
would have to get to the class at the Sloan School. I usually sat in the back of the
class because the teachers didn’t like my heavy breathing from rushing from the
main campus. Because I finished my in-class course work in December of 1959, I
had six months before I could begin graduate school. Therefore, I began working
for several MIT economists. These included Robert Solow, who eventually won
the Nobel Prize in economics. Another, Maurice Adelman, was an authority on the
automobile and oil industries.

When I asked for additional work hours, they referred me to the Political Science
Department, where I went to work for Professor Ithiel de Sola Pool. Although this
sounded to me like a very nonquantitative area, it turned out that Professor Pool
was a protagonist for quantitative methods in political science. His main interest
was in content analysis, which had to do with the propagation of information as it
passed from one person to another—how fast it spreads in different kinds of soci-
eties, things of that sort.

I’m trying to get to the point of what all this had to do with simulation. It was the
presidential election year, 1960, and Professor Pool was intimately involved with
the Kennedy campaign. He and his collaborators, including Robert Abelson who
was a psychologist at Yale, were doing studies of peoples’ responses to a variety
of political and economic issues. It was the first election in which that was done,
and much of the work involved random sampling on a computer by very primitive
methods.

When I began this work, I found that the computer programs in use were writ-
ten in SAP, then the assembly language used for IBM computers. It consisted of
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three-letter codes, and the program, if stretched out linearly, would probably have
covered the entire floor in the computing center. Moreover, it was not executing
correctly and no one had been able to debug the program. At my skill level, I
knew that I would not be able to as well. Fortunately, during my last semester,
I had taken a course in computer programming languages. Although it focused
on SAP, the instructor had mentioned that a new language called FORTRAN was
considerably easier to use. I began studying the few available FORTRAN manu-
als and eventually suggested we rewrite the SAP programs in FORTRAN. A long
debate ensued as to whether we should do this and whether or not FORTRAN
was a good choice. Once we made the switch, the new program executed with
a minimum of difficulty, so my opinions became more credible to others on the
project.

When I announced to my employers that I had been accepted at Stanford in eco-
nomics, Professors Pool and Solow told me that they were good friends of Kenneth
Arrow, a leading mathematical economist at Stanford. He later also became a Nobel
Prize winner. I had not thought to ask them beforehand to write recommendations
for me. Once they learned of my decision to go to Stanford, they wrote letters of
recommendation to Professor Arrow. When I got to there, he offered me an assis-
tantship. Because he was (and still is) a theoretician, the amount of computation he
did was minimal. He assigned me to Professor Marc Nerlove, a twenty-six-year-old
econometrician who was already a full professor. He is now at Maryland. I also
worked for Irma Adelman, a professor of economic development at Berkeley who
was visiting Stanford that year. She had published one of the first studies on eco-
nomic development using simulation.

Although I was not part of Professor Adelman’s simulation work, I did learn from
working with her how to go about testing models. Professor Nerlove had developed
an interest in applying frequency-domain analysis to economic time series. Previ-
ously, these series were analyzed almost exclusively in the time domain. Working
with him, I began to cultivate an interest in spectrum analysis.

D: Had you had any spectral courses back at MIT?
G: You can never tell which college courses are going to be helpful. Having

taken electrical engineering courses, I was familiar with frequency-domain analysis.
Therefore, I found it relatively easy to integrate myself into Professor Nerlove’s
research. We had a good working relationship in which I felt that I had something
more than merely programming skill to offer. Conversely, I learned a lot from him on
how to conduct a quantitative analysis, never overlooking contradictions and always
giving explanations that would hold up under scrutiny. It was a good relationship
and I have always been grateful to him for his guidance.

At the end of my second year at Stanford, I was offered a summer internship
at the RAND Corporation, based on recommendations from Professors Arrow and
Nerlove. Both had been RAND consultants. That August (1962), I was offered a
permanent position at RAND which I accepted. My completed credit hours at Stan-
ford earned me a master’s degree in economics that Fall. At RAND, I joined the
Logistics Department. To a great extent, logistics involves microeconomics and that
fit with my education to date.
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Logistics is a major component of all military organizations. I didn’t know that
before I went to RAND. As Jim has been in the service, he can appreciate this
fact. The Air Force, RAND’s principal client in 1962, had challenging problems
in reliability, maintainability, inventory management, and facilities location. These
intrigued me.

D: Can I make you do an aside for a second? I should know this, but how exactly
is RAND related to government organizations?

G: RAND came into existence as a consequence of the actions of farsighted
people in the scientific community and the U.S. Air Force. During World War II,
groups of scientists had been set up in Washington, D.C., to work on defense related
problems. The leader of the entire scientific effort was Vannevar Bush, whom you
may never have heard of.

C: No, he’s well known. I have read about him in history books.
G: Bush had become head of the Carnegie Institution in Washington, D.C. Pres-

ident Roosevelt made him his science advisor. He was the liaison between the sci-
entific community and Roosevelt, and basically mobilized a considerable amount of
the scientific war effort. Bush recruited people like Phil Morse from MIT to work
on a whole host of problems. The Air Force recognized the value of this work; in
particular, General “Hap” Arnold. He was one of a handful of five-star generals
during World War II.

C: I think I have read about Vannevar Bush in relation to George Dantzig.
G: That’s possible. Dantzig was at a considerably more junior level. He worked

for Marshall Wood, who led a group doing analysis for the Army Air Force. Wood
was one of the people who were instrumental in the armed services becoming inter-
ested in operations research. He recognized the value of OR techniques and assigned
Dantzig a variety of problems related to aircraft scheduling, airlift scheduling, trans-
portation, etc. That’s where many of the problems on which Dantzig focused origi-
nated. But getting back to your original question, two important events happened at
the end of the war. Bush recommended that an organization be set up with sufficient
funds to sponsor a wide range of basic research. That organization came to be known
as the National Science Foundation.

D: That’s where NSF came from?
G: Right, it came from the recommendation that Bush made to President Truman.

Bush went on to become the Chairman of the Board of MIT. I have to tell you an
anecdote. Bush went to the same high school as I, where we had a high school play
focused on famous alumni. Guess who I got to play? Vannevar Bush! [Laughter.]

To return to the discussion, General Arnold recognized that the Air Force would
benefit from technical assistance in many areas. He arranged for the Air Force to
give a contract to Douglas Aircraft to set up a research group. It was called the
Research and Development Group, which we now call RAND. Starting about 1947
or 1948, the group occupied a building that Douglas Aircraft owned in Santa Mon-
ica. Several years later, RAND moved into newly constructed buildings close to its
current location on Main Street in Santa Monica. At approximately that time, H.
Rowan Gaither, a name that you won’t recognize, served as Chairman of the Ford
Foundation and as Chairman of the Board of RAND. I may be off in the date but
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he certainly was a presence in RAND’s early development. To answer your original
question, RAND was a nonprofit corporation with buildings put up with Air Force
and the Ford Foundation financial assistance.

It soon became apparent that RAND’s aims and objectives, especially with regard
to long-term research, differed from those of Douglas Aircraft, a profit-making com-
pany, that was considerably more task-oriented. Here’s what we have to do, and
here’s the data. RAND was not designed that way. To his credit, General Arnold
recognized that you had to put people into an environment in which they could
think more comprehensively. That was the RAND atmosphere that I found when I
got there in 1962. For me, that was a very good experience. As I said, I was in the
Logistics Department and worked on a variety of problems. In retrospect, none of
my contributions were significant for solving Air Force problems. I was learning
how to be a researcher and paid considerable attention to how more senior members
of the research staff went about their work.

Towards the end of 1963, Murray Geisler became the head of the Logistics
Department. A statistician, he was active in management science and had written
several papers on simulation. RAND used simulation to study a variety of Air Force
logistics problems. I never became an integral part of that effort. As chairman,
Geisler had many responsibilities one of which was to assign referees to Logistics
Department documents that were going to appear as external RAND publications.
Each was internally reviewed by two people. I was assigned a paper having to
do with methodology for running simulations, which focused on the batch means
method.

I wrote a brash report that focused on all the issues that the authors had over-
looked. Very brash. [Laughter.] I wouldn’t write a report like that today. Geisler
told me that he liked the report, which was very reassuring. He also encouraged
me, saying that simulation was an emerging area and suggested that I should devote
time and energy to it. Then he said “To get you started, here is an internal RAND
document by Ken Arrow that’s never been published.”

That document gave me a considerable understanding of the area. Conceptually,
Arrow understood exactly what the issues were. Over the years, I’ve come to realize
how farsighted he was in terms of what the methodological challenges for simulation
were. That’s how my serious research interest in that area began. At the same time,
Phil Kiviat came to work at RAND. After getting his master’s degree in operations
research from Cornell, he had spent two years at U.S. Steel where he developed the
GASP discrete-event simulator, which was FORTRAN-based.

At the time, Cornell was, without question, the university where the basic con-
cepts of discrete-event simulation were put into the classroom on a formal basis.
Dick Conway and Bill Maxwell were responsible for that. They saw simulation
as a legitimate area of inquiry, an opinion not widely shared then by others in the
academic community.

D: This would be around 1963?
G: Yes, that’s my recollection. When I would sit down with Phil, I didn’t get

the idea of a “piecemeal” field that was being put together by people with limited
technical skills. It was a formal field, in which language was the major formalism.
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Although his training was as a mechanical engineer, he had gravitated to the area
of simulation languages. He encouraged me repeatedly, telling me there was a great
need for people in the area of statistical methodology. So that was the area in which
I chose to work. Moreover, the paper that I had refereed motivated me to try another
method for estimating the variance of the sample mean. I took what I knew about
spectrum analysis and began doing simulation experiments. Phil supplied many
ideas and we worked well together. That collaboration led to our 1967 Management
Science paper. Although that paper shifted attention from ad hoc evaluation to more
of a methodological approach, it required considerable computing time relative to
the time spent simulating.

When I first came to RAND, the computation of the spectrum at any point was a
quadratic sum calculation done by computing the autocovariances and then taking
their Fourier transform. That was an order n2 operation. Since it took much longer
to analyze the data than to generate them, the method had limited appeal. But in
1965, the Cooley-Tukey algorithm for the fast Fourier transform came along. It
transformed not only simulation, but also many other areas. You could then perform
those computations very rapidly. As a result, the technique developed a broader
appeal.

Actually, Jim, I’m going to have to tell you a story about your colleague, Salah
Elmaghraby. The first public presentation of the spectrum analysis paper that I gave
was in Vienna, at a meeting of the International Institute of Management Sciences.
The talk was limited to about fifteen minutes, restricting what I could say about
the method. Salah was in the audience and, after I finished, he said to me: “That’s a
wonderful paper. What is it all about? You have to explain these details.” [Laughter.]

D: He was around when Maxwell, Conway, and all these guys were starting to
think about these concepts at Cornell.

G: Oh yes. He was one of the first Ph.D. students in the Cornell OR Program.
Previously, Salah had worked for Western Electric and then went back to graduate
school at Cornell.

After publication of our paper, I concluded that, computing cost aside, the setup
cost to learn about spectrum analysis was too large to make the method widely
attractive for estimating the variance of the sample mean in simulation experiments.
I knew that an autoregressive scheme had an easily computed rational spectrum and
thought this alternative approach might offer a convenient approximation for the
spectrum of a queueing process. Although these processes generally do not have
linear autoregressive representations, their spectra can be approximated to some
degree of accuracy by rational spectra. Also, this approach got the analysis out of
the unfamiliar frequency domain.

I wrote my paper on the autoregressive method in 1968 and through Phil Kiviat
was invited to present it at the Second Winter Simulation Conference in New York
that December. Because I was unaware that this conference was a succession of
single-session events, that is, no parallel sessions, I was surprised to find an audi-
ence of three to four hundred people waiting for me to speak. This was intimidating
to someone more accustomed to fewer than ten or fifteen attendees at a presen-
tation in one of RAND’s conference rooms. My talk was well received. During the
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presentation, I had felt that I was not making sense to the audience. But the response
afterward indicated otherwise. Most of all, they were happy to see someone talking
about statistical methodology. That’s where and when I finally accepted Murray
Geisler’s assertion that statistical methodology was an important component of sim-
ulation.

In the late 1960s, Phil Kiviat and I decided to write a series of papers on the
methodological aspects of discrete-event simulation. We called the series “Discrete-
Event Simulation.” Each would be on a different topic. I wrote one on statistics, he
wrote one on languages and another on modeling alternatives, which I regard as one
of the best papers in the simulation literature. That paper formalized the difference
between the event-scheduling approach, the process-interaction approach, and the
activity-scanning approach. I adopted many of those concepts in my 1973 book on
simulation.

Most of Phil’s papers never became academic publications. Some of mine did. As
to the balance between languages and statistics, there’s no question that when I came
into the simulation field, the emphasis was on language. Moreover, the distinction
between model and language was not clear. People had unusually creative ideas
about languages and modeling, but the focus was on the issues of how to make
event lists function efficiently.

SIMSCRIPT was an attempt to make simulation modeling more accessible by
being more conversation-like than FORTRAN. By making it more forgiving during
compilation, it made it easier to code, in principle. It might have prevailed as the
dominant simulation language at that time, except for the fact that IBM had come
out with GPSS. GPSS had two advantages. It was an IBM software product and
it offered a more attractive environment for modeling. The user sat at a remote
terminal—that’s what we called them at the time, basically a teletype machine—and
merely interacted with the code. Because of its structure, successive interactions
occurred without a full-blown recompilation. No recompilation meant faster inter-
active responses. At that time, compiler-based simulation languages took a long time
to compile, an unappealing property for people who had thousands and thousands of
statements in their simulation code. GPSS internalized much of this modeling effort
by using “off-the-shelf blocks” and interpretively executing the simulation program
made up of these blocks.

Although eliminating compilation gave GPSS an edge, it had other limitations.
I was present at many discussions about its slow execution and its lack of flexibil-
ity. Most notable were its inefficiencies in processing the current and future events
chains that contained transactions that were waiting to execute.

Harry Markowitz and Phil Kiviat were the principal developers of SIMSCRIPT
II at RAND. Harry had left RAND shortly after I arrived and gone into business
with Herb Karr. However, he remained a consultant. He and Phil would get together
several times a month. My first exposure to Harry actually was at Stanford where I
took a course that Arrow offered on portfolio analysis in 1961.

D: That’s what Markowitz was famous for though, right?
G: Right, the principal topic was Markowitz’s book on portfolio analysis. Arrow

cast the topic in a more formal setting focused on utility functions and nonlinear
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optimization. But Markowitz’s book was definitely the essential feature. When I got
to RAND, I was puzzled by what Harry was doing working on simulation. It turned
out that he had very broad interests, including discrete-event simulation. His Nobel
Prize award testifies to his accomplishments.

By the end of the 1960s, I realized that RAND was a plateau type of environment.
Many staff were at my level, but few were senior people. I equivocated in my own
mind as to whether I would enjoy being a senior person. I wasn’t sure I was suited
for it. The only option for me was to find something else to do. Several times, I had
been encouraged by RAND colleagues to teach. I actually did teach introductory
statistics at UCLA in 1965. In 1967, I finally acknowledged to myself that the only
way I could teach at a university was to get a Ph.D. So here is the answer to your
question about why I studied biostatistics. There were two major universities in
the area that offered Ph.D. programs. UCLA which was twenty minutes away, and
the University of Southern California which was thirty-five minutes away. Several
RAND staff in the Logistics and Mathematics Departments had recently earned their
Ph.D.’s through the Biostatistics Department at UCLA. You may know Stan Azen,
who has served as the editor of the Journal of Graphics in Statistics, and Craig
Sherbrooke, one of the major contributors to multiechelon inventory management.
Both had gone through the biostatistics program. I saw that they were able to balance
the demands of full-time work at RAND and the graduate program. So I enrolled in
1967 and completed my degree requirements in March 1970.

By then the RAND environment had changed dramatically. It was no longer the
research organization that I had joined in 1962, partially because of the change
in funding arrangements. RAND had done a good job of educating the Air Force
in using analytical techniques and so it now was capable of doing analysis for
itself. Therefore, its level of dependence on RAND had become less. RAND sought
other sources of funding. It solicited support from nondefense government agen-
cies whose interests were more task oriented. That implied shorter research time
horizons and less time to indulge one’s interest in more conceptual research.

I decided to look for an academic appointment in the Spring of 1970. I was
invited to visit Northwestern University for an interview in the Department of Indus-
trial Engineering. In late June, the department offered me a position. The chairman
sent me a handwritten offer for a tenure-track position. He apologized for the infor-
mality, but student campus protests had effectively shut down the university. Shortly
before that, I had received a call from Harvey Wagner at Yale University, whom I had
known at Stanford. He was familiar with my published research, and we knew each
other casually. He said “Would you like to be considered for a position here?” So
early in July of that year, I visited New Haven, Connecticut, and gave a presentation
to the faculty of the Department of Administrative Sciences. The department com-
prised the disciplines of organizational behavior and operations research. Shortly
thereafter, Bob Fetter, the department chairman, called me from a public pay phone
on a highway in New Mexico to offer me a position as an associate professor. I had
made it clear to both Northwestern and Yale that I did not want to begin as an assis-
tant professor. One of the benefits of RAND was that I was able to write a 1969 book
on spectral methods in econometrics, which was basically an outgrowth of the work
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that I had done under Marc Nerlove. So between that and my journal publications
on simulation, both places were willing to offer me an associate professorship.

The informality of both offers made me wonder as to how these universities
worked. That was compounded by my next experience. I can still recall that when I
got to Yale, I asked Bob Fetter “Okay, what am I to teach?” He looked at me with a
smile and said “What would you like to teach?”

2 Academic Career

In this section, George discusses his first academic appointment at Yale University
and his move to the University of North Carolina.

C: We are now moving to the second part of the interview which concerns your
arrival at Yale and eventually the move to UNC. So you have the honors.

G: I wasn’t ready for Bob Fetter’s offer to teach whatever I wanted, nor was I
ready when I first got to New Haven for the fact that I was going to have to pre-
pare teaching materials. I assumed that Bob would pick the subject and that there
would be a standard textbook for it. He wasn’t suggesting anything—all courses
were covered—and he said “Teach whatever you wish.” I responded with “What
if I offer a course in spectral methods in economics?” He said “That’s fine, but
remember we hired you principally for simulation.” I said that I would do that in the
spring semester, and that was agreeable. That Fall, I lectured three times a week to
three or four students on spectral methods.

J: So this was the Fall of 1970?
G: In the spring semester, I taught the simulation course. During the fall semester,

I had looked at the potential textbooks, but none struck me as acceptable in the
methodological sense. The closest one was Tocher’s book. But that was so tightly
written, that it would be very hard for students to get the meaning of what was really
a very rich book. So that Fall I began writing notes. When I look back, it’s hard to
believe that during the four fall months I prepared 400 pages of typed notes for the
spring semester. Needless to say, during my first semester of teaching simulation, I
was merely ahead of the students by a few hours, so to speak. They were kind, help-
ing me with typos, etc. Those notes formed the basis for my 1973 book. It focused on
modeling, programming languages, and statistics, ideas that I had adopted from my
association with Phil Kiviat. Because of the separation of modeling and languages,
language did not dictate modeling, but modeling dictated what features a simulation
language needed.

I should say that one of my responsibilities at Yale—the way that I was hired—
was as the associate director of a health services research project, a joint effort of
the School of Public Health and the Administrative Sciences Department. So I had
some administrative duties as well, and taught a seminar in health services research
using quantitative methods.

D: Were you involved with health systems back then?
G: Yes. I taught a seminar in it. Lee Schruben was one of my students. In fact, if I

remember correctly, when we recruited Lee as a student, we offered him a fellowship
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in the Health Services Program. Wayne Winston of Indiana University was also a
member of that program.

Several things occurred during those years. The OR simulation research commu-
nity became much more active. The Winter Simulation Conference was instrumental
in that. It created a focus. In particular, it established an accommodation between
industry and universities, which in many ways continues to this day, perhaps in
different proportions. It was well understood that both domains would be respected
and be part of the annual conference. The first several conferences were unusually
successful. Its sponsorship progressively got broader. For a number of years, the
then National Bureau of Standards was a cosponsor. The name of the fellow there
slips my mind. He was very instrumental in helping with it.

J: Paul Roth?
D: He’s listed on the program even to this day.
G: Yes, he arranged for the facilities of the Bureau to be made available for the

conference. You’ve all been involved with the conference so you know it needs some
kind of continuity from year to year. Well, that was one of the difficulties when it
first began, first through Julian Reitman’s efforts and then with the help of Arnie
Ockene of IBM. In the early 1970s, the conference was attracting more academics
from diverse fields such as civil engineering. Joe Sussman at MIT, whose research
was in transportation, did a lot of simulation in civil engineering.

There were also more people getting interested in the statistics of simulation. I
neglected to mention that during my RAND years Alan Pritsker was also instru-
mental in making me see the value in simulation statistical methodology as a field
of research. Alan was a consultant to RAND. I often worked in my RAND office
in the evenings and Alan was always there. We had many conversations and I could
see that his ideas were similar to Phil’s. It was not difficult to see that Alan, like
Phil, had a well-thought-out view of modeling, language, and statistics as applied
to discrete-event simulation. While their views may have differed in emphasis, their
conceptualizations made it considerably easier for me to see where my interests
could fit.

There were also people working on variate generation and random number gener-
ation. In the early 1970s, Ahrens and Dieter published several papers that described
variate generating algorithms with bounded computing cost, independent of distri-
butional parameter values. Those were intellectual ideas which I don’t think are
fully appreciated today, because they’re lost in the mix over time.

My first sponsored research proposal was to do simulation analysis graphically
on a monitor. [Laughter.] It was not funded. Although well regarded by reviewers,
NSF rejected it. Afterwards, one of the reviewers told me that he recommended
rejection because my proposal wasn’t feasible. [Laughter.] At that time, he was
probably right. Tektronix offered the most advanced graphical capability. One could
take a body of data and put it on a screen, but if you tried to add or subtract
something from those data, you had to rewrite the entire screen. No addressing
of individual pixels or anything like that. No animation. It was in primitive form.
I had not realized how slow the entire interactive process was until Tektronix gave
a demonstration at Yale. By the end of the decade, graphics had become a standard
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part of discrete-event simulation. Graphics devices were being improved and new
language constructs were making it easier. The introduction of PCs in the late 1970s
made the interaction more productive per hour of effort. So I might have gone in an
entirely different direction, had those developments occurred a decade earlier.

My interaction with Matt Sobel came about in an interesting way. During my first
Yale year, he had been away at CORE in Brussels. In the Fall of 1971, Bob Fetter
mentioned to the faculty that the department had received a request from the New
Haven Housing Authority for help in managing their inventories and maintenance.
Matt and I were the only faculty who expressed interest in the project. He and I
spent three years consulting for the Authority. The first day we arrived on site, the
director said to us “Where did you park your car?” We said that we parked in the
street, and he said “Go out and get it and bring it inside the fence, inside the barbed
wire.” [Laughter.] The Authority was in a tough section of town. It had wonderful
problems for anyone interested in OR. To put it concisely, they had the funds to buy
supplies, but needed guidance on how to set reorder levels.

For example, they had a ten-year supply of Moen cartridges. [Laughter.] Moen
cartridges were not in common use in those days. However, the Authority had
learned that when they used regular washer faucets, leaks were not reported punc-
tually and, as a result, it was paying for a lot of needlessly leaking water. By using
Moen cartridge faucets, they could eliminate the leakage. However, that policy led
to a substantial inventory of Moen faucets.

C: Did that involve simulation at all?
G: No. This experience broadened my understanding of what OR could do for

people. At about the same time, I was asked to consult for the RAND Institute and
the Ford Foundation in New York City. The RAND work never panned out, because
we were unable to identify a specific problem calling for my expertise. Al Madan-
sky, a statistician whom I had known at RAND, was responsible for my involvement
with the Ford Foundation. Al had become the chair of the Computer Science Depart-
ment at CUNY. He was also consulting for the Foundation. He felt that my interest
in simulation would be helpful on one of its studies of the performing arts. Every
several weeks, a group of consultants would meet at about 4 p.m. at the Foundation’s
headquarters in a beautiful building close to Second Avenue in New York City. The
4 p.m. time allowed those who were academics to travel, after class, into the city
from their respective universities. I recall that the consultants included faculty from
Yale, Princeton, CUNY, and possibly Columbia. I never saw how simulation could
be a major contributor. The principal focus was on the analysis of data. Eventually,
I helped edit one of the studies. Seeing how the Foundation operated was an eye-
opener. Although it did not lead to much fundamental research, it did provide good
conversation and many good dinners at the Foundation’s expense. Dick Shelton, the
Ford study leader, arranged these memorable occasions after our working meetings.
On one occasion, I recall that the arrival of the bill prompted the invention of two
additional attendees to justify its size. [Laughter.]

In conversations with Matt Sobel, whose interest was in queueing control, I began
to think about how queueing properties affected statistical behavior in discrete-event
simulation. I realized that the time-dependence within queueing sample paths was
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unconditional, but that there were conditions under which successive segments of
the time path were independent. For example, entry into the empty-and-idle state.
I also raised this issue with Madansky who pointed out to me that the empty-and-
idle state is a special case of the more-general concept of renewal processes. These
interactions motivated me to read about renewal processes and led to my first paper
on the topic of independent sample-path segments.

I had also received a grant from the Office of Naval Research (ONR). One of the
grant’s stipulations was that all those who were supported by ONR in a common
research area were to interact with each other. Interaction meant that you sent each
other technical reports. One of these grants was at Stanford, and the only person
on that grant whose name I recognized was Gerry Lieberman. I sent him a copy of
my paper on what’s come to be known as the regenerative method, and he promptly
sent me back a paper by Don Iglehart and Michael Crane on the same topic. The
topical match between them was a big surprise—two groups had come up with the
same idea at the same time. Although each paper had a different twist, there was no
question about the commonality of the idea. Both papers were published roughly at
the same time. In the Fall of 1973, Don Iglehart and I were invited to present our
papers at a TIMS meeting in San Diego at an OR-sponsored session.

By then—well, much earlier than that—I had decided that I wanted to leave
Yale. I had come into a department that was truly a “warehouse” for two disparate
disciplines. Early in the days of operations research, there had been this concept
of having it interact with the psychology community, particularly organizational
behavior. The concept of man-machine simulation was big—it was a major topic
in the Logistics Department when I arrived at RAND. The Administrative Sciences
Department at Yale had been established as a home for organizational behavior and
OR. But the two disciplines had fundamentally different views of what constituted
research. This led to a tense atmosphere that I did not enjoy. Although I suspected
that it could eventually be at the expense of junior faculty members, in retrospect, I
don’t know of any junior faculty whose progress at Yale actually suffered because
of the conflict.

In 1973, the Administrative Sciences Department was incorporated into Yale’s
newly established School of Organization and Management. That arrangement led
to other conflicts. I decided to look for a new position. After the San Diego meeting,
I gave talks at several universities. Maryland’s business school and UNC’s newly
established Curriculum in Operations Research and Systems Analysis expressed
interest.

C: But the Curriculum was still housed within the Statistics Department.
G: No. The previous year, Jim Gaskin, the Dean of the College of Arts and

Sciences, had established the Curriculum as a separate academic entity.
C: And they were located in the Phillips Annex?
G: Yes. Originally, Jerry Gould was the chairman, but by then he had departed

for the University of Chicago, and Jack Evans was the chairman. My interview was
at the height of the 1973–74 oil crisis and gasoline was hard to come by in Chapel
Hill. So I agreed to take a bus from the Raleigh-Durham Airport to the Holiday
Inn in Chapel Hill. That gave me the equivalent of a Cook’s tour of the Triangle,
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Durham, and Chapel Hill. Jack Evans met me at the motel and said “Before dinner,
we’ll take you for a drive around so you can see the town.” And I said “Oh, will we
have time?” I had no concept how small the town was!” [Laughter.]

C: What year was that?
G: 1974. Shortly thereafter, UNC offered me a position as a tenured full profes-

sor. Although Maryland was still mulling over what they wanted to do, I had already
decided that Chapel Hill was a better place for my family and me. We moved here
in July, 1974—I, my children, Becky and Matt, and my wife, Sue. I quickly learned
that circumstances were not as I had originally pictured them. The Curriculum was a
separate freestanding unit, and it did have two tenure-track positions. But it was still
not a department, and therefore, whenever we would go to college-level meetings,
there were people who would say “It’s a curriculum. What are you doing here?” or
“Operations Research? I thought that was part of Statistics!” The OR program did
not have much status on campus. Moreover, there were people who saw no reason
to continue the program. Although these attitudes made me uncomfortable for a
number of years, events in the late 1970s gave reason for cautious optimism.

Even though Dean Gaskin kept his commitments to the Curriculum, he wasn’t
providing the additional resources that the program needed to grow. A newly
appointed dean, Sam Williamson, a military historian, was considerably more of an
activist. Through his affiliation with the military, he knew what OR was. He recog-
nized the peculiar situation of the Curriculum and raised the question “What should
the future of this program be? Should it be eliminated or continued?” At roughly the
same time, Phil Manire was appointed as the dean of the Graduate School.

C: What year was that?
G: Probably 1978 or 1979. Dean Manire was a microbiologist who had been a

guiding force behind the development of the Microbiology Department at UNC.
I attribute the survival of the Curriculum to him more than to anyone else. He
appointed a committee to advise him on the future of the Curriculum. It consisted
of faculty from the Mathematics, Computer Science, and Statistics Departments
and the Business School. Jack Evans, who had left the OR program to become
the assistant to the chancellor, encouraged Manire to keep the program. Also, the
chairman of the Mathematics Department, Bill Smith, felt that this was a program
worth supporting. John Tolle now had a joint appointment in Mathematics and in
the Curriculum and Bill was familiar with John’s interests and work.

Manire recommended to Williamson that the Curriculum be continued.
Williamson did that and more, an action that led me to understand what a good
administrator does. Not only did he allow the program to continue, he provided
additional resources for it to reach its potential. In 1980, I was asked to be chair-
man. Before accepting I met with Williamson and asked for additional resources,
and these were also granted. The Curriculum had already gotten new space (the
Smith Building), new equipment, and additional positions. That was a very suc-
cessful period and the next dean of Arts and Sciences, Gillian Cell, continued that
support. Upon meeting her for the first time, I learned that she was a historian whose
area of specialization was Labrador. I kept saying to myself, how was a person who
specializes in Labrador going to know what operations research is? [Laughter.] Well,
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it turned out that she was also a conscientious historian. Prior to our meeting, she
had read the College’s file on our history.

I should also mention one other thing about Phil Manire which forever endears
him to me, besides his fair-mindedness. In discussion with him, I expressed my
frustration at the slow progress in recognition that the Curriculum was making on
campus. I asked him how that was done. He said “By advertising. You have to keep
on going around and introducing OR, showing what it can do for people on campus
and stressing its academic accomplishments. No money ever flowed to a department
on this or on any other campus where the chairman did not push the department.”
Manire exemplified that policy. When he first came here, Microbiology was also a
curriculum. He turned it into a substantially first-rate department. Most UNC AIDS
research is done there.

I took him seriously, and tried to take that stance whenever I was in a meeting
with other groups; not to look like the junior partner but to speak with confidence.
Jim, you probably found this in your own experience that when you talk like a
chairman, others treat you like a chairman. If you act like a supplicant, that’s how
you’re going to be treated. If you talk like you deserve to be there, you find faster
acceptance. [Laughter.]

D: Could I ask to step back for a second, because I might have missed something
here. When you got there, who was the Curriculum answering to? They were not
part of another department were they? So it was treated as kind of a minidepartment
then, right?

G: Right.
C: But some statisticians were also part of the OR Curriculum.
G: Well, on this campus the concept of a curriculum was as an interdisciplinary

group. Other departments were encouraged to contribute faculty time. In the early
1970s, the Business School contributed courses taught by Jack Evans, Roger Blau,
and Dave Rubin. At that time, its dean, Morris Lee, believed that OR was a worth-
while discipline.

Computer Science allowed its faculty to participate, but not to teach our courses.
Fred Brooks, its chairman, was supportive. Don Stanat, whose area was languages,
and Vic Wallace, whose interest was decomposable Markov chains for network
analysis, were part of the Curriculum and had research interests that overlapped
with OR. Several OR faculty including me sat on dissertation committees in that
department.

We also had Jon Tolle joint with the Mathematics Department, Walter Smith
from Statistics, and Dick Shachtman from Biostatistics. As I’ve said, the Curriculum
received its first two tenure-track positions in 1973. When several other departments
found out about this, they were puzzled because this wasn’t the conventional UNC
definition of a curriculum. In conversation, some told me that we should not have
received tenure-track positions. Never mind that they were talking to one of the
tenure-track faculty. [Laughter.] That issue eventually became less of a topic of
conversation.

To get back to the simulation side, issues that I and others had raised began
to attract more attention. Better random number generators were materializing as
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were better variate generation methods. More academics were expressing interest
in simulation statistical analysis. Jim was one. Lee Schruben was another. Lee’s
appointment to Cornell in about 1976 gave me considerable satisfaction. It meant
that Cornell took seriously the area of simulation statistical methodology. When
Don Iglehart, with a substantial reputation in applied probability, expressed interest,
that was additional verification that Murray Geisler, Phil Kiviat, and Alan Pritsker
had wisely advised me.

What I’m saying is that the analysis of discrete-event simulation has matured.
However, I did have a concern. Although the statistical problems were well under-
stood, I felt the area of output analysis was becoming one of diminishing returns.
I didn’t see that I had much more to contribute. In conversations with my UNC
colleague, Scott Provan, I revived my interest in networks. A decade earlier, Alan
Pritsker had aroused my interest in the network formulation to discrete-event sim-
ulation. If Alan could have had his way, discrete-event simulation would be taught
principally through a network formulation.

J: Oh yes, I think that’s true.
G: What impressed me about networks was that if you started out with this intrin-

sic structure, you could exploit it for variance-reducing purposes. I worked with
several creative students and we produced a series of papers on variance reduction
in networks, in particular, on antithetic variates. Christos worked on one of the more
interesting ones, the max flow–min cut distribution problem, which to this day is
still an extraordinarily tough one to analyze analytically.

C: I actually still find it the toughest one I ever worked on.
G: It is, it is. Many people had useful insights that didn’t carry over to great

generality. One had to cater too much to the particular network being analyzed.
Nevertheless, I saw that this area was worthwhile and the nature of the problems
motivated me to move more toward Monte Carlo sampling methodology. I began
reading the proceedings from old conferences on simulation and Monte Carlo.
These were held in the late 1940s and early 1950s, some at UCLA, at IBM in the
New York area, and I think, at the National Bureau of Standards, today called the
National Institute of Science and Technology (NIST). Attendees came from many
areas and organizations, including RAND, IBM, and the Bureau. Von Neumann’s
contributions were presented by George Forsythe, then of the Bureau. Ted Harris
gave a talk. To a great extent he was a theoretician. Have you ever heard of Harris
recurrence? That’s the same Harris. [Laughter.] When I met him some years later,
he was chairman of the Mathematics Department at RAND. It was clear that his was
an entirely abstract view of these problems. But in his earlier incarnation, he had a
much more applied view.

During the 1960s, unflattering remarks about simulation were common. Many
felt that only analysts with limited analytical skills resorted to simulation for prob-
lem solving. The remarks were usually made by individuals who had not confronted
problems as complex as those under study. That attitude continued well into the
1970s. However, I was reassured by the knowledge that people like Harris, von
Neumann, Arrow, and Markowitz had interests in the area and recognized the chal-
lenge. Another man who was involved with it was Herman Kahn. Although you



36 C. Alexopoulos et al.

may remember Kahn from his work on variance reduction, he achieved his greatest
notoriety from a book he wrote while at RAND, On Thermonuclear War. When I
interviewed at RAND, I wondered why people were picketing outside its entrance.
Kahn’s book spoke of surviving a thermonuclear war and that motivated the protest.

From reading these people’s remarks on simulation and Monte Carlo method-
ology, I realized that they didn’t think of simulation as something to be tried if all
other methods failed. They saw it as a methodology that could provide flexibility.
That convinced me that if you started doing this in any number of problem areas,
for example in networks, you ought to be able to formalize ideas, which would have
much more generality for a wide range of problems. That’s what encouraged me to
focus more on networks and Monte Carlo.

3 Life After Being Department Chair

This section focuses on George’s research during the 1990s, following his tenure as
chair of the UNC Department of Operations Research.

C: We are now moving to the 1990s, and the emphasis on computational issues.
G: As I read more about Monte Carlo, I decided that I wanted to write a book

to get it into an easily understandable form and to describe what was going on in
particular areas. Monte Carlo was a collection of techniques, but as a formalism,
it lacked coherence. My 1996 book was an attempt to overcome that limitation.
In retrospect, the book turned out to be a compendium of techniques rather than a
pedagogic device. Nevertheless, the compendium gave a comprehensive picture of
the area.

With the batch means method—which, as I said, was around from the beginning
of simulation statistical methodology—it occurred to me, as to many other peo-
ple, that it was much easier to understand than autoregression or spectrum analysis.
Interestingly, there is a statistical paper by Champernowne in the 1950s in a British
journal that describes a variant of the batch means method.

J: I’ve heard of this paper but I’ve forgotten much about it.
G: Some of the ideas there seem to be very much related to the time series ideas

that I had seen in Maurice Bartlett’s papers. I wrote a computer program for my sim-
ulation class to implement batch means that allowed a user to progressively monitor
convergence of the estimate of the variance of the sample mean as the sample path
increased in length. I published a paper on that approach in 1978 in Management
Science.

At that time, Lou Moore was a doctoral student of mine. We began talking about
speeding up the procedure. Lou actually wrote a program that did that. For reasons
that are not clear to me, we did not pursue this speedup method and I cannot recall
what happened to that computer program. It was a first-rate attempt to accelerate
computation.

In the early 1990s, my student Steve Yarberry got interested in this problem and
we talked about how to increase batch size while reducing computing time. We
came up with the square root rule as the crucial element for doing this. Our 1997
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journal article describes the technique in detail. Our LABATCH and LABATCH.2
software is based on this approach. Every so often, I hear from people with diverse
backgrounds who use LABATCH and LABATCH.2. They usually contact me about
technical features of the code. I don’t have a good picture of the extent to which it
is used, but I do know that it continues to be used.

During the summer of 1986, Russell Cheng arrived for a yearlong visit to UNC. I
told him that I contemplated writing a book on Monte Carlo and he was encouraging.
Work on the manuscript was slow and halting at first. By then, the OR program had
become a department and the demands of chairmanship made it difficult to write as
much as I wanted to.

At the end of my second term as chairman in 1990, I went on a yearlong sab-
batical. Because my wife, Sue, and I concluded that the time was not opportune
for taking our children out of the Chapel Hill schools for a year, I searched for
a local opportunity. I approached John Geweke [now at the University of Iowa]
who was the chairman of the Institute of Statistics and Decision Sciences at Duke,
and I asked him if he could provide a desk. John had come over to UNC several
times and we had talked about simulation. He was most cordial and kindly arranged
accommodations for me at the Institute. When I arrived, I learned that John had
accepted a professorship at Minnesota. [Laughter.]

I can’t say enough for the faculty at Duke. They were extremely warm and wel-
coming. Although they were not directly interested in Monte Carlo, they used it,
understood the ideas, and offered many suggestions. So I began to realize that it was
now becoming part of the statistics milieu. I had many talks with the Duke faculty,
especially Michael Lavine. I didn’t agree with everything they said, but it all had
relevance.

This exposure led me to cast what I was writing into a broader format in terms of
problems and techniques that would make my book more appealing to statisticians.
Although I didn’t want to move too far away from OR, I included examples like the
eye-hair contingency table problem in Diaconis and Sturmfels.

It took several more years for me to get to the publication stage. The reality
was—you may not believe it—but there were actually more manuscript pages on
several different subjects that I chose not to include in the published book. I was
fearful that potential publishers would be uncomfortable with a book of more than
the 700 pages that I submitted. Of all my books, it’s the one that’s sold best. It
continues to sell a substantial number of copies in Europe, and I am mystified as to
who’s buying them. By now there are books for statisticians that are more focused
on their interests.

C: We are moving to the later stages now.
G: By the early 1990s, interactive modeling had become an essential pedagogic

device for teaching discrete-event simulation. However, I wasn’t prepared to make
that the focus of a simulation course. I preferred to use different languages to demon-
strate their features to students, because I still thought at that point that it was very
important for them to understand the limitations of individual languages. Therefore,
I used a mixture of SIMSCRIPT and Arena, which by then was in a form that stu-
dents could easily use. If we had had an engineering audience on the UNC campus,
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I probably would have moved faster. Our students principally were mathematics
majors. In the late 1990s, I decided to convert simulation class notes I had recently
prepared into a book. My 2001 book, Discrete-Event Simulation, was the result. In
reality, the material in the book was dated, partially because I used SIMSCRIPT as
the prototype. Although it remained a good teaching device, SIMSCRIPT didn’t
have the many conveniences of other online languages. By then, students were
accustomed to more immediate real-time interactions with their programs.

C: Actually, the military still uses it.
G: That’s because of their association with CACI, the company that owns SIM-

SCRIPT. In order for the students to go out and be marketable, they have to know
something about a modeling language and how to use it. I picked Arena to provide a
more highly interactive experience for students. Had I continued teaching, I would
have switched to AutoMod. It’s hard to write a well-rounded book on simulation
because the language/modeling part has again become the central focus, and any-
thing of a statistical nature is definitely peripheral. In many cases, people don’t
bother with it at all. Early on, they didn’t bother with it, but for different reasons.
Now they don’t bother with statistical procedures although they are actually acces-
sible with merely a few keystrokes. For example, Arena and AutoMod both offer
these procedures.

During my retirement which began in 2001, I decided to write a lower-level
book on Monte Carlo. The book was published in 2005. I made it heavily example-
oriented. It seems to interest those in a wide range of disciplines. I continue to
get inquiries about issues it raises. This book, as well as my 2001 one, have one
particular advantage over the others I’ve written. I can maintain their errata online.
[Laughter.]

C: So do you believe that the 2005 book will be the most read because of the
wide area it’s covering?

G: I hope so. However, others also are putting out lower-level books. At the time I
wrote the book I looked for an example in genomics. I picked one on protein folding
and felt I had to make the example clear in terms of biology. I gave a very elaborate
description of the structure of proteins and how all this works in three dimensions.
Since then I have come to realize that most people don’t bother reading that. They
rely on a more concise approach to it, and I probably could have gotten by with a
much shorter account. I think I made the description a little heavy-ended.

C: Do you have a few comments for your research associates and students?
G: I was fortunate to have good students. None at UNC shortened my life.

[Laughter.] Andy Seila was my first. With him, I had the benefit of someone who
was very focused on getting through. He wrote a nice dissertation that had to do
with quantile estimation. It looked into an issue that had been raised by Iglehart and
his colleagues.

When I first came to UNC, the Curriculum essentially had a volunteer faculty. As
the only full-time professor in the program, I was the most visible faculty member.
By 1978, I simultaneously had four dissertation students, Andy Seila, now retired
from the University of Georgia, Veena Adlakha, now on the faculty of the University
of Baltimore, Bao-Sheng Huang who went to work for Bell Labs, and Lou Moore,
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now at the RAND Corporation. Since each had a different thesis topic, on any one
day I could easily start talking about the wrong problem with a student because I
was thinking about one of the other problems. [Laughter.] Although I found simul-
taneously advising four theses demanding, I look back fondly on the experience.

In the 1980s and 1990s, I again had a collection of good students, including Ken
Risko, now at Deloitte & Touche L.L.P., Tien-Yi Shaw, now at SAS, Christos, now
on the faculty at Georgia Tech, Steve Yarberry, now at Practice Plus/Arkansas Health
Group, and Cristina Arguelles Tasker, who is now at i2 Technologies in London.

4 The Future of Simulation and Operations Research

In this portion of the interview, George discusses potential future research direc-
tions for the field of simulation and offers an assessment on the status and future of
operations research in academia and industry.

C: Well, that brings us to probably the last two topics. The first concerns the
future of simulation. Where do we stand as a research community compared to other
communities, with regard to two streams: the modeling side and the theoretical side.
Any comments?

G: The modeling area of discrete-event simulation is essentially cast in concrete,
principally because of the substantial investment that’s been made in existing pro-
prietary software.

J: What about Petri nets or event graphs?
G: Although Petri nets have been around for some time, they have not become a

central concept. There may be room for modeling using network formats, but recall
that a well-established software exists for some network problems. Some of you may
remember the network program called SPICE, a creation of the 1980s. One would
have to go up against well-entrenched software to motivate people to consider new
concepts.

J: In fact, SPICE is still very heavily used by chemical engineers everywhere.
G: Right. Many of its users have no idea of its internal structure. [Laughter.]

The same is true of much of the proprietary discrete-event simulation packages. I’m
saying that it’s very hard to gain acceptance for new modeling ideas.

With regard to statistical methodology, the picture is mixed. For example, many
people thought that the regenerative approach was going to change how the statis-
tical analysis of discrete-event simulation output would be conducted. But anyone
who experimented with the method early on realized that was not to be, especially
in highly congested systems where the regeneration period got very long. Although
there were proposals to increase the frequency of regeneration, discrete-event simu-
lation often requires one to maintain the fidelity of the local rules at each point on a
sample path, a limitation to increasing regeneration frequency. However, other uses
of Monte Carlo do not impose that requirement. The idea is to just to come up with
an end result. There are many ways to do this. A paper by Brockwell and Kadane
describes how to induce more frequent regenerations. They also give an example of
its use. It’s an interesting approach and in certain respects is different from earlier
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attempts. It relies on adding an extra state to the system, and to make use of that
state in a particular way. Essentially you are dealing with an augmented chain.

J: An old trick.
G: I’ve written a set of notes on this method and other new methodologies but

have no idea what I’m ever going to do with them. A good idea is not enough to
have an impact on either discrete-event simulation or Monte Carlo, more generally.
You have to make a concept or idea implementable to get it adopted. This attitude
was justifiable in the past and even more so now. Today we have considerably more
capacity than in the past for expeditiously translating ideas into usable products and
testing them.

C: As a summary, do you believe that there is a good future for the statistical side
of the simulation community?

G: Only if simulation methodologists broaden the problem set on which they
work! For the last twenty years, we have been working to the point of diminishing
returns. You may not want to hear that but unfortunately that’s the truth. It’s harder
to get something new in these areas implemented today because the off-the-shelf
products that are often available do a reasonably adequate job. Certainly in ran-
dom number generation, we now have at least one random number generator that’s
equidistributed in 624 dimensions, a world apart from where we started years ago.
That’s been a big contribution.

J: What about the larger future of operations research itself, not just the field of
simulation? What’s your take on the future of OR as a discipline?

G: As a discipline, OR receives less visibility today than it did thirty years
ago. At universities, it’s been merged with other programs. I cannot explain why.
To a very great extent, business schools have abandoned OR or at least incorpo-
rated it into their multifaceted quantitative methods courses. Some have eliminated
their quantitative methods courses, replacing them with hands-on experience on a
computer.

In engineering circles, there are specific classes of problems that rely on OR
techniques. There’s a healthy respect across engineering disciplines for what OR can
do, provided it’s oriented towards their problems. As an overall area of methodology,
OR doesn’t seem to have the visibility that we’d all like it to have. That’s certainly
true of simulation methodology. Many of the developments of the last forty years in
discrete-event simulation hardly, if ever, get acknowledged, particularly in computer
science and statistics.

C: Well, this brings me to the last question that I had, which returns to the status
and visibility of the simulation community. When you talk to people in statistics
or stochastics, they tell you that simulation is an applications area. For instance,
statisticians will tell you that batch means or other output analysis methods are
simply L2 estimation. You talk to computer scientists, and they tell you that you are
doing statistics. We’re right in the middle, and I’m very concerned about what we
need to do to shake this perception.

G: We’re in the middle because different people have carved out sections of what
was once our discipline. They often have good ideas and make important contribu-
tions. But there’s still room for new OR-related ideas to play a role. The problem
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that I’m looking at now—counting using simulated annealing—is an example. The
computer science approach focuses on complexity rather than the intrinsic opportu-
nities within the problem for devising a near optimal sampling plan. More of a focus
on OR may well lead to more appealing solutions.

So Jim, to answer your question about the profession, I think OR, regrettably, has
not received the recognition that it deserves. Certainly it’s realized its potential in
some areas. The names of several OR techniques have become common “household
terms” so that we and others no longer assign authorship or provide citations to
many of them.

I think the professional societies have tried to do something about it, but I wonder
how successful it’s been. It’s been pointed out to me that the way to judge the success
of a profession is by how good the salaries are that its students receive when they
enter professional life. By that standard, I think all is fine. [Laughter.]

D: How do we compare to other engineers?
J: Industrial engineers and OR types compare very favorably to civil engineers,

for example, and electrical engineers. I don’t really know about chemical engineers.
G: Industrial engineers, for many years, were at the top.
J: Well, they are, certainly, in terms of starting salaries, at least at NC State. They

compare very favorably against almost all disciplines, including computer science,
interestingly enough.

D: Not at Georgia Tech.
G: Computer science has basically held its own to a great extent in terms of what

they can command, and resources they demand when they go to universities as a
prize for coming there.

D: Although, apparently, computer science degrees have gone down a little bit in
the last few years; I don’t know why.

J: Not just a little bit.
C: Well, we’re getting towards the end. Let me just ask a question. You’ve had

a distinguished career. It’s a fact. Going back, is there anything you would’ve done
different?

G: I’ve been very fortunate in as much as a lot of good things came my way. I
happened to have been in places where I could benefit in one way or another from
contact with many accomplished people. My experience has been more favorable
than others I know who didn’t have the same good luck.

In terms of what I would’ve done differently, there were times here at UNC
that I wish I had done things differently with regard to the OR program. Perhaps
I should have encouraged a different academic emphasis for the program. I focused
on becoming a highly methodological department at a point in time when there was
a major shift towards PCs and hands-on work, and we didn’t make that transition
as rapidly as we perhaps should have in many areas. We didn’t have any part of
the manufacturing activity of the 1980s. We didn’t have any part of the financial
modeling of the 1990s. If I were to do things again, I would try to reconfigure the
faculty into a form that would’ve allowed us to move more easily into those and
other applied areas. Not having done so eventually became a limitation for us in
terms of what our reputation was and our ability to attract people.
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J: I’ve got one last question that I’d like to ask. What sort of advice would you
give to people pursuing careers in operations research and simulation? Do you have
a set of principles that you’d offer someone to bear in mind in pursuing a career in
that area?

G: I am not capable of doing that. To my mind, my career was a series of good
opportunities. It was partly—I have no illusions about it—attributable to the times.
I was graduated from college right after Sputnik. Funding had grown considerably
for research. Suddenly, the concept of a son doing operations research bordered on
having a son that was a scientist, a doctor, or a lawyer. I’m sure your mothers would
appreciate that. [Laughter.] So that made my life easy. There was a demand for
what I wanted to do. Nevertheless, there were times that I had doubts. My first day
of academic life began with a memo from the president of Yale saying, because of
a budget deficit, he was freezing salaries. [Laughter.] It soon became apparent that
budgets were universally tight across all academic institutions, including places like
RAND. Therefore, I stuck with it, and the situation improved.

Today university life is not as I found it when I began. It has a much higher
level of accountability. I can’t speak for all disciplines, but from what I’ve seen in
the mathematical sciences at UNC and other places, there are many more demands
placed on faculty, and especially junior faculty. Regrettably, the junior faculty today
have little awareness of the lower level of accountability of the past, and so they
don’t know what they’re missing. You are all old enough to appreciate that dif-
ference. It’s lamentable, but the truth is that future university life will continue to
diverge from my experience.

I don’t think I would necessarily encourage a young person to go into academia.
Nor would I discourage them. I’ve had this debate with several people in the depart-
ment who have encouraged students who seem perfect for academic life to go into
it, although the student is not inclined to. I don’t think that faculty encouragement
serves students well. It overlooks the fact that students may have a considerably bet-
ter perspective on what’s right for them. They observe departmental and university
governance which are much different today than when we first came to academia. I
encourage students to keep their eyes open.

C: Let me end this conversation as the former student. George, it was an honor
for us to have you speak with us. You and I have had parts of this conversation
several times, but it was the first time I was able to get the whole nine yards. Due
to the digital recording, it will live for eternity. So it was wonderful. Thank you so
much for the hospitality.

G: Well, I’m glad you enjoyed it.
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Abstract We consider resampling techniques in multiple linear regression where
the objective is to identify a subset of the full set of explanatory variables that best
captures the behaviour of the dependent variable, but using as few explanatory vari-
ables as possible. The total number of possible subsets or models grows exponen-
tially with the number of explanatory variables, so a full examination of all possible
models rapidly becomes intractable. The standard approach to this problem is to use
a sequential selection procedure which avoids having to examine all subsets. When
the number of explanatory variables is large there is a possible concern that good
models might be missed. It is also important to examine whether the selected “best”
model is the only good choice or whether other models might be equally satisfactory.
We show how bootstrap resampling can handle both concerns in a simple way. In
particular resampling enables a tractably small subset of good possible models to be
selected as well as providing a method for comparing these models systematically.
We describe the methodology and provide two numerical examples.

1 Introduction

This paper discusses the use of bootstrap (BS) resampling for tackling the well-
known, but awkward, problem of model selection in multiple regression, when the
number of possible explanatory variables is large. Our claim is that BS resampling
is a simple and effective approach for this problem with distinct advantages over
standard sequential methods that are often advocated and employed.

The ideas discussed in this paper were originally suggested for the exploratory
study of a complex system using discrete event simulation. The basic methods were
discussed by Cheng (2008) in that context. In this paper we discuss the method-
ology in more detail and more generally. In particular we consider the rationale
of the methodology more fully and how to use it with the Mallows C p criterion
which is often suggested for handling this problem (see Krzanowski 1998 or Wu
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and Hamada 2000, for example). The theoretical underpinning of bootstrapping in
multiple regression is well-established; we will collect together the key results to
underpin the methodology that we propose.

We suppose the dependent variable of interest is a (scalar) continuous random
variable denoted by Y and that Y is linearly dependent on P explanatory variables
X j , j = 1, 2, . . . , P . We are concerned with the model selection problem where
we are interested in identifying simpler models in which some of the explanatory
variables are omitted because they are actually unimportant. To avoid confusion we
shall, from now on, use the term “model” to indicate that we are selecting a subset
of explanatory variables, or factors, from the full set available, and use the term
“full model” to indicate when all P explanatory variables are included. There are a
total of 2P distinct subsets of the explanatory variables, so that this is the number of
models that we can choose from.

(Many authors exclude the null model y = ε and so take the total number of
distinct models to be 2P − 1 rather than 2P. However, though the null model is very
unlikely to be the best fit in applications, there seems no real reason for excluding it,
and its exclusion can lead to misinterpretation of results if it happens to be the most
appropriate model. We therefore do not exclude this possibility even if it is remote,
and so take the total number of possible models as 2P throughout this paper.)

Though the model selection problem is well known, the usually accepted meth-
ods of handling it are not always satisfactory. Wu and Hamada (2000) have dis-
cussed this problem at length. They considered the very well-known backward,
forward and stepwise explanatory variable selection methods and also Bayesian
strategies. The main problems with these methods are as follows.

The backward, forward and stepwise selection methods are all sequential, in
which explanatory variables are considered one at a time for possible inclusion, or
elimination. It is therefore possible, with non-orthogonally designed experiments,
simply because of the order in which explanatory variables are considered, to end
up with a selected model that does not include all those explanatory variables that
are important.

Use of a Bayesian approach avoids this difficulty, but a prior distribution for
explanatory variable coefficient values has to be chosen and there are also tech-
nical implementation issues, such as deciding on the length of “burn-in” period
and deciding when sufficient sampling has been carried out to ensure that adequate
convergence to the posterior distribution has taken place.

In this paper we consider the use of BS resampling methods to generate a large
number of data sets each with the same statistical distributional properties, at least
asymptotically, as the original data set. We can therefore deploy whatever method
we wish for selecting the model that best fits the original data sample (in some sense,
to be defined), and then gauge the adequacy of the selected model by studying how
consistently it is selected as the best fit in the BS samples, and how well it fits these
samples.

We shall use the C p statistic introduced by Mallows (1973, 1995) as the selection
criterion for choosing between different models, as it is readily calculated in terms
of ANOVA sums of squares and has a direct interpretation in terms of the prediction
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error, making it easy to understand and use. Several other criteria are asymptotically
equivalent (see Nishii 1984).

We also consider in this paper the problem of checking whether the selected
model is a sufficiently good fit. We are especially interested in the situation where
there are a large number of factors. There is the strong possibility that there will
be a number of models that are a satisfactory fit to the data. We need therefore
to have some means for gauging the adequacy of competing fitted models. Of the
existing methods that we have already mentioned, the Bayesian approach seems
most satisfactory in that a posterior distribution is obtained for the possible models,
so that it will be clear whether there is one single best model choice or whether
several competing models are equally or nearly as good. The Bayesian approach
is not entirely satisfactory in that it does not provide immediate information on
whether the models with the highest posterior probabilities are adequate or not.

In this paper we propose an alternative approach, based on bootstrapping, to
gauge the adequacy of selected models, as bootstrapping provides a natural way of
demonstrating when there is little to choose amongst several, possibly many, mod-
els. It is of interest to note that such methods are now beginning to be recognized as
very appropriate for model selection in simulation work. A good example is given
by Fishman (2006, Section 2.8).

In Section 2 we describe the linear statistical model that we will use and discuss
selection criteria for choosing between models. In Section 3 we discuss the Mallows
C p statistic and model selection. In Section 4 we discuss two ways of generating BS
samples. We also give two methods using BS resampling for identifying a small
but targeted number of promising models out of the full set of 2P possible models
for fitting to the original data. We also show how bootstrapping can also be used to
assess the quality of models that seem to be a good fit to the original sample. Two
numerical examples are given in Section 5, and a summary is provided in Section 6.

2 The Linear Model

We consider the (full) linear model

⎡
⎢⎢⎢⎣

Y1

Y2
...

Yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 X12 X13 . . . X1P

1 X22 X23 . . . X2P
...

...
...

. . .
...

1 Xn2 Xn3 . . . Xn P

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b1

b2
...

bP

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

ε1

ε2
...
εn

⎤
⎥⎥⎥⎦ , (1)

where Yi , i =1, 2, . . . , n are the observed output values obtained from n simulation
runs; Xi j are the explanatory variable values in each of the n runs; b j , j =1, 2, . . . , P
are the unknown coefficients corresponding to each of the P explanatory variables;
and εi , i = 1, 2, . . . , n are random errors. We have taken Xi1 = 1, i = 1, 2, . . . , n
so that b1 corresponds to a general mean. We thus treat the mean as a coefficient, so
that, as far as the model selection and fitting process is concerned, we do not treat it
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differently from the other coefficients. In what follows, when we refer to a “factor”
it is to be understood that this includes the general mean.

We shall assume that the εi , i = 1, 2, . . . , n are identically distributed with mean
zero and variance

Var(ε) = σ 2 . (2)

Such random errors are often assumed to be normally distributed, but we do not
assume that this is necessarily so in our formulation.

We shall, where convenient, write (1) in the alternative matrix form

Y = Xb+ ε . (3)

Equation (1) is the full model in which all explanatory variables are included. We
shall define a model as

m = { j1, j2, . . . , jp} (4)

containing just the factor indices

j1 < j2 < · · · < jp, p ≤ P ,

if (and only if)

b j1 �= 0, b j2 �= 0, . . . , b jp �= 0, and all other b j = 0 .

We shall write the observations corresponding to this model as

⎡
⎢⎢⎢⎣

Y1

Y2
...

Yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

X1 j1 X1 j2 . . . X1 jP

X2 j1 X2 j2 . . . X2 jP

...
...

. . .
...

Xnj1 Xnj2 . . . XnjP

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b j1
b j2
...

b jP

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

ε1

ε2
...
εn

⎤
⎥⎥⎥⎦ (5)

or in the matrix form

Y = X(m)b(m)+ ε. (6)

Where necessary we shall also write

p(m) = p (7)

for the number of nonzero coefficients in the model m. Also we will denote the full
model by M , so that p(M) = P .

When we fit the model m we shall use the least squares estimates (see Searle 1971,
for example)



Computer Intensive Statistical Model Building 47

b̂(m) = [XT(m)X(m)
]−1

XT(m)Y (8)

for the unknown coefficient values, and

σ̂ 2(m) = [n − p(m)]−1
n∑

i=1

(
Yi − Ŷi

)2

= [n − p(m)]−1
[
Y− X(m)b̂(m)

]T[
Y− X(m)b̂(m)

]
(9)

for the unbiased estimate of the variance of the εi .

3 Methods for Selecting the Best Model

3.1 “Min C p” and “Unbiased Min p” Selection Methods

In this section we consider various issues involved in selecting which model we
think is the best. The first is the statistic to be used for measuring how well a
given model fits the sample. One of the most popular is the C p statistic proposed
by Mallows (1973) which is an estimate of the expected prediction error taking into
account the variance and bias of the fitted model. It is defined as

C p(m) = [n − p(m)]σ̂ 2(m)/σ̂ 2(M)+ 2p(m)− n . (10)

An alternative statistic is the Akaike Information Criterion (Akaike 1970), which
for the linear model reduces to AIC(m) = n log[σ̂ 2(m)] + 2p(m), up to a constant
depending on n but not on m. Asymptotically C p and AIC have the same distribution
(see Nishii 1984). However C p is perhaps more satisfactory for our purpose because
of its ease of interpretation. Mallows (1973) shows that if the model m (with p
factors) is satisfactory in the sense that it has no bias, then the expected value of C p

is close to p, that is:

C p ≈ p . (11)

However, if not all important factors are included, the expected value of C p will be
larger than p. A simple selection method is therefore the following.

“Min C p” Model Selection Method

(i) Consider each of the 2P possible models of (1) and for each model m calculate
C p(m).

(ii) Select as the best model that m for which C p(m) is minimum, with the expec-
tation that this model will be satisfactory if C p(m) ≤ p.

This provides a simple selection method if we are able to examine all possible
models.
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As mentioned previously, an exhaustive search of all possible models can be
avoided by using a sequential procedure, several of which are cited by Mallows
(1995). Mallows points out that if the “min C p” method is used in a sequential
procedure, and if m+ is a model containing one factor additional to those already in
a model m, then the extra factor would be worth including if

C p+1(m+)− C p(m) = 2− (S1/σ̂
2(M)) < 0 ,

where S1 is the 1-df sum of squares due to the additional factor. This criterion for
inclusion is therefore equivalent to carrying out a t-test, with the factor included if

t2 = S1/σ̂
2(M) > 2 . (12)

In the non-orthogonal case the final selected model is dependent on the order
in which factors are considered, but for an orthogonal design the sum of squares
S1 corresponding to each factor does not depend on the model fitted. Thus there is
no need for a sequential procedure in this latter case. The minimum C p is easily
obtained by fitting the full model and then applying the test (12) in “blanket” fash-
ion, i.e. simultaneously, to every factor sum of squares. The “min C p” model then
includes just those factors that satisfy (12).

The attraction of the orthogonal case is that the inclusion or exclusion of each
factor is decided just from fitting the full model. We shall consider use of the
same procedure in the non-orthogonal case, together with an adjustment to deal
with the problem of including too many unimportant factors. We still fit the full
model, and for each factor j calculate the so called t-value of its fitted coeffi-
cient b̂ j :

t j = b̂ j/s j , (13)

where s j =
√

d j σ̂ 2(M) is the estimated standard deviation of b̂ j , with d j the j th
entry in the main diagonal of the dispersion matrix, i.e.

d j =
[(

XTX
)−1]

j j . (14)

Our selected model is the one that includes only those factors j for which

|t j | > a , (15)

where a is a chosen critical level. If the true value of b j is b j = 0, then t j has
Student’s t-distribution with n − P degrees of freedom. If we therefore denote the
complementary distribution function for the absolute value |t j | by T̄n−P (·), then the
probability of success of the test (15) under the assumption that b j = 0, is

πa = Pr{|t j | > a} = T̄n−P (a) .
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A common alternative way of carrying out this test is to report the so-called
p-value of the estimate b̂ j , namely T̄n−P (|t j |), so that the factor j is retained if

T̄n−P (|t j |) < πa . (16)

It will be seen that (12) is the special case of (15) or (16) where a = √
2, with a

corresponding critical p-value in (16), when n − P is large, of πa = 0.1573. This
highlights a problem with using the “min C p” method for selecting a model when
the initial number of factors under consideration is large but where the (unknown)
true values of many coefficients are at or near zero, as the selection test (16) would
then include nearly 16% of such negligible coefficients in the model.

The effect of varying a can be seen more fully by considering the asymptotic
probability that a factor with coefficient of size b j = bs j is selected, when we allow
b to vary also. For simplicity we assume that n− P is large as then s j can be treated
essentially as being a known constant, so that b̂ j ∼ N

(
bs j , s2

j

)
. The probability we

would include the factor is then

Pr{Factor j is included in model} = 1− Pr{−as j < b̂ < as j }
= 1− Pr{−a − b < (b̂ − bs j )/s j < a − b}
= 1−Φ(a − b)+Φ(−a − b) , (17)

where Φ(·) is the standard normal distribution function. Figure 1 shows how this
probability varies as a function of b for different selected a. It will be seen that
somewhat larger values than a = √

2 in (12), such as a = √
6 or a = 3 might be

more appropriate in exploratory studies where we are only interested in identifying
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significantly large b and would prefer the probability of retaining a zero coefficient
to be much smaller than 16%.

The problem of unnecessarily including factors with zero coefficients is con-
trolled by choice of a suitably large a. We can underline this choice by using a
modified form of the “min C p” model selection method. From (11) we know it is
undesirable to select a model for which C p > p. This suggests the following model
selection procedure:

“Unbiased Min p” Model Selection Method

(i) Find the smallest p for which there are models m satisfying C p(m) ≤ p and let

p0 = min{p : C p(m) ≤ p} . (18)

(ii) Amongst all such models m, with p(m) = p0, find the one for which C p(m) is
minimum.

A simple way, at least in principle, of identifying this model is to plot C p ver-
sus p for all possible models and look at the lower envelope of this scatterplot
of points. For the orthogonal case where there are a large number of factors with
coefficient values uniformly distributed in the neighbourhood of zero with density
λ, Mallows (1995) has shown that the scatterplot has a lower boundary that is the
(convex) cubic polynomial in p

C p − P ≈ (P − p)3

12λ2
− 2(P − p) , (19)

and that this boundary intersects the line C p = p at P− p = 2
√

3λ. Figure 2 depicts
the scatterplot for the first example involving epoxide bonding that we will be dis-
cussing in Section 5, and this boundary and its intersection with the line C p = p are
clearly distinguishable.

Our selection method (18) will clearly select a model corresponding to a point
near this intersection. Specifically (18) requires finding the smallest p, p0, for which
there are points of the scatterplot below the line C p = p and then finding amongst
those models with p = p0, the one with minimum C p.

In the orthogonal case, models at, or near, this intersection point will tend to
include just those factors for which (15) is satisfied with a = √

3, which is equiv-
alent to using (16) to include just those factors whose estimated coefficients have
p-value less than πa = 0.083.

The condition (11) that C p ≈ p, obtains when the model contains no bias so that
the model is completely appropriate whilst having the smallest p possible. For this
reason we call (18) the “unbiased min p” method.

We delay discussion of how precisely to implement this method of model selec-
tion until we have discussed bootstrapping, as our proposed implementation will
involve bootstrapping intimately.
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3.2 Dimensionality Problem

As previously mentioned a critical issue that arises in model selection is the
dimensionality problem. Because the total number of possible models, 2P , grows
exponentially with P , inspection of all models is tractable only when P is small.
Thus even with just 20 explanatory variables there are already 1,048,576 models.
Our approach is to identify a set of promising models using bootstrap resampling.
The number of models in this set is easily controlled and so can be made much
smaller than 2P . But we shall show that it will almost certainly contain many
good candidate models. It is thus satisfactory to select a “best” model from this
subset.

We discuss bootstrapping in the next section.

4 Bootstrap Analysis

We shall use bootstrapping for two distinct purposes. Firstly, as already mentioned
in the previous section, it can be used for identifying a set of promising models.
However we shall also use bootstrapping to deal with the following second problem.

Once a model has been selected as being the best fit to a data set, we have the
problem of determining what might be termed the quality of the selected model. For
example, if we have used the “min C p” method to select the model, there may be
several models with values of C p(m) close to that of the best, so that we may not
be sure which model really is the best. This question would be answered if we had
many (independent but identically distributed) data samples and not just the one
original sample, as we could determine the best model for each sample and see if
the same model is best for all the samples. BS resampling enables such additional
data samples to be generated.

We first outline how BS samples are generated in the next subsection, before
going on to describe our two distinct uses of bootstrapping.

4.1 Bootstrap Samples

We describe first two ways of generating BS samples that asymptotically have the
same form as (1). The standard way is described, for example, by Davison and
Hinkley (1997). We take the modified residuals

ri = (Yi − Ŷi )/(1− hii )
1/2, i = 1, 2, . . . , n (20)

obtained from the fitting the full model M to the original data, where Ŷ = Xb̂ and
hii is the i th main diagonal entry in the “hat” matrix

H = X
(
XTX

)−1
XT .
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We then centre these so that their average is zero:

ei = ri − r̄ , i = 1, 2, . . . , n. (21)

A BS sample is then obtained by forming

Y ∗
i = Ŷi + e∗i , i = 1, 2, . . . , n , (22)

where the e∗i , i = 1, 2, . . . , n are a random sample obtained by sampling with
replacement from the ei , i = 1, 2, . . . , n.

A second way of resampling, parametric bootstrapping, is possible, if it can be
assumed that the random errors εi , i = 1, 2, . . . , n in (1) are normally distributed
and independent. The BS sample still takes the same form as (22) only now the e∗i ,
i = 1, 2, . . . , n are a random sample from the fitted normal distribution, i.e.

e∗i ∼ N
(
0, σ̂ 2

)
, i = 1, 2, . . . , n . (23)

In either case we write b̂∗ and σ̂ ∗2 for the estimates (8) and (9) obtained from
fitting the model (1) to the BS observations (22).

The justification for bootstrapping is provided by Freedman (1981, Theorem 2.2).
Assume that (1) and (2) hold and that X(n) is not random with

1

n
XT(n)X(n) → V which is positive definite (24)

as n →∞. Then

√
n
{
b̂∗(n)− b̂(n)

}
converges to N

(
0, σ 2V−1

)
(25)

and

σ̂ ∗(n) converges to a point mass at σ . (26)

The above result assumes that P is fixed as n → ∞. We shall tacitly assume this
in what follows. However a more refined treatment would allow P to become large
as n →∞. Shibata (1981) has discussed the selection of factors for this regression
problem. We shall not discuss this case explicitly here.

4.2 Bootstrap Generation of a Set of Promising Models

The “unbiased min p” method of selecting a best model does not require consid-
eration of all 2P models but only those near p0, as defined in (18). Our first use
of bootstrapping is therefore to generate a set of promising models. The number
of models in this set does not need to be anywhere near 2P , but it does need to
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be large enough to enable the lower boundary (19) to be clearly identified, at least
near its intersection with C p = p. Ideally it needs to contain all the models with
scatterplot points near this intersection point. With these considerations in mind,
our first proposed methods is:

“One Model per Sample” Generation of Promising Models by Bootstrapping

Step (1) Fit the full model to the original data and use this fitted full model to gen-
erate B BS samples each of the form (22).

Step (2) Set a critical t-value, a, (in view of our discussion in Section 3.1, we used
a = √

3) and construct one promising model for each BS sample as follows.

(i) Fit the full model, M , to the sample and calculate the t-value, t j , as
defined in (13), of each of the fitted coefficients, b̂ j , j = 1, 2, . . . , P .

(ii) Include in the promising model just those factors with t j satisfying

|t j | ≥ a ;

see (15) above. Not all the promising models obtained in the above pro-
cess will be distinct (in the sense of each model containing a subset of
factors that is different from those of all other selected models). Denote
the set of distinct models by S.

The above method produces at most B promising models, but can be far fewer,
if the same model is repeatedly obtained from different BS Samples. If it were felt
that the number of models needs to be increased, especially as we would want to
include most if not all models satisfying p = p0 and C p ≈ p, then the following
variant of the “One model per sample” adds models in a straightforward way.

“Many Models per Sample” Generation of Promising Models
by Bootstrapping

Step (1) Fit the full model to the original data and use this fitted full model to gen-
erate B BS samples, each of the form (22).

Step (2) For each BS sample:

(i) Fit the full model, M , to the sample and determine, as defined in (13),
the t-value, t j , of each of the fitted coefficients, b̂ j , j = 1, 2, . . . , P .

(ii) Order the coefficients by their |t j | values:

|t j1 | ≥ |t j2 | ≥ · · · ≥ |t jP |, (27)

so that b̂ j1 is the most significant.
(iii) Set a critical t-value, a (we used a = √

3 as before), and include all the
following models in the promising set S:



54 R. Cheng

m1 = { j1}
m2 = { j1, j2}

...
mk = { j1, j2, . . . , jk} ,

(28)

where the last factor jk satisfies

|t jk | ≥ a > |t jk+1 |. (29)

Thus the model mi is the one where the i most significant factors have been retained,
with a cutoff that only factors with t-level greater than a are allowed in a model.
So the last model, mk in (28) is the one that includes just those coefficients with
|t |-value a or greater, this being the sole model selected in Step (2) of the “One
model per sample” method.

4.3 Bootstrap Quality Assessment of Selected Best Model

Once a set of promising models has been obtained, we can use the “unbiased min
p” method to select the “best” model. That is we fit each promising model to the
original data set, calculating C p for each model; then we identify p0 as in (18), and
select as the best model the one with the smallest C p subject to p ≤ p0 (checking
that it satisfies the condition C p ≤ p).

We can now use bootstrapping to study the quality of the selected model. This is
most easily done by adding the following steps to either of the bootstrap methods
proposed in the previous section for generating a set of promising models.

Bootstrap Assessment of Selected Best Model:

Step (3) For each of the B BS samples, fit the set S of promising models, subject
to the restriction that only models where p ≤ p0 are considered (we shall
denote this restricted set of promising models by S0) and calculate the C p

value for each model, selecting as the best model for this sample, that which
minimizes C p.

Step (4) Display the models of S0, ranked in order of the frequency with which they
are selected as being the best model in the B BS samples, displaying these
frequencies as well.

Step (5) Display the empirical distribution functions of the C p values of a selected
number of those models in S0 most frequently selected as being the best.

Let α(m) be the probability that model m will be selected as the best model in the
sense of minimizing C p amongst all models with C p ≤ p0. Step (3) estimates these
probabilities by fitting all the models in the restricted set S0 of promising models to
each of the BS samples and then selecting the best model (for the given BS sample)
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from this set. Note that, out of the full set of 2p models, those that are not a good fit
will have very little probability of being included in the set S, because of the way
S is constructed. Hence they would not be considered for possible inclusion in S0.
Nevertheless every model has a positive probability of being included in S. Thus
asymptotically, as B →∞, the restricted set S0 of promising models considered in
Step (3) above must tend to the full set of all models with p ≤ p0. This holds for
either method of generating the set of promising models described in Section 4.2.
Thus, as B → ∞, Step (3) will converge to the exact situation where every model
satisfying p ≤ p0 is considered for possible selection as the best. Hence, for each
model m, α(m) can reasonably be estimated from the frequency with which m is
selected as being the best model in Step (3).

The version of Step (3) given above concentrates on models with p ≤ p0, where
p0 is calculated from the original sample, in order to check how well this value p0

performs. Different variants of Step (3) are possible. An alternative would be not
to impose the condition p ≤ p0 at all, but instead simply to apply the “unbiased
min p” selection procedure to each BS sample separately, using the full set S of
promising models with each BS sample.

In Step (4) we simply display those models that have been most frequently
selected as being the best fit.

The point of Step (5) is to assess the behaviour of the C p values of those models
that have been most frequently selected as being the best fit. For such a model to be
satisfactory one would expect the distribution of its C p value, over the BS samples,
to be concentrated mainly in the region where C p ≤ p.

5 Numerical Examples

We give two examples. Both involve readily accessible real data samples. The first is
a data set where the design matrix is orthogonal. As already remarked immediately
after (12), the obvious strategy in this case of applying a test such as (12) simulta-
neously to each estimated coefficient gives an unambiguous selection strategy and
cannot really be bettered. The analysis is thus straightforward in this case. How-
ever we include the example simply to demonstrate the way the resulting bootstrap
analysis works. The second was discussed by Cheng (2008). Here we discuss the
selection method more fully.

5.1 Epoxide Bond Example

The first example is data given by Williams (1968) and reproduced in Wu and
Hamada (2000, Table 8.6). This measured the adhesion of an epoxide bonding sys-
tem in an orthogonally designed experiment with, including a general mean, 25
factors, and 28 observations.

Our analysis is in two stages as set out in Sections 4.2 and 4.3.
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Fig. 2 C p versus p plot of 320 promising models found for the Epoxide Bond data using the “One
model per sample” BS method. The C p values are those obtained when the promising models are
fitted to the original sample

The first stage generates a set of promising models. We used the “One model per
sample” BS method of Section 4.2 with B =500, πa = 0.083, and with no limit
placed on the maximum number of factors that can be included in a fitted model.

Step (1) of the analysis produced an initial subset of 320 promising models. The
C p values of these models when they were fitted to the original data are plotted
against p in Fig. 2. Applying (18) gives p0 = 6.

In the second stage we could have just used the previously generated promis-
ing models, but removing those with p > p0. Instead we increased the number
of promising models by using the “Many models per sample” BS method with
B = 500, πa = 0.083 but with the maximum number of factors permitted in a
model limited to p0 = 6. This yielded a set, S0, of 488 promising models. Then,
as described in Section 4.3, the models of S0 were fitted to each BS sample, and
the model with the minimum C p was selected as being the best model for that BS
sample. This yielded 235 different best models. The plot of the C p values obtained
by fitting each of these models to the original data set is given in Fig. 3.
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Fig. 3 C p versus p for the 235 “best” models found by the Bootstrap Quality Assessment Method
described in Section 4.3. The C p values are those when the models are fitted to the original data
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The frequency with which each of the models of S0 was selected as being the best
varies with model. The 25 models selected most frequently are displayed in Table 1.
The model selected most frequently was

X0, X4, X14, X15, X16, X19 ,

where X0 is the mean. This model was selected as being the best model (i.e., with
the smallest C p) in 14 of the BS samples.

The model with the lowest C p value in Fig. 3 was

X0, X4, X15, X16, X19, X21,

which was the 4th best in terms of the number of times it was selected as best in the
BS samples. There is little to choose between the top few models. Taken together it
is fairly clear that factors X0, X15, X19 are the most important followed by X4, X16,
and X21.

5.2 Bank Data Example

The second example is taken from Makridakis et al. (1998, Table 6-8). The data
is monthly. The variable of interest, Y , is the first difference, D(EOM), between
the successive end of month (EOM) balances of a mutual savings bank. There are
three primary X -variables: X1 is a composite triple bond rate (AAA), X2 is a com-
posite (3-4) year US Government bond rate, X3 is D(3-4), the monthly change in
X2. There were in addition 11 monthly seasonal explanatory variables (D1–D11),
and three further variables, time t and its square and cube t2, t3, making 17 initial
explanatory variables. We do not reproduce the data here as the three key vari-
ables, (EOM), (AAA) and (3-4), for 60 months, are downloadable from the Web
site www-personal.buseco.monash.edu.au/˜hyndman/TSDL/.

In our analysis we followed Makridakis et al. (1998, Table 6-8) and express Y
in thousands of dollars and analysed only the first 53 months of data. We have also
added a general mean X0 as an additional factor so that we work with 18 explanatory
factors. There are thus 218 = 262,144 distinct models to select from; a somewhat
large number of models to comfortably work through.

Using a best subset analysis with an adjusted coefficient of determination, R̄2,
for selection criterion Makridakis et al. found the best model overall was

X0 X1 X2 X3 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 t3 (30)

and, using a stepwise regression, that the best model was

X0 X1 X2 X3 D2 D4 D6 D7 D8 D9 D10 D11 t3. (31)

www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
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However as the list in their Table 6-10 shows, there are many competing models
with similar values for R̄2.

We have carried out the same analysis as in the epoxide bond example. We used
the “One model per sample” method to generate a set of promising models, with
B = 500, a critical p-value of πa = 0.083, and with no limit to the number of
factors that could be included in the model fitted to each BS sample. This led to
the generation of a set of just 189 promising models at the end of Step (1). The C p

versus p plot of these models fitted to the original data is shown Fig. 4. From this
we took the “unbiased min p” as p0 = 13.

As in the epoxide bond example, to increase the number of promising models
with p ≤ p0 that we examine, we used the “Many models per sample” method to
generate a fresh set of promising models only with p restricted to being no greater
than p0 = 13, but still with πa = 0.083 and B = 500. This gave a set 598 promising
models. We then used the “Bootstrap Assessment of Selected Best Model” method
of Section 4.3 to fit all the promising models to each BS sample, selecting the “min
C p” model for each sample, as the “best” model for that sample. This yielded just
74 “best” models. The C p versus p plot of these models when fitted to the original
data is shown in Fig. 5. The top 25 models are listed in Table 2 with their original
C p values as well as the number of times they were selected as the best model in the
BS samples.

The most frequently selected model was

X1 X2 X3 D2 D4 D6 D7 D8 D9 D10 D11 t t2 .

This was selected as the best model in 75 of the 500 BS samples. This was also
the model with the smallest C p amongst all 74 “best” models when fitted to the
original data.

The stepwise regression model
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Fig. 4 C p versus p plot of 320 promising models found for the Bank data using the “One model
per sample” BS method. The C p values are those obtained when the promising models are fitted to
the original sample
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Fig. 5 C p versus p for the 74 “best” models found by the Bootstrap Quality Assessment Method
described in Section 4.3. in the Bank Data Example. The C p values are those when the models are
fitted to the original data

X0 X1 X2 X3 D2 D4 D6 D7 D8 D9 D10 D11 t3

was the third most frequently selected, being selected 35 times.
The results suggest that it is not very important whether the mean is fitted or

not. In fact, when the full model is fitted to the original sample, the p-value for the
mean is 0.66, showing that the general mean is not at all close to being statistically
significantly different from zero for the original data.

For all the 74 “best” models that were selected, the three main explanatory vari-
ables X1 (AAA), X2 (3-4), X3 D(3-4) were clearly important, as were the sea-
sonal variables D2, D4, D6, D7, D8 and of the others D9, D10 and D11 seemed
marginally less important. The remaining three D1, D3, D5 did not seem very
important.

It seemed worth including a time variable, but it is unclear if any one of them is
to be preferred given the rather random way that different time variables appear in
the different models; this is similar to variations listed in Table 6-10 of Makridakis
et al. (1998).

Though the details are a little different, in broad terms the BS results are very
similar to the results reported by Makridakis et al.

Finally it is interesting to see how the C p values of the top-performing models in
Table 2 varied across all 500 BS samples to which they were fitted. Figure 6 shows
the empirical distribution function of the sample of 500 C p values for the top 5
models. The result shows the inherent variability of the statistic for data of this type.

6 Conclusions

We have discussed how bootstrapping can be used to analyse the selection and fitting
of linear models in multiple regression. We have shown how bootstrapping can be
used for two purposes.
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Fig. 6 Empirical Distribution Functions of the C p value of the top 5 “best” models when fitted to
500 BS samples of the Bank Data

First it can be used to identify promising models out of the set of 2P possible
models. The “One model per sample” method yields just one model per BS sample,
so that the largest number of possible models is B, the number of BS samples gen-
erated, though because of duplication, the number of distinct models (i.e., whose
subsets of factors are different) is likely to be rather smaller. The “Many models
per sample” method produces a maximum of BP models, though again duplication
means the number of distinct models is usually significantly smaller.

The way that the set of promising models is constructed means that models with
a small C p value are likely to be identified, as is borne out in the two numerical
examples. Thus bootstrapping seems attractive in enabling promising models to be
tractably identified out of the full set of all possible models when the number of
factors is large.

The bootstrapping also allows an assessment to be made of how stable the models
estimated as being the best, or a good fit to the original data, actually are, in the sense
of seeing how often that model is selected as being the best when a large number of
promising models are fitted to a number of BS samples with the same form as the
original data. Such information is not available using a standard best subset analysis
or a stepwise regression analysis.

An Excel workbook implementing both bootstrap methods is available at
http://www.personal.soton.ac.uk/rchc/BestLinModel.htm.
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Patchwork Distributions

Soumyadip Ghosh and Shane G. Henderson

Abstract Patchwork distributions are a class of distributions for use in simulation
that can be used to model finite-dimensional random vectors with given marginal
distributions and dependence properties. They are an extension of the previously
developed chessboard distributions. We show how patchwork distributions can be
selected to match several user-specified properties of the joint distribution. In con-
structing a patchwork distribution, one must solve a linear program that is poten-
tially large. We develop results that shed light on the size of the linear program that
one must solve. These results suggest that patchwork distributions should only be
used to model random vectors with low dimension, say less than or equal to 5.

1 Introduction

Is there a part of stochastic simulation that George Fishman has not contributed to?
If so, it is well hidden! His breadth of work, when multiplied by the length of time
that he has been a major force, give rise to a very large area of contributions to the
field. (Our apologies to the dimensional analysts that are trying to make sense of the
last sentence.) So it is indeed an honour and a privilege to contribute to this volume
in George Fishman’s honour. Our contribution is in the area of input modeling.
The one-dimensional case is well understood—see, for example, Fishman (2001,
Chapter 10). But when we turn to higher dimensions, the situation is far less satis-
factory.

The key issue is statistical dependence and its impact on performance mea-
sures. Indeed, much effort has been devoted to this problem in recent times. Recent
applications include generating test problems for numerical algorithms (Hill and
Reilly 2000), cost analysis (Lurie and Goldberg 1998), crop insurance pricing
(Nelson 2004), and arrival process modeling (Avramidis et al. 2004). There are
many classes of distributions that can be used to model (finite-dimensional) random
vectors with given properties. For surveys, see Devroye (1986), Johnson (1987), and
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Biller and Ghosh (2004, 2006), and for a discussion of the modeling process, see
Henderson (2005). In this paper we develop a new class of distributions of random
vectors that we call patchwork distributions.

Relative to other methods, patchwork distributions have the desirable property
that they afford considerable flexibility to the modeler in their ability to match prop-
erties of the distribution of the random vector. In particular, they can simultaneously
match the marginal distributions of the components of the random vector, the covari-
ance matrix, and the probability that the random vector lies within certain regions.
This flexibility comes at a price: As we shall see, it can be computationally difficult
to construct the desired distribution when the random vector has moderate to large
dimension. Therefore, practically speaking, patchwork distributions are limited to
low dimensions, say 5 or less.

Patchwork distributions are an extension of a certain class of distributions known
as chessboard distributions (Ghosh and Henderson 2001, 2002), or “piecewise-
uniform copulae” (Mackenzie 1994). They are constructed as follows. One assumes
that the desired random vector X = (X1, . . . , Xd ) is given by (F−1

1 (U1), . . . ,
F−1

d (Ud )), where Fi is the desired marginal distribution function of Xi , and Ui

is a uniform random variable on (0, 1). The problem then reduces to construct-
ing the joint distribution of (U1, . . . ,Ud ) on (0, 1)d . (The joint distribution of
U = (U1, . . . ,Ud ) is known as a copula, and this approach of first generating U ,
and then constructing X from U using inversion is very common. The term “copula”
was coined in Sklar 1959. See, e.g., Nelsen 1999 for background on copulas.) We
break the unit cube (0, 1)d down into a grid of cells. Each cell is a hypercube with
faces aligned with the axes. The conditional distribution of U given that it lies in
one of the cells has a distribution with uniform marginals, which can vary from cell
to cell. We call the distribution of X a patchwork distribution, and the distribution
of the corresponding uniform random vector U a patchwork copula.

It is useful to allow cell-specific base copulas. For example, this allows patch-
work distributions to match the extreme behaviour of X when all components are
likely to move jointly. See, e.g., the discussion of tail dependence in Biller (2009).

Patchwork distributions generalize chessboard distributions, which have condi-
tional (joint) uniform distributions, given that they lie in a fixed cell. The conditional
distributions in the cells are fixed in advance heuristically, using any prior infor-
mation about the joint distribution, and one then determines the vector giving the
probabilities that U lies in each of the cells. This probability vector can be found by
solving a certain linear program, the constraints of which reflect the desired proper-
ties of the joint distribution.

A natural property of a joint distribution that one might attempt to match is
the correlation matrix, where the correlations could be Pearson product-moment,
Spearman rank, or Kendall’s tau correlations. We focus on Spearman rank correla-
tions. As we will see, some rank correlation matrices are easier to match than others,
in the sense that the size of the linear program that needs to be solved depends on
the correlation matrix. Therefore, the computational effort required to construct a
patchwork distribution is related to the correlation matrix.

The primary contributions of this paper are:
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1. a characterization of the set of correlation matrices that patchwork distributions
can match,

2. a theoretical analysis that relates the computational effort (size of the linear
program) to a given correlation matrix, and

3. a computational study to shed further light on the results of the theoretical
analysis.

The remainder of this chapter is organized as follows. In Section 2 we define
patchwork distributions more carefully, and describe how one can select them to
match the desired properties of X . We also describe how they can be generated.
Then, in Section 3, we extend known results on the modeling power of chessboard
distributions to patchwork distributions. Sections 4 and 5 contain, respectively, our
theoretical and computational results on the size of the linear programs that must
be solved to match a given correlation matrix. Finally, we offer some concluding
remarks in Section 6.

2 Patchwork Distributions

In this section we define patchwork distributions, explain how they are constructed,
and describe how to generate samples from them. For notational simplicity we
mostly confine the discussion to 3-dimensional random vectors, but analogous
results hold for d ≥ 2 dimensions. Many of these results were proved for the special
case of chessboard distributions in Ghosh and Henderson (2002). We give proofs
of some of the extensions, even though they are usually similar to the special case
of chessboard distributions, because they are helpful in understanding the structure
of patchwork distributions.

We say that X = (X1, X2, X3) has a patchwork distribution if

X
D= (F−1

i (Ui ) : i = 1, 2, 3),

where Fi is the marginal distribution function of Xi , i = 1, 2, 3, and the distribution
of U = (U1,U2,U3) is a patchwork copula, as described below.

Let n ≥ 1, and divide (0, 1]3 into a grid of n3 equal-sized cubes (cells) with
sides parallel to the coordinate axes. Let the cells be given by C( j1, j2, j3), with
j1, j2, j3 = 1, . . . , n, so that

C( j1, j2, j3) =
{

(x1, x2, x3) :
ji − 1

n
< xi ≤ ji

n
, i = 1, 2, 3

}
.

Conditional on lying in cell C( j1, j2, j3), U follows an appropriately scaled and
translated version of a copula C( j1, j2, j3), which can vary by cell. We call this
copula the ( j1, j2, j3) base copula. To be more precise, let

(Z ( j1, j2, j3) : 1 ≤ j1, j2, j3 ≤ n)
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be independent random vectors where Z ( j1, j2, j3) is distributed as C( j1, j2, j3).
Then, conditional on being in cell C( j1, j2, j3), the vector U is defined by

Ui = Zi ( j1, j2, j3)

n
+ ji − 1

n
, i = 1, 2, 3. (1)

We allow the mass of each cell to vary. Let

q( j1, j2, j3) = P(U ∈ C( j1, j2, j3))

be the mass assigned to cell C( j1, j2, j3). We require that the q( j1, j2, j3)s satisfy

n∑
j2, j3=1

q( j1, j2, j3) = P

(
U1 ∈

(
j1 − 1

n
,

j1
n

])
= 1

n
, ∀ j1 = 1, . . . , n,

n∑
j1, j3=1

q( j1, j2, j3) = P

(
U2 ∈

(
j2 − 1

n
,

j2
n

])
= 1

n
, ∀ j2 = 1, . . . , n, (2)

n∑
j1, j2=1

q( j1, j2, j3) = P

(
U3 ∈

(
j3 − 1

n
,

j3
n

])
= 1

n
, ∀ j3 = 1, . . . , n,

q( j1, j2, j3) ≥ 0 ∀ j1, j2, j3 = 1, . . . , n.

We call the distribution of U , as constructed above, a patchwork copula.
Theorem 1 below proves that the distribution is indeed a copula, and therefore that
X has the desired marginal distributions.

Theorem 1 If U is constructed as above, with cell probabilities q satisfying the
constraints (2), then U has uniform marginals. Consequently, X has the desired
marginals.

Proof Let the marginal distribution function of Ui be denoted by Gi (·). We show
that G1(x) = x for x ∈ (0, 1], and the proof for dimensions 2 and 3 is exactly the
same. We rely on the conditional relationship (1). For any x ∈ (i − 1, i]/n, we
have that

G1(x) =
∑

j1≤i−1

n∑
j2, j3=1

q( j1, j2, j3)+

n∑
j2, j3=1

P
(
(i − 1)/n < U1 ≤ x |U ∈ C(i, j2, j3)

)
q(i, j2, j3)

= i − 1

n
+

n∑
j2, j3=1

P
(
0 < Z1(i, j2, j3) ≤ n(x − (i − 1)/n)

)
q(i, j2, j3)
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= i − 1

n
+ n

(
x − i − 1

n

) n∑
j2, j3=1

q(i, j2, j3)

= i − 1

n
+ x − i − 1

n
= x

as required. Hence, U has uniform marginals. Since Xi is obtained from Ui via the
probability integral transform, it follows that Xi has the desired marginal distribu-
tion, i = 1, 2, 3. �

Remark 1 Chessboard copulas, as introduced in Ghosh and Henderson (2002), are
patchwork copulas where all the base copulas are derived from independent uniform
random variables. They coincide with the “piecewise-uniform copulae” developed
by Mackenzie (1994). Cloned distributions (Johnson and Kotz 2004) are bivariate
patchwork copulas where the base copula is the same for all cells, and all cells have
the same probability.

The constraints (2) are sufficient to ensure that U has uniform marginals. So long
as those constraints hold, we are then free to choose the cell probabilities to match
other desired properties of the joint distribution. Covariance is one such property.

We believe that for non-Gaussian marginals, it is usually more appropriate
to use rank covariance than product-moment covariance as a measure of depen-
dence. Recall that the rank covariance between two random variables X1 and X2

with distribution functions F1 and F2 respectively is given by E[F1(X1)F2(X2)] −
E[F1(X1)]E[F2(X2)]. Our preference for rank covariance over product-moment
covariance stems from the facts that rank covariance is always well defined, irre-
spective of whether the Xi s have finite second moments or not, and that rank covari-
ance is invariant to strictly increasing transformations of the random variables. In the
case where Fi is continuous, Fi (Xi ) is uniformly distributed on (0, 1]. Indeed, if X1

and X2 are components of a patchwork random vector with continuous marginal
distribution functions, then the rank covariance between X1 and X2 equals the
product-moment covariance between U1 and U2, from which X was constructed.
Hence, we can reduce a study of rank covariance of patchwork distributions with
arbitrary continuous marginals to one of product-moment covariance of uniform
random variables on (0, 1] (rank and product-moment covariances coincide for uni-
form marginals).

Remark 2 When some of the marginal distributions are not continuous, this con-
venient relationship does not hold, and one must then attempt to match the desired
correlations using more-complicated methods; see Avramidis et al. (2009).

We need an expression for the product-moment covariance of two components of
a patchwork copula. Let U be distributed according to the patchwork copula. Then

ΣU
12 = Cov(U1,U2) = E[U1U2]− 1/4

=
∑

j1, j2, j3

q( j1, j2, j3)E[U1U2|U ∈ C( j1, j2, j3)]− 1/4

=
∑

j1, j2, j3

q( j1, j2, j3)μ12( j1, j2, j3)− 1/4, (3)
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where

μ12( j1, j2, j3) = E[U1U2|U ∈ C( j1, j2, j3)].

The μ terms are constants that depend on the base copulas, but not on q. It fol-
lows that the covariance between Ui and U j is a linear function of q, for each
i, j = 1, . . . , n.

Suppose now that we want to match the true covariance matrix ΣU to a desired
covariance matrix Σ . The diagonal terms are all equal to 1/12, and covariance
matrices are symmetric, so we can measure the error r (ΣU ,Σ) as

r (ΣU ,Σ) =
∑

1≤i< j≤3

∣∣ΣU
i j −Σi j

∣∣ .

It immediately follows that we can attempt to match Σ using the linear program

min
2∑

i=1

3∑
j=i+1

(z+i j + z−i j ) (4)

subject to ΣU
i j −Σi j = z+i j − z−i j , i = 1,2 and j = i + 1 to 3

z+i j ≥ 0, z−i j ≥ 0, together with constraints (2) and (3).

Remark 3 The linear program (4) is always feasible since q( j1, j2, j3) = n−3, for
all j1, j2, j3, is feasible. Also, the objective function is bounded below by 0, so an
optimal solution exists. If the optimal objective value is 0, then we exactly match
the desired properties.

Clemen et al. (2000) discussed a number of other properties that one might elicit
from users about joint distributions and therefore want to match. Several of these
are easily matched when X has a patchwork distribution. Ghosh and Henderson
(2001) described how to match such properties using chessboard distributions, and
the methods extend to patchwork distributions. For example, probabilities of the
form P(X ∈ A) for various regions A can be expressed as linear functions of
q, and therefore can be matched using linear programming as above. The set A
does not have to be rectilinear. Similarly, conditional fractiles can be matched using
linear programming and concordance probabilities can be matched using quadratic
programming.

It is relatively straightforward to generate random vectors that have a patchwork
distribution. The basic procedure consists of the following steps:

1. Generate the (random) index (J1, J2, J3) of the cell C(J1, J2, J3) containing
the uniform random vector U from the discrete distribution formed by the
q( j1, j2, j3)s. With some preprocessing, it is possible to do this in constant



Patchwork Distributions 71

time using, e.g., the alias method (Walker 1977). The following description
is adapted from Law and Kelton (2000):

• Alias Method Setup: Two arrays are calculated from the qs. The array
(AC j : j = 1, . . . , n3) contains cutoff values, and the array (AA j : j = 1,
. . . , n3) contains aliases. These arrays can be computed as follows; see
Kronmal and Peterson (1979).

a. Set AC j = n3q( j1, j2, j3) ∀ j = 1, . . . , n3, where the index j represents
the cell C( j1, j2, j3) via j = ( j1 − 1)n2 + ( j2 − 1)n + j3.

b. Define sets T G = { j : AC j ≥ 1} and T S = { j : AC j < 1}.
c. Do the following steps until T S becomes empty:

i. Remove an element k from T G and remove an element m from T S.
ii. Set AAm = k and replace ACk by ACk − 1+ ACm .

iii. If ACk < 1, put k into T S; otherwise put k back in T G.

• Generating Cells: Once the arrays AA and AC have been calculated, the
random cell index (J1, J2, J3) (and equivalently the index J ) can be gener-
ated as follows:

a. Generate I from the discrete uniform distribution over {1, . . . , n3} and
U ∼ U (0, 1) independent of I .

b. If U ≤ ACI , return J = I . Otherwise, return J = AAI .

2. Generate U conditional on U ∈ C(J1, J2, J3) via (1). Here we need to be able
to generate random vectors from the base copula C(J1, J2, J3), but since we can
select the base copula, this should present little difficulty.

3. Generate the components of X via Xi = F−1
i (Ui ).

If q is an extreme-point solution to the d-dimensional version of the linear program
(4), then there are on the order of nd strictly positive cell probabilities. The exact
number of positive values depends on the number of equality constraints in the LP
and the degree to which the extreme-point solution is degenerate. On the other hand,
there are nd cells. Therefore, for large d, the fraction of cells receiving positive mass
is quite small.

The fact that nd is small relative to nd can be viewed as an advantage with respect
to variate generation since it reduces the setup time required to implement the alias
method. However, it can also be viewed as a disadvantage. As the dimension d
increases, the fraction of cells receiving positive probabilities is vanishingly small.
This means that the set of values that the random vector X can assume is somewhat
limited, and so the distributions take a nonintuitive form. As more constraints are
added due to the need to match more distributional properties, the problem severity
is reduced, but it still remains. Mackenzie (1994) avoids this problem by maximizing
the entropy of the discrete distribution q. In this case, all of the cells receive positive
probability. However, the problem of maximizing the entropy of q subject to linear
constraints is a convex optimization problem that is more difficult to solve than the
LPs discussed above. A computationally attractive alternative is to place a lower
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bound on the cell probabilities. We do not discuss this issue further here as it would
lead us too far afield.

3 Modeling Power

In this section we focus on matching covariance matrices. We say that a covari-
ance matrix Σ is feasible if a copula exists with that covariance matrix. Let Ω
denote the set of feasible covariance matrices. (We suppress the dependence on
dimension d.) We view Ω as a subset of the vector space R

d(d−1)/2 equipped
with the usual inner product, because each Σ ∈ Ω is symmetric, the elements
on the diagonal are all equal to 1/12, and there are d(d − 1)/2 elements above
the diagonal. (It is therefore also a subset of [−1/12, 1/12]d(d−1)/2.) In what fol-
lows, the notation Σ will represent both the actual covariance matrix and its vector
form in Ω .

One might expect thatΩ corresponds with the set of symmetric positive semidef-
inite matrices with diagonal elements equal to 1/12. For d ≤ 3, this is correct (Joe
1997), but for d > 3 it is not known whether this is the case or not. It is known
that in any dimension d, Ω is convex, closed, and full-dimensional (Ghosh and
Henderson 2002).

We are now ready to state some results about the modeling power of patchwork
distributions. The proofs of these results are, in general, similar to the corresponding
results for chessboard distributions (Ghosh and Henderson 2002) and so, for the
most part, are omitted. We start with the following lemma, the proof of which is
needed later in this paper.

Lemma 1 Suppose that Σ ∈ Ω . Then the optimal objective value of the linear
program (4) is at most d(d − 1)/n.

Proof Since Σ ∈ Ω , there exists a random vector V with uniform marginals and
covariance matrix Σ . We modify the distribution of V as follows. We keep the total
mass within each cell constant, but we modify the distribution of V within each cell
to conform with the corresponding base copula. This process yields a patchwork
copula corresponding to a random vector U , say. The cell probabilities (the qs) for
U (which are the same as those for V ) constitute a feasible solution to the linear
program (4). Furthermore, we can bound the differences in the covariance matrices
of V and U , as detailed below. These bounds translate into a bound on the objective
value of the solution q. Since the optimal solution of the linear program can do no
worse, we obtain a bound on the optimal objective value, thereby proving the result.

For now, assume that d = 3. Let q( j1, j2, j3) = P(V ∈ C( j1, j2, j3)) and
note that

Cov(U1,U2)−Σ12

= E[U1U2]− E[V1V2]

=
n∑

j1, j2, j3=1

(
μ12( j1, j2, j3)− E[V1V2|V ∈ C( j1, j2, j3)]

)
q( j1, j2, j3). (5)
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But

j1 − 1

n

j2 − 1

n
≤ E[V1V2|V ∈ C( j1, j2, j3)] ≤ j1

n

j2
n
. (6)

Combining (5) with (6) we see that

Cov(U1,U2)−Σ12

≤
n∑

j1, j2, j3=1

q( j1, j2, j3)

(
μ12( j1, j2, j3)− ( j1 − 1)( j2 − 1)

n2

)
(7)

and

Cov(U1,U2)−Σ12 ≥
n∑

j1, j2, j3=1

q( j1, j2, j3)

(
μ12( j1, j2, j3)− j1 j2

n2

)
. (8)

These bounds will prove useful later, but for now we obtain more-explicit
bounds. The bounds (6) also apply to μ12( j1, j2, j3) and so from (7),

Cov(U1,U2)−Σ12 ≤
n∑

j1, j2, j3=1

q( j1, j2, j3)

(
j1 j2
n2

− ( j1 − 1)( j2 − 1)

n2

)

= n−2
n∑

j1, j2, j3=1

q( j1, j2, j3)( j1 + j2 − 1)

≤ n−2
n∑

j1, j2, j3=1

q( j1, j2, j3)(2n − 1)

= 2n − 1

n2
.

A lower bound follows similarly, so that

|Cov(U1,U2)−Σ12| ≤ 2n − 1

n2
. (9)

The bound (9) was derived assuming d = 3, but the same argument and bound
hold in higher dimensions. Hence, if ΣU denotes the covariance matrix of U , we
have that

r (ΣU ,Σ) ≤ d(d − 1)

2

2n − 1

n2

and the result follows. �
We can now state the main result of this section. Let A◦ and ∂A denote the interior

and boundary of a set A.
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Theorem 2 Patchwork distributions can get arbitrarily close to any Σ ∈ Ω and
can exactly match any Σ ∈ Ω◦ (for sufficiently large n), but cannot necessarily
exactly match Σ ∈ ∂Ω . Furthermore, Σ �∈ Ω iff the optimal objective value of the
linear program (4) exceeds d(d − 1)/n for some n ≥ 1.

Proof This result is proved using the bounds given in Lemma 1. Most of the proof
(specifically the Σ ∈ Ω◦ and the Σ �∈ Ω parts) is very similar to corresponding
results in Ghosh and Henderson (2002) and so is omitted. All that needs to be shown
is that a patchwork distribution may, or may not, be able to exactly match matrices
on the boundary ∂Ω . Ghosh and Henderson (2002) showed that chessboard distri-
butions, which are a special case of patchwork distributions, cannot exactly match
any matrix on the boundary for a finite n. It remains to show that some patchwork
distributions can match some boundary covariance matrix exactly. This is trivially
true, for instance, when the base copulas of the patchwork distribution all have a
covariance Σb ∈ ∂Ω . Then one can exactly match the boundary covariance matrix
Σb with n = 1 using this base copula. �

Theorem 2 establishes that patchwork distributions can exactly match feasible
covariance matrices lying in the interior of Ω , and that infeasible covariance matri-
ces can be proved to be infeasible in finite time by the linear program, but that
little can be concluded for covariance matrices lying on the boundary of Ω . The
boundary matrices are feasible because Ω is closed, but why are they difficult to
match?

Theorem 3 below shows that the joint distribution of a copula with a covariance
matrix that lies on the boundary of Ω is a rather strange creature! Recall that any
copula F can be decomposed into a singular part Fs and an absolutely continuous
part Fac with respect to Lebesgue measure restricted to (0, 1]3. (This is simply the
Lebesgue Decomposition; e.g., see Billingsley 1995, p. 414.) Thus, F = Fac + Fs .

Moreover, the absolutely continuous part has a density fac with respect to Lebesgue
measure.

Theorem 3 Suppose that fac is defined as above for a distribution F with covari-
ance matrix Σ ∈ ∂Ω . Then, there cannot exist an open set G such that

fac(x) ≥ φ > 0 a.e. in G. (10)

(Recall that a property holds almost everywhere (a.e.) on the set G if it is true for all
x ∈ G except on a subset of Lebesgue measure 0.)
Proof For notational ease we give a proof in the 3-dimensional case. The gen-
eral case is virtually identical. Suppose such a G exists. We assume, without loss
of generality, that fac(x) ≥ φ > 0 for all x ∈ G and not just a.e. (If not, just
redefine fac on the set of measure 0.) Now, we can choose an open ball B(x, ε)
within G and an open cubical region C with faces aligned with the axes within
B(x, ε) such that the interior of C is non-empty. Split fac into two parts, fC and fC̄ ,
defined as:
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fC (x) =
{
φ x ∈ C

0 elsewhere
and fC̄ (x) =

{
fac(x)− φ x ∈ C

fac(x) elsewhere
.

Let u and v be the endpoints that define C , so that

C = {(x1, x2, x3) ∈ (0, 1]3 : ui < xi ≤ vi , i = 1, 2, 3}.

Divide the region C into 4 (equal size) subregions,

Cab =
{

(x1, x2, x3) ∈ C : u1 + (a − 1)
v1 − u1

2
< x1 ≤ u1 + a

v1 − u1

2
,

u2 + (b − 1)
v2 − u2

2
< x2 ≤ u2 + b

v2 − u2

2

}
,

for 1 ≤ a, b ≤ 2.
Define a new distribution H from F as follows. The singular parts Hs and Fs

coincide, as do the hC̄ and fC̄ parts, respectively, of the absolutely continuous den-
sity. The density hC takes the value 2φ on C11 and C22, and 0 on C12 and C21. Then it
is straightforward to show that H has uniform marginals, that the (1, 2)th covariance
is strictly increased, and that the other covariances remain unchanged. Alternatively,
if hC takes the value 0 on C11 and C22, and 2φ on C12 and C21, then the covariance
strictly decreases.

The argument above could be repeated for each pair of components. Convexity
of Ω then implies that Σ must lie in the interior Ω◦ which is a contradiction, and
the proof is complete. �

One consequence of Theorem 3 is that we cannot hope to exactly match covari-
ance matrices on the boundary of Ω if we use a base copula which has a density
component that satisfies (10) for some set G. This gives another explanation for
why chessboard distributions cannot match covariance matrices on the boundary
of Ω .

We have already seen a singular base copula that can exactly match a covariance
matrix on the boundary of Ω . We might ask whether a base copula exists that can
match all matrices on the boundary of Ω . We do not have a complete answer to this
question, but we will shed further light on it in Section 4.

In summary, the import of the results in this section is that patchwork
distributions

• can prove that a given covariance matrix is infeasible in finite time,
• can arbitrarily closely approximate any feasible covariance matrix,
• can exactly match any feasible covariance matrix in the interior of the set of

feasible covariance matrices, but
• might not exactly match any covariance matrix on the boundary of the set of

feasible covariance matrices.
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4 Modeling Effort: Theoretical Results

In order to use a patchwork distribution, we need to perform the setup steps out-
lined in Section 2. The main computational bottleneck there is the solution of the
linear programming problem. The time required to solve a linear program typically
increases with the size of the linear program, which in turn depends on the dis-
cretization level n. So it is of interest to see how large n needs to be to match a
given covariance matrix for a fixed dimension d of the random vector, and that is
the subject of this section and the next one. Here we focus on theoretical analysis,
while the next section performs some computational experiments.

We limit ourselves to the case where the patchwork distribution uses the same
base copula in all cells, since this makes the arguments more elegant. Let Ωn(Σb)
represent the set of covariance matrices that can be matched by patchwork distri-
butions of size n with a base copula that has Σb as its covariance matrix. (In many
contexts, the argument Σb will be clear and hence shall be dropped.) The set Ωn

shares many of the properties of Ω , namely that it is non-empty, closed, convex,
and full-dimensional in R

d(d−1)/2 (Ghosh and Henderson 2002). We have shown in
Theorem 2 that patchwork distributions can achieve any feasible covariance matrix
in the interior of Ω for some finite n. Thus, in a sense the sequence {Ωn, n ≥ 1}
grows to cover the whole of Ω as n → ∞; we shall establish this rigorously
and provide bounds on the rate of convergence in terms of n. Our results show
that, roughly speaking, the set Ωn is smaller than Ω by a factor that is somewhere
between (1− κ1/n) and (1− κ2/n2) for some constants κ1 and κ2. In order to state
these results precisely we need some definitions.

Let B(x, ε) = {y : ‖x − y‖2 < ε} be the (open) ε−ball centered at x , defined
under the l2 metric on the space R

m(d), where m(d) = d(d − 1)/2. The ball B(0, 1),
the unit open ball centered at the origin, is denoted by B. Thus, B(x, ε) = x + εB,
where the notation vM denotes the set {vx : x ∈ M} for any scalar v, and
y + M = {y + x : x ∈ M}.

We call any compact, convex set with a non-empty interior a convex body. The
Minkowski subtraction set operation on two convex bodies M and N can be defined
(Schneider 1993, Chapter 3) as

M ∼ N
Δ= {x ∈ M : x + N ⊂ M}.

A convex body E is said to be centered if it contains the origin as an interior point.
Sangwine-Yager (1988) defines, for an ε > 0, the εth relative inner parallel body
of a convex body M with respect to a centered convex body E to be M ∼ εE .

The families of sets U(ε,Σb) and L(ε) are indexed by ε and defined as

U(ε)
Δ= Ω ∼ εΩ,

U(ε,Σb)
Δ= U(ε)+ εΣb, and (11)

L(ε)
Δ= Ω ∼ εB. (12)
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These definitions are illustrated in Fig. 1.
A matrix z belongs to U(ε) ⊂ Ω if the set z+εΩ belongs toΩ . The set U(ε) has

a non-empty interior for all 0 < ε < 1. The set U(ε) + εΣb is simply the set U(ε)
translated by the matrix εΣb. Similarly, a matrix z belongs to L(ε) if the ε−ball
B(z, ε) ⊂ Ω . This has a simple interpretation, in that L(ε) is the subset of points
in Ω that are at least an l2−distance ε away from the boundary ∂Ω . Again, the sets
L(ε) can be empty for large ε, but are non-empty for sufficiently small ε > 0. Note
that the lower-bound sets L(ε) are defined independent of the base covariance Σb.

We are now ready to state the main result of this section.

Theorem 4 Let � = √
m(d). Then,

a) Ωn(Σb) ⊆ U
(

1

n2
,Σb

)
, and

b) L
(

2�

n

)
⊆ Ωn(Σb).

Theorem 4 establishes that the “gap” between Ωn(Σb) and Ω has a width that is
somewhere between O(n−1) and O(n−2). The following corollary uses that result to
obtain bounds on the volume of the setΩn(Σb) relative to that ofΩ . Let L represent
Lebesgue measure on the real vector space R

m(d).

Corollary 1 There is a constant K (d) that depends on the dimension d such that

L(Ω)− K (d)

n
≤ L(Ωn(Σb)) ≤

(
1+ 1

n2

)−m(d)

L(Ω).
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Corollary 1 formalizes the rather imprecise statement we made earlier about the
rate at whichΩn approachesΩ . The rate at which patchwork distributions can cover
the set Ω of feasible covariance matrices is at least of the order 1 − K (d)n−1, but
can be no faster than a factor of the order (1 + n−2)−m(d) which, in turn, is of the
order 1− m(d)n−2 when n is large. These results are illustrated in Fig. 1.

We now turn to proving these results.
Proof of Theorem 4(a) For notational ease we prove the result for d = 3. The case
d > 3 is proved similarly. We establish the result by showing that a certain oper-
ation on any n-sized patchwork distribution having a covariance matrix Σ ∈ Ωn

constructs a new distribution with a new covariance matrix in Ω . One can obtain an
upper bound on the distance between these matrices, which then gives the result.

Let {q(·, ·, ·)} represent the solution to the LP (4) that exactly matches a covari-
ance matrix Σ ∈ Ωn . Then

Σ12 = E[U1U2]− E[U1]E[U2]

=
n∑

j1, j2, j3=1

E[U1U2|U ∈ C( j1, j2, j3)]q( j1, j2, j3)− 1

4
. (13)

Let Z = (Z1, Z2, Z3) be a random vector distributed according to the base cop-
ula, and let Σb ∈ Ω be its covariance matrix. Since E[Zi ] = 1/2, i = 1, 2, 3, we
see that

E[U1U2|U ∈ C( j1, j2, j3)] = E

[(
Z1

n
+ j1 − 1

n

)(
Z2

n
+ j2 − 1

n

)]

= E[Z1 Z2]

n2
+ j1 + j2 − 2

2n2
+ ( j1 − 1)( j2 − 1)

n2

= E[Z1 Z2]

n2
+ t( j1, j2), (14)

where t( j1, j2) is a function only of j1, j2, and n.
Suppose now that we replace the base copula in each cell with another copula

represented by the random vector Z ′. The result is still a valid patchwork copula
because of Theorem 1, and represents the distribution of a random vector U ′, say. If
Σ ′ is the covariance matrix of U ′, then

Σ ′
12 =

n∑
j1, j2, j3=1

(
E[Z ′

1 Z ′
2]

n2
+ t( j1, j2)

)
q( j1, j2, j3)− 1

4
. (15)

Let Σb′ be the covariance matrix of Z ′. The net change in covariance due to the
replacement operation is, from (13), (14), and (15),

Σ ′
12 −Σ12 =

n∑
j1, j2, j3=1

1

n2
(E[Z ′

1 Z ′
2]− E[Z1 Z2]) q( j1, j2, j3)
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= 1

n2
(Σb′

12 −Σb
12). (16)

Equation (16) holds for every component of the covariance matrix. Hence,

Σ ′ = Σ + 1

n2
(Σb′ −Σb),

and is contained in Ω . We can choose Σb′ ∈ Ω arbitrarily. Thus,
(
Σ + Ω

n2

)
− Σb

n2
⊂ Ω,

and we have established that for any Σ ∈ Ωn , Σ ∈ U(n−2,Σb). This gives the
result. �

This result is tight in a certain sense. Consider the case where chessboard
copulae of size n are used to match a perfectly correlated uniform random vec-
tor with pairwise covariances all equal to 1/12. (This target covariance matrix
belongs to ∂Ω .) A chessboard copula can be constructed by equally distributing
its mass on the diagonal cells, and all pairwise covariances of this copula are
equal to 1/12 − 1/12n2. If we perform the transformation described in the proof
above, where Σb′ is the covariance matrix of a perfectly correlated uniform ran-
dom vector (so all entries in the covariance matrix are equal to 1/12), then we
obtain the distribution of the perfectly correlated uniform random vector as a result.
Thus, we see that Ωn can have some points in common with the boundary of
U(n−2,Σb).

We now prove the second part of Theorem 4. First, recall that all norms in a real
vector space are equivalent; see, for example, Golub and Van Loan (1996, p. 53).
Indeed, for any x ∈ R

m(d),

‖x‖∞ ≤ ‖x‖2 ≤ � ‖x‖∞. (17)

Proof of Theorem 4(b) The result is trivial if L(2�/n) is empty, so assume it is
nonempty. The proof of Lemma 1 derived a bound on the optimal objective func-
tion of the linear program (4). Specifically, if Σ ∈ Ω denotes a target covari-
ance matrix and Σn is an optimal solution to the linear program then,
from (9),

|Σ(i, j)−Σn(i, j)| ≤ 2

n
∀ 1 ≤ i < j ≤ 3. (18)

Equation (18) shows that we can get within l∞−distance 2/n from any Σ ∈ Ω
using patchwork distributions. From (17), we then have that Σn ∈ B(Σ, 2�/n).
Hence, in particular, for any Σ ∈ ∂Ω , we can pick a matrix Σn ∈ Ωn such that
Σn ∈ B(Σ, 2�/n).

Now, suppose the assertion in the theorem is false, and there exists a Λ ∈
L(2�/n) that does not belong to Ωn . Since Ωn is convex, the celebrated Separating
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Hyperplane Theorem (see, e.g., Luenberger 1969, Theorem 3, Section 5.12) gives
us a hyperplane H through Λ that separates the point Λ from Ωn .

Consider a line N passing through Λ that is orthogonal to the hyperplane H.
Busemann (1958, Chapter 1) tells us that since Λ is in the interior of Ω , this line
intersects the boundary ∂Ω of the convex set Ω at exactly two points, say Σ1 and
Σ2. By definition, the point Λ ∈ L(2�/n) does not belong to either of the sets
B(Σ i , 2�/n), i = 1, 2. Thus, H separates each of the sets B(Σ i , 2�/n), i = 1, 2,
from Λ. Moreover, the sets lie on opposite sides of H, since Λ ∈ Ω◦. Thus, at least
one ball is separated from Ωn by the hyperplane H. But this contradicts the earlier
observation that one can always choose a point that belongs to Ωn from each ball
B(Σ i , 2�/n), i = 1, 2. This completes the proof. �

In order to prove Corollary 1, we need the following result. Brannen (1997,
Theorem 1) quotes a lower bound from Sangwine-Yager (1988) for the Lebesgue
measure of a relative inner parallel body M ∼ εE . That result establishes that

L(M ∼ εE) ≥ L(M)− εS(M ; E)+ R(m(d), ε),

where S(M ; E) represents the relative surface area of M with respect to E , and the
function R(m(d), ε) is nonnegative. They also give conditions under which S(M ; E)
is finite and positive, and these are satisfied by using the sets Ω and B in the defini-
tion of L(ε) as M and E respectively. Thus, if ε < 1, then

L(L(ε)) ≥ L(Ω)− k(d)ε (19)

for some positive constant k(d) that possibly depends on the dimension m(d) of
the sets.

Proof of Corollary 1 From (19), for n large enough that 2�/n < 1,

L(Ω)− k(d)

(
2�

n

)
≤ L

(
L
(

2�

n

))
,

where k(d) is a positive value that depends on d. This equation, along with Theorem
4(b), gives the lower bound in the statement of the result with K (d) = 2k(d)�.

For the upper bound, first note that U(n−2,Σb) is a translation of the set U(n−2),
and so both sets have the same Lebesgue measure. Also, if Λ ∈ U(n−2), then, by
definition, Λ+ n−2Ω ⊆ Ω . In particular, Λ+ n−2Λ ∈ Ω , i.e., Λ ∈ (1+ n−2)−1Ω .
Hence,

U(n−2) ⊆ (1+ n−2)−1Ω.

The Lebesgue measure of the linearly scaled set (1 + n−2)−1Ω is given by
(1+ n−2)−m(d)

L(Ω) (see Billingsley 1995, Theorem 12.2). This, along with
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Theorem 4(a), establishes the upper bound on the Lebesgue measure of Ωn and
we are done. �

We conclude this section by showing that for any fixed choice of base copula,
there will exist covariance matrices in Ω that cannot be exactly matched, no mat-
ter how n is chosen. This result shows that it is pointless to attempt to identify a
“powerful” base copula that matches all of Ω for some finite n.

Proposition 1 For any fixed base copula, there exists a covariance matrix Σ ∈ Ω
that cannot be exactly matched for any n.

Proof On the contrary, suppose that such a base copula exists, and let Σb be its
covariance matrix. Consider a line N through Σb and the origin. (If Σb is equal
to the origin, then pick an arbitrary line through the origin.) Since Ω is compact,
convex, and the origin is in its interior, this line intersects ∂Ω at two points. Fol-
low the line from Σb through the origin until you reach one of those points. Call
that point Σ̄ . By the supposition, a Σb-based patchwork copula, of size n, say,
can exactly match Σ̄ . Then, by the argument establishing Theorem 4(a), a Σ ′ of
value

Σ ′ = Σ̄ + Σ̄ −Σb

n2

can also be achieved by replacing the base copula in each cell with a copula that
has covariance matrix Σ̄ . The matrix Σ ′ is, however, outside Ω , and we have the
desired contradiction. �

Whether patchwork copulas with a bounded number of base copulas can match
all of Ω for some finite n is an open problem. We conjecture that this is impossible.

5 Modeling Effort: Computational Results

Corollary 1 proves that patchwork distributions with discretization level n can match
covariance matrices that are a distance r from the boundary set ∂Ω , where the order
of r lies somewhere between n−1 and n−2. In this section we describe a computa-
tional study that sheds further light on this rate for the special case of chessboard
distributions.

Let S be a collection of d(d − 1)/2−dimensional vectors that represent the off-
diagonal elements of covariance matrices Σ in R

d×d . Consider rays from the origin
through each of these vectors. We determine the rate at which each ray is “covered”
by chessboard distributions as the discretization level n grows. We populate the set
S by sampling uniformly from the set of all positive semidefinite matrices of size
d × d. (Ghosh and Henderson 2003 provides such a sampler.) This allows us to test
whether the rate varies in different regions of Ω .

The origin is in the strict interior of the set of all positive semidefinite (PSD)
matrices, which implies that there is a finite maximum value r sd (Σ) > 0 such
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that rΣ is positive semidefinite for all r sd (Σ) ≥ r > 0. We compute r sd (Σ)
by formulating and solving a semidefinite program. The set of feasible covariance
matrices Ω also contains the origin in its strict interior, and so a finite maximum
r∗(Σ) exists such that rΣ is a feasible covariance matrix for uniform marginals
for all r∗(Σ) ≥ r > 0. Finally, let r∗(n,Σ) represent the point at which the ray
rΣ intersects the set Ωn of all covariance matrices that chessboards of size n can
exactly match. Fig. 2 illustrates these definitions.

We numerically determine r∗(n,Σ) by solving, for each Σ ∈ S, the LP

r∗(n,Σ) = max r (20)

s.t. rΣ(i, j) = Cov(Xi , X j ), ∀i < j,

r ≥ 0,

along with the constraints (2) that ensure that the distribution of X is a copula. The
LPs (20) are feasible (r = 0, q = 1/nd is a feasible solution) and terminate with a
positive finite optimal solution r∗(n,Σ). The rate of change in r∗(n,Σ) along rays
rΣ , r > 0, ∀Σ ∈ S, provides an indication of the rate at which the set Ωn covers
Ω . To see why, recall that two convex closed bodies that differ in their sizes by a
small ε > 0 also differ in volume (Lebesgue measure) by the same order. (We used
this result in the proof of Corollary 1.)

For the d = 3 case, the set Ω is known to coincide with the set of all PSD
matrices (e.g., Joe 1997) and thus r∗(Σ) = r sd (Σ), which facilitates the calcu-
lation of the exact coverage rate. Figure 3 plots the relative difference (r sd (Σ) −
r∗(n,Σ))/r sd (Σ) against n in the log-log scale for 20 different values ofΣ ∈ S and
n taking values up to 128. (Here, and in what follows, in the interest of notational

Ω
PSD matrices

r (n, Σ )

r (Σ )

rsd (Σ )

rΣ ray

Ωn

Fig. 2 The points r sd (Σ), r∗(Σ), and r∗(n,Σ)
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Fig. 3 Log-log plots for 20 covariance rays rΣ , r> 0, in 3 dimensions

brevity we write r∗ and r sd in place of r∗(Σ) and r sd (Σ) when no confusion should
arise.) Table 1 provides the estimated slopes of the curves for the 20 illustrated rays.
The slope estimates are calculated from only a handful of sample points and are thus
noisy, but the slopes hover close to −2 in all the cases tested. Thus, it would seem
likely that the coverage rate is closer to n−2 than n−1 for d = 3.

Table 1 Slopes of log-log plots for 20 covariance rays in 3 dimensions. All values
reported to 3 decimal places

Correlations

Σ12 Σ13 Σ23 Calculated Slope

−0.996 −0.055 0.075 −1.902
−0.944 −0.300 −0.136 −2.162
−0.912 0.280 0.299 −2.066
−0.773 0.371 0.514 −2.175
−0.731 −0.188 0.656 −2.117
−0.613 0.427 0.664 −2.197
−0.488 −0.070 0.870 −2.136
−0.300 0.223 0.928 −2.130
−0.118 0.142 0.982 −2.035

0.198 0.256 0.946 −2.001
−0.989 −0.118 0.092 −1.900
−0.912 −0.324 −0.251 −2.136
−0.849 −0.122 0.514 −2.135
−0.731 −0.678 0.080 −2.120
−0.713 −0.634 −0.300 −2.171
−0.592 0.493 0.638 −2.200
−0.368 −0.327 0.870 −2.035
−0.236 −0.221 0.946 −1.879
−0.021 0.514 0.857 −2.166

0.336 0.360 0.870 −1.921
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Size n of Patch work Distribution
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Fig. 4 log-log plots for 20 covariance rays rΣ , r> 0, in 4 dimensions

In the case of higher dimensions d ≥ 4, the value r∗ is not known (in general
r∗ ≤ r sd ), and the rates of coverage calculated via the same log-scale plot as in the
d = 3 case will only yield approximate values. Figure 4 plots the relative difference
(r sd − r∗(n,Σ))/r sd against n in the log-log scale for 20 different values of Σ ∈ S
for dimension d = 4. If r∗ were strictly less than r sd , then (r sd − r∗(n,Σ))/r sd

would not drop linearly (in the log scale) to 0 with increasing n. No non-linearity
is manifest in the range of values n = [1, 64] plotted. The plots seem fairly linear,
with the slopes varying within [−2.117,−2.013].

Our implementation could not solve the linear programs for larger n due to
numerical instability (the relative error is below 0.0004 for n = 64). It might be
the case that the difference (r sd − r∗) is non-zero but too small to be detected by
our tests. This indicates that for the d = 4 case, r∗ = r sd is a good assumption for
practical purposes, and that the rate of coverage is again closer to the upper bound
in Corollary 1.

6 Conclusions

We have shown that patchwork distributions represent a flexible class of distribu-
tions that can match many desired properties of a random vector. They are primarily
effective in low dimensions, say up to dimension 5. (We have solved patchwork LPs
in dimension 5 for n = 32 using a column generation technique, but we will not
report in detail on these ideas here.) The primary bottleneck in constructing patch-
work distributions is solving a certain linear program, the size of which is related to
the discretization level n. The discretization level required to match a given corre-
lation matrix depends on the distance of the correlation matrix to the boundary of
the set of all feasible correlation matrices. Our theoretical and computational results
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give strong evidence that the set of feasible correlation matrices not matched by
patchwork distributions using discretization level n diminishes at the rate n−2.
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Asymptotic Validity of Batch Means
Steady-State Confidence Intervals

Peter W. Glynn and Eunji Lim

Abstract The method of batch means is a widely applied procedure for constructing
steady-state confidence intervals. The traditional theoretical support for the method
of batch means has rested on the assumption of a functional central limit theorem for
the underlying process. We establish here that the method of batch means is valid
for Harris recurrent Markov processes whenever the associated process satisfies a
simple (non–functional) central limit theorem. This weaker condition for validity of
the method of batch means is also shown to hold in the setting of one-dependent
regenerative processes.

1 Introduction

Consider a real-valued stochastic process Y = (Y (t) : t ≥ 0), with right-continuous
paths having left limits, that represents the output of a simulation. Assume that the
goal of the simulation is to compute the steady-state mean of Y . More precisely,
suppose that Y obeys a law of large numbers (LLN), so that there exists a (deter-
ministic) constant α for which

Y (t) � 1

t

∫ t

0
Y (s) ds ⇒ α (1)

as t → ∞, where ⇒ denotes weak convergence (also known as “convergence in
distribution”). The quantity α is called the steady-state mean of Y , and the problem
of computing α is known in the literature as the steady-state simulation problem.

The LLN (1) immediately suggests a sampling-based (Monte Carlo) algorithm
for computing α. In particular, simulate Y for t units of simulated time, and return
Y (t) as the estimator for α. As with all numerical procedures, a key issue is the

P.W. Glynn (B)
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question of how fast the algorithm converges to the answer. This issue is generally
addressed by the central limit theorem (CLT).

In the presence of (1), it is typically the case that Y also enjoys a CLT, so that
there exists a further (deterministic) constant σ such that

t1/2
(

Y (t)− α )⇒ σN (0, 1) (2)

as t → ∞, where N (0, 1) is a normal random variable (rv) with mean zero and
unit variance. The quantity σ 2 is called the time-average variance constant (TAVC)
of Y . Because (2) asserts that Y (t) has an error of order t−1/2, it is evident that
the above simulation-based estimator has a slow rate of convergence. (In partic-
ular, to add one additional significant figure of accuracy requires increasing the
length t of the simulation run by a factor of 100.) As a consequence, it is impor-
tant to provide the user of such a procedure with some quantitative assessment of
accuracy.

Such an accuracy assessment usually comes in the form of a confidence interval.
Suppose that the CLT (2) can be generalized to a multivariate CLT of the form

t1/2
(

Y 1(t)− α, . . . ,Y m(t)− α )⇒ (
σ
√

m N1(0, 1), . . . , σ
√

m Nm(0, 1)
)

(3)

as t →∞, where

Y i (t) = m

t

∫ i t/m

(i−1)t/m
Y (s) ds

is the i th batch mean for 1 ≤ i ≤ m, and N1(0, 1), . . . , Nm(0, 1) is a collection
of m independent and identically distributed (iid) normal rv’s with mean zero and
unit variance. (Note that (2) is the special case in which m = 1, so that (3) is
indeed a generalization of (2).) The continuous mapping principle (see, for example,
Billingsley 1999, p. 16) then guarantees that if σ 2 > 0, then

m1/2

(
1

m

m∑
i=1

Y i (t)− α
)

√√√√√ 1

m − 1

m∑
i=1

⎛
⎝Y i (t)− 1

m

m∑
j=1

Y j (t)

⎞
⎠

2
⇒ tm−1 (4)

as t → ∞, where tm−1 is a Student t rv with m − 1 degrees of freedom. Hence, if
one selects z so that P(−z ≤ tm−1 ≤ z) = 1− δ, then

P

(
−z ≤ m1/2( Y (t)− α )

sm(t)
≤ z

)
→ 1− δ
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as t →∞, where

sm(t) =

⎛
⎜⎝ 1

m − 1

m∑
i=1

⎛
⎝Y i (t)− 1

m

m∑
j=1

Y j (t)

⎞
⎠

2
⎞
⎟⎠

1/2

.

In other words,

P

(
α ∈

[
Y (t)− z

sm(t)√
m
, Y (t)+ z

sm(t)√
m

])
→ 1− δ (5)

as t →∞, so that

[
Y (t)− z

sm(t)√
m
, Y (t)+ z

sm(t)√
m

]

is an asymptotic 100(1 − δ)% confidence interval for α. This confidence interval
procedure is, not surprisingly, known as the method of batch means and is a widely
used method for constructing steady-state confidence intervals; see Fishman (1978)
for an early textbook discussion of the method of batch means. The above argument
establishes that the method of batch means is asymptotically valid whenever (3)
holds with σ 2 > 0.

This paper is devoted to developing general conditions for the validity of the
method of batch means. In Section 2, we review the existing state of the literature,
and discuss the validity of the method of batch means under a functional central
limit theorem hypothesis. Section 3 shows that when Y shift-couples to a stationary
version Y ∗, the validity of batch means for Y can be reduced to verifying validity for
Y ∗. Turning next to validity for Y ∗, Theorem 3 of Section 4 proves that the method
of batch means holds under a (non-functional) central limit theorem hypothesis,
provided that Y ∗ satisfies a condition closely related to the requirement of ergod-
icity. Finally, Section 5 applies the theory of Section 3 and 4 to prove the main
result of this paper, Theorem 5. Specifically, Theorem 5 proves that when Y is a
one-dependent regenerative process, then the method of batch means holds under a
simple (non-functional) central limit theorem.

2 Validity Based on a FCLT Hypothesis

Note that the TAVC σ appears in (3), whereas the unknown σ is not present in
(4). The reason, of course, is that the common factor σ appears in the limit dis-
tribution for both the numerator and denominator of the left-hand side of (4), so
that σ is “cancelled out.” Steady-state confidence interval procedures that are based
on cancellation of the TAVC σ are, not surprisingly, called “cancellation methods.”
In particular, steady-state confidence intervals based on “standardized time series”
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(as introduced by Schruben 1983) form a general class of cancellation methods, of
which batch means is a special case; see Glynn and Iglehart (1990) for a discussion
of the theory of standardized series.

As noted in Schruben (1983) and Glynn and Iglehart (1990), standardized time
series steady-state confidence intervals (and hence batch means) are asymptotically
valid when Y is presumed to satisfy a functional CLT (FCLT) with σ 2 > 0.

Definition 1 The process Y = (Y (t) : t ≥ 0) is said to satisfy a FCLT if there exist
(deterministic) constants α and σ such that

ε−1/2 Zε ⇒ σ B (6)

as ε ↓ 0 (where the weak convergence in (6) is with respect to the Skorohod
topology on the function space D[0,∞) of right-continuous functions with left
limits), with Zε defined as

Zε(t) = ε

(∫ t/ε

0
Y (s) ds − αt/ε

)

and where B is standard Brownian motion.

As noted above, the method of batch means provides an asymptotically valid
confidence interval (as specified via the limit theorem (5)) whenever Y satisfies a
FCLT with σ 2 > 0. (A direct proof of validity is also straightforward. Note that
g(x) = (x(1/m), x(2/m), . . . , x(1)) is a continuous mapping from D[0,∞) to Rm ,
so that the continuous mapping principle immediately establishes (3)).

A large class of discrete-event simulations can be represented as Markov process
simulations. Specifically, it is typically the case that Y (t) can then be represented as
Y (t) = f (X (t)), where X = (X (t) : t ≥ 0) is Markov and f : S → R is a given
performance measure. In the discrete-event setting, the Markov state X (t) at time
t must incorporate both the “physical state” of the system (e.g. the vector number-
in-system process) and the state of the future-event schedule (e.g. the remaining
time to the next scheduled event for each event type in the system). Under modest
conditions on the discrete-event simulation, the Markov process X is positive Harris
recurrent, and contains embedded regenerative structure; see Glynn and Haas (2006)
for definitions and details. In view of this fact, it is of significant interest to know
when a regenerative process satisfies a FCLT. (This easily translates into conditions
on the function f appearing in the representation Y (t) = f (X (t)).)

Definition 2 Let Y = (Y (t) : t ≥ 0) be a real-valued stochastic process. Then, Y is
(classically) regenerative if there exist random times 0 ≤ T (0) < T (1) < · · · such
that:

(i) W1,W2, . . . is a sequence of identically distributed random elements; and
(ii) W0,W1, . . . is a sequence of independent random elements,

where T (−1) = 0 and for i ≥ 0,
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Wi (t) =
{

Y (T (i − 1)+ t) , if 0 ≤ t < τi � T (i)− T (i − 1) ,
Δ , if t ≥ τi ,

(7)

with Δ chosen as a point not in R (for example, we can set Δ = (0, 0)). The regen-
erative process Y is said to be positive recurrent if Eτ1 <∞.

In the setting of such regenerative processes, we can provide a necessary and suf-
ficient condition for validity of the FCLT; see Theorem 1 of Glynn and Whitt (1993).
We assume throughout the remainder of this paper that:

Assumption A
∫ t

0 |Y (s)| ds <∞ a.s. for each t ≥ 0.

Theorem 1 Suppose that Y = (Y (t) : t ≥ 0) is a real-valued positive recurrent
classically regenerative process satisfying Assumption A. Then, there exists α and σ
such that

ε−1/2 Zε ⇒ σ B

as ε ↓ 0 (in the sense of weak convergence on D[0,∞)) if and only if

E

(∫ τ1

0
[Y (T (0)+ s)− α] ds

)2

<∞ (8)

and

t2 P

(
sup

0≤s≤τ1

∣∣∣∣
∫ s

0
[Y (T (0))+ u)− α] du

∣∣∣∣ > t

)
→ 0 as t →∞ . (9)

It follows that if Y is a positive recurrent classically regenerative process satisfying
A, then (3) is valid if and only if (8) and (9) hold, in which case the method of batch
means provides asymptotically valid confidence intervals.

3 Validity Based on a CLT Hypothesis: Reduction
to the Stationary Setting

In the next two sections, we prove that the method of batch means can be valid even
in situations in which the FCLT fails to be satisfied. In particular, we will prove that
the method of batch means is asymptotically valid under a CLT hypothesis, plus a
modest additional regularity condition.

We establish in this section that the validity of (3) can typically be reduced to the
setting in which Y is a stationary stochastic process. Let ‖ · ‖ be the total variation
norm defined by

‖P1 − P2‖ � sup{|P1(A)− P2(A)| : A is measurable} .
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Theorem 2 (i) Suppose that Y satisfies Assumption A and that there exists
Y ∗ = (Y ∗(t) : t ≥ 0) for which

∥∥∥∥
1

t

∫ t

0
P((Y (u + s) : u ≥ 0) ∈ · ) ds − P((Y ∗(u) : u ≥ 0) ∈ · )

∥∥∥∥ −→ 0

(10)
as t →∞. Then Y ∗ satisfies Assumption A, so that

∫ t

0
|Y ∗(s)| ds <∞ a.s.

for each t ≥ 0.

(ii) If Y satisfies Assumption A, (10), and there exists α and σ such that

t1/2

(
m

t

∫ t/m

0
[Y ∗(s)− α] ds, . . . ,

m

t

∫ t

(m−1)t/m
[Y ∗(s)− α] ds

)

⇒ (σ
√

m N1(0, 1), . . . , σ
√

m Nm(0, 1)) (11)

as t →∞, then Y = (Y (t) : t ≥ 0) satisfies (3).

Proof For part (i), note that Assumption A guarantees that

P

(∫ t

0
|Y (s)| ds <∞, t ∈ Q+

)
= 1 (12)

where Q+ is the set of nonnegative rational numbers. Since

∫ t

0
|Y (s)| ds

is clearly a nondecreasing function of t , it follows from (12) that

P

(∫ t

0
|Y (s)| ds <∞, t ∈ R+

)
= 1 , (13)

where R+ � [0,∞).
We next establish that the limit Y ∗ appearing in (10) must necessarily be station-

ary. To see this, we observe that for each γ ≥ 0,

P((Y ∗(u) : u ≥ 0) ∈ ·) = lim
t→∞

1

t

∫ t

0
P((Y (u + s) : u ≥ 0) ∈ · ) ds

= lim
t→∞

1

t + γ
∫ t+γ

0
P((Y (u + s) : u ≥ 0) ∈ · ) ds
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= lim
t→∞

1

t

∫ t+γ

γ

P((Y (u + s) : u ≥ 0) ∈ · ) ds

= lim
t→∞

1

t

∫ t

0
P((Y (u + s + γ ) : u ≥ 0) ∈ · ) ds

= P((Y ∗(u + γ ) : u ≥ 0) ∈ · ) .

Assumption (10) therefore ensures that Y shift-couples to Y ∗; see pp. 162 and 167
of Thorisson (2000). In particular, we can presume that Y and Y ∗ are defined on
a common probability space upon which two finite-valued rv’s T1 and T2 can be
defined, and for which

Y (T1 + u) = Y ∗(T2 + u) (14)

for u ≥ 0. Because Y ∗ is stationary,

P

(∫ t

0
|Y ∗(s)| ds > c

)
= P

(∫ γ+t

γ

|Y ∗(s)| ds > c

)

for γ ≥ 0. Hence,

P

(∫ t

0
|Y ∗(s)| ds > c

)
≤ P

(∫ γ+t

γ

|Y ∗(s)| ds > c, T2 ≤ γ
)
+ P(T2 > γ )

≤ P

(∫ T2+γ+t

T2

|Y ∗(s)| ds > c

)
+ P(T2 > γ )

= P

(∫ T1+γ+t

T1

|Y (s)| ds > c

)
+ P(T2 > γ ) (due to (14))

≤ P

(∫ T1+γ+t

0
|Y (s)| ds > c

)
+ P(T2 > γ ) .

It is therefore evident from (13) that

lim sup
c→∞

P

(∫ t

0
|Y ∗(s)| ds > c

)
≤ P(T2 > γ ) .

Since γ ≥ 0 was arbitrary, we can now send γ ↓ 0 to conclude that

lim sup
c→∞

P

(∫ t

0
|Y ∗(s)| ds > c

)
= 0 . (15)

So, Assumption A is satisfied by Y ∗.
Turning next to part (ii), we shall prove (3) when m = 1; the proof for general m

is essentially identical (but with a higher notational burden). Put Yc(t) = Y (t) − α,
Y ∗

c (t) = Y ∗(t)− α, and a ∧ b � min (a, b) for a, b ∈ R. Then,
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t−1/2
∫ t

0
Yc(s) ds = t−1/2

∫ t∧T1

0
Yc(d) ds + t−1/2

∫ t

T1

Yc(s) ds I (T1 ≤ t)

= t−1/2
∫ t∧T1

0
Yc(d) ds + t−1/2

∫ t−T1

0
Yc(T1 + s) ds I (T1 ≤ t)

= t−1/2
∫ t∧T1

0
Yc(d) ds + t−1/2

∫ t−T1

0
Y ∗

c (T2 + s) ds I (T1 ≤ t)

= t−1/2
∫ t∧T1

0
Yc(d) ds + t−1/2

∫ t+T2−T1

T2

Y ∗
c (s) ds I (T1 ≤ t)

= t−1/2
∫ t∧T1

0
Yc(d) ds + t−1/2 I (T1 ≤ t)×

(∫ t

0
Y ∗

c (s) ds

−
∫ T2

0
Y ∗

c (s) ds +
∫ t+T2−T1

t
Y ∗

c (s) ds

)
.

Clearly,

∣∣∣∣t−1/2
∫ t∧T1

0
Yc(s) ds

∣∣∣∣ ≤ t−1/2
∫ T1

0
|Yc(s)| ds ⇒ 0 (16)

as t →∞, because (13) implies that
∫ T1

0 |Yc(s)| ds <∞ a.s. in view of the finiteness
of T1.

Furthermore, on {T1 ≤ r, T2 ≤ r},
∣∣∣∣t−1/2

∫ t+T2−T1

0
Y ∗

c (s) ds

∣∣∣∣ ≤ t−1/2
∫ t+r

t−r
|Y ∗

c (u)| du

D= t−1/2
∫ 2r

0
|Y ∗

c (u)| du ⇒ 0 , (17)

where
D= denotes “equality in distribution” and (15) was used in the final step. So,

P

(
t−1/2

∫ t

0
Yc(s) ds ≤ x

)

= P

(
t−1/2

∫ t

0
Yc(s) ds ≤ x, T1 ≤ r, T2 ≤ r

)
+ P(T1 > r )+ P(T2 > r )

≤ P

(
t−1/2

∫ t∧T1

0
Yc(s) ds + t−1/2

∫ t

0
Y ∗

c (s) ds I (T1 ≤ t)

− t−1/2
∫ t+r

t−r
|Y ∗

c (u)| duI (T1 ≤ t) ≤ x

)
+ P(T1 > r )+ P(T2 > r ) .
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Exploiting (11), (16), and (17) yields

lim sup
t→∞

P

(
t−1/2

∫ t

0
Yc(s) ds ≤ x

)

≤ P(σN (0, 1) ≤ x)+ P(T1 > r )+ P(T2 > r ) .

Since r ≥ 0 was arbitrary, we can send r ↓ 0 to conclude that

lim sup
t→∞

P

(
t−1/2

∫ t

0
Yc(s) ds ≤ x

)
≤ P(σN (0, 1) ≤ x) .

A similar argument proves that

lim inf
t→∞ P

(
t−1/2

∫ t

0
Yc(s) ds ≤ x

)
≥ P(σN (0, 1) ≤ x) ,

proving part (ii) of the theorem for m = 1. �
We note that the proof establishes that the limit process Y ∗ appearing in (10)

must necessarily be a stationary process. We conclude this section by showing that
in typical discrete-event simulation contexts, we can expect (10) to be a relatively
benign hypothesis.

Any one-dependent regenerative process for which Eτ1 < ∞ automatically
satisfies (10); see Glynn and Sigman (1992) for details. Since all Markov pro-
cesses that are positive recurrent in the sense of Harris fall into this class (see
Sigman 1990), (10) also holds for this important class of processes. As noted earlier,
such Harris recurrence broadly applies to discrete-event simulations; see Glynn and
Haas (2006).

4 Validity Based on a CLT Hypothesis: The Main Result

The discussion of Section 3 permits us to presume that we can reduce our analysis
to that of a stationary process Y ∗ = (Y ∗(t) : t ≥ 0). Without loss of generality, we
can extend Y ∗ to a two-sided version (Y ∗(t) : −∞ < t <∞). Our next result is the
main theorem in this paper. It shows that the method of batch means is valid when
Y ∗ satisfies the CLT, plus a modest additional regularity condition (namely (18)).

Theorem 3 Suppose that Y ∗ satisfies Assumption A and that

sup

{∣∣∣∣
1

t

∫ t

0
P
(
(Y ∗(r ) : r ≤ 0) ∈ B1, (Y ∗(s + u) : u ≥ 0) ∈ B2

)
ds

− P ((Y ∗(r ) : r ≤ 0) ∈ B1) P ((Y ∗(u) : u ≥ 0) ∈ B2)

∣∣∣∣ : B1, B2 measurable

}

→ 0 as t →∞ . (18)
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If Y ∗ satisfies the CLT (2), then Y ∗ also automatically satisfies (3) for each m ≥ 1.

Proof To simplify the proof notationally, we specialize to the setting where
m = 2; the proof for general m is essentially identical. Note that the stationarity of
Y ∗ implies that

P

(
t−1/2

∫ t

0
Y ∗

c (s) ds ≤ x, t−1/2
∫ 2t

t
Y ∗

c (s) ds ≤ y

)

= P

(
t−1/2

∫ 0

−t
Y ∗

c (s) ds ≤ x, t−1/2
∫ t

0
Y ∗

c (s) ds ≤ y

)
. (19)

Furthermore, according to (18), for each ε > 0, there exists r0 such that

∣∣∣∣
1

r0

∫ r0

0
P

(
t−1/2

∫ 0

−t
Y ∗

c (u) du ≤ x, t−1/2
∫ s+t

s
Y ∗

c (u) du ≤ y

)
ds

−P

(
t−1/2

∫ 0

−t
Y ∗

c (u) du ≤ x

)
P

(
t−1/2

∫ t

0
Y ∗

c (u) du ≤ y

)∣∣∣∣ < ε (20)

uniformly in t > 0 and x, y ∈ R.
In addition, the following inequalities hold uniformly in s ∈ [0, r0] and δ > 0:

P

(
t−1/2

∫ 0

−t
Y ∗

c (u) du ≤ x, t−1/2
∫ t

0
Y ∗

c (u) du ≤ y

)

= P

(
t−1/2

∫ 0

−t
Y ∗

c (u) du ≤ x, t−1/2
∫ s+t

s
Y ∗

c (u) du + t−1/2
∫ s

0
Y ∗

c (u) du

− t−1/2
∫ t+s

t
Y ∗

c (u) du ≤ y

)

≤ P

(
t−1/2

∫ 0

−t
Y ∗

c (u) du ≤ x, t−1/2
∫ s+t

s
Y ∗

c (u) du ≤ y + 2δ,

t−1/2
∫ s

0
Y ∗

c (u) du ≤ δ, t−1/2
∫ t+s

t
Y ∗

c (u) du ≥ −δ
)

+P

(
t−1/2

∫ s

0
Y ∗

c (u) du > δ

)
+ P

(
t−1/2

∫ t+s

t
Y ∗

c (u) du < −δ
)

≤ P

(
t−1/2

∫ 0

−t
Y ∗

c (u) du ≤ x, t−1/2
∫ s+t

s
Y ∗

c (u) du ≤ y + 2δ

)

+P

(
t−1/2

∫ r0

0

∣∣Y ∗
c (u)

∣∣ du > δ

)
+ P

(
t−1/2

∫ t+r0

t

∣∣Y ∗
c (u)

∣∣ du > δ

)

≤ P

(
t−1/2

∫ 0

−t
Y ∗

c (u) du ≤ x, t−1/2
∫ s+t

s
Y ∗

c (u) du ≤ y + 2δ

)

+2P

(
t−1/2

∫ r0

0

∣∣Y ∗
c (u)

∣∣ du > δ

)
(using the stationarity of Y ) . (21)
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Hence,

P

(
t−1/2

∫ 0

−t
Y ∗

c (u) du ≤ x, t−1/2
∫ t

0
Y ∗

c (u) du ≤ y

)

= 1

r0

∫ r0

0
P

(
t−1/2

∫ 0

−t
Y ∗

c (u) du ≤ x, t−1/2
∫ t

0
Y ∗

c (u) du ≤ y

)
ds

≤ 1

r0

∫ r0

0
P

(
t−1/2

∫ 0

−t
Y ∗

c (u) du ≤ x, t−1/2
∫ s+t

s
Y ∗

c (u) du ≤ y + 2δ

)
ds

+2P

(
t−1/2

∫ r0

0

∣∣Y ∗
c (u)

∣∣ du > δ

)
(using (21))

≤ P

(
t−1/2

∫ 0

−t
Y ∗

c (u) du ≤ x

)
P

(
t−1/2

∫ t

0
Y ∗

c (u) du ≤ y + 2δ

)
+ ε

+2P

(
t−1/2

∫ r0

0

∣∣Y ∗
c (u)

∣∣ du > δ

)
(using (20))

= P

(
t−1/2

∫ t

0
Y ∗

c (u) du ≤ x

)
P

(
t−1/2

∫ t

0
Y ∗

c (u) du ≤ y + 2δ

)
+ ε

+2P

(
t−1/2

∫ r0

0

∣∣Y ∗
c (u)

∣∣ du > δ

)
(using the stationarity of Y ) . (22)

It follows from (19), (22), and Assumption A that

lim sup
t→∞

P

(
t−1/2

∫ t

0
Y ∗

c (u) du ≤ x, t−1/2
∫ 2t

t
Y ∗

c (u) du ≤ y

)

≤ lim sup
t→∞

P

(
t−1/2

∫ t

0
Yc(u) du ≤ x

)
P

(
t−1/2

∫ t

0
Y ∗

c (u) du ≤ y + 2δ

)

+ ε + 2P

(
t−1/2

∫ r0

0

∣∣Y ∗
c (u)

∣∣ du > δ

)
(using (22))

≤ P (σN (0, 1) ≤ x) P (σN (0, 1) ≤ y + 2δ)+ ε (using (2)) .

Sending δ ↓ 0 and then ε ↓ 0 provides the inequality

lim sup
t→∞

P

(
t−1/2

∫ t

0
Y ∗

c (u) du ≤ x, t−1/2
∫ 2t

t
Y ∗

c (u) du ≤ y

)

≤ P (σN (0, 1) ≤ x) P(σN (0, 1) ≤ y) .

A similar argument establishes that
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lim inf
t→∞ P

(
t−1/2

∫ t

0
Y ∗

c (u) du ≤ x, t−1/2
∫ 2t

t
Y ∗

c (u) du ≤ y

)

≥ P (σN (0, 1) ≤ x) P(σN (0, 1) ≤ y) ,

proving the theorem. �
We note that (18) implies that

sup

{∣∣∣∣
1

t

∫ t

0
P
(
(Y ∗(r ) : r ≤ 0) ∈ B1, (Y ∗(s + u) : u ≥ 0) ∈ B2

)
ds (23)

− P
(
(Y ∗(r ) : r ≤ 0) ∈ B1, (Y ∗(u) : u ≥ 0) ∈ B2

) ∣∣∣∣ : B2 measurable

}
→ 0

as t → ∞, for each fixed (measurable) B1, so that (18) implies Cesaro mixing;
see p. 199 of Thorisson (2000) for the definition (and the remark concerning the
need to verify (23) only for finite-dimensional sets B1). As a consequence of The-
orem 2.2 of Chapter 6 of Thorisson (2000), this is equivalent to asserting that the
invariant σ -algebra of Y ∗ is trivial. Of course, since Y ∗ is stationary, triviality of the
invariant σ -algebra is equivalent to ergodicity of Y ∗. In other words, (23) (which is
a slight weakening of (18)) is equivalent to asserting that Y ∗ is an ergodic stationary
stochastic process.

We further note that the condition (18) is weaker than requiring that Y ∗ is mixing.
All mixing conditions that are present in the literature minimally require that

P
(
(Y ∗(r ) : r ≤ 0) ∈ B1, (Y ∗(s + u) : u ≥ 0) ∈ B2

)

→ P((Y ∗(r ) : r ≤ 0) ∈ B1)P((Y ∗(u) : u ≥ 0) ∈ B2) (24)

as s → ∞ for each (measurable) B1, B2. But (24) precludes stationary stochastic
processes that exhibit periodic behavior (e.g. all periodic positive recurrent Harris
chains violate (24)). Our formulation of (18) as a (slight) strengthening of Cesaro
mixing (which is equivalent to ergodicity) is intended to permit easy application
of our results to generic stationary processes, regardless of whether the process is
periodic or not.

5 Validity Based on a CLT Hypothesis: Specializing the Results
to the Regenerative Setting

As argued in Section 2, the typical discrete-event simulation can be viewed as the
simulation of a corresponding Markov process. Under modest conditions on the
simulation, the Markov process is positive recurrent in the sense of Harris. Such
a Markov process contains embedded regenerative structure under which Y is a
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one-dependent regenerative process. Specifically, the cycle variables W0,W1, . . .

then satisfy Definition 2, part (i); and Definition 2, part (ii) is replaced by:

(ii′) W0,W1, . . . is a one-dependent sequence of random elements (so that (W0,W1,

. . . ,Wi−1) is independent of (Wi+1,Wi+2, . . . ) for i ≥ 1).

Theorem 4 Let Y ∗ = (Y ∗(t) : −∞ < t < ∞) be a stationary one-dependent
positive recurrent regenerative process. Then (18) is automatically satisfied. Fur-
thermore, if

∫ τ1

0
|Y ∗(τ (0)+ s)| ds <∞ a.s. , (25)

then Assumption A is satisfied by Y ∗.

Proof Let f and g be two nonnegative (measurable) functions that are bounded by
one in absolute value. It is a standard fact in the theory of Palm processes that

Eg(Y ∗(u) : u ≥ 0) = λEΓ1(g)

where λ = 1/Eτ1 and

Γ j (g) �
∫ τ j

0
g(Y ∗(T ( j − 1)+ s)) ds

for j ≥ 1; see for example, Thorisson (2000).
Furthermore, because the sequence (Wn : n ≥ 0) is one-dependent, it follows

from the strong law of large numbers for iid sequences that

1

n

n−1∑
j=0

τ2 j → Eτ1 a.s.

and

1

n

n−1∑
j=0

τ2 j+1 → Eτ1 a.s.

as n →∞ so that

1

n

n−1∑
j=0

τ j → Eτ1 a.s.

as n →∞. Hence, if N (t) = max{n ≥ −1 : T (n) ≤ t}, the inequality
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T (N (t))

N (t)
≤ t ≤ T (N (t)+ 1)

N (t)+ 1
· N (t)+ 1

N (t)

implies that

N (t)

t
→ λ a.s. (26)

as t →∞.
It follows that for each ε > 0,

E f (Y ∗(r ) : r ≤ 0)
1

t

∫ t

0
g(Y ∗(s + u) : u ≥ 0) ds

− E f (Y ∗(r ) : r ≤ 0)Eg(Y ∗(u) : u ≥ 0)

≤ E f (Y ∗(r ) : r ≤ 0)
1

t

∫ T (0)∧t

0
g(Y ∗(s + u) : u ≥ 0) ds

+E f (Y ∗(r ) : r ≤ 0)
1

t

N (t)+1∑
j=1

Γ j (g)− λE f (Y ∗(r ) : r ≤ 0)EΓ1(g)

(since g is nonnegative)

≤ E(T (0) ∧ t)
1

t
+ E f (Y (r ) : r ≤ 0)

1

t

�(λ+ε)t�∑
j=1

Γ j (g)

−λE f (Y ∗(r ) : r ≤ 0)EΓ1(g)+ P(N (t) ≥ (λ+ ε)t)
(since f and g are bounded by one)

≤ E(T (0) ∧ t)
1

t
+ E f (Y ∗(r ) : r ≤ 0)Γ1(g)

1

t

+�(λ+ ε)t�1

t
E f (Y ∗(r ) : r ≤ 0)EΓ1(g)

−λE f (Y ∗(r ) : r ≤ 0)EΓ1(g)+ P(N (t) ≥ (λ+ ε)t)
≤ E(T (0) ∧ t)

1

t
+ Eτ1 · 1

t
(using the one-dependence and identical distribution property of the cycles)

+
(
ε + 1

t

)
λE f (Y ∗(r ) : r ≤ 0)EΓ1(g)+ P(N (t) ≥ (λ+ ε)t)

≤ E(T (0) ∧ t)
1

t
+
(
ε + 1

t

)
+ P(N (t) ≥ (λ+ ε)t)+ 1

t
Eτ1

(since f and g are bounded by one).

Note that (T (0) ∧ t)/t converges a.s. to zero and is bounded by one, so that the
Bounded Convergence Theorem ensures that t−1 E(T (0) ∧ t) → 0. Also, (26)



Asymptotic Validity of Batch Means Steady-State Confidence Intervals 101

guarantees that P(N (t) ≥ (λ+ ε)t) → 0 as t →∞. Hence, by sending t →∞ and
then ε ↓ 0, we conclude that

lim sup
t→∞

sup
{

E f (Y ∗(r ) : r ≤ 0)
1

t

∫ t

0
g(Y ∗(s + u) : u ≥ 0) ds

− E f (Y ∗(r ) : r ≤ 0)Eg(Y ∗(u) : u ≥ 0) :

f, g are (measurable) functions bounded by one
}
≤ 0 .

A similar argument proves that

lim inf
t→∞ inf

{
E f (Y ∗(r ) : r ≤ 0)

1

t

∫ t

0
g(Y ∗(s + u) : u ≥ 0) ds

− E f (Y ∗(r ) : r ≤ 0)Eg(Y ∗(u) : u ≥ 0) :

f, g are (measurable) functions bounded by one
}
≥ 0 ,

thereby proving (18).
To prove Assumption A, note that for any c ≥ 0,

P

(∫ T (0)

0
|Y ∗(s)| ds > c

)

= λE
∫ τ1

0
I

(∫ τ1

s
|Y ∗(T (0)+ u)| du > c

)
ds

(using Palm theory)

≤ λE
∫ τ1

0
I

(∫ τ1

0
|Y ∗(T (0)+ u)| du > c

)
ds

= λEτ1 I

(∫ τ1

0
|Y ∗(T (0)+ u)| du > c

)
.

In light of (25), the Dominated Convergence Theorem therefore proves that

lim
c→∞ P

(∫ T (0)

0
|Y ∗(s)| ds > c

)
= 0 ,

so that

∫ T (0)

0
|Y ∗(s)| ds <∞ a.s.

Since (25) also guarantees that

∫ T (k)

T (k−1)
|Y ∗(u)| du <∞ a.s. ,
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it is evident that

∫ T (k)

0
|Y ∗(u)| du <∞

for k ≥ 0, proving Assumption A. �
We now focus on the implications of our theory for one-dependent regenerative

processes.

Proposition 1 (i) Let Y ∗ = (Y ∗(t) : t ≥ 0) be a stationary one-dependent positive
recurrent regenerative process. Then, Y ∗ satisfies Assumption A if and only if

∫ τ1

0
|Y ∗(T (0)+ s)| ds <∞ a.s. (27)

(ii) Let Y = (Y (t) : t ≥ 0) be a one-dependent positive recurrent regenerative
process. Then, Y satisfies Assumption A if and only if

∫ T (0)

0
|Y (s)| ds <∞ a.s. (28)

and
∫ τ1

0
|Y (T (0)+ s)| ds <∞ . (29)

Proof We start with (ii). If Assumption A is in force, then the proof of Theorem 2
shows that

P

(∫ t

0
|Y (s)| ds <∞ for each t ≥ 0

)
= 1 .

Since the T ( j)’s are finite-valued, it follows that

∫ T (1)

0
|Y (s)| ds <∞ a.s. ,

proving (28) and (29). Conversely, if (29) holds, then

∫ T ( j)

T ( j−1)
|Y (s)| ds <∞ a.s.

for each j ≥ 1, so that (28) shows that
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∫ T (n)

0
|Y (s)| ds <∞ a.s.

for each n ≥ 1. Since T (n) →∞ a.s., we may conclude that Assumption A is valid.
As for part (i), Theorem 4 shows that (27) implies (28) for the process Y ∗. Fur-

thermore,

∫ τ1

0
|Y ∗(T (0)+ s)| ds

D=
∫ τ1

0
|Y (T (0)+ s)| ds ,

so (29) is also validated. Hence, part (ii) can be applied to prove the result. �
Implicit in assuming the CLT (2) for the process Y is the presumption that Y is

a.s. integrable over finite intervals [0, t]. In view of Theorems 2, 3, and 4, we have
therefore proved the following result.

Theorem 5 Let Y = (Y (t) : t ≥ 0) be a positive recurrent one-dependent regener-
ative process. Then, (2) holds if and only if (3) is valid.

Corollary 1 Suppose that Y (t) = f (X (t)), where X = (X (t) : t ≥ 0) is an S-
valued Markov process that is positive recurrent in the sense of Harris and where
f : S → R. Then (2) holds for Y = (Y (t) : t ≥ 0) if and only if (3) is valid.

Proposition 2 and Corollary 1 show that when σ 2 > 0, the method of batch
means provides asymptotically valid confidence intervals for positive recurrent one-
dependent processes and for positive recurrent Harris processes whenever Y satisfies
a CLT. In particular, the FCLT is not required to establish validity of the method of
batch means.

It has been shown in Glynn and Whitt (2002) that the conditions required for
validity of a CLT in the classically regenerative context are strictly weaker than those
associated with the FCLT. Specifically, Y satisfies the CLT (2) under Assumption A
if and only if (8) holds. So condition (9) is the extra condition required to ensure
a FCLT. Examples of processes satisfying (8) but not (9) are easy to construct; see
Glynn and Whitt (2002).

Our discussion therefore establishes that the method of batch means is valid
under the weakest possible conditions (namely, the assumption of a CLT). In con-
trast, it can easily be shown that the validity of general standardized time series
confidence interval methods (specifically those that look at the maximum of the
standardized time series) fundamentally relies on the FCLT assumption. Hence,
we may conclude that the method of batch means is the standardized time series
confidence interval procedure that is most generally applicable.

Acknowledgments The authors wish to thank the reviewer for the suggestions made to improve
the readability of this paper.
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Efficient Modeling of Delays in Discrete-Event
Simulation

James O. Henriksen

Abstract Efficient modeling of delay conditions is a critical requirement of modern
discrete-event simulation software. In this article four forms of delay are discussed:
time-based, state-based, compound combinations of time-based and state-based, and
user-managed. Most of the algorithms described are those used by the SLX simu-
lation language. An informal survey of SLX users provides many examples of the
demands placed on delay mechanisms and the resultant performance of the SLX
models.

1 Introduction

This paper describes efficient modeling of delay conditions in discrete-event simu-
lation software. Four forms of delay are discussed: time-based, state-based, com-
pound combinations of time-based and state-based, and user-managed. Of these
forms, only time-based delays have received significant attention in the discrete-
event simulation literature. Time-based delays are modeled using event lists, and the
number of papers that have been written about event list algorithms is quite large.
Furthermore, an event list is a specialized form of priority queue, and the number
of papers published on priority queue algorithms is vast. The remaining three forms
of delay have received scant attention. Notable exceptions include Schriber (1990),
Ståhl (1998), Crain and Brunner (1990), and Henriksen (1981).

Much of the material in this paper is drawn from experience with the SLX
simulation language (Henriksen 2000). Most of the algorithms described are those
used by SLX, and many of the examples of demands placed on delay mechanisms
and resultant performance have been gathered through an informal survey of SLX
users.

In Section 2, an overview of the four forms of delays is presented. Section
3 considers the impact of modeling world-view and simulation-tool architecture
on demands placed on delay mechanisms, and Section 4 considers the impact of
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application characteristics and modeling style. Sections 5–8 describe the design
and implementation of each of the four forms of delay. Finally, Section 9 presents
striking examples of the use of delay mechanisms, followed by conclusions in
Section 10.

2 The Four Forms of Delays

Discrete-event simulation models describe the behavior of components of a system
over a sequence of instants of time. System components are usually modeled using
some form of object, with the available forms of objects highly dependent on the
software used to do the modeling. In the remainder of this paper, we will simply use
the term object to refer to all these forms. Objects can be active or passive, depend-
ing on the world-view of the modeling tool and, within the world-view, modeler
preference. Active objects flow through a model, interacting with one another and
competing for control of passive objects. Active objects have executable behavior
patterns, while passive objects are only acted upon by other active objects. The
earliest widely used simulation language that incorporated the use of active objects
was GPSS (Schriber 1990). In GPSS, active objects have a single, generic form and
are called transactions. The transaction-flow world-view has been widely adopted
by a number of simulation tools.

In a simplistic model of a grocery store, customers could naturally be described
as active objects, while a butcher could naturally be modeled as a passive object,
responding only to requests for service. In a more realistic model, a butcher would
not only respond to requests for service, but carry out a number of activities, such as
cutting meat, rearranging display cases, cooperating with the deli, etc. The more
realistic depiction of the butcher is far more easily represented using an active
object.

Simulation languages that include active objects contain statements that request
or imply delays in the execution of the active objects’ behavior patterns, while
graphically-based simulation tools contain pictorial building blocks for the same
purpose. When an active object is delayed, it is suspended at the current point in
its behavior pattern, and it resumes execution at a later point in simulated time.
Resumption can be implicitly triggered by the simulation executive or explicitly
triggered by other active objects. During the execution of its behavior pattern, an
active object can undergo exactly four forms of delay. These forms are discussed in
Sections 2.1–2.4.

Passive objects have no executable behavior patterns, so suspension and resump-
tion of their activities that take place over time must be carried out by other, active
objects. For example, if jobs in a jobshop are modeled as passive objects, an active
object executing an arrival process could create passive job objects and place them
into a queue, and active objects executing server processes could remove the jobs
from the queue. Delays such as “wait for queue nonempty” are incurred by the active
objects that manipulate the passive objects.



Efficient Modeling of Delays in Discrete-Event Simulation 107

In the event-scheduling world-view, there are no active objects in the sense
we have defined, so delays must be modeled in a different fashion, described in
Section 3.2.

2.1 Scheduled Delays

Scheduled (or time-based) delays take the form “wait Δt ,” where Δt is often deter-
mined by sampling from a probability distribution. Scheduled delays are prototyp-
ically used to model service time intervals and interarrival times. Resumption of
scheduled delays is managed by a simulation executive. (We use the term simulation
executive to describe the software under whose control simulation applications run.)
The set of all currently scheduled delays is called an event list or event set.

2.2 State-Based Delays

State-based delays take the form “wait until Boolean expression is true.” Delays of
this form are commonly used to control access to servers, e.g., “wait until server is
idle.” The variables used in the Boolean expression are state variables, which can be
visible, user-declared variables, or hidden, implicit variables, or a mixture thereof,
depending on the simulation tool used. Resumption of the execution of an active
object undergoing a state-based delay can be accomplished in a variety of ways.
The simplest and least efficient approach is polling, in which the Boolean condition
is reevaluated one or more times during each instant of simulated time until the
condition becomes true (“Can you hear me now?”), at which point the simulation
executive allows the active object to resume. A near-optimal algorithm for managing
state-based delays is presented in Section 6.

2.3 Compound Delays

Compound delays include both a time-based delay and a state-based delay. Such
delays are completed either as the result of the passage of time (the time-based
portion) or as the result of a condition becoming true (the state-based portion).
Compound delays are extremely useful for representing a wide range of system
component behavior. For example, reneging can be described as a compound delay,
e.g. “wait until a server is available or the maximum tolerable queuing time has
elapsed.” Oddly enough, although compound delays are a very convenient model-
ing construct, very few simulation tools directly provide generic support for them.
Compound delays are useful in modeling material-handling systems. For example,
if an object is placed on a conveyor belt that moves at constant speed, we can
easily compute the time required for the object to travel from point A to point B
and express the delay as “wait until time = calculated arrival time at B or some
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‘special’ event occurs.” The special event that most easily comes to mind is a
conveyor stoppage.

2.4 User-Managed Delays

User-managed delays for active objects take the form “put an active object (almost
always the currently executing active object) to sleep in a manner such that it can
be subsequently awakened by another active object.” Delays of this form are often
used to describe system operating rules in situations where time-based, state-based,
and compound delays cannot describe the required behavior, or if using them would
result in inefficient model execution. For example, in a jobshop model in which the
scheduling discipline is “most imminent deadline,” server queues could be imple-
mented as sets of active objects representing jobs ranked by ascending deadline.
Arriving jobs could be modeled as active objects that place themselves into a ranked
set and “sleep” until awakened by a server process. When a user-managed delay
is completed, resumption of an active object’s behavior pattern is triggered by an
explicit “awaken” verb executed by another active object.

3 Demands Imposed by World-View and Simulation Tool
Architecture

3.1 Introduction

The majority of this paper focuses on implementation of delay mechanisms for
active objects; however, the relevance of implementation quality depends on which
mechanisms are actually used in a model and the extent of their usage. These in turn
depend on the characteristics of the system being modeled, the world-view of the
modeling tool, and the style of modeling embraced within the world-view. These
properties collectively determine the demands placed on delay mechanisms. This
paper carefully considers such demands.

The world-view embodied in a simulation tool and the architecture of the imple-
mentation of the world-view can have a profound impact on the demands placed
on mechanisms for expressing and implementing delays in a simulation software
package. In the next three sections, we examine the impacts of three different world-
views/architectures on delay management.

3.2 The Event-Scheduling World-View

The simplest and oldest simulation world-view is the event-scheduling world-view.
In this world-view, systems are described using event routines that are called by
a central timing routine. The hallmark of this world-view is that all event routines
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execute in zero simulated time. Execution cannot be suspended in the middle of an
event routine (or anywhere else, for that matter) and resumed later. Any activity that
takes place over simulated time must be described by scheduling “start” and “end”
events. Processes that take place over time must be described as a collection of event
routines, each of which models one or more changes in the state of one or more
system components. For complex processes, process flow can become obscured,
because the sequence in which events occur is not obvious.

For the implementer of an event-scheduling simulation package, implementation
is simplified by the absence of any suspend-and-resume constructs. Their absence
implies all model execution can be accomplished by function calls, each of which
models behavior at a particular instant in time. No matter how many levels of func-
tion call may take place as the result of calling an event routine, execution always
returns to the timing routine in zero simulated time. Virtually any procedural lan-
guage can be used to implement the event-scheduling world-view. In the early days
of discrete-event simulation, software such as GASP and the original SIMSCRIPT
were popular event-scheduling tools.

Consider how one would model a single-waiting-line, single-server queuing sys-
tem under the event-scheduling world-view. In this simple queuing system, there are
five types of events:

• Customer Arrival
• Start-of-Service
• End-of-Service
• Customer Exit
• End-of-Simulation

Upon further examination, the start-of-service and customer exit events can be
subsumed by the customer arrival and end-of-service events. The logic of the model
would be as follows:

Main Program

• Schedule the first arrival event.
• Schedule the end-of-simulation event.
• Turn control over to the timing routine.
• When the timing routine returns, exit.

Arrival Event

• Schedule a successor arrival event.
• If the server is idle, mark the server as busy and schedule an end-of-service event;

otherwise, place the current customer into a data structure representing the server
queue.

• Return to the timing routine.

End-of-Service Event

• If the queue is nonempty, remove the first customer from the queue and schedule
an end-of-service event for him/her; otherwise, mark the server as idle.
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• Return to the timing routine.

End-of-Simulation Event

• Print statistics and tell the timing routine that execution is over.

For the implementer of an event-based simulation package, the only challenges
are implementing a “schedule” verb and an efficient event list algorithm to support
it, and to provide adequate capabilities for constructing and managing data struc-
tures in which pending, but currently unscheduled, events are stored.

3.3 The Transaction-Flow World-View

In the transaction-flow world-view, active objects (transactions) travel through a
program, competing for passive objects. In its lifetime, a transaction can undergo
time-based (scheduled), state-based, or user-managed delays. Many simulation tools
embodying the transaction flow world-view have no direct provision for compound
delays; i.e., they have no “wait until” statements. This is not due to any inherent
weakness in the world-view; rather it reflects the manner in which “traditional”
implementations of the world-view have been constructed. Modeling compound
delays can entail additional end-user programming. For example, reneging (as dis-
cussed in Section 2.3) can be modeled by cloning a transaction, having the original
transaction undergo a time delay and its clone undergo a state-based delay, and
implementing logic that distinguishes which of the two transactions completes its
delay first and allows the “winner” to proceed and the “loser” to exit gracefully.

In the transaction-flow world-view, time-based delays are modeled using a sin-
gle statement whose form is “advance Δt .” State-based delays are provided in two
forms: so-called unique blocking conditions and nonunique blocking conditions.

The prototypical transaction-flow language GPSS provides a multiplicity of
statements for predefined unique blocking conditions. For example, two different
statements, “seize” and “enter,” are used to attempt to capture servers with unit
capacity and capacity N , respectively. The internal logic of such statements, hidden
from users, is quite similar to the user-coded logic for the queuing model sketched
for the event-scheduling world-view in Section 3.1. In GPSS parlance, transac-
tions waiting for unique blocking conditions are placed into delay chains. When
a state change affecting transactions experiencing a unique blocking condition takes
place, all transactions on the delay chain associated with the blocking condition are
removed from the delay chain and placed on the current events chain. For example,
the GPSS “release” and “leave” statements, which relinquish a single server and
relinquish N (often 1) units of a multiple server, respectively, effectively transfer
any transactions waiting on a delay chain associated with a server to the current
events chain. Reactivated transactions are subsequently “picked up” by the GPSS
simulation executive, and they retest their blocking conditions.
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GPSS also provides several forms of nonunique blocking conditions. Each of
these is implemented by polling. Delayed transactions remain on GPSS’s current
events chain, and their delay conditions are reevaluated every time they are encoun-
tered by the GPSS simulation executive. This will occur at least once per instant
of simulated time. Since many state changes in GPSS force rescanning of the cur-
rent events chain (in order to make sure that all relieved blocking conditions are
recognized at the same instant they are relieved), it is common for transactions
in nonunique blocking conditions to be processed more than once per instant of
simulated time.

From the user’s standpoint, the transaction flow world-view is vastly superior to
the event-scheduling world-view. In contrast to the event-scheduling world-view,
process flow is readily apparent. Since delays occur only at well-defined points
(statements that can delay transaction flow), a process’s, wait, execute, wait, execute,
. . . sequence is also readily apparent. Furthermore, since the management of delay
chains is performed by the simulation executive, users are relieved of the burden of
having to supply the kind of logic shown in Section 3.1.

The flip side of the transaction-flow world-view is that while easy to use, it can
make it easy to unknowingly construct models that execute very inefficiently. For
example, consider a GPSS queuing model in which up to 1,000 transactions compete
for a single server simultaneously. If one transaction owns a server, and 999 transac-
tions are on a delay chain for that server, when the server is freed, GPSS allows all
999 delayed transactions to reattempt to acquire the server. One of these transactions
will succeed in acquiring the server, and 998 will fail, resulting in horrendous over-
head. This characteristic of GPSS is well known and has been described by many
authors (Schriber 1990, Ståhl 1998, Crain and Brunner 1990, Henriksen 1981). For
nonunique blocking conditions, the situation is potentially much worse, since such
conditions are in many cases retested more than once per instant of simulated time,
as opposed to being tested only when a blocking condition changes.

For both designers and users of a simulation package, ease-of-use is a double-
edged sword. While it is convenient to have easy-to-use features, features that
“silently” lead to inefficient execution when abused are a dirty trick. SLX, described
in the next section, provides feedback that makes it easy to detect such inefficiencies.

In the transaction-flow world-view, the cure for inefficient execution of state-
based delays is resorting to user-managed delays, as exemplified by GPSS’s user
chains. When built-in algorithms for managing state-based delays result in poor
execution, more intelligent delay management is required. Unfortunately, that intel-
ligence must be provided by the end user.

User-managed delays can also be used for reasons other than improving effi-
ciency. For example, complex queuing disciplines can be implemented as user-
managed delays. GPSS’s user chains are sets of transactions that can be ordered by
a single attribute common to all transactions on the chain. Such a user chain could
be used for modeling “most imminent deadline” scheduling by using deadline time
as a ranking attribute.
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3.4 The SLX World-View

The SLX world-view is the end result of generalization of, and simplification of,
the transaction flow world-view. The following similarities and differences between
SLX and traditional transaction-flow simulation tools are noteworthy:

• All time-based delays are specified using a statements of the form “advance Δt ,”
exactly as in GPSS.

• State-based and compound delays are specified using a single statement of the
form “wait until (expression).”

• All blocking conditions are unique.
• Each variable used in a state-based based “wait until” or in the state-based portion

of a compound “wait until” must be declared as a control variable. “Control” is
a prefix that can be applied to any data type, e.g., it is possible to have control
integer variables, control floating point variables, control character strings, etc.

• User-managed waits are specified using statements of the form “wait” and “reac-
tivate x ,” where x designates a delayed active object. Active objects that are
subject to user-managed delays are often managed by placing them into SLX
sets. SLX provides sets that can be ranked according to one or more attributes of
a single object type, with each attribute ranked in ascending or descending order.

• SLX has an option for enabling collection of performance statistics for a model’s
“wait until” statements. When monitoring is enabled, statistics are displayed at
the end of a run, showing the number of “wait untils” attempted and the ratio
of attempts to successes. High ratios of attempts to successes are called control
variable abuse in SLX.

• In traditional implementations of the transaction flow world-view, transactions
have two different types of properties. Some properties are user-defined and user-
modifiable. For example, an active object representing a ship in a model of a har-
bor might have properties representing the ship’s type, tonnage, destination, etc.
All such properties can be directly manipulated by end users. Other properties
are defined by the underlying simulation software. Some of these properties are
user-accessible and user-modifiable, while others are not. For example, GPSS
transactions have a priority that users can modify directly, but they also have
internal pointers used for event list management that users cannot modify or even
examine. In SLX, an active object takes the form of a traditional object and a
second object pointing to it called a puck. SLX pucks are the central repository
of information pertaining to an active object’s scheduling/delaying. In SLX, it
is possible for an active object to have multiple pucks. For example, a machine
capable of executing three simultaneous operations would often be modeled in
SLX as a single object with three pucks. Ramifications of this architecture are
discussed in the next section.

3.5 Ramifications of World-Views

The above characteristics have profound impact on modeling of delays. As we
have seen, in the event-scheduling world-view, all delays are user-managed and are
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primarily modeled by scheduling events. Typical implementations of the transaction-
flow world view lack the capability to directly express compound wait conditions.
In contrast, SLX’s “wait until” is a single, general statement capable of handling
all state-based and compound waits. Once an end user masters the use of “wait
until,” he/she can model any state-based or compound delay. Having a single, gen-
eral construct enables language implementers to focus their development resources
on implementation of a single problem.

SLX’s “control” declaration prefix makes it easy to designate any variable of
any type to be a state variable that can be used in state-based or compound delays.
For designated variables, the SLX compiler inserts checks for pending delays at all
points at which the variables are modified. The compiler never misses state changes.
Other architectures that depend on end user recognition of, and reaction to, state
changes can be error-prone.

The ability to attach multiple pucks to a single object makes it easy to describe
parallel activities within a single object; however, if multiple pucks are used for
large numbers of active objects, then the demands on delay management functions
can be greatly increased. This topic is explored further in the next section.

4 Demands Imposed by Application Characteristics and
Modeling Style

The demands placed on delay mechanisms are highly application-dependent. For
example, telecommunications models often contain very large numbers of simulta-
neously active packets of information. Massive parallelism and complex synchro-
nization rules place extreme demands on delay-handling mechanisms. For example,
I have experimented with one long-running SLX telecommunications model that
executes more than 1012 “wait until” statements in a single run. For such models,
every nanosecond spent handling the execution of a “wait until” adds 1,000 seconds
of execution time.

In air traffic control applications, tracking thousands of simultaneous active air-
planes is commonplace. In the U.S. airspace alone, the maximum number of simul-
taneously active flights controlled by the FAA under peak conditions exceeds 5,000.
This results in large event lists for time-based delays and places heavy demands on
mechanisms for handling state-based delays.

For a given application, modeling style can also have a profound impact on the
demands imposed on delay handling mechanisms. For example, consider the impact
of using modeling constructs for expressing state-based delays that are implemented
using polling. I once conducted a test using the telecommunications model described
above, in which I replaced SLX’s implementation of “wait until” with a polled
implementation, and I added code to detect the ratio of failures to successes for
all state-based delay evaluations. The resultant ratio was on the order of 104. Run-
ning the model to completion was infeasible, as that would have required over 1016

evaluations of state-based blocking conditions.
As another example, consider how the activities of an airplane might be described

in a model of the U.S. airspace. For every active flight, a large number of state
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variables must be continuously monitored, some by pilots and others by air traffic
controllers. In an SLX model, using multiple pucks for each flight, with each puck
monitoring a set of closely-related state variables would probably result in greater
model clarity than would be possible in a monolithic description of the monitoring
of all state variables. If every flight has ten pucks, delay handling mechanisms must
contend with upwards of 50,000 simultaneously active pucks.

5 Modeling Time-Based Delays

5.1 Introduction

The principal challenge in modeling time-based delays is implementing a good
event list algorithm. A tutorial on event list algorithms is beyond the scope of this
paper. Instead, we briefly catalog some of the approaches that have been used and
illustrate some of the difficulties in implementing a good algorithm by describing a
new algorithm currently under development.

5.2 History

A poor event list algorithm can be the Achilles heel in an otherwise well-
implemented simulation. Papers describing novel event list algorithms first appeared
in the mid 1970s, and new papers describing event list algorithms are still being
written. For a well-written review of the many classes of algorithms that have been
proposed, see Chung et al. (1993). At least two Ph.D. theses, McCormack (1979)
and Kingston (1984), have explored aspects of event list algorithms.

5.3 Required and Desired Properties of Event List Algorithms

• An event list algorithm must resolve time ties (one or more events scheduled
to occur at the same time) in a predictable manner, e.g., FIFO within priority.
Consider the use of a tree-based algorithm. Tree-based algorithms typically incor-
porate complicated rules for keeping an event tree approximately balanced. The
inclusion of a tree-balancing strategy implies that a single change in a model can
drastically affect the form of the event tree. If time ties are not dealt with explic-
itly, then the sequence in which they are processed is subject to perturbation at
the hands of the tree-balancing algorithm.

• An event list algorithm should be insensitive to the mixture of distributions used
for generating random event times.

• An event list algorithm should be able to handle bursts of activity (periods of time
with large numbers of near-term events).

• An event list algorithm should handle arbitrary deletions (event cancellations)
efficiently.
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• An event list algorithm should not require user input to specify the characteristics
of the event list for an application. Algorithm parameters should be set automat-
ically and changed when necessary by an internal adaptive process.

• Some applications may need to examine the event list. While this is relatively
rare, the need to examine the next scheduled event is much more common-
place. Some event list algorithms do not easily lend themselves to traversing
predecessor/successor events. For example, a tree-based algorithm might con-
tain parent, left child, and right child pointers connecting scheduled events,
but not incorporate explicit time predecessor/successor pointers. If this is the
case, finding an event’s predecessor/successor requires recursive tree traversal.
If traversing the event list in sequence is important, an algorithm with explicit
successor/predecessor pointers is preferable. Later in this paper, we consider the
adaptation of event list algorithms to serve as algorithms for managing ranked
sets used in user-managed waits. Traversal of ranked sets is a very common oper-
ation. For example, a server may need to examine all consumers in its queue
in order to decide which one to serve next. If an event list algorithm is to be
adapted to serve this purpose, explicit representation of successor/predecessor
relationships is required.

5.4 An Event List Algorithm Is a Highly Specialized Form
of Priority Queue

Event list algorithms are frequently considered equivalent to priority queue algo-
rithms. A priority queue is a very general construct that can take many forms. Con-
sider the Wikipedia definition of a priority queue:

A priority queue is an abstract data type in computer programming that supports the fol-
lowing three operations:
InsertWithPriority: add an element to the queue with an associated priority.
GetNext: remove the element from the queue that has the highest priority, and return it
(also known as “PopElement(Off)”, or “GetMinimum”).
PeekAtNext (optional): look at the element with highest priority without removing it.

For example, a telephone book is a form of priority queue (ranked by last name,
first name). An event list has the following special properties:

• Event times have a lower bound equal to the value of the simulation clock and an
upper bound that is a hardware-dependent maximum representable floating point
value. While we can probably safely assume that entries in a telephone book fall
in the interval (“aaaa, aaaa”, “zzzz zzzz”), there are no conveniently expressed,
guaranteed bounds; and the highest priority (first) entry in a telephone book rarely
changes.

• Because event times are numeric values, an event list algorithm can include com-
putations on the primary ranking attribute, scheduled event time. In Section 5.8,
we discuss calendar queue algorithms, in which division is a key operation. In a
priority queue, ranking attributes may be nonnumeric, as with a telephone book.



116 J.O. Henriksen

Division cannot be performed on character strings, so a calendar queue algorithm
could not be used for a telephone book.

• Event times inexorably increase over the duration of a simulation run. Consider
the operation of Henriksen’s Algorithm (Henriksen 1977). This algorithm fea-
tures an event tree that is dynamically adjusted in a manner biased to reflect the
inexorable increasing of event times. Using Henriksen’s Algorithm for a priority
queue that does not have this property may result in less-than-desirable perfor-
mance.

• Event times are typically sampled from a diverse collection of statistical distri-
butions, while priority queues are often used with only a single distribution.

• The times between events can fall into ranges that differ by many orders of mag-
nitude. For example, consider a telecommunications model. Such a model can
track large numbers of events with microsecond or even nanosecond resolution,
but also include statistics collection events that occur at intervals measured in
minutes or hours. A system shutdown event may have a time measured in days.

5.5 Event List Implementation Approaches

A large number of classes of algorithms have been proposed for use in event list
management, including linear lists, indexed lists, multiple lists, heaps, leftist trees,
pagodas, top-down and bottom-up skew heaps, splay trees, pairing heaps, Henrik-
sen’s algorithm, and calendar queues.

5.6 Measuring Event List Algorithm Performance

The most important measure of performance for the simulation user is model execu-
tion time. While analysis of algorithm complexity provides instructive insights for
algorithm designers, users have at best casual interest in such measures, and theoret-
ical results are often misleading. For example, an algorithm can possess logarithmic
complexity in theory, but if event list sizes are very large, their memory footprint
can easily cause degradation of hardware memory cache performance, yielding a
linear component to complexity as a function of event list size.

The oldest approach for measuring the efficiency of an event list algorithm is
called the hold model. This approach was first described in Vaucher and Duval (1975)
and operates as follows:

• The event list is initially populated with N scheduled events.
• N remains constant throughout the test.
• At each step of the test, the lowest time event is removed form the event list and

reinserted at a randomly sampled time. Franta and Maly (1978) used a family of
six event time distributions. Each of their tests used a single distribution.
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The hold model is deficient in many ways; however, notwithstanding its
shortcomings, it has been very widely used in comparisons of alternative event list
algorithms. Among the deficiencies of the hold model are the following:

• Simulation models rarely use a single distribution for scheduling events. Even
the single-waiting-line, single-server queuing model uses different distributions
for interarrival times and service times. Real-world models typically contain a
rich mixture of distributions.

• The distributions in real-world models often have means that differ by orders
of magnitude. For example, in a detailed model of a call center, the mean time
between questions asked by a caller might be 20 seconds, but if a question
requires that an operator look something up on a computer, a burst of events
whose interarrival times are measured in milliseconds or microseconds is likely
to occur.

• Many real-world systems are prone to bursts of activity. For example, hub-and-
spoke routes employed by many airlines result in spikes of activity at airports.

A number of approaches have been taken to improve on the hold model. The sim-
plest of these is called the interaction hold model (a phrase coined by McCormack
and Sargent 1981) and permits a mixture of distributions. Markovian descriptions of
model behavior (Chung et al. 1993) are capable (in theory, at least) of realistically
representing event scheduling behavior by characterizing a model as a collection
of N states, each of which uses a given distribution of event times, and an N × N
matrix of transition probabilities from each state to all others. Other approaches
have included procedures for inducing transient behavior (runs up and runs down in
the size of the event list).

5.7 What Is the Best We Can Do?

The discussion that follows assumes that no a priori knowledge exists of event
scheduling distributions or other special properties.

Linear search algorithms have O(n) complexity for insertions into lists of size n;
i.e., insertion time is proportional to the length of the list.

Tree-based algorithms tend to have logarithmic performance. For example, if the
event list is maintained as a nearly balanced binary tree, we can expect insertion
times to be O(log2(n)).

Henriksen’s algorithm, which utilizes a binary tree whose leaves are short sub-
lists of the full event list and are examined by linear search, has been shown to
exhibit O

(√
n
)

worst-case performance, although in my 30 years’ experience with
this algorithm, I have found that its performance is nearly always much closer to
logarithmic.

The newest widely used class of event list algorithms is the calendar queue,
first described in Brown (1988). Under ideal operating conditions, these algorithms
exhibit O(1) complexity for event list insertions; i.e., insertion times are constant.
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This is, of course, the nirvana of event list algorithms. The difficulty is how to assure
“ideal operating conditions” in the general case. Under less than ideal operating con-
ditions, calendar queue algorithms can fail spectacularly. A number of algorithms
have been proposed for dynamically adjusting calendar queue algorithm parameters
in order to maintain reasonable operating conditions. One such algorithm, H2, is
described in Section 5.9.

5.8 Basics of Calendar Queues

A calendar queue is an array of buckets, each of which contains a linked list. We use
the following notation to describe calendar queues:

NB The number of buckets
BW The width (in time) of each bucket
YL The length of one calendar year (YL = NB×BW)
CY The starting time of the current year
B j The j th bucket
N j The number of events in the j th bucket, where 0 ≤ j ≤ NB− 1

k The index of the currently active bucket

To insert an event scheduled to occur at time t into a calendar queue, an inte-
ger bucket number j = t mod BW is calculated; and the event is inserted into a
sorted list anchored in B j . Under ideal conditions (described below), the lists for
all buckets are very short, resulting in nearly constant CPU search times. Since the
CPU time required to calculate j is constant, the CPU time required to perform an
insertion is nearly constant.

At time zero, k = 0 and CY = 0.0 . To delete the first event in the calendar
queue, Bk through BNB−1 are examined until a bucket is found with a first event that
falls within the current calendar year. Thus, the search interval is CY, . . . ,CY+YL.
If no such event is found, CY is incremented by YL, k is set to zero, and the test is
repeated for the next calendar year. If large jumps in simulated time are possible, it
is advantageous to skip a number of calendar years by scanning the entire bucket list
for the minimum event time, rather than incrementing one year at a time, resulting
in fruitless searches.

Proper selection of calendar queue algorithm parameters is critical to its success:

• If BW is too large, buckets will contain large numbers of events, and the CPU
time required to maintain the buckets’ sorted lists will become large.

• If BW is too small, many buckets will contain no events, and the CPU time spent
skipping over empty buckets when finding the next scheduled event will become
large.

• If NB is too small, buckets will contain large numbers of events. In the degen-
erate case of NB = 1, all events will fall in a single bucket, and large amounts
of CPU time will be spent inserting events into the single sorted list. Increasing
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NB “unreasonably” results in increased memory requirements and little gain in
performance. The upper bound for NB is determined by limits on available mem-
ory. Thus the challenge in choosing NB is to avoid the large penalty for choosing
a value that is too small, and to determine what value is “unreasonably” large.

A number of strategies for dynamically modifying calendar queue parameters
have been proposed. See Oh and Ahn (1999), Tan and Thng (2000), and Ronngren
et al. (1997) for examples. Under many of these approaches, parameter modification
is triggered by changes in the size of the event list. For example, modification might
be triggered every time the size of the event list grows or shrinks by a factor of two or
more. While the size of the event list is an important influence on the performance
of the calendar queue, the distribution of events over total time is of even greater
importance.

Since there are no guarantees on the properties of the collection of events to
be scheduled, achieving O(1) insertion times depends on dynamically determining
acceptable values of NB and BW.

5.9 H2, a Calendar Queue Algorithm under Development

This section describes H2, a novel form of calendar queue algorithm currently being
developed. We present it as an illustration of a strategy for maintaining “reason-
able” operating conditions in a calendar queue. Insertions into H2’s event list are
performed as follows:

• The calendar queue, per se, comprises only one year. Events whose scheduled
times fall within the current year are inserted into binary trees anchored in the
bucket determined by event time. Trees are used as a safety measure to avoid
excessive cost during intervals in which parameters of the calendar queue may
have less than desirable settings. No attempt is made to balance the binary trees.
When an event falls in a nonempty bucket, a “search count” variable is incre-
mented, and for each comparison required in the search, a “comparison count”
variable is incremented. The ratio of comparisons to searches is used to alter NB
when necessary (described below).

• Events whose scheduled times fall outside the current year are placed into either
a “near overflow” list or a “distant overflow” list. Both lists are simple LIFO lists.

• At the start of a simulation, the calendar year is set to end at time −1, and the
distant overflow interval threshold is set to infinity, so all events are placed into
the near overflow list up until the time the first event is removed from the event
list.

• The sum, sum-of-squares, and minimum of the event times (expressed as dis-
tances beyond the end of the current year) are accumulated on-the-fly for the
near overflow list.

• No statistics are collected for events placed into the distant overflow list.

Removing the first event from H2’s event list is considerably more complicated
than inserting an event. Such deletions are handled as follows:
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• Calendar queue buckets are examined in sequence. Since each bucket is either
empty or contains one or more events that fall within the current year, removing
the first event from a nonempty calendar queue is very straightforward.

• When the current year is exhausted, the size of the near overflow list is examined.
If the near overflow list contains exactly one event, then that event is removed
from the near overflow list and becomes the next event. If the overflow list is
empty, then the entire distant overflow list is transferred to the overflow list,
accumulating the sum, sum-of-squares, and minimum of event times.

• When the calendar queue is empty, and the size of the near overflow list is greater
than one, a new calendar year is defined. The start of the new year is always the
minimum near overflow time. The end of the next calendar year is determined by
a somewhat involved, but nevertheless rapid procedure.

• The sum and sum-of-squares are used to compute the mean, standard deviation,
and coefficient of variation (CV) of overflow times. The degenerate case in which
the standard deviation is zero is treated as a CV of 1.0.

The H2 algorithm is in essence CV-driven. It uses CVs to determine the charac-
teristics of a new calendar year as follows:

• The start of the next calendar year is set to the minimum overflow list event time.
• CVs that are “too large,” i.e., CVs that exceed an algorithm threshold parameter,

indicate that events in the overflow list are widely dispersed. When large CVs
are encountered, events whose times exceed a threshold multiple (an algorithm
parameter) of standard deviations above the mean are removed from the current
overflow list and placed into the distant overflow list. The mean and CV of the
reduced overflow list are computed on-the-fly as the list is thinned, and the resul-
tant CV is reexamined. If the CV of the reduced overflow list is still too large,
then the reduction process is repeated. The H2 algorithm uses an experimentally
determined maximum of three such iterations. In practice, more than one iteration
is rarely needed.

• CVs that are “too small” indicate densely clustered times. If a CV is less than an
algorithm parameter, then two possibilities are considered. If the mean overflow
time is “close” (an algorithm parameter) to the start of the next calendar year, then
the overflow list is regarded as a “near burst,” and the end of the next calendar year
is set to the mean of the overflow times that lie a certain number of deviations (an
algorithm parameter) above the mean. If the mean overflow time is “too far” (an
algorithm parameter) from the start of the next calendar year, then the overflow
list is regarded as a “far burst,” and the all events whose times are greater than
a number of standard deviations beyond the start of the next calendar year are
transferred to the distant overflow list, and the end of the new calendar year is set
to the maximum event time in the reduced near overflow list.

• If the CV is neither too small or too large, then the end of the new calendar year is
set to a multiple of standard deviations (an algorithm parameter) above the mean
overflow time.

Once the start and end of the new calendar year have been determined, the possi-
bility exists that the end of the new calendar year may overlap the start of the distant
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overflow list. This is easily determined by examining the distant overflow threshold
time. When overlap exists, the distant overflow list must be examined. Events that
fall within the new calendar year are transferred to the overflow list where they will
be subsequently transferred to the new calendar year. In the process of examining
the distant overflow list, we calculate a new distant overflow threshold value equal
to the minimum event time in the pruned distant overflow list.

5.10 Observations on H2

• H2 is an extremely complex algorithm with a considerable number of parameters;
however, in early experimentation, it has proven possible to develop parameter
settings that work well across a variety of event time distributions. H2 has been
compared to Henriksen’s Algorithm and a splay tree algorithm. Tests conducted
to date have used only the hold model. H2 has proven to be faster than the splay
tree algorithm and much faster than Henriksen’s Algorithm. For both algorithms,
the larger the event set, the greater H2’s advantage. H2 comes close to O(1)
complexity for event lists of up to 10,000 events. For example, I have observed
slopes on the order of 10−4 nanoseconds per event list insertion/deletion per unit
size of the event list. Under such circumstances, if an insertion/deletion cycle
for a given distribution takes 40 nanoseconds when the event list size is 1,000,
increasing the size to 2,000 will increase the cycle time by a time on the order of
10−1 nanoseconds.

• While H2 was not explicitly designed to perform well under the hold model, it
is ideally suited for doing so. Most implementations of the hold model populate
the event list with a large number of events before moving into time-advance,
event-rescheduling mode. Since H2 defers setting of its parameters until the first
deletion from the event set, it has the distinct advantage of observing a large
number of sample event times before making any commitments.

• When transferring event notices among H2’s various lists, great care must be
exercised to maintain FIFO order for time ties. For example, if the near overflow
list is maintained as a LIFO list, events must be transferred from the near overflow
list to the calendar queue in LIFO order. Recall that LIFO(LIFO) = FIFO.

• H2’s adaptation strategy is based on statistical properties of event times. Clearly,
if computation time were not a consideration, a calendar queue algorithm whose
adaptation strategy is statistically based ought to be superior to one that is not.
The performance of H2 depends on the effectiveness of its strategy and the speed
with which the required computations can be performed. The latter considera-
tions are discussed in Section 5.11, which follows.

• Computing means and standard deviations by using sums and sums-of-squares is
well-known to be computationally unstable. In H2, computational instability is
mitigated in part by expressing times not as absolute values, but as offsets from
the end of the current calendar year. H2 uses these statistics in a very primitive
manner, so high precision is not necessary. One could, of course, use much more
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sophisticated techniques to capture statistical properties to be used in setting
calendar queue properties; however, spending a great deal of time doing so in
order to save a little time elsewhere is counterproductive.

5.11 Priority Queue Algorithm Computational Costs

On modern CPUs, accumulation of sums and sums-of-squares can be completely
pipelined. Since these values are not used until much later, the cost of collecting
them is determined by the rate at which instructions can be issued, not the time that
it takes to complete them.

The primary advantage of a calendar queue algorithm is maximizing the extent
to which indexing operations are used and minimizing the extent to which search
operations are used. While the speed of indexing operations is in theory superior to
search operations, hardware characteristics cloud the issue to an extent. For exam-
ple, performing an insertion into a standard calendar queue requires performing a
floating point modulo division and converting the result to an integer. Floating point
division is the most expensive arithmetic operation in a computer’s instruction set.
For example, on my computer, division takes 3.5 times as long as addition. To be
used as an index, the floating point result must be converted to an integer. How
is floating point-to-integer conversion performed? The normal operating mode for
IEEE-compliant floating point hardware is to perform calculations that round to
the nearest bit. Conversion from floating point to integer is customarily performed
by truncation, which requires changing the operating mode of IEEE-compliant
hardware from “round” to “chop” and restoring “round” mode after conversion is
complete. Hence, many language compilers generate code that performs conversion
from floating point to integer by function call! Computers that have extended ver-
sions of the X86 instruction set may offer alternative instructions for performing
floating point to integer conversion. For example, machines with the SSE2 instruc-
tion set, introduced by Intel in 2001 and implemented by AMD in 2003, can perform
a truncated floating point to integer conversion in a single instruction. Software that
exploits this SSE2 instruction will run faster than it will when constrained to use
older instructions.

A similar situation exists for floating point comparisons. In early PCs, float-
ing point instructions were implemented using coprocessor chips. Floating point
comparisons set status bits in the coprocessor, so before the CPU could execute a
conditional branch following a floating point comparison, status bits had to be trans-
ferred from the coprocessor to the CPU. Intel’s Pentium Pro processors, introduced
in 1995, were the first to include floating point comparison instructions that set CPU
status bits directly.

Calendar queue indices can be calculated either by rounding or by truncation. It
does not matter which form of conversion is used, as long as all such conversions
are performed consistently. The problem is that no higher-level programming lan-
guages provide mechanisms for telling their compilers to operate in “nonstandard”
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modes. The consequence of all of the above is that the skilled assembly language
programmer still has advantages over compilers when the compilers are constrained
to generate code that will run on “old” machines.

Most simulation models schedule one or more distant events at time zero.
Examples of such events include events for model shutdown, statistics collec-
tion, shift changes, etc. Such events usually end up in H2’s distant overflow list.
Such outlier events are excluded from the process by which parameters of the
calendar queue are determined. Thus, the fact that H2’s operation is so ideally
suited for the hold model is a fortuitous coincidence that arises for well-motivated
reasons.

When event list sizes are considerably larger than 10,000, hardware cache per-
formance becomes a factor. For event lists of size 100,000, H2 is up to 10 times
faster than Henriksen’s Algorithm and typically 2–3 times faster than the splay tree
algorithm, depending on the event time distributions used.

6 Modeling State-Based Delays

6.1 Introduction

Although management of time-based delays has long been recognized as a great
source of overhead, very little has been published on efficient algorithms for han-
dling state-based delays. This section presents SLX’s near-optimal algorithm for
handling state-based delays of arbitrary complexity. We use SLX parlance. State
variables are called control variables, and active objects involved in state-based wait
conditions are referred to by their SLX pucks. We use “&&” to represent Boolean
and operations and “||” to represent Boolean or operations. State-based delays are
portrayed using SLX’s “wait until” statement.

6.2 The Objective

The objective of this algorithm is to achieve the fastest possible implementation of
the generalized “wait until” statement for discrete event simulation:

wait until (arbitrary Boolean expression);

First, following modern language convention, the Boolean expression must be
evaluated using an “earliest possible exit” strategy. This allows statements such as

wait until (p != NULL && p -> attrib > 10);

wait until (p == NULL || p -> attrib < 10);
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The symbolism “p -> attrib” is used to specify an attribute named
“attrib” in an object pointed to by pointer variable “p.” In both of the above
statements, the second terms of the Boolean expressions are “guarded” by the first
terms, eliminating the possibility that a NULL pointer is used to reference an object.

Second, when a Boolean expression evaluates to false, the puck executing a “wait
until” waits for value changes only for those control variables that contribute to the
falsity of the expression. Consider the following statement:

Control Boolean a, b;
Int c, d, e;
wait until ((a && b) || c + d > e);

In order for the above expression to be false, c + d must be less than or equal
to e, and either a or b must be false; however, if a is false, then b is not examined.
Thus, when waiting takes place, c, d, e, and either a or b must be placed into state
change queues.

Statements that modify a state variable must process the variable’s state change
queue when it is found to be nonempty. For example, a statement of the form

e = 12.0;

must trigger reevaluation of the above “wait until” statement.

6.3 Run-Time Data Structures

State change queues are organized as a double-ring structure. Consider the following
example:

State variables:

control Boolean a, b, c;

“wait until” statements:

1. wait until (a);
2. wait until (a || b);
3. wait until (c && b);

If a, b, and c are all FALSE, the double-ring structure would appear as in Fig. 1.
Vertical rings link each control variable to the instances in which a puck is wait-

ing for a change in the variable’s state. Horizontal rings link all the control variables
that contribute to the falsity of a given “wait until” statement. Black dots represent
control blocks used to store object/set connections.

Assume that a is set to TRUE. By traversing a’s vertical ring, we can iden-
tify all the pucks that are waiting for a to change (in this case, P1 and P2). By



Efficient Modeling of Delays in Discrete-Event Simulation 125

Fig. 1 The “wait until” double ring data structure

traversing P1’s horizontal ring, we can remove the connection between P1 and a,
and by traversing P2’s horizontal ring, we can remove the connections between P2
and a and b. If b is set to TRUE, only P2 is affected, and if c is set to TRUE, only
P3 is affected.

6.4 Implementation Strategy

Each control variable is prefixed with “first” and “last” pointers that anchor the
variable’s vertical ring. At all points at which a control variable is modified, a test is
inserted to detect a nonempty ring. The overhead incurred when the ring is empty is
only 2–3 machine instructions (roughly a nanosecond or so on current hardware).

The execution of “wait until” statements is carried out in two phases. In Phase I,
the Boolean expression is evaluated, keeping track of those variables that contribute
to falsity in the event the expression is false. If the expression is false, in Phase
II, the control variables actually contributing to falsity are stacked and passed to a
run-time support function.

Postponing the issue of when we must remember control variables contribut-
ing to falsity, let us consider how we remember control variables. To accomplish
this task, jump words are employed. In contexts that require us to remember a
control variable, a jump word is used to store labels (memory addresses) that are
used as branch targets in Phase II. There are other alternatives to the use of jump
words. For example, control variables could be remembered by pushing them onto
the run-time stack. The problem with this approach is that if variables already
pushed onto the stack are later discovered to be irrelevant, they must be popped
off the stack. Management of such pushes and pops would be extremely diffi-
cult. Jump words enable clean, low-overhead execution. Consider the following
example:

wait until (a && b || c);
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L6: MOV RootESP,ESP Start Phase I; Remember stack top

CMP a,0

*MOV EAX,L1 Label used to enqueue a in Phase II

JZ L2

CMP b,0

*MOV EAX,L3 Label used to enqueue b in Phase II

JNZ L4 Jump ahead if the expression is true

L2: *MOV JW1,EAX Store label value in a jump word

CMP c,0

JNZ L4 Jump ahead if the expression is true

LEA ESI,queue(c) Start Phase II; c is known to be false

PUSH ESI

JMP JW1 Jump => enqueue a or enqueue b

L3: LEA ESI,queue(b)

PUSH ESI

JMP L5

L1: LEA ESI,queue(a)

PUSH ESI

L5: CALL Wait_UntilN Run-time support

JMP L6 Retest upon eventual resumption

L4: ----------

Fig. 2 A simple “wait until” example

The pseudocode in Fig. 2 shows how this statement executes.
With the exception of jump word processing and special handling for control

variables whose locations are computed, e.g., array references, Phase I uses standard
techniques for evaluation of the Boolean expression. Only the *-flagged instructions
are peculiar to “wait until” processing. The instructions that move label values into
register EAX are carefully sandwiched between test instructions and their corre-
sponding conditional branches. CPUs usually stall for a cycle or two when a test
instruction is immediately followed by a conditional branch, so the MOV instruc-
tions typically add no overhead.

When we encounter a control variable whose location is dynamically computed,
the address of the selected location, e.g., an array element or an attribute of an object
accessed by means of a pointer, is saved in a temporary location for subsequent use
in Phase II. Consider the use of a random variable as an array subscript. Phase II
cannot recalculate the address of a randomly selected array element evaluated as
false in Phase I, because reevaluation will almost certainly yield a different sub-
script value. While such usage is fairly rare, we are solving a very general problem,
and it is easier to solve the problem in general than to develop an elaborate set of
restrictions on expression contents.
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In Phase II, the tree representing the Boolean expression is traversed in top-to-
bottom, right-to-left order. Enqueuing control variables for an OR operator is easy:
if the OR is false, then both its sides are false and must be enqueued. Enqueuing
control variables used in AND operators is accomplished by means of indirect jumps
that enqueue either the left or right side of the AND.

There are subtle asymmetries involved in the forms of Boolean expressions used
in “wait until” statements. Consider the following example, which is very similar to
the preceding example:

wait until (a || (b && c));

The pseudocode in Fig. 3 shows how this statement executes.
In the above example, the AND operator is the right child of the OR operator,

so if either of a or b is false, then execution can jump directly to the respective
enqueuing instruction sequences for a and b without the need for an intervening
step to remember which was false.

6.5 A Complex “wait until” Example

Consider the sample code shown in Fig. 4.
The tree representation of this program fragment is shown in Fig. 5.

L4: MOV RootESP,ESP Start Phase I; remember stack top

CMP a,0

JNZ L1 If a is true, the entire expression is true

CMP b,0

JZ L2 If b is false, the expression is false

CMP c,0

JNZ L1 If c is true, the entire expression is true

LEA ESI,queue(c) Phase II: fall-through from above => enqueue c

PUSH ESI

JMP L3

L2: LEA ESI,queue(b) Enqueue b (direct branch to L2 above)

PUSH ESI

L3: LEA ESI,queue(a) Always enqueue a

PUSH ESI

CALL Wait_UntilN Run-time support

JMP L4 Retest upon eventual resumption

L1: ----------

Fig. 3 An example of “wait until” asymmetry
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control boolean a, b, c, d, e, f, g, h, i;

control double x[10], z;

control int ix, jx;

wait until (((a && b || c && d) || (e && f || g && h)) && i || x[ix+jx] > z);

Fig. 4 A complex “wait until” example

Fig. 5 The expression tree for a complex “wait until”

The Objective

Assume the following values:

a true
b false
c false
d true
e true
f false
g false
h true
i true
x[ix+jx] 0.0
z 1.0

Let us walk through the execution of the statement.

1. Since b is false, “a AND1 b” is false, so “c AND2 d” must be examined.
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2. Since c is false, “c AND2 d” is false, but d is never evaluated, due to the falsity
of c.

3. Since both its subtrees are false, OR1 is false, the left subtree of OR2 is false, so
OR2’s right subtree must be evaluated.

4. Since e is true, but f is false, so AND3 is false, and OR3’s right subtree must be
examined.

5. Since g is false, h is never evaluated; OR3 is false; OR2 is false; and AND5 is
false, so OR4’s right subtree must be examined.

6. Since x[ix+jx] is less than z, the entire expression is false.

Upon completion of the statement, the following control variables must be
inserted into state-change queues: b, c, f, g, x[ix+jx], ix, jx, and z.

The pseudocode in Fig. 6 shows exactly how our example is executed.
In the code shown above, for jump word branches, the variable actually enqueued

is underscored.

6.6 Compiling “wait until” Statements

Phase I is carried out by recursively traversing the tree structure representing the
“wait until” expression from top-to-bottom, left-to-right. As the tree is traversed,
jump words are allocated as follows:

1. Jump words are required for AND operators that lie on the left branch of a higher-
level OR operator. In Fig. 5, AND1 is the right child of OR1, and AND3 is the
left child of OR3, so their need for jump words is obvious. The operator AND2

is reached via the left branch of OR1, and AND4 is reached via the left branch of
OR4, so their need for jump words is a little less obvious.

2. We could simply allocate a new jump word for each qualifying AND, but we can
achieve improved efficiency by allowing consecutive AND operators to share the
same jump word. Consider the expression “a && b && c && d || e”. If
any of a, b, c, or d are false, evaluation continues with e. Clearly, a single jump
word can be used to select distinguish the first of a, b, c, and d that was found
false, in the event e is also false.

3. A new jump word is allocated only when one is required and sharable jump word
does not exist.

Phase II consists of a second recursive traversal of the expression tree. This
traversal is performed top-to-bottom, right-to-left (not left-to-right). Traversal in this
manner results in enqueuing control variables in the reverse order of their occurrence
in the “wait until” expression. A quick glance at Fig. 6 verifies that this is indeed
the case.

In Phase II, when an AND node that has a jump word is encountered, an indi-
rect jump to the address contained in the jump word is generated. When a node is
encountered that has no jump word, it is either a fall-through node or is the subject
of a “branch on false” conditional jump. For conditional branches, the branch target
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Phase I

L17: MOV RootESP,ESP start Phase I; save the current stack pointer for

use by run-time support

CMP a,0

MOV EAX,L1 jump word target for a

JZ L2

CMP b,0

MOV EAX,L3 jump word target for b

JNZ L4

L2: MOV JW2,EAX a or b

CMP c,0

MOV EAX,L5 jump word target for c

JZ L6

*CMP d,0

*MOV EAX,L7 jump word target for d

*JNZ L4

L6: MOV JW3,EAX c or d

CMP e,0

MOV EAX,L8 jump word target for e

JZ L9

CMP f,0

MOV EAX,L10 jump word target for f

JNZ L4

L9: MOV JW4,EAX e or f

CMP g,0

MOV EAX,L11 jump word target for g

JZ L12

*CMP h,0

*MOV EAX,L13 jump word target for h

*JZ L12

L4: *CMP i,0

*MOV EAX,L14 jump word target for i

*JNZ L15

L12: MOV JW1,EAX g, h, or i

... calculate and verify address of x[ix+jx]

MOV T1,ECX save array element address

FLD z

FLD [ECX+8]

FCOMIP ST(0),ST(1)

FSTP ST(0)

JA L15

LEA ESI,queue(z) start Phase II; enqueue z

PUSH ESI

PUSH T1 enqueue x[ix+jx]

LEA ESI,queue(ix) enqueue ix

PUSH ESI

LEA ESI,queue(jx) enqueue jx

PUSH ESI

JMP JW1 enqueue i, h, or g

L14: *LEA ESI,queue(i)

*PUSH ESI

Fig. 6 Compiled instructions for a complex “wait until”
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*JMP L16

L13: *LEA ESI,queue(h)

*PUSH ESI

*JMP JW4 enqueue f or e

L11: LEA ESI,queue(g)

PUSH ESI

JMP JW4 enqueue f or e

L10: LEA ESI,queue(f)

PUSH ESI

JMP JW3 enqueue d or c

L8: *LEA ESI,queue(e)

*PUSH ESI

*JMP JW3 enqueue d or c

L7: *LEA ESI,queue(d)

*PUSH ESI

*JMP JW2 enqueue b or a

L5: LEA ESI,queue(c)

PUSH ESI

JMP JW2 enqueue b or a

L3: LEA ESI,queue(b)

PUSH ESI

JMP L16

L1: *LEA ESI,queue(a)

*PUSH ESI

L16: CALL Wait_UntilN run-time support

JMP L17 retest upon eventual resumption

L15: ---------------------

* Instructions not executed

Fig. 6 (continued)

is resolved to the current location. In either case, all of the node’s control variables
are pushed onto the stack of control variables for which state-change queues must
be constructed. A slight improvement can be obtained by recognizing consecutive
AND operators that do not share the same jump word. Normally, when the right
child of an AND operator is enqueued, a jump around the enqueuing of the left
child is required; however, if the next operator for which operand enqueuing must
be performed is another AND that has its own jump word, the second AND will
be implemented using a jump word jump instruction. If we fail to recognize this
situation, a jump to a jump will result. Under these circumstances, the preferred
approach is to duplicate the jump word–style jumping of the second AND instead
of generating a jump to it. In Fig. 6, this optimization occurs for jump words JW2,
JW3, and JW4.

This example contains quite a few subtleties. For example, if the “wait until”
expression evaluates to false, execution always falls through to the enqueueing of z,
x[ix+jx], ix, and jx, i.e., the right subtree of OR4 is enqueued. Next, the left
subtree of OR4 is enqueued. For this subtree to be false, exactly one of i, h, or g
must be false. Code generated in part 1 has deposited the address of the appropriate
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label Li in JW1, so an indirect branch to the contents of JW1 is generated. (The three
possible labels are L11, L13, and L14.)

Careful study of Fig. 6 will reveal the correctness of the generated code.
We have consistently stated that our approach is “near-optimal.” One case that

our algorithm does not detect is duplicate enqueuing. For example, in the statement

wait until (a < b || a < c);

where a, b, and c are all arithmetic control variables, if the condition is false,
then a will be enqueued twice. In the general case, we could even go so far as
to detect enqueuing of identical subexpressions. Since determination of what is to
be enqueued is performed dynamically, detecting duplicate enqueuing for the gen-
eral case would be extremely difficult. Even though such an approach would lead
to faster run times, we have taken the simpler approach. Duplicate enqueuing can
always be avoided manually. For example, we can rewrite the previous statements
as follows:

if (b > c)

d = c;

else

d = b;

wait until (a < d);

6.7 Historical Perspectives

The utility of “wait until” statements for expressing state-based delays in simu-
lation models was first recognized long ago. One of the earliest, if not the first,
implementations of “wait until” in discrete-event simulation was done for SOL
(Simulation-Oriented Language) in the 1960s (Knuth and McNeley 1964a,b). SOL
was a language that compiled into pseudocode that was executed by an interpreter.
Knuth and McNeley offer the following descriptions:

[active objects] waiting for a condition such as “wait until A = 0,” for some global variable
A, are kept in a list associated with A; this list is interrogated only when the value of A has
been changed.

[when an active object ceases moving,] the simulator examines all other [active objects] that
are stopped because of a wait-until statement involving global quantities changed by [the
current active object]. If [their wait condition] is now true, those [active objects] become
free to move.
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Details of the design and implementation of SOL have by now faded into obscu-
rity, but the following characteristics are known:

1. SOL’s “wait until” expression could contain AND, OR, and NOT operators, and
array references were allowed.

2. No special designations were required for defining state variables. Apparently
SOL’s compiler was able to draw such inferences.

3. State variables were restricted to global integer and floating point values.

There is no record as to whether only those state variables contributing to falsity
were enqueued. This may have been contemplated at one time, but probably was
not implemented. According to Knuth (personal communication), SOL may have
waited only for the first state variable contributing to falsity.

Vaucher (1973) described an implementation of “wait until” that was created as
an extension to Simula. The implementation was done in Simula source code. No
changes were made to the Simula compiler. Expressions of type “wait until” hav-
ing arbitrary complexity were allowed. They could include function calls and time-
based conditions. Simula processes that were delayed as the result of “wait untils”
were placed into a single, common queue and passivated (deactivated). A monitor
process was responsible for (re)activating delayed processes so they could retest
their blocking conditions. The monitor was itself activated at each clock update.
Thus, the implementation utilized a polled approach. This architecture placed severe
limits on the accuracy of time-based delays, because the monitor process could not
control the simulator clock. For example, assume that at time 10, the following
statements are executed:

wait until (time = 15);

wait until (time > 15);

If the next event is scheduled for time 20, the first statement will never succeed,
but the second statement will succeed at time 20. To deal with these deficiencies,
an “alarm” construct was added, allowing the scheduling of dummy events at user-
specified times. Proper execution of the first “wait until” statement shown above
required setting alarms for time 15 and time 15. Vaucher does not describe the
handling of statements such as

wait until (time >= 15);

In SLX, “time > 15” is interpreted as “the first time that occurs after time
15,” and no intervention is taken to force an event at time 15, while “time >=
15” forces an event to occur at time 15.



134 J.O. Henriksen

7 Compound Delays

SLX supports the use of at most one time-based condition in a “wait until” state-
ment. Six cases must be handled:

wait until (time == t ...);
wait until (time != t ...);
wait until (time > t ...);
wait until (time >= t ...);
wait until (time < t ...);
wait until (time <= t ...);

Without loss of generality, we ignore the six additional cases that arise when the
operands of the comparison operators are reversed. The six cases are handled as
follows:

• “time == t” is handled by scheduling the active puck to move at time t. State-
based components in the wait until expression may cause additional delay beyond
time t. If this occurs, it is treated as an execution error, since the clock increases
monotonically, and once time is greater than t, the “time == t” condition can
never succeed.

• “time != t” is handled by treating the simulator clock as a control variable.
• “time > t” is handled in two stages. First, the active puck is scheduled to

move at time t. When time t is reached, the active puck waits for the simulator
clock to change by treating the clock as a control variable.

• “time >= t” is handled exactly like “time == t,” except that going beyond
time t is not treated as an error.

One might question the utility or even the validity of the last two forms, “time
< t” and “time <= t.” Consider the following example. Suppose t is an expres-
sion that represents the time at which a corrective action could be completed. If
the current time is already greater than t, there is not enough time to perform the
corrective action. Such usage is rare, but it does occur. SLX handles by requiring
that the expression for t contain one or more control variables, and makes state
change queue insertions only for the expression t.

In each of the above cases that require scheduling events, if state-based portions
of a compound delay are such that retesting a “wait until” expression is required
when a control variable is changed before the scheduled time is reached, then the
scheduled events are canceled.

8 User-Managed Delays

The final class of delays that we will consider is user-managed delays. User-
managed delays are useful in at least two contexts. First, in the presence of heavy
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queuing, “wait until” statements can result in high ratios of attempts-to-successes.
In such circumstances, user-managed queues offer an attractive alternative. Second,
user-managed delays can be used to implement complicated queuing disciplines.
Consider the processing of jobs in a jobshop model in which jobs are represented
as active objects. If scheduling rules are complex, and there are multiple sources
of jobs, each having distinct characteristics, then having job objects determine for
themselves whether they should be delayed can be very difficult. An alternative
approach is to use another active object as a “queue manager.” Incoming jobs can
then establish their own unique properties, join a queue, and sleep until awak-
ened by the queue-manager object. The queue-manager object has a centralized
view of the queue and can examine the queue in its entirety in order to make an
informed decision on when any given job is allowed to continue moving through the
system.

The key requirements for user-managed delays are having (1) a “sleep” verb,
whereby an active object can suspend its own execution; (2) an “awaken” verb,
whereby another active object can cause a sleeping object to resume its execution;
and (3) data structures that are rich enough to conveniently store delayed objects.

SLX provides “wait” (no “until” clause) and “reactivate” statements that satisfy
requirements (1) and (2). The most commonly used repository for delayed objects in
SLX is a set. The remainder of this section describes the design and implementation
of sets, which fulfill requirement (3).

SLX provides FIFO and LIFO sets and sets ranked on one or more attributes of
the objects stored in the sets, with each attribute ranked in ascending or descending
order. Generalized sets are convenient for uses other than managing delays. For
example, one of the challenges in developing large-scale logistics models is simply
“keeping track of where everything is.” In such models, data management can be a
bigger problem than time management. It is not unusual for such models to spend
25% or more of their time performing set operations.

One of the nasty little problems in set management is determining whether an
object is already in a set. (SLX allows a given object to be included in a given set
at most once.) In early implementations of SLX, every object had a list of the sets
to which it belonged, if any. The theory was that most objects would belong to a
small number of sets, so determining whether an object was in a given set could be
accomplished by a short, linear search. This approach worked well for a long time,
until a user came along with an application containing a relatively small number
of objects, each of which belonged to a large number of sets. Search times were
excessive. For this application, it would have been more efficient to search the lists
comprising the sets’ members. The solution that accommodated both extremes was
to implement a set membership hash table. Entries in the hash table contain pointers
to (set, object) pairs, and hashing is accomplished by using shifting and masking
operations to form a hash table index from a (set, object) pair whose membership is
to be queried. SLX attempts to keep the size of the hash table around one fourth of
the total number of (set, object) pairs that exist in a model.

Ranked sets are very useful. Consider the following description of jobs in a job-
shop model:
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class job
{
int job priority;
double job deadline;
};

set(job) ranked(descending job priority, ascending job deadline)
job queue;

Insertion of jobs into the job queue in their proper positions is accomplished
automatically by executing statements of the form

place j into job queue;

Sets can be traversed as follows:

for (j = each job in job queue)

...

If more detailed traversal is required, lower-level operators can be used:

j = first job in job queue;
j = last job in job queue;
j = successor(i) in job queue;
j = predecessor(i) in job queue;

Operators for querying set membership are provided:

if (j is in set1)
if (k is not in set2)

Ranked sets are priority queues, so good priority queue algorithms are candi-
dates for use in managing ranked sets. If one already has an event list algorithm,
it is tempting to extend the event list algorithm for use with general sets. This is,
indeed the approach that was taken with SLX (using, not surprisingly, Henriksen’s
Algorithm). Some event list algorithms are unsuitable for use in ranked set manage-
ment. For example, the H2 algorithm uses unordered overflow lists, and it does not
maintain explicit successor and predecessor pointers. Among the algorithms that
have been used for event lists, the splay tree is one attractive possibility for use
in ranked set management. Most implementations of splay trees do not maintain
explicit successor and predecessor pointers. To determine a set member’s succes-
sor or predecessor under these circumstances requires moving up and down the
splay tree. In a test implementation of a splay tree algorithm adding successor and
predecessor pointers increased insertion times by approximately 10%.

One of the earliest examples of general-purpose sets for use in simulation was
SIMSCRIPT II.5 (Kiviat et al. 1973). Many of the capabilities described above were
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first implemented in SIMSCRIPT over 30 years ago. SIMSCRIPT’s implementation
of sets suffered in several ways:

1. The pointers for constructing lists comprising sets were stored in the objects
comprising a set. This had several consequences. First, all potential set member-
ships for an object had to be declared in advance in order to have the pointers
allocated. Second, if more than one type of object could belong to the same
set, the pointers had to be at the same offsets within their respective objects,
and accomplishing this was a user responsibility. Third, it was impossible to
have different dynamically allocated sets with the same name. For example, in a
jobshop model, it might be convenient to have multiple instances of a job queue
set; however, this was impossible, because only one instance of the set pointers
was allocated per set name.

2. The rules by which the compiler generated the names of set pointers were doc-
umented, so the variables could be modified directly by an end user. It was easy
to corrupt the structure of a set.

The solutions to these problems are (1) connecting set members to each other and
to their set by using control blocks that are exogenous to both, and (2) preventing
direct user access to such data structures. The former approach facilitates imple-
mentation of nonhomogeneous sets and eliminates the need to declare potential set
memberships. The latter approach forces users to use built-in first, last, successor,
predecessor, is in, and is not in operators to perform low-level set manipulations,
thereby assuring the integrity of all sets.

9 Examples of “wait until” Performance

In my preparations for writing this paper, I conducted an informal survey of a num-
ber of SLX users. Each user who responded provided statistics gathered by turning
on run-time statistics collection for wait until statements. The results of the survey
were as follows:

Telecommunications Model 1
9,130,589 Wait Untils Completed
Average Control Variables/Expression: 3.08
Average AND Operators/Expression: 0.00
Average OR Operators/Expression: 2.08
Average Attempts/Completion: 2.01
Average Comparisons/Attempt: 2.54
Average Queue Insertions/Delay: 2.75
Average Time Advances/Delay: 0.00

Telecommunications Model 2
16.12G Wait Untils Completed
Average Control Variables/Expression: 1.47
Average AND Operators/Expression: 0.00
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Average OR Operators/Expression: 0.47
Average Attempts/Completion: 1.26
Average Comparisons/Attempt: 1.21
Average Queue Insertions/Delay: 1.46
Average Time Advances/Delay: 0.66

Homeland Security Airport Model
87,547 Wait Untils Completed
Average Control Variables/Expression: 1.04
Average AND Operators/Expression: 0.02
Average OR Operators/Expression: 0.02
Average Attempts/Completion: 1.55
Average Comparisons/Attempt: 1.00
Average Queue Insertions/Delay: 1.00
Average Time Advances/Delay: 0.34

Air Traffic Control Model 1
1,375,823 Wait Untils Completed
Average Control Variables/Expression: 2.55
Average AND Operators/Expression: 0.13
Average OR Operators/Expression: 1.13
Average Attempts/Completion: 2.01
Average Comparisons/Attempt: 2.17
Average Queue Insertions/Delay: 2.31
Average Time Advances/Delay: 0.03

Air Traffic Control Model 2
276,219 Wait Untils Completed
Average Control Variables/Expression: 3.33
Average AND Operators/Expression: 0.46
Average OR Operators/Expression: 0.48
Average Attempts/Completion: 1.97
Average Comparisons/Attempt: 1.95
Average Queue Insertions/Delay: 2.44
Average Time Advances/Delay: 0.49

Transportation Model
19,325 Wait Untils Completed
Average Control Variables/Expression: 1.59
Average AND Operators/Expression: 0.18
Average OR Operators/Expression: 0.41
Average Attempts/Completion: 1.20
Average Comparisons/Attempt: 1.58
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Average Queue Insertions/Delay: 1.90 (not counting the simulator clock)
Average Time Advances/Delay: 1.25

Of greatest interest are the ratios of attempts-to-completions. As discussed at
many points in this paper, high ratios imply high overhead, and excessive ratios
indicate the need to move from state-based and compound delays to user-managed
delays. Prior to conducting the survey, I would not have been surprised to see that
ratios typically ran in the 5–10 range. I was very pleasantly surprised to see low
ratios across the board, indicative of well-constructed models.

Other statistics of interest include the average number of control variables and the
average number of state-change queue insertions per delay. The extent to which the
latter is less than the former is indicative of the efficacy of enqueuing only control
variables that actually contribute to falsity. The results shown above are somewhat
disappointing, given the degree of difficulty implementing minimal enqueueing. I
have seen other models that utilize very complex “wait untils.” For example, in one
traffic model, a 19-term “wait until” was used to describe the conditions under which
a left turn could be made in one particularly complex environment. The “wait until”
expression began

wait until (light != RED && ...

whenever the traffic light was red, only a single state change was enqueued, notwith-
standing the complexity of the remainder of the “wait until” expression. Alas, per-
formance statistics for this model are unavailable.

The approach that yields best performance when constructing “wait until” state-
ments is as follows:

1. In an AND or cascaded sequence of ANDs, supply expression terms in increas-
ing order of probability of being true. In other words, place the least likely alter-
native first. This approach is best because ANDs exit on the first false condition
encountered.

2. In an OR or cascaded sequence of ORs, supply expression terms in decreasing
order of probability of being true. In other words, place the likeliest alternative
first. This approach is best because ORs exit on the first true condition encoun-
tered.

10 Conclusions

We have extensively reviewed the four forms of delay used in discrete event
simulation models: time-based, state-based, compound, and user-managed delays.
The latter three forms have received scant attention in simulation literature. Poor
management of delays is a sure-fire path to long-running models. The techniques
presented above offer efficient solutions to delay modeling.
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First-rate implementation of delay mechanisms requires compile-time and run-
time support. Having a compiler recognize all points at which a state variable is
changed is vastly preferable to requiring simulation users to do so. For such rea-
sons, well-crafted simulation-specific compilers will always have an advantage over
general-purpose language compilers. Large, long-running models can execute truly
vast numbers of delays, placing the quality with which delays are handled in sharp
focus.
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Sampling from Linear Multivariate Densities

Wolfgang Hörmann and Josef Leydold

Abstract It is well known that the generation of random vectors with
non-independent components is difficult. Nevertheless, we propose a new and very
simple generation algorithm for multivariate linear densities over point-symmetric
domains. Among other applications it can be used to design a simple decomposition-
rejection algorithm for multivariate concave distributions.

1 Introduction

Exact sampling from (arbitrary) multivariate distributions over (subsets of) R
d is a

challenging task. Only sampling from a distribution with independent components
is simple. As we can generate each component independently, the sampling time
for such random vectors scales linearly with dimension; see Hörmann et al. (2004)
or Devroye (1986) for surveys of generation methods for univariate distributions.
It is thus also very easy to sample from a distribution with constant density over
a hyperrectangular domain (i.e., sampling uniformly from a box). For distributions
with dependent components the situation is much more difficult. Only for the multi-
normal and the multi-t distributions well known generation algorithms are available
that scale quadratically with the dimension. But even these distributions are not
easily generated when their domain is restricted to a subset of R

d .
There exist two general approaches for generating random vectors with a given

probability density function (PDF) (see Hörmann et al. 2004): The rejection method
and the conditional distribution method. The latter is only applicable in very simple
situations as marginal distributions are required. Rejection on the other hand works
for arbitrary dimension but its applicability is limited by the fact that the rejection
constant often grows exponentially with the dimension.

When designing new rejection algorithms for multivariate distributions we exper-
imented with linear densities and were astonished to realize that they can be gen-
erated very easily. We were even more astonished by the fact that we did not find
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Department of Industrial Engineering, Boğaziçi University, 34342 Bebek-Istanbul, Turkey
e-mail: hormannw@boun.edu.tr

C. Alexopoulos et al. (eds.), Advancing the Frontiers of Simulation: A Festschrift in Honor
of George Samuel Fishman, International Series in Operations Research & Management
Science 133, DOI 10.1007/b110059 7, C© Springer Science+Business Media, LLC 2009

143
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any hints to such methods in the literature. We therefore present our new method for
generating random vectors with multivariate linear density over a bounded point-
symmetric domain D and some of its applications.

This chapter is organized as follows: Section 2 describes the new idea to sam-
ple from a multivariate linear density over point-symmetric domains. In Section 3
an improved rejection algorithm for multivariate concave densities over point-
symmetric domains is introduced. Applications of the new algorithm are presented
in Section 4.

2 Linear Densities over Point-symmetric Domains

A domain D ⊂ R
d is called point-symmetric with center c if x ∈ D implies that

x∗ = c − (x − c) ∈ D. The quantity x∗ is the reflection of x in c. For our purposes
hyperrectangles [x1l , x1r ] × · · · × [xdl , xdr ] are the most important case of point-
symmetric domains with center c = 1

2

(
(x1l , . . . , xdl )′ + (x1r , . . . , xdr )′

)
.

Let � : D ⊂ R
d → [0,∞), x �→ �(x) = a′(x − c) + fc be a linear PDF

with parameter a, some constant fc, and point-symmetric domain D. We denote
the region below the graph of density � by F = {(x, u) ∈ R

d+1 : x ∈ D and 0 ≤
u ≤ �(x)}. Notice that �(c) = fc. For such distributions we can easily show the
following property.

Theorem 1 Let x ∈ D and u ∈ [0, 2 fc]. Then u < �(x) if and only if u∗ > �(x∗),
where (x∗, u∗) = 2(c, fc)− (x, u), i.e., (x, u) reflected in (c, fc).

Proof Notice that (�(x∗)− fc) = −(�(x)− fc) and (u∗ − fc) = −(u − fc). Hence
u − fc ≤ �(x)− fc if and only if u∗ − fc ≥ �(x∗)− fc. Thus the statement follows.

�
Figure 1 sketches the situation for one dimension. As an immediate consequence

we find that Vold+1(F) = fc · Vold (D), where Vold (·) denotes the d-dimensional
volume. Moreover, the reflection (x, u) �→ (x∗, u∗) is a volume-preserving transfor-
mation that maps F \ (D × [0, fc]) one-to-one onto (D × [0, fc]) \F . Algorithm 1
(linearPDF-reflect) compiles the relevant steps to sample from a linear den-
sity �(x) using this property. Notice that Steps 2, 5, and 6 (“squeeze”) reduce the
average number of evaluations of the density and can speed up the algorithm in
higher dimensions. They can also be entirely omitted.

Remark 1 Step 3 in Algorithm 1 is crucial and can be difficult for point-symmetric
but irregular shaped domains.1 Nevertheless, for a hyperrectangle [x1l , x1r ]× · · · ×
[xdl , xdr ] this is quite simple: X = (U1x1l + (1−U1)x1r , . . . ,Ud xdl + (1−Ud )xdr

)
,

where U1, . . . ,Ud are i.i.d. (0, 1) uniform random numbers.

Let us look at the performance gain of this approach compared to Algorithm 2,
which describes the simplest method, rejection from a constant hat. Both the setup

1 In fact, every non-uniform generation problem can be reduced to sampling uniformly from some
domain in R

d+1.
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c
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x x*

fM
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fm

(x, u)

(x*,u*)

Fig. 1 Linear density on point-symmetric set D with center c (in one dimension)

Algorithm 1 linearPDF-reflect
Input: Linear density �(x) on point-symmetric domain D with center c

(�(x) ≥ 0 for all x ∈ D).
Output: Random vector X with density �.

/∗ Setup ∗/
1: Compute fc ← �(c). /∗ squeeze ∗/
2: Compute fm ← minx∈D �(x).
/∗ Generator ∗/

3: Generate X uniformly in D.
4: Generate U uniformly in [0, fc].
5: if U ≤ fm then /∗ below squeeze ∗/
6: return X.
7: else if U ≤ �(X) then /∗ below density ∗/
8: return X.
9: else /∗ reflect point on center ∗/

10: return X∗ = 2c− X.
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Algorithm 2 rejection
Input: Linear density �(x) on domain D.
Output: Random vector X with density �.

/∗ Setup ∗/
1: Compute fM ← maxx∈D �(x).
2: Compute fm ← minx∈D �(x).
/∗ Generator ∗/

3: loop
4: Generate X uniformly in D.
5: Generate U uniformly in [0, fM ].
6: if U ≤ fm then /∗ below squeeze ∗/
7: return X.
8: else if U ≤ �(X) then /∗ below density ∗/
9: return X.

and one iteration of the acceptance/rejection loop require the same number of
density evaluations and uniform random numbers as Algorithm 1. However, the
expected number of repetitions of this loop is fM/ fc = 2 fM/( fM + fm) ≤ 2, where
fM and fm denote the maximum and minimum of the density � on D, respectively.
Hence, on average we save at most one iteration. In the best case the new approach
saves 50% of the marginal generation time; in the worst case it is not slower than
simple rejection with squeeze. Note that the new algorithm scales linearly with
dimension.

2.1 An Extension

Algorithm 1 also works when c /∈ D as long as �(X) can be extended to a linear
function �′ on some point-symmetric superset D′ ⊃ D with center c. A simple
example for this situation is a linear density on a ball restricted to its boundary
(a sphere). Points X are still sampled uniformly in D in Step 4 (and not in the
superset D′).

3 Improved Rejection

Algorithm 2 (rejection) also works for distributions where the density is some
linear function �(x) restricted to its nonnegative part, i.e., max(0, �(x)). Algorithm 1
is not directly applicable for such densities but it can be easily adapted. We only have
to add a rejection step to eliminate points with negative U -coordinates. Algorithm 3
(linearPDF-general) shows the details. Notice that there is no squeeze when
minx∈D �(x) ≤ 0.

This algorithm is based on the following modification of Theorem 1.

Theorem 2 Let x ∈ D and u ∈ [ fm, fM ] = [minx∈D �(x),maxx∈D �(x)]. Then
u < �(x) if and only if u∗ > �(x∗), where (x∗, u∗) = 2(c, fc)− (x, u).
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Algorithm 3 linearPDF-general
Input: Linear function �(x) on point-symmetric domain D with center c.
Output: Random vector X with density max(0, �(x)).

/∗ Setup ∗/
1: Compute fc ← �(c).
2: Compute fm ← minx∈D �(x) and f ′m ← min(0, fm ).
/∗ Generator ∗/

3: loop
4: Generate X uniformly in D.
5: Generate U uniformly in [ f ′m , fc].
6: if U > �(X) then /∗ above � → reflect point on center ∗/
7: X ← X∗ = 2c− X, U ← U ∗ = 2 fc −U .
8: if U ≥ 0 then /∗ density must be nonnegative ∗/
9: return X.

It is easy to see that the rejection constant of Algorithm 3 is smaller than that of
Algorithm 2 (rejection) if and only if fc = �(c) > 0. The performance gain
is again limited by a factor of 2. We have to note here that the rejection constants
of both algorithms can be arbitrarily large. Even when we restrict the domain of
the density to its smallest bounding hyperrectangle, the rejection constant grows
exponentially with dimension d if f is not linear on its entire domain.

3.1 Concave Densities

Let us look at a concave differentiable density f over a point-symmetric domain D
with center c. We can then construct a linear hat function � over D by means of a
tangent at some construction point p. Thus we find

�(x) = ∇ f (p)(x− c)+ (∇ f (p)(c− p)+ f (p)
)
.

By the concavity of f , �(x) ≥ 0 and we can apply Algorithm 1 (linearPDF-re-
flect) for sampling from the majorizing density, Algorithm 4 (concavePDF).
The acceptance probability of the rejection step is maximized if the area below the
hat is minimized, i.e., when �(c) is minimized. Such a construction point p can be
easily found.

Theorem 3 Let D be a point-symmetric domain with center c and let f be a density
that is the restriction of some concave function to D. Then the rejection constant of
a rejection algorithm based on the linear hat �(x) is minimized if we choose center
c as the construction point of �.

Proof By Theorem 1 the volume of F = {(x, u) ∈ R
d+1 : x ∈ D and 0 ≤

u ≤ �(x)} is given by Vold+1(F) = �(c) · Vold (D). Thus the rejection constant is
minimized if �(c) is minimized. By the concavity of f , �(c) ≥ f (c) where equality
holds for p = c. Thus the statement follows. �
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Algorithm 4 concavePDF
Input: Concave density f (x) on point-symmetric domain D with center c.
Output: Random vector X with density f .

/∗ Setup ∗/
1: Compute a ← ∇ f (c) and fc ← f (c).
2: Compute fm ← minx∈D f (x). /∗ use concavity of f ∗/
/∗ Generator ∗/

3: loop
4: Generate X uniformly in D.
5: Generate U uniformly in [0, fc].
6: if U ≤ fm then /∗ below squeeze ∗/
7: return X.
8: if U > a · (X− c)+ fc then /∗ above � → reflect point on center ∗/
9: X ← X∗ = 2c− X, U ← U ∗ = 2 fc −U .

10: if U ≤ f (X) then /∗ accept ∗/
11: return X.

3.2 General Densities

The concavity property of f above is only necessary to guarantee a simple set-
up, which is even simpler and faster than the set-up of the Ahrens algorithm
(see next paragraph) as no minimization procedure is required. The concept of
Algorithm 4 also works for arbitrary densities. To use it in practice it is necessary
to construct a linear upper bound to the density that is nonnegative for every point
of the domain D. For example, secants can be used as hat functions for a convex
density in one dimension.

4 Applications

4.1 Concave Densities and Ahrens Method

The simplest method for sampling from arbitrary multivariate distributions with
given density are multigrid methods, which we call “multivariate Ahrens methods”
as they generalize a method for univariate distributions proposed by Ahrens (1993).
For this approach the domain of the distribution is partitioned into hyperrectangles.
(If necessary the domain has to be extended to a union of proper hyperrectangles.)
On each of these the maximum of the given density is estimated and a piecewise
constant hat is computed. Thus the region below the density is covered by a union
of bars and hence it is extremely simple to draw a random sample by rejection
using Algorithm 2 for each of the hyperrectangles. This simple method has again
and again attracted the interest of researchers who had to solve multivariate gener-
ation problems; see Jadach (2003) and Karawatzki (2006) for two recent examples.
However, there are significant drawbacks associated with this approach. First, find-
ing the maximum in each hyperrectangle requires either strong constraints on the
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given target distribution (e.g., uniorthomodal in Karawatzki 2006) or it is very time
consuming when arbitrary densities are assumed (e.g., Jadach 2003).

The most prohibitive downside however is the slow convergence of the rejection
constant. For a distribution in d dimensions with a bounded gradient, the rejection
constant tends to 1 with rate 1 + O(N−1/d ) for increasing number N of hyper-
rectangles. Thus this leads to a large number N , and consequently large memory
requirements and slow setup times even when computing the maximum is fast.
Nevertheless, acceptance probabilities usually remain very small even for a mod-
erate number of dimensions; see Karawatzki (2006). For distributions with concave
density functions f we can formulate an alternative to the Ahrens method. It avoids
the computation of the maximum in each hyperrectangle by using tangents in lieu
of a constant hat and applies Algorithm 4 on each of the hyperrectangles. Then we
find that the convergence rate is 1+ O(N−2/d ). The following theorem summarizes
this observation.

Theorem 4 (Hörmann et al. 2004) Let f be a bounded two times differentiable
concave density f with bounded domain D ⊂ R

d .

(i) Construct a hat function h1 using constant hats on N subintervals of equal size
and shape. Then the volume between the hat and density tends to 0 with rate
O(N−1/d ), i.e., we find for the rejection constant 1+ O(N−1/d ).

(ii) Likewise, when we construct a hat function h2 using tangents in the center
of each of N subintervals of equal size and shape, we find for the rejection
constant 1+ O(N−2/d ).

Proof (ii) As h2 and f are both two times differentiable functions with the same
first-order Taylor expansion at the center c, we have |h2(x)− f (x)| = O(r2) around
each c, where r = ‖x− c‖ is the distance from the center. Since we have N design
points on a regular grid, the average radius is r = O(N−1/d ), which implies that
the average distance |h2(x) − f (x)| = O(N−2/d ). As we have assumed a bounded
domain D, we get

∫
D |h2(x)− f (x)| dx = O(N−2/d ).

(i) For constant hats we analogously find |h1(x)− f (x)| = O(r ) = O(N−1/d ). �
The performance gain of using Algorithm 4 compared to the Ahrens method (i.e.,
rejection from a piecewise constant hat) is twofold:

1. There is no need to estimate the maximum of f in each of the (many) rectangles,
except those in the boundary region of D.

2. The rejection constant is reduced by some factor that is 1 in the worst case and
1/2 in the best.

Of course, the latter is of practical relevance only if the rejection constant is not
too large (at least below 100). In particular, for a rejection constant close to 1
the benefits become obvious. However, the faster (asymptotic) convergence of the
new method is not of great help here. Unfortunately, to achieve rejection constants
below 10 requires many hyperrectangles even in a moderate number (6–10) of
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dimensions; see Karawatzki (2006) for some computational experiences with the
Ahrens method.

Remark 2 The improvement by a factor of at most 2 is rather disappointing. Nev-
ertheless, if we try to accomplish the same improvement by refining the partition
of the Ahrens method instead of using linear non-constant hats in lieu of constant
ones, we need about 2d times more rectangles.

4.2 Computational Experience

We implemented and tested our algorithms. For generating from linear densities we
were astonished to see that the speed-up was even higher than the reduction of the
expected number of repetitions reached by the reflection principle. Depending on
the value of fm , Algorithm 1 was up to three times faster than Algorithm 2. In one
dimension Algorithm 1 is also faster than the inversion method so we can call it the
fastest method to generate from linear densities.

For concave densities the speed-up is less spectacular. Depending mainly on the
reduction of the expected number of repetitions we observed speed-ups in the range
of 10–20%.

4.3 Importance Sampling

It has been shown that in the computation of expectations of functions of random
variates by Monte Carlo methods it is often more efficient to replace the rejection
algorithm by importance sampling (IS) with the hat function as the importance den-
sity; see e.g., Hörmann and Leydold (2005). This is in particular the case when
the evaluation of the density f (x) is expensive compared to the integrand, as by
using IS we keep all information about our density f . This is even more inevitable
when the rejection constant is high (which becomes very likely when the dimension
increases).

Some methods like VEGAS (Lepage 1978) approximate the integrand in ques-
tion by a piecewise constant function. Again using tangents decreases the approxi-
mation error. The rejection constant can be seen as a rough measure for the deviation
from the target distribution. Notice that in the case of IS the hat function need not
be a majorizing function as for the rejection algorithm. Thus we can safely drop the
concavity assumption.

5 Conclusion

We have introduced a simple and fast algorithm for efficient sampling from linear
multivariate densities with point-symmetric domains. It was demonstrated that the
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new idea can be utilized to considerably simplify and speed up both the set-up and
the sampling of table methods to generate from multivariate concave distributions.
The new idea may also be applied to importance sampling and for generating non-
uniform distributions on the sphere.
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Factor Screening in Simulation Experiments:
Review of Sequential Bifurcation

Jack P. C. Kleijnen

Abstract Factor screening means searching for the most important factors (or
inputs) among the many factors that may be varied in an experiment with a real
or a simulated system. This chapter gives a review of Sequential Bifurcation (SB),
which is a screening method for simulation experiments in which many factors may
be varied. SB is most efficient and effective if its assumptions are satisfied. SB was
originally studied back in 1990. This review first summarizes SB. Then it summa-
rizes a recent case study, namely, a supply-chain simulation with 92 factors where
SB identifies a shortlist with 10 factors after simulating only 19 combinations. The
review also references recent research. It ends with a discussion of possible topics
for future research.

1 Introduction

Factor screening (or briefly “screening”) means that the analysts are searching
for the most important factors among the many factors that can be varied in their
experiment. In practice, however, experiments with real-world systems usually can
vary only a few factors, whereas experiments with simulation models can indeed
vary hundreds or more factors (also see Kleijnen et al. 2005). In general, scien-
tists assume that effects are “sparse”; they do not wish to report that “everything
depends on everything else.” The scientists’ clients do not want to be “confused
by details.” Furthermore, philosophy of science exploits the parsimony principle
or Occam’s razor, which implies that a simpler explanation is preferred to a more
complex explanation—all other things being equal. The psychologist Miller (1956)
claims that people cannot handle more than “seven plus or minus two” factors when
processing information. Many simulation modelers assume that the Pareto principle
or 20-80 rule holds, i.e., only a few factors are really important (or “active”, as
some authors say). Many authors on simulation modeling (be it deterministic or ran-
dom simulation) mention the curse of dimensionality; see, e.g., the panel discussion
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reported by Simpson et al. (2004). Altogether, screening is necessary in realistic
simulation modeling. Unfortunately, practitioners do not yet apply screening meth-
ods; instead, they experiment with a few intuitively selected factors only. Hopefully,
this chapter contributes to a change of attitude.

A practical example may illustrate the need for screening.Bettonvil and Kleijnen
(1996) summarize a case study on the CO2 greenhouse effect, using a deterministic
simulation model with 281 factors (that simulation is also discussed by Kleijnen
et al. 1992). The politicians wanted to take measures to reduce the release of CO2;
they realized that they should start with legislation for a limited number of factors.
Another example will be summarized in Section 3.3.

A most efficient and effective screening method may be Sequential Bifurcation
(SB). After a slow start, SB has gained momentum in recent years—as the following
overview shows.

1. Bettonvil’s (1990) Ph.D. dissertation introduced SB.
2. Bettonvil and Kleijnen (1996) provide a summary of that dissertation (after expe-

riencing rather much delay, finding a publication outlet).
3. Recently, SB has attracted the attention of several researchers in the UK and

USA:

• Cheng (1997) further explores SB for random simulation; also see Cheng and
Holland (1999).

• Wan et al. (2006a) improve SB’s control of the type-I (or type-α) and type-
II (or type-β) error probabilities in discrete-event simulation. Next, Wan
et al. (2006b) extend their method to account for interactions between the
factors of the simulation model. Shen and Wan (2006) combine this approach
with classic fractional factorial designs. Finally, Xu et al. (2007) extend SB
to nonnormal distributions, namely, binary responses (outputs) of simulation
models for software reliability studies.

• Ankenman et al. (2006) develop a more efficient but also more complicated
SB variant based on “polytopes,” requiring repeated solution of a sequence of
Linear Programming (LP) problems.

• Kleijnen et al. (2006) summarize SB and apply SB to a practical discrete-
event simulation of a supply chain centered around the Ericsson company
in Sweden, involving 92 factors; they identify a shortlist with 10 factors
after simulating only 19 combinations. (This chapter updates the summary
in Kleijnen et al. 2006, and summarizes their case study.)

The rest of this chapter is organized as follows. Section 2 summarizes several
screening methods that may compete with SB. Section 3 summarizes SB, including
its assumptions. Section 3.1 gives an outline of the simplest type of SB. Section
3.2 covers some mathematical details of this simplest SB. Section 3.3 summarizes a
case study, namely, a supply-chain simulation for Ericsson in Sweden. Section 3.4
extends SB, accounting for two-factor interactions. Section 4 presents conclusions
and possible topics for future research. Many references are given to enable further
study of screening methods.
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2 SB’s Competitors

There are several types of screening designs. All these designs treat the simulation
model as a black box; i.e., the simulation model transforms observable inputs into
observable outputs, whereas the values of internal variables and specific functions
implied by the simulation’s computer modules are unobservable.

The importance of factors depends on the experimental domain—also called
the experimental area or experimental frame; see Zeigler et al. (2000). The users
should supply information on this domain, including realistic ranges of the indi-
vidual factors and limits on the admissible factor combinations (or “scenarios”);
e.g., factor combinations are admissible only if they add up to 100% because these
combinations represent chemical compositions (also called recipes). In practice,
user involvement is therefore crucial for the application of screening methods.

This section summarizes several design types that may be considered to compete
with SB (empirical comparisons of these various designs is beyond the scope of this
chapter).

2.1 Classic Two-Level Factorial Designs

Classic two-level factorial designs are often considered to provide screening designs;
these designs are detailed in many textbooks, e.g., Kleijnen (2008) and Myers
and Montgomery (2002). In particular, so-called resolution-III designs are often
called screening designs; see, e.g., Georgiou (2007) and Yu (2007). By definition,
a resolution-III design gives unbiased estimators of all the main effects or first-
order effects, provided a first-order polynomial is a “valid metamodel” (“adequate
approximation”) of the Input/Output (I/O) function that is implicitly determined by
the underlying simulation model. These designs require the simulation of at least
n = k + 1 factor combinations where k denotes the number of factors in the experi-
ment. In such a design, each factor has two values or levels; these levels may denote
quantitative or qualitative values. The case study reported in Section 3.3 has k = 92
factors, so at least 93 factor combinations would need to be simulated; simulating
one combination takes 40 minutes (after modification of the simulation code, which
originally took 3 hours per combination). Moreover, a random simulation model like
this case study requires replication of each combination to obtain an estimate of the
signal/noise ratio; i.e., if the noise (variance of the simulation output) is large com-
pared with the signal (the simplest signal is the factor’s main effect), then replication
(simulation with non-overlapping PseudoRandom Numbers, PRNs) is unavoidable.

Note: A different type of resolution-III design changes only one factor at a time.
In the supply-chain example, such a design still requires 93 combinations if not
more than two values per factor are simulated (simulation practitioners often study
three values per factor, when changing one factor at a time). Moreover, this approach
is less efficient; i.e., the variances of the estimated main effects are larger than the
variances resulting from the Design Of Experiments (DOE) literature.
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Note: A full-factorial design is often used by practitioners when the number of
factors is small. However, full factorials are impossible in screening studies; e.g., the
supply-chain example with its 92 factors would require 292 ≈ 5×1027 combinations.

Another class of designs called “conference designs” requires n = 2k combi-
nations; see Elster and Neumaier (1995). These designs are not practical screening
designs if the simulation model is expensive; i.e., a single run with the model takes
relatively much computer time.

2.2 Frequency Domain Experimentation (FDE)

Whereas classic designs keep the factor values constant during a simulation run,
FDE oscillates these levels during a run. More precisely, each factor has its own
oscillation frequency. FDE tries to find which input oscillations affect output oscil-
lations. Originally, Schruben and Cogliano (1987) proposed this approach. Sanchez
et al. (2006) apply FDE for second-order polynomial metamodels with an arbitrary
number of factors; they give an example of a kanban simulation with 34 factors.
Unfortunately, FDE requires rather complicated Fourier spectral analysis. Moreover,
FDE has not yet been applied to simulation models with hundreds of factors.

2.3 Supersaturated Designs

By definition, supersaturated designs have fewer combinations than factors: n < k.
These designs are not sequential, so they are relatively inefficient. Indeed, sequential
statistical procedures are known to require fewer observations than fixed-sample
(one-shot) procedures; see, e.g., Park et al. (2002). By definition, sequential designs
imply that observations are analyzed—so the data generating process is better
understood—before the next input combination is selected. This property implies
that the design depends on the specific underlying process (simulation model); i.e.,
the design is customized (tailored or application-driven, not generic; also see Klei-
jnen and Van Beers 2004 and Van Beers and Kleijnen 2008). Moreover, computer
experiments (unlike many real-world experiments) proceed sequentially. Neverthe-
less, sequential procedures may lose some efficiency; e.g., switching between the SB
procedure and the simulation model may be awkward. Recent discussions of super-
saturated designs are presented in Allen and Bernshteyn (2003), Gilmour (2006),
Li and Li (2005), Wu and Hamada (2000), Yamada et al. (2006), and Zhang
et al. (2007). Note that Tu and Jones (2003) also give a supersaturated design, but
they use Moving Least Squares instead of classic linear regression analysis.

2.4 Group-Screening Designs

Group-screening designs aggregate (or confound) individual factors into groups
so that k factors may be evaluated in n < k combinations. Consequently, these
designs are also supersaturated—but they are executed in two or more steps (stages).



Factor Screening in Simulation Experiments 157

There are several types of screening designs. Examples are One-factor-At-a-Time
(OAT), Morris’s OAT, Cotter’s design, Andres’s Iterated Fractional Factorial Design
(IFFD), multi-stage group screening, and SB; see Andres (1997), Andres and
Hajas (1993), Campolongo et al. (2007), Campolongo et al. (2000), De Vos et al.
(2006), Morris (2006), Saltelli et al. (2004, 2005), and Schonlau and Welch (2006).
Note that Chipman (2006) gives a Bayesian analysis of screening experiments, but
Bayesian approaches are not further considered in this chapter. The following web
address gives access to a package (written in the R statistical software tool) that
implements Morris’s OAT.

http://cran.r-project.org/src/contrib/Descriptions/.
sensitivity.html

Different group-screening designs are based on different mathematical assump-
tions concerning the characteristics of their metamodels; e.g., their smoothness and
monotonicity. Reviewing the assumptions and procedures of all these designs is
beyond the scope of this chapter. This chapter focuses on SB because SB is a very
efficient and effective method if its assumptions are satisfied.

3 Sequential Bifurcation

SB uses the following metamodel assumptions, which will be detailed in the next
subsections; Assumption 1(b) may replace Assumption 1(a).

Assumption 1(a): a first-order polynomial is a valid metamodel.
Assumption 1(b): a first-order polynomial augmented with two-factor interac-

tions is a valid metamodel.
Assumption 2: all main effects have known signs and are nonnegative.
Assumption 3: there is “strong heredity” if Assumption 1(b) holds.

3.1 Outline of Simplest SB

As its name suggests, SB is a sequential procedure. Its first step aggregates all
factors into a single group, and tests whether or not that group of factors has an
important effect (this statistical test will be presented in Section 3.2). If that group
indeed has an important effect (which is most likely), then the second step splits
the group into two subgroups—bifurcates—and tests each of these subgroups for
importance. The next steps continue in a similar way; i.e., SB splits important sub-
groups into smaller subgroups, and discards unimportant subgroups. In the final
steps, all individual factors that are not in subgroups identified as unimportant are
estimated and tested—which terminates the procedure.

The simplest type of SB is based on Assumptions 1(a) and 2, which are now
detailed.

http://cran.r-project.org/src/contrib/Descriptions/
sensitivity.html
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Assumption 1(a) a valid metamodel is a first-order polynomial plus noise:

y = β0 + β1x1 + · · · + βk xk + e. (1)

In this equation, the factors x j ( j = 1, . . . , k) are standardized such that they
are either −1 or +1 (scaling in DOE is further discussed by Kleijnen 2008). This
scaling implies that the factors may be ranked (sorted) by

∣∣β j

∣∣; i.e., the most impor-
tant factor is the one with the largest absolute value of its main effect; the least
important factor is the one with the effect closest to zero. Note that the larger the
range of an original (untransformed) factor is, the larger the response difference and
hence the main effect of that factor is; also see the “unit cost” effects in Cheng and
Holland (1999). The noise e in (1) arises from both approximation error and the use
of PRNs. If the metamodel is valid, then this noise has zero mean: E(e) = 0.

To estimate the parameters in (1), it is most efficient to experiment with only two
levels per factor. In practice, it is important that these levels are realistic extreme
values; so the users of the underlying simulation model should provide these values.
Readers are also referred to the discussion on scaling in Wan et al. (2006a) and the
discussion on the experimental domain above, in Section 2.

Assumption 2 all main effects have known signs and are non-negative:

β j ≥ 0 ( j = 1, . . . , k).

Without Assumption 2, main effects within a (sub)group might cancel each other.
However, if Assumption 2 holds, then the analysts can define the two levels of an
individual factor such that changing the level from the standardized value −1 to +1
does not decrease the expected simulation output (i.e., that change either increases
the output or does not change it at all). An example is the M/M/1 model: if the arrival
rate increases, then the expected steady-state waiting time also increases; if the
queuing discipline changes from First-In-First-Out (FIFO) to Shortest-Processing-
Time-first (SPT), then the expected waiting time decreases; consequently, the level
−1 should correspond to SPT and the level +1 to FIFO.

Assumption 2 is related to the monotonicity of the I/O function. By definition, a
function w = f (x1, . . . , xk) is monotonically increasing if ∂w/∂x j > 0 for all j ,
for all values of x j ′ ( j, j ′ = 1, . . . , k; j �= j ′). Experience shows that Assumption
2 may be easily satisfied in practice; i.e., it is straightforward to define the upper
and lower level of each factor such that changing a factor from its lower to its upper
level does not decrease the expected response. For example, in the supply-chain
case study, some factors refer to transportation speeds: the higher these speeds, the
lower the Work In Process (WIP) and hence the lower the cost—which is the output
of interest in the screening experiment. More examples are given by other authors;
e.g., Lewis and Dean (2001) and Lim and Glynn (2006).

In unconstrained optimization, the function to be maximized or minimized is
usually assumed not to be monotonically increasing (otherwise, the maximum or
minimum would lie at the limits of the experimental area). This assumption may
still be compatible with the known signs assumption; i.e., switching the standardized
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factor values from −1 to +1 may increase the output, so this factor will be found to
have an important effect. However, a counterexample is an I/O function that is not
monotonic and happens to give roughly the same output values at the two observed
input levels −1 and +1; in this example, the factor effect seems to be zero and SB
eliminates this factor; also see Kleijnen (2008, pp. 162–163).

Nevertheless, if a particular case study does not satisfy Assumption 2 for a few
specific factors, then these factors should be treated individually; i.e., none of these
factors should be grouped with other factors in SB. For example, De Vos et al. (2006)
create some subgroups of size one in a multi-stage group-screening design; their
design is less efficient than SB, but it also uses aggregation. In general, treating
such factors individually is safer than assuming that the probability of cancellation
within a subgroup is negligible.

The efficiency of SB (measured by the number of simulated factor combinations
and hence simulation time) may be improved in the following ways.

• The individual factors are labeled such that factors are placed in increasing order
of importance; see Bettonvil (1990, p. 44). This labelling makes the important
factors clustered. To realize this labelling, it is crucial to utilize prior knowl-
edge of users and analysts about the real system being simulated. For example, if
the analysts conjecture that environmental factors are most important, then they
should place these factors at the end of their list of factors. Indeed, in the supply-
chain case study, Kleijnen et al. (2006) place the environmental factor “demand”
at the very end of the list with 92 individual factors; Section 3.3 returns to this
labelling.

• Similar factors are placed within the same subgroup. In the supply-chain study,
all “test yield” factors are grouped together; the conjecture is that if one yield
factor is unimportant, then all yield factors are likely to be unimportant too.

• Subgroups are split such that the number of factors for the first new subgroup is
a power of two; e.g., split the first 48 factors into a subgroup of 32 (= 25) factors
and a subgroup with the 16 remaining factors (so the important factors are placed
into the smallest subgroup, assuming the factors are sorted from unimportant to
most important). This splitting, however, is not recommended if it implies split-
ting up a group of related factors. In any case, splitting a subgroup into subgroups
of equal size (as some authors do) does not need to be optimal. Further discussion
is found in Bettonvil (1990, pp. 40–43).

The way SB proceeds may be interpreted through the following metaphor. Imag-
ine a lake that is controlled by a dam. The goal of the experiment is to identify the
highest (most important) rocks (actually, SB not only identifies, but also measures
the height of these “rocks”). The dam is controlled in such a way that the level
of the murky water slowly drops. Obviously, the highest rock first emerges from
the water. The most-important-but-one rock turns up next, etc. SB stops when the
simulation analysts feel that all the “important” factors are identified; once SB stops,
the analysts know that all remaining (unidentified) factors have smaller effects than
the effects of the factors that have been identified. This property of SB seems quite
important for its use in practice.
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Some reflection shows that the aggregated effect of a given subgroup is an upper
limit for the value of any individual main effect within that subgroup. Examples
will be given in the supply-chain study in Section 3.3. If the analysts must terminate
SB prematurely (e.g., because their computer breaks down or their clients get impa-
tient), then SB still allows identification of the factors with main effects larger than
the current upper limit.

SB is extended by Wan et al. (2006a), improving the control over the type-I
error rates (“false positives”), using either a two-stage approach or a fully sequential
approach. Theoretically, this control does not satisfy the classic statistical require-
ments concerning a prespecified experimentwise error rate and a prespecified power
for the final results—after all stages have been executed. Nevertheless, the numeri-
cal results look very promising.

SB is also extended to the so-called polytope method by Ankenman et al. (2006).
Their method is more efficient (requiring fewer combinations), but also more com-
plicated (requiring the solution of a LP problem after each additional observation).
Moreover they assume main effects only (no interactions). Note that the LP problem
arises because this method computes the Ordinary Least Squares (OLS) estimate
under the constraint stipulating that all regression coefficients be non-negative (see
Assumption 2 above).

3.2 Mathematical Details of Simplest SB

To explain some mathematical details of SB, the following additional notation
is used.
w( j);r : observed simulation output with the factors 1 through j set to their

high levels and the remaining factors set to their low levels, in replication r (with
j = 1, . . . , k and r = 1, . . . ,m with m > 1);
β j ′− j : sum of main effects of factors j ′ through j ; i.e.,

β j ′− j =
j∑

h= j ′
βh . (2)

A simple estimate (a complicated estimate is given by Ankenman et al. 2006) of this
group effect based on replication r is

β̂ j ′− j ;r = w( j);r − w( j ′−1);r

2
. (3)

Section 3.1 mentioned that SB starts with simulating the two most extreme sce-
narios; i.e., scenario 1 implies that all k factors are at their low levels, so x j = −1;
scenario 2 implies that all these factors are high, so x j = 1. If the metamodel in (1)
is valid, then

E(w(0)) = β0 − β1 − · · · − βk (4)



Factor Screening in Simulation Experiments 161

and

E(w(k)) = β0 + β1 + · · · + βk, (5)

so

E(w(k))− E(w(0)) = 2(β1 + · · · + βk), (6)

which shows that the group effect estimator defined in (3) is unbiased.
Likewise it follows that the individual main effect β j is estimated through the

analogue of (3):

β̂ j ;r = w( j)r − w( j−1);r

2
. (7)

The replicates enable the estimation of the mean and the variance for each (aggre-
gated or individual) estimated effect; e.g., (7) gives

β̂ j =
∑m

r=1 β̂ j ;r

m
and s(β̂ j ) =

√∑m
r=1(β̂ j ;r − β̂ j )2

m(m − 1)
. (8)

This variance estimator allows variance heterogeneity of the simulation outputs, as
well as Common Random Numbers (CRN); also see the discussion on variance
heterogeneity and CRN in Kleijnen (2008).

To test the importance of the estimated (either aggregated or individual) main
effects statistically, SB uses a classic t statistic. Different scenarios probably pro-
duce observations with different variances, and may use CRN. SB applies a one-
sided test because SB assumes that all individual main effects are nonnegative. SB
uses a prespecified type-I error rate (e.g., α = 0.05) per test; i.e., SB does not adjust
for multiple testing. (Response Surface Methodology or RSM is also a sequential
procedure that does not control the type-I and type-II error rates over the whole pro-
cedure, but is much applied; see Kleijnen 2008 and Myers and Montgomery 2002.)
However, Wan et al. (2006a) do use multiple testing procedures in SB.

To verify (or validate) the shortlist resulting from SB, the effects of the “unim-
portant” factors may be tested through the following two scenarios, each simulated
m times:

i. Set all factors that SB declared to be unimportant at their low levels, while
keeping the important factors fixed (e.g., at their base levels).

ii. Switch all these unimportant factors to their high levels, still keeping the impor-
tant factors fixed.

Obviously, these two scenarios are not used in SB if verification fixes the
important factors at base values (coded as 0) that are not extreme values (coded
as either −1 or 1, which are used in SB). The difference between the outputs of
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these two scenarios may be tested through a t statistic; this difference is expected
not to differ significantly from zero if the factors are actually unimportant.

How SB proceeds sequentially is illustrated in the following case study. A formal
computer procedure for the SB steps is given by Wan et al. (2006a).

3.3 Case Study: Ericsson’s Supply-Chain Simulation

An example of the application of SB to a simulation with many factors is the follow-
ing case study. Originally, Persson and Olhager (2002) developed a supply-chain
simulation for the Ericsson company in Sweden, and simulated only nine factor
combinations. Kleijnen et al. (2006), however, revisit this simulation model and
distinguish k = 92 factors! (Moreover, they study two other variants of this supply
chain with fewer factors, which are not reported in this chapter.)

They replicate each combination m = 5 times. The first extreme scenario with
all 92 factors at their low levels gives the average output w(0) = 3,981,627. The other
extreme scenario with all factors at their high levels gives the average output w(92) =
34,013,832. So, the estimated group effect of all 92 factors is obtained from (2), (6),

and (8), and is β̂1−92 = (34,013,832 − 3,983,627)/2 = 15,016,102. The standard

error of this estimated group effect follows from (8), and turns out to be s(β̂1−92) =
42,051.18. So this effect is very significant; and in hindsight, fewer replicates might
have been simulated at this early stage; e.g., only m = 2 replicates would have shown
that one or more factors among the 92 factors must be important.

Next, SB divides the current group of 92 factors into two subgroups. The first
subgroup consists of all the 79 “decision” (or “controllable”) factors (labeled from 1
through 79); the other subgroup contains all 13 “environmental” factors. Simulation
of this scenario must give an expected output between the expected outputs of the
preceding extreme scenarios. Comparison of the simulation observations w(79) and

w(0) gives the estimated (sub)group effect β̂1−79. Similarly, comparison of w(92) and

w(79) gives β̂80−92. Thus, this step splits the total estimated effect β̂1−92 into its two
additive components. This step decreases the upper limit for any individual effect in
the first subgroup and the second subgroup respectively.

Kleijnen et al. (2006) give details on the successive SB steps for this case study.
SB does not split a subgroup any further when its estimated aggregated main effect
is not significantly positive; e.g., the estimated aggregated main effect of factors 50
through 79 turns out to be a small negative value.

In this case study, it turns out that SB stops after only 19 replicated observations
(combinations). The upper limit for the main effect of any remaining individual fac-

tor is then reduced to 87,759 (whereas β̂1−92 = 15,016,102). SB produces a shortlist
with only 10 factors; its most important factor is factor 92. Section 3.1 mentioned
that the SB efficiency improves when factors are labeled from least important to
most important; indeed, factor 92 turns out to be the most important factor and
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no factor labelled smaller than 43 is declared to be important. The most important
individual factor (namely, factor 92) has already been identified and estimated after
only six replicated observations.

3.4 SB with Two-Factor Interactions

This section summarizes SB for situations in which Assumption 1(a) is replaced by
Assumptions 1(b) and 3, which are detailed now.

Assumption 1(b) a valid metamodel is a first-order polynomial augmented with
two-factor interactions β j ′; j ( j ′ < j ; j ′ = 1, . . . , k − 1; j = 2, . . . , k) and noise:

y = β0 + β1x1 + · · · + βk xk + β1;2x1x2 + · · · + βk−1;k xk−1xk + e. (9)

The signs of these interactions are irrelevant (see below).
Assumption 3 if a factor has no important main effect, then this factor does not

interact with any other factor.
Assumption 3 is called the strong heredity assumption; see Wu and Hamada

(2000) and also Saltelli et al. (2005). Strong heredity is related to functional
marginality, which is discussed by Tsai et al. (2007).

Let w−( j) denote the mirror observation of w( j); i.e., w−( j) is the simulation out-
put with the factors 1 through j set to their low levels and the remaining factors set
to their high levels. For example, the analogues of (4) and (5) are for j = 48:

E(w−(49)) = β0 + (−β1 − · · · − β49)+ (β50 + · · · + β92)

+ (β1;2 + · · · + β48;49)+ (−β1;50 − · · · − β49;92)

+ (β50;51 + · · · + β91;92)

and

E(w(49)) = β0 + (β1 + · · · + β49)+ (−β50 − · · · − β92)

+ (β1;2 + · · · + β48;49)+ (−β1;50 − · · · − β49;92)

+ (β50;51 + · · · + β91;92),

so subtracting these two equations cancels all interactions. The analogue of (3)
gives the unbiased group estimator

β̂ j ′− j ;r = (w( j);r − w−( j);r )− (w( j ′−1);r − w−( j ′−1);r )

4
. (10)

The analogue of (7) gives the unbiased individual estimator

β̂ j ;r = (w( j);r − w−( j);r )− (w( j−1);r − w−( j−1);r )

4
. (11)
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In other words, SB enables the estimation of first-order effects unbiased by
two-factor interactions provided SB simulates the mirror combinations besides the
original combinations. Hence, the number of simulated combinations doubles. Wan
et al. (2006b) point out that—in the case of mirror observations—fewer replica-
tions per combination may be needed. They further state that the SB efficiency may
increase when applying CRN separately to all positive levels and negative levels
respectively.

SB with mirror scenarios may still give misleading results if (say) two factors
have unimportant main effects but their interaction is important. Therefore SB
assumes strong heredity (Assumption 3). If the analysts suspect that this assump-
tion is violated for a specific factor, then they should investigate that factor after the
screening phase.

SB with mirror observations does not enable estimation of individual interac-
tions, but it does show whether interactions are important—as follows. Estimate
the main effects from the original scenarios—ignoring the mirror scenarios. If the
analyses of the mirror observations and of the original observations give the same
conclusions, then interactions are unimportant. This happened, e.g., in the ecolog-
ical simulation reported in Bettonvil (1990) and Bettonvil and Kleijnen (1996). In
that study, the factor values change relatively little (larger changes give unrealistic
simulation outputs), so a first-order polynomial is adequate. In the supply-chain
study, however, interactions turn out to be important; see Kleijnen et al. (2006). (In
a follow-up experiment with the factors declared to be important in SB, the sizes of
the individual interactions are estimated from a resolution-V design, which by def-
inition enables the unbiased estimation of all the individual two-factor interactions;
details on resolution-V designs are given by Kleijnen 2008.) Note that the mirror
observations and the original observations may give different SB paths through the
list of individual factors.

4 Conclusions and Future Research

This chapter may be summarized as follows. There are different screening designs,
including resolution-III, supersaturated, and group-screening designs. This chapter,
however, focused on SB, and stated the various assumptions of SB. These assump-
tions may not be too restrictive in practice, as the Ericsson case-study illustrated.
If its assumptions are satisfied, then SB is a most efficient and effective screening
method.

There is a need for more research:

• It is a challenge to derive the number of replicates that control the overall proba-
bility of correctly classifying the individual factors as important or unimportant.
So far, SB applies a statistical test to each subgroup individually. (Furthermore,
SB may terminate “prematurely,” and yet estimate the most important factors—
instead of classifying all factors with effects that exceed a prespecified threshold.)
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• It might be that the simulation of mirror factor combinations can be stopped as
soon as it seems that no interactions are important.

• After SB stops, the resulting shortlist of important factors should be validated.
(A procedure was proposed above.)

• Software needs to be developed that implements sequential screening of simu-
lation experiments. This software should generate an input file, once a partic-
ular design type (e.g., SB) has been chosen. Such a file can then be executed
sequentially and efficiently in batch mode; i.e., no human intervention is required
while the computer executes the sequential design. Furthermore, good computer
programming avoids fixing the inputs at specific numerical values within the
code; instead, the computer reads input values so that the program can be run
for many combinations of these values. (Of course, the computer should check
whether these values are admissible; i.e., do these combinations fall within the
experimental domain?) Such a practice can automatically provide a long list of
potential factors.

• A contest may be organized that challenges the experts in the different screening
methods to estimate the most important factors in a set of simulation models.
Such “testbeds” are popular in Mathematical Programming. Note that nobody is
expert in all screening methods.

• Multivariate output may consist of univariate outputs that require different SB
paths. This problem has not yet been touched in the literature!
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F2-Linear Random Number Generators

Pierre L’Ecuyer and François Panneton

Abstract Random number generators based on linear recurrences modulo 2 are
among the fastest long-period generators currently available. The uniformity and
independence of the points they produce, by taking vectors of successive output
values from all possible initial states, can be measured by theoretical figures of
merit that can be computed quickly, and the generators having good values for these
figures of merit are statistically reliable in general. Some of these generators can
also provide disjoint streams and substreams efficiently. In this paper, we review the
most interesting construction methods for these generators, examine their theoretical
and empirical properties, describe the relevant computational tools and algorithms,
and make comparisons.

1 Introduction

Given that computers work in binary arithmetic, it seems natural to construct ran-
dom number generators (RNGs) defined via recurrences in arithmetic modulo 2,
so that these RNGs can be implemented efficiently via elementary operations on
bit strings, such as shifts, rotations, exclusive-or’s (xor’s), and bit masks. Very fast
RNGs whose output sequences have huge periods can be constructed in this way.
Among them, we find the Tausworthe or linear feedback shift register (LFSR), gen-
eralized feedback shift register (GFSR), twisted GFSR (TGFSR), Mersenne twister,
the WELL, and xorshift generators (Fishman 1996; L’Ecuyer 1996, 2006; L’Ecuyer
and Panneton 2002; Matsumoto and Nishimura 1998; Panneton 2004; Panneton and
L’Ecuyer 2005; Panneton et al. 2006; Tezuka 1995). A common characterization
of all these generators is that they are special cases of a general class of generators
whose state evolves according to a (matrix) linear recurrence modulo 2. The bits that
form their output are also determined by a linear transformation modulo 2 applied
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to the state. Since doing arithmetic modulo 2 can be interpreted as working in F2,
the finite field of cardinality 2 with elements {0, 1}, we shall refer to this general
class as F2-linear generators.

It must be underlined right away that some widely-used RNGs of this form are
not statistically reliable and should be discarded. But other well-designed instances
are good, reliable, and fast. Which ones? What defects do the others hide? What
mathematical tools can be used to analyze and practically assess their quality from
a theoretical viewpoint? Is it easy to jump ahead quickly in their sequence in
order to split it into multiple streams and substreams? In the remainder of this
paper, we address these questions and provide a state-of-the-art overview of F2-
linear RNGs.

In the next section, we define a general framework that covers all F2-linear gen-
erators. We provide some basic properties of these RNGs, such as maximal-period
conditions, a simple way to jump ahead, and a simple combination method of F2-
linear generators (via a bitwise xor) to construct larger (and often better-behaved)
F2-linear generators. We describe efficient algorithms to compute the characteristic
polynomial of an RNG and to check if it has maximal period. In Section 3, we
discuss the theoretical measures of uniformity and independence that are typically
used in practice as figures of merit to assess its quality. The F2-linear RNGs turn out
to have a lattice structure in spaces of polynomials and formal series over F2. There
are counterparts in those spaces of the spectral test and other lattice-based tests
and properties that have been developed for linear congruential generators. Inter-
estingly, these tests are strongly linked with computing the measures of uniformity
of F2-linear generators. Section 4 outlines this theory. We explain how to construct
and analyze the polynomial lattices and how to use them for computing the unifor-
mity measures of interest. In Section 5, we describe specific families of F2-linear
generators proposed over the years, show how they fit the general framework, and
summarize what we know about their strengths and weaknesses. In Section 6, we
compare specific implementations in terms of their speed and (theoretical) figures
of merit, and discuss their behavior in empirical statistical tests. Compared with the
most widely used RNG that offers multiple streams and substreams in simulation
software, the best F2-linear RNGs are faster by a factor of 1.5–3, depending on the
computing platform. Section 7 concludes the paper.

2 F2-Linear Generators

2.1 General Framework

We consider an RNG defined by a matrix linear recurrence over the finite field F2,
as follows:

xn = Axn−1, (1)

yn = Bxn, (2)
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un =
w∑
�=1

yn,�−12−� = .yn,0 yn,1 yn,2 · · · , (3)

where xn = (xn,0, . . . , xn,k−1)t ∈ F
k
2 is the k-bit state vector at step n (t means

“transposed”), yn = (yn,0, . . . , yn,w−1)t ∈ F
w
2 is the w-bit output vector at step n, k

and w are positive integers, A is a k × k transition matrix with elements in F2, and
B is a w × k output transformation matrix with elements in F2. The real number
un ∈ [0, 1) is the output at step n. All operations in (1) and (2) are performed in F2,
i.e., modulo 2. This setting is from L’Ecuyer and Panneton (2002). Several popular
classes of RNGs fit this framework as special cases, by appropriate choices of the
matrices A and B. Many will be described in Section 5.

The period of this RNG cannot exceed 2k − 1, because there are only 2k − 1
possible nonzero values for xn . When this maximum is reached, we say that the
RNG has maximal period. To discuss the periodicity and see how we can construct
maximal-period F2-linear RNGs, we use the following basic definitions and prop-
erties from linear algebra and finite fields. Let F2[z] denote the ring of polynomials
with coefficients in F2. The characteristic polynomial of the matrix A is

P(z) = det(z I− A) = zk − α1zk−1 − · · · − αk−1z − αk,

where I is the identity matrix and each α j is in F2. This P(z) is also the characteristic
polynomial of the linear recurrence (in F2)

xn = α1xn−1 + · · · + αk xn−k . (4)

We shall assume that αk = 1. Usually, we know a priori that this is true by construc-
tion of the matrix A. In that case, the recurrence (4) has order k and it is purely peri-
odic, i.e., there is some integer ρ > 0 such that (xρ, . . . , xρ+k−1) = (x0, . . . , xk−1);
this ρ is called the period of the recurrence. The minimal polynomial of A is the
polynomial Q(z) ∈ F2[z] of smallest degree for which Q(A) = 0. Every other
polynomial R(z) ∈ F2[z] for which R(A) = 0 must be a multiple of the minimal
polynomial. This implies in particular that P(z) is a multiple of Q(z). In the context
of RNG construction, Q(z) and P(z) are almost always identical, at least for good
constructions.

The fact that the sequence {xn, n ≥ 0} obeys (1) implies that it satisfies the recur-
rence that corresponds to the minimal polynomial of A (or any other polynomial that
is a multiple of Q(z)):

xn = (α1xn−1 + · · · + αkxn−k) (in F2). (5)

This means that the sequence {xn, j , n ≥ 0} obeys (4) for each j , 0 ≤ j < k.
The sequence {yn, j , n ≥ 0}, for 0 ≤ j < w, also obeys that same recurrence.
However, these sequences may also follow recurrences of order smaller than k. For
any periodic sequence in F2, there is a linear recurrence of minimal order obeyed
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by this sequence, and the characteristic polynomial of that recurrence is called the
minimal polynomial of the sequence. This minimal polynomial can be computed by
the Berlekamp-Massey algorithm (Massey 1969). The sequences {xn, j , n ≥ 0}may
have different minimal polynomials for different values of j , and also different min-
imal polynomials than the sequences {yn, j , n ≥ 0}. But all these minimal polyno-
mials must necessarily divide P(z). If P(z) is irreducible (i.e., it has no divisor other
than 1 and itself), then P(z) must be the minimal polynomial of all these sequences.
Reducible polynomials P(z) do occur when we combine generators (Section 2.3);
in that case, P(z) is typically the minimal polynomial of the output bit sequences
{yn, j , n ≥ 0} as well, but the sequences {xn, j , n ≥ 0} often have much smaller
minimal polynomials (divisors of P(z)).

It is well-known that the recurrences (4) and (5) have maximal period if and
only if P(z) is a primitive polynomial over F2 (Niederreiter 1992, Knuth 1998).
Primitivity is a stronger property than irreducibility: P(z) is primitive if and only if
it is irreducible and for all prime divisors pi of r = 2k − 1, zr/pi �≡ 1 mod P(z). A
good way to verify if a polynomial is primitive is to verify irreducibility first, and
then check the second condition. Note that when r is prime (this type of prime is
called a Mersenne prime), the second condition is automatically satisfied.

In the context of RNG construction, we are interested essentially only in maximal-
period recurrences. The RNG is constructed either from a single maximal-period
recurrence, or from a combination of maximal-period recurrences, as we shall
explain later. Assuming that we are interested only in primitive polynomials P(z),
we can compute P(z) and check its primitivity as follows.

We first run the generator for k steps from some arbitrary non-zero initial state
x0, and we compute the minimal polynomial Q0(z) of {xn,0, n ≥ 0} with the
Berlekamp-Massey algorithm. If Q0(z) has degree less than k, then P(z) is necessar-
ily reducible and we reject this generator; otherwise P(z) = Q0(z) and it remains to
verify its primitivity. For this, we can use the following algorithm from Rieke et al.
(1998) and Panneton (2004); it verifies the set of necessary and sufficient conditions
stated in Knuth (1998, p. 30), but it also specifies in what order to perform the
polynomial exponentiations:

Algorithm P
{ Given P(z) of degree k, returns TRUE iff P(z) is primitive }
Factorize r = 2k − 1 = pe1

1 · · · peb
b where p1, . . . , pb are distinct primes;

Compute q := r/(p1 · · · pb) and qb(z) := zq mod P(z);
For i = b, . . . , 1, let qi−1(z) := qi (z)pi mod P(z);
If q0(z) �= 1 or q1(z) = 1, return FALSE;
For i = b, . . . , 2, {

Compute ti (z) := qi (z)pi−1 ···p1 mod P(z);
If ti (z) = 1, return FALSE; }

Return TRUE.

When k is large, it is worthwhile to first apply an irreducibility test that can detect
reducibility faster than this primitivity test. Note that P(z) is reducible if and only
if it has an irreducible factor of degree ≤ �k/2�, where �·� denotes the well-known
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floor function, which truncates its argument to an integer. A key theorem in finite
fields theory states that for any integer n ≥ 1, the product of all irreducible poly-
nomials whose degree d divides n is equal to z2n + z. This means that P(z) is
irreducible if and only if gcd(z2n + z, P(z)) = 1 for all n ≤ �k/2� (gcd means
“greatest common divisor”). This gives the following algorithm:

Algorithm I
{ Given P(z) of degree k, returns TRUE iff P(z) is irreducible }
For n = 1, . . . , �k/2�: if gcd(z2n + z, P(z)) �= 1, return FALSE;
Return TRUE.

When searching for primitive polynomials for RNG construction, we typically
select k and impose a special form on the matrix A, so that a fast implementation is
available (see Section 5). Then we search (often at random), in the space of matrices
A that satisfy these constraints, for instances having a primitive characteristic poly-
nomial. The following old result (see, e.g., Lidl and Niederreiter 1986) may give a
rough idea of our chances of success. It gives the probability that a random polyno-
mial, generated uniformly over the set of all polynomials of degree k, is primitive. It
is important to underline, however, that when generating A randomly from a special
class, the polynomial P(z) does not necessarily have the uniform distribution over
the set of polynomials, so the probability that it is primitive might differ from the
formula given in the theorem.

Theorem 1 Among the 2k polynomials of degree k in F2[z], the proportion of prim-
itive polynomials is exactly

1

k

b∏
i=1

pi − 1

pi

where p1, . . . , pb are the distinct prime factors of r = 2k − 1.

This result suggests that to improve our chances, it is better to avoid values of r
having several small factors. If r is a Mersenne prime, the proportion is exactly 1/k.

2.2 Jumping Ahead

A key requirement of modern stochastic simulation software is the availability of
random number generators with multiple disjoint streams and substreams. These
streams and substreams can provide parallel RNGs and are also important to support
the use of variance reduction techniques (Fishman 1996, Law and Kelton 2000,
L’Ecuyer et al. 2002). They are usually implemented by partitioning the output
sequence of a long-period generator into long disjoint subsequences and subsub-
sequences whose starting points are found by making large jumps in the original
sequence.
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Jumping ahead directly from xn to xn+ν for a very large integer ν is easy in
principle with this type of generator. It suffices to precompute the matrix Aν mod 2
(this can be done in O(k3 log ν) operations by a standard method) and then multiply
xn by this binary matrix, modulo 2. The latter step requires O(k2) operations and
O(k2) words of memory to store the matrix. This approach works fine for relatively
small values of k (e.g., up to 100 or so), but becomes rather slow when k is large. For
example, the Mersenne twister of Matsumoto and Nishimura (1998) has k = 19937
and the above method is impractical in that case.

A more efficient method is proposed by Haramoto et al. (2008). For a given step
size ν, the method represents the state xn+ν as gν(A)xn , where gν(z) = ∑k−1

j=0 d j z j

is a polynomial of degree less than k in F2[z]. The product

gν(A)xn =
k−1∑
j=0

d j A j xn =
k−1∑
j=0

d j xn+ j

can be computed simply by running the generator for k − 1 steps to obtain
xn+1, . . . , xn+k−1 and adding (modulo 2) the xn+ j ’s for which d j = 1. For large
k, the cost is dominated by these additions. Their number can be reduced (e.g., by
a factor of about 4 when k = 19937) by using a sliding window technique, as
explained in Haramoto et al. (2008). This method still requires O(k2) operations,
but with a smaller hidden constant and (most importantly) much less memory than
the standard matrix multiplication. Yet jumping ahead for F2-linear generators of
large order k (such as the Mersenne twister) remains slow with this method. One
way to make the jumping-ahead more efficient is to adopt a combined generator, as
discussed in Section 2.3 below, and do the ν-step jumping-ahead separately for each
component.

2.3 Combined F2-Linear Generators

A simple way of combining F2-linear generators is as follows. For some integer
C > 1, consider C distinct recurrences of the form (1)–(2), where the cth recur-
rence has parameters (k, w,A,B) = (kc, w,Ac,Bc) and state xc,n at step n, for
c = 1, . . . ,C . The output of the combined generator at step n is defined by

yn = B1x1,n ⊕ · · · ⊕ BC xC,n,

un =
w∑
�=1

yn,�−12−�,

where ⊕ denotes the bitwise exclusive-or (xor) operation. One can show (Tezuka
1995, Tezuka and L’Ecuyer 1991) that the period ρ of this combined generator is the
least common multiple of the periods ρc of its components. This combined generator
is equivalent to the generator (1)–(3) with k = k1+· · ·+kC , A = diag(A1, . . . ,AC ),
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and B = (B1, . . . ,BC ). If Pc(z) is the characteristic polynomial of Ac for each c,
then the characteristic polynomial of A is P(z) = P1(z) · · · PC (z). This polynomial
is obviously reducible, so the combined RNG cannot have maximal period 2k − 1.
However, if we select the parameters carefully so that each component has maximal
period ρc = 2kc − 1 and if the ρc are pairwise relatively prime (the Pc(z) must
be distinct irreducible polynomials), then the period of the combined generator is
the product of the periods of the components: ρ = ∏C

c=1(2kc − 1). In fact, within
one cycle, all combinations of nonzero states for the C components are visited
exactly once. When the kc’s are reasonably large, this ρ is not far from 2k − 1;
the difference is that instead of discarding a single k-bit zero state, we must discard
the zero state for each component (i.e., all k-bit states in which at least one of the
components is in the zero state). Concrete constructions of this form are given in
Tezuka and L’Ecuyer (1991), Wang and Compagner (1993), L’Ecuyer (1996) and
Tezuka (1995).

Why would we want to combine generators like this? We already gave one good
reason in the previous subsection: efficient jumping-ahead is easier for a combined
generator of order k having several components of smaller order than for a non-
combined generator with the same k. Another important reason is that matrices A
that give very fast implementations typically lead (unfortunately) to poor quality
RNGs from the statistical viewpoint, because of a too simplistic structure. Combined
generators provide a way out of this dilemma: select simple components that allow
very fast implementations and such that the corresponding combined generator has
a more complicated structure, good figures of merit from the theoretical viewpoint,
and good statistical properties. Many of the best F2-linear generators are defined
via such combinations. As an illustration, one may have four components of periods
263− 1, 258− 1, 255− 1, 247− 1, so the state of each component fits a 64-bit integer
and the overall period is near 2223.

There could be situations where instead of combining explicitly known F2-linear
components, we would go the other way around; we may want to generate matrices
A randomly from a given class, then find the decomposition of their (reducible)
characteristic polynomials, analyze their periodicity and figures of merit, and so
on. This approach is used by Brent and Zimmermann (2003), for example. In that
case, we can decompose P(z) = P1(z) · · · PC (z), where the Pc(z) are irreducible,
and also decompose the matrix A in its Jordan normal form: A = PÃP−1, where
P is an invertible matrix and Ã = diag(Ã1, . . . , ÃC ) is a block-diagonal matrix
for which each block Ãc has irreducible characteristic polynomial Pc(z) (Golub
and Van Loan 1996, Strang 1988). Once we have this decomposition, we know
that the generator is equivalent to a combined RNG with transition matrix Ã and
output transformation matrix B̃ = BP, and we can analyze it in the same way as
if we had first selected its components and then combined them. It is important to
note that the purpose of the decomposition in this case is not to provide an effi-
cient implementation for the combined generator, nor an efficient algorithm to jump
ahead, but only to analyze the periodicity and other theoretical properties of the
generator.
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3 Quality Criteria

In general, good RNGs must have a long period ρ (say, ρ ≈ 2200 or more), must
run fast, should not waste memory (the state should be represented in no more than
roughly log2 ρ bits of memory), must be repeatable and portable (able to reproduce
exactly the same sequence in different software/hardware environments), and must
allow efficient jumping-ahead in order to obtain multiple streams and substreams.
But these required properties do not suffice to imitate independent random numbers.

Recall that a sequence of random variables U0,U1,U2, . . . are i.i.d. U [0, 1) if
and only if for all integers i ≥ 0 and t > 0, the vector (Ui , . . . ,Ui+t−1) is uniformly
distributed over the t-dimensional unit hypercube [0, 1)t . Of course, this cannot hold
for algorithmic RNGs that have a finite period. For RNGs that fit our F2-linear
framework, any vector of t successive output values of the generator belongs to the
finite set

Ψt = {(u0, . . . , ut−1) : x0 ∈ F
k
2},

i.e., the set of output points obtained when the initial state runs over all possible
k-bit vectors. This set Ψt always has cardinality 2k when viewed as a multiset (i.e.,
if the points are counted as many times as they appear).

If x0 is drawn at random from the set of k-bit vectors F
k
2, with probability 2−k for

each vector, then (u0, . . . , ut−1) is a random vector having the uniform distribution
over Ψt . Thus, to approximate well the uniform distribution over [0, 1)t , Ψt must
cover the hypercube [0, 1)t very uniformly (L’Ecuyer 1994, 2006). More generally,
we may also want to measure the uniformity of sets of the form

ΨI = {(ui1 , . . . , uit ) | x0 ∈ F
k
2},

where I = {i1, . . . , it } is a fixed ordered set of non-negative integers such that
0 ≤ i1 < · · · < it . For I = {0, . . . , t − 1}, we recover Ψt = ΨI .

The uniformity ofΨI is usually assessed by measures of the discrepancy between
the empirical distribution of its points and the uniform distribution over [0, 1)t

(Hellekalek and Larcher 1998, L’Ecuyer and Lemieux 2002, Niederreiter 1992).
These measures can be defined in many ways and they are in fact equivalent to
goodness-of-fit tests for the multivariate uniform distribution. They must be com-
putable without enumerating the points, because the cardinality of Ψt makes the
enumeration practically infeasible when the period is large enough. For this reason,
the uniformity measures are usually tailored to the general structure of the RNG.
The selected discrepancy measure can be computed for each set I in some prede-
fined class J ; then these values can be weighted or normalized by factors that may
depend on I , and the worst-case (or average) over J can be adopted as a figure
of merit used to rank RNGs. The choices of J and of the weights are arbitrary.
They are a question of compromise and practicality. Typically, J would contain
sets I such that t and it − i1 are rather small. We generally try to optimize this
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figure of merit when searching (by computer) for concrete RNG parameters, within
a given class of constructions.

For F2-linear generators, the uniformity of the point sets ΨI is typically assessed
by measures of equidistribution defined as follows (L’Ecuyer 2004, 1996; L’Ecuyer
and Panneton 2002; Tezuka 1995). For an arbitrary vector q = (q1, . . . , qt ) of non-
negative integers, partition the unit hypercube [0, 1)t into 2q j intervals of the same
length along axis j , for each j . This determines a partition of [0, 1)t into 2q1+···+qt

rectangular boxes of the same size and shape. If a given set ΨI has exactly 2q points
in each box of this partition, where the integer q must satisfy k−q = q1+· · ·+qt , we
say that ΨI is q-equidistributed. This means that among the 2k points (ui1, . . . , uit )
of ΨI , if we consider all (k−q)-bit vectors formed by the q j most significant bits of
ui j for j = 1, . . . , t , each of the 2k−q possibilities occurs exactly the same number
of times. Of course, this is possible only if q1+· · ·+qt ≤ k. When q1+· · ·+qt ≥ k,
i.e., when the number of boxes is larger or equal to the number of points, we say that
ΨI is q-collision-free (CF) if no box contains more than one point (L’Ecuyer 1996).

If ΨI is (�, . . . , �)-equidistributed for some � ≥ 1, it is called t-distributed with �
bits of accuracy, or (t, �)-equidistributed (L’Ecuyer 1996). (We will avoid this last
notation because it conflicts with that for (q1, . . . , qt )-equidistribution.) The largest
value of � for which this holds is called the resolution of the set ΨI and is denoted
by �I . It cannot exceed �∗t = min(�k/t�, w). We define the resolution gap of ΨI as
δI = �∗t − �I . Potential figures of merit can then be defined by

ΔJ ,∞ = max
I∈J

ωI δI and ΔJ ,1 =
∑
I∈J

ωI δI

for some non-negative weights ωI , where J is a preselected class of index sets I .
The weights are often taken all equal to 1.

We also denote by t� the largest dimension t for which Ψt is t-distributed with �
bits of accuracy, and we define the dimension gap for � bits of accuracy as

δ̃� = t∗� − t�,

where t∗� = �k/�� is an upper bound on t�. We may then consider the worst-case
weighted dimension gap and the weighted sum of dimension gaps, defined as

Δ̃∞ = max
1≤�≤w

ω�δ̃� and Δ̃1 =
w∑
�=1

ω�δ̃�

for some non-negative weights ω�, as alternative figures of merit for our genera-
tors. Often, the weights are all 1 and the word “weighted” is removed from these
definitions.

When Δ̃∞ = Δ̃1 = 0, the RNG is said to be maximally equidistributed (ME) or
asymptotically random for the word size w (L’Ecuyer 1996, Tezuka 1995, Tootill
et al. 1973). This property ensures perfect equidistribution of all sets Ψt , for any
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partition of the unit hypercube into subcubes of equal sizes, as long as � ≤ w and
the number of subcubes does not exceed the number of points inΨt . As an additional
requirement, we may ask thatΨt be (�, . . . , �)-collision-free whenever t� ≥ k. Then
we say that the RNG is collision-free (CF) (L’Ecuyer 1999b). Large-period ME (or
almost ME) and ME-CF generators can be found in L’Ecuyer (1999b), L’Ecuyer
and Panneton (2002), Panneton and L’Ecuyer (2004), and Panneton et al. (2006),
for example.

The (k − q)-bit vectors involved in assessing the q-equidistribution of ΨI can be
expressed as a linear function of the k-bit initial state x0, that is, as z0 = Mqx0 for
some (k − q) × k binary matrix Mq. Clearly, ΨI is q-equidistributed if and only if
Mq has full rank. Thus, q-equidistribution can easily be verified by constructing this
matrix Mq and checking its rank via (binary) Gaussian elimination (Fushimi 1983,
L’Ecuyer 1996, Tezuka 1995). This is a major motivation for adopting this measure
of uniformity.

To construct the matrix Mq that corresponds to ΨI , one can proceed as follows.
For j ∈ {1, . . . , k}, start the generator in initial state x0 = e j , where e j is the unit
vector with a 1 in position j and zeros elsewhere, and run the generator for it steps.
Record the q1 most significant bits of the output at step i1, the q2 most significant
bits of the output at step i2, . . . , and the qt most significant bits of the output at step
it . These bits form the j th column of the matrix Mq.

In the case of a combined generator as in Section 2.3, the matrix Mq can be
constructed by first constructing the corresponding matrices M(c)

q for the individ-
ual components, and simply juxtaposing these matrices, as suggested in L’Ecuyer
(1999b). To describe how this is done, let us denote by Ψ (c)

I the point set that
corresponds to component c alone, and let xt

0 = ((x(1)
0 )t, . . . , (x(C)

0 )t) where x(c)
0 is

the initial state for component c. If z(c)
0 is the (k − q)-bit vector relevant for the

q-equidistribution of Ψ (c)
I , then we have z(c)

0 = M(c)
q x(c)

0 for some (k−q)× kc binary
matrix M(c)

q that can be constructed as explained earlier. Note that the point set ΨI

can be written as the direct sum

ΨI = Ψ
(1)
I ⊕ · · · ⊕ Ψ (C)

I = {u = u(1) ⊕ · · · ⊕ u(C) | u(c) ∈ Φ(c)
I for each c},

coordinate by coordinate, and observe that

z0 = z(1)
0 ⊕ · · · ⊕ z(C)

0 = M(1)
q x(1)

0 ⊕ · · · ⊕M(C)
q x(C)

0 .

This means that Mq is just the juxtaposition Mq = M(1)
q · · ·M(C)

q . That is, M(1)
q gives

the first k1 columns of Mq, M(2)
q gives the next k2 columns, and so on.

For very large values of k, the matrix Mq is expensive to construct and reduce,
but a more efficient method based on the computation of the shortest nonzero vector
in a lattice of formal series, studied in Couture and L’Ecuyer (2000), can be used in
that case to verify (�, . . . , �)-equidistribution; see Section 4.

The figures of merit defined above look at the most significant bits of the output
values, but give little importance to the least significant bits. We could of course



F2-Linear Random Number Generators 179

extend them so that they also measure the equidistribution of the least significant
bits, simply by using different bits to construct the output values and computing the
corresponding q-equidistributions. But this becomes quite cumbersome and expen-
sive to compute in general because there are too many ways of selecting which bits
are to be considered. Certain classes of F2-linear generators (the Tausworthe/LFSR
RNGs defined in Section 5.1) have the interesting property that if all output values
are multiplied by a given power of two, modulo 1, all equidistribution properties
remain unchanged. In other words, they enjoy the nice property that their least sig-
nificant bits have the same equidistribution as the most significant ones. We call
such generators resolution-stationary (Panneton and L’Ecuyer 2007).

Aside from excellent equidistribution, good F2-linear generators are also required
to have characteristic polynomials P(z) whose number N1 of nonzero coefficients
is not too far from half the degree, i.e., near k/2 (Compagner 1991, Wang and
Compagner 1993). Intuitively, if N1 is very small and if the state xn happens to
contain many 0’s and only a few 1’s, then there is a high likelihood that the N1 − 1
bits used to determine any given new bit of the next state are all zero, in which
case this new bit will also be zero. In other words, it may happen frequently in
that case that only a small percentage of the bits of xn are modified from one step
to the next, so the state can contain many more 0’s than 1’s for a large number
of steps. Then, in the terminology of cryptologists, the recurrence has low diffu-
sion capacity. An illustration of this with the Mersenne twister can be found in
Panneton et al. (2006). In particular, generators for which P(z) is a trinomial or a
pentanomial, which have often been used in the past, should be avoided. They fail
rather simple statistical tests (Lindholm 1968, Matsumoto and Kurita 1996). The
fraction N1/k of nonzero coefficients in P(z) can be used as a secondary figure of
merit for an RNG.

Other measures of uniformity are popular in the context where k is small and
the entire point set Ψt is used for quasi-Monte Carlo integration (Hellekalek and
Larcher 1998, L’Ecuyer and Lemieux 2002, Niederreiter 1992); for example, the
smallest q for which Ψt is a (q, k, t)-net (commonly known as a (t,m, s)-net, using
a different notation), the Pα measure and its weighted versions, the diaphony, etc.
However, no one knows how to compute these measures efficiently when k > 50
(say), which is always the case for good F2-linear RNGs.

4 Lattice Structure in a Space of Formal Series

The lattice structure of linear congruential generators (LCGs) is well-known in the
simulation community (Knuth 1998, Law and Kelton 2000). F2-linear RNGs do not
have a lattice structure in the real space, but they do have a similar form of lattice
structure in a space of formal series (Couture and L’Ecuyer 2000, L’Ecuyer 2004,
Lemieux and L’Ecuyer 2003, Tezuka 1995), which we now outline. In comparison
with the lattices of LCGs, the real space R is replaced by the space L2 of formal
power series with coefficients in F2, of the form

∑∞
�=ω x�z−� for some integer ω,

and the integers are replaced by polynomials over F2.
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Some F2-linear RNGs (e.g., the LFSR generators) have a dimension-wise lattice
structure where the lattice contains vectors of t-dimensional formal series, whose
coordinate j is the generating function for the binary expansion of the j th output
value, for a given initial state (L’Ecuyer 1994, Lemieux and L’Ecuyer 2003, Tezuka
1995, Tezuka and L’Ecuyer 1991). This dimension-wise lattice can be used to study
equidistribution, but it only applies to a subclass of F2-linear RNGs. For this rea-
son, we will not discuss it any further here. We will concentrate instead on the
resolution-wise lattice introduced by Tezuka (1995), which applies to all F2-linear
generators.

The sequence of values taken by the j th bit of the output, from a given initial
state x0, has generating function

G j (z) =
∞∑

n=1

yn−1, j z
−n

(which depends on x0). When multiplying this formal series by P(z), we obtain
the polynomial g j (z) = G j (z)P(z) in F2[z]/P(z) (the space of polynomials of
degree less than k, with coefficients in F2), because the successive terms of the
series satisfy a recurrence with this characteristic polynomial. For � = 1, . . . , w, let
G(�)(z) = (G0(z), . . . ,G�−1(z)).

We first consider the case where P(z) is an irreducible polynomial. In that case,
if G0(z) �= 0, then g0(z) has an inverse modulo P(z) and there is a unique initial
state of the RNG that corresponds to the vector

Ḡ(�)(z) = g−1
0 (z)G(�)(z)

= (1, g−1
0 (z)g1(z), . . . , g−1

0 (z)g�−1(z))/P(z)

(Panneton 2004, Lemma 3.2). Thus, if we rename momentarily g−1
0 (z)g j (z) as g j (z),

we see that it is always possible to select the initial state of the RNG so that
g0(z) = 1, i.e,

Ḡ(�)(z) = (1, g1(z), . . . , g�−1(z))/P(z).

When P(z) is irreducible, any given bit of the output follows the same recurrence,
with minimal polynomial P(z), but with a lag between the recurrences for the dif-
ferent bits, i.e., they have different starting points. The vector Ḡ(�)(z) tells us about
these lags. More specifically, if gi (z) ≡ g0(z)zti mod P(z), then the lag between the
recurrences for bit 0 and bit i is ti .

Let L2 = F2((z−1)) be the space of formal series of the form
∑∞

n=i dn−1z−n

where i ∈ Z and dn−1 ∈ F2 for each n. Let L2,0 be those series for which i ≥ 1.
Suppose that the first � rows of the matrix B are linearly independent. Then the
vectors v1(z) = Ḡ(�)(z), v2(z) = e2(z), . . . , v�(z) = e�(z) form a basis of a lattice
L� in L2, defined by
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L� =
⎧⎨
⎩v(z) =

�∑
j=1

h j (z)v j (z) such that h j (z) ∈ F2[z]

⎫⎬
⎭ .

This lattice is called the �-bit resolution-wise lattice associated with the RNG. The
matrix V whose rows are the v j ’s has an inverse W = V−1 whose columns

w1(z) = (P(z), 0, . . . , 0)t,

w2(z) = (−g1(z), 1, . . . , 0)t,

...

w�(z) = (−g�−1(z), 0, . . . , 1)t

form a basis of the dual lattice

L∗� = {h(z) ∈ L
�
2 : h(z) · v(z) ∈ F2[z] for all v(z) ∈ L�},

where h(z) · v(z) = ∑�
j=1 h j (z)v j (z) (the scalar product). This resolution-wise lat-

tice fully describes all the possible output sequences of the RNG via the following
theorem. It says that the set of all vectors of generating functions that we can get,
from all possible initial states x0, is exactly the set of lattice points that belong to
L2,0. (Here we do not assume that g0(z) = 1.)

Theorem 2 (Couture and L’Ecuyer 2000) We have

L� ∩ L2,0 = {(g0(z), . . . , g�−1(z))/P(z) : x0 ∈ F
k
2}.

For any h(z) = (h1(z), . . . , h�(z)) ∈ (F2[z])�, we define the length of h(z) by
‖0‖ = 0 and

log2 ‖h(z)‖ = max
1≤ j≤�

deg h j (z) forh(z) �= 0.

Theorem 3 (Couture and L’Ecuyer 2000, Tezuka 1995) Ψt is t-distributed with �
bits of accuracy if and only if

min
0�=h(z)∈L∗�

log2 ‖h(z)‖ > �.

This theorem shows that checking equidistribution amounts to computing a short-
est nonzero vector in the dual lattice L∗� , just like the spectral test commonly applied
to LCGs but with a different lattice. As it turns out, very similar algorithms can be
used to compute the shortest vector in both cases (Couture and L’Ecuyer 2000).
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The algorithm of Lenstra (1985) computes a reduced lattice basis in the sense of
Minkowski for a polynomial lattice; the first (shortest) vector of that reduced basis
is a shortest nonzero vector in the lattice.

This approach is more efficient than applying Gaussian elimination to the matrix
Mq (see Section 3) when t is large. However, it applies only to the point set Ψt

formed by t successive output values, and not to the more general point sets ΨI .
To construct a basis of the dual lattice for all � ≤ w, we only need the polynomi-

als g0(z), g1(z), . . . , gw−1(z). These polynomials can be computed as follows. Start
the generator in some arbitrary nonzero initial state x0, run it for k − 1 steps, and
observe the corresponding output bits yn = (yn,0, . . . , yn,w−1), for n = 0, . . . , k−1.
This gives the first k coefficients of G j (z) for j = 0, . . . , w− 1. The coefficients of
each g j (z) =∑k

i=1 c j,i zk−i can then be obtained via (Lemieux and L’Ecuyer 2003,
Proposition 3.6):

⎛
⎜⎜⎜⎝

c j,1

c j,2
...

c j,k

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 . . . 0
α1 1 . . . 0
...

. . .
. . .

...
αk−1 . . . α1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

y0, j

y1, j
...

yk−1, j

⎞
⎟⎟⎟⎠ .

Then, to obtain g0(z) = 1, it suffices to compute the inverse of g0(z) modulo P(z)
and to multiply each g j (z) by this inverse.

When P(z) is reducible, we can no longer use the argument that g0(z) has an
inverse, but everything else still applies. Suppose P(z) = P1(z) · · · PC (z), where the
Pc(z)’s are distinct irreducible polynomials; all interesting RNGs should satisfy this
assumption, usually with a small value of C . In that case, the RNG can then be inter-
preted as a combined F2-linear generator that fits the framework of Section 2.3 and
a basis of the dual lattice can be constructed by decomposition, as we now explain.
If L(c)

� denotes the resolution-wise lattice associated with component c alone and
L(c)∗
� its dual, it can be seen easily that

L� = L(1)
� ⊕ · · · ⊕ L(C)

�

(the direct sum of lattices) and

L∗� = L(1)∗
� ∩ · · · ∩ L(C)∗

� .

To find a basis of this dual lattice, we can first compute a basis of the dual lattice
L(c)∗
� for each component c, as described earlier. Let −g(c)

1 (z), . . . ,−g(c)
�−1(z) be the

polynomials found in the first coordinates of these dual basis vectors (we assume
that g(c)

0 (z) = 1). For each c, compute Qc(z) = (P(z)/Pc(z))−1 mod Pc(z); then for
j = 1, . . . , �− 1, compute

g j (z) =
C∑

c=1

(
g(c)

j (z)Qc(z)P(z)/Pj (z)
)

mod P(z),
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so that g j (z) ≡ g(c)
j (z) mod P(z) for each j . Then define v1 = (1, g2(z), . . . , g�−1(z))

/P(z), v j (z) = e j (z) for j ≥ 2, w1(z) = (P(z), 0, . . . , 0)t, and w j (z) = e j−g j (z)e1

for j ≥ 2, as before. Under the assumption that the Pc(z)’s are pairwise rela-
tively prime, the proof of Proposition 4.13 of Lemieux and L’Ecuyer (2002), which
is an expanded version of Lemieux and L’Ecuyer (2003), implies the following
result:

Proposition 1 The vectors v1, . . . , v� form a basis of L� and w1, . . . ,w� are a basis
of the dual lattice L∗� .

This way of doing most of the computations for the components separately
before putting the results together is more efficient than working directly with
the combined generator, especially if the components are much smaller than the
combination.

5 Specific Classes of Generators

5.1 The LFSR Generator

The Tausworthe or linear feedback shift register (LFSR) generator (L’Ecuyer 1996,
Tausworthe 1965, Tezuka 1995) is defined by a linear recurrence modulo 2, from
which a block of w bits is taken every s steps, for some positive integers w and s:

xn = a1xn−1 + · · · + ak xn−k, (6)

un =
w∑
�=1

xns+�−12−�. (7)

where a1, . . . , ak are in F2 and ak = 1. This fits our framework by taking A = (A0)s

(in F2) where

A0 =

⎛
⎜⎜⎜⎝

1
. . .

1
ak ak−1 . . . a1

⎞
⎟⎟⎟⎠ , (8)

and blank entries in this matrix are zeros (we use that convention in this paper). If
w ≤ k, the matrix B would contain the first w rows of the k × k identity matrix.
However, we may also have w > k, in particular when implementing an LFSR used
as a component of a combined generator. In that case, it is convenient to expand A
into a w × w matrix with the same minimal polynomial (of degree k), as follows:
For j = 1, . . . , w − k, add the row (a( j)

1 , . . . , a( j)
k ), where the coefficients a( j)

i are
such that xn+ j = a( j)

1 xn−1 + · · · + a( j)
k xn−k . This can be done in the same way
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as when we build the matrix Mq in Section 3. Then, we add w − k columns of
zeros.

Note that P(z) is the characteristic polynomial of the matrix A = (A0)s , not
that of the recurrence (6), and the choice of s is important for determining the
quality of this generator. A frequently encountered case is when a single a j is
nonzero in addition to ak ; then, the characteristic polynomial of A0 is a trino-
mial and we have a trinomial-based LFSR generator. Typically, s is small to
make the implementation efficient. These trinomial-based generators are known to
have important statistical weaknesses (Matsumoto and Kurita 1996, Tezuka 1995)
but they can be used as components of combined RNGs (L’Ecuyer 1996, Tezuka
and L’Ecuyer 1991, Wang and Compagner 1993). They also enjoy the important
properties of being resolution-stationary (Panneton and L’Ecuyer 2007). Tables
of specific parameters for maximally equidistributed combined LFSR generators,
together with concrete implementations for 32-bit and 64-bit computers, can be
found in L’Ecuyer (1999b). These generators are amongst the fastest ones currently
available.

To show how an LFSR generator can be implemented efficiently, we outline an
algorithm for the following situation. Suppose that a j = 1 for j ∈ { j1, . . . , jd} and
a j = 0 otherwise, with k/2 ≤ j1 < · · · < jd = k ≤ w and 0 < s ≤ j1. We
work directly with the w-bit vectors yn = (xns, . . . , xns+w−1), assuming that w is
the computer’s word length. Under these conditions, a left shift of yn by k − ji bits,
denoted yn ! (k− ji ), gives a vector that contains the first w−k+ ji bits of yn+k− ji
followed by k − ji zeros (for i = d, ji = k so there is no shift). Adding these d
shifted vectors by a bitwise xor, for j = 1, . . . , d, gives a vector ỹ that contains the
first w − k + j1 bits of yn+k = yn+k− j1 ⊕ · · · ⊕ yn+k− jd followed by k − j1 other
bits (which do not matter). Now we shift ỹ by k − s positions to the right, denoted
ỹ " (k − s); this gives k − s zeros followed by the last w − k + s bits of yn+s

(the k − j1 bits that do not matter have disappeared, because s ≥ j1). Zeroing the
last w − k bits of yn and then shifting it to the left by s bits gives the first k − s
bits of yn+s . Adding this to ỹ then gives yn+s . This is summarized by the following
algorithm, in which & denotes a bitwise “and” and mask contains k 1’s followed
by w − k 0’s.

Algorithm L

{ One step of a simple LFSR generator }
ỹ = yn ;

For i = 2, . . . , d, ỹ = ỹ⊕ (yn ! (k − ji ));

yn+s = (ỹ " (k − s))⊕ ((yn& mask) ! s);

For this to work properly, we must make sure that y0 is initialized to a valid state,
i.e., that the values xk, . . . , xw−1 satisfy the recurrence x j = a1x j−1 + · · · + ak x j−k

for j = k, . . . , w−1. We can take (x0, . . . , xk−1) as an arbitrary nonzero vector, and
then simply compute xk, . . . , xw−1 from the recurrence. L’Ecuyer (1996) explains
how to implement this.
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5.2 The GFSR, Twisted GFSR, and Mersenne Twister

Here we suppose that A is a pq × pq matrix with the general form

A =

⎛
⎜⎜⎜⎜⎜⎝

S1 S2 Sq−1 Sq

Ip

Ip

. . .
Ip

⎞
⎟⎟⎟⎟⎟⎠

for some positive integers p and q, where Ip is the p × p identity matrix, and each
S j is a p × p matrix. Often, w = p and B contains the first w rows of the pq × pq
identity matrix. If Sr = Sq = Ip for some r and all the other S j ’s are zero, this gen-
erator is the trinomial-based generalized feedback shift register (GFSR), for which
xn is obtained by a bitwise exclusive-or of xn−r and xn−q and where xn gives the w
bits of un (Lewis and Payne 1973). This provides an extremely fast RNG. However,
its period cannot exceed 2q − 1, because each bit of xn follows the same binary
recurrence of order k = q, with characteristic polynomial P(z) = zq − zq−r − 1.

More generally, we can define xn as the bitwise exclusive-or of xn−r1 ,

xn−r2 , . . . , xn−rd where rd = q, so that each bit of xn follows a recurrence in F2

whose characteristic polynomial P(z) has d + 1 nonzero terms. This corresponds
to taking S j = Ip for j ∈ {r1, . . . , rd} and S j = 0 otherwise. However, the
period is still bounded by 2q − 1, whereas considering the pq-bit state, we should
expect a period close to 2pq . This was the main motivation for the twisted GFSR
(TGFSR) generator. In the original version introduced by Matsumoto and Kurita
(1992), w = p, Sq is defined as the transpose of A0 in (8) with k replaced by p,
Sr = Ip, and all the other S j ’s are zero. The characteristic polynomial of A is then
P(z) = PS(zq + zq−r ), where PS(ζ ) = ζ p − apζ

p−1 − · · · − a1 is the character-
istic polynomial of Sq , and its degree is k = pq. If the parameters are selected so
that P(z) is primitive over F2, then the TGFSR has period 2k − 1. Matsumoto and
Kurita (1994) pointed out important weaknesses of the original TGFSR, for which
B contains the first rows of the identity matrix, and introduced an improved version
that uses a well-chosen matrix B whose rows differ from those of the identity. The
operations implemented by this matrix are called tempering and their purpose is to
improve the uniformity of the points produced by the RNG. To our knowledge, this
was the first version of an F2-linear RNG with a B that differs from the truncated
identity.

The Mersenne twister (Matsumoto and Nishimura 1998, Nishimura 2000) (MT)
is a variant of the TGFSR where k is slightly less than pq and can be a prime
number. It uses a pq-bit vector to store the k-bit state, where k = pq − r is selected
so that r < p and 2k −1 is a Mersenne prime. The matrix A is a (pq−r )× (pq−r )
matrix similar to that of the TGFSR and the implementation is also quite similar.
The main reason for using a k of that form is to simplify the search for primitive
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characteristic polynomials (see Algorithm P). If we take k = pq, then we know
that we cannot have a Mersenne prime because 2pq − 1 is divisible by 2p − 1 and
2q − 1. A specific instance proposed by Matsumoto and Nishimura (1998), and
named MT19937, has become quite popular; it is fast, and has the huge period of
219937 − 1.

A weakness of this RNG is underlined and illustrated in Panneton et al. (2006):
if the generator starts in (or reaches) a state that has very few ones, it may take
up to several hundred thousand steps before the ratio of ones in the output and/or
the average output value are approximately 1/2. For example, for MT19937, if we
average the output values at steps n + 1 to n + 100 (a moving average) and average
this over all 19937 initial states x0 that have a single bit at one, then we need at least
n > 700,000 before the average gets close to 1/2, as it should (this is graphically
illustrated in Panneton et al. 2006). Likewise, if two states differ by a single bit, or by
only a few bits, a very large number of steps are required on average before the states
or the outputs differ by about half of their bits. The source of the problem is that this
RNG has a (huge) 19937-bit state and very few of these bits are modified from
one step to the next, as explained near the end of Section 3; it has only N1 = 135
nonzero coefficients out of 19938 in its characteristic polynomial. Moreover, the
figure of merit Δ̃1 takes the large value 6750 for this generator.

It has been proved that the TGFSR and Mersenne twister construction methods
used in Matsumoto and Kurita (1994) and Matsumoto and Nishimura (1998) cannot
provide ME generators in general. They typically have large equidistribution gaps.
But combining them via a bitwise xor can yield generators with the ME property.
Concrete examples of ME combined TGFSR generators with periods around 2466

and 21250 are given in L’Ecuyer and Panneton (2002). These generators have the
additional property that the resolution gaps δI are also zero for a class of index sets
I of small cardinality and whose elements are not too far apart. Of course, they are
somewhat slower than their original (uncombined) counterparts.

5.3 The WELL RNGs

These RNGs were developed by Panneton (2004) and are described by Panneton
et al. (2006). The idea was to “sprinkle” a small number of very simple operations
on w-bit words (where w is taken as the size of the computer word), such as xor,
shift, bit mask, etc., into the matrix A in a way that the resulting RNG satisfied the
following requirements: (1) it has maximal period, (2) it runs about as fast as the
Mersenne twister, and (3) it also has the best possible equidistribution properties,
and a characteristic polynomial with around 50% nonzero coefficients.

The state xn = (vt
n,0, . . . , vt

n,r−1)t is comprised of r blocks of w = 32 bits vn, j ,
and the recurrence is defined by a set of linear transformations that apply to these
blocks, as described in Panneton et al. (2006). Essentially, the transformations mod-
ify vn,0 and vn,1 by using several of the other blocks. They are selected so that P(z),
a polynomial of degree k = rw − p, is primitive over F2. The output is defined by
yn = vn,0.
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The authors list specific parameters for WELL generators with periods ranging
from 2512−1 to 244497−1. Many of them are ME and the others are nearly ME. Their
characteristic polynomials have nearly 50% coefficients equal to 1. These RNGs
have much better diffusion capacity than the Mersenne twister and have comparable
speed.

5.4 Xorshift Generators

Marsaglia (2003) proposed a class of very fast RNGs whose recurrence can be
implemented by a small number of xorshift operations only, where a xorshift opera-
tion consists of replacing a w-bit block in the state by a (left or right) shifted version
of itself (by a positions, where 0 < a < w) xored with the original block. The
constant w is the computer’s word size (usually 32 or 64). The specific generators
he proposed in his paper use three xorshift operations at each step. As it turns out,
xorshifts are linear operations so these generators fit our F2-linear setting.

Panneton and L’Ecuyer (2005) analyzed the theoretical properties of a general
class of xorshift generators that contains those proposed by Marsaglia. They studied
maximal-period conditions, limits on the equidistribution, and submitted xorshift
generators to empirical statistical testing. They concluded that three-xorshift gener-
ators are unsafe and came up with generators based on 7 and 13 xorshifts, whose
speed is only 20% slower than those with three xorshifts to generate U (0, 1) num-
bers. Aside from the tests that detect F2-linearity, these RNGs pass other standard
statistical tests.

Brent (2004) proposed a family of generators that combine a xorshift RNG with
a Weyl generator. The resulting generator is no longer F2-linear and it behaves well
empirically (L’Ecuyer and Simard 2007).

5.5 Linear Recurrences in F2w

Fix a positive integer w (e.g., w = 32) and let q = 2w. Panneton (2004) and
Panneton and L’Ecuyer (2004) consider fast RNGs based on recurrences in the finite
field Fq , which can be written as

mn = b1mn−1 + · · · + br mn−r

for some integer r , where the arithmetic is performed in Fq . The maximal period
ρ = 2rw − 1 is reached if and only if P̃(z) = zr − b1zr−1 − · · · − br−1z − br is a
primitive polynomial over Fq .

To implement this recurrence, these authors select an algebraic element ζ of
Fq , take {1, ζ, . . . , ζ r−1} as a basis of Fq over F2, and represent the elements
mn = vn,0 + vn,1ζ + · · · + vn,w−1ζ

w−1 of Fq by the bit vectors vn = (vn,0, vn,1, . . . ,

vn,w−1)t. The state of the RNG is thus represented by a rw-bit vector and the output
is constructed as in (3), from the bits of vn . (More generally, one could define the
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output by taking yn = (vn, vn−1, . . . , vn−r+1) for some r ≥ 1.) This construction fits
our F2-linear framework (1)–(3) and generalizes the TGFSR generators. Panneton
and L’Ecuyer (2004) call them LFSR generators in F2w .

The same authors also propose a slightly different construction called polynomial
LCG in F2w , based on the recurrence

qn(z) = zqn−1(z) mod P̃(z)

in Fq [z] (the ring of polynomials with coefficients in Fq ), where P̃(z) ∈ Fq [z] is a
primitive polynomial. To implement this, each coefficient of qn(z) is represented by
a w-bit vector just as for mn and the output is defined in a similar way. Again, this
fits the F2-linear framework (1)–(3).

Panneton (2004) (see also Panneton and L’Ecuyer 2005) goes further by proving
certain properties of the equidistribution of these RNGs. For instance, he shows that
if P̃(z) is irreducible over Fq and can be written as

P̃(z) = p0(z)+ ζ p1(z)+ · · · + ζ γ pγ (z)

where each pi (z) is in F2[z], then the RNG cannot be t-distributed with � bits of
accuracy if t > r and � > γ . As a corollary, since the TGFSR has P̃(z) = p0(z) +
ζ p1(z), it cannot be t-distributed with more than a single bit of accuracy in any
dimension t > r . He also shows that if P̃(z) is irreducible over Fq and has at least
three nonzero coefficients, then among the 2rw−1 two-dimensional point sets Ψ{0, j}
where 1 ≤ j < 2kw, exactly 2w−1 are not 2-distributed withw bits of accuracy. For
example, if w = 32 and r = 25 (so k = 800), only one two-dimensional projection
out of 2768 is not equidistributed!

Panneton (2004) and Panneton and L’Ecuyer (2004) propose tables of good
parameters for LFSRs and polynomial LCGs in Fq . These parameters were found
by computer searches based on the figure of merit Δ̃1. They also provide concrete
implementations in the C language. These implementations are fast, comparable to
the Mersenne twister for instance, but one drawback is that they use precomputed
multiplication tables that require a non-negligible amount of memory. (In the case of
multiple streams, a single copy of the tables is shared by all the streams.) The output
transformation by a non-trivial matrix B is integrated into these multiplication tables
to improve the efficiency.

6 Speed and Performance in Statistical Tests

6.1 Speed Comparisons

Table 1 reports the speed of some RNGs available in the Java-based SSJ simula-
tion package (L’Ecuyer and Buist 2005). The timings are for the SSJ implemen-
tation (with SUN’s JDK 1.6) and a C implementations, both on a 2.4 GHz 64-bit
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Table 1 CPU time (sec) to generate 109 random numbers, and CPU time to jump
ahead 106 times, with some RNGs available in SSJ

RNG ρ ≈ CPU time in SSJ (Java) CPU time in C

gen. 64 gen. 32 jump gen. 64 gen. 32

LFSR113 2113 20 70 0.1 10 39
LFSR258 2258 22 105 0.2 12 58
WELL512 2512 24 57 234 12 38
WELL1024 21024 30 55 917 11 37
MT19937 219937 33 51 — 16 42
MRG31k3p 2185 48 60 0.9 21 71
MRG32k3a 2191 65 93 1.1 21 99

AMD-Athlon computer and on a 2.8 GHz 32-bit Intel processor. The first and sec-
ond columns of the table give the generator’s name and its approximate period. All
these generators are implemented for a 32-bit computer, although the C implemen-
tation of the two MRG generators (last two lines) used on the 64-bit computer was
different; it exploits the 64-bit arithmetic, which explains the large speed gains. The
SSJ implementations of all generators have more overhead because they support
multiple streams, can generate either integers or real numbers, etc. We estimate
this overhead at about 10–20% in general, but there are cases where it is higher
than that. The jumping ahead in SSJ is implemented via a multiplication by Aν as
explained in Section 2.2. For the combined LFSR generators, the linear recurrence
that corresponds to the matrix Aν is implemented directly using the algorithm of
Section 5.1, for each component of the combination. It is much faster for this rea-
son. Columns 3 and 4 of the table give the CPU times (sec) to generate 109 random
numbers and add them up, on the 64-bit (gen. 64) and 32-bit (gen. 32) computers,
respectively. Column 5 gives the CPU time needed to jump ahead 106 times by a
very large number of steps (to get a new stream), in SSJ, on the 64-bit computer.
For comparison, columns 6 and 7 give the times to generate 109 numbers with the C
implementation available in TestU01 (L’Ecuyer and Simard 2007), also on the 64-bit
and 32-bit computers. The difference in speed between Java and C depends on the
performance of the Java interpreter or just-in-time compiler; we have observed a
significant difference between JDK 1.5 and 1.6, for example.

The first five RNGs are F2-linear and the last two are combined multiple recur-
sive generators (MRGs). The first two are combined LFSRs proposed by L’Ecuyer
(1999b) for 32-bit and 64-bit computers, with four and five components, respec-
tively. The two WELL RNGs are proposed in Panneton et al. (2006). Other WELL
generators with much longer periods (up to nearly 244497) proposed in that paper
have approximately the same speed as those given here to generate random num-
bers, but are much slower than WELL1024 for jumping ahead because of their
larger value of k. For the Mersenne twister MT19937, proposed by Matsumoto
and Nishimura (1998), jumping ahead is also too slow and is not implemented in
SSJ. All these F2-linear RNGs have roughly the same speed for generating random
numbers. Other ones with about the same speed are also proposed by Matsumoto
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and Kurita (1994) and Panneton and L’Ecuyer (2004), e.g., with periods near 2800. It
is interesting to note that in additional experiments in Java without the streams and
substreams, on the 32-bit computer, the LFSR113 took 39 seconds, the same as in
C. It took 17 seconds on the 64-bit computer, compared with 10 seconds in C.

The timings of the two MRGs in the table are reported for comparison. The first
one (MRG31k3p) was proposed by L’Ecuyer and Touzin (2000) while the second
one (MRG32k3a) was proposed by L’Ecuyer (1999a) and is used in several sim-
ulation packages to provide multiple streams and substreams. This latter RNG has
been heavily tested over the years and is very robust. On the other hand, the F2-linear
generators are faster.

6.2 Statistical Testing

All the RNGs in Table 1 have been submitted to empirical statistical testing using the
batteries Smallcrush, Crush, and Bigcrush of the TestU01 package (L’Ecuyer and
Simard 2007). They passed all the tests in these batteries with the following notable
exceptions: All F2-linear generators fail the tests that look for linear relationships in
the sequences of bits they produce, namely, the matrix-rank test (Marsaglia 1985)
for huge binary matrices and the linear complexity tests (Erdmann 1992). The reason
for this general failure is obvious: We know from their definitions that these gen-
erators produce bit sequences that obey linear recurrences, so they cannot have the
linear complexity of a truly random sequence. This is definitely a limitation of these
RNGs. But whenever the bit sequences are transformed nonlinearly by the applica-
tion (e.g., to generate real-valued random numbers from non-uniform distributions),
the linear relationships between the bits usually disappear, and the linearity is then
very unlikely to cause a problem. For situations where simulation results can be
noticeably affected by the linear dependencies among the bits, to make these RNGs
safer without slowing them down too much, we could either combine them with
a generator from another class (such as an MRG, for instance), or combine them
with a small nonlinear RNG implemented via precomputed tables as suggested by
L’Ecuyer and Granger-Piché (2003), or add a nonlinear output transformation that
is fast to compute.

7 Conclusion

F2-linear RNGs are convenient for simulation because they are fast and the high-
dimensional uniformity of their point sets can be measured by theoretical figures
of merit that can be computed efficiently. Combined F2-linear generators with rel-
atively small components have the important advantage of faster jumping-ahead,
because the (smaller) components can be dealt with separately. Some F2-linear gen-
erators proposed in the literature have huge periods, but it is not always true that
larger is better. A huge state has the disadvantage of using more memory (this is
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important when there is a large number of streams in a simulation). It also makes
jumping ahead much slower, and it requires more operations to modify a large frac-
tion of the bits in the state. Of course, very long bit sequences produced by F2-linear
generators will always fail statistical tests that measure their linear complexity. This
can be viewed as a weak limitation, which could be overcome by adding a nonlin-
ear output transformation or combining the F2-linear RNG with a generator from
another class.
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Opportunities and Challenges in Health Care
Simulation

Andrew F. Seila and Sally Brailsford

Abstract The delivery of health care is a complex and expensive process that
presently is failing to meet the expectations and standards of patients, physicians,
administrators and government entities. Simulation tools, both discrete-event sim-
ulation and system dynamics, enable managers to better understand the behavior
of complex systems and predict their response to changes. After reviewing some
successful applications of simulation in health care, this article examines how well-
suited simulation is to analyze health care systems, and explores the reasons why
simulation has not been adopted as a routine part of health care systems analysis.
Some ideas are presented regarding what can be done to encourage greater use of
simulation in health care.

1 Introduction

Throughout the world, in both high-income and low-income countries, health care
systems deliver care to people. Most governments consider the delivery of health
care to be one of their primary duties, along with defending their citizens, provid-
ing education and managing criminal and civil justice. Many governments consider
health care to be a right, and a service that they are obligated to provide.

1.1 Similarities among Health Care Systems

Much is written about the differences in the world’s health care systems, but they
have much more in common. First and foremost, the performance of these systems
is literally a life-and-death matter. Measures used to evaluate performance include
average lifespan and infant mortality. Delays in emergency room access and treat-
ment, and delays in cancer diagnosis, for example, translate directly to reductions
in lifespan and increases in mortality.

A.F. Seila (B)
University of Georgia, 1240 Saint Andrews Drive, Bogart, Georgia 30602
e-mail: aseila@gmail.com

C. Alexopoulos et al. (eds.), Advancing the Frontiers of Simulation: A Festschrift in Honor
of George Samuel Fishman, International Series in Operations Research & Management
Science 133, DOI 10.1007/b110059 10, C© Springer Science+Business Media, LLC 2009

195



196 A.F. Seila and S. Brailsford

Whether in Britain or Bangladesh, America or Angola, the health care system
is large and complex. It consists of an interconnected web of hospitals, clinics,
diagnostic resources, physicians, nurses, dentists, patients, information systems,
pharmacies, and alternative medicine practitioners. In low income countries, the
resources are more primitive, but the same basic elements nevertheless exist.

The health care system is people-centered. Patients are people, but people also
deliver health care, and payroll costs are a substantial portion of the health care
budget. Decision making by health care professionals is a core component of the
delivery process, as well as patient behavior. Patients may interact with or otherwise
be subject to decisions by numerous people during an episode of care, including
doctors, clinical officers, nurse practitioners, nurses, pharmacists, clinical and hos-
pital administrators, and others. The human element is central to the delivery of care,
and will be for the foreseeable future. In all regions, the health care system depends
upon an educational infrastructure, consisting of institutions such as medical and
nursing schools, which may exist outside the region, to provide the professionals
that deliver health care.

The health care system consumes vast amounts of money. In the United States,
the health care system is estimated to have cost upwards of $2 trillion in 2005, which
is $6,400 per capita or 15.3% of GDP (OECD 2007b). In the UK, per capita health
care spending for 2005 was $2,724 or about 8.3% of GDP (OECD 2007a). Costs are
much lower in developing countries. In most countries, especially the US, it is not
only the cost of the current system that causes alarm, but also the rate of increase of
that cost which is much higher than the rate of inflation. Funding adequate health
care is considered a serious problem in virtually all countries.

The delivery of health care is, by its nature, stochastic. The environment and
operation of the health care system is unpredictable, and the system must be able
to respond to changes. The patterns of disease in the community may change
unpredictably. Moreover, individual patients vary in their behavior and response
to treatment, adding another stochastic element to processes. Within hospitals and
clinics, service and response times can vary greatly, and clinical outcomes are usu-
ally uncertain.

The health care system has conflicting goals due to the variety of stakehold-
ers. Patients want a complete set of services delivered quickly and inexpensively,
but providers want to maximize profit or minimize cost. Government entities have
to balance efficacy and cost while being concerned about patient—and citizen—
satisfaction.

All health care systems involve the government in an intrinsic way as a regulator,
payer and provider. In many countries, including the United States, federal and state
governments regulate spending on health care facilities through such programs as
Certificate of Need. In Britain and Canada, among many others, the government is
the main payer for health care and sets the price for various services. Reforms within
the UK National Health Service in recent years have led to a more entrepreneurial
structure, in which local health care organizations have greater financial autonomy
and the private sector plays an increasing role. In the US, the government pays
approximately 45% of all health care dollars through various federal programs such
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as Medicare, Medicaid, and the Veterans Administration (OECD 2007b). Medicare
also exerts heavy influence on private insurers through their procedures and payment
schedules.

Technology is an important component of the health care system, both by
providing sophisticated tools for diagnosis and treatment, and through information
technology for medical record keeping and managing the health care enterprise.
Technology adds more expense to the health care system, both through acquisition
and use, but, if applied well, it can greatly increase the efficiency of the system. Sig-
nificant questions arise about how to utilize technology most efficiently. For exam-
ple, how many new devices such as MRI machines should be purchased and how
much value does new technology actually add to the system? Additionally, questions
arise about how the existing clinical processes should be modified to accommodate
the new technology most effectively.

Finally, all health care systems have an administrative hierarchy that is respon-
sible for the strategic and day-to-day system management. Administrators must
decide, within the constraints they face, what resources will be utilized and how
they will be utilized, to improve and maintain the health of the population. The
structure and operations of these systems have considerable inertia, and are often
very difficult to change. Persons and organizations with financial and political inter-
ests are reluctant to allow changes that will reduce their income or influence, even
if this would mean more efficient delivery of health care. Administrators are also
reluctant to experiment with the system because it is expensive and risky. Lives can
be disrupted and lost if changes reduce the quality of care.

1.2 Dissimilarities among Health Care Systems

With all of their similarities, health care systems throughout the world are also very
dissimilar. They differ in structural and operational details. A rural clinic in a low-
income country like Bangladesh might have a single doctor or clinical officer and a
small number of nurses serving 10,000 patients, coping with shortages of medicine,
and lacking readily available radiology or laboratory services. No ambulance service
is available in rural areas, and hospital inpatient care is reserved for patients with the
most severe and acute illnesses. In contrast, in a developed country such as the UK,
hospitals, ambulance services, basic primary care, and advanced medical procedures
are available to all citizens. Health care systems also differ in their immediate goals
and decision alternatives available to achieve those goals. A less developed coun-
try, where rural areas have almost no modern health care available, might consider
paramount the use of mobile clinics that emphasize education, vaccinations and
basic primary care. Decision alternatives might focus on the number of rural clinics
and policies concerning training midwives for safe at-home deliveries. In Canada
and the UK, the current problems involve waiting times for elective procedures, and
decision alternatives concern policies and procedures to reduce waiting lines for
these procedures.
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Moreover, health care models are not usually built for national public health sys-
tems, but rather for subsystems such as an emergency department, a neighborhood
clinic, or a hospital’s inpatient operations. These subsystems involve equipment
choices and processes that are specified locally, so they are quite different from place
to place, even in the same region or city. So, while two emergency departments may
have the same certification and deliver the same set of services to their populations,
the processes and system designs they employ can differ greatly. As a result, it is
challenging to design a model that can represent most or all health care subsystems
in a particular category such as ED, ICU or a network of neighborhood clinics. A
model must be built for each individual system.

All of these characteristics suggest that health care systems are ideal candidates
for modeling and simulation. Modeling and simulation is an excellent tool for eval-
uating decisions, and designing and improving processes in systems where experi-
mentation is either impossible or expensive and risky.

In this article, we will consider the following three questions:

1. How can simulation be used as a tool to solve problems in health care, especially
health care delivery?

2. Why has simulation not been employed as much as it could have been? What are
the impediments to the effective use of simulation to improve the efficiency and
effectiveness of health care systems?

3. What can be done to encourage routine use of simulation as a tool in health care
management?

In Section 2, we will examine two simulation world views and discuss their fit to
health care systems. We will also present a categorization of health care models that
has proved useful. In Section 3, we will address the first question by examining some
successful applications of simulation in health care and exploring some problems
that appear to be effectively analyzed using simulation. We will discuss the special
merits of simulation as an analysis tool in health care systems in Section 4. Section 5
deals with the second question. Here, we present our view of the impediments, or
challenges, to the effective use of simulation as an aid in the design and management
of health care systems. Our ideas concerning the third question are the subject of
Section 6. Section 7 contains concluding remarks.

2 Simulation in Health Care Systems

Operations research has been applied in the domain of health care for more than
40 years. The UK OR Society and the UK National Health Service (NHS) held
a joint colloquium on hospital appointment systems as far back as 1962 (Jackson
1964). Since the 1960s OR models have been successfully used to assist clinical
decision making, facility location and planning, resource allocation, evaluation of
treatments, and organizational redesign. Simulation is one of the most commonly
used OR approaches, and is regarded by many as the technique of choice in health
care (Davies and Davies 1994).
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2.1 Discrete-Event Simulation

There are two main simulation world views that have been applied to health care:
discrete-event simulation (DES) and system dynamics (SD). In either approach, the
system is described by a collection of state variables that change over time. A DES
model identifies events which are discrete points in time when the state of the system
may change. The times between events as well as the new values of state variables
may be, and usually are, stochastic. A more detailed explanation of DES is pro-
vided in Chapters 1 and 2 of Fishman (2001) and Chapter 5 of Seila et al. (2003).
Many DES models have more or less the structure of a queueing network, in which
individual entities flow around a network of stations and queue for services. This
approach appears to be especially useful for hospital systems and other health care
constructs in which patients join waiting lists for appointments, examinations and
treatments. In DES, entities have properties which determine their pathway through
the network, in exactly the same way that patients have individual characteristics
which determine their pathway through the hospital or clinical system. This pleas-
ing analogy contributes greatly to the enduring popularity of DES as a modeling
approach. Psychologically, DES is appealing because it enables the modeler to give
the entities all of the necessary human characteristics of age, gender, diagnosis,
blood group, disease status, sexual preference, hair color, or whatever.

DES has many advantages from a mathematical perspective, too. Markov models
must account for past medical history only through the current state of the system
and must represent times between state changes with exponential distributions. In
contrast, in a DES model, future medical events, service time distributions and other
actions within events can be dependent on the entire previous history and environ-
mental circumstances as well as individual patient characteristics, and any paramet-
ric or empirical distribution can be chosen to model activity durations. Complex
logical rules can be used to determine patients’ routing through the system, or the
outcome of a treatment. The model can include any amount of randomness, as long
as enough simulation runs are performed to obtain statistically significant results.
Indeed, depending upon the flexibility of the software chosen and the modeler’s
imagination, virtually any system can be modeled using DES.

Another advantage of DES is the wealth of software packages available and the
maturity of the modeling and statistical methodology. The DES modeling paradigm
dates back to the 1950s and is now a mature and well accepted methodology. See
Nance (1993) for a history of DES software. Today, many software packages are
available, at a wide range of prices, including freely available open source packages,
for implementing and running discrete-event simulations. Many commercial pack-
ages have a graphical interface which enables the user to visualize the model and
even build the model using this interface. This can be invaluable as a communication
aid with health care professionals.

Often unrecognized, but of equal importance, is the maturity of the statistical
and computational methodology which underlies DES. Due to the dependent nature
of the series of observations output by discrete-event simulations, special statis-
tical methods are required to compute reliable estimates of system performance
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measures. This methodology, which was pioneered by George Fishman (Fishman
1973, 1978, 2001) and others, is now accepted and trusted to compute reliable esti-
mates. Modelers can build models, run the simulations, and analyze data with the
confidence that the results obtained are correct for the model implemented.

2.2 System Dynamics

System dynamics (SD) (Sterman 2000), on the other hand, lacks many of these
desirable features, yet has distinctive virtues of its own. In SD the individual entities
are not modeled, but are represented as a continuous mass which flows around the
model like water in a central heating system, accumulating in “stocks” correspond-
ing to tanks or radiators, with inflows and outflows governed by valves or “rates.”
Psychologically, this is definitely less attractive, especially to health care profession-
als who by training are people-focused and do not like the idea of reducing a group
of human beings to a continuous mass. There is no longer a stochastic element—SD
models are deterministic. All output from an SD model will be identical on every
simulation run using the same input. Moreover, in general, SD software does not
have the appealing graphics of some DES software.

However, SD has many key features which DES lacks. The fundamental principle
of SD is that “structure determines behavior,” so that if we understand the structural
relationships between elements in a system, we will understand the emergent behav-
ior of that system as a whole. In a DES model, we often cannot see the forest for
the trees because we are inclined to focus on a very detailed model representation.
In SD, we cannot model this level of detail, but we can gain understanding of the
dynamic complexity of the system. SD is concerned with feedback and unantici-
pated effects. Unlike DES, SD models are intended to be used at a more speculative,
strategic level for larger populations and longer time horizons. A key advantage of
SD is that the models generally run very fast (and of course do not require multi-
ple iterations), so they can be run interactively in real time with decision makers.
SD is also useful for large-scale systems that would be too complex to model at a
level of detail needed for DES and would require too much time and computational
resources to run.

For excellent surveys of applications of DES and SD in health care, see Jun et al.
(1999), Dangerfield (1999), Royston et al. (1999), and Fone et al. (2003). Of course,
simulation has been widely and successfully used for many years in many fields,
including defense, manufacturing industry, services industries, communication sys-
tems, transportation systems, finance and for training purposes. It is interesting to
speculate whether health care is in any way different from these areas. The enti-
ties in health care systems are vulnerable human beings, with feelings, emotions
and human behaviors, often in life-threatening situations. Health care systems are
safety-critical and often highly technological. There are different cultures, too. The
clinical hierarchy has its own professional boundaries. Managers can be seen by
clinicians as interfering outsiders concerned only with costs and targets. Patients are
obviously not inanimate widgets in a production process. The entities in a model
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of an airport terminal or a call center are also human beings, so we have to take
account of human behavior and reactions in many other system models. Many of
the characteristics of health care systems occur in other organizations, but we would
argue that the particular characteristics and the way they interact is unique in health
care.

2.3 A Taxonomy of Health Care Models

For the purposes of this article, health care models are classified into three groups.
The first, termed Level 1 models, are models of the human body (see Fig. 1). These
are frequently called “disease models” but they can also represent biological pro-
cesses in healthy individuals. Models can be at the body system or organ level, or
even at the cellular or microbiological level. They are often used for studying the
clinical effectiveness or cost-effectiveness of some intervention. For example, by
simulating the progression of breast cancer in the female population, it is possible
to compare the effects of different screening policies for early detection.

Fig. 1 Disease models

We can also model people’s health behaviors, for example the effect of a smok-
ing cessation campaign on the prevalence of coronary heart disease, or the spread
of infectious diseases such as chlamydia or HIV/AIDS. Simulation has also been
used to model the biochemical effects of drugs, a study know as pharmacodynam-
ics. Examples of these are given in Section 3.1. Level 1 models are arguably the
most interesting, as they often require creative modeling approaches or theoretical
innovations.

The next group, Level 2 (Fig. 2), denotes operational or tactical models at the
health care unit level. By this we mean a clinic, a ward or hospital department such
as the operating suite or emergency room. These usually, although not always, still
model the behavior and movement of individual patients, but are not concerned
with modeling the physiological or clinical processes going on inside them. Rather,
they are concerned with modeling the movement of patients within the system, and
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Fig. 2 Operational models

identifying and eliminating bottlenecks. These models are used for capacity plan-
ning, resource allocation and process redesign. For example, how many ICU beds
are needed to be 95% sure there will always be a free bed when required? How
many nurses and doctors are needed to ensure that no patient spends more than 4
hours in the emergency department? Should inpatients or outpatients take priority
for diagnostic imaging services? These are classical areas for the application of
operations research in general and discrete-event simulation modeling in particular,
and the academic literature contains hundreds, if not thousands, of Level 2 models.
Some examples are given in Section 3.2.

Level 3, or strategic models (Fig. 3) are system-wide models which often do
not model individual patients at all. They are also comparatively few in number in
the literature, possibly reflecting the relatively low use of operations research for
strategic planning. Unlike Levels 1 and 2, where DES is usually, but not always,
the chosen approach, Level 3 models almost always use SD, as it lends itself to
answering more long-term, broad-brush questions using a relatively low level of
detail. For example, how should a large city configure its services for emergency and
unscheduled care? How might the electronic health record impact upon the health
of the next generation of children? How many doctors will the US need in 2030?
How can we improve the way health professionals work alongside Social Services?
Some examples of Level 3 models are given in Section 3.3.

3 Some Illustrative Health Care Simulation Models

In this section, we provide a more or less representative selection of successful
simulation models of health care systems that have been developed over the past
ten to fifteen years. These examples will (a) provide concrete examples to further
define the taxonomy in the previous section, (b) show the types of systems that have
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Fig. 3 System-wide models

been successfully modeled and problems that have been solved, (c) provide some
specific examples of difficulties that have been encountered and overcome in health
care simulation modeling, and (d) put the process of modeling health care systems
in a managerial and political context. Readers familiar with some simulation models
of health care systems may skip this section without loss of continuity.

3.1 Level 1: Disease Models

We describe three Level 1 models: a DES model for screening diabetic patients for
eye complications, an SD model for the sexually transmitted infection chlamydia,
and a DES model for policy evaluation for organ transplantation. We provide this
sample of models and those in Sections 3.2 and 3.3 in order to show the character-
istics of these models at a more detailed level.

3.1.1 Screening for Diabetic Retinopathy

Diabetic patients are at risk of a condition called diabetic retinopathy (DR), which
can lead to blindness if untreated. Early signs of DR can be detected before the
patient is even aware of any problems, and the condition can be successfully treated
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using a laser, preventing future loss of sight. Screening can be carried out using
various methods and in a variety of settings—in hospital, at an optometrist or oph-
thalmologist or in a primary care facility—and while it is clearly beneficial, since
the tests are relatively cheap and easy, there is no consensus about the best setting,
method or frequency of screening. Davies et al. (2000) and Davies and Brailsford
(2004) developed a DES model which was used to address this problem. In fact, two
models were developed, one for Type 1 diabetes and the other for Type 2 diabetes.
The two types of diabetes cause different types of retinopathy.

A key feature of this model is that patients must participate in multiple activi-
ties simultaneously. This modeling approach, which was developed by Davies et al.
(1993) and termed Patient Oriented Simulation Technique (POST), is not needed
by most manufacturing, transportation, and communication models. In this model,
disease progression is modeled as a virtual queueing system by treating the disease
state dwelling times as activity durations where the activities are assumed uncon-
strained by resources (i.e., an infinite-server queueing system). At the same time,
patient entities may also be taking part in a genuine resource-constrained queueing
system, for example, waiting for hospital treatment, medical treatment or screen-
ing test. Thus, in a realistic model of a health care system, patient entities may be
participating in several concurrent activities or queues. Moreover, these activities
and queues are interdependent: if a patient changes disease state, his/her treatment
may need to be changed, he/she may no longer require a screening test, and hospital
appointments may need to be rescheduled.

The models were populated with data about the natural history (the untreated
progression) of DR from one of the world’s largest studies, the Wisconsin epi-
demiologic study of diabetic retinopathy (Klein et al. 1985). Various screening and
treatment policies in current use in the UK were tested, with current cost data (NHS
2001) applied. Interestingly, among the policies tested, no striking differences were
found, although there was a preference in terms of cost effectiveness for community-
based rather than hospital-based screening.

3.1.2 Screening for Chlamydia

Chlamydia was the most common sexually transmitted infection in the US in 2001
(Centers for Disease Control and Prevention 2004) and the UK in 2003 (Health Pro-
tection Agency 2004), and is a major public health problem. Most cases of chlamy-
dia infection are asymptomatic and easily treated with antibiotics, but if untreated
the infection can have serious long term consequences (called sequelae). Screen-
ing programs have been shown to be effective, but there are concerns that blanket
screening of the whole population at risk will add an extra financial and operational
burden to the already over-stretched health care system. Unlike diabetic retinopathy,
where the population at risk is relatively small and well-defined, in this case all
sexually active people are at risk. In 2003 the UK Department of Health introduced
screening of all people between the ages of 16 and 25 in 10 centers, with the view
to extend this program to the rest of the country within the next few years as part of
the National Chlamydia Screening Programme (UK Department of Health 2005).
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Evenden et al. (2005) developed an SD model which demonstrated that cer-
tain high-risk subgroups within the general population are critical in the infection
dynamics, and improved targeting of these high-risk populations achieves greater
cost-effectiveness. Figure 4 shows the model structure. The model used data from
an opportunistic screening trial held in the Portsmouth, UK area from October 1999
to September 2000 (Harindra et al. 2002).

Fig. 4 SD model for chlamydia screening

The SD approach is ideally suited to modeling infection rates and population
movements between infected and susceptible states. A particularly relevant aspect
was that the repeated reinfection mechanism was captured, along with the increased
risk of sequelae this creates.

These models were replicated for two risk groups of patients. Based on the find-
ings of Townshend and Turner (2000), 2.5% of the population were assumed to be
high-risk. Various assumptions were made about the rates of sexual contact within
and between these groups, about prevalence of infection (5%, 8%, 10%), and about
the screening rates in each risk group. The low-risk screening rate was varied from
a minimum value equal to the low-risk rate to a maximum of 120% of the low-risk
rate. The model results showed that the more targeted screening became, the more
cost-effective it was. Therefore, rather than increase the general population screen-
ing rate by 1%, which would be hugely expensive, it was far more advantageous to
identify a few more high-risk people and screen them.

In a further paper, Evenden et al. (2007) describe the use of statistical risk group
clustering techniques with the Portsmouth data to identify indicators that are strong
predictors in determining high-risk status. The results are combined with geomap-
ping techniques which visually display prevalence geographically across the region,
thus identifying high prevalence postal code clusters and informing public health
planners where to target intervention and screening strategies. These findings are
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then combined with the results from the simulation model to provide a unique holis-
tic view of the problem.

3.1.3 Evaluating Organ Transplantation Policies

Organ transplantation is now done routinely in many large medical centers. How-
ever, organs for transplantation are a scarce resource. Organ allocation policies are
used to specify which waiting patient will receive an organ graft as it becomes avail-
able. The policies must balance medical consequences, economic considerations
and political issues. For example, patients who are older or have been on the waiting
list longer tend to be sicker and will tend to survive fewer years than those who are
younger and have been on the list a shorter time. Economic considerations concern
the revenues received by the transplant centers as well as transportation costs and
costs to patients and health plans for surgery and days in hospital. Political issues
involve perceptions of fairness of the policy. For example, many people believe
available organs should be provided to patients who have been waiting longest, the
first-come-first-served rule.

The Organ Procurement and Transplantation Network (OPTN) was established
by the United States Congress in 1984 to manage the procurement and allocation
of transplant organs in the US. The United Network for Organ Sharing (UNOS)
is a non-profit organization that has managed OPTN under contract since 1986 and
continues to be responsible for proposing, evaluating and adopting policies for organ
allocation. In 1995, UNOS contracted with Pritsker Corporation to develop a model
to evaluate policies for allocating livers for transplantation. This model is described
in Pritsker et al. (1995).

Pritsker Corporation and other partners developed the UNOS Liver Allocation
Model (ULAM) for comparing proposed alternative allocation policies (Pritsker
1998; Pritsker et al. 1995, 1996). The model was intended to be used to evaluate
policies currently under consideration at the time, but more importantly, it was
intended to be updated regularly and used in an ongoing manner to evaluate new
policies as they were proposed. ULAM is a DES model that follows the process
of transplant patients entering the waiting list, progressing to other medical status
levels, possibly being a match for a liver graft, being offered the graft, accepting or
declining the graft, and so forth. The model categorizes patients’ medical status in
7 categories, according to medical urgency. It also includes other patient attributes
such as age, weight, sex and blood type. When a graft becomes available at a partic-
ular geographic location, an allocation policy is applied to determine to whom the
graft will be offered first. Policies employ a point ranking scheme that incorporates
waiting time on the list, medical status, location of the patient relative to the graft,
compatibility, and possibly other criteria. The model applies the policy to offer the
graft to successive patients until it has been accepted or all eligible patients have
been offered the graft. It also incorporates processes of mortality and graft rejection
after transplantation. Patients can decide to not relist after rejection.

The model presented several technical challenges. Data for the patient arrival
process did not fit any of the well-known arrival processes, so an exponential-
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polynomial-trigonometric rate function was developed for a nonhomogeneous Pois-
son process to model the arrivals. Secondly, application of allocation policies
required that the waiting list be recreated and patients on the list be reranked upon
every graft arrival. This presented a huge computational burden to the model and
required that data structures and computational algorithms be modified in order for
the model to execute in a reasonable amount of time.

The model was built from a number of modules that implemented various sub-
processes in the system such as the arriving patient stream, allocation policies and
patient medical status. It underwent an extensive verification and validation process.
ULAM was validated by comparing the model output for the current policy with
observed results nationally. It was important that members of the transplant commu-
nity have confidence in the model. To achieve this goal, ULAM was demonstrated to
many committees and other groups within the transplant community. An animation
was developed to show the movement of grafts and patients. The software was also
provided with a user-friendly interface so it could be used independently by UNOS
staff.

Model outputs were numerous and included the following:

1. Number of days in each medical status.
2. Number of repeated and non-repeated transplants.
3. Number of pediatric transplants.
4. Number of post-transplant deaths within 12 months.
5. Percent survival greater than 12 months/24 months.
6. Percent of transplants in local/regional/national location.
7. Average distance to transplantation site.
8. Blood type exact match percentage.
9. Pre-transplant deaths.

10. Post-transplant deaths.
11. Mean and median days from arrival on waiting list to transplant.

A more complete list is given in Pritsker (1998).
ULAM was used to evaluate five allocation policies. Details of the model and

simulation runs can be found in Pritsker et al. (1995). For death measures, the results
of the simulation runs reinforced intuitive expectations, with the current policy lead-
ing to more pre-transplant deaths and other policies providing somewhat longer
average times on the waiting list. Based on the results of these runs, the decision
was made to continue with the current policy. In its initial use, the model did not
lead to adoption of a new policy but it did provide support for the current policy.
Later applications did support modifications of the allocation policy; see Pritsker
(1998) for death measures.

3.2 Level 2: Operational Models of Health Care Units

In this section, we present three DES models developed to address organizational
issues of resource allocation and capacity planning. Discrete-event simulation has
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been a workhorse simulation methodology for models of operational systems in
health care, including units such as the emergency department, intensive care unit,
operating suites, laboratories, patient wards and others.

3.2.1 Hospital Bed Capacity Modeling

Harper and Shahani (2002) describe a simulation model developed for an 800-bed
hospital in Reading, UK. This model has a generic structure in which patients flow
through “care units” which can be a ward, a group of wards, a specialty bed pool
or even a whole hospital. The model structure is highly flexible and very detailed,
and requires a great deal of data input, for example user-defined patient groups,
arrival rates (hourly, daily, monthly), length-of-stay (LOS) distributions, bed num-
bers, admission rules, deferral rules when no bed is available, and priority listings.
Because of the need for so much detailed input data, the model was designed to
interface with the routine patient management and reporting systems used by the
hospital. The fitting of arrival processes and LOS distributions was fully automated
through a system called Apollo, a classification and regression tree (CART) method
which allowed the construction of homogeneous and clinically meaningful patient
groups, thus reducing the need for input from hospital staff. Arrival and LOS distri-
butions were fitted for the groups thus constructed.

The model was used in three areas in this hospital. For example, the model was
used in adult medicine for estimating the future seasonal bed requirements. A key
outcome of the model use was the realization by hospital planners that occupancy
rates and their corresponding refusal rates are linked in a highly complex way, and
are a function of the case mix, the number of beds available and the variability of
LOS. Previously the hospital had used a rule of thumb of average LOS multiplied by
average demand—assumed fixed—and their views changed greatly after this mod-
eling exercise.

3.2.2 Intensive Care Units

Another popular area for the use of capacity planning models is the ICU. This is
a very expensive hospital resource both in terms of highly skilled staff and costly
specialist equipment. Therefore it is vital to provide the optimal number of ICU
beds and staff. Determining staff and beds are equivalent problems since most ICU
patients require at least 1:1 nursing ratio. Having too many beds can have serious
financial consequences, but having too few results in low quality of care.

Griffiths et al. (2005) developed a model for a large teaching hospital which used
a more flexible approach to beds. Officially, the ICU had 14 beds, but in times of
high demand extra beds would be made available elsewhere in the hospital. The
problem addressed by this model was not how many ICU beds were needed, but
instead how many nurses. A fixed number of nurses, permanently based in the ICU
and known as establishment staff, are rostered to work in the ICU for each 8-hour
shift. In busy periods supplementary nurses may be required, and these can be either
bank staff (establishment staff doing overtime) or agency staff. The latter are very
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costly and moreover may be unfamiliar with the unit, resulting in lower quality of
care. Thus for both cost and patient safety reasons, the hospital would prefer to keep
the number of supplementary nurses to a minimum.

A DES model was developed and used detailed data for nearly 1,100 patients
admitted to the ICU in 2000. The model was highly complex. Patients were cat-
egorized by referral source and, for surgical patients, into elective or unplanned
categories. Moreover, distinct day-of-week and time-of-day patterns were observed
and a separate arrival rate was required for each of the 168 hours in the week. Length
of stay distributions were fitted for all patient types. Because it is nurses rather than
beds which are the constraint in this model, an estimated number of 30 beds were
available, although the maximum number of beds used in 2000 was only 19. The
rostered number of nurses per shift was fixed for each experiment, but the number
of supplementary nurses available was assumed to be unbounded. The number of
supplementary nurses used was a performance measure for the model.

In 2000, the actual number of nurses per shift was 14. The model showed that
had 16 nurses been rostered, the potential savings would have been equivalent to 690
times the cost of employing one establishment nurse for one shift. The model was
extended to consider increased future demand and also a pioneering method in use
at the hospital for early detection of patients in general wards who might need ICU
treatment at some future point. The physicians believed that by offering early ICU
care, the eventual LOS in ICU could be reduced by between 10 and 20%. The model
was able to evaluate the effect of this, concluding that a 20% reduction in LOS would
result in one less nurse being rostered each shift, with further consequent savings.

3.2.3 Moving to a Replacement Hospital

The process of moving a patient population from an existing hospital facility or
group of facilities to a replacement facility is something that does not happen often,
but when it is necessary, a considerable amount of planning is required in order to
accomplish the move with minimal disruption in patient care and minimal opportu-
nity for adverse events for patients, especially those in intensive care. Ashby et al.
(2007) developed a discrete-event simulation model to explore alternative strate-
gies for making such a move. In this project, a large county hospital was operating
from two facilities, but needed to move patient populations from both facilities to
a single facility located nearby. During the move, it was necessary to keep emer-
gency services operating, along with their supporting departments to serve arriving
emergency patients.

The move was complicated by a number of factors: There was a large num-
ber of patients to transfer. Each patient had to be “packed” prior to the move and
“unpacked” after arrival. The specific tasks in packing and unpacking differed from
patient to patient and resulted in highly variable packing and unpacking times. The
process of moving patients for each unit had to be done over a period of time in
order to avoid the confusion that would result from many simultaneous moves. As a
result, the move was estimated to require two days. There were other challenges in
the move. The old units in the two existing facilities did not map one-to-one to the
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units in the new facility. The result was that each patient needed a unique routing
that specified to which unit the patient would be transferred in the new facility. Other
constraints included the speed of the elevators and the narrow corridors leading to
the loading site in the old facility. In the new facility, the move was constrained
by the number of locations for unloading and the number of elevators that could
accommodate a gurney.

The simulation sought to answer a number of questions: Which of the con-
straints would present the most severe bottlenecks to the move, and would those
constraints keep the move from being completed in two days? How many gurneys,
wheel chairs, ambulances and staff would be needed to make the move smoothly?
A second question concerned how to manage the existing resources to facilitate the
move maximally. How many patients in the old facility should be packed and put in
queue at any point in time to avoid delays waiting for patients to be packed or eleva-
tors to be available? How many elevators at the new facility should be reserved for
patient transport? More generally, what protocol should be used to allocate elevators
to competing demands? What strategies for managing patient teams, ambulances,
gurneys and other resources used in the transportation of patients would be most
effective?

Performance measures relating to patient care that were estimated by the sim-
ulation include time when a patient’s access to care was limited (e.g., when in an
ambulance) and time patients were “packed” awaiting transport. A second set of
metrics measured the cost of the move. Cost was determined mainly by the amount
of resources required, including personnel. Finally, various wait times for resources
such as elevators and ambulances were computed, as well as resource utilization
and the total time of the move. The model demonstrated to managers that the best
protocol for utilizing ambulances, gurneys, and teams to move patients was to keep
each team at one location, load the patient and gurney on the ambulance, unload
the patient with the gurney at the receiving hospital, and return the ambulance to
the sending hospital with another empty gurney. This protocol greatly improved the
efficiency of the move and reduced patient waiting times as well as cost. The simu-
lation also provided specific numbers for the teams, ambulances, wheel chairs and
other resources that need to be available, as well as protocols for utilizing elevators
and loading areas. This model is not at all generic and cannot be adapted easily
to the needs of another hospital. However, the value of this model lies in the large
cost, both in money and quality of care, that the move could incur and the ability of
the simulation to find ways to reduce the cost of the move while not compromising
patient care.

3.3 Level 3: Strategic Whole-System Models

Strategic whole-system models models are becoming increasingly popular in the
UK. In this section we describe two applications of system dynamics, which is prob-
ably better suited to this area than DES. The first is perhaps one of the best-known
examples of SD modeling in the mainstream UK health OR literature. The second
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describes the entire emergency and unscheduled health care system in the city of
Nottingham, a large industrial city in the center of England.

3.3.1 SD Modeling of Emergency Admissions

Lane et al. (2000) developed a model designed to explore the relationships between
waiting times in the ER and hospital bed closures. At the time a major London
hospital (denoted pseudonymously “St. Danes”) was planning to cut costs by closing
beds, and intended to measure the impact of these bed closures by tracking waiting
times in the ER. The hospital’s argument was that bed closures led to cancelled
elective admissions and this led to more people presenting in the ER, partly as a
direct result of the deterioration of their health and partly as a behavioral response
by primary care doctors wishing to get their patients admitted “by the back door.” It
was therefore expected that as beds were closed, the first sign of pressure would be
that waiting times in the ER would rise because of this increase in demand.

The model was run for a range of different assumptions about the number of
beds available, for various permanent increases in demand, and for a “crisis day”
when there was a sudden increase of 13% in demand. The key finding was that the
immediate impact of bed shortages was not observed in the ER at all, but was evident
first in cancelled elective admissions, so that using ER waiting times to measure the
effect of bed shortages was misleading. In fact, the model showed that it did not
make sense to look at any single measure in isolation, but that this was indeed a
complex system where changes in one area would have unforeseen knock-on effects
elsewhere, and so a holistic view was required.

3.3.2 Emergency Care in Nottingham

Brailsford et al. (2004) developed an SD model as part of a research project which
was itself part of a larger, ongoing project in Nottingham, known as the Emergency
Care-on Demand (ECOD) project. In Nottingham, emergency hospital admissions
had risen dramatically. The aim of the ECOD project was to look at the whole health
care system to determine why demand was so high and to investigate what could
be done to alleviate this pressure. The ECOD project had a Steering Group which
contained representatives of all the providers of emergency and unscheduled health
care in Nottingham.

The Nottingham study concerned a population of over 600,000 potential patients.
Furthermore, although the specific pathways followed by individual patients were of
interest, they were of less importance than understanding the major flows of people
through the “front doors” to the system, and gaining insight into the general struc-
ture of the system and the relationships between its component parts. The problems
experienced in the ER, for example, were not principally believed to be due to high
variability in case mix or staffing levels, but more to the sheer volume of demand
and consequent pressure on resources. Thus, SD was selected as the modeling tool.

The study involved both qualitative and quantitative modeling. A system map and
a set of influence diagrams were developed through a series of about 30 interviews
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with different stakeholders and providers. Participants were asked to amend the map
and describe the historical, organizational or political factors which influenced flows
of patients in their own area. The resulting final map of the system was used as the
basis of a quantitative SD model which was populated with activity data for 2000–01
from all the providers. After the model was validated for the current year, a range of
scenarios were run (suggested by the ECOD Steering Group). These looked at the
effects of various interventions, including early discharge, increasing the proportion
of patients who used the Walk-in Center rather than the ER, reducing admissions
for specific groups of patients (e.g., over 65) and providing additional diagnostic
services in the community, since it was thought that some primary care physicians
used the ER to bypass the normal referral process for diagnostics, so that patients
ended up being admitted unnecessarily (the same effect as observed earlier by Lane
et al. 2000).

The key findings of the model were that if current trends continued, both hospitals
would be forced to cancel several hundred admissions for elective surgery every
month within a couple of years. However, relatively small changes in one part of
the system had significant impact elsewhere. For example, it was much better to
prevent admissions through the use of a community diagnostic facility than it was to
reduce length of stay and discharge patients early. The model was run interactively
with the Steering Group and the results used to inform them at a Stakeholder Day,
at which focus groups developed a Local Services framework for emergency care.
A Treatment Center was subsequently built in the grounds of a larger hospital to
provide community diagnostic services and to fast-track routine surgical cases.

This model was used to inform strategic decisions. The numerical results of the
model were indicative of trends and were relative rather than absolute. Moreover, the
qualitative insights which the model provided (and indeed the value of the mapping
process as a communication tool) were found to be as useful as the numerical results.
This approach is now being used by Brailsford and Lattimer in a national study of
workforce change in unscheduled care, in which many of the same strategic issues
arise.

3.4 Commentary on Examples

The models in this section share several features. Firstly, all models were developed
in close collaboration with clinical experts. All Level 1 models used clinically recog-
nized stages to model disease progression. Secondly, many of the models were used
to address a public health policy issue, and therefore were aimed at regional or even
national decision makers rather than local hospital managers. Thirdly, the models
required a lot of detailed data. The data were derived from a variety of sources,
including the literature, but also data collected for a previous study as well as data
collected routinely in the course of providing health care. Some model parameters
were unknown and therefore multiple scenarios were run exploring a range of poten-
tial outcomes, depending on the value of these parameters, basically constituting
a sensitivity analysis. Several of the models required some degree of nonstandard



Opportunities and Challenges in Health Care Simulation 213

technical innovation in order to adapt the chosen simulation approach to the specific
needs of the model or allow the model to be run in a reasonable length of time. In
some cases, there was an attempt to develop a generic model that could be reused
to model similar systems. The last two models were developed to study emergency
care, but their scope included many other systems because it was almost impossible
to draw a well-defined boundary around any subset of the modeled system. Many
of the other models had to place rather arbitrary limits on the scope of the system
to be modeled. Finally, almost all of the models were developed by academics for
research and/or student projects, rather than consultants or management engineers
doing routine analysis for the institutions.

4 Opportunities

As we noted earlier, Americans spent approximately $2.3 trillion in 2007 on health
care. The budget of the NHS in the UK was approximately £120 billion. With
expenditures this large, even very modest improvements in cost can amount to bil-
lions of dollars in savings. In a landmark study (Institute of Medicine 2000), the
Institute of Medicine estimated that between 44,000 and 98,000 deaths were due
to medical errors in 1997. A 1% drop in the medical error rate can save hundreds
and perhaps thousands of lives. Clearly, there is a strong incentive to find ways
to improve the functioning of various parts of the health care systems. Unfortu-
nately, even very small subsystems within the health care system are so complex
and stochastic that it is difficult or impossible for anyone, even managers with many
years of experience who are intimately familiar with these systems, to predict the
effect of changes in the structure and processes within them. So, there is an oppor-
tunity to apply models to predict the behavior of health care systems and perhaps to
optimize such systems.

While no modeling paradigm fits every system structure and analysis objective,
simulation is an ideal tool for most health care systems. As the examples in Section
3 have shown, health care systems are complex and involve relationships that are
difficult to describe mathematically. For example, in the ICU model in Section 3.2.2,
what is the relationship between cost per day and the number of nurses permanently
based in the ICU? Since the number of nurses is a discrete variable, it seems rea-
sonable to imagine that this relationship is discontinuous and nonlinear, but it also
depends upon other system characteristics and cannot easily be expressed as a math-
ematical function. However, using standard discrete-event modeling techniques, this
relationship can be evaluated using a simulation.

The stochastic variables include such things as patient arrival times, patient diag-
noses, treatment choice, duration and efficacy, workforce availability, error occur-
rence, cost, environmental factors and human decision making. These variables are
intimately concerned with the behavior of the system and must be considered. On
the other hand, their actual effect on the system is very complex and nonlinear,
and usually cannot be expressed as simple mathematical or statistical models. The
modeling approach must be able to capture the relationships between these variables
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and the system state at a much more elemental level. Simulation is just such a tool.
Indeed, any system can be modeled and simulated if its components and processes
can be described at a basic level.

Since health care systems have many stakeholders with differing goals, any anal-
ysis will need to evaluate multiple measures of system performance. For example,
an emergency department has patients, physicians and hospital administration as
stakeholders. Patients are concerned with minimizing the length of time between
arrival and the start of treatment. Physicians are interested in the delays in diagnosis
due to waiting for laboratory or imaging results. Administrators consider system
capacity and overall cost to be important. The model should be able to predict all of
these performance measures simultaneously, and evaluate their trade-offs.

The various simulation tools (DES and SD) offer a flexible modeling approach.
A wide range of system models can be developed to represent almost any system
structure imaginable. The modeling world-view of DES is that the system is com-
posed of entities that have attributes and interact only at discrete points in time
when an event occurs to change the system state. For a more in-depth description of
this world-view, see Chapter 2 of Fishman (2001) or Schriber and Brunner (1998).
This is a very general model structure, and has proven useful to represent a huge
assortment of systems over the past 50 years. Although we will discuss some needed
improvements in available software, the modeling approach is robust enough to rep-
resent virtually any health care system imaginable.

The use of simulation for health care systems is further promoted by the wide
variety of simulation software available. For the adventurous, general purpose pro-
gramming languages such as Java, C/C++ and FORTRAN can be used, supported
by libraries such as Simkit (Buss 2001) or SIMLIB (Law and Kelton 2000). Numer-
ous libraries are available for many programming languages. This approach offers
the advantages that the developer can combine the simulation library with other
available libraries to support such things as database access, graphics and numerical
computations, and if needed, the developer can modify the basic simulation code.
This can be especially useful if changes are needed to the fundamental simulation
code in order to overcome technical challenges such as those mentioned in Sec-
tion 3.1. At the other end of the scale, simulation model development environments
are available to support graphical interactive model development. This software
requires the user to be familiar with modeling concepts but does not require pro-
gramming knowledge. The disadvantages of this approach are that the user must
stick with the capabilities provided, and thus must often change the model to con-
form to what the software will represent, and that these packages are proprietary and
often quite expensive, thus discouraging their use for single projects. Swain (2007)
provides a survey of some, but not nearly all, available simulation software.

The goal of most modeling efforts is to search for optimal decisions among a
collection of possible choices. Simulation methodology evaluates the performance
of decisions involving system design, strategy or operating policy. Using simula-
tion, the search for optimal decisions, especially optimal combinations of system
parameters, often must be done manually and can be laborious due to the large
number of possible decisions. To some extent, this objection has been alleviated
by optimization features that are available on many commercial packages. These
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features allow some types of decisions to be searched during the simulation runs to
find those that result in improved performance. April et al. (2003) and Olafsson and
Kim (2002) provide a brief surveys of simulation optimization methods.

Another feature that favors simulation for health care problems is that the mod-
els and methodology are relatively easy to describe and explain to administrators,
clinicians and other persons not familiar with the development and use of models
for decision making. Many simulation packages have animation capabilities which
allow the user to view the simulation as it runs. Animations give the viewer a sense
of the reality of the model and develop confidence in the model. Other modeling
approaches, such as mathematical optimization and probability models, that consist
of manipulating functions and solving systems of equations are much more difficult
to describe and explain to managers who are not comfortable with mathematics at
this level.

While simulation uses very sophisticated technology for sampling random vari-
ates, representing the system and analyzing input and output data; in a sense, it
is easier to apply by persons with relatively little training in engineering, mathe-
matics, statistics and similar disciplines. To build a simulation model, the modeler
must understand the system components and their interactions, and must be able to
describe these within the modeling world view, but this can be done by a person
who has relatively little mathematical sophistication. In contrast, linear program-
ming models and Markov chain models are much more abstract and require more
advanced knowledge of mathematics to build and interpret. Many mathematical
probability models, in particular, require the modeler to modify the model and solu-
tion procedure for every change in the model assumptions. For example, a formula is
available to compute the mean waiting time in the simple stationary M/M/1 queue-
ing model (Gross and Harris 1974, Chapter 2), but if the distribution of either the
interarrival time or service time is changed from the exponential distribution, a new
solution process must be adopted. Indeed, if both the interarrival and service time
distribution are non-Markovian, then no analytical solution exists. Using discrete-
event simulation to estimate mean waiting time for a single-server, FCFS queueing
system such as any of these, one merely changes the algorithm used to sample the
interarrival and service time random variates. These algorithms are available from
public sources. All other computations are unchanged. Other than possibly needing
to make longer runs for some versions of the model, the analyst uses the exact same
code and procedures to analyze all models. In this sense, simulation is much more
versatile than alternative methodologies. Finally, simulation is a mature methodol-
ogy that has been widely accepted in many other areas of business, industry and
government. Many organizations, especially large organizations, in areas such as
transportation, communications, manufacturing, services and finance, use simula-
tion routinely as an aid in designing new products and systems.

5 Challenges

If simulation is so well-suited to solve systems analysis problems in health care,
why hasn’t it been used more and why isn’t it a routine part of analysis prior to
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major decisions? We will explore these questions in this section. In particular, we
will look at the difficulties that must be overcome in order to have a successful
simulation modeling project in health care.

5.1 Project Management Challenges

Project management challenges involve the problems associated with initiating and
managing the modeling project. These challenges relate to the demand for projects
using simulation, support for the project by management, team collaboration diffi-
culties, problems selecting appropriate measures of success, and cultural differences
between health care practitioners and simulation analysts.

Management knowledge and support. Before a technology can be adopted widely,
there must be a demand for it. In this case, the demand must come from executives
and managers in various parts of the health care systems or from public officials.
Most health care managers are unaware of the power of modeling and simulation
to understand system behavior and predict the likely effect of various decisions. In
the health care management literature, i.e., the publications read daily by executives
and line managers in health care systems, there is almost no mention of the use of
tools like simulation to analyze and evaluate decision alternatives. So, the primary
challenge to the use of simulation in health care systems is to educate the potential
users about the powerful capabilities of the technology.

Team management. Most large simulation projects, including all projects dis-
cussed in Section 3, are pursued by a team, usually consisting of simulation experts,
domain experts and supporting members. This setup is normally used because no
one person has all of the expertise in the operations of the system and the appli-
cation of simulation to do the entire job herself. In addition, systems are usually
too complex to allow one person to develop the model, collect and analyze data,
run the simulation and do the other tasks involved. This is especially true in health
care models. Very few simulation experts have detailed knowledge of health care
systems, and even fewer health care managers and practitioners know how to use
simulation technology. Working in teams to develop models of health care systems
is especially challenging because of the different cultures involved. Most simulation
practitioners are educated in engineering, computer science, statistics or mathemat-
ics. Most managers and clinicians in health care are educated in medicine as patient
care providers (doctors, nurses, etc.). The fields of engineering and health care have
different concepts, goals, and vocabularies. Indeed, they have very different ways
of viewing the problems to be solved. Engineers think in terms of the delivery sys-
tem, with an emphasis on the system. Health care providers usually focus on the
individual patient. Normally, they view the delivery system—the dance of people
and resources that delivers health care to the patient—as a given, something that
they accept as it is. If there are problems with getting resources in a timely manner,
their view is that it is somebody else’s responsibility. Their world is focussed on the
patients and clinical procedures. On the other hand, the engineer sees the people,
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resources and processes—the physical and virtual system—and takes the clinical
procedures as fixed. A model of the system must accommodate both views and
model the interplay between clinical activities, the resources and the people. This
means that each team member must work to learn the world view and language of
the others so they can integrate their knowledge.

Selecting performance measures. In health care modeling projects, it is often
hard to select appropriate measures of effectiveness. We alluded to this problem
earlier when we noted that health care systems have a variety of stakeholders, each
with their own goals. Some have operational goals, such as to maximize patient
throughput. Others have financial goals, as, for example, to minimize the present
value of cost over a period of 5 years. In private hospitals and clinics, the goals
often reflect an interest in making the enterprise maximally profitable. In public
hospitals and clinics, the appropriate goals are not so clear. Certainly, operational
efficiency is important, but it is also important to maintain financial viability. It
can be a challenge to agree on the appropriate objectives, and therefore, the most
appropriate data to collect from the particular health care system and the simulation.
It is helpful that data collection can be changed late in the modeling and simulation
project, but it is also desirable to have a firm idea of the modeling goals early in the
process.

5.2 Modeling Challenges

Many of the challenges to health care simulation involve modeling directly. Health
care systems are highly dynamic, involve human behavior in an intrinsic way and
have control mechanisms that make adjustments to accommodate changing condi-
tions. Models must be able to accurately capture these characteristics.

Modeling human behavior. As we discussed earlier, many of the activities in
health care delivery involve human interaction, both with machinery and with other
people. Patients respond to treatments and make choices for further care. Staff
respond to policies for patient care or infection control. These responses can, and
often are, not rational or at least, not directed to achieving the hospital’s goals. For
example, nurses sometimes choose to not follow a directive if they feel that the
time requirement is excessive and the policy reduces the quality of care (whether it
actually does or not). Patient compliance with physician orders and medication is an
issue in health care, and models will usually need to include compliance, especially
for the policies the model seeks to evaluate.

Providers and public officials are often more interested in how the delivery sys-
tem design affects the health of patients through the quality of care. Physicians
make decisions regarding further testing, diagnosis, and treatment for patients based
upon the information available from current examinations and tests. These decisions
are important because they influence the behavior of the system going forward by
determining the additional tests and treatments to be scheduled. Instead of using sur-
rogates such as patient delays to evaluate patient response, models should represent



218 A.F. Seila and S. Brailsford

the relationship between system operations and patient response directly. Thus, the
model should be able to provide an accurate representation of the patient’s symp-
toms upon presentation as well as how those symptoms work through the physi-
cian’s decision making process to initiate further activities.

Health care systems can respond to extraordinary conditions by altering the
system’s configuration and structure. For example, if an emergency department
becomes overcrowded, the director might close the department, diverting patients
to other EDs in the area, possibly causing those patients to suffer additional com-
plications due to the delay in treatment. Or, the director might reconfigure the ED
by creating space in a hallway for overflow patients and assigning staff from other
areas to attend the patients there. Another choice could to be to speed the discharge
of some patients who have minor problems. Each of these responses to the over-
crowding has a significant impact on the functioning of the ED and makes a rather
fundamental change to the structure of the ED. Moreover, this response is the result
of a decision by a person. The model should be able to capture this type of response.

Rapid modeling tools for health care systems. Health care facilities operate on
a fast schedule. Today’s problem is soon forgotten because another problem will
present itself tomorrow. Managers in health care are busy identifying and solving
problems in succession. Problems that yield to quick solutions get solved; others are
put aside. Frequently, managers have difficulty distinguishing temporary operational
problems from strategic policy-oriented problems. Thus, an issue involving ICU
overcrowding will be dealt with as a temporary operational problem, rather than a
policy issue, even though it recurs periodically. To keep the managers’ focus on the
problem, they need to quickly see potential solutions. This is where a simulation
tool that allows rapid modeling would be useful.

As Davies and Davies (1994) have pointed out, in some health care models,
some entities such as patients often need to belong to multiple queues simultane-
ously and wait for multiple resources, possibly responding to the first resource that
becomes available. These systems also use priorities to determine how clinicians
and other workers will be preempted and reallocated when a new patient arrives or
other events occur. While these features can be built into any model if an appro-
priate simulation library and programming language is used, the simulation soft-
ware needs to make it natural and easy to implement models having these structural
characteristics.

Other characteristics that are desirable in health care specific modeling software
include health care domain specific processes and data. For example, easy access to
ICD-9 diagnosis and procedure codes with frequency data for various locations that
can be used to sample incoming diagnoses would be valuable. Access to generic
data would also be useful for cases where provider-specific data is not available.
Software modules to utilize this data to sample diagnoses and other purposes should
be provided so they do not have to be built from scratch. Pre-built but configurable
processes such as ED triage and registration should be provided so the model build-
ing process can consist mainly of assembling modules. Of course, like any other
special purpose simulation tool, a health care modeling package should include
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facilities for model animation, graphical presentation of data and flexible reporting
that can be configured to look similar to existing hospital reports.

All simulation software is designed to allow the user to evaluate alternative sys-
tem designs or other decisions related to the system. It is important, therefore, that
the software allow the alternative decisions to be represented fairly easily, so the
simulation can implement the alternatives with minimal effort. Some alternatives,
which can be implemented as parameter changes, are easy to implement simply by
changing some elements in the input file. On the other hand, some alternatives that
represent more fundamental changes in system structure are much more difficult
to implement. For example, if alternatives involve changing system policies, such
as allowing nurse practitioners to perform additional duties that would normally be
done by physicians, or modify care processes, the actual logic of the model must
be modified to implement the alternative policy. The simulation software should
be designed so these more fundamental alternatives can be implemented by users
if possible. This would encourage health care managers to re-use the model for
additional decision evaluation beyond the original scope.

5.3 Challenges from the Health Care System

Lack of data. All simulations need system-specific data in order to validate the
model and to have a model that is valid for the current environment. Data avail-
ability is a challenge in every health care modeling project. Health care systems
keep copious amounts of data. Indeed, it has been said that health care delivery
primarily involves data collection and storage, and only a minority of time is spent
on actual diagnosis and treatment. However, the data collected is for clinical, admin-
istrative and legal uses, not for modeling. Data collected for clinical uses include all
medically relevant information and often include process data such as times when
treatments begin. For example, in a hospital, nurses record the times when medi-
cations are administered in order to monitor and assure that they are given on the
prescribed schedule.

Some data is collected just for legal and risk management purposes to protect
the hospital or clinic in the case of an accusation of negligence or poor quality care.
Most emergency departments record each patient’s arrival time and time of the start
of the first examination by each physician so the patient’s waiting time before being
seen by a physician can be computed. In a lawsuit, this delay would be relevant.

Hospitals and certain other providers collect data to monitor and evaluate existing
processes, but not to analyze existing systems. For example, emergency departments
record patient arrival time and discharge time in order to compute their total time in
the ED. This is a performance measure for the ED, but it is not useful in a simulation
because this would be a parameter the simulation seeks to estimate. The simulation
needs more basic data. Data requirements include activity times such as the dura-
tions of patient-physician encounters or the time to deliver a breathing treatment to
an asthma patient. This data is seldom collected because managers do not realize
the need but also because of resistance from the staff to being measured.
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If data are manually collected, the cost can be excessive. Moreover, conditions
within and surrounding the health care system under study can change so rapidly
that the data are no longer relevant when the model is ready to use. It seems that the
only truly complete solution to this problem involves creating a system of ongoing
data collection. We will examine this topic in Section 6.

Lack of standardization. While most health care subsystems have much in com-
mon, virtually all of them have some unique characteristics. These unique charac-
teristics might involve the layout of a department or the presence or absence of a
particular resource such as a lab or imaging machine, or they might involve unique
process structures. For example, in one ED, breathing treatments might be admin-
istered by a nurse, whereas, in another ED, these treatments might be required to
be administered by a respiratory therapist. As a result of these differences, it is very
hard or impossible to develop a generic model of a system that can just be configured
and used routinely. Generic models would greatly reduce the cost of developing and
applying the simulation, and they would make it possible for a manager, rather than a
modeler, to do the analysis using simulation. Instead, every model must be modified
to fit the current system, resulting in increased cost and time for the project.

Complexity. We have already mentioned how complex health care systems are.
As in any modeling effort, the difficulty of developing the model increases expo-
nentially with the complexity of the system. If health care systems are compared to,
say, manufacturing systems, many components and interactions are not immediately
visible to the observer. Many processes are developed ad-hoc and are either not
documented or poorly documented. A great deal of time and effort can be required
to describe and model these processes at an appropriate level of detail. In addi-
tion, many health care systems are in fact multiple systems functioning relatively
independently. For example, in a pre-operative unit, anesthesiology, nursing and
surgical staff each constitutes an independent system with their own procedures
but the systems normally perform them with little coordination. This structure also
greatly increases the modeling difficulties.

6 Overcoming the Challenges

Often when discussing simulation in health care, the goal is limited to solving a par-
ticular problem using this methodology. In this section, we would like to raise that
goal to one of having simulation (and perhaps other analytical operations research
methodologies) used routinely in health care management to improve the quality
of decision making, system design, and ultimately, patient care. Most comments in
this section could just as easily apply to other operations research tools. Since this
paper is about simulation, we will just say “simulation” and leave it to the reader to
determine if other OR tools apply.

If the effort over the past half century by thousands of professionals to develop
and refine simulation methodology and its applications is to pay off maximally,
simulation needs to become a standard tool in the health care decision process.
Obviously, simulation is not the preferred analytical tool in every decision, but it
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should at least be given consideration and used when appropriate and feasible. To
this end, we have a long way to go since simulation, when it is used, is used mainly
in a research setting in large medical centers, and funds are almost always provided
by government research grants. Indeed, this is the case with most of the examples in
Section 3. This indicates that most health care managers are not aware that tools of
this sort are available, or they do not see sufficient value in them to invest the money,
or they cannot find a company or consultant to perform the analysis, or they cannot
do the analysis because some required component, such as data, is not available.
Many problems in health care are well suited for simulation, but the environment is
not.

One approach to this conundrum is to think of this as a marketing problem in
which the product to be marketed is problem analysis using simulation and the
marketplace is health care management. In order to promote the sale and use of
a product in a marketplace, certain conditions must be met. Normally, three things
must be done to launch a successful product:

1. Develop the product to meet the needs of the marketplace.
2. Grow demand for the product in the marketplace.
3. Work with the customer to purchase and implement the product.

6.1 Develop the Product

Simulation is certainly a mature and successful technology for problem analysis,
but it is still not ready for routine use in the health care marketplace. The current
problems have been outlined in Section 5. Here, we will offer some suggestions
about how these problems might be overcome.

The simulation community needs to develop software that satisfies demand in
this marketplace, mainly by developing specialized tools for modeling and simu-
lating health care systems. These tools need to be modular and standards-based
so they can be used and reused by a broad group of analysts and consultants. At
present, most health care simulation models are implemented using generic tools,
so all health care-specific aspects of the models must be developed from basic
components—entities and resources—and their health care-specific attributes and
behaviors must be created for each individual model. The simulation modeler needs
to believe that he or she can quickly and reliably develop the model, and the new
tools should support this capability.

Many other areas, such as manufacturing and communications, have tools that
were developed specifically for modeling those types of systems. Like these other
tools, the need is not for a tool that allows an untrained analyst to build models, but
rather one that provides support for a trained simulation modeler in building health
care models quickly. Since all models will potentially require customization, the
tool needs to give the modeler fine-grained control, but make definition of common
entities such as patients, physicians, nurses, imaging machines, beds, etc. quick and
easy. These components should be predefined and configurable. The goal of having
such a tool is to enable the modeler to build a simulation prototype within one to two
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weeks to show the stakeholders, and not only provide a starting point for the path
to a final model that can be used for actual analysis, but also to keep the managers
interested in the project.

One package built for modeling health care systems is MedModel (Price and
Harrell 1999). This package has been used to develop a number of DES models, but
it is limited in its features because it is basically a repurposed version of ProModel,
which is a modeling tool for production systems. As such, MedModel requires a
physical model layout and primarily models the physical operations of health care
clinics and similar systems, rather than the conceptual procedures and processes. A
more appropriate tool would allow models of non-physical systems to be developed
in a natural way.

Currently, most published health care modeling is done on a special project basis
by researchers. We believe that most simulation modeling projects in the U.S. are
done by academics. In the UK, consultants do a lot of health care modeling, but in
both countries and the rest of the world, simulation is frequently overlooked when
systems are being analyzed and modified. If public health agencies, hospitals and
other health care systems are to use this technology routinely, a workforce must be
available to deliver the service, i.e., perform the systems analysis, modeling and sim-
ulation. At present, there are not enough people trained in modeling and simulation,
and particularly in modeling health care systems, to support this objective. The edu-
cational community needs to offer more courses in operations research and systems
analysis graduate programs, at the master’s degree level, in health care modeling and
simulation. The graduates of these programs need to have the specific skills to work
on system modeling problems when they graduate. As such, they should have a good
working knowledge of modeling and simulation, and also a thorough understanding
of the structure and workings of the health care systems in their country of interest.
These programs could also be developed to train current simulation modelers in
the specifics of health care systems and to train current health care managers in
modeling and simulation.

The simulation community needs to shift its view from the producer’s perspective
to the consumer’s. If simulation is to be not only accepted but demanded, the users—
health care managers—must see value in the product. That is, they must believe
that the product will return information for decision making that justifies the cost.
The simulation community must fully understand this viewpoint in order to design
simulation products for health care that will be successful in the marketplace.

6.2 Grow Demand for Simulation

Although we have not done a statistical study, it is apparent to us that there is very
little awareness of simulation methods in the health care sector. We explored this
topic in Section 5.1, but it is clear that the job of convincing health care man-
agers to utilize this methodology in their projects would be greatly facilitated by
their having an understanding of the existence and usefulness of simulation. This
could be accomplished by developing materials on simulation that showcase its
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useful application in health care and provide a realistic idea of how to use this
methodology in problem analysis and decision making. Some sample models that
managers can download and experiment with would also be helpful. This material
could then be presented, perhaps through guest lectures, to students in public health
and health administration curricula, as well as other venues such as professional
meetings and focussed conferences. A major research project to do exactly this is
currently under way in the UK. RIGHT (Research Into Global Healthcare Tools,
http://www-edc.eng.cam.ac.uk/right/) is a collaborative study, one
of whose outputs will be a web-based method selection tool, a paper-based Work-
book explaining the methods in lay terms, and a website with successful case
studies.

Another way to promote the use of simulation is by publishing articles in trade
publications that are read by line managers as well as top executives of health care
organizations. These articles need to be problem-focussed, but also show clearly
how simulation is a technology that is uniquely suited to analyze some of the most
important problems these managers face. Unlike academic journals, trade publica-
tions often promote the use of specific products and solutions, so this would be an
ideal place for the simulation community to promote the use of simulation. Finally,
there are many websites dedicated to health care management. This is yet another
opportunity to publish informative articles about simulation and health care. These
articles should focus on how simulation can solve problems by providing insight
into system behavior that cannot be gained from other analyses.

Consulting companies have excellent access to health care executives because
hospitals and other health care providers make frequent use of consultants. Encour-
aging health care consultants to make more use of simulation and promote its use
by their clients is another way the value and benefits of simulation can be commu-
nicated to the health care community. It is also important to provide a means for
consultants and other non-academics to publish their successful simulation applica-
tions in short articles, perhaps through a column on simulation successes in health
care or a blog on the topic.

6.3 Work with the Customer

Simulation projects often take months to complete (if they are ever really com-
pleted), and encounter multiple problems during their progress. This will be dis-
couraging to managers, and will lead them to conclude that while simulation is a
valuable tool, it is just too hard to use. In this section, we want to explore some
ways to overcome this problem.

Virtually every simulation project in health care reports major problems finding
appropriate data. Hospital managers and other health care system administrators
can be encouraged to collect and store the more detailed data that is necessary in
simulation modeling. This collection and storage should be automated so it does not
impose a burden on the workers. As electronic medical records and online clinical
ordering systems are adopted, this provides a great opportunity to collect some activ-

http://www-edc.eng.cam.ac.uk/right/
http://www-edc.eng.cam.ac.uk/right/
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ity times automatically. It might be necessary to consider modifying some models to
use activities whose epochs are marked by times that can be recorded automatically
by these online systems. Other innovative methods for collecting data, such as using
RFID or sonic technology, are available and should also be considered. Of course,
it will be hard to convince health care managers to invest the money to collect this
data before models are built requiring it, but hopefully as some institutions make the
investment and reap the benefits, others will decide to follow. For those cases where
data is not available for the specific system being modeled, it would be useful to
collect and share data from other systems. For example, data for the activity times
of various surgeries, categorized by procedure code, patient demographics and other
attributes, could be used to estimate activity time duration distributions for surgery,
similar to the work in Section 3.2.1. This type of data could be anonymized and
contributed to a central repository where it would be available to anyone developing
a model of surgical suite operations. Going one step further, the data could be used
to fit distributions for surgery times, and the distributions could be published and
used in those cases where more specific data are not available.

On the output side, it is important that the models produce results that are relevant
and important to health care managers. Engineers and analysts tend to think in terms
of waiting time and resource utilization. Hospital administrators and clinicians think
in terms of financial impact and quality of care. Obviously, these are very closely
related metrics, but a simulation output that just presents waiting times and utiliza-
tion will not be taken seriously by hospital administrators. Perhaps all simulations
should produce reports that show financial results such as revenue and cost, unless
there is a good reason to exclude these measures.

Ideally, some models could be implemented by starting with a generic model
and just configuring the model to represent the specific system under consideration.
For example, a generic model of an emergency department could be configured by
providing parameters such as the arrival rates, numbers of clinical personnel by job
type, numbers of examination rooms, and so forth. Some work toward this goal has
been done by Gunal and Pidd (2007), and appears promising. If such generic models
can be developed and shown to provide useful predictions, they can greatly simplify
the process of model development and use.

Similar to generic models, many health care systems use common components
such as laboratories and imaging centers. Models of these subsystems can be
developed as modules for reuse, simplifying the process of model development.
To carry this idea further, a model building process could just consist of assembling
the component modules and providing appropriate parameters. In engineering and
architecture, this is the approach a draftsperson frequently takes to create complex
drawings. Modules could be stored in a central repository online, making them
available to any potential user. This would be difficult at first, and would require
simulation professionals to establish interface standards for models, but the goal
would justify the effort, in our opinion.

In recent years, much work has been done on Web-based simulation (Miller
et al. 2000). The concept here is that a simulation can be distributed among vari-
ous locations on the Internet, accessing data and model components from remote
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servers. This technology opens many attractive options for health care modelers.
For example, some model components, such as a model of a laboratory or imaging
department, could be developed by experts or even vendors and implemented and
maintained on their server. The process of model building would then involve
locating and incorporating these specific components into the larger model. This
approach, known as service-oriented architecture, is becoming popular in other
areas of internet technology and, if implemented, could improve the ease of devel-
oping complex simulation models of health care systems.

Generally, the simulation community and the health care management commu-
nity need to reduce the difficulty, and hence cost, of developing health care simula-
tion models. One activity that would promote this goal is to develop rapid modeling
tools, especially tools with simple user interfaces that implement generic models of
common systems and can be used by health care analysts and managers, rather than
simulation analysts. Another effort could be aimed at promoting standards in health
care processes and terminology. Standardization would encourage the development
and use of generic models and reusable modules.

Finally, and perhaps most importantly, the simulation community needs to really
take an interest in all aspects of health care, and not only learn the terminology and
concepts of diagnosis and care delivery, but also understand the culture of the pro-
fession. Simulation modeling projects require a team approach, and it is important
to master how to create and manage these teams so they are effective. If simulation
experts are able to understand the attitudes and thought processes of the health care
experts, smooth functioning and effective management of the team will result, and
ultimately the probability of success will increase.

7 Conclusion

Much has been written in recent years about the inefficiency, cost and error rates of
the current health care systems. Simulation can play an important role in improving
these operations and, literally, saving lives. In a recent book, Gawande (2007) per-
suasively argued that, while there is a role for basic research and improved therapies
in medicine, much greater benefits can be gained by simply improving the way that
existing therapies are delivered to patients. Simulation is a tool that should be an
important component in the effort to find these improvements.

Ayers (2007) shows how regression and randomized trials, two statistical meth-
ods that have been around for many decades and are routinely used by researchers,
have found new applications in business, sports, education, health care and gov-
ernment to improve decision making and radically reshape many of the decision
processes in these and other areas. These applications have been driven by the avail-
ability of large amounts of data stored electronically, cheap high-speed computing,
and the Internet, which effectively is a distributed computing platform where not
only data can be stored and retrieved, but experiments can be run and results can be
quickly distributed. The statistical methodology, regression and randomized trials,
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is not new. But, some decision makers have found new applications for it and have
reaped extraordinary results and rewards.

We see simulation as having a similar opportunity. Although useful research is
continuing on simulation methodology, it is not a requirement for successful appli-
cation in health care. What is needed is for decision makers to recognize that the
quality of decisions can be greatly improved by utilizing simulation (as well as
other OR tools). But, much work needs to be done before this can happen.

We believe that academic programs in operations research, especially those that
emphasize simulation, should examine their curricula and see if programs of study
can be developed that integrate simulation and health care. Simulation educators,
researchers and practitioners who want to work in health care need to develop a
greater focus on problem solving and work to understand the world of health care,
especially the culture of the people who work in that world daily. The benefits of
simulation should be promoted by talking, writing and blogging about successful
simulation projects. These projects do not have to be huge, but they should clearly
show the feasibility and benefits of using simulation to advance the established goals
of the health care systems.

Additional work is needed to prepare for routine use of simulation in health care.
New modeling tools are needed that allow useful models to be built quickly and
applied effectively. These tools will shorten the development time, improve model
reliability and reduce cost. Data repositories and data collection systems that gather
input data for simulations need to be developed in collaboration with health care
software providers.

Ayers (2007) has pointed out that the availability of high-speed computing and
cheap large data stores have driven down the cost of statistical analysis to almost
nothing. The simulation community needs to find other ways to drive down the
cost of developing, implementing and using simulation. One way is by develop-
ing generic models for common health care systems along with software tools to
manage and apply these models. If successful, this could create a new role for
simulation analysts that involves configuring and applying standard generic sim-
ulations.

Simulation methodologies will certainly continue to advance in the future. So
will methods to manage health care systems, but citizens will continue to demand
better performance from their health care systems. It is our hope that some of the
ideas in this article will contribute to improving the delivery of health care with the
use of simulation.
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Future Trends in Distributed Simulation
and Distributed Virtual Environments

Steffen Straßburger, Thomas Schulze, and Richard Fujimoto

Abstract This paper reports the main results of a peer study on future trends in
distributed simulation and distributed virtual environments. The peer study was
based on the opinions of more than 60 experts which were collected by means
of a survey and personal interviews. The survey collected opinions concerning the
current state-of-the-art, relevance, and research challenges that must be addressed
to advance and strengthen these technologies to a level where they are ready to be
applied in day-to-day business in industry. The most important result of this study
is the observation that as research areas, both distributed simulation and distributed
virtual environments are attributed a high future practical relevance and a high eco-
nomic potential. At the same time the study shows that the current adoption of these
technologies in the industrial sector is rather low. The study analyzes reasons for
this observation and identifies open research challenges.

1 Introduction

This paper reports the main results of a peer study on future trends in distributed
simulation (DS) and distributed virtual environments (DVE)—two of the most-
important areas in the discipline of simulation. The survey, as well as this entire
study, was initiated by the Fraunhofer IFF in Magdeburg and was conducted by an
independent research team under the leadership of the authors.

The survey was aligned with an attempt to establish an “Innovation and Research
Center for Distributed, Interoperable Virtual Reality and Simulation” in Magdeburg,
Germany, which follows a German national funding initiative.1 Although this initia-
tive provided the background and motivation for this study, its results are indepen-
dent and are therefore expected to be of value to the entire DS/DVE community.

S. Straßburger (B)
School of Economic Sciences, Ilmenau University of Technology, 98684 Ilmenau, Germany
e-mail: Steffen.Strassburger@tu-ilmenau.de

1 “Centers for Innovation Competence” is a funding instrument of the German Federal Ministry of
Education and Research exclusively targeted towards the former East German states. Its intention
is to establish internationally recognized research centers in dedicated basic research areas.

C. Alexopoulos et al. (eds.), Advancing the Frontiers of Simulation: A Festschrift in Honor
of George Samuel Fishman, International Series in Operations Research & Management
Science 133, DOI 10.1007/b110059 11, C© Springer Science+Business Media, LLC 2009

231



232 S. Straßburger et al.

The intention of this survey was to assess the current status in the fields of
distributed simulation and distributed virtual environments and to identify new
trends and research challenges in these fields.

The motivation for this survey and study is multifaceted. On one hand, computer
simulation and interactive virtual-reality-based visualizations have already estab-
lished themselves as useful tools. On the other hand, there is an increasing com-
plexity in both product development and production processes. This requires new
methods for planning, evaluating, and controlling the underlying systems.

Technologies such as DS and DVE (which are already used rather frequently in
the defense sector) could also be key enablers for addressing complexity issues in
non-military applications. They can be the basis for simulating complex systems by
integrating heterogeneous sub-components which cannot be executed as a mono-
lithic application on one computer. They can connect all involved stakeholders even
if they are located on different sites around the world.

The survey collected opinions concerning the current state-of-the-art, relevance,
and the research challenges that must be addressed to advance and strengthen these
technologies to a level where they are ready to be applied in day-to-day business.

Portions of this paper appeared in Straßburger et al. (2008).

2 Survey on Future Trends in Distributed Simulation
and Distributed Virtual Environments

This section reports in detail about the results of the survey conducted on the topic
of future trends in distributed simulation and distributed virtual environments.

2.1 Introduction

The survey was officially conducted during the period from September 15, 2007
until October 15, 2007.2 The survey was designed to be distributed and completed
in electronic form. The survey was mainly targeted towards experts in the fields of
DS/DVE. Invitations to complete the survey were therefore distributed through rele-
vant conference distribution lists like the Winter Simulation Conference (WSC), the
Principles of Advanced and Distributed Simulation Conference (PADS), the IEEE
International Symposium on Distributed Simulation and Real-Time Applications
(DS-RT), and the Annual Conference of the German Simulation Society (ASIM).
Furthermore the survey invitation was posted on the homepage of the Simulation
Interoperability Standards Organization (SISO) and distributed to its members. It
was also distributed to members of the SimSummit organization whose membership
includes government, industry, and academia organizations concerned with Model-
ing and Simulation, especially for defense applications.

2 Returned surveys were accepted until the cut-off date of November 1, 2007.
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The survey questionnaire was completed by 61 individuals. The majority of the
respondents (67%) classified themselves as working in research organizations,while
20% were from industry and 10% from defense (Fig. 1). As the main intention of
this study was to focus on the research aspects of the DS/DVE fields, the distribution
of participants agrees with our objective.

Research
67%

Industry
20%

Defence
10%

Other
3% Research

Industry

Defence

Other

Fig. 1 Classification of participants with regard to their organization

The participants were also asked to classify themselves with regard to their rela-
tionship to distributed simulation and distributed virtual environments (Fig. 2). The
responses show that 92% of the participants are directly involved with these topics,
either as researcher/developer (79%) or as practitioners (13%).

79%

13%

8%
Researcher/Developer

Practitioner

Not directly involved

Fig. 2 Relationship of participants to DS/DVE technologies

The answers of the participants can thus be expected to give substantiated state-
ments towards the state-of-the-art of the research in the fields as well as towards
open research questions.

The actual survey consisted of two main parts, which will both be discussed in
detail in the next section. While the first part addressed the relevance of DS/DVE
technologies today and in the future, the second part focused on the open research
challenges and the latest trends in these areas.
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2.2 Survey Evaluation

This section reports and discusses the results of each question of the survey. All
questions which asked for a rating or classification typically operated on a scale
from 0 (none) to 5 (very high). Exceptions to this rule are pointed out in the text. As
the survey design intentionally included several open questions and possibilities to
comment, the answers to those questions are clustered and also reported.

2.2.1 Part 1: Evaluation of the Relevance of the Technologies (DS/DVE) Today
and in the Future

Part 1 of the survey was intended to address the relevance of DS/DVE technologies
today and in the future. Its intention was to assess the relevance of these technologies
for practical applications. Furthermore, these questions attempt to identify those
fields where the experts expect these technologies to have the highest economical
potential and to identify the kind of applications that will derive the most benefit.

Question 1.1: Please rate the future relevance of the following potential applications
of the DS/DVE technologies for improving internal processes within companies
(including their suppliers) or other organizations. Please give grades in the range
from (5) = highest relevance to (0) = no relevance!

Question 1.1 queried the future relevance of DS/DVE technologies to potential
applications focusing on the process side of companies and other organizations. The
questions suggested some examples for potential applications of DS/DVE technolo-
gies for improving processes and asked the experts to rate them. The results are
shown in Fig. 3.
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Fig. 3 Potential applications for process improvements

The diagram shows that from the suggested choices applications 2, 3, and 4
are attributed the highest relevance. The highest rated application (no. 4) suggests
the application of distributed simulation to integrate heterogeneous resources and
is followed by no. 3 that involves the application of distributed simulation to join
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computer resources for complex distributed simulations. Both types of scenarios can
be anticipated to play an important role in companies that have become sufficiently
complex that they require the integration of simulation applications spanning several
geographically distinct locations.

Application no. 2 which involves distributed training sessions is also assigned a
high future relevance. This is easily understandable, since distributed virtual training
sessions are a straightforward means of joining geographically distributed experts
to conduct training or to provide remote assistance.

These three applications are followed by application 5 (“Distributed Design
Reviews”) which receives a ranking of 3.5 indicating that many participants still
consider this a relevant topic for the future.

The usage of DVEs as a replacement of video conferencing technologies is not
considered as being highly relevant for the future; however, DVEs are attributed
some relevance as an enhancement of video conferencing technologies. The future
could therefore bring about some mixed form of DVEs and video conferencing, e.g.,
by combining the traditional video feed with some interactive 3D view of the items
to be discussed, or by integrating the video feed into the virtual world.

Question 1.2: In which areas do you see additional relevant applications of the tech-
nologies for improving internal processes within companies (including their suppli-
ers) or other organizations?

Question 1.2 was designed as an open-ended question and queried for any
additional relevant applications for improving processes within organizations. The
answers have been clustered into the four categories: integration aspects, product
development, production, and miscellaneous. The following briefly summarizes the
responses.

1. Integration aspects

• Distributed simulation (DS) allows geographic separation of simulation tools
(and resources) from the points where they are needed.

• Different company locations and their suppliers can join their simulation
resources and thus improve their cooperative processes (e.g., supply chains).

• Distributed Design (not only Distributed Design Reviews) but the entire
design process is an application for both DS and DVE.

• DVEs can enable better communication between various project participants
(manager, architects, designer, end-user, . . . ).

2. Product development

• Remote product testing, e.g., in settings where the product simulator is at
one location different from the product testers, can be an important future
application of DS/DVEs. This applies for both product development as well
as for product marketing.

• Knowledge protection in multiple-component product models can be assured
with distributed simulation technology. This is highly relevant for joint product



236 S. Straßburger et al.

development where multiple companies develop individual components of
products. Typically, companies want information concerning their component
to be protected while still allowing it to be used in conducting simulations of
the entire product. Distributed simulation offers the potential for companies
to protect their intellectual property by providing their component behavior
as a black box model that can be integrated in a distributed simulation of the
overall product.

• Virtual assembly/product integration before physical prototypes exist.

3. Production

• Distributed planning of manufacturing lines (joint planning of suppliers and
OEMs).

• Direct process control of automated production processes (simulation-based
Command&Control center).

4. Miscellaneous

• Distributed Virtual Environments as market places for subcontractors on the
Internet.

• 3D web: Current 2D web will be combined with DVE capabilities (e.g., as
known from applications such as Second Life).

• Real-time decision making using DS/DVE.
• Analysis and feedback for developing interpersonal skills for management

and teamwork.
• Changing current business processes to achieve greater orientation around

end-user needs.

Question 1.3: How do you rate the relevance of the technologies distributed sim-
ulation and distributed virtual environments for improving the life cycle of future
products (e.g., for the product development, the product operation, or product main-
tenance)?

While the first two questions focused on the process side of organizations, ques-
tion 1.3 queried for the relevance of DS/DVE technologies in improving the life
cycle of future products. The participants were asked to rate relevance on a scale
from 0 (none) to 5 (very high).

The mean value of all answers is 3.9, indicating high relevance. This question
was answered by 98% of the participants. The standard deviation of all answers is
rather low (0.9), indicating a high level of agreement among the participants.

The comments entered by the majority of the participants indicate that they can
envision DS/DVE technologies in many areas of the life cycle of future products,
including the design, testing, acquisition, training, and maintenance of products. A
special interest is attributed to the product development and testing phases of the
product life cycle.

Arguments given in favor of this statement include the general trend towards
globalization. As products are often composed of parts developed and manufactured
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by multiple enterprises, integrating simulation models of such parts is a key point to
produce realistic simulations of the entire product. This obviously applies especially
to very complex products in high tech industries such as automotive, aircraft, and
aerospace.

Several comments decidedly attribute DVE technology a high relevance for dis-
tributed design reviews in globally distributed enterprises, a finding already con-
firmed by question 1.1.

Several people also indicated their conviction that distributed virtual training
technologies will play an important future role for the operation and maintenance
life cycle phase of a product.

A few people expressed their doubts that DS/DVE technologies will see use
in applications that go beyond usage in a specific product life cycle phase. This
argumentation is quite reasonable when considering the current state-of-the-art in
existing base technologies and IT tools. There certainly is a lack of easy-to-use
and easy-to-adapt standards for such solutions. Only if such standards will be cre-
ated and accepted by leading tool vendors and an accompanying methodology is
established can the usage of DS/DVE technologies become commonplace during
the entire life cycle of future products.

Question 1.4: How would you rate the current adoption of the technologies in indus-
try and defense?

This question attempted to capture the current relevance of DS/DVE technolo-
gies. The experts were queried for their opinion concerning the current adoption
(i.e., the practical application) of these technologies in industry and in defense.
As a majority of the experts work in research institutions, their answers can, of
course, only constitute a somewhat subjective judgment of practical adoption. Still
the responses provide an impression about the ratio by which industry and defense
differ in their usage of DS/DVE technologies.

Fig. 4 shows the mean values of the responses concerning DS and DVE technol-
ogy adoption in each sector (industry/defense), respectively. As expected, it can be
seen that the military domain already makes good use (between medium and high)
of distributed simulation and distributed virtual environments. The reasons for this
are quite obvious as military training and acquisition are typical applications which
are expected to rely highly on DS/DVE technologies. Also, domain standards such
as HLA and DIS originate in the defense community.

Even though there is already some good adoption of DS/DVE technologies in the
defense community, it is interesting that the degree of adoption in military applica-
tions is not rated between “very high” and “high”. This may indicate the existence
of technological barriers (thus indicating more research is needed), as well as orga-
nizational issues that prevent more widespread usage. This is supported by some
respondents who indicated that HLA—which should constitute the leading edge
of standards in the military DS/DVE domain—is said to have suffered from some
degree of fragmentation in the US Department of Defense, the original creator of
HLA, resulting in the creation of additional standards (e.g., TENA). It is certainly
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Fig. 4 Current adoption of DS/DVE technologies in industry and defense

true that even in defense today, use of DS/DVE technologies has not yet reached its
fullest potential.

The low usage of DS/DVE in industry, combined with the answers from ques-
tions 1.1 through 1.3 suggest that industrial usage may be limited by a lack of good
technical solutions and the need for more basic research in this area. It may, for
instance, indicate that existing solutions are focused on the needs of the defense
community and may not sufficiently take into account requirements in industry.

Some participants also indicated that DS/DVE technologies are missing recog-
nition in industry. This is not only due to technical reasons which may prevent the
usage, but also a problem of acceptance and appreciation. Prejudices exist in indus-
try concerning cost as well as the invasive and disruptive character of DVEs. These
problems must be overcome, along with the issue of establishing clear business
cases to cover the return on investment (ROI).

This lies in line with comments on needed improvements towards technical issues
such as the need for seamless integration of DS/DVE with existing industrial IT
infrastructures and their applications and processes.

Question 1.5: Which economical potential do you see in the technologies? Please
give us your opinion which areas might have the highest economical potential.

Question 1.5 attempts to estimate the economical potential of DS/DVE technolo-
gies. The answers cannot provide any quantitative prediction; instead, they can only
give a qualitative assessment across the opinions of the respondents.

This average value for the economic potential is 3.7. Considering our scale from
0 to 5 which rates 3 as “medium” and 4 as “high”, this is a rather high rating. This
confirms that our experts believe that DS/DVE technologies do have a significant
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economical potential. The standard deviation for this value is low (0.98) compared
to that of other questions. This indicates good agreement among the participants on
this issue.

The experts were also asked to identify areas where they expect the highest eco-
nomic potential. Many participants indicated the defense sector as the one with
the highest economic potential. Applications here include mission training and
rehearsal, decision support, and technology acquisition. This rating is obvious, as
the defense sector is already aligned with these technologies and the military con-
stitutes the world’s largest contractor in the simulation market.

Besides defense, many participants identified the manufacturing sector as well
as product development as areas with high economic potential. Furthermore, the
entire area of distance learning technologies (which includes advanced distributed
training solutions) is mentioned by many participants as having high economic
potential. Several participants also identified new emerging markets with an increas-
ing economic potential. These markets include the areas of emergency and secu-
rity management, homeland security, and global environmental problems. Further
responses include the gaming industry and consumer applications as well as product
marketing.

A few participants also argued that the economic potential is limited because of
the expense related to using these technologies. This is an issue that certainly needs
to be addressed, especially if the technologies are to be used by small companies
that cannot afford high investments in hardware or software.

Question 1.6: Which future developments do you expect in the cooperation between
OEMs and their suppliers which could make the application of technologies like
distributed simulation and distributed virtual environments inevitable? Which other
technologies might be required?

This question attempted to stir up thinking in non-technical directions in order
to identify societal or industrial trends which could influence DS/DVE technol-
ogy usage. Some participants commented on the phrasing of the question, espe-
cially the word “inevitable” which has a rather strict meaning. This phrasing was
chosen on purpose to encourage thinking in controversial directions. One sam-
ple train of thought envisioned during the setup of the questionnaire was along
the lines that “if the future shortage of fuel and fossil resources will lead to less
travel”, then “there will be an absolute necessity for more virtual cooperation in
DVEs.”

Not all responses in fact commented on future developments in the cooperation
between OEMs and their suppliers. Those which have done so can be clustered into
the categories “business environment” and “success stories.”

The category “business environment” includes three main subcategories:

• Globalization: Economic incentives and increasing competition has led to the
forming of industrial clusters (aka globalization). This most obviously requires
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increased cooperation among OEMs and builds a demand for DS/DVE
technologies.

• IPR protection: With globalization and increasing cooperation among companies
comes an increased need for the protection of intellectual property rights (IPR).
This will increase the need for secure component-based distributed simulation
in which companies can join their component models without revealing their
internal knowledge and expertise.

• Try-before-buy: There will be an increased usage of the try-before-buy approach,
i.e., selecting the right sub-components for integration in the final product from a
given range of options by investigating the component’s functionality and inter-
play with the final product using DS/DVE technologies.

The answers in the cluster “success stories” indicate quite consistently that such
stories are needed to overcome psychological barriers. Also, convincing pilot appli-
cations are needed to demonstrate the positive effects of these technologies. It was
further commented that technological advances must be triggered by a customer
demand.

Most respondents did not in fact comment on the future developments in the
cooperation between OEMs and suppliers, but commented on technical factors
which will positively influence the adoption of DS/DVE. Again, these answers have
been clustered into two categories, “ready and robust solutions” and “technological
advances.”

In the cluster “ready and robust solutions,” several respondents commented that
reliable standards are indispensible for a more widespread application of DS/DVE
technologies by OEMs and their suppliers. Furthermore the issue of semantic inter-
operability must be addressed, at least within a given application domain. This
requires standardized ontologies which provide out-of-the-box semantic interoper-
ability, not only syntactic connectivity which can already be achieved today. Also,
trustworthy tools which address these issues are needed.

In the cluster of technological advances, several commented on the need for
secure high bandwidth and fast network/communication technologies to enable
OEM-supplier cooperation based on DS/DVE technology. In addition, the adop-
tion and the emulation of game technologies were suggested to simplify the use
and to reduce the entry barriers which today prevent people from applying those
technologies.

An interesting comment suggested the introduction of an interim technology
between traditional 2D (paper) documents and 3D environments in order to help
people to become accustomed to the new 3D technologies. Furthermore, many
commented on the need to reduce the cost for equipment needed to adopt these
technologies.

Question 1.7: We are interested in your opinion about the distributed virtual online
community “Second Life.” Q1.7.1: Will the concepts applied there get any industrial
relevance? Q1.7.2: Which weaknesses do you see (technical, conceptual . . . )?
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The virtual online community Second Life3 has received significant media
coverage in the past and can be considered a trendy end-user version of a DVE.
Second Life (SL) is available free of charge to any interested end-user. The creator,
Linden Lab, provides client software which is available for Windows, Linux, and
Mac operating systems. Second Life’s vision is to create a second reality in which
real users (represented by avatars) can interact in a persistent three-dimensional
world.

The number of registered SL users is in the range of 11.5 million, but it has to
be noted that only a fraction of this number is regularly active in SL. Users in SL
can buy “land” in the virtual world in order to create their own “properties.” The
creation of 3D geometries for this property can be done using primitives (cubes,
spheres, cones, . . . ) and simple tools provided by SL. On the technical side, SL is
hosted by a powerful central server pool comprising several thousands of computers.
Each server performs the physics simulation (collisions, interactions,. . . ) of a ded-
icated region of SL’s virtual world whereas the clients simply visualize the server
data. Assets (e.g., 3D objects) created by users are stored in a separate server farm,
currently comprising 24 terabytes of storage capacity.

Question 1.7 of the survey tries to look behind the hype and questions the suit-
ability of the concepts behind SL for serious industrial applications (Q1.7.1) and
identifies its weaknesses (Q1.7.2).

The responses towards the industrial relevance of SL are (with very few excep-
tions) quite consistent. The consensus is that its current and future industrial rel-
evance lies mainly in areas such as advertising, marketing, and entertainment. Its
potential for improving communications is specifically considered relevant for the
communication between companies and their customers. Only very few respondents
see potential for using SL for improving communication within companies.

More-serious industrial applications are questioned by many respondents. This
unsuitability is attributed to technical as well as to conceptual issues. On the techni-
cal side it was pointed out that fidelity and resolution in SL are not appropriate for
“serious” applications. SL is considered less effective than video conferences and
not effectively usable for collaborative design and development efforts.

Specific conceptual problems are seen concerning privacy issues. SL provides too
little user verification and options for separating serious usage from personal activi-
ties. One participant answered exemplarily that “you cannot keep naked avatars out
of your business meeting.” However, it was also stated that other DVE products are
emerging which may better address the needs of business users.

Question 1.7.2 elaborated on opinions towards the technical and conceptual
weaknesses in SL. On the technical side, several again cited a lack of fidelity
and resolution as well as missing security mechanisms. This includes missing user
verification and control.

3 Second Life is developed and distributed by the company Linden Lab. For more information
please refer to http://secondlife.com/
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Further, in this line the issue of scalability and bandwidth requirements and the
lack of compressing technologies are considered as technical weaknesses. The scal-
ability issue arises from the central server pool in which each server performs the
physics simulation for a certain region in Second Life. This limits the number of
clients which can concurrently stay in a region.

In addition to these issues the respondents mentioned the limited graphics capa-
bilities of SL as a problem. This includes the inability to build content with standard
3D tools and the missing ability to import content created with such tools into SL.

Several people also criticized the fact that SL is not based on open standards
and has closed interfaces. This limits the possibility to integrate it with other indus-
trial applications. Also, the available protocols and scripting capabilities, e.g., for
component motion, were considered insufficient by some respondents.

On the conceptual side the interactions of the kind enabled by SL are most bene-
ficial when done in real time between participants (like a telephone call). However,
synchronizing participation across global time zones makes this difficult (imag-
ine a conference call between Japan, the USA, and Germany—who stays up late
and who comes in early?). This is a problem which is valid for any DVE-based
communcation.

Specific critiques on the conceptual side of SL include its unfocused character—
it provides no appropriate tools for (say) engineering tasks, or any other serious
industrial task.

Another noted problem addresses the relation between the virtual money in SL
and real money. This relation depends on a single company which makes it a difficult
base for conducting real business.

In summary, the majority of the survey respondents consider SL as a DVE for
entertainment and social interaction (for which it in fact was created). Its value
for industry is mostly limited to company presentations and marketing purposes.
Conceptual and technical issues currently prevent more-serious industrial usage.

Question 1.8: Could you name a potential non-military “Killer Application,” i.e., an
application which obviously requires DS or DVE technologies to implement it, and
which has a significant practical relevance?

This question attempted to identify potential “breakthrough” applications which
would push the DS/DVE market forward. Answers were restricted to non-military
domains, since the military domain already has some very convincing use cases for
those technologies.

The answers have been clustered into the following categories:

1. Decision Support Systems for homeland security/catastrophes/crisis situations:
Many answers of the participants fell into this category. The envisioned deci-
sion support systems are complex and networked IT systems which provide the
operator/decision maker with simulation support for such crisis simulations.
Possible application scenarios include the simulation of the effects of a crisis
(e.g., on complex critical infrastructures) and potential countermeasures, e.g.,
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a module for the virtual training (and possibly remote assistance) for rescue
teams.

As this simulation capability is required on demand this creates the need
for powerful simulation capabilities (possibly on massively parallel architec-
tures) and the integration of heterogeneous components for the simulation (live
data feeds, data bases, geographical information systems, and multiple com-
mand and control centers).

2. Virtual Training Applications: As virtual training applications are quite suc-
cessful applications for DVEs in the military domain it is obvious to look for
applications of this technology in industrial domains as well. Nominations in
this category suggest virtual training in truly geographically and internationally
distributed contexts (e.g., for the International Space Station, ISS) and train-
ing applications which combine one or multiple users with real and simulated
equipment.

3. Space Exploration: Nominations in this category suggest the application of
DS/DVE as a Command and Control tool for remote operations, especially in
space exploration missions. With these technologies it becomes possible to send
humans virtually where they cannot go physically.

4. Virtual Meetings: As this is one of the most obvious DVE applications several
people nominated this as a killer application. Such virtual meetings are sug-
gested for technological development and design teams, for project progress
meetings, as well as for social interaction and entertainment.

5. Industrial Supply Chain Simulation: The necessity for distributed simulation
applications for global supply chain simulation and optimization is motivated
by the need for know-how protection. As the individual members of a supply
chain typically do not want to reveal knowledge about their internal processes
to the others, a traditional (monolithic) supply chain simulation model cannot
be built. DS provides a means for each participant in the supply chain to submit
their supply chain node model as a black box into the overall distributed supply
chain simulation.

The following nominations have been suggested by very few (or even sin-
gle) users, but they are included here as they suggest some interesting applica-
tions apart from the mainstream.

6. Emulation: Applications in this area require the coupling of real equipment with
simulated parts of reality. The purpose here is typically to test the equipment.
Complex application scenarios contain multiple real controllers which are con-
nected to a DVE allowing testing by multiple people.

7. Virtual Travel at Street Level: This nomination is a derivation of existing DVE
concepts like Second Life. Here, it is suggested to create a DVE which mod-
els the real earth. In the DVE one could then meet and travel in a synthetic
3D environment as realistic as the images from Google Earth or Google Street
View.

8. Real Estate and Home Design: This nomination suggests the usage of DVE
technology to enable customers to visualize and virtually enter future houses in
the actual environment in which they will be built. It is argued that if a potential
buyer of an existing property could visualize the (future) house within its actual
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environment or the potential buyer of a new house could “see” it and use VR
to select colors, designs, styles, and landscaping, the resulting increase in sales
would be significant.

9. Cultural Education: This nomination suggests creating history and art museums
as a DVE in which artifacts are displayed in the real context in which they
existed. An alternative may combine traditional museums with real objects with
an artificial environment generating distributed mixed reality systems.

10. Sales Activities: Virtual shopping malls in which 3D products with dynamic
properties can be tested are suggested as a future sales instrument. In the case
of car sales this may, for instance, enable the customer to virtually enter the car,
view it from all angles, change its configuration, and even drive it on any road
in the world.

2.2.2 Part 2: Research Challenges and Trends

Whereas the first part of the survey focused on the relevance of DS/DVE technolo-
gies for practical applications, the second part analyzes open research challenges in
this area as well as current and possible future trends.

Question 2.1: Which research activities are you and your institution currently con-
ducting in the field of distributed simulation and distributed virtual environments?

This question was intended to identify topics that are currently under investi-
gation by researchers active in the DS/DVE fields. The answers can be clustered
into the categories “application areas for DS/DVE technologies,” “research in base
technologies,” and “interdisciplinary activities.” Some exemplary and typical nomi-
nations are mentioned below for each of the categories.

Participants who are working in application areas for DS/DVE technologies men-
tioned homeland security, emergency management, manufacturing and logistics,
military simulation (training, weapons), and complex technical or natural systems
(particle, material, climate) as application areas in which they are actively applying
DS or DVE approaches.

Those who conduct research towards developing base technologies perform
research in the following exemplary areas:

• effects of wide area network latency of real-time and interactive distributed sim-
ulations

• combination of discrete-event simulations with DS and DVE
• fundamental interoperability mechanisms
• synchronization algorithms
• distributed haptic DVEs

Interdisciplinary activities which are addressed by a number of participants include
the integration of game technology with advanced simulation technologies (e.g., to
leverage the strengths of each), the work on simulation-based Command and Control
(C2) systems, as well as agent-based approaches for decision making in DS/DVE.
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Question 2.2: What would you consider as the specific strengths/unique selling
points of your institution in the context of the fields under investigation?

This question has been included for reasons of identifying success factors for
research in DS/DVE. As this question provided highly individualized answers, they
cannot be summarized in greater detail here.

Something that became obvious is that the interdisciplinary character of the
research activities is often considered a specific strength, either through interdis-
ciplinary research groups or through close cooperation with industry.

Question 2.3: How would you rate the maturity and practical relevance of the fol-
lowing standards/protocols?

This question asked for a rating of the maturity and the practical relevance of
selected standards and protocols which each play an important role in the DS/DVE
market. Fig. 5 lists the mean values determined from the survey responses. (See the
Appendix for a list of the various protocols.)
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Fig. 5 Maturity and relevance of DS/DVE standards and protocols

While the answers concerning the maturity of the standard can be considered
quite objective, the values for the practical relevance are only significant for HLA,
DIS, and (to a certain degree) XMSF. This is due to the fact that the sample size
varies quite significantly in the rating of the standards/protocols, i.e., if a standard
was not known to a participant, then it did not receive a rating. HLA and DIS are
known and have been rated by more than 80% of the participants. XMSF was still
known by approximately 50% of the participants.

VRTP, DWTP, and Mu3D on the other hand were only known by a minority
of the participants (VRTP: 34%, DWTP: 21%, Mu3D: 18%). Therefore the rat-
ings and statements concerning the practical relevance of these protocols may be
questionable.

The main conclusions which can be drawn from the results shown in Fig. 5 are
that HLA and DIS are the leading standards in the DS/DVE sector and that both
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already have a rather high maturity. On the other hand, their practical relevance is
rated between medium and high (3.5 and 3.4 respectively), a value which is rela-
tively high, but might be expected to be even higher considering that both standards
have been on the market for more than 10 years (HLA) or 15 years (DIS). The other
standards, especially VRTP, DWTP, and Mu3D, are attributed a rather low maturity
and in fact only have a minor practical relevance (as explained above).

For XMSF, the evaluation of the rating and the comments indicates that while
the concepts of XMSF did have quite a good recognition in the community, XMSF
itself, however, does not seem to be supported any longer as an ongoing activity.

The participants were also asked to comment on the specific weaknesses which
they would attribute to the standards and protocols. The following lists the weak-
nesses attributed to HLA and DIS.

Weaknesses of HLA:

• No load-balancing as part of the standard
• Poor scalability
• Too much reliance on peer-to-peer structures; large DVEs may be better with

client-server structures where multiple servers are peers of each other
• Covers only syntactic interoperability (not semantic)
• Standard is too “heavy,” i.e., very complex, difficult to learn, and thus time-

consuming to adopt and use

Weaknesses of DIS:

• PDU broadcast concept allows no interest management (publish/subscribe) and
no load balancing

• Limited conceptual versatility (i.e., only applicable to real-time simulations)
• Restriction to a single domain (military training simulations)
• Limitations of the standard lead to proprietary modifications and custom imple-

mentations that do not allow re-use outside original application

In conclusion, the most critical issue concerning DIS is its limitation towards a
certain niche of the simulation market (real-time, mostly military training applica-
tions) and its broadcast mechanism. HLA as the current state-of-the-art standard is
attributed to at least the perception of limited scalability and the fact that it only
addresses the syntactic, but not the semantic, interoperability issues.

Question 2.4: How would you rate the maturity of the following underlying base
technologies needed to implement DS/DVE applications and their significance for
advancing the fields of DS/DVE?

This question is an attempt to identify the most promising research areas con-
cerning base technologies for DS/DVE applications. To do so the survey participants
were asked to rate the current maturity of certain base technologies as well as their
significance for advancing the fields of DS/DVE. The results are displayed in Fig. 6.

To interpret the diagram with the objective of identifying the interesting and
promising research areas, one should look for the base technologies which cur-
rently have the lowest degree of maturity, but still have a high rating with regard
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Fig. 6 Maturity and significance of base technologies

to significance for advancing the fields of DS/DVE. In this sense, this indicates that
distributed simulation middleware, human-computer-interfaces, and the semantic
web (as a placeholder for approaches supporting semantic interoperability) are the
fields rated as the most promising areas of research.

On the other hand, as the maturity rating of graphics hardware is already high,
there are no breakthroughs in this area to be expected, unless some completely new
paradigm develops (e.g., “no triangles needed any more”). A similar observation
applies to the area of network technologies.

Besides these statistics it is also interesting to look at the comments provided
by the respondents concerning the improvements needed within each of the base
technologies. Table 1 lists the most important nominations of the respondents.

Question 2.5: How would you rate the overall maturity of the technologies and
solutions developed in the fields of distributed simulation and distributed virtual
environments?

This question asked for the opinion of the participants about the overall matu-
rity of the technologies and solutions in the DS/DVE areas. The possible answers
included the following options:

4 – Very mature and already applied for many practical applications
3 – Mature, but not applied widely yet
2 – In the process of maturing
1 – Technologies exist, but still have significant weaknesses
0 – Academic research/prototypes
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Table 1 Required improvements for each of the base technologies for DS/DVE applications

Network technologies Distributed simulation middleware

• Lower latency and better bandwidth

• Robustness and fault tolerance

• Security

• Quality of Service (QoS) specifications

• Plug-and-Play capabilities

• Standardization (also: interoperability between
different standards)

• Semantic connectivity

• Ubiquity (accessible anywhere with any
device)

Human-computer-interfaces Semantic web

• Multimodal interfaces, including haptics,
without data gloves

• More immersive environments

• Focus change to enhanced reality instead
of virtual reality required

• Usability improvements

• Human-centered interfaces

• More mature ways than current ontologies for
defining semantics (ontologies cannot be the
only answer)

• Standardization of terms of reference for cer-
tain domains

• Ways to transform current know-how stored in
the WWW into a semantic web knowledge

Graphics hardware High-performance computing

• Better physics integration

• Promotion of standardization

• Involvement of all heterogeneous nodes into a
universal grid

• Demonstration of application potential to
broader community

• Tools to use high-performance computing in
engineering software environments

The mean value of all the responses according to this scale was 2.1. Our inter-
pretation for this value is that DS/DVE technologies have been around for some
time; however, there are still weaknesses and technological issues which need to
be resolved and more basic research is needed to bring them to a widespread and
cost-efficient usage.

Some comments provided by the participants indicate that there are no standard-
ized products and off-the-shelf solutions available upon which to build. A few have
also commented that there are some proprietary application fields (especially mili-
tary) within which technologies are already quite mature.

Question 2.6: Which research challenges in the research fields (DS/DVE) would
you consider “Grand Challenges” which must be solved in order to advance the
field significantly?

This question tries to identify the “Grand Challenges” which, if solved, will
advance the fields of DS/DVE significantly. Grand Challenges are generally con-
sidered very complex problems in a certain research field, for which currently no
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solution exists. On the other hand, a problem for which it is known (or generally
believed) that no such solution can ever exist (e.g., a problem which a mathematical
proof shows to be unsolvable) cannot be considered a Grand Challenge.4

The answers provided by the respondents of the survey do not all qualify as
Grand Challenges; however, the most-interesting and appealing problems are listed
and briefly discussed in the following.

1. Solving the intrinsic conflict between the desire for high interactivity/response
times and the need for maintaining consistency in DVEs

A well-known problem of DVEs is the need to maintain consistency among all
users. Consider, for instance, a situation in which a user tries to grab a virtual part
in his local representation of the DVE. To make sure that he can in fact grab it and
that no other user can do so at the same time, the DVE would need to implement
some locking mechanism which must synchronize with all participants before
the user can actually grab the part. This would, in the worst case, cause a delay
of two times the travel time which a message needs on the network between this
participant and the participant with the slowest network connection. This is in
strong conflict with the objective of giving the user a fast response time, i.e., to
be realistic there should be no noticeable delay between his intention of grabbing
the part and the action taking place.

2. Easy-to-use synchronization algorithms which idealistically solve the “zero
lookahead problem”

Efficient synchronization algorithms are the key factor for any parallel or dis-
tributed simulation. The topic of synchronization algorithms has been on the
research agenda for quite a number of years. Several protocols (conservative,
optimistic, hybrid) have been developed in the past which all work better or
worse depending on the type of application. The implementation and usage
of optimistic protocols is quite complicated and cannot be done easily in any
commercial off-the-shelf simulation software. Conservative protocols, on the
other hand, are rather simple to use. However, their performance depends highly
on how much lookahead5 can be extracted from the participating simulations
(the more the better). Often the participating simulations of the DS are so closely
interconnected that a lookahead value of zero is required. In that case the conser-
vative protocols lead to a serialization of the entire distributed simulation with
the obvious severe performance implications. This is the intrinsic problem that
needs to be solved in this Grand Challenge.

4 This excludes futuristic visions—like the “Holodeck” known from the science fiction show “Star
Trek”—from the list, as it would require quantum leaps in physics which no one truly believes to
be feasible.
5 Lookahead is a well-known term in the DS area which refers to the amount of time which a
simulation can look into its future. It is a guarantee of how far ahead of time the simulation will
generate any messages/events for other simulations.
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3. True plug-and-play simulation capabilities

So far today no standard (not even HLA) has enabled simulation packages to be
coupled in a true plug-and-play fashion. What is needed is a standard approach
to couple the distributed models and gain acceptance for this standard by indus-
try (simulation tool vendors as well as end-users). Only this can lay the basis
for effortless integration of distributed and independently developed simulators.
This also requires approaches for interoperability between multi-level resolution
models, i.e., models which operate on different levels of detail.

4. Automatic or semi-automatic semantic interoperability between domains (ontolo-
gies, standard reference models, metamodels)

This Grand Challenge could be considered a sub-challenge of the previous one.
In order to achieve plug-and-play interoperability between simulations, some
methodology for gaining semantic interoperability between domains (or even
within a domain) must be established. So far, standards like HLA have mainly
addressed the syntactic interoperability between simulation systems.

5. DVEs of the future

Several suggestions have been made towards requirements for the DVE of the
future. They include:

• Improvement of network performance to allow realistic interaction between
attendees of a DVE meeting, plus new technologies to allow the interaction
with the environment realistically in terms of Computer-Human-Interaction.

• Realistic real-time visualization with full account of underlying physics and
integration of voice and sounds

• Living Dynamic Worlds, i.e., the creation of a world that is constantly active
and evolving, even if there are no human players participating

• Use of city-sized large-scale mobile nodes in reasonable speed
• Platform and information/data handling technologies to support multi-user,

multi-role, multi-viewpoint simulations
• Unification of discrete and continuous simulation theory and practice

While on the first view this suggestion of a Grand Challenge does not seem
to be directly related to the DS/DVE fields, a solution to this issue would, of
course, also have significant impact on the way distributed simulations could be
treated.

Question 2.7: Which findings and results would you expect from an external
research group in order to advance the field significantly?

This question was naturally (and rightfully so) motivated by the attempt of the
Fraunhofer IFF as the initiator of this study to determine the expectations of the
research center which it is about to establish. The answers to this question apply
for any research group that wants to make a “difference,” i.e., to advance the field
significantly.
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First, the community obviously expects solutions to the Grand Challenges intro-
duced in the previous section. Second, the community expects the unification of
research, development, utilization, and education in DS/DVE.

The setting of a research and development agenda of research for short and long-
term goals in these areas is expected. This includes the identification of important
trends, the creation of a forum for prime players to interact and collaborate, the
definition of reference models, and the definition of standard approaches.

Finally, the research group is also expected to expand the predominant applica-
tion fields of DS/DVE to industry, design, manufacturing, and the consumer sec-
tor by demonstrating how research translates into real use and by integrating its
findings with a variety of needs in industry, manufacturing, health care, security,
environment, and education.

Question 2.8: Would you consider collaboration in distributed virtual environments
a viable topic for the future or will personal meetings with physical attendance of
all participants always be preferable?

This question was intended to validate whether or not the participants considered
DVE-based collaboration viable at all. The question was answered by more than
90% of the participants. Among those who answered, 95% considered collaboration
in DVEs as a viable topic for the future. This confirms again that research in this
area continues to have a high relevance in the future.

With regard to the second part of this question, statistics were collected concern-
ing whether meetings with physical attendance of the participants would always
be preferable. Seventyfour percent answered that at least sometimes physical meet-
ings are indeed preferable. Only 23% insisted that personal meetings are always
preferable.

Question 2.9: Can you name interesting trends, solutions, and actors in the areas of
DS/DVE which you would consider drivers in these fields?

This last main question of the survey gave the participants the opportunity to
name anything which they considered drivers influencing the future of DS/DVE.
The answers were structured into trends, solutions, and actors and are reported
accordingly.

• Trends

– Increasing popularity of personal computing devices
– Service-oriented architectures
– Ambient networks
– Open source solutions
– Rising importance of homeland security and critical infrastructure protection
– Ubiquity of visual media
– Expectation of instant easy communication (cell phone, I-pod, email, . . . )
– Augmented reality systems
– Introduction of haptic and other multimodal interfaces
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• Solutions

– SISO draft standard for simulation package interoperability
– German Armed Forces’ Simulation & Test Environment (SuT Bw)
– VBS2.com (Virtual Battlespace 2)
– HLA (High Level Architecture for Modeling and Simulation)
– MDA (Model Driven Architecture)
– DEVS (Discrete Event System Specification)

• Actors/Participants

– Gaming industry
– Defense agencies (US DOD, German Armed Forces’ IT-Agency)
– SISO (Simulation Interoperability Standards Organization)
– Marketing decision makers

3 Summary and Conclusions

This study has investigated future trends in the fields of distributed simulation and
distributed virtual environments. It was designed as a peer study taking into account
the opinions of more than 60 leading experts in the fields under investigation. This
has been accomplished in the forms of executing a survey, conducting interviews
with selected experts, and evaluation of related publications.

The survey results show that both DS and DVE are characterized as having a
high practical relevance for improving both the processes within organizations and
the overall product life cycle of future products. The greatest practical relevance is
considered to be in the areas of joining and integrating (possibly heterogeneous)
computer resources for conducting complex distributed simulations as well as in the
execution of distributed training sessions.

Important applications are also considered to be in the areas of production plan-
ning and control, product development, and the general integration of geographi-
cally distributed computing resources for stakeholders. DS/DVE technologies are
also attributed to having a considerable economic potential.

The survey indicates that the current adoption of DS/DVE technologies in indus-
try today is limited. While the defense sector already makes better usage of those
technologies, a lower industrial usage may be attributed to the need to articulate a
clear business case for the adoption of the technologies. Although there is a high
economic potential and a high practical relevance of certain applications, there are a
limited number of success stories and publications articulating the return on invest-
ment in using these technologies.

On the other hand, technological immaturities in these technologies exist and
have been reported in this study, preventing widespread usage of both technologies.
These immaturities help explain the different levels of usage of DS/DVE in industry
vs. defense: Because the existing solutions and standards are focused on the needs
of the defense community, they may not take into account commercial requirements
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to a sufficient degree. This is in large part confirmed by the study, e.g., by revealing
that there are no plug-and-play capable standards for industrial usage of DS/DVE or
that there is no automatic interoperability between domains because of the lack of
semantic interoperability.

As this is the case, any industrial usage must overcome the need to perform a
costly integration of the needed tools, a fact that prevents a more widespread usage
even if the practical application (e.g., a distributed design review) exists. That there
still are significant technical and conceptual weaknesses is also confirmed by the
assessment of the study that DS/DVE technologies are generally considered to still
be “in the process of maturing.”

Further, certain Grand Challenges have been identified that will, if solved, sig-
nificantly leverage and stimulate the usage of DS/DVE. These include

• solutions to the intrinsic conflict in DVEs between the desire for high interactivity
and the need to maintain consistency

• easy-to-use synchronization algorithms for DS which solve the “zero lookahead”
problem

• true plug-and-play simulation capabilities
• (semi-) automatic semantic interoperability between domains

This study has also revealed that there are, in fact, already some instances of DVEs
which are quite successful outside the defense sector. One example of such a DVE
is Second Life, used for social interaction and entertainment. Their industrial usage,
however, is typically limited to marketing purposes for larger companies. More seri-
ous industrial usage is prevented by conceptual and technical weaknesses.

New applications areas that could drive the DS/DVE market forward include
areas such as decision support systems for homeland security and crisis manage-
ment, virtual training applications, space exploration, and virtual meetings.

Some trends which can influence the development of the DS/DVE fields are the
increasing popularity of personal computing devices, the existence of ambient net-
works, as well as the expectation of instant and easy communications. While this
may lead to new forms of accessing and using these technologies, this also imposes
new research requirements, as solutions and algorithms for the special requirements
of this form of usage need to be developed. As an example, algorithms for partic-
ipating in DVEs under the special requirements and conditions of a mobile phone
(low power consumption profile, unreliable communication, limited display size,
easy interaction mechanisms) would be required.

As for the industries and participants which will drive future innovation in these
fields, it is certain that the defense and gaming industries will have leading roles.
The gaming industry in general already has some very good proprietary solutions for
implementing DVEs. However, their decision makers have little interest in revealing
their solutions or in standardization efforts. On the contrary, the quality of their solu-
tions contributes largely to the success of their products and is thus almost always
considered as proprietary intellectual property.

On the other hand, this study also shows a growing interest and need for
these technologies in other industries. Especially any high-tech industry (e.g., the
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automotive and aeronautics industries, as well as manufacturing) will see an increas-
ing demand for their application. This increasing demand is directly derived from
the trend toward globalization. As products are often composed of parts developed
and manufactured by multiple enterprises, DS and DVE technologies will make
significant contributions in product development as well as in production.

Based on this growing interest, standardization bodies such as the Simulation
Interoperability Standards Organization through its product development groups
(PDGs) have begun to develop standardized solutions for enabling better DS/DVE
interoperability in selected non-military applications. Examples include the Com-
mercial Off-the-Shelf Simulation Package Interoperability (CSPI) and the Core
Manufacturing Simulation Data PDGs.
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Appendix

Some Terms of Reference—This section defines some general terms as well as
standards and protocols used frequently within this study.

DIS: Distributed Interactive Simulation is an IEEE standard for conducting real-
time platform-level wargaming simulations across multiple host computers and is
used worldwide especially by military organizations.

DS: Distributed Simulation.

DVE: Distributed Virtual Environment.

DWTP: The Distributed Worlds Transfer and Communication Protocol is a protocol
for shared virtual environments on the internet (Broll and Schick).

HLA: The High Level Architecture is a general-purpose architecture for distributed
computer simulation systems. The creation of HLA was initiated by the U.S.
Defense Modeling and Simulation Office with the main objective of supporting
interoperability and reuse of simulations. Unlike DIS, HLA provides support for
a wide range of simulation applications. Communication between HLA simulations
is managed by a runtime infrastructure (RTI). The three key components of HLA
(framework and rules (IEEE 1516-2000), federate interface specification (IEEE
1516.1-2000), object model template (IEEE 1516.2-2000)) are standardized in the
IEEE 1516 standard series.

IEEE: Institute of Electrical and Electronics Engineers.

Mu3D: The Multi-User 3D protocol is an XML-based protocol for exchanging
interaction data in distributed 3D applications. Its core functionality provides a
causal consistency protocol for collaborative VRML editors (Galli and Luo
2000).

PADS: Parallel and Distributed Simulation.

PDU: Protocol Data Unit.

RTI: Runtime Infrastructure.

SISO: Simulation Interoperability Standards Organization.

SIW: Simulation Interoperability Workshop.

UDP: User Datagram Protocol.
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VRTP: The Virtual Reality Transfer Protocol was an attempt to provide client,
server, multicast streaming, and network-monitoring capabilities in support of net-
worked 3D graphics and large-scale virtual environments (Brutzman).

XMSF: The Extensible Modeling and Simulation Framework is a set of Web-based
technologies, applied within an extensible framework that enables a new generation
of modeling and simulation applications to emerge, develop, and interoperate (The
Moves Institute).
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Combined Screening and Selection of the Best
with Control Variates

Shing Chih Tsai, Barry L. Nelson, and Jeremy Staum

Abstract Nelson and Staum derived ranking-and-selection (R&S) procedures that
employ control-variate (CV) estimators instead of sample means to obtain greater
statistical efficiency. However, control-variate estimators require more computa-
tional effort than sample means, and effective controls must be identified. In this
paper, we present a new CV screening procedure to avoid much of the computation
cost along with a better paired CV model than that of Nelson and Staum. We also
present a two-stage CV combined procedure that captures the ability to eliminate
inferior systems in the first stage and the statistical efficiency of control variates for
selection in the second stage. Some guidelines about control-variate selection and
an empirical evaluation are provided.

1 Introduction

In simulation research and applications, ranking-and-selection procedures (R&S;
see for instance Bechhofer et al. 1995) have proven to be quite useful for finding
the system design that is the best, or near the best, where the “best” system is the
one with the largest or smallest expected performance measure. However, R&S
procedures are only recommended when the number of alternative designs is rel-
atively small and the designs are not functionally related. For instance, the typical
indifference-zone (IZ) selection procedure will require large numbers of observa-
tions to deliver the desired correct-selection guarantee when output variances or the
number of systems are large. To solve this problem, Nelson et al. (2001) proposed
a combined procedure that uses the subset selection approach to eliminate some
noncompetitive systems in the first stage; it then applies a standard IZ selection
procedure in the second stage. In this way, sampling cost can be saved while still
maintaining the ease of implementation and statistical efficiency.
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In almost all R&S procedures, sample means of the outputs are used as the
estimators of the expected performance. Nelson and Staum (2006) derived R&S
procedures that employ control-variate estimators instead of sample means. Con-
trols are random variables in the simulation that are correlated with the output of
interest, but whose expected values are known (Lavenberg and Welch 1981). These
control-variate procedures can be more statistically efficient than the sample-means-
based procedures. However, control-variate estimators require more computational
effort than sample means, and effective controls must be identified.

One of our goals is to propose a new control-variate (CV) screening proce-
dure to decrease the computation cost and still obtain the statistical efficiency.
A superior paired CV model is provided and compared to the paired model in
Nelson and Staum (2006). We also propose a two-stage procedure that captures
the ability to screen out inferior systems and the statistical efficiency of CVs
for selection: We use a screening procedure with CVs to eliminate obviously
noncompetitive systems in the first stage and then apply a selection-of-the-best-
with-control-variates procedure to the surviving subset of systems in the second
stage. Nelson and Staum (2006) showed that the screening threshold with CVs
is expected to be tighter than with sample means when the correlation between
the output and control is not too small. Therefore, the expected subset size is
correspondingly smaller. For the selection-of-the-best-with-control-variates proce-
dure, Nelson and Staum (2006) also showed that we can expect a smaller sample
size than Rinott’s (1978) procedure even when the correlation between the out-
put and control is modest. Thus the sample size of the CV selection procedure is
typically smaller than that of Rinott’s (1978) procedure, which is based on sam-
ple means. Since the CV screening procedure is better than the standard screen-
ing procedure based on sample means, and the CV selection procedure is better
than the selection procedure based on sample means, we can expect that a com-
bined CV procedure is better than a combined procedure based on sample means.
In this paper we develop the theory and procedures to support such a combined
approach.

The remainder of this paper is organized as follows: In Section 2, we out-
line the generic combined procedure. Sections 3–5 review CV estimators and
several CV R&S procedures. We present the improved paired CV model and a
new CV screening procedure in Section 4. Section 6 contains some guidance for
selecting control variates in this context. In Section 7, we present the CV com-
bined procedure in detail. The paper ends with an empirical evaluation, including
a queueing example, performed to compare the two combined procedures (Sec-
tions 8 and 9), and conclusions in Section 10. All proofs are relegated to the
Appendix.

2 Generic Combined Procedure

In the CV combined procedure, we apply the CV selection-of-the-best procedure
to the subset of systems chosen by the CV screening procedure to acquire both
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statistical and computational efficiency. The generic combined procedure is as
follows. In the remainder of the paper we fill in specific pieces of this procedure.

1. For each system, obtain a small number of observations of the system perfor-
mance measure and the controls. Then form CV estimators of each system’s
mean and calculate an estimator of the variance of each CV estimator.

2. Apply a CV screening procedure to eliminate inferior systems based on the infor-
mation acquired in the first step.

3. If only one system survives, then stop and return that one as the best system.
Otherwise, calculate the total number of observations needed for each system
to detect a specified practically significant difference in performance with the
desired confidence level.

4. Take additional observations from each surviving system and form CV estima-
tors. Then select the system with the best CV estimator.

3 Screening Procedure with Individual Control Variates

In this section we briefly provide the definitions and notation that will be used
throughout the paper and review the screening procedure with individual control
variates in Nelson and Staum (2006). The following description is based on Nelson
and Staum (2006).

3.1 Individual Control-Variate Estimators

Let Xi j be the j th simulation observation from system i , for i = 1, 2, . . . , k. We
assume it can be represented as

Xi j = μi + (C i j − ξ i )
′β i + ηi j , (1)

where the qi × 1 vector Ci j is called the control and is assumed to be multivari-
ate normal, while {ηi j , i = 1, 2, . . . , k, j = 1, 2, . . . , n} are mutually indepen-
dent and {ηi j , j = 1, 2, . . . , n} is a set of independent and identically distributed
(i.i.d.) N(0, τ 2

i ) random variables. For each system i = 1, 2, . . . , k, the controls
{Ci j , j = 1, 2, . . . , n} are also i.i.d., are independent of {ηi j , j = 1, 2, . . . , n},
and have known expected value ξ i . The Xi j are therefore i.i.d. N(μi , σ

2
i ) random

variables, with both μi and σ 2
i unknown and (perhaps) unequal. The multiplier β i

is a qi × 1 vector of unknown constants that captures the relationship between the
output Xi j and the control Ci j , while ηi j represents that part of the variability in Xi j

that is not explained by the controls.
A control-variate estimator of μi can be much more statistically efficient than

the sample mean of the Xi j . We review some basic properties of the CV estimator
under Model (1) below. The development is based on Nelson (1990), Nelson and
Hsu (1993), and Nelson and Staum (2006).
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Let

Xi (n) =

⎛
⎜⎜⎜⎝

Xi1

Xi2
...

Xin

⎞
⎟⎟⎟⎠ and Ci (n) =

⎛
⎜⎜⎜⎜⎜⎝

C′
i1

C′
i2
...

C′
in

⎞
⎟⎟⎟⎟⎟⎠

be vectors of the outputs and controls across all n observations from system i . Define
the sample means of the outputs and controls as

X̄i (n) = 1

n

n∑
j=1

Xi j and C̄i (n) = 1

n

n∑
j=1

Ci j .

We append “(n)” to quantities defined across n observations.
To define the CV point estimator, let

L′
i (n) = [(Ci1 − C̄i (n)), (Ci2 − C̄i (n)), . . . , (Cin − C̄i (n))

]
.

If 1 n×1 is a column vector whose n elements all equal one, then the CV point esti-
mator of μi is

μ̂i (n) =
[

1

n
1′n×1 −

(
C̄i (n)− ξ i

)′ (
L′

i (n)Li (n)
)−1

L′
i (n)

]
Xi (n)

= X̄i (n)− (C̄i (n)− ξ i

)′
β̂ i

(Nelson 1990). It is known that under Model (1)

E[μ̂i (n)] = μi and Var[μ̂i (n)] =
(

n − 2

n − qi − 2

)
τ 2

i

n

where τ 2
i = (1 − R2

i )σ 2
i and R2

i is the square of the multiple correlation coefficient
between Xi j and Ci j (Lavenberg and Welch 1981).

We need to know the distribution of μ̂i (n) and an estimator of its variance to
derive R&S procedures. For each system i = 1, 2, . . . , k, let

Ai (n) =

⎛
⎜⎜⎜⎝

1 (Ci1 − ξ i )
′

1 (Ci2 − ξ i )
′

...
...

1 (Cin − ξ i )
′

⎞
⎟⎟⎟⎠ .

If I is the identity matrix of rank qi , then define
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τ̂ 2
i (n) = 1

n − qi − 1
Xi (n)′

[
I− Ai (n)

(
A′

i (n)Ai (n)
)−1

A′
i (n)
]

Xi (n)

= 1

n − qi − 1

n∑
j=1

[
Xi j − μ̂i (n)− (Ci j − ξ i )

′β̂ i (n)
]2

(2)

as the residual variance estimator. Further, let

Δ̂2
i (n) = 1

n
+ 1

n − 1

(
C̄i (n)− ξ i

)′
S−1

C i
(n)
(
C̄i (n)− ξ i

)
(3)

where SC i (n) is the sample variance-covariance matrix of Ci j . Then we have the
following key result:

Lemma 1 (Nelson and Hsu 1993, Theorem 4.1) If Model (1) pertains, then condi-
tional on C1(n),C2(n), . . . ,Ck(n), the following properties hold:

P1: μ̂i (n) ∼ N(μi , Δ̂
2
i (n)τ 2

i ), i = 1, 2, . . . , k.

P2: τ̂ 2
i (n) ∼ τ 2

i χ
2
n−qi−1

n − qi − 1
and is independent of μ̂i (n), for i = 1, 2, . . . , k,

where χ2
n−qi−1 is a chi-squared random variable with n−qi − 1 degrees of

freedom.

P3: If {ηi j , i = 1, 2, . . . , k, j = 1, 2, . . . , n} are mutually independent, then
{μ̂i (n), τ̂ 2

i (n), i = 1, 2, . . . , k} are mutually independent.

Property P3 requires that the ηi j are independent for all systems i as well as
for all observations j . In practice P3 will hold either if all systems are simulated
independently, or if common random numbers (CRN) are used but the dependence
due to CRN is entirely explained by the controls. CRN is a technique that tries
to induce a positive correlation between the outputs of different systems by using
the same pseudorandom numbers to simulate each alternative system and therefore
reduce the variance of the difference between them.

3.2 Screening with Individual Control Variates

We will assume that unknown to us μk ≥ μk−1 ≥ · · · ≥ μ1 and that bigger is
better. The goal of the procedure is to find a subset I that contains system k with
prespecified confidence. We also assume that Model (1) holds but relax the assump-
tion that Ci j has to be multivariate normal. Let tp,ν represent the p quantile of the t
distribution with ν degrees of freedom.

Procedure 1 (Individual CV Screening Procedure)

1. Choose the confidence level 1− α > 1/k.



268 S.C. Tsai et al.

2. Obtain ni > qi + 2 observations from system i = 1, 2, . . . , k and form CV
estimators μ̂i (ni ), i = 1, 2, . . . , k.

3. Let ti = t(1−α)1/(k−1),ni−qi−1 and create the subset

IIndiv = {i : μ̂i (ni )− μ̂�(n�) ≥ −Wi�,∀� �= i} , (4)

where

Wi� =
√

t2
i Δ̂

2
i (ni )̂τ 2

i (ni )+ t2
� Δ̂

2
�(n� )̂τ

2
� (n�).

Nelson and Staum (2006) proved that Pr{k ∈ IIndiv} ≥ 1 − α when Model (1)
holds even if we relax the assumption that Ci j is multivariate normal. Nelson and
Staum (2006) also showed that very little correlation between the output and control
is required for the subset size with CVs to be smaller than that with sample means.

The advantage of this procedure is that we just need to compute k CVs. Its disad-
vantage is that the assumption in Model (1) that there is no dependence between
residuals across systems induced by CRN will not hold in practice. Therefore
Nelson and Staum (2006) proposed a screening procedure with paired control vari-
ates, which we improve upon in the next section.

4 Screening Procedures with Paired Control Variates

In this section we briefly review the paired control variate model of Nelson and
Staum (2006) and propose a more-general model on which a new procedure is
based. An adjustment is also provided to reduce the computation cost and retain
the benefit of paired CV estimators.

Nelson and Staum (2006) use a paired CV model to avoid the assumption
that the controls entirely explain the dependence induced by CRN. To do this,
they form pairwise differences across systems: X j (i, �) = Xi j − X�j ,Cj (i, �) =
Ci j −C�j , μi� = μi −μ�, and ξ i� = ξ i − ξ �, for i �= �. Since they need the outputs
and the controls to be paired across systems, the number of observations must be
equal for each system in the same pair, and the number of controls for each system
in the same pair should also be equal. For convenience we let n be the common
number of replications and q be the common number of controls for each system.
Then we assume that a model like Model (1) holds:

X j (i, �) = μi� + (Cj (i, �)− ξ i�)
′B(i, �)+ ε j (i, �), (5)

where {ε j (i, �), j = 1, 2, . . . , n} is a set of i.i.d. N(0, τ 2
i�) random variables. The

q × 1 vector Cj (i, �) is assumed multivariate normal. For each pair of systems
i, � = 1, 2, . . . , k, i �= �, the controls {Cj (i, �), j = 1, 2, . . . , n} are also i.i.d.,
are independent of {ε j (i, �), j = 1, 2, . . . , n}, and have known expected value ξ i�.

Unlike Model (1), Model (5) can hold even when ηi j and η�j are dependent.
However, this model may break down when CRN causes Ci j = C�j for all j ,
which cancels the controls. To avoid this, we present a different model to explain
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the relationship between the controls and the outputs. We assume the following new
model holds:

X j (i, �) = μi� + (Ci j − ξ i )
′β i − (C�j − ξ �)

′β� + η j (i, �), (6)

where η j (i, �) = ηi j − η�j and {η j (i, �), j = 1, 2, . . . , n} is a set of i.i.d.
N(0, σ 2

i�) random variables. The (qi + q�) × 1 vector (C′
i j ,C ′

�j )
′ is assumed mul-

tivariate normal. For each pair of systems i, � = 1, 2, . . . , k, i �= �, the controls
{Ci j , j = 1, 2, . . . , n} and {C�j , j = 1, 2, . . . , n} are also i.i.d., are independent
of {η j (i, �), j = 1, 2, . . . , n}, and have known expected values ξ i and ξ �. Like
Model (5), Model (6) can also hold even when ηi j and η�j are dependent. For all
i �= �, we let μ̂i�(n) be the corresponding CV estimator of μi� under Model (6), and
define τ̂ 2

i�(n) and Δ̂2
i�(n) in analogy to Equations (2) and (3).

We now assume that Model (6) holds in order to execute the All Pairs screening
procedure. Before describing the procedure, we present an argument for the superi-
ority of Model (6) over Model (5):

• Model (6) is a more-general model that is equivalent to Model (5) when β i = β�.
• Suppose Model (5) holds, but we compute μ̂i�(n) assuming Model (6) holds.

Then μ̂i�(n) is still unbiased. However, Var[μ̂i�(n)] will be inflated because of
the loss of degrees of freedom (from n − q − 1 to n − 2q − 1). The resulting
inflation of variance will not be substantial when n is not too small.

• Suppose Model (6) holds with β i �= β�, but we compute μ̂i�(n) assuming Model
(5) holds. Then μ̂i�(n) will be biased and Var[μ̂i�(n)] will be increased, especially
when β i is very different from β� (see the Appendix).

• Under Model (6) the number of controls for each system in the same pair is
not required to be equal. Therefore, we gain potential benefits in terms of CV
selection (notice that the degrees of freedom is n − qi − q� − 1 in general).

• Model (6) makes the All Pairs screening procedure below more compatible with
the CV selection procedure (see Section 5) that relies on Model (1). In fact
Model (1) implies Model (6). Therefore we do not have to be concerned about
any incongruity in the CV combined procedure.

We form the following All Pairs screening procedure based on Model (6).

Procedure 2 (All Pairs Screening Procedure)

1. Choose the confidence level 1− α > 1/k.
2. Obtain n > maxi �=�(qi + q� + 2) observations from each system and form the

k(k − 1)/2 CV estimators μ̂i�(n) for all i �= �.
3. Let ti� = t1−α/(k−1),n−qi−q�−1 and create the subset

IAll Pairs =
{

i : μ̂i�(n) ≥ −ti� Δ̂i�(n)̂τi�(n),∀� �= i

}
.

Nelson and Staum (2006) proved that Pr{k ∈ IAll Pairs} ≥ 1 − α when Model (5)
holds. This procedure is also valid when Model (6) pertains and (C′

i j ,C ′
�j )

′ is not
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required to be multivariate normal. The advantage of this procedure is that we do not
have to be concerned about the dependence remaining in the residuals due to CRN.
Its disadvantages are that we have to compute k(k − 1)/2 CV estimators and that
the procedure uses the conservative Bonferroni inequality. Therefore, we propose
a new procedure that requires less computation and creates a subset I ⊇ IAll Pairs,
and therefore we can guarantee that Pr { k ∈ I } ≥ 1 − α. To accomplish this we
choose some system K ∗ that is very likely to be the best system, and then perform
screening with paired CVs just against K ∗.

In the following “Best Bet” screening procedure, we use Model (6) and denote
the system with the largest μ̂i (n) as K ∗.

Procedure 3 (Best Bet Screening Procedure)

1. Choose the confidence level 1− α > 1/k.
2. Obtain n > maxi �=�(qi + q� + 2) observations from each system and form the k

CV estimators μ̂i (n), i = 1, 2, . . . , k.
3. Let K ∗ be the index of the system with the largest μ̂i (n), that is, K ∗ =

argmaxi μ̂i (n), and then form the k − 1 paired CV estimators μ̂i K ∗ (n) for all
i �= K ∗.

4. Create the subset

IBest Bet =
{

i : μ̂i K ∗ (n) ≥ −ti K ∗ Δ̂i K ∗ (n)̂τi K ∗ (n)

}
∪
{

K ∗
}
.

The advantage of this procedure is that it can decrease the computation cost and
achieve the desired statistical efficiency as well. The subset size will be close to that
of the All Pairs screening procedure, because there is a large correlation between
μ̂i�(n) and μ̂i (n) − μ̂�(n). The disadvantage is that it needs to compute 2k − 1 CV
estimators, which is more than the individual CV screening procedure (k). However,
it still saves computation cost compared with the All Pairs screening procedure
(k(k − 1)/2), when the number of alternatives is large, and it avoids the assumption
that CVs explain all the dependence induced by CRN.

Remark 1 The system with the largest sample mean is also a potential best system,
so we could let K ∗ = argmaxi X̄ i (n), and then do screening with paired CVs just
against K ∗. This procedure can save a great deal of computation cost because we
only need to compute k − 1 paired CV estimators. Unfortunately, the subset formed
by this procedure may be much larger than that formed by the All Pairs screening
procedure, because there is not necessarily much correlation between μ̂i�(n) and
X̄i (n)− X̄�(n).

5 Selecting the Best with Control Variates

In this section we briefly review the selection-of-the-best-with-control-variates pro-
cedure in Nelson and Staum (2006). The following description is based on
Nelson and Staum (2006). Under Model (1), we adopt the indifference-zone (IZ)
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formulation in which we require a guaranteed probability of selecting system k
whenever the difference μk − μk−1 ≥ δ, where the indifference-zone parameter
δ > 0 is set to the smallest difference the analyst feels is worth detecting. We also
assume that all systems have the same number of controls q. The procedure is as
follows:

Procedure 4 (Selecting the Best with Controls)

1. Choose the indifference-zone parameter δ > 0, confidence level 1 − α > 1/k
and choose α0, α1 > 0 such that α = α0 + α1.

2. For each system i = 1, 2, . . . , k, obtain n0 > q + 2 observations and calculate
τ̂ 2

i (n0).
3. For each system i = 1, 2, . . . , k, set the total sample size

Ni = min
n≥n0

{
n :

(
n − q

q

)(
nδ2

h2τ̂ 2
i (n0)

− 1

)
≥ F (γ )

q,n−q

}

where h = hk,1−α1,n0−q−1 is Rinott’s (1978) constant, F (γ )
q,n−q is the γ quantile of

the F distribution with (q, n − q) degrees of freedom, and

γ =
{

(1− α0)
1
k , if the systems are simulated independently

1− α0/k, otherwise.

4. Collect Ni − n0 observations from system i and form the CV estimators μ̂i (Ni )
for i = 1, 2, . . . , k.

5. Select system B = argmaxi μ̂i (Ni ), and form the (1 − α)100% simultaneous
confidence intervals

μi −max
� �=i

μ�

∈
[
−
(
μ̂i (Ni )−max

� �=i
μ̂�(N�)− δ

)−
,

(
μ̂i (Ni )−max

� �=i
μ̂�(N�)+ δ

)+]
(7)

for i = 1, 2, . . . , k, where −y− = min{0, y} and y+ = max{0, y}. Furthermore,

Pr

{
μB − max

�=1,...,k
μ� ≥ −δ

}
≥ 1− α, (8)

that is, with high confidence, the mean of the selected system is within δ of the
mean of the truly best system.

Nelson and Staum (2006) proved that Pr{B = k} ≥ 1 − α whenever Model
(1) holds and μk − μk−1 ≥ δ. Regardless of the configuration of the true means,
the confidence intervals (7) have coverage probability at least 1 − α by Theorem 1
of Nelson and Matejcik (1995), while Inequality (8) follows from Corollary 1 of
Nelson and Goldsman (2001).
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6 Control-Variate Selection for Screening

In this section we provide some guidance for selecting control variates. When
CRN is involved in the screening procedure, can we take advantage of CRN when
choosing control variates, or should we just select favorable control variates to
minimize the variance of each CV point estimator individually? For the screen-
ing procedure with individual control variates, we use the screening threshold Wi�

in Equation (4) as the measure of chosen subset size. The smaller Wi� is, the
more difficult it is for system i to survive in the subset. To make the expected
subset size as small as possible, we select favorable control variates to mini-
mize E[W 2

i�] because Wi� is nonnegative. To simplify the analysis, suppose we
choose first-stage sample sizes and controls for each system such that ni = n and
qi = q, for all i . Consequently, for all i = 1, 2, . . . , k, ti = t , and we know
that

E[W 2
i�] = E

[
t2
i Δ̂

2
i (ni )̂τ

2
i (ni )+ t2

� Δ̂
2
�(n� )̂τ

2
� (n�)

]

= E
[
t2 Δ̂2

i (n)̂τ 2
i (n)

]+ E
[
t2 Δ̂2

�(n)̂τ 2
� (n)

]

= t2 (Var[μ̂i (n)]+ Var[μ̂�(n)])

= t2

(
n − 2

n − q − 2

)(
Var[ηi j ]+ Var[η�j ]

n

)
.

Clearly we would like to minimize the variance of each CV point estimator. In other
words, we should choose control variates for each system to obtain the greatest
variance reduction individually. Notice that E[W 2

i�] is unaffected by CRN; therefore,
CRN is irrelevant with respect to the individual CV screening procedure. Añonuevo
and Nelson (1988), Bauer and Wilson (1992), and Nelson (1989) give algorithms for
selecting good control variates individually. However, CRN can affect Cov[ηi j , η�j ],
which represents the benefits of CRN that we cannot capture in the individual CV
screening procedure. This is the disadvantage inherent in the screening procedure
with individual control variates.

For the screening procedure with paired control variates under Model (6), the
expectation of the square of the screening threshold from Step 3 of Procedure 2 is

E
[
t2
i� Δ̂

2
i�(n)̂τ 2

i�(n)
] = t2

i� Var[μ̂i�(n)]

= t2
i�

(
n − 2

n − 2q − 2

)
Var[η j (i, �)]

n

= t2
i�

(
n − 2

n − 2q − 2

)
Var[ηi j − η�j ]

n

= t2
i�

(
n − 2

n − 2q − 2

)(
Var[ηi j ]+ Var[η�j ]− 2Cov[ηi j , η�j ]

n

)

which directly incorporates the reduced variance by applying CVs to the paired
observations. The more positive correlation that remains in the residuals across
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systems induced by CRN, the larger Cov[ηi j , η�j ] will be. The paired CV proce-
dure exploits this dependence so that it can perform better than the individual CV
screening procedure, especially when n is much larger than q. Therefore, we should
choose control variates that can be paired across systems i and � to minimize the
variance of μ̂i�(n), and these may be different than what we would choose to min-
imize the variance of each individual CV estimator. As a result it is possible that
the CVs chosen for system i could be different when system i is paired with each
system � = 1, 2, . . . , k, � �= i (in which case Model (6) would be modified to allow
the selected controls to depend on the pair (i, �)).

7 Combined Procedure

In the combined procedure, we apply a screening procedure with control variates to
eliminate noncompetitive systems in the first stage. Then in the second stage the CV
selection-of-the-best procedure is applied to the surviving systems to pick the best
system, while still gaining the desired overall confidence level. Here are some key
observations:

• We spend α0 of the overall allowable error α for incorrect selection on the first
screening stage, and α1+ α2 on the second selection-of-the-best stage.

• If we use the individual CV screening procedure in the first stage, then a multi-
plicative approach is applied, i.e., 1− α = (1− α0)(1− α1 − α2).

• If we use the paired CV screening procedure in the first stage, then an additive
approach is applied, i.e., 1− α = 1− α0 − α1 − α2.

• We set the appropriate critical constant ti of each system i = 1, 2, . . . , k in the
CV screening procedure for k systems, ni first-stage samples, qi control variates,
and confidence level 1− α0.

• We set the appropriate critical constant h of each system i = 1, 2, . . . , k in the
CV selection-of-the-best procedure for k systems, ni first-stage samples, qi con-
trol variates, and confidence level 1− α1.

• We set the appropriate critical constant γ in the CV selection-of-the-best proce-
dure for k systems, confidence level 1−α2, and depending on whether or not the
systems are simulated independently or with CRN.

In the procedure below we assume that ni − qi is the same for each system i =
1, 2, . . . , k and mention the necessary adjustment for unequal ni − qi in Remark 2.
The following is a procedure that combines the individual CV screening procedure
with the CV selection-of-the-best procedure.

Procedure 5 (Individual CV Combined Procedure)

1. Select overall confidence level 1− α > 1/k, indifference-zone parameter δ > 0,
number of systems k, and first-stage sample size ni > qi + 2 from system
i = 1, 2, . . . , k. Set ti = t(1−α0)1/(k−1),ni−qi−1 and h = hk,1−α1,ni−qi−1, which is
Rinott’s constant (see Wilcox 1984 or Bechhofer et al. 1995 for tables).
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2. Obtain ni observations from each system and calculate μ̂i (ni ), Δ̂2
i (ni ) and

τ̂ 2
i (ni ), i = 1, 2, . . . , k. We also create the subset

I = {i : μ̂i (ni )− μ̂�(n�) ≥ −Wi�,∀� �= i} ,

where

Wi� =
√

t2
i Δ̂

2
i (ni )̂τ 2

i (ni )+ t2
� Δ̂

2
�(n� )̂τ

2
� (n�).

3. If I contains a single index, then stop and return that system as the best. Other-
wise, for all i ∈ I , compute the second-stage sample size

Ni = min
n≥ni

{
n :

(
n − qi

qi

)(
nδ2

h2τ̂ 2
i (ni )

− 1

)
≥ F (γ )

qi ,n−qi

}

where

γ =
{

(1− α2)
1
k , if the systems are simulated independently

1− α2/k, otherwise.

Notice: 1− α = (1− α0)(1− α1 − α2) (multiplicative approach).
4. Take Ni − ni additional observations from all systems i ∈ I and form the CV

estimators μ̂i (Ni ) for i ∈ I .
5. Select the system B = argmaxi μ̂i (Ni ) as best from all systems i ∈ I .

Theorem 1 If Model (1) holds, then the individual CV combined procedure selects
a system B such that Pr{B = k} ≥ 1 − α whenever μk − μk−1 ≥ δ. For any
configuration of the means, the following hold with probability greater than or equal
to 1− α:

• For all i ∈ I ,
μi − max

�∈I,��=i
μ�

∈
[
−
(
μ̂i (Ni )− max

�∈I,��=i
μ̂�(N�)− δ

)−
,

(
μ̂i (Ni )− max

�∈I,��=i
μ̂�(N�)+ δ

)+]
. (9)

• The mean of the system we select will be within δ of the mean of the truly best
system in I with probability ≥ 1− α, that is,

Pr

{
μB − max

�∈I,� �=B
μ� ≥ −δ

}
≥ 1− α. (10)

Remark 2 Suppose that ni−qi is different across systems. This causes the first-stage
residual-variance estimators τ̂ 2

1 (n1), τ̂ 2
2 (n2), . . . , τ̂ 2

k (nk) to have different degrees of
freedom. One approach is to use the adjusted constant
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h = h2,(1−α1)1/(k−1),mini {ni−qi−1}

which is valid when the degrees of freedom are unequal (Boesel, Nelson, and
Kim 2003).

Remark 3 We can combine the paired CV screening procedure with the CV
selection-of-the-best procedure. When we use the Best Bet screening procedure,
we need to change Step 2 to the following:

2. Obtain n > maxi �=�(qi + q� + 2) observations from each system and form the k
CV estimators μ̂i (n), i = 1, 2, . . . , k. Let K ∗ be the index of the system with the
largest μ̂i (n), that is, K ∗ = argmaxi μ̂i (n), and then form the k − 1 paired CV
estimators μ̂i K ∗ (n) for all i �= K ∗. Then we let ti K ∗ = t1−α0/(k−1),n−qi−qK∗−1 and
create the subset

IBest Bet =
{
i : μ̂i K ∗ (n) ≥ −ti K ∗ Δ̂i K ∗ (n)̂τi K ∗ (n)

} ∪ { K ∗ } .

An additive approach is applied (1−α =1−α0 − α1 − α2).

Theorem 2 If Model (1) holds, then the paired CV combined procedure selects a
system B such that Pr{B = k} ≥ 1 − α whenever μk − μk−1 ≥ δ, and statistical
inferences (9) and (10) still hold regardless of the configuration of the true means.

We prove that Pr{B = k} ≥ 1 − α with independence among {ηi j , i =
1, 2, . . . , k, j = 1, 2, . . . , n} in the Appendix. However, experiments showed that
this paired CV combined procedure can perform very well even when {ηi j , i =
1, 2, . . . , k} are positively dependent.

8 Empirical Results

In this section we summarize the results of an empirical evaluation performed to
compare the following procedures:

1. The combined sample-means-based procedure (NSGS) due to Nelson et al.
(2001) that uses a screening procedure with sample means to eliminate non-
competitive systems after the first stage of sampling, and then applies Rinott’s
IZ selection procedure in the second stage. This procedure allows for unknown
and unequal variances across systems, but CRN is not exploited.

2. The individual CV combined procedure which we call TNS-I, and the paired CV
combined procedure which we call TNS-P. These procedures allow for unknown
and unequal variances across systems and the use of CRN, although TNS-I does
not exploit CRN.

The systems are represented by various configurations of k normal distributions;
in all cases, system k was the best (had the largest true mean). Let Xi be a simulation
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observation from system i , for i = 1, 2, . . . , k. For simplicity, we assume that there
is q = 1 control variate. Then we assume the output can be represented as

Xi = μi + (Ci − ξi )βi + ηi ,

where {ηi , i = 1, 2, . . . , k} are N(0, σ 2
η ) random variables. The {Ci , i =

1, 2, . . . , k} are assumed to be N(ξi , σ
2
c ) random variables and independent of

{ηi , i = 1, 2, . . . , k}. The correlation between controls Ci and C� for i �= � is ρc.
The correlation between residuals ηi and η� for i �= � is ρη. The squared correlation
coefficient between Xi and Ci is ρ2

(x,c).
We evaluated each procedure on different configurations of the systems, examin-

ing factors including the number of systems k, the practically significant difference
δ, the initial sample size n0, the variance of the controls σ 2

c , the variance of the
residuals σ 2

η , the correlation of the controls ρc, and the correlation of the residuals
ρη. The larger σ 2

c is compared with σ 2
η , the more of the variability in outputs can be

explained by the controls. When ρη �= 0, then Model (6) holds but Model (1) does
not hold. A larger ρη means more dependence due to CRN is accounted for by the
residuals. The configurations, the experiment design, and the results are described
below.

8.1 Configurations and Experiment Design

We used the slippage configuration (SC) of the true means of the systems, in
which μk was set to δ, while μ1 = μ2 = · · · = μk−1 = 0. This is a diffi-
cult scenario for screening procedures because all the inferior systems are close to
the best system. These experiments with the slippage configuration illustrated that
CVs can make the screening procedure more efficient even under the most difficult
situation.

We chose the initial sample size to be n0 = 10, for i = 1, 2, . . . , k. The
mean of the controls, ξi , is set to be 0, for i = 1, 2, . . . , k. We also set βi

to be 1, for i = 1, 2, . . . , k. The number of systems in each experiment var-
ied over k = 2, 5, 10, 25, 100. The indifference-zone parameter, δ, was set to

δ =
√

(σ 2
c + σ 2

η )/n0. For each configuration, 500 macroreplications (complete

repetitions) of the entire combined procedure were performed. In all experiments,
the nominal probability of correct selection was set at 1 − α = 0.95. We took
α0 = α1 = α2 = α/3 in paired CV screening cases and took α0 = α/3,
α1 = α2 = α/(3 − α) in individual CV screening cases. For NSGS, we set
α0 = α1 = α/2. To compare the performance of the procedures we recorded
the estimated probability of correct selection (PCS), the average number of sam-
ples per system (ANS), and the percentage of systems that received second-stage
sampling (PSS).
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8.2 Summary of Results

The PCS of the CV combined procedure was over 0.95 in all configurations. The
overall experiments showed that the CV combined procedure was superior to the
combined sample-means-based procedure under any configuration we examined.

We do not try to present comprehensive results from such a large simulation
study. Instead, we present selected results that highlight the key conclusions. Notice
that we apply Model (6) and the Best Bet screening procedure in TNS-P.

8.2.1 Effect of Number of Systems

See Table 1 for an illustration. Systems are simulated independently since NSGS and
TNS-I do not exploit CRN. The goal is to compare NSGS with TNS-I when we have
different numbers of systems. As k increases, the average number of samples per
system increases greatly in NSGS compared to TNS-I. The percentage of systems
that received second-stage sampling is smaller in TNS-I than in NSGS.

Table 1 Effect of number of systems for NSGS and
TNS-I when σc = 4, ση = 1, ρc = ρη = 0

Number of systems Procedure PCS ANS PSS

k = 2 NSGS 0.98 98 0.86
TNS-I 1 12 0.41

k = 5 NSGS 0.98 186 0.96
TNS-I 1 19 0.76

k = 10 NSGS 0.98 234 0.97
TNS-I 1 27 0.86

k = 25 NSGS 0.98 306 0.99
TNS-I 1 34 0.92

k = 100 NSGS 0.99 430 0.99
TNS-I 1 49 0.98

8.2.2 Effect of Control Variates

See Table 2 for an illustration. We know that ρ2
(x,c) = σ 2

c /σ
2
x = σ 2

c /(σ
2
c + σ 2

η ),
which represents how good this CV is. In our experiments, we fix σ 2

x to be 16. For
example, ρ2

(x,c) = 0.2 means σ 2
x = 16 and σ 2

c = 3.2. We find that the performance
of the individual CV combined procedure is almost the same as NSGS when ρ2

(x,c)

is 0.2. When ρ2
(x,c) is larger than 0.2, the CV combined procedure can outperform

NSGS. Thus, very small ρ2
(x,c) is required for the CV combined procedure to be out

performed by NSGS. Larger ρ2
(x,c) means the CVs can explain more variability of

the outputs, and thereby makes the CV combined procedure more efficient.
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Table 2 Effect of control variates for TNS-I in comparison
with NSGS when ρc = 0, ρη = 0, and k = 10

Procedure PCS ANS PSS

σ 2
x = 16 NSGS 1 235 0.97

ρ2
(x,c) = 0.2 Individual CV 0.97 241 0.98

ρ2
(x,c) = 0.4 Individual CV 1 181 0.99

ρ2
(x,c) = 0.6 Individual CV 1 129 0.97

ρ2
(x,c) = 0.8 Individual CV 1 68 0.99

8.2.3 Effect of Correlation

See Table 3 for an illustration. Here we compare TNS-I and TNS-P under different
ρη. When the correlation between residuals is larger, TNS-P performs better and
outperforms TNS-I easily. In Table 3, we see that the PSS of TNS-P is as low as 0.10,
which shows the high efficiency of TNS-P when ρη is large. Notice that CRN does
not affect the screening threshold for TNS-I, but it does affect the point estimator,
which is why the performance of TNS-I in Table 3 varies when we have different ρη.

Table 3 Effect of correlation for TNS-I and TNS-P when
σc = 4, ση = 1, and k = 10

Correlation Procedure PCS ANS PSS

ρc = 0 Individual CV 1 34 0.80
ρη = 0.2 Paired CV 1 30 0.74

ρc = 0 Individual CV 1 34 0.90
ρη = 0.5 Paired CV 1 26 0.55

ρc = 0 Individual CV 1 35 0.90
ρη = 0.8 Paired CV 1 13 0.10

9 Illustration

In this section we use a queueing example to illustrate the application of TNS-I,
TNS-P, and NSGS. We use the M /M /s/c model which represents a queueing system
with Poisson arrivals, exponentially distributed service times, s servers, a capacity
of c customers, and a first-come, first-served queueing discipline. The customers
arrive with arrival rate λ. The service rate for an individual server is μ. We perform
each procedure on five different configurations of the systems in which λ/(sμ) =
4/5 where the performance measure is the steady-state mean of the waiting time in
system. The capacity c is set as 15. The five configurations are shown in Table 4
along with their true expected waiting times. System 1 is obviously the best system.
Note that smaller is better here.

To mitigate the initial transient bias, we initialize the simulation in steady state.
That is, we calculate the steady-state distribution of the number of customers in the
system, then sample the initial conditions for each replication in accordance with
that steady-state distribution. An average waiting time for thirty customers is used
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Table 4 The five queueing systems and their expected
waiting times in steady state

System i λ s μ E[W ]

1 4 1 5 0.88
2 4 2 5/2 0.98
3 4 3 5/3 1.10
4 4 4 5/4 1.24
5 4 5 1 1.38

as the output on each replication. For TNS-I and TNS-P, we use the average service
time as the control on replication j , which means

Xi j =
∑30

m=1 Wi jm

30
and Ci j =

∑30
m=1 Si jm

30

where Wi jm is the waiting time in system for customer m of replication j from
system i and Si jm is the service time for customer m of replication j from system i .
The initial sample size n0 is set as 10 for each system. We choose the indifference
zone δ to be 0.1 and CRN is applied.

Table 5 shows the results of the TNS-I, TNS-P, and NSGS procedures with 100
macroreplications and confidence level 1−α = 0.95. We also provide the estimated
standard error of ANS to show that there is a significant difference.

Table 5 Results for NSGS, TNS-I, and TNS-P in 100 trials with
δ = 0.1, n0 = 10, and 1− α = 0.95

Procedure PCS ANS ŝe(ANS) PSS

NSGS 0.97 462 13.4 1
TNS-I 1 301 10.8 0.81
TNS-P with CRN 1 207 10.4 0.68

These three procedures all exceed the desired probability of correct selection.
NSGS is unable to screen out inferior systems in the first stage; therefore, its ANS
is much larger than that of the other procedures. We can eliminate more systems in
TNS-P than in TNS-I to further reduce the average number of samples needed by
using CVs with CRN.

10 Conclusions

In this paper we presented a CV combined procedure that exploits the ability to
screen out inferior systems and the statistical efficiency of control variates. We also
proposed a more-general paired CV model and a new paired CV screening proce-
dure to reduce the algorithm overhead and retain the benefits of paired CVs as well.
As we showed in Sections 8 and 9, TNS-I is superior to NSGS for all the scenar-
ios we examined. NSGS is based on the assumption that all systems are simulated
independently, and TNS-I assumes that the dependence induced by CRN is entirely
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explained by the controls. On the other hand, TNS-P is significantly more efficient
than TNS-I when the CVs do not explain all dependence due to CRN because a great
deal of sampling cost can be saved. However, computational experiments show that
the advantage of TNS-P over TNS-I diminishes with larger numbers of systems, and
TNS-P incurs more algorithm overhead than TNS-I. As a rough rule of thumb, we
use TNS-P when CRN is involved, but use TNS-I when all the systems are simulated
independently.

Appendix

For the individual and paired CV combined procedures, the proofs in this appendix
assume that Model (1) holds. We also assume μk ≥ μk−1 ≥ · · · ≥ μ1 and μk −
μk−1 ≥ δ.

Model (5) and Model (6)

Here we compare Model (5), the Nelson and Staum paired CV model, and Model (6),
our new paired CV model, in terms of E[μ̂i�(n)] and Var[μ̂i�(n)]. We know that
Model (6) tends not to lose much when the true underlying model is Model (5)
because μ̂i�(n) is still unbiased and the inflation of Var[μ̂i�(n)], due to the loss of
degrees of freedom from n − q − 1 to n − 2q − 1, will not be substantial when n is
not too small. Therefore, we focus on the consequences of assuming that Model (5)
holds when in fact the true model is Model (6).

We first compute μ̂i�(n) under the assumption that Model (5) holds while
Model (6) is actually the true model with β i �= β�. The case qi = 1, for all i ,
is sufficient to illustrate the point. For convenience, let

C = {Ci j , j = 1, 2, . . . , n, i = 1, 2, . . . , k}

be the collection of all observed controls. Define

B̂(i, �) =
∑n

j=1(X j (i, �)− X̄ (i, �))(C j (i, �)− C̄(i, �))∑n
j=1(C j (i, �)− C̄(i, �))2

.

We know that μ̂i�(n) = X̄ (i, �) − (C̄(i, �) − ξi� )̂B(i, �), and E[μ̂i�(n)|C] =
E[X̄ (i, �)|C]− (C̄(i, �)− ξi�)E[̂B(i, �)|C]. Therefore,

E[μ̂i�(n)] = E [E[μ̂i�(n)|C]] = μi� − E
[
(C̄(i, �)− ξi�)E[B̂(i, �)|C]

]

and
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E[B̂(i, �)|C] =
∑n

j=1 E[X j (i, �)− X̄ (i, �)|C](C j (i, �)− C̄(i, �))∑n
j=1(C j (i, �)− C̄(i, �))2

.

Because Model (6) holds, we know that

E[X j (i, �)− X̄ (i, �)|C]

= (Ci j − ξi )βi − (C�j − ξ�)β� − (C̄i − ξi )βi + (C̄� − ξ�)β�
= (Ci j − C̄i )βi − (C�j − C̄�)β�.

Thus, we obtain

E[B̂(i, �)|C] =
∑n

j=1

(
(Ci j − C̄i )βi − (C�j − C̄�)β�

)
(C j (i, �)− C̄(i, �))∑n

j=1(C j (i, �)− C̄(i, �))2

= βi + (βi − β�)
∑n

j=1

(
C�j − C̄�

)
(C j (i, �)− C̄(i, �))∑n

j=1(C j (i, �)− C̄(i, �))2
. (11)

Therefore, the bias is E[μ̂i�(n)]− μi�, which is equal to

−E
[
(C̄(i, �)− ξi�)E[B̂(i, �)|C]

]

= −E
[ (

(βi − β�)
∑n

j=1(C�j−C̄�)(C j (i,�)−C̄(i,�))∑n
j=1(C j (i,�)−C̄(i,�))2

) (
C̄(i, �)− ξi�

) ]
, (12)

is not equal to 0 in general if βi �= β�.
We now examine the impact on variance. Notice that

Var[μ̂i�(n)] = Var [E [μ̂i�(n)|C]]+ E [Var[μ̂i�(n)|C]]

= Var
[
(C̄i − ξi )βi − (C̄� − ξ�)β� − (C̄(i, �)− ξi�)E[B̂(i, �)|C]

]

+E [Var[μ̂i�(n)|C]] .

Since

B̂(i, �) =
∑n

j=1 X j (i, �)(C j (i, �)− C̄(i, �))∑n
j=1(C j (i, �)− C̄(i, �))2

,

we have

Var[B̂(i, �)|C] = Var[X j (i, �)|C]

∑n
j=1(C j (i, �)− C̄(i, �))2

(∑n
j=1(C j (i, �)− C̄(i, �))2

)2

= Var[X j (i, �)|C]∑n
j=1(C j (i, �)− C̄(i, �))2

.
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Now

Var[μ̂i�(n)|C] = Var[X̄ (i, �)− (C̄(i, �)− ξi�)B̂(i, �)|C]

= Var[X̄ (i, �)|C]+ (C̄(i, �)− ξi�)
2Var[B̂(i, �)|C]

−2(C̄(i, �)− ξi�)Cov[X̄ (i, �), B̂(i, �)|C]

= Var[X j (i, �)|C]

(
1

n
+ (C̄(i, �)− ξi�)2

∑n
j=1(C j (i, �)− C̄(i, �))2

)

−2(C̄(i, �)− ξi�)Cov[X̄ (i, �), B̂(i, �)|C].

Further,

Cov[X̄ (i, �), B̂(i, �)|C]

= Cov[μi − μ� + (C̄i − ξi )βi − (C̄� − ξ�)β� + η̄(i, �), B̂(i, �)|C]

= Cov[η̄(i, �), B̂(i, �)|C].

Since

B̂(i, �)

=
∑n

j=1

(
(Ci j − C̄i )βi − (C�j − C̄�)β� + η j (i, �)− η̄(i, �)

)
(C j (i, �)− C̄(i, �))∑n

j=1(C j (i, �)− C̄(i, �))2

= βi + (βi − β�)
∑n

j=1(C�j − C̄�)(C j (i, �)− C̄(i, �))∑n
j=1(C j (i, �)− C̄(i, �))2

+
∑n

j=1(η j (i, �)− η̄(i, �))(C j (i, �)− C̄(i, �))∑n
j=1(C j (i, �)− C̄(i, �))2

,

we have

Cov[η̄(i, �), B̂(i, �)|C]

= Cov

[
η̄(i, �),

∑n
j=1(η j (i, �)− η̄(i, �))(C j (i, �)− C̄(i, �))∑n

j=1(C j (i, �)− C̄(i, �))2

∣∣∣∣C
]

= 1∑n
j=1(C j (i, �)− C̄(i, �))2

Cov

[
η̄(i, �),

n∑
j=1

(η j (i, �)− η̄(i, �))C j (i, �)

∣∣∣∣C
]

= 1∑n
j=1(C j (i, �)− C̄(i, �))2

(
Cov

[
η̄(i, �),

n∑
j=1

η j (i, �)C j (i, �)

∣∣∣∣C
]

− Cov

[
η̄(i, �), η̄(i, �)

n∑
j=1

C j (i, �)

∣∣∣∣C
])
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= 1∑n
j=1(C j (i, �)− C̄(i, �))2

⎛
⎝

n∑
j=1

C j (i, �)

(
Var
[
η j (i, �)

]

n
− Var [η̄(i, �)]

)⎞
⎠

= 0 (since Var
[
η j (i, �)

] = σ 2
i�,∀ j).

Then we take the expectation of Var[μ̂i�(n)|C] to yield

E [Var[μ̂i�(n)|C]] = Var[η j (i, �)]

(
n − 2

n(n − 3)

)

(Lavenberg and Welch 1981). Further, from Equation (11),

Var
[
(C̄i − ξi )βi − (C̄� − ξ�)β� − (C̄(i, �)− ξi�)E[B̂(i, �)|C]

]

= Var

[
(C̄i − ξi )βi − (C̄� − ξ�)β� −

(
C̄(i, �)− ξi�

)
βi

−(βi − β�)
(
C̄(i, �)− ξi�

) ∑n
j=1

(
C�j − C̄�

)
(C j (i, �)− C̄(i, �))∑n

j=1(C j (i, �)− C̄(i, �))2

]
.

To simplify this expression, let

Λ(C) = (C̄(i, �)− ξi�
) ∑n

j=1

(
C�j − C̄�

)
(C j (i, �)− C̄(i, �))∑n

j=1(C j (i, �)− C̄(i, �))2
,

which is a function of C. Then,

Var [E [μ̂i�(n)|C]]

= Var
[
(C̄i − ξi )βi − (C̄� − ξ�)β� − (C̄(i, �)− ξi�)E[B̂(i, �)|C]

]

= Var
[
(C̄i − ξi )βi − (C̄� − ξ�)β� −

(
C̄(i, �)− ξi�

)
βi − (βi − β�)Λ(C)

]

= Var
[
(C̄i − ξi )βi − (C̄� − ξ�)βi + (C̄� − ξ�)βi − (C̄� − ξ�)β�
− (C̄(i, �)− ξi�

)
βi − (βi − β�)Λ(C)

]

= Var
[
(C̄� − ξ�)βi − (C̄� − ξ�)β� − (βi − β�)Λ(C)

]

= (βi − β�)2Var
[
C̄� −Λ(C)

]
.

So, when we assume that Model (5) holds but the true model is Model (6), the
variance of the CV estimator is

Var[μ̂i�(n)] = (βi − β�)2Var
[
C̄� −Λ(C)

]+ Var[η j (i, �)]

(
n − 2

n(n − 3)

)
. (13)

On the other hand, when we assume Model (6) holds and Model (6) is indeed the
true model,
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Var[μ̂i�(n)] = Var[η j (i, �)]

(
n − 2

n(n − 4)

)
. (14)

In summary, if we compute μ̂i�(n) assuming Model (5) holds while Model (6)
is the true model with β i �= β�, then Equation (12) shows us that μ̂i�(n) will
be biased. Further, from Equations (13) and (14) we see that Var[μ̂i�(n)] will be
increased, especially when β i is very different from β�. This illustrates the inferior-
ity of Model (5) relative to Model (6).

CV Combined Procedure with Individual Screening

We prove the multiplicative approach for Theorem 1, with 1 − α = (1 − α0)(1 −
α1 − α2). In the multiplicative approach, we assume that Model (1) holds. For con-
venience, let C = {Ci j , j = 1, 2, . . . , ni , i = 1, 2, . . . , k} be the collection of all
observed controls, and let

τ̂ 2 = {̂τ 2
1 (n1), τ̂ 2

2 (n2), . . . , τ̂ 2
k (nk)}

be the collection of all observed residual-variance estimators. Define

Zi = μ̂k(nk)− μ̂i (ni )− (μk − μi )√
Δ̂2

k(nk)τ 2
k + Δ̂2

i (ni )τ 2
i

, Vi = μ̂k(Nk)− μ̂i (Ni )− (μk − μi )√
Δ̂2

k(Nk)τ 2
k + Δ̂2

i (Ni )τ 2
i

,

Ai = Δ̂2
k(nk)τ 2

k + Δ̂2
i (ni )τ

2
i , Di = Δ̂2

k(Nk)τ 2
k + Δ̂2

i (Ni )τ
2
i .

The probability of correct selection is

Pr
{
μ̂k(nk)− μ̂i (ni ) ≥ −Wki ,∀i �= k; μ̂k(Nk) > μ̂i (Ni ),∀i ∈ I

}

= Pr

{
μ̂k(nk)− μ̂i (ni )− (μk − μi )√

Δ̂2
k(nk)τ 2

k + Δ̂2
i (ni )τ 2

i

≥ −Wki − (μk − μi )√
Δ̂2

k(nk)τ 2
k + Δ̂2

i (ni )τ 2
i

,∀i �= k;

μ̂k(Nk)− μ̂i (Ni )− (μk − μi )√
Δ̂2

k(Nk)τ 2
k + Δ̂2

i (Ni )τ 2
i

>
−(μk − μi )√

Δ̂2
k(Nk)τ 2

k + Δ̂2
i (Ni )τ 2

i

,∀i ∈ I

}

≥ Pr

{
Zi ≤ Wki√

Ai
, Vi <

δ√
Di
,∀i �= k

}
(15)

= E

[
Pr

{
Zi ≤ Wki√

Ai
, Vi <

δ√
Di
,∀i �= k

∣∣∣∣C, τ̂ 2

}]

≥ E

[
Pr

{
Zi ≤ Wki√

Ai
,∀i �= k

∣∣∣∣C, τ̂ 2

}
Pr

{
Vi <

δ√
Di
,∀i �= k

∣∣∣∣C, τ̂ 2

}]
(16)
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= E

[
E

[
Pr

{
Zi ≤ Wki√

Ai
,∀i �= k

∣∣∣∣C, τ̂ 2

}

×Pr

{
Vi <

δ√
Di
,∀i �= k

∣∣∣∣C, τ̂ 2

}∣∣∣∣C
]]

(17)

≥ E

[
E

[
Pr

{
Zi ≤ Wki√

Ai
,∀i �= k

∣∣∣∣C, τ̂ 2

}∣∣∣∣C
]

× E

[
Pr

{
Vi <

δ√
Di
,∀i �= k

∣∣∣∣C, τ̂ 2

}∣∣∣∣C
]]
. (18)

Inequality (15) holds because μk − μi ≥ δ, {∀i ∈ I} is a smaller set than
{∀i �= k} which makes the condition more restrictive, and because of the sym-
metry of the normal distribution. Inequality (16) is an application of Slepian’s
inequality (cf. Tong 1980). Then since the first term in (17) is a nonnegative, real-
valued function and increasing in each of {̂τ 2

1 (n1), τ̂ 2
2 (n2), . . . , τ̂ 2

k (nk)}, and the sec-
ond term in (17) is nondecreasing in each of {̂τ 2

1 (n1), τ̂ 2
2 (n2), . . . , τ̂ 2

k (nk)}, and by
Lemma 1 {̂τ 2

1 (n1), τ̂ 2
2 (n2), . . . , τ̂ 2

k (nk)} are conditionally independent given C , we
can apply Lemma 2.4 in Tamhane (1977) to get Inequality (18). From Nelson and
Staum (2006), we know that

E

[
Pr

{
Zi ≤ Wki√

Ai
,∀i �= k

∣∣∣∣C, τ̂ 2

}∣∣∣∣C
]
= Pr

{
Zi ≤ Wki√

Ai
,∀i �= k

∣∣∣∣C
}

≥ 1− α0

and

E

[
E

[
Pr

{
Vi <

δ√
Di
,∀i �= k

∣∣∣∣C, τ̂ 2

}∣∣∣∣C
]]

= Pr

{
Vi <

δ√
Di
,∀i �= k

}

≥ 1− α1 − α2.

So we can conclude from Inequality (18) that the probability of correct selection is

Pr

{
μ̂k(nk)− μ̂i (ni ) ≥ −Wki ,∀i �= k; μ̂k(Nk) > μ̂i (Ni ),∀i ∈ I

}

≥ (1− α0)(1− α1 − α2) = 1− α.

We need to verify that Slepian’s inequality can be applied for Inequality (16). It
is easy to show that the Cov[Zi , Z j |C, τ̂ 2] and Cov[Vi , Vj |C, τ̂ 2] are nonnegative
for any system i �= j (Nelson and Staum 2006). So here we only need to examine
Cov[Zi , Vj |C, τ̂ 2].

When i �= j ,
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Cov[Zi , Vj |C, τ̂ 2]

= Cov

⎡
⎣ μ̂k(nk)− μ̂i (ni )− (μk − μi )√

Δ̂2
k(nk)τ 2

k + Δ̂2
i (ni )τ 2

i

,
μ̂k(Nk)− μ̂ j (N j )− (μk − μ j )√

Δ̂2
k(Nk)τ 2

k + Δ̂2
j (N j )τ 2

j

∣∣∣∣∣∣
C, τ̂ 2

⎤
⎦

= 1

ai d j
Cov

[
μ̂k(nk), μ̂k(Nk)|C, τ̂ 2

]
,

where ai =
√

Ai , d j =
√

D j . We can factor out ai and d j since they are both
constants when we condition on C . We also know that

μ̂k(nk) =
[

1

nk
1′nk×1 −

(
C̄k(nk)− ξ k

)′ (
L′

k(nk)Lk(nk)
)−1

L′
k(nk)

]
Xk(nk)

= a′Xk(nk)

and

μ̂k(Nk) =
[

1

Nk
1′Nk×1 −

(
C̄k(Nk)− ξ k

)′ (
L′

k(Nk)Lk(Nk)
)−1

L′
k(Nk)

]
Xk(Nk)

= b′Xk(Nk).

It follows that

Cov[Zi , Vj |C, τ̂ 2] = 1

ai d j
Cov

[
μ̂k(nk), μ̂k(Nk)|C, τ̂ 2

] = 1

ai d j
a′Ωb,

where

Ω = (E,F), E = Var[Xk(nk)], and F = [0]nk×(Nk−nk ).

Since E is a diagonal matrix with positive elements and ai d j is positive, we can
conclude that Cov[Zi , Vj |C, τ̂ 2] is nonnegative if a′B is nonnegative, where the
vector B is composed of the first nk elements of the vector b. We have

B′ =
[

1

Nk
1′nk×1 −

(
C̄k(Nk)− ξ k

)′ (
L′

k(Nk)Lk(Nk)
)−1 (

L′
k(nk)+ mk(nk)

)]
,

where

mk(nk) = {C̄k(nk)− C̄k(Nk), C̄k(nk)− C̄k(Nk), . . . , C̄k(nk)− C̄k(Nk)}1×nk .

Then
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a′B = 1

Nk
− 1

nk
1′nk×1

[
Lk(nk)

(
L′

k(Nk)Lk(Nk)
)−1 (

C̄k(Nk)− ξ k

)]

− 1
nk

1′nk×1

[
m′

k(nk)
(
L′

k(Nk)Lk(Nk)
)−1 (

C̄k(Nk)− ξ k

)]

− (C̄k(nk)− ξ k

)′ (
L′

k(nk)Lk(nk)
)−1

L′
k(nk)

1

Nk
1nk×1

+ (C̄k(nk)− ξ k

)′ (
L′

k(nk)Lk(nk)
)−1

L′
k(nk)

×
[

Lk(nk)
(
L′

k(Nk)Lk(Nk)
)−1 (

C̄k(Nk)− ξ k

)]

+ (C̄k(nk)− ξ k

)′ (
L′

k(nk)Lk(nk)
)−1

L′
k(nk)

×
[
m′

k(nk)
(
L′

k(Nk)Lk(Nk)
)−1 (

C̄k(Nk)− ξ k

)]

= 1

Nk
− 1

nk
1′nk×1

[
m′

k(nk)
(
L′

k(Nk)Lk(Nk)
)−1 (

C̄k(Nk)− ξ k

)]

+ (C̄k(nk)− ξ k

)′ [(
L′

k(Nk)Lk(Nk)
)−1 (

C̄k(Nk)− ξ k

)]
(19)

= 1

Nk
+ (C̄k(Nk)− ξ k

)′ [(
L′

k(Nk)Lk(Nk)
)−1 (

C̄k(Nk)− ξ k

)]
(20)

= 1

Nk
+
(
C̄k(Nk)− ξ k

)′
S−1

(
C̄k(Nk)− ξ k

)
Nk − 1

(21)

= 1

Nk
+ T2

Nk(Nk − 1)
> 0, (22)

where S is the sample covariance matrix of controls from system k. That is,
L′k(Nk)Lk(Nk) = (Nk−1)S. Also, T2 is the generalized T 2-statistic of controls from
system k, so T2 = Nk(C̄k(Nk) − ξ k)′S−1(C̄k(Nk) − ξ k) (Anderson 1984). Equal-
ity (19) holds since 1′nk×1 Lk(nk) = 0, (L′

k(nk)Lk(nk))−1 L′
k(nk)Lk(nk) = 1, and

L′
k(nk)m′

k(nk) = 0. Equality (20) holds because (1/nk)1′nk×1m′
k(nk) = (C̄k(nk) −

C̄k(Nk))′. Equality (21) and Equality (22) hold because of the definitions of S−1 and
T2. Therefore, Cov[Zi , Vj |C, τ̂ 2] is positive when i �= j .

When i = j ,

Cov[Zi , Vj |C, τ̂ 2]

= 1

ai d j

[
Cov

[
μ̂k(nk), μ̂k(Nk)|C, τ̂ 2]+ Cov

[
μ̂ j (n j ), μ̂ j (N j )|C, τ̂ 2] ].

We can also obtain Cov
[
μ̂ j (n j ), μ̂ j (N j )|C, τ̂ 2

]
> 0. Therefore, Cov[Zi , Vj |C, τ̂ 2]

is positive when i = j .
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CV Combined Procedure with Paired Screening

We turn to the proof of Theorem 2. We can apply the additive approach to the CV
combined procedure with paired screening. We assume that Model (1) holds. The
probability of correct selection is

Pr
{
μ̂ki (n) ≥ −tki Δ̂ki (n)̂τki (n),∀i �= k; μ̂k(Nk) > μ̂i (Ni ), ∀i ∈ I

}

≥ Pr

{
μ̂ki (n) ≥ −tki Δ̂ki (n)̂τki (n),∀i �= k;

μ̂k(Nk)− μ̂i (Ni )− (μk − μi )√
Δ̂2

k(Nk)τ 2
k + Δ̂2

i (Ni )τ 2
i

>
−(μk − μi )√

Δ̂2
k(Nk)τ 2

k + Δ̂2
i (Ni )τ 2

i

, ∀i ∈ I

}

≥ Pr

{
μ̂ki (n) ≥ −tki Δ̂ki (n)̂τki (n),∀i �= k;

Vi >
−δ√

Δ̂2
k(Nk)τ 2

k + Δ̂2
i (Ni )τ 2

i

, ∀i ∈ I

}
(23)

≥ Pr

{
μ̂ki (n) ≥ −tki Δ̂ki (n)̂τki (n),∀i �= k;

Vi <
δ√

Δ̂2
k(Nk)τ 2

k + Δ̂2
i (Ni )τ 2

i

, ∀i �= k; Δ̂2
i (Ni ) ≤ δ2

h2 τ̂ 2
i (ni )

,∀i

}
(24)

≥ Pr

{
μ̂ki (n) ≥ −tki Δ̂ki (n)̂τki (n),∀i �= k; Vi <

h√
τ2

k

τ̂2
k (nk )

+ τ2
i

τ̂2
i (ni )

, ∀i �= k;

Δ̂2
i (Ni ) ≤ δ2

h2 τ̂ 2
i (ni )

, ∀i

}

≥ 1− p0 − p1 − p2, (25)

where

p0 = 1− Pr
{
μ̂ki (n) ≥ −tki Δ̂ki (n)̂τki (n),∀i �= k

}
,

p1 = 1− Pr

⎧⎪⎪⎨
⎪⎪⎩

Vi <
h√

τ 2
k

τ̂ 2
k (nk )

+ τ 2
i

τ̂ 2
i (ni )

,∀i �= k

⎫⎪⎪⎬
⎪⎪⎭
, and

p2 = 1− Pr

{
Δ̂2

i (Ni ) ≤ δ2

h2 τ̂ 2
i (ni )

,∀i

}
.
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By Lemma 1, the conditional distribution of Vi given {̂τ 2,C} is standard normal.
Inequality (23) holds because μk − μi ≥ δ. Inequality (24) holds because of the
symmetry of the normal distribution and the probability is smaller if we require a
bound on the value of Δ̂2

i (Ni ), while Inequality (25) is an application of the Bonfer-
roni inequality.

We know that p0 ≤ α0, p1 ≤ α1, p2 ≤ α2 (Nelson and Staum 2006). So we can
conclude that the probability of correct selection is

Pr

{
μ̂ki (n) ≥ −tki Δ̂ki (n)̂τki (n),∀i �= k; μ̂k(Nk) > μ̂i (Ni ),∀i ∈ I

}

≥ 1− α0 − α1 − α2 = 1− α.
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Optimal Linear Combinations of Overlapping
Variance Estimators for Steady-State Simulation

Tûba Aktaran-Kalaycı, Christos Alexopoulos,
David Goldsman, and James R. Wilson

Abstract To estimate the variance parameter (i.e., the sum of covariances at all lags)
of a steady-state simulation output process, we formulate an optimal linear combi-
nation of overlapping variance estimators (OLCOVE). Each variance estimator is
computed from the same data set using one of the following methods: (i) overlap-
ping batch means (OBM); or (ii) standardized time series (STS) applied to overlap-
ping batches separately and then averaged over all such batches. Each estimator’s
batch size is a fixed real multiple (at least unity) of a base batch size, appropriately
rounded. The overall sample size is a fixed integral multiple of the base batch size.
Exploiting the control-variates method, we assign OLCOVE coefficients so as to
yield a minimum-variance estimator. We establish asymptotic properties of the bias
and variance of OLCOVEs computed from OBM or STS variance estimators as the
base batch size increases. Finally, we use OLCOVEs to construct confidence inter-
vals for both the mean and the variance parameter of the target process. An exper-
imental performance evaluation revealed the potential benefits of using OLCOVEs
for steady-state simulation analysis.

1 Introduction

In summarizing their recommendations on how to handle the problem of steady-
state simulation analysis, Kelton et al. (2007, p. 320) make the following extraordi-
nary statement.

Try to get out of doing a steady-state simulation altogether by convincing yourself (or
your patron) that the appropriate modeling assumptions really entail specific starting and
stopping conditions. . . . (and don’t come back here).

Although we do not disagree with this statement in its entirety, our experience has
led us to a different point of view. We have found that steady-state simulation
analysis is often required in the following situations: (i) the appropriate planning
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horizon is long (or unknown); (ii) the initial conditions of the system are subject to
uncertainty; (iii) the effects of initial conditions must be eliminated from considera-
tion; or (iv) the system needs to tolerate sustained exposure to worst-case conditions,
and we must estimate the long-run average system performance under the latter
conditions. Even the most casual inspection of recent volumes of the Proceedings
of the Winter Simulation Conference,

www.informs-sim.org/wscpapers.html ,

reveals that steady-state analysis is required in a variety of applications of large-
scale simulation to problems in finance, health care, logistics, manufacturing, tele-
communications, and transportation.

In this article we consider a univariate simulation-generated output process
{Yi : i = 1, 2, . . .} such that when the associated simulation model is in steady-
state operation, the target process is stationary with marginal cumulative distribution
function (c.d.f.) FY (y) = Pr{Yi ≤ y} for all real y and for i = 1, 2, . . . . Our work
is motivated by the familiar problem of computing accurate point and confidence-
interval estimators of the steady-state mean,

μ ≡ E[Yi ] =
∫ ∞

−∞
y dFY (y) .

If a single run of the simulation yields a time series {Yi : i = 1, 2, . . . , n} of length
n (also called the sample size), then the sample mean Ȳn ≡ n−1∑n

i=1 Yi is a natural
point estimator for μ.

To formulate a valid confidence-interval estimator for μ, we must ultimately esti-
mate the variance parameter,

σ 2 ≡ lim
n→∞ nVar

(
Ȳn
) =

∞∑
�=−∞

Cov(Yi ,Yi+�) . (1)

We assume the target process {Yi } has a nontrivial dependency structure exhibiting
short-range dependence so that 0 < σ 2 < ∞, and thus μ and σ 2 are well defined.
In most practical applications, the main obstacle to accurate estimation of the vari-
ance parameter is that the simulation-generated observations {Yi } are contaminated
by initialization bias and are correlated—in short, they fail to be independent and
identically distributed (i.i.d.) and thus do not constitute a random sample from the
corresponding c.d.f. FY (·).

Without the property that the {Yi } are i.i.d., the sample variance, S2
Y (n) ≡

(n − 1)−1∑n
i=1(Yi − Ȳn)2, can be a significantly biased estimator of σ 2, just as the

sample mean Ȳn can be a significantly biased estimator of μ. Unfortunately whereas
deleting the observations in a suitably chosen warm-up period can effectively elim-
inate the bias of the sample mean Ȳn as an estimator of μ, the sample variance
S2

Y (n) can still be a severely biased estimator of σ 2 even when the observations

www.informs-sim.org/wscpapers.html
http://www.informs-sim.org/wscpapers.html
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{Yi : i = 1, 2, . . . , n} are taken after the simulation is warmed up. The nub of the
problem is that the sample variance S2

Y (n) is only designed to estimate the steady-
state marginal variance

Var[Yi ] ≡ E
[
(Yi − μ)2

] = Cov(Yi ,Yi ) .

If the warmed-up (stationary) process {Yi } exhibits pronounced autocorrelations so
that Cov(Yi ,Yi+�) is nonzero when the lag � is nonzero, then the sample variance
fails to account properly for all but one of the terms in the series representation for
σ 2 appearing on the far right-hand side of Equation (1). Moreover if the covariances
at nonzero lags in Equation (1) are all positive and decline slowly as |�| → ∞
(a common occurrence for many responses of interest in heavily congested queue-
ing simulations), then we often have E

[
S2

Y (n)
] ! σ 2, so that the sample variance

grossly underestimates the variance parameter.
The preceding discussion can be summarized as follows: in general, using the

sample variance S2
Y (n) as an estimator of the variance parameter σ 2 can give a sub-

stantially misleading representation of the precision of simulation-based point and
confidence-interval estimators of both μ and σ 2. The cost of this misleading rep-
resentation might range from monetary losses (for example, an invalid confidence-
interval estimate of the long-run average cycle time for a product may result in
unfulfilled customer orders for that product) to loss of human life (for example,
an incorrect estimate of the variability of average ambulance-response times may
result in increased deaths of patients needing transport to a hospital), depending on
the nature of the simulation study.

The objective of our research is to develop new estimators for σ 2 with better
performance (that is, lower variance, lower bias, and lower mean squared error
(MSE)) than certain existing estimators in the literature. It is generally difficult
to determine a warm-up period (statistics clearing time, truncation point) beyond
which the simulation is (at least approximately) in steady-state operation so that
the observed time series {Yi : i = 1, 2, . . . , n} is (at least approximately) a real-
ization of a stationary process (Fishman 2001). Therefore once the simulation has
been warmed up, we are strongly motivated to perform a single run whose length n
beyond the truncation point is sufficiently large to ensure acceptable precision in the
estimation of both μ and σ 2. In particular, a single long run is generally preferable
to multiple independent replications with a proportionately smaller common run
length because of the difficulty and loss of sample information that is entailed in
deleting observations from a warm-up period within each replication (Alexopoulos
and Goldsman 2004). Given the output {Yi : i = 1, 2, . . . , n} of a prolonged run of
a simulation in steady-state operation, we seek to reuse that data set effectively so as
to obtain different estimates of σ 2 and finally to combine those estimators to obtain
an improved estimator of σ 2.

Suppose that the simulation-generated time series {Yi : i = 1, 2, . . . , n} is
initially organized into b adjacent nonoverlapping batches (subseries, subruns) of
a base batch size m, where b is a fixed integer with b > 1 so that the overall
sample size is n = bm. Given a prespecified type of variance estimator derived
from the method of standardized time series (STS) such as the area estimator or the
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Cramér–von Mises (CvM) estimator (Alexopoulos et al.2007a), we can form a new
estimator of σ 2 as follows:

• For a selected batch-size multiplier r (where r ≥ 1), compute the associated
batch size M(r ) = �rm�, the greatest integer not exceeding rm.

• For i = 1, 2, . . . , n − M(r ) + 1, form the i th overlapping batch of size M(r )
consisting of the observations {Yi+ j : j = 0, 1, . . . ,M(r )− 1}; and compute the
given variance estimator from this batch.

• Average the resulting variance estimators computed from each of the n−M(r )+1
overlapping batches.

In addition to these STS-type overlapping variance estimators, we can also compute
the classical overlapping batch means (OBM) variance estimator using the batch
size M(r ) (Meketon and Schmeiser 1984).

We assume that we have selected a number of different overlapping estimators
of the variance parameter, all of a single type (OBM, area, or CvM) but with dif-
ferent batch sizes; and we have calculated all these estimators of σ 2 from the same
simulation output {Yi : i = 1, 2, . . . , n}. We seek an optimal linear combination of
overlapping variance estimators (OLCOVE) as our final point estimator of σ 2. Stan-
dard regression techniques underlying the method of control variates (see Lavenberg
and Welch 1981) are used to determine the coefficients of the variance estimators
composing an OLCOVE so as to preserve low bias and minimize the variance of the
final estimator of σ 2.

Because of the bias structure of the individual variance estimators composing
an OLCOVE, we expect the bias of the OLCOVE to be smaller in magnitude than
that of each constituent estimator using the base batch size. We consider the asymp-
totic behavior of an OLCOVE as the base batch size m → ∞ with b fixed so
that the overall sample size n = bm → ∞. If the constituent estimators used to
construct an OLCOVE are all first-order unbiased for σ 2 (that is, each constituent
variance estimator has a bias that tends to zero faster than 1/m as m → ∞), then
that OLCOVE is also first-order unbiased. In any case, the OLCOVE will likely
have lower variance than its constituent estimators, even when some of the latter
estimators are correlated.

To complete our analysis of OLCOVEs, we proceed as follows:

(i) For each OBM or STS variance estimator of a given type and for a prespecified
vector of batch sizes expressed as rounded multiples of the base batch size m,
we establish the asymptotic joint distribution of the corresponding vector of
variance estimators of that type as m →∞ with b fixed.

(ii) For each vector of variance estimators constructed as in (i), we compute the
associated OLCOVE and derive its asymptotic bias and variance as m → ∞;
and we augment the theoretical large-sample properties of that OLCOVE with
empirical small-sample results obtained by applying it to some interesting test
problems.

(iii) For each OLCOVE computed as in (ii), we formulate a scaled chi-squared
approximation to its distribution and exploit this distribution to construct
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approximate confidence intervals for both μ and σ 2; moreover, we evaluate
the performance of these confidence intervals in each of the test problems used
in (ii).

The rest of this article is organized as follows. In Section 2, we summarize the
relevant background on overlapping variance estimators—specifically we discuss
the OBM, STS area, and STS CvM estimators. We establish the (asymptotic) theo-
retical properties of the proposed OLCOVEs in Section 3, where we also show how
to implement an OLCOVE to minimize its variance in a general setting. In Section
3, we also provide Monte Carlo results illustrating the performance of OLCOVEs
in the following test problems:

• A first-order autoregressive (AR(1)) process with lag-one correlation of 0.9; and
• The queue waiting times in an M/M/1 queueing system with traffic intensity

of 0.8.

(To avoid the problem of initialization bias, we sample the initial condition for each
of these test processes from the corresponding steady-state distribution; thus each
test process is stationary. Of course this is not typical of practical applications.)

Section 4 addresses the costs (that is, computational requirements) associated
with using OLCOVEs. In Section 5, we present a scaled chi-squared approximation
to the probability density function (p.d.f.) of an OLCOVE based on a technique that
is due to Satterthwaite (1941); and we use this approximation to construct approx-
imate confidence intervals for μ and σ 2. A Monte Carlo study involving the two
previously mentioned test problems is also presented in Section 5 to illustrate the
adequacy of our approximation to the p.d.f. of an OLCOVE as well as the empirical
coverage probabilities of our approximate confidence intervals for μ and σ 2. We
discuss the shortcomings and limitations of the OLCOVE technique in Section 6,
and finally in Section 7 we summarize the main findings of this work and provide
recommendations for future research.

Some preliminary Monte Carlo results on linear combinations of overlapping
area variance estimators are summarized in Aktaran-Kalaycı and Goldsman (2005)
and in Aktaran-Kalaycı et al. (2007c). Whereas Aktaran-Kalaycı et al. (2007a) and
Aktaran-Kalaycı et al. (2007b) present key theoretical properties of OLCOVEs that
are based exclusively on overlapping area estimators, in this article we extend the
development of OLCOVEs to encompass overlapping CvM estimators as well as
the classical OBM estimators.

2 Basic Concepts and Assumptions for Steady-State Simulation
Output Analysis

In this section, we introduce the notation used throughout this article; and we sum-
marize the main results on batch-means and STS variance estimators that form the
basis for our development of OLCOVEs.
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2.1 Nonoverlapping Batch Means (NBM)

When the data set {Yi : i = 1, 2, . . . , n} is organized into b nonoverlapping
batches of size m (so that n = mb), the i th nonoverlapping batch consists of the
observations

{Y(i−1)m+1,Y(i−1)m+2, . . . ,Yim} for i = 1, 2, . . . , b ;

and the corresponding batch mean is

Ȳi,m ≡ 1

m

m∑
j=1

Y(i−1)m+ j for i = 1, 2, . . . , b .

The NBM estimator for σ 2 is given by

N (b,m) ≡ m

b − 1

b∑
i=1

(
Ȳi,m − Ȳn

)2 = m

b − 1

( b∑
i=1

Ȳ 2
i,m − bȲ 2

n

)

(Fishman and Yarberry 1997).

2.2 Overlapping Batch Means (OBM)

In the data set {Yi : i = 1, 2, . . . , n}, the i th overlapping batch of size m consists of
the observations

{Yi ,Yi+1, . . . ,Yi+m−1} for i = 1, 2, . . . , n − m + 1 ;

and the corresponding batch mean is

Ȳ O
i,m ≡

1

m

m−1∑
j=0

Yi+ j for i = 1, 2, . . . , n − m + 1 . (2)

The OBM estimator for σ 2 is defined as

O(b,m) ≡ nm

(n − m + 1)(n − m)

n−m+1∑
i=1

(
Ȳ O

i,m − Ȳn

)2
(3)

(Meketon and Schmeiser 1984). As elaborated in subsequent sections of this article,
the OBM estimator has approximately the same bias but lower variance compared
with the variance of the NBM estimator.
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2.3 Standardized Time Series (STS)

The STS methodology (Schruben1983) has given rise to a large class of estimators
for σ 2. In this article, we limit the discussion to area and CvM estimators that use
batching and can be based on nonoverlapping or overlapping batches. The expected
value of a nonoverlapping STS estimator is the same as that of its overlapping coun-
terpart; but the variance of the latter is smaller than that of the nonoverlapped version
(Alexopoulos et al. 2007a, b).

We assume that the following Functional Central Limit Theorem (FCLT) holds
for the process {Yi : i = 1, 2, . . .}.
Assumption FCLT The sequence of random functions

Xn(t) ≡ �nt�( Ȳ�nt� − μ
)

σ
√

n
for t ∈ [0, 1] and n = 1, 2, . . . (4)

satisfies
Xn(·)=⇒

n →∞W(·) ,

where: W(·) is a standard Brownian motion process on [0, 1]; and =⇒
n →∞ denotes

weak convergence in D[0, 1], the space of functions on [0, 1] that are right-
continuous with left-hand limits, as n →∞. See also Billingsley (1968) and Glynn
and Iglehart (1990).

Similar to the original definition in Schruben (1983), the standardized time series
from overlapping batch i is the random function

T O
i,m(t) ≡

�mt�
(

Ȳ O
i,m − Ȳ O

i,�mt�
)

σ
√

m
for 0 ≤ t ≤ 1 and i = 1, 2, . . . , n − m + 1 ,

where for consistency with Equation (2), we define the following intermediate batch
means computed from overlapping batches of size m:

Ȳ O
i, j ≡

1

j

j−1∑
�=0

Yi+� for i = 1, 2, . . . , n − m + 1 and j = 1, 2, . . . ,m .

Alexopoulos et al.(2007a) show that, under Assumption FCLT,

σT O
�sm�,m(·) =⇒

m →∞ σBs,1(·) for fixed s ∈ [0, b − 1] , (5)

where: b ≡ n/m > 1 is a fixed ratio; and for r ∈ [1, b) and s ∈ [0, b − r ], we let
Bs,r (·) denote a Brownian bridge process on the unit interval,

Bs,r (t) ≡ t[W(s + r )−W(s)]− [W(s + tr )−W(s)]√
r

for t ∈ [0, 1] . (6)
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Moreover, two useful properties follow from Equation (5):

√
n
(
Ȳn − μ

)
is asymptotically σNor(0, 1) as n →∞ , (7)

and

√
n
(
Ȳn − μ

)
and σT O

1,n(·) are asymptotically independent as n →∞ . (8)

2.3.1 Area Estimator

We define the area estimator computed from overlapping batch i by

AO
i ( f ; m) ≡

[
1

m

m∑
k=1

f
(

k
m

)
σT O

i,m

(
k
m

)]2

for i = 1, 2, . . . , n − m + 1 ,

where f (t) is a user-specified weight function satisfying the condition

d2

dt2
f (t) is continuous at every t ∈ [0, 1] ,

Var
[∫ 1

0 f (t)B0,1(t) dt
]
= 1 .

⎫⎪⎬
⎪⎭

In this article, we consider the following weight functions: f0(t) ≡ √
12, f2(t) ≡√

840(3t2−3t+1/2), and fcos, j (t) =
√

8π j cos(2π j t), j = 1, 2, . . . , for t ∈ [0, 1].
The nonoverlapping (batched) area estimator for σ 2 is

A( f ; b,m) ≡ 1

b

b∑
i=1

AO
(i−1)m+1( f ; m)

(Goldsman et al. 1990, Schruben 1983), which is formed from the b adjacent,
nonoverlapping batches of size m.

The overlapping (batched) area estimator for σ 2, formed from all n − m + 1
overlapping batches of size m, is

AO( f ; b,m) ≡ 1

n − m + 1

n−m+1∑
i=1

AO
i ( f ; m)

(Alexopoulos et al.2007a).
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2.3.2 Cramér–von Mises (CvM) Estimator

The CvM estimator computed from overlapping batch i is

CO
i (g; m) ≡ 1

m

m∑
k=1

g
(

k
m

) [
σT O

i,m

(
k
m

)]2
for i = 1, 2, . . . , n − m + 1 ,

where g(t) is a user-specified weight function satisfying the condition

d2

dt2
g(t) is continuous at every t ∈ [0, 1] and

∫ 1

0
g(t)t(1− t) dt = 1 . (9)

In this paper, we consider the following weight functions: g0(t) ≡ 6 and g�2(t) ≡
−24+ 150t − 150t2 for t ∈ [0, 1].

The nonoverlapping (batched) CvM estimator for σ 2, formed from the b adja-
cent, nonoverlapping batches of size m, is

C(g; b,m) ≡ 1

b

b∑
i=1

CO
(i−1)m+1(g; m)

(Goldsman et al. 1999).
The overlapping (batched) CvM estimator for σ 2, formed from all n − m + 1

overlapping batches of size m, is

CO(g; b,m) ≡ 1

n − m + 1

n−m+1∑
i=1

CO
i (g; m) (10)

(Alexopoulos et al.2007a).

2.4 Key Asymptotic Properties of Selected Variance Estimators

Table 1 contains a summary of the key asymptotic properties for the variance esti-
mators considered so far; these properties are derived in the references cited for each
estimator. The quantity

γ ≡ −2
∞∑

k=1

kCov(Y1,Y1+k)

introduced in Table 1 is a measure of the dependence structure of {Yi }; see, for
example, Song and Schmeiser (1995). We see from the table, for example, that

E
[
AO( f0; b,m)

] = σ 2+ 3γ

m
+o
( 1

m

)
and Var

[
AO( f0; b,m)

] = 0.686σ 4

b
+o
(1

b

)
.
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Table 1 Approximate asymptotic bias and variance for batched estimators

Nonoverlapping m
γ

Bias b
σ 4 Var Overlapping m

γ
Bias b

σ 4 Var

A( f0; b,m) 3 2 AO( f0; b,m) 3 0.686

A( f2; b,m) o(1) 2 AO( f2; b,m) o(1) 0.819

A( fcos, j ; b,m) o(1) 2 AO( fcos,1; b,m) o(1) 0.793

C(g0; b,m) 5 0.8 CO(g0; b,m) 5 0.419

C(g�2; b,m) o(1) 1.729 CO(g�2; b,m) o(1) 0.777

N (b,m) 1 2 O(b,m) 1 1.333

3 Optimal Linear Combination of Overlapping Variance
Estimators (OLCOVE)

In this section, we derive the asymptotic covariance between pairs of overlapping
variance estimators of the same type that use different batch sizes—namely, pairs
of overlapping CvM estimators or pairs of OBM estimators. Comparable results for
pairs of overlapping area estimators are presented in Aktaran-Kalaycı et al. (2007a).
These covariances are essential for the construction of OLCOVEs.

3.1 Motivation

We introduce the idea underlying an OLCOVE using a generic overlapping estima-
tor for σ 2, denoted by VO(B,M), where: (i) the batch size M for the overlapping
batches used to compute VO(B,M) is a rounded multiple of the base batch size m;
and (ii) we take B ≡ n/M so that B M = bm = n, the total sample size from
which VO(B,M) is computed. To construct an OLCOVE using different variance
estimators of the same type as VO, we proceed as follows:

• For j = 1, 2, . . . , k, let r j ∈ [1, b) and take M j ≡ �r j m� as the j th batch
size, with the corresponding quantity B j ≡ �bm�/M j so that the total sample
size is B j M j = �bm�, and B j is the associated sample-size-to-batch-size ratio.
Calculate k overlapping estimators, VO(B1,M1),VO(B2,M2), . . . ,VO(Bk,Mk),
where we use the same data set {Yi : i = 1, 2, . . . , n} with a variety of different
integer batch sizes, M1, M2, . . . , Mk .

• Form a linear combination of these k estimators and scale appropriately. Use
standard regression techniques underlying the method of control variates (see
Lavenberg and Welch 1981) to determine the corresponding coefficients (multi-
pliers, scaling factors) that preserve low bias and minimize variance.

Let M ≡ [M1, M2, . . . , Mk] and B ≡ [B1, B2, . . . , Bk]. Further, let α ≡ [α1, α2,

. . . , αk−1] denote the vector of coefficients in the linear combination. Corresponding
to the variance estimator type VO and the vectors M, B, and α is the new estimator
of σ 2 given by the linear combination
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VLO(B, M,α) ≡
k−1∑
i=1

αiV O(Bi ,Mi )+
[

1−
k−1∑
i=1

αi

]
VO(Bk,Mk) . (11)

For j = 1, . . . , k, we have M j ≥ m because r j ≥ 1; hence, the expected val-
ues of the overlapping estimators in Table 1 suggest that

∣∣Bias
[
VLO(B, M, α)

]∣∣
might be smaller than

∣∣Bias
[
VO(b,m)

]∣∣. In addition, if the k estimators composing
VLO(B, M,α) are all first-order unbiased (i.e., their bias is of the order o(1/m)),
then VLO(B, M,α) will also be first-order unbiased. Furthermore, VLO(B, M,α)
will likely have lower variance, even if its constituent estimators are correlated.

Remark 1 In the subsequent development of OLCOVE properties, the various defi-
nitions and arguments will be formulated for the general case in which b is real (not
necessarily integer) and b > 1 so that the total sample size n = �bm�. This is done
because the arguments must be applied to each VO(Bi ,Mi ), in which case b and m
are replaced by Bi and Mi , respectively, for i = 1, . . . , k; and in general Bi is a real
number (not necessarily an integer) satisfying Bi > 1. This usage should not cause
any confusion.

Example 1 As a simple motivational example, we combine two overlapping estima-
tors—one based on batches of size m and the other on batches of size 2m so that
M = [m, 2m], B = [b, b/2], and α = [α] = α, a scalar constant; and then we have

VLO([b, b/2], [m, 2m], α) = αVO(b,m)+ (1− α)VO(b/2, 2m) .

If Bias
[
VO(b,m)

] .= δ/m for some constant δ, then

E
[
VLO([b, b/2], [m, 2m], α)

] = αE
[
VO(b,m)

]+ (1− α)E
[
VO(b/2, 2m)

]

.= σ 2 + (1+ α)δ

2m
. (12)

If α ∈ [−3, 1] and we ignore small-order terms, then we see that the bias of the
linear combination VLO([b, b/2], [m, 2m], α) is lower than that of the original over-
lapping estimator with batch size m. In fact, taking α = −1, we see the first-
order bias in (12) disappears entirely. The choice of α also affects the variance of
VLO([b, b/2], [m, 2m], α). Specifically,

Var
[
VLO([b, b/2], [m, 2m], α)

]

= α2 Var
[
VO(b,m)

]+ (1− α)2 Var
[
VO(b/2, 2m)

]

+ 2α(1− α) Cov
[
VO(b,m),VO(b/2, 2m)

]
. (13)

Our goal is to find α�, the value of the coefficient α that will minimize the
variance (13). To do this, we need to calculate the two variance terms on the
right-hand side of (13) as well as the covariance term. The covariance results
for overlapping area estimators are derived in Aktaran-Kalaycı et al. (2007a). In
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the following subsections, we tackle this task for overlapping CvM and OBM
estimators, respectively.

3.2 Covariance between Overlapping CvM Estimators

We define the estimator arising from a linear combination of overlapping CvM esti-
mators as

CLO(g; B, M,α) ≡
k−1∑
i=1

αiCO(g; Bi ,Mi )+
[

1−
k−1∑
i=1

αi

]
CO(g; Bk,Mk) ,

where the overlapping CvM estimator is defined by Equation (10). Motivated by the
discussion in Section 3.1, we will find an approximate expression for

cC (g; b,m; r1, r2)

≡ Cov
[
CO(g; �bm� / �r1m� , �r1m�), CO(g; �bm�/�r2m�, �r2m�)]

for r1, r2 ∈ [1, b) .

Definition 1. Let r ≡ [r1, . . . , rk] denote the vector of batch-size multipliers, and
let CO(g; B, r, M) denote the k × 1 vector whose j th component is CO(g; B j ,M j )
for j = 1, . . . , k. Similarly, let CO(g; b, r) denote the k × 1 vector whose j th com-
ponent is

CO
j (g; b, r j ) ≡ (b − r j )

−1
∫ b−r j

0
σ 2

[∫ 1

0
g(u)B2

s,r j
(u) du

]
ds

for j = 1, . . . , k, where the Brownian bridge Bs,r j (u) is defined in Equation (6).

Theorem 1 If Assumption FCLT and Equation (9) hold, then

CO(g; B, r, M)=⇒
m →∞CO(g; b, r) .

To prove Theorem 1, we first need the following definition to establish the asymp-
totic distribution of the random vector CO(g; B, r, M) as m →∞.

Definition 2 Let D[0, b] denote the space of functions on [0, b] that are right-
continuous and have left-hand limits. Let Λb denote the class of strictly increas-
ing, continuous mappings of [0, b] onto itself such that for every λ ∈ Λb, we
have λ(0) = 0 and λ(b) = b. If X, Z ∈ D[0, b], then the Skorohod metric
ρb(X, Z ) defining the “distance” between X and Z in D[0, b] is the infimum of
those positive ξ for which there exists a λ ∈ Λb such that supt∈[0,b] |λ(t)− t | ≤ ξ
and supt∈[0,b] |X (t)− Z [λ(t)]| ≤ ξ . (See Billingsley 1968 for more particulars.)
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Definition 3 Suppose that r ∈ [1, b) and g(·) satisfies (9). Associated with g(·) is
the overlapping CvM map ϑr : Z ∈ D[0, b] �→ ϑr (Z ) ∈ R given by

ϑr (Z ) ≡ 1

b − r

∫ b−r

0

∫ 1

0
g(u)

[
σΩr

Z ,s(u)
]2

du ds , (14)

where the bridging map Ωr : (Z , s) ∈ D[0, b] × [0, b − r ] �→ Ωr
Z ,s ∈ D[0, 1] is

defined by

Ωr
Z ,s(t) ≡ t[Z (s + r )− Z (s)]− [Z (s + tr )− Z (s)]√

r
for t ∈ [0, 1] .

Moreover, for m = 1, 2, . . . with M(r ) ≡ �rm� and B(r ) ≡ �bm�/M(r ), the
approximate (discrete) bridging map Ωr,m : (Z , s) ∈ D[0, b]× [0, b− r ] �→ Ω

r,m
Z ,s ∈

D[0, 1] is defined by

Ω
r,m
Z ,s(t) ≡ �M(r )t�

M(r )

√
m

M(r )

{
Z

(�sm� − 1+ M(r )

m

)
− Z

(�sm� − 1

m

)}

−
√

m

M(r )

{
Z

(�sm� − 1+ �M(r )t�
m

)
− Z

(�sm� − 1

m

)}

for t ∈ [0, 1], where �x� denotes the smallest integer not less than x (that is, the
ceiling of x). The associated discrete overlapping CvM map ϑr

m : Z ∈ D[0, b] �→
ϑr

m(Z ) ∈ R is given by

ϑr
m(Z ) ≡ (15)

1

[B(r )− 1]M(r )+ 1

[B(r )−1]M(r )+1∑
i=1

1

M(r )

M(r )∑
�=1

g
(

�
M(r )

)[
σΩ

r,m
Z , i/m

(
�

M(r )

)]2

.

Remark 2 Using Equation (10), we see from the definition of the overlapping CvM
estimator that

ϑr
m(Xm) = CO(g; B(r ),M(r )) .

Therefore, Theorem 1 is equivalent to

[
ϑr1

m (Xm), . . . , ϑrk
m (Xm)

]=⇒
m →∞

[
ϑr1 (W), . . . , ϑrk (W)

]
. (16)

To prove Equation (16), we first justify the assumptions of the generalized con-
tinuous mapping theorem (CMT) with the following proposition.

Proposition 1 If ϑr (·) and ϑr
m(·) are defined by (14) and (15), respectively, then

Pr
{
W ∈ D[0, b]− Dϑr

} = 1 ,
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where Pr{·} denotes Wiener measure and

Dϑr ≡
{

x ∈ D[0, b] : for some sequence {xm} ⊂ D[0, b] with lim
m→∞ ρb(xm, x)

= 0, the sequence {ϑr
m(xm)} does not converge to ϑr (x)

}
.

Sketch of Proof of Proposition 1 Although the proof of Proposition 1 is detailed in
Appendix A.2 of Aktaran-Kalaycı (2006), it can be summarized as follows. First, we
exploit the almost-sure continuity of W(u) at every u ∈ [0, b] and the convergence
of {xn} to W in D[0, b] so as to establish the following properties, each of which
holds with probability one:

lim
m→∞

∣∣Ωr,m
xm ,s(u)−Ω

r,m
W,s(u)

∣∣ = 0 for every (s, u) ∈ [0, b − r ]× [0, 1] ; (17)

Ω
r,m
W,s(u) is continuous at every (s, u) ∈ [0, b− r ]× [0, 1] for m = 1, 2, . . . ; (18)

lim
m→∞

∣∣Ωr,m
W,s(u)−Ωr

W,s(u)
∣∣ = 0 for every (s, u) ∈ [0, b − r ]× [0, 1] ; (19)

and

Ωr
W,s(u) is continuous at every (s, u) ∈ [0, b − r ]× [0, 1] . (20)

Properties (18)–(20) imply that with probability one,
{
g(u)Ωr,m

W,s(u) : m = 1, 2, . . .
}

is a uniformly bounded sequence of continuous functions of (s, u) ∈ [0, b − r ] ×
[0, 1]. Using the latter property and (17), we can prove that

lim
m→∞

∣∣ϑr
m(xm)− ϑr

m(W)
∣∣ = 0 with probability one. (21)

A similar analysis shows that with probability one, g(u)
[
Ωr

W,s(u)
]2

is continuous for
all (s, u) ∈ [0, b−r ]× [0, 1] and hence is Riemann integrable on [0, b−r ]× [0, 1].
Almost-sure Riemann integrability of g(u)

[
Ωr

W,s(u)
]2

immediately implies that

lim
m→∞

∣∣ϑr
m(W)− ϑr (W)

∣∣ = 0 with probability one. (22)

Combining (21) and (22) and applying the triangle inequality, we see that

lim
m→∞

∣∣ϑr
m(xm)− ϑr (W)

∣∣ = 0 with probability one. %&

Proof of Theorem 1 Proposition 1 can be applied to ϑr j (·) and ϑ
r j
m (·) for each j ∈

{1, 2, . . . , k} to conclude that if the sequence {xm} converges to W in D[0, b], then
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the vector-valued sequence
{[
ϑr1

m (xm), . . . , ϑrk
m (xm)

]
: m = 1, 2, . . .

}
converges to[

ϑr1 (W), . . . , ϑrk (W)
]

in R
k with probability one. Thus (16) follows from the gen-

eralized CMT since its assumptions are satisfied. %&
Now if we also assume that corresponding to the sequence (4), the vector-valued

process
{([
ϑr1

m (Xm)
]2
, . . . ,

[
ϑrk

m (Xm)
]2)

: m = 1, 2, . . .
}

is uniformly integrable,
then by our Theorem 1 and Theorem 5.4 of Billingsley (1968), we have

lim
m→∞ cC (g; b,m; r1, r2) = cC (g; b; r1, r2) (23)

≡ Cov
[
CO

1 (g; b, r1), CO
2 (g; b, r2)

]

= 2σ 4

(b − r1)(b − r2)

∫ b−r1

0

∫ b−r2

0

∫ 1

0

∫ 1

0
g(t)g(t ′)Cov2

[
Bu,r1 (t),Bv,r2 (t ′)

]

× dt dt ′ dv du .

The theorem, along with a great deal of algebra involving (23), lets us make the
necessary covariance calculations (see Appendix A.6 of Aktaran-Kalaycı 2006). We
illustrate the covariance calculations with several examples.

Example 2 For 1 ≤ r2 ≤ r1 and r1 + r2 ≤ b, we have

cC (g0; b; r1, r2)

= r2
2 (−280r3

1 + 196r2
1 r2 − 12r1r2

2 − 19r3
2 + 4b(70r2

1 − 63r1r2 + 15r2
2 ))

210(b − r1)(b − r2)r3
1

.= 2r2
2 (70r2

1 − 63r1r2 + 15r2
2 )σ 4

105br3
1

(for b " r1, r2) .

Example 3 For 1 ≤ r2 ≤ r1 ! b, we have

cC (g�2; b; r1, r2)
.= 2r3

2 (11,286r3
1 − 19,140r2

1 r2 + 11,825r1r2
2 − 2,625r3

2 )σ 4

3,465br5
1

.

Remark 3 Following a similar analysis, we can obtain the covariance result analo-
gous to (23) for overlapping area estimators,

cA( f ; b; r1, r2)

≡ lim
m→∞Cov

[
AO( f ; �bm� / �r1m� , �r1m�),AO( f ; �bm�/�r2m�, �r2m�)]

= 2σ 4

(b − r1)(b − r2)

∫ b−r1

0

∫ b−r2

0

{∫ 1

0

∫ 1

0
f (t) f (t ′)Cov

[
Bu,r1 (t),Bv,r2 (t ′)

]

× dt dt ′
}2

dv du ;
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see Section 3.2.3 in Aktaran-Kalaycı (2006). Then for 1 ≤ r2 ≤ r1 ! b, we can
compute that

cA( f0; b; r1, r2)
.= 6r2

2 (7r2
1 − 3r2

2 )σ 4

35r3
1 b

and

cA( f2; b; r1, r2)
.= 7(3,003r5

1 − 3,250r4
1 r2 + 875r2

1 r3
2 − 126r5

2 )r3
2σ

4

4,290 r7
1 b

.

Example 4 We use results from Table 1 and Example 2 to obtain

Var
[
CLO(g0; [b, b/3], [m, 3m], α)

]

= α2 Var
[
CO(g0; b,m)

]+ (1− α)2 Var
[
CO(g0; b/3, 3m)

]

+ 2α(1− α) cC (g0; b,m; 3, 1)

.= α2 44σ 4

105b
+ (1− α)2 44σ 4

35b
+ 2α(1− α)

304σ 4

945b

for large b as m →∞. This quantity is minimized by taking α� = 0.9057, whence
Var
[
CLO(g0; [b, b/3], [m, 3m], α�)

] .= 0.410σ 4/b, which is a modest improve-

ment compared to Var
[
CO(g0; b,m)

] .= 0.419σ 4/b from Table 1.

Example 5 From Example 3, we have

Var
[
CLO(g�2; [b, b/3], [m, 3m], α)

]

= α2 Var
[
CO(g�2; b,m)

]+ (1− α)2 Var
[
CO(g�2; b/3, 3m)

]

+2α(1− α) cC (g�2; b,m, 3, 1)

.= α2 2,692σ 4

3,465b
+ (1− α)2 2,692σ 4

1,155b
+ 2α(1− α)

5,248σ 4

13,365b

for large b as m → ∞. This variance is minimized if α� = 0.8345, and then
Var
[
CLO(g�2; [b, b/3], [m, 3m], α�)

] .= 0.713σ 4/b, which compares favorably to

Var
[
CO(g�2; b,m)

] .= 0.777σ 4/b from Table 1.

3.3 Covariance between OBM Estimators

We define the estimator arising from the linear combination of OBM estimators,

OLO(B, M,α) ≡
k−1∑
i=1

αiO(Bi ,Mi )+
[

1−
k−1∑
i=1

αi

]
O(Bk,Mk) ,



Linear Combinations of Overlapping Variance Estimators 307

where the OBM estimator is defined by Equation (3) (see also Pedrosa and Schmeiser
1993). In this section, we aim to find an approximate expression for

cO (b,m; r1, r2) ≡ Cov
[
O(�bm�/�r1m�, �r1m�),O(�bm�/�r2m�, �r2m�)] .

Definition 4 Recall r , M, and B from Definition 1. Let O(B, r, M) denote the
k × 1 vector whose j th component is O(B j ,M j ) for j = 1, . . . , k. Similarly, let
O(b, r) denote the k × 1 vector whose j th component is

O j (b, r j ) ≡ bσ 2

r j (b − r j )2

∫ b−r j

0

[
W(t + r j )−W(t)− r jW(b)/b

]2
dt

for j = 1, . . . , k.

Theorem 2 If Assumption FCLT holds, then

O(B, r, M) =⇒
m →∞ O(b, r) .

To establish the asymptotic distribution of O(B, r, M) as m → ∞, we need the
following definitions.

Definition 5 Let r ∈ [1, b) and define the differencing map Qr : Z ∈ D[0, b] �→
Qr

Z ∈ D[0, b − r ] by

Qr
Z (s) ≡ Z (s + r )− Z (s)− r Z (b)/b√

r
for s ∈ [0, b − r ] .

Definition 6 We define the simple overlapping map Υ r : Z ∈ D[0, b] �→ Υ r (Z ) ∈
R as follows:

Υ r (Z ) ≡ b

(b − r )2

∫ b−r

0

[
σ Qr

Z (s)
]2

ds . (24)

Moreover, for m = 1, 2, . . . with M(r ) ≡ �rm� and B(r ) ≡ �bm� /M(r ), we also
define the approximate (discrete) differencing map Qr,m : Z ∈ D[0, b] �→ Qr,m

Z ∈
D[0, b − r ] by

Qr,m
Z (s) ≡

√
m

M(r )

{
Z

(�sm� − 1+ M(r )

m

)
− Z

(�sm� − 1

m

)}

−
√

m M(r )

�bm� Z

(�bm�
m

)
(25)

for s ∈ [0, b− r ] and the associated discrete overlapping map Υ r
m : Z ∈ D[0, b] �→

Υ r
m(Z ) ∈ R by
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Υ r
m(Z ) ≡ (26)

�bm� σ 2

[ �bm� − M(r )+ 1
][ �bm� − M(r )

]
�bm�−M(r )+1∑

i=1

{
Qr,m

Z (i/m)
}2
,

if �bm� > M(r ), and Υ r
m(Z ) ≡ 0 if �bm� = M(r ).

Remark 4 In view of Equations (4) and (25), we have

Qr,m
Xm

(i/m) = σ−1
√

M(r )
[
Ȳ O

i,M(r ) − Ȳ�bm�
]

for i = 1, . . . , �bm�− M(r )+ 1 and m = 1, 2, . . . . In this case, it follows from the
definition of the OBM estimator (Equation 3) that

Υ r
m(Xm) = O[B(r ),M(r )] (provided �bm� > M(r )) .

In this case, Theorem 2 is equivalent to

[
Υ r1

m (Xm), . . . , Υ rk
m (Xm)

]=⇒
m →∞

[
Υ r1 (W), . . . , Υ rk (W)

]
. (27)

We seek to apply the generalized CMT to prove Equation (27). Similar to the devel-
opment in Section 3.2, we first justify the hypotheses of the generalized CMT with
Proposition 2.

Proposition 2 If Υ r (·) and Υ r
m(·) are defined by Equations (24) and (26), respec-

tively, then

Pr
{
W ∈ D[0, b]− DΥ r

} = 1 , (28)

where Pr{·} denotes Wiener measure and

DΥ r ≡
{

x ∈ D[0, b] : for some sequence {xm} ⊂ D[0, b] with lim
m→∞ ρb(xm, x)

= 0, the sequence {Υ r
m(xm)} does not converge to Υ r (x)

}
.

Sketch of Proof of Proposition 2 Although the proof of Proposition 2 is detailed in
Appendix A.3 of Aktaran-Kalaycı (2006), it can be summarized as follows. First we
exploit the almost-sure continuity of W(u) at every u ∈ [0, b] and the convergence
of {xn} to W in D[0, b] so as to establish the following properties, each of which
holds with probability one:

lim
m→∞

∣∣Qr,m
xm

(s)−Qr,m
W (s)

∣∣ = 0 for every s ∈ [0, b − r ] ; (29)

Qr,m
W (s) is continuous at every s ∈ [0, b − r ] for m = 1, 2, . . . ; (30)
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lim
m→∞

∣∣Qr,m
W (s)−Qr

W (s)
∣∣ = 0 for every s ∈ [0, b − r ] ; (31)

and

Qr
W (s) is continuous at every s ∈ [0, b − r ] . (32)

The almost-sure properties (30)–(32) and the uniform continuity of W on [0, b]
imply that with probability one,

{
Qr,m

W (s) : m = 1, 2, . . .
}

is a uniformly bounded
sequence of functions on [0, b − r ]. The latter almost-sure uniform-boundedness
property and (29) imply that

lim
m→∞

∣∣Υ r
m(xm)− Υ r

m(W)
∣∣ = 0 with probability one. (33)

From (32) we see that with probability one,
[
Qr

W (s)
]2

is Riemann integrable on
[0, b − r ]. It follows immediately that

lim
m→∞

∣∣Υ r
m(W)− Υ r (W)

∣∣ = 0 with probability one. (34)

Combining (33) and (34) and applying the triangle inequality, we see that

lim
m→∞

∣∣Υ r
m(xm)− Υ r (W)

∣∣ = 0 with probability one. %&

Proof of Theorem 2 Assume that the sequence {xm} converges to W in D[0, b].
Combining Equations (27) and (28), we see that for each j ∈ {1, 2, . . . , k}, the
random variable Υ

r j
m (xm) converges to Υ r j (W) with probability one as m → ∞

by the generalized CMT. It follows that the corresponding vector-valued sequence{[
Υ r1

m (xm), . . . , Υ rk
m (xm)

]
: m = 1, 2, . . .

}
converges to

[
Υ r1 (W), . . . , Υ rk (W)

]
in

R
k with probability one. Thus the generalized CMT yields the result. %&
If the vector-valued process

{ (
[Υ r1

m (Xm)]2, . . . , [Υ rk
m (Xm)]2

)
: m = 1, 2, . . .

}
is

uniformly integrable, then our Theorem 2 and Theorem 5.4 of Billingsley (1968)
imply

lim
m→∞ cO (b,m; r1, r2) = cO (b; r1, r2) (35)

≡ 2b2r1r2σ
4

(b − r1)2(b − r2)2

∫ b−r2

0

∫ b−r1

0
G(x, y) dx dy ,

where

G(x, y) ≡
[

min(x + r1, y + r2)−min(x + r1, y)−min(x, y + r2)+min(x, y)

r1r2
− 1

b

]2
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for all (x, y) ∈ R
2. After a series of calculations involving Equation (35), detailed in

Appendix A.7 of Aktaran-Kalaycı (2006), we can show that for r1, r2 ∈ [1, b − 1],
such that r2 ≤ r1, r1 + r2 ≤ b, and 2r1 − r2 ≤ b,

cO (b; r1, r2)

σ 4
(36)

= 2r2[b3(3r1 − r2)+ b2(7r1r2 − 9r2
1 − 5r2

2 )+ 3br1(3r2
1 − 5r1r2 + 4r2

2 )]

3(b − r1)2(b − r2)2r1

− 3r2
1 (r1 − r2)(r1 − 2r2)

3(b − r1)2(b − r2)2r1
.

Remark 5 When b is large, Equation (36) gives

cO (b; r1, r2)
.= 2(3r1 − r2)r2σ

4

3r1b
,

which is the same as Equation (24) in Pedrosa and Schmeiser (1993).

Example 6 From Equation (13) and Remark 5, we have

Var
[
OLO([b, b/2], [m, 2m], α)

]

= α2 Var
[
O(b,m)

]+ (1− α)2 Var
[
O(b/2, 2m)

]+ 2α(1− α) cO (b,m; 2, 1)

.= α2 4σ 4

3b
+ (1− α)2 8σ 4

3b
+ 2α(1− α)

5σ 4

3b
,

for large b and m → ∞. This quantity is minimized by taking α� = 1.5; and then
we obtain Var

[
OLO([b, b/2], [m, 2m], α�)

] .= 7σ 4/(6b), which compares well to
Var
[
O(b,m)

] .= 4σ 4/(3b).

Example 7 To enable exact calculations for the covariance results of the previous
sections, suppose that the Yi ’s are i.i.d. Nor(0, 1). Of course, the sample variance
S2

Y (n) is the best estimator for σ 2 in this situation; but we ignore this fact temporarily
in order to check if the OLCOVE estimators perform as advertised. Specifically,
we calculate cA( f ; b; r1, r2), cC (g; b; r1, r2), and cO (b; r1, r2) analytically and find
that the exact calculations match up perfectly with the corresponding results from
Remark 3, Sections 3.2 and 3.3. For complete details, see Appendices A.8, A.9, and
A.10 in Aktaran-Kalaycı (2006).

3.4 General Linear Combinations of Overlapping Variance
Estimators

We consider the general linear combination (11) of k overlapping estimators with
r1, r2, . . . , rk ≥ 1; and we take αk ≡ 1 −∑k−1

i=1 αi so that
∑k

i=1 αi = 1. As in
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Section 3.1, suppose Bias
[
VO(b,m)

] = δ/m + o(1/m) for some constant δ. Then

E
[
VLO(B, M,α)

] = σ + δ
k∑

i=1

αi

Mi
+ o(1/m) (37)

and

Var
[
VLO(B, M,α)

] =
k∑

i=1

α2
i Var

[
VO(Bi ,Mi )

]

+ 2
k∑

i=2

i−1∑
j=1

αiα j Cov
[
VO(Bi ,Mi ),VO(B j ,M j )

]
.

As discussed in Section 3.1, one can choose the coefficients {αi } in (37) to produce
an estimator VLO(B, M, α) whose first-order bias is less than that of the original
overlapping estimator using batches of size m; but this may cause increased estima-
tor variance (see Examples 4 and 6). One can also select a weight function so that the
OLCOVE is first-order unbiased. In any case, we henceforth assume that the base
batch size m is large enough to ensure negligible bias for the estimator VLO(B, M,

α); and then we proceed to find the value of the vector α that minimizes variance.
For large b and m → ∞, we can minimize Var

[
VLO(B, M,α)

]
subject to

the constraint that
∑k

i=1 αi = 1 by adopting the perspective of the method of
control variables (see Lavenberg and Welch 1981). We have the “response” Z ≡
VO(Bk,Mk) and the “control vector” C ≡ [C1,C2, . . . ,Ck−1] with j th element
C j ≡ VO(Bk,Mk) − VO(B j ,M j ) for j = 1, 2, . . . , k − 1. Let 0k−1 denote the
1× (k − 1) vector of zeros. Because E[C] → 0k−1 as m →∞, we see that

VLO(B, M,α) = Z − αCT

has the form of a control-variate estimator when the base batch size m is sufficiently
large; and thus we can use standard regression techniques to determine the value α�

that minimizes Var[Z−αC] asymptotically as m →∞. In particular, if ΣC denotes
the asymptotic variance-covariance matrix of C and if σ Z C denotes the 1× (k − 1)
vector whose j th element is the asymptotic covariance Cov[Z ,C j ] as m →∞, then
the asymptotically optimal control-coefficient vector is given by

α� = σ Z CΣ−1
C .

Now that we have the machinery to obtain the optimal coefficients {α�i } in
(11), we compute the variance-optimal estimators from linear combinations of
overlapping CvM estimators or OBM estimators. The results are presented in
Tables 2 and 3; the corresponding results for OLCOVEs formed from overlapping
area estimators are presented in Aktaran-Kalaycı et al. (2007a).
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Table 2 Approximate asymptotic performance of variance-optimal estima-
tors of the form CLO(g; B, M,α�)

g0 g�2

k M m
γ

Bias b
σ 4 Var m

γ
Bias b

σ 4 Var

1 [m] 5.00 0.419 o(1) 0.777
2 [m, 2m] 4.90 0.418 o(1) 0.756
3 [m, 2m, 3m] 4.86 0.399 o(1) 0.701
4 [m, 2m, 3m, 4m] 4.82 0.397 o(1) 0.696
5 [m, 2m, . . . , 5m] 4.78 0.394 o(1) 0.685
10 [m, 2m, . . . , 10m] 4.74 0.390 o(1) 0.673
20 [m, 2m, . . . , 20m] 4.72 0.388 o(1) 0.667

Table 3 Approximate asymptotic performance of variance-optimal estima-
tors of the form OLO(B, M,α�)

k M m
γ

Bias b
σ 4 Var

1 [m] 1 1.333
2 [m, 2m] 1.25 1.167
3 [m, 2m, 3m] 1.267 1.156
5 [m, 2m, . . . , 5m] 1.268 1.155
20 [m, 2m, . . . , 20m] 1.279 1.155

3 [m, 1.5m, 2m] 1.167 1.156
7 [m, 1.5m, . . . , 4m] 1.168 1.155
39 [m, 1.5m, . . . , 20m] 1.168 1.155

41 [m, 1.05m, . . . , 2m] 1.021 1.155
381 [m, 1.05m, . . . , 20m] 1.021 1.155

The estimator CLO(g0; B, M,α�) has bias of the form ψγ/m, where the con-
stant ψ decreases from 5.00 to 4.72 as we add up to 20 terms to the linear
combination. By contrast, CLO(g�2; B, M,α�) has bias of the form o(1/m). Fur-
thermore, as we add more terms to these OLCOVEs, the “standardized” variance
bσ−4Var

[
CLO(g0; B, M,α�)

]
decreases from 0.419 to 0.388 (about a 9% reduc-

tion), while that of CLO(g�2; B, M,α�) decreases from 0.777 to 0.667 (about a 15%
reduction). Thus, we have the familiar bias-variance trade-off: CLO(g0; B, M,α�)
has higher bias but lower variance than CLO(g�2; B, M,α�).

We also see that as we augment M from the scalar [m] to the 20-dimensional vec-
tor [m, . . . , 20m], the “standardized” variance bσ−4Var

[
OLO(B, M,α�)

]
decreases

from 1.333 to 1.155 (about a 14% reduction) while the corresponding “standard-
ized” bias mγ−1Bias

[
OLO(B, M,α�)

]
increases from 1 to 1.279. This bias increase

is caused by the coefficients used in the linear combination, which is undesirable.
For this reason, we try different batch-size sets in an attempt to reduce the bias.
For example, when M changes from the three-dimensional vector [m, 1.5m, 2m] to
the 39-dimensional vector [m, 1.5m, . . . , 20m], the bias actually increases slightly
from 1.167 to 1.168; and the variance decreases slightly from 1.156 to 1.155.
When M changes from the 41-dimensional vector [m, 1.05m, . . . , 2m] to the 381-
dimensional vector [m, 1.05m, . . . , 20m], the bias and variance of OLO(B, M,α�)
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stay fixed around 1.021 and 1.155, respectively. In comparison with the conventional
OBM estimator, the latter results represent a 14% decrease in variance and a 2%
increase in bias.

3.5 Monte Carlo Study

In the previous sections, we established some (asymptotic) analytical properties of
OLCOVEs. In this section, we summarize the results of Monte Carlo studies on
these estimators to see if they perform as advertised in practice. More specifically,
we estimate the expected values and variances of various OLCOVEs; and then we
compare the empirical results with our analytical results when those OLCOVEs are
applied to the following test processes:

• The first test process is a first-order autoregressive (AR(1)) process, Yi = φYi−1

+ εi , for i = 1, 2, . . . , where: |φ| < 1; the εi ’s are i.i.d. Nor(0, 1 − φ2); and
Y0 ∼ Nor(0, 1) so that {Yi : i = 1, 2, . . .} is stationary.

• The second test process is an M/M/1 queue-waiting-time process, where: the
interarrival times are i.i.d. exponential with mean 1/λ; the service times are i.i.d.
exponential with mean 1/ω; and the traffic intensity ρ ≡ λ/ω < 1. To ensure
that {Yi : i = 1, 2, . . .} is stationary, we take Y1 = 0 with probability 1 − ρ,
and we sample Y1 from an exponential distribution having mean 1/(ω − λ) with
probability ρ.

For the AR(1) process, we take φ = 0.9, and for the M/M/1 queue-waiting-time
process, we take λ = 0.8 and ω = 1.0 so that ρ = 0.8. It can be shown that
the steady-state variance parameters for these AR(1) and M/M/1 processes are
σ 2 = 19 and 1,976, respectively; see, for example, Alexopoulos et al. (2007b).

Table 4 summarizes the Monte Carlo performance results for the variance esti-
mators under consideration when those estimators are applied to the selected AR(1)
and M/M/1 processes. All entries in the table are based on 10,000 independent
replications using b = 20, various values of m, and batch-size vectors M i ≡
[M(1), . . . ,M(i)], where M(i) ≡ im for i = 1, 2, 3, 5. Common random numbers
were employed whenever possible. The last two columns in Table 4 provide the
exact asymptotic expected values and variances of the selected variance estimators
as m → ∞. In Table 4, we let Ê and V̂ar respectively denote the sample mean and
variance of the 10,000 independent replications of each selected estimator of σ 2.

From the experimental results displayed in Table 4, we concluded that the
expected values of all selected variance estimators converged to σ 2 as m increased,
in accordance with the theory. Moreover for the AR(1) process, the estimated
variance of each selected estimator of σ 2 converged to its theoretical (asymp-
totic) value relatively quickly as m became large. The analogous results for the
M/M/1 queue-waiting-time process exhibited slower convergence to their asymp-
totic values. This behavior was observed for all the variance estimators under
consideration—OLCOVEs as well as the classical OBM estimator.
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Table 4 Estimated performance of OLCOVEs based on area, CvM, or OBM variance estimators

(a) AR(1) process with φ = 0.9 and σ 2 = 19

m = 256 m = 512 m = 1,024 m →∞
Ê V̂ar Ê V̂ar Ê V̂ar E Var

AO( f0; b,m) 16.92 11.90 17.95 12.76 18.44 12.73 19.00 12.81
ALO( f0; B, M2,α

�) 17.05 11.58 18.02 12.31 18.47 12.28 19.00 12.29
ALO( f0; B, M3,α

�) 17.08 11.21 18.04 11.95 18.48 11.93 19.00 12.05
ALO( f0; B, M5,α

�) 17.15 11.04 18.08 11.71 18.49 11.65 19.00 11.88

AO( f2; b,m) 18.15 14.21 18.75 15.27 18.89 15.22 19.00 15.38
ALO( f2; B, M2,α

�) 18.23 13.72 18.79 14.60 18.90 15.59 19.00 14.73
ALO( f2; B, M3,α

�) 18.25 12.95 18.79 13.75 18.89 13.67 19.00 13.86
ALO( f2; B, M5,α

�) 18.27 12.67 18.79 13.44 18.89 13.31 19.00 13.53

CO(g0; b,m) 15.76 7.30 17.27 7.58 18.12 7.77 19.00 7.56
CLO(g0; B, M2,α

�) 15.81 7.30 17.30 7.57 18.13 7.77 19.00 7.55
CLO(g0; B, M3,α

�) 15.85 7.00 17.33 7.24 18.15 7.49 19.00 7.20
CLO(g0; B, M5,α

�) 15.90 6.94 17.35 7.19 18.15 7.42 19.00 7.11

CO(g�2; b,m) 18.06 13.36 18.68 13.85 18.88 14.38 19.00 14.02
CLO(g�2; B, M2,α

�) 18.16 13.18 18.71 13.57 18.88 14.02 19.00 13.65
CLO(g�2; B, M3,α

�) 18.17 12.17 18.72 12.72 18.88 13.00 19.00 12.54
CLO(g�2; B, M5,α

�) 18.18 12.01 18.73 12.51 18.89 12.84 19.00 12.36

O(b,m) 18.22 25.14 18.61 26.31 18.82 26.60 19.00 25.56
OLO(B, M2,α

�) 18.09 22.47 18.52 23.09 18.77 23.01 19.00 21.48
OLO(B, M5,α

�) 18.08 22.27 18.53 22.95 18.77 22.87 19.00 21.28

(b) M/M/1 waiting-time process with ρ = 0.8 and σ = 1,976; all variance entries ×1,000

m = 4,096 m = 8,192 m = 16,278 m = 32,768 m →∞
Ê V̂ar Ê V̂ar Ê V̂ar Ê V̂ar E Var

AO( f0; b,m) 1,931 642 1,935 381 1,958 267 1,971 206 1,976 139
ALO( f0; B, M2,α

�) 1,935 645 1,939 378 1,960 264 1,972 202 1,976 135
ALO( f0; B, M3,α

�) 1,936 640 1,939 365 1,961 260 1,971 198 1,976 130
ALO( f0; B, M5,α

�) 1,937 642 1,940 375 1,962 259 1,972 195 1,976 128

AO( f2; b,m) 1,993 738 1,967 428 1,975 298 1,979 235 1,976 166
ALO( f2; B, M2,α

�) 1,993 740 1,970 421 1,975 297 1,979 229 1,976 159
ALO( f2; B, M3,α

�) 1,993 724 1,970 413 1,975 281 1,979 220 1,976 150
ALO( f2; B, M5,α

�) 1,993 724 1,970 412 1,976 282 1,979 216 1,976 146

CO(g0; b,m) 1,859 451 1,913 287 1,954 214 1,967 149 1,976 82
CLO(g0; B, M2,α

�) 1,861 453 1,914 287 1,954 214 1,967 149 1,976 82
CLO(g0; B, M3,α

�) 1,862 453 1,915 284 1,955 211 1,968 146 1,976 78
CLO(g0; B, M5,α

�) 1,864 454 1,916 285 1,955 210 1,968 145 1,976 77

CO(g�2; b,m) 1,946 620 1,967 417 1,984 299 1,981 224 1,976 152
CLO(g�2; B, M2,α

�) 1,942 679 1,967 413 1,983 293 1,981 222 1,976 148
CLO(g�2; B, M3,α

�) 1,941 679 1,967 404 1,985 285 1,982 212 1,976 137
CLO(g�2; B, M5,α

�) 1,941 678 1,967 404 1,984 282 1,982 210 1,976 134

O(b,m) 1,971 820 1,968 533 1,978 415 1,973 342 1,976 277
OLO(B, M2,α

�) 1,967 786 1,964 495 1,975 382 1,973 312 1,976 245
OLO(B, M5,α

�) 1,967 786 1,964 492 1,978 379 1,973 310 1,976 242
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From Table 4, we also observed that the bias of each STS-based OLCOVE had
magnitude no larger than that of the individual estimators composing the OLCOVE.
On the other hand, the bias of OBM-based OLCOVEs sometimes appeared to be
worse than that of some of the individual estimators composing the OLCOVE. This
seemingly anomalous behavior is also evident in Tables 2 and 3. Finally from Table
4, we found that the expected values of the various area estimators with weight
function f2(·) and the various CvM estimators with weight function g�2(·) converged
to σ 2 much faster than did the expected values of the other estimators of σ 2. Overall,
the various CvM estimators with weight function g0(·) had the poorest performance
in terms of bias. For both test processes, as m became large, each OLCOVE eventu-
ally achieved lower variance than was achieved by any of the estimators composing
the OLCOVE. All in all, the observed performance of the OLCOVEs agreed with
the asymptotic results developed in Section 3.

4 Efficiency Analysis

In the previous sections, we introduced new linear combinations of overlapping
estimators for the variance parameter of a stationary simulation output process. We
have shown analytically and experimentally that linear combinations improve the
performance of the estimators. Natural concerns that arise at this point are: What is
the cost of this improved performance? And is the improvement actually worth such
a cost?

The purpose of this section is to address the costs (i.e., computational
requirements) associated with OLCOVEs. Alexopoulos et al. (2007a) find that for a
simulation-generated time series of length n, all overlapping estimators considered
in this article have O(n) computational complexity, which is the same order of mag-
nitude as that of NBM, computationally the simplest estimator. Then it follows that
OLCOVEs also have O(n) computational complexity; and so linear combinations
do not cause a substantial increase in the computational requirements.

In practice, an OLCOVE will require greater computation time than the sum of
the computation times of its constituent estimators. Here, we are interested in the
increase in the actual computation times, as opposed to theoretical computational
complexity. Using a Monte Carlo example, we show that linear combinations of
overlapping STS estimators improve the computational efficiency when compared
with their constituent overlapping STS estimators. The Monte Carlo study we use
is from Alexopoulos et al. (2007c), where n = 160,000 observations are generated
from the waiting-time process of an M/M/1 queue with 80% traffic intensity.

We choose a base batch size m = 4,000 and consider OLCOVEs with three dif-
ferent batch-size vectors: M (1) ≡ [m], M (2) ≡ [m, 2m], and M (4) ≡ [m, 2m, 4m].
For these batch-size vectors, we find the bias, variance, and MSE of overlapping area
and CvM OLCOVEs using several weight functions (see Section 3.4 of Aktaran-
Kalaycı 2006 for complete details). Using Table 1 from Alexopoulos et al. (2007c),
we also find the computation times for the selected OLCOVEs. The total computa-
tion time C for each estimator is the sum of two parts,
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C ≡ Csim + Cest ,

as follows:

(i) We let Csim denote the time to generate 160,000 observations from the M/M/1
queue-waiting-time process via an Arena simulation model (Kelton et al. 2007).
Using an IBM T43p laptop with an Intel Pentium M processor having 1.00 GB
of memory and a processor speed of 2.13 GHz, Alexopoulos et al. (2007c) find
the average execution time for this model is Csim = 4.22 seconds.

(ii) We let Cest denote the time to compute (on the same laptop computer) the vari-
ance estimator from the 160,000 observations of the M/M/1 queue-waiting-
time process that are already stored in computer memory.

We present our findings for the OLCOVEs based on CvM estimators in Table 5;
similar results are reported for OLCOVEs based on overlapping area estimators in
Aktaran-Kalaycı et al. (2007c). Specifically, we report bias, variance, MSE, and
average computation times of these OLCOVEs. We also give two relative computa-
tional efficiency indices:

QV ≡ (CLOVarLO)/(COVarO)

and

QM ≡ (CLOMSELO)/(COMSEO) ,

where CO, VarO, and MSEO denote the performance characteristics of an overlap-
ping estimator and CLO, VarLO, and MSELO denote the performance characteristics
of the corresponding OLCOVE.

From Table 5, we concluded that OLCOVEs yielded QV and QM values smaller
than 1, except for those involving CLO(g0; B, M (2),α

�). Thus, the increase in cost
(computation time) for the linear-combination estimators was offset by the improved
performance (the decrease in variance and bias). This performance-evaluation
experiment showed that net improvements in computational efficiency were achieved

Table 5 Performance and computation times of various OLCOVEs for the M/M/1
queue-waiting-time process with ρ = 0.8

CLO(g0; B, M,α�) CLO(g�2; B, M,α�)

M (1) M (2) M (4) M (1) M (2) M (4)

Cest 0.053 0.104 0.168 0.057 0.117 0.204
C 4.273 4.324 4.388 4.277 4.337 4.424
|Bias| 120.8 118.6 116.7 15.2 13.6 13.4
Var 40,900 40,803 38,753 75,846 73,796 67,940
MSE 55,493 54,872 52,359 76,077 73,982 68,118
QV 1.000 1.010 0.973 1.000 0.987 0.926
QM 1.000 1.001 0.969 1.000 0.986 0.926
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with the proposed OLCOVEs in a test problem whose characteristics are arguably
typical of many practical applications.

5 OLCOVE Density and Confidence Intervals for μ and σ 2

In this section, we develop an approximation to the p.d.f. of the limiting distribution
of an OLCOVE as the base batch size m → ∞. Our ultimate objective is to com-
pute approximate confidence intervals for μ and σ 2 that are sufficiently precise and
reliable for routine use in practice.

5.1 Approximation to Asymptotic Density of an OLCOVE

To estimate the probability density function of selected OLCOVEs, we generated
1,000,000 independent sample paths from the following processes: (a) an i.i.d.
standard normal process, where each path consists of 10,240 observations with
m = 512 and b = 20; and (b) the AR(1) process with φ = 0.9, as specified
in Section 3.5, where each path consists of 20,480 observations with m = 1,024
and b = 20. Note that these settings are large enough for approximate conver-
gence of the estimators to their limiting distributions. From these sample paths,
we computed the following estimators, all for various choices of weight functions:
(i) the nonoverlapping variance estimators, N (b,m), A( f ; b,m), and C(g; b,m);
(ii) the overlapping variance estimators, O(b,m), AO( f ; b,m), and CO(g; b,m); and
(iii) the OLCOVEs, OLO(B, M5,α

�), ALO( f ; B, M5,α
�), and CLO(g; B, M5,α

�),
where M5 = [m, . . . , 5m].

From the computed estimates, we obtained the empirical p.d.f.’s (e.p.d.f.’s) of the
corresponding variance estimators, and these were plotted in MATLAB. We used
frequency polygons with equal class intervals (bins); and for each plotted point (ver-
tex of the frequency polygon) representing a bin, the abscissa is the bin’s midpoint
and the ordinate is the bin’s relative frequency divided by the bin width (Hald 1952).
Superimposing the e.p.d.f.’s of the various estimators, we obtained Figs. 1 and 2 for
the i.i.d. normal and AR(1) processes, respectively.

The e.p.d.f.’s in Figs. 1 and 2 conformed to the theoretical properties discussed in
previous sections. For each OLCOVE, its p.d.f. appeared to have lighter tails (lower
variance) than did the individual overlapping estimators composing the OLCOVE;
and in turn, the overlapping estimators appeared to have lighter tails than did their
nonoverlapping counterparts. The moment properties of these variance estimators
were not obvious from the figures, even though the subplots of Fig. 2 suggested that
OLCOVEs performed the best in terms of bias.

We adopt the methodology of Alexopoulos et al. (2007b) to approximate the
p.d.f.’s for these estimators by scaled chi-squared distributions. In Alexopoulos et al.
(2007b), the approximation technique of Satterthwaite (1941) is applied to obtain

V(b,m) ·∼ E[V(b,m)]χ2
νeff

/
νeff ,
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a Batch-means estimators

b Area estimators with weight f0 c Area estimators with weight f2

d CvM estimators with weight g0 e CvM estimators with weight g2
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Fig. 1 Estimated p.d.f.’s for various variance estimators based on 1,000,000 sample paths of the
i.i.d. standard normal process with m = 512 and b = 20. (a) Batch-means estimators. (b) Area
estimators with weight function f0. (c) Area estimators with weight function f2. (d) CvM estima-
tors with weight function g0. (e) CvM estimators with weight function g�2
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a Batch-means estimators

b Area estimators with weight f0 c Area estimators with weight f2

d CvM estimators with weight g0 e CvM estimators with weight g2
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Fig. 2 Estimated p.d.f.’s for various variance estimators based on 1,000,000 sample paths of the
AR(1) process with φ = 0.9, m = 1,024, and b = 20 (σ 2 = 19 for this process). (a) Batch-means
estimators. (b) Area estimators with weight function f0. (c) Area estimators with weight function
f2. (d) CvM estimators with weight function g0. (e) CvM estimators with weight function g�2
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where V(b,m) is a generic overlapping variance estimator, χ2
ν is a chi-squared

random variable with ν degrees of freedom, and the quantity νeff is called the effec-
tive degrees of freedom (e.d.o.f.) and is given by

νeff =
[[

2E2[V(b,m)]/Var[V(b,m)]
]]
, (38)

where 〚z〛 denotes the rounding of z to the nearest integer.
Using Equation (38), we calculate νeff for various OLCOVEs, with M i ≡ [m,

. . . , im] and Bi ≡ [b/1, . . . , b/ i] for i = 1, . . . , 5. For example, in a process
consisting of i.i.d. standard normal variates with b = 20, we obtain E

[
ALO( f0;

B, M5, α�)
] = 1 and Var

[
ALO( f0; B, M5, α�)

] = 0.0329, which gives νeff =
〚2/0.0329〛 = 61. Similarly, without loss of generality, we use the i.i.d. standard
normal process to calculate the e.d.o.f.’s for other batch size sets and other types
of estimators. The results are given in Table 6 for the various OLCOVEs under
consideration here.

To show how well we can approximate the limiting p.d.f.’s of the variance estima-
tors, we superimpose the empirical p.d.f.’s of the OLCOVEs and the corresponding
fitted p.d.f.’s based on the approximation

VLO(B, M,α) ·∼ σ 2χ2
νeff

/
νeff , (39)

where νeff was taken from Table 6. From Fig. 3, where we used OLCOVEs with
M5 and b = 20, we concluded that we obtained very good approximations to the
target p.d.f.’s. This finding immediately suggested that using OLCOVEs, we could
construct approximately valid confidence intervals for the parameters μ and σ 2.

Table 6 Estimated effective degrees of freedom νeff for various OLCOVEs with b = 20

E.d.o.f. νeff

Estimator M1 M2 M3 M4 M5

ALO( f0; B, M,α�) 56 58 60 60 61
ALO( f2; B, M,α�) 47 49 52 53 53
CLO(g0; B, M,α�) 95 96 100 101 102
CLO(g�2; B, M,α�) 51 53 57 58 58
OLO(B, M,α�) 28 32 32 32 32

5.2 Confidence Intervals for μ

It follows from the properties given in Equations (7), (8), and (39) that

Ȳn − μ√
VLO(B, M,α)/n

·∼ tνeff
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a Overlapping batch-means estimators

b Area estimators with weight function f0

Fig. 3 Estimated and fitted p.d.f.’s for various OLCOVEs based on 1,000,000 sample paths of
the i.i.d. standard normal process with M5, m = 512, and b = 20. (a) Overlapping batch-means
estimators. (b) Area estimators with weight function f0. (c) Area estimators with weight function
f2. (d) CvM estimators with weight function g0. (e) CvM estimators with weight function g�2
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c Area estimators with weight function f2

d CvM estimators with weight function g0

Fig. 3 (continued)
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e CvM estimators with weight function g2

Fig. 3 (continued)

for sufficiently large m, where tν denotes a Student’s t random variable with ν
degrees of freedom. Then an approximate 100(1− β)% confidence interval for μ is
given by

Ȳn − t1−β/2,νeff

√
VLO(B, M,α)/n ≤ μ ≤ Ȳn + t1−β/2,νeff

√
VLO(B, M,α)/n ,

(40)
where tω,ν denotes the ω-quantile of a Student’s t random variable with ν degrees
of freedom.

Example 8 We use the 1,000,000 independent sample paths of the specified AR(1)
process with φ = 0.9 as described in Section 5.1 to compute 1,000,000 realiza-
tions of Ȳn used together with various OLCOVEs. We construct two-sided 90%
confidence intervals for μ from Equation (40), where the corresponding νeff’s are
given in Table 6. Then we estimate the empirical coverage probabilities for the two-
sided 90% confidence intervals—that is, the proportion of the confidence intervals
containing the steady-state mean μ of the process. These results are presented in
Table 7. From Table 7, we observed that the achieved empirical coverage prob-
abilities did not differ substantially from the targeted coverage probability, 0.90,
thus indicating that the confidence interval procedure worked reasonably well for
sufficiently large base batch size m.

5.3 Confidence Intervals for σ 2

Assuming E
[
VLO(B, M,α)

] = σ 2 and using Equation (39), we see that an approx-
imate 100(1− β)% confidence interval for σ 2 is given by
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Table 7 Estimated coverage probabilities of two-sided 90% confidence intervals for μ from vari-
ous OLCOVEs based on 1,000,000 sample paths of the AR(1) process with φ = 0.9, m = 1,024,
and b = 20

Estimated coverage probability

Estimator M1 M2 M3 M4 M5

ALO( f0; B, M,α�) 0.8958 0.8961 0.8960 0.8962 0.8962
ALO( f2; B, M,α�) 0.8997 0.8997 0.8999 0.8998 0.8999
CLO(g0; B, M,α�) 0.8916 0.8917 0.8918 0.8918 0.8919
CLO(g�2; B, M,α�) 0.8990 0.8989 0.8989 0.8988 0.8989
OLO(B, M,α�) 0.8992 0.8986 0.8986 0.8987 0.8987

νeff VLO(B, M,α)

χ2
1−β/2,νeff

≤ σ 2 ≤ νeff VLO(B, M,α)

χ2
β/2,νeff

, (41)

where χ2
ω,ν denotes the ω-quantile of the chi-squared distribution with ν degrees of

freedom.

Example 9 We use the OLCOVEs computed from the 1,000,000 independent sam-
ple paths of the AR(1) process of Section 5.1 with the intent to construct two-sided
90% confidence intervals for σ 2. The two-sided confidence intervals for σ 2 are
given by Equation (41), where the corresponding νeff’s are from Table 6. We obtain
the estimated coverage probabilities for the two-sided 90% confidence intervals as
presented in Table 8.

The confidence intervals using Equation (41) are based on the assumption that all
the estimators are unbiased for σ 2. However, we know that ALO( f0; B, M,α�) and
OLO(B, M,α�) are moderately biased, whereas CLO(g0; B, M,α�) has significant
bias for σ 2. Thus, our unbiasedness assumption caused the coverage probabilities
to be a bit off for the ALO( f0; B, M,α�) and OLO(B, M,α�) estimators and sig-
nificantly below the nominal coverage level for the CLO(g0; B, M,α�) estimator
in Table 8. On the other hand, the empirical coverage probabilities did not differ
substantially from the targeted coverage probability for the ALO( f2; B, M,α�) and
CLO(g�2; B, M,α�) estimators. This finding makes sense in light of the fact that these
estimators are first-order unbiased for σ 2.

Table 8 Estimated coverage probabilities of two-sided 90% confidence intervals for σ 2 from
various OLCOVEs based on 1,000,000 sample paths of the AR(1) process with φ = 0.9,
m = 1,024, and b = 20

Estimated coverage probability

Estimator M1 M2 M3 M4 M5

ALO( f0; B, M,α�) 0.8697 0.8708 0.8706 0.8730 0.8719
ALO( f2; B, M,α�) 0.8891 0.8895 0.8902 0.8887 0.8906
CLO(g0; B, M,α�) 0.8396 0.8391 0.8393 0.8385 0.8380
CLO(g�2; B, M,α�) 0.8855 0.8835 0.8826 0.8807 0.8825
OLO(B, M,α�) 0.8802 0.8781 0.8793 0.8794 0.8794
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6 Limitations and Evaluation of the OLCOVE Technique

In this section, we discuss some of the limitations of the OLCOVE technique and
point out some challenges that might arise when the linear combinations of over-
lapping estimators are to be used in practice. First, only modest improvements in
precision are achieved by using the proposed linear combinations of variance esti-
mators, at least in comparison with the improvements typically achieved by using
the method of control variables in some other well-known applications (Lavenberg
and Welch 1981).

Second, the ability to use different batch sizes in one estimator with linear combi-
nations relaxes the problem of choosing the batch size to some extent. Nevertheless,
the performance of an OLCOVE still depends considerably on the base batch size m.
Therefore, choosing the base batch size remains an important decision with respect
to implementation of OLCOVEs. Another important decision is that of choosing the
batch-size vector M. For a given sample size n, there are many possible choices of
M; and in general it is difficult to recommend guidelines for choosing M that will
work reasonably well for all steady-state simulation scenarios and still provide good
computational performance.

Third, even though the idea behind OLCOVEs is very simple, the resulting esti-
mator structure is not intuitive; and the estimators might seem prohibitively complex
for practitioners. To facilitate use of these estimators in practice, we must develop
portable, robust software that automates the technique. We are currently working on
the development of such software.

Lastly, our Monte Carlo results indicate that net increases in computational effi-
ciency can be achieved with OLCOVEs—at least for the M/M/1 queue-waiting-
time process considered in the experiment. But the actual computational efficiency
is unclear for other specific practical applications. In addition, when used in iterative
routines, such as ranking-and-selection procedures, an OLCOVE may slow down
the computations somewhat. Thus, some further development to increase the com-
putational efficiency of OLCOVEs (for example, computing all overlapping area
estimators in the linear combination simultaneously) may be required before using
OLCOVEs in such procedures.

7 Summary and Recommendations

Our goal has been to study a new class of estimators for the variance parameter of a
stationary simulation output process. The new estimators are simply linear combi-
nations of overlapping estimators, where each constituent of the linear combination
uses a different batch size. We consider OLCOVEs based on overlapping area, over-
lapping CvM, and overlapping batch means estimators.

We established the theoretical convergence properties of the joint distribution of
overlapping estimators based on different batch sizes, with the aim of calculating the
underlying covariances between these estimators. Using these covariance results,
we found the variance-optimal coefficients to use in constructing the OLCOVEs.
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For the variance-optimal STS estimators, we found that the magnitude of the bias
was also smaller than that of the original overlapping estimators. Then it follows
that the MSE properties for the OLCOVEs were better than those of the underlying
components. We have shown that the new estimators perform as expected (in terms
of bias and variance) on the exact and empirical examples presented.

We have also shown that the distribution of an OLCOVE can be accurately
approximated by a scaled chi-squared distribution with the appropriate effective
degrees of freedom (at least for the specific processes we considered). We have
applied this approximation to construct confidence intervals for the parameters μ
and σ 2 of the underlying steady-state stochastic process based on various OLCOVEs;
and we have conducted Monte Carlo studies to see how these confidence intervals
perform when applied to simple stochastic processes. Regarding the confidence
intervals for μ, we found that the achieved coverage probability was practically the
same as the targeted coverage probability (for large enough batch sizes). Regarding
the confidence intervals for σ 2, we found that actual coverage probabilities based
on first-order unbiased estimators of σ 2 did not differ substantially from the tar-
geted coverage probabilities, at least for batch sizes that were sufficiently large. In
particular, we found that the confidence intervals based on ALO( f2; B, M,α�) and
CLO(g�2; B, M,α�) performed comparatively well.

As an immediate consequence of Theorem 2, we have the following characteri-
zation of the asymptotic distribution of the classical OBM estimator O(b,m) for the
fixed integer b > 1 as m →∞:

O(b,m) =⇒
m →∞

bσ 2

(b − 1)2

∫ b−1

0

[
W(t + 1)−W(t)−W(b)/b

]2
dt . (42)

To the best of our knowledge, this is the first formulation of the exact asymptotic
distribution of O(b,m); and we believe that (42) is a result of independent interest
beyond our discussion of OLCOVEs.

When we combine (42) with the scaled chi-squared approximation (38)–(39) to
the asymptotic distribution of O(b,m) and with the experimental results in Tables 6
and 7 for O(b,m) with b = 20 and M1 (that is, a single batch size m with overall
sample size n = 20m), we have some indication of the performance of the classical
OBM variance estimator O(b,m) that can be expected in practical applications—
provided the target output process {Yi : i = 1, 2, . . .} is observed beyond the end
of the warm-up period, and the batch size m is sufficiently large to ensure adequate
convergence of O(b,m) to its limiting distribution (42). Specifically in the AR(1)
process with lag-one correlation 0.9, we found that by taking b = 20 and m = 1,024
so that the total sample size n = bm = 20,480, we obtained an OBM variance esti-
mator with 28 degrees of freedom; and the corresponding 90% confidence intervals
forμ and σ 2 had empirical coverage probabilities of 89.9% and 88.0%, respectively.
We hope that these insights into the performance of O(b,m) will stimulate more
interest in overlapping variance estimators of all types, including the OLCOVEs
developed in this article.
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